
Chapter 3
Switching Stabilization of Switched Systems
Composed of Unstable Subsystems

3.1 Background and Motivation

As mentioned in Chap.2, for a switched system, even if all its subsystems are stable,
it may fail to preserve stability under arbitrary switching, but may be stable under
restricted switching signals. Therefore, it is of significance to study the controlled-
switching stabilization problems of switched systems. The controlled switching may
result from the physical constraints of a system or the designers’ intervention [1]
which is actually related to the controlled-switching stabilization problem [2]. Gen-
erally, the controlled switching in systems could be classified into state-dependent
and time-constrained ones.

During the past few years, the problems of state-dependent switching stabilization
problems have been widely studied for switched systems with or without unstable
subsystems [3, 4]. In the state-dependent case, thewhole state space is usually divided
into pieces so as to facilitate the search for corresponding Lyapunov-like functions.
Then, the state-dependent switching can be designed to ensure the non-increasing
conditions when switching occurs. Note that, state-dependent switching is applicable
only for the systems whose states are measurable or observable, which also suffers
from the problems of high cost, reliability and real-time ability.

However, the time-constrained switching is more applicable in practice, and has
been used for controlled-switching stabilization of switched systems in recent years
[5–7]. It is noticed that the results on time-constrained switching stabilization of
switched systems mainly focus on systems with stable subsystems (or at least one
stable subsystem). The basic idea of the existing works is to activate the stable
subsystem for a sufficiently large time that we could call slow switching, to com-
pensate the state divergence [8]. In [9], the stability analysis of continuous-time
linear switched systems comprising both Hurwitz stable and unstable subsystems is
studied by exploring a new type of Lyaounov-like function whose energy can rise
with a bounded rate for each active mode. After the bounded increment, the minimal
average dwell time should be designed sufficiently large to compensate the energy
increment produced during the unstable time. Recently, the mode-dependent dwell-
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time switching is used in [10] for stabilization of switched linear systems with both
stable and unstable modes. It is very worth pointing out that there are few efforts
put on time-constrained switching stabilization of switched linear systems with all
unstable subsystems, which is both theoretically challenging and of fundamental
importance to numerous applications.

On the other hand, as many applications of switched systems, such as mobile
robots, automotive, DC converters etc., appear to be described by nonlinear models,
it is natural to extend the time-constrained switching stabilization theory of switched
linear systems to switched nonlinear systems [11–13]. When a switched system is
composed of unstable nonlinear subsystems, some promising ideas are not effective
any more. Therefore, it will be very meaningful and challenging to carry out the
studies on time-constrained switching stabilization of switched systemswith possibly
all unstable nonlinear subsystems.

Based on the above observations, in this chapter, the problems of time-constrained
switching stabilization for switched systems composed of unstable subsystems are
investigated in both linear and nonlinear cases.

Notations:

R andR
n denote the field of real numbers and n-dimensional Euclidean space respec-

tively; In = {1, 2, . . . , n}. For a given vector x, the notation ‖x‖ refers to the Euclid-
ean vector norm. For a given subspace S ⊆ R

n , ‖A‖ and ‖A‖S represent the spectral
norm of A and the spectral norm of A with restriction in S, respectively, and C (S)

stands for the complement subspace. ⊕ denotes the direct sum. In addition, λ(A)

and δ(A) refer to the eigenvalues and singular values of A, and Re{λ(A)} is the real
part of λ(A). C 1 denotes the space of continuously differentiable functions, and a
function α: [0,∞) → [0,∞) is said to be of class K if it is continuous, strictly
increasing, and α(0) = 0. ClassK∞ denotes the subset ofK consisting of all those
functions that are unbounded. A function β: [0,∞) × [0,∞) → [0,∞) is said to be
of class K L if β(·, t) is of class K for each fixed t > 0 and β(r, t) is decreasing
to zero as t → ∞ for each fixed r ≥ 0. The notation P > 0(≥ 0) means that P is a
real symmetric and positive definite (semi-positive definite) matrix.

3.2 Switching Stabilization of Switched Linear Systems

3.2.1 Problem Formulation and Preliminaries

Consider the following switched linear systems

ẋ(t) = Aσ(t)x(t) (3.1)

where x(t) ∈ R
n is the state vector, σ(t) is the switching signal to be designed, which

takes its values in the finite setI = {1, . . . , k}; k is the number of subsystems. Also,
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for a switching sequence 0 < t1 < · · · < ti < ti+1 < · · · , σ(t) is continuous from the
right everywhere. Moreover, when t ∈ [ti , ti+1), σ (t) = σ(ti ) = p ∈ I , and we say
the pth subsystem Ap of (3.1) is activated. In this chapter, we suppose that all the
subsystems of (3.1) are unstable.

We first introduce the following definition and lemmas for later development.

Definition 3.1 ([14]) Suppose A ∈ C
n×n, and S ⊆ C

n is a subspace. S is A-invariant
if AS ⊆ S, that is, ∀v ∈ S ⇒ Av ∈ S.

Lemma 3.1 ([14]) For any subspaces S1, S2, S1 + S2 is also a subspace.

Lemma 3.2 ([14]) For any subspaces S1, S2, S1 ∩ S2 is also a subspace.

Next, the following exponential stability definition of system (3.1) is also recalled.

Definition 3.2 ([9]) The equilibrium x = 0 of system (3.1) is globally uniformly
exponentially stable (GUES) under certain switching signal σ(t) if for initial condi-
tions x(t0), there exist constants η1 > 0, η2 > 0 such that the solution of the system
satisfies ‖x(t)‖ ≤ ρ1e−ρ2(t−t0) ‖x(t0)‖ , ∀t ≥ t0.

In this chapter, we aim at designing a set of switching signals σ(t) with the
mode-dependent average dwell time (MDADT) property, such that the system (3.1)
is GUES. For this purpose, let us now recall the definition of MDADT switching.

Definition 3.3 For a switching signal σ(t) and any T ≥ t ≥ 0, let Nσ p(T, t) be
the switching numbers that the pth subsystem is activated over the interval [t, T ]
and Tp(T, t) denotes the total running time of the pth subsystem over the interval
[t, T ], p ∈ S. We say that σ(t) has a mode-dependent average dwell time τap if there
exist positive numbers N0p (we call N0p the mode-dependent chatter bounds here)
and τap such that

Nσ p(T, t) ≤ N0p + Tp(T, t)

τap
, ∀T ≥ t ≥ 0 (3.2)

Remark 3.1 For simplicity, we mark σ(t) ∈ �MDADT [N0p, τap] in this chapter if
σ(t) is a class of the switching signals defined in Definition 3.2.

3.2.2 Main Results

In correspondence with each subsystem Ap, p ∈ I , the whole state space can be
divided into the two subspaces Ssp and Sup which are defined below.

Definition 3.4 The stable subspace Ssp, p ∈ I , is spannedby the eigenvectors corre-
sponding to the eigenvaluesλk(Ap), k ∈ k

s
p = {m ∈ In | Re(λm(Ap)) < 0, p ∈ I },
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Definition 3.5 The unstable subspace Sup, p ∈ I , is spanned by the eigenvec-
tors corresponding to the eigenvalues λk(Ap), k ∈ k

u
p = {m ∈ In | Re(λm(Ap)) ≥

0, p ∈ I },
Before providing our main results, the following lemmas are first developed for

later use.

Lemma 3.3 Consider the switched linear system (3.1). If S is Ap-invariant, ∀p ∈
I , then, S is eApt -invariant, p ∈ I , ∀t ≥ 0.

Proof It is noted that, ∀p ∈ I , t ≥ 0,

eApt = I + t Ap + t2

2! A
2
p + · · · + tn

n! A
n
p + · · · (3.3)

On the other hand, because S is Ap-invariant, ∀p ∈ I , one has, ∀x ∈ S, n ∈ Z
+,

An
px = An−1

p Apx

= An−1
p x1, (x1 = Apx ∈ S)

= An−2
p x2, (x2 = Apx1 ∈ S)

· · ·
= Apxn ∈ S, (xn = Apxn−1 ∈ S) (3.4)

Therefore, one can get from (3.3) and (3.4) that, ∀p ∈ I , t ≥ 0, x ∈ S,

eAptx = x + t Apx + t2

2! A
2
px + · · · + tn

n! A
n
px + · · ·

∈ S (3.5)

which completes the proof. �

Remark 3.2 Lemma 3.3 implies that, if the pth subsystem of system (3.1) is activated
with initial condition x(t0) ∈ S, the state will stay in S during the running time of
the pth operation mode; i.e., x(t) = eAp(t−t0)x(t0) ∈ S if x(t0) ∈ S.

Lemma 3.4 Consider the linear system ẋ(t) = Ax(t). Let λm = {−max
k

{λk(A)} |
Re(λk(A)) < 0, k ∈ In} and λM = {max

k
{λk(A)} | Re(λk(A)) ≥ 0, k ∈ In}; then,

there exists a constant ε > 0 such that

‖exp{At}‖Ss ≤ exp{ε − λmt} (3.6)

‖exp{At}‖Su ≤ exp{ε + λMt} (3.7)

where Ss and Su are the stable subspace and unstable subspace of A, respectively.
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Proof It is obvious that both Ss and Su are A-invariant, and thus are eAt -invariant.
We can choose the following orthogonal matrix

T = [a1, a2, . . . , ar , br+1, br+2, . . . , bn] (3.8)

appropriately, where {a1, a2, . . . , ar } and {br+1, br+2, . . . , bn} are the bases of Ss

and Su . Note that Ss and Su are also the stable subspace and unstable subspace
corresponding to eA. Then, one has that

T−1 exp{At}T = exp{diag{Ast, Aut}} (3.9)

where As, Au are appropriate matrices satisfying λ(As) < 0 and λ(Au) ≥ 0, respec-
tively. Therefore, it follows from (3.9) that

‖exp{At}‖Ss ≤ ‖T ‖Ss
∥
∥T−1

∥
∥
Ss

∥
∥exp{diag{Ast, Aut}}∥∥Ss

= ‖T ‖Ss
∥
∥T−1

∥
∥
Ss

∥
∥exp{Ast}∥∥

≤ ‖T ‖Ss
∥
∥T−1

∥
∥
Ss exp{−λmt} (3.10)

‖exp{At}‖Ss ≤ ‖T ‖Su
∥
∥T−1

∥
∥
Su

∥
∥exp{diag{Ast, Aut}}∥∥Ss

= ‖T ‖Su
∥
∥T−1

∥
∥
Su

∥
∥exp{diag{Aut}∥∥

≤ ‖T ‖Su
∥
∥T−1

∥
∥
Su exp{λMt} (3.11)

Finally, set ε = ln( ε1
ε2

), ε1 = max δ(T ) and ε2 = min δ(T ). This together with
(3.10) and (3.11) completes the proof. �

Subsequently,wedefineλm
p = {−max

k
{λk(Ap)} | Re(λk(Ap)) < 0, k ∈ In, p ∈ I },

and λM
p = {max

k
{λk(Ap)} | Re(λk(Ap)) ≥ 0, k ∈ In, p ∈ I } for switched system

(1). Then, Lemma 3.4 can be trivially extended to the following result for switched
system (3.1).

Lemma 3.5 Consider the switched linear system (3.1). There exist some constants
εp > 0, p ∈ I , such that

∥
∥exp{Apt}

∥
∥
Ssp

≤ exp{εp − λm
p t} (3.12)

∥
∥exp{Apt}

∥
∥
Sup

≤ exp{εp + λM
p t} (3.13)

Theorem 3.1 Consider the switched linear system (3.1). For given constants αp >

λM
p > 0, λm

p > βp > 0, p ∈ I , and ηp, if there exist two sets I1,I2 ⊂ I (I1 ∪
I2 = I ) such that Ω1 = ∑

p∈I1
Sup and Ω2 = ∩p∈I1 S

s
p are Ap-invariant, p ∈ I ,

and
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Ω1 ⊆ ∩p∈I2 S
s
p (3.14)

then, the system (3.1) is GUES for any switching signal σ(t) ∈ �MDADT [N0p, τap]
satisfying

τap ≥ εp

αp − λM
p

,∀p ∈ I (3.15)

τap ≥ εp

λm
p − βp

,∀p ∈ I (3.16)

∑

p∈I1

(αpTp(T, 0) + ηpTp(T, 0)) ≤
∑

p∈I2

(βpTp(T, 0) − ηpTp(T, 0)) (3.17)

∑

p∈I2

(αpTp(T, 0) + ηpTp(T, 0)) ≤
∑

p∈I1

(βpTp(T, 0) − ηpTp(T, 0)) (3.18)

Proof By Lemmas 3.1 and 3.2, it is obvious that Ω1 and Ω2 are two subspaces in
R

n , and it is also clear from the definitions of Ω1 and Ω2 that,

Ω1 ∩ Ω2 = ∅ (3.19)

It is also true that,

C (Ω2) = C (∩p∈I1 S
s
p) =

∑

p∈I1

C (Ssp) =
∑

p∈I1

Sup = Ω1 (3.20)

which implies
Ω1 ⊕ Ω2 = R

n (3.21)

Next, for any sufficiently large T > 0, let t0 = 0 and t1, t2 . . . ti , ti+1, . . . tNσ (T,0)

denote the switching times on the interval [0, T ], where Nσ (T, 0) =
k∑

p=1
Nσ p(T, 0).

Then, when the initial condition x(0) ∈ Ω1, it yields from Lemma 3.3 that, ∀T > 0,

x(T ) = exp{Aσ(tNσ (T,0))(T − tNσ (T, 0))} · · · exp{Aσ(ti )(ti+1 − ti )} · · ·
exp{Aσ(t0)(t1 − t0)}x(0)

∈ Ω1 (3.22)

Therefore, by (3.14), (3.22), Definition 3.3 and Lemma 3.5, it arrives at, ∀T > 0,
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‖x(T )‖ ≤
∏

s∈Φ1

∥
∥exp{Aσ(ts )(ts+1 − ts)}

∥
∥
Ω1

∏

s∈Φ2

∥
∥exp{Aσ(ts )(ts+1 − ts)}

∥
∥
Ω1

‖x(0)‖

≤
∏

s∈Φ1

∥
∥exp{Aσ(ts )(ts+1 − ts)}

∥
∥
Ω1

∏

s∈Φ2

∥
∥exp{Aσ(ts )(ts+1 − ts)}

∥
∥
Ssp

‖x(0)‖

≤
∏

p∈I1

exp{Nσ p(T, 0)εp} exp{λMp Tp(T, 0)}
∏

p∈I2

exp{Nσ p(T, 0)εp} exp{−λmpTp(T, 0)} ‖x(0)‖

= exp

{
∑

p∈I Nσ p(T, 0)εp

}

exp

{
∑

p∈I1
λMp Tp(T, 0)

−
∑

p∈I2
λmpTp(T, 0)

}

‖x(0)‖

≤ exp

{
∑

p∈I N0pεp

}

exp

{
∑

p∈I1
λMp Tp(T, 0) −

∑

p∈I2
λmpTp(T, 0)

+
∑

p∈I
εpTp(T, 0)

τap

}

‖x(0)‖ (3.23)

= exp

{
∑

p∈I N0pεp

}

exp

{
∑

p∈I1
(λMp + εp

τap
)Tp(T, 0)

−
∑

p∈I2
(λmp − εp

τap
)Tp(T, 0)

}

‖x(0)‖ (3.24)

where Φ1 and Φ2 denote the sets of s satisfying σ(ts) ∈ I1 and I2, respectively.
Therefore, if we specify

τap ≥ εp

αp − λM
p

, p ∈ I1 (3.25)

τap ≥ εp

λm
p − βp

, p ∈ I2 (3.26)

then, it is clear from (3.17) and (3.23) that

‖x(T )‖
≤ exp

{
∑

p∈I N0pεp

}

exp

{
∑

p∈I1
αpTp(T, 0) −

∑

p∈I2
βpTp(T, 0)

}

‖x(0)‖

≤ exp

{
∑

p∈I N0pεp

}

exp

{
∑

p∈I −ηpTp(T, 0)

}

‖x(0)‖

≤ exp

{
∑

p∈I N0pεp

}

exp

{

− min
p∈I

{ηp}T
}

‖x(0)‖ (3.27)

which means that the system is GUES under MDADT satisfying (3.18), (3.24) and
(3.25).

On the other hand, when the initial condition x(0) ∈ Ω2, it is true that x(T ) ∈
Ω2,∀T > 0, and
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‖x(T )‖ ≤
∏

s∈Φ1

∥
∥exp{Aσ(ts )(ts+1 − ts)}

∥
∥

Ω2

∏

s∈Φ2

∥
∥exp{Aσ(ts )(ts+1 − ts)}

∥
∥

Ω2
‖x(0)‖

≤
∏

s∈Φ1

∥
∥exp{Aσ(ts )(ts+1 − ts)}

∥
∥
Ssp

∏

s∈Φ2

∥
∥exp{Aσ(ts )(ts+1 − ts)}

∥
∥

Ω2
‖x(0)‖

≤
∏

p∈I1

exp{Nσ p(T, 0)εp} exp{−λm
pTp(T, 0)}

∏

p∈I2

exp{Nσ p(T, 0)εp} exp{λM
p Tp(T, 0)} ‖x(0)‖

= exp
{∑

p∈I Nσ p(T, 0)εp

}

exp
{

−
∑

p∈I1
λm
pTp(T, 0)

+
∑

p∈I2
λM
p Tp(T, 0)

}

‖x(0)‖
≤ exp

{∑

p∈I N0pεp

}

exp
{

−
∑

p∈I1
λm
pTp(T, 0)

+
∑

p∈I2
λM
p Tp(T, 0) +

∑

p∈I
εpTp(T, 0)

τap

}

‖x(0)‖

= exp
{∑

p∈I N0pεp

}

exp

{

−
∑

p∈I1

(

λm
p − εp

τap

)

Tp(T, 0)

+
∑

p∈I2

(

λM
p + εp

τap

)

Tp(T, 0)

}

‖x(0)‖ (3.28)

Similarly, if we choose

τap ≥ εp

αp − λM
p

, p ∈ I2 (3.29)

τap ≥ εp

λm
p − βp

, p ∈ I1 (3.30)

then, it is immediate from (3.18) and (3.27) that

‖x(T )‖
≤ exp

{
∑

p∈I N0pεp

}

exp

{

−
∑

p∈I1
βpTp(T, 0) +

∑

p∈I2
αpTp(T, 0)

}

‖x(0)‖

≤ exp

{
∑

p∈I N0pεp

}

exp

{
∑

p∈I −ηpTp(T, 0)

}

‖x(0)‖

≤ exp

{
∑

p∈I N0pεp

}

exp

{

− min
p∈I

{ηp}T
}

‖x(0)‖ (3.31)

Thus, the system is GUES with MDADT satisfying (3.18), (3.28) and (3.29).
Now, we consider the case that the initial condition x(0) ∈ Ω3 = Ω1 ∪ Ω2. By

(3.21), for any x(0) ∈ Ω3, one can always find

x̄(0) ∈ Ω1 (3.32)
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and
x̃(0) ∈ Ω2 (3.33)

such that
x(0) = x̄(0) + x̃(0) (3.34)

It yields from (3.33) that

x(T ) = exp{Aσ(tNσ (T,0))(T − tNσ (T, 0))} · · · exp{Aσ(ti )(ti+1 − ti )} · · ·
exp{Aσ(t0)(t1 − t0)}x(0)

= exp{Aσ(tNσ (T,0))(T − tNσ (T, 0))} · · · exp{Aσ(t0)(t1 − t0)}x̄(0)
+ exp{Aσ(tNσ (T,0))(T − tNσ (T, 0))} · · · exp{Aσ(t0)(t1 − t0)}x̃(0)

= x̄(T ) + x̃(T ) (3.35)

where x̄(T ) ∈ Ω1 and x̃(T ) ∈ Ω2 are the state responses of initial conditions x̄(0) and
x̃(0), respectively. It then follows from (3.26) and (3.30) that the underlying system
is stabilized by MDADT satisfying (3.17)–(3.18), (3.24)–(3.25) and (3.28)–(3.29).

Finally,we can conclude from (3.24)–(3.26), (3.27)–(3.29) and (3.34) that if (3.14)
holds, the switched system (3.1) is GUES under MDADT meeting (3.15)–(3.18),
which completes the proof. �

Remark 3.3 It is noted from the proof of Theorem 3.1 that switched system (3.1) is
stabilized via the designed MDADT switching, and the decay rate of the state can
be set in advance via a scalar η = minp∈I {ηp}.

As a special case, if all the subsystems of switched system (3.1) areHurwitz stable,
then the sufficient condition for stabilization via MDADT switching is addressed in
the following corollary.

Corollary 3.1 Consider the switched linear system (3.1) composed of all
Hurwitz stable subsystems. The system is GUES for any switching signal σ(t)
∈ �MDADT [N0p, τap] satisfying

τap ≥ εp

λm
p

, p ∈ I (3.36)

Proof Note the fact that all the subsystems are stable. Therefore, in Theorem 3.1,
I1 = ∅,I2 = I , Ω1 = ∅, and Ω2 = R

n. Then, ∀T > 0,
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‖x(T )‖ =
∥
∥
∥
∥
∥
exp

{
∑

s∈Φ1∪Φ2

Aσ(ts )(ts+1 − ts)

}∥
∥
∥
∥
∥

‖x(0)‖

≤
∏

p∈I
exp{Nσ p(T, 0)εp − λm

pTp(T, 0)} ‖x(0)‖

≤ exp
{∑

p∈I N0pεp

}

exp

{
∑

p∈I

(
εp

τap
− λm

p

)

Tp(T, 0)

}

‖x(0)‖

≤ exp
{∑

p∈I N0pεp

}

exp

{

max
p∈I

(
εp

τap
− λm

p

)

T

}

‖x(0)‖ (3.37)

Thus, we can see from Definition 3.2 and (3.36) that the underlying system is expo-
nentially stabilized via MDADT satisfying (3.35). �

Remark 3.4 The above theorem and corollary provide sufficient conditions of
switching stabilization for switched system (3.1) comprising all unstable subsys-
tems and all stable subsystems, respectively. An example in the next section will
show the validity of the obtained criteria.

3.2.3 Simulation Results

In this section, a numerical example of switched linear systems with all unstable
subsystems is presented to show the effectiveness of the developed approaches.

Example 3.1 Consider the switched linear systems consisting of three subsystems
described by:

A1 =
⎡

⎣

−20 −12.5 −12.5
0 −7.5 12.5
0 12.5 −7.5

⎤

⎦ , A2 =
⎡

⎣

−7.5 15 −2.5
17.5 −5 2.5

−17.5 −15 −22.5

⎤

⎦ , A3 =
⎡

⎣

−7.5 −12.5 0
−12.5 −7.5 0
12.5 12.5 5

⎤

⎦ .

First, the state responses of each subsystemwith the same initial condition x(0) =
[ 5 −5 10 ]T are depicted in Fig. 3.1 fromwhich it is seen that all the three subsystems
are unstable. Furthermore, the simulation results with four random switching signals
are given in Fig. 3.2 which shows that the above switched system is unstable under
these switching signals.

Then, our purpose here is to design a set of mode-dependent average dwell time
switching to exponentially stabilize the above switched systems. It is clear that
λ(A1) = {5,−20,−20}, λ(A2) = {−20,−25, 10}, λ(A3) = {5, 5,−20}, λM

1 = 5,
λM
2 = 10, λM

3 = 5, λm
1 = 20, λm

2 = 20, λm
3 = 20.We chooseI1 = {1, 3},I2 = {2}.

Therefore,
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Fig. 3.2 The state responses of the system with different random switching signals

Ω1 = span

⎧

⎨

⎩

⎡

⎣

−0.5
0.5
0.5

⎤

⎦ ,

⎡

⎣

0.5
−0.5
0.5

⎤

⎦

⎫

⎬

⎭
,Ω2 = span

⎧

⎨

⎩

⎡

⎣

0.5
0.5

−0.5

⎤

⎦

⎫

⎬

⎭
,



52 3 Switching Stabilization of Switched Systems Composed …

Fig. 3.3 The state responses
of the system under the
designed MDADT switching
signals
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On the other hand, it is not hard to get that Ω1 and Ω2 are Ap-invariant, p ∈
{1, 2, 3}, and satisfy the condition (3.14).

Set ηp = 0.1, εp = 0.69, p = {1, 2, 3}, α1 = α3 = 10, α2 = 14, β1 = β3 = 15,
β2 = 16. Based on Theorem 3.1, one can get a MDADT switching signal satisfying
(3.17), (3.18) and

τa1 ≥ 0.14, τa2 ≥ 0.17, τa3 ≥ 0.14 (3.38)

To illustrate the correctness of the theoretical results,wenowgenerate one possible
switching sequences with the MDADT property (3.37). Then, one can obtain the
corresponding state responses of the system as shown in Fig. 3.3, for the same initial
state condition. It can be concluded from the curves that the underlying system is
stabilized by the designed MDADT switching signal.

Finally, from the above demonstrations, we obtain that Theorem 3.1 provides an
effective stabilization approach via MDADT switching for switched linear systems
composed of unstable subsystems.

3.2.4 Conclusions

This section is concerned with switching stabilization for switched linear systems
consisting of unstable modes. Based on the invariant subspace theory, the advanced
mode-dependent average dwell time (MDADT) switching, is introduced to stabi-
lize the systems under consideration. Then, the corresponding result is extended to
switched systems composed of all Hurwitz stable subsystems. Finally, a numerical
example is provided to demonstrate the correctness and effectiveness of the obtained
results.
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3.3 Switching Stabilization of Switched Nonlinear Systems

3.3.1 Problem Formulation and Preliminaries

This section presents some definitions and preliminary results that will be used
throughout the remainder of this chapter. Consider the following switched nonlinear
systems,

ẋ(t) =
m

∑

p=1

δp(σ (t)) f p(x(t), t), x(t0) = x0, t ≥ t0, (3.39)

where x(t) ∈ R
n is the state vector, and x0 and t0 ≥ 0 denote the initial state and initial

time, respectively; σ(t) is a switching signal which is a piecewise constant function
from the right of time and takes its values in the finite set S = {1, . . . ,m}, where
m > 1 is the number of subsystems. f p : R

n × R −→ R
n are smooth functions for

any σ(t) = p ∈ S. Moreover, all the subsystems in system (3.39) may be unstable.
For a switching sequence, 0 < t1 < · · · < tk < tk+1 < · · · , σ(t) may be either

autonomous or controlled. When t ∈ [tk, tk+1), we say σ(tk)th mode is active; i.e.,
the indication functions δp(σ (t)) satisfy:

δp(σ (t)) =
{

1, i f σ(t) = p,

0, otherwise.
(3.40)

The switched nonlinear system (3.39) can be described by fuzzy systems, and the
pth fuzzy subsystem is represented as follows.

Model rule Ri
p : IF θ1(t) is Mi

p1 and · · · and θl(t) is Mi
pl , THEN

ẋ(t) = Apix(t), t ≥ t0, i ∈ R = {1, 2, · · ·, r}, p ∈ S, (3.41)

where x(t) ∈ R
n is the state vector; Mi

pj ( j = 1, 2, . . . , l) is the fuzzy set, and r
is the number of IF-THEN rules; θ1(t), θ2(t) · · · θp(t) are the premise variables;
Furthermore, Api , i ∈ R, p ∈ S is a real matrix with appropriate dimensions. Thus,
through fuzzy blending, the global model of the pth subsystem can be given by

ẋ(t) = A(h(t))x(t)

=
r

∑

i=1

h pi (θ(t))Apix(t), p ∈ S. (3.42)

h pi (θ(t)) are the normalized membership functions satisfying:

h pi (θ(t)) =
∏l

j=1 M
i
pj (θ j (t))

∑r
i=1

∏l
j=1 M

i
pj (θ j (t))

≥ 0,
r

∑

i=1

h pi (θ(t)) = 1, (3.43)
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where Mi
pj (θ j (t)) represent the grade of the membership function of premise vari-

able θ j (t) in Mi
pj . Finally, we can describe switched nonlinear system (3.39) in the

following form,

ẋ(t) =
m

∑

p=1

r
∑

i=1

δp(σ (t))h pi (θ(t))Apix(t). (3.44)

Next, we introduce the following definition for later use.

Definition 3.6 [15] The equilibrium x = 0 of switched system (3.39) is globally
asymptotically stable (GAS) under a certain switching signal σ(t) if there exists a
K L function β such that the solution of the system satisfies the inequality ‖x(t)‖ ≤
β(‖x(t0)‖, t), ∀t ≥ t0, with any initial conditions x(t0).

In the following, our goal is to find a set of switching signals with the ADT
property, such that the switched system (3.39) is GAS. For this purpose, we first
define a new class of ADT switching signals.

Definition 3.7 For a switching signal σ(t) and each T ≥ t ≥ 0, let Nσ (T, t) denote
the number of discontinuities of σ(t) in the interval (t, T ). We say that σ(t) has an
average dwell time τa if there exist two positive numbers N0 (we call N0 the chatter
bound here) and τa such that

Nσ (T, t) ≥ N0 + T − t

τa
, ∀T ≥ t ≥ 0. (3.45)

3.3.2 Main Results

In this section, we consider the switching stabilization for switched nonlinear sys-
tems described in the previous section. Next, we are in a position to provide the
first switching stabilization condition for switched nonlinear systems (3.39) in the
following theorem by designing ADT switching signals defined in Definition 3.7.

Theorem 3.2 Consider switched nonlinear system (3.39). Suppose that there exist
a switching sequence ξ = {t0, t1, . . . tk, . . . tNσ(t)} satisfying (3.45), a set of C1 non-
negative functions Vp : R

n × R → R, p ∈ S, two classK∞ functions α1 and α2, and
two positive numbers λ > 0 and 0 < μ < 1 such that

α1(‖x(t)‖) ≤ Vp(x(t), t) ≤ α2(‖x(t)‖),∀p ∈ S, (3.46)

V̇p(x(t), t)) ≤ λVp(x(t), t),∀p ∈ S, (3.47)

Vq(x(t+k ), t+k ) ≤ μVp(x(t−k ), t−k ), ∀p, q ∈ S (3.48)

τa ≤ −lnμ

λ
. (3.49)
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Then switched system (3.39) is globally asymptotically stable under the switching
sequence ξ generated by σ(t).

Proof Without loss of generality,wedenote ξ = {t0, t1, . . . tk, . . . tNσ(t)} as the switch-
ing sequence on time interval [0, T ] for any T > 0, t0 = 0.

Next, we establish a multiple Lyapunov function (MLF) for switched nonlinear
system (3.39) as follows,

V (x(t), t) =
m

∑

p=1

δp(σ (t))Vp(x(t), t). (3.50)

Then we consider the function

W (t) = e−λt
m

∑

p=1

δp(σ (t))Vp(x(t), t). (3.51)

It is clear that it is piecewise differentiable along solutions of (3.39). When t ∈
[tk, tk+1), we get from (3.47) that

Ẇ (t) = −λe−λt Vp(x(t), t) + e−λt V̇p(x(t), t)

≤ −λe−λt Vp(x(t), t) + e−λtλVp(x(t), t)

= 0. (3.52)

ThusW (t) is nonincreasing when t ∈ [tk, tk+1). This together with (3.48) gives that

W (t+k+1) = e−λt+k+1Vp(x(t+k+1), t
+
k+1)

≤ μe−λt−k+1Vp(x(t
−
k+1), t

−
k+1)

= μW (t−k+1)

≤ μW (tk). (3.53)

By integrating this for t ∈ [tk, tk+1), it yields that

W (T−) ≤ W (tNδ
)

≤ μW (t−
Nδ

)

≤ μW (tNδ−1)

. . .

≤ μNδW (t0). (3.54)

One can easily obtain from the definition of W (t) that
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e−λT Vδ(T−)(x(T ), T ) ≤ μNδVδ(t0)(x(t0), t0). (3.55)

Moreover, it can be derived from (3.45) and (3.55) that

Vδ(T−)(x(T ), T ) ≤ eλT eNδ lnμVδ(t0)(x(t0), t0)

≤ eλT e(N0+ T
τa

) lnμVδ(t0)(x(t0), t0)

= eN0 lnμe(λ+ lnμ

τa
)T Vδ(t0)(x(t0), t0). (3.56)

Finally, we can conclude from (3.56) that, if τa satisfies the condition in (3.49),
then Vδ(T−)(x(T ), T ) exponentially converges to zero as T → ∞,

By (3.46), we can get that

‖x(T )‖ = α
−1

1 (μN0eλTα2(‖x0‖),

which verifies the global asymptotic stability by Definition 3.6. Therefore, switched
nonlinear system (3.39) is asymptotically stabilized by our proposed ADT switching
signals (3.45) with (3.49) if the conditions (3.46)–(3.48) hold. This completes the
proof.

In the following,weutilize theT-S fuzzymodeling approach to represent nonlinear
system (3.39), to develop more applicable results.

Note that the traditional linear multiple quadratic Lyapunov function Vp(x(t)) =
xT (t)Ppx(t), where Pp > 0, ∀p ∈ S, will not satisfy the condition Pq ≤ μPp ∀p, q
∈ S because 0 < μ < 1. Hence, we choose a time-variant (TV) positive definite
matrix Pp(t) to construct a TV-MQLF for switched T-S fuzzy system (3.44) as
follows,

Vp(x(t), t) = xT (t)Pp(t)x(t), ∀p ∈ S. (3.57)

Then it is immediately clear that Vq(x(t+k ), t+k ) ≤ μVp(x(t−k ), t−k ), ∀p, q ∈ S can
be expressed by Pq(t

+
k ) ≤ μPp(t

−
k ), p �= q, ∀p, q ∈ S. Next, we resort to the dis-

cretized Lyapunov function technique to numerically check the existence of such a
matrix function Pp(t) which is, however, difficult to be checked in the continuous
case.

First of all, giving τa a sufficient small lower bound τ ∗ > 0, we divide the inter-
val [tk, tk + τ ∗) into K segments. The length of each section is equal to l = τ ∗

K ,
and then the interval [tk, tk + τ ∗) can be described as Gp,n = [tk + Hn, tk + Hn+1),

Hn = nl, n = 1, 2, . . . , K − 1, Next, we use a linear interpolation formula to
describe the continuous-time matrix function Pp(t) which is chosen to be lin-
ear within each segment Gp,n = [tk + Hn, tk + Hn+1), n = 1, 2, . . . , K − 1. When
t ∈ Gp,n, n = 1, 2, . . . , K − 1
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Pp(t) = t − tk − Hn+1

tk + Hn − tk − Hn+1
Pp,n + t − tk − Hn

tk + Hn+1 − tk − Hn
Pp,n+1

= t − tk − Hn+1

−l
Pp,n + t − tk − Hn

l
Pp,n+1

= (1 − γ )Pp,n + γ Pp,n+1

= P (n)
p (γ ), (3.58)

where Pp,n = Pp(tk + Hn), Pp,n+1 = Pp(tk + Hn+1), 0 < γ = t−tk−Hn
l < 1. In the

interval [tk, tk + τ ∗), the continuous-time matrix function Pp(t), p ∈ S, is deter-
mined by Pp,n n = 1, 2, . . . , K , p ∈ S. On the other hand, in the interval
[tk + τ ∗, tk+1), the matrix function Pp(t), p ∈ S is fixed by a constant matrix
Pp(t) = Pp,K , p ∈ S. Thus, the TV-MQLF for switched T-S fuzzy system (3.44)
for mode p ∈ S can be described as

Vp(x(t), t) =
{

xT (t)P (n)
p x(t), t ∈ Gp,n, n = 1, 2, . . . , K − 1

xT (t)Pp,Kx(t), t ∈ [tk + τ ∗, tk+1).
(3.59)

Moreover, it can be derived from (3.59) that for any t ∈ Gp,n, n = 1, 2, . . . ,
K − 1

V̇p(x(t), t) = ẋT (t)Pp(t)x(t) + xT (t)Ṗp(t)x(t) + xT (t)Ppi (t)ẋ(t)

=
r

∑

i=1

h pi (θ(t))[(Apix(t))T Pp(t)x(t) + xT (t)Ṗp(t)x(t) + xT (t)Pp(t)Apix(t)]

=
r

∑

i=1

h pi (θ(t))xT (t)[Api
T Pp(t) + Pp(t)Api + Ṗp(t)]x(t). (3.60)

When t ∈ Gp,n, n = 1, 2, . . . , K − 1, one can immediately get from (3.58) that

Ṗp(t) = −γ̇ Pp,n + γ̇ Pp,n+1

= (Pp,n+1 − Pp,n)
K

τ ∗
= Πn

p . (3.61)

In the sequel, we can obtain from (3.58), (3.60) and (3.61) that for any t ∈ Gp,n, n =
1, 2, . . . , K − 1,

V̇p(x(t), t) =
r

∑

i=1

h pi (θ(t))xT (t)[AT
pi
P (n)
p + P (n)

p Api + Πn
pi ]x(t)

=
r

∑

i=1

h pi (θ(t))xT (t)[(1 − γ )(AT
pi
Pp,n + Pp,n Api + Πn

pi )

+γ (AT
pi
Pp,n+1 + Pp,n+1Api + Πn

pi )]x(t)
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=
r

∑

i=1

h pi (θ(t))xT (t)[(1 − γ )Φ
(n)
pi,1 + γΦ

(n)
pi,2]x(t), (3.62)

whereΦ
(n)
pi,1 = AT

pi
Pp,n + Pp,n Api + Πn

p andΦ
(n)
pi,2 = AT

pi
Pp,n+1 + Pp,n+1Api + Πn

p .
Thus, a switching stabilization condition for switched T-S fuzzy system (3.44)

can be obtained on the basis of the above developments.

Theorem 3.3 Consider switched T-S fuzzy system (3.44), and let λ > 0,
0 < μ < 1, and τ ∗ > 0 be given constants. If there exists a set of matrices Pp,n >

0, n = 0, 1, 2, . . . , K , p ∈ S, such that ∀n = 0, 1, 2, . . . , K ,∀i ∈ R, p �= q,

∀(p × q) ∈ S × S,

Φ
(n)
pi,1 − λPp,n < 0, (3.63)

Φ
(n)
pi,2 − λPp,n+1 < 0, (3.64)

AT
pi
Pp,K + Pp,K Api − λPp,K < 0, (3.65)

Pq,0 − μPp,K ≤ 0, (3.66)

whereΦ
(n)
pi,1 andΦ

(n)
pi,2 are defined in (3.62), then, the system is GAS for any switching

signal with ADT satisfying

τ ∗ ≤ τa ≤ −lnμ

λ
. (3.67)

Proof.When t ∈ Gp,n, n = 1, 2, . . . , K − 1, by the discussions in (3.62), it can be
seen that if (3.63) and (3.64) hold, then,

V̇p(x(t), t) − λVp(x(t), t)

=
r

∑

i=1

h pi (θ(t))xT (t)[(1 − γ )Φ
(n)
pi,1 + γΦ

(n)
pi,2 − λP (n)

p (γ )]x(t)

=
r

∑

i=1

h pi (θ(t))xT (t)[(1 − γ )(AT
pi
Ppi,n + Ppi,n Api + Πn

p − λPp,n)

+γ (AT
pi
Pp,n+1 + Pp,n+1Api + Πn

p − λPp,n+1)]x(t)

=
r

∑

i=1

h pi (θ(t))xT (t)[(1 − γ )(Φ
(n)
p,1 − λPp,n) + γ (Φ

(n)
pi,2 − λPp,n+1)]x(t)

< 0. (3.68)

Moreover, when t ∈ [tk + τ ∗, tk+1), we have from (3.59), (3.65) and (3.68) that
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V̇p(x(t), t) − λVp(x(t), t) =
r

∑

i=1

h pi (θ(t))xT (t)(AT
pi
Pp,K + Pp,K Api − λPpi,K )x(t)

< 0. (3.69)

Thus, we can get that (3.68) and (3.69) hold, which means that

V̇p(x(t), t) ≤ λVp(x(t), t).

Then, according to (3.59) and (3.65), it can be obtained that

Vq(t
+
k , t+) ≤ μVp(t

−
k , t−).

Finally, one can readily conclude from Theorem 3.2 that switched T-S fuzzy system
(3.44) is GAS for any switching signal with our proposed ADT (3.45).

Remark 3.5 Compared with Theorem 3.2, the advantage of Theorem 3.3 lies in that
the obtained stability condition is formulated in terms of linear matrix inequalities
that can be efficiently solved by the LMI toolbox.

3.3.3 Simulation Results

We provide the following example to verify the main results developed in this
Sect. 3.2. By using a T-S fuzzy model to represent a given switched nonlinear system
composed of all unstable subsystems, a switching signal with our proposed ADT
property is designed to asymptotically stabilize the system.

Example 3.2 Consider the switched nonlinear system composed of the following
two subsystems,

Σ1 =
{

ẋ1(t) = −7.64x1(t) + 5.03sin2(x1(t))x2(t) + 5.84x2(t) − 6.66sin2(x1(t))x1(t)

ẋ2(t) = −6.44x1(t) + 4.94x2(t) − 5.58sin2(x1(t))x1(t) + 4.21sin2(x1(t))x2(t),

Σ2 =
{

ẋ1(t) = 7.23x1(t) + 5.031.9sin2(x1(t))x2(t) − 8.58x2(t) + 2.96sin2(x1(t))x1(t)

ẋ2(t) = 9.48x1(t) − 11.28x2(t) + 3.82sin2(x1(t))x1(t) − 4.52sin2(x1(t))x2(t).

The state trajectories shown in Figs. 3.4 and 3.5 demonstrate that both subsystems
∑

1 and
∑

2 are unstable.
Next, we are interested in designing a class of switching signal σ(t)with property

(3.45) to asymptotically stabilize the above switched system. First, we formulate the
T-S fuzzy model of the switched nonlinear system in the following.

When p = 1, the Σ1 can be written as

ẋ(t) =
[−7.64 − 6.66sin2(x1(t)) 5.84 + 5.03sin2(x1(t))

−6.44 − 5.58sin2(x1(t)) 4.94 + 4.21sin2(x1(t))

] [

x1(t)
x2(t)

]

.
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Fig. 3.4 State response of
the subsystem

∑

1

0 10 20 30 40 50
−100

0

100

200

300

400

500

600

700

800

900

Sample Time/s

S
ta

te
 R

es
po

ns
es

x
1
(t)

x
2
(t)

Fig. 3.5 State response of
the subsystem

∑

2

0 10 20 30 40 50
−1800

−1600

−1400

−1200

−1000

−800

−600

−400

−200

0

200

Sample Time/s

S
ta

te
 R

es
po

ns
es

x
1
(t)

x
2
(t)

For the nonlinear term sin2(x1(t)), define θ(t) = sin2(x1(t)). Then we have

ẋ(t) =
[−7.64 − 6.66θ(t) 5.84 + 5.03θ(t)

0.6 + 0.4θ(t) −0.1 + 3.1θ(t)

] [

x1
x2

]

.

Next, calculate the minimum and maximum values of θ(t). The minimum and
maximum values of θ(t) are 0 and 1, respectively. From the minimum and maximum
values, θ(t) can be represented by

θ(t) = sin2(x1(t)) = M11(θ(t)) × 0 + M12(θ(t)) × 1,

where
M11(θ(t)) + M12(θ(t)) = 1.
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Therefore the membership functions can be secleted as

M11(θ(t)) = 1 − sin2(x1(t)), M12(θ(t)) = sin2(x1(t)).

Then, the first nonlinear subsystem Σ1 is represented by the following fuzzy
model.

Model rule R1
1 : If θ(t) is 0, THEN

ẋ(t) = A11x(t),

Model rule R2
1 : If θ(t) is 1, THEN

ẋ(t) = A12x(t).

Its normalized membership functions are h1(θ(t)) = 1 − sin2(x1(t)), h2(θ(t)) =
sin2(x1(t)), and here,

A11 =
(−7.64 5.84

−6.44 4.94

)

, A12 =
( −14.3 10.87

−12.02 9.15

)

.

Thus, through the use of fuzzy blending, the global mode of the 1st fuzzy subsys-
tem can be given by

ẋ(t) = A(h(t))x(t)

=
2

∑

i=1

h1i (θ(t))A1ix(t),

where

h11(θ(t)) = M11(θ(t))

M11(θ(t)) + M12(θ(t))
= 1 − sin2(x1(t)),

h12(θ(t)) = M12(θ(t))

M11(θ(t)) + M12(θ(t))
= sin2(x1(t)).

Similarly, the second nonlinear subsystem Σ2 can be represented by the following
fuzzy model.

Model rule R1
2 : If θ(t) is 0, THEN

ẋ(t) = A21x(t),

Model rule R2
2 : If θ(t) is 1, THEN

ẋ(t) = A22x(t),
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where

A21 =
(

7.23 −8.58
9.48 −11.28

)

, A22 =
(

10.18 −12.05
13.30 −15.80

)

.

Therefore, we can describe switched nonlinear system (3.70) in the following
form

ẋ(t) =
2

∑

p=1

2
∑

i=1

δp(σ (t))h pi (θ(t))Apix(t) , i ∈ R = {1, 2}, p = {1, 2},

where

δp(σ (t)) =
{

1, i f σ(t) = p,

0, otherwise.

Next, by using Theorem 3.3 and choosing K = 1, μ = 0.6, η = 0.7, τ ∗ = 0.3,
the feasible solutions are obtained as below:

P1,0 =
(

0.5355 −0.5210
−0.5210 0.5436

)

, P1,1 =
(

1.0411 −0.8787
−0.8787 0.7933

)

,

P2,0 =
(

0.6034 −0.5065
−0.5065 0.4539

)

, P2,1 =
(

0.9275 −0.9049
−0.9049 0.9477

)

.

Finally, generating one possible switching sequence by our proposedADT switch-
ing (τa = 0.5 < − lnλ

λ
= 0.59), the corresponding state responses of the systemunder

initial state condition x(0) = [−10 15]T , are shown in Fig. 3.6, from which one can
see that the switched nonlinear system is stabilized by the designed ADT switching.

Fig. 3.6 State responses of
switched nonlinear system
(32) under switching signal
σ(t) with τa = 0.5
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3.3.4 Conclusions

The problem of stabilization for switched nonlinear systems composed of unstable
subsystems is investigated in the above section by using ADT switching with new
property. The stabilization result for the system under consideration is first derived on
thebasis of our proposed switching signals.After that, theT-S fuzzymodelingmethod
together with a new type of Lyapunov function approach is also used to establish an
improved stabilization condition. Finally, a numerical example is provided to verify
the correctness and effectiveness of the proposed approach.
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