
Chapter 2
Stabilization of Switched Linear Systems
with Stable Subsystems

2.1 Background and Motivation

In a certain sense, switching signals in systems can be classified into autonomous
(uncontrolled) or controlled ones [1, 2], that respectively, result from the system itself
and the designers’ intervention [3]. The stabilization problems of switched systems
with both classes of switching signals, have always been the hottest topic in the studies
of switched systems. Relatively, plenty of theoretical results have been available
for systems under the uncontrolled switching signals, in both the continuous-time
domain [4], and discrete-time domain [5]. However, for the switched systems with
controlled switching signals, the corresponding stabilization problem is complicated
in finding suitable switching signals to ensure system stability and improve system
performances.

In practice, the time-constrained switching signals [6] with restrictions on switch-
ing instants are frequently encountered, and have drawn considerable attention. A
minimum time interval called dwell time (DT) is first introduced for switched sys-
tems. By using multiple Lyapunov functions, it has been proved in [7] that the
switched linear systems with stable subsystems are exponentially stable if the dwell
time τ is sufficiently large. However, in many practical switched systems, specifying
a fixed dwell time may be restrictive. The concept of average dwell time (ADT)
extending the concept of DT allows the possibility of dwell time being less than a
fixed constant. The ADT switching signal has been found important in not only the-
ory but also in practice, andmany sound and pioneered results have been obtained for
analysis and synthesis of switched systems by using ADT switching signal [8–12].

However, the property in theADTswitching that the average time interval between
any two consecutive switchings is not smaller than a constant independent of the
system modes, is probably still not anticipated. In addition, it has been well shown
in the literature that, the minimum of admissible ADT is computed by two mode-
independent parameters. It is straightforward that such a setup of the two common
parameters for all subsystems in a mode-independent manner will give rise to a
certain conservativeness.
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Furthermore, controller failures, uncontrollable/unobservable modes, and sensor
faults are often encountered in real plants, which may lead to switched system mod-
els with unstable modes. Therefore, it is of fundamental importance to numerous
applications but theoretically challenging to carry out studies of switched systems
with unstable subsystems [13–15].

A new class of switching signals called mode-dependent average dwell time
(MDADT) switching is proposed in this chapter. Then, the stabilization problems
of switched systems composed of stable subsystems are discussed via MDADT
switching. Furthermore, the results are extended to the systems comprising unstable
subsystems.

Notations: In this chapter, the used notations are standard. R and R
n denote the set

of the real numbers and n-dimensional Euclidean space, respectively; Z+ represents
the set of positive integers; the notation ‖ · ‖ refers to the Euclidean norm.C 1 denotes
the set of continuously differentiable functions, and a function α: [0,∞) → [0,∞)

is said to be of class K if it is continuous, strictly increasing, and α(0) = 0. Class
K∞ denotes the subset of K consisting of all those functions that are unbounded.
In addition, the notation P > 0(≥ 0) means that P is a real symmetric and positive
definite (semi-positive definite) matrix.

2.2 Stabilization for Switched Systems
Composed of Stable Subsystems

2.2.1 Problem Formulation and Preliminaries

Consider a class of switched linear systems given by

δx(t) = Aσ(t)x(t) + Bσ(t)u(t) (2.1)

where x(t) ∈ R
n is the state vector, the symbol δ denotes the derivative operator in

the continuous-time context (δx(t) = d
dt x(t)) and the shift forward operator in the

discrete-time case (δx(t) = x(t + 1)). σ(t) is a piecewise constant function of time,
called a switching signal, which takes its values in the finite set S = {1, . . . , M} ;
M is the number of subsystems. Also, for a switching sequence 0 < t1 < · · · <

ti < ti+1 < · · · , σ(t) is continuous from the right everywhere and may be either
autonomous or controlled.When t ∈ [ti , ti+1),we say the σ(ti )th subsystem is active.
The two-matrix pair (Ap, Bp), ∀σ(t) = p ∈ S, represents the pth subsystem or pth

mode of (2.1).
The following stability definition of system (2.1) is first introduced for later devel-

opments, and we denote time by k in the discrete-time case.

Definition 2.1 ([2]) The equilibrium x = 0 of system (2.1) is globally uniformly
exponentially stable (GUES) under a certain switching signal σ(t) if for u(t) = 0 (or
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u(k) = 0) and initial conditions x(t0) (or x(k0)), there exist constants α > 0, δ > 0
(respectively, 0 < ς < 1) such that the solution of the system satisfies ‖x(t)‖ ≤
αe−δ(t−t0) ‖x(t0)‖ , ∀t ≥ t0 (respectively, ‖x(k)‖ ≤ ας(k−k0) ‖x(k0)‖ , ∀k ≥ k0).

The control inputu(t) (oru(k)) in (2.1) is used to achieve systemstability or certain
performances for certain switching signals. The state feedback is considered with
u(t) = Kσ(t)x(t) (or u(k) = Kσ(k)x(k)), where Kp, ∀σ(t) = p ∈ S, is the controller
gain to be determined. Then, the resulting closed-loop system is given by

δx(t) = Ā px(t) (2.2)

where,
Ā p = Ap + BpKp (2.3)

Next, we aim at finding a more general set of admissible switching signals and the
corresponding state-feedback controllers, such that the resulting closed-loop system
(2.2) is GUES. For this purpose, let us first revisit the definition of the ADT property
and the stability results for switched nonlinear systems with ADT.

Definition 2.2 ([16]) For a switching signal σ(t) and each t2 ≥ t1 ≥ 0, let Nσ (t2,
t1) denote the number of discontinuities of σ(t) in the open interval (t1, t2). We say
that σ(t) has an average dwell time τa if there exist two positive numbers N0 (we
call N0 the chatter bound here) and τa such that

Nσ (t2, t1) ≤ N0 + t2 − t1
τa

, ∀t2 ≥ t1 ≥ 0

Lemma 2.1 ([16])Consider the continuous-time switched system ẋ(t) = fσ(t)(x(t)),
σ (t) ∈ S and let λ > 0, μ > 1 be given constants. Suppose that there exist C 1 func-
tions Vσ(t) : Rn → R, and two class K∞ functions κ1, κ2 such that, ∀p ∈ S

κ1(‖x(t)‖) ≤ Vp(x(t)) ≤ κ2(‖x(t)‖) (2.4)

V̇p(x(t)) ≤ −λVp(x(t)) (2.5)

and ∀(σ (ti ) = p, σ (t−i ) = q) ∈ S × S, p 	= q,

Vp(x(ti )) ≤ μVq(x(ti )) (2.6)

then the system is globally uniformly asymptotically stable (GUAS) for any switching
signal with ADT

τa ≥ τ ∗
a = lnμ

λ
(2.7)

Lemma 2.2 ([10]) Consider the discrete-time switched system x(k + 1) = fσ(k)

(x(k)), σ (k) ∈ S and let 0 < λ < 1 and μ > 0, ∀p ∈ S be given constants.
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Suppose that there exists positive definite C 1 functions Vσ(k) : Rn → R, σ (k) ∈ S
and two class K∞ functions κ1, κ2 such that,

κ1(‖x(k)‖) ≤ Vp(xk) ≤ κ2(‖x(k)‖) (2.8)

ΔVp(x(k)) ≤ −λVp(x(k)) (2.9)

and ∀(σ (ki ) = p, σ (ki−1) = q) ∈ S × S, p 	= q,

Vp(x(ki )) ≤ μVq(x(ki )) (2.10)

then the system is GUAS for any switching signal with ADT

τa > τ ∗
a = − lnμ

ln(1 − λ)
. (2.11)

2.2.2 Main Results

The definition of the MDADT property used to restrict a new class of switching
signals is first given in the following.

Definition 2.3 For a switching signal σ(t) and any T ≥ t ≥ 0, let Nσ p(T, t) be the
switching numbers that the pth subsystem is activated over the interval [t, T ] and
Tp(T, t) denote the total running time of the pth subsystem over the interval [t, T ],
p ∈ S. We say that σ(t) has a mode-dependent average dwell time τap if there exist
positive numbers N0p (we call N0p the mode-dependent chatter bounds here) and
τap such that

Nσ p(T, t) ≤ N0p + Tp(T, t)

τap
, ∀T ≥ t ≥ 0

Remark 2.1 Definition2.3 constructs a new set of switching signals with a MDADT
property. If there exist positive scalars τap, p ∈ S such that a switching signal has the
MDADT property, it only requires the average time among the intervals associated
with the pth subsystem is larger than τap.

The following lemmas present the stability results for the switched nonlinear
systems with MDADT.

Lemma 2.3 (Continuous-Time Version) Consider the continuous-time switched
system

ẋ(t) = fσ(t)(x(t)), σ (t) ∈ S (2.12)

and let λp > 0, μp > 1, p ∈ S be given constants. Suppose that there exist C 1

functions Vσ(t) : Rn → R, and classK∞ functionsκ1p, κ2p, p ∈ S such that,∀p ∈ S,
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κ1p(‖x(t)‖) ≤ Vp(x(t)) ≤ κ2p(‖x(t)‖) (2.13)

V̇p(x(t)) ≤ −λpVp(x(t)) (2.14)

and ∀(σ (ti ) = p, σ (t−i ) = q) ∈ S × S, p 	= q,

Vp(x(ti )) ≤ μpVq(x(ti )) (2.15)

then the system is GUAS for any switching signal with MDADT

τap ≥ τ ∗
ap = lnμp

λp
(2.16)

Proof For any T > 0, let t0 = 0 and denote t1, t2 · · · ti , ti+1, . . . tNσ (T,0) the switching

times on the interval [0, T ], where Nσ (T, 0) =
M∑

p=1
Nσ p(T, 0).

Then, we set
φ(t) := eλσ(t)t Vσ(t)(x(t)) (2.17)

Function (2.17) is piecewise differentiable along solution (2.12). For any t ∈ [ti ,
ti+1], we have:

φ̇(t) = λσ(ti )φ(t) + eλσ(ti )t V̇σ(ti )(x(t))

By (2.14), we obtain that φ̇(t) ≤ 0. This, together with (2.15) and (2.17), implies
that

φ(ti+1) = eλσ(ti+1)ti+1Vσ(ti+1)(x(ti+1))

≤ μσ(ti+1)e
λσ(ti+1)ti+1Vσ(ti )(x(ti+1))

= μσ(ti+1)e
λσ(ti+1)ti+1−λσ(ti )ti+1φ(t−i+1)

≤ μσ(ti+1)e
(λσ(ti+1)−λσ(ti ))ti+1φ(ti )

≤ μσ(ti )μσ(ti+1)e
(λσ(ti+1)−λσ(ti ))ti+1+(λσ(ti )−λσ(ti−1))ti φ(ti−1)

≤
i∏

j=0

μσ(t j+1)e

i∑

j=0
(λσ(t j+1)−λσ(t j ))t j+1

φ(t0)

Therefore,
φ(T−) ≤ φ(tNσ

)

≤
Nσ −1∏

j=0
μσ(t j+1)e

Nσ −1∑

j=0
(λσ(t j+1)−λσ(t j ))t j+1

φ(0)
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Then, it follows from (2.17) that:

exp(λσ(T−)T )Vσ(T−)(x(T )) ≤
Nσ −1∏

j=0

μσ(t j+1)e

Nσ −1∑

j=0
(λσ(t j+1)−λσ(t j ))t j+1

Vσ(0)(x(0))

This implies that

Vσ(T−)(x(T )) ≤
Nσ −1∏

j=0

μσ(t j+1) exp

⎧
⎨

⎩

Nσ −1∑

j=0

(λσ(t j+1) − λσ(t j ))t j+1

−λσ(tNσ )T + λσ(t0)t0
}
Vσ(0)(x(0))

≤
M∏

p=1

μ
Nσ p
p exp

⎧
⎨

⎩
−

M∑

p=1

⎡

⎣λp

∑

s∈ψ(p)

(ts+1 − ts)

⎤

⎦

−λσ(tNσ )(T − tNσ )
}
Vσ(0)(x(0))

≤ exp

⎧
⎨

⎩

M∑

p=1

N0p lnμp

⎫
⎬

⎭
exp

⎧
⎨

⎩

M∑

p=1

Tp

τap
lnμp −

M∑

p=1

λpTp

⎫
⎬

⎭
Vσ(0)(x(0))

= exp

⎧
⎨

⎩

M∑

p=1

N0p lnμp

⎫
⎬

⎭
exp

⎧
⎨

⎩

M∑

p=1

(
lnμp

τap
− λp

)

Tp

⎫
⎬

⎭
Vσ(0)(x(0))

whereψ(p)denotes the set of s satisfyingσ(ts) = p, ts ∈ {t0, t1 · · · ti , ti+1, . . . tNσ −1}.
Therefore, if there exist constants τap, p ∈ S satisfying (2.16), one has:

Vσ(T−)(x(T )) ≤ exp

⎧
⎨

⎩

M∑

p=1

N0p lnμp

⎫
⎬

⎭
exp

{

max
p∈S

(
lnμp

τap
− λp

)

T

}

Vσ(0)(x(0))

Thus, one can conclude that Vσ(T−)(x(T )) convergences to zero as T → ∞ if the
MDADT satisfies (2.16). Then, the asymptotic stability can be deduced with the aid
of (2.13). �

Lemma 2.4 (Discrete-Time Version) Consider the discrete-time switched system

x(k + 1) = fσ(k)(x(k)), σ (k) ∈ S (2.18)

and let 0 < λp < 1 and μp ≥ 1, p ∈ S be given constants. Suppose that there exist
C 1 functions Vσ(k) : Rn → R, σ (k) ∈ S, and classK∞ functions κ1p and κ2p, p ∈ S,

such that ∀σ(k) = p ∈ S

κ1p(‖x(k)‖) ≤ Vp(xk) ≤ κ2p(‖x(k)‖) (2.19)
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ΔVp(x(k)) ≤ −λpVp(x(k)) (2.20)

and ∀(σ (ki ) = p, σ (ki−1) = q) ∈ S × S, p 	= q,

Vp(x(ki )) ≤ μpVq(x(ki )) (2.21)

then the system is GUAS for any switching signal with MDADT

τap > τ ∗
ap = − lnμp

ln(1 − λp)
(2.22)

Proof For any K > 0, let k0 = 0 and denote k1, k2, . . . ki , ki+1, . . . kNσ (K ,0) the

switching times on interval [0, K ], where Nσ (K , 0) =
M∑

p=1
Nσ p(K , 0).

One can get from (2.20) that, ∀p ∈ S:

Vp(x(k + 1)) − Vp(x(k)) < 0 (2.23)

Vp(x(k + 1)) ≤ (1 − λp)Vp(x(k)) (2.24)

This together with (2.21) means that

Vσ(ki+1)(x(ki+1)) ≤ μσ(ki+1)Vσ(ki+1−1)(x(ki+1))

≤ μσ(ki+1)Vσ(ki+1−1)(x(ki+1 − 1))(1 − λσ(ki+1−1))

= μσ(ki+1)(1 − λσ(ki ))Vσ(ki )(x(ki+1 − 1))

≤ μσ(ki+1)(1 − λσ(ki ))
ki+1−ki Vσ(ki )(x(ki ))

· · ·
≤

i∏

j=0

μσ(k j+1)

i∏

j=0

(1 − λσ(k j ))
k j+1−k j Vσ(k0)(x(k0))

Then, by (2.24), one gets that

Vσ(K )(x(K )) ≤ (1 − λσ(kNσ ))
K−kNσ Vσ(kNσ )(x(kNσ ))

≤ (1 − λσ(kNσ ))
K−kNσ

Nσ −1∏

j=0

μσ(k j+1)

Nσ −1∏

j=0

(1 − λσ(k j ))
k j+1−k j Vσ(0)(x(0))

=
M∏

p=1

μ
Nσ p
p

M∏

p=1

(1 − λp)
Tp Vσ(0)(x(0))

=
M∏

p=1

μ
Nσ p
p exp

⎧
⎨

⎩

M∑

p=1

[
Tp ln(1 − λp)

]
⎫
⎬

⎭
Vσ(0)(x(0))
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≤ exp

⎧
⎨

⎩

M∑

p=1

N0p lnμp

⎫
⎬

⎭
exp

⎧
⎨

⎩

M∑

p=1

Tp

τap
lnμp +

M∑

p=1

ln(1 − λp)Tp

⎫
⎬

⎭
Vσ(0)(x(0))

Thus, if there exist constants τap, p ∈ S satisfying (2.22), one has:

Vσ(K )(x(K )) ≤ exp

⎧
⎨

⎩

M∑

p=1

N0p lnμp

⎫
⎬

⎭
exp

{

max
p∈S

[
lnμp

τap
+ ln(1 − λp)

]

K

}

Vσ(0)(x(0))

Then, one can conclude that Vσ(K )(x(K )) converges to zero as K → ∞ if the
MDADT satisfies (2.22). Subsequently, the asymptotic stability can be obtained by
resorting to (2.19). �

Remark 2.2 It can be seen from Lemmas2.1 and 2.2 that the parameters λ and μ are
mode-independent for all subsystems. However, the parameters λp, μp prescribed in
Lemmas2.3 and 2.4 are mode-dependent, therefore, we can conclude that τ ∗

ap ≤ τ ∗
a ,

∀p ∈ S from (2.5)–(2.7) and (2.14)–(2.16), and the mode-dependent features would
reduce the conservativeness existing in Lemmas2.1 and 2.2.

Remark 2.3 It is clear that Lemma2.3 (or Lemma2.4 in the discrete-time case)
presents a more general switching signal than Lemma2.1 (respectively, Lemma2.2)
which corresponds to the special case of λ = λp, μ = μp, τa = τap, ∀p ∈ S. In fact,
we note that if τa = τap, ∀p ∈ S, one readily knows from Definition2.3 that

∑

p∈S
Nσ p(T,t) ≤

∑

p∈S
N0p +

∑

p∈S

Tp

τa
, ∀T ≥ t ≥ 0

Thus, there exist positive numbers N0 = ∑

p∈S
N0p and τa = τap such that

Nσ (T, t) ≤ N0 + T − t

τa
, ∀T ≥ t ≥ 0

Based on the results obtained above, we present the stability conditions for system
(2.1) with MDADT.

Theorem 2.1 (Continuous-Time Case) Consider the switched linear system (2.1)
when u(t) ≡ 0 and let λp > 0, μp > 1, p ∈ S be given constants. If there exist
matrices Pp > 0, ∀p ∈ S, such that, ∀(p, q) ∈ S × S, p 	= q,

AT
p Pp + Pp Ap + λp Pp ≤ 0 (2.25)

Pp − μp Pq ≤ 0 (2.26)

then, the switched linear system (2.1) is GUES with MDADT satisfying (2.16).
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Proof Here, we choose the Lyapunov function candidate as follows,

Vp(x(t)) = xT (t)Ppx(t), ∀σ(t) = p ∈ S (2.27)

where Pp, ∀p ∈ S is a positive definite matrix satisfying (2.25) and (2.26). Then,
from (2.1), (2.14), (2.15) and (2.27), we have, ∀(p, q) ∈ S × S, p 	= q,

V̇p(x(t)) + λpVp(x(t)) = λpxT (t)Ppx(t) + xT (t)Pp Apx(t) + xT (t)AT
p Ppx(t)

Vp(x(ti )) − μpVq(x(ti )) = xT (ti )Ppx(ti ) − μpxT (ti )Pqx(ti )

Thus, if (2.25) and (2.26) hold, system (2.1) isGUAS for any switching signalwith
MDADT (2.16). In addition, by denoting δ = − 1

2 [max
p∈S (

lnμp

τap
− λp)], we can obtain

from (2.13) and (2.27) that the system state satisfies ‖x(t)‖ ≤ αe−δ(t−t0) ‖x(t0)‖ ,

∀t ≥ t0 for a certain α > 0,; that is the underlying system is GUES. �

Theorem 2.2 (Discrete-Time Case)Consider the switched linear system (2.1) when
u(t) ≡ 0 and let 0 < λp < 1 and μp ≥ 1, p ∈ S be given constants. If there exist
matrices Pp > 0, ∀p ∈ S, such that, ∀(p, q) ∈ S × S, p 	= q,

AT
p Pp Ap + λp Pp − Pp ≤ 0 (2.28)

Pp − μp Pq ≤ 0 (2.29)

then, the switched linear systems (2.1) is GUES with MDADT satisfying (2.22).

Proof We establish the Lyapunov function

Vp(x(k)) = xT (k)Ppx(k), ∀σ(k) = p ∈ S (2.30)

where Pp, ∀p ∈ S is a positive definite matrix satisfying (2.28) and (2.29). Then,
together with (2.1), (2.20), (2.21) and (2.30), we can get, ∀(p, q) ∈ S × S, p 	= q,

ΔVp(x(k)) + λpVp(x(k)) = λpxT (k)Ppx(k) − xT (k)Ppx(k) + xT (k)AT
p Pp Apx(k)

Vp(x(ki )) − μpVq(x(ki )) = xT (ki )Ppx(ki ) − μpxT (ki )Pqx(ki )

Therefore, if (2.28) and (2.29) hold, system (2.1) is GUAS for any switching
signal with MDADT (2.22) in the light of Lemma2.4. Subsequently, by denot-

ing ς =
√

exp{max
p∈S [ lnμp

τap
+ ln(1 − λp)]}, we can obtain from (2.19) and (2.30) that

‖x(k)‖ ≤ ας(k−k0) ‖x(k0)‖ ,∀k ≥ k0 for a certain α > 0, that is, the underlying sys-
tem is GUES. �
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Now, we give a stabilizing controller design approach for system (2.1) with the
MDADT switching.

Theorem 2.3 (Continuous-Time Case) Consider the switched linear systems (2.2)
and let λp > 0, μp > 1, p ∈ S be given constants. If there exist matrices Up > 0,
and Tp, ∀p ∈ S, such that, ∀(p, q) ∈ S × S, p 	= q,

ApUp + BpTp +UpA
T
p + T T

p BT
p + λpUp ≤ 0 (2.31)

Uq ≤ μpUp (2.32)

then there exists a set of stabilizing controllers such that system (2.2) is GUES for
any switching signal with MDADT satisfying (2.16). Moreover, if (2.31) and (2.32)
are feasible, the controller gains can be provided by

Kp = TpU
−1
p (2.33)

Proof Theorem2.1 implies that if

ĀT
p Pp + Pp Āp + λp Pp ≤ 0 (2.34)

Pp − μp Pq ≤ 0 (2.35)

system (2.2) is GUES for any switching signal withMDADT (2.16). Replacing Ā p in
(2.34) by (2.3), settingUp = P−1

p and Tp = KpP−1
p , we can see that, if (2.31) holds,

(2.34) is satisfied. Moreover, if (2.32) holds, we can obtain thatUq − μpUp ≤ 0. By
Schur complement, we note that Uq − μpUp ≤ 0 is equivalent to

Λ =
[−μpUp I

I −U−1
q

]

≤ 0.

Furthermore, by Schur complement, one has that Λ ≤ 0 is equivalent to −U−1
q −

I T (μpUp)
−1 I ≤ 0; that is, (2.35) holds. In addition, if the inequalities (2.31) and

(2.32) have feasible solutions, the admissible controller gains can be given by (2.33)
because Tp = KpP−1

p , which ends the proof. �

Theorem 2.4 (Discrete-Time Case) Consider the switched linear systems (2.2) and
let 0 < λp < 1 andμp ≥ 1, p ∈ S be given constants. If there exist matricesUp > 0,
and Tp, ∀p ∈ S, such that, ∀(p, q) ∈ S × S, p 	= q,

[−Up ApUp + BpTp

∗ −(1 − λp)Up

]

≤ 0 (2.36)

Uq ≤ μpUp (2.37)
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then there exists a set of controllers such that system (2.2) is GUES for any switching
signal with MDADT satisfying (2.22). Moreover, if (2.36) and (2.4) have a solution,
the admissible controllers can be given by (2.33).

Proof By Theorem2.2 we have that if

ĀT
p Pp Āp + λp Pp − Pp ≤ 0 (2.38)

Pp − μp Pq ≤ 0 (2.39)

system (2.2) is GUES for any switching signal with MDADT (2.22). Substituting
Ā p in (2.38) and by Schur complement, we have

[−Pp PpBpK p + Pp Ap

∗ −(1 − λp)Pp

]

≤ 0 (2.40)

settingUp = P−1
p and Tp = KpP−1

p and performing a congruence transformation to
(40) viadiag{Up,Up}, we can obtain (2.36). Therefore, (2.36) and (2.4) ensure (2.38)
and (2.39). In addition, if the inequalities (2.36) and (2.4) have feasible solutions,
the admissible controller gains can be given by (2.33), which ends the proof. �

2.2.3 Simulation Results

An example in the continuous-time domain is presented to demonstrate the potential
and validity of the results obtained above.

Example 2.1 Consider the switched linear systems consisting of three subsystems
described by:

A1 =
[
3.9 1.5
2.5 2.3

]

, A2 =
[
1.4 0.3
1 −2.7

]

, A3 =
[−2.2 0.1

−2 −0.4

]

,

B1 =
[−0.2

0.1

]

, B2 =
[
0.1
0.2

]

, B3 =
[
0.1
0.1

]

.

Here, we aim to design a set of mode-dependent stabilizing controllers and
find corresponding switching signals with MDADT property such that the result-
ing closed-loop system is stable.

To illustrate the advantages of the proposed MDADT switching, we shall also
present the design results of both controllers and switching signals for the systems
with ADT switching. By different approaches and setting the relevant parameters
appropriately, the computation results for the system with two different switching
schemes are listed in Table2.1.
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Table 2.1 Computation results for the system under two different switching schemes

Switching schemes ADT switching MDADT switching

Criteria for controller
design

Corollary 2.1 in [12] Theorem2.3 in the chapter

Controller gains
Γ1 :
K1 =

[
73.66 66.14

]

K2 =
[
−19.94 −2.75

]

K3 =
[
3.25 −15.24

]

Γ2 :
K1 =

[
93.79 69.75

]

K2 =
[
−59.81 −34.25

]

K3 =
[
−53.91 −63.58

]

Switching signals τ ∗
a = 0.99

(μ = 2, λ ≤ 0.7)

τ ∗
a1 = 0.22, τ ∗

a2 = 0.49, τ ∗
a3 = 0.99

(μ1 = μ2 = μ3 = 2,

λ1 ≤ 3.1, λ2 ≤ 1.4, λ3 ≤ 0.7)

It can be seen fromTable2.1 that theminimalMDADT are reduced to τ ∗
a1 = 0.22,

τ ∗
a2 = 0.49, τ ∗

a3 = 0.99, for given μ = μ1 = μ2 = μ3 = 2, and one special case of
MDADT switching is τ ∗

a = τ ∗
a1 = τ ∗

a2 = τ ∗
a3 = 0.99 by setting λ = λ1 = λ2 = λ3 =

0.7, which corresponds to minimal ADT.
To further show the merit of MDADT switching, let us now consider the result-

ing closed-loop system performances. Applying the obtained controller, under the
scheme of ADT switching and MDADT switching, respectively, we can obtain the
state responses for each closed-loop subsystem as shown in Fig. 2.1. It is seen that
there are some fluctuations with larger amplitude in the state response of closed-loop
subsystem 1.
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Fig. 2.1 The state response comparisons of the closed-loop subsystems by controllers Γ1 and Γ2
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Now, generating one possible switching sequences with the ADT property and the
MDADT property, one can obtain the corresponding state responses of the closed-
loop system as shown in Figs. 2.2 and 2.3, respectively, for the same initial state
condition. It can be seen from the curves that the state response of the closed-loop
systemfluctuates under theADT switching scheme, but is smooth under theMDADT
switching scheme.
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Fig. 2.2 State response of the closed-loop systems by controllers Γ1 under switching signal σ with
τa = 1.0
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2.2.4 Conclusions

The MDADT switching stabilization problems for switched linear systems with sta-
ble subsystems are investigated. First, the stability results for a class of switched
systems with MDADT are derived in both linear and nonlinear contexts. The mini-
mal MDADT for admissible switching signals and the corresponding state feedback
controller are designed for switched linear systems in both continuous-time and
discrete-time cases. Finally, a numerical example is given to demonstrate the valid-
ity and effectiveness of the developed results.

2.3 Stabilization of Switched Linear Systems
with Unstable Subsystems

2.3.1 Problem Formulation and Preliminaries

Consider the following switched linear systems,

δx(t) = Aσ(t)x(t) + Bσ(t)u(t), x(t0) = x0, t ≥ t0, (2.41)

where x(t) ∈ R
n , u(t) ∈ R

m , x0 and t0 ≥ 0 denote the state vector, control input,
initial state and initial time, respectively; the symbol δ denotes the derivative operator
in the continuous-time case (δx(t) = ẋ(t)) and the shift forward operator in the
discrete-time case (δx(t) = x(t + 1)); σ(t) represents a switching signal which is
a piecewise constant function from the right of time and takes its values in the
finite set L = {1, 2, . . . ,m}, where m > 1 is the number of subsystems. Moreover,
the Ar , ∀r ∈ L is either a Hurwitz stable or unstable subsystem matrix. Without
lose of generality, we assume that L = S

⋃
U, where S = {1, 2, . . . , s} and U =

{s + 1, . . . ,m}; that is, there are s stable subsystems andm − s unstable subsystems.
When t ∈ [tk, tk+1), ∀k ∈ Z

+, the σ(tk)th mode is activated. Let {Ar ∈ R
n×n, Br ∈

R
n×m, r ∈ L} be a family of constant matrices describing subsystems.
Next, some definitions are introduced for later developments of the main results

in this chapter.

Definition 2.4 ([17]) The equilibrium x = 0 of switched system (2.41) is globally
uniformly exponentially stable (GUES) under a certain switching signal σ(t), if for
u(t) = 0 there exists positive numbers λ > 0, α > 0, (resp., 0 < ν < 1) such that
‖x(t)‖ ≤ λe−α(t−t0) ‖x(t0)‖, (resp., ‖x(t)‖ ≤ λν−(t−t0) ‖x(t0)‖), ∀t ≥ t0 with any
initial conditions x(t0).

Definition 2.5 For any time interval [t1, t2], denote Nσ p(t2, t1) as the numbers of
the pth subsystem being activated, and Tp(t2, t1) as the overall running time of the
pth subsystem, p ∈ S. We can find two constants N0p and τap satisfying
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Nσ p(t2, t1) ≤ N0p + Tp(t2, t1)

τap
, ∀t2 ≥ t1 ≥ 0. (2.42)

where τap is called the mode-dependent average dwell time of the switching signal
σ(t).

In this chapter, we also define another type of MDADT called fast MDADT in
the following.

Definition 2.6 For any time interval [t1, t2], denote Nσq(t2, t1) as the numbers of
the qth subsystem being activated, and Tq(t2, t1) as the overall running time of the
qth subsystem, q ∈ U. We can find two constants N0q and τaq satisfying

Nσq(t2, t1) ≥ N0q + Tq(t2, t1)

τaq
, ∀t2 ≥ t1 ≥ 0. (2.43)

where τaq is called the mode-dependent average dwell time of the switching signal
σ(t).

Remark 2.4 TheMDADTinDefinition2.5 requiring Nσ p(t2, t1) ≤ N0p + t2−t1
τa

⇐⇒
Tp(t2,t1)

Nσ p(t2 ,t1)−N0p
≥ τap, ∀t2 ≥ t1 ≥ 0 can be called slow switching (in average sense),

which means that average time among the intervals associated with the pth subsys-
tem is larger than τap. By resorting to this MDADT to achieve stabilization, the basic
idea is to allow the transient effect to dissipate after each switching. In this frame-
work, the energy decrement of the Lyapunov function during dwelling on stable
subsystems can compensate possible energy at the switching instance and/or dur-
ing dwelling at unstable subsystems. However, Definition2.6 requires Nσq(t2, t1) ≥
N0q + t2−t1

τa
⇐⇒ Tq (t2,t1)

Nσq(t2 ,t1)−N0q
≤ τaq , ∀t2 ≥ t1 ≥ 0. It is called fast switching (in aver-

age sense), because the average time among the intervals associated with the qth

subsystem is no more than τaq . The basic idea of using the fast MDADT is to com-
pensate the state divergence via dwelling at appropriate unstable subsystems, but
obviously the dwell time cannot be too big. Therefore, in order to achieve stabiliza-
tion, we apply the slow MDADT to stable subsystems and fast MDADT to unstable
subsystems in the following.

2.3.2 Main Results

In this section, we consider the problems of stability and stabilization for switched
linear systems described in the previous section.

2.3.2.1 Stability Analysis

We first introduce a class of quasi-alternative switching signals.
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Definition 2.7 Suppose that a switching law σ(t) satisfies the following conditions.
(1) If σ(tk) ∈ S, then σ(tk+1) ∈ L,
(2) If σ(tk) ∈ U, then σ(tk+1) ∈ S,

The switching signal σ(t) satisfying the above conditions is called a quasi-
alternative switching signal.

Remark 2.5 Definition2.7 implies that a switched system cannot directly switches
from an unstable mode to another unstable mode. If condition (1) is changed as: “If
σ(tk) ∈ S, thenσ(tk+1) ∈ U;”,Definition2.7 implies thatσ(t) is a alternative switch-
ing signal, that is, stable subsystems and unstable subsystems alternately switch to
each other.

Next, stability conditions for switched nonlinear system

δx(t) = fσ(t)(x(t)). (2.44)

are first presented in the following lemmas by designing quasi-alternative switching
signals with MDADT property.

Lemma 2.5 Consider continuous-time switched nonlinear system (2.44), σ(t) ∈
L, and let ηp < 0, μp > 1, p ∈ S and ηq > 0, 0 < μq < 1, q ∈ U. Suppose that
there exist two sets of C 1 non-negative functions Vp(x(t)) : Rn → R, p ∈ S and
Vq(x(t)) : Rn → R, q ∈ U, two class K∞ functions α1 and α2, such that

α1(‖x(t)‖) ≤ Vp(x(t)) ≤ α2(‖x(t)‖),∀p ∈ S, (2.45)

α1(‖x(t)‖) ≤ Vq(x(t)) ≤ α2(‖x(t)‖),∀q ∈ U, (2.46)

V̇p(x(t)) ≤ ηpVp(x(t)), ∀p ∈ S, (2.47)

V̇q(x(t)) ≤ ηqVq(x(t)), ∀q ∈ U, (2.48)

Vp(x(tk)) ≤ μpVr (x(t−k )), ∀p ∈ S,∀r ∈ L, p 	= r, (2.49)

Vq(x(tk)) ≤ μqVp(x(t−k )), ∀p ∈ S,∀q ∈ U. (2.50)

Then switched system (2.44) is GUES for any quasi-alternative switching signals
with MDADT

⎧
⎨

⎩

τap ≥ −lnμp

ηp
,∀p ∈ S,

τaq ≤ −lnμq

ηq
,∀q ∈ U.

(2.51)

Proof Without loss of generality, we denote t1, t2 . . . tk, tk+1 . . . tNNσ(T,0)
as the switch-

ing times on time interval [0, T ]. Then we consider the function

W (t) = e−ησ(t)t Vσ(t)(x(t)). (2.52)

It is clear that this function is piecewise differentiable along solutions of (2.44).
When t ∈ [tk, tk+1), we get from (2.47), (2.48), (2.52) that
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Ẇ (t) = −ησ(tk )e
−ησ(tk )t Vσ(tk )(x(t)) + e−ησ(tk )t V̇σ(tk )(x(t))

≤ −ησ(tk )e
−ησ(tk )t Vσ(tk )(x(t)) + e−ησ(tk )tησ(tk )Vσ(tk )(x(t))

= 0. (2.53)

Thus W (t) is non-increasing when t ∈ [tk, tk+1). This together with (2.49), (2.50),
(2.52) gives that

W (tk+1) = e−ησ(tk+1)tk+1Vσ(tk+1)(x(tk+1))

≤ μσ(tk+1)e
−ησ(tk+1)tk+1Vσ(tk )(x(tk+1))

= μσ(tk+1)e
−ησ(tk+1)tk+1+ησ(tk )tk+1W (x(t−k+1))

≤ μσ(tk+1)e
−(ησ(tk+1)−ησ(tk ))tk+1W (x(tk))

≤ μσ(tk+1)μσ(tk )e
−[(ησ(tk+1)−ησ(tk ))tk+1+(ησ(tk )−ησ(tk−1))tk ]W (x(tk−1))

· · ·
≤

k∏

i=0

μσ(ti+1) exp{−[(ησ(tk+1) − ησ(tk ))tk+1 + (ησ(tk ) − ησ(tk−1))tk

+ · · · + (ησ(t1) − ησ(t0))t1]}W (x(t0)). (2.54)

Then, from (2.52) and (2.54), one can obtain that

e−ησ(T−)TW (x(T−)) ≤
Nσ −1∏

i=0

μσ(ti+1)e

Nσ −1∑

i=0
−(ησ(ti+1)−ησ(ti ))ti

Vσ(t0)(x(t0)).

(2.55)

Moreover, it can be derived from (2.42), (2.43) and (2.55) that

Vδ(T−)(x(T )) ≤
s∏

p=1

μ
Nσ p
p

m∏

q=s+1

μ
Nσq
q e

(
s∑

p=1
ηpTp(T,0)+

m∑

q=s+1
ηq Tq (T,0))

Vσ(0)(x(0))

≤
s∏

p=1

μ
(N0p+ Tp (T,0)

τap
)

p

m∏

q=s+1

μ
(N0q+ Tq (T,0)

τaq
)

q

×e
(

s∑

p=1
ηpTp(T,0)+

m∑

q=s+1
ηq Tq (T,0))

Vσ(0)(x(0))

= e
(

s∑

p=1
(N0p+ Tp (T,0)

τap
) lnμp+

m∑

q=s+1
(N0q+ Tq (T,0)

τaq
) lnμq )

×e
(

s∑

p=1
ηpTp(T,0)+

m∑

q=s+1
ηq Tq (T,0)) × Vσ(0)(x(0))

≤ e
(

s∑

p=1
N0p lnμp+

m∑

q=s+1
N0q lnμq )
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×e
(

s∑

p=1
(ηp+ lnμp

τap
)Tp(T,0)+

m∑

q=s+1
(ηq+ lnμq

τaq
)Tq (T,0))

Vσ(0)(x(0)).

(2.56)

By (2.56), it can be got that, if τap, p ∈ S and τaq , q ∈ U satisfy the conditions
in (2.51), then

Vδ(T−)(x(T )) ≤ λe−α(T−t0)Vσ(0)(x(0)),

where λ = e
(

s∑

p=1
N0p lnμp+

m∑

q=s+1
N0q lnμq )

, −α = max(p,q)∈(S×U )

{(
ηp + lnμp

τap

)
,

(
ηq + lnμq

τaq

)}
, which associated with Definition2.4 verifies that Vδ(T−)(x(T )) expo-

nentially converges to zero as T → ∞.
Finally, we conclude that switched nonlinear system (2.44) is GUES under quasi-

alternative switching signals satisfying (2.51) if the conditions (2.45)–(2.50) hold.
This completes the proof. �

Lemma 2.6 Consider discrete-time switched nonlinear system (2.44), σ(t) ∈ L,
and let−1 < ηp < 0,μp > 1, p ∈ S and ηq > 0, 0 < μq < 1, q ∈ U. Suppose that
there exist two sets of C 1 non-negative functions Vp(x(t)) : Rn → R, p ∈ S and
Vq(x(t)) : Rn → R, q ∈ U, two class K∞ functions α1 and α2, such that

α1(‖x(t)‖) ≤ Vp(x(t)) ≤ α2(‖x(t)‖),∀p ∈ S, (2.57)

α1(‖x(t)‖) ≤ Vq(x(t)) ≤ α2(‖x(t)‖),∀q ∈ U, (2.58)

�Vp(x(t)) ≤ ηpVp(x(t)), ∀p ∈ S, (2.59)

�Vq(x(t)) ≤ ηqVq(x(t)), ∀p ∈ U, (2.60)

Vp(x(tk)) ≤ μpVr (x(t−k )), ∀q ∈ S,∀r ∈ L, p 	= r, (2.61)

Vq(x(tk)) ≤ μqVp(x(t−k )), ∀p ∈ S,∀q ∈ U. (2.62)

Then switched system (2.44) is GUES for any quasi-alternative switching signals
with MDADT

{
τap ≥ −lnμp

1+ηp
,∀p ∈ S,

τaq ≤ −lnμq

1+ηq
,∀q ∈ U.

(2.63)

Proof The proof of Lemma2.6 is similar to that of Lemma2.5. We omit it here. �

Remark 2.6 Different from Lemma2.3 (or Lemma2.4 in the discrete-time case),
unstable subsystems are considered in Lemma2.5 (resp., Lemma2.6). For stable sub-
systems, it also follows the slow switching scheme (Definition2.5). But for unstable
subsystems, it adopts the fast switching scheme (Definition2.6). Such a switching
strategy can guarantee to dwell on stable subsystems long enough to compensate
possible energy increments at the switching instance and during dwelling on unsta-
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ble subsystems, and avoid dwelling on unstable subsystems too long. Anyway, it
should be pointed out that the dwell time on stable subsystems is not required to be
bigger than that on unstable subsystems. In fact, if a switched system is composed
of stable subsystems, Lemma2.5 (Lemma2.6 in the discrete-time case) will reduce
to Lemma2.3 (resp., Lemma2.4).

Next, the following two theorems for switched linear system (2.41) can be given
on the basis of the Lemmas2.5 and 2.6. Theorem2.6 corresponds to the continuous-
time version and Theorem2.7 corresponds to the discrete-time version.

Theorem 2.5 Consider switched linear system (2.41) when u(t) = 0, and let ηp <

0, μp > 1, p ∈ S and ηq > 0, 0 < μq < 1, q ∈ U be given constants. If there exists
a set of matrices Pp > 0, Pq > 0, p ∈ S, q ∈ U, such that

AT
p Pp + Pp Ap ≤ ηp Pp, ∀p ∈ S, (2.64)

AT
q Pq + Pq Aq ≤ ηq Pq , ∀q ∈ U, (2.65)

Pp ≤ μp Pr , ∀q ∈ S, ∀r ∈ L, p 	= r, (2.66)

Pq ≤ μq Pp, ∀p ∈ S, ∀q ∈ U. (2.67)

Then, the system is GUES for any quasi-alternative switching signals with MDADT
satisfying (2.51).

Proof Construct a multiple Lyapunov function for continuous-time switched system
(2.41) in the form of

Vσ(t)(x(t)) =
{
x(t)T Ppx(t), σ (t) = p ∈ S

x(t)T Pqx(t) σ (t) = q ∈ U,
(2.68)

where Pp > 0, Pq > 0, p ∈ S, q ∈ U are positive definite matrices satisfying
(2.64)–(2.67).

In the sequel, one can obtain from (2.64)–(2.67) that ∀(p, q) ∈ S × U,

V̇p(x(t)) − ηpVp(x(t)) = xT (t)(AT
p Pp + Pp Ap − ηp Pp)x(t),

≤ 0, p ∈ S,

V̇q(x(t)) − ηqVp(x(t)) = xT (t)(AT
q Pq + Pq Aq − ηq Pq)x(t),

≤ 0, q ∈ U.

Vp(x(t)) − μpVr (x(t)) = xT (t)(Pp − μp Pr )x(t),

≤ 0, p ∈ S, r ∈ L, p 	= r.

Vq(x(t)) − μqVp(x(t)) = xT (t)(Pq − μq Pp)x(t),

≤ 0, p ∈ S, q ∈ U.

Finally, one can readily conclude by Lemma2.5 that switched system (2.41) is GUES
for any quasi-alternative switching signals with MDADT satisfying (2.51). �
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Theorem 2.6 Consider switched linear system (2.41) when u(t) = 0, and let −1 <

ηp < 0, μp > 1, p ∈ S and ηq > 0, 0 < μq < 1, q ∈ U be given constants. If there
exists a set of matrices Pp > 0, Pq > 0, p ∈ S, q ∈ U, such that

AT
p Pp Ap − Pp ≤ ηp Pp, ∀p ∈ S, (2.69)

AT
q Pq Aq − Pq ≤ ηq Pq , ∀q ∈ U, (2.70)

Pp ≤ μp Pr , ∀p ∈ S, ∀r ∈ L, p 	= r, (2.71)

Pq ≤ μq Pp, ∀p ∈ S, ∀q ∈ U. (2.72)

then, the system is GUES for any quasi-alternative switching signals with MDADT
satisfying (2.63).

Proof The proof of Theorem2.6 is similar to that of Theorem2.5. We omit it
here. �

2.3.2.2 Controller Design

In this subsection, the problem of controller design for switched system (2.41) with
MDADT switching is presented. Unlike some control methods requiring all subsys-
tems be controllable, we only require the existence of at least one controllable sub-
system.Without loss of generality, we assume that {Ap ∈ R

n×n, Bp ∈ R
n×m, p ∈ C}

are controllable subsystems, where C = {1, 2, . . . , s}, and {Aq ∈ R
n×n, q ∈ B} are

subsystems that can not be stabilized, whereB = {s + 1, s + 2, . . . ,m}. Our objec-
tive is to design p controllers to ensure switched system (2.41) to be GUES
with MDADT switching. In this subsection, the state feedback is considered with
u(t) = Kpx(t), p ∈ C, where Kp is the controller gain to be determined. Then the
closed-loop system (3.1) can be obtained as follows,

δx(t) =
{
Apx(t) + BpKpx(t), ∀p ∈ C,

Aqx(t), ∀q ∈ B.
(2.73)

However, it should be pointed out that if the Ap, ∀p ∈ C itself is a Hurwitz matrix,
the controller gain Kp is chosen as 0.

Theorem 2.7 Consider switched linear system (2.73), and let ηp < 0, μp > 1, p ∈
C and ηq > 0, 0 < μq < 1, q ∈ P be given constants. If there exists a set of matrices
Qr > 0, r ∈ L, and Rp, p ∈ C such that

Q p A
T
p + ApQp + RT

p B
T
p + BpRp ≤ ηpQ p, ∀p ∈ C, (2.74)

Qq A
T
q + Aq Qq ≤ ηq Qq , ∀q ∈ B, (2.75)

Qr ≤ μpQ p, ∀p ∈ C, ∀r ∈ L, p 	= r, (2.76)

Qp ≤ μq Qq , ∀p ∈ C, ∀q ∈ B. (2.77)

http://dx.doi.org/10.1007/978-3-319-44830-5_3
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then, there is a set of stabilizing controllers such that the system is GUES for any
quasi-alternative switching signals with MDADT satisfying (2.51). Moreover, if a
feasible solution of (2.74)–(2.77) exists, the controller gains are given by

Kp = RpQ
−1
p . (2.78)

Proof When σ(t) ∈ S, perform a congruence transformation to (2.74) via Q−1
p .

Then by (2.78), one can obtain that

AT
p Q

−1
p + Q−1

p Ap + KT
p B

T
p Q

−1
p + Q−1

p BpK p ≤ ηpQ
−1
p , ∀p ∈ C, (2.79)

which is equivalent to

(Ap + BpKp)
T Q−1

p + Q−1
p (Ap + BpKp) ≤ ηpQ

−1
p , ∀p ∈ C. (2.80)

Then, by the Schur complement theorem, we can get that (2.76) is equivalent to

Qp
−1 ≤ μpQr

−1, ∀p ∈ C, ∀r ∈ L, p 	= r. (2.81)

Similarly, when σ(t) ∈ U, it can be derived that (2.76) and (2.78) are also equiv-
alent to the following inequalities, respectively,

AT
q Q

−1
q + Q−1

q Aq ≤ ηq Qq
−1, ∀p ∈ B, (2.82)

Qq
−1 ≤ μq Q p

−1, ∀p ∈ C, ∀q ∈ B. (2.83)

Finally, by Theorem2.5 and letting Pp = Q−1
p , we can conclude that, if (2.80)–

(2.83) hold, switched system (2.73) is GUES for any quasi-alternative switching
signal with MDADT satisfying (2.51). This completes the proof. �

Theorem 2.8 Consider switched linear system (2.73), and let −1 < ηp < 0,
μp > 1, p ∈ C and ηq > 0, 0 < μq < 1, q ∈ B be given constants. If there exists a
set of matrices Qr > 0, r ∈ L, and Rp, p ∈ C such that

[−Qp ApQp + BpRp

∗ −(1 + ηp)Qp

]

≤ 0, ∀p ∈ C, (2.84)

[−Qq AqQq

∗ −(1 + ηq)Qq

]

≤ 0, ∀q ∈ B, (2.85)

Qr ≤ μpQ p, ∀p ∈ C, ∀r ∈ L, p 	= r, (2.86)

Qp ≤ μq Qq , ∀p ∈ C, ∀q ∈ B. (2.87)

Then, there is a set of stabilizing controllers such that the system is GUES for any
quasi-alternative switching signals with MDADT satisfying (2.63). Moreover, if a
feasible solution of (2.84)–(2.87) exists, the controller gains are given by
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Kp = RpQ
−1
p . (2.88)

Proof The proof of Theorem2.8 is similar to that of Theorem2.7. We omit it
here. �

2.3.3 Simulation Results

The following numerical example is given in this section to verify our main results
developed above.

Example 2.2 Consider the continuous-time switched linear system (2.41) consisting
of four subsystems and assume that the third and fourth are uncontrollable subsys-
tems. The corresponding subsystem matrices are

A1 =
[−10.11 10.32

− 8.60 8.81

]

, B1 =
[−2.2

0.8

]

, A2 =
[
11.12 −13.32
11.10 −13.30

]

,

B2 =
[

3.4
−1.2

]

, A3 =
[
9.72 −9.69
12.92 −12.89

]

, A4 =
[
10.24 −10.23
13.64 −13.63

]

.

The eigenvalues of A1 are λ11 = −1.51 and λ12 = 0.21, eigenvalues of A2 are
λ21 = 0.02 and λ22 = −2.2, eigenvalues of A3 are λ31 = 0.03 and λ32 = −3.2 and
eigenvalues of A4 are λ41 = 0.01 and λ42 = −3.4, It can be seen that none of these
matrices is Hurwitz stable. In addition, one can easily check that {Ap ∈ R

2×2, Bp ∈
R

2×1, p = 1, 2} are controllable.
Next, we are interested in designing a set of controllers and a kind of quasi-

alternative switching signal σ(t) with properties (2.42) and (2.43) to asymptotically

Fig. 2.4 State responses of
the first subsystem
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stabilize the system.ByusingTheorem2.7, ifwe chooseμ1 = 2.9, η1 = −1.0,μ2 =
2.3, η2 = −3.1, μ3 = 0.44, η3 = 3.0, μ4 = 0.51, η4 = 1.3, the feasible solutions
are obtained as follows,

Q1 =
[
77.0146 69.8370
69.8370 65.1947

]

, Q2 =
[
83.2764 77.1246
77.1246 73.6036

]

,

Q3 =
[
190.6688 176.4114
176.4114 168.1891

]

, Q4 =
[
180.3970 169.1126
169.1126 163.0650

]

,

R1 = [
6.5871 − 13.5623

]
, R2 = [ − 18.2149 −3.7398

]
,

K1 = R1Q
−1
1 = [

9.5768 −10.4667
]
, K2 = R2Q

−1
2 = [−5.8056 6.0325

]
.

Applying the obtained controllers to the first and second subsystems, respectively,
the corresponding state responses of the subsystems under initial state condition
x(0) = [2 − 2]T are shown in Figs. 2.4 and 2.5, in which we can see that the closed-
loop subsystems are asymptotically stable. Then, one can obtain that the requirements
of MDADT for subsystem Ai , i = 1, 2, 3, 4 are:

τa1 ≥ lnμ1

η1
= − ln 2.9

−1.0
= 1.065,

τa2 ≥ lnμ2

η2
= − ln 2.3

−3.1
= 0.269,

τa3 ≤ lnμ3

η3
= − ln 0.44

3.0
= 0.274,

Fig. 2.5 State responses of
the second subsystem
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Fig. 2.6 State responses of
switched linear system under
quasi-alternative switching
signal with MDADT
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τa4 ≤ lnμ4

η4
= − ln 0.51

1.3
= 0.518.

Furthermore, we generate one possible quasi-alternative switching sequence (4,
2, 1, 3, 2, 3, 2, 1, 4, 1, 3, 2, 4…) with the MDADT property (τa1 = 1.2 > 1.065,
τa2 = 0.3 > 0.269, τa3 = 0.2 < 0.274, τa4 = 0.5 < 0.518). The corresponding state
responses of the system under initial state condition x(0) = [2 − 2]T , are shown in
Fig. 2.6, from which we can see that the switched linear system is stable under
MDADT switching.

2.3.4 Conclusions

In the above, the problems of stability and stabilization for switched systems com-
prising unstable subsystems are studied in both continuous-time and discrete-time
contexts by using a new defined class of switching signal. The proposed switch-
ing signal is very efficient for analysis and design for switched systems comprising
unstable subsystems. The stability results for switched systems comprising unstable
subsystems are first derived on the basis of our proposed switching signals.Moreover,
based on the obtained results, improved stabilization conditions are also established,
which are concerned with uncontrollable subsystems. Finally, a numerical example
is provided to verify the advantages of the proposed approach.
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