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Preface

Switched systems are hybrid systems with both continuous dynamics and discrete
events. During the past decades, considerable attention has been devoted to the
investigation of such systems due to the fact that switched systems provide a unified
framework for mathematical modeling of many practical systems such as net-
worked control systems, near space vehicle control systems and circuit and power
systems. As the most important issues in the study of switched linear or nonlinear
systems, stability analysis and control synthesis are discussed extensively by many
researchers.

Switched linear systems have been investigated for a long time, and many
excellent results have been obtained for the systems under arbitrary switching or
constraint switching. As far as the stability with arbitrary switching is concerned, it
is necessary to require that all the subsystems be asymptotically stable. However,
even when all the subsystems of a switched linear system are exponentially stable,
such a system may fail to preserve stability under arbitrary switching, but may be
stable under constraint switching signals. The constraint switching may result from
the physical constraints of the system or the designers’ intervention that is actually
related to the switching stabilization problem. As an important class of controlled
switching signals, time-constraint switching has been widely used for switching
stabilization, and a number of effective concepts and powerful tools have been
developed. Despite of the rapid progress, some fundamental problems are still either
unsolved or less well understood. In particular, the existing time-constraint
switching signals are somewhat too strict to be applied in some circumstances, and
the switching stabilization among unstable linear subsystems has not been suc-
cessfully solved. These issues are considered in the current monograph.

On the other hand, the switched systems considered in the literature mostly
consist of linear subsystems or first-order nonlinear subsystems, and various types
of complicated dynamics such as stochastic noises, unknown uncertainties and
actuator dead-zone are not taken into account. However, many industrial systems or
physical systems cannot be described by simple switched system models, and thus
those traditional control synthesis methods are not applicable for such systems.
Considering these, we will focus on the problem of control synthesis for more
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general switched nonlinear systems containing complicated dynamics, and some
intelligent control design methods are also proposed for our considered systems by
introducing novel design approaches.

This monograph addresses theoretical explorations on stabilization and intelli-
gent control for both switched linear systems and switched nonlinear systems.
A systematic design method of control synthesis is given by establishing new
concepts and state-of-the-art results. The book can be used for researchers to carry
out studies on switched systems, and is suitable for graduate students of control
theory and engineering. It may also be a valuable reference for control design of
switched systems by engineers.

The contents of the book are divided into six chapters which contain several
independent yet related topics, and they are organized as follows. Chapter 1
introduces some basic background knowledge on switched systems, and also
describes the main work of the book. Chapter 2 considers the problem of stabi-
lization of switched linear systems. Chapter 3 addresses the problem of switching
stabilization for switched systems composed of unstable subsystems in both linear
and nonlinear cases. Chapters 4 and 5 give theoretical developments in detail for
adaptive intelligent control for some classes of switched nonlinear systems with
uncertainties. Some control problems for constrained switched nonlinear systems
are discussed in Chap. 6. Finally, Chap. 7 concludes the book and highlights some
future study directions relating to the contents of the book.

Jinzhou, China Xudong Zhao
Weihai, China Yonggui Kao
Jinzhou, China Ben Niu
Jinzhou, China Tingting Wu
May 2015
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Chapter 1
Introduction

1.1 Switched Systems

Switched systems provide a unified framework for mathematical modeling of many
physical or man-made systems displaying switching features such as power elec-
tronics, flight control systems, and network control systems. The systems consists
of a collection of indexed differential or difference equations and a switching signal
governing the switching among them. The various switching signals differentiate
switched systems from the general time-varying systems, because the solutions of
the former are dependent on not only the system’s initial conditions but also the
switching signals.

In general, a switched system can be mathematically described by

δx(t) = fσ(t)(x(t),u(t), ω(t))

y(t) = gσ(t)(x(t), ω(t))

x(t0) = x0

where x(t), u(t) and y(t) are the system state, control input and measurement output,
respectively; ω(t) represents the external disturbance signals; the symbol stands for
the derivative operator in the continuous-time context (δx(t) = d

dt x(t)) and the shift
forward operator in the discrete-time case (δx(t) = x(t + 1)); σ(t) is a piecewise
constant function of time, called a switching signal, which takes its values in the
finite set S = {1, 2, . . . , M} with M being the number of subsystems. In addition,
for a series of switching instances 0 < t1 < t2 < · · · < ti < ti+1 < · · · , σ(t)
is continuous from the right everywhere. When t ∈ [ti , ti+1), we say the σ(ti )th

subsystem is active. In addition, fk, k ∈ S are vector fields, and gk, k ∈ S are vector
functions.

The configuration of a general switched system is shown in Fig. 1.1. For such
systems, the subsystems represent the low-level “local” dynamics governed by con-
ventional differential and/or difference equations, whereas the supervisor is the high-

© Springer International Publishing Switzerland 2017
X. Zhao et al., Control Synthesis of Switched Systems, Studies in Systems,
Decision and Control 80, DOI 10.1007/978-3-319-44830-5_1
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2 1 Introduction

Fig. 1.1 Digram of switched
system

level coordinator yielding the switchings among the subsystems [1]. The dynamics
of the system is determined by both the switching signal and the subsystems.

Switching is the most important factor in a switched system, which gives the con-
trol problems of the switched systems some features and difficulties. The switching
of switched systems can be classified into two categories: autonomous switching and
active switching. The former is the switching law of switched systems without the
influences of external switching logic, which only displays the characteristics of the
system itself. Autonomous switching may be arbitrary switching, stochastic switch-
ing, time-dependent switching, and state-dependent switching, etc. The latter stands
for the switching rules produced by the designers according to some control purposes.
Active switching mainly comprises state-driven switching, time-driven switching,
and event-driven switching, etc. In addition to the traditional control methods such
as feedforward control and feedback control, the active switching design provides
us another efficient control strategy for switched systems to achieve the desired state
or performances.

1.2 Background and Examples

Switching among different system modes make a switched systems display very
complicated dynamic behaviors such as the phenomena of chaos, Zeno, and multiple
limit cycles, etc. Also, as far as the stability of a switched system is concerned, it is
interesting to see that the stability cannot be ensured for a system composed of all
stable subsystems, and switching among unstable subsystems may lead to stability
of the whole switched system. For example,

Example 1.1 Consider the switched linear system composed of two subsystems with
the following system matrices,
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A1 =
[−1.49 3.2

−49.1 2.1

]
, A2 =

[−1.3 9.9
−1.9 −1.2

]

It is clear that both subsystems are stable. However, it can be seen in Fig. 1.2 that
the system is not stable under the switching shown in the figure.

Example 1.2 Consider the switched linear system composed of two subsystems with
the following system matrices:

A1 =
[−1.8930 0.5846

0.6124 −0.0992

]
, A2 =

[
0.1024 −0.8879
0.0959 −1.3974

]

It is clear that none of the subsystems is stable. However, it can be seen in Fig. 1.3
that the system is stable under the switching shown in the figure.

Switched systems clearly have attracted much attention for their wide practical
applications in many areas. A few examples are listed in the following to illustrate
their potential applications.

Example 1.3 Consider a simplified Pulse Width Modulation (PWM)-driven boost
converter shown in Fig. 1.4.

There are two storage elements in the circuit: inductor L and capacitor C . In
addition, the source voltage and load are, respectively, represented by E and R.
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Fig. 1.4 A PWM-driven
boost converter

The PWM-driven switching signal s(t) that controls the on (1) and off (0) state
of the switch is generated by comparing a reference signal Vref and a repetitive
triangular waveform. That is, s(t) ∈ {0, 1}. Then, the differential equations for the
boost converter are given as follows.

v̇C(t) = − 1

RC
vC(t) + (1 − s(t))

1

C
iL(t)

i̇L(t) = −(1 − s(t))
1

L
vC(t) + s(t)

1

L
E
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Fig. 1.5 Schematic diagram
of the process

Define x1(t) = vC(t), x2(t) = iL(t), u(t) = E , σ(t) = s(t) + 1, and

A1 =
[− 1

RC
1
C

− 1
L 0

]
, B1 =

[
0

0

]
,

A1 =
[− 1

RC 0

0 0

]
, B1 =

[
0
L

]
.

Then the boost converter can be described by the following state-space model

ẋ(t) = Aσ(t)x(t) + Bσ(t)u(t), σ (t) ∈ {1, 2},

which is exactly the switched linear system with two subsystems.

Example 1.4 Consider the continuous stirred tank reactor (CSTR) with two modes
feed stream in Fig. 1.5.

In the cases of constant liquid volume, negligible heat losses, perfectly mixing
and a first-order reaction in reactant A, the continuous stirred tank reactor at each
operating mode can be described by the following differential equations.

ĊA = qσ

V
(CAfσ − CA) − a0e

− E
RT CA,

Ṫ = qσ

V
(T fσ − T ) − a1e

− E
RT CA + U A

VρCp
(Tc − T ).

where the CA is the reactant A concentration, T is the reactor temperature, Tc is the
coolant temperature, q is the feed flow rate, V is the volume of the reactor, E is the
activation energy, R is the gas constant, and a0, a1 and a2 are constant coefficients.
Denote the nominal operating conditions corresponding to an unstable equilibrium
point as T ∗, T ∗

c and C∗
A for both modes.
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Define the states as x1 = CA − C∗
A, x2 = T − T ∗ and x2 = Tc − T ∗

c , and the
control input u = TC − T ∗

c . Then, it is clear that the system can be represented by a
switched nonlinear system model:

ẋ1 = f i1 (x1, x2) + gi1(x1, x2)u
ẋ2 = f i2 (x1, x2) + gi2(x1, x2)u

where i ∈ {1, 2}, and

f i1 = qi
V (CAf i − C∗

A − x1) − a0(x1 + C∗
A) exp

(
− E/R

x2+T ∗

)
(x1 + C∗

A)

f i2 = qi
V (T f i − T ∗ − x2) − a1 exp

(
− E/R

x2+T ∗

)
(x1 + C∗

A) + a2(T ∗
C − x2 − T ∗)

gi1 = 0
gi2 = a2

Example 1.5 Consider the problem of parking the wheeled mobile robot of the uni-
cycle type as shown in Fig. 1.6, where x1 and x2 are the coordinates of the point in
the middle of the rear axle, and θ stands for the angle between the vertical axis of
the vehicle and x1 -axis. The kinematics of the robot can be modelled as below

ẋ1 = u1 cos θ

ẋ2 = u1 sin θ

θ̇ = u2

where u1 and u2 are the control inputs (the forward and the angular velocity, respec-
tively) such that x1, x2 and θ tend to zero. It is interesting to see that the corresponding
system is nonholonomic and thus cannot be asymptotically stabilized by any time-
invariant continuous state feedback law. However, the hybrid control scheme can
tackle this problem. Introduce

y1 = θ

y2 = x1 cos θ + x2 sin θ

y3 = x1 sin θ − x2 cos θ

D1 =
{
x ∈ R

3 : |x3| >
‖x‖

2

}

D2 = {x ∈ R
3 : x /∈ D1}

Then, a feasible set of candidate controllers can be designed as

u1 =
[
u1

1
u1

2

]
=

[−4y2 − 6 y3

y1
− y3y1

−y1

]

u2 =
[
u2

1
u2

2

]
=

[−y2 − sgn(y2y3)y3

−sgn(y2y3)

]
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Fig. 1.6 Wheeled mobile
robot of unicycle type

where function sgn(α) is defined as

sgn(α) =
{

1, if α ≥ 0
−1, otherwise

Under these controllers, the system can be rewritten by an unforced switched
nonlinear system

ẋ(t) = fσ(t)(x(t))

where x(t) = [x1, x2, θ ]T , σ(t) ∈ {1, 2}, and

fi (x(t)) =
⎡
⎣ui1 cos θ

ui1 sin θ

ui2

⎤
⎦ , i = 1, 2.

To achieve stabilization, the switching law σ(t) is chosen as

σ(t) =
{

1, if x(t) ∈ D1

2, if x(t) ∈ D2

Therefore, it is clear that the problem of parking the wheeled mobile robot of the
unicycle type is described by a switching design problem of a switched nonlinear
system.

In addition, a switched system system also finds its numerous applications in
multi-controller-switching control systems, robot control systems, asynchronous
switching control systems, etc. On the other hand, study on switched systems is
also of great theoretical importance because it can provide additional insights and
ideas to some long-standing and complicated problems, such as reset control, robust
control, intelligent control, control of multi-agent systems and time-delay systems,
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only to list a few. In summary,a switched system deserves investigation because it is
of both theoretical and practical importance.

1.3 Motivations

In recent years, research on control issues of switched systems has received great
interest from both academic and engineering experts, and obtained successful
achievements. In a certain sense, research on control of switched systems includes
three basic issues: control problems of switched systems under arbitrary switching
signals,and control problems of switched systems under certain specific switching
signals,and control problems of designing certain switching signals to achieve cer-
tain performances. A brief review and discussions on the developments of these three
basic problems are given in the following.

(1) Control problems of switched systems under arbitrary switching signals
A great number of works have been carried out for such problems in as much

as the corresponding results are of general sense. One often resorts to the common
Lyapunov function approaches to investigate control problems of switched systems
under arbitrary switching. That is, a switched system is stable if there exists a com-
mon Lyapunov function for all the subsystems. To list a few Representative works,
it was proved by Mosca that stable subsystems must share a common Lyapunov
function if the system state matrices are exchangeable [2]. Mehmet [3] probed the
existence condition of common Lyapunov functions for second- order switched sys-
tems, and proposed concrete methods for obtaining a common Lyapunov function.
Stability conditions were established by Shorten for some special switched systems
based on the common quadratic Lyapunov function [4]. In [5], Daafouz developed a
method for constructing switched quadratic Lyapunov functions in correspondence
with discrete-time switched systems, upon which, less conservative stability con-
ditions were given. Based on such a type of Lyapunov function approach, Xie [6]
proposed L2-gain conditions in LMI formulation and controller design method for
uncertain discrete-time switched systems, and Wang [7] investigated the problem of
fault detection for switched systems with state delay. Liu established stability criteria
in [8] for a class of delay switched positive systems with arbitrary switching, and
also indicated that the stability of such a type of systems is independent of time
delay. On the basis of the approximation of state transition matrices and Gronwall
inequality, Sun designed state-feedback controllers for switched nonlinear systems
with impulsive effects [9]. By applying the Green formula and Poincaré inequalities,
Dong gave a design method of fault-tolerant controller for a class of switched delay
systems with distributed parameters [10]. For switched nonlinear impulsive systems
with completely unknown uncertainties, Long designed adaptive impulsive tracking
controllers in [11], and found that the tracking performance can be improved by using
disturbance compensation. On the other hand, the investigations on both necessary
and sufficient stability conditions for switched systems under arbitrary switching
have also attracted much attention by researchers [12].
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It should be pointed out that although the results in the arbitrary switching case
are of general sense, the conservatism to require all subsystems be stable and achieve
desired control performance under arbitrary switching cannot be ignored. In reality,
many switched systems own their specific switching logic, such as liquid level control
system, vehicle shift system, etc., and thus there is no need to achieve the control
objective with respect to arbitrary switching. It is particularly necessary to study
switched systems with some specific switching rules to develop less conservative
and more efficient control methods and conclusions compared with the ones in the
arbitrary switching case.

(2) Control problems of switched systems under specific switching signals
For some practical switched systems, we can obtain some knowledge of the

switching rules among their modes in advance, and these rules are generally described
by three classes of switching signals: stochastic switching signals possessing statis-
tical properties, state-dependent switching signals and time-dependent switching
signals. Switched systems with these three types of switching signals have been
widely studied in recent years. Due to successful applications in network control
systems, related control theory of stochastic Markovian switching systems have
received considerable attention, and developed well [13]. Meanwhile, systems with
state-dependent switching and time-dependent switching have also been paid much
attention for their remarkable application backgrounds. The authors in [8] established
mathematical models for a Mars exploration unmanned aerial vehicle with umbrella
and without umbrella, respectively, and gave the simplified switched system model
for the re-entry process where the switching between the models with umbrella and
without umbrella was determined by the aircraft speed. Then, an integrated con-
trol system of the Mars exploration unmanned aerial vehicle was designed via gain
pre-fabricated method on the basis of the proposed switched system model. In [14],
seven characteristic points were selected for the whole flight process of a BTT mis-
sile, around which, constant subsystem models were established to obtain a switched
system model for the flight process. Then, the authors designed subsystem controllers
and autopilot switch points under the cases that the switching instances were depen-
dent on the system state and the switching sequence was known, such that the missile
could rapidly and accurately track the guidance command, and the switching chatter
was effectively suppressed. The bifurcation characteristic and chaos switching oscil-
lation behavior were systematically investigated in [12] for the Rőssler oscillator
and Chua’s circuit under state-dependent switching, respectively, and the complex
dynamic behavior caused by periodic switching between two Lorenz oscillators was
also analyzed. In [15], the system mutation dynamics of an electro hydraulic servo
actuator under different voltage supply was modelled by several subsystems of a
switched system whose switching law represented the voltage supply variation, and
then the authors designed a control system for an aero electro hydraulic servo actuator
according to the system actual voltage supply variation to achieve good performance.

The aforementioned literatures mainly focuses on analysis and synthesis of
switched systems with certain specific switching laws. On the other hand, one can
also actively design switching signals to achieve some required control performances
of a switched system.
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(3) Control problems of switched systems via switching signal design
For switched systems, switching itself provides us a very efficient control strategy

in addition to those classical control methods widely used in control theory. We can
properly design switching rules to enable a switched system to achieve desired per-
formances. It should be noted that switching control can complete some control tasks
that cannot be accomplished by traditional control methods. Active switching strate-
gies generally comprise state-driven switching control, time-driven switching control
and event-driven switching control, etc. Control issues of switched systems based on
these three active switching strategies have been noticed by many researchers.

In the state-driven switching control aspect, by resorting to the minimum pro-
jection strategy, the problems of quadratic stabilization and state-driven switching
signal design were addressed by Pettersson in [16]. The state-driven switching design
method for uncertain switched linear systems with polytopic uncertainties was pro-
posed in [17] by the LMI technique. Allerhand discussed several control problems of
switched systems with polytopic uncertainties in [18], and gave the design approach
of state-driven switching signals. Sangswang systematically investigated the prob-
lems of performance analysis and state-driven switching control for power electronic
converters with a pulse width modulation circuit driver [19]. Corona proposed a class
of state-driven switching law via the LQ performance optimization method such that
the considered systems without stable subsystems were exponentially stable [20].
For switched systems with partially unstable or all unstable subsystems, the authors
in [21] developed a novel concept of multiple generalized Lyapunov-like function
to solve the problems of stability, L2-gain analysis and H∞ control for switched
nonlinear systems under state-driven switching signals. It can be seen that the inves-
tigations on state-driven switching control of switched systems have been extended
from switched linear systems, systems with stable subsystems and simple systems
to switched nonlinear systems, systems with unstable subsystems and complex sys-
tems, and gradually form a relatively complete theory framework. But it is noted that
there are some constraints in applying state-driven switching to switched systems,
such as state measurability, observability, estimation cost, and real-time ability, etc.

Due to great advantages in the aspects of applicability, reliability, real-time abil-
ity and application cost, etc., time-driven switching control of switched systems has
been widely noticed by many researchers. The concepts of dwell time and average
dwell time have been successively proposed and applied to the time-driven switching
control of switched systems. Through a practical example, Liberzon [22] revealed
the divergence phenomenon of the state trajectory of systems switched between two
stable subsystems, and pointed out that the essential reason behind this phenomenon
is the energy increment caused by switching was not compensated by stable sub-
systems. In addition, the work also indicated that for systems comprising unstable
subsystems, dwelling on unstable modes or frequently switching to unstable modes
would lead to the instability of a switched system. Therefore, an effective guarantee
of the stability of a switched system is to activate stable modes for a long time and
reduce the switching frequency (that is, slow switching). Based on this idea, the
concept of dwell time was proposed and extensively used for the control of switched
systems. Geromel discussed the problem of minimal dwell time stabilization for
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continuous-time switched systems [23]. Then, in [24], Briat extended the results in
[23], and established convex stability conditions via the “Lifting Setting” technique.
The obtained conditions are convenient for robust analysis and synthesis of the sys-
tems. Dwell time switching requires the dwell time on each subsystem be larger than
a sufficient big constant, which greatly restricts its applications. Considering this
point, Hespanha [25] creatively gave the concept of average dwell time that relaxed
some restrictions on switching rules and owned more flexibilities in switching design
of switched systems.Recently, on the basis of average dwell time switching, studies
on control problems related to switched systems have made considerable progress.
The authors in were [26] concerned with the weighted L2-gain analysis for switched
systems with time varying delay under average dwell time switching. For switched
systems with polytopic uncertain parameters,a time-driven switching exponential
H∞ filter was designed in [27] by resorting to the parameter-dependent idea. Then,
Zong [28] was devoted to the exponential l2-l∞ filtering design for discrete-time
uncertain switched systems under average dwell time switching. The authors in [29]
provided a time-driven switching observer scheme for delayed switched recurrent
neural networks by exploring the free weighting matrix technique. In the meantime,
switching control of switched nonlinear systems in the framework of average dwell
time has also obtained synchronous development.

The above-mentioned literature related to time-driven switching control only con-
siders stable open-loop or closed-loop subsystems. However, in practice, many con-
trolled plants are unstable, and designing feedback controllers are often impractical
due to an unmeasurable or unobservable state, high cost, low real-time capability,
etc. On the other hand, uncontrollable subsystems, controller faults and asynchro-
nous switching are sometimes encountered in practical switched systems. In addition,
some control problems of many systems can be transformed into control problems of
switching among unstable subsystems of switched systems. Causally, there have been
a few reports on time-driven switching control problems of switched systems with
unstable subsystems in the last decade, which are of both theoretical and practical
significance. The authors in [30] studied the average dwell time switching stabi-
lization of switched systems comprising both stable and unstable subsystems by
proposing a novel class of Lyapunov-like functions, and extended the corresponding
results to asynchronously switched control of switched systems. Through construct-
ing a Lyapunov looped-function, Briat [31] solved the mode-dependent dwell time
switching control and computation of the minimal dwell time for switched systems
composed of stable and unstable subsystems. The problems of mode-dependent aver-
age dwell time switching control and asynchronous L1 control of delayed switched
positive systems with stable and unstable subsystems were considered in [32] based
on a copositive Lyapunov–Krasovskii function approach. In [33], finite-time stability
was investigated for impulsive switched systems with unstable subsystems.

As can be seen in the above illustrations, many control issues of switched systems
have been noticed and developed in the past few years, some of which, however, have
not been successfully solved so far. For example, time-driven switching design for
switched systems composed of unstable subsystems is still an open problem in both
linear and nonlinear contexts. Also, it is urgent to carry out investigations on more
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complicated switched system models for practical applications, such as high-order
switched systems, stochastic switched systems, switched systems with completely
unknown uncertainties, etc.

1.4 Structure of the Book

Structure of the book is summarized as follows.
This chapter has introduced the system description and some background knowl-

edge, and also addressed the motivations of the book.
Chapter 2 investigates the stability and stabilization problems for a class of

switched systems with mode-dependent average dwell time (MDADT) in both
continuous-time and discrete-time contexts. The proposed MDADT switching law
is more applicable in practice than the ADT switching. Some improved stability
criteria for switched systems with our proposed switching in nonlinear settings are
first derived, by which the conditions for stability and stabilization for linear systems
are also presented. Finally, the results are extended to the ones for switched systems
with unstable subsystems.

Chapter 3 studies the problems of switching stabilization for both switched linear
systems and switched nonlinear systems with time-driven switching signals. In par-
ticular, the considered systems can be composed of all unstable subsystems. In the
linear case, the switching signal is designed to exponentially stabilize the underlying
system based on the invariant subspace theory. Then, some sufficient conditions are
also established in the nonlinear case. Furthermore, the T-S fuzzy modeling approach
is applied to represent the underlying switched nonlinear system to make the obtained
conditions easily verified.

Chapter 4 is concerned with the adaptive control design for a class of switched
nonlinear systems in lower triangular form with unknown functions and arbitrary
switchings. First, switched strict-feedback nonlinear systems are considered. Two
classes of state feedback controllers are constructed by adopting an adaptive back-
stepping technique, and both of them are designed by using the common Lyapunov
function (CLF) method. The first controller is designed under multiple adaptive laws.
Then, the second one is designed based on constructing a maximum common adap-
tive parameter, which can overcome the problem of over-parameterization of the
first controllers. Then, controller design methods for switched nonstrict-feedback
nonlinear systems are also carried out. It is shown that the designed state-feedback
controllers can ensure that all the signals remain bounded and the tracking error
converges to a small neighborhood of the origin.

Chapter 5 considers the problem of adaptive control for switched stochastic non-
linear systems. First, controller design approaches for stochastic switched nonstrict-
feedback nonlinear systems with unknown nonsymmetric actuator dead-zone are
proposed. By combining radial basis function neural networks universal approxima-
tion capability, adaptive backstepping technique with common stochastic Lyapunov
function method, adaptive control algorithms are given for the considered systems.

http://dx.doi.org/10.1007/978-3-319-44830-5_2
http://dx.doi.org/10.1007/978-3-319-44830-5_3
http://dx.doi.org/10.1007/978-3-319-44830-5_4
http://dx.doi.org/10.1007/978-3-319-44830-5_5
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Furthermore, under the framework of adding a power integrator technique, adaptive
controllers of switched stochastic high-order uncertain nonlinear systems with SISS
inverse dynamic are also designed.

Chapter 6 is focused on the output tracking control problem of constrained nonlin-
ear switched systems in lower triangular form. First, when all the states are subjected
to constraints, a Barrier Lyapunov Function (BLF) is explored, which grows to infin-
ity whenever its arguments approach some finite limits, to prevent the states from
violating the constraints. Based on the simultaneous domination assumption, we
design a continuous feedback controller for the switched system, which guarantees
that asymptotic output tracking is achieved without transgression of the constraints
and all closed-loop signals remain bounded, provided that the initial states are feasi-
ble. Then, we further consider the case of asymmetric time-varying output constraints
by constructing an appropriate BLF. In addition, we also resort to p-times differen-
tiable unbounded functions to deal with asymmetric output constraints, which avoids
the defect caused by the discontinuity of the constructed asymmetric BLF.

Chapter 7 concludes the monograph by briefly summarizing the main theoret-
ical findings presented in our book, and proposing unsolved problems for further
investigations.
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Chapter 2
Stabilization of Switched Linear Systems
with Stable Subsystems

2.1 Background and Motivation

In a certain sense, switching signals in systems can be classified into autonomous
(uncontrolled) or controlled ones [1, 2], that respectively, result from the system itself
and the designers’ intervention [3]. The stabilization problems of switched systems
with both classes of switching signals, have always been the hottest topic in the studies
of switched systems. Relatively, plenty of theoretical results have been available
for systems under the uncontrolled switching signals, in both the continuous-time
domain [4], and discrete-time domain [5]. However, for the switched systems with
controlled switching signals, the corresponding stabilization problem is complicated
in finding suitable switching signals to ensure system stability and improve system
performances.

In practice, the time-constrained switching signals [6] with restrictions on switch-
ing instants are frequently encountered, and have drawn considerable attention. A
minimum time interval called dwell time (DT) is first introduced for switched sys-
tems. By using multiple Lyapunov functions, it has been proved in [7] that the
switched linear systems with stable subsystems are exponentially stable if the dwell
time τ is sufficiently large. However, in many practical switched systems, specifying
a fixed dwell time may be restrictive. The concept of average dwell time (ADT)
extending the concept of DT allows the possibility of dwell time being less than a
fixed constant. The ADT switching signal has been found important in not only the-
ory but also in practice, andmany sound and pioneered results have been obtained for
analysis and synthesis of switched systems by using ADT switching signal [8–12].

However, the property in theADTswitching that the average time interval between
any two consecutive switchings is not smaller than a constant independent of the
system modes, is probably still not anticipated. In addition, it has been well shown
in the literature that, the minimum of admissible ADT is computed by two mode-
independent parameters. It is straightforward that such a setup of the two common
parameters for all subsystems in a mode-independent manner will give rise to a
certain conservativeness.

© Springer International Publishing Switzerland 2017
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Furthermore, controller failures, uncontrollable/unobservable modes, and sensor
faults are often encountered in real plants, which may lead to switched system mod-
els with unstable modes. Therefore, it is of fundamental importance to numerous
applications but theoretically challenging to carry out studies of switched systems
with unstable subsystems [13–15].

A new class of switching signals called mode-dependent average dwell time
(MDADT) switching is proposed in this chapter. Then, the stabilization problems
of switched systems composed of stable subsystems are discussed via MDADT
switching. Furthermore, the results are extended to the systems comprising unstable
subsystems.

Notations: In this chapter, the used notations are standard. R and R
n denote the set

of the real numbers and n-dimensional Euclidean space, respectively; Z+ represents
the set of positive integers; the notation ‖ · ‖ refers to the Euclidean norm.C 1 denotes
the set of continuously differentiable functions, and a function α: [0,∞) → [0,∞)

is said to be of class K if it is continuous, strictly increasing, and α(0) = 0. Class
K∞ denotes the subset of K consisting of all those functions that are unbounded.
In addition, the notation P > 0(≥ 0) means that P is a real symmetric and positive
definite (semi-positive definite) matrix.

2.2 Stabilization for Switched Systems
Composed of Stable Subsystems

2.2.1 Problem Formulation and Preliminaries

Consider a class of switched linear systems given by

δx(t) = Aσ(t)x(t) + Bσ(t)u(t) (2.1)

where x(t) ∈ R
n is the state vector, the symbol δ denotes the derivative operator in

the continuous-time context (δx(t) = d
dt x(t)) and the shift forward operator in the

discrete-time case (δx(t) = x(t + 1)). σ(t) is a piecewise constant function of time,
called a switching signal, which takes its values in the finite set S = {1, . . . , M} ;
M is the number of subsystems. Also, for a switching sequence 0 < t1 < · · · <

ti < ti+1 < · · · , σ(t) is continuous from the right everywhere and may be either
autonomous or controlled.When t ∈ [ti , ti+1),we say the σ(ti )th subsystem is active.
The two-matrix pair (Ap, Bp), ∀σ(t) = p ∈ S, represents the pth subsystem or pth

mode of (2.1).
The following stability definition of system (2.1) is first introduced for later devel-

opments, and we denote time by k in the discrete-time case.

Definition 2.1 ([2]) The equilibrium x = 0 of system (2.1) is globally uniformly
exponentially stable (GUES) under a certain switching signal σ(t) if for u(t) = 0 (or
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u(k) = 0) and initial conditions x(t0) (or x(k0)), there exist constants α > 0, δ > 0
(respectively, 0 < ς < 1) such that the solution of the system satisfies ‖x(t)‖ ≤
αe−δ(t−t0) ‖x(t0)‖ , ∀t ≥ t0 (respectively, ‖x(k)‖ ≤ ας(k−k0) ‖x(k0)‖ , ∀k ≥ k0).

The control inputu(t) (oru(k)) in (2.1) is used to achieve systemstability or certain
performances for certain switching signals. The state feedback is considered with
u(t) = Kσ(t)x(t) (or u(k) = Kσ(k)x(k)), where Kp, ∀σ(t) = p ∈ S, is the controller
gain to be determined. Then, the resulting closed-loop system is given by

δx(t) = Ā px(t) (2.2)

where,
Ā p = Ap + BpKp (2.3)

Next, we aim at finding a more general set of admissible switching signals and the
corresponding state-feedback controllers, such that the resulting closed-loop system
(2.2) is GUES. For this purpose, let us first revisit the definition of the ADT property
and the stability results for switched nonlinear systems with ADT.

Definition 2.2 ([16]) For a switching signal σ(t) and each t2 ≥ t1 ≥ 0, let Nσ (t2,
t1) denote the number of discontinuities of σ(t) in the open interval (t1, t2). We say
that σ(t) has an average dwell time τa if there exist two positive numbers N0 (we
call N0 the chatter bound here) and τa such that

Nσ (t2, t1) ≤ N0 + t2 − t1
τa

, ∀t2 ≥ t1 ≥ 0

Lemma 2.1 ([16])Consider the continuous-time switched system ẋ(t) = fσ(t)(x(t)),
σ (t) ∈ S and let λ > 0, μ > 1 be given constants. Suppose that there exist C 1 func-
tions Vσ(t) : Rn → R, and two class K∞ functions κ1, κ2 such that, ∀p ∈ S

κ1(‖x(t)‖) ≤ Vp(x(t)) ≤ κ2(‖x(t)‖) (2.4)

V̇p(x(t)) ≤ −λVp(x(t)) (2.5)

and ∀(σ (ti ) = p, σ (t−i ) = q) ∈ S × S, p 	= q,

Vp(x(ti )) ≤ μVq(x(ti )) (2.6)

then the system is globally uniformly asymptotically stable (GUAS) for any switching
signal with ADT

τa ≥ τ ∗
a = lnμ

λ
(2.7)

Lemma 2.2 ([10]) Consider the discrete-time switched system x(k + 1) = fσ(k)

(x(k)), σ (k) ∈ S and let 0 < λ < 1 and μ > 0, ∀p ∈ S be given constants.
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Suppose that there exists positive definite C 1 functions Vσ(k) : Rn → R, σ (k) ∈ S
and two class K∞ functions κ1, κ2 such that,

κ1(‖x(k)‖) ≤ Vp(xk) ≤ κ2(‖x(k)‖) (2.8)

ΔVp(x(k)) ≤ −λVp(x(k)) (2.9)

and ∀(σ (ki ) = p, σ (ki−1) = q) ∈ S × S, p 	= q,

Vp(x(ki )) ≤ μVq(x(ki )) (2.10)

then the system is GUAS for any switching signal with ADT

τa > τ ∗
a = − lnμ

ln(1 − λ)
. (2.11)

2.2.2 Main Results

The definition of the MDADT property used to restrict a new class of switching
signals is first given in the following.

Definition 2.3 For a switching signal σ(t) and any T ≥ t ≥ 0, let Nσ p(T, t) be the
switching numbers that the pth subsystem is activated over the interval [t, T ] and
Tp(T, t) denote the total running time of the pth subsystem over the interval [t, T ],
p ∈ S. We say that σ(t) has a mode-dependent average dwell time τap if there exist
positive numbers N0p (we call N0p the mode-dependent chatter bounds here) and
τap such that

Nσ p(T, t) ≤ N0p + Tp(T, t)

τap
, ∀T ≥ t ≥ 0

Remark 2.1 Definition2.3 constructs a new set of switching signals with a MDADT
property. If there exist positive scalars τap, p ∈ S such that a switching signal has the
MDADT property, it only requires the average time among the intervals associated
with the pth subsystem is larger than τap.

The following lemmas present the stability results for the switched nonlinear
systems with MDADT.

Lemma 2.3 (Continuous-Time Version) Consider the continuous-time switched
system

ẋ(t) = fσ(t)(x(t)), σ (t) ∈ S (2.12)

and let λp > 0, μp > 1, p ∈ S be given constants. Suppose that there exist C 1

functions Vσ(t) : Rn → R, and classK∞ functionsκ1p, κ2p, p ∈ S such that,∀p ∈ S,
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κ1p(‖x(t)‖) ≤ Vp(x(t)) ≤ κ2p(‖x(t)‖) (2.13)

V̇p(x(t)) ≤ −λpVp(x(t)) (2.14)

and ∀(σ (ti ) = p, σ (t−i ) = q) ∈ S × S, p 	= q,

Vp(x(ti )) ≤ μpVq(x(ti )) (2.15)

then the system is GUAS for any switching signal with MDADT

τap ≥ τ ∗
ap = lnμp

λp
(2.16)

Proof For any T > 0, let t0 = 0 and denote t1, t2 · · · ti , ti+1, . . . tNσ (T,0) the switching

times on the interval [0, T ], where Nσ (T, 0) =
M∑
p=1

Nσ p(T, 0).

Then, we set
φ(t) := eλσ(t)t Vσ(t)(x(t)) (2.17)

Function (2.17) is piecewise differentiable along solution (2.12). For any t ∈ [ti ,
ti+1], we have:

φ̇(t) = λσ(ti )φ(t) + eλσ(ti )t V̇σ(ti )(x(t))

By (2.14), we obtain that φ̇(t) ≤ 0. This, together with (2.15) and (2.17), implies
that

φ(ti+1) = eλσ(ti+1)ti+1Vσ(ti+1)(x(ti+1))

≤ μσ(ti+1)e
λσ(ti+1)ti+1Vσ(ti )(x(ti+1))

= μσ(ti+1)e
λσ(ti+1)ti+1−λσ(ti )ti+1φ(t−i+1)

≤ μσ(ti+1)e
(λσ(ti+1)−λσ(ti ))ti+1φ(ti )

≤ μσ(ti )μσ(ti+1)e
(λσ(ti+1)−λσ(ti ))ti+1+(λσ(ti )−λσ(ti−1))ti φ(ti−1)

≤
i∏

j=0

μσ(t j+1)e

i∑
j=0

(λσ(t j+1)−λσ(t j ))t j+1

φ(t0)

Therefore,
φ(T−) ≤ φ(tNσ

)

≤
Nσ −1∏
j=0

μσ(t j+1)e

Nσ −1∑
j=0

(λσ(t j+1)−λσ(t j ))t j+1

φ(0)
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Then, it follows from (2.17) that:

exp(λσ(T−)T )Vσ(T−)(x(T )) ≤
Nσ −1∏
j=0

μσ(t j+1)e

Nσ −1∑
j=0

(λσ(t j+1)−λσ(t j ))t j+1

Vσ(0)(x(0))

This implies that

Vσ(T−)(x(T )) ≤
Nσ −1∏
j=0

μσ(t j+1) exp

⎧⎨
⎩

Nσ −1∑
j=0

(λσ(t j+1) − λσ(t j ))t j+1

−λσ(tNσ )T + λσ(t0)t0
}
Vσ(0)(x(0))

≤
M∏
p=1

μ
Nσ p
p exp

⎧⎨
⎩−

M∑
p=1

⎡
⎣λp

∑
s∈ψ(p)

(ts+1 − ts)

⎤
⎦

−λσ(tNσ )(T − tNσ )
}
Vσ(0)(x(0))

≤ exp

⎧⎨
⎩

M∑
p=1

N0p lnμp

⎫⎬
⎭ exp

⎧⎨
⎩

M∑
p=1

Tp

τap
lnμp −

M∑
p=1

λpTp

⎫⎬
⎭ Vσ(0)(x(0))

= exp

⎧⎨
⎩

M∑
p=1

N0p lnμp

⎫⎬
⎭ exp

⎧⎨
⎩

M∑
p=1

(
lnμp

τap
− λp

)
Tp

⎫⎬
⎭ Vσ(0)(x(0))

whereψ(p)denotes the set of s satisfyingσ(ts) = p, ts ∈ {t0, t1 · · · ti , ti+1, . . . tNσ −1}.
Therefore, if there exist constants τap, p ∈ S satisfying (2.16), one has:

Vσ(T−)(x(T )) ≤ exp

⎧⎨
⎩

M∑
p=1

N0p lnμp

⎫⎬
⎭ exp

{
max
p∈S

(
lnμp

τap
− λp

)
T

}
Vσ(0)(x(0))

Thus, one can conclude that Vσ(T−)(x(T )) convergences to zero as T → ∞ if the
MDADT satisfies (2.16). Then, the asymptotic stability can be deduced with the aid
of (2.13). �

Lemma 2.4 (Discrete-Time Version) Consider the discrete-time switched system

x(k + 1) = fσ(k)(x(k)), σ (k) ∈ S (2.18)

and let 0 < λp < 1 and μp ≥ 1, p ∈ S be given constants. Suppose that there exist
C 1 functions Vσ(k) : Rn → R, σ (k) ∈ S, and classK∞ functions κ1p and κ2p, p ∈ S,

such that ∀σ(k) = p ∈ S

κ1p(‖x(k)‖) ≤ Vp(xk) ≤ κ2p(‖x(k)‖) (2.19)
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ΔVp(x(k)) ≤ −λpVp(x(k)) (2.20)

and ∀(σ (ki ) = p, σ (ki−1) = q) ∈ S × S, p 	= q,

Vp(x(ki )) ≤ μpVq(x(ki )) (2.21)

then the system is GUAS for any switching signal with MDADT

τap > τ ∗
ap = − lnμp

ln(1 − λp)
(2.22)

Proof For any K > 0, let k0 = 0 and denote k1, k2, . . . ki , ki+1, . . . kNσ (K ,0) the

switching times on interval [0, K ], where Nσ (K , 0) =
M∑
p=1

Nσ p(K , 0).

One can get from (2.20) that, ∀p ∈ S:

Vp(x(k + 1)) − Vp(x(k)) < 0 (2.23)

Vp(x(k + 1)) ≤ (1 − λp)Vp(x(k)) (2.24)

This together with (2.21) means that

Vσ(ki+1)(x(ki+1)) ≤ μσ(ki+1)Vσ(ki+1−1)(x(ki+1))

≤ μσ(ki+1)Vσ(ki+1−1)(x(ki+1 − 1))(1 − λσ(ki+1−1))

= μσ(ki+1)(1 − λσ(ki ))Vσ(ki )(x(ki+1 − 1))

≤ μσ(ki+1)(1 − λσ(ki ))
ki+1−ki Vσ(ki )(x(ki ))

· · ·
≤

i∏
j=0

μσ(k j+1)

i∏
j=0

(1 − λσ(k j ))
k j+1−k j Vσ(k0)(x(k0))

Then, by (2.24), one gets that

Vσ(K )(x(K )) ≤ (1 − λσ(kNσ ))
K−kNσ Vσ(kNσ )(x(kNσ ))

≤ (1 − λσ(kNσ ))
K−kNσ

Nσ −1∏
j=0

μσ(k j+1)

Nσ −1∏
j=0

(1 − λσ(k j ))
k j+1−k j Vσ(0)(x(0))

=
M∏
p=1

μ
Nσ p
p

M∏
p=1

(1 − λp)
Tp Vσ(0)(x(0))

=
M∏
p=1

μ
Nσ p
p exp

⎧⎨
⎩

M∑
p=1

[
Tp ln(1 − λp)

]
⎫⎬
⎭ Vσ(0)(x(0))
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≤ exp

⎧⎨
⎩

M∑
p=1

N0p lnμp

⎫⎬
⎭ exp

⎧⎨
⎩

M∑
p=1

Tp

τap
lnμp +

M∑
p=1

ln(1 − λp)Tp

⎫⎬
⎭ Vσ(0)(x(0))

Thus, if there exist constants τap, p ∈ S satisfying (2.22), one has:

Vσ(K )(x(K )) ≤ exp

⎧⎨
⎩

M∑
p=1

N0p lnμp

⎫⎬
⎭ exp

{
max
p∈S

[
lnμp

τap
+ ln(1 − λp)

]
K

}
Vσ(0)(x(0))

Then, one can conclude that Vσ(K )(x(K )) converges to zero as K → ∞ if the
MDADT satisfies (2.22). Subsequently, the asymptotic stability can be obtained by
resorting to (2.19). �

Remark 2.2 It can be seen from Lemmas2.1 and 2.2 that the parameters λ and μ are
mode-independent for all subsystems. However, the parameters λp, μp prescribed in
Lemmas2.3 and 2.4 are mode-dependent, therefore, we can conclude that τ ∗

ap ≤ τ ∗
a ,

∀p ∈ S from (2.5)–(2.7) and (2.14)–(2.16), and the mode-dependent features would
reduce the conservativeness existing in Lemmas2.1 and 2.2.

Remark 2.3 It is clear that Lemma2.3 (or Lemma2.4 in the discrete-time case)
presents a more general switching signal than Lemma2.1 (respectively, Lemma2.2)
which corresponds to the special case of λ = λp, μ = μp, τa = τap, ∀p ∈ S. In fact,
we note that if τa = τap, ∀p ∈ S, one readily knows from Definition2.3 that

∑
p∈S

Nσ p(T,t) ≤
∑
p∈S

N0p +
∑
p∈S

Tp

τa
, ∀T ≥ t ≥ 0

Thus, there exist positive numbers N0 = ∑
p∈S

N0p and τa = τap such that

Nσ (T, t) ≤ N0 + T − t

τa
, ∀T ≥ t ≥ 0

Based on the results obtained above, we present the stability conditions for system
(2.1) with MDADT.

Theorem 2.1 (Continuous-Time Case) Consider the switched linear system (2.1)
when u(t) ≡ 0 and let λp > 0, μp > 1, p ∈ S be given constants. If there exist
matrices Pp > 0, ∀p ∈ S, such that, ∀(p, q) ∈ S × S, p 	= q,

AT
p Pp + Pp Ap + λp Pp ≤ 0 (2.25)

Pp − μp Pq ≤ 0 (2.26)

then, the switched linear system (2.1) is GUES with MDADT satisfying (2.16).
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Proof Here, we choose the Lyapunov function candidate as follows,

Vp(x(t)) = xT (t)Ppx(t), ∀σ(t) = p ∈ S (2.27)

where Pp, ∀p ∈ S is a positive definite matrix satisfying (2.25) and (2.26). Then,
from (2.1), (2.14), (2.15) and (2.27), we have, ∀(p, q) ∈ S × S, p 	= q,

V̇p(x(t)) + λpVp(x(t)) = λpxT (t)Ppx(t) + xT (t)Pp Apx(t) + xT (t)AT
p Ppx(t)

Vp(x(ti )) − μpVq(x(ti )) = xT (ti )Ppx(ti ) − μpxT (ti )Pqx(ti )

Thus, if (2.25) and (2.26) hold, system (2.1) isGUAS for any switching signalwith
MDADT (2.16). In addition, by denoting δ = − 1

2 [max
p∈S (

lnμp

τap
− λp)], we can obtain

from (2.13) and (2.27) that the system state satisfies ‖x(t)‖ ≤ αe−δ(t−t0) ‖x(t0)‖ ,

∀t ≥ t0 for a certain α > 0,; that is the underlying system is GUES. �

Theorem 2.2 (Discrete-Time Case)Consider the switched linear system (2.1) when
u(t) ≡ 0 and let 0 < λp < 1 and μp ≥ 1, p ∈ S be given constants. If there exist
matrices Pp > 0, ∀p ∈ S, such that, ∀(p, q) ∈ S × S, p 	= q,

AT
p Pp Ap + λp Pp − Pp ≤ 0 (2.28)

Pp − μp Pq ≤ 0 (2.29)

then, the switched linear systems (2.1) is GUES with MDADT satisfying (2.22).

Proof We establish the Lyapunov function

Vp(x(k)) = xT (k)Ppx(k), ∀σ(k) = p ∈ S (2.30)

where Pp, ∀p ∈ S is a positive definite matrix satisfying (2.28) and (2.29). Then,
together with (2.1), (2.20), (2.21) and (2.30), we can get, ∀(p, q) ∈ S × S, p 	= q,

ΔVp(x(k)) + λpVp(x(k)) = λpxT (k)Ppx(k) − xT (k)Ppx(k) + xT (k)AT
p Pp Apx(k)

Vp(x(ki )) − μpVq(x(ki )) = xT (ki )Ppx(ki ) − μpxT (ki )Pqx(ki )

Therefore, if (2.28) and (2.29) hold, system (2.1) is GUAS for any switching
signal with MDADT (2.22) in the light of Lemma2.4. Subsequently, by denot-

ing ς =
√
exp{max

p∈S [ lnμp

τap
+ ln(1 − λp)]}, we can obtain from (2.19) and (2.30) that

‖x(k)‖ ≤ ας(k−k0) ‖x(k0)‖ ,∀k ≥ k0 for a certain α > 0, that is, the underlying sys-
tem is GUES. �
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Now, we give a stabilizing controller design approach for system (2.1) with the
MDADT switching.

Theorem 2.3 (Continuous-Time Case) Consider the switched linear systems (2.2)
and let λp > 0, μp > 1, p ∈ S be given constants. If there exist matrices Up > 0,
and Tp, ∀p ∈ S, such that, ∀(p, q) ∈ S × S, p 	= q,

ApUp + BpTp +UpA
T
p + T T

p BT
p + λpUp ≤ 0 (2.31)

Uq ≤ μpUp (2.32)

then there exists a set of stabilizing controllers such that system (2.2) is GUES for
any switching signal with MDADT satisfying (2.16). Moreover, if (2.31) and (2.32)
are feasible, the controller gains can be provided by

Kp = TpU
−1
p (2.33)

Proof Theorem2.1 implies that if

ĀT
p Pp + Pp Āp + λp Pp ≤ 0 (2.34)

Pp − μp Pq ≤ 0 (2.35)

system (2.2) is GUES for any switching signal withMDADT (2.16). Replacing Ā p in
(2.34) by (2.3), settingUp = P−1

p and Tp = KpP−1
p , we can see that, if (2.31) holds,

(2.34) is satisfied. Moreover, if (2.32) holds, we can obtain thatUq − μpUp ≤ 0. By
Schur complement, we note that Uq − μpUp ≤ 0 is equivalent to

Λ =
[−μpUp I

I −U−1
q

]
≤ 0.

Furthermore, by Schur complement, one has that Λ ≤ 0 is equivalent to −U−1
q −

I T (μpUp)
−1 I ≤ 0; that is, (2.35) holds. In addition, if the inequalities (2.31) and

(2.32) have feasible solutions, the admissible controller gains can be given by (2.33)
because Tp = KpP−1

p , which ends the proof. �

Theorem 2.4 (Discrete-Time Case) Consider the switched linear systems (2.2) and
let 0 < λp < 1 andμp ≥ 1, p ∈ S be given constants. If there exist matricesUp > 0,
and Tp, ∀p ∈ S, such that, ∀(p, q) ∈ S × S, p 	= q,

[−Up ApUp + BpTp

∗ −(1 − λp)Up

]
≤ 0 (2.36)

Uq ≤ μpUp (2.37)
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then there exists a set of controllers such that system (2.2) is GUES for any switching
signal with MDADT satisfying (2.22). Moreover, if (2.36) and (2.4) have a solution,
the admissible controllers can be given by (2.33).

Proof By Theorem2.2 we have that if

ĀT
p Pp Āp + λp Pp − Pp ≤ 0 (2.38)

Pp − μp Pq ≤ 0 (2.39)

system (2.2) is GUES for any switching signal with MDADT (2.22). Substituting
Ā p in (2.38) and by Schur complement, we have

[−Pp PpBpK p + Pp Ap

∗ −(1 − λp)Pp

]
≤ 0 (2.40)

settingUp = P−1
p and Tp = KpP−1

p and performing a congruence transformation to
(40) viadiag{Up,Up}, we can obtain (2.36). Therefore, (2.36) and (2.4) ensure (2.38)
and (2.39). In addition, if the inequalities (2.36) and (2.4) have feasible solutions,
the admissible controller gains can be given by (2.33), which ends the proof. �

2.2.3 Simulation Results

An example in the continuous-time domain is presented to demonstrate the potential
and validity of the results obtained above.

Example 2.1 Consider the switched linear systems consisting of three subsystems
described by:

A1 =
[
3.9 1.5
2.5 2.3

]
, A2 =

[
1.4 0.3
1 −2.7

]
, A3 =

[−2.2 0.1
−2 −0.4

]
,

B1 =
[−0.2

0.1

]
, B2 =

[
0.1
0.2

]
, B3 =

[
0.1
0.1

]
.

Here, we aim to design a set of mode-dependent stabilizing controllers and
find corresponding switching signals with MDADT property such that the result-
ing closed-loop system is stable.

To illustrate the advantages of the proposed MDADT switching, we shall also
present the design results of both controllers and switching signals for the systems
with ADT switching. By different approaches and setting the relevant parameters
appropriately, the computation results for the system with two different switching
schemes are listed in Table2.1.
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Table 2.1 Computation results for the system under two different switching schemes

Switching schemes ADT switching MDADT switching

Criteria for controller
design

Corollary 2.1 in [12] Theorem2.3 in the chapter

Controller gains
Γ1 :
K1 =

[
73.66 66.14

]

K2 =
[
−19.94 −2.75

]

K3 =
[
3.25 −15.24

]

Γ2 :
K1 =

[
93.79 69.75

]

K2 =
[
−59.81 −34.25

]

K3 =
[
−53.91 −63.58

]

Switching signals τ ∗
a = 0.99

(μ = 2, λ ≤ 0.7)

τ ∗
a1 = 0.22, τ ∗

a2 = 0.49, τ ∗
a3 = 0.99

(μ1 = μ2 = μ3 = 2,

λ1 ≤ 3.1, λ2 ≤ 1.4, λ3 ≤ 0.7)

It can be seen fromTable2.1 that theminimalMDADT are reduced to τ ∗
a1 = 0.22,

τ ∗
a2 = 0.49, τ ∗

a3 = 0.99, for given μ = μ1 = μ2 = μ3 = 2, and one special case of
MDADT switching is τ ∗

a = τ ∗
a1 = τ ∗

a2 = τ ∗
a3 = 0.99 by setting λ = λ1 = λ2 = λ3 =

0.7, which corresponds to minimal ADT.
To further show the merit of MDADT switching, let us now consider the result-

ing closed-loop system performances. Applying the obtained controller, under the
scheme of ADT switching and MDADT switching, respectively, we can obtain the
state responses for each closed-loop subsystem as shown in Fig. 2.1. It is seen that
there are some fluctuations with larger amplitude in the state response of closed-loop
subsystem 1.
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Fig. 2.1 The state response comparisons of the closed-loop subsystems by controllers Γ1 and Γ2
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Now, generating one possible switching sequences with the ADT property and the
MDADT property, one can obtain the corresponding state responses of the closed-
loop system as shown in Figs. 2.2 and 2.3, respectively, for the same initial state
condition. It can be seen from the curves that the state response of the closed-loop
systemfluctuates under theADT switching scheme, but is smooth under theMDADT
switching scheme.
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Fig. 2.2 State response of the closed-loop systems by controllers Γ1 under switching signal σ with
τa = 1.0
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Fig. 2.3 State response of the closed-loop systems by controllers Γ2 under switching signal σ with
τa1 = 0.3, τa2 = 0.6, τa3 = 1.0
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2.2.4 Conclusions

The MDADT switching stabilization problems for switched linear systems with sta-
ble subsystems are investigated. First, the stability results for a class of switched
systems with MDADT are derived in both linear and nonlinear contexts. The mini-
mal MDADT for admissible switching signals and the corresponding state feedback
controller are designed for switched linear systems in both continuous-time and
discrete-time cases. Finally, a numerical example is given to demonstrate the valid-
ity and effectiveness of the developed results.

2.3 Stabilization of Switched Linear Systems
with Unstable Subsystems

2.3.1 Problem Formulation and Preliminaries

Consider the following switched linear systems,

δx(t) = Aσ(t)x(t) + Bσ(t)u(t), x(t0) = x0, t ≥ t0, (2.41)

where x(t) ∈ R
n , u(t) ∈ R

m , x0 and t0 ≥ 0 denote the state vector, control input,
initial state and initial time, respectively; the symbol δ denotes the derivative operator
in the continuous-time case (δx(t) = ẋ(t)) and the shift forward operator in the
discrete-time case (δx(t) = x(t + 1)); σ(t) represents a switching signal which is
a piecewise constant function from the right of time and takes its values in the
finite set L = {1, 2, . . . ,m}, where m > 1 is the number of subsystems. Moreover,
the Ar , ∀r ∈ L is either a Hurwitz stable or unstable subsystem matrix. Without
lose of generality, we assume that L = S

⋃
U, where S = {1, 2, . . . , s} and U =

{s + 1, . . . ,m}; that is, there are s stable subsystems andm − s unstable subsystems.
When t ∈ [tk, tk+1), ∀k ∈ Z

+, the σ(tk)th mode is activated. Let {Ar ∈ R
n×n, Br ∈

R
n×m, r ∈ L} be a family of constant matrices describing subsystems.
Next, some definitions are introduced for later developments of the main results

in this chapter.

Definition 2.4 ([17]) The equilibrium x = 0 of switched system (2.41) is globally
uniformly exponentially stable (GUES) under a certain switching signal σ(t), if for
u(t) = 0 there exists positive numbers λ > 0, α > 0, (resp., 0 < ν < 1) such that
‖x(t)‖ ≤ λe−α(t−t0) ‖x(t0)‖, (resp., ‖x(t)‖ ≤ λν−(t−t0) ‖x(t0)‖), ∀t ≥ t0 with any
initial conditions x(t0).

Definition 2.5 For any time interval [t1, t2], denote Nσ p(t2, t1) as the numbers of
the pth subsystem being activated, and Tp(t2, t1) as the overall running time of the
pth subsystem, p ∈ S. We can find two constants N0p and τap satisfying
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Nσ p(t2, t1) ≤ N0p + Tp(t2, t1)

τap
, ∀t2 ≥ t1 ≥ 0. (2.42)

where τap is called the mode-dependent average dwell time of the switching signal
σ(t).

In this chapter, we also define another type of MDADT called fast MDADT in
the following.

Definition 2.6 For any time interval [t1, t2], denote Nσq(t2, t1) as the numbers of
the qth subsystem being activated, and Tq(t2, t1) as the overall running time of the
qth subsystem, q ∈ U. We can find two constants N0q and τaq satisfying

Nσq(t2, t1) ≥ N0q + Tq(t2, t1)

τaq
, ∀t2 ≥ t1 ≥ 0. (2.43)

where τaq is called the mode-dependent average dwell time of the switching signal
σ(t).

Remark 2.4 TheMDADTinDefinition2.5 requiring Nσ p(t2, t1) ≤ N0p + t2−t1
τa

⇐⇒
Tp(t2,t1)

Nσ p(t2 ,t1)−N0p
≥ τap, ∀t2 ≥ t1 ≥ 0 can be called slow switching (in average sense),

which means that average time among the intervals associated with the pth subsys-
tem is larger than τap. By resorting to this MDADT to achieve stabilization, the basic
idea is to allow the transient effect to dissipate after each switching. In this frame-
work, the energy decrement of the Lyapunov function during dwelling on stable
subsystems can compensate possible energy at the switching instance and/or dur-
ing dwelling at unstable subsystems. However, Definition2.6 requires Nσq(t2, t1) ≥
N0q + t2−t1

τa
⇐⇒ Tq (t2,t1)

Nσq(t2 ,t1)−N0q
≤ τaq , ∀t2 ≥ t1 ≥ 0. It is called fast switching (in aver-

age sense), because the average time among the intervals associated with the qth

subsystem is no more than τaq . The basic idea of using the fast MDADT is to com-
pensate the state divergence via dwelling at appropriate unstable subsystems, but
obviously the dwell time cannot be too big. Therefore, in order to achieve stabiliza-
tion, we apply the slow MDADT to stable subsystems and fast MDADT to unstable
subsystems in the following.

2.3.2 Main Results

In this section, we consider the problems of stability and stabilization for switched
linear systems described in the previous section.

2.3.2.1 Stability Analysis

We first introduce a class of quasi-alternative switching signals.
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Definition 2.7 Suppose that a switching law σ(t) satisfies the following conditions.
(1) If σ(tk) ∈ S, then σ(tk+1) ∈ L,
(2) If σ(tk) ∈ U, then σ(tk+1) ∈ S,

The switching signal σ(t) satisfying the above conditions is called a quasi-
alternative switching signal.

Remark 2.5 Definition2.7 implies that a switched system cannot directly switches
from an unstable mode to another unstable mode. If condition (1) is changed as: “If
σ(tk) ∈ S, thenσ(tk+1) ∈ U;”,Definition2.7 implies thatσ(t) is a alternative switch-
ing signal, that is, stable subsystems and unstable subsystems alternately switch to
each other.

Next, stability conditions for switched nonlinear system

δx(t) = fσ(t)(x(t)). (2.44)

are first presented in the following lemmas by designing quasi-alternative switching
signals with MDADT property.

Lemma 2.5 Consider continuous-time switched nonlinear system (2.44), σ(t) ∈
L, and let ηp < 0, μp > 1, p ∈ S and ηq > 0, 0 < μq < 1, q ∈ U. Suppose that
there exist two sets of C 1 non-negative functions Vp(x(t)) : Rn → R, p ∈ S and
Vq(x(t)) : Rn → R, q ∈ U, two class K∞ functions α1 and α2, such that

α1(‖x(t)‖) ≤ Vp(x(t)) ≤ α2(‖x(t)‖),∀p ∈ S, (2.45)

α1(‖x(t)‖) ≤ Vq(x(t)) ≤ α2(‖x(t)‖),∀q ∈ U, (2.46)

V̇p(x(t)) ≤ ηpVp(x(t)), ∀p ∈ S, (2.47)

V̇q(x(t)) ≤ ηqVq(x(t)), ∀q ∈ U, (2.48)

Vp(x(tk)) ≤ μpVr (x(t−k )), ∀p ∈ S,∀r ∈ L, p 	= r, (2.49)

Vq(x(tk)) ≤ μqVp(x(t−k )), ∀p ∈ S,∀q ∈ U. (2.50)

Then switched system (2.44) is GUES for any quasi-alternative switching signals
with MDADT

⎧⎨
⎩

τap ≥ −lnμp

ηp
,∀p ∈ S,

τaq ≤ −lnμq

ηq
,∀q ∈ U.

(2.51)

Proof Without loss of generality, we denote t1, t2 . . . tk, tk+1 . . . tNNσ(T,0)
as the switch-

ing times on time interval [0, T ]. Then we consider the function

W (t) = e−ησ(t)t Vσ(t)(x(t)). (2.52)

It is clear that this function is piecewise differentiable along solutions of (2.44).
When t ∈ [tk, tk+1), we get from (2.47), (2.48), (2.52) that
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Ẇ (t) = −ησ(tk )e
−ησ(tk )t Vσ(tk )(x(t)) + e−ησ(tk )t V̇σ(tk )(x(t))

≤ −ησ(tk )e
−ησ(tk )t Vσ(tk )(x(t)) + e−ησ(tk )tησ(tk )Vσ(tk )(x(t))

= 0. (2.53)

Thus W (t) is non-increasing when t ∈ [tk, tk+1). This together with (2.49), (2.50),
(2.52) gives that

W (tk+1) = e−ησ(tk+1)tk+1Vσ(tk+1)(x(tk+1))

≤ μσ(tk+1)e
−ησ(tk+1)tk+1Vσ(tk )(x(tk+1))

= μσ(tk+1)e
−ησ(tk+1)tk+1+ησ(tk )tk+1W (x(t−k+1))

≤ μσ(tk+1)e
−(ησ(tk+1)−ησ(tk ))tk+1W (x(tk))

≤ μσ(tk+1)μσ(tk )e
−[(ησ(tk+1)−ησ(tk ))tk+1+(ησ(tk )−ησ(tk−1))tk ]W (x(tk−1))

· · ·
≤

k∏
i=0

μσ(ti+1) exp{−[(ησ(tk+1) − ησ(tk ))tk+1 + (ησ(tk ) − ησ(tk−1))tk

+ · · · + (ησ(t1) − ησ(t0))t1]}W (x(t0)). (2.54)

Then, from (2.52) and (2.54), one can obtain that

e−ησ(T−)TW (x(T−)) ≤
Nσ −1∏
i=0

μσ(ti+1)e

Nσ −1∑
i=0

−(ησ(ti+1)−ησ(ti ))ti
Vσ(t0)(x(t0)).

(2.55)

Moreover, it can be derived from (2.42), (2.43) and (2.55) that

Vδ(T−)(x(T )) ≤
s∏

p=1

μ
Nσ p
p

m∏
q=s+1

μ
Nσq
q e

(
s∑

p=1
ηpTp(T,0)+

m∑
q=s+1

ηq Tq (T,0))
Vσ(0)(x(0))

≤
s∏

p=1

μ
(N0p+ Tp (T,0)

τap
)

p

m∏
q=s+1

μ
(N0q+ Tq (T,0)

τaq
)

q

×e
(

s∑
p=1

ηpTp(T,0)+
m∑

q=s+1
ηq Tq (T,0))

Vσ(0)(x(0))

= e
(

s∑
p=1

(N0p+ Tp (T,0)
τap

) lnμp+
m∑

q=s+1
(N0q+ Tq (T,0)

τaq
) lnμq )

×e
(

s∑
p=1

ηpTp(T,0)+
m∑

q=s+1
ηq Tq (T,0)) × Vσ(0)(x(0))

≤ e
(

s∑
p=1

N0p lnμp+
m∑

q=s+1
N0q lnμq )
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×e
(

s∑
p=1

(ηp+ lnμp
τap

)Tp(T,0)+
m∑

q=s+1
(ηq+ lnμq

τaq
)Tq (T,0))

Vσ(0)(x(0)).

(2.56)

By (2.56), it can be got that, if τap, p ∈ S and τaq , q ∈ U satisfy the conditions
in (2.51), then

Vδ(T−)(x(T )) ≤ λe−α(T−t0)Vσ(0)(x(0)),

where λ = e
(

s∑
p=1

N0p lnμp+
m∑

q=s+1
N0q lnμq )

, −α = max(p,q)∈(S×U )

{(
ηp + lnμp

τap

)
,(

ηq + lnμq

τaq

)}
, which associated with Definition2.4 verifies that Vδ(T−)(x(T )) expo-

nentially converges to zero as T → ∞.
Finally, we conclude that switched nonlinear system (2.44) is GUES under quasi-

alternative switching signals satisfying (2.51) if the conditions (2.45)–(2.50) hold.
This completes the proof. �

Lemma 2.6 Consider discrete-time switched nonlinear system (2.44), σ(t) ∈ L,
and let−1 < ηp < 0,μp > 1, p ∈ S and ηq > 0, 0 < μq < 1, q ∈ U. Suppose that
there exist two sets of C 1 non-negative functions Vp(x(t)) : Rn → R, p ∈ S and
Vq(x(t)) : Rn → R, q ∈ U, two class K∞ functions α1 and α2, such that

α1(‖x(t)‖) ≤ Vp(x(t)) ≤ α2(‖x(t)‖),∀p ∈ S, (2.57)

α1(‖x(t)‖) ≤ Vq(x(t)) ≤ α2(‖x(t)‖),∀q ∈ U, (2.58)

�Vp(x(t)) ≤ ηpVp(x(t)), ∀p ∈ S, (2.59)

�Vq(x(t)) ≤ ηqVq(x(t)), ∀p ∈ U, (2.60)

Vp(x(tk)) ≤ μpVr (x(t−k )), ∀q ∈ S,∀r ∈ L, p 	= r, (2.61)

Vq(x(tk)) ≤ μqVp(x(t−k )), ∀p ∈ S,∀q ∈ U. (2.62)

Then switched system (2.44) is GUES for any quasi-alternative switching signals
with MDADT

{
τap ≥ −lnμp

1+ηp
,∀p ∈ S,

τaq ≤ −lnμq

1+ηq
,∀q ∈ U.

(2.63)

Proof The proof of Lemma2.6 is similar to that of Lemma2.5. We omit it here. �

Remark 2.6 Different from Lemma2.3 (or Lemma2.4 in the discrete-time case),
unstable subsystems are considered in Lemma2.5 (resp., Lemma2.6). For stable sub-
systems, it also follows the slow switching scheme (Definition2.5). But for unstable
subsystems, it adopts the fast switching scheme (Definition2.6). Such a switching
strategy can guarantee to dwell on stable subsystems long enough to compensate
possible energy increments at the switching instance and during dwelling on unsta-
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ble subsystems, and avoid dwelling on unstable subsystems too long. Anyway, it
should be pointed out that the dwell time on stable subsystems is not required to be
bigger than that on unstable subsystems. In fact, if a switched system is composed
of stable subsystems, Lemma2.5 (Lemma2.6 in the discrete-time case) will reduce
to Lemma2.3 (resp., Lemma2.4).

Next, the following two theorems for switched linear system (2.41) can be given
on the basis of the Lemmas2.5 and 2.6. Theorem2.6 corresponds to the continuous-
time version and Theorem2.7 corresponds to the discrete-time version.

Theorem 2.5 Consider switched linear system (2.41) when u(t) = 0, and let ηp <

0, μp > 1, p ∈ S and ηq > 0, 0 < μq < 1, q ∈ U be given constants. If there exists
a set of matrices Pp > 0, Pq > 0, p ∈ S, q ∈ U, such that

AT
p Pp + Pp Ap ≤ ηp Pp, ∀p ∈ S, (2.64)

AT
q Pq + Pq Aq ≤ ηq Pq , ∀q ∈ U, (2.65)

Pp ≤ μp Pr , ∀q ∈ S, ∀r ∈ L, p 	= r, (2.66)

Pq ≤ μq Pp, ∀p ∈ S, ∀q ∈ U. (2.67)

Then, the system is GUES for any quasi-alternative switching signals with MDADT
satisfying (2.51).

Proof Construct a multiple Lyapunov function for continuous-time switched system
(2.41) in the form of

Vσ(t)(x(t)) =
{
x(t)T Ppx(t), σ (t) = p ∈ S

x(t)T Pqx(t) σ (t) = q ∈ U,
(2.68)

where Pp > 0, Pq > 0, p ∈ S, q ∈ U are positive definite matrices satisfying
(2.64)–(2.67).

In the sequel, one can obtain from (2.64)–(2.67) that ∀(p, q) ∈ S × U,

V̇p(x(t)) − ηpVp(x(t)) = xT (t)(AT
p Pp + Pp Ap − ηp Pp)x(t),

≤ 0, p ∈ S,

V̇q(x(t)) − ηqVp(x(t)) = xT (t)(AT
q Pq + Pq Aq − ηq Pq)x(t),

≤ 0, q ∈ U.

Vp(x(t)) − μpVr (x(t)) = xT (t)(Pp − μp Pr )x(t),

≤ 0, p ∈ S, r ∈ L, p 	= r.

Vq(x(t)) − μqVp(x(t)) = xT (t)(Pq − μq Pp)x(t),

≤ 0, p ∈ S, q ∈ U.

Finally, one can readily conclude by Lemma2.5 that switched system (2.41) is GUES
for any quasi-alternative switching signals with MDADT satisfying (2.51). �
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Theorem 2.6 Consider switched linear system (2.41) when u(t) = 0, and let −1 <

ηp < 0, μp > 1, p ∈ S and ηq > 0, 0 < μq < 1, q ∈ U be given constants. If there
exists a set of matrices Pp > 0, Pq > 0, p ∈ S, q ∈ U, such that

AT
p Pp Ap − Pp ≤ ηp Pp, ∀p ∈ S, (2.69)

AT
q Pq Aq − Pq ≤ ηq Pq , ∀q ∈ U, (2.70)

Pp ≤ μp Pr , ∀p ∈ S, ∀r ∈ L, p 	= r, (2.71)

Pq ≤ μq Pp, ∀p ∈ S, ∀q ∈ U. (2.72)

then, the system is GUES for any quasi-alternative switching signals with MDADT
satisfying (2.63).

Proof The proof of Theorem2.6 is similar to that of Theorem2.5. We omit it
here. �

2.3.2.2 Controller Design

In this subsection, the problem of controller design for switched system (2.41) with
MDADT switching is presented. Unlike some control methods requiring all subsys-
tems be controllable, we only require the existence of at least one controllable sub-
system.Without loss of generality, we assume that {Ap ∈ R

n×n, Bp ∈ R
n×m, p ∈ C}

are controllable subsystems, where C = {1, 2, . . . , s}, and {Aq ∈ R
n×n, q ∈ B} are

subsystems that can not be stabilized, whereB = {s + 1, s + 2, . . . ,m}. Our objec-
tive is to design p controllers to ensure switched system (2.41) to be GUES
with MDADT switching. In this subsection, the state feedback is considered with
u(t) = Kpx(t), p ∈ C, where Kp is the controller gain to be determined. Then the
closed-loop system (3.1) can be obtained as follows,

δx(t) =
{
Apx(t) + BpKpx(t), ∀p ∈ C,

Aqx(t), ∀q ∈ B.
(2.73)

However, it should be pointed out that if the Ap, ∀p ∈ C itself is a Hurwitz matrix,
the controller gain Kp is chosen as 0.

Theorem 2.7 Consider switched linear system (2.73), and let ηp < 0, μp > 1, p ∈
C and ηq > 0, 0 < μq < 1, q ∈ P be given constants. If there exists a set of matrices
Qr > 0, r ∈ L, and Rp, p ∈ C such that

Q p A
T
p + ApQp + RT

p B
T
p + BpRp ≤ ηpQ p, ∀p ∈ C, (2.74)

Qq A
T
q + Aq Qq ≤ ηq Qq , ∀q ∈ B, (2.75)

Qr ≤ μpQ p, ∀p ∈ C, ∀r ∈ L, p 	= r, (2.76)

Qp ≤ μq Qq , ∀p ∈ C, ∀q ∈ B. (2.77)

http://dx.doi.org/10.1007/978-3-319-44830-5_3
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then, there is a set of stabilizing controllers such that the system is GUES for any
quasi-alternative switching signals with MDADT satisfying (2.51). Moreover, if a
feasible solution of (2.74)–(2.77) exists, the controller gains are given by

Kp = RpQ
−1
p . (2.78)

Proof When σ(t) ∈ S, perform a congruence transformation to (2.74) via Q−1
p .

Then by (2.78), one can obtain that

AT
p Q

−1
p + Q−1

p Ap + KT
p B

T
p Q

−1
p + Q−1

p BpK p ≤ ηpQ
−1
p , ∀p ∈ C, (2.79)

which is equivalent to

(Ap + BpKp)
T Q−1

p + Q−1
p (Ap + BpKp) ≤ ηpQ

−1
p , ∀p ∈ C. (2.80)

Then, by the Schur complement theorem, we can get that (2.76) is equivalent to

Qp
−1 ≤ μpQr

−1, ∀p ∈ C, ∀r ∈ L, p 	= r. (2.81)

Similarly, when σ(t) ∈ U, it can be derived that (2.76) and (2.78) are also equiv-
alent to the following inequalities, respectively,

AT
q Q

−1
q + Q−1

q Aq ≤ ηq Qq
−1, ∀p ∈ B, (2.82)

Qq
−1 ≤ μq Q p

−1, ∀p ∈ C, ∀q ∈ B. (2.83)

Finally, by Theorem2.5 and letting Pp = Q−1
p , we can conclude that, if (2.80)–

(2.83) hold, switched system (2.73) is GUES for any quasi-alternative switching
signal with MDADT satisfying (2.51). This completes the proof. �

Theorem 2.8 Consider switched linear system (2.73), and let −1 < ηp < 0,
μp > 1, p ∈ C and ηq > 0, 0 < μq < 1, q ∈ B be given constants. If there exists a
set of matrices Qr > 0, r ∈ L, and Rp, p ∈ C such that

[−Qp ApQp + BpRp

∗ −(1 + ηp)Qp

]
≤ 0, ∀p ∈ C, (2.84)

[−Qq AqQq

∗ −(1 + ηq)Qq

]
≤ 0, ∀q ∈ B, (2.85)

Qr ≤ μpQ p, ∀p ∈ C, ∀r ∈ L, p 	= r, (2.86)

Qp ≤ μq Qq , ∀p ∈ C, ∀q ∈ B. (2.87)

Then, there is a set of stabilizing controllers such that the system is GUES for any
quasi-alternative switching signals with MDADT satisfying (2.63). Moreover, if a
feasible solution of (2.84)–(2.87) exists, the controller gains are given by
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Kp = RpQ
−1
p . (2.88)

Proof The proof of Theorem2.8 is similar to that of Theorem2.7. We omit it
here. �

2.3.3 Simulation Results

The following numerical example is given in this section to verify our main results
developed above.

Example 2.2 Consider the continuous-time switched linear system (2.41) consisting
of four subsystems and assume that the third and fourth are uncontrollable subsys-
tems. The corresponding subsystem matrices are

A1 =
[−10.11 10.32

− 8.60 8.81

]
, B1 =

[−2.2
0.8

]
, A2 =

[
11.12 −13.32
11.10 −13.30

]
,

B2 =
[

3.4
−1.2

]
, A3 =

[
9.72 −9.69
12.92 −12.89

]
, A4 =

[
10.24 −10.23
13.64 −13.63

]
.

The eigenvalues of A1 are λ11 = −1.51 and λ12 = 0.21, eigenvalues of A2 are
λ21 = 0.02 and λ22 = −2.2, eigenvalues of A3 are λ31 = 0.03 and λ32 = −3.2 and
eigenvalues of A4 are λ41 = 0.01 and λ42 = −3.4, It can be seen that none of these
matrices is Hurwitz stable. In addition, one can easily check that {Ap ∈ R

2×2, Bp ∈
R

2×1, p = 1, 2} are controllable.
Next, we are interested in designing a set of controllers and a kind of quasi-

alternative switching signal σ(t) with properties (2.42) and (2.43) to asymptotically

Fig. 2.4 State responses of
the first subsystem
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stabilize the system.ByusingTheorem2.7, ifwe chooseμ1 = 2.9, η1 = −1.0,μ2 =
2.3, η2 = −3.1, μ3 = 0.44, η3 = 3.0, μ4 = 0.51, η4 = 1.3, the feasible solutions
are obtained as follows,

Q1 =
[
77.0146 69.8370
69.8370 65.1947

]
, Q2 =

[
83.2764 77.1246
77.1246 73.6036

]
,

Q3 =
[
190.6688 176.4114
176.4114 168.1891

]
, Q4 =

[
180.3970 169.1126
169.1126 163.0650

]
,

R1 = [
6.5871 − 13.5623

]
, R2 = [ − 18.2149 −3.7398

]
,

K1 = R1Q
−1
1 = [

9.5768 −10.4667
]
, K2 = R2Q

−1
2 = [−5.8056 6.0325

]
.

Applying the obtained controllers to the first and second subsystems, respectively,
the corresponding state responses of the subsystems under initial state condition
x(0) = [2 − 2]T are shown in Figs. 2.4 and 2.5, in which we can see that the closed-
loop subsystems are asymptotically stable. Then, one can obtain that the requirements
of MDADT for subsystem Ai , i = 1, 2, 3, 4 are:

τa1 ≥ lnμ1

η1
= − ln 2.9

−1.0
= 1.065,

τa2 ≥ lnμ2

η2
= − ln 2.3

−3.1
= 0.269,

τa3 ≤ lnμ3

η3
= − ln 0.44

3.0
= 0.274,

Fig. 2.5 State responses of
the second subsystem
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Fig. 2.6 State responses of
switched linear system under
quasi-alternative switching
signal with MDADT

0 1 2 3 4 5 6 7 8 9 10
−2

0

2

4

6

8

10

12

14

Sample Time/s

S
ta

te
 R

es
po

ns
es

0 2 4 6 8 10
0

1

2

3

4

5

Sample Time/s

S
ys

te
m

 M
od

e

x
1
(t)

x
2
(t)

τa4 ≤ lnμ4

η4
= − ln 0.51

1.3
= 0.518.

Furthermore, we generate one possible quasi-alternative switching sequence (4,
2, 1, 3, 2, 3, 2, 1, 4, 1, 3, 2, 4…) with the MDADT property (τa1 = 1.2 > 1.065,
τa2 = 0.3 > 0.269, τa3 = 0.2 < 0.274, τa4 = 0.5 < 0.518). The corresponding state
responses of the system under initial state condition x(0) = [2 − 2]T , are shown in
Fig. 2.6, from which we can see that the switched linear system is stable under
MDADT switching.

2.3.4 Conclusions

In the above, the problems of stability and stabilization for switched systems com-
prising unstable subsystems are studied in both continuous-time and discrete-time
contexts by using a new defined class of switching signal. The proposed switch-
ing signal is very efficient for analysis and design for switched systems comprising
unstable subsystems. The stability results for switched systems comprising unstable
subsystems are first derived on the basis of our proposed switching signals.Moreover,
based on the obtained results, improved stabilization conditions are also established,
which are concerned with uncontrollable subsystems. Finally, a numerical example
is provided to verify the advantages of the proposed approach.
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Chapter 3
Switching Stabilization of Switched Systems
Composed of Unstable Subsystems

3.1 Background and Motivation

As mentioned in Chap.2, for a switched system, even if all its subsystems are stable,
it may fail to preserve stability under arbitrary switching, but may be stable under
restricted switching signals. Therefore, it is of significance to study the controlled-
switching stabilization problems of switched systems. The controlled switching may
result from the physical constraints of a system or the designers’ intervention [1]
which is actually related to the controlled-switching stabilization problem [2]. Gen-
erally, the controlled switching in systems could be classified into state-dependent
and time-constrained ones.

During the past few years, the problems of state-dependent switching stabilization
problems have been widely studied for switched systems with or without unstable
subsystems [3, 4]. In the state-dependent case, thewhole state space is usually divided
into pieces so as to facilitate the search for corresponding Lyapunov-like functions.
Then, the state-dependent switching can be designed to ensure the non-increasing
conditions when switching occurs. Note that, state-dependent switching is applicable
only for the systems whose states are measurable or observable, which also suffers
from the problems of high cost, reliability and real-time ability.

However, the time-constrained switching is more applicable in practice, and has
been used for controlled-switching stabilization of switched systems in recent years
[5–7]. It is noticed that the results on time-constrained switching stabilization of
switched systems mainly focus on systems with stable subsystems (or at least one
stable subsystem). The basic idea of the existing works is to activate the stable
subsystem for a sufficiently large time that we could call slow switching, to com-
pensate the state divergence [8]. In [9], the stability analysis of continuous-time
linear switched systems comprising both Hurwitz stable and unstable subsystems is
studied by exploring a new type of Lyaounov-like function whose energy can rise
with a bounded rate for each active mode. After the bounded increment, the minimal
average dwell time should be designed sufficiently large to compensate the energy
increment produced during the unstable time. Recently, the mode-dependent dwell-
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time switching is used in [10] for stabilization of switched linear systems with both
stable and unstable modes. It is very worth pointing out that there are few efforts
put on time-constrained switching stabilization of switched linear systems with all
unstable subsystems, which is both theoretically challenging and of fundamental
importance to numerous applications.

On the other hand, as many applications of switched systems, such as mobile
robots, automotive, DC converters etc., appear to be described by nonlinear models,
it is natural to extend the time-constrained switching stabilization theory of switched
linear systems to switched nonlinear systems [11–13]. When a switched system is
composed of unstable nonlinear subsystems, some promising ideas are not effective
any more. Therefore, it will be very meaningful and challenging to carry out the
studies on time-constrained switching stabilization of switched systemswith possibly
all unstable nonlinear subsystems.

Based on the above observations, in this chapter, the problems of time-constrained
switching stabilization for switched systems composed of unstable subsystems are
investigated in both linear and nonlinear cases.

Notations:

R andR
n denote the field of real numbers and n-dimensional Euclidean space respec-

tively; In = {1, 2, . . . , n}. For a given vector x, the notation ‖x‖ refers to the Euclid-
ean vector norm. For a given subspace S ⊆ R

n , ‖A‖ and ‖A‖S represent the spectral
norm of A and the spectral norm of A with restriction in S, respectively, and C (S)

stands for the complement subspace. ⊕ denotes the direct sum. In addition, λ(A)

and δ(A) refer to the eigenvalues and singular values of A, and Re{λ(A)} is the real
part of λ(A). C 1 denotes the space of continuously differentiable functions, and a
function α: [0,∞) → [0,∞) is said to be of class K if it is continuous, strictly
increasing, and α(0) = 0. ClassK∞ denotes the subset ofK consisting of all those
functions that are unbounded. A function β: [0,∞) × [0,∞) → [0,∞) is said to be
of class K L if β(·, t) is of class K for each fixed t > 0 and β(r, t) is decreasing
to zero as t → ∞ for each fixed r ≥ 0. The notation P > 0(≥ 0) means that P is a
real symmetric and positive definite (semi-positive definite) matrix.

3.2 Switching Stabilization of Switched Linear Systems

3.2.1 Problem Formulation and Preliminaries

Consider the following switched linear systems

ẋ(t) = Aσ(t)x(t) (3.1)

where x(t) ∈ R
n is the state vector, σ(t) is the switching signal to be designed, which

takes its values in the finite setI = {1, . . . , k}; k is the number of subsystems. Also,
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for a switching sequence 0 < t1 < · · · < ti < ti+1 < · · · , σ(t) is continuous from the
right everywhere. Moreover, when t ∈ [ti , ti+1), σ (t) = σ(ti ) = p ∈ I , and we say
the pth subsystem Ap of (3.1) is activated. In this chapter, we suppose that all the
subsystems of (3.1) are unstable.

We first introduce the following definition and lemmas for later development.

Definition 3.1 ([14]) Suppose A ∈ C
n×n, and S ⊆ C

n is a subspace. S is A-invariant
if AS ⊆ S, that is, ∀v ∈ S ⇒ Av ∈ S.

Lemma 3.1 ([14]) For any subspaces S1, S2, S1 + S2 is also a subspace.

Lemma 3.2 ([14]) For any subspaces S1, S2, S1 ∩ S2 is also a subspace.

Next, the following exponential stability definition of system (3.1) is also recalled.

Definition 3.2 ([9]) The equilibrium x = 0 of system (3.1) is globally uniformly
exponentially stable (GUES) under certain switching signal σ(t) if for initial condi-
tions x(t0), there exist constants η1 > 0, η2 > 0 such that the solution of the system
satisfies ‖x(t)‖ ≤ ρ1e−ρ2(t−t0) ‖x(t0)‖ , ∀t ≥ t0.

In this chapter, we aim at designing a set of switching signals σ(t) with the
mode-dependent average dwell time (MDADT) property, such that the system (3.1)
is GUES. For this purpose, let us now recall the definition of MDADT switching.

Definition 3.3 For a switching signal σ(t) and any T ≥ t ≥ 0, let Nσ p(T, t) be
the switching numbers that the pth subsystem is activated over the interval [t, T ]
and Tp(T, t) denotes the total running time of the pth subsystem over the interval
[t, T ], p ∈ S. We say that σ(t) has a mode-dependent average dwell time τap if there
exist positive numbers N0p (we call N0p the mode-dependent chatter bounds here)
and τap such that

Nσ p(T, t) ≤ N0p + Tp(T, t)

τap
, ∀T ≥ t ≥ 0 (3.2)

Remark 3.1 For simplicity, we mark σ(t) ∈ �MDADT [N0p, τap] in this chapter if
σ(t) is a class of the switching signals defined in Definition 3.2.

3.2.2 Main Results

In correspondence with each subsystem Ap, p ∈ I , the whole state space can be
divided into the two subspaces Ssp and Sup which are defined below.

Definition 3.4 The stable subspace Ssp, p ∈ I , is spannedby the eigenvectors corre-
sponding to the eigenvaluesλk(Ap), k ∈ k

s
p = {m ∈ In | Re(λm(Ap)) < 0, p ∈ I },
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Definition 3.5 The unstable subspace Sup, p ∈ I , is spanned by the eigenvec-
tors corresponding to the eigenvalues λk(Ap), k ∈ k

u
p = {m ∈ In | Re(λm(Ap)) ≥

0, p ∈ I },
Before providing our main results, the following lemmas are first developed for

later use.

Lemma 3.3 Consider the switched linear system (3.1). If S is Ap-invariant, ∀p ∈
I , then, S is eApt -invariant, p ∈ I , ∀t ≥ 0.

Proof It is noted that, ∀p ∈ I , t ≥ 0,

eApt = I + t Ap + t2

2! A
2
p + · · · + tn

n! A
n
p + · · · (3.3)

On the other hand, because S is Ap-invariant, ∀p ∈ I , one has, ∀x ∈ S, n ∈ Z
+,

An
px = An−1

p Apx

= An−1
p x1, (x1 = Apx ∈ S)

= An−2
p x2, (x2 = Apx1 ∈ S)

· · ·
= Apxn ∈ S, (xn = Apxn−1 ∈ S) (3.4)

Therefore, one can get from (3.3) and (3.4) that, ∀p ∈ I , t ≥ 0, x ∈ S,

eAptx = x + t Apx + t2

2! A
2
px + · · · + tn

n! A
n
px + · · ·

∈ S (3.5)

which completes the proof. �

Remark 3.2 Lemma 3.3 implies that, if the pth subsystem of system (3.1) is activated
with initial condition x(t0) ∈ S, the state will stay in S during the running time of
the pth operation mode; i.e., x(t) = eAp(t−t0)x(t0) ∈ S if x(t0) ∈ S.

Lemma 3.4 Consider the linear system ẋ(t) = Ax(t). Let λm = {−max
k

{λk(A)} |
Re(λk(A)) < 0, k ∈ In} and λM = {max

k
{λk(A)} | Re(λk(A)) ≥ 0, k ∈ In}; then,

there exists a constant ε > 0 such that

‖exp{At}‖Ss ≤ exp{ε − λmt} (3.6)

‖exp{At}‖Su ≤ exp{ε + λMt} (3.7)

where Ss and Su are the stable subspace and unstable subspace of A, respectively.
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Proof It is obvious that both Ss and Su are A-invariant, and thus are eAt -invariant.
We can choose the following orthogonal matrix

T = [a1, a2, . . . , ar , br+1, br+2, . . . , bn] (3.8)

appropriately, where {a1, a2, . . . , ar } and {br+1, br+2, . . . , bn} are the bases of Ss

and Su . Note that Ss and Su are also the stable subspace and unstable subspace
corresponding to eA. Then, one has that

T−1 exp{At}T = exp{diag{Ast, Aut}} (3.9)

where As, Au are appropriate matrices satisfying λ(As) < 0 and λ(Au) ≥ 0, respec-
tively. Therefore, it follows from (3.9) that

‖exp{At}‖Ss ≤ ‖T ‖Ss
∥∥T−1

∥∥
Ss

∥∥exp{diag{Ast, Aut}}∥∥Ss

= ‖T ‖Ss
∥∥T−1

∥∥
Ss

∥∥exp{Ast}∥∥
≤ ‖T ‖Ss

∥∥T−1
∥∥
Ss exp{−λmt} (3.10)

‖exp{At}‖Ss ≤ ‖T ‖Su
∥∥T−1

∥∥
Su

∥∥exp{diag{Ast, Aut}}∥∥Ss

= ‖T ‖Su
∥∥T−1

∥∥
Su

∥∥exp{diag{Aut}∥∥
≤ ‖T ‖Su

∥∥T−1
∥∥
Su exp{λMt} (3.11)

Finally, set ε = ln( ε1
ε2

), ε1 = max δ(T ) and ε2 = min δ(T ). This together with
(3.10) and (3.11) completes the proof. �

Subsequently,wedefineλm
p = {−max

k
{λk(Ap)} | Re(λk(Ap)) < 0, k ∈ In, p ∈ I },

and λM
p = {max

k
{λk(Ap)} | Re(λk(Ap)) ≥ 0, k ∈ In, p ∈ I } for switched system

(1). Then, Lemma 3.4 can be trivially extended to the following result for switched
system (3.1).

Lemma 3.5 Consider the switched linear system (3.1). There exist some constants
εp > 0, p ∈ I , such that

∥∥exp{Apt}
∥∥
Ssp

≤ exp{εp − λm
p t} (3.12)

∥∥exp{Apt}
∥∥
Sup

≤ exp{εp + λM
p t} (3.13)

Theorem 3.1 Consider the switched linear system (3.1). For given constants αp >

λM
p > 0, λm

p > βp > 0, p ∈ I , and ηp, if there exist two sets I1,I2 ⊂ I (I1 ∪
I2 = I ) such that Ω1 = ∑

p∈I1
Sup and Ω2 = ∩p∈I1 S

s
p are Ap-invariant, p ∈ I ,

and
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Ω1 ⊆ ∩p∈I2 S
s
p (3.14)

then, the system (3.1) is GUES for any switching signal σ(t) ∈ �MDADT [N0p, τap]
satisfying

τap ≥ εp

αp − λM
p

,∀p ∈ I (3.15)

τap ≥ εp

λm
p − βp

,∀p ∈ I (3.16)

∑
p∈I1

(αpTp(T, 0) + ηpTp(T, 0)) ≤
∑
p∈I2

(βpTp(T, 0) − ηpTp(T, 0)) (3.17)

∑
p∈I2

(αpTp(T, 0) + ηpTp(T, 0)) ≤
∑
p∈I1

(βpTp(T, 0) − ηpTp(T, 0)) (3.18)

Proof By Lemmas 3.1 and 3.2, it is obvious that Ω1 and Ω2 are two subspaces in
R

n , and it is also clear from the definitions of Ω1 and Ω2 that,

Ω1 ∩ Ω2 = ∅ (3.19)

It is also true that,

C (Ω2) = C (∩p∈I1 S
s
p) =

∑
p∈I1

C (Ssp) =
∑
p∈I1

Sup = Ω1 (3.20)

which implies
Ω1 ⊕ Ω2 = R

n (3.21)

Next, for any sufficiently large T > 0, let t0 = 0 and t1, t2 . . . ti , ti+1, . . . tNσ (T,0)

denote the switching times on the interval [0, T ], where Nσ (T, 0) =
k∑

p=1
Nσ p(T, 0).

Then, when the initial condition x(0) ∈ Ω1, it yields from Lemma 3.3 that, ∀T > 0,

x(T ) = exp{Aσ(tNσ (T,0))(T − tNσ (T, 0))} · · · exp{Aσ(ti )(ti+1 − ti )} · · ·
exp{Aσ(t0)(t1 − t0)}x(0)

∈ Ω1 (3.22)

Therefore, by (3.14), (3.22), Definition 3.3 and Lemma 3.5, it arrives at, ∀T > 0,
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‖x(T )‖ ≤
∏
s∈Φ1

∥∥exp{Aσ(ts )(ts+1 − ts)}
∥∥
Ω1

∏
s∈Φ2

∥∥exp{Aσ(ts )(ts+1 − ts)}
∥∥
Ω1

‖x(0)‖

≤
∏
s∈Φ1

∥∥exp{Aσ(ts )(ts+1 − ts)}
∥∥
Ω1

∏
s∈Φ2

∥∥exp{Aσ(ts )(ts+1 − ts)}
∥∥
Ssp

‖x(0)‖

≤
∏
p∈I1

exp{Nσ p(T, 0)εp} exp{λMp Tp(T, 0)}
∏
p∈I2

exp{Nσ p(T, 0)εp} exp{−λmpTp(T, 0)} ‖x(0)‖

= exp

{∑
p∈I Nσ p(T, 0)εp

}
exp

{∑
p∈I1

λMp Tp(T, 0)

−
∑

p∈I2
λmpTp(T, 0)

}
‖x(0)‖

≤ exp

{∑
p∈I N0pεp

}
exp

{∑
p∈I1

λMp Tp(T, 0) −
∑

p∈I2
λmpTp(T, 0)

+
∑

p∈I
εpTp(T, 0)

τap

}
‖x(0)‖ (3.23)

= exp

{∑
p∈I N0pεp

}
exp

{∑
p∈I1

(λMp + εp

τap
)Tp(T, 0)

−
∑

p∈I2
(λmp − εp

τap
)Tp(T, 0)

}
‖x(0)‖ (3.24)

where Φ1 and Φ2 denote the sets of s satisfying σ(ts) ∈ I1 and I2, respectively.
Therefore, if we specify

τap ≥ εp

αp − λM
p

, p ∈ I1 (3.25)

τap ≥ εp

λm
p − βp

, p ∈ I2 (3.26)

then, it is clear from (3.17) and (3.23) that

‖x(T )‖
≤ exp

{∑
p∈I N0pεp

}
exp

{∑
p∈I1

αpTp(T, 0) −
∑

p∈I2
βpTp(T, 0)

}
‖x(0)‖

≤ exp

{∑
p∈I N0pεp

}
exp

{∑
p∈I −ηpTp(T, 0)

}
‖x(0)‖

≤ exp

{∑
p∈I N0pεp

}
exp

{
− min

p∈I
{ηp}T

}
‖x(0)‖ (3.27)

which means that the system is GUES under MDADT satisfying (3.18), (3.24) and
(3.25).

On the other hand, when the initial condition x(0) ∈ Ω2, it is true that x(T ) ∈
Ω2,∀T > 0, and
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‖x(T )‖ ≤
∏
s∈Φ1

∥∥exp{Aσ(ts )(ts+1 − ts)}
∥∥

Ω2

∏
s∈Φ2

∥∥exp{Aσ(ts )(ts+1 − ts)}
∥∥

Ω2
‖x(0)‖

≤
∏
s∈Φ1

∥∥exp{Aσ(ts )(ts+1 − ts)}
∥∥
Ssp

∏
s∈Φ2

∥∥exp{Aσ(ts )(ts+1 − ts)}
∥∥

Ω2
‖x(0)‖

≤
∏
p∈I1

exp{Nσ p(T, 0)εp} exp{−λm
pTp(T, 0)}

∏
p∈I2

exp{Nσ p(T, 0)εp} exp{λM
p Tp(T, 0)} ‖x(0)‖

= exp
{∑

p∈I Nσ p(T, 0)εp

}
exp

{
−

∑
p∈I1

λm
pTp(T, 0)

+
∑

p∈I2
λM
p Tp(T, 0)

}
‖x(0)‖

≤ exp
{∑

p∈I N0pεp

}
exp

{
−

∑
p∈I1

λm
pTp(T, 0)

+
∑

p∈I2
λM
p Tp(T, 0) +

∑
p∈I

εpTp(T, 0)

τap

}
‖x(0)‖

= exp
{∑

p∈I N0pεp

}
exp

{
−

∑
p∈I1

(
λm
p − εp

τap

)
Tp(T, 0)

+
∑

p∈I2

(
λM
p + εp

τap

)
Tp(T, 0)

}
‖x(0)‖ (3.28)

Similarly, if we choose

τap ≥ εp

αp − λM
p

, p ∈ I2 (3.29)

τap ≥ εp

λm
p − βp

, p ∈ I1 (3.30)

then, it is immediate from (3.18) and (3.27) that

‖x(T )‖
≤ exp

{∑
p∈I N0pεp

}
exp

{
−

∑
p∈I1

βpTp(T, 0) +
∑

p∈I2
αpTp(T, 0)

}
‖x(0)‖

≤ exp

{∑
p∈I N0pεp

}
exp

{∑
p∈I −ηpTp(T, 0)

}
‖x(0)‖

≤ exp

{∑
p∈I N0pεp

}
exp

{
− min

p∈I
{ηp}T

}
‖x(0)‖ (3.31)

Thus, the system is GUES with MDADT satisfying (3.18), (3.28) and (3.29).
Now, we consider the case that the initial condition x(0) ∈ Ω3 = Ω1 ∪ Ω2. By

(3.21), for any x(0) ∈ Ω3, one can always find

x̄(0) ∈ Ω1 (3.32)
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and
x̃(0) ∈ Ω2 (3.33)

such that
x(0) = x̄(0) + x̃(0) (3.34)

It yields from (3.33) that

x(T ) = exp{Aσ(tNσ (T,0))(T − tNσ (T, 0))} · · · exp{Aσ(ti )(ti+1 − ti )} · · ·
exp{Aσ(t0)(t1 − t0)}x(0)

= exp{Aσ(tNσ (T,0))(T − tNσ (T, 0))} · · · exp{Aσ(t0)(t1 − t0)}x̄(0)
+ exp{Aσ(tNσ (T,0))(T − tNσ (T, 0))} · · · exp{Aσ(t0)(t1 − t0)}x̃(0)

= x̄(T ) + x̃(T ) (3.35)

where x̄(T ) ∈ Ω1 and x̃(T ) ∈ Ω2 are the state responses of initial conditions x̄(0) and
x̃(0), respectively. It then follows from (3.26) and (3.30) that the underlying system
is stabilized by MDADT satisfying (3.17)–(3.18), (3.24)–(3.25) and (3.28)–(3.29).

Finally,we can conclude from (3.24)–(3.26), (3.27)–(3.29) and (3.34) that if (3.14)
holds, the switched system (3.1) is GUES under MDADT meeting (3.15)–(3.18),
which completes the proof. �

Remark 3.3 It is noted from the proof of Theorem 3.1 that switched system (3.1) is
stabilized via the designed MDADT switching, and the decay rate of the state can
be set in advance via a scalar η = minp∈I {ηp}.

As a special case, if all the subsystems of switched system (3.1) areHurwitz stable,
then the sufficient condition for stabilization via MDADT switching is addressed in
the following corollary.

Corollary 3.1 Consider the switched linear system (3.1) composed of all
Hurwitz stable subsystems. The system is GUES for any switching signal σ(t)
∈ �MDADT [N0p, τap] satisfying

τap ≥ εp

λm
p

, p ∈ I (3.36)

Proof Note the fact that all the subsystems are stable. Therefore, in Theorem 3.1,
I1 = ∅,I2 = I , Ω1 = ∅, and Ω2 = R

n. Then, ∀T > 0,
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‖x(T )‖ =
∥∥∥∥∥exp

{ ∑
s∈Φ1∪Φ2

Aσ(ts )(ts+1 − ts)

}∥∥∥∥∥ ‖x(0)‖

≤
∏
p∈I

exp{Nσ p(T, 0)εp − λm
pTp(T, 0)} ‖x(0)‖

≤ exp
{∑

p∈I N0pεp

}
exp

{∑
p∈I

(
εp

τap
− λm

p

)
Tp(T, 0)

}
‖x(0)‖

≤ exp
{∑

p∈I N0pεp

}
exp

{
max
p∈I

(
εp

τap
− λm

p

)
T

}
‖x(0)‖ (3.37)

Thus, we can see from Definition 3.2 and (3.36) that the underlying system is expo-
nentially stabilized via MDADT satisfying (3.35). �

Remark 3.4 The above theorem and corollary provide sufficient conditions of
switching stabilization for switched system (3.1) comprising all unstable subsys-
tems and all stable subsystems, respectively. An example in the next section will
show the validity of the obtained criteria.

3.2.3 Simulation Results

In this section, a numerical example of switched linear systems with all unstable
subsystems is presented to show the effectiveness of the developed approaches.

Example 3.1 Consider the switched linear systems consisting of three subsystems
described by:

A1 =
⎡
⎣ −20 −12.5 −12.5

0 −7.5 12.5
0 12.5 −7.5

⎤
⎦ , A2 =

⎡
⎣ −7.5 15 −2.5

17.5 −5 2.5
−17.5 −15 −22.5

⎤
⎦ , A3 =

⎡
⎣ −7.5 −12.5 0

−12.5 −7.5 0
12.5 12.5 5

⎤
⎦ .

First, the state responses of each subsystemwith the same initial condition x(0) =
[ 5 −5 10 ]T are depicted in Fig. 3.1 fromwhich it is seen that all the three subsystems
are unstable. Furthermore, the simulation results with four random switching signals
are given in Fig. 3.2 which shows that the above switched system is unstable under
these switching signals.

Then, our purpose here is to design a set of mode-dependent average dwell time
switching to exponentially stabilize the above switched systems. It is clear that
λ(A1) = {5,−20,−20}, λ(A2) = {−20,−25, 10}, λ(A3) = {5, 5,−20}, λM

1 = 5,
λM
2 = 10, λM

3 = 5, λm
1 = 20, λm

2 = 20, λm
3 = 20.We chooseI1 = {1, 3},I2 = {2}.

Therefore,
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Fig. 3.2 The state responses of the system with different random switching signals

Ω1 = span

⎧⎨
⎩

⎡
⎣−0.5

0.5
0.5

⎤
⎦ ,

⎡
⎣ 0.5

−0.5
0.5

⎤
⎦

⎫⎬
⎭ ,Ω2 = span

⎧⎨
⎩

⎡
⎣ 0.5

0.5
−0.5

⎤
⎦

⎫⎬
⎭ ,



52 3 Switching Stabilization of Switched Systems Composed …

Fig. 3.3 The state responses
of the system under the
designed MDADT switching
signals
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On the other hand, it is not hard to get that Ω1 and Ω2 are Ap-invariant, p ∈
{1, 2, 3}, and satisfy the condition (3.14).

Set ηp = 0.1, εp = 0.69, p = {1, 2, 3}, α1 = α3 = 10, α2 = 14, β1 = β3 = 15,
β2 = 16. Based on Theorem 3.1, one can get a MDADT switching signal satisfying
(3.17), (3.18) and

τa1 ≥ 0.14, τa2 ≥ 0.17, τa3 ≥ 0.14 (3.38)

To illustrate the correctness of the theoretical results,wenowgenerate one possible
switching sequences with the MDADT property (3.37). Then, one can obtain the
corresponding state responses of the system as shown in Fig. 3.3, for the same initial
state condition. It can be concluded from the curves that the underlying system is
stabilized by the designed MDADT switching signal.

Finally, from the above demonstrations, we obtain that Theorem 3.1 provides an
effective stabilization approach via MDADT switching for switched linear systems
composed of unstable subsystems.

3.2.4 Conclusions

This section is concerned with switching stabilization for switched linear systems
consisting of unstable modes. Based on the invariant subspace theory, the advanced
mode-dependent average dwell time (MDADT) switching, is introduced to stabi-
lize the systems under consideration. Then, the corresponding result is extended to
switched systems composed of all Hurwitz stable subsystems. Finally, a numerical
example is provided to demonstrate the correctness and effectiveness of the obtained
results.
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3.3 Switching Stabilization of Switched Nonlinear Systems

3.3.1 Problem Formulation and Preliminaries

This section presents some definitions and preliminary results that will be used
throughout the remainder of this chapter. Consider the following switched nonlinear
systems,

ẋ(t) =
m∑
p=1

δp(σ (t)) f p(x(t), t), x(t0) = x0, t ≥ t0, (3.39)

where x(t) ∈ R
n is the state vector, and x0 and t0 ≥ 0 denote the initial state and initial

time, respectively; σ(t) is a switching signal which is a piecewise constant function
from the right of time and takes its values in the finite set S = {1, . . . ,m}, where
m > 1 is the number of subsystems. f p : R

n × R −→ R
n are smooth functions for

any σ(t) = p ∈ S. Moreover, all the subsystems in system (3.39) may be unstable.
For a switching sequence, 0 < t1 < · · · < tk < tk+1 < · · · , σ(t) may be either

autonomous or controlled. When t ∈ [tk, tk+1), we say σ(tk)th mode is active; i.e.,
the indication functions δp(σ (t)) satisfy:

δp(σ (t)) =
{
1, i f σ(t) = p,

0, otherwise.
(3.40)

The switched nonlinear system (3.39) can be described by fuzzy systems, and the
pth fuzzy subsystem is represented as follows.

Model rule Ri
p : IF θ1(t) is Mi

p1 and · · · and θl(t) is Mi
pl , THEN

ẋ(t) = Apix(t), t ≥ t0, i ∈ R = {1, 2, · · ·, r}, p ∈ S, (3.41)

where x(t) ∈ R
n is the state vector; Mi

pj ( j = 1, 2, . . . , l) is the fuzzy set, and r
is the number of IF-THEN rules; θ1(t), θ2(t) · · · θp(t) are the premise variables;
Furthermore, Api , i ∈ R, p ∈ S is a real matrix with appropriate dimensions. Thus,
through fuzzy blending, the global model of the pth subsystem can be given by

ẋ(t) = A(h(t))x(t)

=
r∑

i=1

h pi (θ(t))Apix(t), p ∈ S. (3.42)

h pi (θ(t)) are the normalized membership functions satisfying:

h pi (θ(t)) =
∏l

j=1 M
i
pj (θ j (t))∑r

i=1

∏l
j=1 M

i
pj (θ j (t))

≥ 0,
r∑

i=1

h pi (θ(t)) = 1, (3.43)
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where Mi
pj (θ j (t)) represent the grade of the membership function of premise vari-

able θ j (t) in Mi
pj . Finally, we can describe switched nonlinear system (3.39) in the

following form,

ẋ(t) =
m∑
p=1

r∑
i=1

δp(σ (t))h pi (θ(t))Apix(t). (3.44)

Next, we introduce the following definition for later use.

Definition 3.6 [15] The equilibrium x = 0 of switched system (3.39) is globally
asymptotically stable (GAS) under a certain switching signal σ(t) if there exists a
K L function β such that the solution of the system satisfies the inequality ‖x(t)‖ ≤
β(‖x(t0)‖, t), ∀t ≥ t0, with any initial conditions x(t0).

In the following, our goal is to find a set of switching signals with the ADT
property, such that the switched system (3.39) is GAS. For this purpose, we first
define a new class of ADT switching signals.

Definition 3.7 For a switching signal σ(t) and each T ≥ t ≥ 0, let Nσ (T, t) denote
the number of discontinuities of σ(t) in the interval (t, T ). We say that σ(t) has an
average dwell time τa if there exist two positive numbers N0 (we call N0 the chatter
bound here) and τa such that

Nσ (T, t) ≥ N0 + T − t

τa
, ∀T ≥ t ≥ 0. (3.45)

3.3.2 Main Results

In this section, we consider the switching stabilization for switched nonlinear sys-
tems described in the previous section. Next, we are in a position to provide the
first switching stabilization condition for switched nonlinear systems (3.39) in the
following theorem by designing ADT switching signals defined in Definition 3.7.

Theorem 3.2 Consider switched nonlinear system (3.39). Suppose that there exist
a switching sequence ξ = {t0, t1, . . . tk, . . . tNσ(t)} satisfying (3.45), a set of C1 non-
negative functions Vp : R

n × R → R, p ∈ S, two classK∞ functions α1 and α2, and
two positive numbers λ > 0 and 0 < μ < 1 such that

α1(‖x(t)‖) ≤ Vp(x(t), t) ≤ α2(‖x(t)‖),∀p ∈ S, (3.46)

V̇p(x(t), t)) ≤ λVp(x(t), t),∀p ∈ S, (3.47)

Vq(x(t+k ), t+k ) ≤ μVp(x(t−k ), t−k ), ∀p, q ∈ S (3.48)

τa ≤ −lnμ

λ
. (3.49)
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Then switched system (3.39) is globally asymptotically stable under the switching
sequence ξ generated by σ(t).

Proof Without loss of generality,wedenote ξ = {t0, t1, . . . tk, . . . tNσ(t)} as the switch-
ing sequence on time interval [0, T ] for any T > 0, t0 = 0.

Next, we establish a multiple Lyapunov function (MLF) for switched nonlinear
system (3.39) as follows,

V (x(t), t) =
m∑
p=1

δp(σ (t))Vp(x(t), t). (3.50)

Then we consider the function

W (t) = e−λt
m∑
p=1

δp(σ (t))Vp(x(t), t). (3.51)

It is clear that it is piecewise differentiable along solutions of (3.39). When t ∈
[tk, tk+1), we get from (3.47) that

Ẇ (t) = −λe−λt Vp(x(t), t) + e−λt V̇p(x(t), t)

≤ −λe−λt Vp(x(t), t) + e−λtλVp(x(t), t)

= 0. (3.52)

ThusW (t) is nonincreasing when t ∈ [tk, tk+1). This together with (3.48) gives that

W (t+k+1) = e−λt+k+1Vp(x(t+k+1), t
+
k+1)

≤ μe−λt−k+1Vp(x(t
−
k+1), t

−
k+1)

= μW (t−k+1)

≤ μW (tk). (3.53)

By integrating this for t ∈ [tk, tk+1), it yields that

W (T−) ≤ W (tNδ
)

≤ μW (t−
Nδ

)

≤ μW (tNδ−1)

. . .

≤ μNδW (t0). (3.54)

One can easily obtain from the definition of W (t) that
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e−λT Vδ(T−)(x(T ), T ) ≤ μNδVδ(t0)(x(t0), t0). (3.55)

Moreover, it can be derived from (3.45) and (3.55) that

Vδ(T−)(x(T ), T ) ≤ eλT eNδ lnμVδ(t0)(x(t0), t0)

≤ eλT e(N0+ T
τa

) lnμVδ(t0)(x(t0), t0)

= eN0 lnμe(λ+ lnμ

τa
)T Vδ(t0)(x(t0), t0). (3.56)

Finally, we can conclude from (3.56) that, if τa satisfies the condition in (3.49),
then Vδ(T−)(x(T ), T ) exponentially converges to zero as T → ∞,

By (3.46), we can get that

‖x(T )‖ = α
−1

1 (μN0eλTα2(‖x0‖),

which verifies the global asymptotic stability by Definition 3.6. Therefore, switched
nonlinear system (3.39) is asymptotically stabilized by our proposed ADT switching
signals (3.45) with (3.49) if the conditions (3.46)–(3.48) hold. This completes the
proof.

In the following,weutilize theT-S fuzzymodeling approach to represent nonlinear
system (3.39), to develop more applicable results.

Note that the traditional linear multiple quadratic Lyapunov function Vp(x(t)) =
xT (t)Ppx(t), where Pp > 0, ∀p ∈ S, will not satisfy the condition Pq ≤ μPp ∀p, q
∈ S because 0 < μ < 1. Hence, we choose a time-variant (TV) positive definite
matrix Pp(t) to construct a TV-MQLF for switched T-S fuzzy system (3.44) as
follows,

Vp(x(t), t) = xT (t)Pp(t)x(t), ∀p ∈ S. (3.57)

Then it is immediately clear that Vq(x(t+k ), t+k ) ≤ μVp(x(t−k ), t−k ), ∀p, q ∈ S can
be expressed by Pq(t

+
k ) ≤ μPp(t

−
k ), p �= q, ∀p, q ∈ S. Next, we resort to the dis-

cretized Lyapunov function technique to numerically check the existence of such a
matrix function Pp(t) which is, however, difficult to be checked in the continuous
case.

First of all, giving τa a sufficient small lower bound τ ∗ > 0, we divide the inter-
val [tk, tk + τ ∗) into K segments. The length of each section is equal to l = τ ∗

K ,
and then the interval [tk, tk + τ ∗) can be described as Gp,n = [tk + Hn, tk + Hn+1),

Hn = nl, n = 1, 2, . . . , K − 1, Next, we use a linear interpolation formula to
describe the continuous-time matrix function Pp(t) which is chosen to be lin-
ear within each segment Gp,n = [tk + Hn, tk + Hn+1), n = 1, 2, . . . , K − 1. When
t ∈ Gp,n, n = 1, 2, . . . , K − 1



3.3 Switching Stabilization of Switched Nonlinear Systems 57

Pp(t) = t − tk − Hn+1

tk + Hn − tk − Hn+1
Pp,n + t − tk − Hn

tk + Hn+1 − tk − Hn
Pp,n+1

= t − tk − Hn+1

−l
Pp,n + t − tk − Hn

l
Pp,n+1

= (1 − γ )Pp,n + γ Pp,n+1

= P (n)
p (γ ), (3.58)

where Pp,n = Pp(tk + Hn), Pp,n+1 = Pp(tk + Hn+1), 0 < γ = t−tk−Hn
l < 1. In the

interval [tk, tk + τ ∗), the continuous-time matrix function Pp(t), p ∈ S, is deter-
mined by Pp,n n = 1, 2, . . . , K , p ∈ S. On the other hand, in the interval
[tk + τ ∗, tk+1), the matrix function Pp(t), p ∈ S is fixed by a constant matrix
Pp(t) = Pp,K , p ∈ S. Thus, the TV-MQLF for switched T-S fuzzy system (3.44)
for mode p ∈ S can be described as

Vp(x(t), t) =
{
xT (t)P (n)

p x(t), t ∈ Gp,n, n = 1, 2, . . . , K − 1

xT (t)Pp,Kx(t), t ∈ [tk + τ ∗, tk+1).
(3.59)

Moreover, it can be derived from (3.59) that for any t ∈ Gp,n, n = 1, 2, . . . ,
K − 1

V̇p(x(t), t) = ẋT (t)Pp(t)x(t) + xT (t)Ṗp(t)x(t) + xT (t)Ppi (t)ẋ(t)

=
r∑

i=1

h pi (θ(t))[(Apix(t))T Pp(t)x(t) + xT (t)Ṗp(t)x(t) + xT (t)Pp(t)Apix(t)]

=
r∑

i=1

h pi (θ(t))xT (t)[Api
T Pp(t) + Pp(t)Api + Ṗp(t)]x(t). (3.60)

When t ∈ Gp,n, n = 1, 2, . . . , K − 1, one can immediately get from (3.58) that

Ṗp(t) = −γ̇ Pp,n + γ̇ Pp,n+1

= (Pp,n+1 − Pp,n)
K

τ ∗
= Πn

p . (3.61)

In the sequel, we can obtain from (3.58), (3.60) and (3.61) that for any t ∈ Gp,n, n =
1, 2, . . . , K − 1,

V̇p(x(t), t) =
r∑

i=1

h pi (θ(t))xT (t)[AT
pi
P (n)
p + P (n)

p Api + Πn
pi ]x(t)

=
r∑

i=1

h pi (θ(t))xT (t)[(1 − γ )(AT
pi
Pp,n + Pp,n Api + Πn

pi )

+γ (AT
pi
Pp,n+1 + Pp,n+1Api + Πn

pi )]x(t)
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=
r∑

i=1

h pi (θ(t))xT (t)[(1 − γ )Φ
(n)
pi,1 + γΦ

(n)
pi,2]x(t), (3.62)

whereΦ
(n)
pi,1 = AT

pi
Pp,n + Pp,n Api + Πn

p andΦ
(n)
pi,2 = AT

pi
Pp,n+1 + Pp,n+1Api + Πn

p .
Thus, a switching stabilization condition for switched T-S fuzzy system (3.44)

can be obtained on the basis of the above developments.

Theorem 3.3 Consider switched T-S fuzzy system (3.44), and let λ > 0,
0 < μ < 1, and τ ∗ > 0 be given constants. If there exists a set of matrices Pp,n >

0, n = 0, 1, 2, . . . , K , p ∈ S, such that ∀n = 0, 1, 2, . . . , K ,∀i ∈ R, p �= q,

∀(p × q) ∈ S × S,

Φ
(n)
pi,1 − λPp,n < 0, (3.63)

Φ
(n)
pi,2 − λPp,n+1 < 0, (3.64)

AT
pi
Pp,K + Pp,K Api − λPp,K < 0, (3.65)

Pq,0 − μPp,K ≤ 0, (3.66)

whereΦ
(n)
pi,1 andΦ

(n)
pi,2 are defined in (3.62), then, the system is GAS for any switching

signal with ADT satisfying

τ ∗ ≤ τa ≤ −lnμ

λ
. (3.67)

Proof.When t ∈ Gp,n, n = 1, 2, . . . , K − 1, by the discussions in (3.62), it can be
seen that if (3.63) and (3.64) hold, then,

V̇p(x(t), t) − λVp(x(t), t)

=
r∑

i=1

h pi (θ(t))xT (t)[(1 − γ )Φ
(n)
pi,1 + γΦ

(n)
pi,2 − λP (n)

p (γ )]x(t)

=
r∑

i=1

h pi (θ(t))xT (t)[(1 − γ )(AT
pi
Ppi,n + Ppi,n Api + Πn

p − λPp,n)

+γ (AT
pi
Pp,n+1 + Pp,n+1Api + Πn

p − λPp,n+1)]x(t)

=
r∑

i=1

h pi (θ(t))xT (t)[(1 − γ )(Φ
(n)
p,1 − λPp,n) + γ (Φ

(n)
pi,2 − λPp,n+1)]x(t)

< 0. (3.68)

Moreover, when t ∈ [tk + τ ∗, tk+1), we have from (3.59), (3.65) and (3.68) that
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V̇p(x(t), t) − λVp(x(t), t) =
r∑

i=1

h pi (θ(t))xT (t)(AT
pi
Pp,K + Pp,K Api − λPpi,K )x(t)

< 0. (3.69)

Thus, we can get that (3.68) and (3.69) hold, which means that

V̇p(x(t), t) ≤ λVp(x(t), t).

Then, according to (3.59) and (3.65), it can be obtained that

Vq(t
+
k , t+) ≤ μVp(t

−
k , t−).

Finally, one can readily conclude from Theorem 3.2 that switched T-S fuzzy system
(3.44) is GAS for any switching signal with our proposed ADT (3.45).

Remark 3.5 Compared with Theorem 3.2, the advantage of Theorem 3.3 lies in that
the obtained stability condition is formulated in terms of linear matrix inequalities
that can be efficiently solved by the LMI toolbox.

3.3.3 Simulation Results

We provide the following example to verify the main results developed in this
Sect. 3.2. By using a T-S fuzzy model to represent a given switched nonlinear system
composed of all unstable subsystems, a switching signal with our proposed ADT
property is designed to asymptotically stabilize the system.

Example 3.2 Consider the switched nonlinear system composed of the following
two subsystems,

Σ1 =
{
ẋ1(t) = −7.64x1(t) + 5.03sin2(x1(t))x2(t) + 5.84x2(t) − 6.66sin2(x1(t))x1(t)

ẋ2(t) = −6.44x1(t) + 4.94x2(t) − 5.58sin2(x1(t))x1(t) + 4.21sin2(x1(t))x2(t),

Σ2 =
{
ẋ1(t) = 7.23x1(t) + 5.031.9sin2(x1(t))x2(t) − 8.58x2(t) + 2.96sin2(x1(t))x1(t)

ẋ2(t) = 9.48x1(t) − 11.28x2(t) + 3.82sin2(x1(t))x1(t) − 4.52sin2(x1(t))x2(t).

The state trajectories shown in Figs. 3.4 and 3.5 demonstrate that both subsystems∑
1 and

∑
2 are unstable.

Next, we are interested in designing a class of switching signal σ(t)with property
(3.45) to asymptotically stabilize the above switched system. First, we formulate the
T-S fuzzy model of the switched nonlinear system in the following.

When p = 1, the Σ1 can be written as

ẋ(t) =
[−7.64 − 6.66sin2(x1(t)) 5.84 + 5.03sin2(x1(t))

−6.44 − 5.58sin2(x1(t)) 4.94 + 4.21sin2(x1(t))

] [
x1(t)
x2(t)

]
.
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Fig. 3.4 State response of
the subsystem
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Fig. 3.5 State response of
the subsystem

∑
2

0 10 20 30 40 50
−1800

−1600

−1400

−1200

−1000

−800

−600

−400

−200

0

200

Sample Time/s

S
ta

te
 R

es
po

ns
es

x
1
(t)

x
2
(t)

For the nonlinear term sin2(x1(t)), define θ(t) = sin2(x1(t)). Then we have

ẋ(t) =
[−7.64 − 6.66θ(t) 5.84 + 5.03θ(t)

0.6 + 0.4θ(t) −0.1 + 3.1θ(t)

] [
x1
x2

]
.

Next, calculate the minimum and maximum values of θ(t). The minimum and
maximum values of θ(t) are 0 and 1, respectively. From the minimum and maximum
values, θ(t) can be represented by

θ(t) = sin2(x1(t)) = M11(θ(t)) × 0 + M12(θ(t)) × 1,

where
M11(θ(t)) + M12(θ(t)) = 1.
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Therefore the membership functions can be secleted as

M11(θ(t)) = 1 − sin2(x1(t)), M12(θ(t)) = sin2(x1(t)).

Then, the first nonlinear subsystem Σ1 is represented by the following fuzzy
model.

Model rule R1
1 : If θ(t) is 0, THEN

ẋ(t) = A11x(t),

Model rule R2
1 : If θ(t) is 1, THEN

ẋ(t) = A12x(t).

Its normalized membership functions are h1(θ(t)) = 1 − sin2(x1(t)), h2(θ(t)) =
sin2(x1(t)), and here,

A11 =
(−7.64 5.84

−6.44 4.94

)
, A12 =

( −14.3 10.87
−12.02 9.15

)
.

Thus, through the use of fuzzy blending, the global mode of the 1st fuzzy subsys-
tem can be given by

ẋ(t) = A(h(t))x(t)

=
2∑

i=1

h1i (θ(t))A1ix(t),

where

h11(θ(t)) = M11(θ(t))

M11(θ(t)) + M12(θ(t))
= 1 − sin2(x1(t)),

h12(θ(t)) = M12(θ(t))

M11(θ(t)) + M12(θ(t))
= sin2(x1(t)).

Similarly, the second nonlinear subsystem Σ2 can be represented by the following
fuzzy model.

Model rule R1
2 : If θ(t) is 0, THEN

ẋ(t) = A21x(t),

Model rule R2
2 : If θ(t) is 1, THEN

ẋ(t) = A22x(t),
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where

A21 =
(
7.23 −8.58
9.48 −11.28

)
, A22 =

(
10.18 −12.05
13.30 −15.80

)
.

Therefore, we can describe switched nonlinear system (3.70) in the following
form

ẋ(t) =
2∑

p=1

2∑
i=1

δp(σ (t))h pi (θ(t))Apix(t) , i ∈ R = {1, 2}, p = {1, 2},

where

δp(σ (t)) =
{
1, i f σ(t) = p,

0, otherwise.

Next, by using Theorem 3.3 and choosing K = 1, μ = 0.6, η = 0.7, τ ∗ = 0.3,
the feasible solutions are obtained as below:

P1,0 =
(

0.5355 −0.5210
−0.5210 0.5436

)
, P1,1 =

(
1.0411 −0.8787

−0.8787 0.7933

)
,

P2,0 =
(

0.6034 −0.5065
−0.5065 0.4539

)
, P2,1 =

(
0.9275 −0.9049

−0.9049 0.9477

)
.

Finally, generating one possible switching sequence by our proposedADT switch-
ing (τa = 0.5 < − lnλ

λ
= 0.59), the corresponding state responses of the systemunder

initial state condition x(0) = [−10 15]T , are shown in Fig. 3.6, from which one can
see that the switched nonlinear system is stabilized by the designed ADT switching.

Fig. 3.6 State responses of
switched nonlinear system
(32) under switching signal
σ(t) with τa = 0.5
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3.3.4 Conclusions

The problem of stabilization for switched nonlinear systems composed of unstable
subsystems is investigated in the above section by using ADT switching with new
property. The stabilization result for the system under consideration is first derived on
thebasis of our proposed switching signals.After that, theT-S fuzzymodelingmethod
together with a new type of Lyapunov function approach is also used to establish an
improved stabilization condition. Finally, a numerical example is provided to verify
the correctness and effectiveness of the proposed approach.
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Chapter 4
Adaptive Control of Switched Nonlinear
Systems

4.1 Background and Motivation

It has been shown in [1–5] that the adaptive backstepping technique is a power-
ful tool which has been widely used to solve some complex optimization prob-
lems and applied in the fields of industry and engineering. Recently, many adaptive
backstepping-based control methods have been used in switched nonlinear systems;
see, for example, [6–10] and the references therein. The authors in [11] solved the
problem of adaptive stabilization for a class of uncertain switched nonlinear sys-
tems whose non-switching part consists of feedback linearizable dynamics. In [12],
the authors investigated the problem of adaptive stabilization for a class of switched
nonlinearly parameterized systems where the solvability of the adaptive stabilization
problem for subsystems is unnecessary.

It is well known that the stability of a switched system under arbitrary switching
can be guaranteed if a CLF exists for all subsystems [13]. Therefore, CLF has been
extensively used for control synthesis of switched linear systems [14–17]. Recently,
there have been some results on the global stabilization problem for switched nonlin-
ear systems in strict-feedback form under arbitrary switchings by using the backstep-
ping technique [9, 18].Meanwhile, [19] investigated the global stabilization problem
for a class of switched nonlinear systems in p-normal form by the so-called power
integrator backstepping design method.

In practice, uncertainties inevitably exist in many practical systems. In recent
years, some attentions has been paid to both general nonlinear systems and switched
nonlinear systems with uncertainties, but most of the obtained results require that
the uncertainties should satisfy some additional conditions. However, in many cases,
we cannot get the knowledge of system uncertainty a priori, which can only be
described by completely unknown functions. In this case, the excellent approxima-
tion capability of neural networks (or fuzzy logic systems) has been explored in the
literature to tackle the corresponding control problems for either switched systems
or non-switched systems. Thus, many significant results have been proposed. To
list a few, the authors in [20] investigated the control problem of nonlinear pure-

© Springer International Publishing Switzerland 2017
X. Zhao et al., Control Synthesis of Switched Systems, Studies in Systems,
Decision and Control 80, DOI 10.1007/978-3-319-44830-5_4
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feedback systems with unknown nonlinear functions by using the implicit function
theorem and NN approximation. The adaptive tracking control problem for a class
of uncertain nonlinear strict-feedback systems is solved by [21] using fuzzy logic
system approximation. A practical design method is developed by [22] for cooper-
ative tracking control of higher-order nonlinear systems with a dynamic leader. For
a class of switched uncertain nonlinear systems without the measurements of the
system states, the problem of adaptive neural tracking control via output-feedback
was solved in [23] by using a novel switched filter.

However, few results on adaptive tracking control have been developed for
lower triangular switched nonlinear systems with completely unknown uncertain-
ties. On the other hand, most system models of the above-mentioned results about
adaptive control for switched nonlinear systems are in the strict-feedback form
that limits applications of the results to more general switched nonlinear sys-
tems. Therefore, considering the adaptive tracking control for switched nonstrict-
feedback nonlinear systems with completely unknown uncertainties is more reason-
able. In this chapter, the adaptive tracking control problem is investigated for both
strict-feedback and nonstrict-feedback switched nonlinear systems with completely
unknown uncertainties.

Notations: In this chapter, the notations are standard. Rn denotes the n-dimensional
Euclidean space, the notation ‖·‖ refers to the Euclidean vector norm. R+ is the set
of all nonnegative real numbers. For positive integers 1 ≤ i ≤ n, 1 ≤ j ≤ m, we
also denote Ξi,max = max{Ξi, j : 1 ≤ j ≤ m}, Ξi,min = min{Ξi, j : 1 ≤ j ≤ m}. C i

stands for a set of functions with continuous i th partial derivatives. For a givenmatrix
A (or vector v), AT (or vT ) denotes its transpose, and Tr{A} denotes its trace when
A is a square. K represents the set of functions: R+ → R

+, which are continuous,
strictly increasing and vanishing at zero; K∞ denotes a set of functions which is of
classK and unbounded.

4.2 Adaptive Control of Switched Strict-Feedback
Nonlinear Systems

4.2.1 Problem Formulation and Preliminaries

Consider a class of switched nonlinear systems in the following form,

ẋi = gi,σ (t)xi+1 + fi,σ (t)(x̄i ), i = 1, 2, . . . , n − 1,

ẋn = gn,σ (t)uσ(t) + fn,σ (t)(x̄n),

y = x1, (4.1)

where x̄i := (x1, x2, . . . , xi )T ∈ R
i , i = 1, 2, . . . , n is the system state, y is the

system output; σ(t) : [0,+∞) → M = {1, 2, . . . ,m} is the switching signal;
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uk ∈ R is the control input of the kth subsystem, For any i = 1, 2, . . . , n and
k = 1, 2, . . . ,m, fi,k(x̄i ) is an unknown smooth nonlinear function representing the
system uncertainty, and gi,k is a positive constant.

Our control objective is to design state-feedback controllers such that the output
of system (4.1) tracks a given time-varying signal yd(t) within a bounded error and
all the signals of the closed-loop systems remain bounded under arbitrary switchings.

Assumption 4.1 The tracking target yd(t) and its time derivatives up to the nth order
are continuous and bounded.

In the controller design and stability analysis procedure, fuzzy logic systems
will be used to approximate the unknown functions. Therefore, the following useful
concept and lemma are first recalled.

Fuzzy logic systems include some IF-THEN rules, and the i th IF-THEN rule is
written as

Ri : If x1 is F
i
1 and ... and xn is F

i
n then y is Bi ,

where x = [x1, x2, ..., xn]T ∈ R
n , and y ∈ R are the input and output of the fuzzy

logic systems, respectively. Fi
1, F

i
2, ..., F

i
n and Bi are fuzzy sets in R. By using

the strategy of singleton fuzzification, the product inference and the center-average
defuzzification, the fuzzy logic system can be formulated as

y(x) =

N∑
i=1

wi

n∏
j=1

μFl
j
(x j )

N∑
i=1

⎡
⎣ n∏

j=1

μFl
j
(x j )

⎤
⎦

,

where N is the number of IF-THEN rules;wi is the point at which fuzzy membership
function μBi (wi ) = 1. Let

si (x) =
n∏
j=1

μFl
j
(x j )/

N∑
i=1

⎡
⎣ n∏

j=1

μFl
j
(x j )

⎤
⎦ , S(x) = [s1(x), . . . , sN (x)]T

and W = [w1,w2, . . . ,wN ]T . Then the fuzzy logic system can be rewritten as

y = WT S(x), (4.2)

If all memberships are chosen as Gaussian functions, the following lemma holds.

Lemma 4.1 [24] Let f (x) be a continuous function defined on a compact set
Ω.Then, for a given desired level of accuracy ε > 0, there exists a fuzzy logic
system (4.2) such that

sup
x∈Ω

∣∣ f (x) − WT S(x)
∣∣ ≤ ε.
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Remark 4.1 Lemma 4.1 plays a key role in the following design procedure and it
indicates that any given real continuous function f (x) can be represented by the
linear combination of the basis function vector S(x) within a bounded error ε. That
is, f (x) = WT S(x) + δ(ε), |δ(ε)| ≤ ε. It is noted that 0 < ST S ≤ 1.

4.2.2 Main Results

In this section, we present an adaptive fuzzy control scheme for system (4.1) via the
backstepping technique. In Sect. 3.1, a detailed design procedure was given. In each
step, a commonvirtual control functionαi should be designed by using an appropriate
common Lyapunov function Vi , and the control law uk is finally designed.

4.2.2.1 Adaptive Control Design Under Multiple Adaptive Laws

In this subsection, a systemic control design procedure under multiple adaptive laws
is presented. Design the control laws as

uk = − 1

gn,k

(
θ̂n

2ζ 2
n,min

zn + λnzn + zn
2

)
, (4.3)

where ζn,k and λn are positive design parameters, ζn,min = min{ζn,k : k ∈ M}, θ̂n is
the estimation of θn = ∥∥Wn,max

∥∥2
,Wn,max = max{Wn,k : k ∈ M} andWn,k is used in

fuzzy logic systemWT
n,k Sn,k(x) to approximate the unknown function f̂n,k(x). f̂n,k(x)

is specified in the proof of Theorem 4.1.
The adaptive laws are defined as the solution to the following differential equa-

tions, ˙̂
θi = ri

2ζ 2
i,min

z2i − βi θ̂i , (4.4)

where ri , ζn,k and βi are positive design parameters, ζn,min = min{ζn,k : k ∈ M},
and the choice of θ̂ j (0), j = 1, 2, . . . , n are required to satisfy θ̂ j (0) ≥ 0 such that
θ̂ j ≥ 0. Now, we state one of our main results as follows.

Theorem 4.1 Consider the closed-loop system (4.1) with the controllers (4.3) and
the adaptive laws (4.4). For 1 ≤ i ≤ n, k ∈ M, there exists WT

i,k Si,k(x) such that

supx∈Ω

∣∣∣ f̂i,k(x) − WT
i,k Si,k(x)

∣∣∣ ≤ εi,k in the sense that the approximation error εi,k

is bounded, and all the initial values of θ̂i satisfy θ̂i (0) ≥ 0. Then, the tracking error
and closed-loop signals are bounded.

Proof For 1 ≤ i ≤ n − 1, we define the common virtual control functions as αi

which are required to be in the form:

http://dx.doi.org/10.1007/978-3-319-44830-5_3
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αi (Xi ) = − 1

gi,min

(
θ̂i

2ζ 2
i,min

+ λi + 1

2

)
zi , (4.5)

where ζi,k is a positive design parameter, ζi,min = min{ζi,k : k ∈ M}, gi,min =
min{gi,k : k ∈ M}, λi = gi,max + ci , gi,max = max{gi,k : k ∈ M} and ci is a
positive constant. θ̂i is the estimation of θi = ∥∥Wi,max

∥∥2
where Wi,max = max{Wi,k :

k ∈ M} and Wi,k is used in fuzzy logic system WT
i,k Si,k(x) to approximate the

unknown function f̂i,k(x). Xi = [x̄ Ti ,
¯̂
θi , ȳ

(i)
d ]T with x̄ Ti = [x1, x2, . . . , xi ]T , ¯̂

θi =
[θ̂1, θ̂2, . . . , θ̂i ]T , ȳ(i)

d = [yd , ẏd , . . . , y(i)
d ]T and ȳ(i)

d being the i th derivative of yd .

Step 1. Denote z1 = x1 − yd , z2 = x2 − α1. Consider a Lyapunov function
candidate as

V1 = 1

2
z21. (4.6)

For any k ∈ M, the derivative of V1 is given by

V̇1 = z1(g1,kα1 + g1,k z2 + f1,k − ẏd)

= z1(g1,kα1 + g1,k z2 + f̂1,k), (4.7)

where f̂1,k = f1,k − ẏd . By Lemma 4.1, the following equation can be obtained,

f̂1,k = WT
1,k S1,k(X1) + δ1,k(X1),

∣∣δ1,k(X1)
∣∣ ≤ ε1,k . (4.8)

Remark 4.2 It should be pointed out that the fuzzy logic system is used to approxi-
mate the redefined unknown nonlinear function f̂1,k that includes the unknown func-
tion f1,k and the derivative of the desired output rather than the unknown function
f1,k only.

Substituting (4.8) into (4.7), one gets that

V̇1 = g1,k z1α1 + g1,k z1z2 + z1W
T
1,k S1,k(z1) + z1δ(z1)

≤ g1,k z1α1 + g1,k z1z2 + 1

2ζ 2
1,k

z21
∥∥W1,k

∥∥2

+ ζ 2
1,k + ε21,k

2
+ 1

2
z21, (4.9)

where ζ1,k is a positive design parameter.
A feasible virtual control function can be constructed as

α1 = − 1

g1,min

(
θ̂1

2ζ 2
1,min

+ λ1 + 1

2

)
z1, (4.10)

where λ1 = g1,max + c1 with c1 being a positive constant.
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By substituting (4.1) into (4.9), one has

V̇1 ≤ −λ1z
2
1 +

(∥∥W1,k

∥∥2

2ζ 2
1,k

− g1,k θ̂1
2g1,minζ

2
1,min

)
z21 + ζ 2

1,k + ε21,k

2
+ g1,k z1z2. (4.11)

Step 2. Let z3 = x3 − α2, and choose

V2 = V1 + 1

2
z22. (4.12)

For any k ∈ M, the time derivative of V2 is given by

V̇2 = V̇1 + z2(g2,kα2 + g2,k z3 + f2,k − α̇1)

= V̇1 + z2(g2,kα2 + g2,k z3 + f̂2,k), (4.13)

where f̂2,k = f2,k − α̇1, α̇1 = ∂α1
∂x1

ẋ1 + ∂α1

∂θ̂1

˙̂
θ1 + ∑1

i=0
∂α1

∂y(i)
d

y(i+1)
d .

By Lemma 4.1, the following equation can be obtained,

f̂2,k = WT
2,k S2,k(X2) + δ2,k(X2),

∣∣δ2,k(X2)
∣∣ ≤ ε2,k . (4.14)

Substituting (4.14) into (4.13), yields that

V̇2 = V̇1 + g2,k z2α2 + g2,k z2z3 + z2(W
T
2,k S(z2) + δ2,k(z2))

≤ V̇1 + g2,k z2α2 + g2,k z2z3 + 1

2ζ 2
2,k

z22
∥∥W2,k

∥∥2 + ζ 2
2,k + ε22,k

2
+ 1

2
z22, (4.15)

where ζ2,k is a positive design parameter.
Design the virtual control function α2 as

α2 = − 1

g2,min

(
θ̂2

2ζ 2
2,min

+ λ2 + 1

2

)
z2, (4.16)

where λ2 = g2,max + c2 with c2 being a positive constant.
Then, one can get from (4.11), (4.15) and (4.16) that

V̇2 ≤
2∑
j=1

{
−λ j z

2
j + ζ 2

j,k + ε2j,k

2
+ g j,k z j z j+1 +

(∥∥Wj,k

∥∥2

2ζ 2
j,k

− g j,k θ̂ j

2g j,minζ
2
j,min

)
z2j

}
.

(4.17)

Step i. Let zi+1 = xi+1 −αi , and assume that we have finished the first i − 1 (2 ≤
i ≤ n) steps. That is, for the following collection of auxiliary (z1, . . . , zi−1)-
equations
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ż j = g j,k x j+1 + φ j,k(X j ), j = 1, . . . , i − 1, (4.18)

where

φ j,k(X j ) = f j,k(x̄ j ) −
j−1∑
l=1

∂α j−1

∂xl
ẋl −

j−1∑
l=1

∂α j−1

∂θ̂l

˙̂
θl −

j−1∑
l=0

∂α j−1

∂y(l)
d

y(l+1)
d . (4.19)

We have a set of common virtual control functions as (4.5). A common Lyapunov
function can be designed as

Vi−1 = 1

2

i−1∑
j=1

z2j . (4.20)

For any k ∈ M, the time derivative of Vi−1 satisfies

V̇i−1 ≤
i−1∑
j=1

{
−λ j z

2
j + ζ 2

j,k + ε2j,k

2
+ g j,k z j z j+1

+
(∥∥Wj,k

∥∥2

2ζ 2
j,k

− g j,k θ̂ j

2g j,minζ
2
j,min

)
z2j

}
, (4.21)

where ζ j,k is a positive design parameter.
Choose

Vi = Vi−1 + 1

2
z2i . (4.22)

Analogous to the procedures above, the following inequality can be obtained

V̇i ≤
i∑

j=1

{
−λ j z

2
j + ζ 2

j,k + ε2j,k

2
+ g j,k z j z j+1

+
(∥∥Wj,k

∥∥2

2ζ 2
j,k

− g j,k θ̂ j

2g j,minζ
2
j,min

)
z2j

}
. (4.23)

Step n. By repeatedly using the inductive argument above, a common Lyapunov
function, a common virtual control function and state-feedback controllers are cho-
sen, respectively, as

Vn =
n∑
j=1

{
1

2
z2l + 1

2r j
θ̃2
j

}
, (4.24)

αn−1 = − 1

gn−1,min

(
θ̂n−1

2ζ 2
n−1,min

zn−1 + λn−1zn−1 + zn−1

2

)
, (4.25)
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uk = − 1

gn,k

(
θ̂n

2ζ 2
n,min

zn + λnzn + zn
2

)
, (4.26)

where θ j = ∥∥Wj,max

∥∥2
, θ̃ j = θ j − θ̂ j ( j = 1, 2, . . . , n) are the error between θ j

and its estimation θ̂ j .
For any k ∈ M, the time derivative of Vn satisfies

V̇n ≤
n−1∑
j=1

{
−λ j z

2
j + g j,k z j z j+1 + ζ 2

j,k + ε2j,k

2
− 1

r j
θ̃ j

˙̂
θ j

+
(∥∥Wj,k

∥∥2

2ζ 2
j,k

− g j,k θ̂ j

2g j,minζ
2
j,min

)
z2j

}
− λnz

2
n

+ ζ 2
n,k + ε2n,k

2
− 1

rn
θ̃n

˙̂
θn +

(∥∥Wn,k

∥∥2

2ζ 2
n,k

− θ̂n

2ζ 2
n,min

)
z2n, (4.27)

where λ j = g j,max + c j , and c j is a positive constant.
Substituting (4.4) into (4.27) gives that

V̇n ≤
n−1∑
j=1

{
−λ j z

2
j + g j,k z j z j+1 + ζ 2

j,k + ε2j,k

2
+ 1

r j
β j θ̃ j θ̂ j

+
(∥∥Wj,k

∥∥2

2ζ 2
j,k

− g j,k θ̂ j

2g j,minζ
2
j,min

− θ̃ j

2ζ 2
j,min

)
z2j

}

− λnz
2
n + ζ 2

n,k + ε2n,k

2
+ 1

rn
βn θ̃n θ̂n +

(∥∥Wn,k

∥∥2

2ζ 2
n,k

− θn

2ζ 2
n,min

)
z2n

≤
n∑
j=1

{
−λ j z

2
j + ζ 2

j,k + ε2j,k

2
+ 1

r j
β j θ̃ j θ̂ j

}
+

n−1∑
j=1

g j,k z j z j+1. (4.28)

It is not difficult to see that

n−1∑
j=1

g j,k z j z j+1 ≤ g j,max

n∑
j=1

z2j , (4.29)

and

θ̃ j θ̂ j = θ̃ j (θ j − θ̃ j ) ≤ −1

2
θ̃2
j + 1

2
θ2
j . (4.30)
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One can get from (4.28), (4.29) and (4.30) that

V̇n ≤
n∑
j=1

{
−c j z

2
j − 1

2r j
β j θ̃

2
j

}
+

n∑
j=1

{
ζ 2
j,max + ε2j,max

2
+ 1

2r j
β jθ

2
j

}
. (4.31)

Let a0 = min{2c j , β j : 1 ≤ j ≤ n}, b0 = ∑n
j=1{ 1

2r j
β jθ

2
j + ζ 2

j,max+ε2j,max

2 }. One has

V̇n ≤ −a0Vn + b0. (4.32)

According to the comparison principle, one gets

Vn(t) ≤
(
Vn(0) − b0

a0

)
e−a0t + b0

a0
, t ≥ 0. (4.33)

Inequality (4.33) indicates that all the signals in the closed-loop system are
bounded. In particular, we have

lim
t→∞ |z1| ≤

√
2b0
a0

. (4.34)

The proof is completed here. �

4.2.2.2 Adaptive Control Design Under One Adaptive Law

In this subsection, a controller design approach with one adaptive law is presented.
The control laws are chosen as

uk = − 1

gn,k

(
θ̂

2ζ 2
n,min

zn + λnzn + zn
2

)
, (4.35)

where ζn,k and λn are positive design parameters, ζn,min = min{ζn,k : k ∈ M}, θ̂ is
the estimation of θ = ∑n

i=1

∥∥Wi,max

∥∥2
, Wi,max = max{Wi,k : k ∈ M} and Wi,k is

used in fuzzy logic systemWT
i,k Si,k(x) to approximate the unknown function f̂i,k(x).

The adaptive law is defined as the solution to the following differential equation:

˙̂
θ =

n∑
j=1

r

2ζ 2
j,min

z2j − βθ̂, (4.36)

where r , ζ j,k and β are positive design parameters, ζ j,min = min{ζ j,k : k ∈ M} and
the choice of θ̂ (0) is required to satisfy θ̂ (0) ≥ 0 such that θ̂ ≥ 0.
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Next, we give another main result of the chapter.

Theorem 4.2 Consider the closed-loop system (4.1) with the controllers (4.35) and
the adaptive laws (4.36). For 1 ≤ i ≤ n, k ∈ M, there exists WT

i,k Si,k(x) such that

supx∈Ω

∣∣∣ f̂i,k(x) − WT
i,k Si,k(x)

∣∣∣ ≤ εi,k in the sense that the approximation error εi,k is

bounded, and the initial value of θ̂ satisfies θ̂ (0) ≥ 0. Then, the tracking error and
closed-loop signals are bounded.

Proof For 1 ≤ i ≤ n − 1, define the common virtual control functions αi as:

αi (Xi ) = − 1

gi,min

(
θ̂

2ζ 2
i,min

+ λi + 1

2

)
zi , (4.37)

where ζi,k is a positive design parameter, ζi,min = min{ζi,k : k ∈ M}, gi,min =
min{gi,k : k ∈ M}, λi = gi,max + ci , gi,max = max{gi,k : k ∈ M} and ci is a positive
constant. θ̂ is the estimation of θ = ∑n

i=1

∥∥Wi,max

∥∥2
, Xi = [x̄ Ti , θ̂ , ȳ(i)

d ]T where

x̄ Ti = [x1, x2, . . . , xi ]T , ȳ(i)
d = [yd , ẏd , . . . , y(i)

d ]T and ȳ(i)
d being the i th derivative

of yd .
Consider a common Lyapunov function

V =
n∑
j=1

1

2
z2j + 1

2r
θ̃2, (4.38)

where θ̃ = θ − θ̂ is the error between θ and its estimation θ̂ .
For any k ∈ M, the time derivative of V satisfies

V̇ =
n−1∑
i=1

zi (gi,kαi + gi,k zi+1 + fi,k − α̇i−1)

+ zn(gn,kuk + fn,k − α̇n−1) − 1

r
θ̃

˙̂
θ

=
n−1∑
i=1

zi (gi,kαi + gi,k zi+1 + f̂i,k)

+ zn(gn,kuk + f̂n,k) − 1

r
θ̃

˙̂
θ (4.39)

where f̂i,k = fi,k − α̇i−1, α̇i−1 = ∑ j−1
l=1

∂α j−1

∂xl
ẋl + ∂α j−1

∂θ̂

˙̂
θ + ∑ j−1

l=0
∂α j−1

∂y(l)
d

y(l+1)
d .

For 1 ≤ i ≤ n, the following equation can be obtained by using Lemma 4.1.

f̂i,k = WT
i,k Si,k(Xi ) + δi,k(Xi ),

∣∣δ2,k(Xi )
∣∣ ≤ εi,k . (4.40)
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Substituting (4.36) and (4.37) into (4.39), one has

V̇ ≤ β

r
θ̃ θ̂ +

n−1∑
j=1

{
−λ j z

2
j + g j,k z j z j+1 + ζ 2

j,k + ε2j,k

2

+
(∥∥Wj,k

∥∥2

2ζ 2
j,k

− g j,k θ̂

2g j,minζ
2
j,min

− θ̃

2ζ 2
j,min

)
z2j

}

− λnz
2
n + ζ 2

n,k + ε2n,k

2
+

(∥∥Wn,k

∥∥2

2ζ 2
n,k

− θ

2ζ 2
n,min

)
z2n

≤ β

r
θ̃ θ̂ +

n∑
j=1

{
−λ j z

2
j + ζ 2

j,k + ε2j,k

2

}
+

n−1∑
j=1

g j,k z j z j+1. (4.41)

The rest of proof is omitted here as it is similar to (4.29)–(4.34). �

4.2.3 Simulation Results

In this section, an example is provided to demonstrate the effectiveness of our main
results.

Consider the following switched nonlinear system

ẋ1 = g1,σ (t)x2 + f1,σ (t),

ẋ2 = g2,σ (t)uσ(t) + f2,σ (t),

y = x1,

yd = sin t, (4.42)

where g1,1 = 2, g1,2 = 1, f1,1 = x1, f1,2 = sin x1, g2,1 = 2, g2,2 = 1, f2,1 =
x1x2, f2,2 = x1x22 . First, the controllers under multiple adaptive laws are designed
by Theorem 4.1. The initial conditions are x1(0) = 0.05, x2(0) = 0.05, and
θ̂1(0) = θ̂2(0) = 0. We choose c1 = 2, c2 = 1, r1 = 10, r2 = 3, β1 = β2 =
0.02, ς1,1 = 0.25, ς1,2 = 3, ς2,1 = 0.5, ς2,2 = 1.8. Second, the controllers
under one adaptive law is designed by Theorem 2, and the initial conditions are
x1(0) = 0.05, x2(0) = 0.05, θ̂ (0) = 0. We choose c1 = 2, c2 = 1, r = 12, β =
0.025, ς1,1 = 0.25, ς1,2 = 3, ς2,1 = 1.5, ς2,2 = 1.8. The objective is to design the
controllers uk such that y can track a desired trajectory yd under arbitrary switchings.

According to Theorem 4.1, the adaptive laws θ̂1, θ̂2 and the control law uk are
chosen, respectively, as



76 4 Adaptive Control of Switched Nonlinear Systems

˙̂
θ1 = r1

2ζ 2
1,1

z21 − β1θ̂1,
˙̂
θ2 = r2

2ζ 2
2,1

z22 − β2θ̂2,

u1 = − 1

g2,1

(
θ̂2

2ζ 2
2,1

z2 + λ2z2 + z2
2

)
,

u2 = − 1

g2,2

(
θ̂2

2ζ 2
2,1

z2 + λ2z2 + z2
2

)
,

where z1 = x1 − yd , z2 = x2 − α1, λ2 = c2 + g2,1. The virtual control function α1

is given by

α1 = − 1

g1,2

(
θ̂1

2ζ 2
1,1

z1 + λ1z1 + z1
2

)
,

where λ1 = c1 + g1,1. The controller design based on Theorem 4.1 is completed
here. In the next, another design according to Theorem 2 is presented.

According to Theorem 4.2, an adaptive law θ̂ and the control law u1, u2 are
chosen, respectively, as

˙̂
θ = r

2ζ 2
1,1

z21 + r

2ζ 2
2,1

z22 − βθ̂,

u1 = − 1

g2,1

(
θ̂

2ζ 2
2,1

z2 + λ2z2 + z2
2

)
,

u2 = − 1

g2,2

(
θ̂

2ζ 2
2,1

z2 + λ2z2 + z2
2

)
,

where z1 = x1 − yd , z2 = x2 − α1, λ2 = c1 + g2,1.
The virtual control function α1 is given as

α1 = − 1

g1,2

(
θ̂

2ζ 2
1,1

z1 + λ1z1 + z1
2

)
,

where λ1 = c1 + g1,1.
The simulation results are shown in Figs. 4.1, 4.2, 4.3 and 4.4, respectively.

Figure4.1 shows the system output y and reference signal yd . Figure4.2 depicts
the response of the tracking error y − yd . Figure4.3 illustrates the trajectory of the
adaptive law. Figure4.4 demonstrates the evolution of the switching signal. From
Figs. 4.1, 4.2 and 4.3, it can be seen that the output y of both controllers can track
the target signal yd well, and all the closed-loop signals remain bounded.
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Fig. 4.1 Tracking performances

Fig. 4.2 Responses of the
tracking error y − yd
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4.2.4 Conclusions

The tracking control problem for switched strict-feedback nonlinear systems with
completely unknown nonlinear functions is given. The application of the adaptive
backstepping technique is extended to a class of switched nonlinear systems with
unknown uncertainties. The stability analysis shows that the designed controllers can
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Fig. 4.3 Responses of the adaptive laws

Fig. 4.4 Switching signal
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ensure all the closed-loop signals remain bounded, and the system output converges
to a small neighborhood of the reference signal.
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4.3 Adaptive Control of Switched Nonstrict-Feedback
Nonlinear Systems

4.3.1 Problem Formulation and Preliminaries

In this section, the following nonlinear switched system in nonstrict-feedback form
is considered:

ẋi = gi,σ (t)xi+1 + fi,σ (t)(x) + wi,σ (t), 1 ≤ i ≤ n − 1

ẋn = gn,σ (t)uσ(t) + fn,σ (t)(x) + wn,σ (t)

y = x1 (4.43)

where x = (x1, x2, . . . , xn)T ∈ R
n is the system state, y is the system output;

σ(t) : [0,∞) → M = {1, 2, . . . ,m} is the switching signal; uk ∈ R is the control
input of the k-th subsystem. For any i = 1, 2, . . . , n and k ∈ M, fi,k(x) are unknown
smooth nonlinear functions satisfying locally Lipschitz conditions, gi,k are positive
constants, and wi,k is the bounded external disturbance of the system.

Our control objective is to design state-feedback controllers such that the output
of system (4.43) tracks a given time-varying signal yd(t) and all the signals of the
closed-loop systems remain bounded under arbitrary switchings.

Assumption 4.2 The tracking target yd(t) and its time derivatives up to the nth order
are continuous and bounded. It is further assumed that there exists a positive constant
d such that |yd | ≤ d.

Assumption 4.3 There exist strictly increasing smooth functions φi,k(.)s : R+ →
R

+ with φi,k(0) = 0 such that for i = 1, 2, . . . , n − 1, k ∈ M,

| fi,k(x)| ≤ φi,k(‖x‖).

Remark 4.3 The increasing property of φi,k(.)means that if ai ≥ 0, i = 1, 2, . . . , n,

then φi,k(
∑n

i=1 ai ) ≤ ∑n
i=1 φi,k(nai ). Note that φi,k(s) is a smooth function, and

φi,k(0) = 0. Therefore, there exists a smooth function pi,k(s) such that φi,k(s) =
spi,k(s), which gives that

φi,k

(
n∑

i=1

ai

)
≤

n∑
i=1

nai pi,k(nai ). (4.44)

In the control design procedure, radial basis function (RBF) neural networks are
used to approximate a continuous function f (X) on a compact set Ω ∈ Rq . For any
ε > 0, there exists a neural network ΦT P(X) such that

sup
x∈Ω

∣∣ f (X) − ΦT P(X)
∣∣ ≤ ε, (4.45)
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where P(X) = [p1(X), p2(X), . . . , pl(X)]T is the basis function vector, Φ =
[φ1, φ2, . . . , φl ]T is the ideal constant weight vector with l > 1 being the number of
the neural network nodes and pi (X) are chosen as the form:

pi (X) = exp

(−(X − μi )
T (X − μi )

ζ 2
i

)
, (4.46)

where ζi is the width of the Gaussian function, and μi = [μi1, μi2, . . . , μiq ]T is the
center vector.

Remark 4.4 The readers may refer to [25] for more details about neural networks.
Inequality (4.45) indicates that any given real continuous function f (X) can be
represented by the linear combination of the basis function vector P(X) within a
bounded error ε.

Lemma 4.2 For any ξ ∈ R and � > 0, the following inequality holds,

0 ≤ |ξ | − ξ tanh

(
ξ

�

)
≤ δ� (4.47)

where δ = 0.2785.

4.3.2 Adaptive Control Design Based on Neural Networks

In this section, a backstepping-based adaptive control design procedure is presented.
For the i th subsystem, define a common virtual control function αi as

αi (Xi ) = − zi
g
i

(
λi + l2i + η2

i θ̂ P
T
i (Xi )Pi (Xi )

)
. (4.48)

where λi , li and ηi are positive design parameters; g
i

= min{gi,k, k ∈ M}; θ̂ is
the estimation of θ which is an unknown constant and is specified later; Xi =
(x̄ Ti , yd , ẏd , . . . , y

(i)
d , θ̂ )T , x̄i = (x1, x2, . . . , xi )T ; Pi (Xi ) represents the basis func-

tion of the i th neural network system. Subsequently, a set of the variable change
of coordinates is defined as zi = xi − αi−1. Then, the z-system after coordinate
transform is that

żi = gi,k xi+1 + fi,k(x) + wi,k − α̇i−1, 1 ≤ i ≤ n − 1

żn = gn,kuk + fn,k(x) + wn,k − α̇n−1 (4.49)

where α0 = yd .
For i = 1, 2, . . . , n − 1, the time derivative of αi−1 is given by
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α̇i−1 =
i−1∑
s=1

∂αi−1

∂xs
( fs,k + gs,k xs+1 + ws,k) +

i−1∑
s=1

∂αi−1

∂θ̂

˙̂
θ +

i−1∑
s=0

∂αi−1

∂y(s)
d

y(s+1)
d

(4.50)

where
∑0

s=1
∂αi−1

∂xs
( fs,k + gs,k xs+1 + ws,k) = 0, and

∑0
s=1

∂αi−1

∂θ̂

˙̂
θ = 0.

The controller can be chosen as

u = − zn
g
n

(
λn + l2n + η2

n θ̂ P
T
n (Xn)Pn(Xn)

)
, (4.51)

where λn, ln and ηn are positive design parameters; g
n

= min{gn,k, k ∈ M}; Xn =
(x̄ Ti , yd , ẏd , . . . , y

(n)
d , θ̂ )T ; Pn(Xn) represents the basis function vector of the nth

neural network system.
The adaptive law is designed as

˙̂
θ =

n∑
i=1

rη2
i z

2
i P

T
i Pi − βθ̂ (4.52)

where r and β are positive design parameters.

Lemma 4.3 For the variable transformations zi = xi − αi−1, i = 1, 2, . . . , n, the
following inequality holds,

‖x‖ ≤
n∑

i=1

|zi | ϕi (θ̂) + d (4.53)

where α0 = yd , ϕi (θ̂) = 1
g
i

(
−(λi + l2i ) − η2

i θ̂ P
T
i (Xi )Pi (Xi )

)
+ 1, i = 1, 2, . . . ,

n − 1,and ϕn = 1.

The main result is given in the following theorem.

Theorem 4.3 Consider the closed-loop system (4.43) with the controller (4.51) and
the adaptive law (4.52). For 1 ≤ i ≤ n, k ∈ M, assume that all the unknown
nonlinear functions f̄i,k(x) are approximated by neural networks in the sense that
the approximation error εi,k is bounded. Then, for bounded initial conditions, the
target signal can be tracked within a small bounded error and other closed-loop
signals remain bounded.

Proof Consider the common Lyapunov function candidate as

V = 1

2

n∑
i=1

z2i + 1

2r
θ̃2 (4.54)

where r > 0 is a design parameter.
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The time derivative of V is given by

V̇ =
n−1∑
i=1

zi ( fi,k + gi,k xi+1 + w1,k − α̇i−1)

+ zn( fn,k + gn,ku + wn,k − α̇n−1) − 1

r
θ̃

˙̂
θ (4.55)

where α0 = yd.

By using (4.50), the following inequality can be obtained,

V̇ =
n−1∑
i=1

zi

{
fi,k + gi,k xi+1 + wi,k −

i−1∑
s=0

∂αi−1

∂y(s)
d

y(s+1)
d

−
i−1∑
s=1

∂αi−1

∂xs
( fs,k + gs,k xs+1 + ws,k) − ∂αi−1

∂θ̂

˙̂
θ

}

+ zn

{
fn,k + gn,ku + wn,k −

n−1∑
s=0

∂αn−1

∂y(s)
d

y(s+1)
d

−
n−1∑
s=1

∂αn−1

∂xs
( fs,k + gs,k xs+1 + ws,k) − ∂αn−1

∂θ̂

˙̂
θ

}
− 1

r
θ̃

˙̂
θ

=
n∑

i=1

zi

{
fi,k −

i−1∑
s=1

∂αi−1

∂xs
fs,k

}
+

n−1∑
i=1

zi
{
gi,k xi+1 + wi,k

−
i−1∑
s=0

∂αi−1

∂y(s)
d

y(s+1)
d −

i−1∑
s=1

∂αi−1

∂xs
(gs,k xs+1 + ws,k) − ∂αi−1

∂θ̂

˙̂
θ

}

+ zn

{
gn,ku + wn,k −

n−1∑
s=0

∂αn−1

∂y(s)
d

y(s+1)
d − ∂αn−1

∂θ̂

˙̂
θ

−
n−1∑
s=1

∂αn−1

∂xs
(gs,k xs+1 + ws,k)

}
− 1

r
θ̃

˙̂
θ (4.56)

By using Assumption 4.3, Lemma 4.3 and Remark 4.3, one has

zi

(
fi,k −

i−1∑
s=1

∂αi−1

∂xs
fs,k(x)

)

= −zi

i∑
s=1

∂αi−1

∂xs
fs,k(x) ≤

i∑
s=1

|zi ∂αi−1

∂xs
| ∣∣ fs,k(x)∣∣
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≤
i∑

s=1

|zi ∂αi−1

∂xs
|φs,k(‖x‖)

≤
i∑

s=1

n∑
j=1

|zi ∂αi−1

∂xs
||z j |φ̄s,k(|z j |ϕ j (θ)) +

i∑
s=1

|zi ∂αi−1

∂xs
|φs,k(d)

≤
i∑

s=1

n∑
j=1

1

2
z2i

(
∂αi−1

∂xs

)2

+
i∑

s=1

n∑
j=1

1

2
z2j φ̄

2
s,k(|z j |ϕ j (θ))

+
i∑

s=1

|zi ∂αi−1

∂xs
|φs,k(d) (4.57)

where φ̄s,k(|z j |ϕ j (θ)) = ϕ j (θ)hs,k(|z j |ϕ j (θ)).
Substituting (4.57) into (4.56) yields that

V̇ ≤
n∑

i=1

i∑
s=1

n∑
j=1

1

2
z2i

(
∂αi−1

∂xs

)2

+
n∑

i=1

i∑
s=1

n∑
j=1

1

2
z2j φ̄

2
s,k(|z j |ϕ j (θ)) +

n∑
i=1

i∑
s=1

|zi ∂αi−1

∂xs
|φs,k(d)

+
n−1∑
i=1

zi

{
gi,k xi+1 + wi,k −

i−1∑
s=0

∂αi−1

∂y(s)
d

y(s+1)
d

−
i−1∑
s=1

∂αi−1

∂xs
(gs,k xs+1 + ws,k) − ∂αi−1

∂θ̂

˙̂
θ

}

+ zn

{
gn,ku + wn,k −

n−1∑
s=0

∂αn−1

∂y(s)
d

y(s+1)
d − ∂αn−1

∂θ̂

˙̂
θ

−
n−1∑
s=1

∂αn−1

∂xs
(gs,k xs+1 + ws,k)

}
− 1

r
θ̃

˙̂
θ (4.58)

One can obtain that

n∑
i=1

i∑
s=1

n∑
j=1

1

2
z2j φ̄

2
s,k(|z j |ϕ j (θ)) =

n∑
i=1

z2i

n∑
s=1

q(n, s)φ̄2
s,k(|z j |ϕ j (θ)) (4.59)

where q(n, s) = (n−(s−1))
2 .

By using Lemma 4.2, the following inequality holds for �i,k > 0,
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i∑
s=1

|zi ∂αi−1

∂xs
|φs,k(d) ≤ zi Zi tanh

(
zi Zi

�i,k

)
+ δ�i,k (4.60)

where Zi = ∑i
s=1 |zi ∂αi−1

∂xs
|φs,k(d).

It follows from (4.58)–(4.60) that

V̇ ≤
n∑

i=1

z2i

i∑
s=1

n

2

(
∂αi−1

∂xs

)2

+
n∑

i=1

z2i

n∑
s=1

q(n, s)φ̄2
s,k(|z j |ϕ j (θ))

+
n∑

i=1

zi Zi tanh

(
zi Zi

�i,k

)
+

n∑
i=1

δ�i,k +
n−1∑
i=1

zi

{
gi,k xi+1 + wi,k

−
i−1∑
s=0

∂αi−1

∂y(s)
d

y(s+1)
d −

i−1∑
s=1

∂αi−1

∂xs
(gs,k xs+1 + ws,k) − ∂αi−1

∂θ̂

˙̂
θ

}

+ zn

{
gn,ku + wn,k −

n−1∑
s=0

∂αn−1

∂y(s)
d

y(s+1)
d − ∂αn−1

∂θ̂

˙̂
θ

−
n−1∑
s=1

∂αn−1

∂xs
(gs,k xs+1 + ws,k)

}
− 1

r
θ̃

˙̂
θ

=
n∑

i=1

zi

{
zi

i∑
s=1

n

2

(
∂αi−1

∂xs

)2

+ zi

n∑
s=1

q(n, s)φ̄2
s,k(|z j |ϕ j (θ))

+ Zi tanh

(
zi Zi

�i,k

)
−

n−1∑
s=1

∂αn−1

∂xs
(gs,k xs+1 + ws,k)

− ∂αi−1

∂θ̂

˙̂
θ −

i−1∑
s=0

∂αi−1

∂y(s)
d

y(s+1)
d + wi,k

}

+
n−1∑
i=1

zi gi,k xi+1 + zngn,ku − 1

r
θ̃

˙̂
θ +

n∑
i=1

δ�i,k (4.61)

Note that
n−1∑
i=1

zi gi,k xi+1 =
n−1∑
i=1

zi gi,k zi+1 +
n−1∑
i=1

zi gi,kαi (4.62)

and define

f̄i,k =zi

i∑
s=1

n

2

(
∂αi−1

∂xs

)2

+ zi

n∑
s=1

q(n, s)φ̄2
s,k(|z j |ϕ j (θ))
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+ Zi tanh

(
zi Zi

�i,k

)
−

n−1∑
s=1

∂αn−1

∂xs
(gs,k xs+1 + ws,k)

− ∂αi−1

∂θ̂

˙̂
θ −

i−1∑
s=0

∂αi−1

∂y(s)
d

y(s+1)
d + wi,k + gi−1,k zi−1 (4.63)

where g0 = 0 and z0 = 0.
Substituting (4.62) and (4.63) into (4.61) gives that

V̇ ≤
n−1∑
i=1

zi ( f̄i,k + gi,kαi ) + zn( f̄n,k + gn,kuk) +
n∑

i=1

δ�i,k − 1

r
θ̃

˙̂
θ (4.64)

The neural network ΦT
i,k Pi,k is utilized to approximate the unknown function f̄i,k

such that for any given ε̄i,k > 0,

f̄i,k = ΦT
i,k Pi,k(Xi ) + εi,k(Xi ) (4.65)

where Xi = (x̄ Ti , yd , ẏd , . . . , y
(i)
d , θ̂1, θ̂2, . . . , θ̂i )

T ,
∣∣εi,k∣∣ ≤ ε̄i,k, εi,k denotes the

approximation error. Thus, for i = 1, 2, . . . , n,

zi f̄i,k = ziΦ
T
i,k Pi,k(Xi ) + ziεi,k(Xi )

≤ η2
i

2
z2i

∥∥Φi,k

∥∥2
PT
i,k Pi,k + 1

2η2
i

+ l2i,k
2
z2i + ε2i,k

2l2i,k

≤ η2
i z

2
i θi P

T
i Pi + l2i z

2
i + ε̄2i

l2i
+ 1

η2
i

(4.66)

where ηi , li > 0, θi,k = ∥∥Φi,k

∥∥2
, θi = max{θi,k : k ∈ M}, Pi (Xi ) and ε̄i (Xi )

represent the basis function vector and the estimation error belongs to θi .

The feasible virtual control functions, adaptive laws and controllers are designed,
respectively, as

αi = − zi
g
i

(
λi + l2i + η2

i θ̂i P
T
i Pi

)
(4.67)

˙̂
θi = riη

2
i z

2
i P

T
i Pi − βi θ̂i (4.68)

uk = − zn
g
n

(
λn + l2n + η2

n θ̂n P
T
n Pn

)
(4.69)

where for i = 1, 2, . . . , n, λi , ri , βi are positive design parameters, and θ̂i is the
estimation of θi .

Consider that too many adaptive parameters (θ̂1, . . . , θ̂n) can cause the problem
of over-parameterization. Set r1 = r2 = · · · = rn = r, β1 = β2 = · · · = βn = β,
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and define θ = ∑n
i=1 θi , θ̂ = ∑n

i=1 θ̂i . The adaptive laws (4.68) can be changed as
follows

˙̂
θ =

n∑
i=1

˙̂
θi =

n∑
i=1

(
rη2

i z
2
i P

T
i Pi − βθ̂i

)

=
n∑

i=1

rη2
i z

2
i P

T
i Pi − βθ̂ . (4.70)

Then, the stabilizing functions, the adaptive law and controllers can be designed as
(4.48), (4.52) and (4.51) respectively.

Substituting (4.48), (4.51) and (4.52) into (4.62) one has

V̇ ≤ −
n∑

i=1

λi z
2
i +

n∑
i=1

β

r
θ̃ θ̂ +

n∑
i=1

(
ε̄2i

l2i
+ 1

η2
i

+ δ�i

)
(4.71)

where �i = max{�i,k, k ∈ M}.
It is true that

θ̃ θ̂ = θ̃ (θ − θ̃ ) ≤ −1

2
θ̃2 + 1

2
θ2 (4.72)

Then, (4.71) can be rewritten as

V̇ ≤ − 1

2

n∑
i=1

(
2λi z

2
i + β

r
θ̃2

)
+

n∑
i=1

(
ε̄2i

l2i
+ 1

η2
i

+ δ�i + β

2r
θ2

)

≤ − a0V + b0 (4.73)

where a0 = min{2λi , β : 1 ≤ i ≤ n} and b0 = ∑n
i=1(ε̄

2
i / l

2
i + 1/η2

i + δ�i + β

2r θ
2).

Furthermore

V (t) ≤
(
V (0) − b0

a0

)
e−a0t + b0

a0
(4.74)

which means that all the signals in the closed-loop system are bounded. In particular,
we have

lim
t→∞ |z1| ≤

√
2b0
a0

The proof is completed here. �
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Fig. 4.5 Ship manoeuvring
system

4.3.3 Simulation Results

In this section, the simulation studies for the ship manoeuvring systems shown in
Fig. 4.5 are carried out to illustrates the effectiveness of our results.

L : length of ship

N : moment component on body relative to z-axis

r : yaw rate

v : speed of ship

vx : forward velocity in x-axis

vy : drift velocity along y-axis

β : drift angle

x, y : force components on body

ψ : yaw angle

δ : rudder angle

The shipmaneuvering systemcan be described by the followingNorrbin nonlinear
model,

T ḣ + h + τh3 = K δ + ω, (4.75)

where T is the time constant, h = ψ̇ denotes the yaw rate, ψ stands for the heading
angle, τ is the Norrbin coefficient, K represents the rudder gain, δ is the rudder angle
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and ω stands for the outside disturbances. The value of τ can be determined via a
spiral test. The ship’s dynamic parameters are basically determined by its size and
shape, and may vary with operational conditions such as ship speed, draft, trim, and
water depth.

A simplified mathematical model of the rudder system can be described as:

TE δ̇ + δ = KEδE , (4.76)

where TE represents the rudder time constant, δ stands for the actual rudder angle,
KE denotes the rudder control gain and δE is the rudder order.

Let x1 = ψ , x2 = h, x3 = δ; one has

ẋ1 = x2,

ẋ2 = f + bx3 + ω,

ẋ3 = − 1

TE
x3 + KE

TE
δE , (4.77)

where f = − 1
T x2 − τ

T x
3
2 is an unknown nonlinear function, b = K

T .

Note that some parameters of the aforementioned system will change when the
speed of the ship changes. We adopt the following switched model to depict the
dynamic behavior when the ship is at low speed, medium speed and high speed,
respectively.

ẋ1 = x2,

ẋ2 = fσ(v)(x2) + bσ(v)x3 + ωσ(v),

ẋ3 = − 1

TE,σ (v)
x3 + KE,σ (v)

TE,σ (v)
δE,σ (v), (4.78)

where fσ(v)(x2) = − 1
Tσ(v)

x2 − τσ(v)

Tσ(v)
x32 , bσ(v) = Kσ(v)

Tσ(v)
and σ(v) is the switching signal

that satisfies:

σ(v) =
⎧⎨
⎩
1, 0 < v ≤ vL
2, vL < v ≤ vM
3, vM < v ≤ vT

where vL , vM , vT represent the value of low speed, medium speed and top speed,
respectively.

The vessel data comes from a ship that is listed in Table4.1. The controller para-
meters are chosen as those in Table4.2. Furthermore, the outside disturbances are:
w1 = 0.01 sin t ; w2 = 0.015 cos t ; w3 = 0.013 sin t . We construct the basis func-
tion vectors P1, P2 and P3 using 7, 15 and 27 nodes, the centers μ1, μ2 and μ3

evenly spaced on [−3, 3]×[−4, 1]×[−2, 2], [−0.5, 3.5]×[−4, 4]×[−8, 8] and
[−4, 4] × [−30, 10] × [−0.5, 3.5], and the widths ζ1 = 2, ζ2 = 2.5, and ζ3 = 2,
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Table 4.1 Model parameters of ship maneuvering system

v = 3.72 m/s (low speed) v = 7.5 m/s (medium speed) v = 15.3 m/s (high speed)

Parameter Value Parameter Value Parameter Value

L (m) 160.9 L 160.9 L 160.9

K1 (s−1) 0.32 K2 0.114 K3 0.051

T1 (s) 30 T2 63.69 T3 80.47

τ1 (s2) 40 τ2 30 τ3 25

TE,1 (s) 4 TE,2 2.5 TE,3 1

KE,1 2 KE,2 1 KE,3 0.72

Table 4.2 Controller parameters

Parameter λ1 λ2 λ3 l1 λ2 λ3 r

Value 2 3 5 12 14 10 0.01

Parameter η1 η2 η3 g
1

g
2

g
3

β

Value 8 10 12 1 6.3×10−4 0.4 0.1

respectively. The initial conditions are x1(0) = x2(0) = x3(0) = 0.02, θ̂ (0) = 1 and
the target signal is yd = 10 sin 0.05t.

To illustrate the effectiveness of the proposed controller, comparison results are
presented. The first one uses existing results in [26] and our results, respectively, to
control the system when the ship is at a constant speed: low speed. The other one
uses existing results [26] and our results respectively to control the system when the
ship switches among different speeds.

According to (4.51) and (4.52), the adaptive law θ̂ and the control law uk are
chosen, respectively, as

˙̂
θ =

3∑
i=1

rη2
i z

2
i P

T
i Pi − βθ̂

= 0.64z21P
T
1 P1 + z22P

T
2 P2 + 1.44z23P

T
3 P3 − 0.1θ̂

uk = − z3
g
3

(
λ3 + l23 + η2

3 θ̂ P
T
3 P3

)

= −2.5z3
(
105 + 144PT

3 P3
)

where z1 = x1 − yd , z2 = x2 − α1, z3 = x3 − α2.

The virtual control functions α1 and α2 are given by

α1 = − z1
g
1

(
λ1 + l21 + η2

1 θ̂ P
T
1 P1

)

= −z1(146 + 64θ̂ PT
1 P1)
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α2 = − z2
g
2

(
λ2 + l22 + η2

2 θ̂ P
T
1 P1

)

= −1.6 × 103 × z2
(
199 + 100θ̂ PT

2 P2
)

Figures 4.6, 4.7 and 4.8 show the comparison results by using the existing method
in [26] and our approach, respectively. It can be seen that both methods can ensure
the target signal is tracked within a small bounded error.

Figures4.6, 4.7, 4.8, 4.9, 4.10 and 4.11 depict the comparison results by using the
existing method in [26] and our method under different speeds, and Fig. 4.12 gives
the switching evolution among different speeds. From Figs. 4.9 and 4.10, it can be
seen that the existing results in [26] cannot guarantee a good tracking performance

Fig. 4.6 Tracking
performances under a
constant speed. yd is the
target signal; ψ1 and ψ2
represent the outputs by
using existing results in [26]
and our results respectively
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Fig. 4.7 Responses of
tracking errors under a
constant speed. ψ1 − yd and
ψ2 − yd stand for the
tracking error by using
existing results in [26] and
our results respectively
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Fig. 4.8 Responses of
adaptive laws under a
constant speed. θ̂1, θ̂2 and θ̂3
denote the adaptive laws by
existing results in [26]; θ̂
represents the adaptive law
by our results
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Fig. 4.9 Tracking
performances under
switched speeds. yd is the
target signal; ψ1 and ψ2
represent the outputs by
using existing results in [26]
and our results respectively

0 50 100 150
−15

−10

−5

0

5

10

15

Time(sec)

T
ra

ck
in
g 

P
er

fo
rm

an
ce

s

Responses under switched speeds

under switched speeds. However, our method can still ensure the target signal is
tracked within a small bounded error. Figure4.11 indicates that the adaptive law’s
number in our results is less than the one in [26].
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Fig. 4.10 Responses of
tracking errors under
switched speeds. ψ1 − yd
and ψ2 − yd stand for the
tracking error by using
existing results in [26] and
our results respectively
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Fig. 4.11 Responses of
adaptive laws under switched
speeds. θ̂1, θ̂2 and θ̂3 denote
the adaptive laws by existing
results in [26]; θ̂ represents
the adaptive law by our
results
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4.3.4 Conclusions

The problem of adaptive neural tracking control for a class of switched uncertain
nonlinear systems in nonstrict-feedback form is investigated. The stability analysis
in indicates that the designed controllers can ensure that the target signal can be
tracked with a small bounded error and the stability of the system can be kept under
arbitrary switchings.
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Fig. 4.12 Responses of
switching signal
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Chapter 5
Adaptive Control of Switched Stochastic
Nonlinear Systems

5.1 Background and Motivation

The last chapter discussed adaptive control design methods for switched nonlinear
systems with uncertainties. However, the system structures considered in the last
chapter are somewhat simple, which greatly limits the applications of the results in
practice.

It is well known that stochastic disturbance is inevitably encountered in practi-
cal systems. Therefore, control of stochastic systems with or without switching has
become an active research field and received much attention recently, see, e.g., [1–
5] and the references therein. The authors in [6] considered global stabilization for
high-order stochastic nonlinear systems with stochastic integral input-to-state sta-
bility inverse dynamics. The moment stability and sample path stability of switched
stochastic linear systems were investigated in [7]. In [8] dissipativity-based sliding
mode control for switched stochastic linear systems was adopted. Stabilization prob-
lems for stochastic nonlinear systems with Markovian switching were studied in [9].
The pth moment exponential stability and global asymptotic stability in probabil-
ity for a class of switched stochastic nonlinear retarded systems with asynchronous
switching were solved in [10].

Moreover, dead-zone characteristics are encountered in many physical compo-
nents of control systems. They are particularly common in actuators, such as hy-
draulic servovalves and electric servomotors. They also appear in biomedical sys-
tems. The system model is more realistic and reliable when the dead-zone nonlin-
earities are taken into consideration.

On the other hand, since the input-to-state stability (ISS) property was proposed
in [11], it has rapidly become an important tool to investigate the stability problem of
nonlinear systems. In view of the crucial importance of ISS, it is natural to introduce
this concept to switched nonlinear systems. In this chapter, we consider some control
problems of switched high-order nonlinear systems. Some complex dynamics such
as stochastic disturbances, uncertainties, dead-zone nonlinearities and input-to-state
stability inverse dynamics are considered in the systems under investigations. The

© Springer International Publishing Switzerland 2017
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considered mathematical models can provide a good description of a large number
of practical switched nonlinear systems.

Notation R denotes the n-dimensional space, Rn is the set of all nonnegative real
numbers. C i stands for a set of functions with continuous i th partial derivatives. For
a given matrix A (or vector v), AT (or vT ) denotes its transpose, and Tr{A} denotes
its trace when A is a square.K represents the set of functions:R+ → R

+, which are
continuous, strictly increasing and vanishing at zero;K∞ denotes a set of functions
that is of class K and unbounded. In addition, ‖·‖ refers to the Euclidean vector
norm. R denotes the n-dimensional space, R+ denotes the set of all nonnegative
real numbers, and R

∗ = {q ∈ R
+ : q ≥ 1 is an odd integer}. C i denotes a set

of all functions with continuous i th partial derivatives. For a given matrix A (or
vector v), AT (or vT ) denotes its transpose, and Tr{A} denotes its trace when A is a
square.K denotes the set of all functions:R+ → R

+, which are continuous, strictly
increasing and vanishing at zero;K∞ denotes a set of functions that are of classK
and unbounded. In addition, ‖·‖ refers to the Euclidean vector norm.

5.2 Adaptive Tracking Control for Switched Stochastic
Nonlinear Systems with Unknown Actuator Dead-Zone

5.2.1 Problem Formulation and Preliminaries

Consider the following switched stochastic nonlinear system in nonstrict-feedback
form.

dxi = (gi,σ (t)xi+1 + fi,σ (t)(x))dt + ψT
i,σ (t)(x)dw,

1 ≤ i ≤ n − 1,

dxn = (gn,σ (t)vσ(t) + fn,σ (t)(x))dt + ψT
n,σ (t)(x)dw,

vσ(t) = Dσ(t)(uσ(t)),

y = x1, (5.1)

where x = (x1, x2, . . . , xn)T ∈ R
n is the system state, w is an r -dimensional

independent standard Brownian motion defined on the complete probability space(
Ω,F , {Ft }t≥0 , P

)
withΩ being a sample space,F being a σ -field, {Ft }t≥0 being

a filtration, and P being a probability measure, and y is the system output; σ(t) :
[0,∞) → M = {1, 2, . . . ,m} represents the switching signal; vσ(t), uσ(t) ∈ R

are the actuator output and input. For any i = 1, 2, . . . , n and k ∈ M, fi,k(x) :
R

n → R, ψi,k : Rn → R
r are locally Lipschitz unknown nonlinear functions and

gi,k are positive known constants.
The nonsymmetric dead-zone nonlinearity is considered in the chapter, which is

defined as the form in [12]:
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vk = Dk(uk) =
⎧⎨
⎩
mrk (uk − brk ), uk ≥ brk
0, −blk < uk < brk
mlk (uk + blk ), uk ≤ −blk

(5.2)

Here, mrk > 0 and mlk > 0 represent the right and the left slopes of the dead-zone
characteristic. brk > 0 and blk > 0 stand for the breakpoints of the input nonlinearity.

It is assumed that the nonsymmetric dead-zone nonlinearity can be reformulated
as:

vk = D
′
k(uk) + ιk, (5.3)

where D
′
k(uk) is a smooth function, ιk is the error between Dk(uk) and D

′
k(uk) with|ιk | ≤ ῑk .

Moreover, we have

vk = uk + (D
′
k(uk) − uk + ιk)

= uk + η
′
k(uk) + ιk, (5.4)

where η
′
k(uk) = D

′
k(uk) − uk is an unknown function.

The controller can be designed as

uk = uck − uφk . (5.5)

Then (5.4) can be rewritten as

vk = uck + η
′
k(uk) − uφk + ιk . (5.6)

where uφk is the compensator of dead-zone nonlinearity and uck is a main controller
of system (5.1).

Our control objective is to design a state-feedback controller such that the output
of system (5.1) can track a given time-varying signal yd(t), and the problem of the
actuator dead-zone can be solved. The following assumptions are supposed to be
true.

Assumption 5.1 The tracking target yd(t) and its time derivatives up to nth order
y(n)
d (t) are continuous and bounded; it is further assumed that |yd(t)| ≤ d.

Assumption 5.2 There exist strictly increasing smooth functions φi,k(·), ρi,k(·) :
R+ → R+ with φi,k(0) = ρi,k(0) = 0 such that for i = 1, 2, . . . , n and k ∈ M,

| fi,k(x)| ≤ φi,k(‖x‖). (5.7)∣∣ψi,k(x)
∣∣ ≤ ρi,k(‖x‖). (5.8)

Remark 5.1 The increasing properties of φi,k(·), ρi,k(·) imply that if ai , bi
≥ 0, for i = 1, 2, . . . , n, then φi,k(

∑n
i=1 ai ) ≤ ∑n

i=1 φi,k(nai ), ρi,k(
∑n

i=1 bi ) ≤∑n
i=1 ρi,k(nbi ). Notice that φi,k(s), ρi,k(s) are smooth functions, and φi,k(0) =
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ρi,k(0) = 0. Therefore, there exist smooth functions hi,k(s), ηi,k(s) such that
φi,k(s) = shi,k(s), ρi,k(s) = sηi,k(s) which results in

φi,k

⎛
⎝ n∑

j=1

a j

⎞
⎠ ≤

n∑
j=1

na jhi,k(na j ). (5.9)

ρi,k

⎛
⎝ n∑

j=1

b j

⎞
⎠ ≤

n∑
j=1

nb jηi,k(nb j ). (5.10)

We use the radial basis function (RBF) neural networks to approximate any a real
function f (Z) over a compact set ΩZ ⊂ R

q . For arbitrary ε̄ > 0, there exists a
neural network WT S(Z) such that

f (Z) = WT S(Z) + ε(Z), ε(Z) ≤ ε̄, (5.11)

where Z ∈ ΩZ ⊂ Rq , W = [w1,w2, . . . ,wl ]T is the ideal constant weight vector,
and S(Z) = [s1(Z), s2(Z), . . . , sl(Z)]T is the basis function vector, with l > 1
being the number of the neural network nodes and si (Z) being chosen as Gaussian
functions; i.e., for i = 1, 2, . . . , l,

si (Z) = exp

[−(Z − μi )
T (Z − μi )

ζ 2
i

]
, (5.12)

where μi = [μi1, μi2, . . . , μiq ]T is the center vector, and ζi is the width of the
Gaussian function.

Definition 5.1 For any given V (xi , t) ∈ C 2,1 associated with system (5.1), define
the differential operator L as follows;

L V = ∂V

∂t
+ ∂V

∂xi
Fi,k + 1

2
Tr

{
ψT
i,k

∂2V

∂x2i
ψi,k

}
, (5.13)

where Fi,k = gi,k xi+1 + fi,k(x).

Definition 5.2 The trajectory {x(t), t ≥ 0} of switched stochastic system (5.1) is
said to be semi-globally uniformly ultimately bounded (SGUUB) in the pth moment,
if for some compact setΩ ∈ R

n and any initial state x0 = x(t0), there exist a constant
ε > 0, and a time constant T = T (ε, x0) such that E(|x(t)|p) < ε, for all t > t0+T .
Especially, when p = 2, it is usually called SGUUB in mean square.
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Lemma 5.1 ([13])Suppose that there exist aC2,1 function V (x, t) : Rn×R
+ → R

+,
two constants c1 > 0 and c2 > 0, classK∞ functions ᾱ1 and ᾱ2 such that

{
ᾱ1(|x |) ≤ V (x, t) ≤ ᾱ2(|x |)
L V ≤ −c1V (x, t) + c2

for all x ∈ R
n and t > t0. Then, there is an unique strong solution of system (5.1)

for each x0 ∈ R
n, that satisfies

E[V (x, t)] ≤ V (x0)e
−c1t + c2

c1
, ∀t > t0

Lemma 5.2 ([14]) For any ξ ∈ R and � > 0, the following inequality holds:

0 ≤ |ξ | − ξ tanh

(
ξ

�

)
≤ δ�, (5.14)

with δ = 0.2785.

5.2.2 Main Results

Based on the backstepping technique, a control design and stability analysis proce-
dure is presented in this section. For i = 1, 2, . . . , n − 1, define a common virtual
control function αi as

αi = 1

gi,min

[
−

(
λi + 3

4

)
zi − 1

2a2i
z3i θ̂ S

T
i Si

]
, (5.15)

where λi , ai > 0 are design parameters, gi,min = min{gi,k : k ∈ M}, zi is the
new state variable after the coordinate transformation: zi = xi − αi−1, α0 = yd .
θ̂ is an unknown constant that is specified later. Si = Si (Xi ) is the basis function

vector. Xi = [x̄ Ti ,
¯̂
θi , ȳ

(i)
d ]T with x̄i = [x1, x2, . . . , xi ]T , ¯̂

θi = [θ̂1, θ̂2, . . . , θ̂i ]T ,
ȳ(i)
d = [yd , ẏd , . . . , y(i)

d ]T . The z-system is obtained as

dzi = (gi,k xi+1 + fi,k − L αi−1)dt +
⎛
⎝ψi,k −

i−1∑
j=0

∂αi−1

∂x j
ψ j,k

⎞
⎠

T

dw, 1 ≤ i ≤ n − 1

dzn = (gn,kvk + fn,k − L αn−1)dt +
⎛
⎝ψn,k −

n−1∑
j=0

∂αn−1

∂x j
ψ j,k

⎞
⎠

T

dw, (5.16)

where the differential operator L is defined in Definition 5.1; L αi−1 is given by:
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L αi−1 = ∂αi−1

∂θ̂

˙̂
θ +

i−1∑
s=1

∂αi−1

∂xs
( fs,k + gs,k xs+1)

+
i−1∑
s=0

∂αi−1

∂y(s)
d

y(s+1)
d + 1

2

i−1∑
p,q=1

∂2αi−1

∂xp∂xq
ψT

p,kψq,k . (5.17)

Consider the following common stochastic Lyapunov function candidate

V =
n∑

i=1

1

4
z4i + 1

2r1
θ̃2 + 1

2r2
ϑ̃2, (5.18)

where r1, r2 > 0 are design parameters; θ and ϑ are specified later. θ̂ and ϑ̂ stand
for the estimations of θ and ϑ , respectively; θ̃ = θ − θ̂ , ϑ̃ = ϑ − ϑ̂ .

Lemma 5.3 From the coordinate transformations zi = xi − αi−1, i = 1, 2, . . . , n,

α0 = yd , the following results hold,

‖x‖ ≤
n∑

i=1

|zi | ϕi (zi , θ̂ ) + d, (5.19)

where ϕi (zi , θ̂ ) = 1
gi,min

[(λi + 3
4 ) + 1

2a2i
z2i θ̂ S

T
i Si ] + 1, for i = 1, 2, . . . , n − 1, and

ϕn = 1.

Proof From Assumption 5.1 and (5.15), one can get that

‖x‖ ≤
n∑

i=1

|xi |

≤
n∑

i=1

(|zi | + |αi−1|)

≤
n∑

i=1

|zi | + yd +
n−1∑
i=1

(
1

gi,min
[(λi + 3

4
) + 1

2a2i
z2i θ̂ S

T
i Si ]

)
|zi |

≤
n∑

i=1

|zi | ϕi (zi , θ̂ ) + d.

The proof of Lemma 5.3 is completed here. �

The L V can be given by
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L V =
n−1∑
i=1

{
z3i

(
fi,k + gi,k xi+1 −

i−1∑
s=0

∂αi−1

∂y(s)
d

y(s+1)
d − ∂αi−1

∂θ̂

˙̂
θ

−
i−1∑
s=1

∂αi−1

∂xs
( fs,k + gs,k xs+1) − 1

2

i−1∑
p,q=1

∂2αi−1

∂xp∂xq
ψT

p,kψq,k

⎞
⎠

+ 3

2
z2i

∥∥∥∥∥∥ψi,k −
i−1∑
j=0

∂αi−1

∂x j
ψ j,k

∥∥∥∥∥∥
2⎫⎬
⎭ + z3n

(
fn,k + gn,kvk −

n−1∑
s=0

∂αn−1

∂y(s)
d

y(s+1)
d

−
n−1∑
s=1

∂αn−1

∂xs
( fs,k + gs,k xs+1) − ∂αn−1

∂θ̂

˙̂
θ − 1

2

n−1∑
p,q=1

∂2αn−1

∂xp∂xq
ψT

p,kψq,k

⎞
⎠

− 1

r1
θ̃

˙̂
θ + 3

2
z2n

∥∥∥∥∥∥ψn,k −
n−1∑
j=0

∂αn−1

∂x j
ψn,k

∥∥∥∥∥∥
2

− 1

r2
ϑ̃

˙̂
ϑ

=
n∑

i=1

{
z3i

(
fi,k −

i−1∑
s=1

∂αi−1

∂xs
fs,k −

i−1∑
s=0

∂αi−1

∂y(s)
d

y(s+1)
d −

i−1∑
s=1

∂αi−1

∂xs
gs,k xs+1

− ∂αi−1

∂θ̂

˙̂
θ − 1

2

i−1∑
p,q=1

∂2αi−1

∂xp∂xq
ψT

p,kψq,k

⎞
⎠ + 3

2
z2i

∥∥∥∥∥∥ψi,k −
i−1∑
j=0

∂αi−1

∂x j
ψ j,k

∥∥∥∥∥∥
2⎫⎬
⎭

− 1

r1
θ̃

˙̂
θ − 1

r2
ϑ̃

˙̂
ϑ +

n−1∑
i=1

z3i gi,k xi+1 + z3ngn,kvk . (5.20)

By resorting to Assumption 5.2 and Lemma 5.3, one has that

z3i ( fi,k −
i−1∑
s=1

∂αi−1

∂xs
fs,k(x))

= − z3i

i∑
s=1

∂αi−1

∂xs
fs,k(x)

≤3

4
nz4i

i∑
s=1

(
∂αi−1

∂xs

) 4
3

+
i∑

s=1

n∑
l=1

z4l φ̄
4
s,k(zl, θ̂ ) + ∣∣z3i ∣∣

i∑
s=1

∣∣∣∣∂αi−1

∂xs

∣∣∣∣φs,k((n + 1)d),

(5.21)

where φ̄4
s,k(zl , θ̂ ) = 1

4 (n + 1)4ϕ4
l (zl , θ̂ )h4s,k((n + 1)|zl |ϕl(zl , θ̂ )), ∂α0

∂xi
= 0 and

∂αi−1

∂xi
= −1.

Then, the following inequality can be obtained,
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3

2
z2i

∥∥∥∥∥∥ψi,k −
i−1∑
j=0

∂αi−1

∂x j
ψ j,k

∥∥∥∥∥∥
2

≤ 9

8
i2(n + 1)2nz4i +

n∑
l=1

z4l ρ̄
4
i,k(zl, θ̂ ) +

i−1∑
j=1

n∑
l=1

z4l ρ̄
4
j,k(zl , θ̂ )

+ 9

8
i2(n + 1)2nz4i

i−1∑
j=1

(
∂αi−1

∂x j
)4 + 9

8
i2(n + 1)2z4i l

−2
i i ρ4

i,k((n + 1)d)

+
i∑

j=1

l2i j + 9

8
i2(n + 1)2z4i

i−1∑
j=1

(
∂αi−1

∂x j
)4l−2

i j ρ4
j,k((n + 1)d), (5.22)

where li j is a positive constant, and
∂α0
∂x j

= 0 because α0 = yd , and

− 1

2
z3i

i−1∑
p,q=1

∂2αi−1

∂xp∂xq
ψT

p,kψq,k

≤ (i − 1)
i−1∑
s=1

n∑
l=1

z4l ρ̄
4
s,k(zl, θ̂ )

+ 1

8
(n + 1)2nz6i

i−1∑
s=1

i−1∑
j=1

(
∂2αi−1

∂xs∂x j

)2

+ 1

2
(n + 1)

∣∣z3i ∣∣
i−1∑
s=1

i−1∑
j=1

∣∣∣∣ ∂2αi−1

∂xs∂x j

∣∣∣∣ ρ2
s,k((n + 1)d), (5.23)

where ρ̄4
s,k(zl , θ̂ ) = 1

2 (n+1)4ϕ4
l (zl, θ̂ )η4

s,k((n+1)|zl |ϕl(zl , θ̂ )), s = 1, 2, . . . , i −1.
Substituting (5.21), (5.22) and (5.23) into (5.20) gives that

L V ≤
n∑

i=1

3

4
nz4i

i∑
s=1

(
∂αi−1

∂xs

) 4
3

+
n∑

i=1

i∑
s=1

n∑
l=1

z4l φ̄
4
s,k(zl, θ̂ )

+
n∑

i=1

∣∣z3i ∣∣
i∑

s=1

∣∣∣∣∂αi−1

∂xs

∣∣∣∣φs,k((n + 1)d) +
n∑

i=1

i−1∑
s=1

n∑
l=1

(i − 1)z4l ρ̄
4
s,k(zl, θ̂ )

+
n∑

i=1

i−1∑
s=1

i−1∑
j=1

1

8
(n + 1)2nz6i

(
∂2αi−1

∂xs∂x j

)2

+
n∑

i=1

i−1∑
s=1

i−1∑
j=1

1

2
(n + 1)

∣∣z3i ∣∣ ρ2
s,k((n + 1)d)

∣∣∣∣ ∂2αi−1

∂xs∂x j

∣∣∣∣
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+
n∑

i=1

{
9

8
i2(n + 1)2nz4i +

n∑
l=1

z4l ρ̄
4
i,k(zl, θ̂ ) +

i−1∑
j=1

n∑
l=1

z4l ρ̄
4
j,k(zl, θ̂ )

+ 9

8
i2(n + 1)2nz4i

i−1∑
j=1

(
∂αi−1

∂x j

)4

+ 9

8
i2(n + 1)2z4i l

−2
i i ρ4

i,k((n + 1)d) +
i∑

j=1

l2i j

+ 9

8
i2(n + 1)2z4i

i−1∑
j=1

(
∂αi−1

∂x j

)4

l−2
i j ρ4

j,k((n + 1)d)

⎫⎬
⎭

+
n∑

i=1

z3i

(
−

i−1∑
s=0

∂αi−1

∂y(s)
d

y(s+1)
d − ∂αi−1

∂θ̂

˙̂
θ −

i−1∑
s=1

∂αi−1

∂xs
gs,k xs+1

)

+
n−1∑
i=1

z3i gi,k xi+1 + z3ngn,kvk − 1

r1
θ̃

˙̂
θ − 1

r2
ϑ̃

˙̂
ϑ. (5.24)

Define Ui,k as

Ui,k =
i∑

s=1

|∂αi−1

∂xs
|φs,k((n + 1)d)

+ 1

2
(n + 1)

i−1∑
s=1

i−1∑
j=1

∣∣∣∣ ∂2αi−1

∂xs∂x j

∣∣∣∣ ρ2
s,k((n + 1)d). (5.25)

By using Lemma 5.2 one has

∣∣z3i ∣∣Ui,k ≤ z3i Ui,k tanh(
z3i Ui,k

�i,k
) + δ�i,k . (5.26)

Note that
n−1∑
i=1

z3i gi,k xi+1 =
n−1∑
i=1

z3i gi,k zi+1 +
n−1∑
i=1

gi,k z
3
i αi , (5.27)

Therefore, one has

n∑
i=1

i∑
s=1

n∑
l=1

z4l φ̄
4
s,k(zl, θ̂ ) =

n∑
i=1

z4i

n∑
s=1

(n − s + 1)φ̄4
s,k(zi , θ̂ ),

n∑
i=1

(i − 1)
i−1∑
s=1

n∑
l=1

z4l ρ̄
4
s,k(zl, θ̂ ) =

n∑
i=1

z4i

n−1∑
s=1

(n − s)(i − 1)ρ̄4
s,k(zi , θ̂ ),

n∑
i=1

i∑
j=1

n∑
l=1

z4l ρ̄
4
j,k(zl, θ̂ ) =

n∑
i=1

z4i

n∑
j=1

(n − j + 1)ρ̄4
j,k(zi , θ̂ ).
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For any i = 1, 2, . . . , n and k ∈ M , define f̄i,k as

f̄i,k = 3

4
nzi

i∑
s=1

(
∂αi−1

∂xs

) 4
3

+ zi

n∑
s=1

(n − s + 1)φ̄4
s,k(zi , θ̂ )

+ zi

n−1∑
s=1

(n − s)(i − 1)ρ̄4
s,k(zi , θ̂ ) +

i−1∑
s=1

i−1∑
j=1

1

8
(n + 1)2nz3i

(
∂2αi−1

∂xs∂x j

)2

+ 9

8
i2(n + 1)2zi

i−1∑
j=1

(
∂αi−1

∂x j

)4

l−2
i j ρ4

j,k((n + 1)d)

+ zi

n∑
j=1

(n − j + 1)ρ̄4
j,k(zi , θ̂ ) + 9

8
i2(n + 1)2nzi

+ 9

8
i2(n + 1)2zi l

−2
i i ρ4

i,k((n + 1)d) + 9

8
i2(n + 1)2nzi

i−1∑
j=1

(
∂αi−1

∂x j

)4

−
i−1∑
s=0

∂αi−1

∂y(s)
d

y(s+1)
d − ∂αi−1

∂θ̂

˙̂
θ −

i−1∑
s=1

∂αi−1

∂xs
gs,k xs+1

+Ui,k tanh(
z3i Ui,k

�i,k
) + gi,k zi+1, (5.28)

with zn+1 = 0.
Substituting (5.6) and (5.26)–(5.28) into (5.24) yields that

L V ≤
n−1∑
i=1

z3i ( f̄i,k + gi,kαi ) + z3n f̄n,k + z3ngn,k(uck + η
′
k − uφk + ιk)

− 1

r1
θ̃

˙̂
θ − 1

r2
ϑ̃

˙̂
ϑ +

n∑
i=1

⎛
⎝δ�i,k +

i∑
j=1

l2i j

⎞
⎠ . (5.29)

By exploring the neural networks’ approximation capability andYoung’s inequal-
ity, one can get the following inequalities.
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z3i f̄i,k = z3i W
T
i,k Si,k + z3i εi,k

≤ 1

2a2i
z6i

∥∥Wi,k

∥∥2 STi,k Si,k + a2i
2

+ 3

4
z4n + ε̄4i,k

4
,

≤ 1

2a2i
z6i θi S

T
i Si + a2i

2
+ 3

4
z4i + ε̄4i

4
, (5.30)

z3n(η
′
k + ιk) = z3nW

T
η,k Sη,k + z3n(εη,k + ιk)

≤ 1

2a2η
z6nϑηS

T
η Sη + a2η

2
+ 3z4n + ε̄4η

4
, (5.31)

where θi,k = ∥∥Wi,k

∥∥2, ϑη,k = ∥∥Wη,k

∥∥2, θi = max{θi,k : k ∈ M}, ϑη = max{ϑη,k :
k ∈ M}, ∣∣εi,k∣∣ ≤ ε̄i ,

∣∣εη,k + ιk
∣∣ ≤ ε̄η.

Substituting (5.30) and (5.31) into (5.29) gives

L V ≤
n−1∑
i=1

z3i

(
z3i θi
2a2i

STi Si + gi,kαi

)
+ z3n

(
z3nθn
2a2n

STn Sn + gn,kuck

)

+ z3ngn,k

(
1

2a2η
z3nθηS

T
η Sη − uφk

)
+ gn,k

(
a2η
2

+ 3

4
z4n + ε̄4η

4

)

+
n∑

i=1

(
2a2i + 3z4i + ε̄4i

4

)
− 1

r1
θ̃

˙̂
θ − 1

r2
ϑ̃

˙̂
ϑ +

n∑
i=1

⎛
⎝δ�i +

i∑
j=1

l2i j

⎞
⎠ , (5.32)

where �i := max{�i,k, k ∈ M}.
Design the virtual control function as

αi = 1

gi,min

[
−

(
λi + 3

4

)
zi − 1

2a2i
z3i θ̂ S

T
i Si

]
, (5.33)

where θ̂ = ∑n
i=1 θ̂i is the estimation of θ ; λi > 0 is a design parameter.

The actual actuator input is given as

uk = uck − uφk , (5.34)

where

uck = 1

gn,k

[
−

(
λn + 3

4

)
zn − 1

2a2n
z3n θ̂ S

T
n Sn

]
, (5.35)

uφk =
(

λη + 3

4

)
zn + gn,max

2a2ηgn,k
z3nϑ̂STη Sη, (5.36)
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λn , λη, an , aη > 0 are design parameters, gn,max = max{gn,k ,k ∈ M}, gn,min =
min{gn,k ,k ∈ M}, ϑ̂ is the estimation of ϑ .

The adaptive laws can be designed as

˙̂
θ =

n∑
i=1

r1
2a2i,min

z6i S
T
i Si − β1θ̂ , (5.37)

˙̂
ϑ = gn,maxr2

2a2η,min

z6n S
T
η Sη − β2ϑ̂ . (5.38)

Then, one can get from (5.32)–(5.38) that

L V ≤ −
n∑

i=1

λi z
4
i − ληz

4
n + gn,k

(
a2η
2

+ ε̄4η

4

)
+

n∑
i=1

(
a2i
2

+ ε̄4i

4

)
+ β1

r1
θ̃ θ̂

+ β2

r2
ϑ̃ ϑ̂ +

n∑
i=1

⎛
⎝δ�i +

i∑
j=1

l2i j

⎞
⎠ . (5.39)

It is clear that

θ̃ θ̂ = θ̃ (θ − θ̃ ) ≤ −1

2
θ̃2 + 1

2
θ2, (5.40)

ϑ̃ ϑ̂ = ϑ̃(ϑ − ϑ̃) ≤ −1

2
ϑ̃2 + 1

2
ϑ2. (5.41)

Combining (5.39) with (5.40) and (5.41) yields that

L V ≤ −
n∑

i=1

λi z
4
i − β1

2r1
θ̃2 − β2

2r2
ϑ̃2 + gn,k

(
a2η
2

+ ε̄4η

4

)
+

n∑
i=1

(
a2i
2

+ ε̄4i

4

)

+
n∑

i=1

⎛
⎝δ�i +

i∑
j=1

l2i j

⎞
⎠ + β1θ

2

2r1
+ β2ϑ

2

2r2

≤ − p0V + q0, (5.42)

where λn := λn + λη, p0 = min{4λi , β1, β2 : 1 ≤ i ≤ n}, q0 = ∑n
i=1(

a2i
2 + ε̄4i

4 ) +∑n
i=1

(
δ�i + ∑i

j=1 l
2
i j

)
+ β1θ

2

2r1
+ β2ϑ

2

2r2
+ gn,k(

a2η
2 + ε̄4η

4 ).

By using Lemma 5.1, we have

dE[V (t)]
dt

≤ −p0E[V (t)] + q0; (5.43)

Then, the following inequality holds
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0 ≤ E[V (t)] ≤ V (0)e−p0t + q0
p0

, (5.44)

where V (0) = ∑n
j=1

z2j (0)

4 + 1
2r1

θ̃ (0)2+ 1
2r2

ϑ̃(0)2. Equation (5.44) implies that all the
signals in the closed-loop system are bounded in probability. In particular, we have

E[|zi |4] ≤ 4q0
p0

, t → ∞. (5.45)

Now, we are ready to provide our main result in the following theorem.

Theorem 5.1 Consider the closed-loop system (5.1) with unknown nonsymmetric
actuator dead-zone (5.2). Suppose that for 1 ≤ i ≤ n, k ∈ M, the packaged
unknown functions f̄i,k can be approximated by neural networks in the sense that
the approximation error εi,k are bounded. Under the state feedback controller (5.34)
and the adaptive laws (5.37), (5.38), the following statements hold,

(i) All the signals of the closed-loop z-system (5.17) are SGUUB in the fourth
moment and

P

{
lim
t→∞

n∑
i=1

E[|zi |4] ≤ 4q0
p0

}
= 1.

(ii) The output y of the closed-loop system (5.1) can be almost surely regulated
to a small neighborhood of the target signal.

Proof It is not difficult to complete the proof by using the above developments. �

5.2.3 Simulation Results

In this section, an example about the control of a ship manoeuvring system are used
to illustrate the effectiveness of the obtained results.

The shipmaneuvering systemcan be described by the followingNorrbin nonlinear
model [15].

Tσ(vs )ḣ + h + ασ(vs )h
3 = Kσ(vs )δ + φT

σ(vs )(ψ, h, δ)w,

where Tσ(vs ) is the time constant, h = ψ̇ denotes the yaw rate, ψ stands for the
heading angle, ασ(vs ) is the Norrbin coefficient, Kσ(vs ) represents the rudder gain, δ is
the rudder angle and w stands for an r -dimensional independent standard Brownian
motion, φσ(vs )(ψ, h, δ) : R

3 → R
3×r is an unknown function, and σ(vs) is the

switching signal that satisfies:

σ(vs) =
⎧⎨
⎩
1, 0 < vs ≤ vL
2, vL < vs ≤ vM
3, vM < vs ≤ vT



108 5 Adaptive Control of Switched Stochastic Nonlinear Systems

vL , vM , vT represent the value of low speed, middle speed and top speed, respec-
tively.

A simplifiedmathematicalmodel of the rudder systemcan be described as follows,

TE,σ (vs )δ̇ + δ = KE,σ (vs )δE,σ (vs ),

where TE,σ (vs ) represents the rudder time constant, δ stands for the actual rudder
angle, KE,σ (vs ) denotes the rudder control gain and δE,σ (vs ) is the rudder order.

Let x1 = ψ , x2 = h, x3 = δ, vσ(vs ) = δE,σ (vs ); we can get the following switched
nonlinear system model with actuator dead-zone to describe the dynamic behavior
of the ship with low speed, middle speed and high speed, respectively.

dx1 = x2dt,

dx2 = ( fσ(vs ) + bσ(vs )x3)dt + φT
σ(vs )dω,

dx3 =
(

− 1

TE,σ (vs )
x3 + KE,σ (t)

TE,σ (vs )
vσ(vs )

)
dt,

vσ(vs ) = D(uσ(vs ))

where fσ(vs ) = − 1
Tσ(vs )

x2 − τσ(vs )

Tσ(vs )
x32 , bσ(vs ) = Kσ(vs )

Tσ(vs )
.

The vessel data comes from a ship that has a length overall of 160.9 m. vL = 3.7
m/s, K1 = 32 s-1, T1 = 30 s, τ1 = 40 s2, TE,1 = 4 s, KE,1 = 2; vM = 7.5 m/s,
K2 = 11.4 s-1, T2 = 63.69 s, τ2 = 30 s2, TE,2 = 2.5 s, KE,2 = 1; vT = 15.3
m/s, K3 = 5.1 s-1, T3 = 80.47 s, τ3 = 25 s2, TE,3 = 1 s, KE,3 = 0.72. The initial
conditions are x1(0) = 2, x2(0) = −0.05, x3(0) = 0.03, θ̂ (0) = 10, ϑ̂(0) = 1.
We construct the basis function vectors S1, S2, S3 and Sη using 11, 15, 21 and
48 nodes, the centers μ1, μ2, μ3, μη evenly spaced on [−1.5, 4.5] × [−3, 4] ×
[−10, 8], [−5, 4] × [−30, 20] × [−0.5, 5.5], [−5.5, 8] × [−12, 25] × [−0.1, 2]
and [−10, 2]×[−60, 2]×[−0.2, 10.5], and the widths ζ1 = 1.2, ζ2 = 2.2, ζ3 = 2,
ζη = 1.8. The design parameters are a1 = a2 = a3 = aη = 10, r1 = 2, r2 = 10,
β1 = 0.5, β2 = 0.1, λ1 = λ2 = λ3 = 5, and λη = 3. The desired trajectory is
yd = 10 sin 0.08t .

According to Theorem 5.1, the adaptive laws ˙̂
θ , ˙̂

ϑ and the control laws uck , uφk

are chosen, respectively, as

˙̂
θ =

3∑
i=1

0.01z6i S
T
i Si − 0.5θ̂ ,

˙̂
ϑ = 0.036z63S

T
η Sη − 0.1ϑ̂,

uck = 1

g3,k
[−5.75z3 − 0.005z33θ̂ S

T
3 S3],

uφk = 3.75z3 + 0.00057

g3,k
z33ϑ̂STη Sη,
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where uk = uck − uφk , z1 = x1 − yd , z2 = x2 − α1, z3 = x3 − α2 and α1, α2 are
given by

α1 = −5.75z1 − 0.005z31θ̂ S
T
1 S1,

α2 = −92z2 − 0.08z32θ̂ S
T
2 S2.

In order to give the simulation results, we assume that

vk = D(uk) =
⎧⎨
⎩
10(uk − 50), uk ≥ 50
0, −60 < uk < 50
20(uk + 60), uk ≤ −60

and φ1 = 0.5x1 sin x2x3, φ2 = 0.25x21 x2 cos x2, φ3 = 0.1x1x3. The simulation
results are shown in Figs. 5.1–5.4. Figure 5.1 depicts the responses of system output
ψ and target signal yd . Figure5.2 shows the trajectories of adaptive laws. Figure5.3
demonstrates the responses of D(uck ) (without dead-zone compensation controller)
and D(uck − uφk ) (with dead-zone compensation controller) and Fig. 5.4 illustrates
the evolution of the switching signal. From Fig. 5.1, it can be seen that the output
ψ can track the target signal yd within a small bounded error. On the other hand,
Fig. 5.3 proves that the dead-zone nonlinearity can be compensated by uφk .

5.2.4 Conclusions

The tracking control problem for a class of stochastic switched nonlinear systems
under arbitrary switchings has been investigated, where the unknown nonsymmetric
actuator dead-zone is taken into account. A state feedback controller is designed
for the systems under consideration. It is shown that the target signal can be almost
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Fig. 5.2 The responses of
adaptive laws
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surely tracked by the system output within a small bounded error, and the tracking
error is SGUUB in 4th moment.

5.3 Adaptive Neural Control for Switched Stochastic
High-Order Uncertain Nonlinear Systems with SISS
Inverse Dynamic

5.3.1 Problem Formulation and Preliminaries

Here, we consider the following stochastic switched high-order nonlinear systems
with SISS inverse dynamic,

dζ = f0,σ (t) (ζ, x1) dt + ψT
0,σ (t) (ζ, x1) dω,

dxi = (
gi,σ (t)(ζ, x)x pi

i+1 + fi,σ (t)(ζ, x)
)
dt + ψT

i,σ (t) (ζ, x) dω, i = 1, 2, . . . , n − 1,

dxn =
(
gn,σ (t)(ζ, x)u pn

σ(t) + fn,σ (t)(ζ, x)
)
dt + ψT

n,σ (t) (ζ, x) dω,

y = x1, (5.46)

where ζ ∈ R
r are immeasurable stochastic inverse dynamics; x = (x1, x2, . . . , xn)T

∈ R
n and y ∈ R are the system state and output, respectively; pi is a positive

odd integer and ω is an m-dimensional standard Wiener process defined on the
complete probability space

(
Ω,F , {Ft }t≥0 , P

)
with Ω being a sample space, F

being a σ -field, {Ft }t≥0 being a filtration, and P being a probability measure; σ(t) :
[0,+∞) → M = {1, 2, . . . ,m} is the switching signal; uk ∈ R is the control input
of the k-th subsystem; f0,k : R

r × R → R
r , ψ0,k : R

r × R → R
m×r ; For any

i = 1, 2 . . . , n and k = 1, 2, . . . ,m, fi,k : Rr × R
n → R, ψi,k : Rr × R

n → R
m

are unknown nonlinear functions assumed to be locally Lipschitz with fi,k(0) = 0,
ψi,k(0) = 0, and gi,k : Rr × R

n → R is a strictly either positive or negative known
function.

Remark 5.2 System (5.46) reduces to the well-known normal form when pi = 1,
ζ = 0 and m = 1. In the case that pi > 1, ζ = 0 and m = 1, the Jacobian
linearization of the system is neither controllable nor feedback linearizable. This
makes the control design very challenging. To solve this problem, Lin and Qian [16]
proposed a fruitful deterministic technique: adding a power integrator. Subsequently,
many excellent results are proposed based on the adding a power integrator technique,
see, e.g., [17–19] and the references therein.

Definition 5.3 For any given V (xi , t) ∈ C 2,1 associated with system (5.46), define
the differential operator L as follows,
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L V = ∂V

∂t
+ ∂V

∂xi
Fi,k + 1

2
Tr

{
ψT
i,k

∂2V

∂x2i
ψi,k

}
, (5.47)

where Fi,k = gi,σ (t)(ζ, x)x pi
i+1 + fi,σ (t)(ζ, x).

Assumption 5.3 The sign and the upper bound of function gi,k for 1 ≤ i ≤ n and
k ∈ M, are known, and without loss of generality, it is assumed that

0 < di ≤ gi,k(ζ, x) ≤ d̄i ,

where di and d̄i stand for the lower and upper bound values of gi,k(ζ, x), respectively.

Assumption 5.4 For 1 ≤ i ≤ n and k ∈ M, there exists aC 2 function V0(ζ ), which
is positive definite and proper, such thatL V0 ≤ −λ0ζ

4 + λ̄0x
p+3
1 , where λ0 and λ̄0

are positive constants.

Lemma 5.4 Let p ∈ R
∗ and x, y be real-valued functions. There exists a constant

c > 0 such that ∣∣x p − y p
∣∣ ≤ c |x − y| ∣∣(x − y)p−1 + y p−1

∣∣ .
Lemma 5.5 Suppose that there exists a C 2,1 function V (x, t) : Rn × R

+ → R
+,

two constants c1 > 0, c2 > 0, and K∞ functions c̄1, c̄2 such that

{
c̄1(|x |) ≤ V (x, t) ≤ c̄2(|x |)
L V (x, t) ≤ −c1V (x, t) + c2

for all x ∈ Rn and t > t0. Then, there is an unique strong solution for each x0 ∈ R
n

and it satisfies:

E[V (x, t)] ≤ V (x0)e
−c1t + c2

c1
, ∀t > t0.

In the following control design procedure, radial basis function (RBF) neural
networks are used to approximate a continuous real function f (X). For arbitrary
ε > 0, there exists a neural network WT S(X) such that

f (X) = WT S(X) + δ(X), δ(X) ≤ ε,

where X ∈ ΩX ⊂ R
q is the input vector with q dimension, S(X) = [s1(X), s2

(X), . . . , sl(X)]T is the basis function vector, and W = [w1,w2, . . . ,wl ]T is the
ideal constant weight vector with l > 1 being the number of the neural network
nodes, and si (X) are chosen as Gaussian functions; i.e., for i = 1, 2, . . . , l,

si (X) = exp

(
− (X − μi )

T (X − μi )

ζ 2
i

)
,

where ζi is the width of the Gaussian function, and μi = [μi1, μi2, . . . , μiq ]T is the
center vector.
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Lemma 5.6 Consider the Gaussian RBF networks. Let ρ := 1
2 mini �= j ||μi − μ j ||;

then an upper bound of ||S(X)|| is taken as

||S(X)|| ≤
∞∑
k=0

3q(k + 2)q−1e−2ρ2k2/ζ 2 := D.

It has been proven in [20] that the constant D in Lemma 5.6 is a limited value and is
independent of the variable X .

5.3.2 Main Results

In the following, the adaptive tracking control design is carried out by using a standard
backstepping procedure. Firstly, define p = maxi=1,...,n{pi }. The following lemma
is also given.

Lemma 5.7 Suppose that the Lyapunov function

V (ξ1, . . . , ξn) =
n∑

i=1

ξ
p−pi+4
i

p − pi + 4

is positive-definite and proper, satisfying

L V ≤ −
n∑

i=1

ξ
p+3
i + φ. (5.48)

Then, the following inequality holds

L V ≤ −a0V + b0,

where
a0 = min

(
φ(pi−1)/(p+3)

)
, b0 = (n + 1)φ.

Proof Let a = φ1/(p+3) and b = ξi . Then, by using Young’s inequality

a pi−1bp−pi+4 ≤ pi − 1

p + 3
a p+3 + p − pi + 4

p + 3
bp+3

≤ a p+3 + bp+3,

which implies that

− ξ
p+3
i ≤ −φ(pi−1)/(p+3)ξ

p−pi+4
i + φ. (5.49)
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Substituting (5.49) into (5.48) yields that

L V ≤ −
n∑

i=1

φ(pi−1)/(p+1)ξ
p−pi+4
i + (n + 1)φ.

The proof of Lemma 5.7 is completed here. �

Step 1: Define the variable z1 = x1. Then, consider the following Lyapunov
function candidate

V1 = ζ 4

4
+ z p−p1+4

1

p − p1 + 4
.

It follows from (5.47) and Assumption 5.4 that

L V1 = −λ0ζ
4+ λ̄0z

p+3
1 +z p−p1+3

1

(
g1,k x

p1
2 + f1,k

)+ p − p1 + 3

2

∥∥ψ1,k

∥∥2 z p−p1+2
1 ,

(5.50)
where f1,k and

∥∥ψ1,k

∥∥2 are unknown. Then, two neural networksW1,k S1 andΦ1,k P1,k
are used to approximate the unknown function f1,k and the norm

∥∥ψ1,k

∥∥ such that
for any given ε1,k > 0 and τ1,k > 0,

f1,k = WT
1,k S1,k(X1) + δ1,k(X1),∥∥ψ1,k

∥∥2 = ΦT
1,k P1,k(X1) + δ̄1,k(X1),

where X1 := [ζ T , xT ]T ∈ Rr+n ,
∣∣δ1,k(X)

∣∣ ≤ ε1,k , δ̄1,k(X1) ≤ τ1,k .
One can get from the Young’s inequality and Lemma 5.6 that

z p−p1+3
1 f1,k

= z p−p1+3
1 (WT

1,k S1,k(X1) + δ1,k(X1))

≤ p − p1 + 3

p + 3
l

p+3
p−p1+3

1 z p+3
1

∥∥W1,k

∥∥ p+3
p−p1+3

∥∥S1,k∥∥ p+3
p−p1+3 + p1

p + 3
l
− p+3

p1
1

+ p − p1 + 3

p + 3
η

p+3
p−p1+3

1 z p+3
1 + p1

p + 3
η

− p+3
p1

1 ε
p+3
p1

1,k

≤ l
p+3

p−p1+3

1 z p+3
1

∥∥W1,k

∥∥ p+3
p−p1+3

∥∥S1,k∥∥ p+3
p−p1+3 + η

p+3
p−p1+3

1 z p+3
1 + l

− p+3
p1

1 + η
− p+3

p1
1 ε

p+3
p1

1,k

≤ z p+3
1

(
l

p+3
p−p1+3

1 θ1D
p+3

p−p1+3

1 + η
p+3

p−p1+3

1

)
+ b1, (5.51)

where l1, η1 > 0 are design parameters; ‖S1‖ ≤ D1; θ1 := max
{∥∥W1,k

∥∥(p+3)/(p−p1+3) : k ∈ M}; b1 = l−(p+3)/p1
1 + η

−(p+3)/p1
1 ε

(p+3)/p1
1 .

Moreover, one has that
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∥∥ψ1,k

∥∥2 z p−p1+2
1

= z p−p1+2
1

(
ΦT

1,k P1,k(X1) + δ̄1,k(X1)
)

≤ z p−p1+2
1 ΦT

1,k P1,k + z p−p1+2
1 δ̄1,k

≤ p − p1 + 2

p + 3
ξ

p+3
p−p1+2

1 z p+3
1

∥∥Φ1,k

∥∥ p+3
p−p1+2

∥∥P1,k∥∥ p+3
p−p1+2 + p1 + 1

p + 3
ξ

− p+3
p1+1

1

+ p − p1 + 2

p + 3
m

p+3
p−p1+2

1 z p+3
1 + p1 + 1

p + 3
m

− p+3
p1+1

1 τ
p+3
p1+1

1,k

≤ z p+3
1

(
ξ

p+3
p−p1+2

1 ϕ1Q
p+3

p−p1+2

1 + m
p+3

p−p1+2

1

)
+ b̄1, (5.52)

where ξ1, m1 > 0 are design parameters; ‖P1‖ ≤ Q1; b̄1 = ξ
−(p+3)/(p1+1)
1 +

m−(p+3)/(p1+1)
1 τ

(p+3)/(p1+1)
1 ; ϕ1 = max{∥∥Φ1,k

∥∥(p+3)/(p−p1+2) : k ∈ M}.
Substituting (5.51) and (5.52) into (5.50), yields that

L V1 ≤ − λ0ζ
4 + λ̄0z

p+3
1 + g1,k z

p−p1+3
1 x p1

2 + z p+3
1

(
l

p+3
p−p1+3

1 θ1D
p+3

p−p1+3

1 + η
p+3

p−p1+3

1

)

+ z p+3
1

(
1

2
(p − p1 + 3)ξ

p+3
p−p1+2

1 ϕ1Q
p+3

p−p1+2

1 + 1

2
(p − p1 + 3)m

p+3
p−p1+2

1

)
+ b̃1,

(5.53)

where b̃1 := b1 + 0.5(p − p1 + 3)b̄1.
Then, the common virtual control function can be designed as

α1 = − z1

{
1

d1

(
λ̄1 + l

p+3
p−p1+3

1 θ̂1D
p+3

p−p1+3

1 + 1

2
(p − p1 + 3)ξ

p+3
p−p1+2

1 ϕ̂1Q
p+3

p−p1+2

1

+ η
p+3

p−p1+3

1 + 1

2
(p − p1 + 3)m

p+3
p−p1+2

1

)} 1
p1

= − z1β1, (5.54)

where θ̂1, ϕ̂1 are the estimations of θ1, ϕ1 respectively; λ̄1 > 1 + λ̄0 is a positive
design parameter; d1 is defined in Assumption 5.3.

It follows from (5.53) and (5.54) that

L V1 ≤ − λ0ζ
4 − (λ̄1 − λ̄0)z

p+3
1 + g1,k z

p−p1+3
1

(
x p1
2 − α

p1
1

)
+ l

p+3
p−p1+3

1 θ̃1D
p+3

p−p1+3

1 z p+3
1 + 0.5(p − p1 + 3)ξ

p+3
p−p1+2

1 ϕ̃1Q
p+3

p−p1+2

1 z p+3
1 + b̃1,

(5.55)

where θ̃1 = θ1 − θ̂1, ϕ̃1 = ϕ1 − ϕ̂1.

Step 2: Denote z2 = x2 − α1, and define dα1 as
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dα1 =
⎛
⎝ n∑

j=1

∂α1

∂x j

(
g j,k x

p2
j+1 + f1,k

)
+ ∂α1

∂θ̂1

˙̂
θ1 + ∂α1

∂ϕ̂1

˙̂ϕ1

⎞
⎠ dt + ∂α1

∂x1
ψT

1,kdω

= ā1dt + ∂α1

∂x1
ψT

1 dω, (5.56)

where ˙̂
θ1 and ˙̂ϕ1 will be specified later, xn+1 := u will given at final step.

Choose the Lyapunov function as

V2 = V1 + z p−p2+4
2

p − p2 + 4
.

Then, L V2 is given by

L V2 ≤ − λ0ζ
4 − (λ̄1 − λ̄0)z

p+3
1 + g1,k z

p−p1+3
1

(
x p12 − α

p1
1

)

+ l
p+3

p−p1+3

1 θ̃1D
p+3

p−p1+3

1 z p+3
1 + 0.5(p − p1 + 3)ξ

p+3
p−p1+2

1 ϕ̃1Q
p+3

p−p1+2

1 z p+3
1 + b̃1

+ z p−p2+3
2

(
g2,k x

p2
3 + f2,k − ā1

)
+ p − p2 + 3

2

∥∥∥∥ψ2,k − ∂α1

∂x1
ψ1,k

∥∥∥∥
2
z p−p2+2
2 .

(5.57)

By using Lemma 5.4 and Young’s inequality, one can obtain that

∣∣∣g1,k z p−p1+3
1 (x p1

2 − α
p1
1 )

∣∣∣
≤ c1d̄1

∣∣∣z p−p1+3
1

∣∣∣ |z2|
∣∣∣z p1−1

2 + (z1β1)
p1−1

∣∣∣
≤ c1d̄1

p − p1 + 3

p + 3
z p+3
1 + c1d̄1

p1
p + 3

z p+3
2 + c1d̄1

p + 2

p + 3
z p+3
1

+ c1d̄1
1

p + 3
z p+3
2 β

(p1−1)(p+3)
1

≤ z p+3
1 + z p+3

2

(
1 + β

(p1−1)(p+3)
1

)

= z p+3
1 + z p+3

2 β̄1, (5.58)

where β̄1 = 1+β
(p1−1)(p+1)
1 ; c1 is chosen as 1/2d̄1; d̄1 is defined in Assumption 5.3.

Substituting (5.58) into (5.57), gives that

L V2 ≤ −λ0ζ
4 − (λ̄1 − λ̄0 − 1)z p+3

1 + z p+3
2 β̄1 + l

p+3
p−p1+3

1 θ̃1D
p+3

p−p1+3

1 z p+3
1

+ 1

2
(p − p1 + 3)ξ

p+3
p−p1+2

1 ϕ̃1Q
2p+6

p−p1+2

1 z p+3
1 + b̃1 + z p−p2+3

2

(
g2,k x

p2
3 + f̄2,k

)

+ 1

2
(p − p2 + 3) ψ̄2,k z

p−p2+2
2 , (5.59)



5.3 Adaptive Neural Control for Switched … 117

where f̄2,k = f2,k − ᾱ1, ψ̄2,k :=
∥∥∥ψ2,k − ∂α1

∂x1
ψ1,k

∥∥∥2. Then, neural networks

WT
2,k S2,k(X2) and ΦT

2,k P2,k(X2) are used to approximate the unknown functions f̄2,k
and ψ̄2,k such that for any given ε2,k > 0 and τ2,k > 0,

f̄2,k = WT
2,k S2,k(X2) + δ2,k(X1),

ψ̄2,k = ΦT
2,k P2,k(X2) + δ̄2,k(X1),

where X2 := [ζ T , xT , θ̂1, ϕ̂1]T ∈ Rr+n+2,
∣∣δ2,k(X2)

∣∣ ≤ ε2,k , δ̄2,k(X2) ≤ τ2,k .
Similar to the procedure in (5.51), one can obtain that

z p−p2+3
2 f2,k

= z p−p2+3
2 (WT

2,k S2,k(X2) + δ2,k(X2))

≤ p − p2 + 3

p + 3
l

p+3
p−p2+3

2 z p+3
2

∥∥W2,k

∥∥ p+3
p−p2+3

∥∥S2,k∥∥ p+3
p−p2+3 + p2

p + 3
l
− p+3

p2
2

+ p − p2 + 3

p + 3
η

p+3
p−p2+3

2 z p+3
2 + p2

p + 3
η

− p+3
p2

2 ε
p+3
p2

2,k

≤ l
p+3

p−p2+3

2 z p+3
2

∥∥W2,k

∥∥ p+3
p−p2+3

∥∥S2,k∥∥ p+3
p−p2+3 + η

p+3
p−p2+3

2 z p+3
2 + l

− p+3
p2

2 + η
− p+3

p2
2 ε

p+3
p2

2,k

≤ z p+3
2

(
l

p+3
p−p2+3

2 θ2D
p+3

p−p2+3

2 + η
p+3

p−p2+3

2

)
+ b2, (5.60)

where l2, η2 > 0 are design parameters, θ2 := max{∥∥W2,k

∥∥(p+3)/(p−p2+3) : k ∈ M},
b2 = l−(p+3)/p2

2 + η
−(p+3)/p2
2 ε

(p+3)/p2
2 .

Using a similar way to (5.52), one gets that

ψ̄2,k z
p−p2+2
2

= z p−p2+2
2

(
ΦT

2,k P2,k(X2) + δ̄2,k(X2)
)

≤ z p−p2+2
2 ΦT

2,k P2,k + z p−p2+2
2 δ̄2,k

≤ p − p2 + 2

p + 3
ξ

p+3
p−p2+2

2 z p+3
2

∥∥Φ2,k

∥∥ p+3
p−p2+2

∥∥P2,k∥∥ p+3
p−p2+2 + p2 + 1

p + 3
ξ

− p+3
p2+1

2

+ p − p2 + 2

p + 3
m

p+3
p−p2+2

2 z p+3
2 + p2 + 1

p + 3
m

− p+3
p2+1

2 τ
p+3
p2+1

2,k

≤ z p+3
2

(
ξ

p+3
p−p2+2

2 ϕ2Q
p+3

p−p2+2

2 + m
p+3

p−p2+2

2

)
+ b̄2, (5.61)

where ξ2, m2 > 0 are design parameters; b̄2 = ξ
− p+3

p2+1

2 + m
− p+3

p2+1

2 τ
p+3
p2+1

2 ; ϕ2 =
max{∥∥Φ2,k

∥∥ p+3
p−p2+2 : k ∈ M}; P2(X2) and τ2(X2) represent the basis function vector

and the estimation error of ϕ2.
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Design the common virtual control function as

α2 = −z2

{
1

d2

(
β̄1 + λ2 + l

p+3
p−p2+3

2 θ̂2D
p+3

p−p2+3

2 + 1

2
(p − p2 + 3)ξ

p+3
p−p2+2

2 ϕ̂2Q
p+3

p−p2+2

2

+η
p+3

p−p2+3

2 + 1

2
(p − p2 + 3)m

p+3
p−p2+2

2

)} 1
p2

= −z2β2, (5.62)

where θ̂2, ϕ̂2 are the estimation of θ2 andϕ2 respectively;λ2 > 1 is a design parameter;
d2 is defined in Assumption 5.3.

By substituting (5.60)–(5.62) into (5.59), one has

L V2

≤ −λ0ζ
4 − (λ̄1 − λ̄0 − 1)z p+3

1 − λ2z
p+3
2 + g2,k z

p−p2+3
2 (x p2

3 − α
p2
2 )

+
2∑
j=1

(
l

p+3
p−p j+3

j θ̃ j D
p+3

p−p j+3

j z p+3
j + 0.5(p − p j + 3)ξ

p+3
p−p j+2

j ϕ̃ j Q
p+3

p−p j+2

j z p+3
j + b̃ j

)
,

where b̃ j := b j + 0.5(p − p j + 3)b̄ j , θ̃ j = θ j − θ̂ j , ϕ̃ j = ϕ j − ϕ̂ j , j = 1, 2.
Step i: Suppose at step i (3 ≤ i ≤ n − 1) that, there is a set of virtual control

functions α3, . . . , αn−1, defined by

αi = ziβi , zi = xi+1 − αi (5.63)

and assume that a set of unknown nonlinear functions f̄i,k and ψ̄i,k can be approx-
imated by neural networks WT

i,k Si,k(Xi ) and ΦT
i,k Pi,k(Xi ) for any given εi,k > 0,

τi,k > 0.

f̄i,k = WT
i,k Si,k(Xi ) + δi,k,

∣∣δi,k(Xi )
∣∣ ≤ εi,k,

ψ̄i,k = ΦT
i,k Pi,k(Xi ) + δ̄i,k,

∣∣δ̄i,k(Xi )
∣∣ ≤ τi,k,

where Xi := [ζ T , xT , θ̂1, . . . , θ̂i , ϕ̂1, . . . , ϕ̂i ]T ∈ Rr+n+2i .
A straightforward calculation gives that

L Vi

≤ −λ0ζ
4 − (λ̄1 − λ̄0 − 1)z p+3

1 −
i−1∑
j=2

(λ j − 1)z p+3
j

− λi z
p+3
i + gi,k z

p−pi+3
i (x pi

i+1 − α
pi
i )

+
i∑

j=1

(
l

p+3
p−p j+3

j θ̃ j
∥∥S j

∥∥ p+3
p−p j+3 z p+3

j + 0.5(p − p j + 3)ξ
p+3

p−p j+2

j ϕ̃ j
∥∥Pj

∥∥ p+3
p−p j+2 z p+3

j + b̃ j

)
,

(5.64)
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where θ̃ j = θ j − θ̂ j , ϕ̃ j = ϕ j − ϕ̂ j ; [θ̂ j , ϕ̂ j ] is the estimation of

[θ j , ϕ j ] : = max{∥∥Wj,k

∥∥ p+3
p−p j+3 ,

∥∥Φ j,k

∥∥ p+3
p−p j+2 : k ∈ M};

b̃ j = b j + 0.5(p − p j + 3)b̄ j ,

b j = l
−(p+3)/p j

j + η
−(p+3)/p j

j ε
(p+3)/p j

j

and b̄ j = ξ
−(p+3)/(p j+1)
j + m

−(p+3)/(p j+1)
j τ

(p+3)/(p j+1)
j .

Step n: Let zn = xn − αn−1, define dαn−1 as

dαn−1 =
⎛
⎝ n∑

j=1

∂αn−1

∂x j

(
g j,k x

p2
j+1 + f j,k

)
+

n−1∑
j=1

∂αn−1

∂θ̂ j

˙̂
θ j +

n−1∑
j=1

∂αn−1

∂ϕ̂ j

˙̂ϕ j

⎞
⎠ dt

+
n−1∑
j=1

∂αn−1

∂x j
ψT

j,kdω

= ān−1dt +
n−1∑
j=1

∂αn−1

∂x j
ψT

j,kdω.

where xn+1 := u is provided later.
We construct the Lyapunov function as

Vn = Vn−1 + z p−pn+4
n

p − pn + 4
.

By using (5.64), L Vn is given by

L Vn (5.65)

≤ −λ0ζ
4 − (λ̄1 − λ̄0 − 1)z p+3

1 −
n−2∑
j=2

(λ j − 1)z p+3
j (5.66)

− λn−1z
p+3
n−1 + gn−1,k z

p−pn+3
n−1 (x pn−1

n − α
pn−1
n−1 )

+
n−1∑
j=1

(
l

p+3
p−p j+3

j θ̃ j D
p+3

p−p j+3

j z p+3
j + 0.5(p − p j + 3)ξ

p+3
p−p j+2

j ϕ̃ j Q
p+3

p−p j+2

j z p+3
j + b̃ j

)

+ z p−pn+3
n

(
gn,ku

pn + f̄n,k
) + p − pn + 3

2
ψ̄n,k z

p−pn+2
n , (5.67)

where f̄n,k = fn,k − ᾱn−1, ψ̄n,k =
∥∥∥ψn,k − ∑n−1

i=1
∂αn−1

∂xi
ψi,k

∥∥∥2. Then, neural networks
WT

n,k Sn,k(Xn) andΦT
n,k Pn,k(Xn) are used to approximate unknown functions f̄n,k and

ψ̄n,k such that for any given εn,k > 0 and τn,k > 0,
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f̄n,k = WT
n,k Sn,k(Xn) + δn,k(Xn),

ψ̄n,k = ΦT
n,k Pn,k(Xn) + δ̄n,k(Xn),

where Xn := [ζ T , xT , θ̂1, . . . , θ̂n, ϕ̂1, . . . , ϕ̂n]T ∈ Rr+3n ,
∣∣δn,k(Xn)

∣∣ ≤ εn,k ,
δ̄n,k(Xn) ≤ τn,k .

Similar to (5.60) and (5.61), one has

z p−pn+3
n f̄n,k ≤ z p+3

n

(
l

p+3
p−pn+3
n θnD

p+3
p−pn+3
n + η

p+3
p−pn+3
n

)
+ bn,

z p−pn+3
n ψ̄n,k ≤ z p+3

n

(
ξ

p+3
p−pn+2
n ϕnQ

p+3
p−pn+2
n + m

p+3
p−pn+2
n

)
+ b̄n, (5.68)

where ln, ηn, ξn, mn > 0 are design parameters; θn := max{∥∥Wn,k

∥∥(p+3)/(p−pn+3) :
k ∈ M}; bn = l

− p+3
pn

n + η
− p+3

pn
n ε

p+3
pn

n , ϕn := max{∥∥Φn,k

∥∥(p+3)/(p−pn+2) : k ∈ M};
b̄n = ξ

−(p+3)/(pn+1)
n + m−(p+3)/(pn+1)

n τ
(p+3)/(pn+1)
n .

Furthermore, it is not hard to get that

∣∣∣gn−1,k z
p−pn+3
n−1 (x pn−1

n − α
pn−1
n−1 )

∣∣∣
≤ cn−1d̄n−1

∣∣∣z p−pn−1+3
n−1

∣∣∣ |zn| ∣∣z pn−1−1
n + (zn−1βn−1)

pn−1−1
∣∣

≤ cn−1d̄n−1
p − pn−1 + 3

p + 3
z p+3
n−1 + cn−1d̄n−1

pn−1

p + 3
z p+3
n + cn−1d̄n−1

p + 2

p + 3
z p+3
n−1

+ cn−1d̄n−1
1

p + 3
z p+3
n β

(pn−1−1)(p+3)
n−1

≤ z p+3
n−1 + z p+3

n

(
1 + β

(pn−1−1)(p+3)
n−1

)

= z p+3
n−1 + z p+3

n β̄n−1, (5.69)

where β̄n−1 = 1 + β
(pn−1−1)(p+1)
n−1 , cn−1 is chosen as 1/2d̄n−1, and d̄n−1 is defined in

Assumption 5.3.
Substituting (5.68) and (5.69) into (5.67), the following inequality can be obtained.

L Vn (5.70)

≤ −λ0ζ
4 − (λ̄1 − λ̄0 − 1)z p+3

1 −
n−1∑
j=2

(λ j − 1)z p+3
j + z p+3

n β̄n−1

+
n−1∑
j=1

(
l

p+3
p−p j+3

j θ̃ j D
p+3

p−p j+3

j z p+3
j + 0.5(p − p j + 3)ξ

p+3
p−p j+2

j ϕ̃ j Q
p+3

p−p j+2

j z p+3
j

)
+

n∑
j=1

b̃ j

+ z p+3
n

(
l

p+3
p−pn+3
n θnD

p+3
p−pn+3
n + η

p+3
p−pn+3
n + 0.5(p − pn + 3)ξ

p+3
p−pn+2
n ϕnQ

p+3
p−pn+2
n
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+ 0.5(p − pn + 3)m
p+3

p−pn+2
n

)
+ z p−pn+3

n gn,ku
pn . (5.71)

Design the controller u as

u = − zn

{
1

dn

(
λn + β̄n−1 + l

p+3
p−pn+3
n θ̂nD

p+3
p−pn+3
n + η

p+3
p−pn+3
n

+ 0.5(p − pn + 3)ξ
p+3

p−pn+2
n ϕ̂nQ

p+3
p−pn+2
n + 0.5(p − pn + 3)m

p+3
p−pn+2
n

)} 1
pn

= − znβn, (5.72)

where θ̂n is the estimation of θn; λn > 1 is a positive design parameter; dn is defined
in Assumption 5.3.

It follows from (5.71) and (5.72) that

L Vn ≤ (5.73)

− λ0ζ
4 −

n∑
j=1

(λ j − 1)z p+3
j

+
n∑
j=1

(
l

p+3
p−p j+3

j θ̃ j D
p+3

p−p j+3

j z p+3
j + 0.5(p − p j + 3)ξ

p+3
p−p j+2

j ϕ̃ j Q
p+3

p−p j+2

j z p+3
j + b̃ j

)

(5.74)

where λ1 := λ̄1 − λ̄0.
Last Step: Choose the final Lyapunov function as

V = Vn +
n∑
j=1

(
1

2r j
θ̃2
j + 1

2r̄ j
ϕ̃2
j

)
(5.75)

where r j is a positive design parameter.
L V is given by

L V ≤ (5.76)

− λ0ζ
4 −

n∑
j=1

(λ j − 1)z p+3
j −

n∑
j=1

(
1

r j
θ̃ j

˙̂
θ j + 1

r̄ j
ϕ̃ j

˙̂ϕ j

)

+
n∑
j=1

(
l

p+3
p−p j+3

j θ̃ j D
p+3

p−p j+3

j z p+3
j + 0.5(p − p j + 3)ξ

p+3
p−p j+2

j ϕ̃ j Q
p+3

p−p j+2

j z p+3
j + b̃ j

)
.

(5.77)
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The adaptive laws are defined as the solutions to the following differential equa-
tions

˙̂
θ j = r j l

p+3
p−p j+3

j D
p+3

p−p j+3

j z p+3
j − Bj θ̂ j ,

˙̂ϕ j = 1

2
(p − p j + 3)r̄ jξ

p+3
p−p j+2

j Q
p+3

p−p j+2

j z p+3
j − B̄ j ϕ̂ j , (5.78)

where j = 1, 2, . . . , n, Bj , B̄ j > 0 are design parameters.
This, together with (5.77), means that

L V ≤ −λ0ζ
4 −

n∑
j=1

(λ j − 1)z p+3
j +

n∑
j=1

Bj θ̂ j θ̃ j

r j
+

n∑
j=1

B̄ j ϕ̂ j ϕ̃ j

r̄ j
+

n∑
j=1

b̃ j . (5.79)

Notice that

θ̃ j θ̂ j = θ̃ j (θ j − θ̃ j ) ≤ −1

2
θ̃2
j + 1

2
θ2
j ,

ϕ̃ j ϕ̂ j = ϕ̃ j (ϕ j − ϕ̃ j ) ≤ −1

2
ϕ̃2
j + 1

2
ϕ2
j , (5.80)

By using (5.79), (5.80) and Lemma 5.7, one has

L V ≤ − λ0ζ
4 −

n∑
j=1

(
(λ j − 1)z p+3

j + Bj

2r j
θ̃2
j + B̄ j

2r̄ j
ϕ̃2
j

)

+
n∑
j=1

(
Bj

2r j
θ2
j + B̄ j

2r̄ j
ϕ2
j + b̃ j

)

≤ − q0V + q1,

where q0 = min{(p − pi + 4)(λ j − 1)φ(pi−1)/(p+3), Bj , B̄ j , 2λ0 : 1 ≤ j ≤ n},
φ = ∑n

j=1(
Bj

2r j
θ2
j + B̄ j

2r̄ j
ϕ2
j + b̃ j ), q1 = (λ j − 1)(n + 1)φ.

According to Lemma 5.5, we have that

E[V (x, t)] ≤ V (x0)e
−q0t + q1

q0
, ∀t ≥ 0, (5.81)

which indicates that all the signals in the closed-loop system are bounded. The design
is completed here. Next, we address our main result.

Theorem 5.2 For 1 ≤ i ≤ n, k ∈ M assume that all the unknown nonlinear
functions f̄i,k and ψ̄i,k can be approximated by neural networks in the sense that
the approximation errors are bounded, and all the initial values of θ̂i and ϕ̂i satisfy
θ̂i (0) ≥ 0 and ϕ̂i (0) ≥ 0, respectively. Then, under the state feedback controller
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(5.72) and the adaptive laws (5.78), the equilibrium at the origin of the closed-loop
system is boundedly stable in probability and

P

{
lim
t→∞

(
|ζ |4
4

+
n∑

i=1

|zi |p−pi+4

p − pi + 4

)
≤ q1

q0

}
= 1.

Proof It is not difficult to complete the proof by the above discussions, and thus we
omit the proof here.

In the following, a corollary is given by using only two adaptive laws.

Corollary 5.1 For 1 ≤ i ≤ n, k ∈ M assume that all the unknown nonlinear
functions f̄i,k and ψ̄i,k can be approximated by neural networks in the sense that
the approximation errors are bounded, and all the initial values of θ̂i and ϕ̂i satisfy
θ̂i (0) ≥ 0and ϕ̂i (0) ≥ 0, respectively.Consider the following controller andadaptive
laws:

u = − zn

{
1

dn

(
λn + β̄n−1 + l

p+3
p−pn+3
n θ̂D

p+3
p−pn+3
n + η

p+3
p−pn+3
n

+ 1

2
(p − pn + 3)ξ

p+3
p−pn+2
n ϕ̂Q

p+3
p−pn+2
n + 0.5(p − pn + 3)m

p+3
p−pn+2
n

)} 1
pn

,

˙̂
θ =

n∑
j=1

rl
p+3

p−p j+3

j D
p+3

p−p j+3

j z p+3
j − Bθ̂ ,

˙̂ϕ =1

2

n∑
j=1

(p − p j + 3)r̄ξ
p+3

p−p j+2

j Q
p+3

p−p j+2

j z p+3
j − B̄ϕ̂,

where λn > 1, l j , ξ j , mn, ηn, r , B , r̄ , B̄ > 0 are positive design parameters,
θ̂ = ∑n

j=1 θ̂ j , ϕ̂ = ∑n
j=1 ϕ̂ j . Then, the equilibrium at the origin of the closed-loop

system is boundedly stable in probability and

P

{
lim
t→∞

(
|ζ |4
4

+
n∑

i=1

|zi |p−pi+4

p − pi + 4

)
≤ q1

q0

}
= 1.

Proof It should be pointed out that θ̂ ≥ θ̂ j ≥ 0, ϕ̂ ≥ ϕ̂ j ≥ 0, j = 1, . . . , n.
Therefore, we can use θ̂ and ϕ̂ instead of θ̂ j and ϕ̂ j in (5.54), (5.62), (5.63) and (5.72).
In (5.75), the parameters θ̃ j and ϕ̃ j in Lyapunov function V should be rewritten as θ̃

and ϕ̃. The detailed proof is omitted here because it is similar to the one of Theorem
5.2. �
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5.3.3 Simulation Results

An example with two controllers (multiple adaptive laws and two adaptive laws
respectively) is presented in the following to demonstrate the effectiveness of our
main results.

Consider the following switched stochastic high-order nonlinear systems with
SISS inverse dynamics:

∑
1

=

⎧⎪⎨
⎪⎩
dζ = f0,1 (ζ, x1) dt + ψT

0,1 (ζ, x1) dω,

dx1 = [
g1,1(ζ, x1, x2)x

p1
2 + f1,1(ζ, x1, x2)

]
dt + ψT

1,1 (ζ, x1, x2) dω,

dx2 = [
g2,1(ζ, x1, x2)u p2 + f2,1(ζ, x1, x2)

]
dt + ψT

2,1 (ζ, x1, x2) dω,

∑
2

=

⎧⎪⎨
⎪⎩
dζ = f0,2 (ζ, x1) dt + ψT

0,2 (ζ, x1) dω,

dx1 = [
g1,2(ζ, x1, x2)x

p1
2 + f1,2(ζ, x1, x2)

]
dt + ψT

1,2 (ζ, x1, x2) dω,

dx2 = [
g2,2(ζ, x1, x2)u p2 + f2,2(ζ, x1, x2)

]
dt + ψT

2,2 (ζ, x1, x2) dω,

where g1,1, f1,1, ψ1,1, g2,1, f2,1, ψ2,1, g1,2, f1,2, ψ1,2, g2,2, f2,2, and ψ2,2 are all
completely unknown functions; p1 = 3, p2 = 5. First, a controller under multiple
adaptive laws is designed by Theorem 5.2. The initial conditions are ζ(0) = 1
x1(0) = 0.5, x2(0) = −0.5 and θ̂1(0) = 2, θ̂2(0) = 3.5, ϕ̂1(0) = 3, ϕ̂2(0) = 4. The
controller parameters are chosen as: λ1 = λ2 = 5, l2 = l2 = η1 = η2 = ξ1 = ξ2 =
m1 = m2 = 4, r1 = r2 = r̄1 = r̄2 = 1, B1 = B2 = B̄1 = B̄2 = 0.1. We apply
three nodes for each input dimension ofWT

1 S1,WT
2 S2, ΦT

1 P1 and ΦT
2 P2. Therefore,

each of them contains 81 nodes with centers spaced evenly in the interval [−0.5,
0.5] × [−0.5, 0.5] × [−0.5,0.5] × [−0.5,0.5], and the widths still being equal to
2.5. Second, a controller under two adaptive laws is designed by Corollary 5.1 with
same conditions except θ̂ (0) = 3, ϕ̂(0) = 4, r = 1, B = 0.1.

In order to give the simulation results, it is assumed that f0,1 = −15ζ + 0.1x21 ,

ψ0,1 = (
ζ 2 + 0.3x41

)1/2
, g1,1 = sin(x1x2+ζ )+2, f1,1 = x1x2+ζ ,ψ1,1 = sin(x1x2+

ζ ), g2,1 = cos(x1 + x22 + ζ ) + 2, f2,1 = x1x22 + ζ sin ζ , ψ2,1 = x1 cos x2 + ζ 2;

Fig. 5.5 Responses of
system states by using
multiple adaptive laws
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Fig. 5.6 Responses of the
multiple adaptive laws
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Fig. 5.7 Response of
switching signal

0 0.1 0.2 0.3 0.4 0.5 0.6
0.5

1

1.5

2

2.5

Time(sec)

Fig. 5.8 Responses of
system states by using two
adaptive laws
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f0,2 = −13ζ + 0.3x21 , ψ0,2 = (
0.17ζ 2 + 0.13x41

)1/2
, g1,2 = sin(x21 + x2 + ζ ) + 2,

f1,2 = x21 x2 + ζ 2, ψ1,2 = sin(x1 + x2) + ζ 3, g2,2 = cos(x1x22 + ζ ) + 2, f2,2 =
x1x2 + ζ cos ζ , ψ2,2 = x1 sin(x1x2) + ζ 2.

The simulation results based on Theorem 5.2 are shown in Figs. 5.5, 5.6 and 5.7,
respectively. Figure5.5 depicts the responses of system states. The trajectories of
adaptive laws are shown in Figs. 5.6, and 5.7 describes the switching signal. From
Fig. 5.5, it can be seen that all the system states eventually converge to a small neigh-
borhood of the origin. The simulation results based on Corollary 5.1 are shown in
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Fig. 5.9 Responses of two
adaptive laws
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Fig. 5.10 Response of
switching signal
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Figs. 5.8, 5.9 and 5.10, respectively. It can be seen that all the system states eventually
converge to a small neighborhood of the origin by using only two adaptive laws.

5.3.4 Conclusions

The adaptive neural control for a class of stochastic high-order switched nonlinear
systems with SISS inverse dynamic is studied. An adaptive neural control algorithm
is proposed. It can be shown that the equilibrium at the origin of the closed-loop
system is BIBO stable in probability.
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Chapter 6
Output Tracking Control of Constrained
Switched Nonlinear Systems

6.1 Background and Motivation

Control systems often suffer from various limits or constraints in the operation
space [1, 2], that may arise out of performance requirements or physical constraints
imposed on the system by its environmental regulations. For instance, the restor-
ing torque of an aircraft certainly has a maximum value, as has the armature of a
DC motor [3]. If the constraints are destroyed during operation, then serious conse-
quences causing performance degradation, hazards or system damage will happen.
Therefore, tackling constraints in control design has attracted much attention from
various fields in science and engineering.

In the study of constrained linear or nonlinear systems, different approaches have
been presented over the last a few years. To handle both state and input constraints
in linear systems, many techniques have been developed (see, e.g., [4–6]), most of
which are based on the notions of set invariance and admissible set control [7, 8].
Model Predictive Control that represents an effective control design methodology
for handling both constraints and performance issues has been investigated in [9,
10]. In addition, reference governors have also been proposed to tackle the problem
of constraints for nonlinear systems in [11]. The approaches mentioned above are
numerical in nature or depend heavily on computationally intensive algorithms to
solve the control problems.

It is worth pointing out that Barrier Lyapunov Functions (BLFs), which have been
proposed in [12, 13], can be used to handle constraints. In the method, output con-
straints are handled directly during the controller design procedure. The proposed
design procedure is flexible and can handle bounded uncertainties in the system.
However, a resulting problem is that the constructed asymmetric BLF is of a switch-
ing type, a C1 function. Consequently, the subsequent stabilizing functions must be
of a high power. Furthermore, p-times differentiable unbounded functions are first
introduced in [14] to handle the output tracking error constraints for a class of nonlin-
ear systems in a lower triangular form. The advantage of the p-times differentiable

© Springer International Publishing Switzerland 2017
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unbounded function method is that in the controller design procedure, switching is
not needed despite the asymmetrical limit range.

Note that control problems for switched systemswith constraints have been inves-
tigated recently. Time optimal control for a class of integrator switched systems with
state constraints was considered in [15]. A predictive control framework for a class
of nonlinear switched systems subject to state and control constraints was presented
in [16].

In this chapter, we aim at the problem of output tracking control for a class of
constrained nonlinear switched systems in lower triangular form. By ensuring bound-
edness of the employedBLFs in the closed-loop,we assure that the constraints are not
exceeded. Under the simultaneous domination assumption, we construct continuous
feedback controllers for the switched system, which render that asymptotic output
tracking is achieved, the limits are not transgressed and all closed-loop signals keep
bounded. Moreover, we also explore the use of p-times differentiable unbounded
functions to deal with asymmetric output constraints.

Notations:Weuse the following notations throughout this chapter.R+ denotes the
set of nonnegative real numbers,Rn represents the n-dimensional real Euclidean vec-
tor space and ‖ • ‖ stands for the Euclidean vector norm. For positive integers i, j , we
also denote x̄i = [x1, x2, . . . , xi ]T ,z̄i = [z1, z2, . . . , zi ]T ,zi : j = [zi , zi+1, . . . , z j ]T ,

ỹdi = [yd , y(1)
d , y(2)

d , . . . , y(i)
d ]T , b̃(i)

1 = [b1,b(1)
1 , b(2)

1 , . . . , b(i)
1 ]T and b̃(i)

2 = [b2, b(1)
2 ,

b(2)
2 , . . . , b(i)

2 ]T , respectively.

6.2 Barrier Lyapunov Functions-Based Control Design

6.2.1 Problem Formulation and Preliminaries

Consider a class of switched nonlinear systems described by:

ẋ1 = f σ(t)
1 (x1) + x2,

· · ·
ẋi = f σ(t)

i (x̄i ) + xi+1,

· · ·
ẋn−1 = f σ(t)

n−1 (x̄n−1) + xn,

ẋn = f σ(t)
n (x̄n) + gσ(t)(x̄n)u,

y = x1, (6.1)

where x1, x2, . . . , xn are the states, u = [u1, u2, . . . , uq ]T ∈ R
q and y ∈ R are the

input and output, respectively. σ(t) is the switching signal, which takes its values
in a finite set Im = {1, 2, . . . ,m} where m > 1 is the number of subsystems. ∀i =
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1, 2, . . . , n and k = 1, 2, . . . ,m; functions f ki , gk are smoothwith gk(x̄n) �= 0,∀x̄n ∈
Rn. The output is required to satisfy certain constraints that are specified later.

For system (6.1), we design a feedback controller by using the information of all
the states and a desired trajectory yd(t) such that limt→∞(y(t) − yd(t)) = 0 under
arbitrary switchings.

The control objective is to solve the output tracking control problem guaranteeing
all closed-loop signals to be bounded without exceeding the constraints.

To avoid the violation of the constraints, we employ a BLF with the following
definition.

Definition 6.1 ([13]) A BLF is a scalar function V (x), defined with respect to the
system ẋ = f (x) on an open region D containing the origin, that is continuous,
positive definite, has continuous first-order partial derivatives at every point of D,
has the propertyV (x) → ∞ as x approaches the boundary of D, and satisfies V (x) ≤
b,∀t ≥ 0 along the solution ẋ = f (x) for x(0) ∈ D and some positive constant b.

It is worth pointing out that the Lyapunov function V (x) in Definition 6.1 can be
extended to be time-varying when the constraints are time-varying.

The following lemma that establishes a result of barrier function is first proposed
for the subsequent developments.

Lemma 6.1 For any positive constants bi , i = 1, 2, . . . , n, let Z = {z̄n ∈ R
n :

|zi | < bi , i = 1, . . . , n} ⊂ R
n be an open set. Consider the switched system:

˙̄zn = hσ(t)(t, z̄n), (6.2)

where σ(t) is the same as in (6.1); hi : R+ × Z → R
n is piecewise continuous in t

and locally Lipschitz in η, uniformly in t , onR+ × Z. We assume that the state of the
system (6.2) does not jump at the switching instants. Let Zi = {zi ∈ R : |zi | < bi } ⊂
R. Suppose that there exist functions Vi : zi → R+, i = 1, 2, . . . , n continuously
differentiable and positive definite in their respective domains, such that

Vi (zi ) → ∞, as zi → −bi or zi → bi . (6.3)

Let V (z̄n) =
n∑

i=1
Vi (zi ) and zi (0) ∈ Zi . If the inequality

V̇ (z̄n) = ∂V (z̄n)

∂ z̄n
hi (t, z̄n) < 0, ∀z̄n �= 0, i ∈ Im (6.4)

holds, then under arbitrary switchings, zi (t) ∈ Zi ,∀t ∈ [0,∞).

Proof The conditions on hi and the trajectory of the system (6.2) is continuous at the
switching instants ensuring the existence and uniqueness of a maximal solution z̄n(t)
on the time interval [0, τmax). This implies that V (z̄n(t)) exists for ∀t ∈ [0, τmax).
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From the fact that zi (0) ∈ Zi and Vi (zi (0)), i = 1, 2, . . . , n are known, we have
that V (zn(0)) exists. Since V (z̄n) is positive definite and V̇ (z̄n) < 0, therefore we

obtain that V (z̄n(t)) < V (z̄n(0)) for ∀t ∈ [0, τmax). Because V (z̄n) =
n∑

i=1
Vi (zi ) and

the fact that Vi (zi ) are positive functions, it is clear that each Vi (zi ) is also bounded
for ∀t ∈ [0, τmax). Thus, we conclude from (6.3) that zi �= −bi and zi �= bi . Given
−bi < zi (0) < bi , we know that zi (t) remains in the set Zi for ∀t ∈ [0, τmax).

Therefore, there is a compact subset K ⊆ Z such that the maximal solution of
(6.2) satisfies z̄n(t) ∈ K for ∀t ∈ [0, τmax). As a direct consequence of [38, p.481
Proposition C.3.6], we can infer that z̄n(t) ∈ K is established for ∀t ∈ [0,∞). It
follows that |zi (t)| ∈ Zi ,∀t ∈ [0,∞). In addition, it is clear that V (z̄n) is a com-
mon Lyapunov function for the system (6.2), then the result holds under arbitrary
switchings. �

Lemma 6.2 (Barbalat’s Lemma) Consider a differentiable function h(t). If limt→∞
h(t) is finite and ḣ(t) is uniformly continuous, then limt→∞ ḣ(t) = 0.

6.2.2 Control Design for Full State Constraints

We consider the full state constraints in the following; that is, for system (1), xi (t)
is required to remain in the set |xi | ≤ ci ,∀t ≥ 0, where ci are positive constants, for
all i = 1, 2, . . . , n. The controller is designed to achieve asymptotic output tracking
while ensuring that the full state constraints are not violated.

First, the following assumptions are used in the backstepping design procedures.

Assumption 6.1 For any c1 > 0, there exist positive constants B0, B0, A0, B1, B2,

. . . , Bn satisfying max{B0, B0} ≤ A0 < c1 such that the desired trajectory yd(t)
and its time derivatives satisfy −B0 ≤ yd(t) ≤ B0, |ẏd(t)| < B1, |ÿd(t)| < B2, . . . ,

|y(n)
d (t)| < Bn,∀t ≥ 0.

Assumption 6.2 The functions gk(x̄n) = [gk,1(x̄n), gk,2(x̄n), . . . , gk,q(x̄n)],
k = 1, 2, . . . ,m are known. Furthermore, for ∀ j ∈ {1, 2, . . . , q}, assume that
mink∈{1,2,...,m} gk, j (x̄n) ≥ 0,∀xn ∈ R

n ormaxk∈{1,2,...,m} gk, j (x̄n) ≤ 0,∀xn ∈ R
n . For

ease of analysis, denote

M = { j ∈ {1, 2, . . . , q}|mink∈{1,2,...,m}gk, j (x̄n) ≥ 0},
F = { j ∈ {1, 2, . . . , q}| j /∈ M}. (6.5)

In what follows, the control design is proposed based on the simultaneous domi-
nation assumption with a barrier function in each step of the backstepping procedure.

Denote z1 = x1 − yd and zi = xi − φi−1, i = 2, . . . , n. Consider the Lyapunov
function candidate:
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V i (z̄i ) =
i∑

l=1

Vl(zl), Vi (zi ) = 1

2
log

b2i
b2i − z2i

, i = 1, 2, . . . , n, (6.6)

where φi−1, i = 2, . . . , n stand for virtual controls, log (•) denotes the natural log-
arithm of •, b1 = c1 − A0 and bi , i = 2, . . . , n are positive constants. It is easy to

know that V n(z̄n) =
n∑

i=1
Vi (zi ) is positive definite and continuously differentiable in

the set |zi | < bi for all i = 1, 2, . . . , n.
Step 1. Consider the following collection of auxiliary first-order subsystems.

ż1 = f k1 (x1) + x2 − ẏd , k = 1, 2, . . . ,m. (6.7)

With the candidate Lyapunov function V1(z1) and taking x2 as the virtual control,
we say that these first-order subsystems are simultaneously dominant if there exists
a differentiable feedback law φ1(x1, z1, ỹd1) = φ∗

1 (x1, yd) + ẏd such that, along the
solutions of the subsystems in (6.7),

V̇ (z1) = z1 ż1
b21 − z21

= z1(φ∗
1 (x1, yd) + f k1 (x1))

b21 − z21
< 0, ∀z1 �= 0, k = 1, 2, . . . ,m.

(6.8)

Define

dk
1 (x1, z1, ỹd1) = z1(φ∗

1 (x1, yd) + f k1 (x1))

b21 − z21
, k = 1, 2, . . . ,m. (6.9)

With V1(z1), the control design for the first step is completed if a simultaneously
dominating feedback law x2 = φ1(x1, z1, ỹd1) is found.

Step i (for i = 2, . . . , n − 1). Consider the collection of auxiliary i th-order sub-
systems:

ż1 = f k1 (x1) + z2 + φ∗
1 (x1, yd),· · ·

żi = f ki (x̄i ) + xi+1 −
i−1∑
j=1

∂φi−1

∂x j
(x j+1 + f kj (x̄ j )) −

i−1∑
j=0

∂φi−1

∂y( j)
d

y( j+1)
d ,

k = 1, 2, . . . ,m.

(6.10)

With the candidateLyapunov functionV i (z̄i ) and taking xi+1 as the virtual control,
we say that the i th-order subsystems are simultaneously dominatable if there exists
a continuously differentiable feedback law xi+1 = φi (x̄i , z̄i , ỹdi ) such that, along the
solutions of the subsystems in (6.10),
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V̇ i (z̄i ) = z1 ż1
b21 − z21

+
i∑

j=2

z j ż j

b2j − z2j
=

i∑
j=1

dkj (x̄ j , z̄ j , ỹd j ) < 0, ∀z̄i �= 0, k = 1, 2, . . . ,m,

(6.11)

where, for j = 2, . . . , i,

dk
j (x̄ j , z̄ j , ỹd j ) = z j

[
z j−1

b2j−1 − z2j−1

+ 1

b2j − z2j

(
φ j + f kj (x̄ j ) (6.12)

−
j−1∑
l=1

∂φ j−1

∂xl
(xl+1 + f kl (x̄l)) −

j−1∑
l=0

∂φ j−1

∂y(l)
d

y(l+1)
d

)]
. (6.13)

With the constructed V i (z̄i ), the control design for the i th step is completed if a
simultaneously dominating feedback law xi+1 = φi (x̄i , z̄i , ỹdi ) is found.

By using repeatedly the inductive argument above, we say that the subsystems of
(6.1) are simultaneously dominant if the control design for the (n − 1)th step can be
completed. Then, we construct a controller for the final step.

Step n. The derivative of V n(z̄n) in (6.6) along the trajectory of the kth subsystem
is

V̇ n = z1 ż1
b21 − z21

+
n∑

i=2

zi żi
b2i − z2i

=
n−1∑
i=1

dk
i (x̄i , z̄i , ỹdi ) + zn

[
zn−1

b2n−1 − z2n−1

+ 1

b2n − z2n

(
f kn (x̄n )

+ gk(x̄n)u −
n−1∑
j=1

∂φn−1

∂x j
(x j+1 + f kj (x̄ j )) −

n−1∑
j=0

∂φn−1

∂y( j)
d

y( j+1)
d

)⎤⎦
=ak(x̄n, z̄n, ỹdn ) + bk(x̄n, z̄n, ỹdn )u, (6.14)

where

ak(x̄n, z̄n, ỹdn ) =
n−1∑
i=1

di,k(x̄i , z̄i , ỹdi ) + zn

[
zn−1

b2n−1 − z2n−1

+ 1

b2n − z2n

(
f kn (x̄n )

−
n−1∑
j=1

∂φn−1

∂x j
(x j+1 + f kj (x̄ j )) −

n−1∑
j=0

∂φn−1

∂y( j)
d

y( j+1)
d

)⎤
⎦ , (6.15)

bk(x̄n, z̄n, ỹdn ) = zn
b2n − z2n

gk(x̄n). (6.16)
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In view of the above discussions and the simultaneous domination condition, a
controller for systems (6.1) can be established:

u(x̄n, z̄n, ỹdn ) = [u1(x̄n, z̄n, ỹdn ), u2(x̄n, z̄n, ỹdn ), . . . , uq(x̄n, z̄n, ỹdn )]T , (6.17)

where

u j =

⎧⎪⎨
⎪⎩
mini∈{1,2,...,m}

{
pi, j (x̄n, z̄n, ỹdn )

}
, i f zn > 0,

maxi∈{1,2,...,m}
{
pi, j (x̄n, z̄n, ỹdn )

}
, i f zn < 0, f or j ∈ M,

0, i f zn = 0,

(6.18)

and

u j =

⎧⎪⎨
⎪⎩
maxi∈{1,2,...,m}

{
pi, j (x̄n, z̄n, ỹdn )

}
, i f zn > 0,

mini∈{1,2,...,m}
{
pi, j (x̄n, z̄n, ỹdn )

}
, i f zn < 0, f or j ∈ F,

0, i f zn = 0,

(6.19)

with

pk(x̄n, z̄n, ỹdn ) = [
pk,1(x̄n, z̄n, ỹdn ), pk,2(x̄n, z̄n, ỹdn ), . . . , pk,q(x̄n, z̄n, ỹdn )

]T

=
{

−bk(x̄n, z̄n, ỹdn )
max{ak (x̄n ,z̄n ,ỹdn )+bk (x̄n ,z̄n ,ỹdn )bTk (x̄n ,z̄n ,ỹdn ),0}

bk (x̄n ,z̄n ,ỹdn )bTk (x̄n ,z̄n ,ỹdn )
, i f zn �= 0,

0, i f zn = 0.
(6.20)

Lemma 6.3 Consider switched system (6.1). Suppose that the subsystems of (6.1)
are simultaneously dominatable. Then, the continuous controller (6.17) can be con-
structed such that, along the solutions of all the closed-loop subsystems,

V̇ n(z̄n) < 0, ∀z̄n �= 0, (6.21)

where V n(z̄n) is the Lyapunov function obtained in (6.6).

Proof For the sake of simplicity, we rewrite the system (6.1) as

˙̄xn = f̂k (x̄n) + ĝk (x̄n) u, k ∈ Im . (6.22)

In what follows, we will show that, ∀k = 1, 2, . . . ,m,

∂V n(z̄n)

∂ z̄n
( f̂k(x̄n) + ĝk(x̄n)u(x̄n, z̄n, ỹdn ))

=ak(x̄n, z̄n, ỹdn ) + bk(x̄n, z̄n, ỹdn )u(x̄n, z̄n, ỹdn ) < 0, ∀z̄n �= 0, (6.23)

where u(x̄n, z̄n, ỹdn ) is the controller presented in (6.17).
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For simplicity, we shall omit the dependence on x̄n, z̄n and ỹdn for functions
wherever no confusion will be caused. 1. Consider zn = 0. In this case, bk = 0, u =
0, and

ak + bku = ak < 0, k = 1, 2, . . . ,m. (6.24)

2. Consider zn > 0. In this case, by the definitions of (6.18) and (6.19), we have

u j =
{
mini∈{1,2,...,m}

{
pi, j

}
, j ∈ M,

maxi∈{1,2,...,m}
{
pi, j

}
, j ∈ F.

(6.25)

If j ∈ M, then bk, j ≥ 0. Therefore, we have bk, j u j = bk, j mini∈{1,2,...,m}
{
pi, j

} ≤
bk, j pk, j . Similarly, if j ∈ F , we have bk, j u j ≤ bk, j pk, j . Therefore,

ak + bku = ak +
∑
i∈M

bk,i ui +
∑
j∈F

bk, j u j ≤ ak +
q∑
j=1

bk, j pk, j

= ak + bk pk =
{−bkbTk , i f ak + bkbTk ≥ 0
ak, i f ak + bkbTk < 0

< 0, k = 1, 2, . . . ,m. (6.26)

3. Consider zn < 0. Similarly, in this case we can show that

u j =
{
maxi∈{1,2,...,m}

{
pi, j

}
, j ∈ M,

mini∈{1,2,...,m}
{
pi, j

}
, j ∈ F.

(6.27)

and

ak + bkuk < 0, k = 1, 2, . . . ,m. (6.28)

Therefore, we conclude that, ∀k = 1, 2, . . . ,m, (6.23) is true. Thus, V n(z̄n) is a
common Lyapunov function for all subsystems of (1). �

Based on the above discussions, we are now in a position to give the following
result.

Theorem 6.1 Consider the closed-loop system (6.1), (6.17) under Assumptions 6.1–
6.2. Let Ai be an upper bound for φi in compact set Ωi :

Ai ≥ sup
(x̄i ,z̄i ,ỹdi )∈Ωi

∣∣φi
(
x̄i , z̄i , ỹdi

)∣∣ , i = 1, . . . , n − 1, (6.29)
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where Ωi = {x̄i ∈ Ri , z̄i ∈ Ri , ỹdi ∈ Ri+1 : ∣∣x j

∣∣ ≤ Dz j + A j−1,
∣∣z j ∣∣ ≤ Dz j , |yd | <

A0, |y( j)
d | ≤ Bj , j = 1, . . . , i}, Dz j = b j

√
1 − Πn

k=1(b
2
k−z2k (0))

Πn
k=1b

2
k

, i = 1, . . . , n − 1.

Given that the following conditions are satisfied,
(1) ci+1 > Ai + bi+1 holds for ∀i = 1, 2, . . . , n − 1.
(2) The initial conditions z̄n(0) belong to the set Ωz0 = { z̄n ∈ Rn : |zi | < bi ,

i = 1, . . . , n }.
Under arbitrary switching signals, closed-loop system (1) has the following prop-

erties:
(i) The signals zi (t), i = 1, 2, . . . , n, remain in the compact set Ωz = {z̄n ∈ Rn :

|zi | < Dzi , i = 1, 2, . . . , n}.
(ii) xi (t) remains in the set Ωx = {x̄n ∈ Rn : |xi | < Dzi + Ai−1 < ci , i = 1,

. . . , n}, ∀t ≥ 0; i.e., the full state constraints are never violated.
(iii) All closed-loop signals are bounded.
(iv) The output tracking error z1(t) asymptotically converges to zero, i.e., y(t) →

yd(t) as t → ∞.

Proof (i) By V̇ n < 0, it is clear that V n(t) < V n(0),∀t ≥ 0. Because z2i (0) < b2i

from condition (2), we have that V n(0) <
n∑

i=1

1
2 log

b2i
b2i −z2i (0)

, which means

1

2
log

b2i
b2i − z2i

<

n∑
i=1

1

2
log

b2i
b2i − z2i (0)

(6.30)

for i = 1, . . . , n. Because log a + log b = log ab, we rewrite (6.30) as

log
b2i

b2i − z2i
< log

Πn
i=1b

2
i

Πn
i=1

(
b2i − z2i (0)

) (6.31)

for i = 1, . . . , n. Furthermore, we obtain from Lemma 1 that b2i − z2i (t) > 0,∀t ≥
0. Then, (6.31) is equivalent to |zi (t)| < Dzi ,∀t ≥ 0.

(ii) Because |z1 (t)| < Dz1 < c1 − A0, we obtain

|x1 (t)| < Dz1 + |yd (t)| < c1 − A0 + |yd (t)| . (6.32)

Noting that |yd (t)| < A0, we thus conclude from Assumption 6.1 that |x1 (t)| <

Dz1 + A0 < c1,∀t ≥ 0.
To show that |x2 (t)| < c2, we first verify that there exists a positive con-

stant A1 such that |φ1 (t)| ≤ A1,∀t ≥ 0.Because |x1 (t)| < Dz1 + A0, |z1 (t)| ≤ Dz1
and |ẏd (t)| ≤ B1, it is clear that

(
x1(t), z1(t), ỹd1 (t)

) ∈ Ω1, and thus, the stabi-
lizing function φ1 is bounded because it is a continuous function. As a result,
sup(x1,z1,ỹd1)∈Ωi

∣∣φ1
(
x1, z1, ỹd1

)∣∣ exists, and an upper bound A1 can be found. Then,
we can see from |z2 (t)| ≤ Dz2 < b2 that
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|x2 (t)| ≤ Dz2 + |φ1 (t)| < b2 + |φ1 (t)| . (6.33)

Since |φ1 (t)| < A1, therefore we deduce that |x2 (t)| ≤ Dz2 + A1 < b2 + A1 <

c2,∀t ≥ 0.
We can get that |xi+1 (t)| ≤ ci+1, i = 2, . . . , n − 1, after verifying that there

exist positive constants Ai such that |φi (t)| ≤ Ai ,∀t ≥ 0. Because |xi (t)| ≤ Dzi +
Ai−1, |zi (t)| ≤ Dzi and

∣∣∣y(i)
d (t)

∣∣∣ ≤ Yi , it is clear that
(
x̄i (t), z̄i (t), ỹdi (t)

) ∈ Ωi , and

thus, the stabilizing function φi is bounded because it is a continuously differen-
tiable function. As a result, we have that sup(x̄i ,z̄i ,ỹi )∈Ωi

|φi (x̄i , z̄i , ỹi )| exists, and an
upper bound Ai can be found. Then, from |zi+1 (t)| ≤ Dzi+1 < bi+1, we can show
that |xi+1 (t)| < Dzi+1 + |φi (t)| < bi+1 + |φi (t)|. Because |φi (t)| ≤ Ai , therefore
we have that |xi+1 (t)| < Dzi+1 + Ai < bi+1 + Ai < ci+1,∀t ≥ 0.

(iii) By virtue of the boundedness of x̄n, z̄n, ỹdn , it is clear that stabilizing functions
φi (x̄i , z̄i , ỹi ) and control un

(
x̄n, z̄n, ỹdn

)
are bounded. Therefore, all closed-loop

signals are bounded.
(iv) Based on the fact that x̄i (t), z̄i (t), i = 1, 2, . . . , n are bounded, it can be

obtained that V̈ is bounded, which means that V̇ is uniformly continuous. Then, by
Lemma 6.2, we obtain that zi (t) → 0 as t → 0. Because z1(t) = x1(t) − yd(t) and
y(t) = x1(t), we finally have y(t) → yd(t) as t → ∞. �

6.2.3 Control Design for Time-Varying Output Constraints

In this section, we consider the case that the output is required to satisfy −c̄1 (t) <

y (t) < c̄2(t),∀t ≥ 0,where c̄1(t), c̄2 (t) are positive-valued time-varying functions.
By incorporating an appropriate barrier function in the backstepping design, we show
that the output constraints are not violated at any time and asymptotic output tracking
is realized while ensuring boundedness of all closed-loop signals.

Assumption 6.3 There exist positive constants K i
l , i = 0, 1, . . . , n, l = 1, 2 such

that the time-varying functions c̄l (t) and their time derivatives satisfy c̄l (t) ≤
K 0

l , c̄
(i)
l (t) ≤ K i

l , i = 1, 2, . . . , n, l = 1, 2,∀t ≥ 0.

Assumption 6.4 There exist functions Bl : R+ → R
+ satisfying Bl(t) < c̄l(t), l =

1, 2,∀t ≥ 0 and positive constants Bi
l , i = 1, 2, . . . , n such that the desired trajec-

tory yd(t) and its time derivatives satisfy−B1(t) ≤ yd(t) ≤ B2(t),−Bi
1 < y(i)

d (t) <

Bi
2, i = 1, 2, . . . , n,∀t ≥ 0.

Lemma 6.4 For any positive constants a0, b0, let Π = {ξ ∈ R : −a0 < ξ < b0} ⊂
R and X = R

v × Π ⊂ R
v+1 be open sets. Consider the switched system:

η̇ = hσ(t)(t, η), (6.34)

where η := [ξ, z] ∈ X, z ∈ R
v, σ(t) is the same as in (1), and hi : R+ × X → R

v+1

is piecewise continuous in t and locally Lipschitz in η, uniformly in t , on R+ × X.
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We also assume that the state of the switched system (6.34) does not jump at switch-
ing instants. Suppose that there exist functions V1 : Π → R+ and V2 : Rv → R+
continuously differentiable and positive definite in their individual domains, such
that

V1 (ξ) → ∞, as ξ → −a0 or ξ → b0, (6.35)

γ1 (‖z‖) ≤ V2(z) ≤ γ2 (‖z‖) , (6.36)

where γ1 and γ2 are class K∞ functions. Let V (η) = V1 (ξ) + V2 (z), and ξ (0)
belong to the set (−a0, b0). If the inequality

V̇ (η) = ∂V (η)

∂η
hi (t, η) < 0, ∀η �= 0, i ∈ Im (6.37)

holds, then under arbitrary switchings, ξ (t) remains in the open set (−a0, b0),∀t ∈
[0,∞).

Proof The proof is similar to Lemma 6.1. �
Noting that the output constraints are asymmetric and time-varying, we construct the
following asymmetric barrier function, which explicitly depends on time.

V1(z1(t), b1(t)) = 1

2
(1 − q(z1(t))) log

b21(t)

b21(t) − z21(t)
+ 1

2
q(z1(t)) log

b22(t)

b22(t) − z21(t)
,

(6.38)

where z1 = x1 − yd , b1 (t) = c̄1 (t) − B1 (t) and b2 (t) = c̄2 (t) − B2 (t) are the con-
straints on z1; that is, we require −b1(t) < z1(t) < b2(t), and

q (•) =
{
0, i f • ≤ 0 ,

1, i f • > 0.
(6.39)

Lemma 6.5 The Lyapunov function candidate V1 in (6.38) is positive definite and
C1 in the set (−b1(t), b2 (t)).

Proof For −b1(t) < z1 (t) < b2(t), we have that V1 ≥ 0 and V1 = 0 if and only
if z1 (t) = 0. This means that V1 is positive definite. Furthermore, V1 is piece-
wise smooth among intervals z1 (t) ∈ (−b1(t), 0] and z1 (t) ∈ (0, b2(t)). Noting
that lim

z1→0−
dV1
dz1

= lim
z1→0+

dV1
dz1

= 0, we conclude that V1 is C1. This completes the

proof. �
Then, to remove the explicit dependence on time in (6.38), we use a coordinate
transformation:

ξ1 = z1 (t)

b1 (t)
, ξ2 = z1 (t)

b2 (t)
, ξ = (1 − q(z1))ξ1 + q(z1)ξ2. (6.40)
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Therefore, we can rewrite V1 in (6.38) as

V1(ξ) = 1

2
log

1

1 − ξ 2
. (6.41)

It is clear that V1(ξ) is positive definite and continuously differentiable in the set
|ξ | < 1.

Now, consider the Lyapunov function candidate:

V i (ξ, z̄2:i ) = V1(ξ) +
i∑

l=2

Vl(zl), Vi (zi ) = 1

2
z2i , i = 2, 3, . . . , n, (6.42)

where zi = xi − φi−1, i = 2, . . . , n, and φ1 = (1 − q(z1))φ1
1(x1, ξ1, z1, b̃

(1)
1 , ỹd1) +

q(z1)φ2
1(x1, ξ2, z1, b̃(1)

2 , ỹd1), φ j = φ j (x̄ j , ξ1, ξ2, z̄ j , b̃
( j)
1 , b̃( j)

2 , ỹd j ), j = 2, . . . ,
n − 1 are the virtual controls.

Using the backstepping design technique in Sect. 6.3, we can then get

dk1 (6.43)

= (1 − q(z1))
ξ1(φ

1
1 + f k1 (x1) − ẏd − ξ1ḃ1)

b1(1 − ξ21 )
+ q(z1)

ξ2(φ
2
1 + f k1 (x1) − ẏd − ξ2ḃ2)

b2(1 − ξ22 )
.

dk2 (6.44)

= (1 − q(z1))z2

(
ξ1

b1(1 − ξ21 )
+ φ2 + f k2 (x̄2) − ∂φ1

∂t
− ∂φ1

∂x1
(x2 + f k2 (x̄2)) −

1∑
l=0

∂φ1

∂yld
yl+1
d

)

+ q(z1)z2

(
ξ2

b2(1 − ξ22 )
+ φ2 + f k2 (x̄2) − ∂φ1

∂t
− ∂φ1

∂x1
(x2 + f k2 (x̄2)) −

1∑
l=0

∂φ1

∂yld
yl+1
d

)
,

dkj (6.45)

= z j

⎛
⎝z j−1 + φ j + f kj (x̄ j ) − ∂φ j−1

∂t
−

j−1∑
l=1

∂φ j−1

∂xl
(xl+1 + f kl (x̄l )) −

j−1∑
l=0

∂φ j−1

∂yld
yl+1
d

⎞
⎠ .

k = 1, 2, . . . ,m, j = 3, 4, . . . , n − 1. (6.46)

and

ak =
n−1∑
i=1

di,k + zn

(
zn−1 + f kn (x̄n) − ∂φn−1

∂t
(6.47)

−
n−1∑
j=1

∂φn−1

∂x j
(x j+1 + f kj (x̄ j )) −

n−1∑
j=0

∂φn−1

∂y( j)
d

y( j+1)
d

)
,

bk = zng
k(x̄n). (6.48)
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We design the following controller for the system (6.1).

u(x̄n, ξ1, ξ2, z̄n, b̃
(n)
1 , b̃(n)

2 , ỹdn )

=[u1(x̄n, ξ1, ξ2, z̄n, b̃(n)
1 , b̃(n)

2 , ỹdn ), u2(x̄n, ξ1, ξ2, z̄n, b̃
(n)
1 , b̃(n)

2 , ỹdn ), . . . ,

uq(x̄n, ξ1, ξ2, z̄n, b̃
(n)
1 , b̃(n)

2 , ỹdn )]. (6.49)

Applying Lemma 6.3, we can conclude that V̇ n(ξ, z̄2:n) < 0,∀(ξ, z2:n)T �= 0
along the solutions of closed-loop system (6.1).

Based on the above discussions, we can obtain the following theorem.

Theorem 6.2 Consider the switched system (6.1) under Assumptions 6.2–6.4. If
the subsystems are simultaneously dominatable with the controller (6.49), then
the closed-loop system (6.1) has the following properties under arbitrary switch-
ing, where the initial conditions are z̄n (0) ∈ Ωz0 = {z̄n ∈ Rn : −b1 (0) < z1 (0) <

b2 (0)}.
(i) The signals ξ1(t), ξ2 (t) and zi (t), i = 1, 2, . . . , n are bounded, for ∀t ≥ 0, as

follows.

−√
1 − e−2Vn(0) < ξ1(t) < 0,

0 ≤ ξ2(t) <
√
1 − e−2Vn(0),

−b1 (t) < −Dz1(t) < z1(t) < Dz1(t) < b2 (t) ,

‖z̄2:n(t)‖ <
√
2Vn (0),

(6.50)

where Dz1(t) = b1 (t)
(
1 − e−2Vn(0)

) 1
2 , Dz1(t) = b2 (t)

(
1 − e−2Vn(0)

) 1
2 .

(ii) The output y(t) remains in the set Ωy = {y ∈ R : −c̄1 (t) < −b2 (t) −
B2(t) < y(t) < b1 (t) + B1(t) < c̄2(t)}; i.e., the output constraints are never vio-
lated.

(iii) All closed-loop signals are bounded.
(iv) The output tracking error asymptotically converges to zero; i.e., y (t) →

yd (t) as t → ∞.

Proof (i) Applying Lemma 6.4 yields that |ξi (t)| < 1, i = 1, 2, from which we
have that −b1 (t) < z1(t) < b2(t),∀t ≥ 0. Furthermore, it follows from V n (t) <

V n(0),∀t ≥ 0, that

V n (0) >

⎧⎨
⎩
log b21(t)

b21(t)−z21(t)
, −b1 (t) < z1 (t) < 0,

log b22(t)
b22(t)−z21(t)

, 0 ≤ z1 (t) < b2 (t) .
(6.51)

Then, we get that

z21 (t) <

⎧⎨
⎩
b21 (t)

(
1 − e−2V n(0)

)
,−b1 (t) < z1 (t) < 0,

b22 (t)
(
1 − e−2V n(0)

)
, 0 ≤ z1 (t) < b2 (t) .

(6.52)
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This implies that z1 (t) > −b1 (t)
(
1 − e−2V n(0)

) 1
2
for negative z1 (t), and z1 (t) <

b2 (t)
(
1 − e−2V n(0)

) 1
2
for nonnegative z1 (t). Therefore, it is obvious that−Dz1 (t) <

z1 (t) < Dz1(t),∀t ≥ 0.

Similarly, from the fact that 1
2

n∑
j=2

z2j (t) ≤ V n(0), we can obtain that |z2:n (t)| ≤
√
2V n(0), ∀t ≥ 0.
(ii) Because y (t) = z1 (t) + yd ,−Dz1 (t) < z1 (t) < Dz1(t), and |yd (t)| ≤

Bl(t), l = 1, 2,∀t ≥ 0. Then, we can conclude that

−Dz1 (t) − B1(t) < z1 (t) + yd(t) < Dz1 (t) + B2(t). (6.53)

Dz1 (t) < b1 (t) and Dz1 (t) < b2 (t), therefore we know that

Dz1 (t) + yd (t) < b1 (t) + B1(t) = c̄1(t),

Dz1 (t) + yd (t) < b2 (t) + B2(t) = c̄2 (t) . (6.54)

Hence, we can deduce that y (t) ∈ Ωy,∀t ≥ 0.
(iii) From (i), we know that the error signals z1 (t) , z2(t), . . . , zn (t) are bounded.

The boundedness of z1 (t) and yd (t) implies that the state x1 (t) is bounded. From
(6.38), we see that ḃi (t) are bounded, because ˙̄ci (t) ≤ K 1

i and |ẏd (t)| ≤ B1
i , i =

1, 2, where K 1
i and B1

i are some positive constants. Therefore, the virtual control
φ1 is also bounded. This leads to the boundedness of x2 (t), because x2 = z2 + φ1.
Furthermore, it is not hard to check that all variables of continuous function φ2 are
bounded, and thus we get that φ2 is bounded. This leads to the boundedness of state
x3 (t), because x3 = z3 + φ2. Following the same procedures, one can know that each
φi , for i = 3, . . . , n − 1, is bounded. Hence, the boundedness of state xi+1 (t) can be
ensured.With x̄n (t) and z̄n (t) being bounded, and−b1 (t) < z1 (t) < b2(t),∀t ≥ 0,
wededuce that the control u (t) is bounded. Thus, all closed-loop signals are bounded.

(iv) Let d1 = dk
1 , k = 1, 2, . . . ,m, which is differentiable in the set |ξ | < 1.

Because |ξ (t)| < 1,∀t ≥ 0 from Lemma 6.1, we can integrate both sides of V̇ n =
ak + bku with the controller (6.49) to obtain

lim
t→∞

∫ t

0
d1 (τ ) dτ < V (0) < ∞,∀k = 1, 2, . . . ,m. (6.55)

Meanwhile, one can also derive from dk
1 that ḋ1 (t) is bounded, which implies that

d1 (t) is uniformly continuous. By Lemma 6.2, one can get that d1 (t) → 0, as t →
∞,whichmeans ξi (t) → 0, as t → ∞, because ξi (t) = z1 (t) /bi (t) and bi (t) >

0, i = 1, 2,∀t ≥ 0. Subsequently, one can obtain z1 (t) → 0, as t → ∞. There-
fore, we finally have y(t) → yd(t), as t → ∞. �
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6.2.4 Simulation Results

In this section, two examples are presented to demonstrate the effectiveness of the
obtained results.

Consider the following switched nonlinear system,

ẋ1 = gσ(t)
1 (x1) x2,

ẋ2 = f σ(t)
2 (x̄2, d (t)) + gσ(t)

2 (x̄2) uσ(t),

y = x1, (6.56)

whereσ : [0,+∞) → {1, 2}, g11 (x1) = g21 (x1) = 1, f 12 (x̄2, d (t)) = θx22 , θ ∈ [0.4,
0.8], f 22 (x̄2, d (t)) = x2 cos

(
2x1x22

)
. The control objective is to design a state feed-

back controller such that the output x1 of the system can track the given signal
yc = 0.2, and does not destroy a symmetric constraint L = L = 0.25.

Due to the symmetric constraint L = L = 0.25, one can set z1 = Ψ (x1d ,−0.25,
0.25) = tan[2π(x1 − 0.2)] and V1(z1) = 1

2 z
2
1. By using the proposed method, the

common stabilizing function φ1(z1) can be obtained for each subsystem at the initial
step:

φ1(z1) = −z1

[
1 + 2

2πsec2[2π(x1 − 0.2)]
]
. (6.57)

Next, set z2 = x2 − φ1(z1), and V 2(z2) = 1
2 z

2
1 + 1

2 z
2
2 is theCLF for system (6.56).

We can give the following state feedback controller.

u (z̄2) = −z2

[
1.6πsec2 [2π(x1 − 0.2)] +

(
1 + 2

2πsec2 [2π(x1 − 0.2)]

)4

+
(
1 + 2

2πsec2 [2π(x1 − 0.2)]

)2

(1 + x22 ) + (1 + x22 )
1
2

+
(
1 + 2

2πsec2 [2π(x1 − 0.2)]

)
+ 1

]
. (6.58)

Choose the initial values as x1 (0) = 0.449, x2 (0) = −2.2. Figure6.1 demon-
strates that asymptotic tracking performance can be achieved under a randomly gen-
erated switching signal inFig. 6.2. FromFig. 6.3, it canbe seen that the output tracking
error x1d converges to zero while remaining in the set (−0.25, 0.25). Finally, the state
response of the p-times differentiable unbounded function z1 = tan[2π(x1 − 0.2)]
is shown in Fig. 6.4 demonstrating the validity of the designed state feedback con-
troller (6.58).
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Fig. 6.1 Output tracking for the desired signal yd = 0.2
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Fig. 6.2 The given switching signal for the system (6.56)

6.2.5 Conclusions

Based on the BLF approach, a control design method for constrained nonlinear
switched systems in lower triangular form has been developed to achieve the out-
put tracking objective. By guaranteeing the boundedness of the BLF in the closed-
loop, the restrictions are not transgressed. Furthermore, asymptotic output tracking is
achieved without violating the constraints, and all closed-loop signals are bounded.
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Fig. 6.3 The state response of the output tracking error x1d
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Fig. 6.4 The state response of the p-times differentiable unbounded function z1

In particular, the issue of output tracking control with full state constraints and
asymmetric time-varying output constraints are considered for switched nonlinear
systems.
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6.3 p-Times Differentiable Unbounded Functions-Based
Control Design

6.3.1 Problem Formulation and Preliminaries

Consider uncertain switched nonlinear systems with the following lower triangular
form,

ẋ1 = gσ(t)
1 (x1) x2,

ẋi = f σ(t)
i (x̄i , d(t)) + gσ(t)

i (x̄i ) xi+1, i = 2, 3, . . . , n − 1,

ẋn = f σ(t)
n (x̄n, d(t)) + gσ(t)

n (x̄n) uσ(t),

y = x1, (6.59)

where x1, x2, . . . , xn are system states, y is the output; σ(t) is the switching signal,
which takes its values in a finite set Im = {1, 2, . . . ,m} and m > 1 is the number
of subsystems; d(t) is an unknown piecewise continuous disturbance belonging to a
known compact set Ω ∈ Rs ; uk ∈ R is the control input of the k-th subsystem. For
∀i = 1, 2, . . . , n and k = 1, 2, . . . ,m, functions f ki (x̄i , d(t)) and gki (x̄i ) are known
and smooth with 0 < g ≤ gki (x̄i ) ≤ ḡ, where g and ḡ are positive constants. As
commonly assumed in the literature, the Zeno behavior for all types of switching
signals is not considered. In addition, we assume that the state of system (6.59) is
continuous at switching instants.

Remark 6.1 For non-switched nonlinear systems, the structure of (6.59) has been
widely investigated (see, e.g., [12, 14, 17–19]). For switched nonlinear systems,
the considered system structure of (6.59) was restricted to the design of stabilizing
controllers [20–23].

Here, we consider the following output-constrained tracking control problem.

The output-constrained tracking control problem: For the system (6.59) under
arbitrary switchings, design state feedback controllers to ensure the output of system
(6.59) to track a given constant reference signal yc such that:

(1) Asymptotic tracking is achieved; i.e.,

lim
t→∞(y(t) − yc) = 0. (6.60)

(2) The output tracking error is confined to be a pre-specified limit range; i.e.,

− L ≤ y(t) − yc ≤ L (6.61)
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for all t ≥ t0 ≥ 0, where L and L are strictly positive constants. If L = L , the con-
straint (6.61) is referred to as a symmetric constraint. If L �= L , the constraint (6.61)
is referred to as an asymmetric constraint.

(3) All signals of the closed-loop system (6.59) are bounded.
The following assumptions are needed to develop the main results.

Assumption 6.5 For i = 2, 3, . . . , n,

∣∣ f ki (x̄i , d(t))
∣∣ ≤ (|x2|+ · · · +|xi |)μk

i (x̄i ) ,∀k ∈ Im, (6.62)

where μi,k (x̄i ) is a set of known non-negative smooth functions.

Assumption 6.6 At t0, there exist strictly positive constants L1 < L and L1 < L
such that

− L1 ≤ x1d(t0) ≤ L1, (6.63)

where x1d(t0) = x1(t0) − yc is the initial output tracking error.

Two definitions and two relevant lemmas are addressed in the following for later
use.

Definition 6.2 ([2]) A scalar function h(x, a, b) is said to be a p-times differentiable
step function if it satisfies the following properties.

(1) h(x, a, b) = 0, ∀ − ∞ < x ≤ a,

(2) h(x, a, b) = 1, ∀b ≤ x < +∞,

(3) 0 < h(x, a, b) < 1, ∀x ∈ (a, b),
(4) h(x, a, b) is p times differentiable with respect to x ,
(5) h′(x, a, b) > 0, ∀x ∈ (a, b),
(6) h′(x, a, b) ≥ δ1(ρ1) > 0, ∀x ∈ (a + ρ1, b − ρ1) with 0 < ρ1 < b−a

2 ,

where p is a positive integer, x ∈ R, a and b are constants such that a < 0 <

b, h′(x, a, b) = ∂h′(x,a,b)
∂x , and δ1(ρ1) is a positive constant depending on the pos-

itive constant ρ1. Moreover, if the function h(x, a, b) is infinite times differentiable
with respect to x , then it is said to be a smooth step function.

Lemma 6.6 ([14]) Let the scalar function h(x, a, b) be defined as

h(x, a, b)=
∫ x
a f (τ − a) f (b − τ)dτ∫ b
a f (τ − a) f (b − τ)dτ

(6.64)

where a and b are constants such that a < 0 < b, and the function f (y) is defined
below:

f (y) = 0, i f y ≤ 0,

f (y) = g(y), i f y > 0, (6.65)
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where g(y) is a single-valued function satisfying the following properties,
(a) g(τ − a) f (b − τ) > 0, ∀τ ∈ (a, b),
(b) g(τ − a) f (b − τ) ≥ δ2(ρ2) > 0, ∀τ ∈ (a + ρ2, b − ρ2), with 0 < ρ2 <

b−a
2 ,

(c) g(y) is p times differentiable with respect to y, and limy→0+ ∂k g(y)
∂ yk = 0, k =

1, 2, . . . , p − 1, with p being a positive integer, and δ2(ρ2) is a positive constant
depending on the positive constant ρ2. Then, the function h(x, a, b) is a p-times
differentiable step function. Furthermore, if g(y) in (6.65) is replaced by g(y)=e−1/y ,
then property (4) in Definition 6.2 is replaced by (4)′; i.e., h(x, a, b) is a smooth step
function.

Definition 6.3 ([2]) A function Ψ (x, a, b) is said to be a p-times differentiable
unbounded function if it holds the following properties.

(1) x = 0 ⇔ Ψ (x, a, b) = 0,
(2) limx→a−Ψ (x, a, b) = −∞, limx→b+Ψ (x, a, b) = ∞,

(3) Ψ (x, a, b) is p times differentiable with respect to x , for all x ∈ (a, b),
(4) Ψ

′
(x, a, b) > 0, ∀x ∈ (a, b),

(5) Ψ
′
(x, a, b) ≥ δ3(ρ3) > 0, ∀x ∈ (a + ρ3, b − ρ3), with 0 < ρ3 < b−a

2 ,

where p is a positive integer, a and b are constants such that a < 0 < b,Ψ
′
(x, a, b) =

∂Ψ (x,a,b)
∂x , and δ3(ρ3) is a positive constant depending on the positive constant ρ3.

Furthermore, if p = ∞, then the functionΨ (x, a, b) is said to be a smoothunbounded
function.

Lemma 6.7 ([2]) Let the scalar function Ψ (x, a, b) be defined as

Ψ (x, a, b) = Ψ̄ (ϕ(x, a, b)) − Ψ̄ (ϕ(0, a, b)), (6.66)

where the function ϕ(x, a, b) is defined as follows.

ϕ(x, a, b) = ε(2h(x, a, b) − 1) (6.67)

with ε being a positive constant, and h(x, a, b) being the p-times differentiable step
functions in Definition 6.2. The function Ψ̄ (ξ) is such that

(1) ξ = 0 ⇔ Ψ̄ (ξ) = 0,
(2) limξ→−ε−Ψ̄ (ξ) = −∞, limξ→ε+Ψ̄ (ξ) = ∞,

(3) Ψ̄ (ξ) is p times differentiable with respect to ξ , for all ξ ∈ (−ε, ε),

(4) Ψ̄
′
(ξ) > 0, ∀ξ ∈ (−ε, ε),

(5) Ψ̄
′
(ξ) > δ4(ρ4) > 0, ∀ξ ∈ (a + ρ4, b − ρ4), with 0 < ρ4 < b−a

2 ,

where Ψ̄
′
(ξ) = ∂Ψ̄ (ξ)

∂ξ
> 0,∀ξ ∈ (−ε, ε), and δ4(ρ4) is a positive constant depending

on the positive constant ρ4. Then the function Ψ (x, a, b) is a p-times differentiable
unbounded function. Moreover, if h(x, a, b) is a smooth step function, then the func-
tion Ψ (x, a, b) is a smooth unbounded function.

Remark 6.2 For Lemma 6.6, it can be seen that several functions satisfy properties
(a)–(c) of the function g(y), such as g(y)=yp, g(y)= tanh(y)p, g(y)= arctan(yp),
etc.



6.3 p-Times Differentiable Unbounded Functions-Based Control Design 149

Remark 6.3 In Definition 6.3, if a= −b, then many p-times differentiable
unbounded functions can be obtained. An example is the function tan(− π

2a x). If
a �= −b, it is difficult to give a p-times differentiable unbounded function. How-
ever, we can construct a p-times differentiable unbounded function by using the
p-times differentiable step function in Definition 6.2 with Lemma 6.7. For example,
Ψ (x, a, b)= tan[π

2 (2h(x, a, b) − 1)] − tan[π
2 (2h(0, a, b) − 1)].

Lemma 6.8 ([18]) For any positive real numbers c, d and any real-valued function
ρ(x, y) > 0,

|x |a |y|d ≤ a

a + d
ρ(x, y) |x |a+d + d

a + d
ρ−a/d(x, y) |y|a+d . (6.68)

Lemma 6.9 ([24]) (Barbalat’s Lemma) Consider a differentiable function h(t). If
limt→∞ h(t) is finite and ḣ(t) is uniformly continuous, then limt→∞ ḣ(t) = 0.

6.3.2 Main Results

In what follows, a systematic design procedure for output-constrained tracking con-
trol of the system (6.59) is presented by using the CLF approach and the p-times
differentiable unbounded functions in Definition 6.3.

First, give a coordinate transformation:

z1 = Ψ (x1d , a, b), (6.69)

where x1d = x1 − yc = y − yc is the output tracking error, Ψ (x1d , a, b) is a p-times
differentiable unbounded function with p ≥ n − 1, and the constants a and b are
chosen such that

− L ≤ a < −L1, L1 < b ≤ L̄. (6.70)

On the basis of the properties of Ψ (x1d , a, b) presented in Definition 6.3, it is
clear that if we design a control input u ensuring limt→∞z1(t) = 0 and keeping all
signals of the corresponding closed-loop system bounded for a bounded z1(t0), then
the output-constrained tracking control problem of system (6.59) is solved. Note that
z1(t0) is bounded under the constants a and b in (6.70), the assumption on the initial
output tracking error in (6.63), and the properties of the function Ψ (x1d , a, b) listed
in Definition 6.3.

Differentiating both sides of (6.69) in conjunction with system (6.59), we can
rewrite them as

ż1 = Ψ ′(x1d , a, b)gσ(t)
1 (x1) x2,

ẋi = f σ(t)
i (x̄i , d(t)) + gσ(t)

i (x̄i )xi+1, i = 2, 3, . . . , n − 1,
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ẋn = f σ(t)
n (x̄n, d(t)) + gσ(t)

n (x̄n)u,

y = x1, (6.71)

Next, the steps of designing controllers are given below.
Step 1.Choose V1(z1) = 1

2 z
2
1 and let z2 = x2 − φ1(z1),where φ1(z1) is the com-

mon stabilizing function to be designed.
The derivative of V1(z1) is

V̇1 (z1) = z1Ψ ′(x1d , a, b)gk1 (x1) (z2 + φ1(z1)). (6.72)

Choose the common stabilizing function as

φ1(z1) = z1

[
−1

g
(((n − 2)/Ψ ′(x1d , a, b) + 1)g + n/Ψ ′(x1d , a, b))

]
. (6.73)

Substituting (6.73) into (6.72) yields that

V̇1 (z1) = − z21Ψ
′(x1d , a, b)

gk1 (x1)

g

n

Ψ ′(x1d , a, b)

− z21Ψ
′(x1d , a, b)

gk1 (x1)

g

(
(n − 2)

Ψ ′(x1d , a, b)
+ 1

)
g

+Ψ ′(x1d , a, b)gk1 (x1) z1z2
≤ − nz21 − (Ψ ′(x1d , a, b) + n − 2)gz21

+Ψ ′(x1d , a, b)gk1 (x1) z1z2, (6.74)

where the coupling term Ψ ′(x1d , a, b)gk1 (x1) z1z2,∀k ∈ Im can be canceled by fol-
lowing the steps below.

Step 2. Let z3 = x3 − φ2(z̄2), where φ2(z̄2) is the common stabilizing function
to be designed.

Choose V 2(z̄2) = V1(z1) + 1
2 z

2
2, and then the time derivative of V 2(z̄2) can be

given by

V̇ 2 (z̄2) = − nz21 − (Ψ ′(x1d , a, b) + n − 2)ḡz21

+ z2

(
f k2 (x̄2, d(t)) − ∂φ1(z1)

∂z1
ż1 + gk2 (x̄2) x3

)

+Ψ ′(x1d , a, b)gk1 (x1) z1z2
≤ −nz21 − (Ψ ′(x1d , a, b) + n − 2)ḡz21

+ ḡΨ ′(x1d , a, b) |z1z2| + ∣∣z2Φk
2 (z̄2, d(t))

∣∣
+ gk2 (x̄2) (z3 + φ2 (z̄2)), (6.75)
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where Φk
2 (z̄2, d(t)) = f k2 (x̄2, d(t)) − ∂φ1(z1)

∂z1
�k
1 (z̄2) , �k

1 (z̄2) = gk1 (x1) (z2 + φ1

(z1)),∀k ∈ Im .

Furthermore, one has
∣∣ f k2 (x̄2, d(t))

∣∣ ≤ |x2| μk
2 (x̄2) ≤ (|z1| + |z2|)μ̂k

2 (z̄2) ,∀k ∈
Im, where μ̂k

2 (z̄2) are a set of smooth non-negative functions. It means that

∣∣Φk
2 (z̄2, d(t))

∣∣ ≤ (|z1| + |z2|)μ̃k
2 (z̄2) , (6.76)

where μ̃k
2 (z̄2) are a set of smooth non-negative functions, ∀k ∈ Im .

According to Lemma 6.8 and (6.76), it holds that |z1z2| ≤ z21 + z22ϕ̃2(z̄2), | z2Φk
2

(z̄2, d(t))| ≤ z21 + z22ϕ̃
k
2(z̄2),∀k ∈ Im, where ϕ̃2 (z̄2) ≥ 1, ϕ̃k

2 (z̄2) ≥ 1 are some
smooth functions. Thus, we get that

V̇ 2 (z̄2) = − nz21 − (n − 2)ḡz21 − ḡΨ ′(x1d , a, b)z21 + z21
+ ḡΨ ′(x1d , a, b)z21 + ḡΨ ′(x1d , a, b)z22ϕ̃2 (z̄2)

+ z22ϕ̃
k
2 (z̄2) + gk2 (x̄2) z2φ2 (z̄2) + gk2 (x̄2) z2z3

≤ − (n − 1)z21 − (n − 2)ḡz21 + z22ϕ
k
2 (z̄2)

+ḡΨ ′(x1d , a, b)z21 + gk2 (x̄2) z2φ2 (z̄2)

+ gk2 (x̄2) z2z3
≤ − (n − 1)z21 − (n − 2)ḡz21 + z22ϕ

max
2 (z̄2)

+ gk2 (x̄2) z2φ2 (z̄2) + gk2 (x̄2) z2z3, (6.77)

where ϕmax
2 (z̄2) ≥ ϕk

2 (z̄2) = ḡΨ ′(x1d , a, b)ϕ̃2 (z̄2) + ϕ̃k
2(z̄2),∀k ∈ Im is a smooth

function.
Design the common stabilizing function as

φ2(z̄2) = z2

[
−1

g
(ϕmax

2 (z̄2) + (n − 2)ḡ + (n − 1))

]
. (6.78)

Substituting (6.78) into (6.77) yields that

V̇ 2 (z̄2) ≤ −(n − 1)z21 − (n − 2)ḡz21 + z22ϕ
max
2 (z̄2)

−gk2 (x̄2)

g
z22ϕ

max
2 (z̄2) − gk2 (x̄2)

g
(n − 2)ḡz22

−gk2 (x̄2)

g
(n − 1)z22 + gk2 (x̄2) z2z3

≤ −(n − 1)(z21 + z22) − (n − 2)ḡ(z21 + z22)

+gk2 (x̄2) z2z3, (6.79)

where the coupling term gk2 (x̄2) z2z3 can be canceled by the following steps.



152 6 Output Tracking Control of Constrained Switched Nonlinear Systems

Step i. Let zi+1 = xi+1 − φi (z̄i ), where φi (z̄i ) is a common stabilizing function
to be designed.

Assume that the first i − 1 (2 ≤ i ≤ n) steps are finished, that is, for the following
auxiliary (z1, . . . , zi−1)-equations:

ż j = Φk
j (z̄ j , d(t)) + gkj

(
x̄ j
)
x j+1, j = 1, . . . , i − 1, (6.80)

where Φk
j (z̄ j , d(t)) = f kj (z̄ j , d(t)) −

j−1∑
l=1

∂φ j−1(z̄ j−1)

∂zl
�k
l (z̄l−1), we have a set of com-

mon stabilizing functions (6.73), (6.78) and

φ j (z̄ j ) = z j

[
−1

g
(ϕmax

j

(
z̄ j
) + (n − j)ḡ + (n − j + 1))

]
, (6.81)

where 3 ≤ j ≤ i − 1, such that there exists a CLF for system (6.80),

V i−1(z̄i−1) = V1(z1) + 1

2

i−1∑
l=2

z2l , (6.82)

and the time derivative of V i−1(z̄i−1) fulfills V̇ i−1 (z̄i−1) ≤ −(n − i + 2)(z21 + · · · +
z2i−1) − (n − i + 1)ḡ(z21 + · · · + z2i−1) + gki−1 (x̄i−1) zi−1zi .

Choosing V i (z̄i ) = V i−1(z̄i−1) + 1
2 z

2
i , then we can derive that

V̇ i (z̄i ) ≤ −(n − i + 2)(z21 + · · · + z2i−1)

−(n − i + 1)ḡ(z21 + · · · + z2i−1)

+zi (Φk
i (z̄i , d(t)) + gki (x̄i ) xi+1)

+gki−1 (z̄i−1) zi−1zi
≤ −(n − i + 2)(z21 + · · · + z2i−1)

−(n − i + 1)ḡ(z21 + · · · + z2i−1)

+ḡ |zi−1zi | + ∣∣zi (Φk
i (z̄i , d(t))

∣∣
+gki (z̄i ) ziφi (z̄i ) + gki (z̄i ) zi zi+1, (6.83)

where Φk
i (z̄i , d(t)) = f ki (z̄i , d(t)) −

i−1∑
l=1

∂φl−1(z̄l−1)

∂zi
�k
l (z̄l−1), ∀k ∈ Im .

Similar to Step 2, one has |zi−1zi | ≤ z21 + · · · + z2i−1 + z2i ϕ̃i (z̄i ),
∣∣ziΦk

i (z̄i ,
d(t))| ≤ z21 + · · · + z2i−1 + zki ϕ̃

k
i (z̄i ),∀k ∈ Im, where ϕ̃i (z̄i ) ≥ 1, ϕ̃k

i (z̄i ) ≥ 1 are
some smooth functions. Therefore, we can arrive at
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V̇ i (z̄i ) ≤ −(n − i + 2)(z21 + · · · + z2i−1)

−(n − i + 1)ḡ(z21 + · · · + z2i−1)

+ḡ(z21 + · · · + z2i−1) + z21 + · · · + z2i−1

+z2i ϕ̃
k
i (z̄i ) + ḡz2i ϕ̃i (z̄i ) + gki (x̄i ) ziφi (z̄i )

+gki (x̄i ) zi zi+1

≤ −(n − i + 1)(z21 + · · · + z2i−1)

−(n − i)ḡ(z21 + · · · + z2i−1)

+z2i ϕ
max
i (z̄i ) + gki (x̄i ) ziφi (z̄i )

+gki (x̄i ) zi zi+1, (6.84)

where ϕmax
i (z̄i ) ≥ ϕk

i (z̄i ) = ḡϕ̃i (z̄i ) + ϕ̃k
i (z̄i ),∀k ∈ Im are some smooth functions.

Design the common stabilizing function as

φi (z̄i ) = zi

[
−1

g
(ϕmax

i (z̄i ) + (n − i)ḡ + (n − i + 1))

]
. (6.85)

Then, substituting (6.85) into (6.84) yields that

V̇ i (z̄i ) ≤ −(n − i + 1)(z21 + · · · + z2i−1)

−(n − i)ḡ(z21 + · · · + z2i−1) + z2i ϕ
max
i (z̄i )

−gki (x̄i )

g
z2i ϕ

max
i (z̄i ) − gki (x̄i )

g
(n − i)ḡz2i

−gki (x̄i )

g
(n − i + 1)z2i + gki (x̄i ) zi zi+1

≤ −(n − i + 1)(z21 + · · · + z2i )

−(n − i)ḡ(z21 + · · · + z2i ) + gki (x̄i ) zi zi+1, (6.86)

where the coupling term gki (x̄i ) zi zi+1 can be canceled by the following steps.
Step n. Repeating the procedures above, it is straightforward to see that there

exists a CLF of system (6.59)

V n(z̄n) = V1(z1) + 1

2

n∑
l=2

z2l . (6.87)

Then, we can explicitly design an individual controller for each subsystem

uk(z̄n) = zn

[
− 1

gn,k
(ϕn,k (z̄n) + 1)

]
,∀k ∈ Im (6.88)
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such that

V̇ n (z̄n) ≤ −(z21 + · · · + z2n). (6.89)

Remark 6.4 In fact, we can also design a common state feedback controller for the
system (6.59) as

u(z̄n) = zn

[
−1

g
(ϕmax

n (z̄n) + 1)

]
, (6.90)

where ϕmax
n (z̄n) ≥ ϕk

n (z̄n) = ḡϕ̃n (z̄n) + ϕ̃k
n (z̄n) is a smooth function. It can be seen

that (6.90) can be extended from (6.88), which illustrates the less conservativeness
of the controller to be developed.

Based on the above discussions, we now provide the main result.

Theorem 6.3 Suppose that Assumption 6.5 holds. The output-constrained tracking
controller for system (6.59) under arbitrary switching can be designed as (6.88), and
the output tracking error x1d(t) locally exponentially converges to zero.

Proof (i) Forward completeness. From (6.89) and Ψ ′(x1d , a, b) > 0 for all x1d(t) ∈
(a, b), noticing Property (6.58) of the function Ψ (x1d , a, b) in Definition 6.3, one
obtains that

V̇ n ≤ 0 ⇒ V n(t) ≤ V (t0),∀t ≥ t0 ≥ 0. (6.91)

This means that

n∑
i=1

zi (t) ≤
n∑

i=1

zi (t0) (6.92)

for all t ≥ t0 ≥ 0. Under the initial condition specified in (6.61), and the choice of
the constants a and b in (6.70), the right-hand side of (6.92) is bounded. This means
that the left-hand side of (6.92) must be bounded. Boundedness of the left-hand side
of (6.92) implies that all zi , i = 1, 2, . . . , n are bounded. Because |z1(t)| is bounded
for all t ≥ t0 ≥ 0, the output tracking error x1d(t) never reaches its boundary values
a and b; i.e., x1d(t) ∈ (a, b) for all t ≥ t0 ≥ 0. This together with (6.70), L1 < L and
L1 < L (Assumption 6.2) implies that x1d(t) is always in its constraint range, i.e. L <

x1d(t) < L for all t ≥ t0 ≥ 0. Boundedness of all xi , i = 1, 2, . . . , n follows from the
boundedness of all zi , and smooth property of all functions f ki (x̄i , d(t)), gki (x̄i ) and
Ψ (x1d , a, b). Boundedness of all xi , i = 1, 2, . . . , n also denotes that the closed-loop
system (6.55) is forward complete.

(ii)Asymptotic convergence.Noting that xi (t), zi (t), i = 1, 2, . . . , n are bounded,

it is not hard to deduce that V̈ n(z̄n) is bounded, which gives that ˙̄Vn(z̄n) is uni-
formly continuous. Then, we get from Lemma 6.9 that limt→∞zi (t) = 0, i =
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1, 2, . . . , n. Therefore, it follows from Property (6.55) of function Ψ (x1d , a, b). that
limt→∞x1d(t) = 0.

(iii) Local exponential convergence of the output tracking error x1d(t). It follows
from (6.89) that

Vn(t) ≤ Vn(t0)e
−(t−t0),∀t ≥ t0. (6.93)

One can get from (6.93) that

|z1(t)| ≤ √
2Vn(t0)e

− 1
2 (t−t0),∀t ≥ t0, (6.94)

which implies that z1(t) locally exponentially converges to 0. Now, with the help
of Taylor expansion of function Ψ (x1d , a, b) around x1d = 0 and noticing Property
(6.59) of the function h(x1d , a, b), Property (6.60) of the function Ψ (x1d , a, b), and
the construction of the function Ψ (x1d , a, b) (see Lemma 6.7), it can be shown that
there exists a strictly positive constant δ5(ρ5) depending on the positive constant ρ5

with 0 < ρ5 < b−a
2 such that

|Ψ (x1d(t), a, b)| ≥ δ5(ρ5) |x1d(t)| ,∀t ≥ t1, (6.95)

where the time instance t1 > t0.By definition z1(t) = Ψ (x1d(t), a, b), a combination
of (6.93) and (6.95) gives

|x1d(t)| ≤
√
2Vn(t0)e− 1

2 (t−t0)

δ5(ρ5)
,∀t ≥ t1, (6.96)

which shows the local exponential convergence of x1d(t) to 0. �

Remark 6.5 When the output-constrained tracking control problem is considered, it
is required that |x1| be absent in Assumption 6.5, and thus f k1 (x1) cannot appear in
x1-equation of system (6.59), k = 1, 2, . . . ,m. It seems that Assumption 6.1 appears
to be conservative. However, if the stabilization problem is considered, |x1| can be
presented in Assumption 6.5, which leads to: f k1 (x1) exists in the x1-equation of (1),
k = 1, 2, . . . ,m. We give the design procedures for the stabilization problem in the
next section.

In what follows, we consider the robust state-constrained stabilization problem
for the following uncertain switched nonlinear system,

ẋi = f σ(t)
i (x̄i , d(t)) + gσ(t)

i (x̄i ) xi+1, i = 1, 2, . . . , n − 1,

ẋn = f σ(t)
n (x̄n, d(t)) + gσ(t)

n (x̄n) uσ(t), (6.97)

where all functions are smooth with fi,k(0, d(t)) = 0 for all d(t) ∈ Ω and 0 < g <

gi,k(x̄i ) ≤ ḡ, g, ḡ are positive constants, respectively, i = 1, 2, . . . , n,∀k ∈ Im .
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The robust state-constrained stabilization problem: For system (6.97) under arbi-
trary switching, design state feedback controllers for all subsystems to ensure that:

(1) System (6.97) is asymptotically stabilizable.
(2) The state x1 is within a pre-specified limit range; i.e.,

− L ≤ x1 ≤ L (6.98)

for all t ≥ t0 ≥ 0, where L and L are strictly positive constants.
(3) All signals of the closed-loop system (6.97) are bounded.
In addition, it is assumed that the following conditions hold.

Assumption 6.7 For i = 1, 2, . . . , n,

∣∣ f ki (x̄i , d(t))
∣∣ ≤ (|x1|+|x2|+ · · · +|xi |)μk

i (x̄i ) ,∀k ∈ Im, (6.99)

where μk
i (x̄i ) are a set of known non-negative smooth functions.

Assumption 6.8 The p-times differentiable unbounded function in Definition 6.2
satisfies

Ψ (x, a, b) = x[1 + χ(x)], (6.100)

where χ(x) is a non-negative smooth function.

Similar to Theorem 6.3, we apply a coordinate transformation:

z1 = Ψ (x1, a, b), (6.101)

where Ψ (x1, a, b) is a p-times differentiable unbounded function with p ≥ n − 1.
Differentiating both sides of (6.101) in conjunction with system (6.97), one can

rewrite them in the form:

ż1 = Ψ ′(x1, a, b)( f σ(t)
1 (x1, d(t)) + gσ(t)

1 (x1) x2),

ẋi = f σ(t)
i (x̄i , d(t)) + gσ(t)

i (x̄i )xi+1, i = 2, 3, . . . , n − 1,

ẋn = f σ(t)
n (x̄n, d(t)) + gσ(t)

n (x̄n)uσ(t), (6.102)

Step 1.Choose V1(z1) = 1
2 z

2
1 and let z2 = x2 − φ1(z1),whereφ1(z1) is the com-

mon stabilizing function to be designed.
The derivative of V1(z1) is given by

V̇1 (z1) = Ψ ′(x1, a, b)z1[ f k1 (x1, d(t)) + gk1 (x1) (z2 + φ1(z1))]
= Ψ ′(x1, a, b)z1 f

k
1 (x1, d(t))

+Ψ ′(x1d , a, b)z1g
k
1 (x1) (z2 + φ1(z1))

≤ Ψ ′(x1, a, b)|z1Φk
1 (x1)|

+Ψ ′(x1d , a, b)z1g
k
1 (x1) (z2 + φ1(z1)), (6.103)
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where Φk
1 (x1) = f k1 (x1, d(t)),∀k ∈ Im .

Under Assumptions 6.5 and 6.8, one can find that

∣∣ f k1 (x1, d(t))
∣∣ ≤ |x1|μk

1 (x1) ≤ |z1|μ̂k
1 (z1) ,∀k ∈ Im, (6.104)

where μ̂k
1 (z1) are a set of smooth non-negative functions.

Then, we can get that

∣∣z1Φk
1 (z1)

∣∣ ≤ z21ϕ̃
k
1 (z1) ,∀k ∈ Im . (6.105)

where ϕ̃k
1 (z1) ≥ 1,∀k ∈ Im is a smooth function.

Then, one can see that

V̇1 (z1) ≤ z21Ψ
′(x1, a, b)ϕ̃k

1 (z1)

+z1Ψ
′(x1, a, b)gk1 (x1) (z2 + φ1(z1))

≤ z21Ψ
′(x1, a, b)ϕ̃max

1 (z1)

+z1Ψ
′(x1, a, b)gk1 (x1) (z2 + φ1(z1)), (6.106)

where ϕ̃max
1 (z1) ≥ ϕ̃k

1 (z1) ≥ 1,∀k ∈ Im is a smooth function.
The common stabilizing function is designed as

φ1(z1) = z1

[
− 1

g
(ϕ̃max

1 (z1) + ((n − 2)/Ψ ′(x1, a, b) + 1)g

+n/Ψ ′(x1, a, b))

]
. (6.107)

Substituting (6.107) into (6.106), one can get that

V̇1 (z1) = z21Ψ
′(x1, a, b)ϕ̃max

1 (z1)

−z21Ψ
′(x1, a, b)

gk1 (x1)

g
ϕ̃max
1 (z1)

−z21Ψ
′(x1, a, b)

gk1 (x1)

g

n

Ψ ′(x1, a, b)

−z21Ψ
′(x1, a, b)

gk1 (x1)

g

(
(n − 2)

Ψ ′(x1, a, b)
+ 1

)
g

+Ψ ′(x1, a, b)gk1 (x1) z1z2
≤ −nz21 − (Ψ ′(x1, a, b) + n − 2)gz21

+Ψ ′(x1, a, b)gk1 (x1) z1z2, (6.108)

where the coupling term Ψ ′(x1, a, b)gk1 (x1) z1z2,∀k ∈ Im can be canceled by using
the steps below.
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Similar to the procedures in the above section, we design the individual controllers
for the subsystems as

uk(z̄n) = zn

[
− 1

gn,k
(ϕn,k (z̄n) + 1)

]
, k ∈ Im (6.109)

such that

V̇ n (z̄n) ≤ −(z21 + · · · + z2n). (6.110)

Now, we give the following result focusing on robust state-constrained stabiliza-
tion problem of system (6.97).

Theorem 6.4 Suppose that Assumptions 6.6–6.8 are satisfied; then the robust state-
constrained stabilization problem of system (6.97) under arbitrary switchings can
be solved by the controller in (6.109).

Proof The proof is similar to the one of Theorem 6.3. �

6.3.3 Simulation Results

In this section, the following example is provided to illustrate the effectiveness of
the proposed results.

Consider the switched nonlinear system:

⎧⎨
⎩
ẋ1 = f σ(t)

1 (x1) + x2,
ẋ2 = f σ(t)

2 (x̄2) + gσ(t) (x̄2) u,

y = x1, σ (t) : [0,∞) → {1, 2},
(6.111)

where f 11 (x1) = 0, f 12 (x̄2) = 3x21 x
3
2 , f 21 (x1) = 2x1 − 0.4, f 22 (x̄2) = x1x2

(
1 + x21

)
,

g1(x̄2) = [− sin2
(
x31 + 2x2

)
, 1.4 − cos(x1x2)

]
, g2(x̄2) = [− 4x41 x

2
2 , 1.2

]
. The

objective is enable y (t) to track the desired trajectory yd = 0.2 subject to asymmetric
time-varying output constraints −(0.2 + 0.1 cos(t)) < y (t) < 0.7 + 0.1 cos (t) .

According to Assumption6.4, we choose B1 (t) = 0.1 + 0.1 cos(t) and B2 (t) =
0.3 + 0.1 cos(t). Based on (6.38), we can get an asymmetric barrier Lyapunov func-
tion:

V1 = (1 − q (z1)) log
0.09(

0.09 − z21
) + q (z1) log

0.16(
0.16 − z21

) . (6.112)

Defining z1 = x1 − 0.2, one can see that φ1 = (1 − q(z1))(−2z1 − z1(0.09 −
z21)) + q(z1)(−2z1 − z1(0.16 − z21)) is a dominating feedback law for the auxiliary
first-order subsystems. In that scenario
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d1
1 = (1 − q(z1))(−z21) + q(z1)(−z21),

d2
1 = (1 − q(z1))

(
−z21 − 2z21(

0.09 − z21
)
)

+ q(z1)

(
−z21 − 2z21(

0.16 − z21
)
)

.

(6.113)

Define z2 = x2 − φ1. Then, V 2 = V1 + 1
2 z

2
2 is continuously differentiable and

positive definite when−0.3 < z1(t) < 0.4. Furthermore, V 2 is a common Lyapunov
function for the two subsystems in (6.111). For k = 1, 2, let

ak = (1 − q(z1))(d
k
1 + z2

(
z1

0.09 − z21
+ f k2 (x̄2) − ∂φ1

∂x1
(x2 + f k1 (x̄1))

)

+ q(z1)(d
k
1 + z2

(
z1

0.16 − z21
+ f k2 (x̄2) − ∂φ1

∂x1

(
x2 + f k1 (x̄1)

))
,

bk = z2g
k (x̄2) . (6.114)

It is clear that M = {2}, F = {1}. From (6.49), we can obtain the controller:

u = [u1, u2]T (6.115)

with

u1 =
⎧⎨
⎩
maxi∈{1,2}

{
pi,1

}
, i f z2 > 0

mini∈{1,2}
{
pi,1

}
, i f z2 < 0

z2 = 0, i f z2 = 0
(6.116)

and

u2 =
⎧⎨
⎩
mini∈{1,2}

{
pi,2

}
, i f z2 > 0

maxi∈{1,2}
{
pi,2

}
, i f z2 < 0

z2 = 0, i f z2 = 0
(6.117)

where

pk = [
pk,1, pk,2

] =
{

−bTk
max{ak+bkbTk ,0}

bkbTk
, i f z2 �= 0,

0, i f z2 �= 0.
(6.118)

Given x1 (0) = −0.05 and x2 (0) = −2.2, Fig. 6.5 shows that asymptotic out-
put tracking performance is achieved and the output stays within the set (−0.2 −
0.1cos(t), 0.7 + 0.1cos (t))when the Lyapunov function obtained in (6.112) is used.
The switching signal for switched system (6.111) is shown in Fig. 6.6. Moreover,
given different initial values of z1, Fig. 6.7 indicates that the error z1 converges
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to 0 while remaining in the set (−0.4 − 0.1cos(t), 0.5 + 0.1cos(t)), ∀t ≥ 0. The
phase portraits of z1 and z2 are depicted in Fig. 6.8, from which we can see that
the error z1(t) does not transgress its barriers as long as its initial value satisfies
−0.3 < z1(0) < 0.4.
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Fig. 6.5 Output tracking for the desired signal yd = 0.2
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Fig. 6.6 The switching signals for the switched system (6.111)



6.3 p-Times Differentiable Unbounded Functions-Based Control Design 161

0 1 2 3 4 5 6 7 8
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Time/s

z 1
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Fig. 6.8 Phase portraits of z1, z2 for the closed-loop system (6.111)

6.3.4 Conclusions

The problems of robust output-constrained tracking control and state-constrained
stabilization for uncertain switched nonlinear systems in lower triangular form
have been respectively studied. In the proposed approach, the p-times differentiable
unbounded functions are introduced and incorporated in output tracking error trans-
formations to convert the problem of controlling the switched systems with output
tracking error constraints to a new problem of regulating the converted systems with-
out a constraint. The backstepping technique is resorted to design controllers for the
transformed systems.
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Chapter 7
Conclusions and Future Study Directions

Control synthesis of switched systems is always a hot study topic in the control field
for its significance of both theory aspect and practical application. In the past few
years, some control problems of switched systems have been successfully solved,
but there still are quite many interesting topics deserving further investigation; some
of them have been considered in the book. This book has presented some stabiliza-
tion approaches for both switched linear systems and switched nonlinear systems,
and the considered systems can be composed of unstable subsystems. The adaptive
control design methods for some classes of switched nonlinear systems have also
been developed. In addition, the book also probes the tracking control problem of
switched constrained switched nonlinear systems. Most contents of the book are
extracted from Refs. [1–9].

Finally, we conclude the paper by providing some future study directions:
(1) Investigations on obtaining tighter bounds on time-dependent switching sig-

nals for switched systems. The time-dependent switching stabilization for switched
systems has been studied in the book. For time-dependent switching stabilization
design of switched systems, obtaining a tighter bound on the switching signal will
give the designer additional flexibility. Therefore, proposing a new switching signal
design method to achieve stabilization with a tighter bound deserves further investi-
gations which is practically important but theoretically challenging.

(2) Investigations on asymptotic tracking control of switched systems with
unknown uncertainties. This book has investigated the tracking control problem for
some classes of switched systems with unknown uncertainties. However, it is noted
that the obtained results can only achieve bounded tracking performance. Therefore,
how to further extend the results to achieve asymptotic tracking performance is not
only theoretically important but of practical significance.

(3) Investigations on intelligent switching control. The switching signal adopted
in this book is piecewise constant, and thus the designed controllers are suddenly
switched at the switching moments. Such a hard switching mechanism may dete-
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riorate the system performance or even cause instability of the system. Therefore,
proposing intelligent switching strategies has broad applications.

(4) Investigations on control of switched non-smooth systems. The dynamics of
the subsystems considered in this book are assumed to be Lipschitz continuous or
even smooth. However, there often exist many practical switched systems whose
subsystem dynamics are not smooth. Some classical techniques developed for gen-
eral switched systems will fail to be applied to switched non-smooth systems. It is
reasonable to carry out studies on control synthesis of switched non-smooth systems.
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