
Refactoring Software Development Process
Terminology Through the Use of Ontology

Paul M. Clarke1,2, Antoni Lluís Mesquida Calafat4, Damjan Ekert5,
J.J. Ekstrom6, Tatjana Gornostaja7, Milos Jovanovic4, Jørn Johansen8,

Antonia Mas4, Richard Messnarz5, Blanca Nájera Villar9,
Alexander O’Connor1,3, Rory V. O’Connor1,2(&), Michael Reiner10,
Gabriele Sauberer9, Klaus-Dirk Schmitz11, and Murat Yilmaz12

1 Dublin City University, Dublin, Ireland
{paul.m.clarke,alexander.oconnor,rory.oconnor}@dcu.ie

2 Lero, The Irish Software Research Centre, Limerick, Ireland
3 ADAPT, the Global Centre of Excellence for Digital Content Technology,

Dublin, Ireland
4 Universitat de les Illes Balears, Palma, Mallorca, Spain

{antoni.mesquida,milos.jovanovic,antonia.mas}@uib.es
5 ISCN, The International Software Consulting Network, Graz, Austria

{dekert,rmess}@iscn.com
6 Brigham Young University, Provo, UT, USA

jekstrom@byu.edu
7 Tilde Company, Riga, Latvia

tatjana.gornostaja@tilde.com
8 Whitebox Aps, Hørsholm, Denmark

jj@whitebox.dk
9 TermNet, The International Network for Terminology, Vienna, Austria

{bnajera,gsaubere}@termnet.org
10 European Certification and Qualification Association (ECQA),

Krems, Austria
michael.reiner@fh-krems.ac.at

11 Technical University of Cologne, Cologne, Germany
klaus.schmitz@th-koeln.de

12 Çankaya University, Ankara, Turkey
myilmaz@cankaya.edu.tr

Abstract. In work that is ongoing, the authors are examining the extent of
software development process terminology drift. Initial findings suggest there is
a degree of term confusion, with the mapping of concepts to terms lacking
precision in some instances. Ontologies are concerned with identifying the
concepts of relevance to a field of endeavour and mapping those concepts to
terms such that term confusion is reduced. In this paper, we discuss how
ontologies are developed. We also identify various sources of software process
terminology. Our work to date indicates that the systematic development of a
software development process ontology would be of benefit to the entire soft-
ware development community. The development of such an ontology would in
effect represent a systematic refactoring of the terminology and concepts pro-
duced over four decades of software process innovation.

© Springer International Publishing Switzerland 2016
C. Kreiner et al. (Eds.): EuroSPI 2016, CCIS 633, pp. 47–57, 2016.
DOI: 10.1007/978-3-319-44817-6_4



Keywords: Software engineering � Software development process � Software
development roles � Specialised communication � Terminology � Ontology

1 Introduction

Given that software development is a complex undertaking [1] which is human-centric
in nature [2, 3], it follows that the consistent use of language and terminology should be
an important consideration for software development. However, on the evidence of our
initial research, it would appear that the software process domain suffers from an
inconsistent use of terminology, to the extent that there may be large latent terminology
problem concerning software development activities and roles [4]. That a terminology
problem exists in our domain may to some extent be expected – since we have wit-
nessed significant expansion over the past forty years. This expansion has been
accompanied by innovation in the use of language and it is for this reason that we have
iterations that are sometimes called cycles, team leaders that might be considered to be
project managers, features that some might confuse with user stories, and processes
that some refer to as methods. This expanse of terminology is not always accompanied
by expansion of the underlying concepts and therefore, it could be claimed that new
terminology is not always needed or helpful.

The consistent application of terminology is of concern to many fields of endeavour
with the result that techniques have been developed to help address issues related to
conceptual and terminological diversity. Ontological frameworks can be employed to
reconcile diverse terminology through the systematic elaboration of the concepts of
concern, while in parallel determining terminology-to-concept relationships. Once
developed, an ontological framework can help to ground the language usage in a field,
while it can also allow users of overlapping terminology to approximate where the
conceptual scope of one term ends and another starts. Thus, a software process onto-
logical framework could enable users of one software development process lifecycle to
interact more smoothly with those using a different software development approach,
while at the same time allowing all software developers to examine and clarify their
own use of terminology and language. In previously published related work [4], the
authors have elaborated on some examples of inconsistent terminology in the software
process domain (refer to Fig. 1). In this paper, we provide some additional information
on how ontologies are constructed and utilised, while also providing a brief overview
of some of the present sources of software development process terminology, including
books/bodies of knowledge, taxonomies and international standards.

This paper is structured as follows: Sect. 2 outlines the ontological approach and
demonstrates how this technique can be of benefit to the software development com-
munity. Section 3 presents a brief overview of some of the sources of software process
terminology, including an examination of the semantic distance that can be observed
where multiple conflicting definitions are provided for the same term. Section 4 con-
tains a discussion and conclusion.

48 P.M. Clarke et al.



2 Terminology and Ontology

According to ISO 1087-1 [5], terminology work is the systematic collection, descrip-
tion, processing and presentation of concepts and their designations. This means that
terminology is concerned with concepts and conceptual systems, making them explicit
by means of definitions and designations as well as phrases within languages for special
purposes. Terminology science provides the basic concepts and best practices for ter-
minology work and terminography, i.e. for the systematic documentation and mainte-
nance of terms. There are different ways to approach terminology work, as for example
ad-hoc terminology management that focuses on solving instant problems and it is seen
as a part of another process. On the other hand, systematic terminology management is
based on the consistent application of working methods for a domain knowledge-
oriented approach in order to harvest all the relevant concepts for a specific subject field.

In order to reduce the software development process terminological challenge, the
concept orientation and the systematic terminology work approach are key: A sys-
tematic study of the field of knowledge that allows the collection of the concepts and
terms and, thus, to develop a conceptual structure of the domain in the form of a concept
system. The goal of our intended work, which we refer to as the SYNTHESIS Initiative,
would be not only to enable clear communication between experts, but also to achieve
the unique representation of concepts by avoiding redundancies, if possible, by setting a
set preferred usage. This means, from the descriptive to the prescriptive work.

Fig. 1. Software terminology landscape – a process and role viewpoint

Refactoring Software Development Process Terminology 49



In order to develop this methodology for the successful harmonisation of the ter-
minology for software development processes and roles, there is no need to start from
scratch. Firstly, there are already existing standards from which to build the base for a
solid terminological work (for example, ISO 704:2009 Terminology work— Principles
and methods [6], and ISO 26162:2012 Systems to manage terminology, knowledge and
content — Design, implementation and maintenance of terminology management sys-
tems [7]). And secondly, many terms, glossaries and resources for software develop-
ment are already in use (and which in some cases are causing conflicts or unnecessary
ambiguity).

Because of this, the first step would be to evaluate and assess available glossaries,
documentation and resources and their reliability, information coming from authorita-
tive bodies, any terminology work done by other institutions (for example, the ISO
terminology about software process, to be found in the official ISO Online Browsing
Platform [8] or the International Software Testing and Qualifications Board Glos-
sary [9]). The reliability of such resources is a key factor while retrieving information.
The assessment of the field of knowledge and identification and evaluation of the most
relevant resources in the field of knowledge relating to software process terms build the
basis for the ontological work. This can include domains such as security, reliability,
methodology-specific terms and their interrelationship.

An ontology is the collection of concepts and terms in a certain language in a
specific subject field, but also the formal, explicit (conceptual) models of object ranges
in a computational representation [10]. According to the ISO, a model of product
knowledge is achieved by a formal and consensual representation of the concepts of a
product domain in terms of identified characterisation classes, class relations and
identified properties [11]. An ontology also gives an indication about the degree of
necessity of a prescriptive approach as it will show if there is a proliferation of terms for
one concept, why this happens and which term candidate is the most adequate in each
case. It should be highlighted that there is no single approach to ontology development
that is universally applied, and that tooling can be utilised in order to support the
development task [12].

According to ISO 704 [6], “it is necessary to bear in mind the subject field that gave
rise to the concept and to consider the expectations and objectives of the target users, in
organizing concepts into a concept system. The subject field shall act as the framework
within which the concept field, the set of thematically related but unstructured con-
cepts, is established … Characteristics shall be used in the analysis of concepts, the
modelling of concept systems, in the formulation of definitions.”

The terminology of a subject field always follows a concept system based on the
relations existing between concepts. The unique position of each concept within a
system is determined by the intension and the extension. In the case of concept systems
based on generic relations, the concept system also reflects inheritance systems,
because specific concepts inherit characteristics from their generic super-ordinates. The
set of characteristics that come together as a unit to form the concept is called the
intension. The objects viewed as a set and conceptualized into a concept are known as
the extension. The two, the intension and the extension, are interdependent. For
example, the characteristics making up the intension of ‘mechanical mouse’ determine
the extension or the objects that qualify as mechanical mice. In some fields a distinction

50 P.M. Clarke et al.



is made between necessary, sufficient and essential characteristics. However, explain-
ing this in this paper would exceed the scope of the same [6].

The effectiveness of ontologies in addressing terminology concerns has been
demonstrated in many fields [12] and given the type offindings outlined in Sect. 1, there
are therefore good reasons to consider its use in the software development process space.
Indeed, the use of ontology is already being considered as a technique for the har-
monisation of terminology in ISO/IEC Joint Technical Committee 1, Subcommittee 7
(JTC1 SC7) [13]. This ontology approach to the software process conceptual structure
would also help to delimit and clarify roles and tasks in the working environment being
an innovative and comprehensive approach in order, not only, to harmonise the existing
resources, but also standardise curricula and skills for professions related to
knowledge-driven software development.

A canonical software development process and roles ontology would be linked or
embedded in a terminological database that would also give information about the
terms behind the concepts, their definitions and characteristics that would improve the
specialised communication among not only software developers, engineers, project
managers, business managers and trainers, but would also provide an updated, centrally
managed, comprehensive, online available resource for everyone (even laypersons).

Last but not least, the role of the experts is essential in this process. The termi-
nologist can only draft the methodology for a successful terminology project. But the
software process engineers are the experts that have the knowledge to select the best
term candidates, draft definitions and validate relevant information. However, it is often
the case that experts lack the basic skills and knowledge to carry out systematic
terminology work. Therefore, it will be important to develop and implement an inte-
grated, cross-disciplinary, and market-oriented training programme to create a new
skills and qualifications portfolio for these professionals. This would be subject of a
new ECQA [14] job role: the ECQA Certified Terminology Professional for Software
Process Engineering certification and training.

3 Sources of Software Development Process Terminology

We do not want to give the impression that there is anything surprising in the current
state of software development process terminology. Teams form around specific
problems and projects and evolve a terminology for their community of practice [15].
Since the team faces common problems inside of a common set of constraints they
naturally evolve a dialect that facilitates efficient communication for them. They may
even publish ontological artifacts that aid others in joining the community, since
turnover on teams is common.

Neither do we want to give the impression that no work has been done to create a
common conceptual framework for Software Engineering. Two efforts stand out as
particularly important to the development of an accepted formal vocabulary for Soft-
ware Engineering: The Software Engineering Body of Knowledge (SwEBoK) [16] and
the Software and Systems Engineering Vocabulary (SEVocab) [17]. The SwEBoK is a
long term effort by the IEEE-CS to create a standard taxonomy for what a Software
Engineer ought to know 4 years into her/his career. SEVocab is an edited aggregation

Refactoring Software Development Process Terminology 51



of ontological artifacts from over 100 ISO/IEC/IEEE standards. It has the appearance
of a glossary since its basic organisation consists of terms followed by a list of defi-
nitions. However, since it includes synonym and see-also links to other terms it should
probably be viewed as a topic map.

Professional societies can be classified as a formal communities of practice that form
around a domains of expertise. Working Groups in those societies are chartered to create
ontological artifacts for specific areas of interest or expertise. Since these ontological
entities (Standards, Technical Reports, etc.) are designed to document a specific area of
knowledge or expertise, they often contain a glossary of terms associated with the
concepts used in the document. Examples include:

• ISO/IEC 24744:2007 Software Engineering–Metamodel for Development Method-
ologies [18]

• ISO/IEC 2382-20:1990 Information technology–Vocabulary–Part 20: System devel-
opment [19]

• ISO/IEC TR 14471:2007 Information technology–Software engineering–Guideli-
nes for the adoption of CASE tools [20]

• IEEE 1074-2006 IEEE Standard for Developing a Software Project Life Cycle
Process [21]

In spite of these and many other efforts to document a standard terminology for
areas in the discipline of Software Engineering, communities of practice continue to
form, evolve, and create semantic drift. How many practitioners are aware that there is
a standard metamodel for development methodologies? More instructive questions
include: Does software development terminological semantic drift concern practition-
ers? Is semantic drift a latent as opposed to an open concern? Is semantic drift a worthy
concern other than on large multi-supplier projects? These are questions that our
ongoing efforts seek to explore.

As a measure of this drift in the system and software engineering space consider the
SEVocab project. It is a database consisting of terms and definitions from 124
ISO/IEC/IEEE standards. Some terms have 7 or more associated concepts after com-
mon definitions have been merged. And this is from an aggregation of formal stan-
dards. If we are to reduce the entropy in software development process terminology, it
will require significant human input even though there are some natural language
processing and machine learning techniques that can reduce the manual effort. Some
work has been accomplished but there is much more to be done. The Termediator
project [22] currently has aggregated approximately 500 glossaries from domains
closely related to Information Technology (Fig. 2 provides some background as to the
types of sources of terminology incorporated into Termediator). The tool provides
cluster analysis for concepts associated with a term which can aid in locating terms that
are so over-used that they should be avoided as well as terms that are accepted as labels
for a common concept across all of the domains represented. It also provides for
rudimentary synonym analysis. This prototype demonstrates the utility of automated
approaches to the initial analysis, but requires development to productise the imple-
mentation and add features to aid in analysis specific to the creation of an ontology for
software development process terminology.

52 P.M. Clarke et al.



4 Discussion and Conclusion

According to the late-Enlightenment philosopher Georg Wilhelm Friedrich Hegel, truth
is found neither in the thesis nor the antithesis, but in an emergent synthesis which
reconciles the two. And this is precisely the type of truth that can be pursued in matters
of language, as language is a representation of a concept, a concept has at its genesis an
idea, and ideas do not lend themselves to perfectly complete definition or interpretation.
Correspondingly, we can expect that a certain tension will necessarily arise between the
correctness and common usage of terms such that absolute adherence to either is
neither desirable nor advisable. So, our job with terminology is to bridge the gap from
an idea to its representation, and to do so with a level of precision that is useful and
effective for those who utilise the terms.

In earlier work, we demonstrated that there is a latent problem concerning the use
of terminology for software development process and roles [4]. The purpose of this
paper is to expand upon the ontology approach, explaining how it is suited to
addressing the challenge of unifying the existing terms and concepts into a canonical
software development process reference model. Such a model would also facilitate
accurate interrelating of terms from different software development processes and
methods, thus making it easier to understand how different software development
models are similar, with positive benefits for those wishing to adapt processes or tailor
processes [23]. Since such adaptive capability has been shown to be positively asso-
ciated with business performance [24–26], any initiative which facilitates adaptation
should be welcome. Furthermore, the reportedly high levels of SPI occurring in
practice [27, 28], coupled with the rich variation in software development contexts [29]
(which themselves are constantly changing [30]), suggests that greater consistency in
terminology application would benefit the broader software development community.

A canonical model would also enable future software development process and
method innovations to be readily interrelated to the large body of software process
know-how that predated its arrival (something that is not easily achieved today). It would
further have the benefit of revealing the genuine newness in newly proposed software
development models and methods, as the conceptual mapping to the pre-existing con-
cepts and terminology would be enabled through the ontology. This might not meet with

Fig. 2. Spectrum of software development process terminology sources

Refactoring Software Development Process Terminology 53



the approval of software process entrepreneurs seeking to cash-in on new approaches but
it would certainly benefit the millions of software development practitioners who seek to
understand each other and to robustly evaluate newly proposed approaches for (1) dif-
ferences from their existing processes, and (2) integration into their present processes.
Indeed, in the fullness of time, newly proposed approaches might demonstrate their
uniqueness/newness through formally elaborating on the relationship to the canonical
model – this way, genuine process innovation can be supported and promoted, and poorly
constructed or ill-informed process innovation can be identified.

Since ontology development requires specific expertise and may be costly, it is
important that we first examine the case for a software development process ontology
prior to embarking on its development. Perhaps the primary benefit of ontologies is the
creation and provision of intelligent, knowledge-based systems by “translating data into
actionable insights for decision making” [31]. Earlier published research has reported
numerous direct benefits from ontology adoption, including increased productivity of
both information workers and software engineering (cost and time reduction, quality
improvements) [32]. It has also been demonstrated that in safety critical and security
application development, the use of ontology is crucial to fulfilling the objectives of the
development work [33]. Beyond software engineering, there is widespread adoption of
ontologies in domains such as biomedicine [34], oil extraction [35], and the automotive
industry [36], where ontology has been shown to be an effective way of identifying,
naming and relating concepts within processes and domains.

While advocating the use of ontology, we also seek to highlight that this is not
simply a problem with terminology, it is a greater problem whereby we have not as a
community managed to render the core concepts of our field in a universally digestible
form. Added to this mix is the possibility that there may even an issue concerning
appropriate levels of completeness of individual understandings of the various software
development process models that are routinely adopted (or referred to). Take for
example the Waterfall model which would appear to have become associated with
single-pass, sequential software development in some quarters [4, 37, 38], even though
Royce’s original model explicitly recognises the need to utilise multiple iterations in
software development (those seeking clarification on this point should refer to [39]).

For the software process improvement community, there can be a challenge when
formulating discussions with individuals and organisations in order to establish pre-
cisely the extent to which a process is enacted, or to understand the boundary to
individual roles within companies. Therefore, the challenge of process improvement
can potentially be reduced through the introduction of mechanisms to improve the
consistency of use of related terminology. It should be noted that our proposed
undertaking is neither small nor simplex. Correspondingly, we have assembled a
cross-disciplinary team and it is also our intention to pursue a community-led approach
to the work program, including engagement with large numbers of software devel-
opment experts so as to systematically agree concepts, terms and definition. Naturally,
within individual software development approaches where clarity exists in relation to
software process terms, we would not seek to redefine individual terms – but rather
clearly identify their relationship to other process models. Furthermore, work of the

54 P.M. Clarke et al.



proposed nature requires many participants and many years, and therefore substantial
funding, the pursuit of which is ongoing.

In software development, the importance of source code refactoring is well
understood [40], without it source code can eventually become unmanageable (or at
least economically challenging to maintain and extend). Terminology is no different, if
allowed to drift unchecked, eventually the terminology and concepts become more and
more confusing. The authors therefore propose that the time is anon to consider
refactoring our software development process terminology, and that this is best
achieved through the adoption of ontology.

References

1. Clarke, P., O’Connor, R.V., Leavy, B.: A complexity theory viewpoint on the software
development process and situational context. In: Proceedings of the 2016 International
Conference on Software and System Process (ICSSP 2016). IEEE, San Francisco (2016)

2. Yilmaz, M., O’Connor, R.V., Clarke, P.: A systematic approach to the comparison of roles
in the software development processes. In: Mas, A., Mesquida, A., Rout, T., O’Connor, R.
V., Dorling, A. (eds.) SPICE 2012. CCIS, vol. 290, pp. 198–209. Springer, Heidelberg
(2012)

3. Yilmaz, M., O’Connor, R., Clarke, P.: Software development roles: a multi-project empirical
investigation. ACM SIGSOFT Softw. Eng. Notes 40(1), 1–5 (2015)

4. Clarke, P., et al.: An investigation of software development process terminology. In: Clarke,
P.M., O’Connor, R.V., Rout, T., Dorling, A. (eds.) SPICE 2016. CCIS, vol. 609, pp. 351–
361. Springer, Heidelberg (2016). doi:10.1007/978-3-319-38980-6_25

5. ISO: ISO 1087-1:2000 terminology work – vocabulary – part 1: Theory and application, 1st
edn. ISO, Geneva, Switzerland (2000)

6. ISO: ISO 704:2009 terminology work — principles and methods, 1st edn. ISO, Geneva,
Switzerland (2009)

7. ISO: ISO 26162:2012 systems to manage terminology, knowledge and content — design,
implementation and maintenance of terminology management systems, 1st edn. ISO,
Geneva, Switzerland (2012)

8. ISO: Online Browsing Platform. https://www.iso.org/obp/ui/#home
9. ISTQB, Standard Glossary of Software Testing Terms. http://www.istqb.org/downloads/

glossary.html
10. Budin, G.: Methodology for dynamic ontology creation from terminologies to ontologies –

tools of knowledge organization. In: Proceedings of International Terminology Summer
School 2009, TermNet, Cologne, Germany (2009)

11. ISO: ISO 13584-32:2010 - industrial automation systems and integration - OntoML: Product
ontology markup language, 1st edn. ISO, Geneva, Switzerland (2010)

12. Aardi, G., de Almeida Falbo, R., Pereira Filho, J.G.: Using objects and patterns to
implement domain ontologies. J. Braz. Comput. Soc. 8(1), 43–56 (2002)

13. Henderson-Sellers, B., McBride, T., Low, G., Gonzalez-Perez, C.: Ontologies for
international standards for software engineering. In: Ng, W., Storey, V.C., Trujillo, J.C.
(eds.) ER 2013. LNCS, vol. 8217, pp. 479–486. Springer, Heidelberg (2013)

14. ECQA: European Certification and Qualification Organisation. www.ecqa.org
15. Wenger, E.: Communities of Practice: Learning, Meaning, and Identity, 1st edn. Cambridge

University Press, Cambridge (1998)

Refactoring Software Development Process Terminology 55

http://dx.doi.org/10.1007/978-3-319-38980-6_25
https://www.iso.org/obp/ui/%23home
http://www.istqb.org/downloads/glossary.html
http://www.istqb.org/downloads/glossary.html
http://www.ecqa.org


16. IEEE: Guide to the software engineering book of knowledge (SWEBOK). IEEE Computer
Society, Los Alamitos (2004)

17. IEEE/ISO/IEC, SE Vocab - Software and Systems Engineering Vocabularly. https://pascal.
computer.org/sev_display/index.action

18. ISO/IEC: ISO/IEC 24744:2007 software engineering–metamodel for development method-
ologies, 1st edn. ISO/IEC, Geneva, Switzerland (2007)

19. ISO/IEC: ISO/IEC 2382-20:1990 information technology–vocabulary–part 20: System
development, 1st edn. ISO/IEC, Geneva, Switzerland (1990)

20. ISO/IEC: ISO/IEC TR 14471:2007 information technology–software engineering–
guidelines for the adoption of CASE tools, 1st edn. ISO/IEC, Geneva, Switzerland (2007)

21. IEEE: IEEE 1074-2006 IEEE standard for developing a software project life cycle process,
1st edn. IEEE, Washington, DC (2006)

22. Riley, O., Richards, J., Ekstrom, J., Tew, K.: Termediator II: measuring term polysemy
using semantic clustering. In: Proceedings of 3rd Conference on Research in Information
Technology (RIIT 2014), pp. 81–86. ACM, New York (2014)

23. Coleman, G., O’Connor, R.: Investigating software process in practice: a grounded theory
perspective. J. Syst. Softw. 81(5), 772–784 (2008)

24. Clarke, P., O’Connor, R., Leavy, B., Yilmaz, M.: Exploring the relationship between
software process adaptive capability and organisational performance. IEEE Trans. Softw.
Eng. 41(12), 1169–1183 (2015)

25. O’Connor, R.V., Clarke, P.: Software process reflexivity and business performance: initial
results from an empirical study. In: Proceedings of the 2015 International Conference on
Software and System Process, pp. 142–146. ACM, New York (2015)

26. Clarke, P., O’Connor, R.V.: The influence of SPI on business success in software SMEs: an
empirical study. J. Syst. Softw. 85(10), 2356–2367 (2012)

27. Clarke, P., O’Connor, R.V.: An empirical examination of the extent of software process
improvement in software SMEs. J. Softw. Evol. Process 25(9), 981–998 (2013)

28. Clarke, P., O’Connor, R.V., Yilmaz, M.: A hierarchy of SPI activities for software SMEs:
results from ISO/IEC 12207-based SPI assessments. In: Mas, A., Mesquida, A., Rout, T.,
O’Connor, R.V., Dorling, A. (eds.) SPICE 2012. CCIS, vol. 290, pp. 62–74. Springer,
Heidelberg (2012)

29. Clarke, P., O’Connor, R.V.: The situational factors that affect the software development
process: towards a comprehensive reference framework. J. Inf. Softw. Technol. 54(5),
433–447 (2012)

30. Clarke, P., O’Connor, R.V.: Changing Situational Contexts Present a Constant Challenge to
Software Developers. In: O’Connor, R.V., Umay Akkaya, M., Kemaneci, K., Yilmaz, M.,
Poth, A., Messnarz, R. (eds.) EuroSPI 2015. CCIS, vol. 543, pp. 100–111. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-24647-5_9

31. Stanford Center for Biomedical Informatics Research (BMIR) at the Stanford University
School of Medicine, Protégé. http://protege.stanford.edu/about.php

32. Oberle, D.: How ontologies benefit enterprise applications. Semant. Web 5(6), 473–491
(2014)

33. Greciano, G., Budin, G.: Designing linguistic support for risk management communication.
https://www.uibk.ac.at/translation/aktuelles/aktuelles/unterlagen/
papergrecianobudineumedinhbsept2006.pdf

34. Hoehndorf, R., Schofield, P.N., Gkoutos, G.V.: The role of ontologies in biological and
biomedical research: a functional perspective. Briefings Bioinform. 16(6), 1069–1080
(2015)

56 P.M. Clarke et al.

https://pascal.computer.org/sev_display/index.action
https://pascal.computer.org/sev_display/index.action
http://dx.doi.org/10.1007/978-3-319-24647-5_9
http://protege.stanford.edu/about.php
https://www.uibk.ac.at/translation/aktuelles/aktuelles/unterlagen/papergrecianobudineumedinhbsept2006.pdf
https://www.uibk.ac.at/translation/aktuelles/aktuelles/unterlagen/papergrecianobudineumedinhbsept2006.pdf


35. Kharlamov, E., et al.: Ontology based access to exploration data at Statoil. In: Arenas, M.
(ed.) ISWC 2015. LNCS, vol. 9367, pp. 93–112. Springer, Heidelberg (2015). doi:10.1007/
978-3-319-25010-6_6

36. Rychtyckyj, N., Klampfl, E., Gusikhin, O., Rossi, G.: Application of intelligent methods to
automotive assembly planning. In: 2007 IEEE International Conference on Systems, Man
and Cybernetics, pp. 2479–2483. IEEE, New Jersey (2007)

37. Molokken-Ostvold, K., Jorgensen, M.: A comparison of software project overruns - flexible
versus sequential development models. IEEE Trans. Softw. Eng. 31(9), 754–766 (2005)

38. Larman, C., Basili, V.R.: Iterative and incremental development: a brief history. IEEE
Comput. 36(6), 47–56 (2003)

39. Royce, W.: Managing the development of large software systems: concepts and techniques.
In: Western Electric Show and Convention Technical Papers. IEEE Computer Society, Los
Alamitos (1970)

40. Mens, T., Tourwe, T.: A survey of software refactoring. IEEE Trans. Softw. Eng. 30(2),
126–139 (2004)

Refactoring Software Development Process Terminology 57

http://dx.doi.org/10.1007/978-3-319-25010-6_6
http://dx.doi.org/10.1007/978-3-319-25010-6_6

	Refactoring Software Development Process Terminology Through the Use of Ontology
	Abstract
	1 Introduction
	2 Terminology and Ontology
	3 Sources of Software Development Process Terminology
	4 Discussion and Conclusion
	References


