
Supporting Cyber-Security Based
on Hardware-Software Interface Definition

Georg Macher1(B), Harald Sporer2, Eugen Brenner3, and Christian Kreiner3

1 AVL List GmbH, Graz, Austria
georg.macher@avl.com

2 pewag International GmbH, Graz, Austria
3 Institute for Technical Informatics,

Graz University of Technology, Graz, Austria
{brenner,christian.kreiner}@tugraz.at

Abstract. The automotive industry has an annual increase rate of soft-
ware implemented functions of about 30 %. In the automotive domain
the increasing complexity of systems became challenging with consumer
demands for advanced driving assistance systems and automated driving
functionalities, and the thus broadening societal sensitivity for security
and safety concerns, such as remote control of cars by hacking their IT
infrastructure.

As vehicle providers gear up for the cyber-security challenges, they can
leverage experiences from many other domains, but nevertheless have to
face several unique challenges. The recently released SAE J3061 guide-
book for cyber-physical vehicle systems provides high-level principles for
automotive organizations to identify and assess cyber-security threats
and design cyber-security aware systems in close relation to ISO 26262.
Although functional safety and cyber-security engineering have a con-
siderable overlap regarding many facets, such as analysis methods and
system function thinking, the definition of system borders (item defin-
ition vs. trust boundaries) often differs largely. Therefore, appropriate
systematic approaches to support the identification of trust boundaries
and attack vectors for the safety- and cybersecurity-relates aspects of
complex automotive systems are essential. In the course of this paper, we
analyze a method to identify attack vectors on complex systems via signal
interfaces. We focus on a central development artifact of the ISO 26262
functional safety development process, the hardware-software interface
(HSI), and propose an extension for the HSI to support the cyber-security
engineering process.

Keywords: ISO 26262 · SAE J3061 · Automotive systems · Hardware-
software interfaces · Cyber-security · Functional safety

1 Introduction

The emergence of embedded automotive systems over the last decades has
affected the development of vehicles, promising to improve the safety of drivers
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and support new applications. Exploiting the rising vehicle-to-vehicle and
vehicle-to-infrastructure paradigms (growing to over 210 million Euros by 2016),
future vehicles will have multiple inter-vehicle connections as well as capabilities
for (wireless) networking with other vehicles and non-vehicle entities such as
charging stations and traffic lights [1].

The resulting inter-connectivity increases attack surfaces and their damage
potential, especially in light of the estimation that, worldwide, over a million
people fall victim to cyber-crime every day, with a global cost of cyber-crime
valued at 313 billion Euros in 2011 [2]. Embedded automotive system technolo-
gies offer great benefits, but they also bring new risks for users today, becoming
critical for both quality and security performances.

Before the introduction of wireless connections and automated driving func-
tionalities, vehicles were physically isolated machines with mechanical controls.
Extra-functional properties of concern were mainly timing, reliability and func-
tional safety. Today the automotive domain is focusing on adapting established
functional safety processes and methods for security engineering (e.g. the recently
available SAE J3061 [3]). Although functional safety and cyber-security engineer-
ing have a considerable overlap regarding many facets, the elements of concern
are not identical in the two engineering disciplines. One example is the identi-
fication of trust boundaries for the safety- or cyber-security-related aspects of
complex automotive systems and the definition of system borders in ISO 26262
context (item definition). Thus, appropriate systematic approaches to support
the identification of trust boundaries are essential.

In the course of this paper, we analyze a way to identify trust boundaries and
attack vectors on complex systems via signal interfaces based on the hardware-
software interface (HSI), a central development artifact of the ISO 26262 func-
tional safety development process. Furthermore, we propose an extension for the
HSI to support the cyber-security engineering process.

The paper is organized as follows: Sect. 2 presents an overview of related
works. In Sect. 3 a description of the proposed approach and detailed information
about the individual items is provided. A brief evaluation of the approach is
presented in Sect. 4. Finally, Sect. 5 concludes with an overview of the approach
presented.

2 Related Work

An unambiguous definition of the hardware-software interface has become vital
in the context of the road vehicles functional safety norm ISO 26262 [4]. But
neither the functional safety standard nor automotive process reference model
of Automotive SPICE [5] prescribe a specific methodology for the development
of this artifact. Although an unambiguous specification of the various signals of
embedded automotive systems to define the hardware/software interface is of
high importance for the automotive domain, publications on HSI definitions
are rare.

In the automotive domain hardware and software development cycle times
differ significantly in length and software development is typically separated into
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several abstraction layers (such as application software (ASW), microcontroller
abstraction layers (MCAL), basic functionality drivers (BSW)). This approach
excludes hardware specific details and enables the establishment of focused soft-
ware development teams (e.g., basic software developer, application software
engineers, software integrators), but on the other hand it sometimes obfuscates
the importance of HSI development.

In [6] a model-based development (MBD) approach for an ISO 26262 aligned
HSI definition is presented. This work combines spreadsheet tools (such as Excel)
and MBD tools in a bidirectional manner to enable a tool-independent method
of engineering HSI definitions with spreadsheet tools and transformation of the
generated information into a reusable and version-able model representation.

A domain-specific modeling approach for mechatronic systems with an inte-
grated HSI definition feature is presented in [7]. The approach of this work has
mainly been created for the development of embedded mechatronic based elec-
tric/electronic systems (E/E systems) in the automotive field and is based on
a domain-specific language tailored for the specific needs of domain experts.
The focus of this work was particularly set to simplify the work of domain
experts who disfavor system modeling approaches (like UML or SysML). Other
works postulate the problematic of defining HW/SW interfaces in the context
of System on Chip (SoC) development [8], or are part of an emerging domain-
independent paradigm for contract-based design. The contracts specify the input
and output behavior of a component and provide a guaranteed behavior [9]. Such
an approach can be used for software component safety contracts [10] as well
as contract-based embedded system development [11,12]. Nevertheless, these
approaches are not yet very common in the automotive domain.

2.1 HSI Relation to Automotive SPICE

The Automotive Software Process Improvement and Capability Determination
reference model [5] is based on the international standard ISO 15504 [13] and is
primarily used in Europe, as well as in some parts of Eastern Asia. The reference
model does not specify how processes have to be implemented. Instead, desired
process outcomes are defined and described in more detail by best practice (BP)
characterization (base or generic practices). The model does not address the
demand for a hardware-software interface directly, but some guidance on HSI
specification can be extracted from general interface topics of the system engi-
neering processes (SYS) and software engineering processes (SWE).

– SYS.3.BP3, stipulates the definition (identify, develop, and document) of sys-
tem element interfaces, which are equivalent to the hardware software inter-
face.

– SYS.3.BP4 regards the description of the dynamic behavior of and between
the system elements, which have to be taken into account in the HSI definition
as well.

– SYS.4.BP3 postulates that the system integration test needs to provide evi-
dence of consistency between the interfaces and the architectural design, which
relates to the HSI definition.
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– SWE.2.BP3 and SWE.2.BP4 can be interpreted in a similar way to their
system level counterparts (SYS.3.BP3, SYS.3.BP4).

– SWE.2.BP5 regards the determination and documentation of the resource
consumption objectives of all relevant software architectural design elements;
to support this, the HSI definition shall include information on resource con-
sumption.

– SWE.3.BP2, SWE.3.BP3 and SWE.3.BP4 can be interpreted in a similar
way to their SW architecture counterparts (SWE.2.BP3, SWE.2.BP4 and
SWE.2.BP5); nevertheless, signals communicated between the components on
the most detailed software level do not directly belong to the HSI.

– SWE.5.BP3 requires a description of the interaction between relevant software
units and their dynamic behavior, which can be interpreted in a similar way
to its system level counterpart (SYS.4.BP3).

2.2 HSI Relation to ISO 26262

The HSI definition is one of the most important and essential work-products
among the many required by ISO 26262. The HSI specifies the hardware and
software interactions in consistency with the technical safety concept, which
includes hardware components that are controlled by software and support the
software execution.

The HSI document is the last development artifact of the system develop-
ment phase and the starting point for parallel development of hardware and
software. The HSI definition thus requires mutual domain knowledge of hard-
ware and software and is usually the result of a collective workshop of hardware,
software, and system experts. The HSI is the linkage between different levels of
development and is used to align topics relevant to both hardware and software
development. Furthermore, the HSI shall be continuously refined in the hard-
ware and software product development phases, which are described in Parts 5
and 6 of the ISO 26262.

Although many best practice articles and books related to ISO 26262 have
been published, the hardware-software interface has rarely been highlighted in
any of these publications. This might be caused by the fact that HSI definition
requires mutual domain knowledge and the responsibility for this artifact differs
from company to company.

The majority of information concerning how to specify the interface in rela-
tion to functional safety can be found in Clause 7.4.6 of Part 4 of the standard.
Additionally, the informative Annex B of Part 4 of ISO 26262 provides informa-
tion concerning the possible content of the interface definition.

3 Hardware-Software Interface Definition with Security
Extension

As mentioned previously, the HSI definition is probably the most crucial and
essential work-product required by ISO 26262 related development approaches.
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It requires mutual knowledge of hardware and software components and their
interactions and needs refinement by these two development processes after ini-
tial establishment at the end of the system development phase. By now, the HSI
specification no longer consists of only a single spreadsheet description of all
signals from hardware to software and vice versa. Supplementary information,
such as resource consumption objectives, HW specifics, and controller module
configurations also need to be considered for an ISO 26262 or AutomotiveSPICE
compliant HSI definition.

Table 1 itemizes a list of essential HSI attributes extracted from standards
(ISO 26262 [4], AutomotiveSPICE [5], and SAE J3061 [3]), scientific papers
[7,14], and the authors’ experiences. Additionally, information has been added
(marked with black boxes) to support security related identification of attack
vectors on complex systems via their signal interfaces. The highlighted infor-
mation can be used to identify attack surfaces and establish a defense in depth
security pattern for specific signals.

To that aim, signals that are safety or cyber-security relevant inherit their
ASIL from the hazard analysis and risk assessment (HARA; requested by ISO
26262) and/or their security level from threat analysis and risk assessment
(TARA; requested by SAE J3061). Depending on the related security level /
ASIL the signal shall be protected against cyber-security attacks according to
a defense in depth pattern focusing on the (simplified) OSI model [16]. The
OSI model is a conceptual model that partitions a communication system into
abstraction layers (in the original version seven layers). Its goal is the interoper-
ability of diverse communication systems with standard protocols. A layer serves
the layer above it and is served by the layer below it.

In addition, the idea behind the defense in depth approach is to defend a
system against any particular attack using several independent methods. If any
of the layers fails to protect, then the next layer is in place to provide protec-
tion. Such a defense in depth approach is also proposed for automotive systems
in general by [17,18] and for in-vehicle infotainment systems in particular by
[19]. Another defense in depth approach for securing Ethernet communication
for autonomous driving is presented in [20]. This work claims generally that
enhanced connectivity and the dynamics of the security threats demand the
establishment of several security barriers in order to avoid full exposure in case
a security mechanism is bypassed.

Moreover, enhancing the HSI definition with supplementary cyber-security
information and related signals helps to determine trust boundaries and attack
vectors by focusing on signals and thus identifying controllers which can inter-
vene with the involved signals. To that aim, all signals required for the system
are analyzed and based on this analysis all control units, which have access
to these signals are identified. These control units are within the same trust
boundary. Systems within the same trust boundary are equally trusted. Access
to the trust boundary is able only via dedicated devices (gateways) which have
connections outside the trust boundaries. Thus, it is required that gateways pre-
vent the misuse of trust and protect the control units within a trust boundary
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Table 1. Essential HSI attributes, comments and origin

nigirOtnemmoCetubirttAreyaL

co
n
ce

p
tu

a
l

signal name significant name [14]
signal description short signal description ISO 26262 Part 6
signal direction input or output [14]

signal source/sink actuator or sensor related to signal [7]

ASIL Automotive Safety Integrity Level ISO 26262 Part 4

Security Level (SecL) ]51[,1603JEAScirtemytiruces

p
h
y
si

ca
l

supply voltage - [7]

physical min value - ASPICE

physical max value - ASPICE

physical unit - ISO 26262 Part
6,ASPICE

accuracy % range of value ISO 26262 Part 6
HW interface type digital, analog, bus ... ISO 26262 Part 6,

ASPICE
HW pin pin number or identifier ISO 26262 Part 5

d
a
ta

message ID
for bus communications

[7]
message offset [7]
cycle time internal xCU internal refresh rate ISO 26262 Part 6,

ASPICE

cycle time external cycle time of digital signal from ex-
ternal

[7]

trigger identifier of trigger ISO 26262 Part 6

operation mode information if any special operation
mode required

ISO 26262

HW diagnostic feature diagnostic feature description ISO 26262

memory type - ISO 26262

data protection special security information ASPICE

timing dependencies

and sequence order

ECIPSA-

p
re

se
n
ta

ti
o
n

SW signal name signal identifier for ASW [14]
initial value - [7]
SW data type - ASPICE
scaling LSB

fixed-point arithmetic scaling [14]
scaling offset

SW min value - ASPICE

SW max value - ASPICE
SW accuracy % range of value ISO 26262
SW unit physical unit representation ASPICE

default value default value in case of invalid signal [14]
detection time time to fault diagnosis ISO 26262
reaction time reaction time after fault detection ISO 26262
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from attacks. This identification of trust boundaries and gateways which protect
the boundaries is both crucial and cumbersome for complex system and net-
work structures. Therefore, using the HSI definition provides a structured and
methodical pattern for identification.

4 Application of the Proposed Approach

This section demonstrates the application of the presented approach for a repre-
sentative safety and security relevant automotive embedded system. To that aim
a basic concept of an electronic steering column lock (ESCL) has been chosen.
This use-case is an illustrative example, reduced for training purposes and is not
intended to be exhaustive or representing leading-edge technology or solutions.

Figure 1 shows a block diagram depiction of the use-case from a safety per-
spective (item definition). The depiction shows all involved components of an
ESCL from sensors to actuators. As can be seen, the actuator is simply an elec-
tric motor which moves the bolt, controlled by a motor controller and an electric
control unit (ECU). The required sensor signals are (a) a feedback channel of
the bolt position (represented via endpos signal), (b) power supply and ignition
key status information (CL30 and CL15), and (c) vehicle status information via
CAN bus (ignition key status, vehicle speed signal, gear lever position).

Fig. 1. Block diagram depiction of use-case (Item definition)

An excerpt of an ESCL HARA and TARA analysis [21] (using a combined
approach by applying the SAHARA method [15]) reveals the security threat
‘SH 1: spoofing of key-less-go off signal, vehicle speed 0kmph and gear lever in
park position’, resulting in SecL = 2 (security level) and security goal ‘prevent
spoofing of steering column lock signals’, and is also related to safety goal ‘SG1:
prevent unwanted steering column locking ’ with ASIL D.

The use-case example represents a safety-critical and cyber-security related
component and requires the application of an ISO 26262 aligned development
process. Complying with ISO 26262 aligned development process requirements,
the HSI artifacts for the ESCL system depicted in Fig. 2 are generated at the
end of the system development phase.
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Fig. 2. Excerpt of the HSI definition of the ESCL use-case

Fig. 3. Trust-boundary layers of use-case
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As can be seen in Fig. 2, the SecL of the three directly connected signals
(endpos, CL30, and CL15) are treated as 0 (not security relevant). This due to
the fact that in order to mount a security attack, these signals would have to be
manipulated in the vehicle directly at the ESCL system and that these signals
are within the same trust boundary 0 (see Fig. 3). On the other hand, the three
signals provided via CAN bus (thus provided from outside of trust boundary 0
of Fig. 3) are assigned a SecL = 2. This SecL indicates a possible cyber-security
vulnerability and thus requires built-in security solutions exhibiting a defense-
in-depth approach.

The realization of these protections in vehicle systems requires the coordi-
nated design of multiple security technologies (such as isolation of safety crit-
ical systems, secure boot, tamper protection, message authentication, network
encryption and many others). More details on these automotive security tech-
nology best practices, and how and which to choose for different security levels
are out of the scope of this work, but can be found, among others, in [17,19].
Currently no standardization for the coordination of security designs has been
established and it is up to the manufacturers to decide how to provide a secure
context. Thus, we established the following design guideline for signal security
for the different security levels (based on [22]):

Layer Attribute

SecL = 0 no additional requirements

SecL = 1 verify origin of message

verify integrity of message

SecL = 2 check volumes of messages

detect abnormal behavior

immutable device identification

intrusion detection

SecL = 3 encrypted communication

data encryption

SecL = 4 establishing of private communication channel

correct cycle detection

blocking of unapproved and inappropriate messages

For the example, the three CAN signals required by ESCL (assigned SecL = 2)
have to be verified by the origin of message (this requires an immutable device
identification) and message integrity (e.g. CANs CRC). Also, a detection of abnor-
mal behavior of the CAN bus including a check of message repeat rate and intru-
sion detection is required.

Based on the HSI identification of the interfaces providing the signals (see
Fig. 2 - line 15), devices connected to this interface can be easily identified
and trust-boundaries for the specific system identified. This enables a complete
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identification of involved controllers for a further analysis of interfaces and the
establishment of barriers for cyber-security attacks. To do this, we started with
the ISO 26262 item of the ESCL system (Fig. 1) and filtered the content of the
HSI for signals related to the ESCL system (Fig. 2). In the first step we iden-
tified controllers which have access to these signals. These controllers (depicted
in Fig. 3) either generate the signals directly (such as the vehicle immobilizer
(IM)) or are connected to the same communication bus (antilock braking system
(ABS), on-board diagnosis connector (OBD), transmission control unit (TCU)
and wireless gateway (GW)). For the second step we identified the inner trust
boundary 0 which includes signals directly connected to the electric control unit
(ECU). Simultaneously, gateways to the trust boundary 0 are identified (IM
and ECU), which are required to ensure protection of the integrity of the trust
boundary 0. In the next step the trust boundary of the remaining signals is
established. Figure 3 shows a depiction of the first trust-boundary layers of the
use-case. As can be seen in the depiction, trust boundary 1, which covers the
first layer of all signals related to the ESCL system, also includes the wireless
gateway (GW), which appears as a gateway to trust-boundary 1 and therefore
enables remote cyber-security attacks on the ESCL. Additionally, if the on-board
diagnostic connector (OBD) does not provide protection mechanisms for trust-
boundary 1 (usually the case in common vehicle designs), maintenance systems
are included in trust boundary 1 as well; a fact that could be easily overlooked
and enabled security attacks recently described in [23,24].

5 Conclusion

Vehicle manufacturers are currently gearing up for the newly arising cyber-
security challenges. Although they can leverage experiences from many other
domains, nevertheless they have to face several unique challenges. Security stan-
dards do not need to be created from scratch for the automotive domain and are
frequently strongly related to the safety processes.

Functional safety and cyber-security engineering have an overlap regarding
many facets, but some development artifacts (such as the definition of system
borders (item definition vs. trust boundaries)) often differ completely. To that
aim, we have proposed a way to identify trust-boundaries and security design
guidelines for the signal security of complex systems via signal interfaces defined
in the hardware-software interface (HSI) definition. The application of the app-
roach presented has been demonstrated based on a representative safety and
security relevant use-case, an electronic steering column lock (ESCL). Although
this use-case is intended for training purposes and represents neither an exhaus-
tive nor a commercially sensitive project, the main benefits of the approach have
been made evident.
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