
Situational Factors in Safety Critical
Software Development

Risto Nevalainen1(&), Paul Clarke2,3, Fergal McCaffery3,4,
Rory V. O’Connor2,3, and Timo Varkoi5

1 FiSMA Association, Espoo, Finland
risto.nevalainen@fisma.fi

2 Dublin City University, Dublin, Ireland
{paul.m.clarke,rory.oconnor}@dcu.ie

3 Lero, the Irish Software Research Centre, Limerick, Ireland
4 Regulated Software Research Centre,

Dundalk Institute of Technology, Dundalk, Ireland
fergal.mccaffery@dkit.ie

5 Spinet Oy, Espoo, Finland
timo.varkoi@spinet.fi

Abstract. The generic software development situational factors model has been
developed in order that environments within which software is developed can be
profiled and better understood. Situational context is a complex concern for
software developers, with a broad set of situational factors holding the potential
to affect any one software development project. Safety critical software devel-
opment is broadly similar to other kinds of software development/ engineering.
But there are some additional or more dominant situational factors. In this article
we conduct a conceptual experiment to define safety critical software devel-
opment context using situational factors. Eleven such factors are identified, with
some of the factors requiring elaboration beyond the detail presently available in
the generic situational factors model. We firstly discuss the appropriateness of
the selected factors in generic safety critical software development context.
Thereafter we apply the selected factors to the medical device and nuclear power
domains. Selected situational factors can be used as a high level profile and
starting point for more detailed process and safety assessment. Discussion about
potential use cases and further development needs is also presented.

Keywords: Situational factors reference model � Safety context � Safety critical
software development

1 Introduction

Software development is a complex activity [1] and there are a rich variety of products,
applications and domains for which software can provide effective solutions. In an
initial effort to identify the factors of a context (such as the product or application or
domain) that affect the manner in which software is developed, the situational factors
model [2] was produced (by the authors of this paper) as a generic set of high level
concerns that may influence the choice and form of software development processes.

© Springer International Publishing Switzerland 2016
C. Kreiner et al. (Eds.): EuroSPI 2016, CCIS 633, pp. 132–147, 2016.
DOI: 10.1007/978-3-319-44817-6_11



For the avoidance of confusion, we wish to explicitly identify “environment”, “setting”
and “context” as synonyms of “situation” in this instance and therefore, we may also
refer to these factors as “contextual factors” or “environmental factors” or “factors of
the setting” but our preference is to use the term “situational factors” as this is the
terminology used in the most complete reference for such factors [2].

The safety critical domain is concerned with “systems whose failure could result in
loss of life, significant property damage, or damage to the environment” [3] and
software may form part of such systems, for example in anti-lock braking systems
(ABS) in cars and in flight control systems in airplanes and rockets. All safety critical
software therefore has certain common situational factors that strongly influence the
choice of software development processes. For example, it is common for safety critical
software systems to be subject to regulation/legislation which demands that risk
management is actively and robustly implemented throughout the software develop-
ment lifecycle (as a mechanism to reduce the risk of events occurring that will
adversely affect safety) (Fig. 1).

2 Situational Factors in Software Engineering

Although numerous earlier attempts hinted at the existence of (or provided only partial
descriptions of) certain contextual factors that affected software development, the sit-
uational factors reference model [2] represents the first substantial initiative to unify all
factors into a single, comprehensive model. This unified situational factor reference
model contains 44 individual factors (and a further 170 sub-factors), and serves to
demonstrate that there are a large number of situational variables to be considered when
defining and elaborating software development processes (refer to Fig. 2), perhaps too
large to perfectly satisfy as it has also been shown that the interaction between a
software process and its context is analogous to a complex system [1]. Complex
systems are characterised by emergent behaviour, which essentially means that our
ability to predict and control complex systems may be limited, as is evidenced in

Fig. 1. Rationale in our conceptual experiment

Situational Factors in Safety Critical Software Development 133



ecosystems where a single change holds the potential for unforeseeable, far-reaching
and large-scale effects [4]. It is perhaps for this reason that process adaptive capability
has been shown to be positively associated with business performance in the general
software engineering field [5]. Clearly, however, emergence is not a behavioural
property that we want to foster in safety critical systems and it is (at least partially) for
this reason that there are a reduced number of dominant situational factors that affect
safety critical software development processes. For this reason, we also find that
processes are often formally defined and audited in safety critical domains. The reduced
set of safety critical situational factors is perhaps so dominant that they almost eclipse
other factors (or they least exercise significant priority over the other factors). We
elaborate more on these factors in Sect. 3.

Fig. 2. The situational factors affecting software development

134 R. Nevalainen et al.



3 Dominant Situational Factors in Safety Critical Domains

3.1 Criteria for Identification of Specific Situational Factors in Safety
Critical Software Development

The starting point in this article is that software development for safety critical systems
is quite similar to any other context. So, what is said about software development at
general level is valid also in safety domains. Most software safety standards specify
additional requirements and do not repeat the basic principles. Otherwise the standards
would be very long, heavy and difficult to use. Of course, there is still some overlap
between generic and safety contexts.

Furthermore, different traditions exist in different safety related domains. For his-
torical and regulatory reasons, some requirements that may be highly relevant in one
safety related domain may not be considered to be highly relevant in another domain.

The generic situational factors model (refer to Fig. 2) is wide and quite detailed.
Obviously, some selection criteria are needed to focus on such factors in safety con-
texts which are more specific from a scoping perspective. Our criteria are the following:

• High importance for safety, based on normative sources (standards, regulations)
• Scalability according to safety requirements (at various safety levels etc.)
• High safety impact and potentially in overall quality of software and also system
• Possibility to create, establish and manage safety culture

The expectation in our experiment is that the following differences between generic
and safety context factors may occur:

• Selected safety critical situational factors will remain the same as in the generic
sense, but the abstraction level may vary. Typically, a safety context factor may be
more detailed and may also be more constrained. We mean that individual factors in
the generic model [2] may require further detail for application to a safety critical
domain, while at the same time, many of the factors in the generic model can be
descoped in light of safety critical concerns. (Ref. Table 1).

• Selected generic safety critical situational factors are partially the same, but the
language and definition should be different to be accurate and best aligned with each
safety community. A good example of this is the fact that what the medical device
domain refers to as “risk” management is referred to in certain other domains as
“safety” management [6]. Furthermore, the application of safety levels depending
upon the potential for harm can vary between domains.

• A safety critical situational factor may be so different from the generic situational
factors model as to be considered additional. It may be also candidate to be added in
the generic situational factors model in due course.

3.2 Selected Situational Factors for Further Elaboration

Given the argument that there are certain situational factors that dominate safety critical
software development, our initial efforts focused on the identification of these factors.

Situational Factors in Safety Critical Software Development 135



Table 1. Mapping from generic situational factors to generic safety critical situational factors

Factor Description Sub-factor(s) Argument(s):
why dominant in a safety
context

(Operational)
Prerequisites

Concerns that must be
satisfied prior to
operationalisation

Applicable
standards;
Applicable laws

Safety manual/plan
required; Separate
safety lifecycle for
software development;
Degree of required
rigour; Degree of
independence in
functional safety
assessment; Degree of
independence in V&V

(Application)
Type

Nature of the
application

Application
domain;
Application
criticality

Degree of safety
criticality

(Application)
Quality

Application/Product
quality
characteristics

Required product
quality

Degree of diversity (or
diverse software);
Defence in depth
design and
programming

(Requirements)
Standard

Standard of
application/product
requirements

General quality of
input and output
requirements

Detailed requirements
especially for outputs
and safety properties
in almost all software
safety standards

(Application)
Reuse

Extent to which
existing proven
software is reused

Required reuse;
Extent of
utilisation of
externally
sourced
components

This is typically not a
separate requirement
in safety context, but
strict requirements are
defined in most safety
standards to manage
external components
(may be called COTS,
RUPS, PDS, SOUP
etc.)

(Business)
Magnitude of
potential loss

Impact of negative
events

Loss of human life Magnitude of potential
loss

(Business)
External
Dependencies

Dependencies outside
of the business

Dependency on
outside
suppliers

Tool confidence level (or
similar); Degree of
COTS/RUSP
qualification

(Personnel)
Culture

The culture that exists
among the
personnel

Team culture Safety culture

136 R. Nevalainen et al.



Following a number of concept elaboration sessions, each of the factors in the generic
situational factors reference model was evaluated for its relevance to the safety critical
domain.

From a total of 44 factor classifications in the generic situational factors model, 8
have been identified as being particularly important for safety critical software
development situations, the corresponding analysis for which was performed by the
authors given their experience in both safety-critical software development and situa-
tional factors affecting software development processes. The exercise to identify the
situational factors involved an iterative process whereby the creators of the generic
situational factors reference framework proposed factors that might affect generic
safety critical software development, following which the authors most familiar with
safety critical software development evaluated the proposed factors for relevance and
importance in safety critical domains. A total of three iterations were required to render
the results published in this paper. From the 8 generic situational factor classifications,
a total of 11 situational sub-factors have been identified (refer to column 3 of Table 1).

4 Elaboration of Situational Factors in Safety Critical
Software Engineering

What we are assuming is that “there are a reduced set of situational factors that dominate
safety critical software development”. Correspondingly, where the generic situational
factors reference model highlights the need to consider the application degree of risk, it
does not go so far as to elaborate on different degrees of risk depending on the risk
classification of the safety critical software.

Since some safety critical software is more critical than other safety critical software,
there is often a distinction drawn in various safety critical domains which has the impact
of imposing more stringent safety oriented constraints for higher degrees of risk. For
example, medical device software that is classified as safety classification A does not
require that detailed designs are developed and verified for interfaces between software
units whereas medical device software safety classification C does impose such con-
straints (according to IEC 62304 [7]). We can therefore see the benefit of identifying the
dominant factors affecting safety critical software development and where appropriate
extending some of those factors with the additional level of detail that is common in
safety critical software. For example, the degree of risk associated with the application
may be extended to take account of the various different levels of risk.

Process evaluation is also a common feature of safety critical software development
and in certain domains there is a basic requirement to pass an independent external
audit in order to legally supply software to the sector (as is the case in the medical
device sector). However, process assessment can be adapted to satisfy the needs of
process audit, since all of the regulatory requirements of an audit can be embedded in a
process capability framework – such as is the case with MDevSPICE [8] and
Nuclear SPICE [9]. With process assessments, various different types of process
assessment can be undertaken, ranging from an internal, first party, informal process
assessment to an assessment led by an independent, certified third party. Since it is
envisaged that the safety critical situational factors reference model described in this

Situational Factors in Safety Critical Software Development 137



work may be utilised for the purpose of identifying the key situational concerns in
advance of a process assessment, the process assessment type is also included as a
factor in the generic safety critical situational factors reference list (Table 2). Note that
a total of 12 generic safety critical situational factors (Table 2) have been elaborated
from the 11 generic situational factors identified in Table 1.

Our first step in adapting and applying the generic software development situational
factors model to the safety critical domain is at a generic level, “generic safety critical
software”1. We try to identify common factors in numerous domain-specific safety
standards. Later in Sect. 5 we apply this generic set to two domains: medical devices
and nuclear power. Our approach also allows a comparison between sector-specific
profiles.

Many sector-specific safety standards and models have a long history and their own
development community. In this paper, IEC 61508:2010 [10] is selected as the main
source and reference for generic safety critical situational factors. More specifically,
IEC 61508:2010 Part 3 is used, because it is a specific standard for safety related
software development. In some sectors, this standard is reasonably well adopted and is
the main starting point for sector specific additional requirements and adjustments.
Good examples are the process industry (standard IEC 61511), automotive (standard
ISO 26262) and railways (for example standards EN 50126, 50127, 50128). Medical
device, space, avionics and nuclear sectors are somewhat distanced from IEC 61508,
and use their own concepts. The nuclear sector goes further again and has separate
standards for different safety classes (IEC 62138 and IEC 60880).

IEC 61508 is the main generic standard for functional safety. Software is only one
element, the entire system (including hardware) must be considered. This is also the
case in the nuclear sector, where IEC 61513 is the highest system-level standard (and it
includes software). If system and software requirements are the same, then a system
requirement is more valid. In the medical device sector however, software can be an
independent of a physical (i.e. mechanical or electrical) medical device.

Our result from the first step is presented in Table 2. It is a shortlist of selected
situational factors based on requirements in the generic safety standard IEC 61508:2010.
This standard has a wide range of safety related requirements. For that reason and to
make a comparison between sector profiles easier, we propose an ordinal scale for each
of the selected factors. It is typically a 3-point or 4-point scale, see Table 2. We try to
avoid a binary scale (for example No/Yes), because safety is rather a continuum than
black or white. This is easily seen for example in safety integrity levels (SIL), which are
in range 1–4.

In some cases, IEC 61508 does not have a direct requirement for some highly
relevant factor. This may be true because no consensus is achieved as to how some
requirement should be formulated. Diversity can be seen as one such factor. The other
reason may be that a requirement or topic is not in the scope of IEC 61508 and is
assumed to be valid only implicitly or indirectly. One such important topic is

1 Such “generic safety critical software” may not exist, because most industry sectors use their own
standards. Note also that terminology may vary in standards, for example “safety-related software” or
“software important for safety”.

138 R. Nevalainen et al.



Table 2. Safety critical software development, definition of generic profile

Generic safety
situational factor
(adapted from
Table 1)

Source(s) Range (ordinal scale if
possible)

Separate safety
lifecycle for
software
development

IEC 61508-3, Chapters 6, 7, 8 Not Required (NR),
Recommended (R), Highly
Recommended (HR)

Safety manual/plan IEC 61508-1, Table A.3 Not Required (NR),
Recommended (R), Highly
Recommended (HR)

Degree of safety
criticality

IEC 61508-1 SIL1…SIL4

Magnitude of
potential loss,
consequences

IEC 61508-1, 8.2.17 A, B, C, D

Degree of required
rigour

IEC 61508-3, Annex C R1, R2, R3

Tool confidence level
(or similar)

IEC 61508-3, 7.4.4 T1, T2, T3
IEC 61508-4, 3.2.11 See ISO26262 Part 8 for further

details
Degree of
independence in
functional safety
assessment

IEC 61508-1, Tables 4 and 5 1: independent person, 2:
independent department, 3:
independent organisation

Degree of
independence in
V&V (IV&V)

Is specified in many domain
specific safety standards, not
directly in IEC 61508

1: independent person, 2:
independent department, 3:
independent organisation

Example: ISO 26262 Part 2:
Table 1, Table D.1 and
6.4.6.4

Degree of
COTS/RUSP
qualification a

Is specified in many domain
specific safety standards, not
directly in IEC 61508

1: independent person, 2:
independent department, 3:
independent organisation

Example: IEC 60880 Chapter
15

Degree of diversity
(or diverse
software)

Is specified in many domain
specific safety standards, not
directly in IEC 61508

Not Required (NR),
Recommended (R), Highly
Recommended (HR)

Example: IEC 60880,
Annex G.5. See also
ISO26262 Part 6 method
Table 5

(Continued)

Situational Factors in Safety Critical Software Development 139



safety culture, which is a “soft” factor and may be implemented by organisational
management rather than the development unit or project. Many such factors are in sector
specific standards, and are therefore important to consider.

As we can see in Table 2, all factor candidates are not well (or directly) defined in
the generic functional safety standard IEC 61508. Some are still kept in the list, because
they are mentioned in several domain standards (see some examples and references in
the range column). It is also possible that the generic IEC 61508 standard is incomplete
because of the consensus-driven standardisation process.

5 Adaptation of Generic Safety Context Factors in Medical
Device and Nuclear Domains

5.1 Safety Context Definition in Medical Device Domain

Table 3 is an adaptation of the generic safety situational factors (refer to Table 2) to the
medical device domain. The medical device domain has long experience in safety
standards (both in ISO, IEC and CENELEC) and regulatory body requirements (for
example FDA in USA).

Whereas a number of other domains adopt IEC 61508 for the design of Safety
critical software the Medical industry does not adopt this safety standard and has
instead defined their own safety classification levels within the medical device software
process lifecycle standard IEC 62304.

The three main elements within the IEC 61508 standard are addressed differently
within a combination of three medical device standards: (1) IEC 62304 [7];

Table 2. (Continued)

Generic safety
situational factor
(adapted from
Table 1)

Source(s) Range (ordinal scale if
possible)

Defence in depth
design and
programming

Is specified in many domain
specific safety standards, not
directly in IEC 61508

Not Required (NR),
Recommended (R), Highly
Recommended (HR)

Example: IEC 60880 Chapter
13 (prevention of common
cause failures)

Safety culture Is specified in many domain
specific safety standards, not
directly in IEC 61508

Not Required (NR),
Recommended (R), Highly
Recommended (HR)

Example: ISO 26262 Part 2,
Annex B

a COTS = Commercial off-the-self. RUSP = ready to use software product. In some standards,
the abbreviation PDS (= pre-developed software) is used. Their meaning is equivalent in
practice.

140 R. Nevalainen et al.



(2) ISO 14971 [11] (the medical device risk management standard) and ISO 60601-1
[12] (the umbrella product level medical device standard).

The first of these areas that are covered within the IEC 61508 Risk Management
lifecycle and lifecycle processes is covered in the medical device domain by IEC 62304
directly referencing the medical device standard for risk management (ISO 14971) as
central to the IEC 62304 lifecycle process for medical device software. In fact, the risk

Table 3. Safety critical software development, adaptation of generic profile in medical device
domain

Generic safety
situational factor
(see Table 2)

Additional source(s) in medical
device domain

Range in medical device domain
(ordinal scale if possible)

Separate safety
lifecycle for
software
development

No lifecycle specified – but
typically V-model seen as
default IEC 62304
Annex C.4.2

Class A, B, C

Safety manual/plan IEC 62304 Clause 5.1.1 IEC 62304 Clause 5.1.1 Note 1
Degree of safety
criticality

IEC 62304 Clause 4.3 Class A, B, C

Magnitude of
potential loss,
consequences

IEC 62304 Clause 4.3 Class A, B, C

Degree of required
rigour

IEC 62304 Clause 4.3 No scale. Class A, B, C can be
used.

Tool confidence
level (or similar)

Encourages use of IEC 61508
for tool advice

Proposed scale: Not Required
(NR), Recommended (R),
Highly Recommended (HR)a

Degree of
independence in
functional safety
assessment

ISO 14971 Annex F.3 Proposed scale: NR, R, HR

Degree of
independence in
V&V (IV&V)

ISO 14971 Annex F.3 Proposed scale: NR, R, HR

Degree of
COTS/RUSP
qualification

IEC 62304 Clause 5.3.3 COTS
is called SOUP in IEC 62304.

Proposed scale: NR, R, HR

Degree of diversity
(or diverse
software)

IEC 60601-1 Proposed scale: NR, R, HR

Defence in depth
design and
programming

IEC 60601-1 Proposed scale: NR, R, HR

Safety culture ISO 14971 Clause 4.2 Proposed scale: NR, R, HR
a Medical device standards do not propose any scale for these factors. A scale from generic
Table 2 is used here as an option.

Situational Factors in Safety Critical Software Development 141



management process in IEC 62304 references ISO 14971 and extends it only with
additional software specific medical device elements that were not included in the more
generic ISO 14971 standard.

The second of these 3 areas within IEC 61508 was the definition of Safety Integrity
Levels (SILs). The medical device industry does not adopt SILs but instead uses the
idea of software safety classes as defined in IEC 62304. Whereas, there are 4 SIL levels
within IEC 61508 there are only 3 software safety classes of A, B and C within IEC
62304. Software safety class A means that no injury or damage to health is possible if
the software system failed. Software safety class B means that non serious injury is
possible if the software system failed. Software safety class C means that death or
serious injury is possible if the software system failed. The main reason why the
medical device domain uses these software safety classes as opposed to SILs is that
SILs are based upon reliability which quantifies both the probability and the severity of
harm caused by a software failure. This presents an issue within the medical device
sector as the probability of failure of software is assumed to be 100 %. Therefore,
within IEC 62304 a more simplified approach is adopted as prior to assignment of
software safety classes only the severity of the harm that will be caused by a software
failure is taken into consideration. Once a software system has been assigned one of the
3 software safety classes, different processes are required for each of the different
software safety classes as IEC 62304 specifies what is required for each of the safety
classes (for each process). Whenever, a software safety class has been assigned to a
software system it is thereafter desirable to make efforts to further reduce the proba-
bility of failure of the software (if possible).

The third of these 3 areas within IEC 61508 relates to recommending methods,
tools etc. for software development and also provides information in relation to the
independence of personnel responsible for performing different lifecycle activities. This
is not handled by an individual standard within the medical device domain but rather a
combination of standards and in fact IEC 62304 recommends IEC 61508 as a good
source for software methods, tools etc. In terms of the medical device sector, infor-
mation relating to the independence of personnel responsible for performing different
lifecycle activities is covered in ISO 14971 as opposed to IEC 62304. ISO 14971
contains requirements for the independence of those performing for example verifi-
cation and safety assessments.

5.2 Safety Context Definition in Nuclear Domain

Table 4 is an adaptation of generic safety situational factors (refer to Table 2) to the
nuclear domain. The nuclear industry also has long experience in safety standards
(mainly IEC) and regulatory body requirements. Global cooperation is extensive,
important and well established, for example the International Atomic Energy Agency
(IAEA) based in Vienna. The national level is most important for regulatory issues,
because each country wants to define their own policy in nuclear energy and safety.
The Common Position [13] is an example of cooperation between authorities in
selected European countries.

142 R. Nevalainen et al.



A predominant feature in the nuclear domain is that the system life cycle and safety
life cycle are considered separate. In practice, this means that functionality important to
safety has independent systems from operational systems. Naturally, the same applies
to software. Safety classes are numbered 1, 2 and 3, 1 denoting the highest safety class.
Categories (A, B, C) – A being the highest – are assigned based on Instrumentation and
Control (I&C) functions safety relevance.

Table 4. Safety critical software development, adaptation of generic profile in nuclear domain

Generic safety situational
factor (see Table 2)

Additional source(s) in
nuclear domain

Range in nuclear domain (ordinal
scale if possible)

Separate safety lifecycle
for software
development

IEC 60880 Clause 5.3;
Annex A

Systems performing category A
functions; safety class 1

IEC 62138 Clause 4.3;
5; & 6

Systems performing category B or
C functions; safety classes 2 and
3

Safety manual/plan IEC 60880 Clause 5.5 Software quality assurance plan
IEC 62138 Clause 5.1.1
& 6.1.1

Quality assurance plan (maybe part
of System QA plan)

Degree of safety
criticality

IEC 61226 [17] Categories of functions A, B, and C
for I&C functions important to
safety

IEC 61513 Safety classes of systems 1, 2 and
3; unclassified

Magnitude of potential
loss, consequences

N/A

Degree of required rigour IEC 61513 Clause
6.4.1.2

Safety classes 1 & 2

Tool confidence level (or
similar)

IEC 60880 Clause 14;
Annex H

none

Degree of independence
in functional safety
assessment

N/A

Degree of independence
in V&V (IV&V)

IEC 60880 Clause 8; 10 By process requirements,
verification team separate from
the development management

Degree of COTS/RUSP
qualification

IEC 60880 Clause 15 none

Degree of diversity (or
diverse software)

IEC 60880 Clause 13.4;
Annex G

none

Defence in Depth design
and programming

IEC 61513 Annex A.3;
Annex C

Safety classes and categories

IEC 61226 Clause 5 Safety classes
IEC 60880 Clause 13 Defence in Depth levels 1-5 in

IAEA standard INSAG-10
Safety culture Common Position

Clause 1.6
none

Situational Factors in Safety Critical Software Development 143



IEC 60880 [14] covers the requirements for the software life cycle applicable in
safety class 1. Additionally, it contains informal annexes on different special software
qualification aspects such as defence against common cause failures, tools for software
development and qualification, as well as requirements on pre-existing software. IEC
62138 contains graded requirements for software implementing category B and C
functions [15]. IEC 60880 and IEC 62138 provide the principles and requirements for
software safety classes. I&C functions of category A may be implemented in class 1
systems only, I&C functions of category Bmay be implemented in class 1 and 2 systems,
I&C functions of category C may be implemented in class 1, 2, and 3 systems [16].

Standards in the nuclear domain focus on quality assurance and the prevention of
failures rather than analysing the possible consequences of failures. The IEC 61513
standard states:

The highest practicable integrity is generally deemed necessary for any system
which prevents or mitigates the consequences of radioactive releases. A lower level of
integrity may be acceptable for systems which support protection against there being
releases, but do not directly prevent or mitigate them. Consequently, there is not an
equivalent scheme to the reliability/risk reduction SIL levels proposed in IEC 61508 in
common use in the nuclear sector. This deterministic approach has been found gen-
erally sufficient in the nuclear industry and has resulted in practice in the setting of very
high targets of all protective functions. However, the nuclear sector does recognise the
numerical approach, and methods of probabilistic safety analysis (PSA) may provide
clearer targets for the reliability of CB systems [16].

Defence in depth is required for all safety activities. IEC 60880 provides require-
ments for defences against software design and coding faults which can lead to
common cause failures (CCF) of functions classified as category A [15].

6 Discussion and Conclusion

Our conceptual experiment demonstrates – and maybe validates to some extent - that
the generic situational factors model can be used as the main source to define dominant
safety factors. Adaptation and mapping is however, not straightforward. Most of the
selected factors required further elaboration for generic safety critical situational factor
identification. Some additional factors are also needed (Table 2). The authors also
highlight that while we possess considerable expertise in both safety critical software
development and software development situational factors, the exercise to elaborate the
generic safety critical situational factors (from the generic software development sit-
uational factors) presently lacks an independent validation.

One idea in this experimental research was to propose an ordinal scale for selected
safety factors. It would allow for a “safety profile” to be identified, a high-level
common set of system/software specific normative requirements. When each factor
value in an ordinal scale is aggregated further, it would be an overall indicator of safety
in a given situation and for a given system/software.

Further adaptation of the selected factors from generic safety to domain-specific
safety shows remarkable differences in results. Medical device software has much
fewer requirements than nuclear domain. Major gaps also exist in the definition of the

144 R. Nevalainen et al.



ordinal scale per each factor. At least, domain-specific standards may not even have
such concepts. Maybe for historical reasons, different safety classifications are very
popular. Unfortunately, they are quite different and not directly comparable. There may
be benefits to adopting the generic IEC 61508 standard as a starting point and baseline
in different domains, to improve comparability and cross-domain mapping of concepts
and requirements.

Our research is still in early phase and remains highly conceptual. An in-depth
validation is needed. Situational safety factors should be piloted and results should be
compared between domains. Then it could be possible to improve comparability and
better mapping between requirements in different standards.

A safety profile could be a first step in more detailed and well-established safety
demonstration, such as safety case definition and assessment of system/software
development processes. This is illustrated in Fig. 3. A safety profile can also be a
separate result, some kind of quick analysis of system/software specific safety
requirements and their achievement. Early identification of potential gaps could reduce
risks in deliveries.

The SPICE-based assessment approach is in use both in medical device and nuclear
domains. Assessment methods are called with brand names such as MDevSPICE and
Nuclear SPICE. The ISO/IEC 330xx family of standards is the main reference and
starting point in both methods. Situational factors could extend the methods into earlier
steps in supplier and system/software/platform selection.

The proposed safety situational factors contribute mainly in quality, for obvious
reasons. They could be selected and elaborated further also by productivity and time
criteria. It is a general trend in software and system markets that the overall success is
much based on correct timing for markets. More agility is therefore also needed. In an
ideal situation, quality and productivity factors would converge on a single point, and
this is perhaps an outcome that can be achieved through the more aggressive adoption
of technology-enabled software development processes [18] that we are starting to see
emerging in the general software engineering field.

Fig. 3. Use of situational factors in defining a safety profile

Situational Factors in Safety Critical Software Development 145



Acknowledgments. This research is supported in part by the Science Foundation Ireland
Research Centres Programme, through Lero - the Irish Software Research Centre (http://www.
lero.ie) grant 10/CE/I1855 & 13/RC/20194; and in part by the Finnish national nuclear safety
program SAFIR2018 (http://safir2018.vtt.fi/).

References

1. Clarke, P., O’Connor, R.V., Leavy, B.: A Complexity theory viewpoint on the software
development process and situational context. In: Proceedings of the 2016 International
Conference on Software and System Process (ICSSP 2016). IEEE, San Francisco (2016)

2. Clarke, P., O’Connor, R.V.: The situational factors that affect the software development
process: towards a comprehensive reference framework. J. Inf. Softw. Technol. 54(5), 433–
447 (2012)

3. Knight, J.C.: Safety critical systems: challenges and directions. In: Proceedings of the 24th
International Conference on Software Engineering, pp. 547–550. IEEE (2002)

4. Manson, S.M.: Simplifying complexity: a review of complexity theory. Geoforum 32(3),
405–414 (2001)

5. Clarke, P., O’Connor, R., Leavy, B., Yilmaz, M.: Exploring the relationship between
software process adaptive capability and organisational performance. IEEE Trans. Softw.
Eng. 41(12), 1169–1183 (2015)

6. Clarke, P., Lepmets, M., McCaffery, F., Finnegan, A., Dorling, A., Eagles, S.: Characteristics
of a medical device software development framework. In: Industrial Proceedings of EuroSPI
2014 conference, pp. 1–9 (2014)

7. IEC: IEC 62304 medical device software - software life-cycle processes. IEC, Geneva,
Switzerland (2006)

8. Clarke, P., Lepmets, M., Dorling, A., McCaffery, F.: Safety critical software process
assessment: how MDevSPICE® addresses the challenge of integrating compliance and
capability. In: Rout, T., O’Connor, R.V., Dorling, A. (eds.) SPICE 2015. CCIS, vol. 526,
pp. 13–18. Springer, Heidelberg (2015)

9. Varkoi, T., Nevalainen, R.: FiSMA report 2014-2. Advanced nuclear SPICE assessment
process. Version 1.0, 2015-01-08. SAFIR2014. FiSMA, Espoo Finland (2015)

10. IEC: IEC 61508, functional safety of electrical/electronic/programmable electronic safety
related systems. Parts 1 – 7. IEC, Geneva, Switzerland (2010)

11. ISO: ISO 14971 - medical devices - application of risk management to medical devices. ISO,
Geneva, Switzerland (2009)

12. IEC: IEC 60601-1 - medical electrical equipment – part 1: general requirements for basic
safety and essential performance. IEC, Geneva, Switzerland (2005)

13. BEL-V, BfS, CNSC: Common positio006E. Licensing of safety critical software for nuclear
reactors. Common position of seven European nuclear regulators and authorised technical
support organisations. Regulator Task Force on Safety Critical Software (TF SCS) (2013)

14. IEC: IEC 60880, nuclear power plants – instrumentation and control systems important to
safety – software aspects for computer-based systems performing category A functions. IEC,
Geneva, Switzerland (2006)

15. IEC: IEC 62138, nuclear power plants – I&C systems important to safety – software aspects
for computer based systems performing category B and C functions. IEC, Geneva,
Switzerland (2004)

16. IEC: IEC 61513, nuclear power plants – instrumentation and control for systems important
to safety – general requirements for systems. IEC, Geneva, Switzerland (2001)

146 R. Nevalainen et al.

http://www.lero.ie
http://www.lero.ie
http://safir2018.vtt.fi/


17. IEC: IEC 61226, nuclear power plants – instrumentation and control systems important for
safety – classification of instrumentation and control functions. IEC, Geneva, Switzerland
(2009)

18. Clarke, P., Elger, P., O’Connor, R.V.: Technology enabled continuous software development.
In: Proceedings of the International Conference on Software Engineering (ICSE) Workshop
on Continuous Software Evolution and Delivery (CSED). ACM / IEEE, New York (2016)

Situational Factors in Safety Critical Software Development 147


	Situational Factors in Safety Critical Software Development
	Abstract
	1 Introduction
	2 Situational Factors in Software Engineering
	3 Dominant Situational Factors in Safety Critical Domains
	3.1 Criteria for Identification of Specific Situational Factors in Safety Critical Software Development
	3.2 Selected Situational Factors for Further Elaboration

	4 Elaboration of Situational Factors in Safety Critical Software Engineering
	5 Adaptation of Generic Safety Context Factors in Medical Device and Nuclear Domains
	5.1 Safety Context Definition in Medical Device Domain
	5.2 Safety Context Definition in Nuclear Domain

	6 Discussion and Conclusion
	Acknowledgments
	References


