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Abstract Using an approach based on the Aitchison geometry of the simplex, a
Shifted-Dirichlet covariate model is obtained. Allowing the parameters to change
linearly with a set of covariates, their effects on the relative contributions of dif-
ferent components in a composition are assessed. An application of this model to
sedimentary petrography is given.
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1 Introduction

Compositional data are vectors of parts of some whole which carry relative infor-
mation. They are frequently represented as proportions or percentages, which are
subject to a constant sum, κ , i.e., κ = 1 or κ = 100. Their sample space is then
represented by the simplex, denoted by
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S D = {x = (x1, . . . , xD), xi > 0,
D∑

i=1

xi = κ}.

Compositional data occur in many applied fields: from geology and biology to elec-
tion forecast, from medicine and psychology to economic studies.

We recall briefly the essential elements of simplicial algebra, as it will be used
later. For any vector of D strictly positive real components,

z = (z1, . . . , zD) ∈ R
D
+ zi > 0, for all i = 1, . . . , D,

the closure operation of z is defined as

C (z) =
(

κ z1∑D
i=1 zi

, . . . ,
κ zD∑D
i=1 zi

)
∈ S D . (1)

where κ is the sum of the components, i.e., the constraint.
The two basic operations required for a vector space structure of the simplex are

perturbation: given two compositions x and y ∈ S D ,

x ⊕ y = C (x1y1, . . . , xD yD) , (2)

and powering: given a composition x ∈ S D and a scalar α ∈ R,

α � x = C
(
xα
1 , . . . , xα

D

)
. (3)

Furthermore, an inner product 〈·, ·〉a is defined as

〈x, y〉a =
D∑

i=1

ln
xi

gm(x)
ln

yi
gm(y)

, (4)

where gm(x) denotes the geometric mean of the components of x [4, 22]. As shown
in Pawlowsky-Glahn and Egozcue [22] the simplex (S D,⊕,�, 〈·, ·〉a) has a (D −
1)-dimensional real Euclidean vector space structure called simplicial or Aitchison
geometry.

Let (e1, e2, . . . , eD−1) be an orthonormal basis of the simplex and consider the
(D − 1) × D matrix Ψ which rows are Ψi = clr(ei ), (i = 1, . . . , D − 1). Note that
clr is the centered log-ratio transformation, a function from S D to RD defined as

clr(x) =
(
log

x1
gm(x)

, . . . , log
xD

gm(x)

)
,
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where gm(x) is the geometric mean of the D components of x. TheΨ matrix is called
contrast matrix associated with the orthonormal basis (e1, . . . , eD−1). Each row is
called a (log)contrast.

The isometric log-ratio transformation, ilr for short, of x is the function ilr :
S D → R

D−1, which assigns coordinates x�, with respect to the given basis, to the
composition x. The vector x� contains the D − 1 ilr-coordinates of x in a Cartesian
coordinate system. The inverse of the ilr-transformation is denoted by ilr−1. The
function ilr is an isometry of vector spaces. The ilr transformation is computed as a
simple matrix product:

x� = ilr(x) = ln(x)Ψ ′ .

Inversion of ilr, i.e., recovering the composition from its coordinates, is given by

x = ilr−1(x�) = C
(
exp(Ψ x�)

)
.

Given an orthonormal basis of the simplex, any composition x ∈ S D can be
expressed as a linear combination,

x = (x�
1 � e1) ⊕ (x�

2 � e2) ⊕ · · · ⊕ (x�
D−1 � eD−1)

=
D−1⊕

i=1

(x�
i � ei ),

where the symbol
⊕

represents repeated perturbation. The coefficients of the linear
combination, for a fixed basis, are uniquely determined, given that in a Euclidean
space any point can always be represented in a unique way by its coordinates with
respect to an orthonormal basis. Once an orthonormal basis has been chosen, all
standard statistical methods can be applied to coordinates and transferred to the
simplex preserving their properties [15].

A natural measure onS D , called Aitchison measure, can be defined using ortho-
normal coordinates [21, 23], that is, the Aitchisonmeasure of a subset on the simplex
is the Lebesgue measure of the subset in the space of orthonormal coordinates. This
measure is compatible with theAitchison geometry and is absolutely continuous with
respect to the Lebesgue measure on the D-dimensional real space. The relationship
between them is

√
Dx1x2 . . . xD . The change of the reference measure has some

important implications, for example to compute the expected value (see [16] for an
in-depth discussion).

Historically, there are essentially two different approaches to regression models
which relate a compositional response variable with a system of covariates: Sim-
plicial regression and Dirichlet regression. The former is based on the Aitchison’s
theoretical result that if a compositional vector follows an additive logistic normal
distribution, the log-ratio transformed vector will follow a normal distribution [2, 3,
8]; the latter follows the stay-in-the-simplex approach. It assumes that the response
variable follows a Dirichlet distribution whose parameters are a log-linear function
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of a set of covariates [6, 12, 14, 17]. Other solutions, present in the literature but less
used, involve models based on the generalized Liouville distribution [25].

The Scaled-Dirichlet distribution is an extension of the Dirichlet one. Given that
we work here with the Aitchison geometry of the simplex, and that within this
framework it is a perturbation of a standard Dirichlet [18], we will refer hereafter
to it as the Shifted-Dirichlet distribution. The reason to change this terminology is
twofold. On the one hand, working within the Aitchison geometry implies a change
of the reference measure; on the other hand, scaling in this geometry is achieved
using a power transformation, which allows another extension already studied in
Monti et al. [19]. In summary, the name of the distribution indicates the sample
space of the corresponding random vector and its structure. For the Scaled-Dirichlet
distribution this is the simplex as a subset of real space with the induced Euclidean
geometry, while for the Shifted-Dirichlet distribution it is the simplex as a Euclidean
space endowed with the Aitchison geometry. Although in the first case the Lebesgue
reference measure is used, and in the second the Aitchison measure, the probability
assigned to any measurable subset of the simplex is the same.

The Shifted-Dirichlet covariate model is an extension of the Dirichlet one,
based on the algebraic geometric structure of the simplex. The assumption is that
x = (x1, . . . , xD) is a compositional response vector, with D components having a
Shifted-Dirichlet distribution, in which the parameters α are allowed to change with
a set of covariates.

The paper is structured as follows. Section2 defines the two existing approaches:
Simplicial regression and Dirichlet regression. Section3 gives a brief overview of
theShifted-Dirichlet distribution anddescribes theShifted-Dirichlet covariatemodel,
dealingwith the issue of parameter estimation. Section4presents an example of appli-
cation of the proposed regression model to sedimentary petrography, in particular
bulk petrography and heavy-mineral data of Pleistocene sands (Regione Lombardia
cores; Po Plain); this dataset is described in Garzanti et al. [11].

2 Regression Models for Compositional Response Variable

2.1 Simplicial Regression

Linear regression with compositional response variable can be stated as follows.
A compositional sample of n independent observations, denoted by x1, . . . , xn , is
available. Each data point, x j , ( j = 1, . . . , n) is associatedwith one ormore external
variables or covariates grouped in the vector s j = (s j0, s j1, . . . , s jm, . . . , s jp), where
s j0 = 1 by convention.

The basic idea of Simplicial regression [8] relies on the principle of working on
coordinates: once a basis is chosen, the associated ilr coordinates are computed and
the classical regression of the ilr coordinates on the covariates is performed. Through



A Regression Model for Compositional Data … 131

the inverse ilr-transformation, the back-transformed coefficient vectors, as well as
predictions and confidence intervals are obtained.

The general model can be expressed as

x̂(s) = (s0 � δ0) ⊕ (s1 � δ1) ⊕ · · · ⊕ (
sp � δ p

) =
p⊕

m=0

sm � δm . (5)

Note that there are p + 1 coefficient vectors δm , as many as covariates, and that they
are vectors with (D − 1) components, asmany as coordinates. The goal of estimating
the coefficients δ of a curve or surface inS D is solved by translating it into a (D − 1)
least square problem, i.e., for each coordinate

x̂�
i (s) = δ�

0i s0 + δ�
1i s1 + · · · + δ�

pi sp, i = 1, . . . , D − 1, (6)

where δ�
m = (

δ�
m1, . . . , δ

�
m,D−1

)
is the coordinate vector associated with δm . In the

case of simple regression m = 1 and s = s, which is a straight-line in the simplex.

2.2 Dirichlet Regression

The Dirichlet distribution is one of the well known probability models suitable for
random compositions. A random vector X = (X1, . . . , XD) ∈ S D has a Dirichlet
distribution, indicated by X ∼ DD(α), with α = (α1, . . . , αD) ∈ R

D+ , when its den-
sity function (with respect to the Aitchison measure) is

f (x;α) =
√
DΓ (α+)

∏D
i=1 Γ (αi )

D∏

i=1

xαi
i , (7)

where α+ = ∑D
i=1 αi , and Γ denotes the gamma function [18]. The Dirichlet distri-

bution has D parameters αi , which are assumed to be positive. Note that the density
(7) is obtained by changing the measure to a Dirichlet density with respect to the
Lebesgue measure.

In theDirichlet regressionmodel theαi parameters are reparameterized in terms of
explanatory variables and coefficients through an exponential function as described
in Eq. (12). The log-likelihood of the reparameterized Dirichlet distribution can be
optimized via an iterative method such as the Newton–Raphson algorithm.

When the variable of interest is continuous and restricted to the unit interval (0, 1),
i.e., when D = 2, the Dirichlet regression is called Beta regression [10].



132 G.S. Monti et al.

3 Shifted-Dirichlet Covariate Model

3.1 Shifted-Dirichlet Distribution

One of the generalizations of theDirichlet distribution is the Shifted-Dirichlet distrib-
ution. A random vectorX ∈ S D has a Shifted-Dirichlet distribution with parameters
α and β = (β1, . . . , βD) ∈ S D if its density function is

f (x, ;α,β) = Γ (α+)
√
D

∏D
i=1 Γ (αi )

∏D
i=1

(
xi
βi

)αi

(∑D
i=1

xi
βi

)α+ , (8)

The density (8) is expressed with respect to the Aitchison probability measure [21].
See Monti et al. [18] for a detailed discussion about the reasons and implications to
use the Aitchison measure. This distribution will be denoted by X ∼ SDD(α,β).

The number of parameters of this model is 2D − 1, since β ∈ S D . The Shifted-
Dirichlet distribution can be obtained by normalizing a vector of D independent,
scaled (in the Euclidean geometry of real space), gamma r.v.s Wi ∼ Ga(αi , βi ),
i = 1, 2, . . . , D; i.e., if X = C (W), with W = (W1, . . . ,WD) ∈ R

D+ , then X ∼
SDD(α,β) [18]. For this reason, in the literature, when working with the Lebesgue
reference measure, the distribution is called Scaled-Dirichlet. This distribution can
also be obtained as a perturbed random composition with a Dirichlet density. Recall
that perturbation is, in the Aitchison geometry of the simplex, a shift. Therefore, here
it is called Shifted-Dirichlet distribution, understanding that the density is expressed
with respect to the Aitchison measure.

Indeed, let X̃ ∼ DD(α) be a random composition defined inS D , and let β ∈ S D

be a composition. The random composition X = �β ⊕ X̃ has aSDD(α,β) distri-
bution (note that � is the inverse operation of ⊕). Observe that using the Aitchison
measure and geometry, β can be interpreted as a parameter of location, instead of
as a measure of scale. The expected value of X ∼ SDD(α,β) with respect to the
Aitchison measure is

Ea(X) = �β ⊕ Ea(X̃) , (9)

where Ea(X̃) is the expected value of a Dirichlet composition with respect to the
Aitchison measure

Ea(X̃) = C (eψ(α1), . . . , eψ(αD)) , (10)

with ψ the digamma function. The metric variance of X coincides with the metric
variance of a Dirichlet composition, because this measure of dispersion is invariant
under perturbation

Mvar(X) = D − 1

D
(ψ ′(α1), . . . , ψ

′(αD)) , (11)

with ψ ′ the trigamma function [1].
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3.2 Shifted-Dirichlet Regression

Given a sample of n independent compositional observations (x1, . . . , xn), we
hypothesize that each observation x j follows a conditional Shifted-Dirichlet distri-
bution, given a set of covariates. Polynomial regression on a covariate s is included
as a particular case taking s jm = smj .

In order to incorporate the covariate effects into the model [6, 14], we reparame-
terize each parameter αi of the density written in Eq. (8) in terms of covariates and
regression coefficients via the following log-linear model

αi j = αi j (s j ) = exp

{
p∑

m=0

δims jm

}
, (12)

where s j is the covariate vector recorded on the j-th observed composition ( j =
1, . . . , n), and δim are the coefficients for the m-th covariate. The parameter δim the-
oretically can vary by component, and the covariates may or may not be the same
set of explanatory variables for each αi j . We augment each vector s j with 1 as first
position for notation simplicity. Thus, given a sample of independent compositional
observations of size n, x1, . . . , x j , . . . , xn the log-likelihood function for the repa-
rameterized Shifted-Dirichlet, given the covariates s and ignoring the constant part
that does not involve the parameters, is equal to

l(β, δ|x, s) =
n∑

j=1

{
logΓ

⎛

⎝
D∑

i=1

exp

{ p∑

m=0

δims jm

}⎞

⎠ −
D∑

i=1

logΓ

(
exp

{ p∑

m=0

δims jm

})

−
D∑

i=1

exp

{ p∑

m=0

δims jm

}
logβi +

D∑

i=1

exp

{ p∑

m=0

δims jm

}
log xi j

−
⎛

⎝
D∑

i=1

exp

{ p∑

m=0

δims jm

}⎞

⎠ log

⎛

⎝
D∑

i=1

xi
βi

⎞

⎠
}

.

(13)

Equation (13) can be estimated using the maximum likelihood method via some
optimization algorithm, e.g., the Newton–Raphson algorithm. The choice of the
starting values for the algorithm is of fundamental importance to get fast convergence.

For the Dirichlet regression in Hijazi and Jernigan [14] a method based on resam-
pling from the original data is proposed; for each resample a Dirichlet model with
constant parameters is fitted and the mean of the corresponding covariates is com-
puted. After that, D models of the form

∑p
m=0 δims jm are fitted by least squares. The

fitted coefficients δ̂im are used as starting values. For the Shifted-Dirichlet covariate
model we have followed the same principle; as starting point for the vector β we
have chosen the closed geometric mean of the components of x given by
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g(x) = C

⎛

⎝

⎛

⎝
n∏

j=1

x1 j

⎞

⎠
1/n

, . . . ,

⎛

⎝
n∏

j=1

xDj

⎞

⎠
1/n⎞

⎠ , (14)

Model selection is performed by testing

H0 : δim = 0 , (15)

for somepair (i,m), i = 1, . . . , D andm = 1, . . . , p. For it, the traditional likelihood
ratio test is implemented.

4 Example from Sedimentology

4.1 Data Description

In Garzanti et al. [11] the authors studied the paleogeographic and paleodrainage
changes during Pleistocene glaciations of Po Plain by compositional signatures of
Pleistocene sands. In particular we consider here Cilavegna and Ghedi cores of
Regione Lombardia, with 18 and 19 compositional observations, respectively. In
this section we compare the above-mentioned approaches to regression with a com-
position as dependent variable. The goal is to model the effect of the depth covariate
on compositional signatures of Pleistocene sands taking the fact into account that the
cores may have separate effects on the response. The three compositional parts are:
Q (= quartz), F (= feldspar), and L (= lithic grains) represented in the usual ternary
diagram in Fig. 1.

4.2 Estimated Models Comparison

For each of the three components we have fitted a regression model considering the
depth as covariate, including in the model one dummy variable representing the core
provenance (0 for Cilavegna and 1 for Ghedi), as well as the interaction term. The
categorical covariate core has been included to account for variation in proportions
that is a function of a group-specific factor. The Dirichlet and Shifted-Dirichlet
covariate models are expressed with respect to the Aitchison measure.

Tables1 and 2 summarize the estimated regression coefficients, together with
results from the inference for the Dirichlet and Shifted-Dirichlet covariate model,
respectively.
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Fig. 1 Quaternary Po Plain sediments: ternary plot. Points are distinguished by core

Table 1 Regression output of the Dirichlet covariate model for Quaternary Po Plain sediments

Regressors Coefficient S.E. z value Pr(> |z|)
δ-coefficients for variable Q (= quartz)

(Intercept) 3.8695 0.8536 4.5329 0.0000

Depth 0.0027 0.0063 0.4304 0.6669

Core −4.6905 0.5509 −8.5137 0.000

Depth ∗ core 0.0243 0.0038 6.4577 0.0000

δ-coefficients for variable F (= feldspar)

(Intercept) 2.2494 0.7975 2.8205 0.0048

Depth 0.0015 0.0058 0.2495 0.8030

Core −4.3685 0.6012 −7.2662 0.0000

Depth ∗ core 0.0190 0.0039 4.9164 0.0000

δ-coefficients for variable L (= lithic grains)

(Intercept) 2.0708 0.7773 2.6641 0.0077

Depth 0.0091 0.0058 1.5794 0.1143

Core −2.3527 0.3583 −6.5655 0.0000

Depth ∗ core 0.0076 0.0021 3.5803 0.0003
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Table 2 Regression output of the Shifted-Dirichlet covariate model for Quaternary Po Plain sedi-
ments

δ-coefficients for variable Q (= quartz)

Regressors Coefficient S.E. z value Pr(> |z|)
(Intercept) 3.1275 0.7534 4.1510 0.0000

Depth 0.0035 0.0053 0.6649 0.5061

Core −3.5720 0.8824 −4.0481 0.0001

Depth ∗ core 0.0171 0.0069 2.4658 0.0137

δ-coefficients for variable F (= feldspar)

Regressors Coefficient S.E. z value Pr(> |z|)
(Intercept) 3.2542 0.7161 4.5442 0.0000

Depth 0.0023 0.0050 0.4549 0.6492

Core −4.5289 0.7993 −5.6664 0.0000

Depth ∗ core 0.0187 0.0064 2.9332 0.0034

δ-coefficients for variable L (= lithic grains)

Regressors Coefficient S.E. z value Pr(> |z|)
(Intercept) 1.4002 0.6546 2.1390 0.0324

Depth 0.0098 0.0049 2.0100 0.0444

Core −1.2044 0.8589 −1.4022 0.1608

Depth ∗ core 0.0004 0.0068 0.0516 0.9589

β-coefficients

Q 0.4693 0.1362 3.4466 0.0006

F 0.0789 0.0397 1.9895 0.0467

Table 3 Model fit statistics for the nested Shifted-Dirichlet covariate models, where ΔG2 =
−2 log L(reduced model − current model)

Criterion Intercept only Depth covariate Full model

AIC 210.1447 187.4468 122.5

BIC 218.1993 200.3341 145.053

logL −100.0724 −85.7233 −47.25

df 5 8 14

ΔG2 28.697 76.947

Pr > ChiSq <0.0001 <0.0001
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Table 4 Regression output for the first and second coordinate of Simplicial regression for the
Quaternary Po Plain sediments

Regressors Coefficient S.E. z value Pr(> |z|)
x�
1 coordinate

(Intercept) −1.1867 0.1264 −9.3862 0.0000

Depth −0.0008 0.0011 −0.7209 0.4760

Core −1.0654 0.1886 −5.6487 0.0000

Depth ∗ core 0.0032 0.0015 2.1193 0.0417

x�
2 coordinate

(Intercept) −0.8479 0.2903 −2.9212 0.0062

Depth 0.0061 0.0024 2.5012 0.0175

Core 2.7908 0.4330 6.4454 0.0000

Depth ∗ core −0.0174 0.0035 −4.9827 0.0000

The p-value of the likelihood ratio tests to compare the intercept-only model
(e.g., no predictors) with the fitted Shifted Dirichlet covariate model is essentially
zero (<0.0001), which provides evidence against the reduced model in favor of the
current model, as well as the model with only depth as covariate (see Table3).

In Table2 it can be seen that the z-values for the first two components are highly
significant, implying that the use of the dummy variable is important; the models
appear to have a definite nonzero slope. This consideration is confirmed by the fitted
regression lines reported in Fig. 2.

Akaike information criterion (AIC) and Bayesian information criterion (BIC) are
usually used to compare adequacy of models of the same family, the preferred model
is the one with the minimum AIC value or BIC value. For the Dirichlet regression
we obtained that AIC = 131.2837 and BIC = 150.6148, while, for the Shifted-
Dirichlet regression the two measures are AIC = 122.45 and BIC = 145.053 (see
Full model in Table3). Therefore we can conclude that the improvement of themodel
compensates the additional parameters in the Shifted-Dirichlet model.

In order to apply the Simplicial regression, ilr coordinates of the Quaternary Po
Plain sediment dataset are computed (Table 4). The canonical basis in the clr plane
was used as ilr transform, so that, the two coordinates or balances are expressed as:

x�
1 = 1√

2
log

x2
x1

, x�
2 = 1√

6
log

x23
x1 x2

. (16)

Predictions of the three coordinates can be back-transformed with the inverse ilr,
to obtain a prediction of the proportions themselves.

In order to assess the adequacy of the different regression approaches, we examine
some goodness of fit measures. One suitable determination coefficient for the regres-
sion model to evaluate the proportion of explained variation in the compositions by
the covariate is connected with the total variability [2, 13], based on the variation
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Fig. 2 Observed and fitted compositions for Quaternary Po Plain sediments using the three models
for each level of the core variable (Shifted-Dirichlet covariate model: solid line, Dirichlet covariate
model: dashed line; Simplicial regression: dotted line). Red colors refers to Cilavegna core data
and blue color refers to Ghedi core data

matrix of the transformed log-ratio data,

T(x) = [tir ] =
[
var

(
ln

xi
xr

)]
i, r = 1, . . . , D. (17)

Each element tir is the usual variance of the log ratio of parts i and r . Aitchison’s
total variability measure totvar(x), a measure of global dispersion of a compositional
sample, is defined as

totvar(x) = 1

2D

∑

i,r

var

(
ln

xi
xr

)
= 1

2D

∑

i,r

tir , (18)
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The determination coefficient R2
T is defined as

R2
T = totvar(x̂)

totvar(x)
; (19)

it compares the total variability of the observed with the fitted data.

Table 5 Goodness of fit measures for the three different regression models

R2
T R2

A KL-div

Dirichlet regression 0.6914 0.5624 1.6472

Shifted-Dirichlet
regression

0.5733 0.5965 1.6209

Simplicial regression 0.5907 0.5907 1.657
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Fig. 3 In the left column coordinate residual plots associated to the estimated simplicial regression.
In the right column Q–Q plots for residuals of the corresponding regression models are displayed
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Moreover, the Aitchison distance of any two compositions x and y ∈ S D is
defined as

da(x, y) =
√√√√ 1

2D

D∑

i=1

D∑

r=1

(
ln

xi
xr

− ln
yi
yr

)2

. (20)

Similarly to the standard least squares regression analysis, the compositional total
sum of squares (CSST) and the compositional sum of squared residuals (CSSE) are
given by CSST = ∑n

j=1 d
2
a (x j , gm(x)) and CSSE = ∑n

j=1 d
2
a (x j , x̂ j ). In this way

another R2-measure based on the compositional sum of squares [13] is

R2
A = 1 − CSSE

CSST
. (21)
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Fig. 4 In the left column coordinate residual plots associated to the estimated Dirichlet regression.
In the right column Q–Q plots for residuals of the corresponding regression models are displayed
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In Table5, KL-div refers to the Kullback–Leibler divergence calculated as

n∑

j=1

3∑

i=1

x ji log
x ji

x̂ j i
.

The measures of goodness of fit reported in Table5 show a good performance of
the Shifted-Dirichlet model with respect to the other two models. The coefficient of
determination based on the Aitchison norm shows that 60% of the total variability
is captured by the Shifted-Dirichlet regression model.

In order to check for absence of trends in central tendency and in variability, diag-
nostic plots are useful. We have expressed all the regression models in orthonormal
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Fig. 5 In the left column coordinate residual plots associated to the estimated Shifted-Dirichlet
regression. In the right column Q–Q plots for residuals of the corresponding regression models are
displayed
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coordinates (see Eq. (16)) which is making it possible to apply the standard battery of
testing hypotheses for linear regression models, such as testing marginal normality
of each coordinate residual. Coordinate residual plots and associated normal Q–Q
plots for the three different regression models are displayed in Figs. 3, 4 and 5.

Except for the tails of the distribution (see Fig. 5), the assumption of normality
seems to be reasonable. For the first coordinate residuals, whose points are displayed
in the upper left of Fig. 5, the p-values of the Anderson–Darling test and of the Lil-
liefors (Kolmogorov–Smirnov) test for normality are 0.19 and 0.4789, respectively,
so that the hypothesis of normal distribution cannot be rejected, while for the second
coordinate residuals, lower left of Fig. 5, the two p-values of the two mentioned nor-
mality tests are 0.0009 and 0.003, respectively, due to the presence of an upper outlier
(25th observation). If we omit such outlying point, normality is confirmed, i.e., the
p-value of Anderson–Darling test equals 0.431 while the Lilliefors test p-value is
0.115.

5 Conclusions

Regressionmodelswith compositional responsewere proposed in the eighties. In this
work, using the Shifted-Dirichlet distribution a new covariate model on the simplex
is proposed. The Shifted-Dirichlet distribution is a generalization of the Dirichlet
distribution obtained, within the Aitchison geometry, after applying a perturbation
to the standard Dirichlet one. As a probability distribution, it is the same as the
Scaled-Dirichlet distribution but the density is expressed with respect to the Aitchi-
son measure on the simplex, and not with respect to the Lebesgue measure in the
induced Euclidean geometry from the real space. Consequently, the Shifted-Dirichlet
regression model is a generalization of the Dirichlet regression model. Even though
the number of parameters to estimate increases, we see that it is a feasible and more
flexible model. Using a real data set, we obtain results comparable to those obtained
using the Simplicial regression.
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