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Abstract. Reachability Logic (rl) is a formalism for defining the oper-
ational semantics of programming languages and for specifying program
properties. As a program logic it can be seen as a language-independent
alternative to Hoare Logics. Several verification techniques have been
proposed for rl, all of which have a circular nature: the rl formula
under proof can circularly be used as a hypothesis in the proof of another
rl formula, or even in its own proof. This feature is essential for dealing
with possibly unbounded repetitive behaviour (e.g., program loops). The
downside of such approaches is that the verification of a set of rl for-
mulas is monolithic, i.e., either all formulas in the set are proved valid,
or nothing can be inferred about any of the formula’s validity or invalid-
ity. In this paper we propose a new, incremental method for proving a
large class of rl formulas. The proposed method takes as input a given
rl formula under proof (corresponding to a given program fragment),
together with a (possibly empty) set of other valid rl formulas (e.g.,
already proved using our method), which specify sub-programs of the
program fragment under verification. It then checks certain conditions
are shown to be equivalent to the validity of the rl formula under proof.
A newly proved formula can then be incrementally used in the proof
of other rl formulas, corresponding to larger program fragments. The
process is repeated until the whole program is proved. We illustrate our
approach by verifying the nontrivial Knuth-Morris-Pratt string-matching
program.

1 Introduction

Reachability Logic (RL) [1–4] is a language-independent logic for defining the
operational semantics of programming languages and for specifying properties
of programs. For instance, on the sum program in Fig. 1, the rl formula

〈sum, n �→a 〉∧a ≥ 0 ⇒ (∃i, s)〈skip, n �→a i �→i s �→s〉〉∧s = sum(a) (1)

specifies that after the complete execution of the sum program from a config-
uration where the program variable n is bound to a non-negative value a, a
configuration where s is bound to a value s = sum(a) is reached. Here, sum(a)
is a mathematical definition of the sum of natural numbers up to a.
c© Springer International Publishing Switzerland 2016
D. Lucanu (Ed.): WRLA 2016, LNCS 9942, pp. 134–151, 2016.
DOI: 10.1007/978-3-319-44802-2 8



Proving Reachability-Logic Formulas Incrementally 135

Fig. 1. Program sum.

Existing rl verification tools [1,2,4–6] would typically verify formula (1)
as follows. First, they would consider (1) together with, e.g., the following for-
mula (2), where while denotes the program fragment consisting of the while-
loop in Fig. 1. The formula (2) is intended to specify the while loop, just like (1)
specifies the whole program, and can be seen as encoding a loop invariant.

〈while, n �→a i�→i s �→s〉∧0 < i ≤ a + 1 ∧ s = sum(i − 1) (2)
⇒ (∃i′, s′)〈skip, n �→a i �→i′ s �→s′〉∧s′ = sum(a)

Then, the tool would symbolically execute at least one instruction in the
programs in the left-hand side of both (1) and (2) using the semantics of the
instructions of the language (assumed to be also expressed as rl formulas1),
and then execute the remaining programs in the left-hand sides of the resulting
formulas as if both (1) and (2) became new semantical rules of the language. For
example, when the program executed in (1) reaches the while loop, the rule (2)
can be applied instead of the rule defining the semantics of the while instruction -
that is, when proving (1), (2) is assumed to hold. Similarly, when the program
in (2) completes one loop iteration, the left-hand side of (2) contains again the
same while loop as initially, with other values mapped to the variables. Then,
(2) is applied instead of the rule defining the semantics of the while instruction.
Thus, it is assumed that (2) holds after having completed one loop iteration.

The circular reasoning illustrated in the above example is sound, in the sense
that if such a proof succeeds, all the formulas under proof are (semantically)
valid. However, if the proof does not succeed, nothing can be said about the
validity of the formulas. In our example, (1) or (2) (or both) could be invalid.

Contribution. In this paper we propose a new method for proving a significant
subset of rl formulas, which, unlike existing verification methods, is incremental.
In our example, the proposed method would first prove (2), and then would prove
(1) knowing for a fact (i.e., not assuming) that (2) is valid. Thus, if the proof
of (1) fails for some reason, the user still knows that (2) holds, and can take
action for fixing the proof based on this knowledge. Of course, for a simple
program such as the above example the advantage of incremental rl verification
is not obvious, but it turns out to make quite a difference when verifying more
challenging programs, such as the kmp program illustrated later in the paper.
1 For the language of interest in this paper the rules are shown in Sect. 2.
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We first establish an equivalence between the validity of rl formulas and two
technical conditions (one condition is an invariance property, and the other one
regards the so-called capturing of terminal configurations). Then we propose a
graph-construction approach that takes a given rl formula under proof (corre-
sponding to a given program fragment), together with a (possibly empty) set of
other valid rl formulas (e.g., proved using a previous iteration of our approach,
or by any other sound rl formula verification method). The latter formulas
specify sub-programs of the program fragment currently under verification. The
invariance and terminal-configuration capturing conditions are then checked on
the graph, thus establishing the validity of the rl formula under proof. The
newly proved formula can then be incrementally used in the proof of other rl
formulas, corresponding to larger program fragments. The same process is then
repeated until, eventually, the whole program is proved.

Of course, the proposed method has limitations, since verification of rl for-
mulas is in general undecidable. The graph construction may not terminate, or
the conditions to be checked on it may not hold. One situation that a purely
incremental method cannot handle is mutually recursive function calls, in which
none of the functions can be verified individually unless (coinductively) assuming
that the other function’s specifications hold. A natural solution here is to use an
incremental method as much as possible, and to locally apply a circular approach
only for subsets of formulas that the incremental method cannot handle.

In order to demonstrate the feasibility of our approach we illustrate it on the
nontrivial Knuth-Morris-Pratt kmp string-matching program. The program is
written in a simple imperative language, whose syntax and semantics is defined
in Maude [7]. We chose Maude in order to benefit from its reflective capabilities,
which turned out to be very useful for implementation purposes. We are using a
specific version of Maude that has been interfaced with the Z3 solver [8], which
is here used for simplifying conditions required for proving rl formula validity.

Paper Organisation. After this introduction we present in Sect. 2 the Maude-
based definition of a simple imperative programming language imp+ that
includes assignments, conditions, loops, and simple procedures operating on
global variables. In Sect. 3 we present background notions: Reachability Logic,
and how the language definition from the previous section fits in this framework
(Sect. 3.1); and language-parametric symbolic execution, together with its imple-
mentation by rewriting based on transforming the semantical rules of a language
(Sect. 3.2). In Sect. 4 we present the incremental rl-formula verification method.
In Sect. 5 we illustrated our method on the kmp string-matching algorithm, and
in Sect. 6 we conclude and present related and future work. An extended version
containing detailed proofs of technical results is available at https://hal.inria.fr/
hal-01282379.

2 Defining a Simple Programming Language

In this section we define the language imp+ in Maude. imp+ is simple enough
so that its Maude code is reasonably small (less than two hundred lines of code),

https://hal.inria.fr/hal-01282379
https://hal.inria.fr/hal-01282379
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yet expressive enough for programming algorithms on arrays such as the kmp.
We assume Maude is familiar to readers; for details the standard reference is [7].

Datatypes. imp+ computes over Booleans, integers, and integer arrays. We use
the builtin Booleans and integers of Maude, and provide a standard algebraic def-
inition of arrays. The constructor array : Nat -> IntArray creates an array of
a given length. The operation store : IntArray Nat Int -> IntArray stores
a given integer (third argument) at a given natural-number index. An operation
select : IntArray Nat -> Int returns the element at the position given by
the second argument. These functions are defined equationally. They return error
values in case of attempts to access indices out of an array’s bounds.

Syntax. The syntax on imp+ consists of expressions (arithmetic and Boolean)
and statements. Each of these syntactical categories is defined by a sort, i.e.,
AExp, BExp, and Stmt. Allowed arithmetical operations are addition, substrac-
tion, and array selector, denoted by _++_, _--_, and _[_] respectively, in order
to avoid confusion with the corresponding Maude operations on the datatypes.
In the same spirit, Boolean operations are less-or-equal-than (_<==_) and equal-
ity (_===_); negation !; and conjunction _&&_. Such expressions are built from
identifiers (i.e., program variables) and constants (Maude integers and Booleans).

The statements of imp+ are: assignments to integer variables and array ele-
ments (_:=_); conditional (if_then_else_endif); while loops (while_do_end);
parameterless function declaration (function_(){_}) and call (_()); a print
instruction; and finally, a sequencing _;_ instruction that, for convenience,
is declared associative with the “do-nothing” skip instruction as a neutral
element.

Semantics. Semantical rules operate on configurations, which consist of a pro-
gram to be executed, a mapping of integer variables to values and of function
names to statements, and a list of integers denoting the output of the program.
In Maude we write a constructor <_,_,_,_> : Stmt Map Funs Ints -> Cfg.
Getters and setters for the Map and Funs maps are also equationally defined.

The semantics of imp+ then consists in evaluating expressions (in a given
map, assigning values to variables) and statements (in a given configuration,
describing all the infrastructure required for statements to execute). Expressions
are evaluated using equations, and statements are evaluated using rewrite rules.

Evaluating Expressions. This amounts to writing a function eval and equations:

op eval : AExp Map -> Int .
eq eval(I, M) = I .
eq eval(X, (M (X -> J))) = J .
eq eval(X[E], (M (X -> A))) = select(A,eval(E,(M (X -> A)))) .
...
op eval : BExp Map -> Bool .
eq eval(B,M) = B .
eq eval(Cnd1 && Cnd2, M) = eval(Cnd1,M) and eval(Cnd2,M) .
...
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That is, eval goes through the structure of an expression and evaluates
it in a given mapping of values to variables. Here, e.g., M (X -> J) denotes
an associative-commutative map, constructed as the anonymous juxtaposition
operation __ of a map variable M with a map of the identifier X to the integer J.

Evaluating Statements. This is performed by rewrite rules, some of which are:

rl [assign]: <((X := E) ; S), M, F, O > => < S, set(X, eval(E, M), M), F, O > .

crl [if-true]: <(if Cnd then S1 else S2 endif) ; S, M, F, O > => < S1 ; S, M, F, O >
if eval(Cnd,M) .

crl [if-false]: <(if Cnd then S1 else S2 endif) ; S, M, F, O > => < S2 ; S, M, F, O >
if not eval(Cnd,M) .

rl [while]: <(while Cnd do S1 end) ; S, M, F, O > =>
<(if Cnd then S1 ; while Cnd do S1 end else skip endif) ; S, M, F, O > .

rl [print]: < (print E) ; S, M, F, O > => < S, M, F, (O ; eval(E,M)) > .

The first rule deals with assigment to a program-variable X of an arithmetic
expression E. It uses the set function on maps in order to update the map so
that X is mapped to the value of E. Another rule, not shown here, deals with
assignments to array elements. The following two rules describe the two possible
outcomes of a conditional instruction, depending on the value of the condition.
The rule for the while loop consists essentially in loop unrolling. The rule for the
printing instruction appends the value of the instruction’s argument to the list
of integers (last argument of configurations) denoting the program’s output.

3 Reachability Logic and Symbolic Execution

In this section we present background material used in the rest of the paper. We
illustrate the concepts with examples from the imp+ language.

3.1 Reachability Logic

Several versions of rl have been proposed in the last few years [1–4]. Moreover,
rl is built on top of Matching Logic (ml), which also exists in several versions [9–
11]. (The situation is somewhat similar to the relationship between rewriting
logic and the equational logics underneath it.) We adopt the recent all-paths
interpretation of rl [4], built upon a minimal ml that is enough to express typical
practically-relevant properties about program configurations and is amenable to
symbolic execution by rewriting, a key ingredient of our method.

The formulas of ml that we consider are called patterns and are defined as
follows. Assume an algebraic signature Σ with a set S of sorts, including two
distinguished sorts Bool ,Cfg ∈ S. We write TΣ,s(Var) for the set of terms of
sort s over a set Var of S-indexed variables and TΣ,s for the set of ground terms
of sort s. We identify the Bool -sorted operations in Σ with a set Π of predicates.
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Example 1. Consider the Maude definition of the imp+ language. Then,
Σ is the algebraic signature containing all the sorts and operations
described in the previous section, including the Bool and Cfg sorts. The
operation eval : BExp Map -> Bool has sort Bool and is thus identi-
fied with a predicate in the set Π. The sort Cfg has the constructor
<_,_,_,_> : Stmt Map Funs Ints -> Cfg.

Definition 1 (Pattern). A pattern is an expression of the form (∃X)π∧φ,
where X ⊂ Var, π ∈ TΣ,Cfg(X) and φ is a FOL formula over the FOL signature
(Σ,Π) with free variables in X.

We often denote patterns by ϕ and write ϕ � (∃X)π∧φ to emphasise its com-
ponents: the quantified variables X, the basic pattern π, and φ, the condition.
We let FreeVars(ϕ) denote the set of variables freely occurring in a pattern ϕ,
defined as usual (i.e., not under the incidence of a quantifier). We often identify
basic patterns π with (∃∅)π∧true, and elementary patterns π∧φ with (∃∅)π∧φ.

Example 2. The left and right-hand sides of the rules defining the semantics of
imp+ are basic patterns, < S, M, F, O > /\ eval(true,M) is an elementary
pattern, and (∃ O) < S, M, F, O > /\ eval(true,M) is a pattern.

We now describe the semantics of patterns. We assume a model M of the alge-
braic signature Σ. In the case of the Maude specification of imp+ the model M ,
M is the initial model induced by the specification’s equations and axioms. For
sorts s ∈ S we write Ms for the interpretation (a.k.a. carrier set) of the sort s.

We call valuations the functions ρ : Var → M that assign to variables in Var
a value in M of a corresponding sort, and configurations the elements in MCfg .

Definition 2 (Pattern Semantics). Given a pattern ϕ � (∃X)π∧φ, γ ∈
MCfg a configuration, and ρ : Var → M a valuation, the satisfaction relation
(γ, ρ) |= ϕ holds iff there exists a valuation ρ′ with ρ′|Var\X = ρ|Var\X such
that γ = ρ′(π) and ρ′ |= φ (where the latter |= denotes satisfaction in FOL, and
ρ|Var\X denotes the restriction of the valuation ρ to the set Var \ X).

We let [[ϕ]] denote the set {γ ∈ MCfg | (∃ρ : Var → M)(γ, ρ) |= ϕ}. A formula ϕ
is valid in M , denoted by M |= ϕ, if it is satisfied by all pairs (γ, ρ).

We now recall Reachability-Logic (rl) formulas, the transition systems that
they induce, and their all-paths semantics [4] that we will be using in this paper.

Definition 3 (RL Formulas). An rl formula is a pair of patterns ϕ ⇒ ϕ′.

Examples of rl formulas were given in the introduction. The rules defining the
semantics of imp+ are also rl formulas (for the conditional rules, just assume
that the expression following if is the condition of the rule’s left-hand side).

Let S denote a fixed set of rl formulas, e.g., the semantics of a given language.
We define the transition system defined by S together with some notions related
to this transition system, and then the notion of validity for rl formulas.
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Definition 4 (Transition System Defined by S). The transition system
defined by S is (MCfg ,⇒S), where ⇒S = {(γ, γ′) | (∃ϕ ⇒ ϕ′ ∈ S)(∃ρ)(γ, ρ) |=
ϕ ∧ (γ′, ρ) |= ϕ′}. We write γ ⇒S γ′ for (γ, γ′) ∈ ⇒S . A state γ is terminal
if there is no γ′ such that γ ⇒S γ′. A path is a sequence γ0 · · · γn such that
γi ⇒S γi+1 for all 0 ≤ i ≤ n − 1. Such a path is complete if γn is terminal.

An rl formula ϕ ⇒ ϕ′ is valid, written S |= ϕ ⇒ ϕ′, if for all pairs (γ0, ρ)
such that (γ0, ρ) |= ϕ, and all complete paths γ0 ⇒S · · · ⇒S γn, there exists
0 ≤ i ≤ n such that (γi, ρ) |= ϕ′.

Note that the validity of rl formulas is only determined by finite, complete paths.
Infinite paths, induced by nonterminating programs, are not considered. Thus,
termination is assumed: as a program logic, rl is a logic of partial correctness.
We restrict our attention to rl formulas satisfying the following assumption:

Assumption 1. RL formulas have the form πl∧φl ⇒ (∃Y )πr∧φr and satisfy
FreeVars(πr) ⊆ FreeVars(πl) ∪ Y , FreeVars(φr) ⊆ FreeVars(πl) ∪FreeVars(πr),
and FreeVars(φl) ⊆ FreeVars(πl).

That is, the left-hand side is an elementary pattern, and the right hand side
is a pattern, possibly with quantifiers. Such formulas are typically expressive
enough for expressing language semantics (for this purpose, quantifiers are not
even required)2 and program properties. For program properties, existentially
quantified variables in the right-hand side are useful to denote values computed
by a given program, which are not known before the program computes them,
such as s - the sum of natural numbers up to a given bound - in the formula (1).

3.2 Language-Parametric Symbolic Execution

We now briefly present symbolic execution, a well-known program analysis tech-
nique that consists in executing programs with symbolic input (e.g. a sym-
bolic value x) instead of concrete input (e.g. 0). We reformulate the language-
independent symbolic execution approach we already presented elsewhere [6],
with some simplifications (e.g., unlike [6] we do not use coinduction). The app-
roach consists in transforming the signature Σ and semantics S of a programming
language so that, under reasonable restrictions, executing a program with the
modified semantics amounts to executing the program symbolically.

Consider the signature Σ corresponding to a language definition. Let Fol be
a new sort whose terms are all FOL formulas, including existential and univer-
sal quantifiers. Let Id and IdSet be new sorts denoting identifiers and sets of
identifiers, with a union operation , . Let Cfgs be a new sort, with constructor
(∃ ) ∧ : IdSet × Cfg × Fol → Cfgs. Thus, patterns (∃X)π∧φ correspond to
terms (∃X)π∧φ of sort Cfgs in the enriched signature and reciprocally. Consider
also the following set of rl formulas, called the symbolic version of S:

Ss � {(∃X )πl∧ψ ⇒ (∃X , Y )πr∧(ψ ∧ φl ∧ φr)|πl∧φl ⇒ (∃Y )πr∧φr ∈ S}
with ψ a new variable of sort Fol , and X a new variable of sort IdSet .
2 See, e.g., the languages defined in the K framework: http://k-framework.org.

http://k-framework.org
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Example 3. The following conditional rule is part of the semantics S of imp+:
< if C then S1 else S2 endif ; S, M, F, O > => < S1 ; S, M, F, O > if eval(C,M) Writ-
ten as an rl formula (with patterns in left and right-hand sides) it becomes3

<if C then S1 else S2 endif ; S, M, F, O > ∧ eval(C,M)=> < S1 ; S, M, F, O >

The corresponding rule in Ss becomes an unconditional rule: (∃X )
<if C then S1 else S2 endif ; S, M, F, O > ∧ψ => (∃X ) <S1 ; S, M, F, O >
∧ (ψ ∧ eval(C,M)).

The interest of the above nontrivial construction is that, under reasonable
assumptions, stated below, rewriting with the rules in Ss achieves a simulation
of rewriting with the rules in S, which is a result that we need for our approach.

Assumption 2. There exists a builtin subsignature Σb
� Σ. The sorts and

operations in Σb are builtin, while all others are non-builtin. The sort Cfg is
not builtin. Non-builtin operation symbols may only be subject to a (possibly
empty) set of linear, regular, and non-collapsing axioms.

We recall that an axiom u = v is linear if both u, v are linear (a term is linear if
any variable occurs in it at most once); it is regular if both u, v have the same
set of variables; and it is non-collapsing if both u, v have non-builtin sorts.

Example 4. For the imp+ language specification we assume that the non-builtin
sorts are Cfg, Stmt (for statements), and Funs (which map function identifiers
to statements). Statements were declared to be associative with unity, whereas
maps of identifiers to statements were taken to be associative and commutative
with unity. All these axioms have the properties requested by Assumption 2.

In order to formulate the simulation result we now define the transition relation
generated by the set of symbolic rl rules Ss. It is essentially rewriting modulo the
congruence ∼= on TΣ(Var) induced by the axioms in Assumption 2. Let Var b ⊂
Var be the set of variables of builtin sorts. We first need the following technical
assumption, which does not restrict the generality of our approach:

Assumption 3. For every πl∧φl ⇒ (∃Y )πr∧φr ∈ S, πl ∈ TΣ\Σb(Var), πl is
linear, and Y ⊆ Var b.

The assumption can always be made to hold by replacing in πl all non-variable
terms in Σb and all duplicated variables by fresh variables, and by equating in
the condition φl the new variables to the terms that they replaced.

For the sake of complying with the definition of rewriting we need to extend
the congruence ∼= to terms of sort Cfgs by (∃X)π1∧φ ∼= (∃X)π2∧φ iff π1

∼= π2.

Definition 5 (Relation ⇒αs). For αs � (∃X )πl∧ψ ⇒ (∃X , Y )πr∧(ψ ∧ φl ∧ φr)

∈ Ss we write (∃X)π∧φ ⇒αs (∃X,Y )π′∧φ′ whenever (∃X)π∧φ αs is rewritten by
αs to (∃X,Y )π′∧φ′, i.e., there exists a substitution σ′ on Var ∪ {X , ψ}such that
σ′((∃X )πl∧ψ) ∼= (∃X)π∧φ and σ′((∃X , Y )πr∧(ψ ∧ φl ∧ φr) = (∃X,Y )π′∧φ′.
3 We liberally use a mixture of Maude and math notation for the sake of the example.
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Lemma 1 (⇒αs Simulates ⇒α). For all γ, γ′ ∈ MCfg , all patterns ϕ with
FreeVars(ϕ) ⊆ Var b, and all valuations ρ, if (γ, ρ) |= ϕ and γ ⇒α γ′ then there
exists ϕ′ with FreeVars(ϕ′) ⊆ Var b such that ϕ ⇒αs ϕ′ and (γ′, ρ) |= ϕ′.

As a consequence, any concrete execution (following ⇒S) such that the initial
configuration satisfies a given initial pattern ϕ is simulated by a symbolic exe-
cution (following ⇒Ss) starting in ϕ. We shall also use the following notion of
derivative, which collects all the symbolic successors of a pattern by a rule:

Definition 6 (Derivatives). Δα(ϕ) = {ϕ′ | ϕ ⇒αs ϕ′} for any α ∈ S.

Since the symbolic successors are computed by rewriting, the derivative opera-
tion is computable and always returns a finite set of patterns.

4 Proving RL Formulas Incrementally

In this section we present an incremental method for proving rl formulas. We
first state two technical conditions and prove that they are equivalent to rl
formula validity. The equivalence works for so-called terminal formulas, whose
right-hand side specifies a completed program; however, a generalisation to non-
terminal formulas, required for incremental verification, is also given. Thus, rl
formula verification amounts to checking the two above-mentioned conditions.

For this, we present a graph construction based on symbolic execution that,
if it terminates successfully, ensures that the two conditions in question hold for
a given rl formula. The graph construction is parameterised by a set of formulas
that have already been proved valid (using the same method, or any other sound
one). These formulas correspond to subprograms of the given program fragment
that the current formula under proof specifies. The current formula, once proved,
can then be used in proofs of formulas specifying larger program fragments.

We consider a fixed set S or rl formulas and their transition relation ⇒S .
The first of the two following definitions says that all terminal configurations
reachable from a given pattern “end up” as instances of a quantified basic pat-
tern:

Definition 7 (Capturing All Terminal Configurations). We say that a
pattern (∃Y )π′ captures all terminal configurations for a pattern ϕ if for all (γ, ρ)
such that (γ, ρ) |= ϕ, and all complete paths γ ⇒S · · · ⇒S γ′, (γ′, ρ) |= (∃Y )π′.

The second definition characterises FOL formulas that hold in a given quantified
pattern, i.e., conditions satisfied by all configurations reachable from a given
initial pattern whenever they “reach” the quantified pattern in question:

Definition 8 (Invariant at, Starting from). We say that a FOL formula
(∃Y )φ′ is invariant at a pattern (∃Y )π′ starting from a pattern ϕ if for all
(γ, ρ) such that (γ, ρ) |= ϕ, all paths γ ⇒S · · · ⇒S γ′, and all valuations ρ′ with
ρ′|Var\Y = ρ|Var\Y , if γ′ = ρ′(π′), then ρ′ |= φ′.

Note that the same values of the variables Y were used for satisfying π′ and φ′.
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Definition 9. A basic pattern π′ is terminal if for all valuations ρ, ρ(π′) is a
terminal configuration. A rule π∧φ ⇒ (∃Y )π′∧φ′ is terminal if π′ is terminal.

The following proposition characterises the validity of terminal rl formulas:

Proposition 1 (Equivalent Conditions for Terminal Formula Valid-
ity). Consider a terminal formula π∧φ ⇒ (∃Y )π′∧φ′. Then S |= π∧φ ⇒
(∃Y )π′∧φ′ iff

1. (∃Y )φ′ is invariant at (∃Y )π′ starting from π∧φ, and
2. (∃Y )π′ captures all terminal configurations for π∧φ.

Remark 1. The (⇐) implication in Proposition 1 is the important one for the
soundness of our method. Its proof naturally follows from definitions. For the
reverse implication, the following assumption is required: for all right-hand sides
ϕr � (∃Y )πr∧φr of rules in S, if ρ(πr) = ρ′(πr) then ρ|FreeVars(πr) = ρ′|FreeVars(πr).
The assumption does not restrict generality as it can always be made to hold, by
replacing subterms of patterns by fresh variables (and adding equations to the con-
dition) and by noting that the Cfg sort is interpreted syntactically in the model
M . Then, πr � f(x1, . . . , xn) where f is the constructor for the Cfg sort, and
ρ(f(x1, . . . , xn)) = ρ′(f(x1, . . . , xn)) iff ρ(x) = ρ′(xi) for all variables xi.

Remark 2. Proposition 1 works for terminal rl formulas. We shall need the fol-
lowing observation: assume that an rl formula of the following form 〈P . . .〉∧φ ⇒
(∃Y )〈skip . . .〉∧φ′ has been proved valid, where P is a program, skip denotes the
empty program, and suspension dots denote the rest of the configurations (which
depend on the programming language). Then, assuming a sequencing operation4

denoted by semicolon, the following formula 〈P ;Q . . .〉∧φ ⇒ (∃Y )〈Q . . .〉∧φ′ is
also valid: if each terminal path executing P ended up in the empty program,
then each path executing P ;Q still has Q to execute after having executed P . As
shown later in this section, the validity of such “generalized” formulas enables
us to incrementally use a proved-valid formula in the proofs of other formulas.

Proposition 1 is the basis for proving rl formulas, by checking the conditions
(1) and (2). We now show how the conditions can be checked mechanically.

Symbolic Graph Construction. The graph-construction procedure in Fig. 2
uses symbolic execution and is used to check the conditions (1) and (2) in Proposi-
tion 1. Before we describe the procedure we introduce the components that it uses.

A Partial Order < on S. The procedure assumes a set of rl formulas S, which
consist of the semantical rules S0 of a programming language and a (possibly
empty) set of rl formulas G that were already proved valid in an earlier step of
our envisaged incremental verification method. Such formulas, sometimes called
circularities in rl verification, specify subprograms of the program under verifi-
cation, and are assumed here to have the form 〈P ;Q, . . .〉∧φ ⇒ (∃Y )〈Q, . . .〉∧φ′

4 “Sequencing” and “empty” do not need to be actual statements of the programming
language; they can just be artifacts required by the language’s operational semantics.
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Fig. 2. Graph construction. match∼=() is matching modulo the non-bultin axioms (cf.
Sect. 3.2), and inclusion() is the object of Definition 10.

(cf. Remark 2). During symbolic execution, circularities can be symbolically
applied “in competition with” rules in the semantics (e.g., when the program to
be executed is P ;Q, the symbolic version of the above rule can be applied, but
the symbolic version of the semantical rule for the first instruction of P can be
applied as well). We solve the conflict between semantical rules and circularities
by giving priority to the latter.

We use the following notations. Let lhs(α) denote the left-hand side of a
formula α. Let G < S0 denote the fact that for every g ∈ G and α ∈ S0, g < α.
Let S0 |= G denote S0 |= g, for all g ∈ G, and min(<) denote the minimal
elements of <.

Assumption 4. We assume a partial order relation < on S � S0∪G satisfying:
G < S0, S0 |= G, and for all α′ ∈ S and pairs (γ, ρ), if (γ, ρ) |= lhs(α′) then
there exists a rule α ∈ min(<) such that (γ, ρ) |= lhs(α).

This assumption is satisfied by taking as minimal elements of < previously proved
circularities, which gives them priority over rules in the semantics that can be
applied in competition with them. The other rules in the semantics, which are not
in competition with circularities, are not related by < with other formulas and are
thus minimal by definition (and valid, since α ∈ S implies S |= α).

Inclusion Between Patterns. The graph-construction procedure uses a test of
inclusion between patterns, which satisfies the following definition.

Definition 10 (Inclusion). An inclusion test is a function that, given patterns
ϕ, ϕ′, returns true if for all pairs (γ, ρ), if (γ, ρ) |= ϕ then (γ, ρ) |= ϕ′.

The Graph Construction. We are now ready to present the procedure in Fig. 2.
The procedure takes as input an rl formula π∧φ ⇒ (∃Y )π′∧φ′ and a set S of
rl formula with an order < on S as discussed earlier in this section. It builds a
graph (N,E) with N the set of nodes (initially, {π∧φ}) and E the set of edges
(initially empty). It uses two variables to control a while loop: a Boolean variable
Failure (initially false) and a set of nodes New (initially equal to N = {π∧φ}).
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At each iteration of the while loop, a node ϕn � (∃Xn)πn∧φn is taken out
from New (line 2) and checks whether there is a matcher modulo ∼= (cf. Sect. 3.2)
of π′ onto πn (line 3). If this is the case, then πn is an instance of the (termi-
nal) basic pattern π′, and the procedure goes to line 10 to check whether ϕn “as
a whole” is included in (∃Y )π′∧φ′. If this is not the case, then, informally, this
indicates a terminal path that does not satisfy the right-hand side of the formula
under proof, i.e., of the fact that (∃Y )φ′ is not invariant at (∃Y )π′, in contradiction
with the first hypothesis of Proposition 1 that the procedure is checking; Failure is
reported, which terminates the execution of the procedure. However, if the test at
line 3 indicated that πn is not an instance of the terminal pattern π′, then another
inclusion test is performed (line 4): whether there exists a minimal rule in S (i.e.,
a rule in the language’s semantics, or a circularity already proved, as discussed
earlier in this section) whose left-hand side includes ϕn. If this is not the case
then, informally, this indicates a terminal configuration that is not an instance
of (∃Y )π′, which contradicts the second hypothesis of Proposition 1, making the
procedure terminate again with Failure = true.

If, however, the inclusion test at line 4 succeeds then all symbolic successors
ϕ′

n of ϕn by minimal rules α w.r.t. < are computed. Each of these patterns
is tested for inclusion in the initial node π∧φ. If inclusion holds then an edge
is added from ϕn to the initial node, labelled by the rule that generated the
symbolic successor in question. Otherwise, a new node ϕ′

n is created, and an edge
from the current node ϕn to the new node, labelled by the rule that generated
it, is created, and the while loop proceeds to the next iteration.

The graph-construction procedure does not terminate in general, since the
verification of rl formulas is undecidable. However, if it does terminate with
Failure = false then the two conditions equivalent to the validity of the proce-
dure’s input π∧φ ⇒ (∃Y )π′∧φ′ hold, i.e., S |= π∧φ ⇒ (∃Y )π′∧φ′, which is the
desired conclusion. This is established by the results in the rest of this section.

The paths in the constructed graph simulate concrete execution paths whose
transitions are given by rules from S0. This is formalised and used in the proof
of the main theorem states that the hypotheses of Proposition 1, equivalent to
rl formula validity, are checked by the graph-construction procedure.

Theorem 1. If the procedure in Fig. 2 terminates with Failure = false on a ter-
minal rl formula π∧φ ⇒ (∃Y )π′∧φ′, then (∃Y )φ′ is invariant at (∃Y )π′ starting
from π∧φ, and (∃Y )π′ captures all terminal configurations starting from π∧φ.
Theorem 1 uses the following (and last) assumptions on rl formulas:
Assumption 5. All rules ϕl ⇒ ϕr ∈ S have the following properties:

1. for all pairs (γ, ρ) such that (γ, ρ) |= ϕl there exists γ′ such that (γ′, ρ) |= ϕr
5.

2. �ϕl� ∩ �ϕr� = ∅.
The first of the above assumptions says that if the left-hand side of a rule matches
a configuration then there is nothing in the right-hand side preventing the appli-
cation. This property is called weak well-definedness in [4] and is shown there

5 This property is called weak well-definedness in [4].
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to be a necessary condition for obtaining a sound proof system for rl. The sec-
ond condition just says that the left and right-hand sides of rules cannot share
instances - such rules could generate self-loops on instances, which are useless.
We then obtain as a corollary the soundness of our rl formula proof method:

Corollary 1 (Soundness). If procedure in Fig. 2 terminates with Failure =
false on a terminal rl formula π∧φ ⇒ (∃Y )π′∧φ′ then S |= π∧φ ⇒ (∃Y )π′∧φ′.

Incremental Verification. We are now ready to describe our incremental rl
formula verification method. The method works in a setting where each formula
has an associated code that it specifies, and that for a given rl formula f , code(f)
returns the given code. Considering the rl formulas (1) and (2) in Sect. 1, code(1)
is the sum program in Fig. 1 and code(2) is the while subprogram.

The problem to be solved is: given two sets of formulas: S (the semantics
of a language) and G (the specification of a given program and of some of its
subprograms) prove for all g ∈ G, S |= g (for short, S |= G).

We use partial orders < on S (initially empty) and � on G, defined by g1 � g2
whenever code(g1) is a strict subprogram of code(g2). Without restriction of
generality we take the formulas in G to be terminal (which is natural: a piece
of code is specified by stating what the code “does” when it terminates). The
verification consists repeatedly applying the following steps while G �= ∅:

– choose g ∈ G minimal w.r.t. � and prove it, based on Corollary 1;
– remove g from G, transform g into a non-terminal formula (cf. Remark 2) and

add the resulting formula g′ to S;
– extend < on the newly obtained set S so that g′ is smaller than any formula

in S that can be applied concurrently with g′.

Example 5. Consider the sum program in Fig. 1. S consists of the semantical
rules of imp+, and G consists of formulas (1) and (2) in Sect. 1, with (2) � (1).

At the first iteration (2) is chosen. It is verified based on Corollary 1 (which
builds the graph according to the procedure shown in Fig. 2), then transformed
into a nonterminal formula, removed from G and added to S. The relation < is
extended so that the newly added formula is smaller than the semantical rule
for the while instruction, since the two rules can be applied concurrently.

At the second (and final) iteration, (1) is verified. The graph-construction
procedure exploits the fact that (2) is minimal in S and thus it will be applied
instead of the semantical rule for while, producing a finite graph by avoiding
an infinite loop unfolding, and allowing Corollary 1 to establish that (1) is valid.

5 Incrementally Verifying the KMP Algorithm

The kmp (Knuth-Morris-Pratt) algorithm is a linear-time string-matching algo-
rithm. The algorithm optimises the naive search of a pattern P into a text T by
using some additional information collected from the pattern.
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For instance, let us consider T = ABADABCDA and P = ABAC. It can be easily
observed that ABAC does not match ABADABCDA starting with the first position
because there is a mismatch on the fourth position, namely C �= D. A naive
algorithm, after having detected this, would restart the matching process of P
at the second position of T (which fails immediately) then at the third one, where
it woud first match an A before detecting another mismatch (between B and D).
The kmp optimises this by comparing directly the B and D, as it “already knows”
that they are both preceded by A, thereby saving one redundant comparison.

The overall effect is that the worst-case complexity of KMP is determined
by the sum of the lengths of P and T , whereas that of a naive algorithm is
determined by the product of the two lengths.

The kmp algorithm pre-processes the pattern P by computing a so-called
prefix function π. Let Pj denote the subpattern of P up to a position j. For such
position j, π(j) equals the length of the longest proper prefix of Pj, which is also
a suffix of Pj . In the case of a mismatch between the position i in T and the
position j in P , the algorithm proceeds with the comparison of the positions i
and π[j]. This is why, in the above example, kmp direcly compared the B and D.

We prove that the kmp algorithm is correct, i.e., given a non-empty pattern
P and a non-empty string T , the algorithm finds all the occurrences of P in T .
We use the incremental method presented in Sect. 4 on an encoding of kmp in
the imp+ language formally defined in Maude (cf. Sect. 2).

The program is shown in Fig. 3. Its specification uses the following notions:

Definition 11. – Pj denotes the prefix of P up to (and including) j. P0 is the
empty string ε. If a string P ′ is a strict suffix of P we write P ′ � P .

– The prefix function for P is π : {1, . . . , m} → {0, . . . ,m − 1} defined by
π(i) = max{j | 0 ≤ j < i ∧ Pj � Pi}. We let π∗(q) = {π(q), π(π(q)), . . .}.

– Let T be a string of length n. We define θ : {1, . . . , n} → {0, . . . , m} the
function which, for a given i ∈ {1, . . . , n}, returns the longest prefix of P
which is a suffix of Ti: θ(i) = max{j | 0 ≤ j ≤ m ∧ Pj � Ti}.

– Let T be a string of length n and Out a list. The function allOcc(Out, P, T, i)
returns true iff the list Out contains all the occurrences of P in T [1..i].

The grey-text annotations, written as pre/post conditions and invariants, are
syntactical sugar for rl formulas. The annotations are numbered (C1 to C6)
according to the order in which the rl formulas are verified by our incremental
method. So, for example, the annotation for the inner loop of the computePrefix
function is the first to be verified, and corresponds to an rl formula for the form

〈while C do . . . endwhile, . . .〉 ∧ C ∧ C1 ⇒ 〈skip, . . .〉 ∧ ¬C ∧ C1

where while C do . . . endwhile denotes the inner loop of computePrefix. Simi-
larly, the specification of the KMP program is an rl formula of the form:

〈KMP, . . . , .Ints〉 ∧ C6 ⇒ 〈skip, . . . , Out〉 ∧ allOcc(Out, . . .),
where KMP denotes the whole program, .Ints denotes an empty list of inte-
gers (cf. Sect. 2), Out is a list of integers denoting the program’s output, and
allOcc(Out, . . .) states that Out contains all positions of the pattern in the text.

The rl formulas corresponding to the annotations (C1 . . .C6) were verified
in the given order. Once a formula was verified, it was generalised (cf. Remark 2)
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Fig. 3. The kmp algorithm in imp+: prefix function (left) and the main program (right).
Grey-text annotations are syntactic sugar for rl formulas. Pi, Theta, allOcc, and Pi∗
denote the functions π, θ, and allOcc, and the set π∗ respectively (cf. Definition 11).

and added to the rules denoting the semantics of imp+ as new, prioritary rules.
Each rule verification follows the construction of a graph (cf. procedure in Fig. 2),
performed by symbolic execution, implemented by rewriting as described in
Sect. 3. For this purpose we have intensively use Maude’s metalevel mechanisms
in order to control the application of rewrite rules.

The main verification effort (besides coming up with the annotations
C1 . . . C6) went into the inclusion test between patterns that occurs in our graph-
construction procedure. For this purpose we have used certain properties of the
π, π*, and θ mathematical functions from [12], which we include in Maude as
equations used for the purpose of simplification. Some elementary simplifications
involving properties of integers and Booleans were performed via Maude’s inter-
face to the z3 solver. Collectively, these properties can be seen as axioms that
define the class of models in which the correctness of our kmp program holds.

Benefits of Incremental Verification. In earlier work [5] we attempted to verify
kmp using a circular approach of the “all-or-nothing” variety. The main difficulty
with such approaches is that, if verification fails, one is left with nothing: any of
the formulas being (simultaneously) verified could be responsible for the failure.
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The consequence was that (as we realised afterwards by revisiting the problem)
our earlier verification was incorrect. We found some versions of the annotations
C1 . . . C6, which, as rl formulas, would only hold under unrealistic assumptions
about the problem-domain functions π, π∗, and θ.

We decided to redo the kmp verification incrementally, starting with smaller
program fragments, and rigorously proving at each step the required facts about
the problem domain. Our incremental approach was first a language-dependent
one [12], as it was based on proving pre/post conditions of functions and loop
invariants. Of course, not all languages have the same kinds of functions and
loops; some lack such constructions altogether. The method proposed in this
paper is (with some restrictions) both incremental and language-independent, is
formally proved correct, and was instrumental in successfully proving the kmp
program, this time, under valid assertions regarding the problem domain.

6 Conclusion, Related Work and Future Work

In this paper we propose an incremental method for proving a class of rl for-
mulas useful in practical situations. Mainly, rl formula verification is reduced to
checking two technical conditions: the first is an invariance property, while the
second is related to the so-called capturing of terminal configurations. Formally,
the conjunction of these conditions is shown to be equivalent to rl formula valid-
ity. We also present a graph construction procedure based on symbolic execution
which, if it terminates successfully, ensures that these conditions hold for a given
rl formula. The method is successfully applied on the nontrivial Knuth-Morris-
Pratt algorithm for string matching, encoded in a simple imperative language.
The syntax and the semantics of this language have been defined in Maude,
whose reflective features were intensively used for implementation purposes.

Using the proposed approach rl formulas are proved in a systematic manner.
One first proves formulas that specify sub-programs of the program under ver-
ification, and then exploits the newly proved formulas to (incrementally) prove
other formulas that specify larger subprograms. By contrast, monolithic/circu-
lar approaches [1–4,6,13] attempt to prove all formulas at once, in no particular
order. In case of failure, in a monolithic approach, any circularly dependent sub-
set of formulas under proof might be responsible for the failure; whereas in an
incremental approach, there is only one subset of formulas to consider (and to
modify in order to progress in the proof): the formula currently under proof,
together with some already proved valid formulas. Thus, an incremental method
saves the user some effort in the trial-and-error process of program verification.

Related Work. Besides the already mentioned work on rl we cite some
approaches in program verification; an exhaustive list is outside the scope of
this paper.

Some approaches are based on exploring the state-space of a program, e.g.,
[14], in which software model checking is combined with symbolic execution
and abstraction techniques to overcome state-space explosion. Our approach has
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some similarities with the above: we also use symbolic execution to construct a
graph, which is an abstraction of the reachable state space of a program.

Some verification tools (e.g., Why3 [15]) are based on deductive methods.
These tools use the program specifications (i.e., pre/post-conditions, invariants)
to generate proof obligations, which are then discharged to external provers (e.g.,
coq, Z3, . . . ). Similarly, our implementation uses a version of Maude which
includes a connection to the Z3 SMT solver (used for simplifying conditions).

In the same spirit, compositional methods for the formal verification (e.g.,
[16]) shift the focus of verification from global to local level in order to reduce
the complexity of the verification process.

Future Work. One issue that needs to be addressed is the handling of domain-
specific properties. Each program makes computations over a certain domain
(e.g., arrays), and in order to prove a program, certain properties of the under-
lying domain are required (e.g., relations between selecting and storing elements
in an array). Currently, these properties are stated as axioms in Maude, and we
are planning to connect Maude to an inductive prover in order to interactively
prove the axioms in questions as properties satisfied by more basic definitions.
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