
Chapter 18
Ligament Tissue Engineering

Wasim Khan

Abstract Ligaments are commonly injured in the knee joint, and have a poor
capacity for healing due to their relative avascularity. Ligament reconstruction is
well established for injuries such as anterior cruciate ligament rupture, however the
use of autografts and allografts for ligament reconstruction are associated with
complications, and outcomes are variable. Ligament tissue engineering using stem
cells, growth factors and scaffolds is a novel technique that has the potential to
provide an unlimited source of tissue. In this chapter we discuss the role of tissue
engineering in dealing with ligament injuries and provide an overview of in vitro
and in vivo studies.

18.1 Introduction

The knee joint with its long lever arms is subject to significant forces, and sporting
and other daily activities can put it at a higher risk of injury. Ligament injuries
account for a significant proportion of musculoskeletal injuries and result in dis-
ability and morbidity in patients worldwide [1]. Ligament injuries may ultimately
lead to pain, articular cartilage injury, meniscal injury and early osteoarthritis [87].
It has been estimated that the incidence of injuries involving knee ligaments could
be as high as 1,193 per 100,000 person-years, with surgery performed in 3.9 % of
ligament injury cases [33]. Anterior cruciate ligament (ACL) rupture is one of the
most common injuries of the knee [70]. More than 200,000 ACL reconstructions
are performed yearly in the United States and the number being performed is
increasing in frequency [75]. The estimated cost of an ACL surgical repair and
subsequent rehabilitation is between $17,000–$25,000 per injury [22]. Over
200,000 ACL reconstructions per year are carried out in the US [75]. The total
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expenditure on ACL reconstructions in a year has been estimated as exceeding $5
billion [83].

In this chapter we will discuss limitations of current treatment strategies, liga-
ment structure and ligament healing before taking an in depth view of tissue
engineering for ligament repair and reconstruction.

18.2 Limitations of Current Treatment Options

Current treatment strategies for ligament injuries depend on the degree of injury and
the patient’s activity level and symptoms [57]. Grade I ligament injuries are mild
sprains that are not associated with ligament laxity. Grade II injuries demonstrate
moderately increased joint laxity. Grade III injuries are severe and associated with
complete ligament disruption and significant laxity [88]. Non-operative management
consists of pain relief and rehabilitation. Ligaments are poorly vascularized and have
a limited capacity for healing. When healing does occur the composition of the
healed tissue is different to normal tissue and the biomechanical properties of the
healed tissue are usually inferior [72]. Operative management with hamstring or
patellar tendon autografts, allografts and synthetic grafts is often undertaken [36] but
the reconstructive surgery also may be associated with disadvantages. Autografts are
associated with donor site morbidity, weakness, reduced range of movement and
anterior knee pain in the case of patellar tendon donor tissue. Laboute et al. [47]
found a re-rupture rate of 12.7 % for ACL reconstructions performed with hamstring
tendon autografts. Allografts carry the risk of immunological reactions, disease
transmission and infection. Synthetic grafts including carbon fibre, polypropylene,
Dacron and polyester are associated with a high failure rate due to wear debris,
foreign body tissue reactions and synovitis [23, 72].

18.3 Ligament Structure

Ligaments passively stabilize joints by connecting one bone to another and allow
smooth motion. They are subject to multidirectional forces depending on activities.
They also have a role in joint proprioception. The four main ligaments around the
knee are the cruciates and the collaterals. Microscopically the ligament is composed
of specialized fibroblasts that account for approximately 20 % of the tissue, and
produce the extracellular matrix (ECM) that accounts for approximately 80 % of
the tissue. The ECM consists of approximately 70 % water and 30 % organic
tissue. The collagen accounts for 75 % of the dry weight with the remaining 25 %
consisting of proteoglycans, elastin and other proteins and glycoproteins such as
actin, laminin and integrin. Although there are 16 types of collagen, type I collagen
accounts for 85 % of the collagen in ligaments. Type I collagen has an enormous
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tensile strength enabling fibrils to be stretched without being broken. Less than
10 % of the collagen in ligaments is type III. This is more often found in healing
tissues before most of it is converted to type I collagen. Very small amounts of
collagen types IV, V, XI and XIV are also present. The basic structural unit of
collagen is a triple-stranded helical molecule packed together side by side. The
collagen bundles are aligned along the long axis into bundles of parallel fibres. The
fibres have a periodic change in direction along the length known as the crimp
pattern. It is likely that with increased loading, some areas of the ligament
‘uncrimp’ which allows the ligament to elongate without sustaining damage. The
ligaments are covered by an outer layer known as the epiligament. This merges into
the periosteum of the bone around the attachment site of the ligament. The
epiligament is more vascular and cellular with a greater number of sensory and
proprioceptive nerves [28, 29, 53, 72].

18.4 Ligament Healing

As mentioned earlier, regeneration and healing of ligaments after injury is often
poor due their relatively avascular nature and low metabolic rate. Healing of
ligaments can be divided into four stages. Firstly, there is a haemorrhagic stage in
which the ligament ends retract and a blood clot forms and fills the gap. Cytokines
are released within the clot and a heavily cellular infiltrate of polymorphonuclear
leucocytes and lympthocytes appear within several hours. The macrophages appear
by twenty-four to forty-eight hours in the inflammatory stage. By seventy-two
hours the wound also contains platelets and multipotential mesenchymal cells.
Macrophages phagocytose necrotic tissues as well as secreting growth factors such
as basic fibroblast growth factor (FGFβ), transforming growth factor alpha and beta
(TGFα and TGFβ) and platelet derived growth factor (PDGF) that stimulate
fibroblast proliferation and synthesize types I, III and V collagen and
non-collagenous proteins, as well as inducing neovascularization and formation of
granulation tissue. During the proliferative stage, fibroblasts produce dense,
cellular, collagenous connective tissue binding the torn ligament ends. This ‘scar
tissue’ is initially disorganized and contains more type III and type V collagen, and
smaller diameters collagen fibrils. This is followed by remodeling and maturation of
the tissue. There is a gradual decrease in the cellularity of the tissue. The matrix
becomes denser and longitudinally orientated. The matrix continues to mature for at
least a year [28, 72, 88, 90].

The repair tissue never achieves the morphological or mechanical characteristics
of normal ligament. There remains an increased vascularity and cellularity,
abnormal innervation, decreased collagen fibril diameter, altered relative collagen
type proportions with inadequate cross-linking, and altered proteoglycan profiles.
The ligaments recover only up to twenty percent of their viscolelastic properties.
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The repair tissue also has inferior creep properties (i.e. deformation properties under
constant or cyclic loading) that could result in joint laxity. The resultant tissue has
half the normal failure load and absorbs less energy before failing [28, 88].

18.5 Tissue Engineering

Tissue engineering involves the use of appropriate cells, growth factors and scaf-
folds, either in isolation or combination to repair and regenerate tissue, and has a
role in musculoskeletal tissue repair and regeneration [41, 43]. Tissue engineering
has a potentially useful role in ligament surgery as these structures are often injured
and demonstrate limited healing potential [90]. Tissue engineering could be used to
repair and regenerate tissue. In vivo injection of appropriate cells into the injured
ligament in conjunction with the use of biomimetic scaffolds and bioreactors is a
strategy that could potentially accelerate the process of tissue repair [90]. We have
previously described a role for stem cells in the tissue engineering of ligaments
[18]. Below, we will discuss cell sources, growth factors and scaffolds before
considering the role of bioreactors.

18.6 Cell Sources for Ligament Tissue Engineering

Although reparative cells could be recruited from host tissue through the specific
attachment of tissue engineered scaffolds, seeding cells could further improve the
functionality of tissue engineered constructs [31]. The seeded cells lay down ECM
and recruit reparative and/or progenitor cells through chemotaxis through growth
factors and cytokines accelerating ligament repair. Additionally, they incorporate
and release endogenous growth factors to elicit an immune response [31]. It is
important to select the appropriate cell type for the specific application in order for
the tissue engineered product to have the best outcome. However, little is known
about the optimal cell source for ligament tissue engineering. The cell type selected
must show enhanced proliferation and production of an appropriate ECM and must
be able to survive in the relevant knee environment, intraarticular in the case of the
cruciates [83]. Primary fibroblasts can be derived from ligaments such as the ACL,
or from the skin. ACL fibroblasts can be harvested in diagnostic arthroscopic
procedures following ACL rupture. The medial collateral ligament (MCL) is
extraarticular, and it could be easily harvested partially without impairing its
function in the long term [31]. Mesenchymal stem cells (MSCs) have the ability to
proliferate and differentiate into a variety of mesenchymal cell phenotypes
including osteoblasts, chondroblasts, myoblasts and fibroblasts [76, 90]. Culture
conditions can be designed to direct MSC differentiation into the desired
mesenchymal phenotype [83].
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18.6.1 Fibroblasts

Fibroblasts are a choice of cells that can be harvested from different sources.
Bellincampi et al. [10] investigated skin fibroblasts as a potential source for
ligament tissue engineering as skin fibroblasts are known to have a greater healing
potential and may be easily retrieved in a clinical setting. ACL and skin fibroblasts
were harvested, cultured, labeled, seeded on collagen fibre scaffolds in vitro and
implanted into the autogenous knee joint in a rabbit model. The cells remained
viable for at least four to six weeks after implantation. They concluded that both
skin and ACL fibroblasts survived in an intraarticular environment, but the potential
of ACL fibroblasts to improve neoligament formation may be limited by a poor
intrinsic healing capacity. Cooper et al. [20] investigated the cellular response of
primary rabbit connective tissue fibroblasts from four sources (Achilles tendon,
patellar tendon, MCL and ACL) to a novel three-dimensional poly-L-lactic acid
(PLLA) braided scaffold for ACL tissue engineering. The fibroblasts from all four
sources had similar morphological appearances on tissue culture polystyrene.
However, the cellular growth differed for cell sources. They concluded that ACL
fibroblasts were the most suited for ACL tissue engineering. Tremblay et al. [81]
implanted a bioengineered ACL graft seeded with autologous living dermal
fibroblasts into goat knee joints for six months. Histological and ultrastructural
analysis demonstrated a highly organized ligamentous structure with vasculariza-
tion, innervation and organized Sharpey’s fibres and collagen at the osseous
insertion sites of the grafts. Morbidity associated with harvesting of the skin is a
potential limitation of using skin fibroblasts as a source for ligament tissue
engineering. Additionally, the performance of skin fibroblasts for ligament tissue
engineering may be affected as the physiological environment of skin fibroblasts is
different to that of ligaments [31].

18.6.2 Mesechymal Stem Cells

Although the use of primary fibroblasts for ligament tissue engineering is a logical
approach, the use of MSCs may be more efficient [67]. MSCs are naturally
occurring cells that have the ability to both self-replicate as well as differentiate into
another cell types [43]. Their capacity to repair is due to the secretion of factors that
alter the tissue microenvironment. MSCs may be isolated from a variety of adult
tissues including the bone marrow, adipose tissue, cord blood and synovial fluid
[24, 45, 54]. MSCs are easily obtainable form bone marrow by a minimally
invasive approach and can be expanded in tissue culture and encouraged to dif-
ferentiate into the desired lineage [77]. Although Cheng et al. [17] reported benefits
of stem cells derived from the ACL compared to bone marrow derived MSCs, the
ligament has fewer MSCs. Most studies look at MSCs of an earlier passage before
they lose their ability to proliferate and differentiate [74]. MSCs are positive for a
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set of cell surface markers including CD105, CD73, and are negative for the
haematopoietic markers CD34, CD45, and CD14 [44]. There is evidence that
pericytes may represent MSC in different tissues, and indeed tissues that are
vascular have a higher proportion of MSCs [42]. The differentiation into desired
lineages is achieved by the use of bioactive signaling molecules, specific growth
factors and appropriate environmental conditions [43, 80]. An alternative approach
is the use of embryonic stem cells which are derived from the inner cell mass of the
blastocyst and are capable of unlimited undifferentiated proliferation and have been
shown to differentiate into all types of somatic cells. However, the use of embryonic
stem cells is associated with several disadvantages including technical difficulties,
immunogenicity, tumour formation in vivo, uncertainty regarding the long-term
outcome and ethical considerations [19]. Adult MSCs possess immunomodulatory
properties, making them potential candidates for cellular therapy in an allogeneic
setting. Transplantation of MSCs into an allogeneic host may not require
immunosuppressive therapy. Adult MSCs express intermediate levels of class I
major histocompatibility complex proteins but do not express human leucocyte
antigen (class II) antigens on the cell surface [14, 48]. MSCs have been shown to
have an indirect inhibitory effect on T cells which is mediated by regulatory
antigen-presenting cells with T cell suppressive properties [11].

Oe et al. [66] studied ligament regeneration in rats following intra-articular
injection of either fresh bone marrow cells (BMCs) or cultured MSCs 1 week after
partial ACL transection. At 4 weeks donor cells were detected within the transected
ACLs in both the groups and the ACLs exhibited almost normal histology. They
concluded that direct intra-articular bone marrow transplantation is an effective
treatment for partial ruptures of the ACL. Lim et al. [52] performed ACL recon-
structions in adult rabbits using hamstring tendon autografts which were coated
with MSCs in a fibrin glue carrier. At 8 weeks good osteointegration was observed
and they performed significantly better on biomechanical testing than the controls.

18.6.3 Studies Comparing Fibroblasts and Mesenchymal
Stm Cells

There are few studies comparing fibroblasts with MSCs. MSCs may differentiate
into ligament fibroblasts after two weeks [90]. It has been shown in a rabbit model,
that MSCs have a significantly higher proliferation rate and collagen production
than ACL and MCL fibroblasts, and that MSCs could survive for at least six weeks
in the knee joint [31]. Van Eijk et al. [82] seeded bone marrow stromal cells, skin
fibroblasts and ACL fibroblasts at different seeding densities onto braided
poly(L-lactide/glycolide) scaffolds. The cells were cultured for up to 12 days. All
cell types readily attached to the scaffold. On day 12, the MSC-seeded scaffolds
showed the highest DNA content and collagen production. Scaffolds seeded with
ACL fibroblasts showed the lowest DNA content and collagen production. The
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ideal cell type selected for ligament tissue engineering must be readily available,
have excellent proliferative and differentiation ability, be capable of producing an
organized ECM, and have a good affinity for the scaffold.

18.7 Growth Factors Through Gene Transfer Technology

Growth factors are polypeptides that support various terminal phenotypes and
regulate stem cell differentiation and proliferation. Growth factors such as trans-
forming growth factor-β (TGF-β), bone morphogenic proteins (BMPs), fibroblast
growth factors (FGFs), epidermal growth factor (EGF), insulin like growth factor
(IGF-I), vascular endothelial growth factor (VEGF), platelet derived growth factor
(PDGF), and growth and differentiation factor (GDF) can, in isolation or various
combinations, expedite the MSC proliferation and fibroblast differentiation [40, 90].

Gene transfer technology may be used to deliver genetic material and infor-
mation to cells to alter their synthesis or function [90]. Genes can be introduced into
cells using retroviral and adenoviral vectors as carriers, liposomes or with a gene
gun. The genes can be placed in the cell ex vivo or in vivo. The target cells can be
made to produce or increase expression of growth factors or suppress the synthesis
of endogenous proteins or growth factor within the local tissue [88]. When Wei
et al. [85] surgically implanted bone marrow derived MSCs transfected with ade-
novirus vector encoding TGF-β1, VEGF or TGF-β1/VEGF into experimental ACL
grafts in rabbits, this significantly promoted angiogenesis compared to
non-transfected control cells, and improved the mechanical properties. Hildebrand
et al. [35] used a retroviral ex vivo and an adenoviral in vivo technique to introduce
and express the LacZ marker gene in the MCL and ACL of rabbits. LacZ gene
expression was detected and shown to last between 10 days and 3 weeks in the
MCL and ACL with the use of the retrovirus and between 3 and 6 weeks in the
MCL and at least 6 weeks in the ACL with the adenoviruses. Menetrey et al. [63]
showed the feasibility of gene transfer to a normal ACL using direct, fibroblast
mediated and myoblast mediated approaches. Either adenoviral particles were
directly injected into the ACL of rabbits, or myoblasts or ACL fibroblasts trans-
duced with recombinant adenoviral particles carrying the LacZ reporter gene were
injected. Direct and myoblast mediated gene transfers demonstrated persistence of
gene expression up to 6 weeks, but fibroblast mediated gene transfer showed gene
expression for only 1 week. A number of other studies have indicated that using
gene therapy to improve ligament healing is a promising approach [56, 71, 78, 91].

We conducted a review of growth factors in ACL reconstruction [12]. When
TGF- β is added directly to the canine tibial bone tunnel it increases the ultimate load
complex and richly generates perpendicular collagen fibres connecting the tendon
graft and bone as early as 3 weeks post operatively [89]. As predicted, TGF-β
increases proliferation and migration of ACL fibroblasts and stimulates matrix
protein deposition thus enhancing wound repair [84] and significantly increasing
maximum load and stiffness compared to control groups in rabbits [46]. In humans,
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TGF- β increases cell number, increases collagen production and increases
expression of alpha-smooth muscle actin in ACL defects [62]. The direct application
of a virus vector mediated gene transfer of bFGF (both in vitro and in experimentally
injured human ACLs) significantly enhances levels of type I and type II collagen
production [58]. This could be the result of enhanced neovascularization and the
formation of granulation tissue in injured ACLs in response to bFGF. Weiler et al.
[86] found that the local addition of PDGF coated sutures in hamstring tendon ACL
reconstruction lead to significantly higher load to failure, crimp length, vascular
density and collagen fibril at varying time periods (3–12 weeks) post operatively.
PDGF does not however appear to affect inflammatory parameters, MRI appearance
of the graft or clinical evaluation scores when injected into the graft and tibial tunnel
[64]. Letson and Dahners [50] compared PDGF alone or in combination groups
(PDGF + IGF-1, PDGF + bFGF) and found that all three groups improved strength,
stiffness and the breaking force of ligaments, suggesting that it is PDGF that is the
most important growth factor in ligament healing. Indeed other studies confirm that
PDGF has a role in accelerating ligament and tendon healing [6]. VEGF is highly
expressed in the early post-operative phase (2–3 weeks) of patellar tendon ACL
reconstruction implying VEGF is predominantly involved in the graft remodeling
process at this stage [92]. However in trials with rabbits, it seems to work by
promoting angiogenesis in the grafts rather than directly affecting the mechanical
properties such as anterior-posterior translation, tensile strength, cross-sectional area
or strain at failure [38].

18.8 Scaffolds

Biomaterial scaffolds provide a structural and logistic template for new tissue
formation and remodeling [83]. Scaffolds are designed to support cell attachment,
survival, migration and differentiation as well as control transport of nutrients,
growth factors, metabolites and regulatory molecules to and from the cells [18].
A scaffold should be made of a biocompatible, biodegradable material and should
be able to bridge any complex three-dimensional anatomical defect. The scaffold
should ideally possess adequate strength post-implantation to be effective as a
load-bearing construct and degrade at a rate matching the rate of new tissue
deposition. The scaffold should have sufficient pore sizes to allow cell infiltration,
and sufficient void volume to allow extracellular matrix formation to promote
gradual load transfer from the scaffold to the neotissue [79]. Porous scaffolds
enhance tissue regeneration by delivering biofactors, however pores that are too
large could compromise the mechanical properties of the scaffold [90]. Polymers
used in ligament tissue engineering [32] may be naturally derived e.g. gelatin, small
intestine submucosal extracellular matrix and silk, or synthetic e.g. polyesters such
as polyglycolic acid [59].
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18.8.1 Natural Scaffolds

Collagen used in laboratories is usually derived from the bovine submucosa and
intestine from rats tails in small quantities. The derived collagen requires processing
to remove foreign antigens, improve its mechanical strength and sometimes to slow
down the degradation rate by crosslinking. The crosslinking can be performed using
chemical agents e.g. glutaraldehyde, formaldehyde, polyepoxy compounds,
acylazide, carboiimides and hexmethylenediisocyanate risking potential toxic
residues, or physically using drying, heat or exposure to ultraviolet or gamma
radiation [32]. The resorption rate and mechanical properties of scaffolds can be
altered through cross-linking. Fibroblasts have been shown to attach, proliferate and
secrete new collagen when seeded on collagen fibre scaffolds [25]. In vivo, it has
been demonstrated that fibroblast seeded collagen scaffolds may remain viable after
implantation into the knee joint for prolonged periods [10]. Examples of com-
mercially available biological collagen-based scaffolds include Restore (derived
from porcine small intestine), Graftjacket (from human cadaver dermis), Permacol
(from porcine dermis) and Bio-Blanket (from bovine dermis) [15]. The scaffolds
demonstrate an early decrease in mechanical strength followed by tissue remodeling
resulting in a strength gain similar to autografts by 20 weeks [29].

Silk has the advantage of possessing good biocompatibility, slow biodegrad-
ability and excellent tensile strength and toughness [91]. Silk fibroin is a protein
excreted by silkworms and isolated from sericin [91], and has similar mechanical
properties to functional ACL when organized into appropriate wire-rope geometry.
Silk scaffolds also support cell attachment and spreading by providing an appro-
priate three-dimensional culture environment. Silk fibres lose the majority of their
tensile strength within one year in vivo and fail to be recognized in two years [32].
Silk-fibre matrices have been shown to support adult stem cell differentiation
towards ligament lineages [2]. A composite scaffold fabricated from silk and
collagen tested in a rabbit MCL defect model was shown to improve structural and
functional ligament repair by regulating ligament matrix gene expression and col-
lagen fibril assembly [16]. Fan et al [26] examined ACL regeneration with MSCs
on silk scaffolds in vivo. The lapine model demonstrated that the regenerated
ligaments exhibited essential ligament ECM components including collagen I and
collagen III in significant amounts, and direct ligament–bone insertion was
reconstructed exhibiting the four zones typical of native ACL–bone insertions;
bone, mineralized fibrocartilage, fibrocartilage and ligament. The tensile strength of
the regenerated ligaments was assessed to be biomechanically adequate.

18.8.2 Synthetic Scaffolds

Synthetic polymers that have been investigated for ligament repair include poly
glycolic acid (PGA), polylactic acid (PLA), their copolymers and poly caprolactone
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(PCL) [55]. PLA is a commonly used synthetic scaffold that easily degrades within
the human body by forming lactic acid. PCL and PGA degrade in a similar way to
PLA but exhibit different rates of degradation. Synthetic polymers are not limited
by donor source, have no risk of disease transmission and are designed to degrade
over time. Their mechanical properties may be controlled by altering the degree of
polmer crystallinity, changing the polymer molecular weight or changing the ratio
of each polymer in the copolymer [29].

18.8.3 Preclinical and Clinical Studies Using Scaffolds

We performed a systematic review [13] to examine and summarize the preclinical
in vivo studies and limited clinical studies on the use of scaffolds in the treatment of
ligamentous injuries. We identified eight studies looking at collagen platelet
composite (CPC), two studies on collagen in isolation, two on silk and one study
each for Poly-L-Lactic acid (PLLA) and small intestinal mucosa. The studies
involving CPC were on porcine or canine models of ACL injuries, and all had
variable time frames for examination from one to fifteen weeks. The concentration
of PRP varied from two to five times the physiological level. All found that CPC
had a significant effect on healing. Mastrangelo et al. [61] found in their porcine
model that higher PRP concentrations produced greater cellular densities at thirteen
weeks. They also found that skeletally immature animals had a greater intrinsic
capacity to heal compared to adolescents and adults. Palmer et al. [69] determined
that increased temperature of CPC decreased strength and yield load in the porcine
model and Magarian et al. [60] determined that decreased yield load occurred when
the repair was delayed either two or six weeks, with no difference between the delay
groups. Joshi et al. [37] performed ACL repairs in twenty-seven immature pigs,
with 14 having a repair augmented with CPC. The CPC augmented group had
better functional, load, and stiffness measurements in addition to improved struc-
tural properties at 3 months. Nishmoto et al. [65] treated rabbit medial collateral
ligament defects using PLLA scaffolds. Fibrocartilage alignment and morphology
increased in a time dependent manner, but PLLA fibres were not absorbed after the
sixteen-week assessment, raising potential concerns regarding synovitis. Badylak
et al. [8] reconstructed goat ACL injuries with either a porcine small intestinal sub
mucosa scaffold or a more conventional patella tendon graft and a found no dif-
ference in functional testing. The small intestine submucosa group did however
show transient weakening early with variable strength over time in comparison to
the patella tendon group which increased in strength. We identified three studies on
synthetic scaffolds. Cooper et al. [21] presented data on a comparison between
seeded and unseeded biomimetic ligament generated by using 3D braiding tech-
nology to reconstruct rabbit ACL defects and determined that seeding ligaments
with ACL cells resulted in better histological and mechanical evaluation. Liljensten
et al. [51] assessed poly urethane urea (PUUR) in thirty-five rabbits and two pigs
and found that at six, twelve, and twenty-four months there was no synovial
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reaction or joint damage in any knees and all had an integrated ligament. Argona
et al. [7] demonstrated that carbon fibre polylactic acid polymer ligaments allowed
for more stable medial collateral ligament constructs with time related collagen
ingrowth in the beagle model at a maximum of twenty-six weeks. There were no
biological studies available. Four studies assessed the effects of absorbable
copolymer carbon fibre ligaments (ABC) and three found that while tissue ingrowth
into the ligaments was found there were unacceptable short and long-term failure
rates even after a change in technique in the early 1990’s. Petrou et al. [73]
prospectively followed up seventy-one patients for a minimum of five years and
found that while there was evidence of recurrent synovitis and stiffness there was a
one hundred percent survival rate. This discrepancy may have been due to relatively
short follow up as it has been previously noted that after a technique and equipment
change in the early 1990’s the early failure rates of the ABC ligament were replaced
by mid to late term failures.

18.9 Bioreactor Systems

The differentiation of MSCs into fibroblasts may be accelerated by the use of a
bioreactor that provides a controlled biomimetic optimum environment for cell
functions. Bioreactors are a key component of tissue engineering [3, 68]. They use
various combinations of chemical, mechanical, electrical or magnetic stimulation to
guide differentiation, proliferation and tissue development. In the case of ligament
tissue engineering, a bioreactor may be used to accelerate the process of differen-
tiation of MSCs into the fibroblastic lineage [90]. The body may be used as a
bioreactor when a cell-scaffold composite is implanted directly into the injured site.
Another approach is to culture the cell-scaffold composite in a bioreactor ex vivo
for a period of time before transplantation [34, 91].

In order for a bioreactor to function successfully, there are several basic design
principles that need to be fulfilled. Firstly, a bioreactor should maintain precise
control of the physiological environment of the tissue culture, including control of
variables such as temperature, oxygen concentrations, pH, nutrients, media flow
rate, metabolite concentrations and specific tissue markers within close limits.
Bioreactors should also be able to support the culture of two or more cell types
simultaneously particularly when engineering complex tissues. It is also essential
that the bioreactor is designed to operate under strict aseptic conditions in order to
prevent any contamination of the tissues by influx of microorganisms [68].

Chemical stimulation techniques are employed by using chemicals such as
growth factors described in the section above. Mechanical stimulation techniques
involve subjecting a scaffold to mechanical stresses resembling the in vivo envi-
ronment. Intracellular signaling cascades are activated by triggering the cell surface
stretch receptors leading to synthesis of the necessary extracellular matrix proteins
[90]. The effects of mechanical stimulation are dependent on the magnitude,
duration and frequency of mechanical stress [49]. Additionally, mechanical
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stimulation has been shown to affect extracellular matrix synthesis and remodeling.
Enzyme activity and growth factor expression, collagen type I, collagen type III,
elastin and tenascin-C expression in MSCs have been shown to be increased with
the application of mechanical loads [91]. Electromagnetic stimulation has been
shown to have positive results. For example, Fung et al. [30] showed that low
energy laser therapy can enhance the mechanical strength of healing MCL in rats
and increase collagen fibril size. Co-culture may also be used to induce differen-
tiation of MSCs because of its ability to promote cell communications [90]. Direct
co-culture of MSCs with fibroblasts induces MSCs to differentiate into
fibroblast-like cells [9]. Cell-to-cell interactions in the microenvironment play a key
role in regulating the differentiation of MSCs in the healing process. Additionally,
specific regulatory signals released from fibroblasts have been shown to support the
selective differentiation of MSCs towards ligament fibroblasts in a two-dimensional
transwell insert co-culture system [49]. Fan et al. [27] demonstrated that specific
regulatory signals released from fibroblasts in a three-dimensional co-culture also
enhanced the differentiation of MSCs for ligament tissue engineering.

Although various commercial bioreactor systems are available, some may not be
applicable to ligament tissue engineering as the design lacks the specificity to meet
the requirements for engineering of ligament tissue [83]. Altman et al. [4, 5]
designed a bioreactor to permit the controlled application of ligament-like multi-
dimensional mechanical strains to undifferentiated cells embedded in a collagen gel.
They used mechanical stimulation in vitro to induce the differentiation of mes-
enchymal progenitor cells from bone marrow into a ligament cell lineage in pref-
erence to bone or cartilage cell lineages. Kahn et al. [39] designed a bioreactor for
tissue engineering of ligament tissue that imposed mechanical conditions close to
the physiological movement of the ACL. The bioreactor consisted of a mechanical
part allowing movement to be applied on scaffolds, two culture chambers, a per-
fusion flow system to renew nutrients in the culture medium, a heating enclosure as
well as an electronic component to manage movement and to regulate heating.

18.10 Conclusions

Ligament injuries are common in the knee, and can be challenging to treat with the
current nonoperative and operative treatment options available. Considerable pro-
gress has been made in generating tissue engineered ligaments. The following
requirements were noted by Vunjak-Novakovic et al. [83] as being key to the
success of tissue engineered ligaments:

• Autologous source of MSCs that is easily accessed with no associated morbidity
to eliminate concerns such as infection, immune rejection or disease;

• Biomaterial scaffold with mechanical properties matching the native ligament,
biodegradation to match tissue formation, and porosity to allow for cell
infiltration;
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• Biochemical and biophysical regulation of MSC differentiation;
• Quantitative methods of measuring success.

Studies on the generation of tissue engineered ligaments have generally been
in vitro preliminary studies or trials in animal models. At this stage we appear to be
moving closer to achieving the above aims, but human trials need to be conducted
in addition to a cost benefit analysis to determine the appropriateness of treatment.
Engineering ligaments that have the appropriate mechanical properties is the
significant challenge. However, advances in cell biology, understanding of the roles
of growth factors, scaffold engineering and mechanical conditioning using biore-
actors may be able to provide a viable long-term alternative to current autografts
and allografts in the future. The use of tissue engineered ligaments would
potentially have significant health care implications. In view of the more active
aging population, the number of patients who will benefit from the use of tissue
engineered ligaments is likely to increase with time.
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