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Abstract. Layer-wise relevance propagation is a framework which
allows to decompose the prediction of a deep neural network computed
over a sample, e.g. an image, down to relevance scores for the single
input dimensions of the sample such as subpixels of an image. While
this approach can be applied directly to generalized linear mappings,
product type non-linearities are not covered. This paper proposes an
approach to extend layer-wise relevance propagation to neural networks
with local renormalization layers, which is a very common product-type
non-linearity in convolutional neural networks. We evaluate the proposed
method for local renormalization layers on the CIFAR-10, Imagenet and
MIT Places datasets.
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1 Introduction

Artificial neural networks enjoy increasing popularity for image classification
tasks. They have shown excellent performance in large scale competitions [4].
One reason is the ability to train neural networks with millions of training sam-
ples by parallelizing them on GPU hardware. This allows to use numbers of
training samples which match the large number of parameters in deep neural
networks. However, understanding what region of the image is important for a
classification decision, is still an open question for neural networks, as well as for
many other non-linear models. The work of [1] proposed Layer-wise Relevance
Propagation (LRP) as a solution for explaining what pixels of an image are rel-
evant for reaching a classification decision. This was done for neural networks,
bag of word models [2,10], and in a subsequent work [5], for Fisher vectors.

This paper proposes an approach to extend LRP to neural networks with non-
linearities beyond the commonly used neural network formulation. One example
of such nonlinearities are local renormalization layers which can not be handled
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by standard LRP [1]. The presented approach is based on first (or higher) order
Taylor expansion. We consider a classification setup with real-valued outputs.
A classifier f is a mapping of an input space f : X → R such that f(x) > 0
denotes the presence of the class.

2 Layer-Wise Relevance Propagation
for Neural Networks

In the following we consider neural networks consisting of layers of neurons. The
output xj of a neuron j is a non-linear activation function g as given by

xj = g
(∑

iwijxi + b
)

(1)

Given an image x and a classifier f the aim of layer-wise relevance propagation
is to assign each pixel p of x a pixel-wise relevance score R

(1)
p such that

f(x) ≈ ∑
pR

(1)
p (2)

Pixels p with R
(1)
p < 0 contain evidence against the presence of a class, while

R
(1)
p > 0 is considered as evidence for the presence of a class. These pixel-wise

relevance scores can be visualized as an image called heatmap (see Fig. 1 for
examples). Obviously, many possible such decompositions exist which satisfy
Eq. 2. The work of [1] yield pixel-wise decompositions which are consistent with
evaluation measures [8] and human intuition.

Fig. 1. Pixel-wise decompositions for classes wolf, frog and wolf using a neural network
pretrained for the 1000 classes of the ILSVRC challenge.

Assume that we know the relevance R
(l+1)
j of a neuron j at network layer

l+1 for the classification decision f(x), then we like to decompose this relevance
into messages R

(l,l+1)
i←j sent to those neurons i at the layer l which provide inputs

to neuron j such that Eq. 3 holds.

R
(l+1)
j =

∑
i∈(l)

R
(l,l+1)
i←j (3)

We can then define the relevance of a neuron i at layer l by summing all messages
from neurons at layer l + 1 as in Eq. 4

R
(l)
i =

∑
j∈(l+1)

R
(l,l+1)
i←j (4)
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Equations 3 and 4 define the propagation of relevance from layer l + 1 to layer l.
The relevance of the output neuron at layer M is R

(M)
1 = f(x). The pixel-wise

scores are the resulting relevances of the input neurons R
(1)
d .

The work in [1] established two formulas for computing the messages R
(l,l+1)
i←j .

The first formula called ε-rule is given by

R
(l,l+1)
i←j =

zij
zj + ε · sign(zj)

R
(l+1)
j (5)

with zij = (wijxi)p and zj =
∑

k:wkj �=0 zkj . The variable ε is a “stabilizer” term
whose purpose is to avoid numerical degenerations when zj is close to zero, and
which is chosen to be small. The second formula called β-rule is given by

R
(l,l+1)
i←j =

(
(1 + β)

z+ij

z+j
− β

z−
ij

z−
j

)
R

(l+1)
j (6)

where the positive and negative weighted activations are treated separately. The
variable β controls how much inhibition is incorporated in the relevance redis-
tribution. A fairly large value for β (e.g. β = 1) leads to sharper heatmaps. In
both formulas the message R

(l,l+1)
i←j has the following structure

R
(l,l+1)
i←j = vijR

(l+1)
j with

∑
ivij = 1 (7)

The meaningfulness of the resulting pixel-wise decomposition for the input layer
R

(1)
d comes from the fact that the terms vij are derived from the weighted acti-

vations wijxi of the input neurons. Note that layer-wise relevance propagation
does not use gradients in contrast to backpropagation during the training phase.
For full details on layer-wise relevance propagation the reader is referred to [1].

3 Extending LRP to Local Renormalization Layers

We consider a general neuron j whose pooling and activation does not fit into the
structure given by Eq. 1, and consequently, intuition for a possible redistribution
formula is lacking. In this paper we propose a strategy for such neurons, based
on the Taylor expansion of its activation function. A Taylor-based approach was
used in [6] for decomposing ReLU neurons by exploiting their local linearity.
Here, we consider instead fully nonlinear neurons.

Suppose we can define for each neuron i input to neuron j a term vij which
is derived from its activation xi such that

∑
i vij = 1. Then we can define a

message R
(l,l+1)
i←j = vijR

(l+1)
j . Such messages were used in Eqs. 5 and 6 where

the weighting vij was chosen to depend on the weighted activations of neuron i:
vij = c (wijxi)p and vij = c1z

+
ij + c2z

−
ij , respectively. For differentiable neurons,

such weighting can be obtained by performing a first order Taylor expansion.
Let xj = g(xh1 , . . . , xhn

) be a nonlinear activation function. Then, by Taylor
expansion at some reference point (x̃h1 , . . . , x̃hn

), we get
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xj ≈ g(x̃h1 , . . . , x̃hn
) +

∑
i←j

∂g

∂xhi

(x̃h1 , . . . , x̃hn
)(xhi

− x̃hi
). (8)

Elements of the sum can be assigned to incoming neurons, and the zero-order
term can be redistributed equally between them, leading to the decomposition

∀i←j : zij =
1
n

g(x̃h1 , . . . , x̃hn
) +

∂g

∂xhi

(x̃h1 , . . . , x̃hn
)(xhi

− x̃hi
) (9)

of the neuron activation onto its input neurons. Local renormalization layers have
been shown to improve the performance in deep neural networks [4]. Consider
the local renormalization yk of a neuron xk by the set of its surrounding neurons
{x1, . . . , xn} as

yk(x1, . . . , xn) =
xk

(1 + b
∑n

i=1 x2
i )

c (10)

This interaction can be modeled by a layer in the network that has an activation
function as given in Eq. 10. Local renormalization layers represent a non-linearity
which cannot be tackled exactly by LRP as introduced in [1], however the strat-
egy proposed above can be applied.

One choice to be made is the point at which to perform the Taylor expansion.
There are two apparent candidates, firstly the actual input to the renormalization
layer z1 = (x1, . . . , xn) and, secondly, the input corresponding to the case when
only the neuron k fires which is to be normalized z2 = (0, ... . . . , 0, xk, 0, . . . , 0).
The partial derivative of y at z2 is zero for all variables xi with i �= k due to

∂yk
∂xj

=
δkj

(1 + b
∑n

i=1 x2
i )

c − 2bc
xkxj

(1 + b
∑n

i=1 x2
i )

c+1 (11)

This implies that the Taylor approximation has no off-diagonal contribution.

yk(z1) ≈ yk(z2) + 0 =
xk

(1 + bx2
k)c

(12)

Therefore we apply the Taylor series around the point z1:

yk(z2) ≈ yk(z1) + ∇yk(z1) · (z2 − z1) (13)
⇒ yk(z1) ≈ yk(z2) + ∇yk(z1) · (z1 − z2) (14)

⇒ yk(z1) ≈ xk

(1 + bx2
k)c

− 2bc
∑
j:j �=k

xkx
2
j

(1 + b
∑n

i=1 x2
i )

c+1 (15)

This weighting satisfies the following qualitative properties: for the neuron input
xk which is to be normalized, the sign of the relevance is kept. For suppressing
neighboring neurons xi, i �= k, the sign of the relevance can be flipped in line
with their suppressing property. The absolute value of the relevance received
by the suppressing neurons is proportional to the square of their input. In the
limits c → 0 and b → 0, the local renormalization converges against the identity,
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and the approximation recovers the identity. A baseline to compare against is to
treat the normalization as constant. In that case the weights vij for the relevance
propagation in Eq. 3 become a zero one vector, the relevance is propagated only
to that neuron which is to be normalized: vij = 1 if and only if i is the neuron
which is to be normalized by neuron j.

4 Experiments

We need to define a measure for meaningfulness and quality of a pixel-wise
decomposition in order to evaluate the various strategies to compute it. Here we
use an idea from [8]: A pixel p is considered highly relevant for the classification
score f(x) of the image x if modifying it by assigning it a random RGB value
x̃(p), and classifying the modified image x̄p = x \ {x(p)} ∪ {x̃(p)} results in a
strong decrease of the real-valued classification score f(x̄p). This idea can be
extended by sequentially modifying pixels from the most relevant to the least
relevant. The result is a graph of the prediction score f(x̄) as a function of
the number of modified pixels. An example for some sequences which will be
explained below is shown in Fig. 2. We can use these graphs to evaluate the
meaningfulness of a pixel-wise decomposition.

In the first experiment we compare the measure when flipping highest-scoring
pixels first, against flipping pixels in random order, and against flipping lowest
scoring pixels first. If the classifier is able to identify pixels that are important
for classification, then flipping highest scoring pixels first should result in the
fastest decaying curve, while flipping lowest scoring pixels first should result in
the slowest decrease. Figure 2 tests this property on the CIFAR-10 dataset [3]
which consists of 50000 images of size 32×32 drawn from 10 object classes. Scores
are averaged over the 5000 images of the test set of CIFAR-10 for a classifier in
which local renormalization layers are treated as the identity during computation
of pixel-wise scores. Experiments corroborate that flipping highest scoring pixels

Fig. 2. Decrease of classification score as pixels are sequentially replaced by random
noise on the CIFAR-10 dataset. Red curve: pixels with highest pixel-wise scores are
flipped first. Blue curve: pixels are flipped in random order. Green curve: least relevant
pixels are flipped first. A similar comparison for Imagenet is found in [8]. (Color figure
online)
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first results in the fastest decrease of the prediction score on average over the
test set. The decrease is sharper compared to random flipping, or flipping lowest
scoring pixels first.

In a second experiment we compare which treatment of the local renormal-
ization layer is best to identify those pixels that are most relevant for classifying
an image. The two tested approaches for treating the local renormalization are
(1) like it would be the identity, (2) by first order Taylor expansion as given by
Eq. 15. These approaches are furthermore tested when used in conjunction with
the two methods proposed by [1], namely, the ε-rule in Eq. 5 with a fixed value
of the numerical stabilizer ε, and the β-rule shown in Eq. 6, with fixed β.

Table 1. Comparison of different types of LRN layer treatments for two approaches
of computing pixel-wise scores for CIFAR-10. Lower scores are better.

Rule for basic layers Rule for normalization layers AUC score

Eqs. 4, 5, ε = 0.01 identity 37.10

Eqs. 4, 5, ε = 0.01 first-order Taylor 35.47

Eqs. 4, 6, β = 1 identity 56.13

Eqs. 4, 6, β = 1 first-order Taylor 53.82

We measure the quality of heatmaps by perturbing highest pixels first and
computing the area under the curve (AUC). Lower AUC averaged over a large
number of images indicates a better identification of pixel relevance by the
heatmap. Results on CIFAR-10 are shown in Table 1. We observe that in all
cases using first order Taylor in normalization layers improves the heatmap AUC
score. This shows its effectiveness for dealing with non-linear neuron layers.

Table 2. Comparison of different types of heatmap computations for Imagenet and
MIT Places. We use the shortcut notation Δb

a for expressing AUCa − AUCb. Thus, a
negative value indicates that the method produces better heatmaps with parameter a
than with parameter b. Note that ε refers to Eqs. 4 and 5; β refers to Eqs. 4 and 6.

Dataset Methods Δε=0.01
ε=1 Δε=100

ε=0.01 Δβ=1
ε=100 Δβ=0

β=1

Imagenet identity −21.29 2.75 −42.61 −49.07

Taylor −12.29 −41.75 −34.44 −50.76

MIT Places identity −20.19 12.91 −14.55 −49.37

Taylor −11.65 −22.55 −8.82 −48.7

We perform the same experiments also with Imagenet [7] and MIT Places
[12] datasets, each time evaluating results for 5000 images from their respective
unlabeled test sets. Note that computing a heatmap requires only a predicted
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Table 3. Impact of using the Taylor method in various settings. Negative value indi-
cates that using the Taylor expansion for the local renormalization is better in AUC
terms (i.e. heatmaps are more representative of the importance of each pixel).

Dataset Methods ε = 1 ε = 0.01 ε = 100 β = 1 β = 0

Imagenet AUCTaylor − AUCidentity −35.84 −26.84 8.47 0.29 1.98

MIT Places AUCTaylor − AUCidentity −33.13 −24.59 5.34 −0.39 −1.06

class label, not a ground truth. We evaluated results for the parameter settings
β = 0, β = 1 in Eq. 6 and ε = 0.01, ε = 1, ε = 100 in Eq. 5. Table 2 shows the
difference of AUC between variants of LRP, when using either the identity or
the Taylor expansion for local renormalization layers. We observe the following
ordering starting with the lowest (best) AUC: ε = 1, ε = 0.01, ε = 100, β = 1,
β = 0. This order holds independent of whether we consider Imagenet or MIT
places, when using Taylor for local renormalization layers. When using identity

Fig. 3. Top row shows original unwarped image. Remaining rows show heatmaps pro-
duced by various parameters of the LRP method.
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instead of Taylor, the order remain the same, except for ε = 100 and ε = 0.01
that are swapped. This is by itself an interesting result demonstrating that use
of Taylor in the normalization layer does not disrupt the overall properties of
relevance propagation techniques. For a comparison to other approaches such
as heatmaps based on deconvolutions [11], or backpropagated gradients [9] we
refer to [8].

Table 3 shows the difference of AUC between Taylor and identity for local
renormalization layers, for various choices of datasets and LRP parameters. We
observe that for the parameters with best AUC (ε = 1 and ε = 0.01), using
Taylor expansion for representing local renormalization layers further improves
the AUC scores. For the remaining choices the results are on par or slightly worse.
This is consistent with the interpretation of large values of ε as smoothing out
small contributions. It is also consistent with the observation that β = 1 and
β = 0 yield both smooth heatmaps in general. Heatmaps for some parameters of
interest are shown in Fig. 3. Taylor with ε = 1 has both high pixel selectivity and
low noise, which in agreement with its measured superiority in the quantitative
experiments.

5 Conclusion

We have presented an extension of layer-wise relevance propagation (LRP) based
on first-order Taylor expansions for product-type nonlinearities. Such nonlinear-
ities occur in the local renormalization layers of deep convolutional neural net-
works. The proposed extension is evaluated on three popular datasets and it is
shown to clearly outperform the original LRP method. In future work we will
investigate the potential gain of using higher order Taylor expansions, and apply
the method to a larger class of neural network layers.
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