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Preface

It is our honor and our pleasure to present this two-volume proceedings of the 25th
International Conference on Artificial Networks (ICANN 2016) held during September
6–9, 2016, in Barcelona, Spain, and organized by the Universitat Politècnica de
Catalunya and the Universitat Pompeu Fabra. The annual ICANN is the flagship
conference of the European Neural Network Society (ENNS). After 25 editions, it is
clear that ICANN’s is a story of success. The field has grown and matured during all
these years and the conference series has maintained its rank among the most presti-
gious conferences in the world. A special social gathering brought together all ENNS
members to celebrate its 25th anniversary. Professor Teuvo Kohonen was the first
president of ENNS serving the term 1990–1992. The office was then taken by John G.
Taylor, Errki Oja, Wlodek Duch, and Alessandro Villa, who comes to the end of his
last term. A new president of ENNS was elected and Barcelona is a very appropriate
location for this anniversary edition. It has a long tradition in neuroscience going back
to Santiago Ramón y Cajal, more than one century ago, who, after moving to the
University of Barcelona, made his pioneering neuroanatomical studies in this city. We
are sure that such a nice environment and intense program of activities will leave a
positive trace in our memories.

The field of artificial neural networks evolved tremendously in the past quarter of a
century, but the goal to bring together researchers from two worlds, i.e., information
sciences and neurosciences, is still fresh and necessary. The conference gathers people
not only from Europe but also from the rest of the globe. The 25th ICANN united
presenters from 42 countries from all continents. ICANN 2016 was tightly organized in
partnership with ENNS. This governance has been guided by not-for-profit procedures
that allowed us to keep very low congress fees compared with international standards.
Moreover, we consolidated the practice of offering a subscription to ENNS to all
ICANN delegates who present a scientific communication.

The Scientific and Reviewing Committee selected 169 contributions, after a
peer-review process of 227 submissions, which are published in these two proceedings
volumes. The variety of topics covered by all these contributions proves the maturity
and, at the same time, the vitality of the field of artificial neural networks. Besides, this
year, we introduced short extended abstract contributions in order to encourage
top-level scholars to join the conference without the need to submit a full paper. This
opportunity appeared very attractive also to researchers who are interested in presenting
results that could not justify a full paper submission. Hence, the implementation of this
scheme eventually produced 122 full papers and 47 short extended abstracts.

The type of submission was not the ultimate criterion in assigning the submitters to
an oral or a poster presentation. Papers were equally good and attributed to 94 oral and
75 poster presentations following, in the vast majority of the cases, the preference
expressed by the authors. The proceedings of the 47 short presentations have been
grouped together following the rules of the Publisher. Oral presentations were divided



into 18 sessions following the usual dual track, initially intended as the brain-inspired
computing track and machine-learning research track. As in the past editions the dual
track became track A and track B, because many papers presented an interdisciplinary
approach and track C for the posters. In addition, ICANN had eight plenary talks by
internationally renowned speakers, in particular one lecture sponsored by ENNS, the
John G. Taylor Memorial Lecture given by Errki Oja, past president of ENNS. Several
satellite workshops completed the intensive program of ICANN 2016.

This scientific event would not have been possible without the participation of many
people. We want to thank everyone who contributed, in one way or another, to the
success of the conference and the publication of the proceedings. We want to express
our deepest gratitude to the members of the Executive Committee of the ENNS, who
have accepted the proposal of Barcelona organizing the event. We are grateful for the
work of the Scientific and Reviewing Committee and all reviewers who worked under
strong time constraints during the compilation of the proceedings. The conference
would have been impossible without the contribution of all members of the Organizing
Committees. We want to thank the outstanding work by the ENNS, UPC, and UPF
personnel. We want to thank, particularly, the work of Paolo Masulli, Lara Escuain,
and Daniel Malagarriga. The conference would not have been a reality without the help
of Caroline Kleinheny. Finally, we would like to thank Anna Kramer, Frank Holz-
warth, and Alfred Hofmann from Springer for their help with the tough publication
project. We acknowledge, too, all authors who contributed to the volumes and shared
their ideas during the conference. We are sure that the papers appearing in these
volumes will contribute to the field of artificial neural networks with many new and
inspiring ideas that will help other concepts flourish in the future.

July 2016 Alessandro E.P. Villa
Paolo Masulli

Antonio Javier Pons Rivero
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Abstract. Although traditionally used in the machine translation field,
the encoder-decoder framework has been recently applied for the genera-
tion of video and image descriptions. The combination of Convolutional
and Recurrent Neural Networks in these models has proven to outper-
form the previous state of the art, obtaining more accurate video descrip-
tions. In this work we propose pushing further this model by introducing
two contributions into the encoding stage. First, producing richer image
representations by combining object and location information from Con-
volutional Neural Networks and second, introducing Bidirectional Recur-
rent Neural Networks for capturing both forward and backward temporal
relationships in the input frames.

Keywords: Video description · Neural Machine Translation ·
Birectional Recurrent Neural Networks · LSTM · Convolutional Neural
Networks

1 Introduction

Automatic generation of image descriptions is a recent trend in Computer Vision
that represents an interesting, but difficult task. This has been possible due to
the dramatic advances in Convolutional Neural Network (CNN) models that
allowed to outperform the state-of-the-art algorithms in many computer vision
problems: object recognition, object detection, activity recognition, etc. Gener-
ating descriptions of videos represents an even more challenging task that could
lead to multiple applications (e.g. video indexing and retrieval, movie description
for multimedia applications or for blind people or human-robot interaction).

However, the problem of video description generation has several proper-
ties that make it specially difficult. Besides the significant amount of image
information to analyze, videos may have a variable number of images and can
be described with sentences of different length. Furthermore, the descriptions
of videos use to be high-level summaries that not necessarily are expressed in
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terms of the objects, actions and scenes observed in the images. There are many
open research questions in this field requiring deep video understanding. Some
of them are how to efficiently extract important elements from the images (e.g.
objects, scenes, actions), to define the local (e.g. fine-grained motion) and global
spatio-temporal information, determine the salient content worth to describe,
and generate the final video description. All these specific questions need the
attention of computer vision, machine translation and natural language under-
standing communities in order to be solved.

In this work, we propose to enrich the state-of-the-art architecture using
bidirectional neural networks for modeling relationships in two temporal direc-
tions. Furthermore, we test the inclusion of supplementary features, which help
to detect contextual information from the scene where the video takes place.

2 Related Work

Although the problem of video captioning recently appeared thanks to the new
learning capabilities offered by Deep Learning techniques, the general pipeline
adopted in these works resembles the traditional encoder-decoder methodology
used in Machine Translation (MT). The main difference is that, in the encoder
step, instead of generating a compact representation of the source language sen-
tence, we generate a representation of the images belonging to the video.

MT aims to automatically translate text or speech from a source to a target
language. Within the last decades, the prevailing approach is the statistical one
[5]. The application of connectionist models in the area has drawn much the
attention of researchers in the last years. Moreover, a new approach to MT
has been recently proposed: the so-called Neural Machine Translation, where
the translation process is carried out by a means of a large Recurrent Neural
Network (RNN) [9]. These systems rely on the encoder-decoder framework: an
encoder RNN produces a compact representation of an input sentence in the
source language, and the decoder RNN takes this representation and generates
the corresponding target language sentence. Both RNNs usually make use of
gated units, such as the popular Long Short-term Memory (LSTM) [4], in order
to cope with long-term relationships.

The recent reintroduction of Deep Learning in the Computer Vision field
through CNNs [6], has allowed to obtain new and richer image representations
compared to the traditional hand-crafted ones. These networks have demon-
strated to be a powerful tool to extract feature representations for several kinds
of computer vision problems like on objects [8] or scenes [15] recognition. Thanks
to the CNNs ability to serve as knowledge transfer mechanisms, they have also
been usually used as feature extractors.

The majority of the works devoted to generate textual descriptions from
single images also follow the encoder-decoder architecture. In the encoding stage,
they apply a combination of CNN and LSTM for describing the input image.
In the decoding stage, an LSTM is in charge of receiving the image information
and generating, word by word, a final description of the image [12].
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The problem of video captioning is similar. Seminal works applied method-
ologies inspired by classical MT [7]. Nevertheless, more recent works following
the encoder-decoder approach, obtained state-of-the-art performances [11,13].

We present a new methodology for natural language video description that
makes use of deeper structures and a double-way analysis of the input video.
We propose to use as a base architecture the one introduced in [13]. On the top
of it, our contributions are twofold. First, we produce richer image representa-
tions by combining complementary CNNs for detecting objects and contextual
information from the input images. Second, we introduce a Bidirectional LSTM
(BLSTM) network in the encoding stage, which has the ability to learn forward
and backward long-term relationships on the input sequence.

3 Methodology

An overview of our proposal is depicted in Fig. 1. We propose an encoder-decoder
approach consisting of four stages, using both CNNs and LSTMs for describing
images and for modeling their temporal relationship, respectively.

Fig. 1. General scheme of our proposed methodology. (Color figure online)

First (blue in the scheme), we apply two state of the art CNN models for
extracting complementary features on each of the raw images from the video.

Second (red in the scheme), considering we need to describe the actions
performed in consecutive frames, we apply a BLSTM for capturing temporal
relationships and complementary information by taking a look at the action in
a forward and in a backward manner.

Third (yellow in the scheme), the two output vectors from forward and back-
ward LSTM models of the previous step are concatenated together with the
CNN output for each image and are fed to a soft attention model in the decoder.
This model decides on which parts of the input video should focus for emitting
the next word, considering the description generated so far.

Fourth (green in the scheme), an LSTM network generates the video caption
from the representation obtained in previous stages. The variable-length caption
is obtained word by word, using a softmax function on the top of the LSTM.
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3.1 Encoder

Given the video description problem, in the encoding stage we need to properly
characterize the video for (1) understanding which kind of objects and structures
appear in the images, and (2) modeling their relationships and actions along time.

Fig. 2. Forward layer LSTM unit for the encoder. The output depends on the previous
hidden state (vf

j−1) and the current feature vector from the video extracted by the
CNN (xj). Input, output and forget gates module the amount of information that
flows across the unit.

For tackling the first part of the problem, several kinds of pretrained CNNs
may be used for describing the images, which can be distinguished by the dif-
ferent architectures or by the different datasets used for training. Although an
extended comparison and combinations of models could be used for applying
this characterization, we propose combining object and context-related informa-
tion. For this purpose we use the GoogleNet architecture [10] separately trained
on two datasets, one for objects (ILSVRC dataset [8]), and the other for scenes
(Places 205 [15]). The combination of these two kinds of data can inform about
the objects appearing and their surroundings, being ideal for the problem at
hand. Note that, given the nature of this task, an explicit object or scene seg-
mentation is not required. Additionally, we must note that the features extracted
are a representation of the whole image, which means that are not suitable for
extracting spatial-related information. For a given video, the CNNs generate a
sequence Vc of J d-dimensional feature vectors, x1, . . . ,xJ with xj ∈ R

d for
1 ≤ j ≤ J , where J is the number of frames in the video.

To solve the second problem, a BLSTM processes the sequence Vc, generating
a new sequence Vbi = v1, . . . ,vJ of J vectors. BLSTM networks are composed
of two independent LSTM layers namely, forward and backward. Both layers are
analogue, but the latter processes the input sequence reversed in time.
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LSTM networks have, in addition to the classical hidden state, a memory
state. Let vf

j be the forward layer hidden state at the time-step j, and let cfj be
its memory state. The hidden state vf

j is computed as cfj controlled by an output
gate of

j . The current memory state depends on an updated memory state, and
on the previous memory state, cfj−1, respectively modulated by the forget and
input gates, f fj and ifj . The updated memory state c̃fj is obtained by applying
a logistic non-linear function to the input and the previous hidden state. Each
LSTM gate has associated two weight matrices, accounting for the input and
the previous hidden state. Such matrices must be estimated on a training set.
Figure 2 shows an illustration of an LSTM unit. The same architecture applies
to the backward layer, but dependencies flow from the next time-step to the
previous one. Since forward and backward layers are independent, they have
different weight matrices to estimate.

Each feature vector vj computed by the BLSTM results as the concatenation
of the forward and backward hidden states: vj = [vf

j ;v
b
j ] ∈ R

2·D for 1 ≤ j ≤ J ,
being D the size of each forward and backward hidden state.

Finally, the encoder combines the sequences Vc and Vbi by concatenating
the vectors from the CNN and from the BLSTM, producing a final sequence V
of J feature vectors w1, . . . ,wJ , wj = [xj ;vj ] ∈ R

d+2·D for 1 ≤ j ≤ J .

3.2 Decoder

The decoder is an LSTM network, which acts as a language model, conditioned
by the information provided by the encoder. This network is equipped with an
attention mechanism [1,13]: a soft alignment model, implemented as a single-
layered perceptron, that helps the decoder to know where to look at for generat-
ing each output word. Given the sequence V generated by the encoder, at each
decoding time-step t the attention mechanism weights the J feature vectors and

Fig. 3. Decoder LSTM unit. The output depends on the previous hidden state (ht),
the word embedding of the previously generated word (E(yt−1)) and the context vector
provided by the attention mechanism (zt).
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combines them into a single context vector zt ∈ R
d+2·D. Considering that each

of our feature vectors describes the scene in a different temporal moment, our
dynamic attention mechanism acts as a learnable saliency mechanism applied
along time, which is able to weight and emphasize the information of different
frames.

The decoder LSTM is defined similarly to the forward layer from the encoder,
but it takes into account the previously generated word and the context vector
from the attention mechanism, in addition to its previous hidden state. The
last word representation is provided by a word embedding matrix E ∈ R

m×V ,
being m the size of the word embedding and V the size of the vocabulary. E is
estimated together with the rest of the model parameters.

A probability distribution over the vocabulary of output words is defined from
the hidden state ht, by means of a softmax function. This function represents
the conditional probability of a word given an input video V and its history (the
previously generated words): p(yt|y1, . . . , yt−1,V). Following [9], a beam-search
method is used to find the caption with highest conditional probability.

4 Results

In this section we describe the datasets and metrics used for evaluating and
comparing our model to the video captioning state of the art.

4.1 Dataset

The Microsoft Research Video Description Corpus (MSVD) [2] is a
dataset composed of 1970 open domain clips collected from YouTube and anno-
tated using a crowd sourcing platform. Each video has a variable number of
captions, written by different users. We used the splits made by [11,13], separat-
ing the dataset in 1200 videos for training, 100 for validation and the remaining
670 for testing. During training, the clips and each of their captions were treated
separately, accounting for a total of more than 80, 000 training samples.

4.2 Evaluation Metrics

In order to evaluate and compare the results of the different models we used
the standardized COCO-Caption evaluation package [3], which provides several
metrics for text description comparison. We used three main metrics, all of them
presented from 0 (minimum quality) to 100 (maximum quality):

BLEU: this metric compares the ratio of n-gram structures that are shared
between the system hypotheses and the reference sentences.

METEOR: it computes the F1 score of precision and recall between hypotheses
and references.

CIDEr: similarly to BLEU, it computes the number of matching n-grams, but
penalizes any n-gram frequently found in the whole training set.
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4.3 Experimental Results

On all the tests we used a batch size of 64, the learning rate was automatically set
by the Adadelta [14] method and, as the authors in [13] reported, we applied a
frame subsampling, picking only one image every 26 frames for reducing the com-
putational load. The parameters of the network were randomly initialized. An
evaluation on the validation set was performed every 1000 updates. The learning
process was stopped when the reported error increased after 5 evaluations.

For each configuration we run 10 experiments. At each of them, we ran-
domly set the value of the critical model hyperparameters. Such hyperparame-
ters and their tested ranges are m ∈ [300, 700], |ht| ∈ [1000, 3000]. When using
the BLSTM encoder, we performed an additional selection on |vj | ∈ [100, 2100].

Table 1. Text generation results for each model on the MSVD dataset. The results
below the horizontal line are our proposals.

Model BLEU [%] METEOR [%] CIDEr [%]

Objectsa 51.5 32.5 66.0

Objects + BLSTM 53.6 32.6 66.4

Objects + Scenes 52.6 32.5 67.0

Objects + Scenes + BLSTM 52.8 31.3 67.2
aModel from [13] only with Object features evaluated on our system.

For each configuration, the best model with respect to the BLEU measure
on the validation set was selected. In Table 1 we report the results of the best
models on the test set. The first row correspond to the result obtained with our
system with the object features from [13]. The configurations reported below the
horizontal line are our proposals, where Scenes indicates we use scene-related
features concatenated to Objects and BLSTM denotes the use of the additional
BLSTM encoder.

5 Discussion and Conclusions

Analyzing the obtained results, a clear improvement trend can be derived when
applying the BLSTM as a temporal inference mechanism. The BLSTM addition
when using Objects features allows to improve the result on all metrics, obtaining
a benefit of more than 2 BLEU points. Adding scenes-related features also slightly
improves the result, although it is not as remarkable as the BLSTM improvement.
The combination ofObjects+Scenes+BLSTM offers the best CIDEr performance,
nevertheless, this result is slightly below the Objects+BLSTM one on the other
metrics. This behaviour is probably due to the significant increase on the number of
parameters to learn. It should be investigated whether the reduction of the number
of parameters by reducing the size of the CNN features, or the use of larger datasets
could lead to further improvements.
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In conclusion, we have presented a new methodology for natural language
video description that takes profit from a bidirectional analysis of the input
sequence. This architecture has the ability to infer information from data not
only in a past-to-future fashion, but also in the future-to-past direction. Which
means that its hidden state will incorporate more confident information, being
even more evident in the initial frames where otherwise the result would only
take into account a short time-span. On the other hand, the use of a bidirec-
tional model yields doubling the number of parameters on the encoder, which
will increase the computational time and the amount of data needed to train the
model. Although, in order to extract further conclusions, the presented architec-
ture should be tested on more datasets. Additionally, the use of complementary
object and scene-related image features has proven to obtain a richer video
representation. The improvements have allowed the method to outperform the
state-of-the-art results in the problem at hand.

These results suggest that deep structures help to transfer the knowledge
from the input sequence of frames to the output natural language caption.
Hence, the next step to take must delve into the application of deeper mod-
eling structures: 3D CNNs allow the recognition of actions and may solve some
of the ambiguities existing in the tested methods, which only cope with object
and scenes recognition. An additional future step should study the inclusion of
spatio-temporal attention models for better coping with the nature of natural
videos.
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Abstract. We present a deep convolutional neural network which is
capable to distinguish between different contact states in robotic manip-
ulation tasks. By integrating spatial and temporal tactile sensor data
from a piezo-resistive sensor array through deep learning techniques, the
network is not only able to classify the contact state into stable ver-
sus slipping, but also to distinguish between rotational and translation
slippage. We evaluated different network layouts and reached a final clas-
sification rate of more than 97 %. Using consumer class GPUs, slippage
and rotation events can be detected within 10ms, which is still feasible
for adaptive grasp control.

1 Introduction

In autonomous robotic manipulation tasks, for example grasping and placing
objects, estimating the stability of the object in hand plays a major role. Objects
may slip out of the manipulator. This can lead to a state in the desired action
sequence from which the system cannot recover easily. Due to occlusions, vision-
based systems can hardly keep track of the state of objects hold in manipulators
and are therefore of limited usefulness when it comes to detecting loss of grasp
stability. For that reason, the loss of an object can only be detected after such
events already occurred. Humans perceive the onset of slippage by sensing high-
frequency micro-vibrations through specialized nerves (Pacinian corpuscle) in
the skin [4].

One possibility for early detection of slippage events in robotic systems is the
integration of tactile sensing capabilities directly into robotic manipulators. By
having human like sensing skills, the system should be able to directly evaluate
the contact state during interactions. Compared to imaging technologies where
standards are established for data acquisition and representation, current tactile
sensors posses a large variety of data acquisition techniques, which can be either
based on electric [12], optic [15] or acoustic [6] effects. For example the authors
in [2] discuss eight different technologies which are based on these three effects
and are used in current state of the art tactile sensors. For a detailed technical
overview the interested reader is referred to [2].

c© Springer International Publishing Switzerland 2016
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The work presented in [13] used support vector machines and random forests
to detect object slippage with a BioTac [6] sensor. The BioTac sensor offers
multiple modalities such as 19 electrodes to measure local contacts with a sam-
pling rate of 100 Hz, thermal sensors and two pressure transducers, one for low
(up to 100 Hz) and one for high (up to 2.2 kHz) frequencies, respectively. The
features comprised all raw sensor values, where the high frequency component
is supplied as a time series of the last 22 sensor readings which makes up for
half of the feature vector. With these features used as input for a random for-
est, a Fscore > 0.75 has been achieved in the evaluation. To predict slippage of
held objects, the authors of [14] took an approach where they first learned fric-
tion properties based on data acquired from a force/torque sensor with Gaussian
process regression. In [11], also a BioTac sensor is used to classify slip with a mul-
tilayer perceptron (MLP), but in contrast to [13], the authors used a sequence of
100 samples of the electrodes without utilizing the high frequency sensor. With
this time series as input for a MLP, a classification rate of 80% was achieved.
The same type of tactile sensor utilized in this work was already used in [8] for
a binary stable- vs. slip-classification. Here, the authors used a Fourier trans-
formation over the whole sensor array with varying window sizes to predict
slip velocity. They were able to achieve low mean squared errors of 0.04. These
approaches have in common, that they rely on the classification of time series
to detect slip events.

In areas outside of the scope of tactile sensing, convolutional neural net-
works (CNNs) have been successfully applied to time series classification tasks,
for example in speech recognition. In [7], the authors evaluated the performance
of convolutional networks compared to deep neural networks (DNNs), Gaussian
mixture model (GMM) and Hidden markov model (HMM) approaches for large
speech recognition tasks. The data was preprocessed by extracting mel-frequency
cepstrum coefficients (MFCC) [3], a filter technique that resemble human audi-
tory perception by using a logarithmic scale for pitch and loudness of the signal.
With these frequency features as input for CNNs, the deep networks outper-
formed GMM and HMM approaches on different datasets. The authors in [1]
evaluated the efficiency of a deep neural networks with and without convolu-
tional layers in a similar speech recognition task and reported an increase of
6 to 10 % in the relative classification rate for CNNs compared to DNNs. By
using CNNs in conjunction with short time Fourier transforms of brain waves
recorded with an EEG, the authors in [10] could distinguish different types of
musical rhythms perceived by their subjects.

The approach to employ time series data in slip detection tasks and the per-
formance of convolutional architectures suggests, that CNNs are an appropriate
choice to achieve a more fine grained classification of slippage events, in our
case to not only distinguish between stick and slip condition, but also to app-
roach the task of dividing the slip events further into translational and rotational
events. In the following section, we will first outline the sensing technology used
in our approach. Afterwards the employed convolutional architectures will be
described, evaluated and discussed.
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Fig. 1. Objects used for the evaluation and experimental setup for data recording. Two
KuKa LWR robots with attached tactile sensors (light orange) holding a glass. The
fingertip shaped sensor touching the glass from above is used to detect the onset of
slippage for data labeling purposes. (Color figure online)

2 Sensor Properties and Data Acquisition

We recorded data by holding three different objects, a cardboard cylinder, a
remote and a drinking glass, between two piezo-resistive tactile sensor arrays1 [9],
where each sensor array was attached to a 7 degree of freedom KuKa LWR
robotic arm. An image showing the objects used for training and evaluation and
the robot arms holding a drinking glass is shown in Fig. 1. The Myrmex sensor
consists of a printed circuit board (PCB) with 16× 16 taxels, each with a spatial
dimension of 5× 5 mm. Each taxel measures the change of resistance between
two electrodes that is induced by a piezo-resistive foam covering the PCB layer.
The change in resistance is digitized via a 12 bit analog-digital converter. The
data of all taxels is sampled at a rate of up to 1.9 kHz and transmitted to the
host PC via standard USB video protocol. An example of a single frame of the
sensor data while holding a cylindrical cardboard box and the change over time
of a single cell is shown in Fig. 2.

2.1 Data Recording

With three different objects, a total of 64 trials have been recorded for the three
classification classes, namely a stable state, translational and rotational slip.
We used two Myrmex sensors to hold the objects, each attached to the robot
arm’s end-effector as a “large” fingertip. The sensors were sampled with a rate
1 Called Myrmex hereafter.
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Fig. 2. An image representation of the raw sensor data for a single frame is shown on
the left. The right panel shows the raw value of a single cell over a whole trial.

of 1 kHz. The overall duration of these trials was 662.8 s, leading to a total of
≈ 1.3 M recorded sensor frames. To generate the slip events, we placed the objects
between the sensors and let the robots exert varying forces (between 1 and 20 N)
onto the objects, then moving the robotic arms slowly apart from each other. By
manually placing the object during grasping we could induce either translational
or rotational slip events: Translational slip events were generated by placing the
center of mass directly above the center of contact. For the rotational slip events,
the center of mass was placed horizontally shifted with respect to the center of
contact.

2.2 Data Labeling

Acquiring ground-truth labels for the onset of slippage is a demanding task.
For example, the authors in [13] hand labeled data based on video recordings
of the trials while in [11] an inertial measurement unit was attached to the
sliding object to provide a reference of the onset of slip events. The results from
[11] actually suggest, that incipient slippage can be detected even before such
traditional sensors as IMUs detect a motion of the object.

In our experiments we automated the labeling task of the data by placing
a third tactile sensor, using the same piezo-resistive principle, in contact with
the object, touching it from above. For technical reasons, this sensor could only
be sampled with a rate of 500 Hz, but the signals were synchronized with the
grasping Myrmex sensors. The onset of slippage was detected by evaluating the
contact forces measured with the third sensor. We set the onset of slippage to
the time when the sum of contacts on the third sensor started to decrease. The
end of the trial was determined by the point in time when no more contacts
were detected on the sensors holding the object. The sequence was labeled as
rotational or translational slip, respectively, depending on the initial manual
placement of the object.
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3 Convolutional Tactile Networks

The properties of our sensor, the spatial arrangement of tactile cells combined
with a high sampling frequency, suggest to use an approach similar to other
time series classification techniques. By calculating a short-time Fourier trans-
formation over a certain window size for each tactile sensor cell, we obtain a
spatially arranged stack of Fourier coefficients which resembles the structure of
RGB color images, but with an increased amount of channels – one per Fourier
coefficient. On each of the channels we apply convolution and pooling layers to
learn filters for each of the frequency bins. The output of these filters is fed into
a fully connected layer, which is finally connected to a softmax layer for the clas-
sification. A convolution filter of width w and height h calculates the activation
a at position i, j by multiplying the input activations xi+k,j+l from a previous
layer with weights Wk,l and is defined by Eq. 1 as

ai,j = σ(
w−1∑

k=0

h−1∑

l=0

Wk,lxi+k,j+l) (1)

where σ() is a activation function, for example tanh(). A max pooling layer
simply applies a max(0, x) function to a given input area of size w × h.

The spatial arrangement of the frequency bins has an additional benefit for
the classification task. For example in cases of translational slip, all active tactile
sensor cells should have a similar amplitude whereas in cases of rotational slip,
the amplitudes should differ because of increasing accelerations with respect
to the distance of the center of rotation. After initial tests with different filter
sizes in the convolution and pooling layers, we decided to investigate the three
architectures described in Table 1 in detail since larger filter sizes turned out to
decreased the classification performance slightly.

Table 1. Network architectures used in the evaluation. Here conv 3 × 3 is a convolution
layer with a kernel size of 3 × 3. pool 2 × 2 is a max pooling layer and fc 512 is a fully
connected layer with 512 neurons.

# Network architecture

1 conv 3 × 3 → pool 2 × 2 → fc 512

2 conv 3 × 3 → pool 2 × 2 → conv 3 × 3 → pool 2 × 2 → fc 512

3 conv 3 × 3 → pool 2 × 2 → conv 3 × 3 → pool 2 × 2 → fc 1024

4 Evaluation

To evaluate the proposed network architectures, we preprocessed the raw data
by computing short time Fourier transformations for each of the tactile cells.
We chose a window size of 64 ms for the STFTs, with a small shift of 8 ms.
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That is, receiving tactile data at 1 kHz, the net generates classification results at
a rate of 125 Hz. Additionally, the raw images were cropped to in include only
the innermost 12× 12 tactile cells of the sensor. This was necessary due to false-
positives occurring at the borders, caused by the mechanical mounting of the
foam. The raw data we recorded has another drawback with respect to practical
applications. The sensor orientation was fixed throughout the recordings and
gravity was the only acting force to create slippage events. Thus the slippage
and rotation only occurred in one direction. We therefore augmented the dataset
by rotating the raw data with 12 different angles, reaching from zero to 330◦

in steps of 30◦, before calculating the short time Fourier transformation, which
improves the generalization to other end-effector poses. Because stable states are
overrepresented in the dataset, we sub-sampled the raw data to obtain an equal
number of raw samples for the three classes. After the rotation and sub sampling
process, we have a total of ≈ 2.1 M data samples of dimension (12 × 12 × 32)
containing Fourier amplitudes. Fourier phases were not considered.

Before training, we split the dataset and kept 20 % of the available data
samples as a test set for evaluating the proposed networks architectures. The
data samples in the dataset were stored in an alternating fashion with respect
to the labels to assure an even distribution of the three classes in the training
and test set. We tested two conditions for the networks described in Table 1,
one considering all frequency components and one applying a 60 Hz high pass
filter, to explicitly remove low frequency vibrations from the robot arms before
training. Already the smallest network with only one convolution and pooling
layer achieves an accuracy of more than 91 %. Here the high pass filter increases
the accuracy by 1.6 %. Adding a second Convolution and pooling block increases
the classification accuracy further to nearly 98 %, when a high pass filter is
included. For the case with the high pass filtered input data, we carried out
an additional ten-fold cross-validation to confirm the results more thoroughly.
Therefore, we split the dataset in ten chunks of equal size, created a training set
from nine of the ten chunks and used the remaining chunk for testing. This was
done with each of the ten chunks as test data. Table 3 shows a confusion matrix
of the test accuracy for each network. The cells contain the average percentage
over the ten runs and confirm the previous results from Table 2.

An example of the training behavior of network 3 with respect to test accu-
racy and loss is shown in Fig. 3. The network converges towards the final test
accuracy after around 700000 iterations, where an iteration in this case is the
batch processing of 64 samples of Fourier transformed data.

Table 2. Test accuracy for the networks from Table 1 with and without high pass filter.
The last column shows the average time for a single forward pass.

# Accuracy w/o filter Acc. with high pass Time fwd pass

1 91.01 % 92.65 % 0.29 ms

2 96.12 % 96.5 % 0.44 ms

3 97.45 % 97.89 % 0.43 ms
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Table 3. Confusion matrices for the cross-validation of all networks with high pass
filtered data. The letters s, t and r indicate the classes for stable, translational and
rotational slip, respectively.

prediction
s t r

in
p
u
t s 90.79% 5.83% 3.38%

t 2.13% 92.58% 5.29%
r 2.15% 3.17% 94.68%

(a) Network 1.

prediction
s t r

s 95.73% 2.54% 1.73%

t 1.26% 96.37% 2.37%

r 0.97% 1.56% 97.47%

(b) Network 2.

prediction
s t r

s 97.57% 1.41% 1.02%

t 0.68% 97.73% 1.58%

r 0.51% 0.93% 98.56%

(c) Network 3.

Fig. 3. Test accuracy and loss during training of network 3 from Table 3. One iteration
in this figure is the batch processing of 64 samples.

5 Discussion

We presented an approach to detect translational and rotational slippage events
in robot manipulation tasks. To our knowledge, using neural networks to discrim-
inate between rotational and translational slip in addition to stable states has
not been done before, since recent state of the art techniques only used a binary
slip/non slip detection. We achieved state of the art classification results of more
than 97 % by utilizing a convolutional neural network approach in conjunction
with short time series of the sensor data. Using a consumer grade GPU for par-
allelization, the classification and preprocessing is fast enough to be integrated
in real world robot controllers, for example for online grasp force adaptation. An
interesting next step will be to transfer the work presented in this paper to the
fingertip sensor [5], shown in Fig. 1, which we used for automatic labeling.
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9. Schürmann, C., Haschke, R., Ritter, H.: Modular high speed tactile sensor sys-
tem with video interface. In: Tactile Sensing in Humanoids – Tactile Sensors and
Beyond@ IEEE-RAS Conference on Humanoid Robots (Humanoids) (2009)

10. Stober, S., Cameron, D.J., Grahn, J.A.: Using convolutional neural networks to
recognize rhythm stimuli from electroencephalography recordings. In: Advances in
Neural Information Processing Systems, pp. 1449–1457 (2014)

11. Su, Z., Hausman, K., Chebotar, Y., Molchanov, A., Loeb, G.E., Sukhatme, G.S.,
Schaal, S.: Force estimation and slip detection/classification for grip control using
a biomimetic tactile sensor. In: 2015 IEEE-RAS 15th International Conference on
Humanoid Robots (Humanoids), pp. 297–303. IEEE (2015)

12. Teshigawara, S., Tsutsumi, T., Shimizu, S., Suzuki, Y., Ming, A., Ishikawa, M.,
Shimojo, M.: Highly sensitive sensor for detection of initial slip and its application
in a multi-fingered robot hand. In: 2011 IEEE International Conference on Robotics
and Automation (ICRA), pp. 1097–1102. IEEE (2011)

13. Veiga, F., van Hoof, H., Peters, J., Hermans, T.: Stabilizing novel objects by learn-
ing to predict tactile slip. In: 2015 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pp. 5065–5072. IEEE (2015)

14. Vina, B., Francisco, E., Bekiroglu, Y., Smith, C., Karayiannidis, Y., Kragic,
D.: Predicting slippage and learning manipulation affordances through gaussian
process regression. In: 2013 13th IEEE-RAS International Conference on Humanoid
Robots (Humanoids), pp. 462–468. IEEE (2013)

15. Yuan, W., Li, R., Srinivasan, M.A., Adelson, E.H.: Measurement of shear and slip
with a GelSight tactile sensor. In: 2015 IEEE International Conference on Robotics
and Automation (ICRA), pp. 304–311. IEEE (2015)



DeepPainter: Painter Classification Using Deep
Convolutional Autoencoders

Omid E. David1(B) and Nathan S. Netanyahu1,2

1 Department of Computer Science, Bar-Ilan University, Ramat-Gan, Israel
mail@omiddavid.com, nathan@cs.biu.ac.il

2 Center for Automation Research, University of Maryland, College Park, MD, USA
nathan@cfar.umd.edu

Abstract. In this paper we describe the problem of painter classi-
fication, and propose a novel approach based on deep convolutional
autoencoder neural networks. While previous approaches relied on image
processing and manual feature extraction from paintings, our approach
operates on the raw pixel level, without any preprocessing or manual
feature extraction. We first train a deep convolutional autoencoder on
a dataset of paintings, and subsequently use it to initialize a supervised
convolutional neural network for the classification phase.

The proposed approach substantially outperforms previous methods,
improving the previous state-of-the-art for the 3-painter classification
problem from 90.44 % accuracy (previous state-of-the-art) to 96.52 %
accuracy, i.e., a 63% reduction in error rate.

1 Introduction

Art forgery, which dates back more than two thousand years, has played a key
role in the development of painting authentication. This task has been usually
performed manually by art experts who have dedicated their lives to this profes-
sion. Their expertise amounted to using various characteristics other than what
the human eye can see, including chemical analysis, spectrometry, and infrared or
X-ray imaging. The infamous Vermeer forgery [12] attests, perhaps, most vividly
to the challenges presented by painting authentication. Han van Meegeren used
historical canvasses and managed to deceive art experts into believing that his
painting was an authentic Vermeer. Only after being charged with treason and
sentenced to death for selling another (forged) Vermeer, did he confess and was
forced to create another painting to prove himself innocent of treason. A more
recent case of painting authenticity involves the Pollock paintings found a decade
ago in a storage locker in Wainscott, NY. The authenticity of these paintings was
compromised on the basis of computer analysis of the paintings’ fractal dimen-
sion [14]. This claim was subsequently disputed by analyzing childlike drawings
that supposedly have the same fractal dimension as the Pollock paintings [3].

In this paper we address the closely related problem of painting classification,
i.e., the task of assigning a specific artist to a given painting (from a dataset of
paintings by several artists). Note that the image authentication problem can
c© Springer International Publishing Switzerland 2016
A.E.P. Villa et al. (Eds.): ICANN 2016, Part II, LNCS 9887, pp. 20–28, 2016.
DOI: 10.1007/978-3-319-44781-0 3
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be viewed as a binary image classification problem (i.e., determine whether or
not a given painting was painted by a certain artist). Recent developments for
both problem types have focused on preprocessing techniques of reducing the
high dimensionality of visual data to low-dimensional representations which can
be manipulated towards image understanding.

Levy et al. [9,10] applied feature extraction to paintings using generic image
processing (IP) functions (e.g., fractal dimension, Fourier spectra coefficients,
texture coefficients, etc.), and restricted Boltzmann machines (RBM), followed
by genetic algorithms (GA)-based learning of the weights of a weighted nearest
neighbor (WNN) classifier [13]. Their approach achieved 90.44 % classification
accuracy for the 3-painter classification problem.

In this paper we present the problem of painter classification and briefly sur-
vey recent research that has been conducted in the field. We then present our
novel approach, which uses convolutional autoencoders (CAE) instead of image
processing based feature extraction. We subsequently use the trained CAE to
initialize a convolutional neural network (CNN) for supervised training on spe-
cific painters. The results demonstrate a substantial improvement over previous
methods, improving the accuracy to 96.52 %. This sets a new state-of-the-art for
the painter classification problem.

2 Background

Image authentication is the task of determining whether or not a given painting
was painted by a specific artist. The related task addressed by us, though, is
image classification, i.e., the task of determining the artist of a given painting
(from a certain group of artists). The input to our problem consists of painting
images of the group of artists (several paintings of each artist), and our objective
is to automatically classify a given painting. One of the difficulties in solving
this problem is that we cannot define a certain set of rules that the painting
has to conform to in order to classify it to the subgroup corresponding to the
correct artist. For this reason, computer vision techniques which are capable
of identifying shapes and objects in an image are not sufficiently effective for
solving the problem.

Formerly there have been attempts to harness the strength of image analysis
tools to classify historical art paintings into categories of artists or genres. Levy
et al. [9] used GA-based WNN with a set of 78 prevalent image features for
classifying paintings by Rembrandt, Renoir, and van Gogh, obtaining 80 % clas-
sification accuracy. In their later work [10], they augmented their approach by
also adding 20 features using restricted Boltzmann machines (RBM) [2], improv-
ing the classification accuracy to 90.44 %.

Herik and Postma [15] surveyed image features relevant to the historic art
domain and concluded that neural network techniques combined with domain
knowledge were most suitable to the task of automatic image classification.
Under-drawing strokes in infrared reflectograms were analyzed by Kammerer
et al. [4] in order to classify how and by what tools paintings are painted. Natural
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language processing techniques using a naive-Bayes classifier and the coefficients
of a discrete cosine transform (DCT) were used by Keren [5] in order to classify
local features in an image. Kroner et al. [7] classified drawings by using image
histograms and pattern recognition methods.

The above past research focused on specific image processing features tailored
for specific datasets (such as ink paintings, infrared reflectograms, or black and
white sketches). This domain-specific knowledge facilitates the exploitation of
various characteristics of the painting-specific domain.

In the next section we present our convolutional autoencoder based app-
roach, which does not incorporate any domain-specific knowledge, and in fact is
operating solely on the raw pixel level.

3 Feature Extraction Using Convolutional Autoencoders

3.1 Convolutional Neural Networks

In recent years convolutional neural networks (CNN) [1,6,8] have outperformed
conventional image processing methods in all computer vision related tasks they
have been applied to. The architecture of a CNN typically includes several com-
ponents which are stacked on top of each other: the convolutional layer, the
max-pooling layer, which subsamples the data (e.g., for each 2× 2 region selects
only the maximum value, thus resulting in four times reduction in size), and
finally a classification layer (and usually several fully connected layers before the
classification layer). Figure 1 shows a typical CNN,

Fig. 1. Typical architecture of a convolutional neural network.

Standards CNNs are usually used in a supervised framework, where a large
training dataset (typically including at least many thousands of images per class)
is available. Thus, using CNNs for end-to-end painter classification is problem-
atic, due to a smaller number of training samples available per painter (usually
from a few tens of paintings to at most a few hundred paintings for more prolific
painters).
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3.2 Autoencoders

Where small number of training samples are available, unsupervised pretraining
has proven highly effective [2,16]. Unsupervised training methods using neural
networks involve either the use of restricted Boltzmann machines (RBM) [2]
which are trained using contrastive divergence, or autoencoders [16] which are
training using standard backpropagation.

The basic principle for all methods involves receiving an input x and mapping
it to a latent representation h, using a function h = σ(Wx + b), where σ is a
nonlinear activation function, W is a matrix of weights between the two layers,
and b is bias. The autoencoder then tries to reconstruct the original input by y =
σ(W ′h + b′). Thus, each training sample xi is first mapped to a hidden layer hi

and then reconstructed to yi. The autoencoder is trained using backpropagation
to reduce this reconstruction error.

3.3 Convolutional Autoencoders

The principles behind convolutional neural networks and autoencoders can be
combined to produce convolutional autoencoders (CAE). Several approaches
involving the combination of these methods have been explored in the past,
and here we use a CAE architecture along the lines presented in [11,17,18].

In order to use CNNs as autoencoders, for each convolutional layer, a corre-
sponding deconvolutional layer should be constructed. Additionally, max-pooling
layers result in loss of information, and so an unpooling layer should try to
approximately restore the original values. Note that the subsampling due to
max-pooling in fact operates as a strong regularizer.

Deconvolution layers can either be equal but transposed to the original con-
volution layers, or learned from scratch. Often both approaches work equally
well in practice. This is similar to standard autoencoders where the weights of
the decoder layer W ′ can either be learned from scratch, or set to the transpose
of the encoder layer (W ′ = WT ), this is referred to as tied weights.

Fig. 2. Pooling and unpooling layers. For each pooling layer, the max locations are
stored. These locations are then used in unpooling layer.
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Several methods have been applied in the past for the unpooling operation
[11,17,18]. Here we employ the method used in [18], where during pooling, the
location of maximum value is stored, such that during unpooling the value is
restored in that location, and the other locations are set to zero. Figure 2 illus-
trates unpooling, and Fig. 3 shows a complete convolutional autoencoder struc-
ture.

After training a CAE, we can remove the unpooling and deconvolution com-
ponents, and use the convolution and pooling components to initialize a super-
vised CNN, by adding a fully connected layer followed by a classification layer.

4 CAE and CNN for Painter Classification

For unsupervised training of CAE, we use a randomly selected set of 5,000 paint-
ings from the Webmuseum (webmuseum.meulie.net/wm). The images have 24-
bit color depth with varying resolutions averaged approximately at 1000× 1000
pixels, and compressed as JPEG formatted files. We have resampled the images
and normalized them to 256 × 256 pixels. The goal here is to train the CAE to
find features that are specifically useful for paintings, which have a more specific
color and composition range in comparison to real-world images.

Fig. 3. Illustration of convolutional autoencoder. In this example the CAE comprises
two convolution layers and their two corresponding deconvolution layers, and two max-
pooling layers and their corresponding unpooling layers.

Our CAE contains the following layers (see Fig. 3). The convolution filter sizes
are always of size 5 × 5.

1. the input layer consists of the raw image (resampled to 256 × 256 pixels) in
three channels (R, G, and B)

2. convolutional layer of size 100 × 256 × 256
3. max-pooling layer of size 2 × 2
4. convolutional layer of size 200 × 128 × 128
5. max-pooling layer of size 2 × 2
6. unpooling layer of size 2 × 2
7. deconvolutional layer of size 200 × 128 × 128
8. unpooling layer of size 2 × 2
9. deconvolutional layer of size 100 × 256 × 256

http://webmuseum.meulie.net/wm
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The learning rate starts from 0.01 and is multiplied by 0.98 after each epoch.
In order to further encourage the CAE to find meaningful features, we randomly
remove 20 % of the pixels for the images per epoch. The concept here is similar to
that of denoising autoencoders [16] which outperform traditional autoencoders.

The supervised classification benchmark is identical to that used by Levy
et al. [9,10] in their experiments. It consists of (3 × 40 =) 120 digital reproduc-
tions of paintings by Rembrandt, Renoir, and van Gough, downloaded from the
Webmuseum. The Appendix contains the painting titles of the images used in
our experiments.

Having trained a CAE, we can now remove the decoder components (items
6 to 9 in the above list) and use the CAE for initializing a supervised CNN. On
top of these components due to CNN, we add two fully connected layers of size
400 and 200, followed by a softmax output unit of size three (since there are
three painters in the benchmark). The cross entropy loss is used.

The full CNN contains the following layers (see Fig. 1):

1. the input layer consists of the raw image (resampled to 256 × 256 pixels) in
three channels (R, G, and B)

2. convolutional layer with 100 5 × 5 filters per input channel
3. max-pooling layer of size 2 × 2
4. convolutional layer with 200 5 × 5 filters per map
5. max-pooling layer of size 2 × 2
6. fully connected layer of size 400
7. fully connected layer of size 200
8. output softmax layer of size 3

To make our results directly comparable to those of Levy et al. [9,10], we
conducted 10-fold cross validation, where in each of 10 runs 90 % of the data is
used for training, and 10 % for validation.

Table 1. Classification accuracy for several previous methods and our CAE based
method. The results are the average over 10-fold cross validation.

Feature extraction method Supervised learning method Accuracy

Image Processing Nearest Neighbor 65.71 %

Image Processing SVM 68.33 %

Image Processing Genetic Algorithm 78.33 %

RBM Nearest Neighbor 64.41 %

RBM SVM 77.50 %

RBM Genetic Algorithm 73.92 %

Image Processing + RBM Nearest Neighbor 68.71 %

Image Processing + RBM SVM 71.66 %

Image Processing + RBM Genetic Algorithm 90.44 %

Convolutional Autoencoder CNN 96.52%



26 O.E. David and N.S. Netanyahu

After performing 10 such training and validation runs, the average accuracy
obtained for our CNN over the validation set is 96.52 %. This represents a 63 %
reduction in error rate in comparison to the previous state-of-the-art on this
benchmark, which stood at 90.44 %.

Table 1 provides a summary of the classification accuracies obtained by pre-
vious methods and our method.

5 Conclusion

Automatic painter classification has gained much attention over the past decades,
and much progress has been made with regards to both relevant preprocessing
techniques and classification algorithms. Still, the problem of painter classifica-
tion remains a complex task that requires more sophisticated techniques.

The results presented in this paper show that deep learning methods can
be effectively employed for painter classification. Specifically, our results show
that convolutional autoencoders are capable of extracting meaningful informa-
tion from paintings, and combined with supervised convolutional networks, we
managed to substantially improve the previous state-of-the-art, from 90.44 %
accuracy (previous state-of-the-art) to 96.52 % accuracy, i.e., a 63 % reduction
in error rate.

Appendix

This appendix lists the (40× 3) = 120 titles of the paintings experimented with
by van Gogh, Rembrandt, and Renoir.

Table 2. Bigrams frequency.

# van Gogh Rembrandt Renoir

1 bandaged-ear abraham apres-bain

2 berceuse anslo baigneuses

3 cordeville aristotle-homer bathers-1887

4 corridor-asylum artemis bathers-1918

5 cypress-star bathing-river bougival

6 cypresses bathsheba canoeist

7 flower-beds-holland belshazzar chocquet

8 green-vineyard children city

9 green-wheat-field danae country

10 house-ploughman david dancer

11 mme-trabuc descent durieux

12 mr-trabuc emmaus flowers

(continued)
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Table 2. (continued)

# van Gogh Rembrandt Renoir

13 old-mill hendrickje gabrielle

14 old-vineyard holy-family girl-seated

15 olive-alpilles jan-six jugglers

16 olive-trees magn-glass lady-piano

17 orchard-bloom-poplars meditation laundress

18 orchard-plum-trees mill loge

19 poppies music-party lucie-berard

20 red-vineyard nicolaes-tulp near-lake

21 reminiscences old-man fournaise

22 road-menders ostrich horsewoman

23 roulin potiphar meadow

24 self-1 prodigal-son moulin-galette

25 self-2 raising-lazarus nini

26 self-easel .1640 parapluies

27 self-gauguin .1661 premiere-sortie

28 self-orsay .1669 promenade

29 self-whitney .night-watch ride

30 skull-cigarette return-prodigal-son romain-lacaux

31 sun-cloud ruts sisley-wife

32 threatening-skies samson women

33 trees-asylum scholar seashore

34 trees-ivy-asylum self-1629 seated-bather

35 village-stairs self-1634 sewing

36 wheat-field self-1660 sisley

37 wheat-rising-sun slaughtered-ox swing

38 willows staalmeesters terrace

39 peasant stofells watercan

40 woman-arles tobias woman-veil
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Abstract. In this paper we reinvestigate Deep Convolutional Neural
Networks (DCNNs) for RGB-D based object recognition. A previously
proposed method in which DCNNs are pretrained on a large-scale RGB
database and just fine-tuned to process colorized depth images is taken
up and extended. We introduce and analyse multiple solutions to improve
depth colorization and propose a new method for depth colorization
based on surface normals. We show that our improvements increase
the classification accuracy significantly, such that we can present new
state-of-the-art results for the Washington RGB-D dataset. Our results
also indicate that classification using only surface normals without RGB
images outperforms classification using pure RGB images, which is to
our knowledge a novel discovery in the field of DCNNs.

Keywords: Deep learning · Deep Convolutional Neural Networks ·
Fusion networks · Object recognition · RGB-D · Surface normals

1 Introduction

In the recent past, Deep Convolutional Neural Networks (DCNNs) have been
used in RGB color image classification tasks with great success. First research
investigations in the field of DCNNs incorporating also depth information, as
provided by pervasively used RGB-D sensors, were proposed. However, to suc-
cessfully train well generalizing DCNNs, very large databases of labeled training
examples are required. While there are rich databases containing pure RGB data
as, e.g., ImageNet [6], available databases for RGB-D images are quite rare and
up to now not that large. Nonetheless, a very interesting approach to deal with
this issue was addressed by Eitel et al. in [8]. Basically, their approach follows the
idea of colorizing the depth channel of an RGB-D image, i.e., transforming it into
a separate RGB image that can then be processed by a DCNN originally trained
on a large-scale RGB database. More concretely, they reused and duplicated
the feature extraction layers of a pre-trained DCNN, where the first network
processes the RGB part and the second network processes the colorized depth
part separately. Only in the last layer before the output layer these two process-
ing pipelines are fused. This well elaborated design achieved the so far best
c© Springer International Publishing Switzerland 2016
A.E.P. Villa et al. (Eds.): ICANN 2016, Part II, LNCS 9887, pp. 29–37, 2016.
DOI: 10.1007/978-3-319-44781-0 4
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published state-of-the-art results for a category classification task on the Wash-
ington RGB-D dataset [11]. Even though the proposed approach demonstrated
a great potential, one of its shortcomings is the way how the depth channel is
colorized. When thinking of incorporating depth information for object recog-
nition with DCNNs, a promising approach could be to use estimated surface
normals, which should in principle provide local structure information better
than pure depth images with absolute relations. However, in [8] it was pointed
out that in the overall system simply mapping the entire range of depth values
onto the jet color map was not inferior to other methods, including the use of
surface normals as proposed earlier in [5]. But these results appeared surprising
and were against our assumption. Hence, we re-investigated the approach in [8],
while focusing on a more sophisticated colorization technique, which is mainly
the aim of this paper. Thereby, our research contributions are as follows: First,
we introduce and analyse multiple solutions to improve depth colorization. Sec-
ond, we propose a new method for depth colorization based on surface normals.
Third, we show that our improvements increase the classification accuracy signif-
icantly, such that we can present new state-of-the-art results for the Washington
RGB-D dataset. Finally, our results also show that for object databases with
objects of significantly different shapes, classification using only surface normals
without RGB channels may outperform classification using pure RGB images,
which is to our knowledge a novel discovery in the field of DCNNs. Nonetheless,
the combination of RGB and depth still performs best.

2 Methodology

2.1 Deep Neural Network Architecture

In the study of Eitel et al. [8] the presented two-stream DNN approach incor-
porates processing RGB and depth images, whereas RGB and (colorized) depth
images are processed separately through several layers and only combined in
the end using a fully connected layer for fusion and one softmax layer for clas-
sification. The overall network architecture of this work, which is refered to as
FusionNet, is depicted in Fig. 1. Each stream (RGB and depth) consists of lay-
ers based on the CaffeNet [7], which is a variation of the AlexNet [10]. More
precisely, a stream consists of an input layer, 5 convolution layers, two fully
connected layers and a softmax layer with pooling layers after the first, second
and fifth convolution layer. For the FusionNet the softmax layers are removed
and replaced by a fully connected layer that fuses both streams, followed by a
softmax layer.

2.2 Dataset

The Washington dataset [11] consists of 51 different object classes, e.g. apple,
with image sets of several individual objects belonging to each class, e.g. green
apple or red apple, which are referred to as instances. For every RGB image there
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Fig. 1. Picture of the FusionNet architecture as used in [8]. Each horizontal block
represents a layer of the network. Blue layers are part of the RGB stream, green layers
are part of the depth stream. Each stream is a CaffeNet without its classification layer.
Gray layers fuse both streams together and do classification based on the combined
information. (Color figure online)

is a corresponding depth image in which the distance from the camera is stored
in millimeters for every pixel. To enable the network to work with the dataset,
the images need to be of a square shape and match a specific size. As in [8], for
squaring of the Washington dataset images we used border replication, which
means replicating the pixels of the longer sides of an image until it is squared
(see Fig. 2). We resized all images to 256 × 256.

Fig. 2. Border replication for squaring dataset images. The outer pixels of the longer
side are replicated along the axis of the shorter side until the entire image is quadratic.
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3 Experimental Setup

There are several approaches for color-coding depth maps, such as calculating
and colorizing surface normals [5], HHA, which encodes “horizontal disparity,
height above ground, and the angle the pixel’s local surface normal makes with
the inferred gravity direction” [9] and an approach proposed by Eitel et al. [8],
in which depth values are colorized applying a JET color map. They normalized
depth values with respect to the maximum and minimum value of an image to be
represented as natural numbers between 0 and 255. For colorization they applied
a JET color map provided by OpenCV. But normalization only considering min-
imum and maximum values is suboptimal. Thus we proceeded by calculating the
standard score for every raw depth value. We then applied a clipping function,
constricting the range of values between −1.5 and 1.5 to catch outliers. We
added 1.5 to all values and divided them by 3. Finally, all values where multi-
plied by 255 and rounded to allow color mapping. Another problem was that
every depth image contains missing information stored as 0. To tackle this prob-
lem, we applied a recursive median filter as proposed by Lai et al. in [11]. The
median filter is applied on missing values only considering non-missing values in
its kernel. We applied the filter recursively until there were no missing values left.
Figure 3 shows the results after applying different kinds of image modification. It
is apparent that standardizing alone improves the visual outcome of color map-
ping. Reconstructing missing values makes it even more homogeneous. Although
colorization using color mapping created good results overall, we thought there
were two main problems with that approach. Firstly, the more space is covered
by the depth map, the more the color map is spread across the area, leaving less
color diversity to the actual object (see Fig. 4). Consequently the final coloriza-
tion of an object also depends on the absolute distance from the camera and can
be very different from image to image. Secondly, there does not seem to appear
much information about the actual structure of the object. Given this observa-
tion, our goal was to find a better colorization method to create more consistent
information. We therefore calculated and colorized the surface normals for every
pixel, which better represent form and surface structure. We calculate the gra-
dients for each pixel in horizontal (x-axis) and vertical direction (y-axis) using
the Sobel operator. We define two 3D vectors a, b in direction of the z-axis with
calculated gradients. We can calculate the surface normal n by calculating the
cross product of a and b. As n has 3 dimensions, we map each of the three val-
ues of the surface normal (x, y, z)T to a corresponding RGB channel, namely,
x → R, y → G, z → B. Due to construction we have x, y ∈ [−1, 1] and z ∈ [0, 1].
As RGB channels consist of natural numbers between 0 and 255, we calculate
r, g and b according to

(
r, g, b

)
=

(�x+1
2 · 255�, �y+1

2 · 255�, �z · 255�). Figure 5
shows the result of calculating and colorizing surface normals in comparison to
color mapping after standardization/normalization and color mapping. Although
structural information seems to be more present with surface normals than after
JET color mapping, there are also bigger patches of a slight pinkish color due
to depth data inaccuracy. To achieve a more homogeneous image we designed
a ’unique box blur’ filter to fill up areas between colorized lines, such that the
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Fig. 3. Comparison of color map colorization showing improvements over the original
approach using colormapping alone (second image). From left to right, the first three
images show colorization results after jet colormapping without and with standardiza-
tion. Images four to six show the same with prior missing value reconstruction. (Color
figure online)

Fig. 4. Results after colorization using simple color mapping vary greatly depending
on the covered spatial area of the image. Maximum distance in the left image is 3.12 m
compared to 0.80 m in the right image. (Color figure online)

Fig. 5. Images of a cap in RGB (left), after jet colormapping with standardization and
missing value reconstruction (middle) and surface normals (right). (Color figure online)

result is a homogeneous transition between colors. For a depth point pij with
the indices (i, j) of a depth map D we define a matrix A such that the matrix
contains all pixels surrounding pij according to a kernel size. Let LA be a list
storing all values of A. We remove all duplicates in LA and calculate the mean
value m of LA. To make sure that mostly points are changed that are in fact
part of a same-value area we add the constraint that LAunique must not have
more entries than the amount of entries in our kernel multiplied by a threshold
factor t. For this experiment we chose t = 0.5. We assign pij = m. Results are
shown in Fig. 6.

For training and evaluation of the FusionNet we used the experimental setup
and sampling method presented in [11]. Hence, we sub-sampled our data base
taking only every fifth image of the preprocessed RGB-D dataset. From this
subset we excluded a random instance of every class from the training data
base and added it to a testing data base. This whole process was repeated 10
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Fig. 6. Surface normal images after multiple iterations of unique box blur applied on
a depth map. The procedure eliminates the discontinuities induced by the 3D sensor.
(Color figure online)

times to measure average performance. Stream weights were initialized with the
values of a CaffeNet model pre-trained on the ImageNet dataset. In this work,
the model available in [7] was used. We then fine-tuned each stream separately,
using the corresponding images from the modified Washington RGB-D dataset.
As in [8] each stream was fine-tuned over 30000 iterations with learning rate of
0.01 which was reduced to 10−3 after 20000 iterations with a mini-batch size of
128. Training consisted of 30 epochs with a mini-batch size of 256 for each input
stream, initial learning rate 0.01, which dropped after about 67 % by a factor of
0.1, momentum factor of 0.9 and weight decay of 2 · 10−4. As suggested in [8],
for FusionNet training the weights of the individual stream layers were fixed by
setting their learning rate multiplier to 0.

4 Results and Discussion

Table 1 shows the accuracy of the FusionNet on the test set in comparison to
other approaches. We see that improving color mapping improves the perfor-
mance of the depth stream and the overall FusionNet. Furthermore, we see that
the FusionNet using our surface normal method achieves an accuracy of 94.0 %
on the test set, which is, to or knowledge, the best result achieved on this classi-
fication task to date. In Fig. 7 we show RGB images of an apple, a cap and two
bowls and their corresponding colorized surface normal images. There are two
things we think are important. First, for objects with distinct shapes there is
often more structural information in surface normal images than in RGB images.
For instance, the apple on the RGB image appears like a dark area, the surface
normal image in contrast contains much information about the apple shape.
We can make similar observations on the cap images. It is surprising that with
suitable computed surface normals the classification accuracy on the Washing-
ton RGB-D data set is higher based on depth data alone (88.0%) than on RGB
data (84.7%). Second, similarly shaped objects of different color may more easily
be classified as one class based on surface normals than on color. For example,
the two bowls in Fig. 7 which are very different in color become very similar
in the surface normal image because their local shape structure is comparable.
It makes sense to assume that this helps to classify an unseen instance of that
object category, which should also share those structural characteristics, even if
it is different in color.
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Table 1. Classification rate [%] on the test set of the Washington RGB-D dataset [11].

Method RGB Depth RGB-D

Nonlinear SVM [11] 74.5 ± 3.1 64.7 ± 2.2 83.9 ± 3.5

HKDES [3] 76.1 ± 2.2 75.7 ± 2.6 84.1 ± 2.2

Kernel Desc. [4] 77.7 ± 1.9 78.8 ± 2.7 86.2 ± 2.1

CKM Desc. [2] N/A N/A 86.4 ± 2.3

CNN-RNN [13] 80.8 ± 4.2 78.9 ± 3.8 86.8 ± 3.3

Upgraded HMP [5] 82.4 ± 3.1 81.2 ± 2.3 87.5 ± 2.9

CaRFs [1] N/A N/A 88.1 ± 2.4

CNN Features [12] 83.1 ± 2.0 N/A 89.4 ± 1.3

FusionNet Eitel et al. (HHA) [8] 84.1 ± 2.7 83.0 ± 2.7 91.0 ± 1.9

FusionNet Eitel et al. (jet) [8] 84.1 ± 2.7 83.8 ± 2.7 91.3 ± 1.4

FusionNet (jet)a 84.7 ± 3.7 81.8 ± 2.7 91.2 ± 1.6

FusionNet (improved jet)a 84.7 ± 3.7 82.9 ± 3.3 92.1 ± 2.0

FusionNet (surface normals)a 84.7 ± 3.7 88.0 ± 2.5 94.0 ± 2.4
aThis paper.

Fig. 7. Examples of RGB images and corresponding surface normal images demonstrat-
ing the advantage of colorized surface normals in terms of emphasizing local structures.
(Color figure online)

5 Conclusion

Deep neural networks are one of the most powerful machine learning architec-
tures nowadays, particularly for a broad range of image recognition tasks. Eitel et
al. proposed a promising deep convolutional neural network design for RGB-D
data processing (FusionNet) and an effective way of color-coding depth infor-
mation. As the performance of a neural network strongly depends on the data
we train it with, we modified the training input of the FusionNet in two ways:
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We improved Eitel et al.’s depth colorization method, combining standard val-
ues with a recursive median filter for reconstructing missing depth information,
which increased accuracy considerably. Secondly, we proposed an alternative col-
orization method based on the calculation of surface normals, which significantly
increased category classification precision even further. These are, to our knowl-
edge, the best results on the Washington RGB-D dataset to date. Moreover,
we showed that category recognition based on surface normals can outperform
recognition based on RGB images alone, if the objects have distinctive shapes
and diverse colors. As to our knowledge this is a new finding, we presented an
analysis of why that is the case, giving examples to demonstrate that under
the above assumptions surface normals hold better information about object
categories than RGB images.
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Abstract. Deep Learning (DL) has shown real promise for the classifica-
tion efficiency for emotion recognition problems. In this paper we present
experimental results for a deeply-trained model for emotion recognition
through the use of facial expression images. We explore two Convolu-
tional Neural Network (CNN) architectures that offer automatic feature
extraction and representation, followed by fully connected softmax lay-
ers to classify images into seven emotions. The first architecture explores
the impact of reducing the number of deep learning layers and the sec-
ond splits the input images horizontally into two streams based on eye
and mouth positions. The first proposed architecture produces state of
the art results with an accuracy rate of 96.93 % and the second archi-
tecture with split input produces an average accuracy rate of 86.73 %,
respectively.

Keywords: Deep learning · Convolution neural networks · Emotion
recognition · Empathic robots

1 Introduction

It has long been suggested that emotions are an important aspect of everyday
life and essential for effective human-to-human interactions [1]. There has been
a growing focus on improving interaction between humans and machines by
allowing this to happen in a natural manner [2]. One way to enable this natural
interaction is to allow the machine to recognise the emotional state of the user,
empathise with them and create appropriate responses [3]. For example, a social
robot would be able to encourage a cancer patient to take their medication in a
more efficient manner if it could understand the emotional state of the patient.
In this work we present experimental results on emotion recognition through
the use of facial expressive images, a first step towards the development of an
emphatic robot.

Humans express emotions through facial expressions, therefore automated
emotional recognition systems have relied on these to recognise emotions. Vari-
ous intelligent techniques have been used to perform emotion recognition from
c© Springer International Publishing Switzerland 2016
A.E.P. Villa et al. (Eds.): ICANN 2016, Part II, LNCS 9887, pp. 38–46, 2016.
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faces such as Hidden Markov Models [4], State Vector Machines [5] and neural
networks [6,7]. We have recently seen in the development of the use of deep learn-
ing (DL) for neural networks to perform classification [8–14]. This paper will
explore two architectures for Convolutional Neural Networks (CNN) to achieve
deep learning classification of emotional states: Happy, Sad, Angry, Surprise,
Fear, Disgust, and Neutral, from facial expressive images. These architectures
will firstly, explore the impact on reducing the number of deep learning lay-
ers and secondly, the use of a novel image representation approach that splits
the input images and makes use of two deep learning streams. The structure of
the paper is as follows: Section 2 gives a brief description of the background on
existing work; Sect. 3 describes the experimental methodology employed; Sect. 4
reports the results obtained. The succeeding section provides conclusions to the
paper including future work.

2 Human Emotion Recognition - Previous Approaches

Human emotion recognition mechanisms, whether psychological or neurological,
often rely on facial features to detect or recognize a specific emotion. However,
the creation of a robot that can recognise emotions from images raises a num-
ber of difficulties. For example, using good quality images with enough relevant
emotion-related information is often difficult due to the high computational costs
imposed by big data processing and imminent changes in the environment [15].
One efficient way to overcome the former is by surveying the environment in
an explorative stage and then quickly extract important features for this envi-
ronment through Deep Learning, which can then be used to train a controller
to achieve a specific task [15]. In order to overcome the high computational
costs imposed by big visual sensory data, Altahhan [15] introduced a model that
utilizes double deep learning for feature representation and action learning.

In this paper we focus on facial expression images due to the greater amount
of emotion related information they contain. This approach exploits facial fea-
tures such as the mouth, eyes, eyebrows and nose to classify people images as
having a specific emotion. Khashman [16] proposed a neural network architec-
ture which includes a pair of emotional neurons to account for anxiety levels.
Additionally, global pattern averaging is applied in order to reduce the size of the
input image over a tenfold. Khashman [16] reports an accuracy rate of 87.78 %
for the proposed architecture. Another common approach to emotion recogni-
tion is making use of facial feature point localization. Sohail, and Bhattacharya
[17] presented a method which includes identifying eleven different points and
measuring the distances between these. This method requires reconstructing a
representation of a neutral face to use as reference. Once a feature vector is
obtained, this is inputted to a neural network which produces an average recog-
nition rate of 92 %. A similar feature extraction method has been introduced by
Hewahi and Baraka [18] in which they extract 28 features which describe the
distances between certain points. They also consider ethnic group as an input
factor while building the recognition model; a backpropagation neural network,
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and have reported an accuracy rate of 83.3 %. Gabor filter is also one of the
most popular methods in image-processing due to its ability to detect edges
and remark salient features, and due to its resemblance to the perception in the
human visual system [19]. Ahsan et al. [19] have used a combination of Gabor
filter with Local Transitional Pattern together with an SVM to successfully clas-
sify facial expression images, obtaining an average accuracy rate of 95 %. Chelali
and Djeradi [20] have proposed a similar approach which relies on the magnitude
vector produced by Gabor filter.

Most of the approaches described above produce state of the art results for
the first stage of the problem we aim to solve: emotion recognition. However,
they lack the capacity to create an approach that represents and selects the
salient features in an autonomous manner. This issue can conveniently be solved
by employing Deep Learning (DL) techniques as done by Altahhan [15]. DL
offers an outstanding alternative to prescribed feature extraction and represen-
tation. More precisely, Convolution Neural Networks (CNN) have the ability to
autonomously create a vector of salient features while at the same time reduc-
ing dimensionality space by having fewer parameters than fully connected net-
works with the same number of layers. Levi and Hassner [8] use different image
representations, including Local Binary Pattern features, as input to a num-
ber of CNN ensembles in order to boost recognition performance. Ouellet [9]
presented a deep CNN to extract relevant features from still images and then
classify them as seven different emotions using a Support Vector Machine. The
author reports a recognition rate of 94.4 % after training with 1.2 million images.
Researchers at Google Inc. have proposed a 22 layer network, omitting five pool-
ing layers, architecture called GoogLeNet [10]. This architecture has set a state
of the art benchmark for classification and detection in the ImageNet Large-
Scale Visual Recognition Challenge 2014 and has inspired a number of other
architectures [10]. Another architecture for large scale recognition is proposed
by Krizhevsky et al. [11]. Burkert et al. [12] presented an architecture with a
pair of parallel feature extraction blocks consisting of Convolutional, Pooling,
and rectified linear unit (ReLU) Layers. The authors achieved an average 99.6 %
accuracy rate on the CKP dataset.

3 Methodology

3.1 Emotional Face Corpus

The emotion recognition from faces using CNN in this paper used the Karolinska
directed Emotional faces database (KDEF) [21]. It contains a set with 70 indi-
viduals: 35 males and 35 females, all between 20 and 30 years old, each displaying
seven different emotional expressions in five different angles. In our experiments
we only use front angle images; a subset of 980 images. All images were taken
under a con-trolled environment: subjects wore uniform T-Shirt colours, faces
were centred with a grid, and eyes and mouths were positioned in fixed image
coordinates [21]. To speed up training, face images were extracted, grey-scaled
and resized to 100 by 100 as shown in Fig. 1 below. Our training set contained
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Fig. 1. Sample extracted face images from the KDEF database [21]. Subject 07 dis-
playing seven emotions: sad, surprised, neutral, happy, fear, disgust, angry.

98 randomly selected front angle images per emotion, giving us a total of 686
input samples. Our testing set contained 42 images per emotion and thus a total
of 294 training samples.

3.2 Architectures

Since our aim is to explore biologically inspired neural architectures we decided
to employ CNN for feature extraction and representation given that they are
inspired by animal vision cortex [13]. These models are well known for their
ability to extract salient features and for being faster than traditional mod-
els such as Multilayer Perceptron (MLP) networks due to a smaller number of
parameters required for training. This paper explores two main architectures for
the CNN to identify the number of deep learning layers that best represent the
images and the impact of a split input stream representation for the architecture
structure. Figure 2 illustrates a detailed description.

The architectures we propose are made up of convolution, rectified linear unit
(ReLU), max pooling, and local response normalization (LRN) layers followed
by one fully connected layer and one softmaxloss layer for classification. The
convolutional layers incorporate constraints and achieve some degree of shift and
deformation invariance using local receptive fields, shared weights, and spatial
subsampling [13]. Their output can be summarized as:

C(xu,v) = (x + a)n =

n
2∑

i=−n
2

m
2∑

j=−m
2

fk(i, j)xu−i,v−j . (1)

where fk is the filter with a kernel size n × m, applied to the input x. In our
models n is always the same as m. The convolutional layers in the first network
use 60, 90, 120, and 240 filters respectively. Whereas the split input model learns
60, 90, and 120 filters. Given that ReLU functions marginally reduce training
times in deep convolutional networks [11], every output of a convolutional layer
in our models is shaped by a ReLU function. Given an input value x, ReLU
output is given by:

f(x) = max {0, x} . (2)

The input is further reduced with max pooling layers. Let xi be the input and m
be the size of the filter, then the output of the max pooling layers is calculated
as:

M(xi) = max
{

xi+k,i+l

∣∣|k| ≤ m

2
, |l| ≤ m

2
k, l ∈ N

}
. (3)
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Fig. 2. (a) CNN with reduced deep learning layer, (b) Network with split input; S
defines the stride size and P the padding. Face images from subject 07 in KDEF
database [21].

Moreover, all spatial locations of the output of some of the pooling layers and
ReLU layers are uniformly normalized using the Local Response Normalization
(LRN) operator. Let k be the output channel, and G(k) ⊂ {1, 2, ,D} represent
a corresponding subset of input channels, the output of LRN is calculated as
follows:

yijk = xijkz

⎛

⎝k + α
∑

t∈G(k)

x2
ijt

⎞

⎠
−β

. (4)

Furthermore, our models use a fully connected layer which in term is an MLP.
Let σ represent a sigmoid activation function, then the output of the hidden
layer is computed by:

F (x) = σ(W ∗ x). (5)

Finally, the last layer in our models employs a softmaxloss operator which in
turn is a combination of the softmax operator followed by the log-loss operator.
Given the class ground-truth c, softmaxloss output is computed by:

y = −
∑

ij

(
xijc − log

D∑

d=1

exijd

)
. (6)

The training process for both architectures was the same: the learning rate for fil-
ters and biases was initially set to 1.0 and dynamically adjusted down to 0.00001
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over 1000 epochs, whereas the momentum was set to 0.9. The input vector was
down-sampled by convolution and pooling layers using a sliding window with
stride of 2.

4 Results and Discussion

After training for 15, 500, epochs the first model achieved its best performance
producing an accuracy rate of 96.93% on the testing set, not far from the results
obtained by Burkert et al. [12]. Further training with the same parameters seems
to cause overfitting. The second architecture proposed splits the image hori-
zontally in half and feeds each half to a corresponding sub architecture to be
processed in parallel. Each sub-architecture learns a representation of different
face parts: in the case of the first half the salient features highlighted are the
areas around the eyes whereas the second half highlights the area surrounding
the mouth. The translation invariant features obtained from each subnetwork are
then recombined for classification. This model with split input has been training
for just 5, 280 epochs and has already achieved state of the art performance with
an accuracy rate of 86.73%. Table 1 illustrates the confusion matrices for both
models; as it can be observed both networks achieved a higher performance rate
when classifying facial images illustrating happy emotions. It is evident that
both of our models misclassify neutral faces the most. This might be due to
the similarity of this emotion with all the others, especially with sadness. As it
can be observed in Fig. 1 above there is not a big difference between these two
expressions and neutral has previously been defined as the basic human emotion
[17] which implies that all other emotions are developed from this.

Table 1. Left: first network confusion matrix, right: split input network confusion
matrix. A: angry; D: disgust; F: fear; H: happy; N: neutral; Sa: sad; Su: surprised.

A D F H N Sa Su

A 42 0 0 0 0 0 0
D 0 40 0 1 0 1 0
F 0 1 39 1 0 0 1
H 0 0 0 42 0 0 0
N 0 1 0 0 39 2 0
Sa 0 1 0 0 0 41 0
Su 0 0 1 0 0 0 41

A D F H N Sa Su

A 40 1 1 0 0 0 0
D 1 32 1 3 0 3 1
F 1 2 37 0 0 0 2
H 2 0 0 42 0 0 0
N 1 2 1 0 32 5 1
Sa 0 3 2 1 0 36 0
Su 0 0 3 0 0 0 39

We have explored in this paper two new CNN architectures that create state
of the art results. Our first architecture has achieved such performance with a
reduced number of layers as opposed to the model proposed by [12]. Although
second model, which uses two deep learning streams, has produced lower perfor-
mance it has only been training for a fraction of the time that the first one was
trained for. Moreover, this network has already outperformed the performance of
the first model at 5000 epochs. We attribute this increase in performance to the
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split input around the mouth and eye areas; since these two are determining key
factors for emotion recognition, each network ensemble learns to extract only of
these salient features, thus having to do lesser weight modifications.

Beyond the neuroscientific and biological aspect, human emotions allow us
to connect and share experiences with other people regardless of background.
This cognitive process is vital for human-human interactions and could improve
human-robot interactions. Our research aims to contribute to solving this issue
by proposing a neural architecture that can allow a robotic machine to recognise
a user’s emotional state. To this day, empirical models such as Support Vector
Machines seem to be the dominant classifiers in emotion recognition through
facial expression images due to their high performance rate. However, the per-
formance of these classifiers heavily relies on the image preprocessing techniques
applied on the images. CNN, on the other hand, have the ability to extract and
learn features autonomously. Our second architecture contains similar properties
to that proposed by [12], however our model uses less parameters and less layers,
being marginally faster and therefore more suitable for online learning.

5 Conclusion

To the best of our knowledge we are the first to propose an architecture for
emotion recognition which splits the image into two sections in order to extract
features with different parameters. This approach uses two network ensembles to
extract salient features from around the mouth and eye areas. The model seems
to take advantage of the most salient features, which are essential for emotion
recognition. This approach has produced promising results and will therefore be
improved in future work.

We hope that our research brings social robots a step closer to been fully
accepted by society. The results reported above illustrate a fundamental initial
step towards achieving this goal by providing us with a method for self-organised
or autonomous feature extraction and representation learnt explicitly for emotion
recognition. However, despite the high recognition performance achieved in the
experiments we conducted, we have to take into consideration the fact that the
training and testing datasets contain images of similar quality and taken under
controlled environments. Future work will address the ability of the architectures
developed to compensate for light and angle variations. In this manner, the
number of layers and parameters will be adjusted accordingly in order to achieve
the same performance results in real environments. Given the promise shown by
the architecture with a split input, future work will look at its performance
with the input being split into more sections or with random patches.

Future work will look at the development of an associative architecture to
be combined with the proposed CNN. Additionally, future work will explore the
possibility of using a multimodal approach and incorporate other inputs such as:
speech signals, body language, heart rate readings, etc. into our model in order
to obtain a comprehensive representation of the emotions and better recognition
rates. Reinforcement learning techniques will be explored to allow the robot to
learn which responses improve the interaction process with the user.
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3 TECNALIA, Health Technologies Department, San Sebastian, Spain

Abstract. Muscle synergies can be seen as fundamental building blocks
of motor control. Extracting muscle synergies from EMG data is a widely
used method in motor related research. Due to the linear nature of the
methods commonly used for extracting muscle synergies, those methods
fail to represent agonist-antagonist muscle relationships in the extracted
synergies. In this paper, we propose to use a special type of neural net-
works, called autoencoders, for extracting muscle synergies. Using sim-
ulated data and real EMG data, we show that autoencoders, contrary
to commonly used methods, allow to capture agonist-antagonist mus-
cle relationships, and that the autoencoder models have a significantly
better fit to the data than others methods.

Keywords: Electromyography (EMG) · Neural network · Matrix
factorization · Extensor-flexor muscles

1 Introduction

Muscle synergies can be seen as fundamental building blocks of motor control [1].
As the human body contains more muscles than joints, the motor control problem
(planning a movement) is ill-posed as there are infinite possibilities to perform
a given task (e.g. arm movement to reach an object). To simplify movement
control, muscle synergies describe the activation pattern for multiple muscles,
which are co-active during a specific task. By controlling the muscle synergies,
instead of each muscle separately, the motor control problem is reduced to only
few degrees of freedom. Results supporting this theory have been found in a
variety of species ranging from Aplysia to humans [1].

Agonist-antagonist relationships are an example for very basic synergy con-
trol. These relationships play a crucial role in extensor/flexor muscles like biceps
and triceps, which are located on the opposite sides of the same joint. During
contraction of the agonist muscle, the opposing muscle group (antagonist) needs
to be inhibited to prevent working against the agonist muscles. It has been shown
c© Springer International Publishing Switzerland 2016
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that this inhibition can even happen at a spinal level (Ia inhibitory interneurons)
[2] and plays a major role in movement control [3].

Muscle synergies are usually extracted out of electromyography (EMG) data,
which is obtained by placing electrodes on the muscles and recording the electri-
cal activity. To extract the synergies, different matrix factorization algorithms
(e.g. PCA, ICA) can be used with non-negative matrix factorization (NNMF)
being the most commonly used and established method. As inhibition of muscle
activity can not directly be observed in EMG data, linear methods in general
have difficulty to extract agonist-antagonist relationships. In the case of non-
negative matrix factorization, it is essentially impossible to model any muscle
inhibition due to the non-negative properties of the method.

While there are approaches to capture agonist-antagonist synergies by creat-
ing a physical model of the affected joints [4], we propose the use of autoencoders,
a special type of artificial neural network [5], for an unsupervised extraction of mus-
cle synergies from EMG data. In the following, we show that it allows to capture
agonist-antagonist relationships in muscle synergies and that the obtained synergy
models have a better fit than the models extracted by commonly used methods.

2 Methods

2.1 Autoencoder for Muscle Synergy Extraction

Autoencoders are a special type of neural network, which encode a lower-
dimensional representation of the input space [5]. Assuming an n-dimensional
input space and m-dimensional representation (with m < n), the autoencoder
consists of n input units, fully connected to m hidden units, which are also fully
connected to n output units (see Fig. 1). Given a specific dataset, the network
is trained to show the same activation at the output units, as is given at the
input units. As the low-dimensional hidden layer is between the input and out-
put layer, the left part of the network acts as encoder, encoding the input as
a lower-dimensional representation, while the right part acts as a decoder to
decode the original data from the lower-dimensional representation.

When applying an autoencoder to EMG data to extract synergies, the num-
ber of input and output units has to be equal to the number of EMG channels.
The number of hidden units is determined by the number of synergies one wants
to extract. The network is then trained with the EMG data for the input and
output units. After training, the activity at the hidden units represents the syn-
ergies. While the encoding part of the network is used to extract synergies from
the EMG data, the decoding part reconstructs the individual muscle activity
from the synergies. The weights of the connections in the decoding part repre-
sent the level of participation for each muscle in a given synergy.

2.2 Methods for Extraction of Muscle Synergies

To evaluate the use of autoencoders for the extraction of muscle synergies, we
compared the use of autoencoders to other methods frequently used for the
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Fig. 1. Visualization of the autoencoder used for extraction of muscle synergies. Shown
are 5 input and output neurons corresponding to 5 EMG channels and 2 hidden neurons
corresponding to 2 synergies.

extraction of muscle synergies [6]. All methods used in this work are shortly
explained in the following:

Autoencoder (AEnc) As explained above, autoencoders were used for extrac-
tion of muscle synergy patterns. A logistic sigmoid function was used as trans-
fer function for the encoder and decoder part of the network. For training
the autoencoder, the mean squared error was minimized including an L2-
regularization with λ = 0.001.

Non-negative Matrix Factorization (NNMF) is an algorithm, where a
matrix V is factorized into two matrices W and H, so that all matrices have no
negative elements. NNMF was found to work well for extracting muscle synergies
[6], however the non-negative property of the method prevents the method from
finding agonist-antagonist muscle relationships.

Principal Component Analysis (PCA) is a computational method that
separates a multivariate dataset into components. The separated components are
orthogonal to each other and sorted by decreasing variance. For the extraction
of muscle synergies, PCA is also used, but was shown to perform worse than
ICA and NNMF [6].

Independent Component Analysis (ICA) is another computational
method for separating statistically independent components from multiple mixed
signals [7]. In this work, the FastICA implementation was used, which allows to
extract a specified number of components. ICA was also found to work well for
extracting muscle synergies [6].
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2.3 Evaluation on Simulated Data

To demonstrate the use of autoencoders for the extraction of muscle synergies,
we created a simulated dataset. For this dataset we assumed two muscles in an
agonist-antagonist relationship. The data was modeled similar to the activation
patterns of biceps and triceps during elbow extension/flexion [8]. A sinusoidal
movement was assumed consisting of only one synergy with a sinusoidal pattern.
During extension one of the muscles was inhibited, while during flexion the other
muscle was inhibited. This behavior was reflected in the muscle weights being
positive for one, and being negative for the other muscle.

All methods were applied on the simulated data, to evaluate how well the
different methods capture this agonist-antagonist relation.

2.4 Extracting Muscle Synergies from Real EMG Data

To evaluate the different methods on real EMG data, we used EMG data from 9
subjects (2 sessions per subject), performing a reaching movement with the right
arm. EMG was recorded with 6 surface EMG electrodes placed over different
muscles of the right upper limb including biceps, triceps and frontal and posterior
deltoid muscles. More information about the EMG data and the design of the
experimental task can be found in [9,10]. As biceps/triceps and frontal/posterior
deltoid muscles are known agonist-antagonist pairs in upper limb movements [11]
we hope to find those relationships in the extracted synergies.

Extraction of synergies was not done directly on the raw EMG data, instead
waveform length was extracted as feature for muscle activation. Waveform length
(WL) [12], is the cumulative length of the waveform over the time segment. If
xt is the amplitude of the EMG channel at time t, the waveform length can be
calculated with the following equation:

WL =
N−1∑

n=1

|xn+1 − xn| (1)

Before extracting the waveform length, the EMG signal was bandpass filtered
between 10 Hz and 500 Hz and a 50 Hz notch filter was applied to filter out power
line noise. The filtered EMG data was rectified and then the waveform length
was extracted. WL was computed on an 200 ms window which was shifted in
50 ms steps over the EMG data.

2.5 Evaluation on Real EMG Data

The four previously described methods (AEnc, NNMF, PCA, ICA) were tested
on real EMG data to evaluate which of the methods is best suited for the task
of extracting muscle synergies.
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3 Results

3.1 Evaluation on Simulated Data

The results for the evaluation on the simulated dataset can be seen in Fig. 2.
While NNMF and ICA fail to capture the agonist-antagonist relationship in the
simulated data, PCA models this relationship, but does not allow for a proper
reconstruction. Training an autoencoder on the simulated data gave the best
result and reconstructed muscle activity was closest to the original. It should be
noted that the scaling of the synergy, as well as the muscle weights differ between
the used methods. However, the absolute size of the scale is irrelevant for the
extraction of muscle synergies and only the relative differences are important.

Fig. 2. Results for the different methods on simulated data. Simulated data contained
one synergy with two muscles. Muscles were modeled as agonist (blue muscle with
positive weight) and antagonist (red muscle with negative weight). Displayed is the
synergy (middle), the muscles weights (right) and the muscle activity (left) which is
reconstructed from the synergies and the weights. The simulated data is shown at the
top. Below is the reconstruction of the synergies by applying different methods on the
simulated data. (Color figure online)

3.2 Evaluation on Real EMG Data

To see how well autoencoder and the other methods work on real data, they
were applied to EMG data from 9 subjects. Figure 3 shows an exemplary result
of an autoencoder applied to the data from one subject. It can be clearly seen
that the agonist-antagonist relationships between biceps and triceps, as well as
between the deltoid muscles are properly modeled in the second synergy, which
resembles the muscle activity for the forward/backward part of the reaching
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Fig. 3. Example of autoencoder applied to the EMG data from subject 1 performing a
reaching movement (moving arm forward and backward). The average muscle activity
during a reaching movement is shown on the left. On the right side, the results of the
autoencoder applied to the data for the extraction of two synergies is shown. While
the first synergy shows a general activation pattern, the second synergy clearly shows
the agonist-antagonist relationships during forward and backward movement.

movement. The first synergy resembles the general muscle activity involved in
the arm movement (compared to a relaxed state).

To see how well the models generated by the different methods fit the data,
we compared the reconstructed data with the original data and calculated the
explained variance (R2) as a measure of how well the model fits the data. Results
for a different number of synergies can be seen in Table 1. As the aim of using
such methods for muscle synergy extraction is the reduction of the input space,
especially the results with a low number of reconstructed synergies are impor-
tant. For 1 and 2 reconstructed synergies, autoencoder performs significantly

Table 1. Explained variance (R2) of the original data compared to the data recon-
structed using muscle synergy models generated by the different methods for a varying
number of reconstructed muscle synergies. Highest values are marked bold.

Method Number of synergies

1 2 3 4 5 6

AEnc 0.57 0.84 0.91 0.95 0.96 0.97

NNMF 0.52 0.80 0.91 0.94 0.93 1.00

PCA 0.48 0.80 0.90 0.94 0.99 1.00

ICA 0.09 0.19 0.32 0.48 0.70 1.00
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better than the other methods (p < 0.001, Wilcoxon signed rank test). For 3
and 4 synergies it performs better, but not significantly (p > 0.05), while PCA
performs best with 5 reconstructed synergies. When using 6 reconstructed syn-
ergies the other methods achieve a perfect reconstruction, which is trivial as the
number of synergies equals the number of EMG channels. Due to the non-linear
transfer functions, autoencoder does not achieve a perfect reconstruction in this
case, but would likewise be able to if linear transfer functions were used.

4 Discussion and Conclusion

Commonly used methods for the extraction of muscle synergies like PCA, ICA
and especially NNMF fail to properly extract agonist-antagonist muscle rela-
tionships from EMG data. As these agonist-antagonist muscle relationships play
a crucial role in motor control we proposed the use of autoencoders for the
extraction of muscle synergies. Based on simulated data and on real EMG data
we could show that autoencoders properly capture agonist-antagonist muscle
relationships. As the reduction of components is the main motivation behind
the extraction of muscle synergies, it is important that the methods work well
with a low number of synergies. In these cases, autoencoders generate models
for synergy extraction that fit significantly better to the data than the other
methods.

As the inhibition of the antagonist muscle during agonist movement is not
directly observable from the EMG data, linear methods (and especially non-
negative factorization methods) are not able to properly capture these rela-
tionships. With autoencoder as a non-linear method we have shown that it is
nevertheless possible to extract agonist-antagonist muscle relationships.

While the reduction of components is one of the goals, the question of how
many synergies are involved in a movement is still an open issue. Tresch et al. [6]
used a method based on the changes of explained variance when increasing the
number of synergies to determine the correct number of synergies. Such a method
could likewise be used to find the optimal number of synergies when using autoen-
coder. Due to space reasons, this topic hasn’t been investigated in this paper, but
it should be expected that a lower number of synergies is optimal for autoencoder,
since they allow to model agonist-antagonist relationships as one synergy instead
of describing agonist and antagonist activity as separate components.

As the extraction of muscle synergies has become an important method for
investigating movement control (e.g. in stroke patients [13]) and has even been
suggested to improve the control of brain-computer interfaces [14], the ability
to properly model agonist-antagonist muscle relationships using autoencoders
should hopefully foster research in these areas.
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Ramos-Murguialday, A.: Towards decoding of functional movements from the same
limb using EEG. In: 2015 37th Annual International Conference of the IEEE Engi-
neering in Medicine and Biology Society (EMBC), pp. 1922–1925. IEEE (2015)

11. Gowland, C., Basmajian, J.V., Plews, N., Burcea, I., et al.: Agonist and antago-
nist activity during voluntary upper-limb movement in patients with stroke. Phys.
Ther. 72(9), 624–633 (1992)

12. Phinyomark, A., Chujit, G., Phukpattaranont, P., Limsakul, C., Hu, H.: A pre-
liminary study assessing time-domain EMG features of classifying exercises in pre-
venting falls in the elderly. In: 2012 9th International Conference on Electrical
Engineering/Electronics, Computer, Telecommunications and Information Tech-
nology (ECTI-CON), pp. 1–4, May 2012

13. Roh, J., Rymer, W.Z., Perreault, E.J., Yoo, S.B., Beer, R.F.: Alterations in upper
limb muscle synergy structure in chronic stroke survivors. J. Neurophysiol. 109(3),
768–781 (2013)

14. Vinjamuri, R., Weber, D.J., Mao, Z.-H., Collinger, J.L., Degenhart, A.D., Kelly,
J.W., Boninger, M.L., Tyler-Kabara, E.C., Wang, W.: Toward synergy-based
brain-machine interfaces. IEEE Trans. Inf Technol. Biomed. 15(5), 726–736 (2011)



Integration of Unsupervised and Supervised
Criteria for Deep Neural Networks Training

Francisco Zamora-Mart́ınez(B), Javier Muñoz-Almaraz, and Juan Pardo
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Abstract. Training Deep Neural Networks has been a difficult task for
a long time. Recently diverse approaches have been presented to tackle
these difficulties, showing that deep models improve the performance of
shallow ones in some areas like signal processing, signal classification or
signal segmentation, whatever type of signals, e.g. video, audio or images.
One of the most important methods is greedy layer-wise unsupervised
pre-training followed by a fine-tuning phase. Despite the advantages of
this procedure, it does not fit some scenarios where real time learning
is needed, as for adaptation of some time-series models. This paper pro-
poses to couple both phases into one, modifying the loss function to mix
together the unsupervised and supervised parts. Benchmark experiments
with MNIST database prove the viability of the idea for simple image
tasks, and experiments with time-series forecasting encourage the incor-
poration of this idea into on-line learning approaches. The interest of this
method in time-series forecasting is motivated by the study of predictive
models for domotic houses with intelligent control systems.

Keywords: Deep learning · Stacked auto-encoders · Supervised learn-
ing · Time-series forecasting

1 Introduction

Deep Neural Networks (DNNs) training has been an open problem for a long
time, mainly due to of the gradient vanishing problem [3,5]. These difficulties
have been presented in literature several times [2,3,6,10,11] and recently it has
been found that deep models are advantageous over shallow ones for such tasks
like image or audio processing.

Greedy layer-wise pre-training have been presented as a solution to train mul-
tilayer perceptrons with many layers of non-linearities [2]. This method employs
a pre-training phase where every layer of the deep model is initialized following
an unsupervised criterion [2,6]. Other ideas have been presented previously to
solve similar problems in recurrent neural networks [11]. This pre-training phase
takes leverage over other approaches due to the huge amount of unsupervised
data available on the internet, which are suitable for initialization of these deep
models. However, in certain tasks the system needs to be installed at unknown
c© Springer International Publishing Switzerland 2016
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environments or under low-resource specifications. Therefore, sequential or on-
line learning is required to train a model from scratch in real time under these
circumstances. Besides, when unsupervised data are not available, pre-training
stage complicates the pipeline forcing to train the model twice: pre-training ini-
tialization and fine-tuning stage.

Even more, an integrated approach would benefit from learning jointly a fea-
ture space transformation with discriminative properties in contrast with unsu-
pervised pre-training [18]. Recently, the use of Rectified Linear Units (ReLUs)
or other piece-wise linear activation functions are being studied to tackle DNNs
training but pre-training is still relevant.

The present paper proposes to mix together unsupervised and supervised
goals into one differentiable function, in such a way that a set of mixing coef-
ficients can control the focus during training, paying more attention into the
unsupervised part during first training iterations and moving gradually to an
almost pure supervised training criterion. This paper studies empirical evidence
of mix coefficients effect in MNIST benchmark and in a time-series forecasting
problem. The interest of this method in time-series forecasting is motivated by
its ability to train deep predictive models in unknown environments, e.g. domotic
houses with intelligent control systems. For this particular scenario, the model
can be estimated in real time while the control system is working in its final
location [8,14] to capture the patterns of environmental, energetic and human
behavior signals for energy efficiency purposes.

The proposed joint loss approach is directly related with [18], where a sim-
ilar technique is presented for training of deep auto-encoders. However, in [18]
authors proposed to train a deep auto-encoder following a mixed loss function,
but the supervised classifier training is performed in a second stage. This differ-
ence is really important because different mixing coefficients and update algo-
rithms are required when both supervised and unsupervised are coupled into
the same loss function. Another similar work has been done in Sect. 9 of [12]
where the authors propose a one stage approach not obtaining good results, most
importantly due to sub-optimal result when mixing together the unsupervised
and supervised losses, requiring a final fine-tune phase for optimality. Updating
mix coefficients properly would solve optimality problem stated by [12].

2 Stacked Denoising Auto-Encoders and Deep Neural
Networks

A Denoising Auto-Encoder (DAE) is a model designed to take a noisy input
x̃ and to reconstruct as output its clean version x. A perturbation function is
defined as x̃ = ρ(x) which takes the vector x and randomly corrupts it. The
DAE can be formalized as x̂ = A(x̃;θ) = g ◦ f(x̃) being f(x) = s(Wx+be) the
encoder function, g(h) = s(Wᵀh + bd) the decoder function, θ = {W,be,bd},
and W, be, bd the weight matrix and bias vectors respectively.

Stacking together several DAEs, it is possible to build up a Stacked Denoising
Auto-Encoder (SDAE) composing all encoder and decoder functions, e.g. for two



Integration of Unsupervised and Supervised Criteria for DNNs Training 57

layers of DAEs x̂ = g1 ◦ g2 ◦ f2 ◦ f1 ◦ ρ(x). Overfitting problems are avoided by
the denoising objective and by adding a regularization term to the loss function.
The empirical risk of SDAE for a given pattern x would be Lu(A(x;θ),x) +
εΩ(θ) being Lu(x;θ) the unsupervised loss function, ε the regularization penalty
term and Ω(θ) the regularization function (usually the squared 2-norm of θ).
Assuming logistic activation functions in SDAE, the loss function would be the
cross-entropy, but different ones will be needed depending on the distribution of
each DAE input/output features.

It is difficult to train a deep neural model for a supervised task because
of the several non-linear layers and the vanishing gradient problem. To over-
come this issue, usually the model is pre-trained in a greedy layer-wise fash-
ion [2,12], learning locally each of the i-th DAEs, and finally the DNN model
is built stacking all encoder functions and pushing on top a supervised layer.
Formally, the DNN is described by the function ŷ = F (x;θ) = h(H+1) being
h(i) = s(Wᵀ

i h
(i−1) + bi) for 1 ≤ i ≤ H + 1 the activation of every layer in

the DNN. The DNN is fine-tuned F (x;θ) to minimize the regularized empir-
ical risk using a given loss function and the given D data set: R(θ,D) =
1

|D|
∑

(x,y)∈D Ls(F (x;θ),y) + εΩ(θ) being Ls the supervised loss function, usu-
ally cross-entropy loss function for classification tasks or mean square loss for
regression tasks.

3 Integration of Unsupervised and Supervised Criteria

Joining together unsupervised and supervised loss functions it can be formalized
an empirical risk equation which can be minimized for satisfying both goals.
The mixing of this combination is controlled by a vector λ = 〈λ0, λ1, . . . , λH〉
with H + 1 components, being λ0 the coefficient for supervised criterion, and
the remaining H coefficients for unsupervised criteria of each hidden layer. λ(t)

denotes the vector value at time step t. Formally, the DNN can be trained to
minimize the following regularized empirical risk:

R(θ,D) =
1

|D|
∑

(x,y)∈D

[
λ
(t)
0 Ls(F (x;θ),y) +

H∑

k=1

λ
(t)
k U (k)

]
+ εΩ(θ) (1)

U (k) = Lu(Ak(ρ(h(k−1));θ),h(k−1)) for 1 ≤ k ≤ H (2)
λk ≥ 0 (3)

being h(0) = x, Ls the supervised loss, Lu the unsupervised loss for hidden lay-
ers and Ak(ρ(h(k−1)); θ) the DAE encoder/decoder architecture. For simplicity,
unsupervised models Ak(·) receive the same θ as the supervised model F (·), how-
ever each unsupervised model requires only the bias vector and weight matrix
related with k layer and the additional bias vector needed for the reconstruction
of the output layer. This formalization can be specialized straightforward into
the greedy layer-wise pre-training algorithm updating λ(t) in a proper way.

The update policy for λ(t) mix coefficients is very important to ensure model
convergence and performance. At every time t, each component of λ(t) should
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be updated, starting with high values of unsupervised loss during first training
iterations but leading close to zero in the long term, so supervised goal dominates
at the end of the training procedure.

This paper proposes the Greedy Exponential Decay (GED) policy, which
essentially fixes supervised loss coefficient to a constant value (λ(t)

0 = 1) and
updates the remaining coefficients employing an exponential decay function.
Therefore, the unsupervised loss coefficients are initialized to a given constant Λ

and their value is calculated following this rule λ
(t)
k = Λγt for k > 0, being γ the

exponential decay term. Notice that γt is γ powers t. Notice that other policies
are possible and will be studied in future extensions of this paper.

Fig. 1. Grid search results for GED algorithm in MNIST database. A grid with different
values for initial mix Λ and layer sizes has been evaluated. For clarity purposes, the
plot only shows a subset of all combinations large enough to observe trend in both
hyper-parameters.

4 Experimental Evaluation

The GED method has been evaluated in two different tasks. First, MNIST
dataset has been used to benchmark the method and to study its sensitiv-
ity for different hyper-parameters. Second, an indoor temperature forecasting
task, taken from SML2010 UCI data set [1,15], has been employed to study
the effect of this method for training time-series models. In all the experiments,
ADADELTA algorithm [17] has been chosen as gradient descent optimizer, using
a decay factor of γ = 0.95 and an epsilon of ε = 10−6. L2 regularization has been
applied only to weights at the top layer (not biases) and fixed to ε = 0.01. The
algorithm has been implemented using APRIL-ANN toolkit [16], particularly its
implementation of automatic differentiation.
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4.1 MNIST Benchmark

In order to compare the proposed method with other literature approaches,
experiments with the well-known MNIST data set [7] have been conducted.
MNIST data set is an isolated digit classification task composed originally of
50000 training samples, 10000 for validation and 12000 for test. Different vari-
ations of this original data set are available, increasing the task difficulty. All
variation data sets are formed by 10000 training samples, 2000 samples for val-
idation and 50000 test samples. This paper conducts experiments with original
MNIST and MNIST-basic variation.

Fig. 2. Sensitivity of GED policy to decay γ hyper-parameter for a three layers DNN
with 2048 neurons at each layer.

Training has been performed in mini-batches and monitored every two mini-
batches. Training performance is measured using the empirical risk Eq. (1) aver-
aged over the number of examples in two mini-batches, and validation perfor-
mance is monitored by computing classification error (i.e. zero-one loss function)
over the whole validation dataset. A 20% masking noise has been used as per-
turbation for MNIST experiments.

Hyperopt [4] library have been used to perform automatic optimization of
different hyper-parameters (learning rate, momentum, . . . ) for a DNN with three
layers of 1024 neurons. After this step, a grid search has been conducted to
evaluate the effect of Λ initial mix, layer sizes and model depth. Figure 1 shows
the result of this grid search procedure. The figure shows that higher values
of initial mix Λ are needed to achieve good performance, but values between
of Λ ∈ [0.2, 5.0] have very similar performance. The best classification error on
validation set has been 1.01%, achieved by a model with three layers of 2048
neurons and Λ = 0.2. In all cases decay term has been fixed to γ = 0.999.

Figure 2 shows the sensitivity of GED to different values of decay parameter
γ. It can be observed a narrow range where sensitivity in this hyper-parameter is
really increased, requiring a value of γ ≈ 0.999 to ensure good performance. This
behavior can be explained due to the effect of decaying speed in the importance
of unsupervised loss. When γ approaches to 0 unsupervised training is negligible.
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Table 1. Test error (%) plus its 95 % confidence interval in MNIST and MNIST-basic
variation data sets. The proposed GED method uses a model with 3 hidden layers of
2048 neurons. For comparison purposes, SAE-3 and SDAE-3 results have been taken
from [13] and SDAE-3J has been taken from [18].

Data set SAE-3 SDAE-3 SDAE-3J GED (proposed method)

MNIST 1.40±0.23 1.28±0.22 1.10±0.21 1.22±0.22

basic 3.46±0.16 2.84±0.15 2.65±0.14 2.72±0.14

For γ = 1, unsupervised training remains constant. And values of γ ≈ 0.999 lead
to a smooth and slow decaying of unsupervised loss effect, whose importance
is negligible after approximately 10000 iterations. We conjecture that a value
of γ close to 1/|D| can be a good starting point to run a small grid search
optimization of its value. Table 1 shows the test results of the proposed method,
observing that its performance is equivalent to SDAE-3 results and better than
the baseline SAE-3 in both benchmark data sets.

4.2 SML2010 Indoor Temperature Forecasting Task

This task is motivated by the application of predictive models to assist in energy
efficiency problems. Indoor temperature data of the SML2010 data set from UCI
machine learning repository [1,15] has been used to validate in laboratory the
benefits of the proposed method. The data set contains 2016 training tempera-
ture points, 672 validation points and 672 test points. Every point is a 15 min
average of temperature data. Trend have been removed applying first order dif-
ferentiation to temperature series. A model with 48 inputs (12 h) and 12 output
predictions (next 3 h) have been trained employing a sliding window to traverse
the data set. For time-series task, the perturbation noise is a combination of
Gaussian noise with σ2 = 0.01 and a 10% masking noise. In this case, the input
layer DAE uses MSE as loss function, and internal hidden layers are logistic
units, so cross-entropy loss function is required. Validation and test set perfor-
mance has been measured by using Mean Absolute Error (MAE).

A grid search have been performed to optimize model hyper-parameters, so
models with two to four layers, with {16, 32, 64, 128, 512, 1024} neurons at each
layer and with Λ = {0, 1} have been tested.1 The validation MAE result of this
grid search is shown at Table 2. It is observed that the convergence of bigger
networks is not attained when Λ = 0, while using higher values it achieves
good performance even with large networks. Moving block bootstrap test [9] for
pairwise data has been performed to compute statistical significance using 95%
confidence intervals, showing that for more than 3 hidden layers Λ = 1 improves
the Λ = 0 baseline in almost all studied cases. This experimentation has been
extended up to 10 layers DNNs with 64 hidden units to test the robustness of
the method, observing a validation MAE which relies between 0.1274 to 0.1331.

1 Note that Λ = 0 is equivalent to training without the proposed integrated method.
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Table 2. Validation set MAE for a subset of the grid search combinations of number
of layers (depth) and layer size for DNNs in SML2010 temperature forecasting task.
In bold face are shown combinations where the Λ = 1 improves Λ = 0 result with
statistically significant difference with a confidence of 95 % in a pairwise test.

Depth Size MAE Λ = 0 MAE Λ = 1

2 32 0.1298 0.1312

2 64 0.1292 0.1289

2 128 0.1300 0.1271

2 512 0.1320 0.1289

3 32 0.1322 0.1266

3 64 0.1350 0.1257

3 128 0.1308 0.1292

3 512 0.6160 0.1312

4 32 0.1352 0.1295

4 64 0.1341 0.1301

4 128 0.6159 0.1293

4 512 0.6164 0.1352

The final test set results, for the 3 layers model with 64 neurons, are 0.1269 when
Λ = 0 and 0.1177 when Λ = 1, being their difference statistically significant
under the stated bootstrap test [9].

5 Conclusions

This paper has presented a technique for integration of unsupervised and super-
vised criteria in order to perform training of DNNs in one phase, showing results
equivalent to state-of-the-art greedy layer-wise unsupervised pre-training plus a
fine-tuning stage. This integrated approach has been formalized in terms of a
λ vector whose coefficients should be updated to follow a slow transition from
a state with predominance of unsupervised criterion to a state of almost pure
supervised criterion. This approach has been validated with MNIST benchmark
and SML2010 temperature forecasting task. Time-series forecasting results moti-
vate a thorough study introducing this approach into real time systems where
the convergence of deep models is not always guaranteed. Improved techniques
of updating the weights λ is the objective of future research. The effect of this
integrated approach into gradients evolution during training is another open
question which requires a more detailed study. A priori the proposed combi-
nation of unsupervised (auto-encoders) and supervised learning could be more
effective than well known greedy layer-wise pre-training, because conditioning of
unsupervised features to be discriminative by integration of the supervised goal,
however, this remains an open question.
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Abstract. Layer-wise relevance propagation is a framework which
allows to decompose the prediction of a deep neural network computed
over a sample, e.g. an image, down to relevance scores for the single
input dimensions of the sample such as subpixels of an image. While
this approach can be applied directly to generalized linear mappings,
product type non-linearities are not covered. This paper proposes an
approach to extend layer-wise relevance propagation to neural networks
with local renormalization layers, which is a very common product-type
non-linearity in convolutional neural networks. We evaluate the proposed
method for local renormalization layers on the CIFAR-10, Imagenet and
MIT Places datasets.

Keywords: Neural networks · Image classification · Interpretability

1 Introduction

Artificial neural networks enjoy increasing popularity for image classification
tasks. They have shown excellent performance in large scale competitions [4].
One reason is the ability to train neural networks with millions of training sam-
ples by parallelizing them on GPU hardware. This allows to use numbers of
training samples which match the large number of parameters in deep neural
networks. However, understanding what region of the image is important for a
classification decision, is still an open question for neural networks, as well as for
many other non-linear models. The work of [1] proposed Layer-wise Relevance
Propagation (LRP) as a solution for explaining what pixels of an image are rel-
evant for reaching a classification decision. This was done for neural networks,
bag of word models [2,10], and in a subsequent work [5], for Fisher vectors.

This paper proposes an approach to extend LRP to neural networks with non-
linearities beyond the commonly used neural network formulation. One example
of such nonlinearities are local renormalization layers which can not be handled
c© Springer International Publishing Switzerland 2016
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by standard LRP [1]. The presented approach is based on first (or higher) order
Taylor expansion. We consider a classification setup with real-valued outputs.
A classifier f is a mapping of an input space f : X → R such that f(x) > 0
denotes the presence of the class.

2 Layer-Wise Relevance Propagation
for Neural Networks

In the following we consider neural networks consisting of layers of neurons. The
output xj of a neuron j is a non-linear activation function g as given by

xj = g
(∑

iwijxi + b
)

(1)

Given an image x and a classifier f the aim of layer-wise relevance propagation
is to assign each pixel p of x a pixel-wise relevance score R

(1)
p such that

f(x) ≈ ∑
pR

(1)
p (2)

Pixels p with R
(1)
p < 0 contain evidence against the presence of a class, while

R
(1)
p > 0 is considered as evidence for the presence of a class. These pixel-wise

relevance scores can be visualized as an image called heatmap (see Fig. 1 for
examples). Obviously, many possible such decompositions exist which satisfy
Eq. 2. The work of [1] yield pixel-wise decompositions which are consistent with
evaluation measures [8] and human intuition.

Fig. 1. Pixel-wise decompositions for classes wolf, frog and wolf using a neural network
pretrained for the 1000 classes of the ILSVRC challenge.

Assume that we know the relevance R
(l+1)
j of a neuron j at network layer

l+1 for the classification decision f(x), then we like to decompose this relevance
into messages R

(l,l+1)
i←j sent to those neurons i at the layer l which provide inputs

to neuron j such that Eq. 3 holds.

R
(l+1)
j =

∑

i∈(l)

R
(l,l+1)
i←j (3)

We can then define the relevance of a neuron i at layer l by summing all messages
from neurons at layer l + 1 as in Eq. 4

R
(l)
i =

∑

j∈(l+1)

R
(l,l+1)
i←j (4)
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Equations 3 and 4 define the propagation of relevance from layer l + 1 to layer l.
The relevance of the output neuron at layer M is R

(M)
1 = f(x). The pixel-wise

scores are the resulting relevances of the input neurons R
(1)
d .

The work in [1] established two formulas for computing the messages R
(l,l+1)
i←j .

The first formula called ε-rule is given by

R
(l,l+1)
i←j =

zij
zj + ε · sign(zj)

R
(l+1)
j (5)

with zij = (wijxi)p and zj =
∑

k:wkj �=0 zkj . The variable ε is a “stabilizer” term
whose purpose is to avoid numerical degenerations when zj is close to zero, and
which is chosen to be small. The second formula called β-rule is given by

R
(l,l+1)
i←j =

(
(1 + β)

z+ij

z+j
− β

z−
ij

z−
j

)
R

(l+1)
j (6)

where the positive and negative weighted activations are treated separately. The
variable β controls how much inhibition is incorporated in the relevance redis-
tribution. A fairly large value for β (e.g. β = 1) leads to sharper heatmaps. In
both formulas the message R

(l,l+1)
i←j has the following structure

R
(l,l+1)
i←j = vijR

(l+1)
j with

∑
ivij = 1 (7)

The meaningfulness of the resulting pixel-wise decomposition for the input layer
R

(1)
d comes from the fact that the terms vij are derived from the weighted acti-

vations wijxi of the input neurons. Note that layer-wise relevance propagation
does not use gradients in contrast to backpropagation during the training phase.
For full details on layer-wise relevance propagation the reader is referred to [1].

3 Extending LRP to Local Renormalization Layers

We consider a general neuron j whose pooling and activation does not fit into the
structure given by Eq. 1, and consequently, intuition for a possible redistribution
formula is lacking. In this paper we propose a strategy for such neurons, based
on the Taylor expansion of its activation function. A Taylor-based approach was
used in [6] for decomposing ReLU neurons by exploiting their local linearity.
Here, we consider instead fully nonlinear neurons.

Suppose we can define for each neuron i input to neuron j a term vij which
is derived from its activation xi such that

∑
i vij = 1. Then we can define a

message R
(l,l+1)
i←j = vijR

(l+1)
j . Such messages were used in Eqs. 5 and 6 where

the weighting vij was chosen to depend on the weighted activations of neuron i:
vij = c (wijxi)p and vij = c1z

+
ij + c2z

−
ij , respectively. For differentiable neurons,

such weighting can be obtained by performing a first order Taylor expansion.
Let xj = g(xh1 , . . . , xhn

) be a nonlinear activation function. Then, by Taylor
expansion at some reference point (x̃h1 , . . . , x̃hn

), we get
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xj ≈ g(x̃h1 , . . . , x̃hn
) +

∑

i←j

∂g

∂xhi

(x̃h1 , . . . , x̃hn
)(xhi

− x̃hi
). (8)

Elements of the sum can be assigned to incoming neurons, and the zero-order
term can be redistributed equally between them, leading to the decomposition

∀i←j : zij =
1
n

g(x̃h1 , . . . , x̃hn
) +

∂g

∂xhi

(x̃h1 , . . . , x̃hn
)(xhi

− x̃hi
) (9)

of the neuron activation onto its input neurons. Local renormalization layers have
been shown to improve the performance in deep neural networks [4]. Consider
the local renormalization yk of a neuron xk by the set of its surrounding neurons
{x1, . . . , xn} as

yk(x1, . . . , xn) =
xk

(1 + b
∑n

i=1 x2
i )

c (10)

This interaction can be modeled by a layer in the network that has an activation
function as given in Eq. 10. Local renormalization layers represent a non-linearity
which cannot be tackled exactly by LRP as introduced in [1], however the strat-
egy proposed above can be applied.

One choice to be made is the point at which to perform the Taylor expansion.
There are two apparent candidates, firstly the actual input to the renormalization
layer z1 = (x1, . . . , xn) and, secondly, the input corresponding to the case when
only the neuron k fires which is to be normalized z2 = (0, ... . . . , 0, xk, 0, . . . , 0).
The partial derivative of y at z2 is zero for all variables xi with i �= k due to

∂yk
∂xj

=
δkj

(1 + b
∑n

i=1 x2
i )

c − 2bc
xkxj

(1 + b
∑n

i=1 x2
i )

c+1 (11)

This implies that the Taylor approximation has no off-diagonal contribution.

yk(z1) ≈ yk(z2) + 0 =
xk

(1 + bx2
k)c

(12)

Therefore we apply the Taylor series around the point z1:

yk(z2) ≈ yk(z1) + ∇yk(z1) · (z2 − z1) (13)
⇒ yk(z1) ≈ yk(z2) + ∇yk(z1) · (z1 − z2) (14)

⇒ yk(z1) ≈ xk

(1 + bx2
k)c

− 2bc
∑

j:j �=k

xkx
2
j

(1 + b
∑n

i=1 x2
i )

c+1 (15)

This weighting satisfies the following qualitative properties: for the neuron input
xk which is to be normalized, the sign of the relevance is kept. For suppressing
neighboring neurons xi, i �= k, the sign of the relevance can be flipped in line
with their suppressing property. The absolute value of the relevance received
by the suppressing neurons is proportional to the square of their input. In the
limits c → 0 and b → 0, the local renormalization converges against the identity,
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and the approximation recovers the identity. A baseline to compare against is to
treat the normalization as constant. In that case the weights vij for the relevance
propagation in Eq. 3 become a zero one vector, the relevance is propagated only
to that neuron which is to be normalized: vij = 1 if and only if i is the neuron
which is to be normalized by neuron j.

4 Experiments

We need to define a measure for meaningfulness and quality of a pixel-wise
decomposition in order to evaluate the various strategies to compute it. Here we
use an idea from [8]: A pixel p is considered highly relevant for the classification
score f(x) of the image x if modifying it by assigning it a random RGB value
x̃(p), and classifying the modified image x̄p = x \ {x(p)} ∪ {x̃(p)} results in a
strong decrease of the real-valued classification score f(x̄p). This idea can be
extended by sequentially modifying pixels from the most relevant to the least
relevant. The result is a graph of the prediction score f(x̄) as a function of
the number of modified pixels. An example for some sequences which will be
explained below is shown in Fig. 2. We can use these graphs to evaluate the
meaningfulness of a pixel-wise decomposition.

In the first experiment we compare the measure when flipping highest-scoring
pixels first, against flipping pixels in random order, and against flipping lowest
scoring pixels first. If the classifier is able to identify pixels that are important
for classification, then flipping highest scoring pixels first should result in the
fastest decaying curve, while flipping lowest scoring pixels first should result in
the slowest decrease. Figure 2 tests this property on the CIFAR-10 dataset [3]
which consists of 50000 images of size 32×32 drawn from 10 object classes. Scores
are averaged over the 5000 images of the test set of CIFAR-10 for a classifier in
which local renormalization layers are treated as the identity during computation
of pixel-wise scores. Experiments corroborate that flipping highest scoring pixels

Fig. 2. Decrease of classification score as pixels are sequentially replaced by random
noise on the CIFAR-10 dataset. Red curve: pixels with highest pixel-wise scores are
flipped first. Blue curve: pixels are flipped in random order. Green curve: least relevant
pixels are flipped first. A similar comparison for Imagenet is found in [8]. (Color figure
online)
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first results in the fastest decrease of the prediction score on average over the
test set. The decrease is sharper compared to random flipping, or flipping lowest
scoring pixels first.

In a second experiment we compare which treatment of the local renormal-
ization layer is best to identify those pixels that are most relevant for classifying
an image. The two tested approaches for treating the local renormalization are
(1) like it would be the identity, (2) by first order Taylor expansion as given by
Eq. 15. These approaches are furthermore tested when used in conjunction with
the two methods proposed by [1], namely, the ε-rule in Eq. 5 with a fixed value
of the numerical stabilizer ε, and the β-rule shown in Eq. 6, with fixed β.

Table 1. Comparison of different types of LRN layer treatments for two approaches
of computing pixel-wise scores for CIFAR-10. Lower scores are better.

Rule for basic layers Rule for normalization layers AUC score

Eqs. 4, 5, ε = 0.01 identity 37.10

Eqs. 4, 5, ε = 0.01 first-order Taylor 35.47

Eqs. 4, 6, β = 1 identity 56.13

Eqs. 4, 6, β = 1 first-order Taylor 53.82

We measure the quality of heatmaps by perturbing highest pixels first and
computing the area under the curve (AUC). Lower AUC averaged over a large
number of images indicates a better identification of pixel relevance by the
heatmap. Results on CIFAR-10 are shown in Table 1. We observe that in all
cases using first order Taylor in normalization layers improves the heatmap AUC
score. This shows its effectiveness for dealing with non-linear neuron layers.

Table 2. Comparison of different types of heatmap computations for Imagenet and
MIT Places. We use the shortcut notation Δb

a for expressing AUCa − AUCb. Thus, a
negative value indicates that the method produces better heatmaps with parameter a
than with parameter b. Note that ε refers to Eqs. 4 and 5; β refers to Eqs. 4 and 6.

Dataset Methods Δε=0.01
ε=1 Δε=100

ε=0.01 Δβ=1
ε=100 Δβ=0

β=1

Imagenet identity −21.29 2.75 −42.61 −49.07

Taylor −12.29 −41.75 −34.44 −50.76

MIT Places identity −20.19 12.91 −14.55 −49.37

Taylor −11.65 −22.55 −8.82 −48.7

We perform the same experiments also with Imagenet [7] and MIT Places
[12] datasets, each time evaluating results for 5000 images from their respective
unlabeled test sets. Note that computing a heatmap requires only a predicted
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Table 3. Impact of using the Taylor method in various settings. Negative value indi-
cates that using the Taylor expansion for the local renormalization is better in AUC
terms (i.e. heatmaps are more representative of the importance of each pixel).

Dataset Methods ε = 1 ε = 0.01 ε = 100 β = 1 β = 0

Imagenet AUCTaylor − AUCidentity −35.84 −26.84 8.47 0.29 1.98

MIT Places AUCTaylor − AUCidentity −33.13 −24.59 5.34 −0.39 −1.06

class label, not a ground truth. We evaluated results for the parameter settings
β = 0, β = 1 in Eq. 6 and ε = 0.01, ε = 1, ε = 100 in Eq. 5. Table 2 shows the
difference of AUC between variants of LRP, when using either the identity or
the Taylor expansion for local renormalization layers. We observe the following
ordering starting with the lowest (best) AUC: ε = 1, ε = 0.01, ε = 100, β = 1,
β = 0. This order holds independent of whether we consider Imagenet or MIT
places, when using Taylor for local renormalization layers. When using identity

Fig. 3. Top row shows original unwarped image. Remaining rows show heatmaps pro-
duced by various parameters of the LRP method.
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instead of Taylor, the order remain the same, except for ε = 100 and ε = 0.01
that are swapped. This is by itself an interesting result demonstrating that use
of Taylor in the normalization layer does not disrupt the overall properties of
relevance propagation techniques. For a comparison to other approaches such
as heatmaps based on deconvolutions [11], or backpropagated gradients [9] we
refer to [8].

Table 3 shows the difference of AUC between Taylor and identity for local
renormalization layers, for various choices of datasets and LRP parameters. We
observe that for the parameters with best AUC (ε = 1 and ε = 0.01), using
Taylor expansion for representing local renormalization layers further improves
the AUC scores. For the remaining choices the results are on par or slightly worse.
This is consistent with the interpretation of large values of ε as smoothing out
small contributions. It is also consistent with the observation that β = 1 and
β = 0 yield both smooth heatmaps in general. Heatmaps for some parameters of
interest are shown in Fig. 3. Taylor with ε = 1 has both high pixel selectivity and
low noise, which in agreement with its measured superiority in the quantitative
experiments.

5 Conclusion

We have presented an extension of layer-wise relevance propagation (LRP) based
on first-order Taylor expansions for product-type nonlinearities. Such nonlinear-
ities occur in the local renormalization layers of deep convolutional neural net-
works. The proposed extension is evaluated on three popular datasets and it is
shown to clearly outperform the original LRP method. In future work we will
investigate the potential gain of using higher order Taylor expansions, and apply
the method to a larger class of neural network layers.
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Abstract. Deep learning is the state-of-the-art in fields such as visual
object recognition and speech recognition. This learning uses a large
number of layers, huge number of units, and connections. Therefore,
overfitting is a serious problem. To avoid this problem, dropout learning
is proposed. Dropout learning neglects some inputs and hidden units in
the learning process with a probability, p, and then, the neglected inputs
and hidden units are combined with the learned network to express the
final output. We find that the process of combining the neglected hidden
units with the learned network can be regarded as ensemble learning, so
we analyze dropout learning from this point of view.

Keywords: Dropout learning · Overfitting · Regularization · Ensemble
learning · Soft-committee machine · Teacher-student formulation

1 Introduction

Deep learning [1,2] is attracting much attention in the field of visual object
recognition, speech recognition, object detection, and many other domains. It
provides automatic feature extraction and has the ability to achieve outstanding
performance [3,4].

Deep learning uses a very deep layered network and a huge number of data, so
overfitting is a serious problem. To avoid overfitting, regularization is used. Hin-
ton et al. proposed a regularization method called “dropout learning” [5] for this
purpose. Dropout learning follows two processes. At learning time, some hidden
units are neglected with a probability p, and this process reduces the network size.
At test time, learned hidden units and those not learned are summed up and mul-
tiplied by p to calculate the network output. We find that summing up the learned
and not learned units multiplied by p can be regarded as ensemble learning.

In this paper, we analyze dropout learning regarded as ensemble learning [6].
On-line learning [7,8] is used to learn a network. We analyze dropout learn-
ing regarded as ensemble learning, except for using different sets of hidden
units in dropout learning. We also analyze dropout learning regarded as an L2
normalizer [9].
c© Springer International Publishing Switzerland 2016
A.E.P. Villa et al. (Eds.): ICANN 2016, Part II, LNCS 9887, pp. 72–79, 2016.
DOI: 10.1007/978-3-319-44781-0 9
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2 Model

In this paper, we use a teacher-student formulation and assume the existence
of a teacher network (teacher) that produces the desired output for the student
network (student). By introducing the teacher, we can directly measure the
similarity of the student weight vector to that of the teacher. First, we formulate
a teacher and a student, and then introduce the gradient descent algorithm.

The teacher and student are a soft committee machine with N input units,
hidden units, and an output, as shown in Fig. 1. The teacher consists of K
hidden units, and the student consists of K ′ hidden units. Each hidden unit is a
perceptron. The kth hidden weight vector of the teacher is Bk = (Bk1, . . . , BkN ),
and the k′th hidden weight vector of student is J

(m)
k′ = (J (m)

k′1 , . . . , J
(m)
k′N ), where

m denotes learning iterations. In the soft committee machine, all hidden-to-
output weights are fixed to be +1 [8]. This network calculates the majority vote
of hidden outputs.

Fig. 1. Network structures of teacher and student

We assume that both the teacher and the student receive N -dimensional
input ξ(m) = (ξm

1 , . . . , ξ
(m)
N ), that the teacher outputs t(m) =

∑K
k=1 t

(m)
k =

∑K
k=1 g(d(m)

k ), and that the student outputs s(m) =
∑K′

k′=1 s
(m)
k′ =

∑K′

k′=1 g(y(m)
k′ ).

Here, g(·) is the output function of a hidden unit, d
(m)
k is the inner potential of

the kth hidden unit of the teacher calculated using d
(m)
k =

∑N
i=1 Bkiξ

(m)
i , and

y
(m)
k′ is the inner potential of the k′th hidden unit of the student calculated using

y
(m)
k′ =

∑N
i=1 J

(m)
k′i ξ

(m)
i .

We assume that the ith elements ξ
(m)
i of the independently drawn input ξ(m)

are uncorrelated random variables with zero mean and unit variance; that is, that
the ith element of the input is drawn from a probability distribution P(ξi). The
thermodynamic limit of N → ∞ is also assumed. The statistics of the inputs in
the thermodynamic limit are

〈
ξ
(m)
i

〉
= 0,

〈
(ξ(m)

i )2
〉

≡ σ2
ξ = 1, and

〈‖ξ(m)‖〉
=√

N , where 〈· · · 〉 denotes the average and ‖ · ‖ denotes the norm of a vector.
Each element Bki, k = 1 ∼ K is drawn from a probability distribution with zero
mean and 1/N variance. With the assumption of the thermodynamic limit, the
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statistics of the teacher weight vector are 〈Bki〉 = 0,
〈
(Bki)2

〉 ≡ σ2
B = 1/N , and

〈‖Bk‖〉 = 1. This means that any combination of Bl · Bl′ = 0. The distribution
of inner potential d

(m)
k follows a Gaussian distribution with zero mean and unit

variance in the thermodynamic limit.
For the sake of analysis, we assume that each element of J

(0)
k′i , which is the

initial value of the student vector J
(0)
k′ , is drawn from a probability distribution

with zero mean and 1/N variance. The statistics of the k′th hidden weight vector
of the student are

〈
J
(0)
k′i

〉
= 0,

〈
(J (0)

k′i )
2
〉

≡ σ2
J = 1/N , and

〈
‖J

(0)
k′ ‖

〉
= 1 in the

thermodynamic limit. This means that any combination of J
(0)
l · J

(0)
l′ = 0. The

output function of the hidden units of the student g(·) is the same as that of
the teacher. The statistics of the student weight vector at the mth iteration are〈
J
(m)
k′i

〉
= 0,

〈
(J (m)

k′i )2
〉

= (Q(m)
k′k′)2/N , and

〈
‖J

(m)
k′ ‖

〉
= Q

(m)
k′k′ . Here, (Q(m)

k′k′)2 =

J
(m)
k′ · J

(m)
k′ . The distribution of the inner potential y

(m)
k′ follows a Gaussian

distribution with zero mean and (Q(m)
k′k′)2 variance in the thermodynamic limit.

Next, we introduce the stochastic gradient descent (SGD) algorithm for the
soft committee machine. The generalization error is defined as the squared error
ε averaged over possible inputs:

ε(m)
g =

〈
ε(m)

〉
=

1
2

〈
(t(m) − s(m))2

〉
=

1
2

〈⎛

⎝
K∑

k=1

g(d(m)
k ) −

K′∑

k′=1

g(y(m)
k′ )

⎞

⎠
2〉

,

(1)
At each learning step m, a new uncorrelated input, ξ(m), is presented, and

the current hidden weight vector of the student J
(m)
k′ is updated using

J
(m+1)
k′ = J

(m)
k′ +

η

N

⎛

⎝
K∑

l=1

g(d(m)
l ) −

K′∑

l′=1

g(y(m)
l′ )

⎞

⎠ g′(y(m)
k′ )ξ(m), (2)

where η is the learning step size and g′(x) is the derivative of the output function
of the hidden unit g(x).

On-line learning uses a new input at once, therefore, overfitting does not
occur. To evaluate the dropout learning in on-line learning, pre-selected whole
inputs frequently use in a on-line manner. From our experiences, when the input
dimension is N , then overfitting occurs for pre-selected whole 10 × N inputs.

3 Dropout Learning and Ensemble Learning

In this section, we compare dropout learning and ensemble learning regarded as
a way of calculating network output.

3.1 Ensemble Learning

Eensemble learning is performed by using many learners (referred to as students)
to achieve better performance [6]. In ensemble learning, each student learns the
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teacher independently, and each output is averaged to calculate the ensemble
output sen.

sen =
Ken∑

k′
en=1

Ck′
en

sk′
en

=
Ken∑

k′
en=1

Ck′
en

K′∑

k′=1

g(yk′) (3)

Here, Ck′
en

is a weight for averaging. Ken is the number of students.
Figure 2 shows computer simulation results. The teacher and student include

two hidden units. The output function g(x) is the error function erf(x/
√

2) =∫ x

−x
dt exp(−t2/s)/

√
2π. In the figure, the horizontal axis is time t = m/N .

Here, m is the iteration number, and N is the dimension of input units. Input
dimension is N = 10000, and 10 × N inputs are frequently used. The vertical
axis is the mean squared error (MSE) for N input data. Each elements ξ

(m)
i

of the independently drawn input ξ(m) are uncorrelated random variables with
zero mean and unit variance. Target for ξ(m) is the teacher output. The teacher
and the initial student weight vectors are set as described in Sect. 2. In the
figure, “Single” is the result of using a single student. “m2” is the result of using
an ensemble of two students, “m3” is that of an ensemble of three students,
and “m4” is that of ensemble of four students. As shown, the ensemble of four
students outperformed the other two cases.

Fig. 2. Effect of ensemble learning Fig. 3. Network divided into two net-
works to apply ensemble learning

Next, we modify the ensemble learning. We divide the student (with K ′

hidden units) into Ken networks (See Fig. 3. Here, K ′ = 4 and Ken = 2). These
divided networks learn the teacher independently, and then we calculate the
ensemble output sen by averaging the outputs sk′

en
as:

sen =
1

Ken

Ken∑

k′
en=1

sk′
en

=
1

Ken

Ken∑

k′
en=1

M/Ken∑

l′=1

g(yk′
enl′). (4)

Here, sk′
en

is the output of a divided network with M/Ken hidden units, and
g(yk′

enl′) is the l′th hidden output in the k′
enth divided network. Equation (4)

corresponds to Eq. (3) when Ck′
en

= 1
Ken

and K ′ = M
Ken

.
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3.2 Dropout Learning

In this subsection, we introduce dropout learning [5]. Dropout learning is used
in deep learning to prevent overfitting. A small number of data compared with
the size of a network may cause overfitting [10]. In the state of overfitting, the
learning error (the error for learning data) and the test error (the error by
cross-validation) become different. Figure 4 shows the result of the SGD and
that of dropout learning. The soft committee machine was used for both the
teacher and student. erf(x/

√
2) was used as the output function g(x). Input

dimension is N = 1000, and the teacher had two hidden units, and the student
had 100 hidden units. The input and its target are generated as those of Fig. 2.
The learning step size η was set to 0.01, and 1000 pieces of inputs were used
iteratively for learning. In Fig. 4(a) shows the learning curve of the SGD. In
this setting, overfitting occurred. Figure 4(b) shows the learning curve of the
SGD with dropout learning. The learning error was small compared with the
test error; however, the difference between the learning error and the test error
was not as significant as that of the SGD. Therefore, these results shows that
dropout learning prevent overfitting.

Fig. 4. Effect of dropout. (a) is learning curve of SGD, and (b) is that of dropout
learning.

The learning equation of dropout learning for the soft committee machine
can be written as the next equation.

J
(m+1)
k′ = J

(m)
k′ +

η

N

⎛

⎝
K∑

l=1

g(d(m)
l ) −

(1−p)K′∑

l′ /∈D(m)

g(y(m)
l′ )

⎞

⎠ g′(y(m)
k′ )ξ(m), (5)

Here, D(m) shows a set of hidden units that is randomly selected with respect
to the probability p from all the hidden units at the mth iteration. The hidden
units in D(m) are not subject to learning. After the learning, the student’s output
s(m) is calculated by the sum of learned hidden outputs and those not learned
multiplied by p.
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s(m) = p ∗
⎧
⎨

⎩

(1−p)K′∑

l′ /∈D(m)

g(y(m)
l′ ) +

pK′∑

l′∈D(m)

g(y(m−1)
l′ )

⎫
⎬

⎭ (6)

This equation is regarded as the ensemble of a learned network (the first term)
and that of a not learned network (the second term) when the probability is p =
0.5. Equation 6 is correspond to Eq. (4) when p = 1/Ken and Ken = 2. However,
a set of hidden units in D(m) is selected at random in every iteration. So, dropout
learning is regarded as ensemble learning performed by using a different set of
hidden units in every iteration. Instead, the original ensemble learning is the
average of the fixed set of hidden units throughout the learning. This difference
may cause the difference in performances between dropout learning and ensemble
learning.

4 Results

4.1 Comparison Between Dropout Learning and Ensemble Learning

In this section, the error function erf(x/
√

2) is used as the output function g(x).
We compared dropout learning and ensemble learning. We used two soft commit-
tee machines with 50 hidden units for ensemble learning. For dropout learning,
we used one soft committee machine with 100 hidden units. We set p = 0.5;
then, dropout learning selected 50 hidden units in D(m) with 50 unselected hid-
den units remaining. Therefore, dropout learning and ensemble learning had the
same architectures. Input dimension is N = 1000, and the learning step size
was set to η = 0.01. The input and its target are generated as those of Fig. 2. N
inputs were used iteratively for learning. Figure 5 shows the results. The horizon-
tal axes is time t = m/N , and the vertical axis is the MSE calculated for N input
data. In Fig. 5(a), “single” shows the soft-committee machines with 50 hidden
units. “ensemble” shows the results given by ensemble learning. Test errors are
used in these figures. In Fig. 5(b), “test” shows the MSE given by the test data.
“learn” shows the MSE given by the learning data. Results are obtained by aver-
age of 10 trials. As shown in Fig. 5(a), the ensemble learning achieved an MSE
smaller than that of the single network. However, dropout learning achieved an
MSE smaller than that of ensemble learning. Therefore, ensemble learning using
a different set of hidden units in every iteration (this is the dropout) performs
better than when using the same set of hidden units throughout the learning.
Note that even with dropout learning using more hidden units than ensemble
learning, overfitting did not occur. Therefore, in the next subsection, we will
compare dropout learning with the SGD with L2 regularization.
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Fig. 5. Results of comparison between dropout learning and ensemble learning. (a) is
ensemble learning of two networks, and (b) is dropout learning with respect to p = 0.5.

4.2 Comparison Between Dropout Learning and SGD with L2
Regularization

The next learning equation shows the SGD with L2 regularization.

J
(m+1)
k′ = J

(m)
k′ +

η

N

⎛

⎝
K∑

l=1

g(d(m)
l ) −

K′∑

l′=1

g(y(m)
l′ )

⎞

⎠ g′(y(m)
k′ )ξ(m)−α‖J

(m)
k′ ‖2. (7)

Here, α is a coefficient of the L2 penalty.
In Fig. 6, we show the learning results of the SGD with L2 regularization

with α = 1e − 6. Results are obtained by average of 10 trials. The conditions
were the same as those of Fig. 5.

Fig. 6. Learning curve of SGD with L2 normalization

From comparison between Figs. 5(b) and 6, the residual error of dropout
learning was almost the same as that of the SGD with L2 regularization.
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Therefore, the regularization effort of dropout learning is the same as the L2
regularization. Note that for the SGD with L2 regularization, we must choose α
in trials; however, dropout learning has no tuning parameter.

5 Conclusion

In this paper, we analyzed dropout learning regarded as ensemble learning. In
ensemble learning, we divide the network into several sub-networks, and then we
learn each sub-network independently. After the learning, the ensemble output
is calculated by using the average of the sub-network outputs. We showed that
dropout learning can be regarded as ensemble learning except for using a different
set of hidden units in every learning iteration. Using a different set of hidden unit
outperforms ensemble learning. We also showed that dropout learning achieves
the same performance as the L2 regularizer. Our future work is the theoretical
analysis of dropout learning with ReLU activation function.
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Abstract. Convolutional neural networks (CNNs) have become effec-
tive instruments in facial expression recognition. Very good results can be
achieved with deep CNNs possessing many layers and providing a good
internal representation of the learned data. Due to the potentially high
complexity of CNNs on the other hand they are prone to overfitting and as
a result, regularization techniques are needed to improve the performance
and minimize overfitting. However, it is not yet clear how these regulariza-
tion techniques affect the learned representation of faces. In this paper we
examine the effects of novel regularization techniques on the training and
performance of CNNs and their learned features. We train a CNN using
dropout, max pooling dropout, batch normalization and different combi-
nations of these three. We show that a combination of these methods can
have a big impact on the performance of a CNN, almost halving its valida-
tion error. A visualization technique is applied to the CNNs to highlight
their activations for different inputs, illustrating a significant difference
between a standard CNN and a regularized CNN.

Keywords: Convolutional neural network · Facial expression recogni-
tion · Regularization · Batch normalization · Dropout · Max pooling
dropout

1 Introduction

The increasing size and complexity of neural networks in the recent past give more
freedom to developers and provide solutions for more complex problems, but also
make them more prone to overfit the given input data. This is especially the case
in supervised settings when there is only a very limited amount of training data.

To deal with this problem various regularization methods have been devel-
oped to reduce overfitting. These techniques include established techniques such
as early stopping, where training is stopped as soon as the validation error stops
to improve and L2 regularization, the neural network equivalent of the Ridge
regression. More recently new methods for regularization were introduced, such
as dropout [2], drop-connect [13], max pooling dropout [3], stochastic pooling
[4] and to some degree batch normalization [5].
c© Springer International Publishing Switzerland 2016
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Dropout, max pooling dropout and batch normalization have been intro-
duced in the previous four years. While they have been used and examined
individually, the authors know of no work in which all three methods are tested
and evaluated in conjunction with each other.

This research applies some of the most recently developed regularization
methods to a CNN trained on images from the Cohn-Kanade dataset [7]. The
Cohn-Kanade dataset contains human faces expressing different emotions, such
as happiness, anger or surprise. We train a CNN on this dataset, using dropout,
max pooling dropout and batch normalization. The effect of different combi-
nations of these three techniques on the training of the CNN is examined by
monitoring the development of the validation error over time, as well as by visu-
alizing CNNs’ activations for different input images.

2 Background

In this chapter we will first give a brief overview over the tested regularization
methods, i.e. dropout [2], max pooling dropout [3] and batch normalization [5].

2.1 Dropout

In 2012 Hinton et al. [2] introduced the dropout method to prevent artificial
neural networks from overfitting. Dropout prevents co-adaptation of the network’s
weights to the training data. To achieve this each hidden unit of the network is
omitted with a given probability - usually 0.5 - for any training sample.

This means that for each training sample a selected subset of units, including
their incoming and outgoing connections, are temporarily removed from the
network. If a dropout probability p of 0.5 is used, roughly half of the activations
in each layer are deleted for every training sample, thus preventing hidden units
from relying on other hidden units being present.

For testing the network on independent test data, the “mean network” is
used. It contains all the hidden units, but has to compensate for the fact that
during testing roughly twice as many hidden units are active, compared to the
training phase. Due to this the weights are rescaled proportional to the dropout
probability, for example for a dropout probability of 0.5 all weights are divided
by two [2].

2.2 Max Pooling Dropout

Max pooling dropout is a dropout variant especially designed for CNNs, intro-
duced by Wu and Gu [3]. In a standard CNN we have alternating convolutional
and pooling layers. Common pooling mechanisms include for example max or
average pooling. Wu and Gu suggested using dropout within the pooling layers
to introduce stochasticity into the training process. Instead of deterministically
choosing the strongest activation in the pooling region, max pooling dropout
allows smaller activations to be chosen instead.
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To achieve this, dropout is applied to each pooling regions, before max
pooling is performed. Using max pooling dropout is therefore sampling from
a multinomial distribution to select an index i to choose the pooled activation
ai. As such max pooling dropout can be seen as a special variant of stochas-
tic pooling [4], with the difference that activations are used with a probability
proportional to their rank, instead of the strength of their activation.

2.3 Batch Normalization

During training the distribution of inputs to a given layer changes as parame-
ters in the previous layer are updated. Therefore, parameter initialization and
the learning rate can have a high impact on the progress of the training. This
phenomenon, also called internal covariate shift, is addressed by the technique
called batch normalization [5]. Batch normalization works by normalizing each
layer’s input for each mini batch during training. This allows much higher learn-
ing rates, more freedom regarding parameter initialization and also acts as a
regularizer.

To that end each layer’s input is normalized. To preserve what each layer can
represent for each activation x(k), a pair of parameters < γ(k), β(k) > is intro-
duced, which scales and shifts the normalized values. These additional parame-
ters are learned along with the original model parameters and make sure the
representational capability of the network is not changed.

Batch normalization can work as a form of regularization, since a training
example is seen in conjunction with other examples in a mini batch. Due to
shuffling, the composition of mini batches changes during training, so the network
no longer produces deterministic values for a given training example.

3 Methodology

To test the previously described regularization methods we examined a CNN
and trained it to classify images from the Cohn-Kanade dataset [7]. The Cohn-
Kanade dataset consists of images depicting human faces in seven emotions:
anger, contempt, disgust, fear, happiness, sadness and surprise. In line with
other research [8] we only used six classes, neglecting contempt for our training
and testing. Each example of emotion contains a sequence of up to 60 frames,
that starts with a neutral expression and continues to the peak of the expression.
Our training and testing set comprised the last three images of each sequence.
These images were rescaled to 128 × 128 pixels, converted to gray scale and
whitened.

3.1 Experiments

The CNN used for the experiments consists of six layers. The first three layers are
convolutional layers, followed by two fully connected layers and one softmax layer
for classification on top. Max pooling is performed after each convolutional layer
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Fig. 1. CNN architecture: our CNN consists of three convolutional layers with 10, 15
and 20 filters, each with a filter size of 5× 5. 2× 2 max pooling is performed after each
convolutional layer. The convolutional layers are followed by two fully connected layers
with 500 and 200 units and one classification layer with 6 units.

and the number of filters per convolutional layer are 10, 15 and 20 respectively.
A filter size of 5×5 is used on each convolutional layer. The two fully connected
layers consist of 500 and 200 units and the logistic regression layer has 6 units
for classification, see Fig. 1.

As activation function ReLU was used on all layers and weight initialization
was performed according to current guidelines [6]. The initial learning rate is
0.001, which is linearly reduced by 1 % per epoch. A momentum of 0.9 was used
and L2 regularization with a small penalty of 0.0001 was introduced since it
improved stability during training.

With this fixed architecture we then proceeded to test the effects of the
different methods on the set classification task. The following eight settings were
tested:

1. no regularization,
2. standard dropout after each layer,
3. max pooling dropout after each convolutional layer,
4. batch normalization (BN) after each layer,
5. max pooling dropout after each convolutional layer and standard dropout

after each fully connected layer,
6. max pooling dropout after each convolutional layer and BN after each layer,
7. standard dropout after each layer and BN after each layer,
8. max pooling dropout after each convolutional layer and standard dropout

after each fully connected layer and BN after each layer.

For each individual setting training was performed using stochastic gradient
descent for a total of 150 epochs. We split our dataset into ten independent
subsets of equal size and performed 10-fold cross-validation in the manner pre-
sented by Liu et al. [9]. After training was completed we applied a visualization
technique [10] to our CNN, to demonstrate the potential impact of regulariza-
tion methods on the learned features. For this we deconvolve our CNN and then
visualize the activations of the third convolutional layer for various input images.
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3.2 Results

The most important evaluation criterion for the proposed methods is whether
they are able to decrease the validation error, i.e. improve the system’s gener-
alization capability. Figure 2 depicts plots of the development of the validation
error over time for each regularization method. The plots show the average vali-
dation error of all runs for a given regularization method and the combination of
that method with batch normalization. Table 1 gives the average best validation
error and the standard deviation of the best validation errors for each tested
regularization method.

Except for batch normalization each combination of regularization methods
outperformed no regularization. The improvements from all combinations from
max dropout and batch normalization onward are statistically significant when
compared to no regularization. The results also indicate that the combination of
several regularization methods, as opposed to using one single method, further
improves regularization. Each combination of at least two regularization methods
performed better than using only one single method.

Table 1. Average accuracy and standard deviations for 10-fold cross-validation for the
combinations of different methods. Sorted in order of increasing accuracy.

Method Accuracy Std

Batch Normalization (BN) 86.9 % 4.4

No Regularization 89.6 % 4.5

Dropout 92,4 % 3.3

Max Dropout 92,8 % 3.4

Max Dropout + BN 93.3 % 4.0

Dropout + BN 93,9 % 4.1

Max Dropout + Dropout + BN 94.3 % 4.2

Max Dropout + Dropout 94.3 % 2.5

The addition of batch normalization to any regularization methods did not
improve the final accuracy. However Fig. 2 shows quite clearly that the addition
of batch normalization had the advantage of converging quicker to better results.
Since the differences in the results between any regularization method and that
regularization method in combination with batch normalization are not statis-
tically significant, it seems that the addition of batch normalization helps the
training process.

Figure 3 shows a visualization [10] of each filter on the third convolutional
layer for the input image depicted in the respective leftmost column. The images
on the left of the second and third column depict the activations of a standard
CNN trained without regularization and the images on the right a regularized
CNN trained with the combination of max dropout and dropout. It can be
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seen that the activations of the regularized CNN are much more focused on
certain parts of the face, while the standard CNN is activated for much bigger
regions. This can explain the higher accuracy of the regularized CNN, as the
regularization methods seem to force it to focus on certain aspects of the face.
The filters of the standard CNN on the other hand are often quite blurry and
indistinct, explaining its lower accuracy.

Fig. 2. Development of validation errors during training time.

3.3 Discussion

The differences in the filters’ activations shown in Fig. 3 for the third convolu-
tional layer between the standard and the regularized CNN are notable. Many
of the standard CNN’s filters do not focus on specific parts of the face, but are
instead spread over the whole input. As a result we have many activations in
areas of the input that are not relevant to the classification, such as the corners
of the image.

In all images of the Cohn-Kanade dataset the faces are quite centered in
the image and as a result the corners of the inputs do not provide relevant
information for the classification task. This is reflected by the activations of the
regularized CNN, which are mostly focused on the facial features themselves.
Here the filters are much more selective and mostly focus on the center part
of the image. This focus is likely to improve the overall accuracy of the CNN
compared to one without applied regularization.

Indeed, Khorrami et al. [8] showed in their work that the most important
features are centered around the eyes, the nose and the mouth. The visualiza-
tions show that the regularized CNN mainly focuses on these areas. It is also
noteworthy that our accuracy is comparable to previous results [8,11,12]. While
we do not achieve state-of-the art accuracy it has to be noted that we do not
perform data augmentation and only use roughly a tenth of the number of filters
as e.g. Khorrami et al. [8]. It can be expected that the accuracy of our network
can be further improved by utilizing data augmentation techniques even without
increasing the number of used filters.
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Fig. 3. Visualization of third convolutional layer’s activations for the input image on
the left of each row. The left image of the second and third column depicts the acti-
vations of a standard CNN, while the right image of the respective column shows the
activations of the same filter in a CNN regularized with a combination of max pooling
dropout and common dropout.

4 Conclusion

In this work we showed that for the training of a CNN the combination of max
dropout and standard dropout can achieve very high accuracy on the Cohn-
Kanade dataset, even without applying data augmentation and with a com-
paratively small number of used filters. A visualization of the trained networks
shows a big difference between a regularized and a standard CNN, exemplify-
ing the effects of regularization firsthand. While the standard CNN’s filters are
often blurry and indistinct, the regularized CNN’s filters exhibit a much higher
selectivity and are more focused on important features.

In our experiments batch normalization had no effect on the generalization
capability of a trained CNN. However, it did not affect the accuracy of a CNN
in a negative way, while simultaneously reducing the training time until good
results are achieved. It therefore seems that the addition of batch normalization
to the training procedure is advantageous.

Finally, we have shown that with the right combination of applied regular-
ization techniques it is possible to achieve good results with small networks and
without data augmentation. In the future, these regularization techniques can
be applied together with data augmentation and more complex CNNs, either
with more filters or more layers, to potentially achieve an even higher accuracy
on challenging datasets.
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Abstract. We present an end-to-end learning method for chess, relying
on deep neural networks. Without any a priori knowledge, in particu-
lar without any knowledge regarding the rules of chess, a deep neural
network is trained using a combination of unsupervised pretraining and
supervised training. The unsupervised training extracts high level fea-
tures from a given position, and the supervised training learns to com-
pare two chess positions and select the more favorable one. The training
relies entirely on datasets of several million chess games, and no further
domain specific knowledge is incorporated.

The experiments show that the resulting neural network (referred to
as DeepChess) is on a par with state-of-the-art chess playing programs,
which have been developed through many years of manual feature selec-
tion and tuning. DeepChess is the first end-to-end machine learning-
based method that results in a grandmaster-level chess playing perfor-
mance.

1 Introduction

Top computer chess programs are based typically on manual feature selection
and tuning of their evaluation function, usually through years of trial and error.
While computer chess is one of the most researched fields within AI, machine
learning has not been successful yet at producing grandmaster level players.

In this paper, we employ deep neural networks to learn an evaluation function
from scratch, without incorporating the rules of the game and using no manually
extracted features at all. Instead, the system is trained from end to end on a
large dataset of chess positions.

Training is done in multiple phases. First, we use deep unsupervised neural
networks for pretraining. We then train a supervised network to select a prefer-
able position out of two input positions. This second network is incorporated
into a new form of alpha-beta search. A third training phase is used to compress
the network in order to allow rapid computation.

Our method obtains a grandmaster-level chess playing performance, on a par
with top state-of-the-art chess programs. To the best of our knowledge, this is
c© Springer International Publishing Switzerland 2016
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the first machine learning-based method that is capable of learning from scratch
and obtains a grandmaster-level performance.

2 Previous Work

Chess-playing programs have been improved significantly over the past several
decades. While the first chess programs could not pose a challenge to even a
novice player, the current advanced chess programs have been outperforming
the strongest human players, as the recent man vs. machine matches clearly
indicate. Despite these achievements, a glaring deficiency of today’s top chess
programs is their severe lack of a learning capability (except in most negligible
ways, e.g., “learning” not to play an opening that resulted in a loss, etc.).

During more than fifty years of research in the area of computer games, many
learning methods have been employed in several games. Reinforcement learning
has been successfully applied in backgammon [16] and checkers [13]. Although
reinforcement learning has also been applied to chess [1,10], the resulting pro-
grams exhibit a playing strength at a human master level at best, which is
substantially lower than the grandmaster-level state-of-the-art chess programs.
These experimental results confirm Wiering’s [17] formal arguments for the
failure of reinforcement learning in rather complex games such as chess. Very
recently, a combination of a Monte-Carlo search and deep learning resulted in a
huge improvement in the game of Go [15]. However, Monte-Carlo search is not
applicable to chess, since it is much more tactical than Go, e.g., in a certain
position, all but one of the moves by the opponent may result in a favorable
result, but one refutation is sufficient to render the position unfavorable.

In our previous works, we demonstrated how genetic algorithms (GA’s) could
be applied successfully to the problem of automatic evaluation function tuning
when the features are initialized randomly [3–6]. Although to the best of our
knowledge, these works are the only successful automatic learning methods to
have resulted in grandmaster-level performance in computer chess, they do not
involve learning the features themselves from scratch. Rather, they rely on the
existence of a manually created evaluation function, which consists already of all
the required features (e.g., queen value, rook value, king safety, pawn structure
evaluation, and many other hand crafted features). Thus, GAs are used in this
context for optimization of the weights of existing features, rather than for feature
learning from scratch.

3 Learning to Compare Positions

The evaluation function is the most important component of a chess program.
It receives a chess position as an input, and provides a score as an output.
This score represents how good the given position is (typically from White’s
perspective). For example, a drawish position would have a score close to 0,
a position in which white has two pawns more than black would have a score
of +2, and a position in which black has a rook more than white, would be
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scored around −5. A good evaluation function considers typically a large number
(i.e., on the order of hundreds and even thousands) of properties in addition to
various piece-related parameters, such as king safety, passed pawns, doubled
pawns, piece centrality, etc. The resulting score is a linear combination of all the
selected features. The more accurately these features and their associated values
capture the inherent properties of the position, the stronger the corresponding
chess program becomes.

In this paper, we are interested in developing such an evaluation function
from scratch, i.e., with absolutely no a priori knowledge. As a result, we do
not provide our evaluation function with any features, including any knowledge
about the rules of chess. Thus, for our training purposes, we are limited to
observing databases of chess games with access only to the results of the games
(i.e., either a win for White or Black, or a draw).

Since the real objective of an evaluation function is to perform relative com-
parisons between positions, we propose a novel training method around this
concept. The model receives two positions as input and learns to predict which
position is better. During training, the input pair is selected as follows: One
position is selected at random from a game which White eventually won and the
other from a game which Black eventually won. This relies on the safe assump-
tion that, on average, positions taken from games that White won are preferable
(from White’s perspective) to those taken from games that White lost. Addi-
tionally, the proposed approach allows for the creation of a considerably larger
training dataset. For example, if we have a million positions from games that
White had won, and a million positions from games that White had lost, we can

Fig. 1. Architecture illustration of DeepChess.
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create 2 × 1012 training pairs (multiplied by 2 because each pair can be used
twice, as [win, loss] and [loss, win]).

Our approach consists of multiple stages. First, we train a deep autoencoder
on a dataset of several million chess positions. This deep autoencoder functions
as a nonlinear feature extractor. We refer to this component as Pos2Vec, since it
converts a given chess position into a vector of values which represent the high
level features. In the second phase, we use two copies of this pretrained Pos2Vec
side by side, and add fully connected layers on top of them, with a 2-value soft-
max output layer. We refer to this structure as DeepChess. It is trained to predict
which of the two positions results in a win. Note that similar to the most suc-
cessful object detection methods [11], we found a 2-value output to outperform
one binary output. Figure 1 illustrates the neural network architecture.

Dataset: We employed the games dataset of CCRL (www.computerchess.org.
uk/ccrl), which contains 640,000 chess games, out of which White won 221,695
games and Black won 164,387 games, the remaining games ended in a draw.
Our experiments show that the inclusion of games that ended in a draw is not
beneficial, so we only use games which ended in a win.

From each game we randomly extracted ten positions, with the restriction
that the selected position cannot be from one of the first five moves in the game,
and that the actual move played in the selected position is not a capture. Capture
moves are misleading as they mostly result in a transient advantage since the
other side is likely to capture back rightaway. The dataset thus contains 2,216,950
positions from games which White won (W positions), and 1,643,870 positions
from games which White lost (L positions), for a total of 3,860,820 positions.

Each position is converted to a binary bit-string of size 773. There are two
sides (White and Black), 6 piece types (pawn, knight, bishop, rook, queen, and
king), and 64 squares. Therefore, in order to represent a position as a binary
bit-string, we would require 2 × 6 × 64 = 768 bits (this is known as bitboard
representation). There are an additional five bits that represent the side to move
(1 for White and 0 for Black) and castling rights (White can castle kingside,
White can castle queenside, Black can castle kingside, and Black can castle
queenside).

Training Pos2Vec: We first trained a deep belief network (DBN) [2], which
would later serve as the initial weights for supervised training. The DBN is
based on stacked autoencoders which are trained using layer-wise unsupervised
training. The network consists of five fully connected layers of sizes: 773–600–
400–200–100. We initially trained the first layer (i.e., a 3-layer (773–600–773)
autoencoder), before fixing its weights and training the weights of a new (600–
400–600) autoencoder, and so on.

We used a random subset of 2,000,000 chess positions for training the DBN, of
which 1,000,000 were White win (W ) positions and 1,000,000 were Black win (L)
positions. The DBN uses a rectified linear unit (ReLU), i.e., f(x) = max(0, x),
and a learning rate that starts from 0.005 and is multiplied by 0.98 at the end
of each epoch. No regularization is used. The DBN is trained for 200 epochs.

www.computerchess.org.uk/ccrl
www.computerchess.org.uk/ccrl
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Training DeepChess: As described earlier, this Siamese network is the core
component of our method. We used the previously trained Pos2Vec DBN as the
initial weights for the supervised network. Placing two disjoint copies of Pos2Vec
side by side, we added on top of them four fully connected layers of size 400,
200, 100, and 2, which are connected to both Pos2Vec components. The first five
layers of Pos2Vec thus serve as high level feature extractors, and the last four
layers compare the features of the positions to determine which one is better.

During the supervised training phase, the entire network including the
Pos2Vec parts is modified. We tie the weights of the two Pos2Vec-based fea-
ture extraction components, i.e., we use shared weights.

We trained this network for 1000 epochs. In each epoch, we created 1,000,000
random input pairs, where each pair consists of one position selected at random
from the 2,116,950 W positions, and one position selected at random from the
1,543,870 L positions. (we set aside 100,000 W positions and 100,000 L positions
for validation). The pair is then randomly ordered as either (W,L) or (L,W ).
Since the number of potential training pairs is 6.5 × 1012, virtually all training
samples in each epoch are new, thus guaranteeing that no overfitting would take
place. For this reason, we do not use any regularization term. The activation
used in all layers is the ReLU function. The learning rate starts from 0.01, and
is multiplied by 0.99 after each epoch. The cross entropy loss is used. The training
and validation accuracies obtained were 98.2 % and 98.0 %, respectively. This is
remarkable, considering that no a priori knowledge of chess, including the very
rules of the games are provided.

Improving Inference Speed by Network Distillation: Before incorporating
the trained network into a chess program and evaluating its performance, we first
had to address the problem that the network is too computationally expensive in
prediction (inference) mode, running markedly slower than a typical evaluation
function in a chess program. Several previous works have demonstrated how
a considerably smaller neural network could be trained to mimic the behavior
of a much more complex neural network [8,12]. These network compression or
distilling approaches train the smaller network to produce the same output as
the larger network (learning from soft targets).

We first trained a smaller four-layer network of 773–100–100–100 neurons
to mimic the feature extraction part of DeepChess, which consists of the five
layers 773–600–400–200–100. We then added three layers of 100–100–2 neurons
(originally 400–200–100–2) and trained the entire network to mimic the entire
DeepChess network.

Further optimization was achieved by realizing that while most of the weights
are concentrated in the first layer of the two Pos2Vec components (733–100
layer), there are at most 32 chess pieces in a given position and less than 5 % of
the weights in the input layer would be activated. Thus the amount of floating
point operations required to be performed during inference is much reduced.

Table 1 summarizes the validation results post compression. The distilled
network is comparable to the full original network. When training from scratch
using the smaller network size (with pretraining but without first training the
larger network and then distilling it), the performance is much reduced.
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4 A Comparison-Based Alpha-Beta Search

Chess engines typically use the alpha-beta search algorithm [9]. Alpha-beta is a
depth-first search method that prunes unpromising branches of the search tree
earlier, improving the search efficiency. A given position is the root of the search
tree, and the legal moves for each side create the next layer nodes. The more time
available, the deeper this search tree can be processed, which would result in a
better overall playing strength. At leaf nodes, an evaluation function is applied.

In an alpha-beta search, two values are stored; α which represents the value
of the current best option for the side to move, and β which is the negative α of
the other side. For each new position encountered if value > α, this value would
become the new α, but if value > β, the search is stopped and the search tree
is pruned, because value > β means that the opponent would not have allowed
the current position to be reached (better options are available, since value > β
is equivalent to −value < α for the other side). Given a branching factor of
B and search depth D, alpha-beta reduces the search complexity from BD for
basic DFS, to BD/2.

In order to incorporate DeepChess, we use a novel version of an alpha-beta
algorithm that does not require any position scores for performing the search.
Instead of α and β values, we store positions αpos and βpos. For each new position,
we compare it with the existing αpos and βpos positions using DeepChess, and if
the comparison shows that the new position is better than αpos, it would become
the new αpos, and if the new position is better than βpos, the current node is
pruned. Note that since DeepChess always compares the positions from White’s
perspective, when using it from Black’s perspective, the predictions should be
reversed.

Position hashing: When searching a tree of possible moves and positions, many
of the positions appear repeatedly in different parts of the search tree, since
the same position can arise in different move orders. To reduce the required
computation, we store a large hash table for positions and their corresponding
feature extraction values. For each new position, we first query the hash table,
and if the position has already been processed, we reuse the cached values. Since
we use a symmetric feature extraction scheme, where the weights are shared,
each position needs only be stored once.

5 Experiments

We provide both quantitative and qualitative results.

5.1 Static Understanding of Chess Positions

In order to measure the chess understanding of DeepChess, we ran it on a man-
ually generated dataset consisting of carefully designed inputs. Each input pair
in this dataset contains two nearly identical positions, where one contains a cer-
tain feature and the other one does not. Starting from simple piece values (e.g.,
two identical positions where a piece is missing from one), to more complex
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imbalances (e.g., rook vs. knight and a bishop), the predictions of DeepChess
show that it has easily learned all of the basic concepts regarding piece values.
We then measured more subtle positional features, e.g., king safety, bishop pair,
piece mobility, passed pawns, isolated pawns, doubled pawns, castling rights,
etc. All of these features are also well understood by DeepChess.

More interestingly, DeepChess has learned to prefer positions with dynamic
attacking opportunities even when it has less material. In many cases, it prefers
a position with one or two fewer pawns, but one that offers non-material posi-
tional advantages. This property has been associated with human grandmasters,
and has always been considered an area in which computer chess programs were
lacking. While the scores of current evaluation functions in state-of-the-art chess
programs are based on a linear combination of all the features present, DeepChess
is a non-linear evaluator, and thus has a far higher potential for profound under-
standing of chess positions (also similar to human grandmaster analysis of posi-
tions). Figure 2 shows a few examples where this preference of DeepChess for
non-materialistic advantages leads to favoring positional sacrifices, as played by
human grandmasters.

Fig. 2. Examples where DeepChess prefers to play the same positional sacrifices that
were played by grandmasters. It is White’s turn to move in all the above positions.

5.2 Playing Strength Vs. State-of-the-Art Competitors

We used the Falcon chess engine as a baseline for our experiments. Falcon is
a grandmaster-level chess program, which has successfully participated in sev-
eral World Computer Chess Championships (WCCCs); in particular, it won
second place at the World Computer Speed Chess Championship in 2008. Fal-
con’s extensive evaluation function consists of more than 100 parameters, and
its implementation contains several thousands of lines of code.

Despite all the computational improvements mentioned earlier for
DeepChess, and numerous other implementation improvements which result
in substantial additional computational speedup, DeepChess is still four times
slower than Falcon’s own evaluation function. Nevertheless, we incorporate
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Table 1. Validation accuracy of
the Uncompressed and compressed
networks, and a small network
trained from scratch.

Method Accuracy

Uncompressed 98.0 %

Compressed 97.1 %

Small 95.4 %

Table 2. DeepChess vs. Falcon and Crafty
(RD is the Elo rating difference). Time control:
30 min per game for Falcon and Crafty. 30min
or two hours for DeepChess.

Match Result RD

DeepChess 30 min - Crafty 59.0–41.0 +63.2

DeepChess 30 min - Falcon 51.5–48.5 +10.4

DeepChess 120 min - Falcon 63.5–36.5 +96.2

DeepChess into Falcon, completely replacing the evaluation function of the
program.

To measure the performance of DeepChess, we conducted a series of matches
against Falcon, and also against the chess program Crafty. Crafty has
successfully participated in numerous WCCCs, and is a direct descendant of
Cray Blitz, the WCCC winner of 1983 and 1986. It has been frequently used in
the literature as a standard reference.

Each of the matches of DeepChess vs. Falcon and Crafty consisted of 100
games under a time control of 30 min per game for each side. Table 2 provides
the results. As can be seen, DeepChess is on a par with Falcon. Falcon uses a
manually tuned evaluation function developed over nearly ten years, containing
more than a hundred parameters which grasp many subtle chess features. And
yet, without any chess knowledge whatsoever (not even basic knowledge as the
rules of chess), our DeepChess method managed to reach a level which is on a
par with the manually tuned evaluation function of Falcon. The results also
show that DeepChess is over 60 Elo [7] stronger than Crafty, a program which
has won two WCCCs and has been manually tuned for thirty years.

DeepChess performs on a par with Falcon despite the fact that it is four
times slower. We ran a separate experiment where we allowed DeepChess to use
four times more time than Falcon (2 h vs 30 min). Running 100 such matches,
DeepChess resoundingly defeated Falcon with a result of 63.5–36.5, correspond-
ing to a 96 Elo performance difference. This shows that DeepChess is actually
not on par with Falcon’s evaluation function, but is considerably superior to
it. In order to utilize the full potential of this enhanced chess understanding, it
is critical to decrease the runtime of the neural network in the inference mode.

6 Concluding Remarks

We presented the first successful end-to-end application of machine learning in
computer chess. Similarly to human chess masters, DeepChess does not assign
numeral evaluation values to different positions, but rather, compares different
positions that may arise, and opts for the most promising continuation.
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Having observed the playing style of DeepChess, we note that it plays very
aggressively, often sacrificing pieces for long term positional gains (i.e., non-
tactical gains). This playing style resembles very much the playing style of
human grandmasters. While computer chess programs have long been criticized
for being materialistic, DeepChess demonstrates the very opposite by exhibiting
an adventurous playing style with frequent positional sacrifices.
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Abstract. Convolutional neural networks have many parallels with the
primate visual cortex, including deep structures with sparse retinotopic
connections, and feature maps with increasing specificity and invariance
along feedforward paths. The present study explores the possibility of
specifically training convolutional networks to resemble the primate cor-
tex more closely. In particular, in addition to supervised learning to min-
imize an output error function, a deep layer is directly trained to approx-
imate primate electrophysiology data. This method is used to develop a
model of the macaque monkey dorsal stream that estimates heading and
speed from visual input.

Keywords: Middle temporal area · Dorsal stream · Convolutional
network · Visual odometry · Motion · Disparity · Speed tuning

1 Introduction

The visual cortex makes up a large fraction of the primate brain. It contains dozens
of regions with distinct activity patterns, which are organized in a rough hierarchy
[1]. Most visual areas contain retinotopic maps of multiple visual features [2,3].
The visual cortex is largely segregated into dorsal and ventral streams [4]. The
former extracts complex features that are relevant to object identity and cate-
gory [5,6], and has rich connections with areas involved in long-term memory and
recognition [7]. The latter is specialized for motion and three-dimensional form,
and has rich connections with parts of the brain that control movement (e.g. [8]).

There is enduring interest in imitating the visual cortex within artificial
neural networks, leading to convolutional networks [9] and related approaches
[10,11]. Modern computer hardware has particularly exposed the potential of
convolutional networks for difficult vision tasks such as object recognition in
natural scenes [12]. Notably, activity in various layers of convolutional networks
that are optimized for object recognition is highly predictive of activity in cor-
responding parts of the primate ventral stream [13]. Nonetheless, the primate
visual system outperforms convolutional networks on most practical vision tasks,
suggesting that more intensive imitation of the cortex may be fruitful.

Much information has been amassed in the literature about the responses
of neurons at all stages of the visual hierarchy to a wide variety of stimuli.
c© Springer International Publishing Switzerland 2016
A.E.P. Villa et al. (Eds.): ICANN 2016, Part II, LNCS 9887, pp. 97–104, 2016.
DOI: 10.1007/978-3-319-44781-0 12
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This paper explores the possibility of using the statistics of these responses to
directly train deep layers of convolutional networks, both to simplify training
and to create convolutional networks that are somewhat more brain-like.

For simplicity, this study is restricted to training a single deep layer to emu-
late certain response properties of the primate middle temporal area (MT),
specifically direction tuning, speed tuning [14], and disparity tuning [15]. It is
hoped that this relatively simple model will shed light on how to train additional
features of MT activity, e.g. [16], as well as properties of other visual areas.
There is a rich literature spanning half a century [17] on responses throughout
the visual cortex to a wide range of stimuli [3], as well as increasingly comprehen-
sive information about network structure [18]. Recording density is also steadily
increasing [19]. These circumstances suggest a promising path forward from the
present prototype.

2 Methods

2.1 Network Structure

The network structure is shown in Table 1. Input consisted of ten stereo video
frames with 100× 100-pixel resolution. There were four convolutional layers. The
first two were meant to correspond roughly to the primary visual area (V1), the
third to the middle temporal area (MT), and the fourth to the middle superior
temporal area (MST). Sizes of the convolution kernels, and of the pools for max-
pooling operations (Table 1) were chosen to correspond qualitatively with these
areas. For example, outputs from the second V1 layer were pooled to provide
phase invariance (after complex cells), and receptive field sizes were much larger
in the MT layer than the V1 layers. Following the convolutional layers were
two fully-connected layers. The two units of the output layer were trained to
estimate anteroposterior and mediolateral components of self-motion velocity
from the video input. The model was implemented in Keras [20] using Theano
[21] as a backend, and trained on a NVIDIA GeForce GTX 680 GPU.

The first convolutional layer lacked a nonlinearity, because it was used to
introduce a certain linear basis as a starting point for training. The approach was
a slight generalization of that in Adelson &Bergen’s model of motion selectivity
in V1 [22]. In their model, various linear combinations of separable spatiotempo-
ral kernels produce non-separable direction-selective kernels. The present app-
roach was similar, in that the kernels of the first layer were initialized to spatial
gabors of various frequencies and phases, multiplied by the same (physiologically
inspired) functions of time [22]. However, Adelson & Bergen’s hand-engineered
linear combinations of kernels were replaced by optimized linear combinations
via the learned kernels of the next layer.

2.2 Training

The network was trained at different times to minimize two different costs. One
of these was,

Ef = (y0 − vml)
2 + (y1 − vap)

2
, (1)
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Table 1. Network parameters. ReLU stands for “rectified linear unit” [12].

Layer # Kernels Kernel size Pool # Hidden units Nonlinearity

1 640 7× 7 None None

2 320 1× 1 3× 3 ReLU

3 240 5× 5 2× 2 ReLU

4 60 9× 9 3× 3 ReLU

5 256 ReLU

6 2 None

where vml and vap are mediolateral and anteroposterior components of self-
motion velocity, and y0 and y1 are the network’s outputs. Ef is called the “func-
tional” cost, because it relates to the network’s overt function.

The network was also separately trained to minimize the “physiology cost”,

Ep =
∑

i

(yi − ri)
2
, (2)

where yi are activities of the 3rd convolutional layer, and ri are neuron responses
from a statistical model of MT activity (based on electrophysiology literature).
The index i is over feature maps of the 3rd convolutional layer, and over an equal
number of target responses from the statistical model. Since kernel weights are
shared across pixels, the cost was only calculated at the central pixel of each
feature map in the MT layer.

Labelled datasets for both types of training were generated using the Unity
game engine (unity3d.com). A simulated stereo camera was made to move
through a scene with random speed and direction, for sequences of ten frames.
Every 30 sequences, the camera was relocated to a different part of the scene
at random (data were shuffled during training; multiple sequences were taken
from each location to save time, because changing location required dropping
the camera over uneven terrain and waiting for it to fall to the ground).

Example frames are shown in Fig. 1. Target self-motion velocities vml and
vap were taken from movement commands. The camera followed the contour of
the ground, so on slopes the motion also had a vertical component that was
not reflected in these target values. In some sequences, the actual horizontal
movement differed from the movement command due to an obstacle. 75,000
labeled movement sequences were generated in this way.

Target values for physiological training were based on a simple statistical
model of direction, speed, and disparity tuning in MT. The model population had
speed tuning and disparity tuning based on [14,15], respectively. Features of the
tuning curves included gaussian tuning for log-speed, and gabor disparity tuning.

To generate examples for physiological training, frames were taken at random
from the self-motion sequences, and processed to create new image sequences
of spatially uniform disparity and motion velocity. Specifically, for each new
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Fig. 1. Four example stereo frames from the training data.

sequence, motion velocities and disparities were drawn at random, then a
sequence of subimages was taken from a random frame in order to produce a
stereo sequence with the corresponding disparity and velocity. The subimage size
corresponded to the receptive field size of units in the third convolutional layer
(“MT”). MT responses have been studied much more extensively with simple
artificial stimuli than naturalistic stimuli (e.g. [23,24]), but responses to these
different kinds of stimuli are closely related [25].

The Adam algorithm [26] was used throughout for weight and bias updates.
The network was trained with 50 % dropout [12] in the final hidden layer. The
network was trained in stages. First, the kernels of the first layer were held
fixed, and the network up to the MT layer was trained to minimize (2). All
parameters were then trained with a lower step size. Similarly, to minimize (1),
the parameters up to the MT layer were fixed for an initial stage of training,
then the step size was reduced and the full network was trained further.

3 Results

Figure 2 shows results of physiological training. Mean-squared error on valida-
tion data averaged .009 in the last ten epochs of training. Speed and direction
tuning were similar to their targets (which were based on MT electrophysiology
literature). Disparity tuning was much less accurate.

Figure 3 shows visual odometry predictions of the full network for novel
inputs. The correlation between self-motion commands and the network’s image-
based estimates was r = .92.
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Fig. 2. Tuning curves of randomly selected neurons for motion direction (left), speed
(centre), and disparity (right). Each point corresponds to a neuron’s normalized out-
put, averaged over ten novel naturalistic stimuli (i.e. stimuli not seen in training).
Each curve shows variation in normalized rate, with preferred values of other stimulus
parameters. The insets show corresponding target values. Variations in image texture
contribute to the differences. The mean-squared error over validation examples was
.009. The network’s direction and speed tuning distributions were fairly realistic, but
its disparity tuning was not.

Fig. 3. Self-motion velocities estimated from visual input vs. targets, on examples not
seen in training. The points include both medio-lateral and antero-posterior velocities.

4 Discussion

This study explored direct training of a deep convolutional layer to approximate
statistics of primate neuron responses. A deep layer of the network approxi-
mated specified MT-like activity. Furthermore, the output of the full network
was strongly correlated with self-motion velocity labels, despite some inconsis-
tency between the actual and labelled velocity due to obstacles. Interestingly,
direction and speed tuning were approximated much more closely than disparity
tuning, perhaps due to unaccounted-for correlations between disparity prefer-
ences and other tuning features. Disparity tuning was slightly improved in a
larger network (not shown). Direction and speed tuning were also surprisingly
MT-like in networks trained only to minimize (1). The fit to neural data might be
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improved by incorporating additional physiologically-inspired mechanisms into
the network, such as divisive normalization [27].

Despite recent successes, training deep networks remains difficult and com-
putationally intensive, and requires a great deal of training data. The present
approach may simplify deep learning in a way that is complementary to unsu-
pervised learning. In particular, it suggests another way to organize deep layers
into good initial representations for supervised learning.

Others have previously trained neural networks to approximate electrophys-
iological data [13], and even combined the training of a hidden layer to match
electrophysiology data with output training for a task [28], as was done here.

Notably, despite increasing recording density, available data in the near future
will be sparse relative to the large number of neurons in the primate visual cor-
tex and the large variety of visual stimuli that animals encounter in life. The
present approach suggests a principled way to extrapolate from the available
electrophysiology data, by further constraining models to perform appropriate
functions. This approach, which draws from brain structure, activity, and func-
tion, may make better use of available data than models with only brain-related
structure and activity (but not function, e.g. [25]), or even models with brain-
related structure and function, which also exhibit brain-related deep activity but
are not specifically optimized to do so [13].

4.1 Future Work

Three major directions for future work are training with additional physiology
data, using richer simulations for functional training on a wider range of tasks
(e.g. grasping), and incorporating computational mechanisms that more closely
resemble those of the brain.

There is an extensive literature on the responses of neurons in many visual
areas to a wide range of stimuli. It is a labour-intensive process to organize this
information (which appears as tuning curves, histograms of tuning preferences,
percentages of neurons with different kinds of responses, etc.) into a statistical
response model. However, on the basis of ongoing experience, it appears that a
fairly rich statistical model of responses in a given area can be produced with
about one-two person-years of effort, and there are only about thirty visual
areas in the macaque monkey [1]. Furthermore, there is a trend toward more
comprehensive physiological data sets (e.g. [29,30]).

There are, of course, large differences between convolutional networks and the
visual cortex. One is the predominance of lateral and feedback connections in
the cortex. Some potential approaches to modeling feedback connections include
accounting for more subtle receptive field properties [31], modeling response
dynamics [32], recurrent neural networks [33], and Markov random fields with
convolutional layers as input [34]. For example, loopy belief propagation on a
Markov random field may have parallels with gradual emergence of pattern selec-
tivity in MT [16].
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Abstract. A computationally efficient method to improve classifica-
tion performance of a Deep Belief Network (DBN) is introduced. In the
Pseudo Boost Deep Belief Network (PB-DBN), top layers are boosted
while lower layers of the base classifiers share weights for feature extrac-
tion. PB-DBN maintains the same time complexity as a DBN with fast
convergence to optimality by introducing the mechanism of pseudo boost.
Experiments in classification show that after only a few iterations, the
PB-DBN has higher accuracy than a classic DBN.

1 Introduction

A Deep Belief Network (DBN) is a layered network formed with undirected con-
nections between its top two layers and downward directed connections between
all its lower layers (Fig. 1(a)) [13]. They are used to infer posterior probabilities
and make generative predictions. Restricted Boltzmann Machines (RBM) formed
by adjacent layers in DBN are pre-trained from bottom-up layer by layer, then
the whole network is fine tuned with back propagation to serve discriminative
purposes or up down algorithms for generative purposes [7]. Many approaches to
improve the performance and time efficiency of DBNs have been published since
G. Hinton et al. proposed the method in 2006 [7]. The improvements include new
training methods such as re-weighted wake sleep algorithm [4], exponential loss
function gradient method [11]; new architectures of the network such as convo-
lutional architectures [9], sparse architectures [8], hierarchical architectures [15],
sequential architectures [1]; and there are also works combining the power of
other learning methods [16].

Boosting is an ensemble learning method that is used to improve the per-
formance of base classifiers. Ping Liu et al. combined DBN with boosting for
facial expression recognition [10], and revealed the potential to integrate boost-
ing mechanism into DBN (Fig. 1(b)). In this paper, we integrate the power of
boosting into DBN with the boosting mechanism re-weighting each data vector
for each iteration and DBN re-represent the data on each layer. As the time
complexity of boosting is polynomial to weak classifier’s time complexity (the
number of classifiers determine the order of polynomial), it is impractical to
directly apply DBN to be the base classifier– since a single DBN is already com-
putationally expensive. We address this issue with a computationally efficient
weight sharing boost mechanism, with the resulting time complexity being of
the same order as that of a single DBN.
c© Springer International Publishing Switzerland 2016
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Fig. 1. Structure of (a) Deep Belief Network (DBN), (b) Boosted Deep Belief Network
(BDBN) and (c) Pseudo Boosted Deep Belief Network (PB-DBN).

2 Pseudo Boosted Deep Belief Network

2.1 Initialization of the Network

Initialization of the proposed Pseudo-Boosted Deep Belief Network (PB-DBN)
(Fig. 1(c)) is analogous to that of a DBN. RBMs formed by adjacent layers are
trained in turn from bottom up by minimizing the contrastive divergence:

KL(P 0||P∞
θ ) − KL(Pn

θ ||P∞
θ ) (1)

The first term in (1) is the Kullback Leibler divergence between the distribution
of the data P 0 and the equilibrium distribution of the model P∞

θ . The second
term is the KL divergence between the posterior distribution Pn

θ and P∞
θ [2].

To make the probabilistic model computationally tractable and also easy to fine
tune, we assume direct probabilistic dependence only exists between the adjacent
layers, and the probability of activation for each hidden layer is the generalized
linear sigmoid model of the adjacent hidden layer:

P (sj = 1) =
1

1 + exp(−bj − ∑
i siwij)

(2)
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where si is the node in adjacent layer, sj is the node in current layer, wij is the
corresponding edge weight and bj is the bias term. The adjustment of weights
during the pre-training phase follows the gradient of log probability of training
data:

∂log(p(v0))
∂wij

=< v0
i h0

j > − < v∞
i h∞

j > (3)

where v0
i is the node in the visible layer under initialization, v∞

i is the node in
the visible layer after reaching equilibrium, h0

j is the node in the hidden layer
after initialization, h∞

j is the node in the hidden layer after reaching equilibrium,
< v0

i h0
j > is the correlation between v0

i and h0
j , and < v∞

i h∞
j > is the correlation

between v∞
i and h∞

j [5]. After the training of each RBM, the value in hidden
layer is stored and used as data for the next layer’s training.

When all RBMs finish training, the change of weights in the higher layers
make the lower layers no longer optimal for the whole network [2]. Two fine-
tuning methods can be used to further adjust weights. Error back propagation
can be used for discriminative tuning and up down algorithms can be used for
generative purposes. A detailed description can be found in [7].

Fig. 2. Illustration of PB-DBN mechanism.

2.2 Mechanism of Pseudo Boost

The boosting mechanism assigns different weights to data points based on the
importance of each data [3]. The data weights are iteratively adjusted based on
classification result in previous iteration:

w(m+1)
n = w(m)

n exp

(
αmI(ym(xn) �= tn)

)
(4)

where xn is the n th data, ym(xn) is the classification decision made by the
m th base classifier, tn is the label of training data xn, w

(m)
n is the weight of
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n th data in the m th iteration, and αm is defined as the log odd of the weighted
error rate εm:

εm =
∑N

n=1 w
(m)
n I(ym(xn) �= tn)
∑N

n=1 w
(m)
n

(5)

αm =
1
2
log

(
1 − εm

εm

)
(6)

Then the updated data is used to train the next base classifier so the next base
classifier can learn something new [6,14]. And when the training phase is over,
the final classification is made based on decision of the committee formed by the
base classifiers:

YM (xn) = sign

( M∑

m=1

αmym(xn)
)

(7)

where ym(xn) is as defined in (4) and αm as defined in (6).
The model can be easily implemented with simple base classifiers such as

Stumps, SVMs or simple decision trees [12]. However, it is met with computa-
tional complexity issues when a DBN is the base classifier. Since time complex-
ity of boosting is polynomial to time complexity of each base classifier with the
order of the polynomial being the number of classifiers. For most instances, it is
impractical to directly adopt the classic boosting mechanism. Pseudo boosting
can be viewed as a partial boost that operates only on the top layers of the
network (Fig. 1(c)).

In the proposed method, lower layers of the individual deep belief network
serve as feature extractors and as they share great similarity to one another [7],
it would be a waste of computational resource if we repeatedly train the lower
layers every time we initialize a new base classifier, so every time when we start
training the new classifier in PB-DBN, the lower layers of previous base clas-
sifier is directly used. In the fine tuning phase, different classifiers get different
emphasis on the difficult training data(which is done by changing the data sam-
pling distribution). Then the mechanism of boosting allows these classifiers to
be unified together to minimize the total exponential error function:

E =
N∑

n=1

exp

(
− tnym(xn)

)
(8)

where ym(xn) and tn are the same as defined in (4). Detailed illustration of the
PB-DBN mechanism is shown in Fig. 2.

2.3 Time Complexity Analysis

We denote the training time needed for each RBM as trbm, the fine tuning time
for the whole network as ttune, and the time for classifier committee to make the
judgment as tc, then the training time of the PB-DBN model is:

TPB−DBN = trbm + k × ttune + tc (9)
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Table 1. Experiment result on different network settings

Hidden layers Iterations Train error rate Test error rate

(Lower -> Upper) (Pretrain – Fine Tune) DBN PB-DBN DBN PB-DBN

784 -> 256 6 – 6 2.58 % 0.42 % 3.66 % 1.83 %

784 -> 256 10 – 10 0.62 % 0.12 % 2.10 % 1.76 %

784 -> 256 20 – 20 0.02 % 0.02 % 1.78 % 1.70 %

784 -> 256 50 – 50 0.00 % 0.00 % 1.68 % 1.60 %

784 -> 784 -> 256 6 – 6 3.44 % 0.36 % 3.99 % 1.86 %

784 -> 784 -> 256 10 – 10 0.91 % 0.20 % 2.40 % 1.72 %

784 -> 784 -> 256 20 – 20 0.09 % 0.07 % 1.82 % 1.65 %

784 -> 784 -> 256 50 – 50 0.00 % 0.00 % 1.71 % 1.64 %

Fig. 3. Comparison of performance between DBN and PB-DBN. (a) Train error and
test error of 2 layer networks. (b) Train error and test error of 3 layer networks.

where k is the number of classifiers in the model. And if we adopt the normal
boosting procedure, the training time would be:

TBoost−DBN = k × trbm + k × ttune + tc (10)

Comparing (9) and (10), the PB-DBN model reduces time complexity by avoid-
ing repetitive training in the RBMs.

3 Experimental Results

As the performance of DBN is superior to boosting with normal base classifiers
such as stumps, decision trees or single-hidden layer neural networks, here we
compare the performance of PB-DBN with DBN.

We performed batch training with each batch containing 100 data and a
total of 600 batches. Conjugate gradient descent is used in the fine tuning phase
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Fig. 4. (a) Evolution of boosted weights in PB-DBN. (b) Performance of PB-DBN
with different number of base classifiers.

Fig. 5. Visualization of the feature extracted in the first hidden layer. (a) 2 layer DBN,
20 iterations training; (b) 3 layer DBN, 50 iterations training; (c) 2 layer PB-DBN, 20
iterations training; (d) 3 layer PB-DBN, 50 iterations training.
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Table 2. Performance with different number of classifiers (10 iterations)

Classfier number Hidden layers Train error rate Test error rate

1 784 -> 784 -> 256 0.91 % 2.40 %

2 784 -> 784 -> 256 0.30 % 1.96 %

4 784 -> 784 -> 256 0.24 % 1.88 %

6 784 -> 784 -> 256 0.20 % 1.72 %

8 784 -> 784 -> 256 0.18 % 1.68 %

and we test our method with base classifier DBN of both 2 hidden layers and 3
hidden layers (Table 1). We see PB-DBN outperforms DBN on all sets of com-
parative experiments. The unique strength of PB-DBN method as revealed in
Fig. 3 is its fast convergence to optimality, as the boosting mechanism is mak-
ing the difficult data to be more significant and makes the training phase more
efficient. The parameters including learning rate(0.1), momentum(0.2), weight
initialization(0.1) and weight-decay(0.0002) are chosen by training the network
several times and observing its performance on the separate validation dataset.
Figure 5 shows most of the features extracted in the lower layers of the base
classifiers are similar to one another, confirms the rationality of the mechanism.
From Fig. 4(a), we see the weight increase of the difficult digits is rapid under
boosting, which is the major reason that PB-DBN is achieving superior perfor-
mance. And with more base classifiers involved in the committee judgement, the
performance of PB-DBN improves (Table 2 and Fig. 4(b)).

4 Conclusion

In this paper, we described the Pseudo Boost Deep Belief Network (PB-DBN).
Its unique strength is fast convergence to optimality while maintaining the same
time complexity as DBN. In the model, top layers of DBNs are boosted based
on different weighted data which helps the base classifiers (DBNs) to focus on
more difficult data points, while the lower layers of the belief networks share
weights for feature extraction. The method is computationally efficient and can
be readily used for practical applications.
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Abstract. To spot keywords on handwritten documents, we present a
hybrid keyword spotting system, based on features extracted with Con-
volutional Deep Belief Networks and using Dynamic Time Warping for
word scoring. Features are learned from word images, in an unsupervised
manner, using a sliding window to extract horizontal patches. For two
single writer historical data sets, it is shown that the proposed learned
feature extractor outperforms two standard sets of features.

1 Introduction

Although it has been the subject of research for decades, handwriting recognition
remains a widely unsolved problem [23]. For large vocabularies, different writing
styles and degraded documents, the accuracy of automatic transcription is not
perfect. Under these conditions, keyword spotting solutions have been suggested
instead of a complete transcription for spotting words in document images [13].

Keyword spotting solutions fall in two categories. Template-based methods
match a query word image with labeled keyword template images. This app-
roach has the advantage that it is rather easy to gather template images and
it is not necessary to know the underlying language or its alphabet. However,
for each keyword that is to be spotted, at least one template image is neces-
sary. Furthermore, such systems typically do not generalize well to unknown
writing styles. Such systems have been applied to speech [16,21], poorly printed
documents [1,10] and handwritten text [14]. Many features have been proposed
for keyword spotting with Dynamic Time Warping (DTW) and a sliding win-
dow [18], such as word profiles [19] and local gradients features [20].

On the other hand, learning-based systems are using statistical learning to
train a model to score query images. Hidden Markov Model (HMM) were first
used for keyword spotting at character level with template images [5]. Similar
solutions were developed at word level using local gradient features [2]. Although
trained word models are expected to exhibit better generalization than template-
based methods, they still need a large amount of training templates. More-
over, such systems are not able to spot out-of-vocabulary keywords. Recently, a
lexicon-free approach using character HMMs has been proposed [3], as well as
character models based on Recurrent Neural Networks [6].
c© Springer International Publishing Switzerland 2016
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Both categories are relying on features extracted from the images. Such fea-
tures are generally handcrafted and optimizing them is often non-trivial. In
recent years, the emergence of Deep Learning has shown that it was possible
to learn features directly from pixels. While Restricted Boltzmann Machines
(RBM) have originally been used to initialize the weights of a neural network
in an unsupervised manner [8], they also have been extensively used to extract
features from a dataset [9]. RBMs can also be stacked into Deep Belief Networks
(DBN) to extract multi-layer features [12,24]. Convolutional RBMs have proved
especially successful to extract features from images [12,25].

In the present paper, we propose a hybrid word spotting system for hand-
written text, based on Convolutional Deep Belief Networks and Dynamic Time
Warping. While this system is essentially template-based, it has the advantage
that features are automatically extracted from the images using unsupervised
learning, making use of unlabeled handwriting images which are abundantly
available. When compared with learning-based approaches, the proposed method
has the advantage that no labeled images are needed. However, it requires a seg-
mentation of images into words, which can be prone to errors.

The proposed system has been tested on two well-known benchmark data
sets for keyword spotting, namely the George Washington and Parzival data
sets. Our features are compared with two benchmark feature sets [15,20].

2 Keyword Spotting System

Keyword spotting is the task of retrieving keywords from document images. The
present research focuses on handwritten documents. The input of the system is a
word image and a keyword. For each input, the system must decide whether the
image contains the requested keyword or not. The decision for the image X and
keyword K is decided by a threshold over a dissimilarity measure: ds(X,K) < T .
T can be selected based on a trade-off between system precision and recall.

In this work, we focus on perfectly segmented text word images. The images
are first binarized and then normalized to remove the skew and slant of the text.
The complete normalization process is described in details in [15]. From each
input image, patches are extracted using a horizontal sliding window. The patch
height is always equal to the height of the image. Each patch is W pixels wide.
The window is moved two pixels at a time from left to right.

2.1 Convolutional Restricted Boltzmann Machine

A Restricted Boltzmann Machine (RBM) is a generative stochastic Artificial
Neural Network (ANN). It is designed to learn a probability distribution over
the inputs. The training of an RBM tries to maximize the Log-Likelihood of
the learned input distribution. RBMs only rose to a large audience, after the
Contrastive Divergence (CD) algorithm was introduced [7]. CD is a fast learning
algorithm to train an RBM, very similar to the gradient descent of a neural net-
work. CD approximates the Log-Likelihood gradients of the input distribution
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by minimizing the reconstruction error, thus training the RBM into an autoen-
coder. An RBM has two layers, a visible layer and an hidden layer. There are
no connection between units of the same layer (bipartite graph).

The RBM model was extended to the Convolutional RBM (CRBM)
model [12]. Taking advantage of convolution, a CRBM learns feature detectors
shared among all locations in an image. This allows the feature representations
to be invariant to local translations in the input and allows learning to scale
to realistically sized images. The model is outlined in Fig. 1. It is the build-
ing block of the proposed feature extraction system. The visible layer is made of
NV ×NV binary units. The hidden layer is made of K groups of NH×NH binary
units. The layers are connected by K convolutional filters of shape NW × NW

(NW � NV −NH + 1).

Fig. 1. A Convolutional Restricted Boltzmann Machine.

2.2 Feature Extraction

Features are extracted from one patch using a Convolutional Deep Belief Network
(CDBN) [12]. This network is composed of two CRBM. The network is only
trained in an unsupervised manner, i.e. labels are not used to train the network.
Once the first layer is trained, its weights are frozen and its features are passed
to the next layer. The network used for feature extraction is presented in Fig. 2.

Generally, higher levels of an ANN encode information about progressively
larger input regions. Typical Convolutional Neural Networks use pooling lay-
ers to shrink the representation by a small factor. Probabilistic Max Pooling
was introduced for generative models to support both top-down and bottom-up
inference [12]. This operator shrinks the representation by a factor C. Each layer
of the proposed CDBN model uses this operator in order to improve translation-
invariance, reduce the computational cost and reduce the number of features.

One patch is passed to the first layer. Then, the activation probabilities of the
pooling layer are computed. These probabilities are passed to the second layer,
which computes the final features for the patch from its pooling layer. From the
network, we define F (X) as a sequence of feature vectors (one for each patch):

F (X) = [CDBN(x1), CDBN(x2), ..., CDBN(xN )] (1)

The features are normalized so that each feature vector has zero-mean and
unit variance.
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Fig. 2. Convolutional Deep Belief Network used for feature extraction

2.3 Dynamic Time Warping

Dynamic Time Warping (DTW) is a technique used to find an optimal alignment
between two sequences of different length. Sequences are warped non-linearly
so that they match each other. It is well established in the field of keyword
spotting [19]. The cost of an alignment is the sum of the d(x, y) distances of
each aligned pair. This system uses the squared Euclidean distance.

The DTW distance D(F (X), F (Y )) of two feature vector sequences F (X)
and F (Y ) is given by the minimum alignment cost. For speeding up the process
and improving the results, a Sakoe-Chiba band [22] is used. When several occur-
rences of the keyword are available in the training set, the example that mini-
mizes the distance for the currently tested image is selected. The DTW distance
over the features is used as the final dissimilarity measure ds(X,K).

3 Experimental Evaluation

We compare the features extracted by the proposed system with two other fea-
ture sets known to work well with DTW. Marti2001 [15] is a well-established
heuristic set of features and has been used repeatedly for keyword spotting. It is
made of nine geometrical features per column of the image. Rodriguez2008 [20]
uses local gradient histogram features with overlapping windows.

The proposed system was evaluated using two benchmark data sets. The
George Washington data set (GW) [11] is composed of 20 pages of letters written
by George Washington and his associates. Due to the small amount of samples, a
four-fold cross validation is used for experimental evaluation. It is made of 4894
word images. The Parzival data set (PAR) [4] contains 45 pages of a medieval
manuscript, written in the 13th century. The set contains 23485 word images.
Although the data sets have several writers, the styles being very similar, they are
considered as single-writer. The system uses the normalized word images, ground
truth, keywords, training sets, validation sets and test sets made available by [3].

For evaluation, a set of keywords is spotted on the test set of both data sets.
The performance is measured for two different scenarios. The global scenario
measures the Average Precision (AP) of the system, using a single global thresh-
old. The local scenario measures the Mean Average Precision (MAP), using a
local threshold for each keyword. These values are considered to assess the system
performance. The trec eval1 software is used to compute these values [3].

1 http://trec.nist.gov/trec eval.

http://trec.nist.gov/trec_eval
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Since the DTW algorithm requires an example in order to compute a distance,
the keywords considered for performance evaluation are constrained to those that
appear at least once in the training set and once in the test set.

3.1 System Setup

The parameters for training the model and the architecture parameters were
optimized for the task. For each data set, these parameters have been optimized
individually with respect to the MAP and AP performance on the validation
set. The performance of the system is measured on the independent test set.

Both networks have 2 layers of CRBM with Probabilistic Max Pooling. Each
patch is 20 pixels wide (W ). The GW network first layer is made of 8 9×9 filters
followed by 8 3 × 3 filters. The PAR network has 12 9 × 9 filters followed by 10
3×3 filters. The pooling ratio (C) for each layer has been set to 2. The networks
have been trained for 50 epochs of Contrastive Divergence, using mini-batch
training. To improve generalization, L2 weight decay has been applied to all
weights. The filters have been initialized using a zero-mean normal distribution
with a variance of 0.01, the hidden biases to −0.1 and the visible biases to 0.

4 Results and Discussion

The experimental results are presented in Table 1. In both scenarios and for both
data sets, the proposed system outperformed both reference feature sets. In the
following discussion, the relative improvements are reported with respect to the
Rodriguez2008 system which always outperforms Marti2001.

Table 1. Mean Average Precision (MAP) and Average Precision (AP) for the different
features. The relative improvement over the best baseline is also mentioned. For the
GW data set, the results have been averaged over the four cross validation runs.

System GW PAR

AP MAP AP MAP

Marti2001 33.24 45.26 50.67 46.78

Rodriguez2008 41.20 63.39 55.82 47.52

Proposed 55.65 67.43 58.82 62.42

Improvement 35.07 % 6.37 % 5.37 % 31.35 %

For the GW data set, in the global scenario, the proposed system clearly out-
performed both reference systems, by 35.07 %. In the local scenario, our system
is also able to outperform the local gradient features by 6.37 %. For the PAR
data set, the proposed system performs much better than the benchmark in the
local scenario, outperforming it by 31.35 %. In the global scenario, our system
also outperforms the baseline by 5.37 %.
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Overall, the proposed system exhibits more stable performance than the two
baselines. While both datasets are quite different, the performance are quite
similar, showing the utility of the unsupervised feature learning system over
handcrafted features that are harder to generalize over different datasets. This
can be observed with the local histogram features that are clearly outperforming
the local geometrical features on GW, but are almost on par on the PAR dataset.

In spite of the significant improvements, optimization of our model proved
quite challenging. The model has many parameters and their parametrization
is very important. Moreover, the model needs to be tuned in order to provide
features that can be used with DTW. The number of outputs revealed very
important to tune with respect to the system performance on the independent
validation set. Due to the simple Euclidean Distance used in the DTW distance,
having too many output features can decrease the performance. Therefore, we
focused on networks yielding reasonable number of features. Models with only
one layer proved to learn only low-level features and produced too many features.
On the contrary, the inputs were not complex enough for a three layer network,
which failed to generalize. For these reasons, a two-layer model was selected.
The number of filters (K) has different effects. Increasing it improves the learn-
ing capacity of the model. Thus, it is typically large in convolutional networks,
ranging from 50 to 400 per layer. However, increasing the number of filters of the
final layer also increases the number of features used by the DTW. Experiments
have shown that large number of filters strongly decreased the performance.

The patch width proved an important factor. This parameter was limited by
the size of the convolutional filters (the patch must be at least as wide as the
filter), so they had to be optimized together. Experimentally, for both data sets,
the optimal patch width was found to be 20 pixels. Interestingly, this is slightly
larger than the average width of a character in the data sets. Narrower patches
proved rather unsuccessful and wider patches only increased the computational
burden of the system without increasing its performance.

While binary hidden units proved to work well for both data sets, Rectified
Linear Units (ReLU) [17] proved more effective on the PAR data set. They
improved the AP by 20 % and the MAP by 24 %. While producing good results
on the GW data set, they did not prove as effective as binary hidden units, being
around 5 % to 8 % less effective. It seems that they were not able to learn generic
features with the small number of available samples, while the large number of
images in the PAR data set helped them generalize more effectively. This may
indicate that there were too many ReLUs for the small number of samples.

For the network with binary units, enforcing sparsity of the hidden units
improved the performance by 21 % in the global scenario and 13 % in the local
one, on the validation set. This helped learning generic features, better for dis-
crimination. While the network was able to learn reconstruction without spar-
sity, the features were not generic enough. We followed Lee et al. regularization
method [9] where updates are made to the visible biases to reach a certain spar-
sity with some learning rate. The sparsity parameters have been chosen so that
the sparsity was reached while still allowing the network to learn.
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5 Conclusion and Future Work

A keyword spotting system extracting features using Convolutional Deep Belief
Networks and scoring word with Dynamic Time Warping was presented for
handwritten keyword spotting. The proposed system was experimentally com-
pared with two other sets of features on two different benchmark data sets. On
both data sets, the proposed system outperformed the two baselines. The best
improvements were observed in the scenario where a single threshold is used for
the whole data set when deciding whether or not a word is spotted and very few
templates per keyword were available. Moreover, the proposed system proved
similarly effective on two very different data sets.

Future work could go in several directions. The discriminative power of the
learned features could be improved by training the network for classification,
using the word labels after pretraining. This could lead to more discriminative
features. Augmenting the data set with geometrical distortions may also lead to
a more generic feature extractor. Better normalization of the extracted features
is also likely to improve the results. Testing the system on a multiple writer data
set would prove useful in evaluating the genericity of the extracted features.

The C++ implementations of the proposed system2 and our CDBN library3

are freely available on-line.
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Abstract. We present a deep prototype-based learning architecture
which achieves a performance that is competitive to a conventional, shal-
low prototype-based model but at a fraction of the computational cost,
especially w.r.t. memory requirements. As prototype-based classification
and regression methods are typically plagued by the exploding number
of prototypes necessary to solve complex problems, this is an important
step towards efficient prototype-based classification and regression. We
demonstrate these claims by benchmarking our deep prototype-based
model on the well-known MNIST dataset.

Keywords: Prototype-based learning · Pattern recognition · Deep
learning · Incremental learning

1 Introduction

This study is conducted in the field of prototype-based machine learning,
and especially regarding the question how to render such machine learning
approaches more efficient w.r.t. memory consumption. In prototype-based learn-
ing, the probability distribution in data space is not expressed in parametric
form but by a learned set of samples, the so-called prototypes. Prototype-based
machine learning methods were originally motivated by prototype theory from
cognitive psychology (see, e.g., [1]) which claims that semantic categories in the
human mind are represented by a set of “most typical” examples (or prototypes)
for these categories. Well-known prototype-based approaches are the learning
vector quantization (LVQ) model [2], the RBF model [3] or the self-organizing
map (SOM) model [4]. A very popular prototype-based method in computer
vision in is particle filtering [5], where a continuous, evolving probability density
function is described and updated as a set of prototypes (here denoted parti-
cles) whose local density represents local probability density. Prototype-based
methods are well suited for incremental learning [6,7] since prototypes have a
very obvious interpretation, and can thus be manipulated easily, e.g., by adding,
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adapting or removing prototypes (see [8] for a precise definition of incremental
learning).

Prototype-based learning usually has a “flat” architecture (such as the RBF
or the LVQ models) with one hidden layer between input and output, where hid-
den layer weights (the prototypes) describe the input distribution. An obvious
problem of such flat architectures is the curse of dimensionality: complex prob-
ability distributions in high-dimensional spaces may conceivably require a great
number of prototypes to be well approximated, so the memory requirements of
flat prototype-based learning can become excessive depending on the problem
at hand [9].

Fig. 1. Hierarchical system used in this study, composed of one input layer, two hidden
layers and one top layer.

This study generalizes “flat” prototype-based learning as presented in [7] to a
deep architecture (see Fig. 1), with localized receptive fields in the lower layers,
just as it is the case in convolutional neural networks (CNNs, see [10]). This
makes use of the probabilistic structure of images whose distant parts (receptive
fields) are often approximately independent. In this case, it is far more efficient
to model their distributions independently as well. If this is done by prototypes,
the curse of dimensionality is reversed: as the required number of prototypes can
increase exponentially with dimensionality, it can also decrease exponentially
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since the dimension of receptive fields is small. In its simplest form, this comes
down to a deep four-layer architecture (see Fig. 1), where the first hidden layer
now contains prototype activities related to local descriptions of the input, which
are subsequently integrated into a global representation in the second hidden
layer.

What is presented here adds an entirely new quality to [7] by passing from a
“flat” architecture to a deep one. In doing so, we show that all desirable proper-
ties, notably incremental learning capacity, can be retained while offering consid-
erable added value. In fact, the principal goal of this study is to show that such a
deep prototype-based classifier can achieve a performance that is comparable to
its flat counterpart but at a dramatically reduced number of connection weights,
which reduces memory consumption and training time. For this purpose, we use
the well-known MNIST dataset [11] which is an accepted benchmark in the field
of machine learning, and offers the advantage of comparing both flat and deep
prototype-based architectures to other machine learning methods. We therefore
feel that the results reported here are truly novel, w.r.t. the state of the art but
also w.r.t. our previous work on incremental learning [7].

2 Methods

For representing both first and second hidden layers inputs of the architecture
shown in Fig. 1, we use a prototype-based learning algorithm which is loosely
based on the self-organizing map model, see [7]. Inputs are represented by graded
neural activities arranged in maps organized on a two-dimensional grid lattice.
Each unit (i, j) of the map X is associated with a weight vector wX

ij ∈ WX which
is called prototype.

Each map of the Mh1 first hidden-layer maps has the same size N1 = nh1 ×
nh1 units and receives a crop from the system input data of size ncrop × ncrop.
Mh1 is determined by the size of non-overlapping receptive fields in the input
layer: the smaller the receptive fields (each associated with a map in h1) is, the
greater is Mh1. The single map in the second hidden-layer h2, of size nh2 × nh2,
receives a concatenation of activities in the Mh1 maps of h1. The top-layer
(output) consists of a linear regression module that computes the prediction
Wtop(t)T ·Zh2(t) of the system concerning its current input with Wtop the linear
regression factors and Zh2(t) the output activities of the second hidden-layer h2.

Because we wish to work in an on-line fashion, weights vectors of all layer are
updated at the same time (in contrast to conventional deep architectures which
require layer-wise training). Prototypes of the two hidden layers are updated
following the Kohonen rule. Each unit’s associated weight vector (its prototype)
is updated using the learning rule and good practices proposed by [4] which
decreases learning rate ε(t) and Gaussian neighborhood radius σ(t) from initially
large values to their asymptotic values ε∞, σ∞. For each iteration step t <= T ,
prototypes of maps (WX) are updated depending on the current input x with
the following rule:

WX(t + 1) ← WX(t) + ε(t) · Φ(t) · (x(t) − wX�
(t)) (1)
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where ε is the learning rate and Φ(t) = φ(wX�(t), σ(t)) is a discretized Gaussian
kernel with σ variance, centered on the current best-matching wX� unit and
representing the neighborhood influence of the weights adaptation (Fig. 2).

For any map X, the map activity zX
ij ∈ ZX at position (i, j) is then derived

from the Euclidean distance between the unit prototype wX
ij and the current

input x:

zX
ij (t) = f

(
gκ

(||wX
ij (t) − x(t)||)) (2)

where, as described in [7], gκ(·) is a Gaussian function with an adaptive para-
meter κ that converts distances into the [0, 1] interval, and f(·) is a monotonous
non-linear transfer function, defined as:

m0 = maxy z̄P (y, t)

m1 = maxy

(
zP (y, t)

)20

f
(
(zP (y)

)
= m0

(
zP (y)

)20

m1
(3)

Fig. 2. An overview of prototypes in 4 maps of the first hidden layer h1 corresponding
to 2 × 2 receptive fields of 14 × 14 pixels over MNIST inputs.

The top-layer weights vector is updated following an on-line stochastic gra-
dient descent mechanism with a fixed learning rate η over time by comparison of
its own prediction and the current ground truth label of the current input data.
Because we apply our system to classification tasks, labels y and predictions
p are not scalars but vectors of c values where the position of the maximum
indicates respectively the target class label and the system decision (population
coding).

Wtop(t + 1) ← Wtop(t) − η · (y(t) − p(t)) · Zh2(t) (4)

We use two indicators to assess performance: mean classification errors and
total number of connection weights.
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Mean Classification Error. This indicator is a commonly used measure for com-
paring performances of a classification system. During the testing phase, when all
the learning processes (i.e. weights updates) are stopped, classification errors are
logged on the MNIST test set following the simple rule: γ = 0. if argmax(y(t))
equals argmax(p(t)) and γ = 1. otherwise. Then, we just compute the mean for
all these errors μ = 1

T test · ∑T test

t=1 γ.

Total Number of Weighted Connexions. This indicator is a simple means to
compare our hierarchical architecture and a “flat” architecture, only composed
of a huge map and a linear regression module, in terms of number of connexions.
Let Mh1 be the number of maps in the first hidden layer each composed of
N1 = nh1 ∗ nh1 units and Mh2 = 1 the number of maps in the second hidden
layer, composed of N2 = nh2 ∗nh2 units. Because connexions between the second
hidden layer and the top layer are negligible in the two architectures, we do
not take them into account. The total number of weighted connexions is then
computed as: K = N1 ∗ (d + N2 ∗ Mh1) for a hierarchical architecture and K̃ =
d ∗N2 for a “flat” one. By example, an architecture with 4 hidden maps of 4× 4
units receiving crops extracted from 784 pixels images (such as MNIST images),
followed by a hidden map of 10×10 units followed by the linear regression module
gives K = (4×4)∗ (784+(10×10)∗4) = 18′944. For a comparable “flat” system
without the first hidden layer, we would need K̃ = 784 ∗ (10 × 10) = 78′400
connexions.

3 Experiments

3.1 Protocol

Each experiment run consists of T train = 1′000′000 training iterations followed
by T test = 50′000 testing iterations. For all self-organizing maps, we use expo-
nentially decreased values of learning rate and neighbourhood radius and a fixed
linear regression learning rate: ε0 = 0.25, ε∞ = 0.001, σ0 = 0.5∗nX , σ∞ = 0.085
and η = 0.009. Both self-organizing maps and linear regression weight vectors
are initialized to random uniform values between −0.001 and 0.001. Samples are
always randomly and uniformly picked and are provided to the system as input
data x and ground truth y. Results presented below are averaged measures over
10 runs. Datasets targets are split into c different classes and each input data is
d dimensional.

We use the publicly available MNIST classification benchmark as described
in [11]. It contains c = 10 classes, corresponding to the 10 handwritten digits
from “0” to “9” and comes separated into a well-defined train set and a smaller
test set. Each sample has a dimensionality of d = 28 × 28 = 784.

3.2 Results

As shown in Table 1, our hierarchical system with 4 hidden layer maps can
achieve comparable performances with less connexions involved. When compar-
ing mean classification errors in the hierarchical case (μ) and in the “flat” one
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(μ̃), it seems that, with respect to the same parameters set, there is no need to
add hidden layers. But when looking at the total number of weighted connexions,
K is always smaller than K̃: by example, with Mh1 = 4 maps of N1 = 6 × 6
units in the first hidden layer and one map of N2 = 20 × 20 unit in the second
hidden layer, after T train on-line iterations the hierarchical system can achieve,
in average, equivalent classification performances than a system only composed
of a single 20 × 20 self-organizing map but with three times less connexions.

If we try with another number of hidden layer maps - by instance with
Mh1 = 16 and ncrop = 7 - it seems that performances drop down and that
the ratio K/K̃ is no longer a real advantage. Because we are dealing with raw
pixels and no extracted features on this dataset, the system is extremely sensible
to the size of the receptive fields. It seems to us that there is an interesting
research question about the well suited ncrop: “what is the link with the dataset
distribution?”, “are overlapping receptive fields a good idea or can the system
adapt itself this parameter during the incremental learning paradigm?”

Table 1. MNIST mean classification errors

ncrop = 14, Mh1 = 2 × 2

nh1 nh2 µ µ̃ K K̃

4 10 10.8 (±0.7) 9.1 (±0.5) 18’944 78’400

6 10 9.4 (±0.8) 9.1 (±0.5) 42’624 78’400

8 10 11.2 (±0.6) 9.1 (±0.5) 75’776 78’400

4 20 6.7 (±0.4) 6.3 (±0.6) 38’144 313’600

6 20 5.9 (±0.3) 6.3 (±0.6) 85’824 313’600

8 20 6.4 (±0.6) 6.3 (±0.6) 152’576 313’600

ncrop = 7, Mh1 = 4 × 4

nh1 nh2 µ µ̃ K K̃

4 10 12.9 (±0.9) 9.1 (±0.5) 38’144 78’400

6 10 11.1 (±0.8) 9.1 (±0.5) 85’824 78’400

8 10 11.0 (±0.9) 9.1 (±0.5) 152’576 78’400

4 20 10.5 (±0.6) 6.3 (±0.6) 114’944 313’600

6 20 10.1 (±0.5) 6.3 (±0.6) 258’624 313’600

8 20 10.8 (±0.5) 6.3 (±0.6) 459’776 313’600

4 Discussion, Conclusion, Perspectives

This article has shown that a deep prototype-based architecture is capable of
achieving performances comparable to those of a flat architecture of the same
type, while drastically reducing the number of connection weights, and therefore
memory usage and processing time. We believe that this effect may be observed
for any prototype-based method (notably LVQ) if approximate independence



Computational Advantages of Deep Prototype-Based Learning 127

relations hold between separate parts of the input. As stated in Sect. 1, this is
almost always the case if inputs are visual images, although of course the right
parameters have to be found in the form of receptive field sizes and overlaps.
However to be fair, this parameter search would also have to be performed for
convolutional neural network (CNN) and is a property of all deep architectures
based on local receptive fields.

Given that prototype-based methods in machine learning have a number of
highly desirable properties, such as online and incremental learning capacity
[6,7], a simple probabilistic interpretation [12] and a natural way of processing
multi-class problems, the reduction of resource requirements even when treating
complex visual problems seems an important step towards wide-spread use of
prototype-based machine learning methods.
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Abstract. Body constitution is a classification of individuals into dif-
ferent types of physical condition in order to prevent disease and pro-
mote health. The problem of standardizing constitutional classification
has become a constraint on the development of Chinese medical constitu-
tion. Traditional recognition methods, such as questionnaire and medical
examination have the shortcoming of inefficiency and low accuracy. We
present an advanced deep convolutional neural network (CNN) to simu-
late the function of pulse diagnosis, which is able to classify an individuals
constitution based only his or her pulse. The CNN model employed the
latest activation unit, rectified linear unit and stochastic optimization.
This model takes the lead in trying to classify individual constitution
using CNN. During the experiment, the CNN model attained a recogni-
tion accuracy 95 % on classifying 9 constitutional types.

Keywords: Convolutional neural network · Body constitution ·
Health · Medical science

1 Introduction

Medical science has long been focusing on researching on disease while ignoring
research the human body itself. However, Chinese medicine constitution disci-
pline is committed to research on the physiological and pathological character-
istics of each constitution, analyze the state of the disease and the development
of the disease based on different constitutions in order to guide disease preven-
tion and medical treatment. An individual’s constitution exhibits morphological
structure, physiological function, psychological status and other relatively stable
characteristics of an individual. The future of medicine will focus on preventive
medicine, and therefore classifying individual constitution is essential action to
protect health. The classification of body constitution cannot only accurately
reflect the physical difference between individuals but also lay a solid foundation
for the future standardization of Chinese Medicine constitution.

Nowadays, there is a controversial issue about the method to accurately iden-
tify constitution. Since 2009, Wang Qi’s research of nine body constitutions has
c© Springer International Publishing Switzerland 2016
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been the standard for Chinese medical diagnosis and treatment. Nine body con-
stitutions are classified as Gentleness, Qi-deficiency, Qi-depression, Dampness-
heat, Phlegm-dampness, Blood-stasis, Special diathesis, Yang-deficiency and
Yin-deficiency [1]. To classify an individual’s constitution, he or she can complete
a paper constitution test or conduct a medical examination. These two methods
either produce high error rate or require medical devices, time and manpower.
On the other hand, pulse diagnosis can accurately identify constitution, but it
requires a physician who has long-term accumulated experience. There are a
lot of researches on using modern science and technology to classify Traditional
Chinese Medicine (TCM) pulse. Traditional identification methods such as MLP,
SVM ignore the complexity and deep hidden features of TCM pulse. As a result,
these methods often have low accuracy rate on TCM pulse multi-classification.

This paper introduces a deep CNN model to achieve an applicable multi-
classification accuracy rate on TCM pulse. The architecture of the CNN model
is carefully designed in order to extract deep hidden feature and model small
training dataset, which suits well for TCM pulse. The pulse dataset collected
by the China Academy of Traditional Chinese Medicine (CACMS) is used to
evaluate the performance of the CNN model. As far as we know, this dataset
contains the largest number of samples of different constitutions pulse signals in
the world. The experiment result shows that the CNN model has an adaptive
accuracy rate on classification of nine constitutions.

The major contributions of this paper is summarized as follow:

– The method uses CNN to classify 9 body constitution types and achieves an
accuracy of 95 %.

– The CNN model uses a large number of convolution layers, compound regu-
larization layer, advanced activation layer and high efficiency optimizer to be
adaptive to TCM pulse dataset.

This paper has five sections. The second section will present related work.
The third section will describe the details of applying CNN model to body
constitution classification. The fourth section will show the experiment result.
The final section will draw a conclusion of this paper.

2 Related Work

Classification of TCM pulse has drawn a lot of attention in the past few years.
The approaches focus primarily on two directions of TCM pulse, namely classi-
fication of TCM pulse conditions and the classification of certain diseases. Tra-
ditional methods, such as support vector machine (SVM), random forest (RF)
used to predict recognize a certain disease. After the arising of neural network,
researchers began to classify TCM pulse conditions using back propagation (BP)
neural network and probabilistic neural networks (PNN).

However, most traditional methods perform poorly on pulse signal multi-
classification. The core problem of previous models is that most researchers use
pulse signal only from one single diagnosis point which is insufficient to cover the
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entire information of pulse diagnosis. Another important cause of low accuracy
is that these neural networks are incapable of extreme deep neural network
structure, which makes it unable to extract deep hidden features.

3 Body Constitution CNN Model

The following section will describe the preprocessing of pulse signal, major
improvements and the overall architecture of the CNN model.

3.1 Signal Preprocessing

Signal Cropping. Since pulse signal is a weak physiological signal, hand move-
ment or interference from other devices can cause irrational fluctuations in the
process of acquisition. Manual signal cropping is applied to pulse signal that has
distorted wave.

Signal Smoothing. Signal smoothing is used to retain the original signal while
eliminating the noise from the signal. A 10th-order Butterworth band-pass filter
of 0.00001 Hz–48 Hz is applied to the signal to dispel noise.

Detrending. Irregular breathing can cause an intrinsic overall pattern in pulse
signal. A 10th-order polynomial curve fitting is applied to the signal, and then
the outcome polynomial function is subtracted to remove the trending noise from
the signal.

Decimation. Decimation reduces the original pulse signal sampling rate of
1000 Hz to 500 Hz. Due to the graphic memory limitation of our experiment,
this process optimizes the learning efficiency of the neural network and provides
more flexibility for the architecture of the neural network.

Segmentation. Each samples signal is separated into four parts. The original
pulse data contains too many data points, so these points may be thrown away
during the training process. Therefore, separating the dataset would save as
many features as possible and at the same time increase recognition accuracy.

Synthetic Sampling. To handle the unbalance distribution of the dataset, an
adaptive oversampling method, called adaptive synthetic (ADASYS) is imple-
mented [2]. K-nearest-neighbors, imbalance ratio threshold and growth percent-
age are set to 7, 0.6 and 0.75.
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3.2 Leaky Rectified Linear Unit

The traditional way to train a neural network is by using a saturated counterpart,
such as tanh or sigmoid function. Non-saturated activation function, such as
ReLU is far more superior to these saturated functions, in terms of addressing
vanishing gradient and enhancing convergence efficiency. Following Maass neural
network acoustic model, the CNN model trains neurons with leaky rectified linear
unit (LReL) [3]. LReL allows saturated and inactive gradients to approach very
low and non-zero value. LReL is proven to have better performance and higher
learning rate in deep neural network comparing to tanh and ReLU [3].

3.3 Initialization

Initialization determines the probability distribution function for the initial
weights. The model uses uniform initialization scaled by fan in, He weight initial-
ization [4]. This initialization method effectually solves the bottleneck of training
extremely deep neural network. Initialized with a fixed standard deviation, CNN
models that have more than 8 convolutional layers often have difficulty with con-
verging. Therefore, He initializes weights with a standard deviation,

σ = gain

√
1

fanin
(1)

This derivation takes the rectifier nonlinearities of rectified linear unit into con-
sideration. He initialization ensures the weights to be adaptive through multi
layers in extremely deep rectified network models.

3.4 Optimization

A stochastic optimization method, Adam is applied to the CNN model to update
the network parameter in order to optimize the objective function. Adam is well
suited for a neural network that has large number of parameters [5]. The method
combines the strength of both AdaGrad and RMSProp. The CNN model uses
β1 = 0.9, β2 = 0.999, ε = 10−8 as optimizers parameters.

3.5 Overfitting Prevention

Overfitting occurs when the CNN model has a large number of parameters due
to its complex structure and numerous filters in each convolutional layer. It is a
major shortcoming that the model must overcome. In order to prevent overfit-
ting, two techniques were implemented, in terms of dropout and regularization.

Dropout. Dropout is the most immediate way to prevent overfitting. The idea
of dropout is to drop a given fraction of units at each epoch during the training
process, which prevent units from co-adapting [6]. This technique enhances the
robustness of each unit by forcing them to conjunct with other randomly chosen
units in order to learn new features by themselves. The experiment shows strong
overfitting when the model does not use dropout.
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Regularization. Regularization adds regularization penalties to parameters or
activities of a neural network layer to reduce regression coefficient overfitting.
Weight regularization penalty, known as Ridge and L2 activity regularization are
applied in fully connected layer. Ridge regularization decreases the approximated
regression coefficients towards zero in order to prevent overfitting that is caused
by high dimensionality [7]. The penalty parameter is set to 0.01.

Fig. 1. The visualization of the CNN model

3.6 Overall Architecture

The basic architecture of the CNN model is presented in Fig. 1. The input dimen-
sion of the 1st convolutional layer is 6×1×2500. The 1st, 2nd, 3rd convolutional
layers convolute the input from the previous layer with 10 convolutional kernels
of size 1 × 10. The 4th, 5th, 6th, 7th, 8th, 9th convolutional layers follow this
structure with an identical size of kernels and a following max-pooling layer sub-
samples the output which furthers reduces the output size with a factor of 2. The
numbers of kernels of the 2rd, 3rd, 4th, 5th, 6th convolutional layers are 20, 40,
80, 160, 320. The 7th, 8th, 9th convolutional layers have the exact same number
of convolutional kernels, 640. The final input feature map is a size of 6 × 1 × 6.
A small size of the final input feature map enhances the model to completely see
and learn the sample. A dropout layer is applied to the output with a probability
of 0.25 on the 3rd, 4th, 5th convolutional layers and more dropout layers with a
probability of 0.5 on 6th, 7th, 8th, 9th convolutional layers and fully connected
layer. The final layer of the CNN model is the 9-way softmax which classifies the
output into 9 class labels.

4 Experiment

This section introduces the dataset, experiment environment and the overall
performance of the CNN model.

4.1 The Dataset

The dataset collecting process and the details of the dataset will be described in
this section.
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Data Acquisition. Pulse signal acquisition system obtains the pulse signal
from 6 pulse locations simultaneously on the participant’s hands, in terms of left
hands Cun, Guan, Chi and right hand’s Cun, Guan, Chi. Traditional Chinese
medicine defines Cun, Guan, Chi as pulse diagnosis locations that infer the
change of a disease and identify an individual’s health condition. The sampling
rate is 1000 Hz. Each acquisition takes 40 s.

Constitution Classification. TCM researchers will record participants blood
biochemical determination, symptoms, result of pulse diagnosis and result of
body constitution scale sheet. TCM researchers will analyses the overall scale
result to identify each participant’s constitutional types.

Details of Dataset. The pulse dataset contains a total of 1661 partici-
pants’pulse signals that are unevenly distributed into nine constitutional types.
The numbers of gentleness, dampness-heat, qi-depression, qi-deficiency, yang-
deficiency, yin-deficiency, blood-stasis, special diathesis and phlegm-dampness
constitutions in the dataset are 867, 79, 83, 205, 234, 76, 43, 33, 43 accordingly.
Each pulse data is sampled at 1000 Hz with a length of 40 s, which produces a
sequence of length of 40000 data points. Each person has 6 pulse locations to
acquire signal, and therefore the dimension of one sample is 6 × 40000. After
signal preprocessing, the total number of samples is 12046, and the length of
each sample is 2500. All samples are shuffled in the dataset before input to the
CNN model. 80 % of the samples are randomly selected as training set while the
remaining 20 % are used as validation set.

4.2 Experiment Settings

The experiment is built based on Keras and Scikit-learn [8]. We evaluate the
classification performance using GTX TITAN with 12 GB of memory.

4.3 Result

We perform classification experiment of nine constitutional types on seven dif-
ferent classifiers to compare the effects of various methods. The results of each
method are shown in Table 1. Accuracy defined as to the number of correctly
identified samples divided by the total number of test samples. The task is to
classify pulse signals into 9 constitutional types. SVM and RF models achieve
relatively close results, 54.66 % and 54.34 %. The initial CNN model achieves an
higher accuracy rate of 62.49 %. With dropout, the accuracy rate significantly
increases by 29.09 %. Applying L2 regularization slightly increases the rate to
92.31 %. With the ADASYS method, the rate decreases by 3.24 %. The final
CNN model with He initialization produces the best performance of 95.33 %.

In addition to the global accuracy, we perform classification testing on each
individual constitutional type by randomly selecting 100 samples from each
type. According to Table 2, Gentleness (0), Qi-deficiency (1), Qi-depression (2),
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Table 1. Comparison of results on the pulse dataset

Method Accuracy (%)

SVM 54.66

RF 54.34

CNN with LReL 62.49

CNN with LReL, dropout 91.58

CNN with LReL, dropout, L2 92.31

CNN with LReL, dropout, L2, ADASYS 89.07

CNN with LReL, dropout, L2, He 95.33

Table 2. Prediction on every body constitutions

Constituion type 0 1 2 3 4 5 6 7 8

Accuracy (%) 100 94 94 97 97 96 95 91 95

Table 3. Results of different classification tasks

Classification Task Accuracy (%)

Gender (Male/Female) 94.42

Age (16–44/45–59/60+) 99.38

Acquisition Time (Spring/Summer/Autumn/Winter) 95.76

Dampness-heat (3), Phlegm-dampness (4), Blood-stasis (5), Special diathesis (6),
Yang-deficiency (7), Yin-deficiency (8) types achieve accuracy rates of 100 %,
94 %, 94 %, 97 %, 97 %, 96 %, 95 %, 91 %, 95 %.

To verify the CNN model can be applied to a wide range of pulse diagnosis
tasks, we preform the classification on gender, age and acquisition time within
748 gentleness type participants. The ratio between male female is 1.6 to 1, while
the numbers for the three age groups (14–44, 45–59 and 60+) are 647, 77 and 24.
Another set of data is acquisition time data where the numbers corresponding
to spring, summer autumn and winter is 230, 117, 181 and 220. According to
Table 3, the classifications on gender, age and acquisition time achieve accuracies
of 94.42 %, 99.38 % and 95.76 %.

4.4 Discussion

Comparing to other classifier, the CNN model has demonstrated its superiority
base on very complex and multidimensional pulse input and limited samples.
However, the CNN model requires a much longer training time, approximately
6 h because of the implementation of the dropout.
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5 Conclusion

Convolutional neural network avoids the shortcomings of traditional recogni-
tion methods and improves the multi-classification accuracy rate on compound
pulse signals. The experiment shows that the CNN model is capable of achieving
adaptive accuracy rate on an extremely complex pulse dataset. Ultimately, we
want to implement the CNN model on multi-classification of diseases to enhance
public health and provide help for clinical treatment.
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Abstract. To enhance Arabic handwritten recognition (AHR) performance, a
combination between online and offline features is investigated. In this paper we
exploit handcrafted features based on beta-elliptic model and automatic features
using deep classifier called Convolutional Deep Belief Network (CDBN). The
experiments are conducted on two different Arabic databases: LMCA and ADAB
databases which including respectively isolated characters and Tunisian names
towns handwritten by several different writers. The advantage of the both data‐
bases was the offline images had built at the same time as the online trajectory.
The test results show a significant improvement in recognition rate.

Keywords: Handcrafted · CDBN · Arabic handwritten recognition · LMCA ·
ADAB

1 Introduction and Related Work

With his two sections offline and online, the handwriting recognition field has gained
huge consideration during the four last decades. Arabic handwritten script recognition
is a challenging problem that has been intensely studied for many years.

Multiple approaches were developed, such as Support Vector Machine (SVM),
Neural Networks (NN), Bidirectional Long Short-Term Memory (BLSTM) and Hidden
Model Markov (HMM). They have been found extremely efficient in many fields as
pattern recognition task [1, 2] and Automatic Speech Recognition (ASR) [3]. Indeed, a
fast review of the literature shows that the effectiveness of these approaches strongly
depends on the extracted features.

For the recognition of offline and online Arabic handwriting many researchers have
insisted more on recognition aspects. Tagougui et al. [4] for example, suggested a hybrid
model reliant on Hidden Markov Models and Multi-Layer Perceptron NN for Online
Arabic handwriting recognition. This model was assessed on the ADAB database [5]
and realized perfect work compared with state-of-the-art recognition systems. In offline
handwriting recognition, Elleuch et al. [6] profoundly inquired into a deep architecture
named Convolutional DBN practiced on high-level dimension in textual images with
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Offline IFN/ENIT database [7]. The experimental research has shown promising
outcomes comparable to the state-of-the-art Arabic OCR.

A few researches and studies have been conducted with combining on/off-line
feature extraction technique for Arabic handwritten recognition problem. The combi‐
nation of features can give more general description of the text. Stating as an example,
Houcine et al. [8] who introduced an experimental investigation demonstrated the
fruitful result of the integration of offline parameters in the features vector of an online
handwriting modeling system focused on grapheme segmentation. As for, Hamdani et al.
[9], they suggested an offline handwriting recognition system reliant on the combination
of multiple HMMs. The different HMMs are reliant on online and offline handcrafted
features. They showed that the combination of an online system with offline ones works
better than the combination of multiple offline recognizers.

In our studies, model based on Deep learning and Beta-elliptic approach is investi‐
gated to the handwritten Arabic field. To further better the efficiency rate, the combi‐
nation of hierarchical representations building from raw data using CDBN with hand-
crafted features is a must. We practiced the system in the first trial on the LMCA database
and in the second one on the ADAB database exploiting a classifier module based on
Support Vector Machines.

The remaining of this paper is set as follows: In the second Section, we describe
feature extraction based methods and we introduce our architecture of the proposed
system. Our experimental study and results using this system are presented in the
Sect. 3. As for Sect. 4, we present some concluding remarks.

2 Our Proposed Model

In this section we briefly introduce our proposed model for Arabic handwriting recog‐
nition using on/off-line feature extraction techniques.

2.1 Feature Extraction Based Methods

For the feature extraction methods, the Beta-Elliptic strategy and the Deep Architectures
are investigated. The first was applied an online Arabic word database ADAB [5] and
the second approach deal textual images from the same database. Again the same
strategy was applied with LMCA database.

Beta-Elliptic approach: The Beta-elliptic approach comprises the modeling of the
trajectory by an association of kinematic and geometric features. These features are able
to be divided into two classes. The first class comprises the dynamic features considering
the velocity profile as for the second class, it takes static features depicting handwriting
trajectory. The resulting feature vector is made up of 10 parameters: 6 dynamic features
and 4 static features. Refer to work in [10] for deeper analysis.

Deep approach: In this work, we utilized Convolutional Deep Belief Network
(CDBN) for feature extraction. Taking advantages of the power of this deep network
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that can manage large dimensions input allowing the use of raw data inputs was our
objective.

2.2 Architecture of the Proposed System

Having the online and the offline feature extraction methods described in [6, 10] for
AHR, it may be beneficial to combine both methods. As shown in Fig. 1, our proposed
system was designed by combining two techniques for feature extraction. The first tech‐
nique aims to build hierarchical structures of features using the Convolutional DBN
feature extractor. Then, online features are added to improve the aptitude of generali‐
zation of the system. The latter are obtained using Beta–Elliptical model feature. Finally,
SVM takes on/offline features as input and proceed to do classification.

Fig. 1. Proposed system

2.3 Convolutional Deep Belief Network

In recent years, Deep learning methods have been effectively used for handwritten
recognition and applied to digits and handwritten Arabic/Latin text databases. For
examples: Deep Belief Networks [11] and Convolutional DBN [6, 12].

Convolutional DBN is a hierarchical generative model, consists of several layers of
max-pooling convolutional Restricted Boltzmann Machines (CRBMs) stacked on top
of one another (See Fig. 2). Building convolutional deep belief network, the algorithm
learns high-level features, like groups of the strokes and object-part.
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Fig. 2. Illustration of a probabilistic max-pooling CRBM [12]. NV and NH refer to the size of
visible and hidden layer, and NW to the size of convolution filter.

The input layer is made of  real/binary units. There are K groups (or maps)
in the hidden layer and each group is an array of  binary units and is associated
with a  convolutional filter (where ). All hidden units of a
group share the filter weights. A shared bias  for each group and a shared bias c for
the visible units exists as well. The pooling layer has K groups of binary units, each
group of size . Pooling, also called probabilistic max-pooling operation, shrinks
the representation of the detection layers by a C, usually small with  For
more details on the above you can refer to [6, 12].

The training of the max-pooling CRBM network was achieved by utilizing contrastive
divergence (CD) algorithm allowing us to estimate an approximate gradient effectively.

2.4 Support Vector Machines (SVM)

Support Vector Machine is powerful discriminative classifier invented by Vapnik [13]
and Cortes [14], and has been extensively utilized successfully for many pattern clas‐
sification/recognition tasks [15]. The algorithm detects the optimal separating hyper‐
plane (H0), bearing the maximum distance to the training points that are near to the
hyper-plane.

In this study we select the radial basis function (RBF) kernel as a non-linear similarity
function in the SVM classifier. The RBF kernel calculates the following similarity value
between two input vectors:

(1)

With  is a kernel parameter of the RBF kernel that will be define empiri‐
cally. 5-fold cross-validation is utilized to search the perfect parameters by assessing
the work of the classifiers in the one-vs-all classification tasks. We mentioned that in
our experiments LIBSVM [16] package is utilized to construct multi-class SVM with
RBF kernel.

Feature Extractor Based Deep Method to Enhance Online AHR System 139



3 Experimental Setup and Results

We conducted our experimental studies using proposed system for recognizing Arabic
handwritten characters and words. This architecture was tested on two different on/off-
line databases. The first one is an Arabic character database LMCA [17] and the second
is an Arabic word database which is ADAB [5]. These databases provide us with the
option of recovering the online signal and offline textual image of the same handwriting.
Unlike the online method which is reliant on collecting coordinate (x, y) of the hand‐
written trajectory, the offline method is reliant on collecting images of the handwritten
trajectory. Advancement is detailed and discussed in the next subsections.

3.1 LMCA Database

LMCA (Lettres Mots Chiffres Arabes) database [17] contains 30.000 shapes for ten
digits, 100.000 shapes for 56 Arabic letters (See Fig. 3) and 500 Arabic words. 55
respondents were hosted to participate in the development of the handwritten LMCA.
The data is divided into a training set of 70 % images/signals and a test set of 30 %. In
this work, we used only characters forms.

Fig. 3. 56 shapes of Arabic letters [17]

3.2 ADAB Database

In our experiments, we exploited sample data from ADAB (Arabic DAtaBase) database
[5] which includes 946 different labels of Tunisian town’s names. The data processing
consists of online and offline handwritten Arabic words. It contains 33164 sub words
written by 166 persons. We have selected only 24 shapes of Tunisian cities from Dataset
1, 2 and 3 for training phase whereas the fourth is used as a test set with the same selection
of shapes. To effectively train our proposed model on more data so as to perfectly handle
the variability of handwriting, the size of the training set is extended five times by the
elastic deformation technique.
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3.3 Experiments Setting

The CDBN Network is used to extract higher level features from the characters and
words. The description of the automatic features extractor used in experiments applied
to LMCA and ADAB database is given as follows: CDBN architecture is made up of
two layers of Convolutional Restricted Boltzmann Machines (CRBM), each layer holds
ni maps and the pooling ratio C for each layer was 2. Every map in the hidden layer is
related to one pooling unit (See Fig. 4). The first layer takes real-valued visible units
and binary hidden units whereas the second layer takes binary visible and hidden units.

Fig. 4. Illustration of the proposed CDBN architecture [6]

We give the description of the CDBN architecture used in experiments applied to
LMCA database as follows: The input of the CDBN is a 28 × 28 grayscale image

 The first and the second layer have 40 maps of 11 × 11 pixels filters. Both
CRBM have been trained using Contrastive Divergence (CD) of 150 epochs.

On the other hand, for the ADAB datasets we train following CDBN: the size of the
input image is a 300 × 100, the first layer includes 24 groups of 12 × 12 pixel filters
(K = 24, NH = 12). The second layer includes 40 maps, each 10 × 10 pixels (K = 40,
NH = 10).

In the second phase, online feature extraction used Beta-Elliptical strategy. Decom‐
posing the signal into segments is our objective. Each segment is defined as a continuous
handwriting stroke between two extremities points representing pen-up or pen-down
moments. Each segment trajectory is modeled by arcs of ellipse. Therefore, each stroke
is modeled by a feature vector of 10 parameters [4, 10].

In order to evaluate the effectiveness of the new features vectors obtained by two
different approaches, we investigated its performance using SVM for recognizing char‐
acters and words applying on LMCA and ADAB database respectively.

The choice of parameters, kernel parameter σ and penalty parameter C, was proved
to be experimentally effective by applying a grid-search with the 5-fold stratified cross
validation method. We synthesized the most favorable usefulness of principal parame‐
ters obtained after the tests on the training on/off-line Arabic handwritten databases,
LMCA and ADAB, as follows (Table 1):
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Table 1. The best training parameter values for the SVM with RBF kernel

Parameters Databases
LMCA ADAB

Sigma σ 0.05 0.004
C 30 100

3.4 Results and Discussion

The proposed system founded on combination of two extractor methods already described,
has reached a character recognition rate (RR) of 97.51 % when applied to the LMCA data‐
base on the testing dataset with 56 classes while with ADAB database we attained a word
recognition rate of 86.3 % (without distortion) and 91.8 % (with distortion) on the testing
dataset with 24 classes (See Table 2). Therefore, our present work yields a satisfactory
performance compared with the previous reported RR in the literature.

Table 2. Recognition rate for our proposed system

Database Number of classes RR
LMCA 56 97.51 %
ADAB (without distortion) 24 86.3 % (set4)
ADAB (with distortion) 91.8 % (set4)

The recognition rate obtained with our system on the both databases, LMCA and
ADAB (with distortion), is efficient compared to previous results reported in the liter‐
ature (see Table 3). Unlike the recognition rate reported on the ADAB database without
distortion which can be explained by the small number of samples of each shape. To
solve this problem we have extended data by the elastic deformation technique. A
comparative study of our system with other techniques utilizing on/off-line Arabic
handwritten databases (see Table 3) was also realized. Our proposed system still
performs better than hand-crafted features-based approach like MLP [17], HMM [18]
and hybrid NN/HMM [4] methods. Finally, we can see from the results that the achieved
accuracy is due to the discriminatory power of features which extracted automatically
from raw data using deep architecture and the regression capabilities of SVM classifiers.

Table 3. Performance comparisons with Arabic database

Database Approach / Database RR
Present work SVM / LMCA 97.51 %

SVM / ADAB (with distortion) 91.8 %
Boubaker et al. [17] MLP / LMCA 94.14 %
Ahmed and Abdel Azeem [18] HMM / ADAB 89.7 %
Tagougui et al. [4] Hybrid NN-HMM /ADAB 91.23 %
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4 Conclusion

In this paper we presented our system for Arabic handwritten character/word recogni‐
tion. The system used two methods for feature extraction based on deep learning and
Beta-elliptic approach. The new extracted offline features are introduced with the beta-
elliptical features vector to improve its discriminative power. Hence, our proposed
system can be considered promising in the handwriting recognition domain. As perspec‐
tive, we have to test HMM and BLSTM classifier to be able to deal with dynamic features
for enhance recognition rate.
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Abstract. Glia modify neuronal connectivity by creating structural
changes in the neuronal connectome. Glia also influence the functional
connectome by modifying the flow of information through neural net-
works (Fields et al. 2015 [6]). There are strong experimental evidences
that glia are responsible for synaptic meta-plasticity. Synaptic plastic-
ity is the modification of the strength of connections between neurons.
Meta-plasticity, i.e. plasticity of synaptic plasticity, may be viewed as
mechanisms for dynamic reconfiguration of neural circuits. Since synapse
creation corresponds to the mathematical notion of function composition,
the mechanisms may serve as a grounding for functionals, i.e. higher order
functions that take functions as their arguments.

1 Introduction

Gedankenexperiment: a backward time travel of a computer. A con-
temporary computer was moved into the XIX-th century so that scientists could
make experimental research. Actually, the idea underlining the functioning of
a computer is extremely simple; it is the von Neumann computer architecture.
Would it be possible for the scientists of nineteenth century to discover the idea
by examining the electric circuits and their complex functioning of the working
computer system consisting of monitor, a motherboard, a CPU, a RAM, graphic
cards, expansion cards, a power supply, an optical disc drive, a hard disk drive, a
keyboard and a mouse? What about BIOS and operating system as well as many
applications installed?

Perhaps the Gedankenexperiment may serve as a metaphor of the research
on (the human) brain functioning. Although great achievements have been made
in the brain research, the basic mechanisms (idea) underling the human brain
functioning are still a great mystery.

A short review of the current research on higher order computations in the
brain is presented below. Astrocytes are a kind of glial cells (simply glia). Let
us cite the recent views of the role of glia and metaplasticity in the brain.

Fields et al. 2015 [6]: “Astrocytes have anatomical and physiological prop-
erties that can impose a higher order organization on information processing
and integration in the neuronal connectome. Neurons compute via membrane
voltage, but how do astrocytes compute? What do glia contribute to information
c© Springer International Publishing Switzerland 2016
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processing that neurons cannot accomplish? ... In comparison to neurons, glia
communicate slowly and over broader spatial scales. This may make glia par-
ticularly well suited for involvement in integration, in homeostatic regulation,
and alterations in structural or functional connectivity of neural networks taking
place over periods of weeks or months”.

Min et al. 2015 [11]: “Many studies have shown that astrocytes can dynami-
cally modulate neuronal excitability and synaptic plasticity, and might participate
in higher brain functions like learning and memory. ... mathematical modeling
will prove crucial for testing predictions on the possible functions of astrocytes
in neuronal networks, and to generate novel ideas as to how astrocytes can con-
tribute to the complexity of the brain. ...”

Gilson et al. 2015 [7]: “Experiments have revealed a plethora of synaptic and
cellular plasticity mechanisms acting simultaneously in neural circuits. How such
diverse forms of plasticity collectively give rise to neural computation remains
poorly understood. ... To learn how neuronal circuits self-organize and how com-
putation emerges in the brain it is therefore vital to focus on interacting forms
of plasticity”.

The research on computational models of neural circuits is well established
starting from McCulloch-Pitts networks [10] via the Hopfield model [8] to recur-
rent neural networks (RNNs). It seems that RNNs represent adequately the
computations done in the human brain by the real neural networks. From the
Computer Science point of view, RNNs are Turing complete (Siegelmann and
Sontag [12]), i.e., every computable function may be represented as a RNN. How-
ever, Turing machine is a flat model of computation. There are also higher order
computations (see the review Longley and Norman 2015 [9]), i.e. computable
functionals where arguments (input) as well as values (output) are functions.

The Virtual Brain (TVB www.thevirtualbrain.org) project aims at building
a large-scale simulation model of the human brain. It is supposed that brain
function may emerge from the interaction of large numbers of neurons, so that,
the research on TVB may contribute essentially to our understanding of the
spatiotemporal dynamics of the brain’s electrical activity. However, it is unclear
how this activity may contribute to the comprehension of the principles of the
human mind functioning.

Adolphs 2015 [1]: “Some argue that we can only understand the brain once we
know how it could be built. Both evolution and development describe temporally
sequenced processes whose final expression looks very complex indeed, but the
underlying generative rules may be relatively simple ...”

Another interesting approach is due to Juergen Schmidhuber: “The human
brain is a recurrent neural network (RNN): a network of neurons with feedback
connections”; see http://people.idsia.ch/∼juergen/rnn.html. Indeed, real neural
circuits can be modeled as (continuous time) RNNs. Despite the enormous com-
plexity of a hypothetical RNN modeling the human brain, there is a paradox
here because (continuous time) RNNs are nonlinear dynamic systems. It means
that RNNs are high level mathematical abstractions (of human mind) involving
the notion of space-time Continuum that comprises actual infinity. These very

http://www.thevirtualbrain.org
http://people.idsia.ch/~juergen/rnn.html


On Higher Order Computations in the Human Brain 147

abstractions are created in the human brain (consisting of a finite number of
cells), i.e. the notions related to space-time continuum are represented (in the
brain) in a finitray way as finite structures.

The foundations of the mind functioning might be ingenious in its simplicity
although the underlying biological mechanism are extremely complex and sophis-
ticated. Hence, in order to model neural circuits and the mechanisms responsible
for structural changes in the neuronal connectome, let us use much more simple
(than RNN) primitive notions from Mathematics and Computer Science, i.e. the
computable functions and computable functionals. Since Mathematics is a cre-
ation of the human mind, the Foundations of Mathematics may shed some light
on the principles of the brain functioning.

2 Neural Circuits, Computable Functions and Functionals

Several assumptions are to be made. The first one is that elementary neural cir-
cuits (corresponding to functional units in the brain) can be distinguished. The
second assumption is that any such circuits (at least temporary) has clearly iden-
tified input (dendrite spines of some postsynaptic neurons) and output (axons
of some presynaptic neurons). It means that the output is exactly determined
by the input. The third assumption is that such circuits can be composed by
linking the output of one circuit to the input of another circuit; it may be done
by creating a synapse connecting an axon (of the output of one circuits) to a
dendrite spine of the input of the other circuit. Actually, the assumptions have
been already verified experimentally. Hence, a neural circuit can be represented
as a first order function defined on natural numbers. That is, spike sequences
(bursts), generated by a neuron, may be interpreted as natural numbers in the
unary code, input of the circuit as arguments whereas output as values of the
function.

Simple operations on functions may have their counterparts as operations
on circuits. Given two functions f and g (defined on natural numbers), the new
function h defined as h(x, y) = f(x) + g(y) may serve as an example. If fc, gc

and +c denote corresponding neural circuits, then the circuit corresponding to
function h may be created by establishing (activating) some synapses between
input neurons of +c, and the output neuron of fc and the output neuron of gc.
This may correspond roughly to the synaptic meta-plasticity. It is interesting
(however, not surprising) that this very synapse creation corresponds to a basic
notion of Mathematics, i.e. function composition.

Sockets and plugs are the crucial notions. A function consists of input,
body and output, see Fig. 1. Input may consists of multiple sockets, whereas
output may consists of multiple plugs. A plug-socket directed link may corre-
spond to synapse as connection of axon and dendrite.

There are also higher order functions (called functionals) where arguments
as well as values may be functions. It is also not surprising that these higher
level functionals can be constructed by establishing links in the circuits of plugs
and sockets.
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Fig. 1. Function as input (socket,) body, and output (plug). Simple composition of f ,
g, and +. Function type, and functions

Each function is of some type. Since the natural numbers (finite sequences
(bursts) of spikes) are assumed as the basic type (denoted by N), the type of
first order functions is of the form (Ns1 ; Ns2 ; ...;Nsk) → (Np1 ; Np2 ; ...;Npm),
where (Ns1 ; Ns2 ; ...;Nsk) denotes different sockets of the input, whereas
(Np1 ; Np2 ; ...;Npm) denotes different plugs of the output. This type may be
realized as a board consisting of sockets and plugs, see Fig. 1.

It seems that second (and higher) order computations in the brain are done
by dynamic (re)configurations of links (synapses) between the neural circuits.
Although the links are established between concrete neurons, these neurons
belong to fixed circuits, so that (from functional point of view) the links are
between circuits, and correspond to the circuit composition.

Let us take as granted that glia are responsible for creating synapses and
managing their activity. Then, there must be a generic meta-composition process
for doing so (corresponding to a functional), where the parameters are: two
circuits (to be composed), presynaptic neurons of one circuit, and postsynaptic
neurons of the second one.

Hence, such generic process may be represented as a second order function
(functional) that takes (as input) two first order functions, a plug of one function
and a socket of the second function; then it returns (as the output) a first order
function as a composition of these two functions. The problem is how such generic
process is realized in the brain. First of all, the circuits to be composed must be
discriminated, and then passed, as parameters, to the composition process.

Glia are responsible for higher order computations, i.e. for dynamic creating,
composing, and reconfiguring neural circuits. At the bottom level it is real-
ized by creating new synapses; this corresponds to function composition. Since
the function composition is the basis for construction of the higher order func-
tions (functionals), the processes of dynamic synapse creation correspond to
functionals.

Hypothesis. The primitive rules for construction of the computable functionals
may have their counterparts in the human brain.
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2.1 A Sketch of Formal Framework for Constructing Higher
Order Computation Based on Functionals

Turing machines and partial recursive functions are not concrete constructions.
Their definitions involve actual infinity, i.e. infinite type for Turing machines, and
minimization operator µ for partial recursive functions. This results in possibility
of non terminating computations that are abstract notions and have no grounding
in the human brain. The proposed approach is fully constructive, and if restricted
only to first order computable functions, it corresponds to the general recursive
function according to the Herbrand-Gödel definition.

Fig. 2. More complex function type, and higher order application of functional F to a
function g : A → B. The result F (g) is an object of type C

At the basic level it consists of some primitive types, primitive functions and
type constructors, i.e. the type of natural numbers, the successor function, con-
stant functions, projections, constructors for product and function type. How-
ever, the key primitive functionals correspond to application, composition, copy
and iteration. It is crucial that these functionals can be constructed by (dynamic,
in the case of iteration) establishing links between plugs (corresponding to out-
put types) and sockets (corresponding to input types).

At the higher level of the approach, types are considered as objects, i.e. con-
structed as boards of plugs and sockets. This gives rise to introduce relations
(according to the propositions-as-types correspondence of Curry-Howard), and
polymorphism.

Hence, it is important to grasp the constructions of the boards as higher
order types. The type of functions from natural numbers into natural numbers
(denoted by Ns → Np) may be realized as a simple board consisting of a socket
and a plug, see Fig. 1. Types of higher order are presented in Figs. 1 and 2. Note
that for the type (A → B) → C, the input A → B becomes the socket. For the
type (A → B) → (C → D), the output C → D becomes the plug.

Application of a functional F : (A → B) → C to a function g : A → B is
realized as follows. A → B is the socket of the functional F . The application is
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Fig. 3. The functional Comp of type ((A → B); (B → C)) → (A → C). Input objects
are: f of type A → B and g of type B → C. When applied to Comp, the output object
is a function of type A → C

done (see Fig. 2) by establishing appropriate directed connections (links). That
is, the link between the socket A of the socket of F and the socket A of g, and
the link between the plug B of g and the plug of the socket of F .

Composition functional (denoted by composeA,B,C) for simple composi-
tion of two functions (the first function f of type A → B, and the second one g
of type B → C) is realized as two boards with appropriate links shown in Fig. 3.
It is easy to check (by following the links) that applying composeA,B,C to two
functions (see Fig. 3) results in their composition.

Note that a higher order application (i.e. application of a functional to a
function), and a functional for composition are constructed just by providing
some links between sockets and plugs. Since link corresponds to synapse, it
might be interesting whether these functionals have counterparts in the brain.

Each construction, like F (g) and composeA,B,C(f ; g), can be distinguished as
an individual object (notion). Perhaps, in the brain, they correspond to concrete
regions.

Generally, discrimination of new notions by the human mind is crucial for
reasoning. Once a notion is distinguished, it may be used in more sophisticated
reasoning. This evidently corresponds to the reflective abstraction introduced by
Piaget, especially if the notions emerge as the results of constructions. Note that
here constructions mean dynamic (re)configuration of links between sockets and
plugs.

A functional of special interest is Copy. Once an object a is constructed,
repeat the construction once again. So that Copy(a) returns two object: the
original a, and its copy a′. Although the meaning of Copy seems to be simple,
its realization in the brain may be quite complex especially if the object a is of
a higher order type.
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If it is supposed that the construction of object a occupies some well defined
region in the brain, then Copy may be realized by copying this region into a
new “free region”. Since in Biology (living organisms) copying (procreation) is
ubiquitous, let us take the implementation of the functional Copy as granted.

Iteration as generalization of composition. That is, compose n-times a
function f : A → A with itself. Note that n, as a natural number, is a parameter.
The iteration is denoted by IterA and it is a functional of type (N ; (A → A)) →
(A → A). So that IterA(n; f) is the function being n-time composition of f . The
realization of IterA requires Copy for making copies of f , and (n − 1) copies of
the composition functional. Since natural numbers are involved in the functional,
it seems that, a hypothetical realization of Iter, in the brain, requires neurons.

Note that there are next higher orders of constructions of functionals. Func-
tionals operate on functionals (second order functions) are third order functions
that operate on the second order functions by re(configuring) links in the boards
of sockets and plugs. And so on.

Higher order primitive recursion schema (also known as Grzegorczyk’s iter-
ator) can be constructed as a functional. For arbitrary type A, the iterator,
denoted by RA, of type A → ((N → (A → A)) → (N → A)), is defined by the
following equations.

for any a : A, c : N → (A → A), and k : N
((RA(a))(c))(1) = a and ((RA(a))(c))(k + 1) = (c(k))(((RA(a))(c))(k))

However, a construction of RA does not follow from the definition. Actu-
ally, it is based on the iteration functional and consists on dynamic formation
of links in boards of plugs and sockets. Higher order primitive recursion allows
to define a large subclass of general recursive functions, e.g. the famous Acker-
man function. This can be done on the basic level of the proposed approach to
computable functionals. At higher levels of the approach (where functionals are
used) all general recursive functions can be constructed. It seems that higher
order computation involving the functionals is useful, especially as efficient and
smart organizations of complex and sophisticated first order computations.

Coming back to the neural circuits, the circuits may be represented as
first order functions. Functionals operate on first order functions (circuits) by
re(configuring) links inside and between the circuits. In this way, the functionals
may be viewed as higher order computations on neural circuits.

3 Conclusion

Primitive types resulted from the most simple (primitive) and obvious data
transfer methods: spike bursts (as natural numbers), and bundles of adjacent
spike bursts as objects of Continuum (see the full version of the paper at google
arXiv Ambroszkiewicz). The first order computable functions (as a static inter-
pretation of the neural circuits) seems to be justified. This may give rise to
expect that higher order computable functions (functionals) have counterparts
in the human brain.
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Composition (as link creation) is the basic operation for function construc-
tions as well as for construction of higher order functions (functionals). This very
composition corresponds to synapse creation in the brain.

The two functionals (Copy and Iter) together with the higher order applica-
tion, composition, and the primitive types constitute the cornerstone for building
a constructive (intuitionistic) part of Arithmetics and Analysis, see [3,4]. Accord-
ing to the original meaning of L.E.J. Brouwer, intuitionism is the constructive
mental activity of the human mind.

Since the architecture of human brain is definitely different than von Neu-
mann computer architecture, the mechanisms of the meta-plasticity may give
rise to develop a non-von Neumann computer architecture and a corresponding
function-level programming language postulated by John Backus 1977 [5]; for
more on this subject see [2].

For the full version of the paper and a mathematical approach to computable
and constructive functionals see [3,4] (google arXiv Ambroszkiewicz).
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Abstract. Thanks to their state-of-the-art performance, deep neural
networks are increasingly used for object recognition. To achieve the
best results, they use millions of parameters to be trained. However, when
targetting embedded applications the size of these models becomes prob-
lematic. As a consequence, their usage on smartphones or other resource
limited devices is prohibited. In this paper we introduce a novel compres-
sion method for deep neural networks that is performed during the learn-
ing phase. It consists in adding an extra regularization term to the cost
function of fully-connected layers. We combine this method with Product
Quantization (PQ) of the trained weights for higher savings in storage
consumption. We evaluate our method on two data sets (MNIST and
CIFAR10), on which we achieve significantly larger compression rates
than state-of-the-art methods.

1 Motivation

Deep Convolutional Neural Networks (CNNs) [1–4] have become the state-of-
the-art for object recognition and image classification. As a matter of fact, most
recently proposed systems are using this architecture [4–9]. With this global
trend arise questions on how to to import CNNs on embedded platforms [10],
including smartphones, where data storage and bandwidth are limited. Today
the size of a typical CNN is often too large (typically hundred of megabytes for
vision applications) for most smartphone users. The purpose of this paper is to
propose new techniques for compressing deep neural networks without sacrificing
performance.

In this work we focus on compressing CNNs used for vision, although our
methodology is not taking any advantage of this particular application field and
we expect it to perform similarly on other types of learning tasks. A typical state-
of-the-art CNN [5,7,8] for visual recognition contains several convolutional layers
followed by several fully connected layers. For the most challenging datasets,
these layers may require hundred of millions of parameters to be trained in
order to be efficient.

These parameters are overparameterized [11] and we aim at compressing
them. Note that our motivation is mainly to reduce the model size rather than
speeding up the computation time [12]. Compressing deep neural networks has

c© Springer International Publishing Switzerland 2016
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been the subject of several recent works. In [12,13] the authors use compression
methods for speeding up CNN testing time.

More recently, some works focus on compressing neural network specially to
reduce storage of the network. These works can generally be put into two dif-
ferent categories: some of them focus on compressing the fully connected layers
and others on compressing the convolutional layers. In [14] the authors focus on
compressing densely connected layers. In their work, they use signal processing
vector quantization methods [15,16] such as k-means or Product Quantization
(PQ). In [17] the authors focus on compressing the fully connected layers of a
Multi-Layer Perceptron (MLP) using Hashing Trick, a low cost hash function to
randomly group connection weights into hash buckets, and set the same value to
all the parameters in the same bucket. In [18] the authors propose compressing
convolutional layers using a Discrete Cosinus Transform applied on the convo-
lutional filters, followed by Hashing Trick, as for the fully connected layers.

An interesting point showed by [14] is that in a typical sate-of-the-art CNN,
more than 90 % of the storage is taken up by the densely connected layers,
whereas about 90 % of the running time is taken by the convolutional layers. This
is why, in order to compress the size of a CNN, we mainly focus on compressing
the densely connected layers.

Instead of using a post-learning method to compress the network, our app-
roach consists in modifying the regularization function used during the learning
phase in order to favor quantized weights in some layers – especially the output
ones. To achieve this, we use an idea that was originally proposed in [19]. In order
to compress furthermore our obtained networks, we also use PQ as described in
[14] afterwards. We perform some experiments both on Multi-Layer Perceptrons
(MLP) and Convolutionnal Neural Networks.

In this paper, we introduce a novel strategy to quantize weights in deep
learning systems. More precisely:

– We introduce a regularization term that forces weights to converge to either
0 or 1, before using the product quantization on the trained weights.

– We show how this extra term impacts performance depending on the depth
of the layer it is used onto.

– We experiment our proposed method on celebrated benchmarks and compare
with state-of-the-art techniques.

The outline of the paper is as follows. In Sect. 2 we discuss related work. Section 3
introduced our methodology for compressing layers in deep neural networks. In
Sect. 4 we run experiments on celebrated databases. Section 5 is a conclusion.

2 Related Work

Throughout this paper, we term compression rate associated with a compres-
sion method the ratio of the memory used after the method is processed to
that before it is used. As already mentioned in the introduction, the densely
connnected layers of a state-of-the-art CNN usually involve hundreds of millions
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of parameters, thus requiring an important storage that may be hard to obtain
in practice. Several works have been published on speeding up CNN prediction
speed. In [20] the authors use tricks of CPUs to speed up the execution of CNN.
In [21], the authors show that carrying the convolutional operations in the Four-
rier domain may lead to a speed-up of 200 %. Two very recent works, [12,13],
use linear matrix factorization methods for speeding up convolutions and obtain
a 200 % speed-up gain with almost no loss in classification accuracy.

The previously mentionned works mainly focus on speeding up the CNN
feedforward operations. Recently, several works have been devoted to compress-
ing the CNN size. In [11], the authors demonstrate the overparametrization in
neural network parameters. Indeed, they show that only 5 % of parameters are
enough to accurately predict the 95 % remaining ones. These results motivate
[9] to apply vector quantization methods to benefit from redundancy and com-
press the network parameters. This compression allows them to obtain results
similar to those of [11]: they are able to achieve a compression rate of about 20
without sacrificing accuracy. In their paper, they tackle the model size issue by
applying PQ on the trained weights. They are able to achieve a good balance
between storage and test accuracy. For the ImageNet challenge ILSVRC2012,
they achieve a 16–24 compression rate for the whole network with only 1 % loss
on accuracy, using a state-of-the-art CNN.

In [17], for the first time a learn-based method is proposed to compress neural
networks. This method, based on Hashing Trick, allows efficient compression
rates. In particular, they show that compressing a large neural network may
be more efficient than directly training a smaller one: in their example they
are able to divide the loss by two using a eight times larger neural network
compressed eight times. The same authors also propose in [18] to compress filters
in convolutional layers, arguing that the size of the convolutional layers in state-
of-the-art’s CNN is increasing year after year.

3 Methodology

In this section, we present two methods for compressing the parameters in CNN
layers. First we introduce the PQ method from [14], and then we introduce our
proposed learn-based method.

3.1 Product Quantization (PQ)

This method has been extensively studied in [14]. The idea is to exploit the inner
redundancy of trained weights. In order to do that, the authors propose to use
PQ. PQ consists of partitioning the parameters space into disjoint sub-spaces,
and performing quantization in each of them. The term “product” refers to the
fact that the quantized points in the original parameter space are the cartesian
product of the quantized points in each sub-space. PQ performs increasingly
better as the redundancy in each subspace grows.



156 G. Soulié et al.

Specifically, given a layer L, let us denote by W the matrix of the corre-
sponding weights and by (m,n) the dimensions of W. Assuming n is divisible
by s, we can partition W column-wise into s sub-matrices:

W = [W 1,W 2, ...,W s], (1)

where W i ∈ R
m(̇n/s). In [14], the authors point out that applying PQ on the

x-axis or the y-axis of W does not leads to major difference in experiments. We
can then perform k-means for each sub-matrix W i, i.e. minimize:

m∑

z=1

k∑

j=1

‖wi
z − cij‖22, (2)

where wz
i denotes the z-th row of sub-matrix W i, and cij denotes the j-th row

of sub-codebook Ci ∈ R
k(̇n/s). The ci which minimize this expression are named

centroids.
Thus, the reconstructed matrix is:

Ŵ = [Ŵ 1, Ŵ 2, ..., Ŵ s], (3)

where
ŵi

j = cij , j being a minimizer of min
j

‖wi
z − cij‖22.

We replace wi
j by ŵi

j : the nearest centroid of wi
j . We need to store the

nearest centroid indexes for each wi
j and codebooks of all the ŵi

j for each
sub-vector. The codebook is not negligible, therefore the compression rate is
(32mn)/(log2(k)ms+32kn). With a fixed segment size, increasing k will lead to
decreasing the compression rate.

3.2 Proposed Method

Our proposed method is twofold: first, we use a specific added regularization
term in order to attract network weights to binary values, then we coarsely
quantize the output layers.

Let us recall that training a neural network is generally performed thanks
to the minimization of a cost function using a derivative of a gradient descent
algorithm. In order to attract network weights to binary values, we add a bina-
rization cost (regularizer) during the learning phase. This added cost pushes
weights to binary values. As a result, solutions of the minimization problem are
expected to be binary or almost binary, depending on the scaling parameter of
the added cost with respect to the initial one. This idea is not new, although we
did not find any work applying it to deep learning in the literature. Our choice
for the regularization term has been greatly inspired by [19].

More precisely, let us denote by W the weights of the neural network, f(W )
the cost associated with W , hW (X) and y(X) respectively the output and the
label for a given input X, we obtain:
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f(W ) =
∑

X

‖hW (X) − y(X)‖2 + α
∑

w∈W

‖w − 1‖2‖w + 1‖2, (4)

where α is a scaling parameter representing the importance of the binarization
cost with respect to the initial cost. Note that possible values for binary weights
have been empirically explored and those centered on 0 (here {−1,+1}) led to
the best results.

Finding a good value for α may be tricky, as a too small value results in a
failure of the binarization process and a too large value results in the creation
of local minima that will prevent the network from successfully training. To
facilitate this selection of α, we use a barrier method [19] that consists in starting
with small values of α and incrementing it regularly to help the quantization
process. In our experiments, at each iteration, we multiply α by a constant
c = 1.001 (this value has been empirically found to work best).

We observed that some layers are typically very well quantized at the end of this
learning phase, whereas others are still far from binary. For that reason we then
binarize some of the layers but not all. Again, this selection is made by exploring
empirically the possibilities, for example using the results depicted in Fig. 1.

In order to improve further our compression rate, we then use the PQ method
presented in the previous subsection.

The compression rate for our method is (32mn)/(kn + log2(k)ms) (instead
of (32mn)/(32kn + log2(k)ms) for single Product Quantization). With a fixed
segment size, increasing k will lead to decreasing the compression rate.

4 Experiments

We evaluate these different methods on two image classification datasets :
MNIST and CIFAR10. The parameters used for Product Quantizer are a seg-
ment size m varying in {2, 4, 5, 8} and a number of cluster k varying in {4, 8, 16}.

4.1 Experimental Settings

MNIST. The MNIST database of handwritten digits has a training set of
60,000 examples, and a test set of 10,000 examples. It is a subset of a larger
set available from NIST. The digits have been size-normalized and centered in a
fixed-size image. The neural network we use with MNIST is LeNet5. LeNet5 is
a convolutional neural network introduced in [22].

CIFAR10. The CIFAR10 database has a training set of 50,000 examples, and
a test set of 10,000 examples. It is a subset of a larger set available from the 80
million tiny images dataset. It consists of 32× 32 colour images partitioned into
ten classes. With the CIFAR10 database, we use a convolutional neural network
made of four convolutional layers followed by two fully connected layers. This
network has been introduced in [23].
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4.2 Layers to Quantify

Our first experiments (with the MNIST database) depicted in Fig. 1 shows the
influence of quantified layers on performance. We observe that performance
strongly depends on which layers are quantized. More precisely, this experi-
ment shows that one should quantize layers from the output to the input rather
than the contrary. This result is not surprising to us as input layers have often
been described as similar to wavelet transforms, which are intrinsically analog
operators, whereas output layers are often compared to high level patterns which
detection in an image is often enough for good classification results.

Fig. 1. Performance of the classification task depending on which layers of the network
are quantized, on the MNIST database. Layer 0 is the input layer, whereas layer 3 is
the output one.

4.3 Performance Comparison

Our second experiment shows a comparison with previous work. The results are
depicted in Fig. 2. Note that in both cases compared networks have the exact
same architecture.

As far as our proposed method is concerned, we choose to compress only the
two outputs layers, which are fully connected. Since their sizes are distinct, we
are not able to use the same PQ coefficients k and m twice. Note that layer 2
contains almost all weights and is therefore the one we chose to investigate the
role of each parameters.

We observe that our added regularization cost allows to significantly improve
performance. For example for the MNIST database, if we want to respect a loss
of 2 %, we have a compression rate of 33 with single PQ, whereas our learn-based
method leads to a compression rate of 107.

This compression rate concern only the two output layers. However, as the
output layers contains almost all weights, we still have a significant compression:
on this specific example, using our proposed method the memory used to store
the network weights fall down from 26 MB to 550 kb.
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Fig. 2. Comparison of our proposed method with previous work on the MNIST dataset.

5 Conclusion and Perspectives

In this paper we introduced a new method to compress convolutional neural
networks. This method consists in adding an extra term to the cost function
that forces weights to become almost binary. In order to compress even more
the network, we then apply Product Quantization and the combination of both
allows us to reach performance above state-of-the-art methods.

We also demonstrate the influence of the depth of the binarized layer on
performance. These findings are of particular interest to us, and a motivation to
further explore the connections between actual biological data and deep neural
systems.

In future work, we consider applying this method to larger datasets
(e.g. ImageNet). Such datasets typically require larger networks, leading to an
increased interest in obtaining good compression factors. In addition, these net-
work are expected to be deeper, and thus allow studying thoroughly the impact
of binarization depending on the deepness of layers. We also consider exploring
more complex regularization functions, in particular in order to extend our work
to q-ary values, q being layer-dependent and determined on the fly.

Finally, the next step consists in making activities of neurons also binary.
With both connections and activities binary, one could propose optimized digital
implementations of these networks leading to higher throughput, lesser energy
consumption and lesser memory usage than conventional implementations.
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cil under the European Union’s Seventh Framework Program (FP7 / 2007 - 2013) /
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Abstract. Example-based methods have demonstrated their ability to
perform well for Single Image Super-Resolution (SR). While very effi-
cient when a single image formation model (non-blind) is assumed for
the low-resolution (LR) observations, they fail when a LR image is not
compliant with this model, producing noticeable artifacts on the final SR
image. In this paper, we address blind SR (i.e. without explicit knowl-
edge of the blurring kernel) using Convolutional Neural Networks and
show that such models can handle different level of blur without any a
priori knowledge of the actual kernel used to produce LR images. The
reported results demonstrate that our approach outperforms state-of-the-
art methods for the blind set-up, and is comparable with the non-blind
approaches proposed in previous work.

Keywords: Single Image Super-Resolution · Blind Super-Resolution ·
Convolutional Neural Networks

1 Introduction

Single Image Super-Resolution (SISR) aims at reconstructing high-resolution
images from low-resolution ones. During the last decade, many methods have
been proposed to address this ill-posed problem. Among them, example-based
SISR has known good progress in the past ten years, notably due to the use
of bigger amount of data and new capabilities to handle it. During the train-
ing phase, these systems receive pairs of low and high resolution patches, and
model this relationship to generalize to unseen pairs. However, low-resolution
(LR) images used for training such systems are often synthetically created from
high-resolution (HR) ones, with a fixed downsampling procedure that involves a
single low-pass filter and a decimation operator. Several works [3,11] have been
outlining that learning on such synthetic data can lead to a bad prediction or reg-
ularization of the SR image, yielding over-smooth or over-ringing artifacts. This
happens when the given low-resolution image acquisition model does not comply
with the learned one. In [3,11], authors show that example-based methods have
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their performance bounded to the type of data they have seen during the learn-
ing phase. They rely on a strong a priori on the blur that has been applied before
decimation during the LR image creation process, and are therefore non-blind.
Regarding those considerations, one might want to produce SR images indepen-
dently from a precise decimation model, in a blind fashion. Some learning-based
methods do incorporate slightly different version of the LR images. The main
contribution of this paper is to show that deeper convolutional neural networks
can handle SR for LR images generated with different blurs levels as an input
while targeting the same ideal HR examples.

We start with a review of the existing neural example-based approaches in
super-resolution and the approaches for blind set-up in Sect. 2. In Sect. 3, we
recall the super-resolution problem formulation and give details on the used
CNN model. In Sect. 4, we present extensive experiments and report the obtained
performances on studied models. Finally, conclusions and discussions regarding
future works are summarized in Sect. 5.

2 Related Work

Image Super-Resolution has been an active research area since the 70’s. Many
example-based state-of-the-art methods including dictionary learning, neighbor
embedding or deep learning via neural networks, report good results as long as
the inverse problem is non-blind i.e. precisely bounded to one decimation model
(LR images generation model from HR images).

2.1 Neural Based SISR

Many recent SISR methods rely on Convolutional Neural Networks (CNN) that
learn to perform SR from high and low-resolution examples. The proposition
of a CNN-based SR method in [2] marked the first high impact study on such
methods. The authors proposed an elegant end-to-end framework to produce SR
images from single upscaled LR ones. Since then, several works based on CNN
have reported good results for example-based SR. In [6], the authors also used
CNN to perform text image SR, but taking the original LR image instead of
the upscaled one. In [9], a convolutional autoencoder scheme allows to perform
SR, and exhibit good results by using data augmentation and fine-tuning for
image-specific SR. Authors in [4] train a 5 to 20 layer CNN to perform SR using
large data and gradient clipping at backpropagation to speed-up the learning
process. Learned on different scales, they show that the variety of artefacts can
be corrected by a single model trained on augmented data. In [13], the authors
address face SR using a bichannel CNN. The used data contain several degrada-
tion (Gaussian blur, motion blur) and resolutions. The method is constrained by
the presence of face and learns a 2, 000 element dictionary to produce HR face.
Recently, the authors of [1] have proposed an interesting hallucination scheme
that samples SR images from a distribution of features of a deep CNN. Being
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learned on recognition tasks and using a certain degree of abstraction via con-
volutions and pooling layers, those features present the interesting property of
carrying knowledge about textures, long-term spatial consistency and semantics
that often miss in reconstruction-only example-based SR methods. A second
CNN allows to predict those features from a LR image at test time. Although
[4,9] include variations in the addressed resolutions, Neural networks, along with
other example-based SR are essentially being used for non-blind SR.

2.2 Blind Approaches in Example-Based SR

Blind SR refers to methods that have no a priori on the used image formation
model, especially the blurring kernel. Practically, most of the blind methods esti-
mate the most probable blurring kernel and/or use statistics about the desired
SR images. Therefore, iterative and MAP approaches are preferred, while direct
example-based methods are not the most popular approaches. Recent works
[3,11] show the importance of knowing a precise blurring kernel in the learned
prior by example-based approaches. When evaluating such methods without
retraining the models with the right kernel, results exhibit over-smoothed or over-
sharpened images: evaluating on non-blind models gives much better results.
In [3], the authors study the influence of a gaussian blur kernel with variable
variance applied before an antialisaed bicubic downsampling. They show that a
simple prior on the SR image may already produce good results as long as the
exact image formation process is known. In [11] an extended study compares
recent learning-based approaches. Both studies show that retraining example-
based approaches with the right kernel give better results. In [5], a joint estima-
tion of the blurring kernel and the SR image is performed. Later in [8], authors
address both SR and deblurring, using the output of a learning-based SR method
as a constraint on the final image. A global MAP optimization scheme is then
applied along with other deblurring constraints on SR and LR images. This uni-
fied approach is very interesting as blur is one noticeable artifact in interpolated
images, along with jagged edges and other kinds of noise. In [12], the authors
combine blur kernel estimation and per-image dictionary learning, which is more
precise but also slower. In [7], the authors proposed a richer collection of blur-
ring kernels using oriented bivariate gaussian ones. Although the main purpose
is to propose adaptive scheme in a non-blind fashion, they conduct the so-called
blind experiments with several example-based algorithms. Another problem we
can relate to blind SR is the unknown scale problem, where the scale factor is
not known in advance. Cascading approaches have been proposed, like in [10]
where the same model can be used for ×2 and ×4 SR. In [4,9], different scales
are used for data augmentation that enhance the performance of neural network
by learning more robust convolution kernels in [9] or being blind across the scales
for [4]. In [13], the learned hallucinating CNN is also blind and robust to sev-
eral blur kernel and resolution. However, it is likely constrained to aligned faces,
which allows a strong prior on the type of output data.

From the literature, we can see that in order to benefit from the potential of
learning-based approaches, we may non exhaustively consider three strategies:
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(i) projecting the LR images into the known LR space – or alternatively pre-
dicting the right model to use from a collection – to fit the distribution of image
seen during training (ii) online retuning a pre-trained model (iii) designing a
learning machine able to implicitly model the projections into an end-to-end
framework, the latter being a more relaxed problem for constrained image cat-
egory such as faces or text. In this paper, we investigate the third strategy by
using deeper CNN to try to absorb the different blurring kernels. Experiments
from [7] indicate that using a blind CNN already brings a gain over a simple
bicubic interpolation.

3 Problem Formulation and Proposed Model

In this section, we first recall the SR problem formulation for the blind set-up,
and describe the proposed approach to address it.

3.1 Blind SR

In most of the example-based SR works, a LR image is considered sampled from
a HR one with the following formula:

y = DB̄x (1)

where y is the LR image, x is the HR image, B̄ is a blurring operator and
D a decimation operator that discard every other S pixel for a given scaling
factor S. Generally, the image digitalization process from continuous scene to
digital image is not taken into account and x is considered to exhibit statistical
properties of desired HR images, being rather free of artifacts although some
may appear due to digital compression or varying quality. Note the bar on the
blurring kernel as it is subject to variability in the blind set-up. In most of the
non-blind configurations addressed by example-based SR methods, the blurring
kernel is an anti-aliased bicubic kernel that partially removes high-frequencies
and avoids ending up with aliased LR images. In this work, we use gaussian blur
kernels with variable variance and orientation as proposed in [7]. Figure 1 shows
the generation of different LR images from a single HR sample.

3.2 Proposed Approach

We propose to use a single CNN to recover a SR image as close as possible
to the HR image x. This means we expect it to absorb the different levels of
blur and be able to project different visual structure into a HR feature space
decorrelated from the applied blur. Figure 1 shows an example of such visually
different structures that should produce the same HR content. As an input,
although other approaches generally use upscaled LR patches, our network takes
a LR patch, and performs upsampling at the output layer by using S2 maps
instead of one, rearranged to produce the correct output size. This allows to have
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Fig. 1. Generation of several LR images using various blurring kernels from a single
HR image and scale factor of 2. Each blurring kernel has different variances and orien-
tations, leading to different LR images. LR examples have been rescaled to the same
size for visualization.

a bigger input retina with less 3 × 3 layers, but requires several output maps.
The model can either target the HR patch in graylevel or the high frequencies
obtained by difference between the HR patch and upsampled LR patch. Aside
from the upsampling approach, the proposed network architecture (Fig. 2) is
very similar to [4]. It has L layers of 3 × 3 convolutions, each of which is fully
connected to the previous one; i.e. each convolutional kernel has M × 3 × 3 + 1
parameters including bias, except for the first layer which is directly connected
to the input image and the last one that holds S2 × 3 × 3 + 1. We use rectified
linear units (ReLU) activations after each convolution map. For simplicity, we
use zero-padding on borders to keep the feature maps of the same size from the
first to the last layer. Using large training patches diminishes the importance of
this side effect.

We train a CNN with parameters θ and input y to output a full size image
x̃i = Ψ (yi, θ), minimizing MSE between the output maps and the target sample.

In the next section, we provide more details about the experimental archi-
tectures and the data used for training.

4 Experimental Results

We experiment different configuration for the described approach, using the data
from [7].

4.1 Data Generation

The data is generated according to [7] for scale S = 2. The LR patches are used
as an input i.e. without bicubic upsampling. We sample 29, 026 pairs of patches
from 91 images for each gaussian blurring kernel. These kernels vary in variance
and orientation. A total of 58 kernels are used: variances go from 0.75 to 3.0
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Fig. 2. Proposed CNN for blind SR. At each layer, the convolutions and ReLU acti-
vation functions produce maps that are processed by the next layer. The last layer is
composed of S2 = 4 maps, rearranged on the HR grid to produce the details missing
in the interpolated LR image. Maps dynamic has been modified for visualization.

with a 0.75 step in both dimensions while orientation lies in [0, π] with a π
8 step.

This gives a total amount of K = 1, 683, 508 example pairs. Input LR patch
dimension is 18×18 pixels and 36×36 pixels for output size. For testing, we use
the same procedure on 19 images from “Set5” and “Set14”. Comparative results
are presented in Subsect. 4.3.

4.2 Experiments

Using the Caffe framework1, we train each network from scratch, with a random
initialization. We set the global learning rate to 10−4. Although different batch
sizes have been tested (4, 16, 128, 256), the reported results were obtained with
a pure stochastic gradient descent, which converges faster than using mini-batch
and lead to the same order of performances. Note that a “mini-batch” effects
already takes place as each sample brings a 36 × 36 error map in which each
pixel contributes to the parameter update. Using higher learning rates as in
[4] might compensate for the apparent slow convergence. We target the high
frequencies components instead of the direct graylevel as in previous works [4,6].
In Table 1, we present the experiments with variations in the number of kernels
M and number of layers L. The reported test loss allows to monitor the learning
process and select the best models. Test samples are extracted from “Set5”. We
can see that increasing the number of parameters of the proposed model allows
to decrease the global MSE. We choose model 7 with 7 layers (comparable to 8)
to evaluate on the full test images.

1 http://caffe.berkeleyvision.org/.

http://caffe.berkeleyvision.org/
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Table 1. 8 configurations with the number of layers L (including the 4-map output
layer), the number of kernels per layer M , the total number of parameters and the best
obtained test MSE.

Configuration L M #parameters Loss

1 4 16 5, 380 0.816

2 4 32 19, 970 0.766

3 4 64 76, 804 0.756

4 4 128 301, 060 0.751

5 5 64 113, 734 0.739

6 6 64 150, 660 0.737

7 7 64 187, 588 0.731

8 8 64 224, 516 0.730

4.3 Comparison with State-of-the-Art Example-Based SR

We have computed the PSNR for “Set5” and “Set14” for the best obtained model
and compared our results to those reported in [7], using the same protocol,
especially cropping 7 pixels at test time to avoid border effects. Results are
reported in Table 2. We can observe that our approach outperforms the others
for the blind set-up. It is also competitive with the non-blind approaches as the
mean PSNR is higher than the non-blind A+ and SRCNN methods on “set5”
and the highest for “set14”, while our approach cannot take advantage of the a
priori knowledge of the blurring kernel.

Table 2. PSNR scores (dB) on Set5 and Set14. We report the blind and non-blind
results of three experiments of [7] as a comparison.

Blind (AB) Non-blind (CAB)

Ours A+ SRCNN SRF A+ SRCNN SRF

PSNR on Set5 34.24 33.21 33.58 33.50 33.76 33.92 34.43

PSNR on Set14 30.82 30.00 30.27 30.11 30.35 30.50 30.73

5 Conclusion and Future Work

We have presented a blind approach to Super-Resolution using a Convolutional
Neural Network architecture. The network is trained with LR and HR image
pairs where LR images are produced with different blurring kernels. Although
shallow networks perform well for the non-blind set-up [2], the experiments show
that by using more parameters and deeper neural models than in previous work,
we can improve the robustness of CNN-based models for blind SR.
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The proposed network has a larger number of weights than those used in
[2,7]. For the training, the authors of [4] propose to speed up the process with
higher learning rates and gradient clipping to avoid exploding gradients that
occur in deep networks. In a similar way, example selection and discarding near-
zero values for details could avoid many useless backpropagation steps. This is
not straightforward for large training patches where a binary map should indicate
whether or not an error should be backpropagated. Moreover, great care should
be given on such operation to conserve parallel computation efficient.

Another track of investigation is to force the abstraction in the CNN, to make
it less dependent on the input image and its potential artifacts. Even if more
robust, the proposed model is composed of fine grain 3 × 3 convolutions that
allow to carry localized errors through the different layers until the output one.
Motivated by [1], we believe that blind SR may profit from spatial abstraction
via pooling layers. It may constrain the encoding process of the CNN to extract
meaningful internal representation independently from the spatial inconvenience
of the different blurring effects.
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Abstract. This paper introduces the first deep neural network-based
estimation metric for the jigsaw puzzle problem. Given two puzzle piece
edges, the neural network predicts whether or not they should be adja-
cent in the correct assembly of the puzzle, using nothing but the pixels
of each piece. The proposed metric exhibits an extremely high precision
even though no manual feature extraction is performed. When incor-
porated into an existing puzzle solver, the solution’s accuracy increases
significantly, achieving thereby a new state-of-the-art standard.

1 Introduction

Jigsaw puzzles are a popular form of entertainment, available in different vari-
ation of difficulty to challenge children, adults and even professional players.
Given n × m different non-overlapping tiles of an image, the objective is to
reconstruct the original image, taking advantage of both the shape and chro-
matic information of each piece. Despite the popularity and vast distribution
of jigsaw puzzles, their assembly is not trivial computationally, as this problem
was proven to be NP-hard [1,8]. Nevertheless, a computational jigsaw solver
may have applications in many real-world applications, such as biology [16],
chemistry [25], literature [18], speech descrambling [27], archeology [2,15], image
editing [5], and the recovery of shredded documents or photographs [3,7,14,17].
Regardless, as noted in [11], research of the topic may be justified solely due to
its intriguing nature.

Recent years have witnessed a vast improvement in the research and develop-
ment of automatic jigsaw puzzle solvers, manifested in both puzzle size, solution
accuracy, and amount of manual human intervention required. In its most basic
form, every puzzle solver requires some function to evaluate the compatibility
of adjacent pieces and a strategy for placing the pieces as accurately as pos-
sible. Most strategies are greedy and rely heavily on some “trick” to estimate
whether two pieces are truly adjacent (e.g. two pieces that are each the most
compatible piece from all pieces to one another, four pieces that form a loop
c© Springer International Publishing Switzerland 2016
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Fig. 1. Jigsaw puzzle before and after reassembly using our DNN-Buddies scheme in
an enhanced solver.

where each pair’s compatibility is above a threshold, etc.). Such heuristics were
dubbed an “estimation metric” in [20], as they allow estimating the adjacency
correctness of two pieces without knowing the correct solution. The majority of
recent works focused on devising elaborate, hand-crafted compatibility functions
and high-precision estimation metrics.

Despite the proven effectiveness of neural networks in the field of computer
vision, no attempt has been made to automatically devise a high-precision esti-
mation metric for the jigsaw puzzle problem. This might be due to the highly
imbalanced nature of the puzzle problem, as in each n × m puzzle, there are
O(n × m) matching piece-pairs and O(n2 × m2) possible mismatching ones.
In this paper we propose a novel estimation metric relying on neural networks.
The proposed metric achieves extremely high precision despite the lack of any
manually extracted features.

The proposed metric proves to be highly effective in real-world scenarios.
We incorporated the metric in our GA-based solver, using no hand-crafted
sophisticated compatibility measure and experimented with the currently known
challenging benchmarks of the hardest variant of the jigsaw puzzle problem:
non-overlapping, (28 × 28) square pieces (i.e. only chromatic information is
available to the solver) where both piece orientation and puzzle dimensions are
unknown. The enhanced solver proposed sets a new state-of-the-art in terms of
the accuracy of the solutions obtained and the number of perfectly reconstructed
puzzles.

2 Previous Work

Jigsaw puzzles were first introduced around 1760 by John Spilsbury, a Lon-
donian engraver and mapmaker. Nevertheless, the first attempt by the scientific
community to computationally solve the problem is attributed to Freeman and
Garder [9] who in 1964 presented a solver which could handle up to nine-piece
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problems. Ever since then, the research focus regarding the problem has shifted
from shape-based to merely color-based solvers of square-tile puzzles. In 2010
Cho et al. [4] presented a probabilistic puzzle solver that could handle up to 432
pieces, given some a priori knowledge of the puzzle. Their results were improved
a year later by Yang et al. [26] who presented a particle filter-based solver. Fur-
thermore, Pomeranz et al. [20] introduced that year, for the first time, a fully
automated square jigsaw puzzle solver that could handle puzzles of up to 3,000
pieces. Gallagher [10] has further advanced this by considering a more general
variant of the problem, where neither piece orientation nor puzzle dimensions
are known. Son et al. [24] improved the accuracy of the latter variant using
so-called “loop-constraints”. Palkin and Tal [19] further improved the accuracy
and handled puzzles with missing pieces. Sholomon et al. [21] presented a genetic
algorithm (GA)-based solver for puzzles of known orientation which was later
generalized to other variants [22,23].

2.1 Compatibility Measures and Estimation Metrics

As stated earlier, most works focus on the compatibility measure and an estima-
tion metric. A compatibility measure is a function that given two puzzle piece
edges (e.g. the right edge of piece 7 versus the upper edge of piece 12) predicts
the likelihood that these two edges are indeed placed as neighbors in the correct
solution. This measure applies to each possible pair of piece edges. The estima-
tion metric, on the other hand, predict whether two piece edges are adjacent but
may not apply to many possible pairs. Following is a more detailed review of the
efforts made so far in the field.

Cho et al. [4] surveyed four compatibility measures among which they found
dissimilarity the most accurate. Dissimilarity is the sum (over all neighboring
pixels) of squared color differences (over all color bands). Assuming pieces xi,
xj are represented in some three-dimensional color space (like RGB or YUV) by
a K × K × 3 matrix, where K is the height/width of a piece (in pixels), their
dissimilarity, where xj is to the right of xi, for example, is

D(xi, xj , r) =

√√√√
K∑

k=1

3∑

cb=1

(xi(k,K, cb) − xj(k, 1, cb))2, (1)

where cb denotes the color band.
Pomeranz et al. [20] also used the dissimilarity measure but found empirically

that using the (Lp)q norm works better than the usual L2 norm. Moreover, they
presented the high-precision best-buddy metric. Pieces xi and xj are said to best-
buddies if

∀xk ∈ Pieces, C(xi, xj , R1) ≥ C(xi, xk, R1)
and (2)

∀xp ∈ Pieces, C(xj , xi, R2) ≥ C(xj , xp, R2)
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where Pieces is the set of all given image pieces and R1 and R2 are “comple-
mentary” spatial relations (e.g. if R1 = right, then R2 = left and vice versa).

Gallagher [10] proposed yet another compatibility measure, called the Maha-
lanobis gradient compatibility (MGC) as a preferable compatibility measure to
those used by Pomeranz et al. [20]. The MGC penalizes changes in intensity gra-
dients, rather than changes in intensity, and learns the covariance of the color
channels, using the Mahalanobis distance. Also, Gallagher suggested using dis-
similarity ratios. Absolute distances between potential piece edge matches are
sometimes not indicative (for example in smooth surfaces like sea and sky), so
considering the absolute score, divided by the second-best score available seems
more indicative.

Son et al. [24] suggested “loop-constraints”, four or more puzzle piece edges
where the compatibility ratio between each pair is in the top ten among all
possible pairs of piece edges in the given puzzle. Palkin and Tal [19] proposed
a greedy solver based on an L1-norm asymmetric dissimilarity and the best-
buddies estimation metric.

3 DNN-Buddies

3.1 Motivation

We propose a novel estimation metric called “DNN-Buddies”. Our goal is to
obtain a classifier which predicts the adjacency likelihood of two puzzle piece
edges in the correct puzzle configuration.

Note that despite the exponential nature of the problem (as there are
O((nm)!) possible arrangements of the pieces, taking into account rotations),
the problem can be solved theoretically by assigning correctly, in a consecutive
manner, n × m − 1 piece-edge pairs. (This is reminiscent of finding a minimal
spanning tree, as noted by [10].) Hence, the classifier’s precision is of far greater
importance than its recall. A classifier with perfect precision and a recall of

n × m − 1
all possible matches

=
n × m − 1

4 × (n × (m − 1) + (n − 1) × m)
<

1
8

(3)

might achieve a perfect solution by itself.

3.2 Challenges

A straight-forward solution might have been to train a neural network against
matching-pairs vs. non-matching ones. However, the issue of a jigsaw puzzle
piece matching is of an imbalanced nature. In each n × m puzzle, there are
O(n × m) matching pairs of piece edges and O(n2 × m2) possible nonmatching
ones. A thorough review on the challenges and tactics to avoid them can be
found in [13].

The trivial approach of random or uninformed undersampling, i.e. randomly
choosing the required number of nonmatching pairs leads to a low-precision and
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high-recall metric, the very opposite of the goal set beforehand. We believe that
the reason for this shortcoming is that there exist many “easy-to-spot” mis-
matches but only a handful of “hard-to-spot” ones. Thus, we resort to informed
undersampling, choosing a subset of “good” mismatching pairs according to
some criterion. Nevertheless, we avoid using any manual feature selection or
other sophisticated image-related means.

In the jigsaw puzzle domain, similarly to many other problem domains, the
solver does not actually try to reassemble the original image (as this problem is
not mathematically defined), but rather tries solving a “proxy problem” which
is to achieve an image whose global overall score between abutting-edges is min-
imal. Thus, we choose using the compatibility measure as the undersampling
criterion.

3.3 Neural Network Training

For training and cross-validation, we use the 2,755 images of size 360 × 480
pixels from the IAPR TC-12 Benchmark [12]. Each image is first converted
to YUV space followed by the normalization of each channel separately (via
z-score normalization). Next, each (puzzle) image is divided to 12 × 17 tiles,
where each tile is of size 28 × 28 pixels (as in all previous works); finally, we
create a balanced set of positive and negative samples of puzzle-piece pairs,
using informed undersampling as will be described below. In the end, we obtain
a balanced set of 970,224 pairs overall.

To balance our dataset, we use the most basic compatibility score which is
the dissimilarity between two piece-edges in the YUV color-space, as described
in Eq. 1, as an undersampling criterion. For each puzzle piece edge xi,j(i =
1..n × m, j = 1..4), we find its most compatible piece edge xk1,l1 and its second
most compatible piece edge xk2,l2. If the pair of edges xi,j − xk1,l1 is indeed
adjacent in the original image, we add this pair to the pool of positively-labeled
samples and toss the pair xi,j − xk2,l2 to the pool of negatively-labeled samples.
Otherwise, xi,j −xk1,l1 is added to the negatively-labeled samples and the other
pair is discarded. The latter is done to avoid training the network on adjacent
pieces which happen to be vastly different due to a significant change of the image
scenery in the corresponding region. In other words, we restrict our interest to
highly compatible piece edges that are indeed adjacent. Since this method leads
to more negative samples than positive ones, we eventually randomly throw some
negative samples to balance out the set.

From each image pair we extract the two columns near the edge, i.e. the
column of abutting pixels in each edge and the one next to it. This results is an
input of size (28 × 4 × 3 =) 336 pixels. We use a feed-forward neural network
(FFNN) of five fully connected layers of size 336, 100, 100, 100, and 2. The output
is a softmax layer containing two neurons. We expect (0, 1) for matching pairs
and (1, 0) otherwise. The activation used in all layers is the rectified linear unit
(ReLU) function, i.e. f(x) = max(0, x). Figure 2 depicts the network’s structure.

We trained the network in a supervised manner using Stochastic Gradient
Descent that minimizes the negative log likelihood of the error for 100 iterations.
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Fig. 2. Architecture of our DNN-Buddies scheme.

The resulting network reaches 95.04 % accuracy on the training set and 94.62 %
on a held-out test set.

All dataset preparation and network training was performed using Torch7 [6].

4 Experimental Results

For each piece edge xi,j(i = 1..n×m, j = 1..4), if its most compatible piece edge
xk,l is classified positively using the DNN-Buddies network, we define xk,l to be
xi,j ’s DNN-buddy piece edge. Note that each piece edge can have only a single
DNN-buddy; also, some pieces might not have a DNN-buddy at all (if the most
compatible piece is not classified as one by the DNN-Buddies network).

First, we evaluate the precision of the proposed metric, i.e. how many DNN-
buddies are indeed adjacent in the original image. Using the well known dataset
presented by Cho et al. [4] of 20 432-piece puzzles, we obtained a precision of
94.83 %.

Next, we incorporated the estimation metric (due to the proposed DNN-
Buddies scheme) into the GA-based solver proposed by us previously [23]. Unfor-
tunately, due to lack of space, no self-contained review of genetic algorithms and
the proposed method can be included in this paper. Nevertheless, the modifi-
cation required with respect to the existing GA framework is rather simple; if
a DNN-buddy pair appears in one of the parents, assign this pair in the child.
Figure 3 describes the modified crossover operator in the GA framework accord-
ing to the above (see Step 2, which includes the new DNN-buddy phase).

We ran the augmented solver on the 432-piece puzzle set and on the two
additional datasets proposed by Pomeranz et al. [20] of 540- and 805- piece
puzzles. We evaluated our results according to the neighbor comparison which
measures the fraction of correct neighbors and the number of puzzles perfectly
reconstructed for each set.

Table 1 presents the accuracy results of the same solver with and without the
DNN-Buddies metric. For each dataset we achieve a considerable improvement
in the overall accuracy of the solution, as well as the number of perfectly recon-
structed puzzles. Moreover, our enhanced deep neural network-based scheme
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Fig. 3. Crossover overview

Table 1. Comparison of our accuracy results with and without the new DNN-Buddies
estimation metric.

GA Our (GA + DNN-Buddies)

# of Pieces Neighbor Perfect Neighbor perfect

432 94.88% 11 95.65% 12

540 94.08% 8 96.37% 11

805 94.12% 6 95.86% 8

appears to outperform the current state-of-the-art results, as it yields accu-
racy levels of 95.65 %, 96.37 % and 95.86 %, which surpass, respectively, the best
results known of 95.4 % [19], 94.08 % and 94.12 % [23].

5 Conclusions

In this paper we presented the first neural network-based estimation metric for
the jigsaw puzzle problem. Unlike previous methods, no manual feature crafting
was employed. The novel method exhibits high precision and when combined
with a real-world puzzle solver, it significantly improves the solution’s accuracy
to set a new state-of-the art standard.
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Abstract. Given the success of convolutional neural networks (CNNs)
during recent years in numerous object recognition tasks, it seems log-
ical to further extend their applicability to the treatment of three-
dimensional data such as point clouds provided by depth sensors. To this
end, we present an approach exploiting the CNN’s ability of automated
feature generation and combine it with a novel 3D feature computation
technique, preserving local information contained in the data. Exper-
iments are conducted on a large data set of 600.000 samples of hand
postures obtained via ToF (time-of-flight) sensors from 20 different per-
sons, after an extensive parameter search in order to optimize network
structure. Generalization performance, measured by a leave-one-person-
out scheme, exceeds that of any other method presented for this specific
task, bringing the error for some persons down to 1.5 %.

Keywords: Deep learning · Hand posture recognition · 3D data

1 Introduction, Context and Related Work

Making freehand gestures an efficient means of Human-Computer Interaction
(HMI) is an important and simultaneously complex task, as the steadily increas-
ing number of research studies demonstrates over the course of the last decade.
The number of potential applications is growing due to the advent of low-cost
off-the-shelf depth sensors. However, due to various reasons such as active illu-
mination interference or noise in the process of data acquisition, robust learning
methods are still an important requirement. The main advantages of ToF sen-
sors are their high frame rate and robustness w.r.t. illumination conditions, hence
their fields of application covers outdoor scenarios as well. However, recognizing
hand gestures solely from 3D data is a non-trivial task which raises the question
whether CNNs, which excel in object recognition tasks from RGB data, can per-
form just as well for this task.

c© Springer International Publishing Switzerland 2016
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When positioning this contribution in the broader field of object recognition
from 3D data with CNNs, occupancy grids have been successfully applied, e.g. in
the field of mobile robotics, in order to create maps from potentially highly noisy
data samples [1]. The basic idea is to have a representation of an evenly divided
environment with the possibility of telling whether there is an object at a certain
location. Maturana et al. [2] make use of this algorithm in order to create various
kinds of occupancy grids, serving as input for their 3D-CNN implementation by
either taking into account the amount of free space within the grid or not. 3D
input is presented by Wu et al. [3] to a 3D-CNN in the form of a stacked 3D
cube consisting of multiple frames acquired over time, which is convolved with
a 3D kernel and applied to the problem of hand gesture recognition. Glatt [6]
has shown how Deep Learning can be successfully applied to achieve HGR from
Kinect data with the help of Deep Belief Networks. The best recognition results
oscillate between 75 % to 85 % and are partially comparable scores achieved in
this contribution although similar accuracy scores as high as >98 % are never
reached. Barros et al. [7] show how CNNs can effectively be applied to recognize
Italian sign gestures from Kinect data achieving error scores of 8.3 % for the
best model with their system also working in real-time. Tang et al. [8] show how
Deep Neural Networks can be utilized to discriminate between 20 different hand
poses using a Kinect sensor achieving high accuracy ratings.

In this contribution, we demonstrate how a data transformation step allows
for fast and robust hand gesture recognition from depth data by CNNs. As
these are primarily intended to process 2D data e.g., images), their application
to 3D data is not straightforward at all: either one needs to create a feature
computation method that transforms 3D data into 1d or 2D feature vectors, or
the convolution structure of the network itself needs to be modified to handle 3D
data directly (e.g., by 3D convolutions). Both approaches being feasible, we opt
for the first possibility since 3D convolutions are very inefficient operations and
real-time capability is important for our targeted HMI scenario. Given a complex
hand gesture recognition problem of 10 different gestures obtained from a large
number of individuals, we propose a particular feature transform of depth data
to make them treatable by CNNs.

The following sections give a description of our approach as well as the resulting
network structure (Sect. 2). Experiments are conducted in two phases (cf. Sect. 3),
determining the optimal parameter setting in an initial step and evaluating the
optimal performance of the CNN in a second step. Section 4 concludes with a sum-
mary and an outlook on future work.

2 Network Architecture and Training

In order to be able to deal with three-dimensional input, this contribution
presents an approach which transforms the raw 3D data into a format read-
able by CNNs. The need for a fixed-size input requires a specific partitioning
of the 3D input. Given a set of 3D data points (voxels) of arbitrary extension
(also referred to as point cloud), we propose the subdivision of the entire cloud
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into a fixed number of cubes, all having the same size. To this end, the maximal
extension of the data points has to be calculated for the entire problem. This
approach is explained in the following sections.

2.1 3D Subdivision of Point Cloud Input

In order to be able to work on 3D input data we employ a modified LeNet 5
implementation of the Theano library [4] with two convolutional layers. The
input space is subdivided into n3 hypercubes of fixed size. Each hypercube then
contains a subset of data points from the original object. Depending on the
density of the cloud, a certain number of cubes remains empty. In order to avoid
too many empty hypercubes, which form the input for the CNN, we stretch the
data to fit into the raster. To this end, the input cloud is normalized to the
range (0,1) on each axis. This guarantees the data to be evenly distributed over
all hypercubes. The value contained within a hypercube is determined by the
number of data points it contains.

Each slice of the input vector, which will be described here on basis of an
8×8×8 sized example, has to be reshaped to fit a designated pattern: The vector
is reshaped in a way that each row fed into the convolutional layer represents
one (x-y) slice of depth data in the original, resulting in an input matrix of 8×64
(cf. Fig. 1 showing this for the case of 43). This way, a convolutional kernel of
size 8 × 1 can be used to initially convolve the depth-axis, resulting in an 1 × 64
output of the first kernel. No max-pooling is used in this layer. The second layer
reshapes this 1 × 64 output to 8 × 8, so that a 3 × 3 kernel can subsequently be
utilized. This layer also implements 2× 2 max-pooling, resulting in an output of
3 × 3. This output is then fed into the multilayer perceptron (MLP) layer of the
convolutional net, which determines the output class.

2.2 Training Setup

Training is performed on a single GeForce GTX 780 Ti graphics card. The
main limit here is the device’s memory capacity as our training/testing data
set exceeds it’s memory capability.

We evaluate our approach on the REHAP [5] data set consisting of 600.000
data samples obtained from 20 different persons, each posing for 10 different
hand gestures (cf. Fig. 2). Each of the gestures is represented by 3.000 snapshots
summing up to 30.000 data samples per person. This would result in the trans-
formation and storage of 570.000 data samples by the Theano library during
training for 19-on-1 cross-validation (based on persons not on individual sam-
ples), including weights as well as the subsequent image transformation steps,
which is more than the device can store during the training phase. The amount
of data samples during training is therefore reduced to about 2.000 samples
per gesture, each randomly taken from the whole sample set. This still yields a
training set of 380.000 hand poses - more than enough to validate our approach.

Two different experimental runs are performed: an initial parameter search
is started in order to determine the optimal setup for the CNN architecture.
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Fig. 1. Setup of the CNN structure with two convolutional layers. Top row: First
convolution step and reshaping. Center: Second convolution step and max-pooling.
Bottom: MLP structure and input.

To this end, the whole data set is subsampled by randomly retrieving 100 data
samples per person and pose, yielding 1000 samples per person for 10 randomly
selected individuals. The number of test runs therefore amounts to:

n∑

i=0

k1i

m∑

j=0

k2j

o∑

s=0

k1s

o∑

s=0

k2s

p∑

l=0

k2mp

Here, k1i and k2j denote the number of kernels within their respective layers.
k1s denotes a specific combination for the first layer, since we first transform the
input as described in Sect. 2.1 (cf. Fig. 1). If k1s = 0 this conforms to an 8 × 1
kernel with no max-pooling. If k1s = 1 this corresponds to a 7×1 kernel with 2×1
max-pooling etc. k2s defines the size of the second kernel while kmp

2 consequently
corresponds to the kernel size in the max-pooling layer. The resulting kernels
from the first convolution layer are depicted in Fig. 3.

3 Experiments and Results

The experiments are subdivided into two phases: In the first phase, the optimal
parameters are determined by an extensive grid-search. This is followed by the
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Fig. 2. The ten different hand postures from the REHAP data set.

Fig. 3. The resulting kernels from the first filter grouped together for each posture
from the REHAP data set (compare with Fig. 2). The first layer of the CNN produces
20 different kernels. All 20 kernels produced per gesture are grouped and presented in
analogous order from left to right, top to bottom.

second phase, namely the training and subsequent leave-one-person-out cross-
validation test of the CNN on the REHAP dataset of 20 different persons.

3.1 Parameter Grid Search

For efficient grid search in order to determine optimal parameters, 70 % of the
data samples are randomly subsampled for training and the remaining 30 % are
retained for validation during each iteration. Each data sample is transformed
by the scheme described in the preceding section and subsequently presented to
the CNN for training. Parameters are exhaustively varied within the following
ranges:
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k1i ∈ {5, 10, 15, 20}
k2j ∈ {5, 10, 15, 20, 25, 30, 35, 40, 45, 50}

k1s ∈ [0, 7]
k2s ∈ [0, 7]

k2mp ∈ [1, 8]

This sums up to a total of 20.480 experiments, however as in some cases
max-pooling is not possible. For instance, if the convolution of the preceding
layer of 8 × 8 with a 3 × 3 kernel results in a 6 × 6 layer, max-pooling can only
be performed with either a 6× 6, 3× 3, 2× 2 or 1× 1 kernel. Therefore, ignoring
those invalid cases results in ca. 5400 experiments to be conducted (training time
was approx. 1 week).

Table 1. The top 5 results taken from all 5400 iterations of our parameter grid-search.
The classification (CE) error averaged over all samples in the validation set drops
to 5,5 %.

k1
i k2

j k1
s k2

s kmp
2 CE

result 1 20 30 3 6 1 5,557

result 2 20 20 3 4 1 5,957

result 3 20 25 3 6 1 5,971

result 4 20 35 3 6 1 5,971

result 5 20 35 3 7 1 5,985

The most significant insight of these experiments is the correlation of increase
or decrease of the classification error (CE) values depending on the number of
chosen kernels, the kernel size or kernel size for max-pooling. Unsurprisingly, CE
drops if the number of kernels per layer is increased. However, increasing the k1s
parameter leads to an increase in CE. This means that we achieve optimal results
for small values of k1s , with a small max-pooling value of kmp

2 = 1 or kmp
2 = 2.

Best CE scores achieved in this grid-search are 5.6 % averaged across all samples
in the test set with the aforementioned parameters (cf. Table 1). Moreover, to
achieve best results, the number of kernels usually should be chosen around 20
for the first convolution layer and around 25–35 for the second layer. Setting
the parameters to the optimal values, a generalization test is conducted which
is described in the subsequent section.

3.2 Leave-one-person-out Cross-Validation

Choosing the best parameter setup from the grid-search in the preceding section
yields improved results compared to approaches on the same data set achieved
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so far. With respect to the parameters presented in Table 1, we set k1i = 20,
k2j = 30, k1s = 3, k2s = 6, kmp

2 = 1. The results of our leave-one-person-out
generalization (train on samples from all persons but one, test on all samples
from the omitted person) tests are presented in Table 2. For each column n, the
entry shows the CE obtained when testing the CNN architecture on all data
samples coming from person n and trained on all data samples except those
from person n.

Table 2. The top row indicates the validation run performed for all samples from
person n in the data set. The rounded CE scores (in %)for the respective person are
indicated in the bottom row per table entry. Training is performed on all persons but
the one indicated in respective column while testing is the performed on the person
indicated by the same column.

Person p1 p2 p3 p4 p5 p6 p7 p8 p9 p10

CE 22,3 51,3 22,1 32,5 11,6 17,4 40,0 27,1 13,6 15,3

Person p11 p12 p13 p14 p15 p16 p17 p18 p19 p20

CE 13,2 12,4 1,3 4,0 5,5 15,1 4,2 17,5 30,7 21,4

Hence this table shows the performance of the CNN on hand gestures per-
formed by persons previously unknown to the net. Best results are obtained on
persons 13, 14 and 17 with errors of 1,7 %, 4,0 % and 4,2 % respectively. These
are strong results given the aforementioned fact we are dealing with unseen data.
Moreover, CEs are below the 20 % mark for 12 persons and only increase sig-
nificantly for 4 individuals, namely persons 2, 4, 7 and 19 with worst results
achieved on person 2. This is highly respectable for a large and complex data
set of 400.000 hand postures obtained from a highly noisy sensor.

4 Conclusion and Outlook

In this contribution a novel approach to training CNNs for the problem of hand
gesture recognition from depth data is presented. Depth input from ToF sensors
in normalized, stretched and subdivided into hypercubes and subsequently con-
volved in a specifically tailored intermediate step as to be presentable to a CNN.
An extensive parameter search is performed to yield the optimal setup for our
deep network architecture. Around 5400 test runs conducted during this search
over the course of one week show that the CNN peaks in performance for a large
number of kernels in the initial layers and small max-pooling kernels. Given
these settings, a leave-one-person-out cross-validation run is performed over the
course of approx. 14h demonstrating strong recognition results on previously
unseen data. The main benefit of this contribution lies in its efficient subdivision
and transformation of input data. Given the fact that we outperform previously
achieved results on this large-scale data set, achieving error rates of 1,5 %–4 %
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for some persons and averaging around 15 %–20 % over all persons, this proves
the validity of this approach. Future work will focus on the transferability of this
approach onto problems of object recognition in the three-dimensional domain,
in order to prove its general applicability. We strongly believe it can easily be
extended to other, similar tasks allowing for improved performance of CNNs
under difficult circumstances.
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Abstract. With significant increasing of surveillance cameras, the
amount of surveillance videos is growing rapidly. Thereby how to auto-
matically and efficiently recognize semantic actions and events in sur-
veillance videos becomes an important problem to be addressed. In this
paper, we investigate the state-of-the-art Deep Learning (DL) approaches
for human action recognition, and propose an improved two-stream Con-
vNets architecture for this task. In particular, we propose to use Motion
History Image (MHI) as motion expression for training the temporal
ConvNet, which achieved impressive results in both accuracy and recog-
nition speed. In our experiment, we conducted an in-depth study to
investigate important network options and compared to the latest deep
network for action recognition. The detailed evaluation results show the
superior ability of our proposed approach, which achieves state-of-the-art
in surveillance video context.

Keywords: Convolutional neural network · Surveillance videos ·
Optical flow · Motion History Image

1 Introduction

Due to the rapid development of semiconductor industries, ITS forecasts that the
global market for video surveillance equipment will grow by over 10 % in 2015 and
the majority of surveillance cameras are running 24/7 [8]. Those increment and
uninterrupted recording bring impressive growth for surveillance video. There-
fore how to automatically and efficiently recognize semantic actions from them
is eager to be solved. Recently, deep convolutional neural networks (ConvNets or
CNNs) has been recognized as the state-of-the-art for image classification [11],
and has been further successfully applied to action recognition for video data
[10,15]. In [15], Simonyan et al. first introduced the two-stream CNNs architec-
ture for video action recognition, in which spatial (RGB-frames) and temporal
(optical flow) representations of video have been proposed. Since then many
related studies [13,16–19] and derived architectures have been reported. Com-
pared with other video types, surveillance video is normally recorded by still
camera. The background is thus mostly stationary but the actor insider is rela-
tive small, and the camera may often capture more actors or other noises in one
c© Springer International Publishing Switzerland 2016
A.E.P. Villa et al. (Eds.): ICANN 2016, Part II, LNCS 9887, pp. 187–195, 2016.
DOI: 10.1007/978-3-319-44781-0 23
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frame. Therefore the classification difficulty increased. In this paper, we propose
an improved two-stream CNNs architecture for action recognition in surveil-
lance video. For the spatial stream we apply human detector to crop human
area from its background for the subsequent spatial CNNs training, while to
train the temporal CNNs, we propose to apply Motion History Image (MHI) [5]
(cf. Fig. 1(b)(a)). In our experiment MHI shows impressive performance in both
accuracy and processing speed comparing to the commonly used optical flow.
The core benefit of MHI is that it records object motion changes from a certain
video scene, and can explicitly describe them in a single image. It contains less
background noise and further decreases the training difficulty. All of those fea-
tures make MHI more suitable for CNNs. The performance of proposed approach
has been evaluated on UCF-ARG and UT-interaction dataset. The experimental
results show that our proposed model achieves state-of-the-art in classification
accuracy with much higher processing speed.

The rest of this paper is organized as follows: Sect. 2 gives a brief introduction
of existing deep learning method and different trials for action recognition. In
Sect. 3, we introduce our approach, in particular the MHI method in temporal
stream. Evaluation method, implementation details and performance are given
in Sect. 4. Section 5 concludes the paper and our future work.

2 Related Work

After CNNs showed its excellent performance in image classification, it attracted
huge attention among the research community, and has been further successfully
applied to many other application areas. The authors of [3,9] firstly extended
image CNN to video domains by treating space and time as equivalent dimen-
sions of the input, and performing convolutions in both time and space. After
that, Karpathy et al. studied these extensions and adapted the CNN model by
using stacked video frames as input to the network [10]. Unfortunately, this
method didn’t made significant performance improvement on action recognition
task in video (on UCF101 dataset). After that, Simonyan et al. proposed a two-
stream CNNs architecture, which incorporates spatial and temporal networks
[15]. This work proved that CNNs trained on multi-frame dense optical flow is
able to capture object motion in an explicit way (by stacking sequential flow
images in one input frame), which achieved impressive result in spite of limited
training data. Since then, this method became a commonly used architecture
for action recognition in video data. In [13], Nina et al. applied this method for
action recognition in the Chalearn 2014 competition, and achieved promising
result. Based on [15] the authors of [7,19] proposed a recurrent convolutional
architecture (Recurrent-CNNs), which further improves the classification accu-
racy, however it also increases the model complexity and processing time in a
certain manner. In [17] the authors proposed a regularized feature fusion net-
work, which is based on the outputs of two-stream Recurrent-CNNs. The final
classification result is obtained by combining the output of spatial Recurrent-
CNNs, flow Recurrent-CNNs and their fused network. Obviously, this method
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brings much higher complexity with limited improvement on certain datasets.
In contrast to increasing the network complexity, the authors of [16,18] intended
to investigate important implementation options of deep networks on video clas-
sification, which provide more useful practices for two-stream CNNs.

3 Methodology

Video is made up of spatial (objects) and temporal (motion changes) compo-
nents. Thereby the two-stream architecture is naturally constructed for repre-
senting video content by taking advantages of two modalities. According to the
fact above, we also applied this architecture in our work. By considering several
characteristics of surveillance video such as stationary but complicated back-
ground, still camera, much smaller actor view etc., we rebuilt the design of each
stream. Since smaller actor view of the original video frame not only brings diffi-
culty to actor localization, but also leads to poor spatial CNN models. Therefore
for the spatial stream we first extract actor from background by using human
detection algorithm, which is help to filter out some useless information as e.g.,
scene objects and background. Under this circumstances, it is worth to note that
the motion information turns into a more important role for action recognition
in surveillance video. Regarding the temporal part, almost all the related work
are based on optical flow images. Optical flow represents the direction of image
motion by calculating the motion between two consecutive frames. However, an
entire action normally consists of a set of sequential motion steps. Thus CNNs
have to estimate the motion implicitly for a better understanding about the
action. In order to make the learning process easier, researchers manually stack
sequential optical flow images into a multi-channel input image. In this way, a
consecutive motion scene has been explicitly stored in every newly created input
image and is further used to train the CNNs (cf. Fig. 1(a,b)).

Fig. 1. Motion templates comparison

On the other hand, MHI can capture and express the short-term motion
changes in a more compact way. To create a MHI Hr, binary image differ-
ence frames are firstly generated with a defined buffer length. Then consecutive
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temporal motion information is collapsed into Hr according to their temporal
appearances, i.e. the pixel intensity in Hr is a function of the temporal history
of motion at that point. Hence, Hr can be presented by utilizing a replacement
and a decay operator D [5]:

Hr(x, y, t) =

{
τ, D(x, y, t) = 1

max(0, Hr(x, y, t − 1) − 1) otherwise
(1)

The essence of MHI is to record where the motion is happening and how the
motion is occurring in one image, as depicted in Fig. 1(a) (c). More clearly,
we created MHI and optical flow representations example which is a waving
action and shown in Fig. 1(b). It is obvious that MHI contains more complete
motion information, the action is thus easier to be recognized. In addition, MHI
is generally more capable to reject background noise. This can also be realized
by Fig. 1(b), where Y-axle optical flow comprises much more noises. Moreover,
MHI shows strong computational advantage comparing to dense optical flow.
The detailed processing speed comparison is given in Sect. 4.

Figure 2 depicts our tow-stream architecture. For each clip, we convert it into
spatial and temporal part. For spatial part, we apply extracted actor images,
while regarding temporal part, we generate MHI directly from the video. After
data preparation, we train spatial and temporal CNNs respectively, which is
followed by the data fusion part. For data fusion we adopt late-prediction-fusion
metric to get the final prediction result. The category label of a clip is obtained
by selecting the class with the highest average-probabilities. In particular, our
architecture accepts single image as the input to CNNs in both two streams,
which decreases the training difficulty.

4 Evaluation

4.1 Datasets and Data Preparation

We conduct experiments on UCF-ARG [2] and UT-Interaction dataset [14].
UCF-ARG dataset consists of 10 actions performed by 12 actors recorded from
a ground camera, a rooftop camera, and an aerial camera. In this work we only
adopted the video data taken by the ground camera. We put the first 3/4 clips
into train set and the rest 1/4 into test set.

Same background and small actor in surveillance videos make it hard for the
classifier to distinguish tiny differences of actors. Therefore extracting the actor
view image for the further processing is necessary. After trying several method,
we adopted ACF method [6] for the actor image extraction. The original output
of ACF is quite closed to actor, to enable better data augmentation (e.g. crop-
ping), we triple the width and 1.4x the height. Concerning the temporal stream,
we train our model based on three different data sets—single frame optical flow
(SFOF) set, stacked optical flow (SOF) set and MHI set. We adopted the off-
the-shelf GPU implementation of [1] from the OpenCV1 library for flow image
1 http://opencv.org/.

http://opencv.org/
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Fig. 2. Proposed architecture for action recognition

creation, where horizontal and vertical flow vector field are stored separately. We
created stacked flow images with a duration length L = 10, i.e. each stacked flow
image has 20 channels. The evaluation of L can be found in [15]. For MHI cre-
ation we also applied the implementation of OpenCV library. We set the buffer
size to 2 and the threshold parameter to 15.

The UT-Interaction dataset contains 6 classes of human-human interactions:
shake-hands, point, hug, push, kick and punch. We adopted set 1 to further verify
our method. The first 8 clips of each action are put into training set whereas the
rest 2 clips are used for test. Actor images are cropped based on ground truth
from dataset in case of data overlapping across different actions. SFOF and
SOF images are generated from actor-images in the same manner as above. We
also cropped MHI based on ground truth to avoid giving one image repeatedly.
Unlike UCF-ARG, the duration of action is longer and the actor is bigger in
UT-Interaction. Therefore, we use buffer size 5 (MHI-5) & 10 (MHI-10)and set
threshold parameter to 30 for MHIs extraction.

In particular, we reject the first 30 MHIs in UCF-ARG to avoid background
noise. Because action in UT-Interaction is only performed once, images of some
clips are not enough for generating stack optical flow sample, we use all images
from ground truth.

4.2 Implementation Details

In general, pre-training is an effective method to initialize deep CNNs when
the training dataset is quite limited. Regarding UCF-ARG and UT-Interaction
dataset, they only have around 100 k and 4 k images for training respec-
tively. Therefore, fine-tuning from robust models is obviously more appropri-
ate rather than training from scratch. Our spatial model is fine-tuned based on
VGG CNN S model for both datasets. This reference model is also applied for
fine-tuning on MHIs and SFOF images. Here for the SOF, it is not able to fine-
tune on any VGG model immediately which is trained on RGB images, since
the SOF image has 20 channels. However, inspired by [16] we further modified
the original structure of the reference model, in which we average the filter-
weights of the first layer across its 3 RGB channels, and extend the first layer
to 20 channels by using averaged weights. This way we can use the modified
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VGG CNN S model for fine-tuning on SOF images. In addition, we also applied
the Fudan SOF model from [18] in the UCF-ARG evaluation, which is based on
VGG CNN M structure. We set the learning rate to 10−3 , which was decreased
to its 1/10 every 10 k iterations and stopped at 40 k iterations.

Fig. 3. Finetune result on UCF-ARG and UT-
interaction

Fig. 4. Confusion matrix of ten
actions in UCF-ARG

4.3 Performance

Based on Image: In Fig. 3, SOF means the model finetuned from modified
VGG CNN S model, while SOF(Fudan) means the model from Fudan SOF
model. It is obvious that temporal model based on MHI acquires outstanding
performance among all the others on UCF-ARG and UT-Interaction. Overall,
we can draw following conclusions base on UCF-ARG:

1. Motion information is significant for action recognition in surveillance video.
2. SOF can better describe the temporal clue than SFOF.
3. Well-trained model has more optimized network parameters than modified

model. (Comparison between Fudan and Modified VGG model).
4. MHI significantly outperformed the other settings, which proves that this

temporal representation can be well learned by CNNs.

The evaluation result on UT-Interaction dataset shows the similar trend as
well. Particularly, it further demonstrates that for relative longer actions, using
larger buffer size of MHI can further improve the performance.

Based on Clip: The clip-level evaluation can be described as follows:

1. For every clip, we use ACF detector, MHI extractor, optical flow extractor to
generate spatial images, MHIs, SFOF and SOF images.

2. We create the probability prediction result for every input image in the
sequential manner.

3. We further generate the fused result using several combinations including
spatial & MHI, spatial & SFOF, and spatial & SOF.
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Table 1. Clip-level classification
result on UCF-ARG

Method Accuracy

Spatial&MHI 94.87%

Spatial&SFOF 92.31%

Spatial&SOF 93.16%

Spatial&SOF (Fudan) 94.02%

Piotr Bilinski [4] 82.05%

Laptev et al. [12] 80.98%

Table 2. Computation performance of MHI and
optical flow

Method Frame per second Processor

MHI ∼60 CPU (Intel i5-4670)

Optical flow ∼1/8 CPU (Intel i5-4670)

Optical flow 1-2 GPU (Nvidia GTX780)

4. The final prediction (clip label) is obtained by averaging the output of each
input image taken from two models.

As shown in Table 1, the proposed spatial & MHI two-stream networks
achieved the best classification accuracy. It improves on the best shallow
method [4] by almost 14%. Figure 4 depicts the confusion matrix based on the
proposed two-stream model. Two issues may lead to the confusion between jog-
ging and running. The first one is undetermined speed boundary between them,
and the other is the starting and ending process in these clips. The angle of
action should take responsibility for the confusion between boxing and clapping,
digging and throwing.

Table 2 shows the computation cost of creating MHI and dense optical flow
image. In this experiment, we adopted a test video from UCF-ARG dataset with
the frame rate of 30 fps. In the CPU mode, MHI method can process 60 fps, while
the optical flow algorithm needs 8 s for one frame. We also evaluated the GPU
implementation of the optical flow algorithm, but it can only process 1-2 fps.
Obviously, MHI algorithm needs much less computation resources, even fulfill
the real-time requirement.

5 Conclusion

In this paper, we investigate the state-of-the-art approach for action recognition
in video using CNNs. Based on the analysis of characteristics of surveillance
video, we propose an improved two-stream CNNs architecture. In which, we pro-
posed to apply MHI as a more efficient temporal representation for training the
network, where it shows excellent performance in both accuracy and processing
speed. The following two conclusions have been proven by our evaluation:

1. Our proposed approach acquires state-of-the-art performance on UCF-ARG
dataset, while it significantly decreases the complexity for training and recog-
nition using CNNs.

2. High classification accuracy and real-time MHI extraction enable the action
recognition on live surveillance recordings.
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As the future work, we plan to further improve the MHI quality by filter out
camera movement and shaking effect, and how to apply MHI to first-view videos
is still need to be studied. In addition, a more efficient actor detection algorithm
can further improve the overall recognition performance.
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Abstract. Music plays an important role in many people’s lives. When
listening to music, we usually choose those music pieces that best suit
our current moods. However attractive, automating this task remains a
challenge. To this end the approaches in the literature exploit different
kinds of information (audio, visual, social, etc.) about individual music
pieces. In this work, we study the task of classifying music into different
mood categories by integrating information from two domains: audio
and semantic. We combine information extracted directly from audio
with information about the corresponding tracks’ lyrics using a bi-modal
Deep Boltzmann Machine architecture and show the effectiveness of this
approach through empirical experiments using the largest music dataset
publicly available for research and benchmark purposes.

Keywords: Music · Emotion · Deep Boltzmann Machine · Audio ·
Lyrics

1 Introduction

Music plays an important and influential role in most of our lives; for instance,
we often listen to specific kinds of music to help enhance or alter our mood,
particularly during special occasions (e.g. a romantic dinner, a national sports
event, etc.). Hence, it is essential that we use information about emotions and
mood in music retrieval tasks, such as classification and recommendation [11].

To this end, many approaches based on audio analysis were proposed and
proved applicable, but they quickly reached a so called “glass ceiling” perfor-
mance barrier [13]. As it became evident that using features based on audio
alone is not enough, many researchers started combining features from different
domains [9]. One such domain, music lyrics, has become a popular source of
features for music emotion and mood classification among other music retrieval
tasks. Mayer et al. [14] show that, in some emotion categories, when features
derived from lyrics are included, the classifier performance improves over using
the leading audio features alone. However, Hu et al. [6] reveal that this is not
c© Springer International Publishing Switzerland 2016
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true for all of the mood categories. To further improve the classification per-
formance, some researchers integrate audio features with lyrics together and
form hybrid features that could carry information from two different modal-
ities (domains) simultaneously [6]. Accordingly different integration strategies
(e.g., early fusion [5], late fusion [10] and model fusion [20]) are proposed in the
literature.

In this work, we follow the feature fusion model and use a hybrid model
based on Multimodal Deep Boltzmann Machine; in addition to fusing different
modalities, it is also able make use of unlabelled data to further improve perfor-
mance [19]. Additionally, we adopt the commonly used Russell’s 2-dimensional
Valence-Arousal (V-A) model of affect [15] to capture the emotional content of
music lyrics. To show the effectiveness of our approach, we conduct an experi-
mental study on the largest dataset that is publicly available for music retrieval
research, the Million Song Dataset [1], from which we are able to use over 230,000
music tracks that contain both lyric and audio features.

2 Related Work

Among the first to tackle the task of automatically classifying music into
emotion-based categories, Li and Ogihara used Support Vector Machines (SVM)
with audio-based features (related to timbre, pitch and rhythm) and reported
45 % accuracy on a dataset of consisting of 499 music clips and 13 mood cate-
gories [12].

Starting in 2007, the Audio Music Mood Classification task appeared regu-
larly in the literature to encourage the development of improved music-IR sys-
tems. Since then, datasets comprised of hundreds of music tracks were collected
and made available to the research community and more than two hundred sys-
tems have been evaluated. Despite other supervised methods like Gaussian Mix-
ture Model [13], Random Forest and K-Nearest Neighbor, many studies found
that SVM combined with spectral features often yield the best results [21].

Due to the limiting factors of features based solely on audio [13] and because
of the semantically rich nature of music lyrics, lyric-based features found their
way into emotion-based music classification. Among others, Hu et al. [6] inves-
tigate the usefulness of low-level text features such as the Bag-of-Words (BoW)
representation of lyrics, also parts of speech and function words. They also com-
bine lyric and audio features and report accuracy as high as 72 % on a private
dataset consisting of 5,585 music tracks and 18 mood categories [7]. He et al. [3]
report that higher-order BoW features such as tf-idf weighted unigram, bigram
and trigram, can capture more semantic relations in lyrics for mood classifica-
tion. Similarly, other lyric features derived from the Affective Norm of English
Words also obtain encouraging results [8].

There are several ways to combine information from different domains, such
as audio and text. The early fusion methods simply concatenate audio and lyric
features to create feature vectors in a new space [5]; in the late fusion nor-
mally separate classifiers are trained on the features from their own separate
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domains [10]. While Xue et al. [20] fused audio and ltext domains through a
model fusion scheme. In this work, we follow the idea to use Deep Boltzmann
Machines for multimodal learning [19] and demonstrate its effectiveness on the
largest publicly available music dataset.

3 Bi-Modal Deep Boltzmann Machine Model

Deep Boltzmann Machine (DBM) [16] is a deep neural network architecture
based on Restricted Boltzmann Machine [18]. It contains a set of visible units v ∈
{0, 1}D and a sequence of layers comprised of hidden units h(1) ∈ {0, 1}F1 ,h(2) ∈
{0, 1}F2 , ...,h(n) ∈ {0, 1}Fn . The connections are available only between units in
adjacent layers, i.e. no connection is allowed between any two units within the
same layer or between any two units in non-adjacent layers. The energy of the
joint configuration {v,h} is defined according to h = {h(1),h(2), ...,h(n)} and
parameters θ = {W(1),W(2), ...,W(n),b,b(1),b(2), ...,b(n)}. The DBM assigns
probability to a set of visible units according to the Boltzmann distribution:

P (v; θ) =
1

Z (θ)

∑

h

exp(−E(v,h(1),h(2); θ)) (1)

where Z (θ) is the normalising constant.

Fig. 1. Bi-modal Deep Boltzmann Machine

Multimodal DBM is a generative model for that can create fused repre-
sentations by combining features from different modalities in a model fusion
scheme [19]. Figure 1 illustrates the proposed audio-text aware bi-modal DBM
architecture; it consists of two 2-layer DBM networks, with an additional layer
of hidden units added on top to join the two DBMs and form a single model.

Let va ∈ R
D denote the audio input and vt ∈ R

K denote the text input,
where K,D ∈ R is the dimension of audio and text features. Then, the joint
distribution of bi-modal input can be then written as:
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∑
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The second term in Eq. 2 denotes the probability distribution of the audio
modality, which assigns probability to va in a Gaussian RBM scheme:
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∑
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The third term in Eq. 2 denotes the probability distribution of the text modal-
ity, where v ∈ N

k denotes a vector of visible units and each vk is the number of
times word k occurs in the lyrics with the dictionary size M . The model assigns
probability to vt in a Replicated Softmax RBM scheme:

P (vt; θt) =
∑
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The parameters of DBM can be initialised randomly. However, here we use
a greedy layer-wise pre-training strategy [16,19].

4 Experimental Study

In our experiments, we use the largest publicly available music dataset, the
Million Song Dataset (MSD) [1]. It is a conglomeration of several datasets con-
taining different information about the tracks; we use two of its subsets. First,
MusiXmatch, contains information about the lyrics, each song is described as a
set of words from the recorded top 5,000 frequent words across all lyrics. Sec-
ond, Last.fm, contains annotations obtained from music listeners in a form of



Bi-Modal Deep Boltzmann Machine Based Musical Emotion Classification 203

tags, like “happy” and “upbeat”; from it, we select tracks that are described by
emotion related tags. Additionally, we obtain already pre-extracted audio-based
features from the MSD Benchmarking dataset, which is an extension of MSD
and was created for the purposes of comparing different approaches while main-
taining invariability in various experimental parameters [17]. To capture both
modalities, in our experiments, each music track is represented by both lyrics
(found in MusiXmatch dataset) and audio-based features (from MSDB dataset),
there are 236,486 tracks that satisfy these conditions.

Initially, to test the validity of our approach, we select only the tracks that
contain “happy” and “sad” tags. After removing ambiguous tracks that contain
both tags, we obtain 7,945 “happy” songs and 5,840 “sad” tracks. To avoid
classifier bias due to class imbalance, we perform random subsampling and then
conduct a binary emotion classification experiment.

In a multi-class scenario, some songs may cover a variety of emotions, ren-
dering the representation by independent dimensions inadequate. For this rea-
son, we employ Russell’s Valence-Arousal model [15] and follow Corona’s and
O’Mahony’s scheme of selecting social tags that clearly indicate the song’s emo-
tional trend [2]. We group the tags according to their quadrants in the Valence-
Arousal model and report the final number of tracks tagged by each emotion
group in Table 1. We use the tracks that have the emotion-related tags as labelled
data for training the classifier, and the remainder as unlabelled data for unsu-
pervised pre-training. Our final dataset contains 41,727 labelled and 194,759
unlabelled tracks.

Table 1. Mood quadrants and their corresponding number of songs

Quadrant Group Tag Songs

v−a+ G29 aggressive,aggression 28,168

G28 anger,angry,choleric,etc

v+a+ G6 cheerful,jolly,festive,etc 16,315

G5 happy,happiness,etc

v−a− G15 sad,sadness,unhappy,etc 10,154

G16 depressed,blue,dark,gloom,etc

G17 heartbreak,grief,sorrow,etc

v+a− G8 brooding,contemplative,etc 2,629

G12 calm,comfort,quiet,etc

The deep learning architecture is configured as following. The audio pathway
is modeled by an RBM with 194 visible units, each taking as input acoustic
content descriptors, such as MFCC and SSD features. The visible layer is followed
by two layers of hidden units, 100 and 50 each. The text modality is formed by
RBM consisting of 5,000-unit visible layer followed by hidden layers of 2,048 and
1,024 units each. A joint layer combines the two modalities and consists of 1,074
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hidden units. Its output can be considered as a complex probability estimate
of the mood classes. We use the output from our Mulimodal RBM as input
to either Softmax or SVM for the final classification decision. Additionally, to
test the robustness of our chosen audio features, we expand the audio modality
from 194 to 3,456 dimensions by including additional audio-based features. The
hidden layers are also expanded to 2,048 and 1,024 respectively; and the joint
layer to 2,048 units.

Because the SVM classifier performs slightly better on average, we omit the
Softmax results. In our experiments, we perform k-fold repeated random sub-
sampling validation with k = 5. In each fold, 60 % (6,984) tracks are selected
for training and 40 % (4,656) for testing. We compute Mean Average Precision
(MAP) and Accuracy as metrics to comprehensively evaluate the models. The
initial experimental results are shown in Fig. 2, where we also illustrated the
baseline SVM performance (no DBM) using early concatenation method to join
the two modalities into a single input vector.

Fig. 2. MAP and Accuracy achieved by the Bi-modal Boltzmann Machine in the
“happy”/“sad” binary classification task

As can be seen from Fig. 2, audio-based features indeed outperform the lyric-
based features to some extent. We conjecture that this may be because the audio
modality is represented by features that were hand-crafted and improved over
the years. Meanwhile, the text modality is represented by a shallow BoW statis-
tical measure with large vocabulary, which results in a sparse input vector. This
again urges the study on higher level lyric features, which may yield interesting
results. We also noticed that the classification performance declined through the
audio pathway, which indicates that some valuable information are lost through
the extracting process in the audio modality. After expanding the audio modality
with additional features, this phenomenon disappears. This indicates the neces-
sity of feature selection. Among all results, the best performance is achieved at
the joint layer, which shows the effectiveness of the fusing ability of the proposed
approach. After expanding the audio features from 194 to 3,456, the baseline
SVM performance did not improve much.

In addition to using the lyric- and audio-based features with our app-
roach, we also compare the model fusion, early fusion and late fusion methods.
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In late fusion, we first trained two SVM classifiers to represent the two modalities
separately, denoting as pa and pt. Then the output mood class is assigned by

p = αpa + (1 − α)pt (5)

where α indicates the relevant importance between audio and lyric features. We
set α = 0.6, as per Hu et al. [4]. As before, in order to avoid classifier bias
towards majority class, we attempt to maintain class balance by ensuring that
both training and testing instances are equally distributed across mood classes.
Results are shown in Table 2.

Table 2. Comparison of accuracy achieved by the different fusion models

audio only text only early fusion late fusion Bi-modal DBM

v−a+ 0.645 0.600 0.689 0.666 0.706

v+a+ 0.625 0.607 0.653 0.639 0.692

v−a− 0.634 0.620 0.661 0.642 0.704

v+a− 0.730 0.702 0.745 0.729 0.785

Our model outperformed other baseline models in every mood category. The
moods in v+a− quadrant obtain the highest accuracy. This is interesting given
that the v+a− quadrant has the least number of songs. The reason may be that
music pieces in this mood group has many unique lyric terms. Between other
mood categories, however, there is no significant differences in the classification
accuracy. Moreover, the fusion methods’ accuracy all outperformed the accuracy
of classification on single modality, affirming the effectiveness of multi-modal
mood classification in the same way as many prior studies show.

5 Conclusion

In this work, we used a deep learning architecture, inspired by the work of
Srivastava and Salakhutdinov [19], to effectively fuse the audio and text modal-
ities for music mood classification. Results show that fusing modalities is indeed
advantageous in the music mood classification task. In addition to including
information from other domains/modalities, it would be interesting to see how
other lyric derived features perform with this and other multimodal approaches
in the music-IR literature, we leave this to our future work.
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Abstract. Stream clustering algorithms normally require two phases:
an online first step that statistically summarizes the stream while form-
ing special structures – such as micro-clusters– and a second, offline
phase, that uses a conventional clustering algorithm taking the micro-
clusters as pseudo-points to deliver the final clustering. This procedure
tends to produce oversized or overlapping clusters in medium-to-high
dimensional spaces, and typically degrades seriously in noisy data envi-
ronments. In this paper we introduce StreamLeader, a novel stream
clustering algorithm suitable to massive data that does not resort to a
conventional clustering phase, being based on the notion of Leader Clus-
ter and on an aggressive noise reduction process. We report an extensive
systematic testing in which the new algorithm is shown to consistently
outperform its contenders both in terms of quality and scalability.

Keywords: Stream algorithms · Clustering · Big Data

1 Introduction

There is undoubtedly a growing need for clustering algorithms able to cope with
Big Data environments (especially the velocity and volume components). New
solutions must handle several challenges, such as potentially unbounded volumes,
unrestricted dimensionality, unknown – and possibly significant – amounts of
noise, and concept drift (non-stationary distributions). Besides, the clustering
should preferably be performed in one single pass (data is not reused), while
computing very fast and scaling well.

Most existing stream clustering algorithms comprise two phases: first an
online phase summarizes the stream by using higher-level structures called
micro-clusters. These usually take the form of Cluster Feature Vectors or CFVs –
as in BIRCH [1], Clustream [2] and Denstream [3]. Other representations include
Coresets/Coreset Trees (as in StreamKM++ [4]) or Grids – as in D-Stream [6].
A second, offline phase uses conventional clustering algorithms – Gaussian, like
k-means or arbitrarily-shaped, as in DBScan [3] – using the previously formed
micro-clusters to deliver a final clustering. This situation is less than ideal. First,
it relies on clustering algorithms which were not designed to cope with the chal-
lenges posed by Big Data; second, CFVs tend to grow in size in high-dimensional
c© Springer International Publishing Switzerland 2016
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spaces, and their clustering tends to produce oversized or overlapping clusters;
and third, CFVs absorb noise that the conventional clustering inherits, thus
rendering it highly inefficient in noisy environments. In this paper we propose
StreamLeader, a new stream clustering algorithm designed to operate in these
data scenarios by using a novel approach that does not resort to a posteriori con-
ventional clustering in a separate offline phase. Instead, it is based on the notion
of Leader Cluster (explained below) and on an aggressive noise reduction phase
based on staged distributional cuts. The MOA platform was created to gather
stream mining techniques and foster research, enabling to test and compare sev-
eral such algorithms within an integrated framework [5]. We test the algorithm
systematically against other solutions within MOA – thus equalling computa-
tional conditions – and report experimental results in which the new algorithm
consistently outperforms its contenders both in terms of quality (measured by
several stream clustering metrics) and scalability.

2 The StreamLeader Stream Clustering Algorithm

2.1 Online Phase: Statistical Absorption of the Stream

Consider a stream of instances x(1),x(2), . . . ,x(n), . . . of Rd, each described by
a feature vector x(n) = (x(n)

j )dj=1. The time stamps of arriving instances are
denoted T (1), T (2), . . . , T (n), . . .. In the context of anytime stream mining, micro-
clusters are structures intended to compress the incoming data stream and then
– every now and then – deliver them to conventional clustering algorithms [7].
In Big Data environments, this process may become highly inadequate and inef-
ficient. Our algorithm follows a single-pass strategy that aims at capturing the
essential statistical information describing the stream. Call leader any potential
cluster centroid in R

d. Each cluster is captured by constructing a Leader Cluster
– an extension of the CFV concept – around a leader, as described next.

Definition. A Leader Cluster is a structure:
LC = (N,LS, SS,LST, SST,LSD, δMAX, Tcr, is-expanded?, Rexp), with:

– scalar N : number of own instances so far
– vector LS =

∑
n
x(n), sum of own instances so far

– vector SS, where SSj =
∑
n

(x(n)
j )2, the square sum of own instances so far

– scalar LST =
∑
n

T (n), sum of time stamps of own instances so far

– scalar SST =
∑
n

(T (n))2, square sum of time stamps of own instances so far

– scalar LSD =
∑
n

D(n), sum of distances to own leader of own instances so far

– scalar δMAX ∈ [0, 1/2): radius of influence, taking own leader as origin
– scalar Tcr: creation time stamp (when the structure was created)
– boolean is-expanded?: indicates expansion of the structure
– scalar Rexp: if is-expanded?, radius of the expanded structure.
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We use the dot notation (.) to access the components of the structure.

Definition 2 (Leader). The leader l of a Leader Cluster LC is its statistical
representative and can be computed as l = LC.LS

LC.N .
The algorithm – shown in pseudocode in Algorithm 1 – works in the normal-

ized metric space (Rd, δ). In the present case, choosing d(x,y) = ‖x−y‖ to be the
standard Euclidean distance, we take δ(x,y) = ‖x − y‖/(‖x − y‖ + 1), which is
a metric in the range [0, 1). This metric is used to measure D(n) = δ(x(n), l), how
close an incoming stream instance x(n) is from an arbitrary leader l (line 5). Every
Leader Cluster has a volume of influence (a ball) around it given by the current
radius LC.δMAX, which is the only parameter used by the StreamLeader algo-
rithm. Operations to add an instance to an existing Leader Cluster and to merge
two existing Leader Clusters are quite straightforward and omitted.

In order to allow Leader Clusters to handle concept drift, removal capabilities
must be implemented. In data streaming scenarios, where only one-pass over the
data is allowed, the concepts of “recent” or “old” data apply. All algorithms in
MOA use a Horizon H to create a moving time window to evaluate clustering
quality. Given a Leader Cluster LC, the mean μ = LC.LST

LC.N and the standard

deviation σ =
√

LC.SST
LC.N − (LC.LST

LC.N )2 of its timestamps are used to define its
temporal relevance as μ + σ. All Leader Clusters whose temporal relevance is
smaller than the current time stamp minus H are eliminated (line 10). In con-
trast, existing algorithms would use H simply to switch from the online to the
offline phase. It is important to emphasize that H is not a clustering parameter
in itself; rather, it is used in MOA to indicate when to produce a clustering.

2.2 Offline Phase: Avoiding Conventional Clustering Algorithms

The offline phase is composed of two main processes: first, noise (understood to
mean random data not belonging to the true clustering) is aggressively detected
and eliminated; second, Leader Clusters are allowed to expand or contract – if
need be – to adapt to current true clusters.

Noise Reduction. The existing Leader Clusters are sorted according to their
size in descending order, obtaining a positive distribution. Noise will then appear
in the right (lower) tail (line 13). We first eliminate this tail by performing a
45th percentile cut. When the tail is gone, many Leader Clusters representing
scattered noise could still exist in the elbow. We assume this noise to be roughly
one order of magnitude less than the Leader Cluster capturing the largest amount
of instances. Therefore, the leftout distribution is cut at one logarithm of the
size of the largest Leader Cluster at that moment in time (line14) – see Fig. 1.

Dynamic Radiuses. The next step allows expansions/contractions of partic-
ular Leader Clusters to a new radius larger/smaller than the initially set δMAX.
There is a need to dynamically adapt the clustering to the changing reality of a
data stream, allowing it to match as much as possible the current size of the true
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Fig. 1. Distributional cuts of Leader Cluster sizes: (left) elbow; (right) lower tail.

clusters. First, when two Leader Clusters of radius δMAX overlap, they will merge
into one with radius δMAX + 60%. Second, if a Leader Cluster of radius δMAX

is isolated, but likely to be contained in a bigger true cluster, it will expand to
radius δMAX + 30%. Third, overlapping Leader Clusters of radius δMAX + 30%
will merge into one with radius δMAX + 60%. Finally, letting δ = LC.LSD

LC.N , a
Leader Cluster will contract to radius 2δ when δ < 0.4 · δMAX (line 15).

3 Evaluation of Clustering Performance

In this section, we empiricallly evaluate the clustering performance of the pro-
posed algorithm. Seven stream clustering quality metrics are averaged to form a
normalized unique score Q ∈ [0, 1]: CMM (Cluster Mapping Measure), RS (Rand
Statistic), SC (Silhouette Coefficient), HOM (Homogeneity), COM (Complete-
ness), F1-P (F1-Precision), and F1-R (F1-Recall), all of which are available in
MOA. We perform a thorough comparison against three state-of-the-art stream
algorithms: Clustream [1], Clustree [2] and Denstream (with DBScan) [3].

Clustering Quality Comparison on Synthetic Data. We first perform a
extensive comparison using MOA-generated synthetic datasets, especially des-
gined for clustering streaming data. Demonstrating improvement on synthetic
data sets can be more convincing that doing so in scenarios where the true solu-
tion is completely unknown. The power inherent in fully controlled experimental
environments basically relies on systematically varying chosen experimental con-
ditions – thus facilitating the derivation of meaningful conclusions.

We simulate 10 kinds of synthetic streams (scenarios), by playing with the
number and size of the clusters – see top boxes in Table 2. For each scenario,
we also change dimensionality (d ∈ {2, 5, 10, 50}), noise level (10 %, 33 %),
and study two algorithm parametrizations (default, optimal). The former refers
to the parametrization that MOA gives by default to each algorithm; for the
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Algorithm 1. StreamLeader (δMAX)

1 CREATE new Leader Cluster with instance x(1)

2 n ← 2
3 while DATA-STREAM-ACTIVE do

// Online Phase

4 x(n) ← GET-NEXT-INSTANCE

5 if the closest Leader Cluster LC to x(n) has δ(x(n), LC.l) < LC.δMAX then

6 ADD-INSTANCE x(n) to Leader Cluster LC
7 else

8 CREATE new Leader Cluster with instance x(n)

9 end
10 REMOVE all Leader Clusters older than the horizon H
11 n ← n + 1

// Offline Phase

12 if CURRENT-TIME-WINDOW-COMPLETED (H) then
13 SORT all Leader Clusters according to size N in descending order
14 ELIMINATE-NOISE based on tail and elbow procedures
15 MERGE, EXPAND and CONTRACT Leader Clusters

16 end

17 end

StreamLeader, based on the fact that it works on a normalized distance space,
this is set as δMAX = 0.11 because it represents a trade-off between capturing
bigger clusters (using expansion) and small ones using a single Leader Cluster
(using contraction). The latter (“optimal”) is obtained adjusting the parameters
to the general knowledge of the scenario, according to the author’s guidelines in
the corresponding papers. In all, a total of 240 tests are developed, with half-a-
million random instances generated anew for each test. Although quality criteria
can be monitored continuously, for space reasons we show the results averaged
throughout the entire streams. A detailed view is presented in Table 2; a graph-
ical summary in Fig. 2. The results clearly show the ability of StreamLeader
to consistently outperform Clustream, Denstream and Clustree – the latter
degrading specially with larger dimensionalities and noise levels.

Scalability Comparison on Synthetic Data. We also independently test the
scalability of the new algorithm, both with respect to the number of clusters and
data dimensionality. We test the same four algorithms against 2, 5, 20, 40 and
50 clusters, in spaces of dimensionality 2, 5, 20 and 50. This results in 20 tests
per algorithm; each of which is executed 10 times to get average results, totaling
800 tests, producing the results shown in Fig. 3. It is seen that StreamLeader
behaves very well (as Clustree does), supporting our intuition that the proposed
algorithm seems also well suited for intensive high-throughput clustering tasks,
although this issue should be verified further.
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Fig. 2. Average of Q across all scenarios as a function of instance number n. Top to
bottom: StreamLeader, Clustream, Denstream and Clustree.

Fig. 3. Scalability tests: running time as a function of number of instances (in seconds).

Table 1. Network Intrusion: quality test results.

SLeader CluSTR DenSTR CTree

dim. Default 0.71 0.79 0.80 0.65

d = 33 Optimal 0.90 0.79 0.82 0.65

Comparison on Real Data. Additionally, the new algorithm is tested in the
KDD-CUP99 Network Intrusion data set; this problem is often used in stream
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clustering algorithm benchmarking1. The data describes 4.8 million computer
connections (sequences of TCP packets) of about 100 bytes, totalling 42 features
(33 of which are continuous and used for the clustering). It is known (though not
used) that each connection is either normal, or an intrusion or attack. The results
are displayed in Table 1, again showing average performance of the four compared
algorithms, under default and optimal parametrizations. StreamLeader com-
pares again fairly well against Clustream, Denstream and Clustree.

4 Conclusions

In this work we have introduced StreamLeader, a novel stream clustering algo-
rithm based on a simple structure gathering basic data statistics, fast enough and
sufficiently rich to perform effective stream clustering when combined with opera-
tions for noise elimination, cluster merging, removal and expansion. The algorithm
has been extensively tested against state-of-the-art methods within the MOA plat-
form, consistently outperforming them in cluster quality, and scaling remarkably
well due to its avoidance of off-line conventional clustering algorithms. As the next
step, we plan to introduce dynamic distribution cuts and horizons – dependent on
the current summarization of the stream–byusing adaptivewindowing techniques
[8] and integrating the new algorithm in MOA. In the medium term, the goal is to
migrate to theApacheSAMOA(ScalableAdvancedMassiveOnlineAnalysis)2 dis-
tributed streaming machine learning framework.
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Abstract. Community detection refers to extracting dense interacting
nodes or subgraphs that form relevant aggregation (aka, communities)
within networks. We present nine community detection methods based
on different approaches, and we compare them on the Girvan-Newman
community detection benchmark network. Two methods proposed by our
group using spectral graph theory and fuzzy clustering obtain the best
experimental results evaluated using the Omega Index.

1 Introduction

Networks are widely used to model various kinds of complex systems such as
the World Wide Web, Internet, gene regulatory networks, metabolic networks,
social networks, pathway networks, epistemological networks, gene regulatory
networks, protein interaction networks, metabolic networks, etc [1,20]. The art
of inferring the modular structures in networks is called community detection [7],
which refers to finding large subgraphs with high internal connection strengths
within nodes belonging to them, and sparse interaction between entities residing
in other subgraphs or communities. It is worth to note that a community can
provide a scalable way to identify functionally important or closely related classes
of nodes rather than analyzing data independently.

Many community detection methods have been proposed, but even if few
papers propose comparatives studies of their performances, the choice of the
more suited method is still an open problem. Most community detection methods
can be classified as “crisp” as they are able to detect not-overlapping communi-
ties only, while few of them can be categorized as “fuzzy” ass they are able to
detect overlapping communities. The ability of a community detection method
to detect overlapping communities let us identify nodes (e.g., proteins) partici-
pating with different strengths to different significant processes (e.g., pathways).

Work partially funded by a grant of the University of Genoa.

c© Springer International Publishing Switzerland 2016
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In this paper, we shall present the main characteristics of some state of art
community detection methods and of some proposed by our group and we will
compare their performances on a popular benchmark proposed by Girvan and
Newman [7].

2 Community Detection Methods in Networks

In this section we give a quick survey of the state of the art approaches for com-
munity detection in graphs that employ betweenness, modularity and spectral
clustering and two proposed by our group. We will denote the number of edge
as m, and the number of nodes (or vertices) as n; moreover, we will set in italic
the shortnames that we will use in the following sections to refer to the methods
listed here.

2.1 Betweenness Based Methods

Those methods are based on shortest path analysis, by exploiting the concept
of betweenness CB(e) of an edge e that is measured as the ratio between the
shortest path σst(e) linking each vertex pair (s, t) that pass through e and the
shortest path between these pairs σst [4]:

CB(e) =
∑

s,t∈V,s �=t

σst(e)
σst

, (1)

Betweenness can be computed for all vertices in time O(mn) and requires O(n+m)
space for a network with m edges and n vertices [4].

Girvan and Newman [14] proposed a crisp divisive method for community
detection based on progressive removal of edges. Edges to be eliminated are
chosen on the basis of the updated evaluation of betweenness scores after each
edge removal. This approach presents a main con as its complexity makes it
unfeasible in application to large networks.

2.2 Blondel’s Method

The Network Modularity Q [15] is defined as:

Q =
1

2m

∑

i,j

[
Aij − kikj

2m

]
δ(ci, cj) (2)

where Aij is the weight of edge linking vertices i and j, ki =
∑

j Aij is the degree
of vertex i, ci is the community to which node i is assigned, m = 1

2

∑
ij Aij , and

δ(ci, cj) is 1 if ci is the same as cj and 0 otherwise.
Network modularity Q is a scalar value ranging in the interval [−1, 1]. It gives

a measure of the strength of community structure in a network: High modularity
implies the existence of dense connections within communities and of sparse



218 H. Mahmoud et al.

links between them. Although modularity suffers a resolution limit specially in
case of detecting small communities, it does not require prior knowledge about
the number or sizes of communities, and it is capable of discovering network
partitions composed of communities having different sizes.

Blondel et al. proposed in [3] a crisp greedy method that often is considered as
the “reference” method. It implements an iterative optimization process aimed
to maximize the modularity Q in a small local community scale. After a partition
is identified, communities are replaced by their super-nodes. This approach leads
to hierarchical decomposition of the network. The computational time is O(m),
which makes it more scalable than other greedy approaches, but it may get stuck
in a local minima and then may not find a good optimum.

2.3 Eigenvector Based Method

An adjacency matrix of a graph is a square n×n matrix A describing the graph
(network) topology, such that A[i, j] is one when there is an edge from vertex i
to vertex j, and zero when there is no edge.

The leading eigenvector method, proposed by Newman et al. [17], is a crisp
method aimed to maximize the network modularity Q using eigenvalues and
eigenvectors derived from the adjacency matrix of the original graph. This
method obtains good results in case of graph bisection, while it is less accu-
rate with more than two communities. The algorithm converges in O(n2log(n))
time.

2.4 Cluster Overlap Newman-Girvan’s Algorithm

The Cluster Overlap Newman-Girvan’s Algorithm (CONGA) [9] is a fuzzy divi-
sive method that develops the Newman algorithm [17] that is able to detect over-
lapping communities. It splits the vertices linkages among clusters when their
betweenness exceeds the an assigned maximum edge betweenness threshold. The
complexity of this approach is O(m3) or O(n3) in case of sparse graphs.

2.5 Simulated Annealing Based Method

In [16] Nepusz proposed a fuzzy version of Newman’s approach that optimizes
the network modularity Q using the simulated annealing procedure. Nepusz
introduces the concept of node bridgeness b that quantifies the degree to which
a given vertex (or node) is shared among different clusters:

b(s) = 1 −
√

kσ2(U1...k(s)), (3)

where σ refers to the variance between node memberships U in k communities. If
a vertex s belongs to all the communities in the graph with equal probabilities,
then the variance evaluates to zero, which in turn gives a bridgeness score of
one. Then, the ideal bridges in the network will belong to multiple communities
with equal probabilities. Moreover, vertices with low degree and high bridgeness
usually correspond to outliers (nodes that do not have a dominant community).
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2.6 Spectral Clustering Based Methods

The degree matrix of a graph is a diagonal matrix which contains information
about the degree of each vertex that is the number of edges of each vertex.

Starting from the adjacency and the degree matrices, several matrices char-
acterizing the network properties are derived from them, such as the Laplacian
matrix, the normalized Laplacian matrix, the correlation matrix and others.

Spectral clustering based methods for community detection in networks apply
a central clustering technique (such as the K-Means) to data in a subspace
spanned by the first k eigenvectors of one of those derived matrices.

The direct application of central clustering techniques for communities detec-
tion in networks is biased to dense spherical clusters and then performs poorly
due to the complexity of most real-world networks. Instead, the spectral clus-
tering approach smartly exploits the Laplacian or related matrices to infer com-
plex network community structures. Moreover, an hypothesis behind spectral
approaches is that the eigenvector components corresponding to nodes in the
same community should be similar [6].

Another community detection method that we will evaluate in this paper is
a crisp spectral clustering method using the Shi and Malik spectral clustering
approach [19] based on the un-normalized Laplacian (Spectral-Shi).

Zhang [22] proposed a fuzzy approach for community detection that assumes
to know the number of communities in advance then use it to calculate the
eigenvectors.

In the following parts of this subsection we shall sketch some methods for
community detection in networks, proposed by our group, that exploit:

– The maximization of modularity procedure by Neuman and Girvan in [15];
– The spectral theory for data clustering (in particular we used the approach

by Ng et al. [18] based on the normalized Laplacian);
– Central clustering techniques, both fuzzy and possibilistic [2,12].

The Fuzzy c-means Spectral clustering Modularity (or FSM) is a fuzzy com-
munity detection method introduced in [13] that applies the following three
improvements to the original Ng et al. [18] spectral clustering algorithm, when
used to detect communities in networks:

1. First of all, the estimation of the number of clusters say k is performed using
the maximization of modularity procedure depicted by Neuman and Girvan
in [15]; the estimated number of clusters is applied both for selecting the top
eigenvectors of the Laplacian matrix, and for setting the number of clusters
for the central clustering algorithm.

2. Then, the clustering in the affine subspace spanned by the first k eigenvectors
is performed with the application of the Fuzzy C-Means (FCM) clustering
algorithm [2] instead of K-Means (used in [18]).

3. After FCM, we apply an α-cut to remove nodes with low membership and to
discover communities below an assigned threshold α that can be evaluated
as:

α =
η

l
, (4)
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where l is the number of expected clusters. The parameter η (with 0 < η ≤
1) is a tuning term controlling the number of simultaneous communities to
which a single node can be attributed. When η = 1, each node can belong to
one community only, whereas for η → 0 each node will be attributed to all
communities.

We also proposed also the Possibilistic c-means Spectral clustering Modu-
larity (PSM) [13] that is a fuzzy community detection method that is variation
of the FSM, employing the Possibilistic C-Means (PCM) [12] as the clustering
algorithm. This approach allows us to overcome the problem of sensibility to
outlier.

3 Experimental Comparison

3.1 Girvan-Newman’s Benchmark

Various versions of the planted �-partition model [8] are used in the literature as
reference benchmarks in network research. In this model one “plants” a partition,
consisting of a certain number of groups of nodes. Each node has a probability pin
of being connected to nodes of its group and a probability pout of being connected
to nodes of different groups. As long as pin > pout the groups are communities,
whereas when pin ≤ pout the network is essentially a random graph, without
community structure.

In [7,8] Girvan and Newman proposed a version of �-partition model (GN
benchmark). This model consists of 128 nodes, each of them with expected degree
16, which are divided into four groups of 32 nodes each. The GN benchmark
is often used to test algorithms for community detection, even if it shows two
drawbacks: (1) All nodes have the same expected degree; (2) All communities
have equal size. These features are unrealistic as complex networks are known
to be characterized by heterogeneous distributions of degree and community
sizes. This implies that pin +3pout � 1

2 , so the probabilities pin and pout are not
independent parameters. Hence the internal degree is given by kin = pin(g−1) =
31pin and the external degree kout is given by: kout = poutg(� − 1) = 96pout. For
evaluating a community detection method one can increase kout (reduce the
strength of community structure), then regenerate the benchmark and check the
method accuracy compared to the generated ground truth.

The literature reports that most of the methods degrade when kout
approaches 6 and may fail at kout = 8 [7] due to the weakness of community
structure.

3.2 Omega Index

The Omega Index [5] is an extension of the Adjusted Rand Index (ARI) [10]. We
say that a pair of nodes is considered to be in agreement if they are clustered
in exactly the same number of communities. Let K1 and K2 be the number of
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communities in partitions C1 and C2, respectively, the Unadjusted Omega Index
ωu is defined as:

ωu(C1, C2) =
2

n(n − 1)

max(K1,K2)∑

j=0

|tj(C1) ∩ tj(C2)|, (5)

and the Expected Omega Index ωe is:

ωe(C1, C2) =
(

2
n(n − 1)

)2 max(K1,K2)∑

j=0

|tj(C1)| · |tj(C2)|, (6)

where n(n − 1)/2 is the number of node pairs and tj(C) is the set pairs that
appear exactly j times in a partition c. The Omega Index is then defined as:

ω(C1, C2) =
ωu(C1, C2) − ωe(C1, C2)

1 − ωe(C1, C2)
. (7)

Note that the subtraction of the expected value takes into account agreements
resulting from chance alone. The Omega Index ranges in the interval [0, 1]. The
best matching between the two partitions happens for ω = 1. When there is no
overlap among communities, the Omega Index reduces to the ARI.

Fig. 1. Comparison of 9 community detection methods on the GN benchmark. The
graph reports the value of the fuzzy Omega Index versus the value of kout.
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3.3 Results and Discussion

In the experiments reported in this section we varied kout from 1 to 10. Figure 1
reports the comparison of the community detection methods presented in Sect. 2
on the GN benchmark with kout varying from 1 to 10. The graph reports the
value of the fuzzy Omega Index versus the value of kout [7,9,21].

The proposed PSM as well as FSM methods show high partition similarity
values (generally approaching 1 when kout < 6) compared to the other methods.
Note that most community detection methods give reasonable communities and
as a consequence obtain a high partition similarity in GN benchmark when kout
is less than 6. This is a well known characteristic of GN benchmark in the
literature [7] because the community structure becomes vague for values of kout
larger than this value. As long as kout increases the community structure becomes
weaker and only a few methods can infer the communities in this settings: among
them PSM and FSM that reported high values compared to other methods even
when increasing kout.

We note that, while many community detection methods obtained noisy
results varying from the GN benchmark, the proposed methods inferred node
assignment similar to the GN benchmark. Moreover, we highlight that the New-
man’s edge betweenness community detection method [14] is not meaningful on
large subgraphs because the random null model underlying modularity becomes
unreasonable. We remark also that the proposed methods FSM and PSM are
more accurate than Nepusz [16] that may miss some nodes and fail to assign
them to their correct community (it considers them outliers), and the proposed
methods get a reasonable number of communities by using modularity maxi-
mization in spectral space, unlike the divisive approaches like Newman leading
eigenvector.

We extended our study on more complex networks using the LFR bench-
mark illustrated in [7]. We tested the community detection methods on graphs
of size 5000 and even 10000 nodes. We found that some methods halted spe-
cially the fuzzy methods such as CONGA. Moreover, the crisp methods like
Nepusz [16], Zhang [22], and Blondel et al. [3] could not detect the fuzziness in
the network, while FSM, and PSM obtained fuzzy communities in a reasonable
time (in average 4 min for 10000 nodes network using a laptop with 2.00 GHz
dual-core processor and 2 GB of Ram).

We conclude that the proposed FSM and PSM methods have the follow-
ing characteristics compared to the other methods discussed in this paper: (1)
Unlike Nepsuz method for instance, due to employing spectral clustering that is
capable characterizing complex graphs, the proposed methods could infer com-
munities efficiently in complex networks, (2) Unlike many spectral based commu-
nity detection methods such as the Spectral-Shi method, the proposed methods
does not require assigning number of clusters (k) and we infer k automatically
using the modularity maximization procedure, (3) Unlike the crisp methods like
Nepusz [16], Zhang [22], and Blondel, the proposed methods could infer overlap-
ping communities efficiently due to employing Fuzzy C-Means in FSM method,
and Possiblistic C-Means in PSM method. We note that PSM overcomes the
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limitation FSM in case of outliers detection, (4) Unlike some fuzzy methods such
as CONGA, the proposed FSM, and PSM infered the fuzzy communities effi-
ciently in reasonable time. Moreover, the proposed methods regardless of many
overlapping approaches exist in the literature [7,9,21] infers the significance of
each node in the detected fuzzy communizes.

4 Conclusions

In this paper we presented nine community detection methods following different
approaches, and compared them on the Girvan-Newman community detection
benchmark network. The Fuzzy c-means Spectral clustering Modularity FSM
and the Possibilistic c-means Spectral clustering Modularity PSM proposed by
our group using spectral graph theory and fuzzy clustering obtained the best
results evaluated using the Omega Index.

The PSM and FSM methods by our group inferred the fuzzy communities
efficiently using the LFR overlapping benchmark regardless of the crisp meth-
ods. Moreover, they characterized complex networks in a reasonable time (in
average 4 minutes for 10000 nodes network) regardless of many methods such as
COGNA that halted on such large networks. Unlike many community detection
methods, the proposed methods do not require apriori information about the
number of communities in advance and they support characterizing the signifi-
cance of the detected communities.
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Abstract. In this paper, a robust optimisation approach is introduced for
parameterising a thalamic neural mass model that simulates brain oscillations
such as observed in electroencephalogram and local field potentials. In a pre-
vious work, the model was informed by physiological attributes of the Lateral
Geniculate Nucleus in mammals and rodents; the synaptic connectivity
parameters in the model were set manually by trial and error to oscillate within
the alpha band (8–13 Hz). However, such manual techniques constrain mod-
elling approaches involving a larger parameter space, for example towards
exploring alternative parameter sets that may underlie similar brain states under
different environmental conditions and owing to inter-individual differences. In
this work, we implement a robust optimisation technique that is based on
single-objective Genetic Algorithms, and incorporate newly devised objective
and penalty functions for tackling the stochastic nature of the model input.
Furthermore, a clustering algorithm is employed to identify robust and distinct
parameter regions that will mimic spontaneous changes in thalamic circuit
parameters under similar brain states due to environmental and inter-individual
differences. The results from our study suggest that multiple robust and distinct
parameter regions indeed exist, and the model shows consistent dominant fre-
quency of oscillation within the alpha band corresponding to all of these
identified parameter sets.

Keywords: Neural mass models � Parameterisation � Robust optimization �
Clustering

1 Introduction

Neural mass computational models of the thalamocortical brain circuitry are often used
in current times to mimic the meso-scale neuronal population behaviour such as
observed in electroencephalogram (EEG) and local field potentials (LFP) [1, 2]. The
approach is based on physiological evidence of the fundamental role of feed-forward
and – back connections between the thalamus and the cortex in generating and sus-
taining brain oscillations, also referred to as ‘brain rhythms’. However, the main
constraint in current times is the huge parameter space of these models; most of the
model-based studies tune parameters by trial-and-error method [3, 4], that produce a
huge computational constraint in terms of time and efficiency. At the same time,
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biological plausibility of the parameter space is desirable to correlate model-based
findings with physiological attributes, thus adding to model validation [5] as well as to
the translational value of the research.

The inherent nature of thalamocortical oscillations is highly non-linear and
stochastic. Thus, it will not be too far removed to hypothesise that the neuronal and
synaptic parameters and attributes are in a constant state of change that may be major in
the case of brain state changes such as from wakefulness to sleep; while local fluc-
tuations within an ‘acceptable upper and lower bounds’ may underlie similar brain
states under different environmental conditions. In fact, it may be hypothesised that
minor variations in parameter values corresponding to similar brain states may underlie
the well-known inter-individual differences observed in EEG. Towards this, our aim in
this work is to use a biologically inspired optimisation algorithm for parameterising a
neural mass model so that it oscillates with a dominant frequency within the EEG alpha
band (8–13 Hz).

Alpha rhythms are a prominent feature of the EEG occipital scalp electrode (the
seat of the visual cortex) when a subject is in a relaxed but awake state with eyes
closed. Furthermore, these oscillations are believed to be crucial for both conditions of
visual attention and perception as well as for diminished cognition [6]. More impor-
tantly, alpha band alterations often serve as EEG biomarkers in several disease con-
ditions; for example longitudinal EEG studies show a shift of peak frequency within
the alpha band (commonly known as ‘slowing’) as a definitive marker of Alzheimer’s
disease (AD) [3]. For the research presented here, we study the neural mass compu-
tational model of the thalamo-cortico-thalamic (TCT) circuitry in [3, 4], originally used
to simulate alpha rhythm slowing in AD. The visual pathway is by far the most widely
studied thalamocortical pathway in experimental research [7]. Thus, the parameteri-
sation of the thalamic module in the TCT model has been based on physiological data
on the synaptic structure and connectivities in the Lateral Geniculate Nucleus (LGN) of
mammalian and rodent brains [8]. It may be noted that most computational models of
the thalamocortical circuitry ignore the feedforward inhibition to the thalamocortical
relay cells from the thalamic interneurons. This in spite the interneurons of the LGN
receiving around 47 % of their inputs from the retinal spiking neurons [3]. Further-
more, research suggest that the interneurons play a dominant role in efficient infor-
mation transmission from the retina to the cortex [9]. To the best of our knowledge, the
thalamic module in [4] looks into integrating thalamic inhibitory interneurons for the
first time in neural mass models of the thalamocortical circuitry. For brevity in this
work, we ignore the cortical module of the TCT model and focus on optimising the
parameter space of the thalamic module in the model. Hereafter in this work, we refer
to the de-corticated thalamic module as the ‘thalamic model’.

Several optimisation approaches has been adopted for parameterising neural mass
models [11–15], among which Genetic Algorithms (GAs) represent a promising tech-
nique for parameterising neural mass models [13–15]. Compared to the manual fitting or
least squares mean method [11], and methods based on Kalman filters [12], GAs offer the
capability to capture different features of the observed EEG recordings in both frequency
and time domains [13]. Owing to GAs’ flexible framework and population-based search
strategy, multi-objective GAs has been adopted to simultaneously capture different fitting
requirements [15] rather than aggregating various features into a single objective [14].
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The parameterisation approach proposed in this work is based on single-objective
GAs [16] incorporating more recent concepts in robust optimisation [17, 18], and a
clustering algorithm [19]. The novelty of this paper lies in a set of newly devised
objective and penalty functions in order to tackle the stochastic nature of the extrinsic
inputs. The clustering algorithm is used to identify several potential regions that are
responsible for generating alpha rhythms. This systematic approach facilitates a more
rigorous search of the wider parameter space under conditions of uncertainties intro-
duced by stochastic extrinsic model inputs, as well as by minor variations in parameter
values (that simulate environmental and inter-individual differences in the model); which
cannot otherwise be explored in a trial-and-error or standard optimisation approach.

In Sect. 2, we present an overview of the thalamic neural mass model and the
proposed robust optimisation algorithm that is used for the model parameter search.
Results are presented in Sect. 3. We conclude with a brief discussion in Sect. 4.

2 Materials and Methods

2.1 The Thalamicl Neural Mass Model

The thalamic model is defined in (1) – (5), and consists of three cell populations:
Thalamocortical Relay cells (TCR), Interneurons (IN) and Thalamic Reticular Nucleus
(TRN).

TRN : €y1 ¼ a1HeS Ctreyr þCtpey4 � Ctiiy2 � Ctniy3
� �� 2a1 _y1 � a21y1 ð1Þ

IN : €y2 ¼ b1HiS Cireyr þCipey4 � Cisiy2
� �� 2b1 _y2 � b21y2 ð2Þ

TRN : y3
:: ¼ b1HiS Cntey1 þCnpey4 � Cnsiy3

� �� 2b1 _y3 � b21y3 ð3Þ

Retinal : yr
:: ¼ a1HeP1ðtÞ � 2a1 _yr � a21yr ð4Þ

Sigmoid Function : S wð Þ ¼ 2e0
1þ etðs0�wÞ ð5Þ

He=i is the strength of the excitatory eð Þ or inhibitory ið Þ post-synaptic-potential
(PSP); a1 (b1) is the inverse of the time constant of the excitatory (inhibitory) PSP;
P1ðtÞ is simulated by a Gaussian white noise and represents the background firing
activity of the retinal ganglion cells in the condition of eyes-closed, i.e. no sensory
input; and SðwÞ is a sigmoid function, where e0 is the maximum firing rate of a
neuronal population, s0 is the resting membrane potential and v is the sigmoid steep-
ness parameter; Cxyz are synaptic connectivity parameters with x representing the
afferent population, y representing the efferent population and z representing either an
excitatory or inhibitory synapse, and are defined in Table 1. (The reader may please
refer to [10] for the other parameter values used in the Equations).
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2.2 Simulation and Signal Processing Methods

Model simulation is implemented using the 4th order Runge-Kutta ODE solver within
the Simulink® environment in Matlab®. The total simulation time is 30 s at a sampling
rate of 250 Hz. Each output vector thus obtained is bandpass filtered with a Butter-
worth filter of order 10 with a lower and upper cut-off frequencies of 3 and 50 Hz
respectively. The power spectral density analysis (PSDA) defined in (6) is performed in
Matlab® using a Welch periodogram, with a Hamming window of segment length
consisting of 125 data points and overlap of 50 %. For computational purpose, the
output of the thalamic module generated in Simulink® (simmodel) is passed through
the PSDA (see (6)). The outputs of the PSDA are two vectors: (a) the power density p,
and (b) its corresponding frequencies frq. The relative power RP is the normalised
value of p with respect to the mean power and is computed using (7).

p; frqð Þ ¼ PSDAðsimmodel Cxyz
� �Þ ð6Þ

RP ¼ p:=mean pð Þ ð7Þ

2.3 Problem Description

Our objective in this work is to perform a rigorous search for the suitable values of Cxyz

such that the model output dominant frequency lies within the alpha band (8 – 13 Hz).
We expect that such an approach will provide us with a set of basal values for the
connectivity parameter set Cxyz in the model. Towards this, we apply a standard search
strategy using a single-objective GA.

In this case, Cxyz are encoded as real values. The search space of Cxyz is created
using ±30 % across the basal values. The only exception is made for Ctre, which is
varied ±15 % due to its relatively smaller value. In order to have the overall power
content within the alpha band, the standard GA searches for the maximum power jmxj
such that its corresponding frequency frqmx lies within the alpha band. jmxj and frqmx
are computed using (8). As the standard GA minimises the objective function, a minus
sign is included in (8) for maximising jmxj:

Table 1. Basal values for the synaptic connectivity parameters used in (1)–(3). The
Thalamo-Cortical connectivity parameter is a constant and is sourced from [8] as in prior [3, 4].

Module Afferent (to) Efferent (from) Connectivity parameter Value

TCR Retinal Ctre 7.1
IN Ctii 15.45
TRN Ctni 15.45

Thalamic IN Retina Cire 47.4
IN Cisi 23.6

TRN TCR Cnte 35
TRN Cnsi 15
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mx; frqmxð Þ ¼ ð�max RPð ÞÞ ð8Þ

The objective function FP1 defined in (9) penalises the situation when mxj j is
outside of the alpha band.

FP1 ¼
mx if 8 � frqmx � 13

mx
1:5þ 8�frqmxj j if frqmx \ 8

mx
1:5þ 13�frqmxj j if frqmx [ 13

8<
: ð9Þ

As shown in Fig. 1, the search process stagnates as variations in the extrinsic input
is changing the objective landscape of FP1, leading to an entirely new search process
for every generation of the GA. Thus, we observe that the standard optimisation
algorithm fails, which may be attributed to the stochastic nature of the extrinsic input to
the model.

In light of this and drawn upon more recent concepts in robust optimisation, an
improved robust parameterising approach is proposed in Sect. 2.4 to address the
stochastic issue due to the extrinsic input, and to identify reliable regions to account for
small variation in Cxyz (e.g. due to environmental/inter-individual differences).

2.4 A Robust Evolutionary Optimisation Approach for Parameterising
Cxyz

Here, ‘robustness’ is defined as the likelihood of jmxj within the alpha band given a
certain set of Cxyz. To enhance the robustness of the chosen Cxyz, two revised objective
functions based on (9) are introduced, followed by a clustering algorithm and finally
the overall parameterising framework.

Fig. 1. The evolutionary curve of the GA using FP1.
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Revised Objective Functions Considering External Uncertainty. FP2 is defined in
(10) as the averaged power spectra peak calculated over n randomly generated extrinsic
inputs to take into account the stochastic nature of the extrinsic inputs. Here, n = 35
and is an empirical number derived from the experiment.

FP2 ¼
Xn

i¼1
FP1i=n ð10Þ

Compared with (9) which maximises the peak with respect to only one fixed
Gaussian white noise, the effect of (10) is to maximise the robustness indirectly. To
directly maximise robustness, a counter which calculates how many times |mx| is
located outside of the alpha band is defined in (11). FP3 is further developed in (12) to
take into account robustness and FP2 so that the constraint devised as the penalty
function in (9) is also incorporated.

cr ¼
Xn

i¼1
counterðiÞ ð11Þ

counterðiÞ ¼ 0 if 8� frqmxðiÞ� 13
1 otherwise

�

FP3 ¼ crþ 1=jFP2j ð12Þ

Clustering and Robust Regions Considering Minor Variations in Parameter
Values. As discussed in Sect. 1, instead of a fixed set of Cxyz, it often makes more
sense to have robust regions which can accommodate small variations in Cxyz: To this
aim, solutions from each generation of the search will be filtered through a predefined
threshold based on their objective values. The collection of filtered solutions represent
the solution set to Cxyz. An evolutionary clustering algorithm-G3Kmeans [19] is then
applied to group these solutions. G3Kmeans is the hybridisation of the GA [19] and the
K-means algorithm, resulting in a less sensitive clustering to the initial settings. To
identify the number of clusters, subtractive clustering in Matlab® is first applied with
the cluster radii set to the default value of 0.5.

The obtained clusters after G3Kmeans provide the upper and lower bounds for each
region. To further investigate whether these regions are robust for all possible Cxyz

within them, m random Cxyz within the identified bounds are sampled. The robustness
RG of each region is then computed using (13), where, cr is defined in (11).

RG ¼
Pm

j¼1 crj
m

ð13Þ

The Overall Robust Parameterising Framework. The overall robust parameterising
framework is outlined in Fig. 2. In Line 1, Cxyz are encoded as real values. In Line 3, the
GA calls one of the objective functions defined in (10) and (12). The collected cxyz
solutions from the GA will then be passed to the clustering algorithms (Lines 6–8). RG
will then be calculated for each of these regions to evaluate their robustness (Lines 9–10).
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3 Results

3.1 Performances of the Robust Optimisation Approach

The experiments for the proposed robust optimisation approach are implemented using
the GA toolbox in MATLAB®. To derive statistically reliable results, the experiments
were carried out 10 times respectively for FP2 and FP3, with 25 generations and the
population size of 10. Other parameters are set as default. The evolutionary curves of
the robust optimisation approach using FP2 and FP3 are illustrated in Fig. 3 (a) and
(b) respectively. A significant improvement and better convergence in terms of the
mean fitness were achieved compared to the one using FP1. Furthermore, Fig. 3
(b) shows that FP3 leads to better convergence than FP2 due to the direct optimisation
of the robustness. Therefore, the results reported in the following text are based on
FP3. It is worth noting that the negative signs in Figs. 1 and 3 (a) are due to the reason
mentioned in Sect. 2.3.

3.2 The Identified Regions Using Clustering

Following Line 6 in Fig. 2, 260 solutions (CxyzÞ obtained from the robust optimisation
approach are collected. Subtractive clustering indicates there are 3 clusters representing
three potential regions (R1–R3). Figure 4 (a) shows these regions and their centres after
G3Kmeans clustering using the dimensions Cnsi, Ctre and Cnte:

Fig. 2. The overall robust parameterising framework.

Fig. 3. The evolutionary curves of the GA using (a) FP2 and (b) FP3.
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3.3 Robustness of the Identified Regions

To further investigate robustness of the regions identified in Sect. 3.2, their corre-
sponding RG is calculated using (13) following Lines 9–10 in Fig. 2, with m ¼ 50. For
comparison purpose, m ¼ 40 are used for the basal values. Table 2 summarises the
comparison results based on the basal values (BV) and the identified regions using
FP3. Results indicate that the identified regions are robust not only at solutions
obtained using FP3 (e.g. R1 via FP3), but also at randomly generated solutions within
these regions (e.g. Random R1). Results also reveal that multiple robust regions may
exist, which are more robust than the region around the basal values.

In Fig. 4 (b)-(g), Cxyz are randomly generated from R1 via FP3, Random R1, BV,
�10% across BV and those outside of any identified regions, and their corresponding
power spectrum are plotted. Figure 4 (b)-(c) show that the aim of maximising the
likelihood of |mx| towards the alpha band is achieved. Indeed, the resulted dominant

Table 2. Comparison of robustness of the synaptic connectivity parameter sets Cxyz:

Fig. 4. (a) Three potential regions identified using the revised objective function FP3; (b)-(g)
The power spectrum corresponding to different Cxyz within different regions
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frequency is consistently within the upper-alpha band which is in line with the EEG of a
young healthy adult. This conclusion holds true for R2 and R3 although they are not
included here for brevity. Figure 4 (d)-(e) and (g) show that the maximum power content
is frequently (up to 40 %) below the alpha band. For Cxyz outside of any identified
regions, the chance of below the alpha band (as shown in Fig. 4 (f)) is up to 30 %.

4 Conclusion

In this paper, a robust parameterising approach is proposed to obtain robust sets of
synaptic connectivity parameters of a thalamic neural mass model. The approach
combines a single-objective GA and a clustering algorithm with a set of newly devised
objective and penalty functions. The proposed method is able to address issues due to
extrinsic uncertainty, as well as minor variations in parameters due to environmental or
inter-individual differences. Preliminary results suggested that multiple robust regions
exist, which are distinct from the suggested basal values.

This preliminary work opens several directions worth further investigation: (a) in-
vestigation of the biological meanings associated with the identified robust regions
through fitting the thalamic model to the EEG recordings; (b) currently, the identified
robust regions are for alpha rhythms; the same robust optimisation procedure can be
carried out for the adjacent rhythms, such as beta rhythms to investigate if there is any
transitional behaviour in the synaptic connectivity parameters; and (c) extending the
work to the TCT model [3, 4] and include more parameters, such as the variance of the
extrinsic input.
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Abstract. In the last years the concept of data depth has been increas-
ingly used in Statistics as a center-outward ordering of sample points in
multivariate data sets. Data depth has been recently extended to func-
tional data. In this paper we propose a new intrinsic functional data
depth based on the representation of functional data on Reproducing
Kernel Hilbert Spaces, and test its performance against a number of well
known alternatives in the problem of functional outlier detection.

Keywords: Kernel depth · Functional data analysis · Reproducing
Kernel Hilbert Spaces · Outlier detection

1 Introduction and Review of Depth Measures
for Functional Data

The concept of data depth in the multivariate framework constitutes an exten-
sion of the univariate concept of order and introduces a center-outward ordering
of a multivariate data set. According to [6] a depth function defines a measure
of the degree of ‘centrality’ or ‘outlyingness’ of a point in a multivariate data
set given an underlying distribution. In [2,4,5,7] the authors define functional
data depths measures from the original plain representation {(xi, yi)} of the data
points (i.e. curves):

Consider a data set X = {x1, . . . , xn} ⊂ R
d. When d = 1 the degree of

centrality of a given point xi with respect to a probability distribution can be
defined by ranking all the values from the smallest to the largest and compute
the Euclidean distance to the median. In the multivariate case (d ≥ 2), we first
define the deepest (central) point of the distribution/data set and the degree
of centrality is given by ranking the distances of the data points to the deepest
point (depth functions). Thus, depth measures compute how deep is a point with
respect to a distribution/data set [6,13].

Depth can be extended to functional data in several ways. For a sample of n
curves, the modified band depth (MBD) method [7] considers ‘bands’ defined for
combinations of 2, 3, . . . up to n curves, and accounts for the proportion of ‘x’
axis coordinate that a curve cl is contained in the band (depth index). Hence, the
depth of cl is defined as the average of the depth index for all the possible bands.

c© Springer International Publishing Switzerland 2016
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The deepest curve is the curve with the maximum depth. Figure 1 illustrates the
idea for a band defined by three curves.

The Fraiman and Muniz depth (FMD) measures the conditional quantile
on all points. In particular when working with curves it measures how long a
curve remains in the middle of a sample of curves (in the distributional sense
described in [5]). The random Tukey depth (RTD) [4], is a random approximation
of the Tukey depth or halfspace depth. It considers all possible one-dimensional
projections of the curves using the halfspace depth. The functional spatial depth
(FSD) [2] is the extension of the spatial depth from R

d into infinite-dimensional
spaces, and computes the spatial median based on the notion of spatial quantile.

Fig. 1. Depth index for cl =
a + b

L
and a band defined by three curves.

Nevertheless, the core idea of functional data analysis (FDA) is to consider
functional data as points in a function space, as a previous step to the projection
of such functions onto a finite dimensional Euclidean space. This process neces-
sarily involves obtaining new representations for functional data, which can be
achieved by using basis of functions [11] or kernel methods, as we will describe
in Sect. 2.

In this paper we want to test if the performance of statistical functional
measures (such as depth) is preserved or enhanced when we work with nontriv-
ial functional representations of functional data (as opposed to the measures
defined on the plain representation of data). Thus we propose a kernel depth
measure that will use the FDA coordinates instead of the plain curve represen-
tations. Because depth induces a center-outward ordering of multivariate data
sets/curves, a natural problem to test the utility of different depth definitions is
outlier detection.

The rest of the paper is organized as follows: We present a kernel depth
measure for functional data in Sect. 2. In Sect. 3 we show the performance of the
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proposed depth measure applied to the outlier detection task considering three
experiments. The conclusions and future research ideas are presented in Sect. 4.

2 K-depth Measures for Functional Data

We start from an available set of sample curves {ĉ1, . . . , ĉm}, where ĉl ≡
{(xil,yil) ∈ X × Y }n

i=1, where X is a compact subset of IRn and, in most cases,
Y = IR. We can assume that the x′

is are common for all the curves, and that
for each ĉl, exists a continuous function cl : X −→ Y such that E[yl|x] = cl(x)
(with respect to a given probability measure).

These functions are the functional data curves and can be considered as
points in some functional space. We will project these points onto some finite-
dimensional function subspace, in our case, a Reproducing Kernel Hilbert Space
(RKHS), HK , generated by a Mercer kernel K. Consider the integral opera-
tor TK defined by TK(f) =

∫
X

K(·, s)f(s)ds. TK has a countable sequence of
eigenvalues {λj} and (orthonormal) eigenfunctions {φj} and K can be expressed
as K(x, y) =

∑
j λjφj(x)φj(y) where the convergence is absolute and uniform

(Mercer theorem).
Given a function f in a function space containing HK , it will be projected

onto HK using the operator TK . By the Spectral Theorem, the projection f∗ =
TK(f) ∈ HK takes the form f∗ = TK(f) =

∑
j λj〈f, φj〉φj . To determine the

〈f, φj〉 coefficients, we solve the Support Vector Machine (SVM) regularization
problem:

arg min
c∈HK

1
n

n∑

i=1

L(yi, c(xi)) + γ‖c‖2K ,

where γ > 0, ‖c‖K is the norm of the function c in HK , yi = ĉi and L(yi, c(xi)) =
(|c(xi) − yi| − ε)+, ε ≥ 0.

The Representer theorem (see [3]) states that the solution to this optimization
problem is given by c∗

l (x) =
∑n

i=1 αilK(xi,x), ∀x ∈ X, where αil ∈ IR are the
Lagrange multipliers associated to the support vectors.

Let cl be a curve, whose sample version is ĉl ≡ {(xil, yil) ∈ X × Y }n
i=1.

Consider the functional representation for cl given by λ∗
l = (λ∗

1l, . . . , λ
∗
dl), where

λ∗
jl =

n∑

i=1

λ̂jαilφ̂ji, (1)

αil are given by the solution of the SVM (see [9]), λ̂j is the eigenvalue cor-
responding to the eigenvector φ̂j of the matrix KS = (K(xi,xj))i,j , and
d = min(n, r(KS)).

Now f∗ = TK(f) =
∑

j λj〈f, φj〉φj =
∑

j λ∗
jφj � ∑

j

(
λ̂j

∑n
i=1 αiφ̂ji

)
φj

and
∑n

i=1 αiφ̂ji � 〈f, φj〉, (see [10] for details).

Definition 1. K-deepest point. Given a set of sample functional data
{ĉ1, . . . , ĉm} and the corresponding HK-representations λ∗

l ≡ (λ∗
1l, . . . , λ

∗
dl), we
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define the K-deepest functional data point as the multivariate median of the
d-dimensional functional data points, computed as the vector of the coordinate-
wise medians in IRd: P∗ = (p∗

1, . . . , p
∗
d), where p∗

i = median{λ∗
il}.

Definition 2. Kernel Depth. Given the d-dimensional K-deepest point P∗,
the Kernel depth from a functional data point ĉl to P∗ is defined as the Maha-
lanobis distance between the HK-representation of ĉl and P∗:

DK(ĉl,P∗) = 1/[(λ∗
l − P∗)T Σ−1

λ∗ (λ∗
l − P∗)]−1/2 (2)

where Σ−1
λ∗ is the inverse of covariance matrix of the functional data set (com-

puted from its HK-representation).

3 Experimental Work

In this section we will test the performance of the proposed kernel depth on the
task of functional outlier detection, for a set of simulated curves, and for two
real functional data sets. Unlike the case of multivariate data, now we can also
have shape outliers, that is, curves which are not far away from the bulk of data,
but they present a different shape [8]. To empirically test the independence
of the measure with respect to the kernel we choose three different and typi-
cal kernel functions, namely: (i) Gaussian kernel KG(xi, xj) = e−σ‖xi−xj‖2

; (ii)
polynomial kernel Kp(xi, xj) = (a〈xi, xj〉 + b)d; (iii) spline kernel Ks(xi, xj) =∏D

d=1 1 + xixj + xixjmin(xi, xj) − xi+xj

2 min(xi, xj)2 + xi+xj

3 min(xi, xj)3. All
the parameters, including the penalization coefficient γ of the SVM regulariza-
tion problem (to obtain the HK representations) were defined through cross-
validation.

Artificial data set. We simulate 100 curves, 95 drawn from the same popula-
tion given by the distribution of the coefficients ai plus 5 curves with a different
parametrization in the role of outlying curves. The shape of the two types of
curves are different as can be appreciated in Fig. 2:

fi(xt) = ai + 0.05t + sin(πx2
t ), i = 1, . . . 95,

fo
i (xt) = bi + 0.05t + cos(20πxt), i = 96, . . . 100, (outlying curves)

where xt =
t

500
∈ [0, 1], t = 1, . . . , 500, ai ∼ N(μa = 5, σa = 4), bi ∼ N(μb =

5, σb = 3).
The kernel parameters used are σ = 500 for the the Gaussian kernel and

a = 1, b = 1, d = 10 for the polynomial kernel. The penalization coefficient
of the SVM regularization problem is γ = 10−7, and the trimmed mean for the
depth measures (MBD, FMD, RTD, FSD) is α = 0.5. The results are summarized
in Table 1. The kernel depth is able to detect exactly the five outlying curves.
The ‘non kernel’ techniques fail to capture any of the true outliers. Moreover
in Fig. 3 are illustrated the two first projections of the curves onto a functional
space. Throughout this representation the data can be perfectly discriminated
(down-red points).
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Fig. 2. Artificial data set. The five waved curves are the outliers, and the black line is
the deepest curve.

Fig. 3. RKHS projections. Main popula-
tion (up-black dots), the outlying curves
(down-red dots) and the deepest curve (up-
blue triangle). (Color figure online)

Table 1. Number of outliers, false-
positive and false-negative identifica-
tions.

Measure True False- False-

different positive negative

outliers

MBD 0 5 5

FMD 0 5 5

RTD 0 5 5

FSD 0 5 5

KG 5 0 0

Kp 5 0 0

Ks 5 0 0

3.1 Real Data Experiment

Berkeley Growth Study data. We consider the Berkeley Growth Study data,
that contain the heights of 39 boys and 54 girls from age 1 to 18 and the ages at
which they were collected, (see [11]). First we consider all the boys (main data)
and contaminate them with 5 randomly selected girls (the ‘outlying’ curves).
This procedure was repeated 100 times so we obtain 100 random samples con-
taminated with outliers. Next we consider the opposite case, taking the girls as
the main data contaminate them with groups of 5 randomly selected boys as
‘outlying’ data.

The kernel parameters used are σ = 70 for the the Gaussian kernel and
a = 1, b = 1, d = 2 for the polynomial kernel. The penalization coefficient
of the SVM regularization problem is γ = 10−6, and the trimmed mean for the
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depth measures (MBD, FMD, RTD, FSD) is α = 0.5. The results are presented in
Table 2. Again the kernel depth obtains the best results in detecting the outliers
in both cases.

Table 2. Mean and standard deviation (in parentheses) of the proportion of correctly
identified outliers, for n = 100.

Measures KG Ks Kp MBD FMD RTD FSD

Main data: 0,262 0,262 0,654 0,178 0,148 0,204 0,212

Boys (0,1698) (0,1698) (0,1553) (0,1630) (0,1466) (0,1582) (0,1677)

Main data: 0,308 0,308 0,514 0,11 0,158 0,180 0,164

Girls (0,122) (0,122) (0,1456) (0,1077) (0,1342) (0,1645) (0,1114)

Australia mortality rates. Here we consider age-specific mortality rates for
Australian males for 1901–2003, in logarithmic scale, which is publicly available
in the R package ‘fds’ [12]. In this experiment we do not know a priori if there is
an outlying curve, so we define as outlier the curve that satisfies that Pr(DK <
C) = 0.01, where C is the inverse of the empirical distribution function of DK

evaluated at x = 0.01, C = F−1
DK

(x = 0.01).
In a previous work [1], the authors identified a ‘shape’ outlier, corresponding

to the mortality rate of the year 1919. The aim of this experiment is to demon-
strate that kernel depths are also able to detect this type of outliers. The kernel
parameters used are σ = 0.01 for the the Gaussian kernel and a = 1, b = 1, d = 2
for the polynomial kernel. The penalization coefficient of the SVM regulariza-
tion problem is γ = 0.015 (except for the case of polynomial kernel where the γ
considered was 1).

Fig. 4. Observed curves and outliers detected. K-depth outliers: year 1919 in red (dash-
dotted line), year 2003 in black (dashed line) and the deepest curve year 1962 (left
panel). RKHS projections and outliers detected year 1919 (red triangle), year 2003
(black triangle) and the deepest point year 1962 (right panel). (Color figure online)
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The results presented in Fig. 4 show that the kernel depth is also able to
identify shape outliers. The dash-dotted curve highlighted in red that corre-
spond to the year 1919, is the shallowest curve. The dashed curve in black, that
correspond to the year 2003, is the second most outlying curve. These outliers
were identified using the three kernel functions (KG, Ks, Kp) described. The
deepest curve in blue correspond to the year 1962. If we apply the competitor
depth measures MBD, FMD, RTD and FSD we find that the outliers detected
are the mortality rate for the year 2003 and 2002. Both curves can be considered
as extreme observations, but that share the same pattern with the rest of the
curves of the sample (excepting the year 1919).

4 Conclusions and Future Research

In this paper we present a new definition of deepest point for functional data
that induces a center-outward ordering for functional data sets. We introduce
kernel depths as Mahalanobis distances between the RKHS representations of
functional data points and the deepest curve. These kernel depths perform better
than the traditional depth functions for the task of functional outlier detection
in a number of artificial and real functional data sets.

The experiments seem to indicate that kernel depth is independent of the
kernel choice. Our next goal is to prove this assessment or to characterize families
of Mercer kernels with this property.

‘Traditional’ depth measures are based on plain representations of the curves
which implies that the deepest curve is not necessarily invariant to affine trans-
formations. In an upcoming work we will investigate the robustness of kernel
and non-kernel depths to data transformations.

Acknowledgments. This work was supported by project ECO2015-66593-P.
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9. Moguerza, J.M., Muñoz, A.: Support vector machines with applications. Stat. Sci.
21(3), 322–336 (2006)
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Abstract. We revise Nesterov’s Accelerated Gradient (NAG) procedure
for the SVM dual problem and propose a strictly monotone version of
NAG that is capable of accelerating the second order version of the
SMO algorithm. The higher computational cost of the resulting Nes-
terov Accelerated SMO (NA–SMO) is twice as high as that of SMO so
the reduction in the number of iterations is not likely to translate in time
savings for most problems. However, understanding NAG is presently an
area of strong research and some of the resulting ideas may offer venues
for even faster versions of NA–SMO.

Keywords: Nesterov Accelerated Gradient · SMO · SVM

1 Introduction

Big data and its need for simple optimization procedures have caused a renewed
interest in ways to accelerate gradient descent (often the only viable method
in big problems). In turn, this has led to a recent strong research effort to
understand Nesterov’s Accelerated gradient (NAG) descent, either from a the-
oretical point of view [1,5,12,14] or from an applied one [11,13]. If we want to
minimize a smooth convex function f(α) over R

N , in Nesterov’s Accelerated
Gradient (NAG) we generate a sequence αt by a two step update at each itera-
tion. First we compute an intermediate point xt using a momentum–like update
xt = αt + μt(αt−1 − αt) and then we arrive by gradient descent to the new
αt+1 = xt − εt∇f(xt). In theoretical work and when applied to a L smooth con-
vex f (i.e., ∇f is L Lipschitz), we take εt = 1

L ; when L is not known, εt can be
thought as a learning rate [13]. There have been several proposals for the above
μt, some as simple as μt = 1 − 3

t+2 [12] or more generally μt = 1 − 1+a
t+a with

a ≥ 2 [6]. Here we will use Nesterov’s own proposal [10], namely

λt =
1 +

√
1 + 4λ2

t−1

2
, μt =

λt − 1
λt+1

.

NAG has been applied to improve the speed of plain gradient descent in various
problems, such as sparse regression [4] or deep network training [13]. For a gen-
eral, L–smooth f the convergence speed of gradient descent with a rate 1/L is
c© Springer International Publishing Switzerland 2016
A.E.P. Villa et al. (Eds.): ICANN 2016, Part II, LNCS 9887, pp. 243–250, 2016.
DOI: 10.1007/978-3-319-44781-0 29
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O
(
1
t

)
and NAG improves it to O

(
1
t2

)
. Some of the most recent work on NAG

deals with quadratic functions [2,9] as a particularly simple proving ground.
We shall consider it here for solving SVM’s dual problem where we are given a
sample {(xp, yp = ±1) : 1 ≤ p ≤ N} and want to minimize f(α) defined as

f(α) =
1
2

∑

i

∑

j

αiαjQij −
∑

i

αipi =
1
2
α · Qα − α · p, (1)

subject to 0 ≤ αi ≤ C, 1 ≤ i ≤ N,
∑

i αiyi = 0 and where Qij = yiyjK(xi, xj)
is the kernel matrix. Thus, we have a constrained problem with a quadratic
objective function. If one uses the Gaussian kernel and there is no pattern x
that appears in the sample with both y = 1,−1, the kernel matrix is positive
definite [8], i.e., we have � I � Q � L I, 0 ≤ � ≤ L, and the SMO algorithm
(see Sect. 2), that performs a kind of approximated gradient descent, achieves a
linear convergence rate, i.e., f(αt) − f(α∗) ≤ Cλt for some λ < 1 at iteration t.

For such a Q, f(α) is not only L smooth but also � strongly convex, although
both �, L are unknown. Then, gradient descent with a fixed rate 1/L achieves
an O(γ2t) linear convergence, where γ = κ−1

κ+1 and κ = L/� is the condition
number of f [10], Theorem 2.1.14. In addition, using a modified λt sequence
that includes κ in its definition, NAG achieves a O(Γ 2t) convergence rate, with
Γ =

√
κ−1√
κ+1

([10], Theorem 2.2.2). Since L and � are usually not known, this NAG
version cannot be used in practice. However, the previous results lead naturally to
consider the potential effectiveness of NAG when applied to the SMO algorithm
in SVM’s dual problem, first as a testing ground and also perhaps as a faster
SMO. Recall that SVM’s dual problem is a constrained one and, also, that
SMO is only an approximation to gradient descent that, nevertheless, achieves
a linear convergence rate with a rather low cost of 3N floating point products
per iteration.

With these considerations in mind, the goal of the present work is to explore
how to define and apply a version of NAG suitable to the SMO algorithm and to
check whether it reduces the number of iterations. The simplest approach would
be the straight application of Nesterov’s procedure, but this would result in an
algorithm much worse than SMO, as NAG is not monotone whereas SMO ensures
f(αt+1) < f(αt) at each iteration. A solution for this is to use a monotone
versions of NAG [3] where writing α′ = xt − εt∇f(xt), one checks whether
f(α′) < f(αt). If this is the case, α′ becomes the new αt+1, but when f(α′) ≥
f(αt), αt is retained (i.e., we take αt+1 = αt) and we try with a new xt+1 defined
as xt+1 = ρtx

t + (1 − ρt)αt, where ρt = λt

λt+1
. Observe that since 0 ≤ ρt ≤ 1,

xt+1 can be seen as a convex combination of xt and αt that seeks to reduce
the overshooting influence of xt. However, note that this doesn’t guarantee that
f(α′) > f(αt+1) = f(αt) and we may end up with a possibly long sequence of α
values with the same f value. Besides, this has the extra drawback of requiring
the computation of the value f(xt) of the SVM dual function, with a cost of N
products if done using gradient information. We will alleviate both drawbacks by
taking advantage of the quadratic structure of f to directly compute the exact
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ρt and xt+1 that minimize f and will call this approach the monotone Nesterov
acceleration (NA) of SMO, or monotone NA–SMO.

A second way to try to squeeze at each iteration some extra gain in f could
be to split this gain f(αt) − f(αt+1) as

f(αt) − f(αt+1) = f(αt) − f(xt) + f(xt) − f(αt+1) = Δt
1 + Δt

2

and maximize each gain separatedly. This is what SMO does for Δt
2 and, in

principle, an optimal μt for Δt
1 can be computed analytically. However, and as

we will briefly discuss, this is very likely to result in small μt � 0 and xt � αt, i.e.,
to revert to standard SMO negating somehow the advantage of the momentum
step in NAG and we will not consider it in the experiments. In other words,
we would risk ending up with SMO’s iterations but with the extra overhead of
computing xt. In summary, our main contributions are

– To present a basic set up for the application of NAG to the SMO algorithm.
– To propose a strictly monotone version of NAG for SMO.
– To numerically study both approaches and to show that they do indeed reduce

the number of iterations of standard SMO.

The paper is organized as follows. In Sect. 2 we will briefly SMO’s choice of
descent directions, its updates and its computational cost. We discuss monotone
NA–SMO in Sect. 3, where we analyze its computational complexity and relate
it to that of SMO. We will numerically compare SMO and monotone NA–SMO
in Sect. 4, where we will show it to require less iterations than SMO to converge
to a given tolerance. We finish the paper with a short discussion and conclusions
in Sect. 5.

2 Second Order SMO

We give a brief review focused on SMO’s computational costs; see [7] for more
details. The initial versions of SMO selected a descent direction of the form
d = yLeLt − yUeUt with ej the canonical 0–1 basis vectors and where Lt, U t

correspond to a sample pair xLt , xUt most violating the SVM’s KKT conditions
at iteration t. This guarantees that dt · ∇f(αt) < 0 and that it is the most
negative among all feasible choices of L and U . The resulting unconstrained
gain will be

f t − f t+1 =
(dt · ∇f(αt))2

2‖xLt − xUt‖2 . (2)

This turns out to be maximal on the numerator but perhaps not so in the
denominator, which suggests to improve on this using the same Lt as before
but taking now U t so as to maximize (2). This results in the WSS1 method or
second order SMO of [8]; we will refer to it simply as SMO from now on. The
unconstrained α updates would then be

αt+1
Lt = αt

Lt + yLtρ′
t, αt+1

Ut = αt
Ut − yUtρ′

t,
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for an appropriate ρ′
t which we may have to clip if necessary so that they verify

the box constraints. Note that
∑

p ypdt
p = 0 and, hence,

∑
p ypαt+1

p = 0, provided
it does so for αt. The SMO iterates continue until a stopping condition M(αt)−
m(αt) < εKKT is met for a pre-selected KKT tolerance εKKT , where

m(α) = min
p∈Iup

yp∇f(αp), M(α) = max
q∈Ilow

yq∇f(αq),

for appropriate index sets Iup, Ilow (see [7], Sect. 4.1.2). The floating point cost
per iteration of SMO is determined by the second order choice of Ut and the
update of the gradient gt = ∇f(αt). Selecting Ut requires 2N products and for
the gradient update we have

gt+1 = Qαt+1 − p = Qαt − p + ρtQdt = gt + ρt(yLtQLt − yUtQUt),

where Qj denotes Q’s j–th column. This requires N products and, hence, 3N
floating point operations are needed in total for each SMO update.

3 Monotone Nesterov Accelerated SMO

Recall that standard NAG includes two steps: to compute an intermediate point
xt = αt + μt(αt−1 − αt) with a fixed μt and then to perform gradient descent
to arrive at the new αt+1 = xt − εt∇f(xt) where εt is a step parameter. When
applied to SVM’s dual problem this last step can obviously be replaced by an
SMO step from xt choosing L,U according to the gradient Gt = ∇f(xt) of f at
xt. Moreover, we must also ensure the feasibility of xt. This requires first that∑

ypxt
p = 0, which will clearly hold if both αt and αt−1 are feasible. We must

also have 0 ≤ xt
p ≤ C, which can be easily achieved by clipping it if needed on

the coordinates p where mt
p �= 0, with mt = αt − αt−1.

In any case, while SMO guarantees a strictly monotone decrease of the
dual function f , standard NAG is not monotone and, as already mentioned,
a monotone variant has been proposed [3] in which f(αt) and f(xt) are com-
pared at each iteration and if f(αt) < f(xt), we compute xt+1 as xt+1 =
ρtx

t+(1−ρt)αt, with ρt = λt

λt+1
. Notice that xt+1 is automatically feasible, being

a convex combination of xt and αt. However, there is no guarantee that even after
using xt+1 to estimate the new α′, we arrive at f(α′) < f(αt), and a series of
steps may follow in which f remains constant. Nevertheless, we can compute here
an optimal ρ that ensures f(xt+1) < f(αt). In fact, let xρ = ρxt+(1−ρ)αt; f(xρ)
is then a function φ(ρ) for which is easy to see that its minimum is reached at

ρ∗ =
(xt − αt) · 1 + ‖αt‖2Q

‖αt‖2Q + ‖xt‖2Q
.

To compute ‖αt‖2Q = αt · Qαt and ‖xt‖2Q, observe that f(αt) = 1
2‖αt‖2Q − αt · 1,

i.e., writing sα = α · 1 =
∑

αp, we have ‖αt‖2Q = 2(f(αt) + sαt) and, therefore,

ρ∗ =
sxt − sαt + 2(f(αt) + sαt)

2(f(αt) + sαt) + 2(f(xt) + sxt)
=

2f(αt) + sαt + sxt

2(f(αt) + f(xt) + sαt + sxt)
.
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To estimate the complexity of the previous steps, note that 2N products will be
needed to compute xt+1 = αt + ρ(xt − αt) and Gt+1 = gt + ρGt if we perform
either a standard momentum or an exact monotone Nesterov step. To this we
must add N products to compute f(xt) as f(xt) = 1

2 (xt · Gt − sxt) (we can
retain f(αt) from the previous iteration) plus another N products to update gt

from Gt. Summing things up, monotone NA–SMO adds 3N products to the 3N
ones of standard SMO, with a total complexity of 6N products per iteration,
i.e., twice that of standard SMO.

As mentioned, we could try to replace NAG’s μt by an “exact” value that
minimizes f(αt) − f(xt). Writing mt = αt − αt−1 and φ(μ) = f(αt + μmt) =
f(αt) + μmt · gt + μ2

2 ‖mt‖2Q, it is easy to see that its minimum μe
t is given by

μe
t = − mt·gt

‖mt‖2
Q

. However, if we have μt−1 = 0 (by, say, clipping), then xt−1 = αt−1

and we would arrive at αt by a standard SMO step αt = αt−1 + εt−1d
t−1. But

if this step is not clipped, it would follow that 0 = gt · dt−1 = gt · mt. As a
consequence, we would also have μt = 0, i.e., perform a new standard SMO
iteration instead of a NAG one but with an extra cost of at least N products.

Thus, we have the risk of making supposedly better “exact” choices of μt

that, in fact, reduce to SMO updates, i.e., we will get no acceleration but with
much costlier iterations. We have numerically observed this to happen very often
and, as a consequence, we will not use exact NAG iterations in our experiments.

4 Numerical Experiments

In this section we will compare the behavior of second order SMO and monotone
Nesterov Accelerated SMO working with 8 two class datasets, namely, the
australian, diabetes, german (in its numeric version), heart, adult4,
adult8, web7 and web8, that are all available in the LIBSVM page. While
the first datasets are small, adult8 and web8 have 22,696 and 49,749 patterns
respectively; it is important to note that these are the dimensions of the dual

problem. We will work with a Gaussian kernel k(x, x′) = e
‖x−x′‖2

d , with d the
sample dimension; that is, we use LIBSVM’s default Gaussian kernel width. For
the first 4 problems we use the dataset version where their features are scaled
to [−1, 1]; the adult and web problems have binary features to begin with.

We shall consider three different C values, C = 10, 100, 1000 and two KKT
tolerances εKKT = 0.1, 0.001. Table 1 gives for each dataset and these C and ε
values the number of iterations of plain SMO, monotone Nesterov (NA-SMO)
and the corresponding ratio. We have separatedly checked that both methods
yield essentially the same final SVM in the sense that they arrive basically at
the same value f(αT ) of the SVC objective function at the final αT , and have
very similar number of support vectors (SVs). Figure 1 shows the evolution of
the SVM objective function in the adult4 dataset for the standard updates and
the Nesterov accelerated ones, with ε = 0.001.

As it can be seen, all the SMO to NA-SMO ratios are bigger than 1 except
for the web7 and web8 problems, where the number of iterations is considerably
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Table 1. Number of iterations for SMO and monotone Nesterov Accelerated SMO
(NAS), together with the ratio SMO/NAS.

Iters.

Dataset C Eps SMO NAS Ratio

heart 101 10−1 217 210 1.03
10−3 551 444 1.24

102 10−1 612 530 1.15
10−3 1590 1281 1.24

103 10−1 1097 739 1.48
10−3 2568 1513 1.70

diabetes 101 10−1 435 369 1.18
10−3 923 620 1.49

102 10−1 2295 1533 1.50
10−3 7697 3830 2.01

103 10−1 14366 9320 1.54
10−3 52343 36492 1.43

australian 101 10−1 427 407 1.05
10−3 1441 865 1.67

102 10−1 1574 1358 1.16
10−3 5772 3217 1.79

103 10−1 5687 4363 1.30
10−3 13099 9641 1.36

german 101 10−1 1257 1037 1.21
10−3 3139 2037 1.54

102 10−1 4491 2974 1.51
10−3 12559 6681 1.88

103 10−1 10269 7283 1.41
10−3 26335 18395 1.43

Iters.

Dataset C Eps SMO NAS Ratio

adult4 101 10−1 3523 2592 1.36
10−3 8961 4734 1.89

102 10−1 16738 9294 1.80
10−3 47286 21689 2.18

103 10−1 58429 32566 1.79
10−3 157741 80872 1.95

adult8 101 10−1 15419 11328 1.36
10−3 44309 25088 1.77

102 10−1 85822 49770 1.72
10−3 289351 146941 1.97

103 10−1 433268 241796 1.79
10−3 1407541 750967 1.87

web7 101 10−1 2191 2321 0.94
10−3 8141 8004 1.02

102 10−1 5529 6222 0.89
10−3 22708 24808 0.92

103 10−1 10874 12277 0.89
10−3 38348 41745 0.92

web8 101 10−1 3490 3712 0.94
10−3 14457 15265 0.95

102 10−1 9628 9782 0.98
10−3 41530 43585 0.95

103 10−1 20919 20251 1.03
10−3 71297 67910 1.05

worse for NA-SMO. These ratios generally grow with both C (a more difficult
problem) and ε (a more precise solution). This effect is also shown in Fig. 1,
where the convergence of the objective function starts improving much earlier
for C = 100 in the adult4 problem.

These results have been obtained using our own Python implementation of
monotone NA-SMO and this is the reason we do not provide time values, as they
may be affected by the particular way Python code is executed. Our current
implementation of NA-SMO is based on NumPy and, while its kernel is well
known for its very efficient C implementation, other parts of our code may rely
on other less efficient Python components. The SMO values are obtained using
the LIBSVM wrapper in sklearn. In order to provide a fair time comparison
our code would have to be implemented in C, for instance as a modification of
the LIBSVM library. In any case, the above ratios for the number of iterations
make it clear that, at this point, the time reduction they would imply would not
compensate the higher cost per iteration of monotone Nesterov acceleration.
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Fig. 1. Evolution of the objective function for the adult4 dataset with eps = 0.001,
C = 10 (left) and C = 100 (right).

5 Discussion and Conclusions

In this work we have presented monotone NA-SMO, a first approach to apply
Nesterov Acceleration to SVM’s dual problem that ensures monotonicity at each
iteration and that achieves a clear reduction of the number of iterations needed
by SMO to converge, particularly in problems with higher C or smaller εKKT

values. From a practical point of view, and as we have made clear, the smaller
number of iterations of NA-SMO are not likely to result in training times smaller
than those of standard SMO, for the iteration complexity of monotone NA–SMO
is twice as large as that of SMO (although gains could be larger for kernel matri-
ces with high condition numbers). On the other hand, this extra cost won’t have
an impact in the initial iterations, as their cost is dominated by that of building a
cache for the kernel matrix. Thus, SMO acceleration may be worthwhile if it ini-
tially achieves a substantial reduction of the cost function while the kernel matrix
cache is built, even if one reverts to standard SMO afterwards. This should be
more pronounced in large sample problems and also in higher C penalty ones.

In any case, understanding NAG behavior can be still considered as an open
problem but in the past couple of years there has been a flurry of activity on
the subject [1,5,12,14], particularly for the unconstrained, strongly convex case.
As mentioned, most of this is theoretical work based on the knowledge of the
condition number κ of f which makes very difficult to render it into practical
algorithms; for instance, notice that while aiming at a strongly convex f , we
have just been using NAG’s version for the L smooth case. Moreover, it is likely
that this large research may result in better versions of SMO. Of particular
interest is here the work in [11] that while using the μt coefficients of smooth
NAG when dealing with a strongly convex f , suggests to restart NAG’s μt when
it yields a non–monotone step so as to control the over– or under–damping
effect of a possibly too large momentum term leading to xk. While very simple,
in the experiments of [11] this results in a convergence for strongly convex f
much faster than the one achieved working with the standard NAG μt schedule.
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In turn, if properly applied, this may help to improve the gains in the number
of SMO iterations reported here. We are currently working on these and other
related issues.
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Abstract. Classification with reject option allows classifiers to abstain
from the classification of unclear cases. While it has been shown that
global reject options are optimal for probabilistic classifiers, local reject
schemes can enhance the performance of deterministic classifiers which
do not provide faithful probability estimates [6,10]. A first efficient
scheme how to optimise local threshold parameters has recently been
introduced [8]. In this contribution, we improve and simplify this scheme
by restricting to a fewer number of possible candidates, and we demon-
strate its performance for a one-versus-rest SVM classifier. Further, we
have a glimpse at accompanying generalisation bounds.

Keywords: Reject option · Multi-class SVM classification · Local
thresholds · Generalisation ability

1 Introduction

Noisy sensor data, missing information, or overlapping classes necessarily cause
errors for any deterministic classifier. For this reason, many classification tech-
niques provide additional information besides the mere class label such as a
judgment of the classification certainty. In particular in safety critical applica-
tions or in the context of interactive systems, it is often advisable to abstain
from a classification in case of a low classification certainty, i.e. output ‘reject’,
rather than an erroneous (and possibly harmful) misclassification. This is rele-
vant e.g. for iterative schemes such a medical diagnosis based on first, cheap but
not very sensitive tests and a more detailed analysis for unclear cases. Further,
explicit reject options can efficiently trigger online models capable of lifelong
learning [7]. It has recently been shown, that rejects can enable the consistency
of simple surrogate loss functions which are not consistent if a classification is
enforced for the full data set [18].

Starting with the pioneering work of Chow [4], researchers have addressed
the question how to enhance classifiers by efficient and effective reject strategies.
Provided the underlying conditional distributions are known, a simple optimum
reject strategy based on a global reject threshold exists [4,11]. If the underlying
distribution is not known, plugin rules which estimate the underlying probability
distribution can be used, and consistency has been shown provided a reject
margin is present [12]; however, these results are based on suitable estimates of
the underlying probabilities, which causes quite some effort in the context of
c© Springer International Publishing Switzerland 2016
A.E.P. Villa et al. (Eds.): ICANN 2016, Part II, LNCS 9887, pp. 251–258, 2016.
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deterministic classifiers such as SVM. Typically, such classifiers do not aim for
a representation of class probabilities, but focus on the decision boundaries [3].

If costs for a reject are priorly given, popular classifiers can be modified
to simultaneously optimise the decision boundary as well as a reject threshold
[2,19]. These methods, however, restrict to a global threshold, and they crucially
rely on priorly fixed costs for a reject. Hence retraining is required for such
methods whenever reject costs change. We will deal with the question whether
local reject thresholds can be determined posterior to training given reject costs.
This setting, on the one hand, bases on the observation that local reject options
can severely enhance the performance of deterministic classifiers [8–10]; further,
in many applications, reject costs are not necessarily known prior to training,
and they can easily change depending on the given circumstances (such as the
required security level of a classifier).

In this contribution, we will investigate possibilities to efficiently enhance a
multi-class classifier by local reject thresholds posterior to training for the full
range of possible reject costs. Inspired by the work [8], we propose an exact opti-
misation scheme as well as an efficient greedy approximation, which constitutes
a simplification and improvement of the method as proposed in [8]; we evaluate
its performance for the one-versus-rest SVM in comparison to a state-of-the-art
extension of SVM to a probabilistic classifier and plugin reject rules. Further,
we have a short glimpse on generalisation error bounds.

2 Optimum Reject Thresholds for Trained Multi-class
Classifiers

Assume data x ∈ R
N and class labels y ∈ {1, . . . , C}. Assume trained functions

fc : RN → R provide a classification signal for class c. In addition, we assume
that a certainty measure is available gc : RN → R with high values gc(x ) cor-
responding to a high degree of certainty for class c; for the moment, we choose
gc = fc, and both will be given as a linear decision function in kernel space as
provided by a one-versus-rest SVM. A one-versus-rest classifier results in the
prescription

f : x �→ argmaxcfc(x ). (1)

A local reject scheme is characterised by a threshold vector θ = (θ1, . . . , θC); it
modifies the classifier via

fR : x �→
{

argmaxcfc(x ) if gargmaxcfc(x)(x ) ≥ θargmaxcfc(x)

R© otherwise (2)

where R© indicates a reject. For given training data P := {(x i, yi)|i = 1, . . . , M},
and given costs of a reject D, the empirical loss is given as

ÊM :=
1
M

·
M∑

i=1

LD(fR(x i), yi) (3)

where LD equals 0 for correct classification, D for reject, and 1 for misclassifi-
cation. Unlike local reject, a global reject would enforce equal thresholds for all
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classes θ1 = . . . = θC , i.e. assuming a universal scaling of the certainty mea-
sures gc. Since this is the case whenever gc(x ) equals the probability p(c|x ), a
global threshold selection strategy is optimum for probabilistic classifiers [4,11],
but local threshold choices offer more freedom whenever the local scaling of the
certainties gc(x ) is not clear.

Pareto Front: Note that threshold selection corresponds to a Pareto-optimisation
problem: we can decompose the training data P = E ∪ L into errors E :=
{(x i, yi) | f(x i) �= yi}, and correctly classified data L := {(x i, yi) | f(x i) = yi}.
These sets decompose into Pc := {(x i, yi) | f(x ) = c}, Ec := Pc ∩ E and
Lc := Pc ∩ L according to the classes. For every class label c, a threshold θc

singles out a set of rejected points Rθc
:= {(x i, yi) ∈ Pc | gc(x i) < θc} whereby

T c
θc

:= Rθc
∩ Ec are correctly rejected points (these are errors of f), and F c

θc
:=

Rθc
∩ Lc are wrongly rejected points (f maps those correctly). Minimising the

empirical error corresponds to thresholds with a maximum number of correctly
rejected points and a minimum number of wrong rejects, i.e. Tθ := ∪cT

c
θc

should
be large while Fθ := ∪cF

c
θc

should be small. Such extremal pairs of true and false
rejects form a Pareto front, and it is straightforward to select an optimum pair
from this front for given costs D. Hence we focus on algorithms to determine
this Pareto front given trained classifiers.

Optimum Thresholds for One Class c: In the following, we propose two algo-
rithms to determine the Pareto front (Tθ, Fθ) and corresponding thresholds θ,
thereby improving [8] by a simpler formulation which is due to the restriction to
a smaller number of possible threshold vectors. The algorithms rely on one essen-
tial observation: We consider one class c, and sort the certainty values gc(x i)
for x i ∈ Pc. An optimum threshold θc for class c necessarily lies between two
consecutive values gc(x i) < gc(x j) where x i ∈ Ec and x j ∈ Lc; otherwise, the
resulting pair T c

θc
and F c

θc
would not be Pareto-optimal, since we could remove

one wrong reject or add one true reject by shifting the threshold. Hence an
optimum threshold θc for class c comes from a finite and usually small number
of possible thresholds θc(0) < . . . < θc(Ic), induced by such consecutive values
gc(x i). These candidates can be determined in time O(M log M) by sorting. We
denote by I := I1 + . . . + Ic the overall number of thresholds; this is limited by
M , but it is usually much smaller. In contrast, the approaches [8] consider all
x i ∈ Lc as possible thresholds gc(x i), resulting in more complex optimisation
schemes.

Greedy Optimisation: We are interested in optimum combinations of such thresh-
olds θc into threshold vectors θ for all classes c. One problem consists in the fact
that, while every optimum threshold vector θ contains only optimum thresholds
θc for every c, the converse is not true; optimum θc for the classes c can be
combined to threshold vectors θ which do not induce a pair of the Pareto front.
Hence we have to search the space of possible threshold vectors, which is finite,
but exponential w.r.t the number of classes C. As first approach, we propose
an efficient but possibly suboptimal greedy optimisation strategy: starting from
the smallest possible threshold θc(0) for every class c, we iteratively increase
the threshold which yields maximum gain; thereby, the gain is measured as the
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number of true rejects minus the number of false rejects which are caused by the
increasing of the threshold: the quantity

Gc(i + 1) :=
(
|T c

θc(i+1)| − |T c
θc(i)

|
)

−
(
|F c

θc(i+1)| − |F c
θc(i)

|
)

(4)

quantifies this gain for the class c, provided its threshold is increased from num-
ber i to i + 1. The following greedy algorithm results:

θ ← (θ1(0), . . . , θL(0));
while at least one threshold θc(i) can be increased do

θc(i) ← θc(i + 1) for (c, i) = argmax(c′,i′) Gc′(i′ + 1)
end

We return all threshold vectors obtained this way. This greedy algorithm has
memory complexity O(C) and time complexity O(I).

Dynamic Programming: Threshold optimisation is an instance of the so-called
multiple-choice knapsack problem – for every class label c, we have to select a
threshold from a finite set of possibilities such that the overall costs (given by the
sum of false rejects) are minimised and the overall value (given by the sum of true
rejects) is maximised [5]. This problem is polynomial in our case, since costs and
values are limited by M , and the multiple-choice knapsack problem is pseudo-
polynomial. Additionally, we face the specific situation that the thresholds are
linearly ordered for every class c, such that the problem can be solved by a
simple dynamic programming scheme as follows: For n ≤ |L|, j ≤ C, and i ≤ Ic

we define

opt(n, j, i) := max{|Tθ| | |Fθ| ≤ n, θl ∈ {θc(0), . . . , θc(Ic)} ∀c < j, (5)
θj ∈ {θj(0), . . . , θj(i)}, θc = θc(0) ∀c > j} .

This refers to the optimum number of true rejects which can be achieved provided
at most n false rejects are present, arbitrary thresholds can be chosen for classes
1 to j − 1, the threshold for class j equals one of the thresholds with number 0
to i, and thresholds are restricted to the first possible ones for all classes c > j.
For these values, the following Bellman inequality holds:

opt(n, j, i) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑C
c=1 |T c

θc(0)
| if n = 0 or j = 0,

opt(n, j − 1, Ij−1) if n > 0, j > 0, i = 0,

opt(n, j, i − 1) if n > 0, j > 0, i > 0, n < |F j
θj(i)

|,
max{opt(n, j, i − 1),
opt(n − |F j

θj(i)
|, j − 1, Ij−1) + |T j

θj(i)
| − |T j

θj(0)
| otherwise.

(6)
The first three cases correspond to instantiations or trivial settings: the first
setting corresponds to the selection of the first possible threshold for every class
corresponding to the choice n = 0, i.e. no false rejects are present, and the
value |T c

θc(0)
| accumulates the true rejects. Setting two realises the equivalence

of threshold 0 for class j and the decrease of the class number j by one. Setting
three realises a decrease of the threshold i for class j until the threshold becomes
feasible in the sense that the number of allowed false rejects caused by this



Local Reject for SVM 255

threshold is limited by n. The last equality captures the important optimality-
preserving problem-decomposition: we can either pick a threshold smaller than
the threshold number i for class j, or we can pick threshold i, the latter results
in a gain of |T j

θj(i)
| − |T j

θj(0)
| true rejects as compared to the default (threshold

0 yields |T j
θj(0)

| true rejects), at the costs of |F j
θj(i)

| false rejects.
This recursion is well founded since the sum n + j + i is decreased in all

cases. Its optimality can easily be proved by induction over n + j + i. Since a
polynomial number of values opt(n, j, i) exists, this scheme can be implemented
efficiently via dynamic programming. The resulting space complexity is O(|L| ·
C) (it is sufficient to store array elements opt(n, j) for the most recent i) and
time complexity O(|L| · I) (computation can be arranged as loop over n and
all thresholds). Optimum threshold vectors can efficiently be retrieved from the
value matrix opt(n, j) by back-tracing in time O(|L| · I).

Table 1. Results of different reject strategies for two data sets as evaluated on a test
set, the area under the accuracy-reject curve is reported, its standard deviation is in
parenthesis.

Data DP Greedy Global Probabilistic

Sat (linear kernel) 0.963 (0.0018) 0.962 (0.0028) 0.958 (0.0028) 0.971 (0.0032)

Glass (linear kernel) 0.734 (0.0593) 0.734 (0.0630) 0.707 (0.0657) 0.729 (0.0844)

Glass (RBF kernel) 0.827 (0.0645) 0.829 (0.0645) 0.757 (0.0600) 0.821 (0.0367)

3 Experiments

We compare the performance of the proposed model for a multi-class SVM clas-
sifier. The one-versus-rest SVM induces a function fc = gc for every class c given
by the linear activation in kernel space. This is correlated to the distance to the
decision boundary, and we will base local rejects and certainty estimation on this
measurement. We compare the performance of local rejects, where the thresh-
olds are either optimised by dynamic programming or the greedy heuristic, to
two alternatives: (1) reject based on the same functions fc = gc and one global
threshold, i.e. θc = θ for all classes c ≤ C; (2) reject based on a probabilistic
plugin rule which estimates the conditional class probabilities and a global reject
option. For both cases, optimum reject thresholds can be determined by linear
search, since they are global. For setting (2), we use the state-of-the-art trans-
formation technique of SVM outputs to probabilities as provided in LibSVM [3];
this relies on a logistic rescaling of one-versus -one SVMs and a suitable coor-
dination of the resulting probabilities [17,20]; thereby the rescaling relies on a
costly cross-validation, hence the method is computationally demanding.

We evaluate the performance for two data sets, glass (214 training points,
6 classes, 13 attributes) and sat-image (6435 training points, 6 classes, 36
attributes), using the same parameter values (linear or RBF kernel, 10-fold cross-
validation) as presented in [13]. Note that reject options do not improve a classi-
fication with high accuracy where rejection is not necessary, such that we restrict
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the evaluation to these simple cases. The resulting accuracy is evaluated in the
form of an accuracy-reject curve, which displays the accuracy achieved for the
points which are not rejected as compared to the percentage of points which are
rejected. We report the resulting area under the curve for the test set averaged
within a 10-fold cross-validation and the standard deviation in Table 1. One typ-
ical accuracy-reject curve is displayed in Fig. 1. For all settings, the efficient but
approximate greedy strategy reaches the performance of an optimum threshold
choice based on dynamic programming. For the glass data, local reject options
significantly improve the accuracy as compared to a global reject threshold for
the one-versus-rest setting. Interestingly, for all settings, a local reject option
reaches the accuracy of the (more demanding) probabilistic modelling on top of
a one-versus-one SVM.
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Fig. 1. Accuracy-reject curve on the test set for the glass data and RBF kernel in one
typical fold of a cross-validation. Rejects are given in percentage, accuracy as the ratio
in between 0 and 1.

4 Generalization Ability

Some research addresses the consistency of classification with a reject option in
particular for two-class classifiers, see e.g. [2,21]. Here we have a first glimpse
at the question whether empirical risk minimisation allows valid generalization
bounds for local reject thresholds which are attached to the classes. Thereby, we
restrict to simple multi-class models such as discussed in [1,14], and we disregard
recent tighter bounds such as offered in [15,16].

Inspired by the multi-class margin of SVMs as introduced in [16], for example,
we consider the following certainty

gc(x ) :=
1
θc

(
hc(x ) − max

c′ �=c
hc′(x )

)
(7)
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which already integrates the adaptive scaling term θc such that gc(x ) is
rejected for the interval [0, 1], and which is based on the relative margin
hc(x ) − maxc′ �=c hc′(x ) rather than the value hc(x ). We consider the fol-
lowing upper bound function Φρ

D for the resulting 0-1-loss given by LD:
Φρ

D(g1(x ), . . . , gC(x ), y)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if gy(x ) ≥ 1 + ρ
D · (1 + ρ − gy(x ))/ρ if 1 ≤ gy(x ) ≤ 1 + ρ
D if ρ ≤ gy(x ) ≤ 1
(ρ − gy(x ))/ρ + D · gy(x )/ρ if 0 ≤ gy(x ) ≤ ρ
1 if gy(x ) ≤ 0

(8)

for a fixed margin ρ > 0. Here we have made the dependencies on the certainty
values gc(x ) explicit. Φρ

D is Lipschitz continuous w.r.t. the first C arguments
with constant 1/ρ.

It is a direct consequence of Corollary 15 in [1] that the following inequality
holds for M i.i.d. data (x i, yi) and probability at least 1 − δ

E (LD(fR(x ), y)) ≤ 1

M

M∑
i=1

Φρ
D(g1(x i), . . . , gC(x i), yi)+

2C

ρ
GM (F)+

√
8 ln(2/δ)

M
(9)

where E denotes expectation w.r.t (x , y) and the loss LD is determined with
respect to the certainty gy as above. GM (G) is the Rademacher complexity of the
function class of functions of the form gc(x ) as given in (7). Due to the structural
results as derived in [1], Theorems 12 and 14 and the Lipschitz continuity of
max with constant 1, this Rademacher complexity can be upper bounded by
C ·GM (H) with H containing functions of the form hc(x )/θc. For hc(x ) given by

SVM with kernel k, this is limited by the term 2B
M

√
E(k(x ,x))

M , provided the weight
vector is restricted by ‖w‖/θC ≤ B (see [1], Lemma 22). Hence the generalisation
ability of multi-class-classification with local reject can be guaranteed provided
the local reject thresholds θC are limited from below by a constant.

5 Discussion

We have discussed local reject options for deterministic multi-class classifica-
tion, deriving efficient a posteriori threshold optimisation algorithms which run
in linear time related to the number of classes. We have demonstrated its per-
formance in the context of one-versus-rest SVM, and we had a first glimpse at
its generalisation ability for SVM. For the latter, we relied on a slightly modi-
fied certainty measure as compared to our experiments, inspired by a notion of
margin for multi-class SVM as provided in the literature. It will be a matter
of future research to also experimentally test this certainty measure as well as
alternative proposals for the margin in multi-class settings. Note that the pro-
posed optimisation scheme is independent of the exact choice of the certainty
measure. For future research, we will built on the time and memory efficiency
of the particularly efficient greedy realisation, and we will investigate how this
scheme can be integrated into online settings where data arrive in a stream.
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acknowledged.
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Abstract. Biometric technology is an automatic personal identification method
based on physical or behavioral characteristics of the individuals. Among of the
physical characteristics, palmprint is useful in various applications such as
forensic science access control, thus resulting in an increasing of research
interest. In this paper, we explore a new methodology focused on integrating the
fractal and Multi-fractal techniques for human identification based on extracting
the texture pattern features. Therefore, we extract the palmprint texture infor-
mation based on the calculation of the fractal dimensions using the Differential
Box Counting (DBC) and the Diffusion Limited Aggregates (DLA) methods
corresponding to the Fractal and Multi-Fractal techniques respectively. These
methods have been broadly applied in image processing fields to estimate the
fractal dimensions of an image as important parameters for analyzing the irreg-
ular shapes of the texture image. The proposed method produces encouraging
recognition rates by 94.02 % and 93.44 % when tested on benchmark databases
“CASIA-Palmprint” and “IITD-Palmprint” respectively. The performance of our
method is compared with palmprint recognition accuracy gained from
well-known state-of-the-art palmprint recognition, producing favorable results.

Keywords: Palmprint � Fractal technique � Multi-fractal technique � DBC �
DLA � Texture analyses � SVM

1 Introduction and Related Works

In order to identify the person with a great effectiveness as related to physiological or
behavioral characteristics, biometrics techniques have been often used among which is
palmprint recognition. Thanks to its pros mainly the increasing motivation of security,
usability, low cost of equipment, and high recognition accuracy, easy availability, etc.,
palmprint recognition has drawn the attention of many researchers. In order to be
recognized, one can acquire the palmprint in a low-resolution and high-resolution
mode. For civilian applications, one uses the low resolution imaging where the contact
manner captured the palmprint images. At a low resolution palmprint image, i.e., about
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75 dpi, palmprint including principal lines, wrinkles, texture. Until recently, a lot of
focus has been given to high resolution palmprint recognition. At a high resolution
palmprint image, i.e., about 400–500 or greater dpi, ridges, minutiae and pores could be
detected. Up to present time, palmprint recognition at high resolution is restricted to
forensic applications. Thanks to the great value of civilian applications, in this paper,
our work has also given importance to low resolution palmprint recognition. Up to
now, many researchers have proposed many approaches for low resolution palmprint
recognition. The current approaches can be roughly categorized as line based methods
and texture based methods. The first are the structural approaches based on the prin-
cipal lines [1], wrinkles [2] and ridge [3]. However, regrettably only these mentioned
features are unable to give enough information for effective recognition. The texture
based methods, which are the global approaches being based on the texture image, are
very important in palmprint recognition field. On the one hand, it is noticeable that
many approaches have been developed in this second category such as Local Binary
Pattern [4], SIFT [5], Gabor filter [6, 7], Eigenpalms [8], Fisherpalms [9], Wavelets
[10] and Co-occurrence Matrix [11]. On the other hand, it is clear that the fractal and
multi-fractal methods [12, 13] have not been deeply exploited yet for the analysis of the
texture of palmprint recognition. Therefore, an application of these methods for ana-
lyzing the texture pattern of palmprint was proposed.

In this research paper, we suggest a new approach in order to analyze the texture
patterns of palmprint by using the fractal technique consisting in acquiring and cal-
culating the fractal dimension by the Differential Box Counting (DBC) method and the
multi-fractal technique founded on the calculation of the generalized fractal dimension
using the Diffusion Limited Aggregates (DLA) method.

The organization of the rest of the paper is the following. In Sect. 2, the details of
system overview were presented and the basic concepts behind Fractal and
Multi-Fractal techniques were introduced. We presented and analyzed the experimental
study and results in Sect. 3. As for Sect. 4, it is devoted to presenting some concluding
remarks.

2 System Overview

The proposed system includes the following four steps listed in their order of appli-
cation: (1) Hand-Pre-processing (2) Feature Extraction based on Fractal and
multi-Fractal analysis (3) Classification and (4) Final Decision.

2.1 Hand Pre-processing

The pre-processing step is devoted to extract the region of interest (ROI) of the
palmprint by various following phases:

– Using the Otsu’s method, we convert the original image into binary image.
– To eliminate the noise and remove the holes curve, we detect the edge image and

apply the smoothing filter by a low pass filter.
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– In order to stabilize the coordinate system able to successfully locate the ROI, we
extract the finger-webs (i.e. the key points between the fingers).

– We rotate the extracted ROI to a vertical position and fixe its size to T � T with
T = 150 pixels.

– In order to improve the quality of this ROI, we apply a low pass filter for reducing
the noise.

The full details of the hand pre-processing step have been described in our previous
works [11, 14]. Figure 1 shows the original image and the extracted ROI of the
palmprint.

2.2 Feature Extraction Based on Fractal and Multi-Fractal Analysis

To achieve the task of feature extraction, we are based on the texture pattern infor-
mation, and more specifically on the fractal and Multi-fractal techniques [15].

Fractal Analysis. Developed by Mandelbrot [15] so that to design the objects having
a very irregular, interrupted or fragmented (geometrically complicated) shape, the
fractal method is considered as an efficient technique. It is a mathematical object
coming from an iterative process and possessing a self-similarity character, i.e. its
shape is repeated at different scales. Each object is then characterized by the Fractal
Dimension that often denoted FD which was obtained by several methods. Generally,
FD is described by the following equation:

FD ¼ lim
e!0

log N eð Þð Þ
log 1

e

� � ð1Þ

Where, N (e) and 1/e are the numbers of specimen of the initial object and the scale
factor, respectively. The FD is obtained by a least squares regression method.

The Box Counting (BC) method which is one of these many methods of fractal
technique is deeply exploited for the image processing field due to its usefulness to
designate and to measure the complexity and irregularity of the image texture surface.
This method gives a great importance to divide the image space into a number of boxes
(fixed-grid of square boxes) for different scale e and in calculating the number of the
boxes containing the information N (e) for each scale.

Fig. 1. The ROI extraction
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In the BC method, a big limit in term of the computation of box counting is present.
Consequently, along with the application of the counting process of non-empty boxes,
it is vital to use binary images rather than gray scale images. In accordance to the BC
method, Sarkar et al. [16] proposed an extension of the standard method to the gray
scale image which is named the Differential Box Counting (DBC).

Differential Box Counting method (DBC). The DBC is one of the most effective
methods to analyze the gray scale image texture. It is an efficient method to precisely
estimate the fractal dimension of a gray level image. A description of this method is
presented as follows: Given that an image of size M � M pixels is partitioned into
s � s non-overlapping grids, where 1 < s � M/2 and s is the current scale of the
image. Consider the image as a 3-Dimensional space (x,y,z), (x,y) represents a point in
the plane of the coordinate system and z corresponds to the gray values at position (x,y).
The grid is filled by the use of s � s � s’ sized boxes. If the minimum and the
maximum gay levels of the image in the (i, j)’ th grid downfall in the box numbers
k and l, respectively i.e. the minimum and the maximum gray levels of each grid are
located in the k-th box and l-th box, the number of boxes in the grid is:

ne i, jð Þ ¼ l� kþ 1 ð2Þ

Where e = s/M, the number of boxes in the all grids (image) can be computed by:

Ne ¼
X
i

X
j

ne i; jð Þ ð3Þ

Ne is counted for different values of s i.e. different value of e. Hence, the Fractal
Dimension (FD) is given by:

FD ¼ slope
log N eð Þð Þ
log 1

e

� �
 !

ð4Þ

According to Eq. (1), the Fractal Dimension is estimated as the slope of the least
squares linear fit of log (N(e)) along log (1/e). Therefore, for each ROI image, 1feature
are obtained.

Multi-Fractal analysis. Mathematically, fractal objects have an infinite number of
scales. For these objects, the fractal dimension is the same on all scales. Indeed, the
properties of self-similarity of a set of points can be characterized by the fractal
dimension. This characterization is complete only for simple cases. In fact, most
fractals are not homogeneous. There is rarely an identical pattern repeated on all scales,
and self-similarity properties can change from point to point. In this case, the object
may have different dimensions at different scales. Thus, fractal analysis can be gen-
eralized by introducing the Multi-Fractal concept as the Diffusion Limited Aggregates
(DLA) Method [13].
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Diffusion Limited Aggregates. Given the palmprint texture image with the number of
Pixel is M0 of the size L, covered by grid boxes of size l, the Multi-Fractal dimensions
or the generalized fractal dimension Dq for this image is defined as follows:

X
i

Mi

M0

� �q

� 1
L

� �ðq�1ÞDq

ð5Þ

Where Mi and q are the number of pixels in the ith box and a variable which allows
distinguish fractals properties at different scales, respectively.

The DLA methods consists in randomly choosing N pixels belonging to the
structure, and counting for every pixel i the number of pixels Mi, inside boxes of linear
dimension R, centered on the selected pixel. In the left of the Eq. 5 can be interpreted

as the average of the quantity Mi
M0

� �ðq�1Þ
according to the probability distribution Mi

M0

� �
,

when the centers of the boxes are chosen randomly, the averaging is made during this
distribution, and consequently, Eq. 5 becomes:

MðRÞ
M0

� �q�1
( )

� R
L

� �ðq�1ÞDq

; Dq ¼ 1
q� 1

log MðRÞ
M0

� �q�1
� 	
log R

L


 � ð6Þ

Where the {…} denotes the average over the centers.
In our experiment, we split the palmprint ROI in s*s sub-regions, where s = 10.

Then, we calculate the multi-fractal dimensions using the DLA method based on the
calculation of generalized fractal dimensions which is made for (−10 � q � 10) to
obtain 21 features for each sub-regions. Therefore, for each ROI image, 210 features
are obtained. For the case where q = 1, the Eq. (6) is non-analytical, hence the choice
of q ± e, with e = 0.001. The equation becomes: Dq ≅ (Dq+e + Dq−e)/2.

2.3 Feature Classification

In this section, the K-Nearest Neighbor (KNN) and the Support Vector Machine
(SVM) classifiers were briefly summarized. In fact, The K-Nearest Neighbor
(KNN) classification algorithm [17] is widely applied in pattern recognition for clas-
sification, which is famous for its simplicity and high correct rate. In our experiment,
The KNN is considered as a supervised classifier insisting on calculating the Euclidean
Distance (ED) between the features vector of the test palmprint (input image) and all the
feature vectors of the training set so that to classify this test palmprint. It is imminent that
the parameter K be determined by the user: k2N, where N = {1,3,5,7,9,…}.

Being developed by Vapnik [18], Support Vector Machine (SVM) is regarded as a
strong discriminative classifier. It is noticeable that it has been deeply used with
advantageous results for a variety of pattern classification/recognition tasks [7, 11].
SVM is both basically exploited to identify an optimal separating hyper-plane or
decision surface by assuming a novel technique reliant on mapping the sample points
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into a high-dimensional feature space and categorized by using a nonlinear transfor-
mation, even when the data are linearly inseparable. By working out a quadratic
programming problem which is reliant on regularization parameters, the optimal
hyper-plane is obtained. This transformation was realized by kernel functions like
Linear kernel (LK), radial basis function (RBF), Polynomial kernel (PK) types being
exploited in this work.

3 Experiments, Results and Discussion

3.1 CASIA and IITD Datasets

Chinese Academy of Sciences Institute of Automation (CASIA) dataset [19] and Indian
Institute of Technology Delhi (IITD) dataset [20] are used for assessing the perfor-
mance of the proposed approach. The CASIA-Palmprint database contains 5502
palmprint images corresponding to 312 subjects. For each subject, 8 palmprint images
have been collected from both left and right palms. The IITD-Palmprint database
contains 2300 palmprints images captured from 230 individuals aged from 14 to 56
years. For each subject, 5 palmprint images have been collected from both left and right
palms. So, 1150 left palmprints and 1150 right palmprints.

3.2 Experimental Results and Discussion

The execution of the suggested palmprint identification system is assessed exploiting
two databases. So, we indiscriminately singled out 5 samples of each person from
CASIA database as the gallery data and we exploited 3 samples or the probe data.
For IIDT database, we arbitrarily chose 3 samples of each person as the gallery data
and the rest of samples as the probe data. In our experiments and in order to classify the
extracted features in this system, we exploited the K-Nearest Neighbor classifier
(KNN) with deferent values of K and the SVM classifier with a variety of kernel
functions. Table 1 highpoints the different recognition rates (RRs) of our suggested
systems with various values of K and a lot of kernel functions.

Likewise, our suggested system was applied with different values of K. Remarkably
from the referred results in Table 1, k = 3 provides the finest recognition rates for both
databases. Moreover, it is obviously remarked that the SVM with the RBF produces the
foremost Recognition rates for both databases in comparison to other functions of
SVM. It is clear that the performance of our experiments with the SVM method
provides higher recognition rates than the KNN approach. Besides, it is evident that the

Table 1. The various recognition rates of our suggested system

RRs (%) KNN SVM
1 3 5 LK RBF PK

CASIA-
Database

92.20 93.87 91.50 93.00 94.02 91.03

IIDT-Database 92.00 93.00 91.00 92.25 93.44 90.85
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recognition rate for the CASIA database attains 94.02 % being a higher RR than the
IIDT database. More importantly, it is necessary note that many ROI images in this
database possess a black area being imminent to minimize recognition performance.

Exploiting the same palmprint datasets, a comparative study of the performance of
our methodology was also carried out with other methods. The experimental outcomes
prove that the suggested palmprint recognition system provides a higher performance
in comparison to most well–known systems in the state-of-the-art [4, 6]. We presented
the outcomes of this comparison in Table 2. The experimental outcomes of the image
texture gained from the CASIA and IITD databases prove that our suggested method
provides recognition rates of about 94.02 % and 93,44 % being impressively surpasses
the ones presented in [4, 6]. These outcomes prove the certainty of our work.

4 Conclusions and Perspectives

In this paper, the applicability of fractal and Multi-fractal techniques have been explored
in order to analyze the complexity of the palmprint texture by calculating the fractal
dimensions based on Differential Box Counting (DBC) and Diffusion Limited Aggre-
gates (DLA) methods. The effectiveness of these methods for palmprint identification
applied on CASIA and IITD datasets was demonstrated. As a result, the experimental
outcomes prove that the Recognition Rates reached 94.02 % and 93.44 %, respectively.
Overall, we deduce that our approach provides the state-of-the-art comparable and
favorable results. In future works, we will insist on fusing the different palmprint
characteristics like the texture and the principal lines to come up with a significant
palmprint recognition of individuals.
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Abstract. The purpose of this study is to improve the classification
accuracy and stability of learning vector quantization using ensem-
ble learning. We focused on an ensemble learning algorithm based on
bootstrap resampling; this algorithm has been widely used in recent
years. LVQs were extended to the ensemble model using three similar
approaches: bagging, random forest, and double bagging. Through com-
putational experiments using benchmark data, we investigated the com-
patibility between each approach and LVQ. The results showed that the
double bagging approach was superior in ensemble LVQ.

Keywords: Learning Vector Quantization (LVQ) · Ensemble learning ·
Bootstrap · Double bagging · Random forest

1 Introduction

In the construction of a learning system, it is important to design a model with
high generalization performance. Ensemble learning is widely used as a means
to improve the generalization performance of a learning model [1]. Ensemble
learning models are composed of a plurality of weak learners; that is, the model
has a shallow fit to the data. By integrating the components based on majority
voting or averaging, it is possible to improve the accuracy of the overall output
system. In general, because the risk of overfitting is reduced by using a plurality
of weak learners as components, ensemble learning models are widely used in data
processing tasks such as prediction and identification. In recent years, bootstrap
[2] sampling-based ensemble learning models represented by random forests [3]
have been successfully applied to various tasks.

Vector quantization neural network models have been expanded to the ensem-
ble learning model. For example, unsupervised vector quantization models rep-
resented by self-organizing maps (SOMs) and neural gas networks (NGNs) have
been applied to ensemble learning algorithms [4] such as AdaBoost and bag-
ging [5]. To expand learning vector quantization (LVQ) [6] to the ensemble
learning model, Bermejo et al. [7] proposed a supervised learning model using
local averaging. However, it is insufficient to discuss the compatibility between
the bootstrap-based ensemble approach and LVQ, as these previous studies
c© Springer International Publishing Switzerland 2016
A.E.P. Villa et al. (Eds.): ICANN 2016, Part II, LNCS 9887, pp. 267–274, 2016.
DOI: 10.1007/978-3-319-44781-0 32
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have done. In particular, because they have worked effectively in many tasks
such as bagging and random forest, various neural networks have been extended
to bootstrap-based ensemble learning in recent works [8–10]; we believe that
they should be considered for LVQ as well.

Therefore, this study applies a bootstrap-based ensemble learning framework
to LVQ, and verifies this approach through experiments. We expect to eliminate
various LVQ problems by applying ensemble learning. LVQ’s identification per-
formance is dependent on the data’s input order and the initial value of the
weight vectors; thus, its learning results are frequently stuck in shallow local
minima. These problems are likely to be resolved by smoothing the identifica-
tion boundary using ensemble learning, without overfitting.

In experiments using benchmark data sets, our approach and normal LVQ
were compared in terms of identification performance. Through computational
experiments, the performance of these models is evaluated and discussed.

2 Preparation

2.1 Learning Vector Quantization

LVQ is one of the nearest neighbor classifier models proposed by Kohonen [6], and
is classified as a supervised neural network. LVQ is composed of an input layer
and a competitive layer. Competitive layers have a set of prototype vectors to
which labels are assigned for class information identification. LVQ discrimination
boundaries are associated with Voronoi regions constructed by a set of prototype
vectors, and inputted data are classified into the class label with the winner node.
There are several LVQ learning algorithms, including LVQ1, LVQ2, LVQ3, and
optimized-learning-rate LVQ1 (OLVQ1).

In this study, we adopt LVQ1 because it is the most popular and simple LVQ
algorithm. Here, we present the definition of LVQ1 and its updating equations.
Let n be a natural number, and let (x i, yi), i ∈ (1, 2, ..., n) be the training data,
where (x i, yi) denotes a pair consisting of attribute data x i and a class label yi.
Let k be a natural number, and let (mj , lj), j ∈ (1, 2, ..., k) be the training data,
where (mj , lj) denotes a pair consisting of prototype LVQ1 vectors mj and its
class label lj .

The updating equations of LVQ1 are described as follows. At time step t, all
weight vectors (m1,m2, ...,mk) are updated to the data x (t) using the following
equation:

mc(t + 1) =
{
mc(t) + α(t)(x (t) − mc(t)), y(t) = lc(t)
mc(t) − α(t)(x (t) − mc(t)), y(t) �= lc(t)

(1)

m i(t + 1) = m i(t), i �= c (2)

where α(t) is learning rate. Index c of winner node mc of input data x is deter-
mined using the following formula: c = arg mini ||x − m i||.
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2.2 Bootstrap Based Ensemble Learning

In the bootstrap-based ensemble learning algorithm that is analyzed in this
study, weak learners are components of the model learning the bootstrap sam-
ples. Because each weak learner learns with different data, it is possible to pro-
vide diversity to the process of learning the results of the components. Bagging
and random forest can be cited as typical bootstrap-based ensemble learning
algorithms. In particular, random forest is widely known as a high-performance
method, and has recently been applied in various fields.

The benefits and advantages of these models are as follows:

(1) By shallow fitting of components to the data, these models avoid overfitting
and provide enhanced generalization performance;

(2) They are relatively robust to noise such as outliers;
(3) Because each weak learner is processed independently, it is possible to apply

parallel computing.

3 Applying Bootstrap Aggregating Algorithm for LVQ

3.1 Training Phase

Ensemble learning is composed of a training phase and a classification phase.
We describe applying each phase to LVQ in this chapter.

The diversity of component learning results is one of the most important
factors for improving the performance of the ensemble learning model. Even
when applying the LVQ ensemble, we considered it important to give diversity
to LVQs, which are components of the ensemble. By changing the input order
of the data and the initial value of the weight vector of LVQs, which learn
in parallel, it is possible to perturb the weak diversity output of components,
because the LVQ has an initial value dependency.

However, only employing the collateral of diversity caused by the initial value
dependency is insufficient. To increase the diversity of LVQ, the bootstrap-based
ensemble learning algorithm is promising. In the training phase, by resampling
using bootstraps from target data, components diversity is “squeezed through,”
which increases the variation of LVQ learning data. Here, we adopt three types
of algorithms: bagging, random forest, and double bagging [11]; these algorithms
are widely used in decision tree ensemble learning.

First, we describe bagging. Typically, the only processing performed in this
phase involves resampling of training data for each LVQ. In this algorithm, LVQ
learns independently resampled data in parallel. Second, we outline the process
employed by random forest. The random forest, in addition to the resampling in
bagging, gives diversity to classifiers by performing randomly selected features.
Because the component of the model is not a tree, this paper will refer to this
process as bagging with random feature selection. The random forest improves
the overall model performance by increasing the variation of the conditional
branch in the decision tree by random feature selection. The number of features
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selected by this algorithm was determined as the square root of the total number
of features, which is generally recommended when using random forest.

Finally, a description of double bagging will be provided. This is an ensemble
learning algorithm designed specifically for learning classification models; it aims
to improve the classification accuracy through supervised dimensional reduction.
In this model, a canonical variate in linear discriminant analysis has been used as
a dimensional reduction tool; bagging uses this canonical variate as an attribute,
which may improve classification performance. Here, by calculating the canonical
variate in linear discriminant analysis on the basis of out-of-bag samples, the
generalization of weak learners is considered.

The learning phase is intended to improve the performance of the entire
ensemble model by applying these respective processes to ensemble model. In
particular, bagging with random feature selection and double bagging have been
used successfully in the ensemble of the decision tree; thus, higher performance
can be expected.

3.2 Classification Phase

Because LVQ is a nearest neighbor classifier, the output value of the classifica-
tion result of the ensemble model is determined based on a majority vote by the
classifiers, which are components. This phase processes the processing results of
all the previous training phases. Let ym(x i) ∈ {C1, C2, ..., Ck} be the classifi-
cation result of classifier Vm for i-th data x i. The output of an LVQ ensemble
model {Vm}Mm=1is obtained using the following equation:

Ci = arg max
j

|Cj | (3)

where |Cj | is the number of LVQ classifiers that classify data x i to class Cj .

4 Experimental

4.1 Experimental Settings

The validity of our approach was confirmed through a computational simulation,
which is described in the following section.

For our experiment, we used the “Iris,” “Seeds,” “Wholesaler Customer,”
“Abalone,” “Connectionist Bench,” and “Wine,” data sets published in the UCI
Machine Learning Repository, because they are widely used as benchmark data
for classification tasks. We compared the proposed method against a normal LVQ
model, as well as LVQ ensemble models that follow other approaches. The other
ensemble LVQ models utilize the following three approaches: randomizing the
initial value, applied bagging, bagging with variable selection (as random forest),
and double bagging. In addition, in order to evaluate the computational com-
plexity of ensemble learning, we confirmed the runtime with different numbers
of ensembles at each algorithm.



Ensemble Models of Learning Vector Quantization 271

We applied 5-fold cross validation for each data set, and compared the average
accuracy rate of the experiment 50 times for each model. Here, the classification
accuracies of each method were compared for each benchmark data set. Further,
to investigate the relationship between the classification accuracy and the num-
ber of ensembles (while increasing the number of weak learners by one for each
test), a similar experiment was performed. The parameters used in the experi-
ment are as follows. Number of LVQ nodes are 2 times the number of classes,
Bootstrap sample sizes are one-third of in-sample size, Learning rate γ = 0.03,
Number of ensembles E = 20.

4.2 Experimental Results

This section describes the experimental results. Figure 1 shows the experimental
results for each data set. Subfigures (a), (b), (c), (d), (e), and (f) correspond to
“Iris,” “Seeds,” “Wholesaler customer,” “Abalone,” “Connectionist Bench,” and
“Wine,” respectively. These figures are box plots of classification accuracy; the
vertical axis shows classification accuracy, and the horizontal axis corresponds
to each approach. Box plots in each figure represent results of normal LVQ1,
ensemble LVQ without bootstrap, bagging of LVQ, LVQ bagging with random
feature selection, and LVQ double bagging, from left to right. Mean values of
classification accuracy for each method obtained as a result of cross-validation
are listed in Table 1; the standard deviations of the classification accuracy are
shown in parentheses. In this table, the maximum average value and the mini-
mum standard deviation value for each data set are shown in bold.

Figures 2 and 3 show line charts that represent the relationship between the
classification accuracy and the number of ensembles in each data set. The hori-
zontal axis represents the number of ensembles and the vertical axis represents
the classification accuracy. Figures 2 and 3 are corresponding to average value
and standard deviation respectivery. Table 2 shows the computational cost for
seeds data set. It can be confirmed the relationship between the computational
cost and the number of ensemble.

Table 1. Mean value and standard deviation of classification accuracy

LVQ1 Randomized
initial
weights

Normal
bagging

Bagging (rand
feat slct)

Double
bagging

Connectionist 68.15(6.80) 71.98(5.35) 71.45(5.47) 71.43(5.41) 72.90(4.82)

Wine 95.61(2.55) 96.93(1.94) 96.85(1.95) 96.07(2.26) 97.73(1.81)

Iris 90.59(4.73) 92.19(4.15) 91.26(4.07) 92.03(4.40) 97.27(1.90)

Wholesale 63.83(5.20) 71.30(2.73) 71.52(2.58) 71.55(2.60) 70.88(2.65)

Seeds 90.49(2.82) 91.92(2.43) 91.72(2.53) 91.30(2.71) 95.83(1.88)

Abalone 54.63(4.70) 62.97(4.42) 57.45(4.54) 57.48(4.61) 62.70(4.23)
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4.3 Discussion

As shown in Fig. 1 and Table 1, double bagging provides the highest accuracy
in four of the six data sets. Among the algorithms covered in this study, double
bagging appears to provide the highest accuracy in the ensemble of LVQ. In
addition, it can be confirmed that the standard deviation of the identification
accuracy for this algorithm is lowest in five of the six data sets. Based on these
findings, double bagging should be considered the most effective technique for
practical applications, because the learning results can be stable and highly
accurate.

In ensemble learning based on general decision trees, it is well known that
random forests have higher prediction accuracy than bagging. However, in the
framework of this study, namely ensemble learning of LVQ, the experimental
results produced using the same variables as random forest do not indicate clear
differences from the experimental results of bagging. The number of variables
available to conditional branching within the decision tree is limited. On the
other hand, LVQ constructs a decision boundary based on the Voronoi tessel-
lation, using the full attributes provided. Because of this, it is more difficult to
create diversity in LVQ ensembles than in decision tree-based ensemble models.
We concluded that random feature selection is less effective in the performance
improvement of ensemble learning of LVQ.

On the other hand, when comparing the normal LVQ and ensemble model,
it is evident that all algorithms are better than the normal LVQ in terms of
accuracy and stability. Furthermore, based on the results shown in Figs. 2 and
3, it can be confirmed that classification accuracy improves when the number of
ensembles is increased. From the above, it was confirmed that applying ensemble
learning in LVQ contributes to improving the performance of the model.

Ensemble size haves influence on the increase of the computational cost (See
Table 2). Especially, it is larger than the others computational cost of double bag-
ging. It can be considered that double bagging algorithm requires a large amount
of calculation to supervised dimension reduction and learning of OOB data. How-
ever, we believe that computational cost of double bagging for LVQ is viable.
Furthermore, since each of the bootstrap-based ensemble learning algorithms are
capable of extension to parallel computing, improving the efficiency of computing
is possible.

Table 2. Runtime with different numbers of ensembles at each algorithm

The number of ensembles 10 20 50 100 200 500

Randomized initial weights 0.03 s 0.04 s 0.12 s 0.27 s 0.59 s 1.86 s

Normal bagging 0.05 s 0.10 s 0.27 s 0.58 s 1.14 s 3.53 s

Bagging (rand feat slct) 0.01 s 0.05 s 0.15 s 0.28 s 0.64 s 2.06 s

Double bagging 0.14 s 0.26 s 0.61 s 1.23 s 2.56 s 6.83 s
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Fig. 1. Boxplots of experimental results for each model
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Fig. 2. Relationship between the average of the classification accuracy and the number
of ensembles
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Fig. 3. Relationship between the standard deviation of the classification accuracy aver-
age and the number of ensembles
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5 Conclusion

In this study, we applied a bootstrap-based ensemble learning algorithm to LVQ.
The effectiveness of this technique was confirmed through performance evalua-
tions that employed computational experiments using benchmark data sets. The
result shows that bootstrap-based ensemble learning contributes to an improve-
ment in LVQ’s classification performance, particularly in the ensemble learning
general neural nets and decision trees. Because these extensions to the LVQ are
relatively straightforward, they can be expected to improve the performance of
real-world tasks.

The following is a list of future issues to be addressed by this study:
1. Discussing the use of ensemble algorithms other than those already adopted in
this study [12], 2. Discussing other versions of LVQ, including LVQ2, LVQ3 and
OLVQ1, 3. Evaluating the relevance of the parameter settings on the performance
of these models, and 4. Evaluating performance based on a theoretical point of
view, such as information value.

Acknowledgments. This work was supported by JSPS KAKENHI Grant-in-Aig for
Young Scientists (B) Numbers 15K1625.
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Abstract. The main aim of this paper is to combine multiple partitions
generated by different clustering algorithms into a single clustering solu-
tion (consensus partition), using a new bio-inspired optimization tech-
nique to optimize the cluster ensembles. In this proposed technique, the
cluster ensembles are heterogeneously created and the initial partitions
are combined through a method which uses the Coral Reefs Optimization
algorithm, resulting in a consensus partition.

Keywords: Machine learning · Clustering ensembles · Optimization

1 Introduction

There is a huge variety of clustering algorithms proposed in literature which have
been successfully applied in different applications. However, in an attempt to
overcome the limitations of the individual clustering algorithms, combining dif-
ferent methods can provide further information about the problem to be solved.
Systems that combine several different clustering methods are called Cluster
Ensembles. In this context, the goal is to find a consensus partition taken from
various methods applied to a given dataset. Although the cluster ensembles
are usually more accurate methods than individual clustering algorithms, such
methods do not always perform well. One possibility to improve the efficiency
of clustering ensembles is by using optimization techniques. The optimization
of cluster ensembles is aimed at improving stability and robustness of the final
partition of an ensemble.

Generally, optimization techniques can follow two different approaches: the
first one is the generation of initial partition of the ensemble, in which various
clustering algorithms are applied to a particular dataset; the second approach
focuses on the combination of the initial partitions. This article will focus on
the second approach, optimizing the consensus function in the context of cluster
ensembles. In this sense, we aim to propose an approach towards the optimization
c© Springer International Publishing Switzerland 2016
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in creating an ensemble consensus function, through a bio-inspired optimization
technique, more specifically, the Coral Reefs Optimization (CRO) algorithm.
This optimization algorithm was recently proposed by [7] and applied on prob-
lems in the mobile network field [9] and sustainable energy [8,10], achieving a
good performance. In a previous work of the authors, [6], the CRO algorithm
was applied to data clustering problems using individual algorithms. As a con-
sequence of the promising results obtained in [6], this paper applies CRO for
cluster ensembles.

2 Cluster Ensembles

The combination of clustering algorithms, also called Cluster Ensembles consists
of finding a final solution, i.e., a consensus partition, based on the combination
of multiple partitions provided by one or more clustering algorithms. This con-
sensus partition should be better than the initial partitions [11]. By using cluster
ensembles, usually the goals are: robustness (obtaining a more robust consen-
sus partition than the initial partitions), novelty (achieving an original consensus
partition, which cannot be individually obtained from any algorithm) and stabil-
ity (finding solutions of clusters with less sensitivity to noise, outliers, sampling
variations or algorithm variance) [4].

In the context of clusters of ensembles it is necessary to consider two impor-
tant aspects, which are: the generation of the initial partitions and the creation
of consensus function to combine the initial partitions. In the first case, in order
to have a final partition with good quality, it is important to have diversity in
the generation of initial partitions; which means that initial partitions must be
different from one another so that each of them may add relevant information
to the final partition [3].

The consensus function is defined as combining the generated initial parti-
tions in a single partition, or the final partition, also called consensus partition.
The consensus partition must be better than the initial partitions, which is why
the choice of a consensus function should be made carefully. Furthermore, it is
important to note that the combination of initial partitions is a complex task
taking into account the absence of labels on objects to be clustered, resulting in
partitions not explicitly matching the initial partitions [11].

3 Coral Reefs Optimization – CRO

The Coral Reefs optimization algorithm is a meta-heuristic evolutionary algo-
rithm based on coral reefs reproduction. Basically, the algorithm creates an N
x M sized square grid, in which some cells are initially occupied at random by
corals, while others empty cells will be occupied by new corals, when they estab-
lish themselves freely and grow in the future. Each position on the grid, i.e., each
cell may contain a coral, which represents a possible solution for the optimiza-
tion problem. Each coral is associated with a health function, which represents
the function which is the objective of the problem. In this way, for a coral reef to
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progress, it will depend on the health degree of the corals. That is, the healthier
the corals are (which represents the best solutions for the problem) more likely
to survive they will be. In contrast, the less healthy corals are more likely to
die [8]. After the algorithm is started, an iterative process takes place, in which
each iteration corresponds to a generation of corals. In every iteration, the corals
reproduce and new individuals, called larvae, are generated. The main operators
used by CRO are [8]:

1. External Sexual Reproduction: This type of reproduction is composed of two
stages: the first consists in selecting a fraction of corals on the reef to be
diffuse reproductive. The rest of the corals will reproduce in litters at a later
stage of the algorithm. The second step is to select pairs to reproduce, where
each individual in the pair forms one or two larvae of coral by sexual breeding.
Once the pair is selected to be parents of a larva, the individuals in the pair
are no longer chosen to reproduce in the same iteration.

2. Internal Sexual Reproduction: in this type of reproduction, the fraction of
coral that was not selected in the previous step reproduces in litters. The
litter modelling consists in forming a coral larva through a random mutation
of the coral. Thus, the larva produced is then released, along with larvae
formed by spawning or transmission.

3. Definition of the Larvae: this is the main step of the algorithm. Since all
larvae are formed, they will try to establish and grow on the reef. This process
happens as follows: initially, the health function of each larva is calculated.
Then each larva will randomly try to occupy a cell in the reef grid. So, if the
cell is empty (free space on the reef), the coral larva grows on it, no matter
despite the value of its health function. However, if the selected cell is already
occupied by a coral, the new larva will establish only if its health function is
better than the existing coral’s. This larva makes a given number of attempts
to define on the reef; in case several unsuccessful attempts occur, the larva
will be preyed upon by animals on the reef.

4. Asexual Reproduction: in the asexual reproduction modelling (also called
budding or fragmentation), the global set of existing coral on the reef are
classified according to their level of health. Then a small fraction of the best
corals is duplicated and then try to settle in a different part of the reef,
following the configuration process described in step 3.

5. Preying: in this phase a part of the worst coral reef can be preyed upon,
therewith clearing some space on the coral reef for the next generation. In
each step, the prey operator is applied with a small probability and exclusively
to fraction of the more poor and less healthy coral.

4 The Proposed Approach

As mentioned previously, CRO is a bio-inspired meta-heuristic algorithm which
was recently proposed for optimization problems. Nevertheless, to the best of
our knowledge, up to the present, no applications of CRO in the context of
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cluster ensembles has been found in literature. Therefore, this paper proposes the
usage of CRO algorithm to provide optimization in cluster ensembles, specifically
applied on the generation of the consensus function, as can be described in the
following steps.

– The original dataset is divided into subsets, which can have the same size of
the original dataset (samples with replacement, as in Bagging or Boosting) or
not (feature and/or instance selection methods for ensembles);

– Once the subsets are created, the subsets are presented to the clustering algo-
rithms to provide the initial partition.

– The following stage combines these partitions, in order to obtain a consensus
cluster, which is obtained by the combination of the listed methods. The gen-
eration of this function is brought about by the CRO algorithm. In this sense,
the best partition of each iteration of CRO is selected.

– Finally, the final partition will be assessed by evaluation indices.

5 Experimental Setting Up

In order to analyze the efficiency of the CRO algorithm on optimizing cluster
ensembles, an experimental analysis was conducted. In this analysis, 12 datasets
were exported from UCI Machine Learning Repository, described in Table 1.

Table 1. Dataset features

Dataset Instances Atrributes Classes

Automobile 205 26 7

Balance scale 625 4 3

Breast cancer 286 9 2

Sonar 208 60 2

Dermatology 366 34 6

Ecoli 336 7 8

Glass 214 10 7

Hepatitis 155 19 2

Iris 150 4 3

Lung cancer 32 56 3

Diabete 768 8 2

Wine 178 13 3

The initial partitions of the ensemble are generated by three different clus-
tering algorithms, which are: K-Means, Expectation-Maximization and agglom-
erative Hierarchical. The listed algorithms have been chosen based on their
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wide applicability on cluster ensembles in which they had worked success-
fully. In addition, they are simple and easily applicable methods. In this work
the implementations of the used algorithms were exported from the WEKA
package [5].

Taking into consideration that the optimization techniques and cluster-
ing algorithms used in this work (except the Hierarchical algorithm) are non-
deterministic ones, 10 executions were performed. In addition, for each clustering
algorithm, the number of groups varies from 2 to 10. Therefore, for each config-
uration, there will be 90 values (10 executions× 9 number of groups) and they
will be averaged to be presented in this paper.

In this work, three different fitness functions are used, both in the CRO
algorithm and in the genetic algorithm (GA), which are:

– Corrected Rand (CR): it determines how similar two partitions are, in which
one of the partitions must be a previously known data structure, while the
other partition is the one being assessed;

– Davies-Bouldin (DB): It is a function which calculates the rate between the
sum of dispersion inside the groups and the dispersion among the groups;

– MX, proposed in [6]: it evaluates how near a given partition and a new parti-
tion are.

Therefore, for the generation of the ensemble consensus function, six different
configurations will be analyzed, in which three of them use the proposed (CRO),
varying the fitness function. The remaining three configurations will be used
to provide a comparison with CRO algorithm. The comparative configurations
were genetic algorithms (varying the fitness function). For comparison purposes,
the GA-based configurations will use the same methodology of CRO to provide
the consensus function, as explained in Sect. 4.

In order to assess the obtained consensus partition, two clustering validation
indices were taken into consideration, namely: the Calinski-Harabasz index [2]
and Jaccard [1].

6 Results

This section presents an overall evaluation of all of the six analysed approaches
(GA-CR, GA-DB, GA-MX, CRO-CR, CRO-DB, CRO-MX). Keeping in mind
that different datasets with different precision values are being evaluated in
this analysis, the direct use of these values can lead to a mistaken analysis
of the obtained results. In order to address this issue, the performance of these
approaches is assessed taking into consideration the mean ranking of the obtained
results. These rankings are based on their precision (CH or Jaccard), always
assigning 1 to the best value, followed by 2, 3, 4, 5 and 6 in ascending order
according to its performance. This ranking is calculated for each configuration
(index value and objective functions), taking all 9 analysed number of groups
(from 2 to 10). The average score for each approach is then calculated and the
final classification is made according to their average score for each dataset.
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Table 2 presents the results of the mean ranking for each of the six approaches
and each dataset, considering, respectively, the CH and Jaccard indices. The
shaded values represent the lowest value in the ranking for each dataset. The
last row in each table is the overall average ranking of the compared approaches
for all analyzed datasets.

Table 2. Ranking results for Calinski-Harabasz (CH) and Jaccard indices

Calinski Harabasz (CH)
Dataset GA-CR GA-DB GA-MX CRO-CR CRO-DB CRO-MX
Dermatology 2.72±0.90 6.61±0.22 5.72±1.62 2.33±1.22 4.22±0.97 1.50±0.86

Iris 3.00±0.86 5.50±1.69 5.22±0.83 1.66±0.5 4.33±0.86 1.77±0.83

Automobile 3.00±1.73 5.94±1.95 4.72±1.76 2.55±1.23 3.88±1.90 2.55±1.23

Breast 3.33±1.00 6.61±0.22 5.94±1.48 2.88±0.92 3.77±0.83 1.22±0.44

Diabetes 3.11±0.6 6.11±0.22 5.66±0.70 1.88±0.33 3.88±0.60 1.22±0.66

Lung 4.00±1.32 5.61±1.69 5.88±1.05 2.66±1.22 5.22±0.97 1.55±0.52

Ecoli 4.22±0.44 6.72±0.26 5.61±1.11 2.27±0.66 5.44±0.52 1.88±0.92

Sonar 2.88±0.78 6.33±0.35 4.11±1.53 1.33±0.7 4.83±0.61 2.38±1.21

Wine 4.00±1.00 6.00±1.88 4.11±1.59 2.5±2.00 4.88±1.05 2.22±0.97

Hepatitis 3.55±0.72 6.27±0.26 5.22±1.46 2.00±0.50 4.44±0.52 1.11±0.33

Glass 3.55±0.88 5.88±0.78 4.22±1.20 1.55±0.52 4.44±0.88 1.55±0.72

Balance 4.00±0.70 5.44±0.52 4.11±0.92 2.00±0.00 3.88±0.92 1.00±0.00

Ave±ST 3.44±0.91 6.08±0.83 5.04±1.27 2.13±0.81 4.43±0.88 1.66±0.72

Jaccard
Dermatology 5.88±0.82 2.55±0.88 5.22±0.97 3.22±0.83 6.44±0.72 2.44±1.13

Iris 5.33±0.86 1.00±0.00 5.00±1.22 3.44±0.88 6.66±0.70 2.55±0.72

Automobile 4.00±2.48 3.11±2.01 4.11±1.02 4.11±1.13 4.66±0.82 3.77±2.63

Breast 5.44±0.88 1.55±0.52 3.00±0.00 5.00±0.70 4.55±0.72 1.44±0.52

Diabetes 5.33±0.70 1.66±0.70 3.22±1.09 3.77±0.66 5.44±0.72 1.00±0.00

Lung 4.77±1.09 1.38±0.48 3.00±0.00 4.66±0.50 6.11±0.92 1.61±0.48

Ecoli 5.66±0.70 1.77±0.44 5.55±1.01 3.22±0.66 6.44±0.72 1.55±0.88

Sonar 4.88±0.78 1.00±0.00 2.66±0.70 3.88±0.60 6.27±0.66 3.44±2.12

Wine 5.55±0.52 1.11±0.33 3.33±1.11 3.55±1.13 6.00±1.22 4.88±2.61

Hepatitis 5.33±1.22 1.22±0.44 2.66±0.70 4.11±0.92 5.77±1.09 3.55±2.65

Glass 5.66±0.86 1.00±0.00 3.33±0.70 3.66±1.41 6.55±0.52 3.44±1.5

Balance 5.00±1.50 1.66±0.50 4.11±1.45 4.44±1.33 5.11±0.6 1.00±0.00

Ave±ST 5.23±1.03 1.58±0.52 3.76±0.83 3.92±0.89 5.83±0.78 2.55±1.27

By analyzing the mean ranking results, considering the overall average of
the approaches for each dataset, using the CH index, it is possible to assert
that the CRO-MX approach (CRO using MX as fitness function), achieved the
lowest mean ranking (the best performance). While using the GA-DB approach
(genetic algorithm using DB as fitness function) had the best performance; and
when using the Jaccard index.

Of the different approaches used for the proposed method, the CRO-MX
approach has achieved the best performance, for both evaluation indices. In
fact, the CRO-MX approach achieved the best performance in 9 out of the
12 datasets, when the CH index was used for evaluation. When the Jaccard
index was used, the best performance was achieved in 5, out of the 12 datasets.
Therefore, we can state that the proposed approach (CRO-MX) had provided
the best performance in majority of datasets, when using CH index. For the
remaining datasets, the performance of CRO-MX was similar to the one provided
by the genetic algorithms (GA-DB).
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6.1 The Statistical Tests

In order to more significantly validate the performance of the approaches used
in the empirical analysis we used the Friedmann and post-hoc Nemenyi test,
since these non-parametric tests are suitable to compare performance of different
learning algorithms, being applied on several datasets. Friedmann test is used
to compare the performance of all of the six approaches. Therefore, it is applied
directly on the index values, rather than on the ranking results.

As a result of the Friedman test, we observe that the index values provided
by all six approaches proved to be statistically significant for all two evaluation
indices (p-value = 3.9347e− 11 for CH and p-value = 9.2012e− 07 for Jaccard).
We then applied the post-hoc Nemenyi test, for all two evaluation indices. The
results of the post-hoc Nemenyi test are shown in Table 3 and its first column
describes the comparison shown in this paper. In this case, all three CRO con-
figurations, changing the fitness function (CR, DB and MX), are compared to
the other approaches. It is important to highlight that each CRO configuration
was compared only to the approach similar to the GA, such as, for instance,
CRO-CR was compared to GA-CR.

Table 3. P-value results the Friedmann test

In Table 3, the shaded cells represents the values in which the CRO approach
has achieved better performance, from a statistical point of view. In contrast,
the bold cells represents the cases in which the GA approach is better than the
CRO approach. For the regular cells, the performance of both approaches are
similar, from a statistical point of view. We can observe that the CRO approach
had better performance (shaded cells) than the GA approach, from a statistical
point of view, in 4 cases. In addition, the CRO approach had worse performance
(bold numbers) in only 1 case and similar performance in 1 case. In general, the
performance provided by CRO, for all three objective functions, was better than
the corresponding GA approach. In the statistical analysis, the CRO approach
either proved to be statistically better or similar. The only exceptions was when
using the DB index as objective function. The results obtained in this paper
are very promising since it shows that the use of the CRO algorithm for cluster
ensembles can provide better or similar results than genetic algorithms, which
is the most applied optimization algorithm for a cluster ensemble.

7 Final Remarks

This paper presented a new approach for defining the consensus partition for
cluster ensembles. The proposed approach applied a recently proposed bio-
inspired optimization technique, called the Coral Reefs Optimization (CRO)
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algorithm, to provide the consensus partition from a set of initial partitions.
In order to assess the performance of the proposed approach, an empirical analy-
sis was conducted. In this analysis, the proposed approach used three different
objective functions (CR, DB and MX) and they were all applied to 12 different
datasets. For comparison purposes, we also applied a genetic algorithm, using
the same three objective functions.

Through this analysis, we can conclude that the performance provided by
CRO, for all three objective functions, was better than the corresponding GA
approach. In the statistical analysis, the CRO approach either proved to be
statistically better or similar. The only exception was when using the DB index
as objective function. The results obtained in this paper are very promising
since it shows that the use of the CRO algorithm for cluster ensembles can
provide better or similar results than genetic algorithms, which is the most
applied optimization algorithm for a cluster ensemble.
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Abstract. Content-Based Image Retrieval (CBIR) system enables us to
access images using only images as queries, instead of keywords. Photo-
realistic images, and hand-drawn sketch image can be used as a queries
as well. Recently, convolutional neural networks (CNNs) are used to dis-
criminate images including sketches. However, the tasks are limited to
classifying only one type of images, either photo or sketch images, due
to the lack of a large dataset of sketch images and the large difference
of their visual characteristics. In this paper, we introduce a simple way
to prepare training datasets, which can enable the CNN model to clas-
sify both types of images by color transforming photo and illustration
images. Through the training experiment, we show that the proposed
method contributes to the improvement of classification accuracy.

Keywords: Content Based Image Retrieval · Hand-drawn sketch

1 Introduction

We can locate a variety of images in large datasets using searching systems with
a set of keywords as the query. However, sometimes we want to find images with
an unknown name. Content Based Image Retrieval (CBIR) is an effective way
to search for such content, for which we have no discriminating metadata [1].
Hand-drawn sketch images were applied to CBIR system [2–4], because users
do not have to take pictures or download images, but just draw some sim-
ple lines. In order to develop and improve the sketch-based CBIR systems, a
well-designed image feature extraction method was utilized [5]. In addition, con-
volutional neural networks (CNNs) [6] recently became the major approach to
recognizing images, due to its high accuracy in image classification tasks, which
was achieved by training over one million images [7]. Due to this good scalabil-
ity for discriminating a lot of images, the CNN classier can be used to recognize
user’s query in a CBIR system.

However the CNN’s classification targets are unfortunately limited to pho-
torealistic images (Fig. 1(a)) or sketch images (Fig. 1(b)), even though CBIR
systems have various kinds of query images. Discriminating both photorealistic
and sketch images through a CNN model is still a challenging task because there
is no large scale database set of sketch images. Eitz et al. proposed using an open
c© Springer International Publishing Switzerland 2016
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image database set with 20,000 non-professional hand-sketch images [5], but the
size of the dataset is small. In addition, training CNNs with both types of images
is also difficult, because there are large differences between these two types of
images, which prevent networks from extracting the general features required
for classification. Yang et al. proposed the idea of a sketch-image retrieval sys-
tem but they utilized two CNN models divided by type of image [8], due to the
difficulty of integrating training of photo and sketch images. Sketch images do
not have color or texture information, which is basic for the differentiation of
the input images in the internal CNN process. In addition, the shapes in sketch
images are not well-shared among the classes, because the shape is often altered
during the drawing process. Yu et al. proposed a CNN based model for recogniz-
ing sketch images using stroke ordering of sketching. Their system marks 74.9 %
of accuracy in classifying 250 categories of hand drawn sketch images [9]. This
is better than human performance, but this system can recognize only sketch
images with stroke ordering information. By contrast, CBIR systems may be
input photo realistic images or sketch images without the information about
stroke ordering.

(a) Photo (b) IIllustration (c) Sketch

Fig. 1. Examples of images. (a) Photo image. (b) Illustration image. (c) Sketch image.

In this paper, we introduce a simple way that enables one CNN model to
classify photo and sketch images by training data argumentation. To overcome
the problem of the sketch image dataset’s size, we utilize color transformed illus-
tration images (Fig. 1(b)). Illustration images are a type of non-photorealistic
images, but they are more detailed than sketch images; they have coloring, and
they can be easily found by crawling the web. For the training dataset, we
enhanced the edged of the illustration images to imitate sketch images. Further-
more, we added gray-scaled versions of photo and illustration images to bridge
the difference between the photo and the edge-emphasized illustration images.

This paper is organized as follows. In Sect. 2, we explain how to prepare
training datasets of CNNs with the proposed method. After that, we describe
a simple experiment for classifying 20 classes of animal images and confirm the
ability of the proposed method in Sect. 3. The results of the experiment are
described in Sect. 4. In the same section, we also visualize the acquired image
features by the CNN. Finally we summarize our work in Sect. 4.



Classification of Photo and Sketch Images Using CNNs 285

2 Method for Preparing Datasets

To prepare the training dataset for the CNN model to classify photo and sketch
book, we utilize the mixed image dataset comprising of photo images, illustration
images, and color-transformed versions of these images.

(a) Illustration
Gray scaled Edge emhanced

(b) Photograph
Gray scaled

Fig. 2. The method to prepare the training date set for CNN. The training data set
consists of (a) illustration images and (b) photo images. Illustration images additionally
have two types of varieties: grayscale ones and sketch-liked ones. Photo image are
transformed into grayscale images.

Figure 2 presents the purposed method to prepare training datasets. Through
the forward propagation process of CNNs, information about color, texture and
shapes is converted through many layers of CNN to the probability of each
class. This means that the classification accuracy of CNNs strongly depends on
the color distribution on the input image. If CNNs are trained by only photo
images, they cannot discriminate non-photorealistic images well, because they
do not often share color information with the trained images. When we want
to train CNN with both photo and sketch images, it is difficult to collect a lot
of hand drawn sketch images. Therefore we utilize illustration images instead
of sketch images. Illustration images are more detailed than sketch images and
non-photorealistic images, and they are easily collected by image search engines.
To imitate sketch images, we emphasize edges of illustration images by using a
canny edge detector [10]. In addition, we include the grayscale versions of the
photos and illustration images to bridge the gap between the two types of images.
These grayscale images are aligned with the input value, and offer a compromise
between sketch and photo images.

3 Experiments

To confirm the ability of the proposed method to prepare datasets, we conduct a
preliminary experiment that pertains to assigning animal images into 20 classes.
Four CNN models with different training datasets are compared with respect to
classification accuracy based on the untrained datasets, which consist of photos
and sketch images.
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(c) Examples of sketch images

(b) Examples of illustration images

(a) Examples of photo images

Fig. 3. Examples of the images used to prepare the training datasets, which con-
sists of 20 animal categories (classes). (a) Photo graph images. (b) Illustration images.
(c) Hand-drawn sketch images.

3.1 Datasets

Figure 3 shows examples of images used in the training datasets. We collected
27,927 images of animals belonging to 20 classes. In order to collect these images,
we searched the web with the names of animals. In the test dataset, 100 sketch
images were drawn by five participants. The size of the images was 256× 256
pixels, and all images were randomly cropped into 227× 227 pixels when the
images were inputted into the CNN.

Table 1. Details of the training datasets.

Dataset Photo Illust Photo Illust Illust Number of

(Gray) (Gray) (Edge) images

(A) Illust - x - - - 12,734

(B) Photo x - - - - 38,468

(C) Illust and Photo x x - - - 51,202

(D) Proposed method x x x x x 115,138

To compare the dataset’s classification effectiveness and accuracy, four types
of training datasets were examined, as described in Table 1. First, we prepared
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two datasets with only one type of image, named (A) Illust and (B) Photo. In
addition, we prepared the mixed training dataset, (C) Illust and Photo. Finally
we tested the proposed method (D). All Images of the training datasets were
duplicated by mirroring to avoid overfitting.

In order to check the classification accuracy of photo and sketch images, 200
images were used as the test dataset. This dataset comprised 100 sketch images
and 100 untrained photo images.

3.2 Learning CNNs

As a learning model, we utilize a CNN model which with five convolutional layers,
the corresponding pooling layers, and three fully connected layers. The network
architecture was based on Alex-net [6] which is known as a standard CNN model
for classifying images. Under all training conditions, we utilized common layer
parameters and hyper training parameters. All CNNs were optimized over 1400 k
iterations by stochastic gradient descent [11] with mini batches, which have 100
images each. The optimization process was calculated with a single GPU, and
Caffe [12] as framework.

4 Results and Discussion

4.1 Classification Accuracy of Photo and Sketch Images

Table 2 summarizes the classification accuracy obtained after training four
CNNs. Each accuracy value reflects the best classification performance on the
mixed dataset of photo and sketch images, in the optimization process. The
CNN model trained with the dataset (D) outperforms the others. When the
CNN model is trained with the dataset (A), it can classify 33 % of the images,
but classifies the sketch images with high accuracy. On the other hand, the CNN
model trained with the dataset (D) can classify photo images well, but it can-
not discriminate sketch images well. Training both types of images improves
the classification by 20 %. Adding color transformed images of illustrations and
photo images in dataset (C) further improves the process by over 10 %. Thus,
the proposed method is successful in significantly improving the classification.

4.2 Image Activation Features in CNNs

Furthermore, we visualize activation features of the training images obtained by
the trained CNNs with the proposed method. We perform principal component
analysis (PCA) on the training image’s features, which are extracted in the
second fully connected layer (the second from the last layer). The contribution
values of the three PCA’s components are 1.84 %, 1.06 % and 0.97 %, respectively.
As shown in Fig. 4, the features are separated by the labels of images.

Figure 5 depicts how the different types of images are organized in the CNNs
by shifting the target layer in order to the extract the features. (a) pool5 is the
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Table 2. Comparison results of classification accuracy by changing the training
dataset. Each line presents the best classification accuracy of models trained with
illustrations, photos, and the mixed dataset.

Dataset Photo Sketch Mixed

(A) Illust 26 % 41% 33 %

(B) Photo 99 % 11% 55 %

(C) Illust and Photo 99 % 42% 71 %

(D) Proposed method 99 % 76% 85%

PC 1
PC 2

PC 3

PC 1 
PC 2

PC 3

Fig. 4. Activation features of the training dataset obtained by the CNN trained using
the proposed method. Two plots depict the same features projected by principal com-
ponent analysis, but viewed from different angles. Each color indicates the class of the
images, and PC1 to PC3 axes correspond to principal components 1–3, respectively.

Photo Photo (gray) Illustration Illustration (gray) Illustration (edged)

(c) fc7(b) fc6(a) pool5

Fig. 5. Activation features of the images labeled “bear” projected in the same manner
as Fig. 4. Each row (a), (b) and (c) corresponds to each CNN layer. The top and bottom
rows depict the same features from different angles. All features are colored based on
the type of images.
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fourth layer from the last. From this layer, we visualize the features of the same
images labeled “bear” by shifting the target layer. We then extract the features
one by one toward the output, at which (a) pool5 is the fourth layer from the
last and (c) fc7 is the second layer from the last, which outputs the probability
of images activated by the softmax function. All the features are visualized using
the PCA components, as in Fig. 4, but they are colored according to the types
of images. At the (a) pool5 layer, the features are separated by the types of
images. By shifting the target layer, these features are gradually gathered. We
evaluate how these features are gathered by the ratio S between the between-
class covariance sb and the within-class covariance sw calculated by

sw =
1
N

∑

i∈class

∑

mi∈m

(m−mi)T(m−mi) (1)

sb =
1
N

∑

i∈class

(mi −m)T(mi −m) (2)

S =
sb
sw

, (3)

where m is the feature, mi is the average of the features labeled i, and m is the
average of all the features. This ratio S is obtained as each set of features is
projected by the three principal components: 0.53, 0.11, and 0.03 for (a) pool5,
(b) fc6, (c) fc7, respectively. This suggests that the difference of the image type,
especially between photos and illustrations is significant in shallow layers, and
they are gradually united into a cluster, which can be considered as one class,
shifting into deeper layers.

5 Conclusion

In this paper, we introduce a simple way to prepare a training dataset, which
enables CNNs to classify photorealistic and non-photorealistic sketch images. In
order to obtain a dataset that contains sketch-like images with an adequate size,
we use illustration images with enhanced edges. In addition, photo and illus-
tration images are transformed to grayscale and added to augment the training
dataset. In order to test our proposed method, we train CNNs to classify animal
images in 20 classes. This experiment confirms that the present method succeed
in augmenting the training dataset and contributes to the classification accuracy
of untrained photo and sketch images. In addition, we attempted to visualize the
image features in the middle layers in order to analyze how the CNN trained
by the proposed method processes training datasets. One possibility for future
work is to apply CNNs for sketch interfaces, which can retrieve the images that
the user wants to depict.
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Abstract. A comparison between the hybrid method (PHANN – Phys-
ical Hybrid Artificial Neural Network) and the 5 parameter Physical
model, which have been determined by the particle filter algorithm, is
presented here. These methods have been employed to perform the day-
ahead forecast of the output power of a photovoltaic plant. The aim of
this work is to assess the forecast accuracy of the two methods.

Keywords: Day-ahead energy forecast · Artificial neural networks ·
Particle filter algorithm

1 Introduction

Photovoltaic (PV) systems and, more in general, Renewable Energy Sources
(RES) are highly unpredictable due to the uncertainty of the weather forecast.
The energy prediction has been often applied to the electric loads and is a typ-
ical application of time series analysis methods. In recent years several power
forecasting models related to PV plants have been developed. Many methods
have been employed to perform the day-ahead forecast of the hourly output
power curve (given from 24 up to 48 h in advance) as reported in [1]. The exist-
ing methods can be mainly classified into three categories: physical, statistical
and hybrid. A physical algorithm can be defined as a deterministic model which
mathematically identifies the relationship between the input and the output of
the system. An Artificial Neural Network, instead, stochastically describes the
relationships between the input parameters and the output of the system with
a weighted average sum of the input. A hybrid method is considered as any
combination of the previous groups of forecasting models. Some of these models
have been employed to forecast solar radiation [2,3], while other works present
models specifically dedicated to the forecasting of the hourly power output from
PV plants [4,5]. Nowadays the most applied techniques to model the stochastic
nature of solar irradiance at the ground level, and thus the power output of
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PV installations, are the statistical methods. In particular, regression methods
are often employed to describe complex non-linear atmospheric phenomena for
few-hours ahead forecast and specific soft-computing techniques based on arti-
ficial neural network (ANN) are used for few-hours power output forecast [6].
Some other authors using physical methods report the comparison of the results
obtained with different models based on two or more forecasting techniques [7].
Only a few papers describe the forecasting models used to predict the daily irra-
diance or directly the energy production of the PV plant for all the daylight
hours of the following day [7–9].

ANN needs to be trained with historical data, and sometimes these data are
not available. Therefore, it is necessary to adopt a different forecasting algorithm
combining weather forecast with the PV plant physical parameters [10] estimated
by knowing the specific model of the PV system.

In this paper a comparison between two forecasting models, namely a physical
and a hybrid one is provided. The first is the well known five parameters model
of the PV module, which are estimated with the particle filter algorithm, and
the second is the recently developed PHANN (Physic Hybrid Artificial Neural
Network), presented in [11].

2 Physical Model of the PV Cell

One of the most complete physical model to describe the PV module power is
based on five parameters. The equivalent circuit in Fig. 1 includes RSH,c called
“cell shunt resistance”, which is connected in parallel to the photo-current gen-
erator IPV and second resistance (RS,c), called “cell series resistance”, which is
connected in series to the cell terminals. Therefore the five-parameter model,
can be defined by:

– IPV , the light-generated current,
– ID, the reverse saturation current of the PN junction,
– n, the diode ideality factor.

I = IPV − I0 ·
(

e

V + Rs,c · I

n · Vt − 1

)
− V + Rs, c · I

RSH,c
(1)

The IV characteristic curve of the PV cell mainly depends on solar irradiance
and PN junction temperature. The latter depends on several parameters such as:
the actual irradiance GTOT on the cell, the ambient temperature Tamb, the wind
speed and the wind direction. The cell temperature can also be evaluated starting
from the measurement of the ambient parameters by means of two different
models: the nominal operating cell temperature (NOCT) [12], which is the cell
operating temperature under certain conditions (Tamb = 20◦C, GNOCT = 800
W/m2, wind speed = 1 m/s without thermal convection on the back of the PV
module), and the SANDIA model [13].

The complete dissertation of this model, linking solar radiation, ambient
temperature and PV power output of the module is described in [10,14].
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Fig. 1. Circuit of the five-parameter equivalent model.

3 Physical Hybrid Artificial Neural Network

In this work the recently developed [11] Physic Hybrid Artificial Neural Network
(PHANN) is adopted to enhance the forecast by combining both the physical
Clear Sky Solar Radiation Algorithm (CSRM) by Hottel [15] and the stochastic
ANN method. The physical algorithm has been used to identify the maximum
solar radiation exploitable in a given PV plant, the sunrise and the sunset hours,
in order to exclude all the night time steps with null PV power output.

4 Particle Filter

In this section, an innovative algorithm for state and parameter estimation will
be applied for the evaluation of characteristic quantities associated to a PV
module. Then the results obtained with the following technique will be compared
to those derived from the PHANN method reported in this paper.

Particle filters are a set of algorithms based on Monte Carlo technique for the
estimation of the dynamic evolution of a system [16]. Let’s consider a dynamical
system in the continuous time, described by:

ẋ = f1(x, u, θ, w) (2)
y = g1(x, u, θ, v) (3)

where x ∈ R
n is the vector of state variables, u ∈ R

q is the vector of control
quantities, y ∈ R

m is the set of output measured variables and θ ∈ R
p is the space

of unknown parameters; w and v represent the random variables used to express
the uncertainty associated to the model and to the measurement procedure.

In order to implement the technique, it is necessary to first discretize the
model of both the system evolution and of the measurement procedure.

xk = f2(xk−1, uk−1, θk−1, wk−1) (4)
yk = g2(xk, uk, θk, vk) (5)

In this context, the model has been applied mainly for parameter estimation;
thus it is convenient to add a fictitious dynamic of the unknown parameters in
order to take into account the incremental estimation process:
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θk = H(θk−1, εk−1) (6)
yk = G(θk, ηk) (7)

In (6) and (7) the fictitious model associated to the parameter evolution and
the actual measurement process description are shown, respectively. In general,
both H and G are non-linear functions subjected to white noise.

4.1 Particle Filter Implementation

The particle filter algorithm based on Sequential Monte Carlo simulation [16] has
been implemented for the parameter estimation. This technique is based on the
Bayesian approach and it aims at identifying, among a group of N independently
simulated dynamical evolutions of the system called particles, the ones that
are most likely to match the actual condition of the equipment, according to
the comparison with measured data. At each time step, the filter evaluates the
probability distribution a posteriori of each unknown state or parameter, starting
from a given state supposed a prior. Each particle is then weighted according to
its likelihood function.

One of the problems associated with the Bayesian approach is that it needs
to deal with probabilistic functional analysis, as all the terms involved are proba-
bility distribution functions. In general it is not so easy to analytically derive the
product of these functions, especially in non-linear systems having non-Gaussian
distributions. Therefore a Monte Carlo scheme may be adopted to numerically
retrieve the result. A certain number N of independent dynamics of the systems
(particles) are simulated and each of them is weighted by the likelihood function,
in order to assess its coherence with the measurements performed on the system.

First of all it is necessary to guess a state a priori for the Bayesian scheme.
In order to keep track of the previous values of the parameter and improve the
convergence rate of the estimation process, this state is evaluated starting from
the estimation at the previous step, according to the fictitious dynamical process
introduced in (6). In the following, a linear model is adopted.

θ̃k,i = θk−1,i + εk−1,i i = 1..N (8)

Once the prior state is determined, the weight of each particle is evaluated con-
sidering a Gaussian distribution for the likelihood as in (9) and the normalized
weights are obtained (10).

Lk,i(yk|θk,i) =
1√

(2π)m|Rk|e
−0.5(yk−G(θ̃k,i))

T R−1
k (yk−G(θ̃k,i)) (9)

wk,i =
Lk,i∑N
i=1 Lk,i

(10)

Once the weights of all the particles in all the independent N cases are known,
it is possible to calculate the mean and standard deviation as compact indexes
of the discrete probability distribution function, according to (11) and (12):
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θk =
N∑

i=1

wk,iθ̃k,i (11)

σ2
θk

=
N∑

i=1

wk,i(θ̃k,i − θk)2 (12)

The whole process is then carried out iteratively for all the time steps.

5 Case Study and Data Analysis

In the considered application, the particle filter has been implemented for esti-
mation of characteristic input of the five parameter model, described in Sect. 2.
Indeed these quantities are peculiar for each PV module, are time-varying and
they strongly depend on the actual operating conditions of the system. Thus a
model-based algorithm able to track them in real time starting from the model
equations and the measurements during operation may allow an effective esti-
mation of such parameters.

The particle filter has been used, in particular to track the values of the
series resistance Rs and the photo-generated current IPV . The diode ideality
factor n and the reverse leakage current I0 have been taken from literature.
The fictitious dynamical model explained in (8) by considering the ClearSky
algorithm [15] which has been calculated in two successive samples of time k − 1
and k, has been implemented as follows:

IPV (k) = IPV (k − 1) · ClearSky(k)
ClearSky(k − 1)

· ε (13)

Rs(k) = Rs(k − 1) + K · Rs(k − 1) · ε (14)

where ε is a number randomly drawn by a Gaussian distribution. The filter is
disabled when the ClearSky algorithm predicts a null power production and the
current is randomly initialized after the filter is reactivated.

As regards the measurement, the following equations can be derived from
the equivalent model of the photovoltaic cell.

Iout = (IPV (k) − ID) · Rp(k)
Rs(k, i) + Rp(k, i)

− VDC

Rs(k, i) + Rp(k, i)
(15)

Pout = (IPV (k) − ID) · (VDC + Rs(k)) − Rs(k) · I2out − (VDC + Rs(k) · Iout)
Rp

(16)

In Fig. 2(a) a comparison between the particle estimator and the analytic
solution of the model has been carried out. The last values have been derived
considering the exact solution of the model, obtained assuming the values of
the equivalent circuit parameters measured on the plant. These data have been
assumed as reference values and are used in order to test the algorithm effec-
tiveness. The error associated to the estimation process is reported in Fig. 2(b)
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with respect to the photo-generated current; here it is possible to see that the
maximum difference is located in the first and last hours of each day, where the
approximation introduced by the filter is higher; however it is possible to see an
asymptotic decrease of the error thanks to the filter convergence.

Fig. 2. Estimated photo-generated current and its error

5.1 Numerical Results and Discussion

The parameters of the physical model have been estimated by means of the
particle filter, as already explained in the previous section. These parameters
have been employed to forecast the PV power output and to make a comparison
with the actual ones provided by a PV module. These experimental data are
collected at the SolarTechLab, Politecnico di Milano (Italy), whose geographical
coordinates are: latitude 45.502941N, longitude 9.156577E. One 245 Wp rated
power crystalline silicon PV module facing South, 30 deg tilted is considered. The
weather forecasts for this site are provided 24 h in advance by a meteorological
service (at 11PM of the day before the forecast one). A full list of the parameters
employed for the training of the PHANN is reporter here below:

– Day of the year and hour of the day
– Global Horizontal Clear Sky Solar Radiation
– Wind Direction and speed
– Pressure
– Humidity Relative
– Rain
– Ambient temperature
– Global Horizontal Solar Radiation
– PV module DC Power Output

According to preliminary setup, PHANN is composed by two layers with 100
neurons in the first hidden layer and 50 neurons in the second. The activation



Day-ahead PV Power Forecast by Hybrid ANN 297

Fig. 3. Daily Normalised Mean Absolute Error calculated by different methods

function in the neurons is the sigmoidal function. These settings have been cho-
sen after preliminary results which are exposed in a previous work [11]. PHANN
is trained with the hourly parameters of the 11 days before of the forecast ones.
The results shown in Fig. 3 are referred to 9 days between February and March
2014. This period is considered meaningful in terms of continuous succession of
sunny and cloudy days and all the data are consistent without interruptions in
the recordings. In this Figure these results are compared with those obtained
considering different physical models, namely the combinations of thermal mod-
els (SANDIA and NOCT) of the considered PV cell power output with 3 and 5
parameter models described in Sect. 2.

Figure 3 shows the daily Normalised Mean Absolute Error NMAE. By observ-
ing this figure, the day-ahead forecast performed by the PHANN method is
outperforming in several days the physical forecasting methods.

6 Conclusions

In this paper the comparison between the day-ahead forecast performed by the
PHANN (Physical Hybrid Artificial Neural Network) and the 5 parameter Phys-
ical model (determined by the particle filter algorithm) has been assessed. The
reported results show that the PHANN method generally provides better results
and a more accurate forecast, with lower daily errors.
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Abstract. We present EWNN, a new approach for forecasting the hourly
electricity load profile for the next day, from a time series of previous electricity
loads. EWNN extends the well-known and successful weighted nearest neighbor
method WNN by operating at an hourly level and by incorporating feature
selection. We evaluate EWNN using two years of electricity load data for
Australia, Spain and Portugal. The results show that EWNN provides accurate
predictions outperforming WNN on all datasets, and also outperforming two
other advanced methods (pattern sequence similarity and iterative neural net-
work) and three baselines used for comparison.

Keywords: Electricity load forecasting � Weighted nearest neighbor � Neural
networks � Feature selection

1 Introduction

We consider the task of forecasting the hourly electricity load profile for the next day,
from a time series of previous hourly electricity loads. Specifically, given a time series
of hourly electricity loads up to day d, the goal is to forecast the 24 hourly loads for day
d + 1. This task is classified as short-term load forecasting. Accurate short-term load
forecasting is important for the planning and operation of power systems, e.g. for
scheduling of generation units, dispatch of generated electricity and supporting the
electricity market participants in their bidding and spot acquisition of electricity.

The electricity load time series is complex. It has daily, weekly and seasonal cycles,
and is also influenced by weather variables, fluctuations in the electricity usage of large
industrial units, and random effects due to unusual days (e.g. special events, holidays
and unexpected weather changes). Various forecasting approaches based on statistical
and machine learning methods have been proposed, with different complexity, flexi-
bility and data requirements. The most prominent approaches use statistical methods
such as exponential smoothing and linear regression [1–3], and machine learning
methods such as neural networks [4–6].
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One of the most promising recent forecasting approaches using machine learning
techniques is the Weighted Nearest Neighbor (WNN) [7]. WNN stores all training
examples; to make a prediction for the load profile for the new day d + 1, it finds the
k nearest neighbors of the load profile for the previous day, by considering sequences
of previous days. The prediction for the new day is the weighted linear combination of
the load for the days following the nearest neighbors, where the weights are determined
by the distance of the previous days to the neighbors. WNN was applied for predicting
both electricity loads and electricity prices and was shown to outperform a number of
approaches including neural networks and GARCH autoregressive models.

In this study, we present an extension of WNN, called EWNN (Extended WNN).
EWNN extends WNN: (1) by working at an hourly level instead of a daily level, and
(2) by applying a feature selection algorithm. While WNN uses all lag variables from
the previous days without feature selection, EWNN applies a two-stage feature
selection to choose a subset of informative lag variables. Another distinct difference
between WNN and EWNN is that EWNN builds a separate prediction model for each
hour of the day while WNN builds a single model. We investigate if the extensions lead
to an improved performance, in particular higher accuracy. Our evaluation is conducted
using three large datasets of electricity load data for three different countries; Australia,
Spain and Portugal. We also compare the performance of EWNN with two other
advanced methods for load forecasting: Pattern Sequence-based Forecasting (PSF) [8]
and Iterative Neural Network (INN) [9]), and three naive baselines.

2 Data

We use electricity load data for three countries – Australia, Spain, and Portugal. Each
dataset is for two years (from 1 January 2010 to 31 December 2011) and is measured at
hourly intervals, and thus contains 365 � 24 � 2 = 17,520 samples. The Australian
dataset is provided by the Australian Energy Market Operator (AEMO) [10] and the
Spanish and Portuguese datasets are provided by the Spanish Electricity Price Market
Operator (OMEL) [11].

3 EWNN

Our proposed approach EWNN is an extension of WNN. It extends WNN in two ways:
(1) by operating at an hourly level instead of a daily level and (2) by incorporating
feature selection. Another notable difference between EWNN and WNN is that EWNN
builds a separate prediction model for each hour of the day while WNN builds a single
model.

As Fig. 1 shows, EWNN divides that task of predicting the daily load profile for the
next day into 24 subtasks, one for each hour. It conducts a separate feature selection for
each hour and then builds a separate prediction model using an adapted WNN pre-
diction model as shown in Fig. 2. The two main phases of EWNN, feature selection
and building prediction models, are discussed in more details below.
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3.1 Feature Selection

Feature selection is the process of removing irrelevant and redundant features and
selecting a small set of informative features that are necessary and sufficient for good
prediction [12]. Appropriate feature selection improves the accuracy and reduces the

Fig. 1. EWNN

Fig. 2. Adapted WNN to an hourly level
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training time. It also typically leads to prediction models that are easier to understand,
which increases the customer confidence in using these models for decision making.

To select informative lag variables, we applied the RReliefF feature selection
algorithm [13]. RReliefF is an instance-based method that evaluates and ranks all
features. The core algorithm is Relief and it is applicable to two-class classification
problems; its main idea is that high quality features should have similar values for
instances from the same class and different values for instances from different classes.
RReliefF is an extension of Relief for regression problems; it models the probability of
two instances to belong to the same or different class as the relative distance between
the predicted values for these instances.

Specifically, RReliefF assigns a weight wf to each feature f based on how well
f distinguishes between instances from the same and different classes. It works by
randomly selecting an instance R from the training data and finding its nearest neighbor
from the same class (nearest hit H) and the opposite class (nearest miss M). It then
updates the weight wf of each feature as follows: (1) if R and H have different values of
f (not desirable), wf is decreased and (2) if R and M have different values of f (desir-
able), wf is increased. The process is repeated for a subset of randomly selected
examples R. To increase the reliability of the feature weights, we used all training
examples instead of a subset. The number of nearest neighbors k was set to 10 in our
experiments.

RReliefF is suitable for load forecasting as it works well on noisy and correlated
features - it can capture both feature-to-feature and feature-to-output variable correla-
tions, and can detect both linear and non-linear relationships. It is also an efficient
algorithm due to its linear time complexity.

To conduct feature selection using RReliefF, as shown in Fig. 1, we firstly form a
candidate features set that includes all lag variables from a 1-week sliding window
(7 � 24 = 168 lag variables). We then use RReliefF to compute the weight wf for all
features from the candidate set and select the n features with the highest wf . The value
of n was set to 50 since after that wf does not change significantly and gradually
flattens. The feature selection was conducted separately for each hour of the day, each
time considering a different hour as a target value, as shown in Fig. 1.

3.2 Building Prediction Model

We firstly describe the WNN prediction model and then its extension, EWNN.

WNN. Let Xi ¼ x1i ; x
2
i ; . . .; x

24
i

� �
be a 24-dimensional vector consisting of the hourly

load for a day i. To predict the load Xd+1 for the new day d + 1, WNN firstly finds the
k nearest neighbors of Xd. This is done by matching the sequence of m previous days
ending with Xd and finding the most similar sequences of days. The prediction for the
new day is the weighted average of the load for the days following the nearest
neighbors, where the weights are determined by the distance of the neighbors to Xd.

EWNN. Let FShd ¼ ½f1; f2; . . .; fn� be a feature vector that represents the n selected
features for predicting the electricity load xhd at hour h of day d. Following WNN, we
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define an associated vector of FShd . In EWNN it is defined at an hourly level not at a
daily level as in WNN, and will include the m input vectors for the same hour h, for
m consecutive days from day d backwards: Yh

d;m ¼ FShd�mþ 1; . . .;FS
h
d�1;FS

h
d

� �
.

The following steps are similar to WNN but are applied at an hourly level not a
daily level as in WNN. As shown in Fig. 2, to predict the load xhdþ 1 for hour h of day
d + 1, EWNN firstly identifies the k nearest neighbors of the associated vector Yh

d;m

using a distance measure and finds the set of neighbors NS ¼ q1; . . .; qk;
� �

, where
q1; . . .; qk are the k closest days to day d for hour h, in order of closeness. EWNN then
computes the forecast for xhdþ 1 as a weighted linear combination of the loads for hour
h for the days following the nearest neighbors:

x̂hdþ 1 ¼
1P

s2NS as
:
X
s2NS

as:x
h
sþ 1

The weights as are computed as: as ¼ dist Yh
qk ;m

;Yh
d;m

� �
� dist Yh

s;m;Y
h
d;mð Þ

dist Yh
qk ;m

;Yh
d;m

� �
� dist Yh

q1 ;m
;Yh

d;mð Þ, where dist is the

chosen distance measure (we used Euclidian distance), m is the number of feature
vectors included in Yh

d;m and k is the number of neighbors. The values of m and k are
determined as in WNN by resolving the false nearest neighbors and minimizing the
prediction error on the training data, respectively.

4 Experimental Setup

4.1 Evaluation Procedure and Performance Measures

The data for each country is divided into three non-overlapping subsets – training,
validation and testing. The training set contains 70% of the data for 2010 (6,132
samples) and is used for feature selection and model training. The validation set
contains the remaining 30% of the data for 2010 (2,628 samples) and is used for
parameter tuning (e.g. to selecting the best NN architecture). The testing set contains all
data for 2011 (8,760 samples) and is used to evaluate the performance of the prediction
models.

We assess the accuracy of the prediction models using two standard performance
measures: Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE):

MAE ¼ 1
D

1
H

X
D
d¼1

X
H
h¼1 xhd � x̂hd

�� ��; MAPE ¼ 1
D

1
H

X
D
d¼1

X
H
h¼1

xhd � x̂hd
xhd

����
���� : 100%

where xhd and x̂hd are the actual and predicted load for day d at hour h, respectively, D is
the number of days in the test data and H is the number of predicted hours, H = 24.
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4.2 Methods Used for Comparison

In addition to WNN, we compare the performance of our approach with two other
state-of-the-art methods (INN and PSF) and three baselines (Bpday, Bpweek and Bmean).

PSF [8] combines clustering with sequence matching. It firstly groups all vectors Xi

from the training data into k clusters and labels them with the cluster number. It then
extracts a sequence of consecutive days, from day d backwards, and matches the cluster
labels of this sequence against the training data to find a set of sequences that are the
same, ESd. It then follows a nearest neighbor approach similar to WNN - finds the
following day for each element of ESd and averages the 24 hourly loads of these
following days, to produce the final 24 hourly predictions for day d + 1. PSF was
evaluated on electricity load and electricity prices time series and shown to be more
accurate than ARIMA, support vector regression and neural network based methods.

INN [9] is an iterative approach that combines an efficient mutual information
feature selection method with a neural network forecasting algorithm. It builds a single
prediction model that is trained to predict one step ahead. This model is used iteratively
to predict the load for all 24 h from the forecasting horizon, i.e. the prediction for h + 1
is considered as an actual value and used to predict the value for h + 2, and this
continues for all points from the forecasting horizon. INN was shown to be more
accurate than a number of methods, including a non-iterative counterpart, where a
separate neural network is built for each hour of the forecasting horizon.

We also implemented three naive prediction methods (baselines): (1) Bpday (load
from the previous day at the same time) - the prediction for xhi is x

h
i�1; (2) Bpweek (load

from the previous week at the same time) - the prediction for xhi is x
h
i�7; (3) Bmean (mean

load value in the training data for hour h) - the prediction for xhi is mean(xhj ) over all
days j in the training data.

5 Results and Discussion

Table 1 presents the accuracy results (MAE and MAPE) of EWNN and the methods
used for comparison. Table 2 shows the pair-wise comparison of these accuracies for
statistically significant differences using the Wilcoxon rank sum test. The MAPE
results from the Table 1 are also plotted in Fig. 3 for visual comparison.

The results show that EWNN is more accurate than the method it extends, WNN,
for all three datasets and that the differences in accuracy are statistically significant.
Specifically, EWNN achieved an improvement of 7.64–9.36% in MAPE and 7.73–
8.94% in MAE, compared to WNN. This shows that predicting the load for each hour
separately, applying WNN at an hourly level and using feature selection (with the
RReliefF algorithm) was beneficial.

EWNN outperforms not onlyWNN but also the other methods used for comparison –
it is the most accurate prediction method for the Australian and Spanish datasets, and the
second most accurate method for the Portuguese dataset, after INN. All pair-wise dif-
ferences between EWNN and the other methods are statistically significant. Specifically,
EWNN achieved an improvement in MAPE of 16.25–37.43% compared to PSF on the
three datasets and 4.15–6.55% compared to INN on the Australian and Spanish datasets.
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By comparing EWNN with the three baselines, we can see that it considerably outper-
formed them achieving an improvement of 34–61% for the Australian data, 41–61% for
the Spanish data and 15–29% for Portuguese data.

Table 1. Predictive accuracy of EWNN and the methods used for comparison

Pred.
method

Australian data Spanish data Portuguese data
MAE
[MW]

MAPE
[%]

MAE
[MW]

MAPE
[%]

MAE
[MW]

MAPE
[%]

EWNN 283.68 3.14 1083.03 5.55 496.96 13.55
INN 304.89 3.36 1134.63 5.79 426.43 11.70
WNN 307.46 3.40 1179.89 6.03 538.87 14.95
PSF 352.03 3.96 1711.38 8.87 589.77 16.18
Bpday 420.46 4.82 1888.02 9.47 579.61 16.06
Bpweek 471.20 5.20 1460.07 7.45 695.38 19.12
Bmean 719.44 8.08 2671.69 14.32 653.55 18.11

Table 2. Pair-wise statistical significance comparison for MAE and MAPE (Wilcoxon rank sum
test): √- difference is statistically significant at p � 0.05, �- difference is not statistically
significant; the order of the results is: Australian, Spanish and Portuguese data

EWNN INN WNN PSF Bpday Bpweek Bmean

EWNN √√√ √√√ √√√ √√√ √√√ √√√

INN √√√ √√√ √√√ √√√ √√√

WNN √√√ √√√ √√√ √√√

PSF √√� √√√ √√√

Bpday √√√ √√√

Bpweek √√√

Bmean

Fig. 3. Comparison of accuracy results (MAPE) for all prediction methods
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Overall the best method is EWNN, followed by INN and WNN, then PSF and the
three baselines.

Among the three baselines, Bpday is the most accurate for the Australian and
Portuguese data, and Bpweek is the most accurate for the Spanish data. This indicates a
stronger daily pattern for the Australian and Portuguese data, and a stronger weekly
pattern for the Spanish data. Bmean, is the least accurate baseline for all three datasets,
with substantially lower accuracy.

6 Conclusion

We considered the task of forecasting the daily electricity profile for the next day at
hourly intervals, from previous electricity load data. We presented EWNN, a new
approach for time series forecasting, an extension of the successful weighted nearest
neighbor method WNN. The extension includes working at an hourly level instead of a
daily level and incorporating feature selection. EWNN also builds a separate prediction
model for each hour of the day while WNN builds a single model. We evaluated the
performance of EWNN using data for two years for three countries – Australia, Spain
and Portugal. Our results showed that EWNN was more accurate than WNN for all
three datasets achieving a statistically significant improvement of 7.64–9.36% in
MAPE 7.73–8.94% in MAE. In addition to WNN, we compared EWNN with two
advanced methods (PSF and INN) and three baselines. EWNN was the most accurate
method in all cases except on the Portuguese data where it came second after INN.
Hence, we conclude that EWNN is a promising approach for forecasting the hourly
electricity load profile.
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Abstract. Streamflow forecasting is a fundamental tool in water
resource studies. If information on the nature of the inflow is deter-
minable in advance, then a given reservoir can be operated by some deci-
sion rule to minimize downstream flood damage and maximize the gen-
erated power with low costs. However, traditional methods such as linear
time series models do not model the series properly, ignoring its dynami-
cal behavior. This paper provides a method based on the Reservoir Com-
puting (RC) technique combined with trend information extracted from
the series for short-term streamflow forecasting. The model was tested in
five hydroelectric plants located in different river basins in Brazil. Exper-
imental results show that the proposed method is able to achieve better
generalization performance than the traditional methods.

Keywords: Time series · Streamflow forecasting · Artificial Neural
Networks · Trend information

1 Introduction

Accurate streamflow forecasts are an important component of watershed plan-
ning and sustainable water resource management [1]. With such information, it is
possible to minimize any damage that can be caused by floods and maximize the
energy generated by the power plant. Conceptual models for simulation, such as
ARMA (Auto-Regressive Moving Average) models [2], and the linear time-series
models are some of the traditional techniques used for streamflow forecasting.

Several companies in the Brazilian Electrical Sector use the linear time-series
models. Even though they have been found to provide satisfactory predictions
in many applications, they are unable to manage the nonlinear informations
contained in the streamflow series. Hence, Artificial Neural Networks [3] are an
attractive technology for inflow forecasting. With the ability to process massive
information and deal with high nonlinearity, ANNs have been widely studied
and successfully applied to various fields, e.g., hydrology and water resources, in
recent years [4–6].

However, networks as the Multi-Layer Perceptron (MLP) have the inability
of properly modeling dynamic behaviors. Considering this, for this work the
c© Springer International Publishing Switzerland 2016
A.E.P. Villa et al. (Eds.): ICANN 2016, Part II, LNCS 9887, pp. 308–316, 2016.
DOI: 10.1007/978-3-319-44781-0 37



Using Reservoir Computing and Trend Information 309

Reservoir Computing (RC) [7] neural network was used. The RC works with a
set of interconnected artificial neurons, which allows the network to present a
dynamic behavior, becoming more adequate to the task [8].

The use of ANNs can increase the accuracy of the prediction, but the network
inputs are usually composed of only past information. The use of only past
information has downsides, including the underestimation of the series values.
For this reason, detection of trends in streamflow forecasting has an expressive
importance to an adequate management of water resources [9]. Since artificial
neural networks are not able to capture seasonal or trend variations effectively
[10], past inflows combined with a numerical trend information of the given time
series could provide a more complete data, thus allowing better generalization.

In this paper, a model based on the Reservoir Computing method combined
with trend information for short-term streamflow forecasting is proposed. The
model was tested with the time series of five Brazilian power plants, each located
in different river basins with different characteristics, and experimental results
show that the proposed model achieved better generalization rates than the
current used methods.

This paper is organized as follows: Sect. 2 explains the Reservoir Comput-
ing and details about the trend information; Sect. 3 describes the methodology
adopted; Sect. 4 presents the experiments and the results; and finally, Sect. 5
presents the conclusions.

2 Concepts and Definitions

This study proposes a model based on the Reservoir Computing recurrent net-
work and the use of a variable that can be extracted from the series, called
trend information, for short-term streamflow forecasting. This section presents
the main definitions and concepts which represent the necessary background to
comprehend the work.

2.1 Reservoir Computing

Recurrent neural networks (RNNs) have been used for short-term streamflow
forecasting and presented better accuracy for multi-step ahead [11], but they are
difficult to train. Independent researches on new methods of design and training
of RNNs originated two different neural networks with very similar properties:
the Echo State Network (ESN) [12] and the Liquid State Machine (LSM) [13].
Later, these networks were unified under the generic name of Reservoir Com-
puting (RC) [7].

The Reservoir Computing is composed of three main parts: the input layer,
the reservoir itself and a readout function. The reservoir is a nonlinear dynamic
system with recurrent processing nodes where the connections between the nodes
are generated randomly and are globally reescalated to achieve a stable state.

An interesting property of the reservoir is the echo state property. This prop-
erty defines that the effects of a previous state x(n) and the input value of a
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future state x(n + 1) should fade gradually. Because of these recurrent nodes
the network maintain a rich set of nonlinear transformations and a mix of input
signals of past and present moments (called echoes).

Since this is a recurrent network and RC stores its states (Mest) in a matrix,
it is necessary that the final values found by the network are not so influenced
by the initialization. Therefore, the literature suggests that before starting the
training process, a set of cycles called warm up is executed in order to perform
updates in the states of the neurons in the reservoir and overlook the influence
of the initial value [7]. The states are updated according to (1).

x[k + 1] = f(Wresx[k] + Winu[k]) (1)

where Winu[k] represents the matrix containing the resulting product of the
values derived from the input layer by the weights connecting the input to the
reservoir at a time k; and Wresx[k] is the matrix containing the states of the
neurons from the reservoir at the same time k. The result will be assigned to
x[k + 1], i.e., the state of the neuron RC in an instant forward will be the result
of calculating the activation function of the neuron from the sum of the two
parcels described above.

Among the existing training methods for the Reservoir Computing, the one
used in this work was the Moore-Penrose (MP) Pseudoinverse. Since the input
weights and the biases are randomly generated, the nonlinear system was con-
verted to a linear system according to (2).

Hβ = T (2)

where H is the reservoir layer output matrix; T is the matrix of desired outputs.
Thus, the determination of the output weights (linking the reservoir to the out-
put layer) is the least-square solution to the given linear system. The minimum
norm least-square (LS) solution to the linear system is presented by (3).

β̂ = H+T (3)

where H+ is the MP generalized inverse of matrix H. The minimum norm LS
solution is unique and has the smallest norm among all the LS solutions. MP
inverse method tends to obtain good generalization performance with increased
in learning speed.

2.2 Trend Information

Trend detection in streamflow series has an expressive importance to an adequate
management of water resources. According to Joseph et al. [9], the identification
of seasonal trends in precipitation and inflow series allows a better comprehen-
sion of the climatic variability, which is essential for the development of hydro-
logic models, hydrologic forecasting and management of hydrologic resources
[9,14,15]. Trend information as an input to the neural network can contribute
to determine the hydrogram behavior of a given power plant. Moreover, the use
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of only past inflows generates a delayed prediction and underestimates the series
peaks; and data related to other hydrological variables may not be available,
making the trend information an option to increase accuracy since it only needs
the original streamflow series.

In this study, a two-step process to extract the trend is used: first, we use
a moving average to smooth the time series; then, we differentiate this new
series generating first and second derivatives [16]. This intends to extract trend
information of the time series in a numerical form, allowing it to be used as an
input for the forecasting model.

Initially, a window of size N needs to be defined to calculate the arithmetic
mean for the moving average. The result of this operation is a smoother time
series with highlighted trends [17]. Consider M as the already softened time
series. The second step is to calculate f first derivatives and s second derivatives.
The first derivative is represented by (4).

d1f = mn+1 − mn (4)

where mn+1 and mn are values from the moving average time series. Consider
this new time series as F . The second derivative is represented by (5).

d2s = fn+1 − fn (5)

where fn+1 and fn are values from the first derivative time series.
The signal of the derivative indentify the nature of the trend, if it is rising

or falling, while the number indicates the amount this series is rising or falling.
These f first derivatives and s second derivatives are inputs for the forecasting
model.

3 Methodology

This section presents information about the datasets and the methodology for
this work. The methodology is divided into four steps: acquisition of the trend
information, data pre-processing, training and validation of models results and
statistical tests.

3.1 Databases

Five datasets of Brazilian power plants were used to test the proposed method.
These five datasets belongs to the power plants of: Governador Bento Munhoz,
Três Marias, Tucurúı, Furnas and Itaipu. These series have information of the
power plants’ daily inflows. Each of these power plants is located in different river
basins in Brazil, this means that the time series have different characteristics,
e.g., some of them are seasonal, others have a more slow inflow.
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3.2 Extracting the Trend Information

In this work, two window sizes were used: 3 days and 7 days with the intent of
softening the daily time series. The window of 7 days was considered to analyze
the sensibility of the series. With the moving average window size defined, the
first and second derivatives were considered as the trend information. Then, it
is necessary to define the f first derivatives and s second derivatives. Several
values for f and s were selected and after tests, the value for f was considered
as 3, and s as 2, representing 5 inputs to the model.

3.3 Pre-processing

To properly execute the training of a neural network, it is necessary that the
data is normalized. The normalization process is performed according to (6).

y =
(b − a)(xi − xmin)

(xmax − xmin)
+ a (6)

This is a simple linear transformation where y is the normalized value; a is the
lower limit and b the upper limit; xi is the original value; xmax is the highest
value this variable can achieve and xmin the lowest. The trend information is
also normalized using the same rule described in (6).

The second step is to select the input variables. To accomplish this task, an
auto-correlation function was used. A number of auto-regressive values (lags)
was defined as possible inputs and the ones with auto-correlation above or equal
to 0.5 were considered as inputs to the model. For the datasets used, up to thirty
past values can influence the forecasting and were considered as possible inputs
for each series. Also, lags with auto-correlation below 0.5 did not increase the
accuracy of the forecasting.

After analyzing the auto-correlation, only 14 past values were selected. For
each time series with trend information, 19 input values were considered: 14
of them representing the past inflows and the other 5 representing the trend
information. The number of outputs was considered as 12, according to the
Brazilian standard for short-term forecasting.

3.4 Training

Several RC parameters should be determined prior to the training process. Being
a recent methodology, there are no studies that defines how many neurons are
necessary in the reservoir to the neural network achieve its best performance, or
the rate of connectivity between the reservoir neurons. Therefore, for this work,
these parameters values were defined based on empirical tests.

To perform the simulation of both models, the database is divided into three
sets: training, used to perform the update of the states of the neurons, cross-
validation, used to stop the training of the neural network, and test set, used to
calculate the error rate. The configuration for each model remained the same to
all datasets used and can be found in Table 1.
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Table 1. Representation of the parameters used for the simulations with the RC and
MLP

Parameters MLP value RC value

RC Connectivity N/A 30 %

Number of neurons in the
input layer

14 Depends on the trend information

Number of neurons in the
reservoir

N/A 75

Number of neurons in the
hidden layer

30 N/A

Number of neurons in the
output layer

12 12

Number of warm up cycles N/A 10

Activation function of the
reservoir or hidden layer

Hyperbolic Tangent Hyperbolic Tangent

Learning rate 0.8 N/A

Momentum 0.2 N/A

3.5 Statistical Tests

In order to scientifically validate the results, it was necessary to perform a
sequence of statistical tests after all the simulations were completed. Before using
a parametric test on a data set it is necessary to check whether the samples are
normally distributed and if they have statistically equal variances. If these two
assumptions are valid, it is possible to apply a parametric test, otherwise it must
be used a non-parametric test. The Shapiro-Wilk test was applied to verify the
first assumption. After that, it is necessary to validate the second assumption.
For this, the F Test was applied.

If these two assumptions are true, then a parametric test can be applied. In
this work, the Student’s T-test was used. If these assumptions are not valid,
then it’s necessary to apply a non-parametric test which doesn’t make any
assumptions about the probability distribution of the samples. For this work,
the Wilcoxon Rank-Sum Test was chosen. The significance level adopted was
0.05.

4 Results

For each data set, the comparison was made between: a MLP with past inflows,
which acts as a benchmark, a RC with past inflows, and a RC with past inflows
and trend information. The RC with past inflows and trend information have
two variations of the window size. The 3-day window is refered as RC3 and the
7-day window, as RC7.
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After all simulations were performed, the arithmetic mean and the standard
deviation for each set of simulations were calculated. The error rate used was the
Mean Absolute Percentual Error (MAPE) since it’s a standard in the analysis
of streamflow forecasting in Brazil. The experiments results can be found in
Table 2.

Table 2. Experiments results for the five Brazilian datasets

MLP RC RC3 RC7

Error
mean

Std.
devia-
tion

Error
mean

Std.
devia-
tion

Error
mean

Std.
devia-
tion

Error
mean

Std.
devia-
tion

Furnas 23.14 % 5.95 20.13 % 0.04 11.63 % 0.03 11.13 % 0.03

Itaipu 14.36 % 2.33 13.49 % 0.02 7.44 % 0.01 4.95 % 0.01

Gov.
Bento
Munhoz

41.52 % 12.60 35.89 % 0.13 19.22 % 0.11 18.09 % 0.11

Tucurúı 12.33 % 3.92 9 % 0.08 5.23 % 0.06 3.69 % 0.04

Trés
Marias

32.56 % 9.21 28.11 % 0.11 16.80 % 0.16 15.44 % 0.09

Since all results of the RC3 and RC7 are much smaller than the ones found by
the RC and MLP, there was no need to perform the statistical tests to compare
the results of the predictions. The statistical tests were performed when com-
paring the results of the RC3 and the RC7 and when comparing the RC with
the MLP. In all cases, the RC7 presented a statistically better performance than
the RC3, and the RC with only past inflows presented a better generalization
capacity when compared to the MLP.

It is also interesting to notice that the use of the Reservoir Computing pro-
vides more stable results when compared to the Multi-Layer Perceptron. And is
clear that the incorporation of the trend information as an input can increase
the accuracy of the prediction.

5 Conclusions

This study aimed to verify the performance of the Reservoir Computing tech-
nique combined with the trend information for short-term streamflow forecast-
ing. Even though the RC is a dynamic network, thus more suitable to the task,
and achieved better results in comparison to the MLP, it cannot identify the
trend patterns existing in the streamflow data, requiring other variables to
increase its accuracy. The trend information can be extracted from the series
itself, providing an option when other hydrological variables are not available.
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It also reduced the delay in the prediction and the underestimation of the series
peaks.

From the statistical tests and simulations, it can be concluded that the RC
with trend information presented a superior performance in all cases and more
stable results when compared to the MLP and the RC without additional inputs.
This method was not tested with time series that are not composed of daily
observations. As future work, it is intended to use other neural network topolo-
gies with and without the trend information to make a comparison with those
already used in this study and to test this method with other types of time series
and for long-term streamflow forecasting.
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Abstract. Prediction of the time series of relativistic electrons flux in
the outer radiation belt of the Earth is a complicated task, due to com-
plexity and nonlinearity of the system “solar wind - the Earth’s magne-
tosphere”. However, using artificial neural networks it is possible to pre-
dict the value of the electron flux several hours ahead, based on the hourly
time series of electron flux, parameters of solar wind and interplanetary
magnetic field. The purpose of this study was to check, which approach
provided higher precision of prediction with various horizons from one to
twelve hours: autonomous prediction for each of the 12 prediction hori-
zons, or simultaneous prediction for several horizons. An explanation of
the obtained results is suggested.

Keywords: Time series prediction · Prediction horizon · Simultaneous
prediction · Earth’s magnetosphere · Relativistic electrons of the outer
radiation belt of the Earth · Multi-layer perceptron

1 Introduction

It is known that energetic charged particle radiation is detrimental to spacecraft
operations (e.g. [1,2] and references there). The Earth’s Radiation Belts (ERB)
are inner zones of the Earth’s magnetosphere, in which energetic charged parti-
cles - electrons and protons - are held by the geomagnetic field, which is close to
dipolar. The radiation environment at geosynchronous orbit (GEO - about 35
thousands km altitude - the outer boundary of the radiation belts) is of particular
interest due to the large number of satellites populating this region. Relativis-
tic electrons of the outer ERB are sometimes called “killer electrons” since the
electronic components of spacecraft can be damaged, resulting in temporary or
even complete loss of spacecraft [3].

This study was supported by RFBR grant no. 14-01-00293-a.
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The outer ERB is very unstable: its relativistic electrons (RE) flux may
change for an order of magnitude and more within several hours. As a rule,
RE flux falls sharply during the main phase of a magnetic storm. During the
recovery phase of magnetic storm, approximately in half of the cases there is an
increase of RE flux to a level significantly exceeding that before storm. Reasons
of these variations are not understood yet. It is clear only that processes of
both acceleration and losses are responsible for formation of ERB (e.g. [4]).
High correlation among RE fluxes at geosynchronous orbit, SW speed and other
parameters of SW and IMF was measured in space experiments and described
back in 1979 [5].

A lot of attempts have therefore been made to predict high-energy electron
flux at GEO using different methods: probabilistic [6], statistical data models
and linear prediction filters [7–9], physical models based on experimental data
[10,11], and also artificial neural networks (ANN) models [12–14].

While the success of data-based physical models depends strongly on cor-
rectly identifying and understanding physical processes, the statistical methods
are usually less dependent on the selected physical models. It is useful to have
effective forecasting based on statistical models that can help identify which
quantities are important to include as input to any model. With this in mind,
an effort was begun in the late 1990s to develop an improved ANN model. One
of these, the neural network model of Koons and Gorney [12], served as both the
starting point and the motivation for developing an improved neural network
model for the prediction of RE fluxes in the outer ERB.

In most of the mentioned papers, the prediction is carried out for the daily
flux a day or more ahead. However, taking into account the fact that the increase
of electron flux on GEO may occur during a few hours, hourly forecast of RE
flux in the outer ERB is also of much interest. In the paper [15], the electron
flux is predicted using hourly values of time series, with prediction horizon of 1
to 12 h. The input data for the ANN are historical values of geomagnetic indices
AL and Dst.

The authors of this study have already also created an ANN prediction model
for hourly average values of the relativistic (>2 MeV) electrons of outer ERB
at GEO with prediction horizon of 1 to 12 h [16,17]. Using historical values
of the parameters of solar wind (SW) and interplanetary magnetic field (IMF)
(in addition to the geomagnetic indices and electron flux of the outer ERB), it
provides a significantly better prediction of hourly average of electron flux. Note
that ANN prediction outperforms the best possible linear model provided by
Partial Least Squares (PLS) method and the best autoregression modle provided
by the Group Method of Data Handling (GMDH) [17].

It should be noted that use of such an approach became possible only in the
latest several years, when a long enough time series of satellite measurements
of parameters of SW and IMF has been accumulated. For the same reason -
the need for a long and consistent time series measurements of RE fluxes by
the spacecraft with nearly the same orbits - the RE flux prediction is performed
for GEO orbit, where there are long-term data available from the GOES series
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spacecraft [18]. However, the available time series with high enough quality of SW
data, which is about 18 years long, spans only about 1.5 solar cycles; it is highly
non-stationary and it is driven by different physical laws at various phases of
the cycle. This makes many well-known methods of time series analysis nearly
useless; somewhat better results may be expected in such case from adaptive
data-driven methods like ANN.

Thus, the purpose of the considered modeling is an hourly ANN prediction
for the horizon from 1 to 12 h ahead from the same point in time, i.e. having the
same input values for the ANN. Usually this problem is solved by building 12
separate single-output ANNs, each with its own prediction horizon (autonomous
prediction). However, as all the inputs are common, it is also possible to build a
single ANN with 12 outputs, one for each prediction horizon (simultaneous pre-
diction). Finally, it is possible to perform group prediction by training networks
with several outputs corresponding to several adjacent values of the prediction
horizon.

In their preceding studies, the authors have investigated a similar problem
solving a multi-parameter inverse problem with ANN [19]. It has been demon-
strated that, at certain conditions, group determination of parameters provides
improvement in the quality of the inverse problem solution in comparison with
autonomous determination of parameters.

The purpose of this study was to find out, whether it is possible to improve
prediction quality by group prediction in comparison with autonomous predic-
tion, and at what conditions.

2 Data Sources and Preparation

Time series (TS) of hourly values of the following physical quantities were used
as input for ANN prediction:

(a) SW parameters in Lagrange point L1 between the Earth and the Sun: SW
speed v (measured in km/s), SW protons density nP (measured in cm−3),
SW protons temperature T (measured in K).

(b) IMF vector parameters in the same Lagrange point L1 (measured in nT): Bx,
By, Bz (IMF components in GSM system) and B amplitude (IMF modulus).

(c) Geomagnetic indexes: equatorial geomagnetic index Dst (measured in nT)
and global geomagnetic index Kp (dimensionless).

(d) Flux of relativistic electrons with energies >2 MeV at geostationary orbit
(measured in (cm2·s·sr)−1).

Besides that, to account for daily and yearly variations of the predicted quan-
tity, TS of sine and cosine values with daily and yearly period were also used as
input data. The specific sources of data are listed elsewhere [16].

Relativistic electrons flux as a TS has a wide dynamical range of its val-
ues, covering more than 6 orders of magnitude. So its value was transferred
to logarithmic scale, to level out relative prediction errors in different orders
of magnitude. Comparison of statistical indexes of error and data interpolation
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were also carried out in logarithmic scale. Our preceding studies showed that
in this case the prediction errors were lower than in the case when no transfer
to the logarithmic scale was performed. To account for the previous history of
input features, delay embedding of all TS for 24 h depth was used. Thus, the
total number of input features was 254.

Delay embedding significantly increases the negative influence of data gaps
on data volume and representativity. Based on the fact that rapid changes are
not typical for virtually all kinds of data used, in this study we used filling of
gaps 12 or less hours long by linear interpolation (for time moments when the
gap is already over) or by extrapolation of the latest known value. Also, there
is no reason for use of more sophisticated estimates. Unfortunately, presence of
gaps and such a way of their filling make inefficient possible use of various types
of recurrent neural networks with SW parameters as their inputs. At the same
time, the values of SW parameters influence the electrons flux to a great extent.

As the learning sample, the data from October 22, 1997 till December 31,
2006, was used. After delay embedding, the learning sample was divided by
random selection of patterns in the ratio of 75/25 into training set (59124 pat-
terns) and validation set (19707 patterns). As out-of-sample data, two test sets
were used to evaluate the obtained predictors: “long” (from January 1, 2007 till
March 31, 2015) and “short” (from January 1, 2010 till March 31, 2015). The
“short” examination set (45938 patterns) contained only data from the phases
of the solar cycle whose data were present in the learning sample. The “long” set
(72241 patterns) also contained data for the end of the solar cycle (2007–2009),
with no similar data present in the learning sample. So it was expected that the
results for the “long” set would be somewhat worse than for the “short” one.

3 Architecture and Parameters of Neural Networks

The ANN architecture used in the present study was the multi-layer perceptron
(MLP). A special investigation has been performed to determine the optimal
number of hidden layers (HL) of the MLP, and the optimal number of neurons
in the HL. A MLP with a single HL performed much better than a simple
perceptron without HL. However, MLPs with 2 and 3 HL failed to provide any
substantial improvement in the performance as compared to the single HL MLP.
It should be noted that the performance of the MLP remained practically un-
changed in a wide range of the number of neurons in the HL, due to the stop
training criterion used (500 epochs since minimum error on the validation set of
data).

The finally selected ANN architecture was MLP with 32 neurons in the sin-
gle hidden layer, tanh activation function in the hidden layer, linear activation
function in the output layer, trained by standard error backpropagation with
learning rate 0.01 and moment 0.5, with random presentation of patterns.

In each experiment, 3 MLPs were trained, differing only by weights initial-
ization and by the seed of random presentation of the patterns. The statistical
indexes used to assess prediction quality and presented below are in each case
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averaged over the 3 values provided by the corresponding MLPs. The standard
deviation of the averaging was small in all cases, thus confirming weak depen-
dence of the result on initial conditions of ANN training.

4 Results and Discussion

Autonomous prediction was performed by 12 separate MLPs with a single out-
put each (whose results are denoted with values of the solid lines at the figures
below). Simultaneous prediction was performed by a special MLP with 12 out-
puts (dashed lines). For group prediction, the prediction window (group) size
- the number of simultaneously predicted values - was set to 2, 3, 4, 6, and 9.
Each prediction window included adjacent values of prediction horizon, and all
possible positions were tested. For example, for prediction window size 3, the
groups of simultaneously predicted horizons were (1,2,3), (2,3,4), (3,4,5), . . . ,
(8,9,10), (9,10,11), and (10,11,12); for prediction window size 9 - (1,2,3,. . . ,7,8,9),
(2,3,4,. . . ,8,9,10), (3,4,5,. . . ,9,10,11), and (4,5,6,. . . ,10,11,12).

Figure 1 displays the values of multiple determination coefficient R2 and the
root mean squared error (RMSE), measured in orders of magnitude of RE flux, as
functions of prediction horizon (from 1 to 12 h) for the average of predictions of 3
identical ANN with different sets of initial weights. The solid lines correspond to
autonomous prediction (each horizon separately). The dashed lines present the
results of simultaneous prediction (all horizons at once). All the markers display
the results of group prediction, for all tested sizes and all possible positions of
prediction window.

Fig. 1. Coefficient of multiple determination (R2, left) and root mean squared error
(RMSE, right) vs prediction horizon in hours, on the “long” test set. Solid line -
autonomous prediction, dashed line - simultaneous prediction, markers - group predic-
tion for various sizes and positions of prediction window.
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Except the obvious degradation of the prediction quality with increasing
prediction horizon, from Fig. 1 it can easily be seen that for small horizons any
attempts of obtaining several predictions with various horizons with the same
MLP fail to make the results of prediction better. However, starting from 3 h, we
can observe positive effect of group prediction - for each prediction horizon, there
are several combinations of prediction window size and position that provide
better results than autonomous prediction. At the same time, Fig. 1 does not
demonstrate the dependence of the effect neither on the size, nor on the position
of the prediction window.

Figure 2 displays the dependence of RMSE on prediction window (group)
size, separately for each of the 12 values of the prediction horizon. Upper two
diagrams represent values averaged over all possible positions of the prediction
window; lower two diagrams present the same results for the position of each
window giving the best prediction among other positions of the window of the

Fig. 2. Root mean squared error (RMSE) vs prediction window size on the “long” test
set (left) and on the “short” test set (right). Top, values averaged over all window
positions; bottom, values best among all window positions. Curves 1–12 (from bottom
to top) correspond to various values of the prediction horizon.
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same size. Note that the results are slightly better for the “short” test set (right),
as it was expected.

A number of conclusions can be made from analysis of Figs. 1 and 2, and
from comparison of the results of the present study with those of the study of
parameter grouping in ANN solution of a multi-parameter inverse problem [19].

(1) The key value has the precision of prediction in autonomous prediction
mode. The hypothesis is that, in general, positive effect for some horizon
may be achieved if the prediction for this horizon is made by one ANN simul-
taneously with another horizon which is predicted better in autonomous
mode. That is why the effect is not observed or less pronounced for small
horizon values well predictable autonomously.

(2) For each horizon, there is an optimal size of grouping window, and it is
in general increased with increasing horizon. Among windows of the same
size, the one expected to bring the best prediction for a given horizon is
the window most shifted towards smaller horizons. The main reason of this
effect is monotonous decrease in the prediction quality with horizon.

(3) One more possible reason for the positive effect of grouping is averaging
of noise in the outputs when training a several-output ANN. This effect
may increase with increasing number of outputs (i.e. size of the prediction
window).

(4) The key condition for the positive effect of group prediction is that all pre-
dictions should use the same (as in this study) or nearly the same set of
input features. In this case, minimization of the error functional results in
extraction of such features in the hidden layer that are produced from the
same input features, and that are more or less useful for all the simultane-
ously predicted outputs.

(5) Summing up, it can be claimed that the observed effect is determined by
the properties of a multi-layer perceptron as a data processing algorithm
rather than by the properties of a specific problem. In particular, this is
proved by similar effects observed in group prediction in this study and in
group determination of parameters when solving a multi-parameter inverse
problem [19].

5 Conclusions

This study considers the effect of simultaneous prediction of time series with
different prediction horizons on the precision of the prediction, at the example
of a complicated task from the domain of space physics - prediction of the flux
of relativistic electrons at the geosynchronous orbit of the Earth. It is demon-
strated that at certain conditions group prediction (simultaneous prediction with
several adjacent horizon values) may improve prediction quality; the necessary
conditions are discussed. The key conclusion made is that the observed effect
is caused by the properties of a multi-layer perceptron as a data processing
algorithm. Future studies should include testing of the effect on other problems
solved by multi-layer perceptrons with several outputs.
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Abstract. This paper proposes a Deep Learning integrated algorithm
with Stacked Autoencoders (SAE) and Support Vector Regression
(SVR), it is also for the first time that applies the SAE-SVR integrated
algorithm to Foreign Exchange (FX) rate forecasting. We adopt 28 cur-
rency pairs pertaining to G7 currencies and RenMinBi, and collect the
real daily FX data for simulation. To implement the empirical study, we
develop the program of SAE-SVR integrated algorithm independently,
and benchmark the results with ANN and SVR models, which are con-
sidered as the best performance in Artificial Intelligence. Ultimately, the
simulation results indicate that the SAE-SVR integrated algorithm per-
forms much better over other benchmarks.

Keywords: Deep learning · Stacked autoencoders · Time series
forecasting · Foreign Exchange

1 Introduction

Since the collapse of Bretton Woods Agreement in 1973, the Foreign Exchange
market has become the most influential market in financial world, with an aver-
age daily turnover of 5345 billion dollars1 for global Foreign Exchange market.
Increasingly, Foreign Exchange rate plays a significant roll not only in people who
engaged in financial fields, but also in international-level macroeconomic issues.
Therefore, it arises an ascending number of governments, economists and finan-
cial institutions interest in developing high accuracy techniques for forecasting
Foreign Exchange (FX) time series [1].

Taking it by and large, the main approaches on this problem have proceeded
on three fronts in literatures. First of all, a majority of research efforts adopt
the time-dependent conditional heteroskedasticity into standard models and use
volatility as a key parameter. These models belong to the ARCH and GARCH
approaches initiated by Engle and Bollerslev. Secondly, there are fundamental

1 Source: The latest statistics of BIS (Bank for International Settlements) Triennial
Central Bank Survey in the size and structure of global foreign exchange and OTC
derivatives markets (updated 13 September 2015).
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models attempting to project the exchange rates based on rational expectations
hypotheses involving major macro-economical figures. These models are estab-
lished on the foundations of supply and demand of domestic currency compared
with a foreign currency. Last but not least, there are an increasing number of
studies recently begin to focus on artificial intelligent approaches to forecast
Foreign Exchange rate. This category mostly uses time-series statistics to pre-
dict currency movements and is proven to be outperformed than the traditional
approaches [2]. Optimized Algorithms of Artificial Neural Networks (ANN) are
best performed and most common in Artificial Intelligence (AI) field for the
moment, But ANN can still not go beyond one or two hidden layers for the
problematic non-convex optimization, therefore the difficult problem of learning
in deep networks for higher precision is left dormant.

However, in 2006, Geoffrey Hinton et al. rekindled interest in ANN by show-
ing substantially better performance by a deep neural network that proved suc-
cessful at learning their parameters [3,4]. Deep learning algorithms trained in
this fashion have been shown empirically to avoid getting stuck in the kind of
poor solutions one typically reaches with only random initialization [5,6]. While
until now there are few people make empirical study of time series modeling
with the typical deep neural network naming Stacked Autoencoder (SAE) [7,8],
which consists of multiple layers of Sparse Autoencoders, and the outputs of
each layer is wired to the inputs of the successive layer [9].

Under this circumstance, this paper takes a novel perspective on the problem
of optimizing the forecasting precision by proposing a Deep Learning Integrated
Algorithm with Stacked Atutoencoders (SAE) and Support Vector Regression
(SVR) to overcome the drawbacks contained in statistic models and ANN.
The innovative proposed methodology could be adapted to different currencies
exchange rate.

2 The FX Time Series Forecasting Model

2.1 The Forecasting Model Structure of SAE-SVR
Integrated Algorithm

In general, SAE performs remarkably in deeply extracting dataset features, while
SVR shows superior predicting capacity for time series. However, the time series
forecasting model we proposed based on Deep Learning integrated algorithm
with SAE and SVR combines merits in both of them.

To be specific, considering a network structure of SAE-SVR integrated
algorithm as shown in Fig. 1, it consists of one Input Layer, one Output Layer and
K Hidden Layers. With this greedy layer-wise training method, each hidden layer
can gradually learn part-whole features of the dataset. During the implementa-
tion process, we train the SAE-SVR integrated algorithm layer by layer, and each
layer represents a Sparse Autoencoder, which is illustrated in Fig. 2 below.

For the first Sparse Autoencoder, we initiate the net-config as (W, b) =
(W (1), b(1),W (2), b(2)), for W

(1)
ij connects the jth unit in layer L with the ith
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Fig. 1. The forecasting model structure of SAE-SVR integrated algorithm

unit in layer L+1, and b
(l)
i represents the bias of ith unit in layer L+1. In addi-

tion, we define a
(l)
i as the activation of ith unit in layer L, as well as the output

of this neural unit, and z
(l)
i as the input of this neural unit. Therefore, the func-

tional relationship of the first Sparse Autoencoder for a single input loop is as
below:

a
(2)
1 = f(z(2)1 ) = f(

N∑
i=1

W
(1)
1i xi+b

(1)
1 ) ,...., a

(2)
M = f(z(2)M ) = f(

N∑
i=1

W
(1)
Mixi+b

(1)
M );

a
(3)
1 = x̂1 = f(z(3)1 ) = f(

M∑

i=1

W
(2)
1i a

(2)
i +b

(2)
1 )

,....,

a
(3)
N = x̂N = f(z(3)N ) = f(

M∑

i=1

W
(2)
Ni a

(2)
i +b

(2)
N );

Where f(·) : � → �, here we set it a Sigmoid Function as:

f(z) =
1

1 + exp(−z)

2.2 The Back-Propagation Fine-Tuning Process
of the Forecasting Model Structure

As is known, the output of the first Sparse Autoencoder is A(3) = {a
(3)
1 , a

(3)
2 , ...,

a
(3)
N } ∈ R, while the real value of L3 equals to input X = {x1, x2..., xN} ∈ R

according to attribute of Stacked Autoencoders. In the following, we conduct a
Back-Propagation process to fine-tune the net-config during multi input loops
for the first Sparse Autoencoder.
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Fig. 2. The Feed-Forward Sub-Step Structure of SAE-SVR Integrated Algorithm

Firstly, we define a training set as {(x(1), x̂(1)), ..., (x(m), x̂(m))}, and a Square
Error Cost Function J(W, b) as

J(W, b) =
[

1
m

m∑
i=1

J(W, b;x(i), x̂(i))
]

+ λ
2

2∑
l=1

sL∑
i=1

sL+1∑
j=1

(W (l)
ji )

2
+ β

s2∑
j=1

KL(ρ||ρ̂j)

=
[

1
m

m∑
i=1

(
1
2 ||x̂(i) − x(i)||2)

]
+ λ

2

2∑
l=1

sL∑
i=1

sL+1∑
j=1

(
W

(l)
ji

)2

+ β
s2∑

j=1

KL(ρ||ρ̂j)

Where λ
2

2∑
l=1

sL∑
i=1

sL+1∑
j=1

(W (l)
ji )

2
is the Weight Decay Term to avoid over-fitting, sL

means the number of units of layer L, and ρ means SparsityParam,
s2∑

j=1

KL(ρ||ρ̂j)

is Penalty Term based on Kullback-Leibler Divergence:

KL(ρ||ρ̂j) = ρ log
ρ

ρ̂j
+ (1 − ρ) log

1 − ρ

1 − ρ̂j

However, each Sparse Autoencoder learns itself with multi input loops during
fine-tune procedure to obtain more precise forecasting results. And the activa-
tions outputs of each layer is wired to the inputs of the successive layer, until the
Kth activations obtained from process K-1 will be directly conducted as input
of a SVR model. After all the K processes are accomplished, there will be a fur-
ther Back-Propagation fine-tune for the whole SAE-SVR integrated algorithm
to descend the error of prediction outcomes.
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3 Data Description

In this paper, we base the Foreign Exchange rate (FX) datasets on the G7
currencies (USD, GBP, EUR, JPY, AUD, CAD, CHF), and furthermore collect
daily Foreign Exchange rate on MetaTrader4 platform of FXCM. In view of the
ascending influences of RenMinBi, we additionally adopt daily CNY from SAFE
(State Administration of Foreign Exchange) official website. Therefore, we use
28 currency pairs datasets in total illustrated in Table 1.

Table 1. The 28 currency pairs datasets in simulation test

- USD EUR GBP CAD AUD JPY CHF CNY

USD - - - 5USDCAD - 11USDJPY 16USDCHF 22USDCNY

EUR 1EURUSD - 4EURGBP 6EURCAD 9EURAUD 12EURJPY 17EURCHF 23EURCNY

GBP 2GBPUSD - - 7GBPCAD 10GBPAUD 13GBPJPY 18GBPCHF 24GBPCNY

CAD - - - - - 14CADJPY 19CADCHF 25CADCNY

AUD 3AUDUSD - - 8AUDCAD - 15AUDJPY 20AUDCHF 26AUDCNY

JPY - - - - - - - 27JPYCNY

CHF - - - - - 21CHFJPY - 28CHFCNY

As for the data frequency and time span, we extract the daily FX data in
MetaTrader4 and SAFE from 21st Mar 2009 to 1st Feb 2016. Besides, we classify
all the dataset into Training set and Testing set respectively for machine learning
process, details are shown in Table 2.

Table 2. The details of 28 currency pair datasets

DataSet no. Currency pair Alldata Start date Expiry date Trainingset Testingset

1–21 Omit 2048*21 2009-03-20 2016-02-01 1548*21 500*21

22 USDCNY 1782 2008-10-06 2016-02-01 1282 500

23 EURCNY 1782 2008-10-06 2016-02-01 1282 500

24 GBPCNY 1782 2008-10-06 2016-02-01 1282 500

25 CADCNY 1014 2011-11-28 2016-02-01 514 500

26 AUDCNY 1014 2011-11-28 2016-02-01 514 500

27 JPYCNY 1782 2008-10-06 2016-02-01 1282 500

28 CHFCNY 59 2015-11-10 2016-02-01 39 20

Sum - 52223 - - 38703 13520

Before we conduct the simulation test, firstly, the data should be normalized
between [0, 1] scale. For each currency pair time series data S = (s1, s2, ..., sT ),
the conversion formula is:

zi =
smax − si

smax − smin
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Then we get the normalized currency pair time series Z = (z1, z2, ..., zT ),
secondly, the normalized Z = (z1, z2, ..., zT ) will be transformed into a L-lag-
window multi-dimension time series vector X = [X1, ...,XM ] = (xij)

L,M
i,j=1, for

Xi = (zi, ..., zi+L−1)′ ∈ RL, M = T − L + 1, and the lag-window L is an integer
meeting 2 ≤ L ≤ T/2, So the new input vector is as below:

X = [X1, ...,XM ] = (xij)
L,M
i,j=1 =

⎡

⎢⎢⎢⎣

z1 z2 z3 ... zM

z2 y3 z4 ... zM+1

... ... ...
. . . ...

zL zL+1 zL+2 ... zT

⎤

⎥⎥⎥⎦

While the output vector is a one-dimensional time series vector:

Y = (y1, ..., yM ) ∈ R

where yn = zn+L, and yn indicates the forecasting value of Xn =
(zn, ..., zn+L−1)′ ∈ RL. Finally, we get the 28 time series input and output vec-
tors after preprocessing.

4 Simulation and Results

In this paper, we estimate the error with MAE (Mean Absolute Error), MSE
(Mean Square Error), RMSE (Root Mean Square Error) as criteria for assessing
the validity of our integrated algorithm.

MAE =
n∑

i=1

|ŷi − yi|
n

;MSE =
n∑

i=1

(ŷi − yi)2

n
;RMSE =

√√√√
n∑

i=1

(ŷi − yi)2

n

Where ŷi is the predicted value of corresponding yi.
The simulation environment is based on Matlab R2015a platform in 32-bit

Windows7, as to the innovative SAE-SVR integrated algorithm, we refer to the
UFLDL Tutorial of Deep Learning curriculum offered by Stanford University,
and develop the codes independently. In addition, we benchmark our SAE-SVR
integrated algorithm with ANN and SVR, the ANN model is conducted with
Neural Network Time Series Toolbox in Matlab R2015a, while the SVR model
is implemented with LIBSVM 3.12 Toolbox.

To be more concrete, the main program implement steps for the SAE-SVR
integrated algorithm come down to:

Step1: Provide the relevant parameters, involving inputSize, hiddenSizeL1,
hidenSizeLn, sparsityParam, lambda, beta, alpha, etc.
Step2: Load normalized vectors data, including Training Set and Testing Set.
Step3: Train the first sparse autoencoder with training set as input vector, and
get the trained net-config sae1Theta, then optimize sae1Theta with SparseAE-
Cost function to obtain sae1OptTheta, and further conduct feedForwardAutoen-
coder function to achieve the first feature vector sae1Features.
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Step4: Train the second sparse autoencoder, set the sae1Features as input vector
and obtain sae2Theta, sae2OptTheta, and sae2Features. Sae2Features is the
input vector of the next step.
Step5: By that analogy, accomplish training N layer stacked autoencoders, until
the Nth output vector saeNFeatures.
Step6: Set saeNFeatures as input vector to train the SVR model, and get the
output svmoutput.
Step7: Fine-tune the whole SAE-SVR algorithm: make a comparison between
the model output svmoutput with real forecasting value y, and fine-tune the
model config with stackedAECost function, the updated parameters are saved
in stack.
Step8: Predict the testing set with optimized SAE-SVR algorithm after fine-
tuning, achieve the forecasting values with stackedAEPredict function, and eval-
uate MSE, RMSE, MAE results.

However, the SAE-SVR integrated algorithm flow chart is illustrated below
in Fig. 3.

Fig. 3. the SAE-SVR integrated algorithm flow chart.

Eventually, the simulation outcomes of the SAE-SVR integrated algorithm
are summarized in Table 3 below. Comparing with the ANN and SVR model,
the 28datesets simulation results are aggregated in Table 3, from which we can
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tell, ANN model performs much better than SVR model in predicting Foreign
Exchange rate, so we contrast SAE-SVR model directly to ANN model with
calculation formula:

Pr omoted =
|(SAESV R)MSE − (ANN)MSE|

(ANN)MSE

Sumup =
N=28∑

i=1

Pr omoted value(i)

The promoted column reveals that in 28 entire datesets, although the
SAE-SVR model performs not better than ANN in 9 currency pairs involv-
ing 1EURUSD, 5USDCAD, 7GBPCAD, 10GBPAUD, 11USDJPY, 22USDCNY,
23EURCNY, 25CADCNY, 26AUDCNY, the other 21 currency pairs datasets all
indicate a better performance than ANN and SVR model. Further we calculate

Table 3. The aggregated 28 datasets simulation results of ANN, SVR, SAE-SVR
mdoels.

DataSeT ANN SVR SAE-SVR Promoted ANN SVR SAE-SVR Promoted

Name MSE MSE MSE MAE MAE MAE

1EURUSD 2.7307e-04 0.0026098 2.88E-04 -5.60% 0.0122 0.0399 0.02234 -83.11%

2GBPUSD 6.8046e-04 0.0011528 6.09E-04 10.51% 0.0193 0.0272 0.01169 39.43%

3AUDUSD 2.3025e-04 0.0003145 1.95E-04 15.22% 0.0113 0.0143 0.01012 10.44%

4EURGBP 2.6657e-04 0.0015129 2.51E-04 5.72% 0.0122 0.0307 0.01149 5.82%

5USDCAD 1.3537e-04 0.0022363 1.82E-04 -34.15% 0.0085 0.0332 0.00922 -8.47%

6EURCAD 2.9867e-04 0.0005757 1.44E-04 51.94% 0.0126 0.0189 0.00984 21.90%

7GBPCAD 2.2838e-04 0.0007986 2.40E-04 -5.00% 0.0167 0.0215 0.01808 -8.26%

8AUDCAD 4.8400e-04 0.00068021 1.57E-04 67.65% 0.0167 0.0198 0.01089 34.79%

9EURAUD 1.3568e-04 0.00024962 4.12E-05 69.66% 0.0084 0.0114 0.00513 38.93%

10GBPAUD 2.1326e-04 0.00062255 2.77E-04 -29.73% 0.0109 0.0191 0.01465 -34.40%

11USDJPY 1.4181e-04 0.00465398 2.12E-04 -49.77% 0.0088 0.0567 0.01577 -79.20%

12EURJPY 2.7442e-04 0.00034466 7.06E-05 74.29% 0.0120 0.0142 0.00655 45.42%

13GBPJPY 1.9389e-04 0.00141236 9.14E-05 52.86% 0.1299 0.0299 0.0082 93.69%

14CADJPY 4.2757e-04 0.00055366 1.70E-04 60.21% 0.0149 0.0177 0.00939 36.98%

15AUDJPY 3.6397e-04 0.0002919 5.06E-05 86.11% 0.0136 0.0129 0.0089 34.56%

16USDCHF 2.8011e-04 0.0009669 3.42E-05 87.80% 0.0101 0.0154 0.00788 21.98%

17EURCHF 1.9228e-04 0.0022557 7.01E-05 63.56% 0.0061 0.0304 0.0049 19.67%

18GBPCHF 3.0714e-04 0.0010526 9.99E-05 67.46% 0.0103 0.0155 0.00541 47.48%

19CADCHF 2.9759e-04 0.00111476 4.82E-05 83.81% 0.0107 0.0208 0.00978 8.60%

20AUDCHF 4.1407e-04 0.0015979 9.80E-05 76.33% 0.0129 0.0268 0.01181 8.45%

21CHFJPY 2.2217e-04 0.0014423 4.14E-05 81.35% 0.0086 0.0224 0.00835 2.91%

22USDCNY 8.7996e-05 0.00103769 3.11E-04 -253.22% 0.0061 0.0135 0.0099 -62.30%

23EURCNY 2.2732e-04 0.0017301 2.94E-04 -29.22% 0.0110 0.0318 0.01578 -43.45%

24GBPCNY 4.5092e-04 0.00052641 1.68E-04 62.79% 0.0149 0.0163 0.01114 25.23%

25CADCNY 1.7722e-04 0.0045405 3.20E-04 -80.78% 0.0097 0.0536 0.01675 -72.68%

26AUDCNY 2.3929e-04 0.00255696 3.63E-04 -51.88% 0.0118 0.0403 0.01772 -50.17%

27JPYCNY 1.9699e-04 0.00179411 1.32E-04 33.10% 0.0099 0.0349 0.00086 91.31%

28CHFCNY 0.0187 0.0316333 1.92E-05 99.90% 0.0886 0.1728 0.00438 95.06%

Sum Up - - - 610.92% - - - 240.61%
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the Sum Up of the SAE-SVRs proposed performance, it shows that the SAE-
SVR is more than 6 times better than ANN model in MSE criteria, and more
than 2 times better than ANN in MAE criteria, which comes to the conclusion
that the SAE-SVR integrated algorithm we proposed is attained with distinction
to some extent.

5 Conclusions

With the rapid variation in FX market, it brings an ascending number of atten-
tions to make more precise forecasting for Foreign Exchange Rate. In this paper,
we propose an innovative Integrated Algorithm based on Deep Learning with
Stacked Autoencoders and SVR, we take a novel perspective to extract the
high-dimensional abstract features from K layers Sparse Autoencoders and send
the output activations into the SVR model for prediction. For the sake of ver-
ifying the integrated algorithm, we take advantage of FX real currency pairs
pertaining to G7 and RenMinBi in MetaTrader4 and SAFE respectively, nor-
malize and test the datasets before simulation. To implement the simulation, we
develop the program independently referring to UFLDL Tutorial by Stanford
University, and benchmark our SAE-SVR integrated algorithm with ANN and
SVR model. Ultimately, the aggregated comparison indicates that the SAE-SVR
integrated algorithm outperformed than ANN and SVR to some extent, which
verifies the outperformance of our innovative algorithm. However, there is still a
lot of room to improve for the SAE-SVR integrated algorithm. In the next, we
will take more macroeconomic factors into account, and combine them with the
SAE-SVR algorithm for a more outstanding performance.
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Abstract. We propose a forecasting procedure based on multivariate
dynamic kernels, with the capability of integrating information mea-
sured at different frequencies and at irregular time intervals in finan-
cial markets. A data compression process redefines the original financial
time series into temporal data blocks, analyzing the temporal informa-
tion of multiple time intervals. The analysis is done through multivariate
dynamic kernels within support vector regression. We also propose two
kernels for financial time series that are computationally efficient without
a sacrifice on accuracy. The efficacy of the methodology is demonstrated
by empirical experiments on forecasting the challenging S&P500 market.

Keywords: Support vector regression · Financial time series · Kernels

1 Introduction

The forecasting of financial markets is one of the most challenging tasks in pre-
dictive analytics. The non-stationarity and the noisy nature of financial time
series have driven the debate about whether it is really possible to predict mar-
ket movements with sufficient confidence. The “Efficient Market Hypothesis”
provides theoretical grounds for the belief that the best strategy is the “buy-
and-hold” passive investment strategy, since no excess return can be obtained
consistently by predicting and timing the market [1].

Although many researchers in the statistical learning community –see e.g.
[2–4]– have attempted to forecast the financial market using support vector
machines (SVM) with standard kernels, the area still remains a challenge for
practitioners. Therefore, there is a natural interest in applying kernels for finan-
cial forecasting by incorporating temporal information between misaligned time
series or varying frequencies in the data patterns. In this article, we propose a
forecasting methodology based on SVMs that permits the incorporation of granu-
lar temporal information of variable-length time series. The proposed forecasting
methodology is a very flexible approach capable of analyzing market dynamics in
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very short-term intervals, by integrating market micro-structure information in
a compressed fashion. Standard kernels in the literature are replaced by dynamic
kernel functions able to analyze multivariate temporal structures. We show how
the use of these kernels leads to improvements in terms of both accuracy and
forecasting performance. In addition, we propose some multivariate dynamic
kernels that make it possible to reduce the complexity of kernel analytics to a
manageable level without compromising on accuracy. The computational speed
of these kernels makes them ideal candidates for intensive computational tasks.
The approach can be extended to incorporate high-frequency information as
well, aimed at market risk measurement.

2 Preliminaries

Support Vector Machines for Regression. We use Support Vector Regres-
sion (SVR) for predicting one-month ahead market performance by using its
own history and a series of exogenous variables measured on a daily basis; thus,
it is a mixed-frequency approach. More specifically, we choose the ν-SVR, a
reformulation that involves the automatic adaptation of the ε parameter. The ν
parameter is bounded in the interval (0, 1], representing both an upper bound on
the fraction of training samples which are errors and lower bound on the fraction
of points which are support vectors [5]. The final dual expression for an SVR is

ySVM(x) =
n∑

i=1

(αi − α∗
i )k(x, xi)

where αi, α
∗
i are the dual variables (0 ≤ αi, α

∗
i ≤ C), C > 0 is the regular-

ization parameter, the {xi} are the training points, and k is the kernel function.

Data Blocks for Temporal Information. Practitioners usually apply time
series regression with SVR using standard static kernels such as the Gaussian,
linear and polynomial. This means that, for one-month ahead predictions,
there is only a single vector of prices for each input month. To extract addi-
tional information and incorporate more subtle patterns, we propose that daily
quotes of financial assets be compressed into temporal time intervals on each
month. Our compression process redefines the original dataset into new instances
X 1, . . . ,X j , . . . taking the form of multivariate time series (MVT), as described
next. A univariate time series xi = {xi(1), xi(2), . . . , xi(Tj)} ∈ R

Tj of length Tj

is a set of observations from a random process measured at discrete intervals of
time. The j-th MVT is then a P -by-Tj matrix X j ∈ R

P×Tj of the form

X j =

⎛

⎜⎜⎜⎝

⎡

⎢⎢⎢⎣

x1(1)
x2(1)

...
xP (1)

⎤

⎥⎥⎥⎦ . . .

⎡

⎢⎢⎢⎣

x1(t)
x2(t)

...
xP (t)

⎤

⎥⎥⎥⎦ . . .

⎡

⎢⎢⎢⎣

x1(Tj)
x2(Tj)

...
xP (Tj)

⎤

⎥⎥⎥⎦

⎞

⎟⎟⎟⎠ (1)
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where each row represents a univariate time series and each column is a vector
of observations of the P variables in a time point. Letting x(i) be the i-th column
of X j(i = 1, . . . , Tj), the MVT X j can be expressed as X j = (x(1), . . . , x(Tj)).

Therefore, the original dataset is transformed into several intervals of dif-
ferent sizes where each instance is now expressed as in Eq. (1). This allows to
model the temporal structure within months and, additionally, can be adapted
to incorporate market dynamics in very small time intervals.

3 Multivariate Dynamic Kernels

The general goal is to define positive definite (p.d.) kernels between two time
series (not necessarily of the same length), X = (x(1), . . . , x(N)) and Y =
(y(1), . . . , y(M)), where the pairwise comparisons (x(i), y(j)) are reasonable.
The main difficulty is that the commonly used Euclidean distance disregards
the temporal dependency among the observations of time series. Moreover, the
length of the different time series is variable since it is a function of the number
of business days of each month, among other causes. In an attempt to overcome
the aforementioned difficulties, Sakoe and Chiba proposed dynamic time warp-
ing (DTW), to find a good alignment between X and Y before computing any
Euclidean distance [6]. An alignment (or warping function) π between two time
series X and Y is a pair of increasing tuples (π1, π2) of length P ≤ N + M − 1
such that 1 = π1(1) ≤ . . . ≤ π1(P ) = N and 1 = π2(1) ≤ . . . ≤ π2(P ) = M , with
unitary increments and no simultaneous repetitions. Intuitively, an alignment is
a series of connecting lines that associate each time point of X to one or more
time points in Y , and vice versa, as:

Dπ(X ,Y ) =
|π|∑

i=1

‖xπ1(i) − yπ2(i)‖2

The multivariate dynamic time warping (MDTW) distance is the minimum
distance for the set of all alignments AL(X ,Y ):

MDTW(X ,Y ) =
1

|π∗| min
π∈AL(X ,Y )

Dπ(X ,Y ), with π∗ = arg min
π∈AL(X ,Y )

Dπ(X ,Y ).

To convert a MDTW distance into a similarity we use the Gaussian function
with parameter σ > 0 as kMDTW(X ,Y ) = exp(−MDTW(X ,Y )/σ). The main
drawback of the DTW measure is that it is not rigorously a metric (it does not
satisfy the triangle inequality) and is also known not to be conditionally n.d.;
hence its negative exponential is not a p.d. kernel in general. Moreover, since
the DTW is based exclusively on the optimal alignment π∗, counter-intuitive
behaviors can be obtained in some cases –see [7].
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Global Alignment Kernel. In view of the limitations of the DTW, we consider
an improvement given by the global alignment (GA) kernel [7], which instead of
the minimum it considers the soft-minimum of Dπ(X ,Y ) defined as

Smin(Dπ(X ,Y )) = − log
∑

π∈AL(X ,Y )

e−Dπ(X ,Y )

To get a kernel, take exp(−Smin/σ) as kGA(X ,Y ) =
∑

π∈AL(X ,Y ) e−Dπ(X ,Y )/σ.
The GA kernel takes advantage of the distances spanned by all possible

alignments: two time series are similar based on their set of efficient alignments.
The σ parameter is taken from the adaptative grid:

{0.2, 0.4, . . . , 2} · median(‖x(t1) − y(t2)‖) ·
√

median(|x(t1)|),

where x(t1) and y(t2) are time points for the days in which the target price
reached its minimum variation during the month of each time series.

Vector Autoregressive Kernel. The previous kernels are shape-based simi-
larities to compare two time series. In this work we also propose the extraction
of higher-level dependencies across time series through a parametric statisti-
cal model. Our approach, a straightforward adaptation of the VAR kernel [8],
is based on comparing the similarity of two time series using the transition
matrices and intercepts of a vector autoregressive model VAR(L), such that
x(t) =

∑L
l=1 Alx(t − l) + b + εt, where A1, . . . , AL ∈ R

P×P are the transition
matrices, b ∈ R

P is the intercept, and ε ∼ N (0,Σ) is the noise. To implement the
VAR kernel, we append the estimated parameters Â and b̂ into a single matrix
B̂ = (Â1|Â2| . . . |ÂL|[b̂]). and then compute a distance between time series X
and Y using the Frobenius norm over the difference of their B̂ matrices

FD(X ,Y ) =
√

Trace
{

(B̂X − B̂Y )(B̂X − B̂Y )T
}

To convert the Frobenius distance to a similarity measure, we use a Gaussian
function to get kVAR(X ,Y ) = exp(−FD(X ,Y )/σ). For the experiments, we
use a fixed lag of L = 5 as indicated in [8] and set σ as the median Frobenius
distance.

Multivariate Dynamic Euclidean Distance Kernel. Finally we propose
a simple but effective methodology to compare variable-length time series by
constructing what we call the multivariate dynamic euclidean distance (MDED)
kernel. Given that financial time series follow a filtration process, we propose an
alignment that shortens the longer time series so to become equal in length to
the shorter one. Formally, the MDED alignment between time series X and Y
with respective lengths N ≥ M is πMDED = {(N − (M − 1), 1), (N − (M − 2),
2), . . . , (N − 1,M − 1), (N,M)}. We then define the multivariate dynamic
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Euclidean distance as MDED(X ,Y ) = 1
M

∑M
i=1 ‖(xπMDED(i,1) − yπMDED(i,2)‖2.

These distances can be fairly compared across variable-length time series in the
compressed database. To convert the MDED distance to a similarity measure,
we create again a RBF-like kernel as kMDED(X ,Y ) = exp(−MDED(X ,Y )/σ),
where the bandwidth parameter σ is set to the median of MDED(X ,Y ).

4 Evaluation of Forecasting Performance

We evaluate the forecasting performance of the proposed methodology to capture
the linear inter-dependencies among multiple time series. We base our experi-
ments on SVR using different multivariate dynamic kernels, namely kGA, kVAR

and kMDED. We compare also against the VAR model, a standard in economet-
rics, although it does not allow to integrate mixed-frequency information from
markets. The goal is to forecast the next month return of Standard and Poor’s
500 Index (S&P500) by incorporating past information plus three exogenous
predictors (hence P = 4): the volatility index (VIX), the yield of the U.S. 10-
year treasury bond (US10Yr) and the price of cooper 3-month future contract
(LME3m). All models were tested along three different time windows so as to
evaluate the effect of distinct market regimes in prediction accuracy, based on
compressed daily historical prices from January 2006 to December 2014.

The output variable of the model is the next month log-return of
S&P500, Rt+1. We use the log-return because it has better statistical prop-
erties than price, as stationarity and ergodicity [9]. The inputs are constructed
on a daily basis to capture temporal patterns of different scale on S&P500, VIX,
US10yr and LME3m using the ROCt,n = ln(xt) − ln(xt−n) function for n days
on day t.

For the i-th time series (i = 1, . . . , 4), we derive a vector of several rates of
changes on each day t, incorporating the time series at n ∈ {20, 40, 60, 100, 140},
allowing to capture temporal trend shifts of financial markets when analyzed
on a monthly basis. Then the input features for day t take the form xt =
[x1

t , x
2
t , x

3
t , x

4
t ], where xi

t = [ROCi
t,20,ROCi

t,40,ROCi
t,60,ROCi

t,100,ROCi
t,140].

Methodology and Parameter Selection. In the ν-SVR model, ν is con-
strained to the interval (0, 1]. We optimize it in the set {0.1, 0.2, . . . , 1}. For the
possible choices of C, we follow the analytic approach proposed by [10], which
advocates parameter selection directly from the training data. Considering a
standard SVR solution, a reasonable value for C can be roughly equal to the
range of training output values. However, besides forecasting with a value C =

range(Rt+1), we also tried values in the set
{

range(Rt+1) ·{0.8, 0.9, 1, 1.1, 1.2}
}

.

To find the optimal parameters ν and C and the fitted models we use
the methodology of [11], combining rolling windows with “training-validation-
testing” blocks. Despite being a standard practice in financial applications,
rolling windows are uncommon in the machine learning literature. An in-sample
period of 6 months was decided to train the model to make predictions for the
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next month. The proposed methodology to predict the market performance is
a multi-step procedure. First, we train the models on 6 months (the training
set); second, we apply the resulting models on the next two months (the vali-
dation set) and select the values of parameters that achieve the minimum mean
squared error; and third, we combine the last 4 months of the training set and
the 2 months of the validation set into a new set, called “true training set”, and
train the final model using the selected values of ν and C. Finally, we apply the
model on the next month (the test set) and record its performance. We then
move one month forward, repeating the same procedure for the whole period.

Performance Metrics. A number of measures have been used in the literature
to compare the forecasting accuracy of different models. Popular measures –such
as the mean squared error– are not invariant to scaling. We use here the mean
absolute scaled error (MASE), which scales the measured error using the mean
absolute error of a naive forecast:

MASE = mean

∣∣∣∣∣
et

1
n−1

n∑
t=2

|Yt − Yt−1|

∣∣∣∣∣

where Yt denotes the observation at time t ∈ {1, . . . , n}, Ft is the model fore-
cast and et = Yt − Ft is the forecast error. A MASE smaller than 1 indicates
that forecasting performance is better than a naive forecast. In addition, we
compute the accuracy or hit rate (HITS) –which should be maximized– as
HITS = mean|{Ft | (Yt − Yt−1) · (Ft − Ft−1) > 0, t = 1, . . . , n}|.

Empirical Results. Table 1 shows the MASE and HITS results we obtain
from using the multivariate dynamic kernels within the SVR framework; we also
report the performance of the VAR model. All results are presented both for
the whole database period and for balanced time windows, so as to capture the
performance of kernels across different market regimes.

Table 1. MASE (left) and HITS (right) of the Multivariate Dynamic Kernels.

The results clearly show the ability of SVR with multivariate dynamic kernels
to forecast the financial market. The kernels are able to achieve overall mean



342 M. Peña et al.

absolute squared errors of about 80 %, accounting for an improvement of 20 %
in performance with respect to the naive forecast. The most troublesome period
for forecasting is between 2009 and 2011, when financial markets underwent
profound trend shifts due to the world crisis. The VAR model is outperformed
both by the naive forecast and the multivariate dynamic kernels in all periods.
There are many possible explanations, the most important in our opinion is that
it is based on strong assumptions (linearity, stationarity, etc.) that do not fit
well to financial markets, particularly when working with small data sets.

In predicting market trends, the multivariate dynamic kernels reach a hit
rate of up to 70 % over the whole period, compared to a hit rate of 58 % for the
naive forecast. This is particularly remarkable because the hit rate is very used
in algorithmic trading by signaling actions upon predicted market trend shifts.

As we demonstrate, the multivariate dynamic kernels lead to significant
improvements in prediction accuracy and better performance than the naive
forecast along different market regimes. They also outperform the VAR model
in nearly all periods. The proposed MDED kernel and the modified version of the
VAR kernel display a performance similar to that of the global alignment kernel,
which is the state-of-the-art similarity measure in the literature for variable-
length time series. In fact, when analyzed in each period, we can note there is no
decisive winner among the kernels. The CPU times1 (in seconds) are 156, 143,
33 and 0.7, respectively, for kGA, kVAR, kMDED and VAR, indicating the compu-
tational efficiency of the proposed MDED kernel. The VAR model is the fastest
forecaster but it is not capable of performing better than the naive forecast.

An Experiment in Trading. We now apply the method to forecast the finan-
cial market and compare performance against the buy-and-hold strategy, widely
used as a benchmark in financial research. We follow the approach of [11] defining
a simple investing strategy: let f̂t+1 be the forecasted S&P500 next month log-
return; if f̂t+1 ≥ 0, we buy at the closing price on month t; otherwise, we short
it. Then the log-return R̂t+1, associated with our strategy, can be computed as:

R̂t+1 =
{ |Rt+1| if Rt+1 · f̂t+1 ≥ 0

−|Rt+1| otherwise.

The predicted performance of the financial market for the next month is
thus used on a timing rotation strategy. A positive prediction turns into a “buy
signal”, in which an Exchange Traded Fund (ETF) tracking the S&P500 index
is bought, whereas a negative one results in short-selling the ETF. We have
included different levels of transaction costs that take off some basis points or
bp (equal to a 0.01 %) of the capital for each trade. Table 2 shows a summary of
the investment strategy performance with different kernels in the period between
January 2006 and December 2014. What strikes at first sight, is that all kernels
invariably yield better results than the buy-and-hold (B&H) strategy.

1 Laptop with 4 GB of RAM and Intel Core i5 processor running at 2.5 GHz.
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Table 2. Statistics for SVR timing rotation strategies with transactions costs.

Under the assumption of zero transaction cost, the average annual log-return
of multivariate dynamic kernels ranges between 2.47 and 2.91 times the B&H
strategy. Indeed, the GA kernel achieves an annual mean return of 16.18 %, the
VAR kernel 13.75 % and the MDED kernel 14.67 %, compared to the buy-and-
hold strategy of 5.56 %. Combining these results with the standard deviations
yields improvements of more than 2.5 times in the Sharpe ratio. When adding
conservative transaction costs of 30 bp. and 50 bp. the results remained superior
to the buy-and-hold strategy. The VAR model modestly outperforms the passive
strategy and only when transaction costs are smaller than 30 bp.

The MDED kernel might then be effectively applied when considering high-
frequency time series for horizons of minutes or seconds. All the kernels can play
a major role in market risk management by the approximation of quantiles for a
certain distribution like, for example, in the value-at-risk (VaR) along with the
incorporation of the latest intra-day market developments.
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Abstract. The goal of our paper is to learn the association and the
semantic grounding of two sensory input signals that represent the same
semantic concept. The input signals can be or cannot be the same modal-
ity. This task is inspired by infants learning. We propose a novel frame-
work that has two symbolic Multilayer Perceptron (MLP) in parallel.
Furthermore, both networks learn to ground semantic concepts and the
same coding scheme for all semantic concepts in both networks. In addi-
tion, the training rule follows EM-approach. In contrast, the traditional
setup of association task pre-defined the coding scheme before training.
We have tested our model in two cases: mono- and multi-modal. Our
model achieves similar accuracy association to MLPs with pre-defined
coding schemes.

Keywords: Symbol grounding · Neural network · Cognitive model

1 Introduction

The relation between the real world via sensory input and abstract concepts
helps humans to develop language. More formally, Harnad [5] investigated the
process of coupling high level concepts and multimodal sensory signals. He called
this process the Symbol Grounding Problem.

All modalities (visual, audio, and haptic) are important for language acqui-
sition by infants. Cognitive researchers found that nouns are the first acquired
words by infants [1]. In more detail, nouns correspond to visible elements, such
as dog, cat, etc. In contrast, infants acquire vocabulary slower if one of their
sensory input fails i.e. deafness, blindness [1,17]. Also, Neuroscience researchers
discovered different patterns in infants’ brain related to multimodal signals and
abstract concepts [2]. The patterns showed different behavior depending on the
existence or absence of a semantic relation between visual and audio signals.
This finding shows a relation between both modalities.

Previous work has been inspired by the Symbol Grounding Problem. One of
the first model was proposed by Plunket et al. [13]. The authors suggested a
c© Springer International Publishing Switzerland 2016
A.E.P. Villa et al. (Eds.): ICANN 2016, Part II, LNCS 9887, pp. 347–354, 2016.
DOI: 10.1007/978-3-319-44781-0 41
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feed-forward network for associating a visual stimuli and a label. Since then,
more complex scenarios have been proposed. Yu and Hallard [18] presented a
multimodal model for grounding spoken languages using Hidden Markov Models.
Nakamura et al. [9] developed a model that ground the word meanings in a
multimodal scenario based on Latent Dirichlet Allocation.

Fig. 1. Components of our learning problem. The coding scheme is unknown in this
work and is learned during training.

In this paper, we are interested in a different setup of the Symbol Grounding
Problem for two sensory input signals. Moreover, abstract concepts are repre-
sented by the sensory input, which can or cannot be of the same modality.
Usually, each abstract concept is represented by a pre-defined coding scheme,
which is used for training classifiers. Figure 1 shows an example to explain the
difference between the traditional setup and this work for the association prob-
lem of two sensory input. This problem setup was introduced by Raue et al. [15],
who only evaluated visual sequences, which was represented by text lines in an
OCR case. Our contributions in this paper are

– We define a symbolic Multilayer Perceptron (MLP), which is trained without
specifying a coding scheme. In this case, an EM-training algorithm is used
for learning simultaneously the classification and the coding scheme during
training. Hence, the abstract concepts are grounded to the input signals during
training (Sect. 2).

– We propose (mono- and multi-modal) associations via symbol grounding,
where two parallel symbolic MLPs learn to agree on the same coding scheme.
As a result, the unknown agreements is learned using the information of one
network as target of the other network. Moreover, the association is gradient
based and can be extended to deeper architectures (Sect. 3).

– The Association Accuracy of the presented model reaches similar results to
MLP training with a pre-defined coding scheme in two scenarios: mono-modal
and multi-modal (Sects. 4 and 5).
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2 Symbolic Multilayer Perceptron

In this paper, a new training rule for Multilayer Perceptron (MLP) is introduced.
For explanation purposes, we define a MLP with one hidden layer, where x, y,
and z are vectors that represent the input, hidden, and output layers, respec-
tively. In addition, we define a set of weighted concepts γc where c ∈ {1, . . . , C}.
Each weighted concept learns the relation between the semantic concept and the
output layer. In this case, the output layer is used as a symbolic feature at which
the size of vectors z and γc is the same. The cost function matches the output
vectors z1, . . . , zm in a mini-batch of size m with a uniform distribution. The
proposed learning rule follows an Expectation Maximization approach [4].

2.1 Training

The E-step finds suitable candidates for the coding scheme given the network
outputs and the weighted concepts. Initially, the weighted concepts are set to 1.0.
First, we define an approximation vector ẑc for each semantic concept c. It is
defined as follows

ẑc =
1
m

m∑

i=1

f(zi,γc), (1)

where zi is the output vectors, γc is a weighted concept vector c, m is the size of
the mini-batch, and the function f is the element-wise power operator between
vectors zi and γc. Equation 1 provides an approximation of all semantic concepts.
Second, all approximation vectors ẑc are concatenated in order to obtain the
array Γ

Γ = g

([
ẑ1, . . . , ẑC

])
, (2)

where function g represents a row-column elimination procedure. In other words,
all elements in the i-th row and j-th column of the input array are set to 0 (except
at position (i,j), which are set to 1). This process is iteratively performed c times.
As a result, Γ is a set of one-hot vectors and represents a one-to-one relation
between semantic concepts and symbolic features. Consequently, Γ is an array
where the columns encode the information about semantic concepts, while the
rows represent the different symbolic features. To map any given symbolic feature
to a semantic concept, it now suffices to look up Γ .

The M-Step updates the weighted concepts given the current coding scheme.
To that effect, we define the following loss function:

cost(γc) =
(

ẑc − 1
|C|Γc

)2

, (3)

where Γc denotes the c-th column vector of Γ . Furthermore, we assume a uniform
distribution among all elements in c. Thus, we normalize Γc by the number of
semantic concepts c. Next, each weighted concept is updated using gradient
descent

γc = γc − α ∗ ∇cost(γc), (4)
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where ∇cost(γc) is the derivative w.r.t. γc and α is the learning rate. In addition,
this step not only learns the coding scheme but also provides information for
updating the weights in the symbolic MLP. The current coding scheme provides
the target vectors for propagating backward. In this case, the target vectors for
the semantic concept c is the column vector Γc.

2.2 Semantic Concept Prediction

After the symbolic MLP is trained, the semantic concept can be retrieved by a
similar decision rule of the standard MLP. With this in mind, the decision rule
is defined by

c∗ = arg maxc f(zk∗ , γc,k∗), where k∗ = arg maxk z, (5)

zk∗ is the value from output vector z at index k∗, γc,k∗ is the value from weighed
concept vector γc at index k∗, and function f is the power operator.

3 Parallel Symbolic MLP

As we mentioned in Sect. 1, our problem is defined by the association of two
different sensory input signals, which represent the same semantic concept with
an unknown coding scheme. Note that, the sensory input signals may be or
may not be the same modality. More formally, the input set is defined by S =
{(x(1),x(2), c)|x(1) ∈ X(1),x(2) ∈ X(2), c ∈ C}, where X(1) and X(2) are the
set of elements for each input, and C is the set of all semantic concepts. We
want to point out that our model does not have a pre-defined target vector via
coding-scheme.

The proposed architecture combines two symbolic MLPs in parallel, where
the information of one network is used as a target of the other network, and vice
versa. Figure 2 shows an overview of the proposed model. The training follows a
similar approach to the symbolic MLP (cf. Sect. 2).

Fig. 2. Overview for the parallel symbolic MLPs. Parallel training sets are forwarded
to each MLP. The EM-training rule learns to agree on the same coding scheme for
both networks, where the coding schemes are unknown before training.
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Initially, two symbolic MLPs propagates forward each sensory input (x(1)
i and

x
(2)
i where i = 1, . . . , m) in the mini-batch of size m. Afterwards, the weighted

concepts of both networks (MLP (1): γ1, . . . ,γc and MLP (2) β1, . . . ,βc) are
applied to network outputs (z(1)

i and z
(2)
i ) in order to obtain the candidates for

the coding scheme for each network (Γ (1) and Γ (2)). As a reminder, the coding
scheme represents the relation between the semantic concepts and the symbolic
features. Finally, the generated coding scheme from one network is used as a
target for the other network in order to update the network weights, and vice
versa. This step forces both networks to learn the same coding scheme. Figure 2
illustrates the presented architecture.

4 Experimental Design

4.1 Datasets

As we mentioned, our goal was to evaluate the symbolic association of two enti-
ties that represent the same semantic concept, where the coding scheme is not
pre-defined before training. To that effect, we tested our model in two scenarios:
mono-modal and multi-modal. Furthermore, we compared the presented model
against the traditional classification problem, where the coding-scheme is already
defined.

For the case of mono-modal input signals, two instances represented the same
semantic concept, e.g., two images showing different instances of the same digit.
With this in mind, we used MNIST [7] and COIL-20 [11] for generating the
training and the testing set. We want to indicate that COIL-20 does not define
a training and a testing set as MNIST does. However, we applied a common
practice, which is to use the even view angles for training and the odd view angles
for testing. For the multi-modal case, each input represents one modality of the
same concept, e.g., image or text. We tested two multi-modal datasets: Wikipedia
Articles [14] and TVGraz [6], where each multi-modal dataset represents the
semantic concept using an image and a description of the image. All datasets
were evaluated using training and testing sets of randomly sampled pairs with
the constraint that all semantic concepts follow a uniform distribution. Table 1
gives an overview of such sampling.

Table 1. Sampling of datasets for training and testing. Each sample represents a pair
of input signals.

DATASET CONCEPT TRAIN TEST

MNIST 10 25000 4000

COIL-20 20 360 360

TVGraz 10 1942 652

Wikipedia 10 2146 720
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4.2 Features and Network Setup

For each mono-modal dataset, we used the raw pixel values as input. For multi-
modal datasets, we extracted Latent Dirichlet Allocation [3] features for text,
based on a model with 100 topics and, Bag-of-Visual-Words [16] based on
SIFT [8] using a codebook of size 1024 for the corresponding visual input. More-
over, we used NLTK1 for extracting LDA features and VLFeat2 for computing
SIFT features. These are the same features used by Pereira and Vasconcelos [12]
for the multi-modal datasets. Note that we rescaled the feature values to mean
zero and standard deviation one, in the multi-modal datasets. These steps were
not required for the mono-modal datasets.

The following parameters were used in MNIST and COIL-20 datasets for
each symbolic MLP: hidden layer was set to 40 neurons, learning rate to 0.0001,
momentum to 0.9, and learning rate for weighted concepts to 0.01. Moreover, the
size of the mini-batch was set 1000 and 360 for MNIST and COIL-20, respec-
tively. For multi-modal datasets, the following parameters were used: the size
of the hidden layer was 150 neurons, the learning rate was 0.00001, momentum
was 0.9, and the learning rate for weighted concepts was 0.01. The size of the
mini-batch was 300 samples. In both cases, the same parameters were used for
the standard MLP with a pre-defined coding scheme as upper bound.

5 Results and Discussion

In this paper, we compared the association accuracy of our model against an
MLP with a pre-defined coding scheme. The association accuracy is defined by

Association Accuracy =
1
N

N∑

i=1

h
(
z
(1)
i ,z

(2)
i , gti

)
(6)

where z
(1)
i and z

(2)
i are the output classification from each network, gti is the

ground-truth label, N is the total number of elements, and the function h is
defined by 1 if z

(1)
i == z

(2)
i == gti, and 0 otherwise. We can see in Table 2 that

the performance of our model was consistent with respect to the standard MLP.
This suggests that the symbolic MLPs in our model were able to learn a unified
coding scheme.

Figure 3 shows an example of several epochs and the components of our model
during training for MNIST. Initially, the association matrix between MLP (1)

and MLP (2) shows only one relation at position (0, 0). During training, the
model starts learning the underlying coding scheme represented by both weighted
concepts. The last row (epoch 50) shows the semantic prediction step. Here, the
maximum value (dark blue) of the output vector is the index ‘3’, which is asso-
ciated with the semantic concept four. This behavior is consistent between both
weighted concepts. Hence, the association matrix results in a diagonal matrix
which indicates that both networks have agreed on the same symbolic structure.
1 http://www.nltk.org/.
2 http://www.vlfeat.org/.

http://www.nltk.org/
http://www.vlfeat.org/
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Table 2. Association accuracy (%) of our model and the traditional approach using
MLP.

Dataset Our model Standard MLP

MNIST 94.61 ± 0.24 95.02 ± 0.32

COIL-20 92.86 ± 1.65 92.94 ± 0.62

TVGraz 28.3 ± 1.45 31.5 ± 1.16

Wikipedia 11.82 ± 2.25 12.97 ± 1.11

Fig. 3. Example of the learning behavior for the symbolic association model at different
stages. (Color figure online)

6 Conclusions

The association between abstract concepts and parallel multimodal signals con-
tributes to language development. In this work, we have shown a model that
learns the association of two parallel sensory input signals, which both signals
can or cannot be the same modality. Unlike the traditional approach where
the coding scheme is pre-defined, we associate two parallel symbolic MLPs that
learn a common coding scheme for each semantic concept. Hence, a new dimen-
sion is added to the association problem, which makes more sense because we are
including the process that abstract concepts are grounded to their sensory repre-
sentations. We have shown that our model achieved similar results to MLP with
traditional training. This holds for both mono- and multi-modal association.
Symbol Grounding is still an open problem, but reveals potential to understand
more the development in this area [10]. One limitation of our work is to learn
the association assuming a uniform distribution between the semantic concepts.
We will extend our model with different statistical distributions. Another limita-
tion is related to semantic concepts. The model requires more time to converge
when the number of semantic concepts increases. Moreover, we are interested in
exploiting robustness of deeper architectures and to learn the association when
both networks have a different number of semantic concepts.
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Abstract. The paper presents a study of aspects of using single and
multiple output artificial neural networks to determine concentrations of
inorganic salts in multicomponent water solutions by processing their
Raman spectra. The dependence of the results on complexity of the
inverse problem has been demonstrated. The results are compared for
two data arrays including spectra of solutions of: (1) 5 salts composed of
10 different ions, and (2) 10 salts composed of 10 different ions.

Keywords: Inverse problem · Artificial neural network · Multi-layer
perceptron · Raman spectroscopy · Multi-component solutions ·
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1 Introduction

There is a strong demand for operative control of the composition of water and
water solutions in environmental monitoring, in industrial production and agri-
cultural activity. Modern methods of chemical analysis provide determination of
chemical composition with high accuracy, but they have serious drawbacks: they
need laboratory processing of water samples with special reagents, and each test
requires much time. More express are the methods based on measurement of
the conductivity of solutions, but they provide only the value of total salinity of
water; they are unable to detect presence of specific compounds in the solution
and to determine their concentrations.

The authors of [1–4] proposed to determine the concentrations of salts dis-
solved in water by changes of the shape of Raman spectra of the solutions.
Such an approach provides remote express determination of concentrations of
individual salts. As it is known [2,5,6], Raman spectra are highly sensitive to
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dation (project no. 14-11-00579).
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types and concentrations of various dissolved ions. Complex ions (such as SO2−
4 ,

NO−
3 ) have proper bands in the area around 1000 cm−1. The shape and position

of water Raman valence band depends on concentrations of any ions present in
the solution. If several components are present, there are nonlinear interactions
affecting the shape of the spectrum. Thus, there is no simple analytic model to
solve the described inverse problem (IP) of determination of concentrations of
salts in a multi-component solution.

Unfortunately, physical and chemical interactions taking place in multi-
component water solutions, primarily, due to the nature of hydrogen bonds,
are the main reason of the fact that direct modeling of spectra of such solu-
tions, including Raman spectra, is still beyond the capabilities of modern theory.
Therefore, the only way out is use of data-driven methods, in particular, ANN.
The main obstacle on this way is the need for a large enough and representa-
tive set of experimental data. The authors of the present study have available
the experimental equipment which allowed them to obtain several unique arrays
of experimental Raman spectra of multi-component solutions of inorganic salts,
described below. At present, they are not aware of studies of other authors which
could be directly compared to the studies presented here, if all the properties of
the used method are taken into account - its express and remote character, the
amount of components whose concentrations are determined simultaneously, and
the obtained accuracy of determination of component concentrations. The main
goal of the investigations at present is increasing the accuracy of the method.

Previously, the authors of this study suggested and developed the method to
determine the concentrations of salts [7–9] and ions [10,11] in multi-component
water solutions by Raman spectra using artificial neural networks (ANN). ANN
are also used in solving other complicated multi-parameter problems, such as
environmental monitoring of natural waters [12–14], determining the salinity of
sea water [15] and metal ions in industrial waters [16,17], and others.

The subject of this study is comparison of two approaches: using single-
output ANN (autonomous determination of parameters) or multiple-output
ANN (simultaneous determination) [18] in respect to the accuracy of determi-
nation of concentrations of salts dissolved in water. Previously the authors have
demonstrated some features of each approach at the example of solution of the
inverse problem of electrical prospecting [18,19]. The present research is based
on two similar inverse problems: determination of salts concentrations in water
solutions of 5 and 10 inorganic salts.

2 Data Preparation

The first IP was solved for 5 inorganic salts: NaCl, NH4Br, Li2SO4, KNO3, CsI.
The data array consisted of 9144 Raman spectra for known salts concentrations
in water solutions. As all 10 ions were different, the concentrations on an anion
and its corresponding cation always had the same ratio, making the task of
determination of concentration of each dissolved salt easier.



Solution of an Inverse Problem in Raman Spectroscopy 357

Initially, each band of the Raman spectrum was recorded into the range 1024
spectral channels wide, in the frequency range 200–2300 cm−1 for the low fre-
quency band, and 2300–4000 cm−1 for the valence band. For further processing,
more narrow informative ranges were selected: 766 channels in the range 281–
1831 cm−1 for the low frequency band, and 769 channels in the range 2700–3900
cm−1 for the valence band.

The second IP was solved for 10 inorganic salts: KF, KHCO3, LiCl, LiNO3,
MgSO4, Mg(NO3)2, NaCl, NaHCO3, NH4F, (NH4)2SO4. The obtained data
array consisted of 4445 Raman spectra for known salts concentrations. Every ion
was contained in two salts: so the concentration of each anion was not bound to
the concentration of any cation. Thus, the problem of determination of presence
and concentration of each salt used to prepare the solutions was in this case
much more complicated.

Every spectrum had 1824 channels in the frequency range 565–4000 cm−1.
In both problems, salt concentrations did not exceed the limit of solubility

for each specific combination of salts. The data array was randomly divided into
training, validation (used to determine the moment to stop training), and test
(out-of-sample) sets in the ratio of 70:20:10, respectively. 5 equal neural networks
(multi-layer perceptron, MLP) were trained with different initial weight values,
and the results of their application were averaged, to eliminate the influence of
the initial MLP weights choice.

3 Results

The procedure of selection of the optimal architecture of ANN has been per-
formed before [11,20]. Briefly, it was the following. Several architectures of MLP
with various numbers of hidden layers (HL) and neurons, were trained: 3 nets
with 1 HL of 32, 64, or 80 neurons; 3 nets with 2 HL of 32 and 16 neurons (in
the first and second HL, respectively), 64 and 32 neurons, 80 and 40 neurons;
2 nets with 3 HL of 40, 20, and 10 neurons (in the first, second and third lay-
ers, respectively), and with 64, 32, and 16 neurons. The best architecture was
selected by the value of the multiple determination coefficient on the test set.
For the 5-salts IP, it was the MLP with 2 HL containing 80 and 40 neurons;
for the more complicated 10-ions IP, it was the MLP with 3 HL containing 64,
32, and 16 neurons [20]. These neural networks were used in all computational
experiments described below.

The other parameters of all the networks were: logistic transfer function in
the hidden layers and linear transfer function in the output layer (often per-
forms better for regression-type tasks). Parameters used in the process of ANN
training: error back-propagation with ordinary gradient descent [21], learning
rate 0.01; momentum 0.5; stop training criterion - 1000 epochs after minimum
of the error on validation dataset. In every experiment, 5 identical neural net-
works with various initial weight approximations were trained, and the results
were averaged, to eliminate the influence of the initial MLP weights choice.

Also, some attempts were made to solve the even more complex IP of deter-
mination of concentrations of 10 ions (on the 10-salts data array) by alternative
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machine learning algorithms: the Group Method of Data Handling (GMDH) in
the modes of polynomial neural network and combinatorial GMDH [22], and
the Partial Least Squares (PLS) method [23]. As one of the methods of spectra
preprocessing for use with PLS method, the exponential transformation 10−x,
where x is intensity in every spectrum channel, was used [9].

Fig. 1. The mean absolute error of determination of inorganic salts concentrations on
the test set by various machine learning algorithms for the IP of 10 ions.

Figure 1 demonstrates comparison of the results of solution of the 10-ions IP.
It can be seen that the best results are given by the MLP. Therefore, further
comparisons (of the single-output and multiple-output approaches) were made
for the 5-salts and 10-salts IPs, with the best MLP architectures described above.

Fig. 2. The mean absolute error of determination of inorganic salts concentrations on
the test set by separate single-output ANNs (white bars) and by single multiple output
ANNs (grey bars) for the IP of 5 salts.
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Fig. 3. The mean absolute error of determination of inorganic salts concentrations on
the test set by separate single-output ANNs (white bars) and by single multiple output
ANNs (grey bars) for the IP of 10 salts.

The results of solving the IPs of determination of concentrations of 5 and 10
salts by single-output and multiple-output MLPs are presented in Figs. 2 and 3.

It can be concluded that different approaches have given contradictory effect,
depending on the complexity of the problem. Particularly, for the IP of 5 salts
using single-output MLPs allowed decreasing the mean absolute error of deter-
mination of concentrations of Li2SO4 and KNO3 by more than 5 %, and for CsI
by 2.7 % compared with the results of simultaneous determination. Changes for
the two other salts are of minor importance. On the other hand, for the IP of 10
salts, the opposite effect is observed. Autonomous determination demonstrated
better result only for LiNO3 (the mean absolute error was 16.3 % smaller, com-
pared with simultaneous determination). At the same time, the mean absolute
error of simultaneous determination was smaller for all salts by 4.2 % on the aver-
age (even together with the results for LiNO3). In particular, for Mg(NO3)2, the
error decreased by 23.3 %, for NaCl, NH4F and MgSO4, by more than 9 %.

4 Discussion

It can be seen that again we observe the effect, which we described earlier in [11]
- reducing some significant amount of data used to train the neural network leads
to degradation of accuracy of determining concentrations of salts for the IP of 10
components, but not for the IP of 5 components. However, in previous studies
we investigated the possibility of reducing the dimensionality of the input data.
Particularly, in [8], it has been demonstrated that the procedure of channel
aggregation (averaging the intensities of adjacent spectral channels) provided
improvement in the results of solution of 5 salts problem, and this positive effect
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persisted up to 32-fold aggregation. But in the case of 10 salts IP, this approach
resulted in some small improvement only for 2-fold aggregation and only for
a few components. Attempts to reduce the dimensionality by feature selection
(significance of channels was estimated by standard deviation, cross-correlation,
cross-entropy, amplitude of ANN weights) [10] demonstrated that no more than
15 % of spectra channels could be excluded resulting in only a small improvement
of the results of the IP solution.

Summarizing, we can conclude that in the case of a high complexity nonlinear
problem, all the available information should be used for ANN training. Note
that not only input variables have high importance, but also output variables.
Training ANN for simultaneous determination of the values of all the output
variables leads to the fact that the composite non-linear features extracted in
the hidden layers get to be suitable for all (or at least several) outputs at once.
If the simultaneously determined variables have somewhat similar dependences
on the inputs, or if they are in some other way significantly coupled, they pull
the weight optimization procedure in nearly the same direction, thus improving
the efficiency of MLP training and resulting in reduction of output error. Similar
effects were observed by the authors before [18], in their studies of group deter-
mination of parameters of a multi-parameter inverse problem. So apparently the
effects observed for the 10 salts IP are due to the high level of interaction of
salts dissolved in water; the perceptron trained to solve this problem needs to
take into account all the input components and output interactions to create the
correct non-linear mapping.

Future studies should include investigation of group determination of para-
meters for the 10-salts problem, with search for optimal grouping based on sim-
ilarity of influence of different salts on the shape of Raman spectrum.

5 Conclusion

Comparison of the results of applying autonomous and simultaneous determi-
nation approaches for the inverse problems of 5 salts and 10 salts shows that
channel aggregation and focusing only on single output is efficient only for the
simpler problem of 5 salts. The more complicated problem of 10 salts requires all
the available information to be used as input and output variables. The paper
presents detailed discussion of the reasons of the observed effects.
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Abstract. In this paper, we explore the capabilities of a sound classification
system that combines a Neuromorphic Auditory System for feature extraction
and an artificial neural network for classification. Two models of neural network
have been used: Multilayer Perceptron Neural Network and Spiking Neural
Network. To compare their accuracies, both networks have been developed and
trained to recognize pure tones in presence of white noise. The spiking neural
network has been implemented in a FPGA device. The neuromorphic auditory
system that is used in this work produces a form of representation that is analogous
to the spike outputs of the biological cochlea. Both systems are able to distinguish
the different sounds even in the presence of white noise. The recognition system
based in a spiking neural networks has better accuracy, above 91 %, even when
the sound has white noise with the same power.

Keywords: Neuromorphic auditory hardware · Address-Event representation ·
Spiking neural networks · Sound recognition · Spike signal processing

1 Introduction

By the information provided from the hearing system, the human being can identify
virtually any kind of sound (sound recognition) and where it comes from (sound local‐
ization) [1]. If this ability could be reproduced by artificial devices, many applications
would emerge, from support devices for people with hearing loss to security devices.

Sound recognition is commonly treated as a two stages problem: filtering and clas‐
sification [2–6]. Filtering is the stage where the signal is processed to extract acoustic
features, so only relevant information will pass to the classification stage, where the
sound will be identified. There are some factors that make sound recognition a hard task:
the presence of electric noise in the signal, the environment’s noise level and reverber‐
ation, the fact that the signal is a complex time series data and the wide dynamic range
of sound. Biological cochlea has a huge dynamic range, is adapted to a wide variety of
listening environments and it has high noise immunity [7]. In order to take advantage
of these characteristics, in this work we use in the first recognition stage a Neuromorphic
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Auditory System (NAS) that decomposes an audio signal into different frequency bands,
which produces spikes, in the same way a biological cochlea processes and sends the
audio information coded in spikes to the brain.

Artificial Neural Network is a generic classification method that can deal with several
kinds of information and has found great success in the area of pattern recognition.
However, standard artificial neuron models require input signals to be transformed into
static vectors by windowing processes, as, for example, the Time Delay Neural Network
[8]. Another approach for processing temporal data is the use of Spiking Neural Network
(SNN) [9]. The neurons within this kind of network deal with input signals on the form
of pulse (also called spike) trains, using a potential as a reference for generating pulses
on its output. Spiking models can directly deal with temporal data and can be efficiently
implemented in hardware, due to its simple structure. In this work, we present two
classification systems based on two kinds of neural network: Multilayer Perceptron
Neural Network (MLPNN) and SNN.

It is very common the use of techniques based in Fourier Transforms for filtering
stage. In [2] the Fast Fourier Transform and the Harmonic Product Spectrum are
proposed for the filtering stage and an MLPNN for the classification stage. The system
achieved 97.5 % recognition accuracy for 12 musical notes using 20 neurons in the first
hidden layer and 10 neurons in the second one. The sound classification model proposed
in [3] extracts the pitch of the signal using the Harmonic Product Spectrum. Based on
the pitch estimation, features are created and used in a probabilistic model. The accuracy
of the model is 99.95 % for 3 classes of sounds.

Although techniques based in Fourier Transformations can have remarkably
successful, their underpinnings are somewhat removed from the spiking, highly paral‐
lelized nature of the mammalian auditory perception systems. The work presented here
is an attempt to work within a more biologically realistic framework, both for the forma‐
tion of sound descriptors, and for the task of sound classification itself.

There are previous works that presents bio-inspired models of cochlea and neural
coding scheme. Reference [10] presents a phenomenological model of the cochlea
consists of a bank of nonlinear time-varying parallel filters and an active distributed
feedback and reference [11] simulates a model of auditory nerve and cochlear nucleus
neurons. Both models have several realistic properties. Reference [5] presents a sound
recognition system using a bank of band-pass filters and pulsed generator implemented
in software for extracting sound frequency characteristics and a hardware implementa‐
tion of pulsed neural network to classify. The accuracy of the system is 98.7 % for 6
classes of sounds. In [6] the cochlea response is simulated with a gammatone filterbank
and classification task is performed using a time-domain reservoir neural network known
as the echo state network [12]. The accuracy of the system is 45 % for 5 classes. The
system proposed in [13] uses an MLPNN to classify sounds between 5 vowel phonemes
with percentage of success of 93.99 %. The characteristics extraction stage is not bio-
inspired because it is based on electromyogram signals.
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2 Neuromorphic Auditory System

Neuromorphic systems, because of their high level of parallelism, interconnectivity, and
scalability, carry out complex processing in real time, with a good relation between
quality, speed and resource consumption [7]. The signals in these systems are composed
of short pulses in time, called spikes or events. The information can be coded in the
polarity and spike frequency, often following a Pulse Frequency Modulation (PFM)
scheme, or in the inter-spike-interval time (ISI) [14], or in the time-from-reset, where
the most important (with the highest priority) events are sent first [15]. Address-Event
Representation (AER), proposed by Mead lab in 1991 [16], faced the difficult problem
of connecting silicon neurons along chips that implement different neuronal layers using
a common asynchronous digital bus multiplexed in time, the AER bus. This represen‐
tation gives a digital unique code (address) to each neuron, which is transmitted using
a simple four-phase handshake protocol [17].

In the filtering stage of the audio recognition problem, we use a neuromorphic device
which decomposes an audio signal into different frequency bands of spiking information,
in the same way a biological cochlea sends the audio information to the brain. The
biological cochlea performs the transduction between the pressure signal representing
the acoustic input and the neural signals that carry information to the brain. Due to the
physical characteristics of a part of cochlea, the basilar membrane, cochlea divides an
input signal into its frequency components. Thousands of hair cells on the membrane
generate action potentials, or spikes, that travel along nerve fibers to higher-order audi‐
tory brain areas [7]. The first silicon cochlea was proposed by Lyon and Mead [18]. In
their design, the membrane basilar was modeled by a cascade of 480 second-order filter
sections. There are several VLSI implementations of the cochlea based on Lyon’s design
(for example, [19–21]). Digital models of the cochlea process audio signals using clas‐
sical Digital Signal Processing techniques [22–24].

The NAS is innovate respect previous systems because it processes information
directly encoded as spikes with a Pulse Frequency Modulation (PFM), performing Spike
Signal Processing techniques [25, 26], and using AER interfaces. The architecture of
the NAS is shown in Fig. 1. The system’s input is the digitalized audio streams, which
represent the audio signals of a monaural system. A Synthetic Spike Generator [27]
converts this digital audio source into a spike stream. Then, the cascade band pass filter
bank splits the spike streams in 64 (64 is the number of channels of the NAS) frequency
bands using 64 different spiking outputs that are combined by an AER monitor block
into an AER output bus [28], which encodes each spike according to AER and transmits
this information to the classification systems. All the elements required for designing
the NAS components (Synthetic Spike Generators, cascade filter bank and the AER
monitor) have been implemented in VHDL and designed as small spike-based building
blocks [26]. Table 1 shows the NAS characteristics. The NAS has been used before in
[29] to measure the speed of DC motor and in [30] that proposes a convolutional spiking
neural network for audio sound classification. Although, for this work, the gain of the
band pass filters have been modified looking for improving the recognition system
accuracy.
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Fig. 1. NAS Architecture

Table 1. NAS characteristics

Number bands Frequency range Dynamic range Max. Event rate Clock frequency
64 9.6 Hz–

14.06 kHz
75 dB 2.19 Mevents/s 27 MHz

3 Classification Systems

3.1 Multilayer Perceptron Neural Network

The topological structure of the MLPNN used consists of a two-layer feed-forward
network, with a sigmoid transfer function in the hidden and output layer. The training
algorithm used is the back-propagation. During this research, the optimal number of
hidden units was found by running different performance tests, where a new MLPNN
was created, trained and tested using a varying number of neurons in the hidden layer.
This kind of neural network requires static vectors as input. The number of the network
inputs is similar than the number of characteristics. The spiking signal has been trans‐
formed by windowing process and organized by characteristics like this: the spiking
information of each NAS band has been integrated during 20 ms, generating a 64-
element vector. We select 20 ms because the shortest audible sound ranges from 10 to
40 ms [31].

3.2 Spiking Neural Network

The SNN has been implemented by a two-layer neural network. The input layer consists
of Integrate and Fire neurons [9]. The optimal number of input units was found by
running different performance tests. The output layer has as many Winner-Take-All
neurons as classes to classify. The SNN input are the 64 spiking streams from the NAS.
This classification system was implemented in a FPGA, and the Integrate and Fire
neuron hardware architecture is shown if Fig. 2, where W are the neuron weights and θ
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 is the neuron threshold. The SNN training is performed by a SNN simulation imple‐
mented in software.

Fig. 2. Hardware architecture of Integrate and Fire Neuron of the SNN

4 Experimental Results

We have evaluated the capabilities of our sound recognition system using pure tone
sounds in the presence of white noise. The fundamental frequencies of sounds are shown
in Table 2. White noise was added to check the noise tolerance of the recognition system.
The test set consisted of 50 20-millisecond samples of each tone. White noise was added
to each sound with a SNR sweep from 46.05 to −21.97 dB (30 different values of SNR).
Therefore, in total there are 1.500 samples of each tone.

Table 2. Fundamental frequency of sounds to recognize

Freq 130,81 174,61 261,62 349,22 523,25 698,45 1046,5 1396,91

The MLPNN was created, trained and tested using a varying number of neurons in
the hidden layer. 70 % randomly-selected samples were used to training the MLPNN,
including noisy samples. The results shows in Fig. 3 are obtained using 10 neurons in
the hidden layer and 8 neuron in the output layer. The system achieves 98.95 % recog‐
nition accuracy for tones without white noise. Figure 3 (left) shows accuracy for each
pure tone in the presence of different white noise powers as a color-map, being the X-
axis the frequencies between 130.813 and 1.89 kHz, the Y-axis the SNR between 46.05
to −21.97 dB, and the color represents the percentage of successes.

The SNN, with 8 neurons in the input layer and 8 neuron in the output layer, training
with 70 % noiseless samples, obtains the accuracy shown in Fig. 3 (right). The system
achieves a mean success rate of 100 % for tones without white noise. Figure 3 shows
that the hit rate decreases with the increase of white noise, and that there is a frequency
less robust to white noise (698,45 Hz). Most of the pure tones have a hit rate over 90 %
with a SNR over −8 dB.
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The results shown in Fig. 3 (right), in general, are better than the results obtains with
MLPNN. Furthermore, SNN uses 16 hardware implementation neurons and MLPNN
uses 18 neurons.

5 Conclusions

In this study, we show that recognizing pure tones in presence of white noise can success
using MLP neural network and SNN. The SNN achieves better accuracy with less
neurons than MLPNN. In addition, SNN has been implemented in hardware. Audio
information acquisition is carried out by a novel neuromorphic auditory system, which
provided streams of spikes representing audio frequency components. As a future work,
it would be valuable to evaluate the performance of the SNN with the models of the
auditory system proposed in [10, 11], as well as performance of more complex sound
recognition, like vowels [13].

In the audio context, traditional digital systems have to process several samples in a
buffer, because sound makes sense along time, where Fast Fourier Transform (FFT)
calculation prior to specific processing. However, NAS provide audio directly and
continuously decomposed into its frequency components as a spike stream. This allows
real time audio processing (without the need for buffering), using neuromorphic
processing layers as SNN do.

The SNN-based system and MLPNN-based system have a percentage of success
above 91 % even when the sound has white noise with the same power. When the SNR
is −18.3 dB, the SNN-based system accuracy is kept on 85.3 %, but the MLPNN-based
system accuracy is only 12.5 %. The SNN-based system achieves a mean success rate
of 100 % for tones without white noise.

Most recognition systems exposed in the introduction cannot be implemented in
dedicated hardware because of its high computational cost, however, we present a
recognition system efficiently implemented in hardware, due to its simple structure.
Furthermore, SNN architecture proposed is highly parallelizable. Regarding the classi‐
fication stage, all the works presented in the introduction have more computational cost
than SNN. For example, the method proposed in [2] achieved 97.5 % accuracy for 12

Fig. 3. Hit rate of sound recognition system using MLPNN (left) and using SNN (right)
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sounds using a MLPNN with 30 neurons. The bio-inspired recognition system proposed
in [5] has a percentage of succeed of 98.7 % for 6 kinds of sounds, less than our recog‐
nition system and it is not fully implementable in hardware.

The system presented in this paper is being applied to animal behavior recognition,
for example for horse behaviors, through a SNN-based sound recognition system asso‐
ciate to the animal movements.
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Abstract. In this paper, we present a prediction model developed to
identify particles size of ice crystals in clouds. The proposed model
combines a Feed Forward Multi-Layer Perceptron neural network with
Bayesian regularization backpropagation and other machine learning
techniques for feature reduction with Principal Component Analysis and
rotation invariance with Fast Fourier Transform. The proposed solution
is capable of predicting the particle sizes with normalized mean squared
error around 0.007. However, the proposed network model is not able to
predict the size of very small particles (between 3 and 10 µm size) with
the same precision as for the larger particles. Therefore, in this work we
also discuss some possible reasons for this problem and suggest future
points that need to be analysed.

Keywords: 2d light scattering pattern · Atmospheric particle · Size
prediction · Fast Fourier Transform · Neural network regression

1 Introduction

Clouds influence climate through radiative (scattering and absorbing solar and
thermal radiation) and other physical processes that impact on the Earth’s radi-
ation budget and affect climate change. Such cloud feedbacks are a source of
significant uncertainty in climate models [1]. This applies in particular to ice
or mixed-phase cloud (the latter comprising both ice crystals and super-cooled
droplets), since the radiative properties of such clouds are dependent upon the
relative abundance of crystals and droplets, their size spectra and, in particular,
the diverse crystal shapes present [2].

To be able to understand the radiative transfer properties of such particles,
a detailed knowledge of their shapes and sizes is required. Imaging methods,
c© Springer International Publishing Switzerland 2016
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e.g. [12], are widely used to obtain in situ morphological data of atmospheric
particles. However, for small particles, optical aberrations and constrained depth
of field restrict the obtainable information. Such constraints do not apply to the
detection of scattering patterns. Therefore, suitable detection instruments like
the Small Ice Detector (SID) [11] have been developed. However, while con-
ventional pattern recognition methods may be readily used to group recorded
images of Two-Dimensional Light Scattering (2DLS) patterns into broad parti-
cle shape classes [11], the inversion of the patterns required to yield quantitative
morphological data is much more involved. Therefore, the creation of databases
of scattering patterns of known particle morphologies is extremely useful for
particle characterization.

Here we use a database [19] of scattering patterns obtained from the Ray
Tracing with Diffraction on Facets (RTDF) model [9] which is a hybrid model
combining ray tracing with a physical optics approximation. While ice particles
in clouds are known to cover a wide variety of shapes, such as columns, plates,
rosettes, aggregates and variations thereof (e.g. hollow or rough and/or rounded
crystals) [2], we focus on this initial study on pristine (i.e. undistorted) hexago-
nal prisms which vary in size and aspect ratio. The latter is defined as the ratio
of crystal length to diameter, where the diameter is twice the edge length of a
hexagonal facet. Therefore, aspect ratios are larger or smaller than one corre-
spond to columns or plates, respectively. The characteristic crystal parameter we
wish to determine from the 2DLS pattern is the crystal’s projected size as seen
by the incident light. This is an important parameter because, if averaged over
ensembles of randomly oriented particles, it gives an indication of actual particle
size, which is required as input parameter for radiative transfer computations
which feed into climate models.

Therefore, to obtain the size information from the ice crystal particles that
compose the analysed database, we present in this work a prediction model which
uses as input the 2DLS patterns generated from the particles. The proposed
model uses a Feed Forward Multi-Layer Perceptron neural network (NN) as a
prediction technique, Fast Fourier Transform (FFT) [3,5] techniques to avoid
problems with pattern rotation and Principal Component Analysis (PCA) [18]
process for feature reduction.

2 Related Work

As the inverse light scattering problem occurs in various areas such as Geology,
Biology, Astrophysics, and Engineering among others, there are some related
works which use different neural networks models to extract information from
light scattering for distinct purposes that we presented here.

In Ulanowski et al. [20], the approach used was a Radial Basis Function
(RBF) neural network to predict the particle size from Multiangle Dynamic
Light Scattering (MDLS) patterns. The results presented in [20] were satis-
factory, however it focused on spherical particles. Therefore, the application
of rotational invariance techniques was not necessary. Mie scattering patterns
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[14] (which are based at Maxwell’s equations [7] and are therefore numerically
exact) were used as network training examples. Intercomparisons of inversion
algorithms for particle-sizing using Mie scattering are given in [16]. Kaye et al.
[10] investigated the applicability of a RBF neural network for classification of
potentially hazardous airborne fibres based on their light scattering pattern.
Other related works using MDLS measurements and NN differ from the current
work as they predict particle size distribution in polymer latexes using Gen-
eral Regression Neural Network (GRNN), which is a particular case of a RBF
network [8].

In the image processing area, El-Bakry and Mastorakis [5] used a normalized
neural network for fast pattern detection for a given image. Like in the work
described in this paper (see Sect. 3.2), they use a Multi-Layer Perceptron neural
network for pattern recognition and a Fast Fourier Transform method for image
preprocessing. However, they focused on improving speed of the pattern recog-
nition process, by using images in the frequency domain and not in the space
domain, as our present study does. In Beaudoin and Beauchemin [3], the authors
discuss different methods for image processing using Fourier Transform. Their
work showed that they could obtain the transformation results in frequency
domain in a fast and accurate process, showing that the Fourier transform is a
good method for image processing that can be applied in different fields of study.

Another image preprocessing method applied in this work is feature reduc-
tion. The most common approach which is also used in this work is the PCA.
This preprocessing step is important to reduce the number of features analysed
by neural network without losing precision [18].

In addition to using a NN for this work, other architectures are important
to be investigated such as Radial Basis Function, Support Vector Machine [17],
Incremental Gaussian Mixture Network [15] and the Deep Learning process [4] as
alternative methods to improve preprocessing data and recognition of complex
patterns. However, using a standard NN with Baeysian regularization backprop-
agation as done in this work has shown that this model solves the problem of
predicting particle size for these 2DLS satisfactorily, since the data has been
prepared by preprocessing routines properly, as we show in the Sect. 3.

3 Methodology

3.1 Analysed Particles

The particle dataset used in this work was generated by a simulator [19] obtained
from the Ray Tracing with Diffraction on Facets (RTDF) model [9]. The dataset
is composed of 162 particles and each particle has 133 orientations. For each
orientation of the particle, a 2DLS pattern is produced. These are computed
as intensity profile in spherical polar coordinates with one degree bins. The
elevation angle is measured from the direction of incidence of the illuminating
laser beam and is recorded between 6◦ and 25◦; the full range of azimuth angles
between 0◦ and 360◦ is considered. The combination of the elevation-azimuth
angles generates pattern images with a resolution of 7,200 pixels.
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3.2 The Network Model

The proposed NN model is a multi-layer feed-forward neural network with 50
nodes in the hidden layer, which uses a Bayesian regularization backpropaga-
tion as training function [13]. The number of nodes was chosen after analysing
the network performance when considering the network model capacity of gen-
eralization and interpolation. However, as the training is based on a Bayesian
regularization function, the number of nodes in the hidden layer is not an impor-
tant factor, as this kind of training function minimises the problem of overfitting
when a large number of nodes in the hidden layer is used [6].

For the NN training and testing we use a dataset of 21,546 patterns (162
particles× 133 orientations), which are split into two sets: 70 % of the patterns
are used for the training process and 30 % for the testing process. In the test-
ing process, we rotate the patterns randomly between 1◦ and 360◦, trying to
simulate the real conditions during particle observation in the atmosphere. The
patterns analysed by the NN are intensity values of the diffraction images, which
are then transformed and normalised by different computational techniques as
described in this work. With this information, the NN analyses the size value of
each orientation as training output value. Thus, the NN is capable of training
and, after that, test with new patterns to predict particle sizes. In the diagram
presented in Fig. 1, we summarize the prediction process performed by the NN.

Fig. 1. Diagram of prediction process performed by the proposed neural network

As it is shown in Fig. 1, the prediction process proposed in this work begins by
considering the particle dataset composed of 162 particles and 133 orientation
images for each particle (step 1), which generates 21,546 diffraction pattern
images. We then normalize the diffraction pattern images using natural log and
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z-score measurements (step 2). After that, we distribute each pattern in a matrix
with 20× 361 size (step 3), where the 20 rows of the matrix represent elevation
angles (between 6◦ and 25◦) and 361 columns represent the azimuthal angles
(between 0◦ and 360◦), thus generating a flat image of each orientation (this
process is better explained in Sect. 3.3, where an example of a flat image can
be seen on Fig. 2). Next, these images are duplicated into two different matrices
(step 4) into the training dataset and the test dataset (step 5). The first matrix
keeps the original images of all patterns and the second matrix uses all patterns
randomly rotated (step 6. See an example on Fig. 2). After that, we apply the
FFT method in each row of the generated matrices, both for the original images
(steps 7 and 8) and for the rotated images (step 10 and 11), thus generating
the pattern signal frequencies to achieve a rotation-invariant image (see Fig. 3).
In the next steps, the frequency matrices are normalized (steps 9 and 12) and
their dimensions are reduced by applying a PCA process (steps 13 and 14). From
that, we generate the input data for training the proposed NN model (step 15).
Finally, we use the rotated test patterns, which were rotated in step 6 and apply
FFT process, normalization and PCA (step 14) for the NN test (step 16), where
its output gives the predicted particle sizes (step 17).

3.3 Rotation Invariance

In order to make sure that patterns which only differ by a rotation around the
axis corresponding to the direction of the laser beam are recognised as being
identical, i.e., to generate only one pattern from the image analysis, regardless
of its rotation, we use the FFT method [3,5].

Fig. 2. Diffraction pattern images of the same particle with different rotations. Plot
A shows the original image of a particle before its rotation. Plots B and C show two
different diffraction images after random rotation by 189◦ and 286◦ respectively. The
x-axis represents the azimuthal angle (ranges of values between 0◦ and 360◦) and the
y-axis represents the elevation angle (between 6◦ and 25◦).

With the FFT method, we are able to convert the pattern from image values
to frequency values [3,5], making the image rotation-invariant, and from that,
can predict particle size. Without FFT, the rotation behavior shows different
images to the NN (can be seen in Fig. 2), where plots B and C, each diffraction
pattern image is a different image for the NN. These images are only displaced
by different angles compared to the original image. That is, although it is the
same image pattern, to the NN it appears as a completely different pattern.
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Fig. 3. Frequency values of the same 2DLS with different rotations, exemplifying the
importance of using the FFT method. The blue line shows the frequency of a pattern
before rotation. The green line and red line show the frequency of the same pattern at
same elevation, after random rotation by 189◦ and 286◦, respectively. The x-axis shows
the pattern frequency (in hertz) and the y-axis represents the frequency amplitude.
(Color figure online)

After transforming each pattern into a set of frequency patterns (one for each
elevation angle) to solve the problem of rotation, the diffraction pattern images
shown in Fig. 2 are converted into frequency patterns like those shown in Fig. 3.
Each line in Fig. 3 represents a single elevation of each pattern shown in Fig. 2,
transformed into frequency with FFT. Note that three lines are overlapped well,
especially at the frequency range from the value of zero to the value of 100.

4 Results

In all performed tests using the proposed model, the NN could predict the pro-
jected size of the most analysed particles with a good precision. The results are
plotted in Fig. 4, showing that using 30 % of the dataset for the test process, the
results represent a normalized mean squared error around 0.007 and the value of
Pearson’s correlation coefficient was around 98 %. However, these results show
that it is difficult for the NN to predict particles with small sizes, as shown in
the highlighted box of Fig. 4 (plot A), where the predictions of particles between
3 and 10 µm size are plotted.

Fig. 4. Plot A is the plot with predicted against real pattern size. Each datapoint rep-
resents one pattern image at one particle orientation. The x-axis shows the projected
size of each particle orientation and the y-axis shows the predicted size. The highlighted
box (in red) shows that the proposed model has problems in predicting the projected
size of these small particles. Plot B is the histogram with number of problematic ori-
entations. Small size particles have most of the problematic orientations. (Color figure
online)
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In order to investigate the reasons that the model does not have a satisfactory
performance for small size particles, we have carried out new experiments. During
these experiments, we have found that the main problem in the proposed model
is to distinguish particles with very different sizes but similar diffraction patterns.

We have also identified that this generalization problem happens when plot-
ting the number of orientations for each particle in the dataset. The results have
shown that the particles which have the largest number of problematic orien-
tations are smaller, as shown in the histogram of Fig. 4 (plot B). The reason
for this could be that smaller particles interact less with incident light than do
larger ones, and that light scattered by small particles is more widely spread
out. Ultimately, this means that there is less information recorded in the angu-
lar region covered by these investigations, which could explain the difficulty in
recovering size information from smaller particles.

5 Final Discussion

The results presented in this paper have shown that the proposed NN model
is capable of predicting the size of ice crystal particles with a good correlation
between the predicted size and projected size using Pearson’s coefficient with
98 % of correlation, as shown in Fig. 4. However, the results have also shown
that some particle sizes, mainly the small particles, are more difficult to predict
when compared with larger ones. These results were also found by other authors,
as discussed in [20]. It is well known that NNs should be able to get small errors
like this work presented with normalized mean squared error around 0.007. But
with small particles, in this case in particular, the error increase substantially
and for the purpose of particle size prediction inside the climatology field, it is
important investigate why this is happen and test another techniques and com-
putational processes to solve this kind of problem in particular. One point which
we have investigated in this work is that particles with different sizes could have
very similar diffraction patterns. Another investigated point was the number of
orientations that are difficult for the network model to predict the particle size
(results shown in Fig. 4B). We have found that most of the problematic orien-
tations are found in the small particles. The reason for this could be that light
scattered by small particles is more widely spread out than for larger particles
and therefore 2DLS show less variation with particle orientation and aspect ratio.

To further analyse the problem related to the small particles prediction,
we initiate tests with other machine learning approaches for prediction and
classification problems such as Radial Basis Function (RBF), Support Vector
Machine (SVM) [17], Incremental Gaussian Mixture Network (IGMN) [15], and
deep learning process [4], which can help the model to have a better prediction.

References

1. Climate change 2013: The physical science basis. Contribution of Working Group I
to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
(2013)



Using Machine Learning Techniques 379

2. Baran, A.J.: A review of the light scattering properties of cirrus. J. Quant.
Spectrosc. Radiat. Transfer 110(14–16), 1239–1260 (2009)

3. Beaudoin, N., Beauchemin, S.: An accurate discrete fourier transform for image
processing. Object recognition supported by user interaction for service robots
(2002)

4. Bengio, Y.: Learning deep architectures for AI. FNT Mach. Learn. 2(1), 1–127
(2009)

5. El-Bakry, H.M., Mastorakis, N.: New fast normalized neural networks for pattern
detection. Image Vis. Comput. 25(11), 1767–1784 (2007)

6. Foresee, F.D., Hagan, M.T.: Gauss-newton approximation to bayesian learning. In:
International Conference on Neural Networks, vol. 3, pp. 1930–1935 (1997)

7. Griffiths, D.: Introduction to Electrodynamics. Prentice Hall, Upper Saddle River
(1999)

8. Gugliotta, L.M., Stegmayer, G.S., Clementi, L.A., Gonzalez, V.D.G., Minari, R.J.,
Leiza, J.R., Vega, J.R.: A neural network model for estimating the particle size
distribution of dilute latex from multiangle dynamic light scattering measurements.
Part. Part. Syst. Charact. 26(1–2), 41–52 (2009)

9. Hesse, E., Call, D.M., Ulanowski, Z., Stopford, C., Kaye, P.: Application of RTDF
to particles with curved surfaces. J. Quant. Spectrosc. Radiat. Transfer 110(14–
16), 1599–1603 (2009)

10. Kaye, P., Hirst, E., Wang-Thomas, Z.: Neural-network-based spatial light-
scattering instrument for hazardous airborne fiber detection. Appl. Opt. 36(24),
6149 (1997)

11. Kaye, P.H., Hirst, E., Greenaway, R.S., Ulanowski, Z., Hesse, E., DeMott, P.J.,
Saunders, C., Connolly, P.: Classifying atmospheric ice crystals by spatial light
scattering. Opt. Lett. 33(13), 1545–1547 (2008)

12. Lawson, R., Korolev, A., Cober, S., Huang, T., Strapp, J., Isaac, G.: Improved
measurements of the drop size distribution of a freezing drizzle event. Atmos. Res.
47–48, 181–191 (1998)

13. MacKay, D.J.: Bayesian interpolation. Neural Comput. 4, 415–447 (1991)
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Abstract. We try to determine the progress made by convolutional
neural networks over the past 25 years in classifying images into abstract
classes. For this purpose we compare the performance of LeNet to that of
GoogLeNet at classifying randomly generated images which are differen-
tiated by an abstract property (e.g., one class contains two objects of the
same size, the other class two objects of different sizes). Our results show
that there is still work to do in order to solve vision problems humans
are able to solve without much difficulty.

Keywords: Convolutional neural networks · Abstract classes · Abstract
reasoning

1 Introduction

Deep learning methods have gained interest from the machine learning and com-
puter vision research communities over the past several years because these meth-
ods provide exceptional performance for a vast majority of classification tasks.
An important example of deep learning methods are Convolutional Neural Net-
works (CNNs) — first introduced in 1989 by LeCun et al. [1] — which have
become popular for object classification. CNNs were more widely used after the
deep CNN from Krizhevsky et al. [2] outperformed state-of-the-art methods by
a wide margin in the “ImageNet Large Scale Visual Recognition Competition”
of 2012.

Convolutional neural networks consist of multiple layers of nodes, also called
neurons. One important layer type is the convolutional layer, from which the
networks obtain their name. In a convolutional layer, the responses of the nodes
depend on the convolution of a region of the input image with a kernel. Addi-
tional layers introduce non-linearities, rectification, pooling, etc. The goal of
training a CNN lies in optimizing the network weights (including the kernels used
for convolution) using image-label pairs to best reconstruct the correct label,
given an image. During testing, the network is confronted with novel images
and expected to generate the correct label. The network is trained by gradient
descent which is calculated by backpropagation of labeling errors. The general
idea of CNNs is to automatically learn the features needed to distinguish classes
c© Springer International Publishing Switzerland 2016
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and generate increasingly abstract features as the information is transferred to
higher layers.

Since CNNs are very popular at the moment and are being perceived —
in parts of the computer vision community — as achieving human-like perfor-
mance, we wanted to test their applicability on visual tasks slightly outside the
mainstream which are still trivially solved by humans.

2 Materials and Methods

2.1 The Dataset

We use the framework presented by Fleuret et al. [3] to generate our dataset con-
sisting of 23 different problems which are briefly summarized as follows: Each
problem consists of two classes of images. Images of the first class exhibit some
abstract property which is not present in images of the second class and vice
versa. Figure 1 shows examples of the two classes for problem one. Both classes
contain two random objects. In the first class the objects are different, while in
the second they are identical. The goal is to assign the correct class to previ-
ously unseen images. These problems are reminiscent of the Bongard problems
presented by Bongard [4] and further popularized by Hofstadter [5].

(a) Class 1 (b) Class 2

Fig. 1. Example images for Problem 1

For each class of each problem we generate 20000 training images. We also
generate an additional 10000 images per class and problem as a testing set. The
size of the generated images varies depending on the used CNN. We chose images
of 64 × 64 pixels for LeNet, and 224 × 224 pixels for GoogLeNet.

2.2 Learning Framework

For training the CNNs, we used Caffe by Jia et al. [6]. More specifically, we used
the implementations of LeNet and GoogLeNet provided with Caffe. Only slight
adaptations were made to some hyperparameters. See the appendix for concrete
values. In addition, we used ADAM by Kingma & Ba [7] as the solver method
instead of stochastic gradient descent and changed the last fully connected layer
to only contain two neurons representing our two classes.
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3 Experimental Evaluation

Since we want to know how much progress has been made between the first
CNNs and a state-of-the-art model, we compare the performance of LeNet by
LeCun et al. [1] from 1989 to GoogLeNet by Szegedy et al. [8] from 2014. We
chose GoogLeNet as the modern CNN since it is a very popular architecture and
it performed best in a number of categories in ILSVRC14. LeNet was chosen
since it is the oldest widely known CNN.

We train one instance of LeNet and GoogLeNet for each problem using 20000
training images per class. The trained networks are then evaluated on a testing
set containing 10000 previously unseen images per class for the same problem.
The reported accuracy of the network is the proportion of correctly classified
images to the number of all tested images. For three problems (3, 11, 13) from
Fleuret et al. [3] we could not generate images of the correct size. Since we do
not think it will influence the overall conclusion, we excluded those problems
from our evaluation.

4 Results

Table 1 gives an overview of the achieved accuracy of both tested network archi-
tectures, the method presented by Fleuret et al. [3], and human test subjects.
In addition, the table gives a short description of the properties which are used
to differentiate the two classes.

At first glance, CNNs do not seem to have made much progress over the last
25 years with the types of problems we tested, and even compare very unfavor-
ably to the boosting method presented by Fleuret et al. [3]. The average accuracy
of GoogLeNet even decreased slightly compared to LeNet.

Upon closer inspection, there seem to be two groups of problems: Ones which
require the comparison of shapes and ones that do not. If we only consider
problems which do not, the two CNNs perform very well. LeNet has an average
accuracy of 0.95 and GoogLeNet achieves practically perfect accuracy. Both also
compare very favorably to the method presented by Fleuret et al. [3] which
achieves a mean accuracy of 0.86 on this subset of problems. We will discuss
those two subsets of problems in the following sections in more detail.

4.1 Problems Not Involving Comparisons

Problems 2, 4, 9, 10, 12, 14, 18, and 23 can be differentiated by the relative
positioning or grouping of the shapes. The shapes themselves are not relevant
to the classification except for problems 9 and 12, where the size of some of the
shapes play a roll in the classification. Apparently, those problems can be solved
by detecting local and global features alone. Hence CNNs work well on those
problems.
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Table 1. Accuracy comparison of presented methods. The two groupings consist of
problems which either need shape comparison to be solved or not. Accuracy of LeNet
and GoogLeNet are experimentally determined in this paper. Fleuret are results from
the best performing system proposed by Fleuret et al. [3] (Boosting with feature
group 3). The human results are estimated accuracies of participants also tested by
Fleuret et al. [3] and reinterpreted for this paper.

Problem LeNet GoogLeNet Fleuret Human Difference between classes

1 0.57 0.50 0.98 0.98 Compare

5 0.54 0.50 0.87 0.90 Compare & grouping

6 0.76 0.86 0.76 0.70 Compare & grouping

7 0.53 0.50 0.76 0.90 Compare & grouping

8 0.94 0.91 0.90 1.00 Compare & relative position

15 0.52 0.50 1.00 0.95 Compare

16 0.98 0.50 1.00 0.78 Compare

17 0.75 0.95 0.67 0.78 Compare & relative position

19 0.51 0.50 0.61 0.98 Compare

20 0.55 0.50 0.70 0.98 Compare

21 0.51 0.51 0.50 0.83 Compare

22 0.59 0.50 0.97 1.00 Compare

2 1.00 1.00 0.98 1.00 Relative position

4 0.98 1.00 0.93 1.00 Relative position

9 0.93 1.00 0.68 0.93 Size & relative position

10 0.99 1.00 0.94 0.98 Relative position

12 0.97 1.00 0.84 0.95 Size & relative position

14 0.90 1.00 0.73 0.98 Alignment

18 0.99 0.99 0.99 0.93 Grouping

23 0.87 1.00 0.75 1.00 Relative position

Average 0.77 0.76 0.83 0.93

4.2 Problems Involving Comparisons

Problems 1, 5, 6, 7, 8, 15, 17, 19, 20, 21, and 22 involve comparing shapes in
one way or another. To solve these problems, an agent has to be able to decide
whether two shapes are similar or not at one stage of the classification process;
e.g., in problem 1 (Fig. 1) the two classes only differ by whether the two presented
shapes are identical or not. Except for problems 6, 8, 16, and 17, LeNet as well
as GoogLeNet do not achieve accuracies significantly above chance.

Problems 6, 8, and 17 seem to be solvable by the tested CNNs although they
in theory also require the comparison of shapes. Problem 6 (Fig. 2) presents
two pairs of identical shapes and the two classes are separated by whether the
distances between each pair is the same or not. Problem 8 (Fig. 3) presents two
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(a) Class 1 (b) Class 2

Fig. 2. Example images for Problem 6

(a) Class 1 (b) Class 2

Fig. 3. Example images for Problem 8

shapes of differing size. One class always contains a small shape inside a bigger
version of the same shape. The other class either has a smaller shape inside a
different, bigger shape or two identical shapes which are not nested. Problem 17
(Fig. 4) presents four shapes, of which three are identical. The two classes are
separated by whether the distance between the identical shapes are all the same
or not.

In theory, an agent has to be able to compare shapes to solve problems 6,
8, and 17; otherwise the additional information, like relative position, does not
matter. We had the suspicion that the generation process for these problems
imparts some unwanted pattern to the images which the CNNs can use to sep-
arate the classes thus avoiding the need to compare shapes. If this is the case,
we can expect the same accuracy even if images of both classes contain identical
shapes. Theoretically this should mean that those modified problems are not
solvable. Training and testing the CNNs with those modified problems gives us
similar results (Table 2) to the original problems, which indicates that the CNNs
are exploiting some unintended pattern in the data and comparing the shapes
does not contribute to the classification.

Problem 16 (Fig. 5) requires the agent to decide whether shapes on the right
side are identical copies of the shapes on the left, or whether they are verti-
cally mirrored. Surprisingly, LeNet solves this problem almost perfectly, with an

(a) Class 1 (b) Class 2

Fig. 4. Example images for Problem 17
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Table 2. Results for problems 6, 8, and 17 when all images only contain identical
shapes.

Problem LeNet GoogLeNet Difference between classes

6 0.75 0.85 Compare and grouping

8 0.95 0.90 Compare and relative position

17 0.77 0.93 Compare and relative position

(a) Class 1 (b) Class 2

Fig. 5. Example images for Problem 16

accuracy of 0.98, while GoogLeNet cannot solve it at all, with an accuracy of
0.5. We suspected this to be an artifact and that generating the images with a
relatively small size of 64 × 64 pixels for LeNet adds some unwanted pattern to
the images which the network can exploit. Since GoogLeNet uses images with
a size of 224 × 224 pixels it would not profit from this. To test this hypothesis,
we trained LeNet using images with a size of 128 × 128 pixels, and, as expected,
the accuracy dropped to 0.5.

4.3 Human Performance

Fleuret et al. [3] presented experiments to determine the performance of humans
on the same dataset we use for our experiments. Each participant was tested on
all problems. For each of the problems, an example which is randomly chosen
from one of the two classes is presented and the participant has to indicate
whether it is from class one or two. After choosing a class, the correct answer
is revealed and the next example is shown. All previously seen images are kept
on the screen with their correct class. What is recorded in the experiment is the
number of examples the person has to see until he or she consistently chooses
the correct class. It is also recorded if a test subject can not solve a problem
at all.

Unfortunately, the mode of testing is sufficiently different from the way
machine learning solutions are evaluated that a direct quantitative compari-
son is difficult. To get some accuracy values we can compare other methods to
we define accuracy of humans as follows. We assume a person which was able to
solve a problem to have an accuracy of 1.0 and one which was not of 0.5. We can
then calculate an expected accuracy of the whole group of test subjects with

a =
pa + pn

2

n
(1)
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where a is the accuracy, pa is the number of participants who were able to solve
this problem, pn being the number of participants who were not able to solve
the problem and n being the number of all participants. The accuracies reported
in Table 1 were calculated from the original data reported by Fleuret et al. [3]
using Eq. 1.

5 Discussion

Looking at the results of our experiments one can come to very different con-
clusions. Simply looking at the overall performance looks very disappointing.
The over 25 year old LeNet is better than the current GoogLeNet, although only
marginally. A closer inspection reveals that there is a problem class which nei-
ther of the CNNs is capable of solving at all; namely problems which require the
comparison of shapes. We showed that the few problems in this class which the
CNNs can learn are actually learned because of some unexpected side effects of
image generation. We conclude that CNNs have an inherent problem when it
comes to comparative features. It should be noted that neither humans nor the
boosting method employed by [3] show this big performance gap between the two
subsets. The mean accuracy of the boosting method is 0.81 for problems with
shape comparison versus 0.86 for problems without. The human test subjects
show a mean accuracy of 0.90 and 0.97 for the two subsets respectively.

If we accept that CNNs are generally not capable of solving problems con-
taining shape comparison, the results look a lot better. Not only do both net-
works perform very well on the other problems, but GoogLeNet achieves, for all
intents and purposes, perfect accuracy. It even outperforms the human test sub-
jects. Obviously, the CNNs need a much larger training set to achieve those
accuracies. Where human subjects usually need below 20 images and often
only require 2 images to correctly learn the class and achieve perfect accuracy,
GoogLeNet generally needs about 4000 images to achieve an accuracy ≥ 0.99
(problem 2: 400 images, problem 4: 4000, 9: 4000, 10: 4000, 12: 40000, 14: 40000,
18: 4000, 23: 4000). Of course, humans have a lot of prior knowledge, so the
results are hard to compare. An interesting difference between machine learn-
ing algorithms and humans is the fact that an algorithm can have an accuracy
of e.g. 80 % on these abstract problems, but human subjects generally either
understand what separates the two classes and achieve an accuracy of 100 %, or
do not understand it and have an accuracy close to pure chance. This suggests
that the underlying principles of classification are probably very different.

Further, our experiments show how difficult it can be to evaluate CNNs
on abstract problems. One has to be extremely careful to guarantee that the
network is actually solving the problem one wants to test and does not use some
additional superficial pattern. In our case it would have appeared as if CNNs
can in fact compare shapes because they were able to solve problems 6, 8, and
17 quite successfully. Only close scrutiny revealed that the networks were in fact
exploiting patterns which were a side effect of the dataset generation.

We think it will be useful to further investigate the performance of deep
learning methods on more abstract problems than are usually considered since
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it can reveal a lot about the shortcomings and strengths of specific methods and
might inform further advances of the methods. We further hypothesize that if
the shape comparison problem of CNNs can be solved they would presumably
also perform better on more common tasks.

Acknowledgments. We want to thank nVidia for supporting this research with their
“NVIDIA Hardware Grant”. We also want to thank Franois Fleuret for providing us
with the dataset used in this paper.

Appendix

– Parameters used for LeNet: iterations = 25000, base learning rate = 0.001,
weight decay = 0.00005, solver = ADAM, β1 = 0.9, β1 = 0.999, ε = 10−8.

– Parameters used for GoogLeNet: iterations = 25000, base learning
rate = 0.001, average loss = 100, weight decay = 0.002, solver = ADAM,
β1 = 0.9, β1 = 0.999, ε = 10−8.
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Abstract. The amount of data in the world is growing exponentially
due to the elevated number of applications in the most various contexts.
This data needs to be analyzed in order to extract valuable underlying
information from them. Machine learning is a useful tool to do this task,
but the high complexity of the data forces to use other methods to reduce
such complexity. Dimensionality reduction (feature selection) is one of
the most used method to achieve this goal. As usual, many algorithms
were proposed to reduce dimension of data, each one with its own advan-
tages and drawbacks. The variety of algorithms usually makes researches
to test several methods and choose the best solution. Based on that, this
paper proposes a combination of feature selection algorithms in order to
create a single and more stable solution. We tested this approach using
real datasets and machine learning algorithms. Results showed we can
use the combined solution with little or none loss in classification accu-
racy. So, our method can be used as a stable choice when there is few
knowledge about the problem.

Keywords: Dimension reduction · Mutual information · Combination ·
Classification · Feature selection

1 Introduction

In the past years, the number of applications that generate data has grown in a
tremendous way. Most of these applications are based on sensors that read some
event and store a value corresponding to a state of what is been measured. This
data need to be analyzed and machine learning is one of the most suitable option
to discover underlying relations inside the data and extract valuable information.

However, real world scenarios tend to have high complexity and, in order
to build more realistic models, a high number of variables (features) needs to
be considered. Problems in the field of Bioinformatics, for instance, need to
have thousands of gene expressions measures to describe just a few dozens of
patients [3]. Image processing, like segmentation or pattern discovery, uses pixels
as features of images, resulting in huge number of features to describe one single
image [2].

c© Springer International Publishing Switzerland 2016
A.E.P. Villa et al. (Eds.): ICANN 2016, Part II, LNCS 9887, pp. 388–397, 2016.
DOI: 10.1007/978-3-319-44781-0 46



A Combination Method for Reducing Dimensionality in Large Datasets 389

With such amount of features, most machine learning algorithms suffers in
find good solutions due to the curse of dimensionality and gathering more sam-
ples of the problem is often not possible. So, one viable solution is to reduce the
number of features [6]. In this context, several methods to reduce the number of
features that describes a problem were proposed. The general idea of reducing
the dimensionality (number of features) of a dataset is to find a set of features
that can represent the entire data in a way that the problem can be treated.
This set can be composed of just a subset of the original data (feature selection)
or can be a transformation of the initial features (feature extraction).

Most algorithms uses distinct heuristics to find a solution and each one has
its own domains, advantages and drawbacks. For example, Principal Compo-
nent Analysis (PCA) [7], one of the most popular technique, is based on linear
projection of the largest eigenvectors of the correlation matrix to the original
features, which means that it is very sensitive to the magnitude of values and,
by consequence, to simple rotations and/or translation in data [6].

Recently, Information Theory descriptors, initially used to measure the effi-
ciency of data transmission [10], are been used to quantify information in a
variety of real world problems. The Dimension Reduction (DR) problem is one
of them. For instance, [1] started a series of Mutual Information based techniques
to select the most relevant features of a dataset regarding to the given classes
of the problem. Methods based on Mutual Information have the advantage over
traditional linear methods because it can actually measure the dependency of
two variables, including non-linear correlation, which are very common in real
world situations.

Based on that, this paper aims to define a simple way to combine features
selected by several algorithms in order to join different perspectives in one more
robust and stable single solution.

2 Proposed Combination Method

Instead of using one algorithm that could not be suitable for a particular data
or several methods for reducing dimensionality of a dataset and choose the best
one, it is possible to combine the outputs of multiple algorithms in one single
solution. Some papers, like [11], successfully used this kind of approach.

This paper proposes a much simpler way of combining features selected by
several methods. The general idea is to use a voting scheme to select the more
relevant features according to the algorithms. The voting is based on the fre-
quency that features appears in the outputs of each algorithm weighted by their
relevance to that algorithm.

Let Xn×m be a dataset and Sn×k be the reduced dataset. In order to have a
combined solution, we have to run t algorithms, where t > 1, and each algorithm
selects from X a subset of features f = {f1, f2, ..., fl}, where l ≤ n. Based on
this, one can reduce a dataset using the features indicated by the algorithms,
considering that the general results from feature selection algorithms are, in
general, just the indexes of the features to be selected.
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In order to perform the voting using the selected features found by the t
algorithms, we need to compute the relevance of each feature to those algorithms.
The relevance, in this context, is inversely proportional to its position in the
selected feature vector. So, the relevance of the fi feature to the j-th algorithm
can defined as:

rij =
1
p

(1)

where p is the position of the feature in the solution found by the j algorithm.
For example, if a feature is the first choice of an algorithm, its relevance is equals
to one. If it appears in the fourth position, then its relevance is 0.25. Using this
strategy we consider not only the presence of a feature in the DR output, but
its importance to the whole process.

Then, For each one of the l features selected by the algorithms, we have to
compute its voting factor:

vi =
t∑

j=1

rij (2)

where rij is the relevance of the feature fi to the j-th algorithm. In other words,
in order to compute the total relevance of one feature with respect to all algo-
rithms, we have to sum the individuals relevance of the feature to each algorithm.
After this step, we finally select the k (reduced number) features with highest
v values to have the more relevant features for all t algorithms and build the
reduced dataset S.

3 Materials and Methods

In this section we show all the algorithms used for reducing dimensionality and
to perform the classification task as well as the datasets used in the experiments.

3.1 Dimension Reduction Algorithms

As we have mentioned in Sect. 1, Mutual Information based algorithms have a high
potential to perform feature selection specially when compared to more traditional
methods. So, in order to test our combination approach, we followed the approach
used in [9] and selected nine Mutual Information based algorithms for our analysis,
including the author’s algorithm Spectral relaxation global Conditional Mutual
Information (SPEC CMI). As they turned public their Matlab R©toolbox imple-
mentations1, we have used it to run our experiments. The following algorithms
were used: Maximum relevance (maxRel), Minimum redundancy maximum rel-
evance (MRMR), Minimum redundancy (minRed), Quadratic programming fea-
ture selection (QPFS), Mutual information quotient (MIQ), Maximum relevance
minimum total redundancy (MRMTR), Spectral relaxation global Conditional

1 avaliable at http://www.mathworks.com/matlabcentral/fileexchange/47129-informa
tion-theoretic-feature-selection.

http://www.mathworks.com/matlabcentral/fileexchange/47129-information-theoretic-feature-selection
http://www.mathworks.com/matlabcentral/fileexchange/47129-information-theoretic-feature-selection
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Mutual Information (SPEC CMI), Conditional mutual information minimization
(CMIM), Conditional Infomax Feature Extraction (CIFE)

All the algorithms were set with default parameters. More details about the
mentioned algorithms can be found in [9]. The combination algorithm was used
to ensemble all the solutions to produce a single output. We used the simple
algorithm showed in Sect. 2.

We chose three values to the number of features to be selected (mentioned as
target dimension): 2, 3 and

√
n, where n is the number of samples of the dataset.

The first two values refers to dimensions people uses to plot the data aiming the
visualization. The

√
n is a larger value used to collect more information about

the data and to reduce the effects of the curse of dimensionality, ensuring that
there is always more samples than features.

3.2 Classification Algorithms

We used two classification algorithms: Support Vector Machines (SVM) [6], and
k Nearest Neighbor (k-NN) [6]. They were chosen because they are widely used
in machine learning community and each one has a distinct approach to find the
best solution. With this, we tried to cover distinct heuristics to classification and
to avoid a possible bias to a specific approach.

To run the algorithms, we used the Weka software [5] with all parameters set
to default. We are aware that a fine tuning of parameters would probably lead
to better results, but the number of variables handled in the experiments was
already too high. As the main purpose of this paper is to analyse the feature
selection algorithms and the combination method, giving the same settings to
all should be enough.

In order to achieve more robust results, we used a 10-fold-cross-validation
approach for each classification algorithm. We also ran each algorithm 10 times
and computed the average results and the respective standard deviation.

3.3 Databases

In our experiments, we used five datasets from distinct natures. With the excep-
tion of Lung Cancer [3], all datasets where collected at the UCI machine learn-
ing repository [8]. Those datasets were also used in some papers with similar
purposes.

The datasets were selected aiming to cover different ranges of number of
samples and features. The main characteristics of each dataset are presented in
Table 1, where n is the number of samples, C is the number of classes and d is
the number of features (dimensionality).

LSVT dataset [13] is composed of 126 sustained vowel /a/ phonations features
with 310 dysphonia measures aiming to do a characterization of speech signals of
Parkinson Disease subjects.Lung Cancer is a gene expression dataset used in [3]
to study malignant pleural mesothelioma (MPM) and adenocarcinoma (ADCA)
of the lung. There are 181 tissue samples (31 MPM and 150 ADCA), each sample
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Table 1. Datasets descripton.

Dataset n C Dist. of Classes d

LSVT 126 2 42,84 310

Lung Cancer 181 2 31,150 12533

Semeion Digits 1593 10 161,158,162,159,159,161,159,161,158,155 256

Connectionist Bench 208 2 97,111 60

Ionosphere 351 2 126,225 32

is described by 12533 genes. The Semeion Digits dataset [8] contains 1593 0-9
handwritten digits of 80 persons, each one represented by 256 Boolean values
(corresponding to a binarized 16×16 image). Connectionist Bench dataset [4]
was created from 208 patterns of sonar signals that bounced off metal cylinders
(111 samples) or rocks (97 samples) in several distinct angles. The Ionosphere
dataset [12] is composed of 351 radar returns from the ionosphere divided as
either suitable for further analysis or not.

4 Results and Discussion

In this section we will show the results from our experiments. As mentioned in
Sect. 3, we ran two different classification algorithms, Support Vector Machine
(SVM) and k Nearest Neighbors (k-NN), for five datasets (LSVT, Lung Cancer,
Semeion Digits, Connectionist Bench and Ionosphere). We also ran the same
classification algorithms to the reduced datasets (with 2 features, 3 features and√
n features) using the nine distinct algorithm described in Sect. 3.1 and the

combination method.
Table 2 shows the results for the original datasets. As expected, there is no

better solution in terms of best classification algorithm for all datasets. If we
analyse the absolute mean value, we can see that SVM has better performance
than k-NN in the first three dataset and the k-NN is better in the last two.

Table 2. Results for the original datasets.

Dataset SVM k-NN

Mean Stdev Mean Stdev

LSVT 84.530 9.139 75.880 12.486

Lung Cancer 99.390 1,739 95.190 4.141

Semeion Digits 93.630 1.910 91.490 1.951

Connectionist Bench 76.600 8.267 86.170 8.450

Ionosphere 84.020 5.350 87.160 4.961
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Tables 3, 4, 5, 6 and 7 presents the results for the five datasets after the
feature selection. In each table, it is showed the two classification algorithms
in the first row (CA), the three possible target dimensions (TD) in the second
row and the next nine rows refers to the DR algorithms used in the experiments
(DRA) while the tenth row presents the combination method proposed in this
paper.

If we compare the performance of classification algorithms after feature selec-
tion, we can see that, in general, the larger is the target dimension the better is
the result. This behavior is valid for the DR algorithms and it is reflected in the
proposed combination method. However, except for Semeion Digits dataset,
the difference is less than it could be expected. This could happened due to the
nature of datasets which concentrate the most valuable information in two or

Table 3. Results after feature selection for dataset LSVT.

CA SVM k-NN

TD 2D 3D
√
n 2D 3D

√
n

DRA Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

maxRel 65.9 3.6 65.9 3.6 83.4 8.0 72.8 10.0 71.6 11.4 83.5 9.9

MRMR 65.8 3.9 65.8 3.9 83.2 10.0 71.4 12.0 75.8 11.3 72.6 12.3

mimRed 65.8 3.9 65.8 3.9 83.2 10.0 71.4 12.0 75.8 11.3 72.6 12.3

QPFS 76.9 8.6 80.7 9.1 83.8 8.3 76.5 10.7 80.2 11.1 82.3 9.4

MIQ 77.2 8.5 84.2 8.1 86.3 8.8 82.1 9.2 81.2 10.4 81.8 9.6

MRMTR 77.2 8.5 77.5 8.6 85.0 8.8 82.1 9.2 84.8 9.2 86.5 8.4

SPEC CMI 78.5 9.2 80.2 8.3 81.0 8.4 78.5 8.8 79.6 9.0 80.9 9.2

CMIM 77.2 8.5 77.5 8.7 86.4 8.1 82.1 9.2 74.9 11.1 80.7 9.8

CIFE 77.2 8.5 76.4 9.0 78.7 9.1 82.1 9.2 78.6 10.3 78.5 10.6

Combination 77.2 8.5 77.5 8.6 83.8 8.5 82.1 9.2 84.8 9.2 84.6 8.7

Table 4. Results after feature selection for dataset Lung Cancer.

CA SVM k-NN

TD 2D 3D
√
n 2D 3D

√
n

DRA Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

maxRel 93.5 4.3 95.1 3.8 99.5 1.7 97.8 3.0 98.5 2.6 99.5 1.7

MRMR 95.0 4.0 97.2 3.7 99.0 2.2 97.4 3.4 98.3 2.6 99.0 2.1

mimRed 92.9 4.6 93.2 4.5 93.4 4.5 96.8 3.9 95.6 4.3 93.0 4.9

QPFS 95.6 4.1 96.1 4.1 99.5 1.7 97.6 3.7 98.3 3.3 99.5 1.7

MIQ 93.0 4.5 92.6 4.4 98.9 2.2 97.2 3.7 95.9 4.0 99.5 1.7

MRMTR 94.0 4.4 96.2 3.8 99.5 1.7 98.1 2.7 98.9 2.2 99.5 1.7

SPEC CMI 95.0 4.2 97.7 3.3 98.9 2.2 98.4 3.0 99.2 2.1 98.9 2.2

CMIM 94.0 4.4 96.7 3.4 99.5 1.7 98.1 2.7 99.0 2.2 99.5 1.7

CIFE 94.0 4.4 94.9 4.1 96.0 4.1 98.1 2.7 98.4 2.6 95.3 4.3

Combination 97.3 3.7 97.7 3.3 99.5 1.7 98.6 2.6 99.2 2.1 99.5 1.7
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Table 5. Results after feature selection for dataset Semeion Digits.

CA SVM k-NN

TD 2D 3D
√
n 2D 3D

√
n

DRA Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

maxRel 23.7 1.7 27.4 2.3 72.6 3.4 23.9 1.7 28.2 2.3 71.2 3.6

MRMR 34.3 1.5 40.8 2.7 75.6 3.2 34.3 1.5 40.6 2.7 75.0 3.3

mimRed 23.2 2.2 26.1 2.2 79.7 3.1 23.1 2.2 26.1 2.6 78.0 2.9

QPFS 23.2 1.5 27.6 2.3 83.8 2.6 23.2 1.4 27.6 2.3 78.6 2.6

MIQ 23.2 2.2 26.1 2.2 84.8 2.7 23.1 2.2 26.1 2.6 84.3 2.7

MRMTR 34.3 1.5 40.8 2.7 73.4 3.2 34.3 1.5 40.6 2.7 71.9 3.6

SPEC CMI 23.7 1.7 27.4 2.3 73.3 3.6 23.9 1.7 28.2 2.3 71.5 3.3

CMIM 34.3 1.5 40.8 2.7 85.3 2.8 34.3 1.5 40.6 2.7 84.7 2.7

CIFE 34.3 1.5 40.8 2.7 71.0 3.3 34.3 1.5 40.6 2.7 70.3 3.0

Combination 34.3 1.5 37.4 2.8 79.1 3.2 34.3 1.5 37.5 2.4 77.7 2.8

Table 6. Results after feature selection for dataset Connectionist Bench.

CA SVM k-NN

TD 2D 3D
√
n 2D 3D

√
n

DRA Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

maxRel 75.3 9.2 75.2 10.3 77.9 8.9 68.6 9.0 68.2 9.4 81.5 8.1

MRMR 70.8 10.5 71.8 10.3 79.4 8.0 67.1 9.8 69.9 10.6 80.5 9.0

mimRed 72.4 10.0 73.4 9.6 76.2 9.2 60.5 10.4 59.1 9.4 73.7 9.5

QPFS 75.3 9.2 74.1 9.0 77.7 8.5 68.6 9.0 71.1 8.7 83.3 7.7

MIQ 72.4 10.0 71.9 9.1 78.9 8.2 60.5 10.4 65.7 9.6 79.7 9.0

MRMTR 73.2 10.6 75.0 9.7 77.2 8.4 68.6 9.5 75.4 8.8 86.9 7.3

SPEC CMI 75.3 9.2 75.2 10.3 77.4 8.4 68.6 9.0 68.2 9.4 80.1 7.8

CMIM 73.2 10.6 70.3 10.7 79.2 8.5 68.6 9.5 69.7 9.5 88.7 6.9

CIFE 73.2 10.6 72.1 9.4 78.5 8.9 68.6 9.5 73.7 9.8 84.1 7.8

Combination 75.3 9.2 75.0 9.7 78.8 7.6 68.6 9.0 75.4 8.8 80.9 8.4

three features (and the DR algorithms were efficient to capture that) or to the
number of features we used as target dimension. From Table 8 we can see that
this is not directly related to the proportion of original number of features. For
intance, the Ionhosphere dataset using

√
n features has more than 50 % of the

original features and the increase in performance is only small. On the other
hand Semeion Digits is the dataset with most significant difference between
the smallest and largest target dimension (2D and 40D) and the difference of
performance in classification is very noticeable.

In terms of impact on classification algorithms, in the context of this paper,
we can see that there is no better technique to perform feature selection for
all algorithms, datasets or target dimensions. If one specific DR algorithm per-
forms better for one dataset, it is likely that it will not be the best to another.
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Table 7. Results after feature selection for dataset Ionosphere.

CA SVM k-NN

TD 2D 3D
√
n 2D 3D

√
n

DRA Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

maxRel 79.4 6.0 79.0 6.2 85.7 5.1 82.3 5.6 87.2 6.0 86.6 5.4

MRMR 80.8 5.6 82.0 5.4 82.4 5.7 85.0 5.8 86.9 4.6 89.3 4.9

mimRed 82.2 5.5 82.1 5.5 83.6 5.5 86.9 5.0 87.4 4.9 87.5 5.0

QPFS 79.4 6.0 82.0 5.3 84.4 5.3 82.3 5.6 86.0 5.1 88.4 4.7

MIQ 80.8 5.6 82.0 5.4 85.0 5.5 85.0 5.8 86.9 4.6 87.4 5.4

MRMTR 81.8 5.7 80.4 5.8 83.9 5.6 85.5 5.8 88.5 5.5 87.2 5.0

SPEC CMI 73.7 5.2 74.1 5.1 83.9 5.6 85.1 5.5 89.0 5.6 85.9 5.1

CMIM 81.8 5.7 82.5 5.5 84.5 5.7 85.5 5.8 86.6 5.6 88.0 4.9

CIFE 81.8 5.7 80.4 5.8 83.9 5.7 85.5 5.8 88.5 5.5 86.8 5.2

Combination 81.8 5.7 79.0 6.2 83.6 5.5 85.5 5.8 87.2 6.0 86.4 4.9

Table 8. Proportion of target dimension compared to original number of features.

Dataset n d 2D 3D
√
nD

LSVT 126 310 0.65 % 0.97 % 3.62 %

Lung Cancer 181 12533 0.02 % 0.02 % 0.11 %

Semeion 1593 256 0.78 % 1.17 % 15.59 %

Connectionist Bench 208 60 3.33 % 5.00 % 24.04 %

Ionosphere 351 32 6.25 % 9.38 % 58.55 %

So, choosing a feature selection algorithm should be a hard task if a researcher
does not have enough information about the whole problem domain or the data.

On the other hand, the proposed combination algorithm delivers more robust
solutions to all datasets. If we see the results, we can notice that, for most cases,
the combination method performance is in the three highest values. That is, if a
researcher looks for more stable solution instead of a fine result, the combination
method could be a safer choice.

In Table 9 we show a ranked performance for the combination method in
all datasets. We also calculated the mean (with standard deviation), median
and mode for this ranking analysis. As we can see (last row and column), for
most datasets, our combination approach is delivering similar results to the best
DR algorithms, specially if the target dimension is set to very small values, like
2D. Another important result is related to the Lung Cancer dataset, where the
combination approach achieved the best result for all cases. This could be very
useful for the gene expression community that deals with a extremely number of
features and a significant portion of professionals does not have computational
skills to investigate the best DR algorithm.
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Table 9. Ranking performance of Combination Method.

CA SVM k-NN

TD 2D 3D sqrt 2D 3D sqrt

Rank Rank Rank Rank Rank Rank Mean Std Median Mode

LSVT 2 4 5 1 1 2 2.5 1.6 2.0 2.0 4/6

Lung Cancer 1 1 1 1 1 1 1.0 0.0 1.0 1.0 6/6

Semeion Digits 1 5 5 1 5 5 3.7 2.1 5.0 5.0 2/6

Connectionist Bench 1 3 4 1 1 6 2.7 2.1 2.0 1.0 4/6

Ionosphere 2 8 9 2 5 9 5.8 3.3 6.5 2.0 2/6

5/5 2/5 1/5 5/5 3/5 2/5

5 Conclusions

In this paper we presented a experimental approach to compare several Mutual
Information based feature selection algorithms. We also presented a method to
combine the outputs of feature selection algorithms to produce a single solution.
Results showed that there is no better algorithm to select features when we deal
with distinct datasets, algorithms or target dimensions. Results also showed that
selecting larger target dimensions usually leads to better results in classification
tasks.

The combination approach has achieved robust performance in terms of deliv-
ering solutions similar to the best feature selection algorithms. For most datasets,
our approach had similar performance to the best three algorithms. Although
the combination approach provided stable results, running several algorithms to
combine solutions represents an extra computational cost, at least in the first
time, when the voting scheme is created (after that computing cost is actually
cheap). In the end, the combination approach could be a safer choice when a
researcher does not have enough information about the data or about feature
selection algorithms.

For future works, we intend to use approaches similar to the most robust
ensemble methods to create a better combination algorithm. Another important
investigation is the diversity of methods used to select features. In this paper,
we used only Mutual Information based algorithms, which gives us a low level
of diversity. Using a set of DR algorithms with distinct heuristics could lead to
better results.
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Abstract. Microarray datasets are a challenge for classical computa-
tional techniques because of the large dimensionality of their feature
space front to a reduced number of samples, besides they usually present
unbalanced classes. Thanks to this unbalanced situation, in a previous
research, the superiority of one-class classification for handling microar-
ray datasets was proved. This paper presents a new study that tries to
improve the behavior of the traditional techniques, specifically Support
Vector Machines, by considering oversampling techniques. The experi-
mental results achieved demonstrate that despite inclusion of these meth-
ods the performance of classical classifiers still remains below one-class
approach.

1 Introduction

Microarray datasets are commonly used for cancer diagnosis distinguishing two
approaches: binary and multiple classes. Firstly, the binary approach tries to
differentiate patients with cancer from healthy persons and, on the other hand,
the multiple classes approach tries to distinguish different variants of the same
type of cancer. This paper is focused on the first approach and, since unhealthy
patients are less common, these datasets are usually unbalanced. The intrinsic
characteristics of microarray datasets – large dimensionality of the feature space
(usually several thousand of genes) and small number of samples available (often
less than a hundred) – restrict the application of classical learning machine tech-
niques. To date, two-class classification methods are mainly used, being Support
Vector Machines (SVMs) among the most notable classifiers for this task. How-
ever, in the context of microarray classification some authors proposed to use
a one-class classification (OCC) for classifying microarrays due to its ability to
deal with unbalanced and noisy data [1]. In OCC only instances from one of the
classes are available or considered. They are known as target objects whereas
the other are the outlier ones. Using OCC, models are constructed from objects
belonging to only one class distribution and are robust when handling inherent
data difficulties. In a previous work [2], we compared the behavior of two-class
(specifically, SVM) versus OCC over microarray datasets whilst analyzing the
effect of feature selection (FS). This experimental study proved the superiority
c© Springer International Publishing Switzerland 2016
A.E.P. Villa et al. (Eds.): ICANN 2016, Part II, LNCS 9887, pp. 398–405, 2016.
DOI: 10.1007/978-3-319-44781-0 47
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of the one-class approach achieving both a fine performance and a good trade-
off between evaluation measures. However, a criticism to this work is that the
success of SVM was limited because of the imbalanced problem that could be
partially solved by sampling techniques [3]. Therefore, in this paper we present
the results of a study where some of these sampling techniques are applied to
improve the SVM behavior for classifying the microarray datasets denoting that,
even so, OCC is superior.

This paper is structured as follows. In Sect. 2 a brief introduction about
sampling techniques is given and the oversampling methods used in this exper-
imental study are introduced. In Sect. 3 the conditions for experimental study
are established. In Sect. 4 we compare the behavior of one-class classifiers and
two-class methods with sampling techniques for classifying different benchmark
microarray datasets, also the results are discussed. Finally, Sect. 5 is devoted to
conclusions.

2 Sampling Techniques

From literature, we can find different methods to face imbalanced datasets.
Among them, the most commonly employed ones are: oversampling minority
class, undersampling majority class, ensemble methods, cost-sensitive learning
or asymmetric classification [4]. Undersampling and oversampling are the sim-
plest approaches. The former consists on randomly select a portion of instances
from majority class whereas the latter randomly duplicates samples belonging
to the minority class. Taking into account that microarray datasets enclose a
reduced number of samples, undersampling does not seem a viable alternative
as, it may lead to a loss of useful information. Thus, for this preliminary exper-
imental study we focus on oversampling techniques to overcome the limitations
associated to unbalanced sets. Specifically we have selected three widely applied
algorithms to deal with imbalance distributions:

1. Resampling consists on random duplication of instances belonging to the
minority class [5].

2. Synthetic Minority Oversampling Technique (SMOTE) algorithm generates
synthetic or artificial samples by means of the nearest neighbor rule, interpo-
lating new instances instead of duplicating them as in the case of the resam-
pling method [6]. SMOTE does not consider the distribution of minority
classes and latent noises in dataset when it generates synthetic examples. To
overcome this limitation, Modified SMOTE (MSMOTE) algorithm [7] cate-
gorizes the instances belonging to the minority class into three groups accord-
ing to the label of their nearest neighbors: noise (all of them belong to other
classes), safe (when all neighbors belong to the minority class) otherwise, it is
considered as border. Then MSMOTE chooses one of the k-nearest neighbor
for safe samples and the nearest neighbor for border ones whereas in the case
of noise samples the algorithm does nothing.
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3. Critical SMOTE (CSMOTE) algorithm [4] is an improved version of the
MSMOTE method that follows the idea of generating artificial samples
employing only a subset of the minority class. In a first phase this algorithm
extracts from the class two subsets of patterns: edge and border samples.
This categorization is based on the method proposed in [8]. Edge samples
define the boundary of the class and they are enough to represent the origi-
nal dataset when all classes in the dataset are separated. Border samples are
carefully picked in the overlapping region between adjacent classes so as to
obtain the best decision surface possible. After this categorization, new pat-
ters are generated following MSMOTE. For each border sample CSMOTE
randomly chooses one of the nearest neighbors whilst for each edge samples
the nearest neighbor is picked.

3 Experimental Setup

The aim is to check the suitability of oversampling techniques to improve
two-class classification on microarray datasets. These results are compared to
those reached by one-class approach. Two of the most up-to-date classifiers are
selected: SVMs for two-class classification [9] and Support Vector Data Descrip-
tion (SVDD) [10] as one-class classifier. It is worth mentioning that the OCC is
addressed by using both minority and majority class as target concept and over-
sampling is not applied in any case because it is unnecessary. Next, we establish
certain considerations which have been taken into account in the experimental
study.

– In order to obtain statistically significant results, 30 simulations were run
with the cross-validation technique to tune the parameters of each method,
specifically the width parameter in the radial basis function kernel for SVDD
and the kernel function (linear, radial basis and polynomial) for SVM.

– For the implementation of classifiers two different toolboxs for Matlab was
used. The data description toolbox, DDtools library [11], for SVDD and the
Statistics and Machine Learning toolbox for SVM.

– Similarly to our previous study [2], we have applied feature selection methods
as a preprocessing step with the aim of discarding irrelevant features/genes
while retaining the relevant ones. All these techniques are available in the
well-known Weka tool [12], except for mRMR filter, whose implementation is
available for Matlab.

– To evaluate the goodness of the selected set of genes in terms of accuracy
of the classifier it is necessary to have an independent test set with data
which have not been seen by neither the feature selection method nor the
classifier. The selected data sets come originally distributed into training and
test sets, so the training set was employed to perform the feature selection
process and posterior classification while the test set was used to evaluate the
appropriateness of the selection and the posterior classification.

– For the sake of fair comparison, only the training set is oversampled when
using SVM, whereas the test dataset remains the same.
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– Finally, a statistical study was conducted to determine whether the results
are statistically different. First at all, the normality conditions of each distri-
bution are checked by means of Kolmogorow Smirnov test. As in any case,
normal conditions are verified then the non parametric Kruskal-Wallis test
was applied.

Datasets, FS methods and evaluation measures employed for experimental
study are briefly introduced below.

Datasets characteristics. Breast and Prostate datasets are widely applied due
to two main properties: (1) come originally separated in training and test and
(2) present more imbalance in the test set. Both datasets are available for down-
load at [13,14]. Table 1 provides for train and test sets the number of attributes
(# Atts.), examples (# Ex.) and the percentage of examples for majority
(% Ma) and minority (% Min) classes. The last column corresponds to imbal-
ance ratio (IR), a value of 1 indicates balance whereas a large value denotes a
high imbalance. As can be seen in Table 1 both datasets present more imbalance
in the test set specially in the case of Prostate dataset. Dataset shift problem
[15] occurs when the joint distribution of inputs and outputs is different between
training and test stages, hampering the classification process that may lead to
poor performance results. This problem may be caused by different situations,
such in Prostate dataset where the test set was extracted from a different experi-
ment. Accordingly, this dataset raises a challenge for machine learning methods.
For this reason some classifiers, whose features are selected according to the
training set, assign all samples to the majority class.

Table 1. Description of the train and test binary datasets.

Train Test

Dataset # Atts. # Ex % Min % Maj IR # Ex % Min % Maj IR

Breast 24.481 78 43,59 56,41 1,29 19 36,84 63,16 1,71

Prostate 12.600 102 49,02 50,98 1,04 34 26,47 73,53 2,78

FS methods. Seven classical FS methods widely used in this field are selected:
Correlation-based FS (CFS) [16], Fast Correlation-Based Filter (FCBF) [17],
INTERACT algorithm [18], Information Gain (IG) [19], ReliefF [20], minimum
Redundancy Maximum Relevance (mRMR) [21] and Support Vector Machine
based on Recursive Feature Elimination (SVM-RFE) [22]. All of them, with
the exception of the last one, correspond to the filter methods that rely on
the general characteristics of the training data to select feature independent of
any predictor. The three first CFS, FCBF and INTERACT return a subset of
features. Thus, from the original 24,481 attributes of Breast dataset 130, 99 and
102 are selected respectively. While in the case of Prostate, 89, 77 and 73 are
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chosen from the 12,600 initial features. An ordered ranking of the features is
obtained by the four last (IG, ReliefF, mRMR and SVM-RFE). For simplicity
we introduce the performance keeping the top 10 and top 50 features. Finally,
SVM-RFE is the most famous embedded method to specifically deal with gene
selection for cancer classification. This method iteratively trains a SVM classifier
with the current set of features and basing on its internal parameters the least
important are removing.

Evaluation measures. For a binary classification problem, accuracy indicates
how well the system predicts both categories. However accuracy is inappropriate
when the prior class probabilities are very different since it does not consider mis-
classification costs and therefore, it is sensitive to class skews and it is biased in
favor of the majority class. Then, alternative measures should be considered. The
true positive rate (recall or sensitivity) is the percentage of correctly classified
positive instances (e.g. the rate of cancer patients who are correctly identified as
having cancer). The true negative rate (specificity) is the percentage of correctly
classified negative examples (e.g. the rate of healthy patients who are correctly
classify as not having cancer). The ideal predictor should be 100 % specific and
100 % sensitive. Regarding OCC, it should be mentioned that sensitivity and
specificity measures are always calculated considering as negative the healthy
samples and as positive the cancer ones.

4 Experimental Results

In this section the results achieved in the Breast and Prostate datasets are
introduced. Table 2 shows the results obtained by SVM and SVDD classifiers,
specifically Accuracy (Acc), Sensitivity (Se) and Specificity (Sp) are used to
assess their performance. In the case of SVDD we introduce the results reached
by using both classes (majority and minority) as the target concept in training
process. Regarding SVM we include the results obtained by using resampling,
SMOTE and CSMOTE as oversampling techniques. Each column represents one
of the three performance measures while rows indicate the FS methods, the last
row provides the results when no FS method is applied. To facilitate the analysis
of the results, best values (statistically speaking) of each performance measures
for each dataset are marked in bold.

Firstly, we focus on SVM with oversampling methods. At first glance, it
seems that the behavior of the SVM is similar independently of the oversampling
technique. An ideal predictor should be 100 % sensitive and 100 % specific but
Table 2 shows that SVM tends towards one of the classes. Comparing to the
original results (without oversampling) introduced in [2], it can be seen that the
inclusion of oversampling methods lead to particular performance improvements
without an outstanding enhancement in the trade-off between Se and Sp.

Regarding OCC, SVDD overcomes the results obtained by SVM showing
important differences. In order to know if such differences are significant a sta-
tistical study was conducted. As it was previously commented, for each perfor-
mance measure, FS method and dataset the best values are marked in bold face.
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Only for Breast set, SVM obtains (in some cases) a higher value in the Sp mea-
sure, however in all cases SVDD achieves the best value of Acc and Se and also
balanced values for Se and Sp. Finally two issues should be pointed out. On one
hand, FS not only may lead to better performance results, specially in the case
of Breast (for instance, see the differences between SVM-RFE-10 and the last
row for this dataset) but also to significantly reduce the computational and time
requirements. On the other hand, as it was previously remarked SVDD allows
using minority or majority class as the target class in the training process and
both exhibit a good performance. Even when the provided results are not sta-
tistically distinct, SVDD can remain the best results depending on the specific
application. Since the aim of this work was to compare SVM and SVDD, there is
no statistically study to compare the application or not of FS methods. However,
considering FS or not, and either the minority or majority class, SVDD achieves
the best performance results.

5 Conclusions

Imbalanced datasets are very common in real world for example for the diagno-
sis of a disease as cancer, becoming an important challenge for machine learning
field. In this context, the classifiers tend towards the majority class achieving
poor performance results. In a previous work we compare the results obtained
by one and two class classifiers, SVDD and SVM respectively, on two microarray
datasets. SVDD significantly overcame the SVM achieving a fine global perfor-
mance. In this paper we include oversampling techniques to avoid the effects
associated with imbalanced distributions and improve the performance of the
SVM classifiers. Despite our initial idea the experimental results show that such
modification does not enhance significantly the behavior of the SVM that still
remains below SVDD. It is possible that this fact is caused by the peculiari-
ties of the selected datasets. For this reason, we have in mind to extend this
study including more imbalanced datasets (with higher IR) and more complex
oversampling techniques to ensure the supremacy shown by the OCC in this
preliminary study.
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Polar Sine Based Siamese Neural Network
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Abstract. Our work focuses on metric learning between gesture sample
signatures using Siamese Neural Networks (SNN), which aims at model-
ing semantic relations between classes to extract discriminative features.
Our contribution is the notion of polar sine which enables a redefini-
tion of the angular problem. Our final proposal improves inertial gesture
classification in two challenging test scenarios, with respective average
classification rates of 0.934 ± 0.011 and 0.776 ± 0.025.
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1 Introduction

As consumer devices become more and more ubiquitous, new interaction solu-
tions are required. In recent years, new sensors called MicroElectroMechanical
Systems (MEM) were popularized thanks to their small sizes and low production
costs. Two kinds of gestures can be considered for different applications. On the
one hand, static gestures correspond to a specific state, described by a unique set
of features, with, in the context of Smartphones, a “phone-to-ear” posture for
instance. On the other hand, dynamic gestures are more complex, since they are
described by a time-series of inertial signals, such as the “picking-up” movement
when the user is ready to take a call. Thus, in this study, we explore inertial-
based gesture recognition on Smartphones, where gestures holding a semantic
value are drawn in the air with the device in hand.

Based on accelerometer and gyrometer data, three main approaches exist.
The earliest methods suggest to model the temporal structure of a gesture class,
with Hidden Markov Models (HMM) [10]; while another approach consists in
matching gestures with reference instances, using a non-linear distance measure
generally based on Dynamic Time Warping (DTW) [1]. Finally, features can
be extracted from gesture signals in order to train specific classifiers, such as
Support Vector Machines (SVM) [11].
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Our work focuses thus on metric learning between gesture sample signatures
using Siamese Neural Networks (SNN) [3], which aims at modeling semantic
relations between classes to extract discriminative features, applied to the Sin-
gle Feed Forward Neural Network (SFNN). Contrary to some popular versions
of this algorithm, we opt for a strategy that does not require additional class-
separating-parameter fine tuning during training. After a preprocessing step
where the data is filtered and normalized spatially and temporally, the SNN
is trained from sets of samples, composed of similar and dissimilar examples, to
compute a higher-level representation of the gesture, where features are collinear
for similar gestures, and orthogonal for dissimilar ones. As opposed to the classi-
cal input set selection strategies, using similar or dissimilar pairs, or {reference,
similar, dissimilar} triplets, we propose to include samples from every available
dissimilar classes, resulting in a better structuring of the output space. More-
over, the notion of polar sine enables a redefinition of the angular problem by
maximizing a normalized volume induced by the outputs of the reference and
dissimilar samples, which results in a non-linear discriminant analysis similar to
independant component analysis.

This paper is organized as follows. Section 2 presents related works on SNN.
In Sect. 3, we explain our contributions with a new SNN objective function. Then,
Sect. 4 describes our results for gesture recognition. Finally, our conclusions and
perspectives are drawn.

2 Related Studies on SNN

2.1 Training Set Selection

A SNN is trained to project multiple samples coherently. Two identical neural
networks with shared weights W take simultaneously two input samples X1 and
X2 to compute the error relative to a cosine-based objective function, thanks
to the respective outputs OX1 and OX2 (see Fig. 1a). The resulting applica-
tion of the network depends on the kind of knowledge about similarities one
expects. In problems such as face or signature verification [2–4,8], the similarity
between samples depends on their origin, and the network allows to determine
the genuineness of a test sample with a binary classification. In cases involving
the learning of a mapping that is robust to specific transformations [6], similar
samples differ by slight rotations or translations. However, similarities can be
more abstract concepts, such as same documents in different languages [13]. The
most common representation consists in a binary relation based on pairs: given
two samples X1 and X2, the (X1,X2) pair similarity is determined by a tag,
which takes two different values whether the relation is similar or dissimilar.
However, knowledge about semantic similarities can take more complex forms.
Lefebvre et al. [8] expand the information about expected neighborhoods with
triplets (R,P,N), composed of a reference sample R for each known relation,
with P a positive sample forming a genuine pair with R, while N, the negative
sample, is the member of an impostor pair. Similarities are then represented as
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much as dissimilarities. With these different knowledge representations present-
ing multiple samples to a set of weight-sharing sub-networks, it is necessary to
study new objective functions in order to define how semantic relations will be
reflected in the output space.

2.2 Objective Function

The contrastive loss layer objective function aims at computing a similarity
metric between the higher-level features extracted from multiple input patterns.
Thus, this discriminative distance is trained to get smaller for similar patterns,
and higher for dissimilar ones. It takes two forms, respectively bringing together
and pushing away features from similar and dissimilar pair of patterns. Given two
samples X1 and X2, two main similarity measures are used: the cosine similarity,
based on the cosine value between these two samples cos(X1,X2) = X1.X2

‖X1‖.‖X2‖ ;
and the Euclidean similarity d(X1,X2) = ‖OX1 − OX2‖2. In this study, we
focus on cosine-based objective functions. A cosine objective function aims at
learning a non-linear cosine similarity metric, whether it is expressed specifically,
in the form of multiple targets, or relatively, by pair scores ranking. The cosine
similarity metric is defined as:

cossim(X1,X2) = 1 − cos(X1,X2) (1)

Square Error Objective. One approach comes from the original use of the
square error objective function for the SFNN. Given a network with weights
W and two samples X1 and X2, a target tX1X2 is defined for the cosine value
between the two respective output vectors OX1 and OX2 . In [3], Bromley et al.
set this target to 1 if for a similar pair, and −1 otherwise. Given the similarity
label Y and the weights W of the network, the error EW for any pair defines:

EW (X1,X2, Y ) = (tX1X2(Y ) − cos(OX1 ,OX2))2 (2)

Triangular Similarity Metric. Zheng et al. [14] imply these same targets.
Given Y the numerical label for the (X1,X2) pair, acting as the target tOX1

OX2

and respectively equal to 1 and −1 for similar and dissimilar pairs; the triangular
inequality imposes:

‖OX1‖ + ‖OX2‖ − ‖C‖ ≥ 0, with C(X1,X2,Y) = OX1 + Y.OX2 (3)

After adding norm constraints to prevent a degeneration towards a null projec-
tion, the final objective function becomes:

EW (X1,X2, Y ) = ‖OX1‖ + ‖OX2‖ − ‖C(X1,X2,Y)‖ + 0.5(1 − ‖X1‖)2

+0.5(1 − ‖X2‖)2 = 0.5 ‖OX1‖2 + 0.5 ‖OX2‖2 − ‖C(X1,X2,Y)‖ + 1
(4)
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Deviance Cost Function. Inspired by the common loss functions such as
square or exponential losses, Yi et al. [12] opt for the binomial deviance. Since
their Siamese architecture does not necessarily share weights between sub-
networks, let B1 and B2 be the respective functions associated to both sub-
networks, and B1(X1) and B2(X2) be the projections of the samples of a pair,
we get:

EW (X1,X2, Y ) = ln(exp−2Y.cos(B1(X1),B2(X2)) +1) (5)

Triplet Similarity Objective. Lefebvre et al. [8] generalize the Square Error
Objective by using simultaneously targets for genuine and impostor pairs. Sam-
ples outputs from similar classes are collinear while outputs from different classes
tend to be orthogonal, which translates as a target equal to 1 for similar pairs
and 0 for dissimilar ones. Let (R,P,N) be a triplet, with a reference sample R,
a positive sample P forming a similar pair with R, and a negative sample N,
forming a dissimilar pair with R, we get:

EW (R,P,N) = (1 − cos(OR,OP))2 + (0 − cos(OR,ON))2. (6)

3 Our Contributions - SNN-psine

3.1 Training Set Selection Strategy

Every training set selection strategy for a Siamese network consists in defining
a certain number of similar and dissimilar pairs, deemed representative of the
global relationships within the data. This generally induces a bias, since it is not
possible to ensure a perfect coverage for every relationship. For this reason, we
first propose a unified approach for multi-class problems. Let C = {C1, .., CK} be
the set of classes represented in the training data, ORk

the output vector of the
reference sample Rk from the class Ck presented to the model for update, OPk

the output of a different sample Pk from the same class, and ONl
the output of

a sample Nl from another class Cl. In order to keep symmetric roles for every
class and optimize the efficiency of every update, we propose here to minimize an
error criterion for training tuples Tk = {Rk,Pk, {Nl, l = 1..K, l �= k}} involving
one reference sample from the class Ck, one positive sample and one negative
sample from every other class. This leads us to the definition of the SNN-cos,
relying on the following cost function. The total error estimation for a training
set Tk, EW (Tk), becomes:

EW (Tk) = (1 − cos(ORk
,OPk

))2 +
K∑

l=1,l �=k

(0 − cos(ORk
, ONl

))2. (7)

3.2 Objective Function Reformulation

While the cosine allows for a correlation estimation between two vectors in any
Euclidean space of finite dimension, it is sensible to consider another function
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which would measure dissimilarities, like the sine in 2D. In the following, we
propose a reformulation of the objective function based on a higher-dimensional
dissimilarity measure, the polar sine. Lerman et al. [9] define the polar sine
(PolarSine) for a set V = {v1, . . . , vn} of m-dimensional (m > n) linearly inde-
pendent vectors, forming the columns of the matrix A =

[
v1 v2 · · · vn

]
and its

transpose A�:

PolarSine(v1, . . . ,vn) =

√
det (AT .A)∏n
i=1 ‖vi‖ (8)

As a measure of a regularized hyper-volume, the polar sine acts as another
similarity metric, more precisely as a dissimilarity metric. However, in order to
prevent numerical instabilities during the training process and make the metric
value independent from the size of the set of vectors, we propose a redefinition
of the Polar Sine for learning angles. In the following, we call this adaptation
the Polar Sine Metric (psine). Given Anorm =

[
v1

‖v1‖
v2

‖v2‖ · · · vn

‖vn‖
]

and S =

Anorm
�.Anorm, i.e. S(i, j) = cos(vi,vj), the polar sine metric equals to:

psine(A) = n
√

det (S). (9)

Thus, optimizing the polar sine metric corresponds to assigning a target equal
to 0 to the cosine between every available pair of different vectors drawn in
Tk \ {OPk

}. This comprehensive representation actually holds more information
than our original objective function which aimed at assigning zero-cosine-values
only for pairs between the reference and negative outputs. Furthermore, this
approach is easily scalable to any number of classes. With two comparable simi-
larity estimators, whose values are comprised between 0 and 1, it is now possible
to redefine the objective function for our training sets Tk (see Fig. 1b):

EW (Tk) = (1 − cos(ORk
,OPk

))2 + (1 − psine(ORk
,ON1 , . . . ,ONK

))2. (10)
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Fig. 1. Comparison between the original and the proposed architectures. The original
SNN processes pair similarity with two weight-sharing NNs and a cosine based objec-
tive, while our proposal handles comprehensive class relationships with a combination
of cosine and psine metrics.
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4 Experiments

4.1 Database

Using the same data and process as [5,7], both proving that neural approaches
are suited to the gesture recognition problematic, two datasets were formed,
based on the accelerometer and gyrometer data from the Android Samsung
Nexus S device, sampled at 40 Hz. The first dataset, named DB1, contains 40
repetitions of 14 different classes performed by a single individual, for a total of
720 records. Conversely, DB2 contains 5 repetitions of these 14 gesture classes
performed by 22 individuals, for a total of 1540 records. DB2 corresponds to
an open world testing with multiple users. The 14 classes in DB2 encompass
gestures with different complexities. They are composed of linear gestures, with
horizontal (flick North, South, East, West) and vertical (flick Up, Down) transla-
tions; curvilinear gestures (clockwise and counter-clockwise circles, alpha, heart,
N and Z letters, a pick gesture towards, and a throw gesture away from the user).

4.2 Protocols

The classification results rely on 4 protocols, named C1 to C4, covering different
real application settings: C1, based on DB1, covers the closed-world application
with a single user in a context of a personalization paradigm, with 5 randomly
selected samples per class for training, and 16 samples for testing; C2, based
on DB2, corresponds to a multi-user, closed-world application. Every user is
represented in the training data, with 2 samples per class and per user used for
training, and the 3 remaining samples for testing; C3, based on DB2, consists in
open-world problem, where a comprehensive user representation is not possible:
training is performed on every sample from 17 users, while testing is carried
out on the samples of the 5 remaining users; C4, based on DB2, is the most
challenging scenario, testing the generalization capabilities of each model, with
one user used as a training reference and the samples from the 21 remaining
users used for tests. Each protocol is repeated 10 times so as to minimize the
influence of the training and testing data selection.

The performance of our SNN-psine is compared to the following methods:
our SFNN classifies the 270-feature vectors from 45-neuron hidden layer with a
hyperbolic tangent activation function, and a 14-neuron “softmax” output layer;
our SNN-cos and SNN-psine share the same architecture, and classify with a
KNN (K=1) the outputs of a SNN from 270-feature vectors, with 45-neuron
hidden layer with a hyperbolic tangent activation function, and a 80-neuron
“linear” output.

4.3 Results

Protocol C1: The general performance comparisons between the main models for
gesture recognition are presented in Table 1. Every version of the SNN show a com-
parable result (i.e. 98.8% for SNN-cos and 98.7% for SNN-psine). These are the
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highest scores for neural-based methods, which proves the coherence of the learnt
projections. Indeed, both SNN results overcome the SFNN average classification
rate of 97.8%.

Protocol C2: The SNN-cos shows the best accuracy for protocol C2 of 96.9 %,
closely followed by SNN-psine with 96.8 %, proving that the SNN performs well
even when multiple, different gesture dynamics are involved. Once again, the
SFNN obtains a lower score of 94.5 %. A closer study of one confusion matrix
for the SNN-psine shows small confusions between “N” and “Up”, and “Alpha”
and “Heart”, which are indeed similar gestures. Moreover, an understandable
confusion between the vertical, upwards, gestures “Up” and “Pick” appears. An
analysis of the source of these errors shows that all of these samples belong
to a unique user. Thus, this phenomenon underlines the fact that some users
may have a really specific way of performing gestures, which, combined with the
imprecision of the sensors, may result in a great difficulty to manage them with
a single, general model not specifically trained for these singletons.

Protocol C3: This protocol amplifies the difficulties encountered with C2. The
SNN-psine and SNN-cos take advantage of the bigger training dataset with an
accuracy of 93.4 %. Once again, the SFNN performance is lower, with 90.5%. In
that case, the SNN-psine shows a high symmetric confusion between “Pick” and
“Up”. It also handles badly the gesture “Throw”. Indeed, this gesture, which
consists in an arc away from the user, brought about fears of actually throwing
the device, resulting in the highest disparities between users.

Protocol C4: Finally, this protocol presents the highest challenge for these meth-
ods, with a single user data for training. As a consequence, the SNN-psine
and SNN-cos overtake the SFNN, with respective accuracies of 77.6 % and
77.5 % against 74.4 %. The flaws identified above are amplified. The “Alpha”
and “Clockwise” gestures are still confused. Moreover, the “Throw” gesture still
shows the highest variability among users, representing 25 % of the total number
of errors, with heavy confusions with the “Tap” and “FlickN” gestures.

Table 1. Recognition rates on our 4 protocols.

C1 C2 C3 C4

SFNN 0.978 ± 0.010 0.954 ± 0.006 0.905 ± 0.010 0.744 ± 0.040

SNN-cos 0.988 ± 0.005 0.969 ± 0.007 0.934 ± 0.013 0.775 ± 0.032

SNN-psine 0.987 ± 0.011 0.968 ± 0.006 0.934 ± 0.011 0.776 ± 0.025

Table 2. Complexities and times for one update (in ms) on protocol C4.

Complexity Number of relationships Training time for C4 (Nc = 14)

cos O(Nc) Nc 2.61779 ± 1.03648.10−1

psine O(N
log2 7
c ) Nc(Nc − 1)/2 + 1 3.21632 ± 1.79093.10−1
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Consequently, our SNN-psine contribution is a very challenging solution on
the 4 protocols, and even better for C3 and C4 protocols. Nevertheless, some
limitations are identified, with confusions between gestures where one can be
identified as a part of the other. Moreover, the complexity for the SNN-psine
error computation, compared to the complexity for the SNN-cos in Table 21,
implies a trade-off between class relationships which has to be taken into account.
However, parallelizable matrix computations allow for a limited repercussion on
training times for SNN-psine, with an effective 23 % update time increase for the
protocol C4 compared to the SNN-cos.

5 Conclusion and Perspectives

In this study, we first propose an adaptation of the Siamese strategy to a
multi-class classification context for a stochastic training. We propose a unified
similarity function, the Polar Sine Metric, which offers a comprehensive repre-
sentation of dissimilarity relationships within the training set. The Polar Sine
Metric proposes a matrix approach to describe relationships, and relies on a
determinant to compute the final dissimilarity for a set of samples. The com-
plexity evaluation implies 0.5Nc(Nc−1)+1 relationships in the cost function per
update given a reference sample, with Nc the number of classes. Thus, the train-
ing set sizes should be taken into account for future research, so as to study the
trade-off between accuracy and complexity when the number of classes increases.
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Abstract. Short term electricity load forecasting is one of the main
concerns for electricity producers in regular system planning, where elec-
tricity demand is influenced by the day type among other factors that
must be identified before modeling to ensure good load balance. This
paper proposes a two-stage approach for identifying day types based on
an image of the daily load curve. In the first stage, a set of day classes
of load profiles using K-Means clustering algorithm is created, while in
the second stage, the Time-Series Visualization method is used to build
a classification model able to assign different days to the existing classes,
detecting visual characteristics from daily load data curves. This classifi-
cation model could be used in the forecasting process either by including
the day-type as an input or by modeling each day-type independently.

Keywords: Time series · Deep learning · Autoencoders · K-Means ·
Load forecasting

1 Introduction

Short Term Load Forecasting (STLF) plays an important role for the day-to-day
operations in energy management systems. It provides input data for contingency
analysis and load flow studies in order to control any technological or economical
risks [1].

In general, electrical load time series are complex, they exhibit non-stationary
behavior and depend, in addition to its historical data, on many exogenous ran-
dom factors especially seasonal and weather changes, making the forecasting task
difficult [2]. Electric load follows similar daily and weekly variations during the
year, and consequently understanding energy consumption patterns is beneficial
to design and validate a STLF model in terms of accuracy measurement, where
a special attention must be given to distinguish load behaviors which depend on
varying social and industrial activities and weather conditions [1].

Forecasting is considered an important yet complex process. Different pre-
diction models can be designed for each day type [3] and there exists numerous
techniques and research work that have been applied on data originating from
c© Springer International Publishing Switzerland 2016
A.E.P. Villa et al. (Eds.): ICANN 2016, Part II, LNCS 9887, pp. 415–422, 2016.
DOI: 10.1007/978-3-319-44781-0 49
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several countries. One can cite Artificial Neural Network (ANN) [4] used with
pattern recognition theory to choose load sets that represent a similar day. An
ANN approach is also proposed for next day load curve forecasting based on
similarity in [5] with the advantage of dealing with seasonal changes, weekends
and special days.

Ran Li et al. [6] used hierarchical clustering and K-means to cluster substa-
tions into groups based on the shape of the monitored load profile in order to
develop low voltage network templates. Daily consumption patterns in indus-
trial parks have been analyzed in [7] by applying a Self-Organizing Map (SOM)
and have accurately identified behavior patterns in a completely unsupervised
fashion. SOM is also used in [8] to identify the separate day-types in Algerian
data and have been combined with K-means clustering algorithm for a better
classes identification in [9].

Recently, deep neural networks have shown promises for modelling static data
across fields such as object recognition and applying them to time-series data are
gaining increasing attention [10]. In this paper, the daily load curves of Algerian
electricity load are grouped using K-Means clustering algorithm to create load
pattern classes. The classficiation method of Time-Series Visualization (TSV)
[11] is then used to build a classifier that detects visual characteristics from daily
load data curves to assign different load patterns to existing classes benefiting
from recent advances in deep neural networks architectures.

2 Approach Architecture

The objective of this study is to build a day-types classifier, in order to help build
efficient forecasting STLF models for dispatching operators, toward optimising
energy production and consumption. The proposed approach is based on a com-
bination of clustering and classification as illustrated in Fig. 1, the following two
main stages can be distinguished:

2.1 Clustering

The Algerian electric load is characterized, among others, by the upward lin-
ear trend that reflects the increasing economic activity [9]. In this stage, some
preprocessing was performed on the collected data, in order to only keep the
amount of change in consumption between daily hours, removing the trend. To
perform that, difference operator are first applied to the time series x, to obtain
a new series x′, that is normalized around the value 0, whose value at time t is
the difference between x(t + 1) and x(t).

A centroid-based clustering K-means, using the Lloyd algorithm [12], is then
applied. The approach consists in an iterative algorithm with the objective of
minimizing the sum of Euclidean distances from each data point to its cluster
centroid as expressed in Eq. 1.

ϕ =
K∑

k=1

M∑

i=1

min
c∈C

d2(xi − ck) (1)
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Fig. 1. Flow chart of the approach

Where ϕ is the potential of a cluster c chosen from a set of possible clusters C,
M is the number of data observations, and d2(...) is the square of the Euclidean
distance between a data observation xi and its corresponding cluster centroid
ck, and K denotes the number of clusters that needs to be specified in advance.

To select a preferable number of clusters, we conducted clustering for different
number of clusters and looked at the cost function within the cluster as well based
on previous studies [9]. The groupings generated by the clustering algorithm are
used as target categories for the classification process in the second stage of this
approach.

2.2 Time-Series Classification

In this stage, a similar methodology to the one that is proposed by Chen Qian
et al. [11] named time series visualitation (TSV) for the classification of time
series, which is based on the good representation learnt from curves of time-
series data. This approach is inspired by the intuitiveness for humans to identify
the similarity of temporal series by curves instead of looking at raw data. This
method involves learning a Stacked Auto-encoders (SAE) to classify the picture
representation of the time series curve.

In addition, to overcome difficulties in learning deep models and to reach a
better generalization result, greedy layer pre-training algorithm using unsuper-
vised training appears to play predominantly a regularization role in preparing
the weights of the network [13], and the Denoising Auto-encoders (DAE) shows
that partial corruption of the input pattern yields to extract robust features of
input data [14].
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Therefore, each DAE hidden layer in the proposed model computes an
encoded version of it’s input, where a percentage p of randomly chosen elements
are forced to be 0. The activation function is sigmoid(x) = 1

1+e−x so hidden
layer activations are given by:

h(ẋ) = sigmoid(b + Wẋ)

Being ẋ the corrupted input, b the bias and W the weights of DAE. And
the output of each pre-trained layer is g(h(ẋ)) = sigmoid(b′ + W ′h(ẋ)). Then,
each DAE is trained in order to minimizes the mean squared error (MSE) as
expressed in Eq. 2, being xi,j the component i of the pattern j.

MSE =
N∑

j=1

M∑

i=1

(ẋi,j − xi,j)2 (2)

Once all layers have been pre-trained, the ouput layer is added and the whole
neural network is trained to classify day-types using classes given in clustering
stage, by minimizing the cost function softmax given in Eq. 3.

P (Y = i|x,W, b) = softmaxi(Wx + b) =
eWix+bi

∑
j eWjx+bj

(3)

3 Time Series Visualisation for Load Data

In this section the proposed approach is applied on data that representing the
Algerian hourly electric load for a three years period (2010–2012). For the
second stage purpose, every 24 samples are transformed into an image that
shows grayscale curve of the electric load during that day, each image is of size
30-by-30 pixels. These images are then, randomly separated into three partitions:
the training data (60 %) for the creation of the model, validation data (20 %)
for the optimization of hyperparameters to avoid overfittig and the last one for
testing (20 %), respectively, in order asses the model quality.

Applying deep neural networks, on the created images, requires tunning dif-
ferent parameters, therefore, to decide on the number of units of the SDAE, the
suitable values of learning rates and noise mask, Random search is used, as it
is known for being more effective in searching a larger, less promising config-
uration space than grid search [15]. Table 1 shows the different combination of
parameters which we used in different experimental setup for SDAE.

25 experiments were performed for each number of hidden layers (1, 2, 3),
where the number of epochs for supervised tuning phase is set to 800, number
of epochs for unsupervised pretraining of SDAE is 30. Pre-training stops if ever
the MSE do not decreased by a 10−2 in the last 5 epochs. To view the capacity
of DAE as a method for feature extraction, an ANN model without pretraining
is also used to compare the results.

The size of input vectors for each model is equal to 900 and the outputs of each
model is a softmax layer to assign a probability of belonging to each class, where
K-means clustering algorithm assign each day load curve to a specific class.
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Table 1. Parameters used in different experimental setup of SDAE. Symbol U means
uniformly sampled.

Parameter Range Comment

Number of hidden nodes U(5, 200) Number of hidden nodes are unfixed across

the hidden layers

Learning rates for unsupervised pretraining

of SDAE

U(10−3, 0.3)

Learning rates for supervised tunning phase U(10−3, 0.3)

Noise mask U(2%, 40%) Percentage of inputs that would be

randomly set to zero

4 Results

In the first stage, for the given number of 4 clusters, the visualization of ten
random days of each cluster in Fig. 2 shows curve features similarity between
the days that are in same cluster and dissimilarity with days belonging to other
clusters.

Fig. 2. Visualization of ten random observations of each class

To identify each cluster (class), days of each class are grouped by week days
and months. The monthly grouping (Fig. 3b) shows that Class 3 covers almost all
the observations of May and the Class 0 contains most of the days of March. In
addition, Class 1 groups the months of summer and Class 2 groups the months
of winter. This observations shows a relationship between the day-type and the
seasonal variations. Therefore, grouping by day of week in Fig. 3a do not show
any dominance of a particular day.

In the second stage, the best model for each hyper-parameter is selected
based on the validation error, both types of neural network model (with and
without pretraining) have given almost similar performances. Where the best
system topology, regarding to validation set performance is given by an SDAE
model with two hidden layers of 6 and 18 hidden units. This model gave 0.05
as a validation error and 0.11 on the test set. The Fig. 4 shows learning and
validation errors in the corresponding experiment where we can see that the
model falls into overfitting after about epoch 600.
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(a) per day of week (b) per month

Fig. 3. Number of observations per day of week and per month in each class

Fig. 4. Plot of learning and validation errors in the experiment of the selected model

Fig. 5. Visualization of first hidden layer weights of the selected model
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The best model is given using 35% as amount of masking noise, learning
rate for unsupervised pretraining equal to 0.11 and learning rate for supervised
tunning set to 0.09. This combination of parameters shows the ability of DAE
to extract visual characteristics of curves with a sufficient level of corruption at
the input layer as illustrated in Fig. 5.

5 Conclusion

In this paper we have proposed an image based two-stage approach for day types
identification, where K-Means clustering algorithm is used to define a set of day
classes of load profiles. Then, pretraining of Denoising Auto-encoders are used
to carry deep Artificial Neural Network training able to assign different days to
the existing classes. The experiments show that DAE are able to extract visual
characteristics of curves and their generalization performance is better compared
to an ANN without pretraining. Future research will focus on STLF that involve
the results of this day types identification either by including the day-type as an
input or by modeling each day-type independently.

Acknowledgments. We would like to thank Sonelgaz (Algeria’s national electricity
and gas company) for providing three years of electricity data for this project.
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Abstract. In This paper we present a novel approach to spam filter-
ing and demonstrate its applicability with respect to SMS messages.
Our approach requires minimum features engineering and a small set of
labelled data samples. Features are extracted using topic modelling based
on latent Dirichlet allocation, and then a comprehensive data model is
created using a Stacked Denoising Autoencoder (SDA). Topic modelling
summarises the data providing ease of use and high interpretability by
visualising the topics using word clouds. Given that the SMS messages
can be regarded as either spam (unwanted) or ham (wanted), the SDA is
able to model the messages and accurately discriminate between the two
classes without the need for a pre-labelled training set. The results are
compared against the state-of-the-art spam detection algorithms with
our proposed approach achieving over 97 % accuracy which compares
favourably to the best reported algorithms presented in the literature.

1 Introduction

Short Messaging Service (SMS) applications are the most widely used applica-
tions on smart phones [16] where 97 % of surveyed users in the report used SMS
at least once during the survey. People worldwide were expected to send 8.3 tril-
lion text messages on 2013 alone [14]. The large volume of SMS traffic is opening
up an opportunity for spammers to move from email to SMS spamming [7].

Prior research has shown that the most effective approach for spam filtering
is to perform the threat analysis on the message content level [5]. The SMS
problem is in principle very similar to email spam filtering [2,9]. However, SMS
differs mainly due to the nature of SMS messaging itself: (1) SMS is capped
at 160 characters. (2) Users normally write an idiosyncratic language subset
with abbreviations, bad spelling, SMS slang, and internet acronyms. Despite
this most filters use standard feature extraction methods such as direct N-gram
character-based and word-based tokenisation [6]. Supervised and unsupervised
machine learning techniques are commonly trained using a collection of labelled
messages of spam and non-spam (usually referred to as ham) [5]. The trained
model is then used to predict labels of previously unseen messages.
c© Springer International Publishing Switzerland 2016
A.E.P. Villa et al. (Eds.): ICANN 2016, Part II, LNCS 9887, pp. 423–430, 2016.
DOI: 10.1007/978-3-319-44781-0 50
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In this work we use a recently developed text mining method, that of prob-
abilistic topic modelling [18], to extract the hidden topics that are statistically
related to SMS. Topic modelling has the advantage of handling seamlessly and
robustly any text size [18]. The topics generated per SMS are then used by an
unsupervised deep learning approach, stacked denoising auto-encoders (SDA)
[19], to build a data model. To increase separation between ham and spam the
reconstruction error of the built SDA model is used as features that are passed
to a Fisher’s linear discriminate analysis (FDA)[15] to classify data into spam
and ham. The results achieved using this approach are comparable with the best
reported in the literature.

2 SMS Spam Filtering

The first step in a machine learning based SMS spam filter is feature extrac-
tion/engineering. The classifier must effectively utilise these features for dis-
crimination of spam and ham. This is by no means a unique problem for spam
filtering, however, the limited available text per SMS makes the feature space
sparse. This means that the samples, from the input space, are fewer and fur-
ther apart, thus significantly reducing the data that the classifier has to work
with [5]. Hidalgo et al. [6] suggested the use of different features including: nor-
malised words, character bi- and tri-grams and word bi-grams. A novel approach
based on Stylometry, i.e. the statistical analysis of linguistic style, was presented
in [17], with the goal of identifying spam message from the style by which those
messages were written. In their review of email spam filtering, [9] reported that
the bag of words was the most common feature used in the literature. However,
they argue that the greatest disadvantage of this approach was that the features
are fixed and can not be updated as the data changes and the nature of spam
threat changes. The extracted features tend to be high dimensional requiring
some sort of feature selection, or dimensionality reduction techniques [5,6,17].

After the features are extracted and selected, the machine learning method
can be trained to classify the available data into spam and ham. Early work
suggested the use of both supervised machine learning methods, e.g. SVM [20],
and unsupervised methods, e.g. k-NN [11]. Hidalgo et al. [6] evaluated a number
of spam filtering methods and concluded that SVMs are the most suitable clas-
sification approaches. As the number of spam samples in any dataset is much
smaller than that of ham samples, any classifier must take this into consideration
otherwise there is a serious risk of over-fitting the model to one class (usually
ham). To address this issue a Bayesian approach to a Naive Bayes based classi-
fier was used [12]. This approach penalises false positives more ensuring balanced
performance for ham and spam and higher spam precision.

3 Methods

The most commonly used methods for SMS feature extraction suffer from three
main disadvantages: (1) the number of resulting features are usually high requir-
ing the use of a feature selection method (2) the features can be very sparse due
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to the limited size of SMS (3) the selected features are normally hard-coded in
the system and hence are very hard to adapt to emerging spam patterns. To
address these issues we have opted to use probabilistic topic modelling [18], a
text mining technique that models latent patterns in the messages, that models
latent patterns in the text. This approach automatically identifies topics within
a set of messages and assigns each message to a set of topics. The approach only
requires the maximum number of topics to be set. The messages are distrib-
uted among a small number of topics minimising the effect of sparsity. The most
importantly topic modelling can work adaptively. Topic modelling also requires
only basic pre-processing steps: tokenisation and stop words removal.

Due to the limited availability of labelled training data, unsupervised learn-
ing is the most realistic approach for real-life applications. [8,21] surveyed the
unsupervised outlier detection algorithms. Here we use an unsupervised deep
neural network: stacked denoising autoencoders [19] (SDA). SDAs are usually
pre-trained using an unsupervised approach and then a supervised method is
used for fine-tuning. In our approach we only utilise the pre-trained stage with
the reconstruction error of a data sample given the model used as a surro-
gate measure of how well the sample is represented by the model and hence is
exploited to identify outliers (e.g. spam).

3.1 Probabilistic Topic Modeling

Topic modelling [18] is a text mining tool that can identify latent text patterns
in a documents contents, handling large volumes of corpuses regardless of the
size of the individual documents. It describes, in statistical terms, how words in
documents are generated based on a pre-defined number of topics using a sta-
tistical sampling technique. A commonly used topic modelling method is Latent
Dirichlet Allocation (LDA) [4]. In LDA the documents are represented by a pre-
defined number of topics where each topic is a hidden variable characterised by
a nominal distribution over a fixed dictionary. LDA represents each document
as a mixture of different topics with prior assumptions about their distribution.
A topic may occur in different documents with a different probability and a word
may occur in several topics with a different probabilities. A complete descrip-
tion of LDA can be found in [4]. Let V be a vocabulary consisting of a set of
words, T is a set of k topics and n documents of arbitrary length. For every
topic z a distribution ϕz on V is sampled from a known probability distribution
(Dirichlet function [13]). Gibbs sampling is normally used for inference in LDA.
LDA estimates the distribution p(z|w) for z ∈ TP , w ∈ V P where P denotes the
set of word positions in the documents.

3.2 Stacked Denoising Autoencoder

The main advantage of the unsupervised deep learning is the utilisation of the
previously considered useless masses of unlabelled data that are easy to obtain
in order to achieve better understanding of emerging patterns in the data. Unsu-
pervised deep learning is capable of extracting high level feature representations
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of complex structured data outperforming approaches based on handcrafted
features [3].

An autoencoder (AE) consists of a visible input layer, and a hidden layer.
During learning the AE goes through two phases: (1) construct phase which
maps the input data into the hidden layer (2) reconstruct phase which maps
back the hidden layer’s data into the input layer. The model converges when the
reconstruction error between input and output is minimum. AE normally use
tied (constrained) weights for regularisation [3]. This constrains the parameter
search space and reduces the number of parameters to learn: W , also known
as the weight matrix. The constructed representation of the input x, can be
defined as y = S(Wx + a) and the reconstructed representation of y can be
defined as z = S(W ′y + b), where W ′ is the transpose of W , and S(•) is a
sigmoid function (S(x) = 1

1+e−x ). The reconstruction error is measured using
squared error: L(x, z) =‖ x − z ‖2. The model is then optimised to find the W
that minimises L.

To avoid over-fitting, i.e. learning the identify function, and reduce informa-
tion redundancy in the input features we use a Denoising Autoencoder (DA) [19].
DA is a stochastic version of the AE that corrupts the input data by adding noise,
allowing for more variance in the input space and hence better generalisation
of the model. In this paper we adopt the Masking Noise corruption forcing a
fraction of the input layer units (chosen randomly) to have a weight of 0.

Stacked Denoising Autoencoder (SDA) is the deep version of a single DA,
where the output of one DA is the input to the following one. The network
is then trained layer by layer. Figure 1 illustrates the SDA architecture. The
arrows indicate the direction of information flow. During construction the data
flows from the input layer up in the hierarchy to the top layer. For reconstruction
the data flows back from the top through the hidden layers down to the input
layer where the reconstructed data is compared with the input data and the
overall reconstruction error (RE) is calculated.

3.3 Outlier Detection

Reconstruction error is a measure of how well SDA models the presented sample
at the input layer. A high RE suggests poor modelling of the input sample
while a small RE is an indication of accurate representation of the input. RE
among layers is only used during unsupervised pre-training to optimise the model
parameters. Similar to [10]In this work we utilise overall RE as a measure for
detecting outliers with the novel application of spam detection. As the majority
of available data is ham SDA will model them more accurately than spam. In
other words, spam will have higher RE than ham making it easier to discriminate
the two sets (Fig. 2B) using simple linear classifiers like FDA [15].

4 Experiments and Results

The SMS spam data was collected and first presented in [1]. The data contains
5574 messages: 747(13.40 %) labelled as spam and 4827(86.60 %) labelled as ham.
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Fig. 1. A sample SDA model architecture. The crossed node in the input layer repre-
sents data corruption.

First the text content of the messages is tokenised, and stop words are
removed. No stemming is applied to the data as this may affect the interpretabil-
ity of the topic modelling results. The pre-processed text is then used to build
a dictionary and bag of words which are passed to LDA to generate the topic
model. Ham contains a wide range of topics that are irrelevant to the discrimi-
nation between spam and ham. Hence, only data labelled as spam was employed
in building the topic model. A maximum of 60 topics were used. This was the
optimal value identified after varying the maximum number of topics between
10 and 100. After the model was built all the messages (ham and spam) were
passed to the model producing a 60-feature vector per message, where a feature
i is the probability of that message j contains topic i.

SDA uses an input layer of 60 units with two hidden layers of 100, and 150
units respectively. All units use sigmoid activation functions with the learning
rate is set to 0.1 and corruption rate of 30 %. The learning algorithm runs for 100
epochs. The learnt model is then used to calculate RE for each message, followed
by FDA classification. To properly evaluate the performance of the methods a
10-fold cross validation approach was used. For each fold the training data was
used to build a topic model and generate the feature vectors for training and
testing data. SDA is built using the training features and REs are used to train
an FDA which was then tested on RE of the testing set. This process is repeated
10 times and the average accuracies are reported.

Figure 2 plots the histogram and fitted non-parametric probability density
function with a normal kernel for ham and spam. The figure clearly shows a high
separability between the two classes using SDA, while a principal component



428 N.A. Moubayed et al.

Table 1. Classification results.

Classifier SC% BH% Acc% MCC%

TM+SDA 85.59 0.62 97.51 0.899

Logistic Reg. + tok2 95.48 2.09 97.59 0.899

SVM + tok1 83.10 0.18 97.64 0.893

Boosted NB + tok2 84.48 0.53 97.50 0.887

SMO + tok2 82.91 0.29 97.50 0.887

Boosted C4.5 + tok2 81.53 0.62 97.05 0.865

MDL + tok1 75.44 0.35 96.26 0.826

PART + tok2 78.00 1.45 95.87 0.810

Random Forest + tok2 65.23 0.12 95.36 0.782

C4.5 + tok2 75.25 2.08 95.00 0.770

Bern NB + tok1 54.03 0.00 94.00 0.711

MN TF NB + tok1 52.06 0.00 93.74 0.697

MN Bool NB + tok1 51.87 0.00 93.72 0.695

1NN + tok2 43.81 0.00 92.70 0.636

Basic NB + tok1 48.53 1.42 92.05 0.600

Gauss NB + tok1 47.54 1.39 91.95 0.594

1Flex NB + tok1 47.35 2.77 90.72 0.536

Boolean NB + tok1 98.04 26.01 77.13 0.507

3NN + tok2 23.77 0.00 90.10 0.462

EM + tok2 17.09 4.18 85.54 0.185

TR 0.00 0.00 86.95 -

analysis (PCA) approach fails. It shows the ability of SDA to build a model for
ham data resulting in small REs, while it does not fit the spam data as well
resulting in higher REs.

Our cross-validated approach results in F-score = 90.13 ± 3.4 (mean ± stan-
dard deviation), Precision = 95.47 ± 1.9, and Recall = 85.58 ± 6.0. However to
keep with the evaluation metrics reported in the literature [1] we also report the
overall cross validated classification accuracy (Acc%), the Spam Caught accuracy
(SC %), Blocked Ham accuracy (BH%), and Mathews Correlation Coefficient
(MCC%). Table 1 presents our results as TM+SDA along with the commonly
used methods in the literature [1] ordered by MCC%.

Interestingly, comparing the results to those produced using a supervised
SDA, i.e. by stacking an additional logistic regression layer, the real advantage
of using the unsupervised approach is further revealed. Using the supervised
SDA the classifier suffers from a classic over-fitting problem associated with
imbalanced training data with ham classification accuracy at 100 % but with a
spam classification accuracy at 0 %. To examine the generalisation of the results
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Fig. 2. A. Distribution of first PCA component of both ham and spam data.
B. Distribution of reconstruction errors for ham and spam.

to different datasets. We used the DIT SMS spam dataset described in [5]. The
dataset includes 1353 spam SMS text messages without any Ham data. Follow-
ing the authors solution of embedding the spam data with an independent set
containing Ham, we embedded the dataset within the dataset used above. Our
approach results in F-score = 99.52 %, Precision= 99.34 %, Recall = 99.91 %,
Ham accuracy= 99.43 %, and Spam accuracy= 99.28 %.

4.1 Conclusions

This paper presents a novel approach for SMS spam filtering using recent
advances in text mining and unsupervised outlier detection based on deep
learning.

SDA was presented as an unsupervised technique to model the extracted topic
modelling features. SDA is demonstrated here to successfully separate between
ham and spam using the structure in the data alone without the need for any
labelling. The novelty of our approach is to use reconstruction errors produced by
SDA to increase separability between ham and spam. FDA classifier trained on
RE is then very effective in classifying the two classes. The accuracy achieved by
the proposed system is comparable to the best results reported in the literature
(using logistic regression (LR)). Although LR scores higher than ours on spam
caught, it scores worse on ham blocked. As SDA is completely unsupervised,
the approach is scalable to large unlabelled data sets and requires only a small
subset to be labelled for FDA training.
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Abstract. RNN and LSTM are now a state-of-the-art technology that provide a
very good performance on different machine learning tasks as handwritten
Arabic word recognition. This field remains an on-going research problem due
to its cursive appearance, the variety of writers and the diversity of styles. In this
work, we propose a new offline Arabic handwriting recognition system based on
a particular RNN named the MDLSTM on which we propose to apply dropout
technique in different positions such as before, after or inside the MDLSTM
layers. This regularization technique has the advantages of preventing our
system against overfitting problem and reducing the error recognition rate. We
carried out experiments on the well-known IFN/ENIT Database.

Keywords: Dropout � LSTM � MDLSTM � Offline Arabic handwriting
recognition

1 Introduction

Recurrent Neural Networks (RNN) are among the most powerful sequence learners. In
particular, The Long Short Term Memory (LSTM) has achieved remarkable success in
various machine learning tasks including language modeling [1], speech recognition [2],
machine translation [3], image captioning [4]. LSTM overcomes the problem of van-
ishing and exploding gradients of traditional RNNs. These units have been shown to
give the state of the art performance on handwriting recognition, they have been used as
a stacked bidirectional LSTM for online recognition [5] and as a stacked Multidirec-
tionnal LSTM for the offline task [6], the later system has bien tested on the IFN/ENIT
corpus [7]. But with the huge number of parameters, overfitting can occur. In order to
protect the network against this problem, dropout is applied in different positions. This
technique consists in temporarily removing some units from the network. Those
removed units are randomly selected only during the training stage. This regularization
can improve network performance and significantly reduce the error rate.

© Springer International Publishing Switzerland 2016
A.E.P. Villa et al. (Eds.): ICANN 2016, Part II, LNCS 9887, pp. 431–438, 2016.
DOI: 10.1007/978-3-319-44781-0_51



This paper is organized as follows. Section 2 presents relevant previous works.
Section 3 describes our contribution and in Sect. 4 we report on experiment results.
Finally, conclusion and future work are drawn in Sect. 5.

2 Related Work

Six major steps are the bases of the traditional procedure of recognition: image
acquisition, pre-processing, segmentation, feature extraction, classification and post
processing. It is obvious that considerable time and expertise are a must for the feature
extraction stage because it has to be redesigned for each alphabet. We suggest a trained
system on pixel data in order to overcome this complex step. It is evident that this type
of system submitted into holistic approaches, possesses the same difficulty degree to
recognize a number of languages. Likewise, the major interest to use these raw images
in training stage is their capability to learn the visual and the sequential aspect of
cursive handwriting concurrently as well.

In the last years, the majority of researches carried out have been based on either
HMM [8] or on the combination of HMM with neural networks [9]. Although being
successful, HMM possesses some cons like both its poor discrimination and the shortage
of strength to handle the long-term dependencies in sequences as they follow a
first-order equation. The suitable solution adapted by some researchers was the use of
Recurrent Neural Networks RNN [5]. In fact, RNNs prove their efficiency for modeling
times series. They can be trained discriminatively and they do not require a prior
knowledge of data. The use of Recurrent Neural Networks RNN [5] was the perfect
solution followed by several researches. Indeed, RNNs showed their effectiveness to
model times series. They are able to be trained discriminatively and they do not need a
prior knowledge of data. However, RNNs are unable to bear the vanishing gradient and
the burden of exploding. Luckily, these problems can be worked out with a particular
node called the Long Short-Term Memory (LSTM) which holds better outcomes either
in speech recognition [10] or in online handwriting recognition [11]. For the latter field,
Bidirectional LSTM was suggested as it offers the possibility to integrate context in both
sides of each given letter in the input sequence. For offline handwriting recognition, this
architecture is not the suitable option as the input data is not one-dimensional anymore.
Consequently, we tend to choose the application of the MDLSTM.

Combining a Multi-Dimensional Recurrent Neural Network (MDRNN) with the
LSTM nodes is the concept of Multidimensional Long Short Term Memory
(MDLSTM) [12, 13] which is a recurrent network where many connections substituted a
single recurrent connection so that we can represent all spatio-temporal dimensions of
input data. AlthoughMDLSTM’s success, overfitting can occur on this network because
of the large number of hidden layers and also due to the enormous number of param-
eters. We can overcome this inconvenience by using dropout [13] consisting of
removing some units, which are arbitrarily chosen only during the training stage, from
the network momentarily. This regularization is able to better both the network per-
formance and significantly decrease error rate as well.
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We noted that dropout was both successfully practiced with several types of deep
neural networks proving to be a significant improvement for a recognition rate [14–17]
and triumphantly exploited in RNN, mainly in BLSTM. Likewise, it has proven its
efficiency by minimizing label error rate by more than 8 % on ADAB Dataset for the
online Arabic handwriting recognition [18] and by more than 4.88 % on IFN/ENIT for
the offline Arabic handwriting [19] (Table 1).

In previous systems based on RNN [17–19], dropout was practiced on only some
layers that were unable to be fully-connected so that one does not harm the recurrent
connections and mainly one can keep the RNN able to model long input sequences. In
this Work, as done before, some units in other positions in MDLSTM network were
dropped before, after or inside the MDLSTM layers.

3 System Overview

In this section, the architecture of the offline Arabic handwriting recognition system
based on MDLSTM and CTC is presented (see Fig. 1). Being a robust method,
MDLSTM allows a flexible modeling of this multidimensional context by giving
recurrent connections for every spatio-temporal dimensions existing in the input data.
These connections strengthen MDLSTM against local distortion in image input (e.g.
rotation, shears …). The principal issue of this method is how to gain one-dimensional
label sequences from the two-dimensional images. Consequently, we suggest to push
data through a hierarchy of MDLSTM layers as well as sub-samples windows added

Table 1. Error recognition rate reduced with dropout

Authors Network Dataset Error rate reduction w/dropout

Maalej et al. [18] BLSTM ADAB 8.12 %
Maalej et al. [19] MDLSTM IFN/ENIT 4.88 %

Fig. 1. Architecture of recognition system based on MDLSTM
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after each level so that we can incrementally collapse the two-dimensional images into
one-dimensional sequences to be finally labeled by the output layers.

To prevent our network from overfitting, dropout is applied at different positions,
for implementation, we add dropout layers at different locations around MDLSTM
layers. Dropout layers return the same input except at dropped nodes that return null. In
our system, 50 % of nodes are randomly dropped. Figure 2 shows dropout layer added
before MDLSTM layers, in this case we choose to drop the same input units for all
directions.

However Fig. 3 illustrates dropout layer added after MDLSTM layers, and in Fig. 4
dropped units are shown inside MDLSTM layers.

Fig. 2. Dropout applied before MDLSTM layers

Fig. 3. Dropout applied after MDLSTM layers
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4 Experiments Results

IFN/ENIT Database [7], with 32492 images of Arabic words written by more than
1000 writers are used to validate our system. Those words are 937 Tunisian
town/village names. IFN/ENIT Database is divided in 5 sets (see Table 2) and it was
triumphantly exploited by more than 50 research groups as well in Offline Arabic
handwriting recognition competition in ICDAR 2009 [20].

Our system is trained with 19724 words gathered in set a, set b and set c, however
we use set d and set e, that contains 12768 words, for testing.

Some network’s parameters are fixed either automatically or Hand-Tuned. In fact,
we fix three levels for the network hierarchy which are separated by two feedforward
layers with the tanh activation function (see Fig. 1). Each level of the MDLSTM
hierarchy contained four hidden layers for our two-dimensional data. Theses hidden
layers were recurrently connected, indeed all input units are connected to the all hidden
units and all hidden units are connected to both output units and hidden units. For these
LSTM units, gate activation function is the logistic sigmoid, while the cell input and
output functions are both tanh, for more details, we refer the reader to [21]. Regarding
the online steepest descent was used for training with a momentum of 0.9 and a
learning rate of 1e−4. The number of LSTM blocks are: 2 blocks in the first level, 10
blocks in the second level and 50 blocks in the third level. The sizes of the two
feedforward layers separating the hidden levels are 6 and 20. And the dimensions of the

Fig. 4. Dropout applied inside MDLSTM layers

Table 2. The IFN/ENIT database

Sets Words Characters

a 6537 51984
b 6710 53862
c 6477 52155
d 6735 54166
e 6033 45169
TOTAL 32492 257336

Improving MDLSTM for Offline Arabic Handwriting Recognition 435



three subsampling windows, expressed as a list like (3, 4), (3, 4) and (2, 4), those value
are the width and the height of corresponding window.

The output layers are based especially on the CTC method [22]. This technique
involves a Softmax layer to compute the probability distribution Pr kjtð Þ for each step
throughout the input sequence. This distribution covers the 120 Target labels incre-
mented by one extra blank symbol to represent a non-output. So, in total, the size of
this Softmax layer achieves 121. At every timestep the network chooses to emit a label
or not. All these decisions define a distribution over alignments between the input and
target sequences. Afterwards, and due to forward-backward algorithm, CTC sum over
all possible alignments and finally it normalizes probability Pr zjxð Þ of the target
sequence given the input sequence. Thus CTC is the best choice for unsegmented
cursive handwriting recognition.

The error measure used as the early-stopping criterion on the validation set is the
label error rate. So convergence is achieved when the label error rate on a validation set
does not decrease by more than a threshold for a given number of iterations. So the
training stops if the label error rate did not considerably decrease for 20 epochs.

Dropout is employed to regularize the network’s parameters and it was found to
boost its performance. Dropout is tested in different places in network, after, before and
inside each LSTM layers. According to [13, 23] the best dropout rate, that results in the
maximum amount of regularization, is equal to 0.5.

After training, we test our best obtained network with set d and set e, we get, as
mentioned in Table 3, an impressive label error rate which does not exceed 11.62 %
when dropout is applied before MDLSTM layers compared to 11.88 % obtained with
the same architecture when some units are dropped inside the MDLSTM layers, and
12.09 when dropout layer are added after MDLSTM layers. All those results are better
than those found without applying dropout during training.

5 Conclusion

In this paper, we have proposed to improve a powerful offline Arabic handwriting
recognizer based on MDLSTM. For that, we have opted for a successfully regular-
ization method called Dropout and we have presented how it can be applied on
MDLSTM network. Dropout consists in temporarily removing some units from the
network. So, we have tested this technique by zeroing some units in different positions
in the network, such as before, after or inside the MDLSTM layers.

Experimental results show that applying dropout before the MDLSTM layers gives
best results and it has successfully improve network performance by both preventing it
from overfitting problem and significantly reducing the label error rate by more than

Table 3. Dropout‘s effect in label error rate tested on different positions around MDLSTM

Label error rate (%) on the IFN/ENIT database
Dropout before
MDLSTM

Dropout inside
MDLSTM

Dropout after
MDLSTM

MDLSTM w/o
Dropout

11.62 11.88 12.09 16.97
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5.35 %. As well, we have also achieved good results when dropout is added after or
inside MDLSTM layers. However, both randomly dropping out some units during
training and repeatedly sampling a random subset of input feature make training stage
much slower. So, as future work, we aim to show how to do fast dropout [24, 25]
training on MDLSTM network.
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Abstract. Finding correspondences between image features is a fun-
damental question in computer vision. Many models in literature have
proposed to view this as a graph matching problem whose solution can
be approximated using optimization principles. In this paper, we propose
a different treatment of this problem from a neural network perspective.
We present a new model for matching features inspired by the architec-
ture of a recently introduced neural network. We show that by using pop-
ular neural network principles like max-pooling, k-winners-take-all and
iterative processing, we obtain a better accuracy at matching features in
cluttered environments. The proposed solution is accompanied by an
experimental evaluation and is compared to state-of-the-art models.

Keywords: Artificial neural networks · Feature matching · Graph
matching · Iterative processing · Max-pooling

1 Introduction

Establishing correspondences between two sets of visual features is a funda-
mental problem in computer vision. Solving this problem is essential to many
visual processing tasks. This includes feature tracking [10], object discovery [11],
structure from motion [17], stereo matching [20], image classification [8] and
many other applications. An early class of algorithms consisted in matching fea-
tures based on the similarity of their descriptor vectors. Such similarity can be
obtained using simple metrics such as euclidean or hamming distances for exam-
ple [19]. While such methods are still widely popular, their ability to find correct
matches becomes obsolete in more complex situations such as in the presence
of multiple instances of the object whose features are to be matched, or in the
case of matching two different objects that belong to the same class, or in the
presence of clutter.

Early attempts to address this problem consisted in taking the geomet-
ric consistency between features into account. This includes methods such as

This work was supported by the European Research Council under the European
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RANSAC [6] and ICP [2]. These methods assume that the deformations under-
gone by an object are rigid, i.e., they are governed by some form of a parametric
transformation (e.g. planar affine or epipolar). However, these methods are not
adapted to non-rigid transformations which are very common in natural images.

To address non-rigid transformations, a class of models emerged in the last
two decades that applied graph matching techniques (GM) to the correspon-
dence problem [4,12,22]. These methods formulate the matching problem as an
optimization procedure of a well-defined objective function. This function takes
individual feature similarity into account, as well as other geometric constraints
such as pairwise feature affinity measures [12], or even higher order measures [21].
Little effort, however, was devoted to seeking a potential neural network model
for solving the graph matching problem. We think that this is an interesting
question from an algorithmic point of view, as well as for researchers interested
in Marr’s third level of analysis that seeks possible neural mechanisms for imple-
menting vision algorithms [14]. While the present paper addresses this level of
analysis, we do not pretend providing a real bio-mimetic solution. We hope that
our approach be a step forward for vision research seeking biological inspiration.

The main contribution of our work is to introduce an artificial neural network
(ANN) model for addressing the feature correspondence problem. This model
is adapted from the sparse clustered neural network designed by Gripon and
Berrou in [9], which is a generalization of the Palm-Wilshaw neural network [18].
The main advantage of the proposed matching algorithm is its better robustness
against clutter compared to state-of-the-art. However, when no clutter is present,
which is argued to be a less interesting case, the proposed algorithm only gives a
comparable or a less matching accuracy. Another advantage is that our approach
implements a cooperative algorithm, meaning that each neuron needs only to
know about the activity of a few neighboring neurons, which allows for the
algorithm to be run in parallel.

The rest of this paper is organized in four sections. In Sect. 2, a brief overview
of state-of-the-art algorithms proposed for solving the correspondence problem
is presented. The architecture of the neural network along with the algorithm
we propose are presented in Sect. 3. The performance of the proposed model
is evaluated in Sect. 4 and compared to some other algorithms. Section 5 is a
conclusion.

2 Related Work

As mentioned earlier, feature correspondence can be viewed as a graph match-
ing (GM) problem, which is traditionally formulated as a quadratic assignment
problem (QAP) known to be NP-hard. Its solution is usually approximated by
optimizing an objective function with relaxed constraints [12,21,22]. However,
there were some attempts to approximate this optimization procedure by apply-
ing an iterative process without defining an explicit objective to optimize [3–5,7].
These attempts date back to as early as Marr’s cooperative algorithm for solv-
ing the stereo matching problem [14]. It provided an insight on how iterative
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algorithms can be used to tackle difficult vision problems using only local infor-
mation.

Max-pooling matching (MPM) introduced by Cho et al. in [3] is one recent
example of such iterative algorithms. It applies max-pooling to preserve impor-
tant information while discarding irrelevant details making it more robust in
the presence of outliers. Some other methods that use a similar iterative app-
roach include re-weighted random walk matching (RRWM) [4], balanced graph
matching [5] and more [7].

Our approach is similar to MPM in that it applies max-pooling to discard
irrelevant details. Unlike MPM, pooling is not only applied among features of
one image but also in the second one. Another major difference is that the final
discretization step is replaced by a non-linear activation function applied at each
iteration and a winner-take-all (WTA) applied at the end, which is akin to local
inhibition observed among neural assemblies [16].

In the following section, we describe our ANN model and specify the details
of the matching algorithm it implements. We use a similar terminology as in [3]
in order to highlight the similarities and differences between the two algorithms,
and to show where the proposed model is positioned relative to the state-of-the-
art.

3 The Proposed Model

Feature correspondence is formulated as the problem of matching a graph G =
(V, E) to a sub-graph of G′ = (V ′, E ′), where E , E ′ are the sets of graph edges,
and V, V ′ are sets of nodes. Graph G represents an object with its features as
nodes in V. The same holds for G′ except that it might be representing a scene
including other objects than the one we are seeking to match.

We define an assignment matrix X ∈ {0, 1}n×n′
, where n and n′ denote the

number of nodes in V and V ′, respectively. We only set Xia = 1 when a feature
vi ∈ V matches another va ∈ V ′. We shall use a column-wise vectorized version
of X that we denote x ∈ {0, 1}nn′

.
We also define a unary similarity function sV (vi, v′

a) to describe similarities
among descriptor vectors of features in V and V ′, and a pairwise similarity
function sE(eij , e′

ab) with eij ∈ E and e′
ab ∈ E ′ as in [3,12]. We use these functions

to define a unary affinity vector yia = sV (vi, v′
a) with y ∈ Rnn′

, and a pairwise
similarity matrix A ∈ Rnn′×nn′

as:

Aia;jb =

{
sE(eij , e′

ab) if i �= j and a �= b.
0 otherwise.

(1)

Notice from (1) that A is a symmetric matrix, and that elements of its main
diagonal are always set to zero. The main diagonal does not hold the unary
similarity values as in most traditional algorithms [3,12]. These values are stored
in the vector y.

The neural network we propose for solving the correspondence problem is
constructed on the graph captured by the affinity matrix A, as in the example
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of Fig. 1. The architecture of this network is adapted from the sparse clustered
network (SCN) [9] which was proposed as a generalization of Palm-Wilshaw
networks [18].

Aia;jb

xia

xjb

row cluster i

row cluster j

column
cluster

a

column
cluster

b

Fig. 1. The architecture of the proposed neural network.

The network grid structure depicted in Fig. 1 corresponds to the 2D config-
uration of the assignment matrix X. As in SCNs, we impose a grouping con-
figuration on the network neurons in the form of clusters; neurons of the same
row are grouped into one cluster, and the same holds for neurons of the same
column. Thus, each neuron belongs to two clusters as shown in Fig. 1. Within
each cluster, a WTA activation constraint is imposed; only one neuron per clus-
ter can be active at the end of the network activity with a binary activation
level (0 or 1) captured by X as in [9]. However, during the network activity,
and before X reaches its final state, this constraint is relaxed into a k-winners-
take-all (kWTA) constraint, and we allow X to temporarily contain real values.
The connections between neurons are captured by the pairwise affinity matrix
A, and as we notice from (1), no connections exists between neurons of the same
cluster (Aia = 0) as in SCNs.

The WTA and kWTA constraints we impose within clusters are meant to
encourage the one-to-one matching constraint between features in V and V ′.
From a biological perspective, this is akin to the local competition among neural
assemblies enforced by short inhibitory synaptic connections [16].

The network activity starts by assigning to each neuron its unary affinity
value (Xia ← yia). Then, within each row cluster, every neuron receives the
max-pooled propagated activity of all other neurons to which it connects as
in [1,3]:

xt+1
ia ← xt

ia

∑

j∈V
max
b∈V′

xt
jbAia;jb, (2)

where the superscript t denotes the current iteration. The activity values within
this cluster are then normalized to their maximum, and a kWTA operation is
applied:

xt+1
ia ←− xt

iah(xt
ia − τ) : a ∈ V ′, (3)

where h(.) is the unit step function and τ ∈ [0, 1] is the kWTA activation thresh-
old. Another iteration is then applied, this time on column clusters. We alternate
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between row-wise and column-wise iterations until the convergence of X or until
a fixed maximum number of iterations it attained. Notice that for row clusters,
max-pooling and kWTA are applied row-wise, while they are applied column-
wise for column clusters.

Finally, an activation threshold is applied, where only neurons with a max-
imal activation value (xia = 1) are kept active while others are deactivated
(xia ← 0). A WTA operation is then applied within every row and column clus-
ter; if more than one neuron is active in a given cluster, they are all deactivated
and no winner is declared. This is equivalent to imposing an ‘at most’ one-to-one
matching constraint from V to V ′. The complete matching process we propose
is described in Algorithm (1).

Algorithm 1. Proposed matching algorithm.
input : Pairwise affinity matrix A, Unary similarity vector y
output: Assignment vector x
x ←− y
repeat

foreach i ∈ V do
foreach a ∈ V ′ do

xt+1
ia ← xt

ia

∑
j∈V maxb∈V′ xt

jbAia;jb

xt+1
ia ←− xt+1

ia

maxa∈V′ xt+1
ia

: a ∈ V ′

xt+1
ia ←− xt+1

ia h(xt+1
ia − τ) : a ∈ V ′

xt
ia ←− xt+1

ia

foreach a ∈ V ′ do
foreach i ∈ V do

xt+1
ia ← xt

ia

∑
b∈V′ maxj∈V xt

jbAia;jb

xt+1
ia ←− xt+1

ia

maxi∈V xt+1
ia

: i ∈ V
xt+1
ia ←− xt+1

ia h(xt+1
ia − τ) : i ∈ V

until x converges OR last iteration attained
xia ← δxia

1 : i ∈ V and a ∈ V ′ #δ is the Kronecker delta.
WTA: Zero all rows and columns in X with
more than one non-zero element.

To sum up, the network behavior consists in each neuron adding up its input
signals, which are the max-pooled weighted activities of other neurons. Then,
a non-linear activation function is applied to this neuron, taking into account
the activity level of other members of its cluster. This is akin to the classic
accumulate-and-fire neuron model of McCulloch-Pitts [15].

4 Experimental Evaluation

In order to evaluate our model, we compare its matching accuracy against a
number of state-of-the-art models on a synthetic benchmark. Synthetic datasets
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are typically used for assessing performance of matching algorithms because they
allow better control of test parameters.

The synthetic dataset is built as follows. Two graphs G = {V, E} and G′ =
{V ′, E ′} are constructed, where V,V ′ ⊂ R2 and E , E ′ ⊂ R. Then, nin points
that we call inliers are generated from a uniform random distribution on [0, 1]2,
and are added to V. These inliers are also copied to V ′ after the addition of
a Gaussian noise N (0, σ2). After that, we add nout outliers, generated from
the same uniform random distribution [0, 1]2, to each of V and V ′. Pairwise
similarities are computed as follows:

sE(eij , e′
ab) = exp(−∣∣‖vi − vj‖ − ‖v′

a − v′
b‖

∣∣). (4)

Unary similarities are always set to one sV (vi, v′
a) = 1 so that points are

matched using only their pairwise geometric information. The kWTA activation
threshold is set to τ = 0.98 in all of our experiments. We noticed that in most
cases, convergence is attained after 5 to 10 iterations. However, as in [3], a
theoretical guarantee for convergence is not yet proved but is worth exploring.

Fig. 2. Experimental comparison of the proposed model’s accuracy with several state-
of-the-art models on a synthetic dataset. In (a), no outliers are present, and the stan-
dard deviation σ of the Gaussian noise is varied. In (b) and (c), the number of outliers
is varied for a fixed value of σ. The same number of outliers shown on the horizontal
axis is added to both sets V and V ′.

We compare our model to MPM [3], RRWM [4], IPFP [13] and SM [12]. We
are only interested in finding matches between inliers in V and V ′, outliers are
used to represent clutter. We use the models’ mean accuracy as a convenient
performance criterion. Accuracy is measured as the ratio of the number of cor-
rect matches to the total number of inliers. Comparisons results are shown in
Fig. 2. We notice that in the presence of outliers, our model’s accuracy becomes
significantly better than other models’ as the number of outliers increases. This
is an interesting property since clutter and deformation are ubiquitous in natural
images. This robustness is due to the max-pooling and the kWTA operations
that we apply to reduce the effect of false matches on the final result. Notice
also that accuracy of our model is still higher than MPM’s and SM’s when no
outliers are present, but lower than that of RRWM and IPFP. However, as stated
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in [3], comparing accuracies in the absence of outliers is a less realistic situation
as outliers are almost always present in natural images, and robustness against
clutter is essential in such situations.

5 Conclusion and Future Work

In this paper, we proposed a new approach for treating the feature correspon-
dence problem using artificial neural network. We compared our model to state-
of-the-art algorithms, and showed that it enjoys a higher robustness to outliers
thanks to the application of max-pooling and kWTA operations, and to alter-
nating rows and columns during iterations. This robustness to outliers is an
essential property for matching objects in cluttered scenes. Further development
of our model will include searching for a better way of choosing final matches
than zeroing rows and columns of the assignment matrix containing more than
one winner. We think that it is a simple but a brutal procedure that might be
excluding some good matches. We shall also test the performance of the model
in the context of natural images, which would give a more precise evaluation of
the advantage of using this neural network model for solving the correspondence
problem.
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Abstract. Visual attention, as a smart mechanism to reduce the computational
complexity of scene understanding, is the basis of several computational models
of object detection, recognition and localization. In this paper, for the first time,
the robustness of a biologically-constrained model of visual attention (with the
capability of object recognition and localization) against large object variations
of a visual search task in virtual reality is demonstrated. The model is based on
rate coded neural networks and uses both bottom-up and top-down approaches to
recognize and localize learned objects concurrently. Furthermore, the virtual
reality is very similar to real-world scenes in which a human-like neuro-cognitive
agent can recognize and localize 15 different objects regardless of scaling, point
of view and orientation. The simulation results show the neuro-cognitive agent
performs the visual search task correctly in approximately 85.4 % of scenarios.

Keywords: Computational neuroscience � Object localization � Object
recognition � Virtual reality � Visual attention � Visual search

1 Introduction

Several tasks require looking for a certain object in the environment. This is known as
visual search in the literature. In such a task, the typical human knows what exactly
she/he is looking for. This predefined knowledge of the searched object stimulates a
top-down signal in her/his brain [1], called feature-based attention. It originates in the
prefrontal cortex (PFC) region (which could be considered as the object memory) and
is given to the object recognition pathway of the brain which is known as ventral
stream (Fig. 1). This pathway starts in the primary visual cortex (V1), continues
through the fourth visual cortex (V4) and reaches the inferior temporal cortex (IT). The
processing of the ventral stream is modulated by the frontal eye field (FEF).

Computational models of visual attention simulate the processing in the brain to
different degrees. The simplest approaches are bottom-up saliency models [2], which
simulate simple features as located in V1 to calculate a saliency map. This map
indicates regions of the visual field containing the most information. This approach is
often combined with top-down attention towards simple features to favor target rele-
vant features (top-down saliency models, [2]). One step further goes through
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proto-object-based models that define spatial regions belonging to one object (the
proto-objects) in the saliency map [3]. Finally, there are neuro-computational models
simulating the attentional processing of the brain, in which feature-based and spatial
attention are closely entangled and thus operate in parallel. Feature-based attention
amplifies the activation of neurons that encode the searched object (and suppress the
others), while spatial attention amplifies the neurons regarding their location infor-
mation. This process iterates until the location of the target would be encoded in a
spatial map (FEF). Due to their parallel nature, they are called iterative [3] or holistic
attention models [4].

However, such neuro-computational models have been typically developed for
psychophysical experiments using very simple stimuli, and thus cannot deal with
real-world objects. Hence, our aim is to further develop such models for making them
applicable to real-world scenarios. A few models have been already demonstrated with
real-world objects [4–9]. Yet, they have mostly used static input material. Only two
studies have used 3D environments, but merely very simple ones, like three objects in a
robotic setup [5] or cubic objects in a black-background virtual reality (VR) [6]. Hence,
a next step towards a real-world application would be to benchmark such models in a
more complex VR setup. Therefore, in this work, the performance of our model in a
VR is evaluated.

In neuro-computational models, objects are encoded typically by neurons repre-
senting a specific view (view-tuned neurons); as such cells have been found in area IT
[10]. In theory, this approach can encode objects under any kind of transformation. We
have previously demonstrated this for objects under different rotations [4–6], different
disparities [5], and small difference in the scaling [5]. Here, we will benchmark some of
the remaining transformations, i.e. larger changes in the scaling and different views of
the object (top versus side view). We have chosen these kinds of transformations as
they occur when a virtual agent walks towards objects located on a table, which seems
a plausible scenario for VR and real-world applications.

Fig. 1. (a) Primates’ Visual Attention System [4]. The green arrows show the Ventral Stream
and the blue arrows correspond to the Dorsal Stream, which process the type and location of an
object respectively. Bottom-up processing is denoted by arrows from left to right and top-down
processing (mediated by attention) by arrows from right to left. (b) Areas and connections which
are simulated in this attention model. They are printed in bold in (a). (Color figure online)
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We now present the further development of our biologically-plausible model of
visual attention, in particular how it is customized to work in the VR and how object
representations are created by a novel learning algorithm, called One-shot Learning.

2 Model Structure and Functionality

2.1 Overview of the Model

This model builds upon previous integrative attention models like Hamker (2005) [8].
The present version [4] is based on a recently developed cortical microcircuit model of
attention, which replicates many neurophysiological data sets of attention [11]. This
and the other biological foundations of the model are explained in the original publi-
cation, while we give here only a functional overview. The model simulates the ventral
stream pathway in primates’ visual system (see Fig. 1(a) as well as the frontal eye field
(FEF) and the prefrontal cortex (PFC). The diagram of the model is depicted in Fig. 2.
Its input is an RGB image that is firstly processed by a model of the primary visual
cortex (V1), whose cells encode oriented edges, red-green and blue-yellow color
contrasts. Afterwards, this activity is fed to a higher visual area (HVA) encoding object
views. HVA represents high-level visual areas like V4 (fourth visual cortex) and IT
(inferior temporal cortex). These object-view maps are constructed via convolutions of
receptive fields of V1 layer neurons (as pre-synaptic layer) by a pre-generated weight
matrix, calculated offline by the one-shot learning procedure (next section).

Fig. 2. The model of visual attention [4]. The processing is illustrated at the task to localize the
“bottle”, indicated by the red cross. See main text for details. (Color figure online)
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During the search for an object, a top-down feature-based attention signal is sent
from PFC to HVA. This signal contains the encoded features or views of the searched
target object. Applying the attention signal, neurons encoding the corresponding
object-views will be more excited in comparison to the others, while local inhibitory
connections suppress views belonging to other objects. This pattern of activity will be
send to the FEF for further spatial selection.

The FEF region is split into three parts, according to its neurophysiological cell
properties: FEF-Visual (FEF-v), FEF-visiomovement (FEF-vm) and FEF-Movement
(FEF-m). FEF-v is a kind of saliency map and contains the places where the target is
probably located. FEF-vm is responsible for focusing neuronal activity at the target
location. Additionally, this map projects back to visual areas (HVA), forming a
recurrent loop from which spatial attention emerges. This kind of attention does not
only excite the activity of the neurons in HVA around the target location, but also
suppress the activity of the other neurons to decrease the effect of distractors. This cycle
iterates until a saccade plan is completed, indicated by the fact that the neurons in the
FEF-m layer reach a threshold. This activity blob indicates the location of the target in
the image.

The model has been benchmarked in a task with up to 100 objects (COIL-100
database, [12]) and three background classes [4] and achieved an object localization
accuracy of 92 % on black, of 71 % on noisy, and of 42 % on real-world backgrounds.

2.2 Model Customization for VR

The VR used in this project has been developed within the European Union project
“Spatial Cognition” [13]. It is part of a framework to simulate neuro-cognitive agents in
a virtual environment [14]. This framework consists of the VR (based on the game
engine Unity [15]) in which the agent is placed, and a neuro-simulator [16] to simulate
the “brain” of an agent. The VR provides all sensory data to the agent like stereoscopic
images (from which we use the left eye here), collisions, etc., while the agent can
execute actions in the VR like rotating eyes, walking, etc.

For the VR, we developed a simple and straight-forward algorithm to learn the
object representation. Our One-shot Learning algorithm creates an object view rep-
resentation in HVA directly from a stimulus patch showing the object under this view.
For this, the stimulus is firstly processed by V1 and then the algorithm calculated from
this V1 activity pattern (cell index i) directly the weight matrix of a HVA cell (index j).
The method creates negative weights from weak V1 activities as these represent V1
features which do not appear in the object view, and positive weights from high V1
activities as these V1 features represent the object view (Eq. 1). The amount of neg-
ative weights is calibrated per view independently via the parameter vj. A higher
amount of negative weights tunes the HVA neuron more specifically to its preferred
view.

Normally, the method would learn the background in the patch along with the
object. Yet, this is a problem when the objects appear very small at the patch, i.e. for
farer distances, as the resulting object presentations would mainly encode the back-
ground. To solve this problem, we introduce a spatial selection mask S. The mask
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contains binary elements and allows selecting only a spatial part of the patch for
learning. We choose five different circular masks, each one for one learned distance.
Finally, the weights are normalized so that if the same stimulus appears again, the HVA
neuron reacts for it maximally (here chosen as 1) (Eq. 2).

A i;jf g ¼ f rV1i ; vj
� � � S; with: f r; vð Þ ¼ � v� rð Þ2; r\v

r � vð Þ2; r� v

�
ð1Þ

wfi;jg ¼ Afi;jg=
X

fi0g Afi0;jg � rV1fi0g ð2Þ

Customizing the model for this VR, we learned firstly 15 different objects with the
One-shot Learning algorithm (Fig. 3(a). We used 12 differently rotated views of each
object (every 30°), and 5 different distances between the agent and the target object.
Hence, for each object, the model has 12 � 5 = 60 views in HVA. Selected views and
distances of a typical object (the green racing car) are depicted in Fig. 3b. Since the
total number of learned objects is 15, HVA has 15 � 60 = 900 view-related and PFC
15 object neurons. Besides, the VR stimuli have finer structures than the previously
used COIL stimuli. To recognize them, we reduced the receptive field size in V1 (from
19 to 9 pixels) and the spatial pooling factor (from 10:1 to 6:1).

3 Simulation Results in VR

We tested the model in the VR at 3000 test scenes, whereby each scene contains at least
3 different objects under a variation of transformations: arbitrary rotations, arbitrary
agent-object distances, and nine randomly-chosen positions on the table. In relation to
this test set, the training set contains the objects under 12 fixed rotations (every 30°), 5
fixed distances (every 0.5 units in the VR), and at the center position. This training set
was used for learning the object representation and was completely separated from the
test data. In each of the 3000 test scenes, every of the three objects were considered one
time as target (searched object) while the others would be the distractors, resulting in
over 9000 localization tasks. On average, the model can localize the searched object in

Fig. 3. (a) The 15 target objects in Virtual Reality. (b) Six selected views of a typical object (the
green racing car) at the nearest, middle, and farthest distance. (Color figure online)
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approximately 180–200 steps (each step is the simulation of one millisecond in pri-
mates’ brain). In Fig. 4, we depicted the result for one typical case.

The performance of the model at the 3000 test scenes is illustrated in Fig. 5a as a
confusion matrix. Such a matrix illustrates for each presented target object (Y-axis) the
object that has been selected by the model (X-axis). As it can be seen in this figure, in
85.4 % of the cases the model can localize the target correctly (the saccade landed
within the object borders or not more than a half object away). Low accuracy values
under 50 % are illustrated in red to show mislocalizations. In the matrix, the horizontal
axis denotes the localized object or two special cases: B and No. The case B (Back-
ground) indicates that one non-sense point in the background was selected instead of
the target, and the case No (No-localization) indicates that no location was selected
because the model did not converge on any object location including background.

Figure 5b illustrates the object localization accuracy of the model for five different
distances between the agent and the objects on the table. Due to the varying distances,
the target object (and all others) appears under different scaling and viewpoints, thus we
evaluate the robustness of the object localization against these object transformations.
Besides the scaling, the viewpoint also changes as the agent looks from half-top to the
objects at the closest distance and from the side at the farthest distances. It can be seen

Fig. 4. The searched target (blue pencil) has been recognized and localized at the end of the
simulation (indicated by a red circle). Every column of the higher visual area (HVA) is regarded
to one object (as depicted in prefrontal cortex), showing four exemplary views. (Color figure
online)
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that the accuracy is quite stable for the fourth closest distances, showing the robustness
of the object localization against changing viewpoints and scaling. The only exception
is the farthest distance as the object appears very small (about 15 � 15 pixels). In this
case, the accuracy of the model drops. However, it is still 78 % which is quite
acceptable regarding its scale.

4 Conclusion, Limitations and Future Works

Here, the performance of a biologically-plausible model of visual attention with the
capability of object recognition and localization in a VR has been demonstrated. The
model used both bottom-up and top-down approaches in an iterative fashion to perform
its visual search task based on an offline supervised learning phase called one-shot
learning. In principle, the one-shot learning is easier to use, faster and has a better
performance in comparison with previous attempt [5], but produces object representa-
tions with more cells. Thus, it is suitable to use in scenarios with a limited number of
objects. In the VR, the human-like neuro-cognitive agent can perform the visual search
task for 15 different objects in various rotations, places, viewpoints, and scales. The
simulation results show that the agent is able to recognize and localize the objects
correctly in 85.4 % of cases out of 3000 different scenes as visual search scenarios. It is
the first time that such performance evaluation, in presence of multi scaling and view-
points in VR, is performed. The performance of this model in comparison with similar
model [5] which has been evaluated on COIL-100 dataset with real-world background is
remarkably better (85.4 % versus 42 %). Although current approach and the old one [5]
has been evaluated based on different datasets, we expect the new onewould have a better
performance on COIL-100 as well, since in COIL-100 all scenes are constructed by
objects with same scales. In other words, the new approach performs the task better even
in more complicated scenarios. Hence, its performance should be better on COIL-100
dataset as well. However, we would compare them on same datasets, COIL-100 as well

Fig. 5. (a) Performance of the model at 9000 localization tasks. (b) Performance dependent on
the distance between agent and the object on the table, whereby the left side denotes the closest
distance and the right side the farthest.
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as VR, as one of our future works. Besides, we will attempt to implement the model on
iCub robot and evaluate its performance in real-world scenarios.

Acknowledgement. This work has been supported by the European Union project “Spatial
Cognition” under grant agreement no 600785.
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Abstract. Neuromorphic image sensors produce activity-driven spik-
ing output at every pixel. These low-power consuming imagers which
encode visual change information in the form of spikes help reduce com-
putational overhead and realize complex real-time systems; object recog-
nition and pose-estimation to name a few. However, there exists a lack of
algorithms in event-based vision aimed towards capturing invariance to
transformations. In this work, we propose a methodology for recognizing
objects invariant to their pose with the Dynamic Vision Sensor (DVS).
A novel slow-ELM architecture is proposed which combines the effec-
tiveness of Extreme Learning Machines and Slow Feature Analysis. The
system, tested on an Intel Core i5-4590 CPU, can perform 10, 000 clas-
sifications per second and achieves 1% classification error for 8 objects
with views accumulated over 90 ◦ of 2D pose.

Keywords: Neuromorphic vision · Slow feature analysis · Extreme
learning machines · Object recognition

1 Introduction

Conventional frame-based sensors capture intensity values of the whole pixel
array at fixed time intervals. In contrast, asynchronous imagers remove the
notion of a frame by essentially being responsive to intensity changes at an
almost continual time-scale. As an example, the Dynamic Vision Sensor (DVS)
elicits a spike event at a pixel when the pixel records a relative change in inten-
sity. With their sparse, non-redundant input data stream only capturing salient
moving edges, computational burden is reduced by only computing with the
active events at any time as in [1]. For object recognition this points to faster
inference as highlighted in [2], wherein a few spikes acquired from moving objects
enable the architecture to estimate object class. The high temporal resolution of
≈1µs also allows for accurate pose-estimation in real-time when the underlying
edge-structure of the object is known as shown in [3].

This work proposes a method for pose-invariant object recognition with
event-based visual data. Like in [4] where separate eigen-faces were found
c© Springer International Publishing Switzerland 2016
A.E.P. Villa et al. (Eds.): ICANN 2016, Part II, LNCS 9887, pp. 455–462, 2016.
DOI: 10.1007/978-3-319-44781-0 54
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pertaining to each pose, each object class is subdivided into multiple pose-specific
classes. Here we use a variant of Extreme Learning Machines [5] for classifica-
tion. ELMs have shown a faster way of training neural networks, exhibiting
universal approximation capabilities with their random projection based feed-
forward model. Our approach involves an ELM architecture with excess hidden
random projections. Since not all random projections are useful for classifica-
tion, we proceed to add a layer that separates the noisy and irrelevant subspaces
of the projections, stripping the feature vector to a much smaller dimensional
space. Quantifying the utility of a projection is not easy, but however slow fea-
ture analysis (SFA, [6,7]) proposes a simple way of arriving at informative and
invariant features. For frame-based vision, SFA has been successfully applied
before to learn pose-invariant features in [8]. The slowness principle targets only
smoothly changing features with time, and can therefore be used to derive feature
spaces which are robust to transformations. By recording data linearly varying
over 2D-pose, we are able to apply the slowness principle in arriving at robust,
time-supervised features. Furthermore, our constant event number sampling of
events introduced in [9] allows a consistent object representation which enhances
recognition performance. The slow-ELM architecture proposed therefore learns
to identify robust features from the recorded data exhibiting gradual 2D pose
transformations of objects.

As the DVS only responds to changes, one can only expect spikes generated
by the object edges when either the object or the camera is in motion. Thereby,
the invariance of our classifier performance to speed is demonstrated, along with
quantifying the amount of multi-pose-view information needed to make reliable
class estimates. Our Slow-ELM learner shows a considerable improvement in
classification performance compared to the standard ELM, achieving 1 % error
with 8 objects, with their 2D pose views spanning 90 degrees. Compared to
the principal components based projections as used in P-ELM [10], slow projec-
tions are found to give better recognition estimates. Furthermore, the system
is capable of classifying 104 times per second, allowing real-time operation. For
frame-based vision such high speeds are of not much use due to the 30 FPS input
itself, unless there are other computational modules involved which benefit from
fast classification. However, for event based vision the high temporal resolution
essentially means a frame rate of ≈ 15, 000, which emphasizes the importance of
fast computational modules.

2 Methods

The algorithm consists of four steps: Spatiotemporal region of interest (ROI)
estimation; slow-ELM; pose-specific labelling; multi-view object class estimation.

2.1 Spatiotemporal ROI Estimation

This section describes our method for estimating the temporal and the spatial
ROI for acquiring events. To obtain temporal ROI we employ the constant event
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Fig. 1. The Slow-ELM architecture. The transformation represented by the matrix
Wslow only preserves the slowly changing projections of H. Win correspond to the
Gaussian randomized weights as in conventional ELM. Wout is learnt between the
projected signal and the output vectors.

number approach used in our previous work in [9] which maintains event struc-
ture w.r.t change of speed. Similar to [9], a rectangular spatial ROI is obtained
by considering a certain fraction of the events on each side (up, down, left, and
right) of the centroid of the extracted events. Once the current spatio-temporal
ROI events have been obtained, we disregard the temporal differences between
those events and form a purely spatial binary image. In contrast to [9], how-
ever, we add a smoothness prior to the way the ROIs change through time. This
involves only including the events which are lesser than a threshold distance to
the previous spatial ROI’s edges. The image formed by the pixels within the ROI
is then resized to a square image of a fixed size before passing on as an input to
the slow-ELM.

2.2 Slow-ELM

We have training samples {(xi, ti)}Ni=1 , where (xi)Ni=1 are the binary images
obtained from the ROIs. ti is the target object class vector assigned to xi. Every
dimension of xi is scaled to the range [−1,1] before passing onto the ELM. The
entries of the input layer weights are initialized randomnly according to the
normal distribution N(0, 1). The n hidden neuron values in Hi are computed
via adding a sigmoidal non-linearity f onto the random projections as follows

Hi = f(WT
inxi) (1)

Now the SFA algorithm elaborated in [6] is applied, which finds uncorrelated
linear projections of Hi as expressed by the projection matrix Wslow :

Yi = WT
slowHi (2)

The elements of Wslow are found according to the SFA optimization. In particular
SFA looks for projections which minimize:

〈(Δyj)2〉 (3)
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Under the constraints:
〈yj〉 = 0 (4)

〈y2
j 〉 = 1 (5)

〈yiyj〉 = 0, i �= j (6)

〈y〉 denotes the expectation of y over time, in our case being the average value of
the projection across all classes. The unit variance condition ensures projections
stay informative. 〈(Δyj)2〉 is the squared energy of the difference of a projection
over two consecutive instances of input (difference energy). In our experiments,
two consecutive instances of input only differ in the 2D-pose of the object. As
noted in [6], these slow features can be obtained simply by sphering the data
followed by finding the lowest eigenvalues of the difference data Δy. As the hid-
den neuron vector H is n-dimensional, Wslow will be an (nxn) matrix with each
column being a projection found through SFA. Since SFA returns the projec-
tions in order of decreasing difference energies we only keep the first k columns
of Wslow.

2.3 Pose-Specific Labelling

Every object data captured is categorized differently according to the 2D pose
range it belongs in as we record from all viewpoints across 360 ◦ (Fig. 2a). In
particular, we take 8 uniform partitions of the 2D pose: (0◦–45◦), (45◦–90◦),
. . . (315◦–360◦). So with m objects, we have 8 m classes. The algorithm up to this
point remains unsupervised as the only learning happens for finding the entries
of Wslow. As shown in Fig. 1 the final layer is learnt through the regularized
least squares algorithm shown in [11]. For each training sample xi, we extract
the slow projections Yi through the aforementioned steps. Now the supervised
RLS algorithm estimates the linear mapping Wout between Yi and ti:

Wout = (
I

C
+ Y TY )−1Y TT (7)

Here Y = [Y1, Y2, ..., YN ] and T = [t1, t2, ..., tN ]T . The parameter C controls the
tradeoff between the regularization and the error term. Higher the value of C,
lesser the smoothness constraint on the weights and therefore higher the chance
of over-fitting the data. Given the input to the final layer Yi we finally obtain
the estimated output vector testi :

testi = WT
outYi (8)

The class estimate is then the object for which one of its pose-specific class has
the maximum value across all 8 m classes in testi .
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2.4 Multi-view Object Class Estimation

This describes the method used to estimate object class when multiple input data
(X1,X2, ...,Xp) derived from many view-points of a single object is presented to
the classifier. Since we record the event data with the object smoothly changing
in pose, (X1,X2, ...,Xp) are the successive instances of the event-structure as
the object rotates. The estimated object class is the one receiving the maximum
number of votes across the p samples, where the ith vote cast is to the object
category inferred by the slow-ELM for Xi.

3 Experimental Setup

As the DVS only responds to changes in the scene, the experimental setup con-
sisted of a rotating platform on which an object was placed. Such a setup how-
ever makes the pixels near the centre of rotation generate lesser spike-events
than the pixels near the edge. To avoid this motion intensity bias, the objects
were placed near the edge of the platform (as shown in Fig. 2a). For each object,
the event data was captured as the platform was rotated over 6π radians, thus
uniformly covering the range of 2D-pose. The experiment was repeated for two
elevations (10 cm and 40 cm) of the camera, similar to what was done in [12], and
across 3 different distances from the platform centre (30 cm, 45 cm, 60 cm). For
each configuration, object data was recorded for 3 different angular velocities
of the platform, with a total of 8 objects. Thus a total of 18 recordings were
obtained. The objects chosen were: camera, cup, computer mouse, pen, mobile
phone, scissors, spectacle and bottle. The output weight matrix learns a 64-class
classification problem.

Fig. 2. (a) shows the experimental setup along with sample framed event data (I1 to
IN ) for the rotating cup object. The recording is repeated for 3 values of distance d
and two different heights h of the camera, each time with 3 motor speeds of rotation
ω. (b) shows the contrast between the slowly changing and fast changing projections
in response to the rotating object.
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4 Results and Discussion

Out of the 18 recordings, 9 were used for testing (40 cm elevation) and the
other 9 for training (10 cm elevation). Not every object had the same number of
data, as they generated spikes at different event rates. Therefore for an unbiased
estimate of performance, testing data for the classes having lesser examples were
duplicated randomly to ensure equal instances of each class. After duplication,
each class had approximately 2700 samples. The image extracted from the ROI
is resized to a 60 × 60 image, input as a 3600 dimensional vector to the ELM.
Win is chosen such that H has 3000 projections. We try a range of values of k,
i.e. the dimensionality of the final vector y input to the classification layer.

Fig. 3. Recognition accuracy across 3 different speeds and distances.

4.1 Performance with Varying Speed and Distance

Shown in Fig. 3 is the effect of changing speeds and distance of the platform
on the accuracy. The accuracy remains high for distances d = 30 and 45 cm,
but drops abruptly for d = 60 cm. This indicates that the classes become less
separable quickly as the distance to the object is increased beyond a limit. The
effect with varying speed of the motor of the platform however is not discernible
which indicates the invariance to speed changes.

4.2 Comparing SFA with Other Selection Methods

Figure 4a demonstrates how slow-ELM compares in performance with traditional
ELM and other variants, as a function of the number of projections used for
learning. In particular, we compare slow-ELM (our approach), P-ELM [10], con-
ventional ELM and fast varying features (with the projections maximizing Eq. 3).
The figure clearly demonstrates that SFA based projections give the best recog-
nition accuracies (≈ 93%). In contrast, the FAST features perform very near to
chance itself (14 %, chance is 100/64 = 15 %). This suggests that fast, fluctuating
features do not provide abstract category information essential for classification.
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(a) (b)

Fig. 4. (a) Recognition Accuracy for varying number of k selected projections, shown
for the different selection criteria mentioned in Sect. 4.2 (b) Recognition accuracy for
slow-ELM and P-ELM on aggregated data from successive viewpoints spanning differ-
ent range of 2D-pose

4.3 Multi-pose View Object Recognition

Here the method described in Sect. 2.4 is used to arrive at class estimates with
event-data accumulated across changing pose as the objects rotate. Precisely, we
quantify the recognition accuracy when event data spread out in different range
of 2D pose is available. This is averaged across all possible starting 2D-poses of
the objects. Figure 4b compares the recognition accuracy for both SFA and PCA
based projections. It can be seen that SFA quickly reaches a low error rate (1 %)
in classification with only 90 degrees of pose information whereas PCA requires
280 degrees to achieve the same error.

5 Conclusion

This work presents a system capable of recognizing objects from a real-time feed
of spike-events and capable of generating accurate class estimates by combining
information from successive views varying in object pose. Apart from the low
computation time which allows upto 104 classifications per second, the training
time is also considerably lesser than the state-of-the-art Convolutional Neural
Networks. The speed invariance and the partial scale invariance (object distance)
of the classifier has been demonstrated. A novel slow-ELM architecture has been
proposed to extract features invariant to pose changes.

Acknowledgements. This work is supported by a NPRP grant from the Qatar
National Research Fund under the grant No. NPRP 7-673-2-251. The statements made
herein are solely the responsibility of the authors.
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Abstract. We investigate in this paper the capabilities of learning
sparse representations from model cells that respond to curvatures.
Sparse coding has been successful at generating receptive fields similar to
those of simples cells in area V1 from natural images. We are interested
here in neurons from intermediate areas, such as V2 and V4. Neurons on
those areas are known to respond to corners and curvatures. Endstopped
cells (also known as hypercomplex) are hypothesized to be selective to
curvatures and are greatly represented in area V2. We propose here a
sparse coding learning approach where the input is not images, nor sim-
ple cells, but curvature selective cells. We show that by learning a sparse
code of endstopped cells we can obtain different degrees of curvature
representations.

Keywords: Sparse coding · Endstopped cells · Curvature · Restricted
Boltzmann Machine

1 Introduction

New techniques and machines as well as much dedication from neuroscientists
have provided big advances in the knowledge of the nervous system and the brain
since the first works more than a century ago by Ramón y Cajal. The part of
the brain involved in the analysis of visual information is the visual cortex.

The visual cortex seems to be organized into areas where neurons perform
similar tasks. The first Scientists to shed some light on how visual informa-
tion may be processed in the visual cortex were Hubel and Wiesel [1]. They
found three different types of cells present in area V1 of the monkey visual cor-
tex: (i) simple cells, which were selective to the orientation of lines and bars;
(ii) complex cells, which have a similar selectivity, but unlike in simple cells,
their response is independent on where the line or bar lies inside receptive field;
and finally (iii) hypercomplex cells (also known as endstopped) would respond

c© Springer International Publishing Switzerland 2016
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to the end of a bar or a line. Continuing along the object recognition pathway,
neurons in V2 - where endstopped cells have a high presence - respond to con-
tours [2]. When we reach V4, cells are selective to local curvatures in such a way,
that groups of those cells can be considered to encode shapes [3]. Fukushima’s
Neocognitron [4] was the first model inspired on neurons of the visual cortex, the
focus was mainly in the first two V1 neuronal types, namely simple and complex
cells. Most of the models up to date main focus has been these two types of
cells, learning shape contours through a configuration of Gabor-like responses
as in the popular HMAX or even in more recent models [5]. Fortunately, end-
stoppedcells have not been completely neglected, successfully encoding contours
and curvatures [6].

In addition to their selectivity, another important characteristic of cells in
the visual cortex appears when we consider their activation patterns as a neu-
ronal population. That characteristic is sparsity, meaning that the fraction of
neurons from a population that is activated by a certain stimulus should be rel-
atively small. Olshausen [7] showed that by implementing this concept through
a learning mechanism to natural images, receptive fields very similar to those of
V1 simple cells would be obtained. Even though sparsity and selectivity may be
related, sparsity does not necessarily imply selectivity [8].

Over the years many learning approaches have been presented that learn
sparse representations, mostly applied to natural images and thus obtaining
receptive fields - with increasing degree of similarity - to V1 simple cells. More
recently, Restricted Boltzmann Machines (RBM) [9] have become popular as a
sparse coding learning approach [10–13].

In most sparsity learning approaches, the input to the learning approach are
pixel images. We propose here to implement a sparsity learning approach, but
where the input are not images nor Gabor-like filter responses, instead, the input
will be the response of neurons that are selective to curvatures. The neurons for
such a task are endstopped neurons [6,14]. The choosen learning approach is the
diversity RBM by Xiong and colleagues [15], which showed to reach high degrees
of both, selectivity and sparsity, in a unified learning approach.

In Sect. 2 we will describe the chosen model to encode curvatures as well as
the sparsity approach. Section 3 will present our experimental setup and results.
We finish with our conclusions in Sect. 4.

2 Methods

2.1 Modeling Cells Selective to Curvatures

Our aim is to obtain cells that are selective to curvatures. In the introduction
we discussed that a biologically plausible candidate are endstopped cells. The
inspiration to obtain such cells comes from a recent hierarchical and biologically-
plausible model of shape representation [6]. Such model obtains cells that are
selective to shapes. It does so, by modeling cells that are selective to curvature at
the intermediate layers of the model. Thus, we will not follow the aforementioned
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model completely but the aspects of it where we can obtain curvature selective
cells.

The input are images. Which are then analyzed by a set of Difference of
Gaussian filters at different scales and orientations:

DoG(x, y)s,θ = 1
2πσx1σy

e
− 1

2 (
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)2
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x′ = xcos(θ) + ysin(θ)
y′ = −xsin(θ) + ycos(θ)

(1)

where σy is the height and σx1 and σx2 are the width of each Gaussian function.
θ is their orientation. At each position in an image there will be Ns different
scales s (provided by the parameters σy, σx1 and σx2) and Nθ orientations θ.
This configuration gives rise to Nθ × Ns such filters at each location. The next
step is to combine these filter responses - which resemble V1 simple cell responses
- into complex cells (CC below). One hypothesis on how complex cells achieve
translation invariance (its main characteristic) is that they may be the result of
the addition of simple cells along the axis perpendicular to their orientation [16]:

CCs,θ =
n∑

i=1

ciφ(DoGi,s,θ) (2)

For i laterally displaced filters having the same orientation θ selectivity at the
same scale s. ci is a Gaussian weight inversely proportional to the distance of
the displaced filter to the center (Fig. 1a). Finally, endstopped cells may be the
result from the difference between a simple cell and two displaced complex cells
[17]. When simple and complex cells whose orientation selectivity is the same,
we can obtain endstopped cells (EC) that are selective to different degrees of
curvature and its sign (the direction of the tangent along the curve) [18]:

ECs,θ,type = Φ[cDoGφ(DoGs,θ) − (caφ(CCa
s,θa) + cbφ(CCb

s,θb))] (3)

Φ(x) =
1 − e−x/ρ

1 + 1/Γe−x/ρ
(4)

cc, ca and cb are the gains for the simple (DoG) and the two complex (displaced)
cells (Fig. 1a). DoG, CCa and CCb are the responses of the simple cell (at
the center) and the two complex displaced cells respectively. φ is a rectification
function, where any value less that 0 is set to 0. Φ is another rectification function
of the sigmoid type, where Γ and ρ are rectification parameters. Values for all
the parameters of the model will be given in Sect. 3.1. s and θ are a specific scale
and orientation as before. Depending on the orientation of the complex cells with
respect to the center cell we have two types of endstopped cells (types A and B
in Fig. 1a). When θ = θa = θb, it is type A, and the endstopped cell is selective
to the degree of the curvature (sharp, medium, broad, ...). When θ �= θa �= θb,
we have a cell that is selective to the sign of the curvature (type B). A usual
setup of this latter one is when θa = θ + 45◦ and θb = θ + 135◦, its opposite
would be a cell where θa = θ + 135◦ and θb = θ + 45◦ (we could identify the
former with the positive sign, and the latter with the negative sign).



466 A. Rodŕıguez-Sánchez et al.

Fig. 1. (a) Model of learning sparse curvature neuronal population (see text for details).
b) Responses from curvature neurons (right) to stimuli from [3] (left). Colors represent
different curvature neurons. (Color figure online)

Finally, a curvature cell (CurvC) is the convergence of the types A and B
endstopped cells. In order to select the most selective curvature cell to a specific
curved area, we first select the type A endstopped cell providing the maximum
response. We then select the sign of the cell given by the corresponding type B
endstopped cell (which of the two opposite sign type B cells has a higher value).

s∗, θ∗ = arg max
s,θ

ECs,θ,typeA (5)

CurvC = arg max
sign

ECs∗,θ∗,typeBsign (6)

For more details on this model, please refer to [6].

2.2 Learning a Sparse Representation of Curvature Cells

There are previous studies that learn simple cell receptive fields through the use
of RBMs, either enforcing sparsity or selectivity. For our learning endstopped
cell receptive field learning we choose a recent approach that combines both [15].
Next, we briefly explain such learning approach.
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The restricted Boltzmann machine (RBM, Fig. 1a) is a two-layer, is a
“restricted version” of the Boltzmann machine where there are only inter-
connections between a hidden layer and a visible layer. The input data is Nv

dimensional (for the v units in the visible layer). In the hidden layer there exist
Nh stochastic binary variables h. The joint probability of {v,h} is:

p(v,h) =
1
Z

exp(−E(v,h)) E(v,h) = −v�Wh − h�b − v�c (7)

where W ∈ R
Nv × Nh is the matrix of symmetric weights, b ∈ R

Nh × 1 and
c ∈ R

Nv × 1 are biases for hidden unites and visible units respectively. Z =∑
v,h exp(−E(v,h)) is the partition function for normalization.
Given training data D = {v(l)}L

l=1, an RBM can be learned by maximizing
the average log-likelihood of D:

W∗ = arg max
W

L(D) = arg max
W

1
L

L∑

l=1

(
log

∑

h

p(v(l),h)

)
(8)

Since the log-likelihood is concave with respect to W,b, c, based on (7), gra-
dient ascent can be applied on (8) by computing the gradient of L(D). Direct
computation of the gradien involves a large number of Markov chain Monte
Carlo (MCMC) iterations to reach equilibrium, thus in practice we compute
an approximation through contrastive divergence (CD) [9] and the gradient is
approximated as:

∇WL̂(D) =
1
L

L∑

l=1

[
v(l)p(h(l)+|v(l))� − p(v(l)−|h(l)+)p(h(l)−|v(l)−)�

]
(9)

where h(l)+ denotes the inferred hidden vector from the lth observed data point
v(l), and v(l)−,h(l)− are vectors after one-step block Gibbs sampling.

In order to achieve sparsity and selectivity, we introduce a prior on W, which
will represent neurons receptive fields [15]. To this end, we diversify the columns
of W by minimizing the square cosine similarities among the columns of W:

arg min
W

Nh∑
j=1

Nh∑
k �=j

∥∥∥∥∥ W�
·,jW·,k

||W·,j ||||W·,k||

∥∥∥∥∥
2

(10)

Sparsity and selectivity are expected to be enhanced simultaneously by using
this diversity-induced bias (10). We can define the prior probability distribution
over parameters p(W) as

p(W) ∝ exp

⎛

⎝−λ ·
Nh∑

j=1

Nh∑

k �=j

∥∥∥∥∥
W�

·,jW·,k
||W·,j ||||W·,k||
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2
⎞

⎠ . (11)

Then, the parameters can be estimated via maximum a posteriori (MAP) and
since the optimization problem is concave with respect to W, we can employ



468 A. Rodŕıguez-Sánchez et al.

gradient ascent to solve it and derive an iterative update of W as

Wt+1
·,j = Wt

·,j + ∇WL̂(D) − 2λ

⎛

⎝
Nh∑

k �=j

(W·,k ⊗ W·,k) + C
||W·,j || − 1

||W·,j || INv

⎞

⎠W·,j

(12)
where ⊗ denotes the outer product between vectors, and INv

is a Nv×Nv identity
matrix. In (12) we can see that the iterative update of W is composed of two
parts, where the first is the gradient of the log-likelihood while the second is the
gradient of the log prior.

3 Experimental Evaluation

3.1 Setup

Image sizes were 400 × 400 pixels. For our experiments, we used 12 orientations
and 4 different sizes (40, 60, 88 and 120 pixels) for the Difference of Gaussian
filters. c Values (Eq. 3) for the complex neurons were from the smaller to the
larger scales: ca = cb = {1.5, 1.25, 1, 3}, cDoG = 1. The parameters for the
rectification function (Eq. 4) were Γ = 0.01 and ρ is the maximum response of
the set of neurons for a given scale divided by 8.5. T hese values follow from
the model tuning in [6]. 4 endstopped cells type A responded to curvatures
from very sharp to very broad and we used two different opposite sign type
B endstopped cells. This setup then, provided 8 curvature cells. Curvature cell
values were normalized to be in the range {0,1}. The responses of curvature cells
were thinned as to fit the width of the original stimuli. The visible units (v) for
the RBM corresponded to the normalized curvature values at each position p.
These responses provided the input to the RBM which consisted of patches from
the curvature cell responses of 14 × 14 pixels. The RBM consisted of Nv = 196
(to fit the size of small image patches), and Nh is 200, i.e. 200 hidden units.

3.2 Stimuli

Pasupathy and Connor [3] recorded the responses of 109 neurons to 366 different
shapes. The stimuli were constructed combining convex and concave boundary
elements to form closed shapes. Boundary elements include sharp convex angles,
and medium and high convex and concave curvatures. Figure 1b shows some
examples of this stimuli as well as the responses from curvature cells. We used
these stimuli to train the model.

3.3 Results and Discussion

Figure 2 shows the results of the learnt sparse curvature population from the
curvature selective cells. The first two figures used a λ (Eqs. 11, 12) value of
0.01 at two different learning stages: after 1000 and 5000 iterations. For the last
figure, we used a value of λ = 0.05. These results show that we can learn a
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curvature selective population from a stimuli that was created with the aim to
evaluate the selectivity of cells to shapes in area V4 of the visual cortex. We
highlighted some cells with different colors that are selective to different degrees
of curvatures in the second learnt population (Fig. 2b): blue for sharp curvatures,
green medium-sharp, orange for medium-broad and red for broad curvatures.

In a closer inspection, if we compare the results from Fig. 2a and b (1000
vs 5000 iterations) it can be seen that as the learning goes on, the represen-
tation of sharp and medium-sharp curvatures becomes larger than the broader
classes. Continuing with this line of thought, we further evaluated the method
by extracting the peak curvatures in order to compare with the curvature pop-
ulation reported in [3] (Fig. 7B). For this aim, each curvature cell was thinned
such as to only the a white curve would appear. Then, the curvature at each
point was extracted by approximating the gradient. The maximum curvature
along with the standard deviation were extracted for each cell, following [3].
Results are shown in Fig. 3. We can see that the sparse representation follows a
representation towards acute curvatures as in Fig. 7B of [3]. Although it can also

(a) 1000 iterations λ = 0.01 (b) 5000 iterations λ = 0.01 (c) 5000 iterations λ = 0.05

Fig. 2. Results after different learning stages and values of λ
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be observed that there is larger representation in our approach of zero curva-
tures than the ones obtained in the neurophysiological study of Pasupathy and
Connor. The main source of zero curvature values for is the last rows obtained
with our representation (Fig. 2), where the curvature values are not so clear and
get assigned 0 using our curvature value extraction approach. We hope to fix
this problem in future work by imposing a better prior such that there is less
non-definite curvature cells in the last rows of our representation.

4 Conclusions

Instead of images, the input to our sparse coding approach were responses from
endstopped cells that were combined into curvature cells. Thus, we do not learn
Gabor-like receptive fields, but curvature-like receptive fields. We used a stimuli
that was created with the aim to evaluate the selectivity of cells to curvatures
in area V4 of the visual cortex to train our system. Our results show that our
approach can in fact learn populations of curvature selective cells. Our approach
is also in accordance to Carlson and colleagues [19] where they found a higher
representation of acute curvatures in V4 neural populations, a fact that could
be simulated by enforcing sparse coding. In that work, the presence of acute
curvatures was even larger than in our sparse representation, since they used
natural images. It would be interesting for future work to test our approach
with a large set of natural images.
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Abstract. The recognition of actions that involve the use of objects has
remained a challenging task. In this paper, we present a hierarchical self-
organizing neural architecture for learning to recognize transitive actions
from RGB-D videos. We process separately body poses extracted from
depth map sequences and object features from RGB images. These cues
are subsequently integrated to learn action–object mappings in a self-
organized manner in order to overcome the visual ambiguities introduced
by the processing of body postures alone. Experimental results on a
dataset of daily actions show that the integration of action–object pairs
significantly increases classification performance.

Keywords: Action recognition · Self-organization · Hierarchical
learning

1 Introduction

The ability to understand others’ actions represents a crucial feature of the
human visual system that fosters learning and social interactions in natural
environments. In particular, the recognition of transitive actions (actions that
involve the interaction with a target object) is an important part of human daily
activities. Therefore, computational approaches for the recognition of transitive
actions are a desirable feature of assistive systems able to interact with people in
real-world scenarios. While humans possess an outstanding capability to easily
extract and reason about abstract concepts such as the goal of actions and
the interaction with objects, this capability has remained an open challenge for
computational models of action recognition.

The study of transitive actions such as grasping and holding has often been
the focus of research in neuroscience and psychology [1–3], especially after the
discovery of the mirror neuron system [3]. It has been shown that a specific set of
neurons in the mammalian brain shows selective tuning during the observation
of actions for which an internal motor representation is present in the nervous
system. Moreover, the response of these neurons differs in case the action is
mimicked, i.e. the target object is absent. Neurophysiological studies suggest
c© Springer International Publishing Switzerland 2016
A.E.P. Villa et al. (Eds.): ICANN 2016, Part II, LNCS 9887, pp. 472–479, 2016.
DOI: 10.1007/978-3-319-44781-0 56
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that only when information about the object identity is added to the seman-
tic information about the action, then the actions of other individuals can be
completely understood [4]. Together, these results provide an interesting frame-
work that has motivated research work in the field of artificial vision systems and
machine learning towards the recognition of action–object mappings (e.g., [5–8]).
From the computational perspective, an important question can be posed on
the potential links between representations of body postures and manipulated
objects involved in the learning of transitive actions and, in particular, on the
way these two representations can be integrated.

In this paper, we present a hierarchical, self-organizing neural architecture
that learns to recognize transitive actions from RGB-D videos containing daily
activities. Unlike our previous work [9], we use self-organizing neural networks
motivated by the fact that specific areas of the visual system organize according
to the distribution of the inputs [12]. Furthermore, extended models of hierar-
chical self-organization enable the learning of inherent spatio-temporal depen-
dencies of time-varying input such as body motion sequences [10]. The proposed
architecture consists of two main network streams processing separately feature
representations of body postures and manipulated objects. The last layer, where
the two streams are integrated, combines the information for developing action–
object mappings in a self-organized manner. We evaluate our architecture with
a dataset of RGB-D videos containing daily actions. We present and discuss our
results on this dataset showing that the identity of objects plays a fundamental
role for the effective recognition of actions.

2 Neural Architecture

The proposed architecture is based on self-organizing neural networks that are
capable of learning inherent topological relations of the input space in an unsu-
pervised fashion. An overview of the architecture is depicted in Fig. 1.

2.1 Self-organizing Maps

Self-organizing maps are neural networks inspired by biological input-driven self-
organization [11] and they have been successfully applied to a number of learning
tasks [12]. It consists of a 2-dimensional grid of units (neurons), each associated
with a weight vector of the same dimension of the input space. The learning is
performed by adapting these weights to better encode a submanifold of the input
space. Given an input vector xi, this is done by calculating a best-matching unit
b ∈ A, where A is the set of map nodes:

b = arg min
n∈A

||x − wn||. (1)

Then, the weight vector wb is moved closer to the input by a fraction that
decreases over time, as are nodes that are in the neighborhood of the winner:

wb(t + 1) = wb(t) + η(t) · hb(t) · [x(t) − wb(t)], (2)
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Fig. 1. Overview of the proposed architecture. (A) Processing for the body postures:
a set of local features that encode the posture of upper body limbs are extracted and
fed to the 2-layered neural architecture with GWR networks. (B) The input for the
object recognition module is the RGB image of the object: the region of interest is
automatically extracted through a point cloud-based table top segmentation. Objects
are represented as compact feature vectors and are fed to a SOM network. (C) The
last layer learns the combinations of body postures and objects involved in an action.

where hb(t) is the neighborhood function that defines the spatial neighbors of the
winning neuron and η(t) is a decreasing learning rate. In this way, the neurons
in the map are organized preserving the topological properties of the input, i.e.
similar inputs are mapped to neurons that are near to each other in the map.

The presence of noise in terms of outliers in the input data can have a negative
influence on the formation of topological representations using SOMs. Such an
issue is better addressed by growing models of self-organizing networks.

2.2 Growing When Required Networks

The Growing When Required network (GWR) [16] is a growing extension of
self-organizing networks with competitive Hebbian learning. The GWR has the
ability to create neurons and connections between them to incrementally map the
topology of the input data distribution. Unlike the well-known Growing Neural
Gas (GNG) [17], where the network grows at a constant rate, the GWR has a
growth rate as a function of the overall network activation w.r.t. the input.

The GWR network starts with a set A of two nodes with random weights
w1 and w2 in the input space. At each iteration, the algorithm is given an input
x(t) and the two closest neurons b and s in A are found (Eq. 1). If the connection
(b,s) does not exist, it is created. The activity of the best-matching neuron is
computed as a = exp(−||x − wb||). If the activity is lower than a pre-defined
threshold aT and the firing counter of the neuron is under the firing threshold
hT , then a new neuron is created with weight wr = (wb + x(t))/2. The firing
rate threshold parameter makes sure that neurons are sufficiently trained before
inserting new ones. The edge between b and s is removed and the edges (r, b)
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and (r, s) are created. If a new neuron is not added, the weights of the winning
neuron and its neighbours are moved towards the input by a fraction of ε · h,
with 0 < ε < 1 and h being the firing counter of the neuron. The firing counters
are reduced and the age of the edges are increased. The algorithm stops when
a given criterion is met, e.g., a maximum network size. The insertion threshold
aT modulates the amount of generalization i.e. how much discrepancy we want
to tolerate between the resulting prototype neurons and the input space. The
connection-age mechanism leads to neurons being removed if rarely used.

2.3 Learning Sequences of Body Postures

Our study focuses on articulated motion of the upper body limbs during daily
activities such as picking up, drinking, eating, and talking on phone. The set
of raw full-body joints positions in real-world coordinates does not supply a
significant representation of such actions. Therefore, we compute the relative
position of upper limbs w.r.t. the head and body center to obtain translation-
invariant coordinates. We use the skeletal quads features that are local features
built upon the concept of geometric hashing and have shown promising results
for the recognition of actions and hand gestures [13]. Given a quadruple of body
joints positions in real-world coordinates X = [x1, x2, x3, x4] with x ∈ R3, a local
coordinate system is built by making x1 the origin and mapping x2 onto the
vector [1, 1, 1]T . The position of the other two points x3 and x4 calculated w.r.t.
the local coordinate system are concatenated in a 6-dimensional vector which is
the quadruple compact descriptor. In this way, we obtain a lower-dimensional
descriptor which is also invariant to translation, scale and body rotation. We
select two quadruple of joints: [center torso, neck, left hand, left elbow ] and
[center torso, neck, right hand, right elbow ], meaning that the positions of the
hands and elbows are encoded with respect to the torso center and neck. The
latter is chosen instead of the head position due to noisy tracking of the head
caused by occlusions during actions such as eating and drinking.

For the recognition of body motion sequences, we train a hierarchical GWR
architecture (Fig. 1A). This approach has been shown to be more suitable than
SOM for learning a set of actions from features based on noisy tracked skele-
tons [10]. We first train the GWR1 network with the sequences of body postures.
After the training is completed, the GWR2 network is trained with neural activa-
tion trajectories from GWR1. Thus, for each input sample xi, the best-matching
neuron in GWR1 network is computed as in Eq. 1. The weights of the neurons
activated within a temporal sliding window of length q are concatenated and fed
as input to GWR2. The input data for training GWR2 is of the form:

ψ(xi) = {b(xi), b(xi−1), ..., b(xi−q+1), i ∈ [q..m]}, (3)

where m is the number of training samples. While the first network learns a set of
prototype body postures, the second network will learn temporally-ordered pro-
totype sequences from q consecutive samples. Therefore, the positive recognition
of action segments occurs only when neurons along the hierarchy are activated
in the correct order.
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2.4 Object Recognition

For the representation of objects, we use SIFT features [14] that yield invariance
to translation, rotation and scaling transformations and, to some extent, robust-
ness to occlusions. For the problem of object category recognition, experimental
results have shown that better classification performance is achieved by comput-
ing dense SIFT descriptors on regular grids across each image. Since objects will
be compared to each other through vectorial metrics such as the Euclidean dis-
tance, we compute a fixed-dimensional vectorial representation of each image by
performing quantization followed by an encoding step. For this purpose, we chose
the vector of locally aggregated descriptors (VLAD) [15]. Unlike the bag of fea-
tures (BoF) approach, these descriptors do not apply hard-assignment of SIFT
features from an image to the closest code-vectors, i.e. visual words. Instead,
they compute and trace the differences between them, leading to a resulting
feature vector with a higher discriminative power.

For learning objects, we train a SOM network on a set of objects extracted
from RGB action sequences (Fig. 1B). We attach symbolic labels to each neuron
based on the majority of input samples that have matched with each neuron
during the training phase. At recognition time, for each input image the best-
matching neuron from the trained network (Eq. 1) will be computed. In this way,
the knowledge of the category of objects can be transferred to the higher layer
of the architecture in the form of a symbolic label.

2.5 Classification of Transitive Actions

Up to this point, the architecture has learned temporally-ordered prototype body
posture sequences and the identity of objects. The highest network in hierarchy
GWR3 should integrate the information from the converging streams and learn
action–object mappings (Fig. 1C). For this purpose, we compute a new dataset
by merging the activations trajectories from the preceding GWR2 network and
the object’s symbolic label from the SOM. The resulting training data consists
of pairs φu of the following form:

φu = {b(ψ(xi)), ..., b(ψ(xi−q−1)), lb(y),xi ∈ A,y ∈ O, u ∈ [q..m − q]}, (4)

where lb(y) represents the label attached to the best-matching neuron of the
object recognition module for the object input y. Furthermore, each neuron is
assigned with an action label adopting the same labelling strategy as in SOM,
meaning that neurons take the label of the best-matching input samples. After
the training of GWR3 is completed, each neuron will encode a prototype segment
of the action in terms of action–object pairs.

3 Experimental Results

3.1 Data Collection

The setup of the experiments and the data collection were planned having in
mind the role of the objects’ identity in distinguishing the actions, in particular
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Fig. 2. Examples of sequences of skeleton joints taken from our action dataset.

when the sole body motion information may not be sufficient to unequivocally
classify an action. Therefore, we collected a dataset of the following daily activi-
ties: picking up, drinking (from a mug or can), eating (cookies) and talking on a
phone. The variety of style with which the actions were performed across differ-
ent subjects and their similarities in body posture highlight the importance of
the object’s identity for their effective classification. The actions were performed
by 6 participants that were given no explicit indication on the purpose of the
experiments nor an explanation on how to perform the actions in order to avoid
biased execution.

The dataset was collected with an Asus Xtion depth sensor that provides
a synchronized RGB-D image (color and depth map). The tracking of skele-
ton joints was computed with the OpenNI framework (Fig. 2). Action labels
were manually annotated from ground truth of sequence frames and were cross
checked by two different individuals. We added a mirrored version of all action
samples to obtain invariance to actions performed with either the right or the
left hand. The depth sensor was also used for acquiring the objects dataset.
Since object recognition should be reliable regardless of objects’ perspective,
RGB images were acquired with the camera positioned in two different heights
and from objects in different views with respect to the sensor. Object labels were
manually annotated for the training sequences, and the labels output from the
object recognition module were used for the test sequences.

3.2 Training and Evaluation

In order to evaluate the generalization capabilities of our architecture, we con-
ducted experiments with 10-fold cross-validation, meaning that data was split
into 10 random subdivisions of 60 % for training and 40 % for testing. The results
reported in this paper have been averaged over the 10 folds.

We determined empirically the following GWR training parameters: learning
step sizes εb = 0.1, εn = 0.01, firing threshold hT = 0.1, insertion thresholds
aT = {0.5, 0.4, 0.3} (for each network respectively), maximum age amax = 100,
initial strength h0 = 1, τb = 0.3 and τn = 0.1 as constants controlling the
behaviour of the curve reducing the winning nodes’ firing counter. Each GWR
network was trained for 50 epochs over the whole actions dataset. The number
of neurons reached in each GWR network given a training set with ≈ 18.600
frames were ≈ 480 for GWR1, ≈ 600 for GWR2, while for GWR3 the number
varied from ≈ 700 to ≈ 1000 depending on the inclusion or exclusion of the
objects (as explained in Fig. 3). For the SOM training we used a 20 × 20 map of
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Fig. 3. Evaluation of the recognition accuracy on the test data set under the conditions
indicated in the legend.

units organized in a hexagonal topology, a Gaussian neighbouring function and
batch training of 50 epochs over the objects dataset.

We evaluated the recognition accuracy of the architecture under three condi-
tions: (1) completely excluding the object identity in both training and testing,
(2) including the objects in training while excluding them in testing phase, and
(3) no exclusion in both phases. In the third case the label given by the SOM-
based object classifier was used during testing. Further experiments were run
using the objects’ ground-truth labels for comparison. The results are reported
in Fig. 3, where it is possible to see a significant improvement of the action clas-
sification performance for the third condition. When the objects can and mug
are interchanged by the objects’ classifier, the final classification accuracy of the
action drinking is not affected – this is a desirable generalization capability of
our architecture. Furthermore, the relatively low recognition rates in the sec-
ond condition suggest that the identity of the object is crucial for distinguishing
between the actions drinking, eating and talking on phone, while for the action
picking up the situation does not vary drastically in either case.

4 Conclusions and Future Work

We presented a hierarchical self-organizing architecture for the learning of
action–object mappings from RGB-D videos. The architecture consists of two
separate pathways that process body action features and object features in par-
allel and subsequently it integrates prototypes of actions and the identity of
objects being used. A GWR-based learning algorithm is used to learn action
sequences, since it can deal better with the presence of noise in the tracked
skeleton data. Experimental results have shown that the proposed integration
of body actions and objects significantly increases the classification accuracy of
action sequences.

The obtained results motivate the evaluation of our framework on a wider
number of actions and a more complex scenario, e.g. requiring the use of the same
object across different actions. Furthermore, we are working on the extension of
the proposed approach for robot experiments towards the recognition of goal-
oriented actions and intentions based on the interaction with the environment.
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Abstract. Finding suitable features has been an essential problem in
computer vision. We focus on Restricted Boltzmann Machines (RBMs),
which, despite their versatility, cannot accommodate transformations
that may occur in the scene. As a result, several approaches have been
proposed that consider a set of transformations, which are used to either
augment the training set or transform the actual learned filters. In this
paper, we propose the Explicit Rotation-Invariant Restricted Boltzmann
Machine, which exploits prior information coming from the dominant
orientation of images. Our model extends the standard RBM, by adding
a suitable number of weight matrices, associated with each dominant gra-
dient. We show that our approach is able to learn rotation-invariant fea-
tures, comparing it with the classic formulation of RBM on the MNIST
benchmark dataset. Overall, requiring less hidden units, our method
learns compact features, which are robust to rotations.

Keywords: Rotation invariance · Restricted Boltzmann Machine ·
Explicit invariance · Shared filters

1 Introduction

It is widely known that a crucial problem in image understanding is to find suit-
able features for the task at hand. Hand-crafted descriptors were able to pro-
vide adequate representations, but they rely on specific structures in the scene
and could not accommodate certain nuisance factors properly. Hence, extensive
efforts in learning image representations have been done in the past years, demon-
strating that machine learning approaches are able to outperform hand-crafted
descriptors [23]. Examples of learned features are e.g. vocabulary learning [5],
sparse coding [15], Gaussian mixture models [1], neural networks [2].

Neural networks (NNs) are graphical models, where nodes in a graph are con-
nected with weighted connections and parameters are determined via optimisa-
tion algorithms. The Restricted Boltzmann Machine (RBM) has recently gained
popularity, mainly because of its applications to deep learning [2,12]. RBM is a
generative NN constituted by a bipartite graph, which sides are referred to visible
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Fig. 1. The dominant orientation ϕt is determined for the provided image and is used
to compute the gradient ∇W (t). The contribution of this gradient is shared amongst
the other weight matrices ∇W (s), s = 1, 2, . . . , S, t �= s, rotating the learned filters by
the angle ϕs − ϕt to generate the ∇W̊ (t) term.

layer and hidden layer respectively. The set of parameters within the RBM are
optimised via the Contrastive Divergence (CD) algorithm [11]. Although RBMs
can achieve satisfactory results [4], their use in shallow networks (namely few
layers) cannot accommodate complex variability occurring in the scene [20]. To
this end, the Deep Belief Network (DBN) was proposed in [14], which is consti-
tuted by several stacked RBMs. Albeit DBN have been shown to achieve some
translation invariance, they may not well accommodate other nuisance factors
(e.g. rotation).

In fact, several modifications of the original RBM formulation have been
recently proposed, achieving certain transformation invariance. In [21], a trans-
formation invariant RBM is proposed, where images are subjected to a prede-
fined set of transformations. In [13] an RBM that learns equivariant features is
proposed, whereby adding a new variable to be inferred within the hidden units,
this variable is then used to rotate learned weights accordingly. In [19], a rota-
tion (invariant) Convolutional RBM is proposed. The marginal probability of
RBM is extended with a Markov Random Field, including transformed versions
of input images. In [20], an additional step of the backpropagation algorithm
used to train DBN is introduced, where the weights are transformed and the
entire network is trained again. In [3], the authors propose an RBM where input
images are divided into non-overlapping blocks. Then, patches are extracted on
SIFT keypoints [18] and subsequently rotated and scaled accordingly. Despite
their progress, the aforementioned methods share the following drawbacks: either
they are limited to the set of transformations considered within the model, or
they involve deep networks in the hope of learning better transformation invari-
ant features [13,20,21], albeit increasing computational demand.

In this paper instead we present the Explicit Rotation-Invariant Restricted
Boltzmann Machine (ERI-RBM), which can model the nuisance caused by
rotated versions of the same pattern, without actually applying any trans-
formation to the data. Our method considers a set of weight matrices
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(similar concept as in C-RBM [16]) and each sample is provided to the visi-
ble layer with its dominant orientation [3]. This information is used to select
a particular weight matrix during the Gibbs sampling to compute gradients of
parameters. The contribution given by the new update gradients is shared among
the other weight matrices, rotating the filters accordingly [20] (cf. Fig. 1). Exper-
iments on MNIST-rot show superior performance to several baseline benchmarks
and a recent method from the literature.

Our contributions are multi-fold: (i) rotation is treated explicitly, without
rotating the image patterns, in contrast to for example [21]; (ii) we adopt a
shallow model using a limited amount of additional weight matrices, instead of
deep architectures [17]; (iii) we share the contribution coming from a weight
matrix with the other ones, rotating the learned filters by suitable angles.

This paper is organised as follows. Section 2 describes the proposed Explicit
Rotation-Invariant Restricted Boltzmann Machine. In Sect. 3, we present exper-
imental results, whereas Sect. 4 concludes the manuscript.

2 Explicit Rotation-Invariant RBM (ERI-RBM)

In this section, we discuss how to embed the concept of rotation-invariance
explicitly in the RBM formulation. Since input patterns are images, we will
assume that neurones in the visible layer are arranged in matrix form of size
w × h = d, width and height respectively. Each row in the weight matrix W ,
connecting visible units to hidden units, is a d-dimensional vector. Therefore,
each row in W can also be arranged in matrix form of size w×h. Henceforth, we
will refer to rows in the weight matrix W as learned filters and rows in ∇W as
update filters, which is the gradient computed during the Contrastive Divergence
algorithm.

2.1 Proposed Model

Let Φ be a set of evenly distanced angles Φ = {ϕ1, ϕ2, . . . , ϕS}, such that for any
i ≤ j =⇒ ϕi ≤ ϕj . In our model, we augment the number of weight matrices
W ∈ R

H×V ×S , such that every angle ϕs is associated to a matrix W (s). Here, H
is the number of hidden units, V the number of visible units, and S is the number
of angles. In addition, each weight matrix has an associated bias vector b(s).
Hence, we rewrite the energy function characterising the standard Restricted
Boltzmann Machine formulation as follows:

E(v,h; s) = −hT W (s)v − cTv −
[
b(s)

]T

h, (1)

where W (s) is the s-th weight matrix, b(s) is the bias vector for the hidden
layer associated to W (s), with s = 1, 2, . . . , S, and c is the bias vector for the
visible layer. The index s is uniquely determined on each input image v, and
will be discussed thoroughly in Sect. 2.2. Because of the modification in (1), all
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the equations involved in the CD algorithm have to be rewritten. Specifically,
the conditional probabilities become:

p(hk = 1|v; s) = σ
(
b
(s)
k + W

(s)
k,•v

)
, (2)

p(vj = 1|h; s) = σ
(
cj + hTW

(s)
•,j

)
. (3)

During the optimisation algorithm, an image v with dominant orientation
ϕs is provided to the Gibbs sampling. After a sufficient number of alternating
computations of (2) and (3), the gradient ∇W (s) can be computed, whose contri-
bution is shared with the remaining matrices in W . To update ∇W (t), 1 ≤ t ≤ S,
t �= s, we transform the update filters in ∇W (s) which are then added to the t-th
gradient. Specifically, since we can represent rows in ∇W (s) as images, they can
be rotated by an angle θ = φt − φs. Therefore, we define a new shared update
filter term ∇W̊ (t), such that

∇W̊ (t) = Rθ(∇W (s)) ≡

⎛

⎜⎜⎜⎜⎜⎜⎝

Rθ

(
∇W

(s)
1,•

)

Rθ

(
∇W

(s)
2,•

)

...
Rθ

(
∇W

(s)
H,•

)

⎞

⎟⎟⎟⎟⎟⎟⎠
. (4)

where Rθ = [cos θ − sin θ; sin θ cos θ] defines the 2D rotation matrix by an angle
θ. This operation may generate filters bigger than the input layers and we crop
them such that the filter size remains w × h. At this point, the final expression
for the gradient ∇W (s) is updated as follows:

∇W (s) := ∇W (s) + ∇W̊ (s). (5)

Note that (5) will be utilised within the Stochastic Gradient Descent step
of the CD algorithm. Therefore, ∇W (s) will be multiplied by a learning rate η
that typically has values set in the order of 10−3 (further details are discussed in
[10]). Hence, any side effects originating from pixel interpolation are minimised,
precisely because of the small η. Gradients ∇b(s) are computed as described in
[11], using samples v with the associated dominant orientation ϕs.

2.2 Finding the Dominant Angle and Corresponding s Index

Each image v is associated to an angle ϕs, determined by the histogram of
oriented gradients from v [6]. Derivatives along the x and y directions are com-
puted and the angle of each gradient vector can be determined. All the vectors
are accumulated into a histogram with S bins and the angle ψ with the high-
est frequency is found. Formally, the index s = argmaxjϕj , such that ϕj ≤ ψ,
ϕj ∈ Φ. Figure 2 shows graphically those steps: from the original image pat-
tern (a), derivatives are computed using Sobel filters (b). Subsequently, we build
the weighted histogram of oriented gradients and the angle with the highest
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Fig. 2. Computation of the dominant orientation for a sample image taken from the
MNIST dataset: (a) original sample, (b) gradients of the image, (c) histogram of ori-
ented gradients with highlighted mode ψ, (d) sample rotated by ψ degree. The region
marked by a green ellipse corresponds to the same portion of the number 3 in the orig-
inal and rotated image. Observe the differences due to image interpolation introduced
during rotation.

frequency ψ is selected (c). We highlight in red the 9-th bin of the histogram,
hence s = 9 for the illustrated example. In (d) we report a rotated version of the
sample image by ψ degree to show the deleterious effect of image interpolation.

Since strong edges near image boundaries may bias the estimation of the
dominant gradient, the magnitude of the corresponding vectors is weighted with
a Gaussian kernel, with σ = min{w,h}

5 (width and height of v respectively), such
that central gradients contribute more than those at the boundaries. (We found
this value covers evenly the entire image without exceeding its size.)

3 Experimental Results

Setup: We used the MNIST-rot dataset1 [14], containing 10, 000 images for
training, 2, 000 for validation, and 50, 000 for testing. This dataset is derived from
the MNIST dataset, where samples were rotated by random angles. To enable
comparison with other methods, for consistency, we kept this dataset splitting,
and we did not perform cross-validation (that could have provided variances for
statistical analysis). Since each image contains several non-zero entries close to
0, we threshold them at a value τ = 0.3. We compare ERI-RBM with several
informative baselines and a recent invariant method. Classical RBM: We trained
a standard Bernoulli Restricted Boltzmann Machine and compared results with
our Explicit Rotation-Invariant RBM. Dominant RBM (D-RBM): We built a
simplified model that learns an RBM for each dominant orientation, splitting
the training set into S partitions, associated to a different RBM (i.e., we have S
independent RBMs). Oriented RBM (O-RBM): We pre-process the dataset by
aligning all images according to their dominant orientation to a reference orien-
tation and train a single RBM. TI-RBM : We also compared with the method
in [21], using the authors implementation2. Extracted features are provided to
the following classifiers: linear and RBF SVM [22], softmax [9], and K-NN [7].
1 Available at http://www.iro.umontreal.ca/∼lisa/twiki/bin/view.cgi/Public/DeepVs

ShallowComparisonICML2007.
2 Available at https://github.com/kihyuks/icml2012 tirbm.

http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/DeepVsShallowComparisonICML2007
http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/DeepVsShallowComparisonICML2007
https://github.com/kihyuks/icml2012_tirbm
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Table 1. Testing accuracies of standard RBM, Dominant RBM, Oriented RBM, TI-
RBM [21], and our proposed ERI-RBM.

RBF SVM Linear SVM Softmax K-NN

C=10,γ = 0.1 C=0.1 K=3

RBM (H=100) 87.37% 59.27% 57.80% 82.69%

D-RBM (H=100, S=4) 83.44% 58.95% 56.80% 78.84%

D-RBM (H=100, S=9) 79.18% 53.62% 50.76% 73.56%

D-RBM (H=100, S=18) 69.84% 49.20% 46.58% 63.61%

O-RBM (H=100 S=18) 87.37% 58.99% 57.80% 82.69%

ERI-RBM (H=100, S=4) 78.49% 60.27% 58.31% 74.97%

ERI-RBM (H=100, S=9) 91.27% 74.87% 73.02% 88.48%

ERI-RBM (H=100, S=18) 92.08% 77.69% 75.84% 89.34%

TI-RBM [21] (H=100, S=18) 80.63% 69.10% 68.20% 73.60%

Parameters: We set the number of hidden units to H = 100, while progres-
sively increased the number of bins S, used to generate the histogram of orien-
tations. Following the instructions in [10], we set the learning rate η = 10−3, the
Contrastive Divergence algorithm is iterated up to 200 epochs, and a constant
momentum α = 0.9 was used. The parameters for SVM were found using log-
arithmic grid search and best values are reported in Table 1. We set arbitrary
K = 3 for the K-NN, using the Euclidean distance as metric. For TI-RBM [21],
a set of K = S transformations are considered, which is each associated with an
array of H hidden units, while a single weight matrix W is considered. The final
representation used during inference is obtained by max-pooling. To make the
comparison to ERI-RBM fair, for TI-RBM the sparsity term was disabled, and
we set the number of hidden units to H = 100.

Discussion: We report our results in Table 1 and we noticed that nonlinear
SVM gave the best performance in all the cases. The baseline is given by RBM
with an accuracy of 87%. Tests using D-RBM show a gradual loss of accuracy
as the number of dominant orientations S is increased. This behaviour can be
attributed to the lack of information sharing amongst the RBMs, since they
were each trained independently with less data (per RBM). Overall, our pro-
posed model outperforms the baseline RBM (S ≥ 9). At S = 4, ERI-RBM
has a loss of performance, because of the coarse quantization of the 2π space:
angles 0◦, 90◦, 180◦, and 270◦ will have orthogonal rotations when shared update
filters are computed for neighbour matrices, causing the propagation of sharp
rotations that do not contribute much. As the number of S increases, ERI-
RBM has a +13% of improvement, showing that our model is able to learn
rotation-invariant features. This is also displayed in Fig. 3, showing learned filters
when S = 9. O-RBM shows no improvement compared to RBM, demonstrat-
ing that the contribution provided by the shared update filters increases the
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Fig. 3. Filters learned by our ERI-RBM at S = 9. We highlight a filter that appears
at rotations 0◦, 40◦, 80◦, and 120◦, showing that our model learns rotation-invariant
filters. The remaining weight matrices are omitted for brevity.

discriminative power of the final representation. Note that we also trained clas-
sical RBM with H = 1000, noticing an improvement of 2%, still lower than
ERI-RBM. Finally, using the same experimental setup, ERI-RBM outperformed
[21] by +12% in testing accuracy. (These results are different from those reported
in [21] since sparsity is not present and we used less units.) Our approach does
rely on the determination of orientation, which could be seen as a limitation.
Preliminary results (not shown for brevity), obtained by artificially perturbing
the orientation estimate, show that we are tolerant to such errors up to ±4
bins off on the original estimate. This remains to be confirmed in images with
cluttered background.

4 Conclusions

In this paper we proposed the Explicit Rotation-Invariant Restricted Boltz-
mann Machine (ERI-RBM). Current approaches do not address the problem
of rotation-invariance directly, but use a predefined set of transformations to
transform either the input images [19,21] or the learned filters [13,20]. We were
inspired by these approaches to modify the RBM learning process, such that to
learn invariant features without taking into account all possible transformations,
which is demanding and may propagate noise due to pixel interpolations.

Our ERI-RBM utilises the dominant gradient of input images in order to
select the best set of filters to optimise. We find the corresponding gradients
efficiently and update the filters in a process where information is shared across
the different filters, minimising thus any effects of interpolation. Overall, our
model learns rotation-invariant features and achieves an accuracy of 92% in the
MNIST-rot dataset. Comparisons with several baselines and approaches from the
literature showed superior performance in a common experimental setup. More-
over, comparing to the deep architecture of [8] and the results on MNIST-rot,
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ERI-RBM reached similar performance using just 100 of hidden units compared
to the 500 in [8]. In conclusion, ERI-RBM is able to learn rotation-invariant fea-
tures in an unsupervised fashion, with a reduced number of hidden units, within
a shallow network.

Acknowledgements. We thank NVIDIA corporation for providing us a Titan X
GPU.
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Abstract. Hierarchical Slow Feature Analysis (SFA) extracts a spatial
representation of the environment by directly processing images from a
training run and has been shown to enable self-localization of a mobile
robot by encoding its position as slowly varying features. However, in
real world outdoor scenarios other variables, like global illumination or
location of dynamic objects, might vary on an equal or slower time scale
than the position of the robot. To prevent encoding of said variables we
propose to restructure the temporal order of training samples based on
loop closures in the trajectory. Every time the robot passes by a pre-
viously visited place, former recorded images are re-inserted to increase
temporal variation of environmental variables. Hence, it is a feedback sig-
nal enforcing the model to produce similar outputs due to its slowness
objective. Experiments in a simulated outdoor environment demonstrate
increased robustness especially for changing lighting conditions.

Keywords: Self-localization · Slow feature analysis · Long-term
robustness · Loop closure detection · Omnidirectional vision

1 Introduction

Self-localization is a prerequisite for autonomous mobile robots executing tasks
in a spatial environment. The problem of simultaneous localization and map-
ping (SLAM) has been studied extensively. Recent geometric approaches esti-
mate the motion of the camera and the depth of the scene from consecutive
frames based on feature correspondences or semi-direct image alignment [1,2].
Despite the impressive results demonstrated by these approaches, visual localiza-
tion and mapping in long-term outdoor scenarios remains a challenging problem
due to different lighting conditions, cast shadows, dynamic elements or seasonal
effects. The model for SFA-localization is based on the principle of slowness learn-
ing [3–5]. It is inspired by the observation that primary sensory signals, like the
values of individual pixel, usually change on a faster timescale than the embed-
ded high level information, such as the position of observed objects. Extract-
ing slowly varying features from quickly changing sensory signals thus should
c© Springer International Publishing Switzerland 2016
A.E.P. Villa et al. (Eds.): ICANN 2016, Part II, LNCS 9887, pp. 489–496, 2016.
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yield the underlying abstract information. It has been shown that a hierarchical
SFA-network can model place and head direction cells [6], reflecting spatial infor-
mation in the brain of rodents, and enable localization of a mobile robot in out-
door environments [7] by directly processing the high dimensional visual input.
After an offline learning phase localization is instantaneous and absolute since
SFA-outputs are computed from a single sample. Despite the good localization
results the learned representation are likely only valid for short periods of time
when the image statistics are similar to the training. Here we extend the model
using loop closures in the trajectory to restructure the training data for improved
robustness. Images from loop closures, representing the same place under differ-
ent environmental conditions, are re-inserted in the temporally ordered image
sequence. This increases temporal variation of environmental effects and is a
feedback signal for the SFA-model that has to find functions producing a similar
output due to its slowness objective.

2 Model for SFA Localization

2.1 Slow Feature Analysis and Orientation Invariance

SFA as introduced in [8] transforms a multidimensional time series x(t) to
slowly varying output signals. The objective is to find instantaneous scalar input-
output functions gj(x) such that the output signals yj(t) := gj(x(t)) minimize
Δ(yj) := 〈ẏ2

j 〉t under the constraints 〈yj〉t = 0 (zero mean), 〈y2
j 〉t = 1 (unit vari-

ance), ∀i < j : 〈yiyj〉t = 0 (decorrelation and order) with 〈·〉t and ẏ indicating
temporal averaging and the derivative of y, respectively. The Δ-value is a mea-
sure of the temporal slowness of the signal yj(t), so small Δ-values indicate slowly
varying signals. The constraints avoid the trivial constant solution and ensure
that different functions g code for different aspects of the input. We use the
MDP [9] implementation of SFA, which is based on solving a generalized eigen-
value problem. For the task of self-localization, we want to find functions that
encode the robot’s position as slowly varying features and are invariant w.r.t. its
orientation. The information encoded in the learned slow features depends on
the statistics of the training data. To achieve orientation invariance, the orien-
tation of the robot has to change on a faster timescale than its position. We use
an omnidirectional mirror as a feasible realization to simulate additional robot
rotation, by shifting a sliding window over the periodic panoramic images.

2.2 Self-localization and Learned Representations

The high dimensional visual input is processed by a hierarchical network made
of several converging layers. In our standard approach [7] layers are trained sub-
sequently with all training images in temporal order of their recording. A single
node per layer is trained with stimuli from all node locations in its layer and
replicated throughout the layer after training. The model is shown in Fig. 1.
The learned spatial representations are analyzed qualitatively by plotting the
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color coded eight slowest SFA-outputs f1...8 over all positions. In case of strong
spatial coding a clear gradient along the coordinate axis should be visible in the
spatial firing maps of the first two units. Maps of higher units show a mixture
of the first two units or higher modes. For a quantitative analysis we compute a
regression function from the SFA-outputs to the ground truth coordinates and
apply it to slow features extracted from images of a separate test set.

Fig. 1. Model architecture. (a) The views from a certain position (x, y) are steadily
captured and transformed to a panoramic view. (b) The view is processed by the
network. Each layer consists of overlapping SFA-nodes arranged on a regular grid.
Each node performs linear SFA for dimensionality reduction followed by a quadratic
SFA for slow feature extraction. The output layer is a single node, whose eight slowest
outputs yj(t) are the orientation invariant encoding of the location. (c) The color
coded SFA-outputs f1...8 over all positions, so-called spatial firing maps, ideally show
characteristic gradients along the coordinate axes and look the same independent of
the specific orientation.

2.3 Extending the Model Using Feedback from Loop Closures

Since the SFA-model processes raw pixel values the learned representations are
susceptible to appearance changes of the environment varying on an equal or
slower timescale than the position of the robot. We use invariance learning,
which is the basis of SFA, to learn representations that are not affected by
environmental changes during the training phase. Loop closure detections allow
to re-insert images of the same place, with a possibly different appearance, in
the temporal sequence of training images thereby increasing the timescale of
environmental effects. Further it is a feedback signal for the SFA-model, because
its objective is to find functions that produce similar outputs for temporally
close training samples.

Loop Closure Detection. To validate the feasibility of the approach we first
use ground truth information to identify loop closures. A positive match requires
that the spatial distance between the match candidates is smaller than a pre-
defined threshold and that there is a minimum temporal gap between them.
In real world scenarios, where no ground truth is available, loop closures can
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be identified using image information. A common approach is the bag of words
(BOW) model describing each image by the occurrences of visual words from a
dictionary (e.g. [10]). Here we created a vocabulary of 1500 visual words using
Surf-Features [11]. Loop closure matches are then determined comparing the
distance between visual word histograms.

Training Using Feedback. The SFA-model is trained with the temporally
ordered images like in the standard approach. In case of a loop closure match,
the past image is aligned to the current one by finding the relative orientation
which minimizes the image distance. The aligned image is then re-inserted in
the training sequence.

3 Experimental Results

3.1 Experimental Setup

Experiments are conducted in a simulated park like environment covering an
area of 16× 18. Images from the simulated omnidirectional camera are captured
with a resolution of 500× 500 pixel and transformed to panoramic views with a
size of 600 × 55 pixel. The training and test trajectory consist of 1773 and 1090
poses that evenly cover the area. Crossings in the training trajectory improve
spatial coding of the SFA-model and enable the extended model to get feedback
from loop closures. The trajectories and the 62 loop closures determined from
ground truth information are illustrated in Fig. 2.

Fig. 2. Left: Training trajectory, Middle: Test trajectory, Right: Loop closures

3.2 Localization in a Static Environment

Initially we compare the standard and the extended model in a static environ-
ment to give reference under optimal conditions and to investigate the effect of
using feedback from loop closures.

Results. Since the feedback only slightly changes the distribution of visited
places, resulting representations of both models are nearly identical, leading to
the conclusion that using feedback does not deteriorate performance. Spatial
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firing maps of the first two units, shown in Fig. 3a and c, show clear gradients
along the coordinate axis. Units three and four are mixtures of the first two
units. Estimated trajectories illustrated in Fig. 3b and d are close to the ground
truth with mean Euclidean deviations of 0.24 and 0.23, respectively.

Fig. 3. Results in the static environment. Spatial firing maps of the standard
(a) and extended model (c) show strong spatial coding. Estimated trajectories of the
respective models in (b) and (c) are close to the ground truth.

3.3 Localization with Changing Light

In this experiment we investigate the effect of changing lighting conditions on
the localization performance of the standard model and validate the feasibility
of the feedback mechanism for improved robustness. The intensity of an artificial
point light is increased over the training run leading to non-trivial illumination
changes. Light intensity is thus the slowest varying latent variable embedded in
the image statistics. Training images illustrating the effect are shown in Fig. 4.

Fig. 4. Environmental effects. First and last image of the training sequences. Top:
The effect on the appearance of increasing light intensity over the run, Bottom: A
textured cylinder is moved along a circle around the training area.

Results. The quality of the spatial representations learned by the standard
model is clearly deteriorated by the changing light intensity. Spatial coding is
not observable in the spatial firing maps shown in Fig. 5a, while at least some



494 B. Metka et al.

position information is contained in the SFA-units since the estimated trajectory
is not random (see Fig. 5b). The mean Euclidean deviation from the ground truth
is 2.4. Using feedback from the loop closures enables the SFA-model to become
more invariant against changing light intensity. Spatial firing maps illustrated
in Fig. 5c show a clear gradient along the coordinate axis for SFA-units one
and two, while units three and four are mixtures of the first two units. The
mean Euclidean deviation from ground truth amounts to 0.49. The estimated
trajectory can be seen in Fig. 5d.

Fig. 5. Results with changing light. (a) Spatial firing maps from the standard
SFA-model show no spatial coding. (b) Localization performance is deteriorated but
not random which indicates at least weak position coding. (c) Characteristic gradients
along the coordinate axis in the spatial firing maps of first two units from the extended
model suggest good spatial coding. (d) Localization accuracy clearly improves with the
extended model.

3.4 Localization with a Dynamic Object

In this experiment we investigate the effect of a dynamic object. A textured
cylinder is moved along a circle around the training area performing one circum-
navigation during the training phase so that its location is the slowest changing
variable. Figure 4 shows the first and last image containing the dynamic object.

Results. The effect of the dynamic object on the resulting representations is not
as big as expected. Spatial firing maps of the first two SFA-units from both mod-
els, shown in Fig. 6a and c, show gradients along the coordinate axis. Accuracy
of the estimated trajectories is only slightly worse than in the static environment
as both models achieve a mean Euclidean deviation of 0.29. Estimated trajec-
tories of both models are shown in Fig. 6b and d. The dynamic object seems
to produce local noise only but no high level information about its position is
encoded in the SFA-units.

3.5 Localization Using Feedback from BOW Loop Closures

Ground truth loop closures used in the previous experiments have a mean
Euclidean distance of 0.06 between match candidates. In this experiment we
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Fig. 6. Results with a dynamic object. Spatial firing maps from the standard
model (a) and maps of the model using feedback (c) are nearly identical showing clear
gradients along the coordinate axis. Estimated trajectory of the standard model (b)
and the extended model (d) are close to the ground truth.

use a bag of words model for loop closure detection. Defining 0.1 as the maxi-
mum Euclidean distance for a positive match results in a mean average precision
of 0.52. The 54 accepted matches with a mean Euclidean distance of 0.27 are
depicted in Fig. 7a. The experiment is performed on the data set featuring chang-
ing light intensity since the effect of using the feedback was clearly visible.

Results. The imprecise loop closures interfere the quality of the resulting rep-
resentations. The effect of the changing light intensity is visible in the spatial
firing maps in Fig. 7b. First two units show a gradient along the coordinate axis
but are not as smooth as in the experiment using ground truth matches. Units
three and four are clearly influenced by the changing environmental variable. The
localization accuracy is interfered accordingly with a mean Euclidean deviation
of 0.9. Nonetheless, this is a big improvement compared to the standard model
with a mean deviation of 2.4. The estimated trajectory is shown in Fig. 7c.

Fig. 7. Results with changing light using feedback from BOW loop closures.
(a) Loop closures determined by matching visual word histograms. (b) Spatial firing
maps suggest position coding in the first two units while units three and four show the
influence of changing light intensity. (c) Localization performance clearly surpasses the
standard model while deviations are larger compared to the model using ground truth
loop closures.
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4 Conclusion

We presented an extension of the biologically motivated model for SFA-
localization using feedback from loop closures to improve robustness. Re-
inserting images of the same place from the past in the temporally ordered image
stream increases variation of environmental effects and is a feedback signal for
the SFA-learning algorithm regarding its slowness objective. We have shown that
feedback from loop closures improves robustness especially for changing lighting
conditions. Experiments with loop closure matches from a BOW-model suggest
the applicability of the model in real world scenarios. An elaborate solution to
deal with imprecise loop closures could be the use of a weighted SFA-formulation,
as described in [12,13], with training samples organized in a graph where the
connecting edges represent their similarity regarding the labels.
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3. Földiák, P.: Learning invariance from transformation sequences. Neural Comput.
3(2), 194–200 (1991)

4. Stone, J., Bray, A.: A learning rule for extracting spatio-temporal invariances.
Netw. Comput. Neural Syst. 6(3), 429–436 (1995)
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Abstract. In this paper, we consider a challenging variant of the
traveling salesman problem (TSP) where it is requested to determine the
shortest closed curvature-constrained path to visit a set of given loca-
tions. The problem is called the Dubins traveling salesman problem in
literature and its main difficulty arises from the fact that it is necessary to
determine the sequence of visits to the locations together with particular
headings of the vehicle at the locations. We propose to apply principles of
unsupervised learning of the self-organizing map to simultaneously deter-
mine the sequence of the visits together with the headings. A feasibility
of the proposed approach is supported by an extensive evaluation and
comparison to existing solutions. The presented results indicate that the
proposed approach provides competitive solutions to existing heuristics,
especially in dense problems, where the optimal sequence of the visits
cannot be determined as a solution of the Euclidean TSP.

1 Introduction

A problem of finding a shortest closed path to visit a given set of locations
can be formalized as the traveling salesman problem (TSP) for which several
approaches have been proposed [4]. The basic variant of the TSP is the Euclidean
TSP where locations are placed in a plane and each pair of the locations can be
connected by a straight line segment with the length computed as the Euclidean
distance between the locations. Although this problem formulation addresses
many practical problems [4], it does not fit surveillance missions with curvature-
constrained vehicles such as aircraft, for which the shortest path connecting two
locations depends on the particular headings of the vehicle at the locations.

Optimal path planning for a vehicle with a constant forward velocity and
limited turning radius ρ has been studied by Dubins who showed that the optimal
path connecting two locations with prescribed headings is one of the six possible
maneuvers [5]. The optimal maneuver can be determined analytically and it is
called Dubins maneuver where the motion model is called the Dubins vehicle.
However, the analytic solution does not allow to directly solve the so-called
Dubins traveling salesman problem (DTSP), which stands to find a shortest
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closed path for the Dubins vehicle to visit a given set of locations [11]. It is
because each heading can be selected from the interval 〈0, 2π) and the total
length of the shortest path visiting the locations depends on the headings and
also on the order of their visits. Therefore, it is necessary to determine both the
headings and sequence of visits to the locations in the DTSP.

Three fundamental approaches for the DTSP can be found in literature. The
first are methods based on a solution of the Euclidean TSP (ETSP) with the
relaxed curvature constraint that include approximate algorithms with a rela-
tively high approximation ratios [9] and heuristic algorithms such as the Alter-
nating algorithm (AA) [12] or Local iterative optimization (LIO) [14]. Heuristics
provide relatively good results in instances with locations far from each other,
for which the solution of the ETSP provides optimal or close to optimal sequence
in the DTSP. Moreover, for locations with mutual distance longer than 4ρ, the
optimal headings for a given sequence can be found by convex optimization [7].
Therefore, it seems that instances with dense locations are more challenging,
since it is necessary to simultaneously determine the optimal sequence and
paginationbreak headings.

Two additional types of approaches are sampling-based methods [10] and
evolutionary techniques such as genetic [15] and memetic [16] algorithms that
consider particular values of possible headings at each location and solve the
sequencing part of the problem. Sampling-based methods need a prescribed dis-
cretization of the headings and address the DTSP as the Generalized Asymmet-
ric TSP which is transformed into the Asymmetric TSP [10] that can be solved
optimally by the Concorde solver [2]. Although sampling-based approaches are
able to provide high quality solutions, they become quickly computationally
intractable for increasing number of locations and samples. On the other hand,
evolutionary methods provide the first feasible solutions relatively quickly, which
is then further improved if more computational time is available.

In this paper, we consider principles of existing self-organizing map (SOM)
approaches for the TSP [1,6,13] to address challenges of the DTSP. The main
difficulty of applying SOM to the DTSP is in computation of the best matching
unit, which needs to respect the locations and headings regarding the previ-
ous and next waypoints in the tour. The proposed SOM for the DTSP encodes
expected headings at the locations into the network structure and heading values
are refined during the unsupervised learning. Although the proposed approach
does not provide optimal solution of the DTSP, which has been also observed
in SOM for the ETSP [3], it provides better results than simple existing heuris-
tics [12,14] in problems where the optimal sequence of the visits is not the same
as the optimal solution of the underlying ETSP. Moreover, the proposed SOM
provides competitive results to the existing Memetic algorithm [16] with the
computational time limited to 1 h while SOM is significantly faster.

2 Problem Statement

The motivation of the addressed curvature-constrained traveling salesman prob-
lem is a solution of the surveillance missions with a fixed-wing aerial vehicle
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that is modeled as the Dubins vehicle with the minimum turning radius ρ and
constant forward velocity v. The state of the vehicle q is a triplet q = (x, y, θ)
from the special Euclidean group q ∈ SE(2), where (x, y) is the vehicle position
in a plane and θ ∈ S

1 is the vehicle heading at (x, y). The model can be formally
described as: ⎡

⎣
ẋ
ẏ

θ̇

⎤

⎦ = v

⎡

⎣
cos θ
sin θ

u
ρ

⎤

⎦ , |u| ≤ 1, (1)

where u is the control input. For simplicity and without loss of generality, we
consider v = 1 and ρ = 1 in the rest of the paper.

In surveillance missions, the Dubins vehicle is requested to visit a set of n
locations P = {p1, . . . , pn}, pi ∈ R

2 by a closed path. Therefore, the problem
stands to determine a sequence of visits to the locations together with the vehi-
cle’s heading at each location pi ∈ P [8]. The problem can be formally described
as follows. Let Σ = (σ1, . . . , σn) be an ordered permutation of {1, . . . , n} and
P be a projection from SE(2) to R

2 such that P(qi) = (xi, yi), where qi is an
element of SE(2) whose projection is the location pi = (xi, yi). The problem is
to determine the minimum length tour that visits every location pi ∈ P while
satisfying the constraints of the Dubins vehicle (1). This is an optimization prob-
lem over all possible permutations Σ and headings Θ = {θσ1 , θσ2 , . . . , θσn

} in
the states (qσ1 , qσ2 , . . . , qσn

) such that qσi
= (pσi

, θσi
):

minimizeΣ,Θ

n−1∑

i=1

L(qσi
, qσi+1) + L(qσn

, qσ1) (2)

subject to qi = (pi, θi) i = 1, . . . , n, (3)

where L(qσi
, qσj

) is the length of the shortest possible path (Dubins maneuver)
for the Dubins vehicle (1) between the states qσi

and qσj
.

3 Proposed Self-Organizing Map for the DTSP

The proposed unsupervised learning procedure builds on existing self-organizing
maps for the Euclidean TSP [6,13]. SOM for the TSP is two-layer neural network
which maps the input space R

2 into an array of output units. The input of the
network are the locations to be visited P = {p1, . . . , pn}, pi ∈ R

2, while neurons
N represent particular states of the Dubins vehicle in SE(2), N = {ν1, . . . , νm},
where νi ∈ SE(2) and we use m = 2n according to [13].

Similarly to SOM for the ETSP, connected neurons form a ring representing
a closed path in the input space. Since the sequence is prescribed by the output
layer and each neuron has associated heading, it is straightforward to determine
the optimal curvature-constrained path for the Dubins vehicle (1) using analytic
solution of the optimal Dubins maneuvers [5].

In contrast to the solution of the ETSP, we need to adapt not only neuron
weights to the locations P but we also need an adaptation rule to adjust the
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headings at the locations. It is known that the distance function L of the Dubins
maneuvers is sensitive to headings, especially for two close locations. Therefore,
in addition to the main heading θi associated to each neuron νi, we consider
up to 2k headings around θi according to the neighbouring function f(σ, d),
where d is the distance in the number of nodes and σ is the learning gain. These
headings may be considered as additional neurons; however, they are utilized
only in the evaluation of the winner and in the local improvement of the solution
of the DTSP represented by the ring. Based on the empirical evaluation, k =
12 provides a suitable tradeoff between the solution quality and computational
requirements.

winner neuron

*ν

prevν

nextν

presented to the network
the current location

p

Fig. 1. Example of winner selection (left) and the final found solution (right). The
locations to be visited are represented by green disks, the neurons are in blue and they
are connected into a ring by Dubins maneuvers (black curve). The green straight line
segment connects the current winner with its location p ∈ P while the selected previous
νprev and next νnext neurons of the winner are highlighted by the blue segments. The
red curve (left) is the Dubins path used for the selection of the winner neuron. (Color
figure online)

The key idea of the proposed SOM for the DTSP is the winner selection
that considers headings and also the length of the Dubins path. The winner
ν∗

i for p ∈ P is selected as the best matching unit according to the distance
computed as the length of the two Dubins maneuvers connecting νprev with the
state (p, θi) and (p, θi) with νnext, where θi is the heading of ν∗

i . The neurons
νprev and νnext represent the previous and next neighbouring neurons of νi, i.e.,
prev < i and next > i, and they are determined according to the neighbouring
function f(σ, d) as the farthest neighbors for which f(σ, d) ≥ 10−4. It has been
empirically observed that such a selection of νprev and νnext provides better
results than the immediate neighbouring neurons. Besides, σ is decreasing after
each learning epoch and, therefore, in later epochs, the immediate neurons are
utilized which further support stabilization of the network. An example of the
relation between the winner, neighbouring neurons, and the presented location
to the network is visualized in Fig. 1.

Let headings associated to νi ∈ N be Θi = {θ−k
i , θ−k+1

i . . . , θi, θ
k
i , . . . , θk

i }
then, the winner neuron ν∗ is selected with the heading θ according to:

(ν∗, θ) = argminνi∈N ,νi /∈I,θ∈Θi
L(νprev, (p, θ)) + L((p, θ), νnext), (4)
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where I denotes all neurons selected as winners in the current epoch. After
that, the winner ν∗ is adapted towards p and its main heading is set to θ. The
neighbouring neurons are also adapted towards p, but only using the position
as in the standard SOM for the ETSP. The neighbouring function f(σ, d) =
exp(−d2/σ2) for d < 0.2m, and f(σ, d) = 0 otherwise, is used for the adaptation.

Finally, to further improve convergence of the network and selection of the
most suitable headings at the locations P , we update the main headings of the
current winners after each learning epoch, i.e., after complete presentation of all
locations P to the network. Since each location p has a unique winner, the order
of winners in the output layer prescribes the sequence of visits to the locations.
We consider the associated headings to the winners and construct all possible
feasible Dubins paths connecting the locations P in the sequence defined by the
winners. The best heading for each winner is determined by a forward search,
which time complexity can be bounded by O(nk3). In comparison to the winner
selection with the time complexity O(n2k), this is negligible since k � n. Beside
improving the headings at the winners, this also provides a feasible solution of
the DTSP at the end of each learning epoch. The selection of the winners, their
adaptation and ring regeneration is repeated until the solution is not improving
or after reaching the maximal number of learning epochs. The overall adaptation
procedure is summarized as follows.

1. Initialization: For n locations P and the Dubins vehicle with the minimal
turning radius ρ, create 2n nodes around the centroid of P equidistantly
placed on a circle with the radius ρ. The learning gain σ is set to σ = 12.41n+
0.06, the learning rate μ = 0.6, and the gain decreasing rate α = 0.1 according
to [13]. The epoch counter i is set to 1, i = 1.

2. Randomizing: Create a random permutation of the locations Π(P ).
3. Learning epoch: Clear inhibited neurons I = ∅ and for each p ∈ Π(P )

(a) Select winner ν∗ and its heading θ for p ∈ Π(P ) using (4).
(b) Adapt the winner and its neighbouring nodes to p using f(σ, d) and update

headings of the winner according to the selected value θ.
(c) Update the inhibited neurons I = I ∪ {ν∗

i }.
4. Ring regeneration: Update headings of the current winners from the shortest

Dubins path for the sequence of the locations defined by the winners in the
ring and their associated headings.

5. Update the learning gain and epoch counter: σ = σ(1 − α), i = i + 1.
6. Termination condition: If solution is not improving or i > imax Stop the

adaptation. Otherwise go to Step 2.
7. Construct the final Dubins path from the last winners and their headings.

An example of the final found solution is depicted in Fig. 1. Evaluation results
and comparison with existing approaches are reported in the next section.

4 Experimental Results

The proposed SOM for the DTSP has been evaluated in several randomly gen-
erated problems with different numbers of locations n and mutual distances
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between the locations. We consider a relative density d of the n locations and
the minimal turning radius ρ and generate the locations inside squared area
with the side s = (ρ

√
n)/d. In particular, we consider 20 instances for each

n ∈ {10, 20, 50, 70, 100} and d ∈ {0.3, 0.5, 1.0, 1.3, 1.7, 2.0}, which gives 600 dif-
ferent problem instances in total.

The performance of the proposed SOM algorithm has been compared with
the AA [12] and LIO [14] heuristics and Memetic algorithm [16]. To evaluate the
performance of the algorithms in so many instances, we consider the solution
quality as the average ratio RL of the particular path length to the reference
path length Lref and its standard deviation σR. Because optimal solution of
the DTSP is not available, we consider the best found solution from all the
solutions as Lref . For providing high quality reference solutions, we consider the
Memetic algorithm [16] with the computational time limited to one hour. On the
other hand, for comparison with SOM and heuristics, we limit the computational
time to 100 s to make the computational requirements of the Memetic algorithm
competitive to SOM. Notice, AA and LIO are deterministic algorithms, while
SOM is stochastic. Therefore, we performed 20 trials for SOM and each problem,
which gives 13 800 trials in total. Only a single trial is performed by the Memetic
algorithm to provide an overview of its convergence speed.

(a) Memetic–1 h, L=95 (b) Memetic–100 s, L=104 (c) SOM T=5.8 s, L= 102

Fig. 2. Selected found solutions for the same problem with n = 50 locations and d = 1.0

All the algorithms have been implemented in C++ and executed on a single
core of the iCore7 CPU running at 3.4 GHz with 16 GB RAM and thus, the
presented required computational times can directly compared.1 The results are
listed in Table 1, where R′

L is the average ratio of the best found solution for
each problem from 20 trials. The standard deviation for R′

L is always less than
0.1 and typically around 0.05. Selected found solutions are shown in Fig. 2.

The fastest algorithms are the heuristics that provide a solution in less than
one second, which includes optimal solution of the underlying ETSP by the Con-
corde [2]. Although the AA and LIO algorithms provides relatively good results

1 Reference solutions provided by the Memetic algorithm with 1 h computational time
has been found using a computational grid to decrease real time requirements.
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Table 1. Average ratio of the solution length in the DTSP instances

d n ETSP-AA [12] ETSP-LIO [14] Memetica Proposed

RL σR T [ms] RL σR T [ms] RL σR RL σR T [s] R′
L

0.3 10 1.35 0.14 3.7 1.32 0.15 9.4 1.04 0.06 1.11 0.10 0.5 1.00

20 1.38 0.11 9.0 1.26 0.08 21.9 1.07 0.04 1.12 0.07 1.6 1.01

50 1.35 0.11 52.7 1.27 0.08 148.0 1.10 0.06 1.10 0.06 7.2 1.01

70 1.47 0.60 202.0 1.27 0.06 237.3 1.14 0.05 1.08 0.05 13.5 1.01

100 1.31 0.06 346.5 1.24 0.05 641.8 1.23 0.04 1.07 0.05 26.2 1.00

0.5 10 1.65 0.20 4.7 1.73 0.31 11.5 1.09 0.09 1.23 0.16 0.5 1.02

20 1.61 0.13 10.5 1.73 0.23 31.2 1.10 0.08 1.20 0.11 1.5 1.03

50 1.71 0.54 60.9 1.68 0.08 145.7 1.10 0.05 1.14 0.07 7.4 1.03

70 1.68 0.54 258.2 1.65 0.10 500.0 1.14 0.04 1.11 0.06 13.5 1.01

100 1.50 0.05 766.8 1.63 0.10 587.9 1.23 0.05 1.09 0.05 25.8 1.01

1.0 10 1.72 0.21 6.6 2.33 0.27 14.8 1.12 0.14 1.29 0.18 0.4 1.06

20 1.97 0.15 18.4 2.57 0.14 34.0 1.11 0.10 1.25 0.13 1.5 1.05

50 1.94 0.11 93.4 2.63 0.16 174.2 1.12 0.06 1.17 0.08 7.3 1.03

70 1.94 0.06 440.2 2.70 0.15 585.5 1.21 0.07 1.14 0.06 13.1 1.03

100 1.93 0.07 332.8 2.63 0.12 537.9 1.31 0.06 1.11 0.06 25.1 1.01

1.3 10 1.64 0.17 7.0 2.35 0.22 14.8 1.12 0.10 1.29 0.15 0.4 1.04

20 1.97 0.14 19.7 2.73 0.29 42.8 1.12 0.08 1.28 0.13 1.3 1.08

50 2.09 0.10 113.7 3.04 0.11 183.8 1.13 0.07 1.18 0.08 7.0 1.04

70 2.12 0.09 194.1 3.13 0.16 332.0 1.24 0.06 1.14 0.07 12.8 1.01

100 2.05 0.07 443.0 2.97 0.11 540.6 1.32 0.06 1.10 0.06 24.4 1.00

1.7 10 1.56 0.15 6.6 2.31 0.28 11.7 1.12 0.11 1.30 0.17 0.4 1.07

20 1.80 0.17 19.5 2.79 0.26 36.7 1.10 0.10 1.31 0.14 1.2 1.12

50 2.16 0.12 90.6 3.34 0.21 174.2 1.17 0.07 1.20 0.10 6.7 1.05

70 2.16 0.11 275.4 3.36 0.19 359.8 1.21 0.05 1.15 0.07 12.4 1.02

100 2.24 0.11 354.3 3.46 0.19 554.3 1.33 0.06 1.11 0.07 23.7 1.00

2.0 10 1.40 0.08 7.8 2.17 0.18 13.7 1.11 0.11 1.26 0.13 0.4 1.06

20 1.69 0.13 19.5 2.64 0.23 38.7 1.09 0.07 1.32 0.13 1.2 1.12

50 2.11 0.15 120.7 3.36 0.23 268.4 1.16 0.10 1.25 0.11 6.5 1.10

70 2.21 0.10 222.5 3.46 0.15 345.7 1.22 0.08 1.16 0.08 12.2 1.03

100 2.25 0.10 339.5 3.59 0.19 541.0 1.33 0.07 1.11 0.06 23.6 1.00
aComputational time of the Memetic algorithm [16] has been limited to 100 s

for sparse problems, i.e., d = 0.3, with increasing density, the solution quality is
quickly decreased. The proposed SOM does not provide competitive results to
the Memetic algorithm for sparse problems. However, with increasing density of
the locations, SOM solutions are competitive with the Memetic algorithm with
the running time limited to 100 s, while SOM provides solutions in less than 30 s.
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5 Conclusion

We proposed probably the first SOM-based solution of the Dubins traveling
salesman problem which includes challenges of the underlying combinatorial TSP
with the continuous optimization of the headings at the locations. Although the
results do not show significantly better solutions of SOM than a more compu-
tationally demanding Memetic algorithm, the results support feasibility of the
proposed idea and better scalability for larger and denser problems.

The distance of the farthest neurons utilized in the winner selection influences
how close the solution is to the underlying ETSP, which provides better results
for sparse problems, or the adaptation is more focused on optimization of the
headings. In this paper, we consider dense problems regarding the motivation of
surveillance planning, because we aim to further deploy the proposed solver in
more general problems with continuous sensing, i.e., sensing along the path and
not only in a finite set of locations. This problem can be considered as the TSP
with Neighborhoods, where SOM already exhibits its flexibility [6] for problems
without curvature-constrained paths. The proposed SOM for the DTSP is an
initial building block for solving this more general problem.
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Abstract. We are interested in a decomposition of motion data into a
sparse linear combination of base functions which enable efficient data
processing. We combine two prominent frameworks: dynamic time warp-
ing (DTW), which offers particularly successful pairwise motion data
comparison, and sparse coding (SC), which enables an automatic decom-
position of vectorial data into a sparse linear combination of base vectors.
We enhance SC via efficient kernelization which extends its application
domain to general similarity data such as offered by DTW, and its restric-
tion to non-negative linear representations of signals and base vectors in
order to guarantee a meaningful dictionary. We also implemented the
proposed method in a classification framework and evaluated its perfor-
mance on various motion capture benchmark data sets.

Keywords: Kernel sparse coding · Motion analysis · Classification ·
Interpretable models · Dynamic time warping

1 Introduction

Ubiquitous sensors such as Microsoft’s Kinect, video cameras, and motion cap-
ture systems cause an increasing availability of human motion data as digital
signals. However, it remains a challenge how to automate semantic search in
motion data bases, unless such data are labeled manually. In this contribution
we investigate in how far natural priors such as sparsity allow an automatic
extraction of semantically meaningful entities based on the given data alone.

We hypothesize that semantics is mirrored by recurring signals, which are
present in semantically similar motion data, and it is possible to infer such sig-
nals from given data based on their property that they allow a particularly effi-
cient description of the signals. We will rely on two techniques which have proven
successful in such settings: (1) Dynamic Time Warping (DTW) that enables an
efficient grouping of time series of different lengths according to their semantic
similarity, incorporating invariance to small temporal shift and distortion [13].
(2) Sparse Coding (SC), which extracts a dictionary from a given data set and
enables a sparse linear representation of the signals based thereon [2]. The result-
ing dictionary elements constitute an interface based on which semantic search
becomes possible: signals which decompose into the same dictionary elements
have a large semantic overlap.
c© Springer International Publishing Switzerland 2016
A.E.P. Villa et al. (Eds.): ICANN 2016, Part II, LNCS 9887, pp. 506–514, 2016.
DOI: 10.1007/978-3-319-44781-0 60



Non-negative Kernel Sparse Coding for the Analysis of Motion Data 507

Classical SC deals with vectorial data. To combine it with DTW, we will
resort to a kernel version of SC [15]. Several approaches apply SC for motion
data, but they provide unreasonable base functions and linear combinations due
to negative coefficients [7]. We will extend kernel SC to a non-negative version,
and we will demonstrate its accuracy for various motion capture benchmark data
sets.

2 Non Negative Kernel Sparse Coding

Sparse coding for vectorial data represents every measurement yi from a set of
measurements via a sparse representation yi = Dxi with a dictionary matrix D
of basic primitives, which are shared by all measurements, and sparse coefficients
xi, which describe how the observation yi is generated by the basic primitives.
In our setting, we deal with motion data instead, i.e. data are given as time-
series Y i = (yi(1)...yi(T )) ∈ (Rn)∗ of possibly varying length T . We assume
that a kernel is given for such time series (such as the DTW kernel), denoted
as K(Y i, Y j) = Φ(Y i)�Φ(Y j) with feature map Φ. In the feature space, sparse
coding problem becomes Φ(Y i) = Φ(D)xi, where Φ(D) is the dictionary matrix
in the feature space.

Usually, the feature map Φ is not available, hence this problem cannot be
solved directly. We follow the approach as proposed in [15]: we choose the dic-
tionary as linear combinations of data Φ(D) = Φ(Y)A with coefficient matrix
A. Often, A is chosen as an unconstrained matrix. However, we are interested in
semantically meaningful features, i.e. dictionary elements should have the char-
acteristics of motion signals and they should act as representatives for different
motion groups. For this reason, we impose two constraints on A and xi: The
coefficient vector xi, in addition to its sparseness, must be non-negative, such
that motion signals are constructed from the dictionary elements as a meaningful
mixtures of motions. For the same reason, the coefficient matrix A must be non
negative, and the formation of meaningful groups of dictionaries is enforced by
the sparsity of A by minimizing its L1 norm. Hence sparse coding becomes the
following optimization problem, where Y refers to all observed sequences and X
to its respective matrix of coefficients:

min
X,A

‖Φ(Y) − Φ(Y)AX‖2F + (‖A‖1)2

s.t ‖Xi‖0 ≤ T, aij ≥ 0, xij ≥ 0 ∀i, j
(1)

T limits the sparsity of the resulting SC. In order to solve this optimization
problem (Eq. 1), we use alternating optimization of the sparse coefficients and
the dictionary. These two steps are realized by “Non-Negative Kernel Orthogonal
Matching Pursuit (NNKOMP)” and “Non-Negative Kernel dictionary learning”,
described subsequently.

2.1 Non-negative Kernel OMP

KNNOMP optimizes the coefficients X in (Eq. 1) assuming a fixed dictionary
characterized by coefficients A. NNKOMP is based on the kernel OMP algorithm
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as proposed in [15], but enforcing non-negativity of the components. For this
purpose, when adding non-zero coefficients in a greedy way in the kernel OMP,
dictionary atoms with maximum positive correlation to the remaining residual
error are selected. After selecting a new non-zero component based, coefficients
Xi are optimized by the Non-negative least square algorithm (K-NNLS).

min
Xi

‖Φ(Yi) − Φ(Y)AXi‖22 s.t Xi ≥ 0, ‖Xi‖0 ≤ T (2)

For the K-NNLS method we use the active set “lsqnonneg” optimization algo-
rithm from [14], and we kernelize the parts that calculate the intermediate solu-
tion point and the gradient based on the variables selected in the passive set.
As a result, the output of the K-NNLS would be used as the solution in the
intermediate step of the NNKOMP algorithm.

2.2 Non-negative Dictionary Update

As the second part of our algorithm, we want to find the best dictionary Φ(Y)A
which minimizes (Eq. 1) while using the obtained coefficients X as the output
of NNKOMP in the previous section. Based on [15], the error function ‖Φ(Y) −
Φ(Y)AX‖2F can be re-formulated as:

‖Φ(Y)Ej − Φ(Y)AjXj‖2F ; Ej = (I −
∑

i�=j

AiXi) (3)

Φ(Y)Ej is the reconstruction error using all the dictionary columns except Aj

and along with corresponding coefficients X which were estimated by NNKMOP.
Therefore, the dictionary can be updated through solving the (Eq. 3) for each
Aj . As an important constraint we have to take into account that the optimal
dictionary should be used along with non-negative coefficients X. Accordingly
we formulate (Eq. 3) as the following alternating optimization set:

min
Xj

‖Φ(Y)Ej − Φ(Y)AjXj‖2F s.t Xj ≥ 0 (4)

min
Aj

‖Φ(Y)Ej − Φ(Y)AjXj‖2F + ‖Aj‖21 s.t Aj ≥ 0 (5)

In order to solve (Eq. 4), we used the large-scale non-negative least squares algo-
rithm from [10] which can be easily extended to a kernel version that fits to
(Eq. 4).

NN-Kernel FISTA: In order to solve the optimization problem in (Eq. 5), we
devised the non-negative kernel FISTA algorithm (NN-K-FISTA) which is a com-
bination of the projected gradient technique [9] and the Shrinkage-Thresholding
method [3]. We kernelize [3], by calculating f(Aj) and ∇f(a) for the objective
function f based on the Mercer kernel’s inner product property; the shrinkage
function is substituted with τl(x) = (x − l)(sgn(x − l) + 1)/2. As the last step
in the dictionary update part, we normalize the dictionary coefficients such that
‖Φ(Y)Aj‖22 = 1.
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2.3 Label Consistent NN-KSC Classifier

The proposed non-negative kernel sparse coding framework will be used as a
semantic encoding scheme for the observed motion data. In addition, we will
evaluate the ability to base a classifier on top of the proposed coding scheme,
as follows: We extend the label-consistent sparse coding as proposed in [4,6].
In the latter, kernelized KSVD has been used. We assume a labeling is present,
H is the label matrix of training data where H(i, j) = 1 if Yj is contained in
class i. In addition, we choose the matrix Q such that Qj = Qi if {Yj ,Yi}
are in the same class. The objective of sparse coding is now extended to enforce
that coefficients Xi and Xj are similar for data in the same class, weighted by
α. Further, base functions tend to accumulate coefficients for exemplars of one
class, weighted by β.

min
X,D

‖Φ(Y) − Φ(Y)AX‖2F + α‖Q − QAX‖2F + β‖H − HAX‖2F + ‖A‖21
s.t ‖Xi‖0 ≤ T, ∀i = 1...N., aij ≥ 0, xij ≥ 0

(6)

The optimization of this objective relates to a change of the kernel matrix as
K̃(Yi,Yi) = K(Yi,Yj)+α〈Qi,Qj〉+β〈Hi,Hj〉. Using the new K̃ as the kernel
function, (Eq. 6) can be solved by the proposed NNKSC algorithm. The para-
meters α and β control the trade-off between the reconstruction error and the
classification accuracy. After optimizing the dictionary matrix A, the NNKOMP
(Eq. 2) can be used to find sparse codes X. This induces a labeling of the data
via li = argmaxj |H(·, j)AXi|.

Furthermore, we are interested in having each column of A related to only
one class of data. Doing so, we can partition A into separate class-specific dic-
tionaries which will result in having specific prototypes and dictionary for each
class of data. Therefore, in NN-K-FISTA algorithm the shrinkage-Threshold will
be applied to only those elements of Aj related to data from classes with lower
contributions in Aj (via updating the value of HAj after (Eq. 4)).

3 Datasets and Experiments

In this section we compare the proposed LC-NNKSC algorithm with other base-
lines on a few benchmarks. All datasets carry motion signals. Hence, first, we
use the DTW algorithm to calculate a distance matrix D for the given sam-
ples. This is converted to a similarity matrix K using the Gaussian kernel
K(x, y) = exp(−‖x−y‖2

σ ). A valid Gram matrix results therefor by setting all
its negative eigenvalues to zero (clipping). For the comparison, we choose the
following methods:

LC-K-KSVD: We use a classification based on Kernel KSVD which has been
proposed in [4]; this approach is closely related to the proposed NNKSC as
regards its overall structure and objective.

kNN: We use the k-Nearest Neighbor classifier (k = 3) as a base line example,
with which we classify the data samples based on the pairwise DTW distances.
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Kernel-Kmeans: As another similar kernel based method, we apply the Kernel
K-means clustering [12] to find m (equal to size of dictionary A) cluster proto-
types. Afterward, the distance of each validation data Yi to all prototypes would
be calculated as Di = diag(E�K(Y, Y )E) − 2K(Yi, Y )E + K(Yi,Yi), where E
is the normalized cluster assignment matrix based on [12]. After passing D into
a Gaussian function to convert it to a normalized similarity matrix and keeping
the first T biggest elements for each data, the result has a similar structure to X
in the NNKSC algorithm. Then we feed the coefficients into a multi-class linear
SVM in order to classify the validation data.

Affinity Propagation: We chose Affinity Propagation algorithm [5] as an app-
roach which selects prototypes from the data samples in a clustering manner.
There, the gram matrix would be used as the similarity matrix, and the class
labels of validation data would be determined based on the closest neighboring
prototype to each data sample.

Kernel PCA: As the last method for the comparison, we use the kernel-PCA
approach from [11] to project the DTW based gram matrix K into M dimension
space resulting in data vectors X. We apply a multi-class linear SVM to classify
the generated data vectors.

In order to prevent local optima, for each method, we repeat the same exper-
iment with 10 different initial points (or initial dictionaries) and we choose the
one with the best result for the comparison.

3.1 Evaluation Criteria

Classification: We measure the correct classification rate as the first metric to
evaluate the performance of the algorithms. Each dataset is randomly split into
train, test and the validation parts with 50 %, 25 % and 25 % number of data
respectively, and the learning process of the dictionary is stopped according to
the increases in error curve of the test data. Finally, the classification accuracy
and other measures are calculated based on the validation data.

Reconstruction Error: Among the utilized methods, only LC-NNKSC and
LC-KKSVD belong to a sparse coding framework and provide a reconstruction
error (Eq. 2) as a measure of their accuracy in a sparse representation of the
data.

Class Based Sparsity: In addition, because another important concern of our
framework is to provide sparse representation for the data, we also consider the
level of sparseness for the coefficients X. So in order to measure the sparseness in
the classification framework we consider SPi as the number of non-zero elements
in

∑
k∈Classi

|Xk| for each class of the data, and we present the best and the worst

SPi for each algorithm.

Dictionary Sparseness: Furthermore, to study the dictionary interpretability,
we calculate the relevance of each dictionary atom dj to the data classes. We
can find the contribution of each data class in Dj via c = HAi where H is the
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class label matrix as in (Eq. 6). Then the dictionary sparseness is measured as
DS = cx/

∑
ck where cx is the biggest element in c.

3.2 Datasets

CMU Motion Dataset: We use the Human motion capture dataset from the
CMU graphics laboratory [1], which was captured by aVicon infra-red system.
We combined the movement data of subject 86 from the dataset which is a
combination of 9 different types of human movements such as “walking”, “run-
ning”, “clapping”,.... Then the data is segmented in order to brake down the
long movements into smaller segments as single periods of each type of motion.
Consequently, we obtain 9 classes of data with 10 sample per class, and for
implementing LC-NNKSC we used α = 1 and β = 5.

Cricket Umpire’s Signals: For our classification experiment we use Cricket
Umpire’s Signal data provided in [8]. This dataset contains 180 sample of data
from 12 different classes of umpire signals related to the cricket game. In order
to perform the sparse coding classification we choose α = 0.5 and β = 1.

Articulatory Words: The articulatory words dataset is the facial (ex. lips and
tongue) movement signals captured via EMA sensors [17]. The dataset is used
to categorize 25 classes of different words uttered by the subjects in total 575
sample of data. For this dataset we choose α = 0.2 and β = 0.5.

Squat Dataset: The squat dataset is gathered in our institute as a part of the
large-scale intelligent coaching project. The data is a set of squat movements
performed by three sport coaches while being captured by the optical MOCAP
system [16]. Each squat is segmented into three movement primitives “prepa-
ration”, “going down” and “comming up”, which generates 87 sample of data
and 9 class labels together with the coach labels. Classification of this dataset is
performed while using 1 and 0.2 as the α and β respectively.

3.3 Classification Results

For all the 4 dataset we choose the number of dictionary elements Ai as twice as
the number of total classes. As a rule of thumb, we assume the data in each class
can be reconstructed with a low error using only 2 atoms related to that class.
We use the same value as the number of prototypes and the mapping dimension
in K-Kmeans and K-PCA respectively. Also for the NNKSC and the LC-KKSVD
algorithms we choose the sparsity limit T = 4 to see how the algorithm is going
to use these 2 additional redundancy levels for the dictionary learning and the
reconstruction.

In Table 1, the classification result are provided. We can see that for all
datasets the proposed algorithm achieved the highest classification accuracy
among the evaluated methods; however for Cricket and Words datasets the LC-
KKSVD provided similar accuracy rates to LC-NNKSC (83.33 % and 97.33 %)
while having smaller reconstruction errors due to the non-negative restrictions.
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Table 1. Classification accuracy (%) and the reconstruction error (%) from applying
the selected methods on the chosen datasets

CMU Cricket signals Articulatory words Squat

Acc Rec. Err Acc Rec. Err Acc Rec. Err Acc Rec. Err

LC-NNKSC 90.91 4.17 83.33 11.07 97.33 14.52 100 0.14

LC-KKSVD 86.36 7.44 83.33 10.1 97.33 7.8 85 3.4

K-Means+SVM 68 – 56.25 – 90 – 81 –

Affinity P 90.1 – 68.75 – 92 – 100 –

K-PCA+SVM 50 – 56.25 – 60.66 – 37 –

kNN 86.36 – 79.16 – 96.66 – 100 –

Also in some of the datasets, the affinity propagation and the kNN managed to
obtain performance levels equal to the proposed method, for example both have
100 % classification accuracy for CMU dataset; nevertheless they do not pro-
vide any reconstruction model for the data in comparison to the sparse coding
framework.

Table 2 brings the sparsity analysis of the results, as the best and the worst
measures (bDS, wDS) for the relevance of dictionary elements to the classes, as
well as the best and worst number of class based sparsity (bSP, bSP). According
to the Table 2, LC-NNKSC provide models for the datasets with better sparse-
ness regarding both the dictionary atoms and the class data reconstruction. For
all datasets, it defines each dictionary atom using the data of a single class which
results in almost 100 % dictionary sparseness. For the squat data the algorithm
managed to reconstruct the data of each class using only one specific atom
(wSP = bSP = 1), meaning that only half of the dictionary is needed to model
this data with NNKSC. Also, due to the value of wSP in Cricket and Words
data (4 and 3 respectively), apparently there exist classes which require more
than 2 dictionary atoms to be reconstructed and categorized efficiently.

The LC-KKSVD too has a high classification accuracy for Cricket and Words
data, but this performance is lower than Affinity Propagation in the other 2
datasets. Furthermore, from the sparseness point of view, it is outperformed
even by Affinity propagation by providing lower class based sparsity.

Table 2. The best and worst class based sparseness (bSP and wSP), and the best and
worst dictionary sparseness (bDS(%) and wDS(%)) for the different selected approaches

CMU Cricket signals Articulatory words Squat dataset

bSP wSP bDS wDS bSP wSP bDS wDS bSP wSP bDS wDS bSP wSP bDS wDS

LC-NNKSC 1 2 100 100 1 4 100 100 1 3 100 98.1 1 1 100 100

LC-KKSVD 5 9 100 76 5 13 100 44 5 16 100 56 3 8 100 87

Affinity P 4 6 – – 6 4 – – 5 11 – – 4 5 – –

K-Means 4 17 100 50 5 27 100 16 5 50 100 50 4 12 100 60
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4 Conclusion

In this paper we presented a non-negative kernel based sparse coding approach
for modeling and classification of motion data. According to the results, the non-
negative approach provides much sparser representation for the data comparing
to the conventional Kernel SC method, using fewer number of prototypes to
reconstruct the motion signals. Additionally, where it is possible the LC-NNKSC
approach forces dictionary elements to be created using positive linear combina-
tion of data only from individual classes. Doing so, the obtained dictionary can
be easily broken down to class based dictionaries as separate prototype-based
models for each class of data. In addition these sub-dictionaries can be used as
a warm start in further classification tasks even when there is different com-
bination of classes. All together, the LC-NNKSC classifier provides dictionary
prototypes and sparse coefficients which are more class based consistent and
makes it possible to have individual models for reconstruction of each class of
data as well as for its classification.

Based on the strength of this method in constructing prototype based models
for the motion data, there is a considerable potential for future works on the
clustering and designing generative models of motion data using this framework
or its variants.
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Abstract. Adaptive cruise control is a system which controls a vehicle
equipped with radars and a control unit to maintain either velocity of
the vehicle or the distance between the preceding vehicle. The basic
principle of this system is to read and interpret the radar measurement
to determine the required actuating signals and apply these signals to
reach the desired goal. In this work, the control is accomplished using a
feed-forward artificial neural network, and its role is discussed. All the
system is modelled in MATLAB/SIMULINK environment, and the main
contribution of this work is to show the applicability of artificial neural
network structure to an engineering problem at system level.

Keywords: Vehicle · Adaptive cruise control · Artificial neural
network · MATLAB · Controller

1 Introduction

Nowadays autonomous driving has taken attention by engineers and commercial
companies. Autonomous indicates that a computer based controller should con-
trol the vehicle in a proper manner. Main intentions of the modern autonomous
vehicles are comfort and safety. In order to provide these features, the vehicle
must recognize its environment and act accordingly. Thus, the controller con-
trols the vehicle by sending actuating signals to the mechanical actuator which
changes the dynamical condition of the vehicle by investigating its environment
with sensors equipped around the vehicle.

The controller can be modelled or created in many ways in any part of the
vehicle, here the technology of Adaptive Cruise Control (ACC) is considered
and a controller is added to control the autonomous behaviour. ACC is a system
that gathers the preceding car (here after leading vehicle (LV)) velocity and
the distance between the ACC equipped car (here after host vehicle (HV)) and
LV, then by processing these data, it sends required signal to the throttle or
brake actuators in order to achieve the desired goal. These goals can be either to
keep the desired distance between two vehicles or to reach the maximum velocity
point adjusted by the driver. ACC system requires some mathematical models or
c© Springer International Publishing Switzerland 2016
A.E.P. Villa et al. (Eds.): ICANN 2016, Part II, LNCS 9887, pp. 515–522, 2016.
DOI: 10.1007/978-3-319-44781-0 61
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maps of the vehicle and the engine so that it can be able to decide what should
the actuating signals be. Thus, like inaccuracies in most of the mathematical
models, vehicle dynamics and engine model with power train loss etc. can cause
inaccurate actuating signals. In order to prevent that in the system modelled
in [1] a PI controller is utilized to correct the required actuating throttle signal
obtained mainly by the vehicle engine inverse map.

In this work, PI controller is exchanged by a Artificial Neural Network (ANN)
to correct the throttle signal. PI controllers requires coefficients to be set before-
hand and adjusted accordingly to fit all the situations. Unlike PI controllers,
ANN has the capability of learning and changing the coefficients based on the
information provided to it. These abilities make ANN adaptive to the changing
situations. All the superiorities of the ANN makes it worth to be built as a con-
troller for the automatic systems. ANN is first mentioned in [2] as a controller
and is used in many control applications [3,4]. ANN is also considered as an
ACC controller in [5–7]. The ANN structure considered here as controller is a
simple feed-forward structure and works online adapting its parameter values to
provide a better throttle signal.

In order to investigate the effect of ANN controller on ACC, ACC system
is modelled in MATLAB/SIMULINK environment using a very basic vehicle
dynamic model considering some assumptions and then ANN is integrated into
it by modelling it directly with simple SIMULINK blocks. At the beginning
ACC is modelled with a basic equation and then some noise and delays for the
dynamic actuators are added for further investigations. The effect of ANN is
considered also both in the absence and presence of white noise added to the
throttle actuator.

2 Adaptive Cruise Control

ACC controller is modelled in order to read the data from vehicle radar system
mounted in front of the vehicle and interpreted accordingly. Radar reading is
used to determine the switching between two modes allowed by the ACC system:
spacing control and velocity control. Therefore, in order to simulate the readings,
controller behaviours and vehicle dynamics a model is created as in Fig. 1.

The method of ACC utilized in this work is based on the work in [1]. Making
some assumptions mentioned in [1] for the vehicle dynamics leads to one single
equation which describes the vehicle longitudinal dynamics. So, it is assumed
that, vehicle clutch is always connected. Meaning that there is no torque inter-
ruption and time delay in order to shift gear and there is no tire slip. Then the
equation describing the longitudinal dynamics can be written as following;

TeRg − (Tb + Mrr + hFa + mghsinθ) = βa. (1)

Where Te is engine, Tb is brake, Mrr is rolling resistance, hFa is aerodynamic
and final term is road gradient torque acting on the vehicle.

Equation 1 shows that net torque acting on a vehicle tire is equal to lamped
inertia times acceleration of the vehicle. All the quantities denoted in equations
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Fig. 1. Main SIMULINK model of the ACC system.

along with the parameter values are given in Table 1. In [1], Eq. 1 is inconsistent
and miswritten and it is corrected here. This equation is manipulated in order
to get the desired variable by leaving it alone in left side of the equation. That
variable will be either torque required for the desired acceleration or acceleration
provided by torques. Lumped inertia (β) consist of all the inertial parameters of
the vehicle defined in Eq. 2 along with the final drive ration (Rg).

β =
Je + R2

g

(
Jwr + Jwf + mh2

)

Rgh
. (2)

ACC reads radar data and feed them into upper controller. Upper controller
can be followed from Fig. 2(a). It has two modes and determines whether it will
switch into spacing control or velocity control. If it does not detect any vehicle

Table 1. Parameters

Parameter Definition Value Unit

Je Inertia of Engine 0.16 kgm2

Jwr, Jwf Inertia of Rear and Front Axle 5.15 kgm2

Ca Aerodynamic Drag Coefficient 0.30

K1 0.5

K2 0.5

K3 0.00007

RadarRange 100 m

tgap Time Gap 1.5 s

Δ Inter Vehicular Distance 5 m

θ Road Gradient 0 rad

m Vehicle Mass 1650 kg

h Tire Radius 0.3 m
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within the radar limits it uses directly velocity control, in case it detects a vehicle,
it reads the velocity of LV and determines required acceleration to achieve the
desired goal. By comparing two accelerations calculated by velocity and spacing
control, it provides the minimum acceleration required for the control. Acceler-
ation (a1) required to achieve the desired maximum velocity (vd) is obtained as
follow,

a1 = K1 · (vd − vh). (3)

Desired acceleration (a2) required for the spacing control is obtained by con-
sidering the desired time gap (tgap) and distance (Δ) to be kept in case both
vehicles are completely stopped. The desired distance (Sd) and acceleration are
calculated in the spacing control block as following.

Sd = Δ + (vh · tgap) (4)

a2 = K2 · (vl − vh) + K3 · (Sd − Sa). (5)

Where vl is velocity of LV and Sa is the actual inter vehicular distance.

Fig. 2. The details of two controllers denoted in Fig. 1 (a) Upper level controller.
(b) Lower level controller

After the calculation of desired acceleration (ades), lower level controller gets
the data and determines whether throttle control or brake control should be
applied by comparing the desired acceleration and the residual acceleration (ares)
which is the acceleration when there is no torque component created by any
input. It should be mentioned that there is a torque Tect provided by the engine
and the resistances even there is no throttle or brake commands. Thus the ares

can be calculated as follow where Te = Tb = 0,

ares =
TectRg − Mrr + hFa + mghsinθ

β
. (6)

Then comparison is made by adding small hysteresis hyst and decision is
made as follow,

ades − ares > hyst −→ Throttle control
ares − ades > hyst −→ Brake control.

(7)
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and modelled as in Fig. 2(b). In this figure desired acceleration is used to
obtain the required engine torque by using Eq. 1 and feeding obtained torque
into inverse engine map gives the required throttle position which is sent to the
engine controller and engine generates the torque. The engine and brake system
dynamics are considered as first order systems, roughly and by setting response
time to 0.1 s gives a transfer function representation.

In the throttle control block, there was an additional PI controller in [1]
which is intended to correct the throttle position caused by the inaccuracies in
engine map and inverse of it. It is intended to compensate difference between the
desired and actual acceleration of the vehicle. That PI controller is exchanged
by a ANN controller in this work in order to see the effects of it in an ACC
system.

3 ANN Controller

ANN is considered here as a controller which adapts its weights to minimize
the difference between desired acceleration and the vehicle’s acceleration. ANN
which is implemented into the throttle control block is designed to build a rela-
tion between the desired acceleration and the torque applied to the vehicle in
order to effect the dynamics of the vehicle. All this is shown in Fig. 3(a).

Fig. 3. ANN controller integration into throttle control (a). ANN controller design (b).

ANN is consist of two main blocks where the signal flows forward and takes
the outputs from all the layers using the current weight values. Calculated out-
puts are used in order to calculate the local gradients and to generate new
weights. Very basic mathematical description of the multilayer ANN can be
described as follows,

vi
k = W ixi−1, yi = ϕ(vi). (8)

where, x is an input vector to a layer i, W i is denotes the weight between
two successive layers, vi is applied to an activation function defined by ϕ is
sigmoid function in hidden layers and linear function in the output layer and yi

is the layer output. In ACC controller, position of throttle can vary between 0



520 A. Kuyumcu and N.S. Şengör

to 100 percent, so the activation function for the output layer is taken as linear
function.

To update the weights, local gradients for each layer should be calculated.
Equation 12 shows the calculation explicitly for the output layer. Since the cal-
culated error is not the output of the controller but the output of the vehicle
itself the local gradient for the output layer is adjusted as follows,

δ0 = − (ades − aactual)
aactual − aactual−1

σdes − σdes−1
(9)

δ2 =
(
W 2δ0

)
.ϕ′(vi) (10)

These gradients are used to update the weights as follows with the contribu-
tion of learning rate η and the momentum term μ,

W i (k + 1) = W i (k) − ηδiyi−1 + μ
[
W i (k) − W i (k − 1)

]
(11)

In order to implement Back-Propagation shown in Fig. 3(b) directly as
MATLAB codes to the system implemented, MATLAB Fcn blocks are used.
For updating weights, there are variables that are needed from previous steps to
calculate the outcome, so Memory block is used to handle this problem.

4 Simulation Results

Two different vehicles were implemented as a velocity profile like in Fig. 4 and
positions of them were obtained by integrating the velocities with the initial
positions shown in Fig. 5. Solid and sharp line in Fig. 4 indicates the velocity of
the LV read by the HV and upper two lines inf Fig. 5 indicates two LVs position.
There are four different analysis in each figure. Two of them were carried on
without ANN controller and there are two analyses where white noise added
into throttle system. Adding noise, clearly does not affect the vehicle behaviour
very much, since the actual acceleration output is integrated once to get the
velocity and twice to get the position and its effect is smoothed out.

The behavior of the system without ANN controller can be followed in Fig. 4
with dashed lines and this case has some delays. Solid lines have some little
offset compared with the dashed ones which means ACC with ANN provides
more quick response to change in radar reading and allows the HV to adapt
quickly to the behavior of the LV or it shifts mode accordingly to reach maximum
velocity. One can see that, two lines cross each other in Fig. 5 at approximately
in 140th s indicating that a second car changes its lane interrupting the LV and
HV by becoming a new LV and HV successfully follows the new one after the
interruption. This is indicated in Fig. 4 as a drop in velocity to 50 km/h which
is the velocity of the second LV.

Figure 6 shows the distance read by the HV in each configuration. Solid lines
indicates the ANN controller effect on ACC system. It can be said that ANN
allows the HV to follow the LV more closely.
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Fig. 4. Velocities of the leading and host vehicles with and without ANN controller
and white noise.

Fig. 5. Positions of the leading and host vehicles with and without ANN controller and
white noise.

Fig. 6. Distances between the leading and host vehicles with and without ANN con-
troller and white noise.
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5 Conclusion and Discussion

The main objective of this work was to implement an ANN controller mod-
elled in SIMULINK and integrate it into a vehicle control system. This has
been done successfully and it is shown that ANN can provide fast response and
narrow vehicular distance for the ACC system. The ACC system can be fur-
ther improved, considering the biological facts and by implementing biomimetic
cruise controllers [9,10].
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Abstract. In this paper, an overview of human-machine interactive
communication for controlling lifting devices is presented, covering also
the integration with vision and sensorial systems. Following a general
concept, and motivation towards intelligent human-machine communica-
tion through artificial neural networks, selected methods are proposed,
which provide further directions both of recent as well as of future
research on human-machine interaction. The aim of the experimental
research is to design a prototype of an innovative interaction system,
equipped with a speech interface in a natural language, augmented reality
and interactive manipulators with force feedback. The presented research
offers the possibility of motivating and inspiring further development of
the intelligent speech interaction system and methods that have been
elaborated in this paper.

Keywords: Intelligent interface · Neural networks · Interactive system ·
Speech communication · Intelligent control · Natural language processing

1 The Design of an Innovative Human-Machine Interface

The most up-to-date artificial intelligence-based technologies find their appli-
cation in the process of designing modern systems for controlling and super-
vising machines. An example are vision systems - machine vision, augmented
reality, voice communication as well as interactive controllers providing force
feedback. The design and implementation of intelligent human-machine inter-
active communication systems is an important field of applied research. Recent
advances in development of prototypes of human-machine speech-based inter-
faces are described in articles in [1–3].

The presented research involves the development of a system for control-
ling a mobile crane, equipped with a vision and sensorial system, interactive
manipulators with force feedback, as well as a system for bi-directional voice
communication through speech and natural language between an operator and
the controlled lifting device [4]. The system is considered intelligent, because it
is capable of learning from previous commands to reduce human errors.
c© Springer International Publishing Switzerland 2016
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Fig. 1. Designed structure of an innovative system for interaction of the loader crane
(Hiab XS 111) with its operator equipped with a speech interface, vision and sensorial
systems, and interactive manipulators with force feedback.
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The ARSC (Augmented Reality & Smart Control) prototype control sys-
tem uses: intelligent visual-aid systems based on augmented reality, interactive
manipulation systems providing force feedback, as well as natural-language voice
communication techniques. We propose a new concept which consists of a novel
approach to these systems, with particular emphasis on their ability to be truly
flexible, adaptive, human error-tolerant, and supportive both of human-operators
and data processing systems. The concept specifies integration of a system for
natural-language communication with a visual and sensorial system.

The proposed interactive system (Fig. 1) contains many specialized modules
and it is divided into the following subsystems: a subsystem for voice communi-
cation between a human-operator and the mobile crane, a subsystem for natural
language meaning analysis, a subsystem for operator’s command effect analysis
and evaluation, a subsystem for command safety assessment, a subsystem for
command execution, a subsystem of supervision and diagnostics, a subsystem of
decision-making and learning, a subsystem of interactive manipulators with force
feedback, and a visual and sensorial subsystem. The novelty of the system also
consists of inclusion of several adaptive layers in the spoken natural language
command interface for human biometric identification, speech recognition, word
recognition, sentence syntax and segment analysis, command analysis and recog-
nition, command effect analysis and safety assessment, process supervision and
human reaction assessment.

2 Meaning Analysis of Commands and Messages

The concept of the ARSC system includes a subsystem of recognition of speech
commands in a natural language using patterns and antipatterns of commands,
which is presented in Fig. 2.

In the subsystem, the speech signal is converted to text and numerical val-
ues by the continuous speech recognition module. After a successful utterance
recognition, a text command in a natural language is further processed. Individ-
ual words treated as isolated components of the text are subsequently processed
with the modules for lexical analysis, tokenization and parsing. After the text
analysis, the letters grouped in segments are processed by the word analysis
module. In the next stage, the analyzed word segments are inputs of the neural
network for recognizing words. The network uses a training file containing also
words and is trained to recognize words as command components, with words
represented by output neurons.

In the meaning analysis process of text commands (Fig. 3A) in a natural
language, the meaning analysis of words as command or message components is
performed. The recognized words are transferred to the command syntax analysis
module which uses command segment patterns. It analyses commands and iden-
tifies them as segments with regards to meaning, and also codes commands as
vectors. They are sent to the command segment analysis module using encoded
command segment patterns. The commands become inputs of the command
recognition module. The module uses a 3-layer Hamming network to classify the
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Fig. 2. A concept of a system of recognition of speech commands in a natural language
using patterns and antipatterns of commands.

command and find its meaning (Fig. 3B). The neural network of this module
uses a training file with meaningful executable commands.

The proposed method for meaning analysis of words, commands and
messages uses binary neural networks (Fig. 3A and B) for natural language
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Fig. 3. (A) Block diagram of a meaning analysis cycle of an exemplary command,
(B) Illustrative example of recognition of commands using binary neural networks.

understanding. The motivation behind using this type of neural networks for
meaning analysis [5] is that they offer an advantage of simple binarization of
words, commands and sentences, as well as very fast training and run-time
response. The cycle of meaning analysis for an exemplary command is presented
in Fig. 3A. The proposed concept of processing of words and messages enables a
variety of analyses of the spoken commands in a natural language.
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Fig. 4. (A) Hybrid neural model of effect analysis and safety assessment of commands
in a cargo manipulation process, (B) The architecture of the hybrid neural network
used, (C) Neuron of the pattern layer, (D) Neuron of the output layer.

3 Effect Analysis and Safety Assessment of Commands

The problem of effect analysis and safety assessment of commands can be solved
with hybrid neural networks. The proposed method (Fig. 4A) uses developed
hybrid multilayer neural networks consisting of a modified probabilistic network
combined with a single layer classifier. The probabilistic network is interest-
ing, because it is possible to implement and develop numerous enhancements,
extensions, and generalizations of the original model [6]. The effect analysis and
safety assessment of commands is based on information on features, conditions
and parameters of the cargo positioning process. The developed hybrid network
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Fig. 5. Proposed learning systems using previously executed operations and patterns
executed by the operator.

(Fig. 4B, C and D) is applied for classification of the cargo manipulation process
state.

The proposed innovative speech interface is equipped with learning systems
using previously executed operations and patterns executed by the operator.
The developed learning systems are based on proposed hybrid neural networks
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(Fig. 5) consisting of self-organizing feature maps (Kohonen networks [7]) com-
bined with a probabilistic classifier. The inputs of the hybrid networks contain
selected features of the parameters describing configurations of the loader crane.
The outputs represent individual configurations of the crane which provide self-
organizing feature maps of the previously executed operations and patterns exe-
cuted by the operator.

4 Conclusions and Perspectives

The designed interaction system is equipped with the most modern artificial
intelligence-based technologies: voice communication, vision systems, augmented
reality and interactive manipulators with force feedback. Modern control and
supervision systems allow to efficiently and securely transfer, and precisely place
materials, products and fragile cargo. The proposed design of the innovative
AR speech interface for controlling lifting devices has been based on hybrid
neural network architectures. The design can be considered as an attempt to
create a new standard of the intelligent system for execution, control, supervision
and optimization of effective and flexible cargo manipulation processes using
communication by speech and natural language.
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Abstract. Orthogonal initialization of weight matrices is a promising
trick for training deep convolutional [3] and recurrent neural networks
[2]. In linear case it leads to faithful propagation of gradients through
many layers [4] and preventing the vanishing/exploding gradient prob-
lem because of norm-preserving properties of orthogonal mappings. We
propose a novel Orthogonal Permutation Linear Unit (OPLU) activa-
tion function that implements non-linear piece-wise orthogonal mappings
based on permutations. For each pair of neuron’s inputs {ai, aj} we get

a pair of outputs {zi, zj} as follows: if ai ≥ aj then
(
zi zj

)T
=
(
ai aj

)T
else

(
zi zj

)T
=
(
aj ai

)T
. It is straightforward to implement and very

computationally efficient. A sufficient condition for strict preservation of
the norm of backpropagated gradients is orthogonality of Jacobian matri-

ces ∂z(n)

∂z(n−1) where n is layer’s number. OPLU acts pairwise on layer’s out-
puts and its derivative is an orthogonal operator at every point. OPLU
activation function ensures norm preservation of gradients backpropa-
gated through the non-linearity. This approach is promising the training
of deep, extra deep, and recurrent neural networks thanks to strong and
clear mathematical justification that guarantees strict norm preservation
for unlimited number of layers if their weight matrices are orthogonal.
We tested it on two toy problems namely MNIST and Adding problem
for convolutional and simple recurrent networks respectively. It shows
similar performance to tanh and ReLU. Exploring of its potential and
limitations for real-life problems is a subject of our future research. For
details, please see our full paper at [1].

Keywords: Orthogonal initialization · Vanishing gradient effect · Sim-
ple recurrent networks
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Abstract. Human activity recognition (HAR) is a prominent research
area attracting considerable interest in recent years. The use of Body
Sensor Networks has enabled researchers to collect user data on which
machine learning techniques can be employed for modelling and classifi-
cation tasks. More recently, smartphones with inertial sensors allow the
collection of user activity data. With environments becoming increasingly
connected through the Internet of Things (IoT) and the development
of smart buildings, data can be meticulously collected to identify pat-
terns of human activity. Health care is an area of great interest focussing
on activity based classification research for the promotion of wellbeing,
with research centers engaging with individuals in a real world context
to improve caregiving [1]. We have conducted experiments to under-
stand how the application of machine learning, specifically Deep Stacked
Autoencoder Networks (DSAN), along with traditional models including
the Multi-layer Perceptron, Radial Basis Function Neural Network and
Support Vector Machine for comparison, perform in presenting a solution
to the HAR problem. The research analyses data collected from smart-
phones in order to classify between motion based activities including
walking, running, and transitional actions such as moving from a sit-
ting to standing position [2]. Results show that the DSAN outperforms
traditional models with an increase in classification accuracy. A Deep
Reinforcement learning approach is considered for future investigation
into human behaviour recognition and prediction in smart environments
in order to improve classification performance.

Keywords: Human activity recognition · Machine learning · Artificial
neural networks · Deep learning
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Abstract. The Recursive-Rule eXtraction (Re-RX) algorithm family
includes the Re-RX algorithm, the Re-RX algorithm with both discrete
and continuous attributes (Continuous Re-RX [1]), the Re-RX algorithm
with J48graft [2], Re-RX with J48graft combined with Sampling Selec-
tion Techniques (Sampling Re-RX with J48graft [4]), and the Re-RX
algorithm with a trained neural network (Sampling Re-RX [3]). In this
study, we compare the performance of the Re-RX algorithm family with
various previous algorithms. One issue that always remains important in
rule extraction is Pareto optimality, or in other words, an ideally balanced
trade-off. In rule extraction, the trade-off is between the classification
accuracy and interpretability of extracted rules. Our goal is to obtain a
wider viable region for the Pareto optimal curve that will enable improve-
ments in both the accuracy and interpretability of extracted rules. We
vividly demonstrate Pareto-optimal curves between the accuracies and
number of rules obtained for German and Australian datasets by 10
runs of 10-fold cross validation of the Re-RX algorithm family and those
obtained using other algorithms. The Re-RX algorithm family has proven
effective for extracting concise and interpretable rules from medical
[1, 2, 4] and financial [3] datasets.
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Abstract. We investigate the intricate relationship between human
brain structure and function from a complex networks perspective.
Indeed, several works in neuroimaging data analysis indicate the presence
of robust partitions in both structural and functional networks, thus con-
firming that these two networks are interdependent. The function acts
on the structure in virtue of the mechanism of neural plasticity, and con-
versely the structure acts on the function by means of topological con-
straints. In the attempt to understand this relation, we focus on groups
of nodes making a comparison among structural and functional neural
networks by exploiting their hierarchical modular organization. With
respect to traditional methods in the community detection framework,
we have developed a novel approach which allow us to figure out a com-
mon skeleton shared by structure and function in brain network. Using
this, a new, and optimal common partition, can be extracted from duplex
structure-function networks. Specifically, an algorithm, based on a prob-
abilistic network model, has been developed to design an unsupervised
multi-layer community detection. Hence, a numerical implementation has
been rooted on the Expectation-Maximization technique (EM) to per-
form statistical inference on real brain data. We tested our algorithm on
structural connectivity (SC) and resting state functional connectivity
networks (rsFC) extracted from 12 healthy patients. Furthermore, we
define a novel network measure called Cross-Modularity X, suitable to
quantify the grade of similarity between two layers partitions. Finally, in
order to validate our clustering algorithm, we use this quantity to make
a comparison with classical single-layer community detection methods.
As main result we obtain that the correlations between structural and
functional networks are improved when the comparison has been made
at the level of our extracted partition.

Keywords: Complex networks ·Multi-layer community detection · Sta-
tistical inference · Neural networks
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Abstract. Neural networks have been recognized as a useful tool for the
function approximation problems with high-nonlinearity [1]. Training is
the most important step in developing a neural network model. Gradi-
ent based algorithms are popularly used for the training. The popular
methods are first-order methods so called Steepest Gradient (SG), Clas-
sical Momentum (CM), Nesterov’s Accelerated Gradient (NAG) meth-
ods and a more dedicated method such as RPROP. On the other hand,
quasi-Newton (QN) method which is one of the most efficient optimiza-
tion techniques with super-linear convergence is also widely utilized for
more complicated problems. However, when applied to highly nonlinear
function modeling, the above methods even QN still converges too slowly
and optimization error cannot be effectively reduced within finite time.

This paper describes a novel acceleration technique of QN using Nes-
terov’s accelerated gradient [2]. The proposed algorithm is referred to as
Nesterov’s accelerated quasi-Newton (NAQ) method. The update equa-
tion of the approximated matrix of Hessian is mathematically derived
from the quadratic approximation of error function. The Hessian is
approximated using both of the normal gradient and the Nesterov’s accel-
erated one in NAQ. NAQ is a technique for accelerating QN that accumu-
lates an update vector in directions of persistent reduction in the objec-
tive across iterations. As a result, the iteration during the NAQ training
can be shortened without loss of the strong ability to search a global
minimum in QN. The proposed algorithm is demonstrated through the
computer simulations for the benchmark problems with high-nonlinearity
compared with SG, CM, NAG, RPROP and QN. From the simulation
results it is shown that NAQ is faster than the conventional methods
without compromising quality of training solutions.

Keywords: Neural networks · Training algorithm · Nesterov’s acceler-
ated gradient method · Quasi-Newton method
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Abstract. The Earth’s magnetosphere is a complex dynamic system
whose state is hard to predict due to its dependence on solar wind, inter-
planetary magnetic field, and on its own recent history. Neural networks
are able to construct a non-linear function mapping all these factors to
future values of geomagnetic Dst index, which is usually used to char-
acterize the degree of disturbance of the Earth’s magnetosphere. The
prediction horizon considered in this study ranges from 1 to 12 h.

The study considers ensemble approach, combining perceptron type
base neural networks in a simple ensemble by averaging their predictions,
and stacked generalization approach, feeding the predictions of the base
networks to the inputs of special supervisor neural networks and com-
bining the latter in a simple committee by averaging their predictions.

For small prediction horizons (up to 3 h), the statistical indexes of
predictors are very good - the multiple determination coefficient exceeds
0.88. With increasing prediction horizon, the complexity of the prob-
lem monotonously increases, causing a drastic drop in the performance
indexes. ANN models outperform the trivial model (prediction = latest
value) completely. The preceding study of the authors [1] for a similar
task demonstrated that ANN (with small simple ensemble and without
stacked generalization) also outperformed such powerful data analysis
methods as Partial Least Squares and Group Method of Data Handling.

Using stacked generalization approach, even over identical MLPs dif-
fering only by weights initialization and the order of presentation of
samples, yields additional gain in prediction quality. This gain increases
with increasing complexity of the task either with increasing prediction
horizon, or if the statistical indexes are measured on more complicated
cases for disturbed magnetosphere (magnetic storms with large absolute
values of the predicted Dst index).

This study was supported by RFBR grant no.14-01-00293-a.
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netosphere · Committee of predictors · Ensemble · Stacked generalization
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Abstract. Nowadays, it is widely admitted that urolithiasis has become
a frequent disease [1]. The most famous epidemiological study has
pointed out the existence of numerous types of calculus, as a function of
some morphological and constitutional intrinsic characteristics [2]. Deter-
mination of urinary calculi types is hence important to set suitable diet
or treatment and consequently, to limit risks of renal function deteri-
oration and relapse. Several parameters, that should characterize both
the stone composition and the patient’s profile, have been used in the
classification process (age, gender, region, background, calculi composi-
tion...). In a first step, a statistical treatment of more than six hundred
(600) experimental data has been carried out in order to perform an
adequate interpretation of the obtained results and hence, to adopt the
most suitable algorithm. Afterward, several models have been tested and
compared i.e., the artificial neural network multi layer perceptron (MLP)
trained with both Broyden-Fletcher-Goldfarb-Shanno (BFGS) [3] and
the standard back propagation [4] error learning algorithm, as well as
the support vector machine (SVM), with different kernels [5], in order to
identify the calculi types, according to their compositions and patient’s
profile. These latter represent twenty-two (22) entry features used in the
classification process. Preliminary results show that MLP (BFGS) was
the best model for the urolithiasis type identification, regarding to its
lowest error rate.

Keywords: Artificial neural network · Comparative study · Urinary
lithiasis · Type identification
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Abstract. Chaotic systems have been widely studied and applied in
many real-world applications and laboratory experiments such as elec-
tronic circuits, secure communication, smart grids, power systems protec-
tion, and so on [1]. The design and circuit implementation of multi-scroll
chaotic systems have been a subject of increasing interest due to their
potential applications in various chaos-based technologies and informa-
tion systems. Recent investigations discussing the control, modeling and
synchronization problems of multi-scroll chaotic systems are mentioned
in [2, 3].

This paper considers the problem of developing an adaptive neural
network (NN) for constructing models that incorporate a prior knowl-
edge in the form of differential equations for multi-scroll chaotic sys-
tems. For this purpose, we represent the results of the use of multi-layer
feed-forward back-propagation neural network to model some well-known
multi-scroll chaotic systems, especially, the n-scroll Chua’s circuit and
the multi-scroll Chen system. The specified neural network is trained
with the system model extracted from the time series. The Levenberg-
Marquardt (LM) algorithm is used as the training function to update
weights and biases values according to LM optimization. Further, in com-
mon with other NN-based researches, the hidden layers and the number
of their neurons are selected via trial-and-error method. The capability of
the adaptive neural network to approximate this type of chaotic systems
is confirmed by numerical simulations.

Keywords: Artificial neural networks · Chaotic behavior · LM opti-
mization · Multi-scroll systems
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Abstract. Increasing the application of high resolution spatial data
such as high resolution satellite or Unmanned Aerial Vehicle (UAV)
images from Earth as well as High Resolution Imaging Science Experi-
ment (HiRISE) images from Mars makes it necessary to develop auto-
mated techniques capable of extracting their detailed information. Fur-
thermore, model validation based on multi-temporal images in different
Environmental management issues and geophysical problems such as cli-
mate change effects demand more precise imagery-processing in remote
sensing discipline. This study intends to develop a methodology based
on Artificial Neural Network (ANN) algorithm to achieve the automatic
extraction of small footprints from these high resolution images in order
to facilitate and speed up image analysis along with the improvement of
the results accuracy. Mapping different types of micro-landforms, such
as aeolian, glacier and volcanic minor features, and extracting their mor-
phometric and pattern information on planets is challenging because
of their small footprint on satellite images and their large numbers or
high density in small areas. Unfortunately available feature extraction
modules of remote sensing software don’t work properly for the size of
these features. Previous studies traced and digitized small features man-
ually (e.g. [1]). This proposal intends to create a framework based on an
unsupervised ANN algorithm to automatize outlining these features and
extracting their metrics. ANN algorithm characteristics such as learning
ability, abstraction with topology preservation, and visualization can be
applied to complex tasks in different disciplines (e.g. [2, 3]). In this study
HiRISE images from Mars as well as UAV images from Earth are used as
preliminary data and other layers will be extracted from selective filters.
Different settings have been examined for the best which captures small
linear feature outlines most accurately from these high quality satellite
images. We intend to make our framework and module applicable and
adjustable for all types of high resolution images. This methodology with
its high accuracy can save a lot time and ease quantitative studies in dif-
ferent Earth and Planetary science researches.

References

1. Fenton, L.K., Michaels, T.I., Chojnacki, M.: Late amazonian aeolian features, gra-
dation, wind regimes, and sediment state in the vicinity of the Mars exploration
rover opportunity, meridiani planum, Mars. Aeolian Res. 16, 75–99 (2015)

c© Springer International Publishing Switzerland 2016
A.E.P. Villa et al. (Eds.): ICANN 2016, Part II, LNCS 9887, pp. 545–546, 2016.
DOI: 10.1007/978-3-319-44781-0



546 M. Foroutan

2. Kohonen, T.: Self Organizing Maps, 3rd edn. Springer, New York (2001)
3. Marini, F., Zupan, J., Mageri, A.L.: Class-modeling using Kohonen artificial neural

networks. Analytica Chimica Acta 544, 306–314 (2005)



Sentiment Analysis Using Extreme Learning
Machine with Linear Kernel

Shangdi Sun and Xiaodong Gu(B)

Department of Electronic Engineering, Fudan University, Shanghai, China
{sdsun14,xdgu}@fudan.edu.cn

Abstract. Sentiment classification is one of the hot research topics cur-
rently and Support Vector Machine (SVM) is usually used as the baseline
method. In our research, Linear Kernel Extreme Learning Machine (Lin-
ear kernel ELM) has been applied firstly to the sentiment classification
and it is compared with SVM on widely used sentiment (RT-2K) and sub-
jectivity/objective (Subj.) datasets. Furthermore, we build our datasets
(Amazon Smartphone Review, ASR), an unbalanced dataset of product
reviews with pre-defined 12 aspects. All the 2561 sentences belong to at
least one aspect and every sentence is labeled as positive or negative sen-
timent. Therefore, ASR could be used in both sentiment classification at
sentence level and aspect-based opinion summarization at aspect level.
ELM is a standard single layer feedforward neural network(SLFN) and it
is not required to tune the parameters of the hidden nodes [1]. Inspired
by the successful use for sentiment analysis of SVM with linear kernel
[2], we apply ELM with linear kernel to our three tasks. Meanwhile, the
hidden node weights equal to sample values with zero bias. We use the
bag-of-words model to test the robustness of SVM and linear kernel ELM
through three different global term weighting schemes respectively [3].

Table 1. Experimental results on three datasets

RT-2K(1000,1000) Subj.(5000,5000) ASR(1731,830)

ELM SVM +/- ELM SVM +/- ELM SVM +/-

Boolean 87.20 87.25 −0.05 91.82 91.12 +0.70 82.53 81.66 +0.87

IDF 87.75 87.40 +0.35 92.40 91.58 +0.82 83.12 83.48 −0.36

DSIDF 86.80 87.05 −0.25 92.65 91.88 +0.67 82.85 82.69 +0.16

DBIDF 87.60 87.80 −0.20 92.74 91.95 +0.79 82.93 83.05 −0.12

Average 87.34 87.38 −0.04 92.40 91.63 +0.77 82.86 82.72 +0.14

The experimental results show that the accuracy of linear kernel ELM
is higher on the large dataset (Subj.), and is roughly the same as that of
SVM on the small dataset (RT-2K). Linear kernel ELM is also a compet-
itive sentiment classification approach on the unbalanced dataset(ASR).
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Abstract. Little is known about how or whether dedicated neurons of the
visual cortex encode gradual changes of luminance (GcL). We approach
this question computationally, where we describe possible advantages for
explicitly encoding GcL, and explain how corresponding putative neurons
could be used for estimating the illumination direction. With this objec-
tive, we compiled three sets of intrinsic images (IIs) by extracting low
and high spatial frequencies from natural images. The third set contains
the full frequency range. Each set of IIs was subsequently whitened with
the ZCA transformation, and dictionaries with receptive fields (RFs)
were learnt from each set via unsupervised learning. In the end we used
the dictionaries for comparing the encoding efficiency of natural images,
and found that GcL could be encoded by dedicated neurons about three
times more efficient in terms of energy expenditure than with neurons
that respond to the full or high spatial frequency range. Furthermore,
the RFs of the three dictionaries can classify image features (ROC curves
with close to 0.95 area under curve), into reflectance-related or sharp
changes in luminance and gradual changes in luminance. We also pro-
pose a utility of GcL neurons for estimating the local or global direction
of illumination within a visual scene, where we used the maximum a
posteriori estimator (MAP) and minimum mean square error estimator
(MMSE).
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Abstract. This paper demonstrates how to control a Bioloid humanoid robot
using a BeagleBone Black (BBB) and Robot Operating System (ROS). ROS
works as a development framework in synchrony with the BBB and integrates
the robotic functions as a whole. Individual AX-12A Dynamixel servo motors
and sensors are used to control the robot movement, so that it walks with
reasonable balance and gait (cf. Fig. 1 and a demonstration video in [1]).
The two-legged robot is constructed using 12 servos, resulting in 12 degree of

freedom (DOF). USB2Dynamixel connector is used to operate the Dynamixel
actuators through the Wi-Fi interface of the BBB [2]. Position of the Dynamixel
AX-12A servos is obtained using inbuilt encoders. A Gyro sensor is mounted
around the centre of the robot, which supports in balancing the robot. One
infrared (IR) sensor mounted on the robot’s chest is used to detect obstacles.
Additional libraries are added from ROS, thereby enabling the BBB to work
with a Wi-Fi adaptor and a USB camera. When the robot is moving forward, if
the IR sensors detect presence of an obstacle, then further movement of the robot
is stopped. Additionally, an alarm is raised by flickering of the LEDs mounted
on the BBB. The gyro sensor also sends data to the BBB, and these sensor

Fig. 1. Functional components of the robot
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parameters are updated once in every 500 ms. This dynamic model is used as a
building block to actuate the motors mounted on the leg, thereby resulting in a
swing-stance period of the legs for further movement [3].
This study has the potential to enhance the capability of the Bioloid humanoid

robot. The inbuilt RoboPlus software of the Robotis Bioloid robot is meant for
easy programming, but it has limited universal applicability. Therefore, in the
work presented here, this software has been replaced by ROS, along with a
python script for a universal acceptability towards autonomous control of the
Bioloid humanoid robot.
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Abstract. The fruit fly Drosophila melanogaster larvae demonstrate
an exquisite ability to track and exploit changes in sensory conditions
to locate food and stay away from danger. Among other features, D.
melanogaster larvae are capable of locating attractive odour sources by
means of a sophisticated navigational algorithm, which directs stereo-
typical behavioural responses consisting in sequences of runs, stops, lat-
eral casts, directed turns and weathervaning or laterally biased runs. By
studying the neural-circuit computations underpinning larval taxis, we
are seeking to understand the neural implementation of goal-oriented
behaviours and learning. During the past decade, considerable efforts
have been dedicated to measuring and modelling Drosophila chemotaxis,
and to relate this behaviour to the general problems of sensory encod-
ing and olfactory learning. Modelling approaches usually entail a dis-
cretization of a complex behaviour into elementary behavioural states (or
actions). According to this framework, sensorimotor control is analysed
in terms of state transitions probabilities modulated by the integration
of changes in sensory stimuli. Quantitative hypothesis have then been
tested in agent-based simulations. Here, we reproduce larval behaviours
by using an agent-based algorithmic approach to larval chemotactic per-
formance, which we implement into an artificial system of small robots.
Specifically, we use the so-called kilobots, a robotic platform for which we
also have an adequate simulator. We model the process of odour source
tracking, exemplary of larval explorations as well as other stereotypical
demeanour. Since kilobots are designed for general exploration and mod-
elling of swarms and swarm behaviour we plan to further use them for
implementation of other types of larval behaviour, besides odour source
tracking. In conclusion, our results provide a basis for a potential appli-
cation of larval chemotactic behaviour to engineered artificial systems
for optimal source location.

Keywords: Drosophila melanogaster · Chemotaxis · Robotics · Deci-
sion making · Kilobot
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