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Abstract. In this paper, by employing fixed point theorem and differ-
ential inequality techniques, some sufficient conditions are given for the
existence and the global exponential stability of the unique weighted
pseudo almost-periodic solution of high-order Hopfield neural networks
with delays. An illustrative example is also given at the end of this paper
to show the effectiveness of our results.
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1 Introduction

High order Hopfield neural networks (HOHNNs) have attracted many attentions
in recent years due to the fact that they have stronger approximation property,
faster convergence rate, greater storage capacity, and higher fault tolerance than
lower-order neural networks. In particular, there have been extensive results
on the problem of the existence and stability of equilibrium points, periodic
solutions, and almost periodic solution of HOHNNs in the literature. We refer
the reader to [1–5] and the references therein.

As is well known, both in biological and man-made neural networks, delays
are inevitable, due to various reasons. For instance, time delays can be caused by
the finite switching speed of amplifier circuits in neural networks. Time delays
in the neural networks make the dynamic behaviors become more complex, and
may destabilize the stable equilibria [2–5]. Thus, it is very important to study
the dynamics of neural networks delay.

In this paper, we are mainly concerned with the existence of weighted pseudo
almost periodic solutions to the following models for HOHNNs with delays:
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x′
i(t) = −cixi(t) +

n∑

j=1

dij(t)gj(xj(t)) +
n∑

j=1

aij(t)gj(xj(t − τ))

+
n∑

j=1

n∑

l=1

bijl(t)gj(xj(t − σ))gl(xl(t − ν))

+ Ii(t), i = 1, . . . , n. (1)

where n corresponds to the number of units in a neural network, xi(t) cor-
responds to the state vector of the ith unit at the time t, ci > 0 represents
the rate with which the ith unit will reset its potential to the resting state
in isolation when disconnected from the network and external inputs at the
time t, dij(t), aij(t) and bijl(t) are connection weights of the neural network,
τ ≥ 0, σ ≥ 0 and ν ≥ 0 correspond to the transmission delays, Ii(t) denote the
external inputs at time t, and gj is the activation function of signal transmission.

For instance, we make the following assumptions:

(H1) For all 1 ≤ i, j, l ≤ n, the functions t �−→ dij(t), t �−→ aij(t), t �−→
bijl(t), t �−→ Ii(t) are weighted pseudo almost-periodic functions.

(H2) Let ρ : R �−→ (0,+∞), ρ ∈ U∞ is continuous and assume

sup
s∈R

[
ρ(s + δ)

ρ(s)
] < ∞ and sup

T>0
[
μ(T + δ, ρ)

μ(T, ρ)
] < ∞, for each δ ∈ R

(H3) For each j = {1, 2, . . . , n}, there exist nonnegative constants Lg
j and Mg

j

such that for all u, v ∈ R

| gj(u) − gj(v) |≤ Lg
j | u − v |, | gj(u) |≤ Mg

j .

Furthermore, we suppose that for all 1 ≤ j ≤ n, gj(0) = 0.

Throughout this paper, we will use the following concepts and notations.
BC(R,Rn) denotes the set of bounded continued functions from R to R

n. Note
that (BC(R,Rn), ‖ . ‖∞) is a Banach space where ‖ . ‖∞ denotes the sup norm

‖ f ‖∞= max
1≤i≤n

sup
t∈R

| fi(t) | .

Furthermore, C(R,Rn) denotes the class of continuous functions from R into
R

n. Let (Rn, ‖ . ‖∞) be Banach space. Let U denotes the collection of functions
(weights) ρ : R �−→ (o,∞) which are locally integrable over R such that ρ > 0
almost everywhere. From now on, if ρ ∈ U and for T > 0, we then set

μ(T, ρ) =
∫ T

−T

ρ(x)dx.

As in the particular case when ρ(x) = 1 for each x ∈ R, we are exclusively
interested in those weights ρ, for which lim

T−→∞
μ(T, ρ) = ∞.
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Let U∞ := {ρ ∈ U : lim
T−→∞

μ(T, ρ) = ∞}
and UB := {ρ ∈ U∞ : ρ is bounded with inf

x∈R

ρ(x) > 0}.

Obviously, UB ⊂ U∞ ⊂ U, with strict inclusions.

Definition 1. [3]. A function f ∈ C(R,Rn) is called (Bohr) almost periodic if
for each ε > 0 there exists L(ε) > 0 such that every interval of length L(ε) > 0
contains a number τ with the property that ‖ f(t + τ) − f(t) ‖∞< ε, for each
t ∈ R. The number τ above is called an ε-translation number of f , and the
collection of all such functions will be denoted as AP (R,Rn).

To introduce those weighted pseudo-almost periodic functions, we need to
define the weighted ergodic space PAP0(R,Rn, ρ). Weighted pseudo-almost peri-
odic functions will then appear as perturbations of almost periodic functions by
elements of PAP0(R,Rn, ρ).

Let ρ ∈ U∞. Define

PAP0(R,Rn, ρ) := {f ∈ BC(R,Rn) : lim
T−→∞

1
μ(T, ρ)

∫ T

−T

‖ f(σ) ‖ ρ(σ)dσ = 0}.

Definition 2. [3]. Let ρ ∈ U∞. A function f ∈ BC(R,Rn) is called weighted
pseudo-almost periodic (or ρ-pseudo almost periodic) if it can be expressed as
f = g + φ, where g ∈ AP (R,Rn) and φ ∈ PAP0(R,Rn, ρ). The collection
of such functions will be denoted by PAP (R,Rn, ρ).

The initial conditions associated with (1) are of the form

xi(s) = ϕi(s), s ∈ (−θ, 0], i = 1, 2, . . . , n,

The rest of this paper is organized as follow. In Sect. 2, the existence of
weighted pseudo almost-periodic solutions of (1) are discussed. In Sect. 3, a
numerical example is given to illustrate the effectiveness of our results. Finally,
we draw conclusion in Sect. 4.

2 The Existence and the Global Exponential Stability
of Weighted Pseudo Almost Periodic Solution

In this section, we establish some results for the existence of the weighted pseudo
almost-periodic solution of (1). For convenience, we introduce the following nota-
tions, for i, j, l = 1, 2, . . . , n, it will be assumed that dij , Ii, aij , bijl : R −→ R,
and there exist constants dij , Ii, aij and bijl such that

sup
t∈R

(| dij(t) |) = dij , sup
t∈R

(| Ii(t) |) = Ii,

sup
t∈R

(| aij(t) |) = aij , sup
t∈R

(| bijl(t) |) = bijl.
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Lemma 1. Suppose that assumptions (H2) hold. If ϕ(.) ∈ PAP (R,Rn, ρ), then
ϕ(. − h) ∈ PAP (R,Rn, ρ).

Lemma 2. If ϕ,ψ ∈ PAP (R,R, ρ), then ϕ × ψ ∈ PAP (R,R, ρ).

Lemma 3. Suppose that assumptions (H1)–(H3) hold and for all 1 ≤ i ≤ n

(H4) : sup
T>0

{ ∫ T

−T

e−ci(T+t)ρ(t)dt

}
< ∞.

Define the nonlinear operator Γ as follows, for each ϕ = (ϕ1, . . . , ϕn) ∈
PAP (R,Rn, ρ), (Γϕ)(t) := xϕ(t) where

xϕ(t) = (
∫ t

−∞
e−(t−s)c1F1(s)ds, . . . ,

∫ t

−∞
e−(t−s)cnFn(s)ds)T

and

Fi(s) =
n∑

j=1

dij(s)gj(ϕj(s)) +
n∑

j=1

aij(s)gj(ϕj(s − τ))

+
n∑

j=1

n∑

l=1

bijl(s)gj(ϕj(s − σ))gl(ϕl(s − ν)) + Ii(s),

then Γ maps PAP (R,Rn, ρ) into itself.

Theorem 1. Suppose that assumptions (H1)–(H4) hold and (H5): there exist
nonnegative constants L, p and q such that

L = max
1≤i≤n

{Ii

ci
}, p = max

1≤i≤n
{c−1

i [
n∑

j=1

dijL
g
j +

n∑

j=1

aijL
g
j +

n∑

j=1

n∑

l=1

bijlL
g
jM

g
l ]} < 1,

q = max
1≤i≤n

{c−1
i [

n∑

j=1

dijL
g
j +

n∑

j=1

aijL
g
j +

n∑

j=1

n∑

l=1

bijl(L
g
jM

g
l + Mg

j Lg
l )]} < 1.

Then the delayed HOHNNs of (1) has a unique weighted pseudo almost periodic
solution in the region B = {ϕ ∈ PAP (R,Rn, ρ), ‖ ϕ − ϕ0 ‖∞≤ pL

(1−p)}, where

ϕ0(t) = (
∫ t

−∞
e−(t−s)c1I1(s)ds, . . . ,

∫ t

−∞
e−(t−s)cnIn(s)ds)T .

Proof. One has

‖ ϕ0 ‖∞ = sup
t∈R

max
1≤i≤n

(|
∫ t

−∞
e−(t−s)ciIi(s)ds |)

≤ max
1≤i≤n

(
Ii

ci
) = L.
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After

‖ ϕ ‖∞ ≤ ‖ ϕ − ϕ0 ‖∞ + ‖ ϕ0 ‖∞
≤ ‖ ϕ − ϕ0 ‖∞ +L.

Set B = B(ϕ0, p) = {ϕ ∈ PAP (R,Rn, ρ), ‖ ϕ − ϕ0 ‖∞≤ pL
(1−p)}. Clearly, B is a

closed convex subset of PAP (R,Rn, ρ) and, therefore, for any ϕ ∈ B by using
the estimate just obtained, we see that

‖ Γϕ − ϕ0 ‖∞

= max
1≤i≤n

sup
t∈R

{|
∫ t

−∞
e−(t−s)ci [

n∑

j=1

dij(s)gj(ϕj(s)) +
n∑

j=1

aij(s)gj(ϕj(s − τ))

+
n∑

j=1

n∑

l=1

bijl(s)gj(ϕj(s − σ))gl(ϕl(s − ν))]ds |}

≤ max
1≤i≤n

sup
t∈R

{
∫ t

−∞
e−ci(t−s)[

n∑

j=1

dijL
g
j ‖ ϕ ‖∞ +

n∑

j=1

aijL
g
j ‖ ϕ ‖∞

+
n∑

j=1

n∑

l=1

bijlL
g
jM

g
l ‖ ϕ ‖∞]ds}

≤ max
1≤i≤n

{c−1
i [

n∑

j=1

dijL
g
j +

n∑

j=1

aijL
g
j +

n∑

j=1

n∑

l=1

bijlL
g
jM

g
l ]} ‖ ϕ ‖∞

= p ‖ ϕ ‖∞≤ pL

1 − p
,

where p = max
1≤i≤n

{c−1
i [

n∑
j=1

dijL
g
j +

n∑
j=1

aijL
g
j +

n∑
j=1

n∑
l=1

bijlL
g
jM

g
l ]} < 1, it implies

that (Γϕ)(t) ∈ B. So, the mapping Γ is a self-mapping from B to B.
Next, we prove that the mapping Γ is a contraction mapping of the B. In

fact, in view of (H3), for ∀φ, ψ ∈ B, we have

| (Γφ − Γψ)i(t) |

= |
∫ t

−∞
e

−(t−s)ci [
n∑

j=1

dij(s)(gj(φj(s)) − gj(ψj(s))) +
n∑

j=1

aij(s)(gj(φj(s − τ)) − gj(ψj(s − τ)))

+

n∑
j=1

n∑
l=1

bijl(s)(gj(φj(s − σ))gl(φl(s − ν)) − gj(ψj(s − σ))gl(ψl(s − ν)))]ds |

≤
∫ t

−∞
e

−(t−s)ci [

n∑
j=1

dijL
g
j sup

t∈R

| φj(t) − ψj(t) | +
n∑

j=1

aijL
g
j sup

t∈R

| φj(t) − ψj(t) |

+

n∑
j=1

n∑
l=1

bijl | gj(φj(s − σ))gl(φl(s − ν)) − gj(ψj(s − σ))gl(φl(s − ν))

+ gj(ψj(s − σ))gl(φl(s − ν)) − gj(ψj(s − σ))gl(ψl(s − ν)) |]ds

≤
∫ t

−∞
e

−(t−s)ci [

n∑
j=1

dijL
g
j sup

t∈R

| φj(t) − ψj(t) | +
n∑

j=1

aijL
g
j sup

t∈R

| φj(t) − ψj(t) |
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+
n∑

j=1

n∑
l=1

bijl(L
g
j M

g
l + M

g
j L

g
l ) ‖ φ − ψ ‖∞]ds

≤ c
−1
i [

n∑
j=1

dijL
g
j +

n∑
j=1

aijL
g
j +

n∑
j=1

n∑
l=1

bijl(L
g
j M

g
l + M

g
j L

g
l )] ‖ φ − ψ ‖∞,

where i = 1, 2, . . . , n, it follows that

‖ Γφ − Γψ ‖∞ ≤ max
1≤i≤n

{c−1
i [

n∑

j=1

aijLg
j +

n∑

j=1

n∑

l=1

bijl

× (Lg
j Mg

l + Mg
j Lg

l )]} ‖ φ − ψ ‖∞ .

Notice that q = max
1≤i≤n

{c−1
i [

n∑
j=1

dijL
g
j +

n∑
j=1

aijL
g
j +

n∑
j=1

n∑
l=1

bijl(L
g
jM

g
l +Mg

j Lg
l )]} <

1, it is clear that the mapping Γ is a contraction. Therefore the mapping Γ
possesses a unique fixed point z∗ ∈ B, T z∗ = z∗. So z∗ is a weighted pseudo
almost-periodic solution of system (1) in the region B. The proof of Theorem 1
is now complete.

Theorem 2. If the conditions (H1)–(H5) hold, then system (1) has a unique
weighted pseudo almost periodic solution z(t) which is globally exponentially
stable.

Proof. It follows from Theorem 1 that system (1) has at least one weighted
pseudo almost periodic solution z(t) = (z1(t), . . . , zn(t))T ∈ B with initial value
u(t) = (u1(t), . . . , un(t))T . Let x(t) = (x1(t), . . . , xn(t))T be an arbitrary solution
of system (1) with initial value ϕ∗(t) = (ϕ∗

1(t), . . . , ϕ
∗
n(t))T .

Let yi(t) = xi(t) − zi(t), ϕi(t) = ϕ∗
i (t) − ui(t) i = 1 . . . n, then

y′
i(t) = −ci(t)yi(t) +

n∑

j=1

dij(t)(gj(yj(t − u) + zj(t − u)) − gj(zj(t − u)))

+
n∑

j=1

aij(t)(gj(yj(t − τ) + zj(t − τ)) − gj(zj(t − τ)))

+
n∑

j=1

n∑

l=1

bijl(t)(gj(yj(t − σ) + zj(t − σ))gl(yl(t − ν)

+ zl(t − ν)) − gj(zj(t − σ))gl(zl(t − ν))), i = 1, . . . , n. (2)

Let Fi be defined by

Fi(w) = ci − w −
n∑

j=1

dijL
g
j −

n∑

j=1

aijL
g
je

wτ −
n∑

j=1

n∑

l=1

bijl(L
g
je

wσMg
l + Mg

j Lg
l e

wν),

where i = 1, . . . , n, w ∈ [0,+∞[ and by (H5), we obtain that

Fi(0) = ci −
n∑

j=1

dijL
g
j −

n∑

j=1

aijL
g
j −

n∑

j=1

n∑

l=1

bijl(L
g
jM

g
l + Mg

j Lg
l ) > 0.
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Since Fi(.) is continuous on [0,∞[ and Fi(w) −→ −∞;w �−→ +∞, there
exist ε∗

i > 0 such that Fi(ε∗
i ) = 0 and Fi(εi) > 0 for εi ∈ (0, ε∗

i ).
By choosing η = min{ε∗

1, . . . , ε
∗
n}, we obtain that the weighted pseudo almost

periodic solution of system (1) is globally exponentially stable. The globally
exponential stability implies that the pseudo almost periodic solution is unique.
We complete the proof.

3 Application

In order to illustrate some feature of our main results, we will apply the model
for n = 2:

x′
i(t) = −cixi(t) +

2∑

j=1

dij(t)gj(xj(t)) +
2∑

j=1

aij(t)gj(xj(t − τ))

+
2∑

j=1

2∑

l=1

bijl(t)gj(xj(t − σ))gl(xl(t − ν)) + Ii(t), 1 ≤ i ≤ 2, (3)

where c1 = c2 = 2, g1(t) = g2(t) = sin t, τ = σ = ν = 1, ρ(t) = et

(dij(t))1≤i,j≤2 =

(
0.2 sin t + 0.1e−t 0.1 cos t

0.1 sin
√
2t + 0.1e−t 0.2 cos

√
2t + 0.1e−t

)

(aij(t))1≤i,j≤2 =

(
0.1 cos t + 0.1e−t 0.2 sin t
0.4 cos t + 0.1e−t 0.1 sin t + 0.1e−t

)
, (Ii(t))1≤i≤2 =

(
0.8 cos

√
5t

0.5 sin t + 0.1e−t

)

(b1jl(t))1≤j,l≤2 =

(
0 0.3 sin

√
3t + 0.1e−t

0 0

)
, (b2jl(t))1≤j,l≤2 =

(
0 0.2 cos

√
5t + 0.1e−t

0 0

)

Then L = 0.4, p = 0.75 < 1, q = 0.9 < 1 and sup
T>0

{∫ T

−T
e−ci(T+t)ρ(t)dt} < ∞.

Consequently, it is not difficult to verify that this example satisfies Theorem 1,
then model (1) has a unique weighted pseudo almost periodic solution in the
considered region. Figure 1 shows the oscillations of the solution of Eq. (1).
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4 Conclusion

In nature there is no phenomenon that is purely periodic, and this gives the
idea to consider the almost-periodic oscillation, the pseudo almost-periodic and
weighted pseudo almost-periodic situations. So, in this paper, some sufficient con-
ditions are presented ensuring the existence and uniqueness of weighted pseudo
almost-periodic solutions of HOHNNs with delays (1). Finally, an illustrative
example is given to demonstrate the effectiveness of the obtained results.
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