
Towards Adjustable Signal Generation
with Photonic Reservoir Computers

Piotr Antonik1(B), Michiel Hermans1, Marc Haelterman2, and Serge Massar1

1 Laboratoire d’Information Quantique, Université Libre de Bruxelles,
50 Avenue F. D. Roosevelt, CP 225, 1050 Brussels, Belgium

pantonik@ulb.ac.be
2 Service OPERA-Photonique, Université Libre de Bruxelles,

50 Avenue F. D. Roosevelt, CP 194/5, 1050 Brussels, Belgium

Abstract. Reservoir Computing is a bio-inspired computing paradigm
for processing time dependent signals. We have recently reported the first
opto-electronic reservoir computer trained online by an FPGA chip. This
setup makes it in principle possible to feed the output signal back into
the reservoir, which in turn allows to tackle complex prediction tasks in
hardware. In present work, we investigate numerically the performance
of an offline-trained opto-electronic reservoir computer with output feed-
back on four signal generation tasks. We report very good results and
show the potential of such setup to be used as a high-speed analog control
system.

Keywords: Reservoir Computing · FPGA · Pattern generation ·
Numerical results · Opto-electronic systems

1 Introduction

Reservoir Computing (RC) is a set of methods for designing and training artificial
recurrent neural networks [11,14]. A typical reservoir is a randomly connected
fixed network, with random coupling coefficients between the input signal and the
nodes. This reduces the training process to solving a system of linear equations
[7,13]. The RC algorithm has been successfully applied to channel equalisation
[6,16,20], phoneme recognition [18] and won an international competition on
prediction of future evolution of financial time series [1].

Reservoir Computing is very well suited for analog implementations: vari-
ous electronic [4,8], opto-electronic [12,15,16] and all-optical [5,6,19,20] imple-
mentations have been reported since 2012. We have recently reported the first
online-trained opto-electronic reservoir computer [2]. The key feature of this
implementation is the FPGA chip, programmed to generate the input sequence,
train the reservoir computer using the simple gradient descent algorithm, and
compute the reservoir output signal in real time.

This setup offers the possibility to tackle prediction tasks in hardware by
feeding the output signal back into the reservoir. We have shown numerically
c© Springer International Publishing Switzerland 2016
A.E.P. Villa et al. (Eds.): ICANN 2016, Part I, LNCS 9886, pp. 374–381, 2016.
DOI: 10.1007/978-3-319-44778-0 44



Towards Adjustable Signal Generation with Photonic Reservoir Computers 375

that such a system could perform well on pattern generation and Mackey-Glass
chaotic time series prediction tasks [3]. In this work we improve the experimental
setup and focus on the pattern generation task [9], with several additional tasks
that have been investigated in the RC community. We adapt the use of the
FPGA chip to train the neural network offline for higher precision and more
control of the process. The performance of the setup is tested in simulations on
four signal generation tasks: simple pattern generation [3], frequency generation,
multi-pattern generation [17] and tunable frequency generation [21]. These tasks
have various applications in motion generation, robot control and data storage
[17]. Solving them in hardware can allow opto-electronic reservoir computers to
be applied in fast control applications, for example high-speed robot control [9].
The promising results we report here thus pave the way towards experimental
investigations we are planning to carry out in the upcoming months.

2 Reservoir Computing

A general reservoir computer is described in [13]. In our implementation, depicted
in Fig. 1, we use a sine function f = sin(x) and a ring topology to simplify the
interconnection matrix, so that only the first neighbour nodes are connected
[12,16]. The evolution equations are given by

x0(n + 1) = sin (αxN (n − 1) + βM0u(n)) , (1a)
xi(n + 1) = sin (αxi−1(n) + βMiu(n)) , (1b)

where xi(n), i = 0, . . . , N − 1 are the internal variables, evolving in discrete
time n ∈ Z, α and β parameters are used to adjust the feedback and the input
signals, respectively, u(n) is a time multiplexed input signal, and Mi is the input
mask, drawn from a uniform distribution over the interval [−1,+1] [6,16]. The
reservoir computer produces an output signal

y(n) =
N∑

i=0

wixi(n), (2)

where xN = 1 is a constant neuron used to adjust the bias of the output signal
and wi are the readout weights, trained offline [4–6,12,15,16,19] in order to
minimise the Mean Square Error (MSE) between the output signal y(n) and the
target signal d(n).

During the training phase, the reservoir computer receives a periodic training
sequence as input u(n) and is trained to predict the next value of the sequence
from the current one. During the test phase, the reservoir input u(n) is switched
from the training sequence to the reservoir output signal y(n), and the system is
left running autonomously. In that case, the dynamics of the systems is described
by the following equations

x0(n + 1) = sin (αxN (n − 1) + βM0y(n)) , (3a)
xi(n + 1) = sin (αxi−1(n) + βMiy(n)) . (3b)



376 P. Antonik et al.

Input layer Reservoir Output layer

Input u(n)

Output y(n)

OR

Output signal:

y(n) =
N−1

i=0

Wixi(n)

Fig. 1. Schematic representation of our reservoir computer with output feedback. The
recurrent neural network with N nodes denoted xi(n) in ring-like topology (in brown)
is driven by either a time multiplexed input signal u(n), or its own output signal y(n),
given by a linear combination of the readout weights wi with the reservoir states xi(n).
(Color figure online)

3 Signal Generation Tasks

Pattern Generation. A pattern is a short sequence of randomly chosen real
numbers (here within the interval [−0.5, 0.5]) that is repeated periodically to
form an infinite time series [3]. The aim is to obtain a stable pattern generator,
that reproduces precisely the pattern and doesn’t deviate to another periodic
behaviour. To evaluate the performance of the generator, we compute the MSE
between the reservoir output signal and the target pattern signal during the
training phase and the autonomous run.

Frequency Generation. The system is trained to generate a sine wave given by

u(n) = sin (νn) , (4)

where ν is a relative frequency and n is the discrete time. The physical frequency
f of the sine wave depends on the experimental roundtrip time T (see Sect. 4)
as follows

f =
ν

2πT
. (5)

This task allows to measure the bandwidth of the system and investigate different
timescales within the neural network.

Multi-pattern Generation. This tasks adds another dimension to the simple
pattern generation. The network is trained to generate several different patterns
and a second input signal u2(n) is introduced to select the pattern to generate.
Equations (3) thus become

x0(n + 1) = sin (αxN (n − 1) + βM0y(n) + β2M
′
0u2(n)) , (6a)

xi(n + 1) = sin (αxi−1(n) + βMiy(n) + β2M
′
iu2(n)) , (6b)

where β2 is a second input gain and M ′
i is a second input mask. Both input masks

are generated randomly, and both input gains are optimised independently.



Towards Adjustable Signal Generation with Photonic Reservoir Computers 377

During the autonomous run, the second input signal u2(n) is regularly
changed in order to test the performance of the system on all patterns.

Tunable Frequency Generation. Here the frequency generator is upgraded
with a second input signal to tune its frequency. The network is trained to
generate several sine waves with different frequencies, given by

u(n) = sin (ν̄(n)n) , (7)

where ν̄(n) is a time-dependent user-defined frequency, that is fed into the system
through the second input u2(n) = ν̄(n). The physical output frequency f can
be computed using Eq. (5). Testing of the performance is similar to the multi-
pattern generation task.

4 Numerical Simulations

Figure 2 depicts the experimental setup [2], which is the basis for numerical
simulations presented here. The opto-electronic reservoir, a replica of previously
reported works [2,16], is driven by a Xilinx ML605 evaluation board, powered
by a Virtex 6 FPGA chip and paired with a 4DSP FMC-151 daughter card, used
for signal acquisition and generation. The FPGA is programmed to record the
reservoir states xi(n) and send them to the personal computer, running Matlab,
through an Ethernet connection. The readout weights wi are uploaded on the
chip for real-time computation of the reservoir output signal y(n) during the
autonomous run.

Opto-electronic reservoir Input & Readout

SLED

MZ
90/10

Att

Amp Comb

Pf

9
.6

k
m

Pr

ML605FMC151

DAC

ADC

In

Mask

Res Out

MatlabClock

u(n)

Mi

y(n)

Mi × [u(n) OR y(n)]

xi(n)

wi

Mi

u(n)

xi(n)

Fig. 2. (a) Schematic representation of the simulated setup, based on the experimental
system [2,16]. Optical and electronic components of the opto-electronic reservoir are
shown in red and green, respectively. It contains an incoherent light source (SLED), a
Mach-Zehnder intensity modulator (MZ), a 90/10 beam splitter, an optical attenuator
(Att), a 9.6 km fibre spool, two photodiodes (Pr and Pf), a resistive combiner (Comb)
and an amplifier (Amp). The FPGA board acquires the reservoir states xi(n) and gen-
erates analog input and output signals to the reservoir. A personal computer, running
Matlab, computes the readout weights wi. (Color figure online)

The experiment roundtrip time is defined by the length of the delay loop.
We are planning to use 9.6 km of fiber in order to obtain a delay of T = 32µs.



378 P. Antonik et al.

This would allow sampling the entire loop 8000 times at 250 MS/s (maximum
sampling frequency of the FMC-151 Analog-to-Digital Converter) and thus fit
up to 1000 neurons into the reservoir, with at least 8 samples per neuron.

All numerical experiments were performed in Matlab, on a standard personal
computer. The simulations account for major aspects of the experimental setup
and allow to scan the most influential parameters, such as input gains β and β2,
feedback gain α and reservoir size N .

5 Results

Pattern Generation. As we have shown previously [3], this task works well
with online learning even on small reservoirs: a 51-neuron network is capable
of generating patterns up to 51-element long, where 51 is expected to be a
fundamental limit because it is the upper bound on the linear memory of the
network [10]. We obtained the same results with offline training here, and found
optimal gain parameters. The system works best with a very low input gain β =
0.001 and high feedback gain α = 0.9. The system was trained over 5k inputs and
then left running autonomously for 50k timesteps. We obtained training errors
ranging from 10−25 (for short patterns with L = 10) to 10−12 (for long patterns,
L = 51), and autonomous errors ranging from 10−22 to 10−8, respectively.

Frequency Generation. Frequency generation requires a different method
for computing the error during the autonomous run, that would focus on the
frequency of the generated signal. For this reason we used the Fast Fourier
Transform (FFT) algorithm to compute the frequency of the reservoir output
signal and compare it to the frequency of the target signal.

We used a slightly larger reservoir with N = 100 and trained it over 1k
input samples. We tried increasing the reservoir size up to N = 1000 and the
training length up to 10k samples without noticeable improvements. The output
frequency was measured after an autonomous run of 20k timesteps.

With optimal gain parameters α = 0.9 and β = 0.1, we were able to generate
relative frequencies within ν ∈ [0.06, 3.14] with MSE of order of 10−7 and Full
Width at Half Maximum (FWHM) of the FFT of about 10−3. The upper limit is
given by half of the sampling rate of the system and corresponds to the Nyquist
frequency. As for the lower limit, we couldn’t obtain stable output signal with
frequency lower than 0.06 for most random input mask. The roundtrip time
T = 32µs of the experimental setup gives a sampling frequency of 31.2 kHz.
Using Eq. (5), this sets the bandwidth of the generator to 300 Hz–15.6 kHz.

Multi-pattern Generation. This task is significantly more complex than the
simple pattern generation, as the network needs to learn to switch between
several different patterns. Good performance thus requires a large reservoir and a
carefully chosen training sequence which contains all possible transitions between
the patterns. We also noted that results depend on the shape of the input mask.
Figure 3 shows an example of simulation with 3 different patterns.



Towards Adjustable Signal Generation with Photonic Reservoir Computers 379

−0.5

0

0.5

50 100 150 200 250 300

Training Autonomous run

Discrete time n

Fig. 3. Example of simulation result for the multi-pattern generation task. The reser-
voir output signal (blue dots) is almost identical to the target signal (green curve). The
second input signal u2(n), shown in red, switches between 3 values, as the system is
trained to generate three short patterns. The training sequence contains all transitions
between different patterns. The autonomous run continues beyond the scope of the
figure. (Color figure online)

For this task the reservoir size was increased to N = 800 neurons. We were
able to generate up to 4 different patterns of length 10, with training error of
2×10−7, and 4×10−4 for the autonomous run. The system was trained over 850
inputs and then ran autonomously for 4250 timesteps. All transitions occured
synchronously, that is, from the last element of a pattern to the first element of
another. We also tried generating shorter patterns and could store 8 patterns of
length 5, with training and autonomous run errors of 2 × 10−6 and 4 × 10−4,
respectively. This required much longer simulations, with 5.6k inputs for the
training and 28k timesteps for the autonomous run.

Tunable Frequency Generation. Similar to multi-pattern generation, this
task requires a large reservoir capable of containing many smaller clusters oscil-
lating at different frequencies (see [21] for a more in-depth overview). The reser-
voir computer was trained to generate different sine waves given by Eq. (7), FFT
algorithm was used to evaluate the performance.

We used a large reservoir with N = 1000 neurons and the following parame-
ters: α = 0.7, β = 0.03 and β2 = 0.9. The network was trained over 6.6k samples
and was taught to generate 40 frequencies equally spaced between 0.1 and 1.1.
Each frequency was learned for 10 periods, to ensure smooth transitions. For
the autonomous run, we investigated different scenarios. At first, we decreased
the frequency back to 0.1 and then increased it to 1.1 again. This was done
by large steps of 0.05 every 5k timesteps to test the stability of the generator.
The system produces very good results, with frequency MSE of 1.5 × 10−6. As
another test case, the second input signal u2(n) was first decreased to 0.6, and
then followed a random walk. The reservoir computer generated the desired fre-
quencies very well, with frequency MSE of 1.4 × 10−6. The FWHM of the FFT
for these two cases is about 0.005. Faster control modulation, with u2(n) chang-
ing every 200 timesteps, results in higher frequency MSE (1.2× 10−3, with FFT



380 P. Antonik et al.

−1

0

1

6700 6800 6900 7000 7100 7200 7300 7400
0.5

0.6

0.7

0.8

0.9

1
O

u
tp

u
t
y
(n

)

C
o
n
tr

o
l
in

p
u
t
u
2
(n

)

Discrete time n

Fig. 4. Example of autonomous run for the tunable frequency generation task. The
control signal, shown in red, is decreased down to 0.6 every 50 timesteps, and then
follows a random walk, that continues beyond the scope of the figure. Although u2

switches asynchronously, the RC shifts smoothly from one frequency to another. (Color
figure online)

FWHM of order of 0.1), but still the RC follows the desired frequency reasonably
well. Figure 4 shows an example of simulation with fast modulation (every 50
timesteps).

6 Conclusion

We investigated numerically how an opto-electronic reservoir computer with out-
put feedback performs on various signal generation tasks. We evaluated optimal
gain parameters, reservoir sizes and elaborated specific training sequencies for
each tasks. We obtained very good results, showing that the upcoming exper-
imental setup could in principle be employed as a fast analog control system.
Coupled with the recently implemented online learning [2] this system could
possibly be used as an analog “brain” for high-speed self-learning robots.

Acknowledgements. We acknowledge financial support by Interuniversity Attrac-
tion Poles program of the Belgian Science Policy Office under grant IAP P7-35 “pho-
tonics@be”, by the Fonds de la Recherche Scientifique FRS-FNRS and by the Action de
la Recherche Concertée of the Académie Universitaire Wallonie-Bruxelles under grant
AUWB-2012-12/17-ULB9.

References

1. The 2006, 07 forecasting competition for neural networks & computational intelli-
gence (2006). http://www.neural-forecasting-competition.com/NN3/. Accessed 21
Feb 2014

2. Antonik, P., Duport, F., Smerieri, A., Hermans, M., Haelterman, M., Massar, S.:
Online training of an opto-electronic reservoir computer. In: Arik, S., Huang, T.,
Lai, W.K., Liu, Q. (eds.) ICONIP 2015. LNCS, vol. 9490, pp. 233–240. Springer,
Heidelberg (2015). doi:10.1007/978-3-319-26535-3 27

http://www.neural-forecasting-competition.com/NN3/
http://dx.doi.org/10.1007/978-3-319-26535-3_27


Towards Adjustable Signal Generation with Photonic Reservoir Computers 381

3. Antonik, P., Hermans, M., Duport, F., Haelterman, M., Massar, S.: Towards pat-
tern generation and chaotic series prediction with photonic reservoir computers. In:
SPIE’s 2016 Laser Technology and Industrial Laser Conference, vol. 9732 (2016)

4. Appeltant, L., Soriano, M.C., Van der Sande, G., Danckaert, J., Massar, S.,
Dambre, J., Schrauwen, B., Mirasso, C.R., Fischer, I.: Information processing using
a single dynamical node as complex system. Nat. Commun. 2, 468 (2011)

5. Brunner, D., Soriano, M.C., Mirasso, C.R., Fischer, I.: Parallel photonic infor-
mation processing at gigabyte per second data rates using transient states. Nat.
Commun. 4, 1364 (2012)

6. Duport, F., Schneider, B., Smerieri, A., Haelterman, M., Massar, S.: All-optical
reservoir computing. Opt. Express 20, 22783–22795 (2012)

7. Hammer, B., Schrauwen, B., Steil, J.J.: Recent advances in efficient learning of
recurrent networks. In: Proceedings of the European Symposium on Artificial
Neural Networks, pp. 213–216, Bruges, Belgium, April 2009

8. Haynes, N.D., Soriano, M.C., Rosin, D.P., Fischer, I., Gauthier, D.J.: Reservoir
computing with a single time-delay autonomous Boolean node. Phys. Rev. E 91(2),
020801 (2015)

9. Ijspeert, A.J.: Central pattern generators for locomotion control in animals and
robots: a review. Neural Netw. 21(4), 642–653 (2008)

10. Jaeger, H.: Short term memory in echo state networks. Technical GMD report 152
(2001)

11. Jaeger, H., Haas, H.: Harnessing nonlinearity: predicting chaotic systems and sav-
ing energy in wireless communication. Science 304, 78–80 (2004)

12. Larger, L., Soriano, M., Brunner, D., Appeltant, L., Gutiérrez, J.M., Pesquera,
L., Mirasso, C.R., Fischer, I.: Photonic information processing beyond turing: an
optoelectronic implementation of reservoir computing. Opt. Express 20, 3241–3249
(2012)

13. Lukoševičius, M., Jaeger, H.: Reservoir computing approaches to recurrent neural
network training. Comp. Sci. Rev. 3, 127–149 (2009)

14. Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable
states: a new framework for neural computation based on perturbations. Neural
Comput. 14, 2531–2560 (2002)

15. Martinenghi, R., Rybalko, S., Jacquot, M., Chembo, Y.K., Larger, L.: Photonic
nonlinear transient computing with multiple-delay wavelength dynamics. Phys.
Rev. Let. 108, 244101 (2012)

16. Paquot, Y., Duport, F., Smerieri, A., Dambre, J., Schrauwen, B., Haelterman, M.,
Massar, S.: Optoelectronic reservoir computing. Sci. Rep. 2, 287 (2012)

17. Sussillo, D., Abbott, L.: Generating coherent patterns of activity from chaotic
neural networks. Neuron 63(4), 544–557 (2009)

18. Triefenbach, F., Jalalvand, A., Schrauwen, B., Martens, J.P.: Phoneme recognition
with large hierarchical reservoirs. Adv. Neural Inf. Process. Syst. 23, 2307–2315
(2010)

19. Vandoorne, K., Mechet, P., Van Vaerenbergh, T., Fiers, M., Morthier, G., Ver-
straeten, D., Schrauwen, B., Dambre, J., Bienstman, P.: Experimental demonstra-
tion of reservoir computing on a silicon photonics chip. Nat. Commun. 5, 3541
(2014)

20. Vinckier, Q., Duport, F., Smerieri, A., Vandoorne, K., Bienstman, P.,
Haelterman, M., Massar, S.: High-performance photonic reservoir computer based
on a coherently driven passive cavity. Optica 2(5), 438–446 (2015)

21. Wyffels, F., Li, J., Waegeman, T., Schrauwen, B., Jaeger, H.: Frequency modula-
tion of large oscillatory neural networks. Biol. Cybern. 108(2), 145–157 (2014)


	Towards Adjustable Signal Generation with Photonic Reservoir Computers
	1 Introduction
	2 Reservoir Computing
	3 Signal Generation Tasks
	4 Numerical Simulations
	5 Results
	6 Conclusion
	References


