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Abstract. Neural models, artificial or biologically grounded, have been
used for understanding the nature of learning mechanisms as well as for
applied tasks. The study of such learning systems has been typically cen-
tered on the identification or extraction of the most relevant features that
will help to solve a task. Recently, convolutional networks, deep architec-
tures and huge reservoirs have shown impressive results in tasks ranging
from speech recognition to visual classification or emotion perception.
With the accumulated momentum of such large-scale architectures, the
importance of imposing sparsity on the networks to differentiate contexts
has been rising. We present a biologically grounded system that imposes
physical and local constraints to these architectures in the form of synap-
togenesis, or synapse generation. This method guarantees sparsity and
promotes the acquisition of experience-relevant, topologically-organized
and more diverse features.
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1 Introduction

Typically, artificial networks of learning nodes, or neurons, have been conceived
as all-to-all connected. There are two reasons to begin with this approach. First,
at a low scale, biological neurons are strongly connected with most of their
neighbors, small networks being approximated in this way. Second, the flow of
information among plastic networks is usually computed through dot products.
This leads to fully disconnected networks becoming fully connected with the
slightest amount of noise. This becomes equivalent to having all to all connections
between all nodes, regardless of some weights trending towards 0. These two
assumptions have been implicitly used for several years. Still the exponential
increase in computational power is limited by this approach, as the complexity
in the data increases, affecting the stability of the network.

c© Springer International Publishing Switzerland 2016
A.E.P. Villa et al. (Eds.): ICANN 2016, Part I, LNCS 9886, pp. 28–35, 2016.
DOI: 10.1007/978-3-319-44778-0 4



Synaptogenesis: Constraining Synaptic Plasticity Based on Distance 29

1.1 Sparseness in Artificial Networks

State of the art approaches to neural computation, which has been gain-
ing momentum, has discovered the benefits of sparsity and local connectivity
patterns:

Convolutional Networks (ConvNets) approaches the problem by defining
local sets of weights (or kernels) shared by all or part of the other neu-
rons. These kernels are limited in size, limiting the effect of one neuron to
the others, and are convolved over the network. This implies that neurons
are locally connected to just a small fraction of other neurons, dramatically
reducing the amount of connections to below 5 % of all possible connections
and, by extension, the computational power needed.

Reservoir Computing (RC) considers pools of units with complex temporal
dynamics, that are randomly connected. The idea is that a sufficiently large
and complex pool would contain potentially useful features. With it, one
could use simple, shallow classifiers that read from the pool (or reservoir)
and learn combinations of such features for a range of different tasks. One of
the principal requirements for the convergence of these networks is having a
spectral radius smaller than one [1], what is strongly influenced by the degree
of sparsity of the network.

Deep architectures, combined with other techniques, are currently a trend
that is used under the lemma of reusing features from previous layers, indi-
rectly increasing the sparsity of the whole network. This occurs because
the number of connections existing in the layered architecture could be re-
converted into a shallow network which would have lost most of the initial
connections.

Sparsity, then, is a feature present in State of the Art machine learning, typi-
cally imposed through architectural constraints. Still, the techniques are usually
designed artificially, occasionally with inspiration from biology.

1.2 Sparseness in Biological Systems

The connections between and within areas of the brain have been widely studied
in order to understand what makes it so unique. One of the most outstanding
regions of the brain in this sense is the neocortex. The neocortex is the larger
extension of neurons in the primate brain. Over its long extension, rich, func-
tional heterogeneity at large scale levels conflicts with apparently strong struc-
tural homogeneity among cortical areas at a neuronal level. This introduces a
dichotomy that is present also at the level of connectivity: long range, inter-
areal connectivity matrices seem to be very dense [2] with over 90 % of possible
connections existing. This does not mean that the connections are evenly dis-
tributed in terms of weight. Additionally, at the neuronal level, neurons strongly
exhibit lots of short range, local connections to their neighbors, and the longer
the distance, the lower the probability of connecting 2 neurons, which results in
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very sparse networks as they scale up. Kennedy et al. has proposed that cortical
connections must follow a distance rule that determines their level of neighbor-
ing connectivity [3]. We therefore present a model of how such a distance rule
can generate new network topologies driven by external activity patterns.

1.3 Synaptogenesis

Connections are functionally critical for neurons: how neurons connect to each
other determines the way the neural network would operate. Synaptogenesis
occurs not only in neurons grown during the embryonic and neonatal stages
of life, but also in adult-grown neurons. In the case of adult neurogenesis, it
is necessary for newly-grown neurons to not only create synapses with older
neurons but also do so in a manner that would not disrupt the preexisting
network. However, adult neurogenesis in mammals is relatively uncommon and
occurs mainly in specific regions of the brain, like the olfactory bulb [4] and the
dentate gyrus [5]. Regardless of when the neurons exhibiting synaptogenesis are
grown, synapses’ proliferation and survival are of scientific interest as they offer
insight on how the brain processes stimuli.

Synaptogenesis has been shown to be dependent on activity of the neuron [6]
and genetic traits. In addition, the distances between neurons could also play a
significant role in synaptogenesis. Particularly in the cortex, most connections
within the area are local, with approximately 80 % of connections in the V1,
V2 and V4 stemming from intra-areal sources [2], with 95 % of these intrinsic
connections arising from within 1.9 mm. Such evidence suggest that the brain’s
neural network is composed of clusters of densely connected neurons which are
then connected to each other by sparse, long-range connections [3].

Moreover, tone directionality and frequency tuning are characteristics that
identify receptive fields in primary auditory cortex (A1) [7]. As receptive fields
are shaped by the connections between neurons, these phenomena should also
be reflected by synaptogenesis. While it is also possible that neurogenesis could
contribute to their formation, the low rate of occurrence of adult neurogenesis
in the cortex suggests that synaptogenesis is a plausible mechanism for the early
formation of receptive fields. Other plastic mechanisms at the level of neuron
receptors might then have a more important role on their later fine tunning.
This paper attempts to propose a model of synaptogenesis that can describe the
structure and function of the cortex, in particular A1.

2 Methods

We propose a model of a cortical layer that uses Izhikevich neurons with spike
time dependent plasticity (STDP) to update connections and a distance rule to
model how connections are formed during development.

2.1 Spiking Cortical Dynamics

Cortical dynamics were modeled using python scripts. The network consisted
of 800 excitatory and 200 inhibitory Izhikevich neurons in total, that together
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represent part of the primary auditory cortex [8]. The neuron’s membrane poten-
tial v and membrane recovery variable u follow two differential equations:

dv

dt
= 0.04v2 + 5v + 140 − u + I (1)

du

dt
= a(bv − u) (2)

With a = .02/.10 for E/I, b = .2, after-spike membrane reset c = −65 and
after-spike recovery reset d = 2.0. Both populations had a rectangular shape
with a ratio of 2:1 (i.e., 40× 20) with a randomly initialized connectivity matrix
(see Table 1 for initialization values). The network was first trained using real-
world auditory signals, consisting of 7 different songs converted to input signals
with the multi-taper fast Fourier Transformation (FFT), that gives the music’s
power spectrum over time. Songs covered different genres, including 70’s and
80’s pop, rock and metal, and lasted approximately 34 min. The FFT’s spanned
100 frequencies in the range of 150–650 Hz, and were normalized at each time
point such that the maximum input value was always 1. This input was then
mapped to the 800 excitatory neurons in a 1:10 ratio with small overlap using
Gaussian smearing over both the x- and y-axis. Simulations ran at a temporal
resolution of 1 ms, and the connectivity matrix was updated at each iteration
based on Synaptic Time-Dependent Plasticity (STDP) principles. These princi-
ples constitute temporal asymmetric Hebbian learning, where synapse strength
increases as a pre-synaptic action potential is followed by a post-synaptic spike
and decreases vice versa. This was implemented on a population level through
two variables M(t) and P(t) that either increase or decrease synaptic weights
based on the order of spikes:

τ+
dP

dt
= P + a+ and τ−

dM

dt
= −M + a− (3)

This implementation was based on [9], with τ+ and τ− being the time constants
of synaptic potentiation and depression respectively and a+ and a− their ampli-
tude. Where weights Wij are updated for each spiking neuron:

Wij = Wij + Mij + Pij (4)

Alternatively an artificial network was trained using the same setup but using a
different learning rule. A rate version of STDP was extracted from [10] and used
as a learning rule for the rate approximation of the same system as:

Wij = Wij + η(WM − Wij)(Wm − Wij)xixj + Weε(WM − Wij)Wij (5)

Table 1. Model parameter values

Neuron a b c d

E .02 .20 −65 2.0

I .10 .20 −65 2.0
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Where Weε corresponds to the integral of the STDP rule, WM and Wm are the
maximum and minimum thresholds for the weights, making the learning rule
bi-stable and with a homeostatic decay. The rule is in function of the spiking
rates of the presynaptic (xi) and postsynaptic (xj) neurons.

2.2 Synaptogenesis

In order to model synaptogenesis, a distance matrix has been computed in order
to identify the position of each neuron of the space. In order to do this, the
neurons have been distributed along two axis and given a normalized distance
of 1 unit. From that, the probability of forming a connection from a neuron i to
a neuron j given their distance dij is:

P (Cij |dij) =
1

1 + kd2ij
(6)

Where k is a scaling constant that defines the range connections will reach. The
exponential has been chosen squared standing for the distribution gradient a
typical fluid will suffer on a 2D medium (see Fig. 1 for reference). This rule was
extended in two ways:

– The probability of a connection between neuron i and j being created is influ-
enced by nearby existing connections to neurons k. With the probability dis-
tribution in Eq. 6, scaled by the weight between the origin neuron i and the
neighbor neuron k, in order to promote clusters of specialized neurons and
rich-club effects. The computation is then equivalent to a dot product like:

P (Cnew|W,P ) = WP · PT (7)

Where C corresponds to the Boolean connectivity matrix, W is the weights
matrix and P is the probability matrix obtained from Eq. 6 and shown in
Fig. 1a.

Fig. 1. (a) Sample distribution of probabilities extracted from Eq. 6. The network
was initialized with size 20× 40 neurons and considered a 2D layer of interconnected
excitatory neurons. Parameters: k: 0.1, network size: 10x5. (b) Connectivity matrix W
of the model using synaptogenesis. One can observe the weights organized in clusters,
spatially concentrated around the low frequencies (neurons 10–20).
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– The connection probability was then scaled by the plasticity rule. It increases
the weight as defined by the STDP rule above, promoting the formation of
only relevant connections between the input and cortical layers and filtering
out random ones.

3 Results

3.1 Synaptogenesis Creates Sparse Networks

In order to understand the sparsity of the receptive fields, we trained our STDP
and rate networks for around 30 min of real music. We observed higher degrees
of sparsity in the model using synaptogenesis as compared to the model without
(Fig. 2).

Fig. 2. Synaptogenesis (red) produces more variety (higher standard deviation) in
skewness, bandwidth and scale than raw STDP (blue). Y axis show the fitting value
of the data in a skewed Gaussian distribution. This data was generated using the rate
based model. (Color figure online)

3.2 Synaptogenesis Converges to Richer Receptive Fields

We aimed to reproduce the data observed in [7], who found a high variability in
the cortex, in terms of skewness, scale and bandwidth, and which corresponds
to the three main parameters describing a skewed Gaussian distribution. We
selected 10 evenly distributed frequencies and tested the network trained in the
previous experiment for 10 trials. We then computed the rate of subpopulations
of the network by summing the number of spikes in bins of 25 neurons, selected
accordingly from the 2 dimensional pool. We extracted the spectral receptive
fields for each population of neurons, as shown in Fig. 3. In order to extract
the receptive fields we used the same methodology typically used in the study
of the auditory cortex [7]. This showed slight differences between the receptive
fields of the different neurons, where using synaptogenesis usually led to more
dissimilar receptive fields among the neurons of the population. The minimal dif-
ferences observed in Fig. 3 are attributed to the use of too strong inputs during
testing, and the task of producing more realistic background noise and audi-
tory input in order to show more relevant differences is left out of the scope of
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Fig. 3. Examples of the variety of receptive fields found. Top row shows three sam-
ple neurons with receptive fields that show greater variability in skewness and scale,
whereas the bottom row shows neurons that have similar receptive fields for both
approaches. The data was generated using the rate based model. Blue: STDP, red:
synaptogenesis (Color figure online)

this paper. Finally, in order to test the relevance of these small differences, we
fit a skewed Gaussian curve to the receptive fields. We observed increased vari-
ability (standard deviation) in the measures of skewness, bandwidth and scale
of the model with synaptogenesis, relative to the model without synaptogenesis.
We then conclude that additional work should show significant differences on
the trends observed.

4 Conclusions

We have proposed a model of synapse generation, or synaptogenesis, based on
a distance rule. This rule promotes the formation of a richer family of receptive
fields, specializing neurons for variations in bandwidth, skewness and intensity.
We have shown this variations comparing plasticity rules for rate and spiking
neurons, with and without the synaptogenesis process.

We have shown that this process leads to sparser networks, a characteristic
highly valued in state of the art artificial neural networks. Nonetheless, the
capacity of this process to filter out redundant information and keep just relevant
connections has yet to be shown. A big improvement to this model would involve
the addition of apoptosis, or neural death, what would help prune connections
that have become irrelevant. Still, the processes underlying apoptosis are mostly
unknown and good measures to guide the pruning are still under debate.

We have proposed this experimental setup as a potential substrate of a sin-
gle cortical layer. In this sense, the layer has a realistic ratio of excitatory and
inhibitory neurons. Moreover, our model has been trained on auditory data, allow-
ing the generation of a richer variety of features which is already observed in the
auditory cortex of the ferret [7]. Next steps include completing the cortical model
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with several layers and a better set of neuron types. Moreover, the input was math-
ematically modeled as observations in the A1 of the ferret (described in [11]), but
in order to account for a real model of the cortex, the input should be filtered
through attentional processes mainly driven by thalamo-cortical connections.
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