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Abstract. In previous work we have developed illustrative, neuro-
computational models to describe mechanisms associated with mental
processes. In these efforts, we have considered mental processes in phe-
nomena such as neurosis, creativity, consciousness/unconsciousness, and
some characteristics of the psychoses. Memory associativity is a key fea-
ture in the theoretical description of these phenomena, and much of
our work has focused on modeling this mechanism. In traditional neural
network models of memory, the symmetry of synaptic connections is a
necessary condition for reaching stationary states. The assumption of
symmetric weights seems however to be biologically unrealistic. Efforts
to model stationary network states with asymmetric weights are mathe-
matically complex and are usually applied to restricted situations. This
has motivated us to explore the possibility of a new approach to the
synaptic symmetry problem, based on its analogies with some features
of the nonlinear Fokker-Planck formalism.
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1 Introduction

Much of our previous work [1–3] regards the search for neuronal network mech-
anisms, whose emergent states underlie behavioral aspects traditionally studied
by psychiatry, psychoanalysis and neuroscience [4–9]. A working hypothesis in
neuroscience is that human memory is encoded in the neural net of the brain,
and associativity is frequently used to describe mental processes, both in normal
and pathological functioning. Neuronal models of associative memory [10] have
therefore formed a central component of our descriptions.

In traditional neural network models of memory, such as the Hopfield model
[10], the symmetry of synaptic connections is a necessary mathematical require-
ment for reaching stationary states (memory) [10,11]. This is the case both
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when using the Boltzmann Machine (BM) procedure, as when employing more
recent approaches based on the Generalized Simulated Annealing (GSA) algo-
rithm [12]. Real biological neural networks, however, do not seem to comply
with the synaptic symmetry condition. We then face the curious situation that
the main mathematical-mechanistic neural models for memory are based on an
assumption that is at odds with biological reality. There have been efforts to
model stationary memory attractor states with asymmetric weights, but they
are mathematically complex and usually applicable only to restricted situa-
tions [13,14]. In spite of these interesting attempts, and even though memory
modeling with neural networks has been an active field of research for decades,
the (a)symmetry issue remains largely an unexplored (and almost forgotten)
open problem. This indicates the need to consider new alternative approaches
to this subject. Our main aim in the present exploratory work is to point out
basic similarities between the synaptic symmetry problem and some aspects of
the nonlinear Fokker-Planck (NLFP) dynamics. These connections may lead to
a new possible way to address the symmetry problem in neural networks. Here
we advance the first steps in the development of a formalism based on the non-
linear Fokker-Planck equation, which we summarize in this paper, along with
some preliminary results. A more detailed discussion is being prepared for an
extended publication.

In previous work, we have used the Boltzmann Machine [10] and Generalized
Simulated Annealing [12] to simulate memory. In the BM and GSA, pattern
retrieval on the net is achieved by a simulated annealing (SA) process, where
the temperature T is gradually lowered by an annealing schedule α. For a BM or
GSA network with N nodes, where each node i has a discrete state Si in {−1, 1},
it is a necessary condition for the network to have stable states that synaptic
weights between nodes i and j obey wij = wji. One can then define an Energy
function, representing the potential energy corresponding to the interactions
between neurons,

E({Si}) = −1
2

∑

ij

wijSiSj , (1)

and stored memories correspond to minimum energy (stable) states, which are
attractors in the memory retrieval mechanism (SA process).

In the SA process, the energy surface is sampled according to the following
transition probabilities. For the Boltzmann Machine (BM)

PBG(Si → −Si) =
1

1 + exp (E({−Si})−E({Si}))
T

, (2)

and for the Generalized Simulated Annealing or Tsallis Machine (GSA) [12]

PGSA(Si → −Si) =
1

[
1 + (q − 1) (E({−Si})−E({Si})

T

] 1
q−1

. (3)
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These transition probabilities tend to take the system from a current state
towards a final, more favorable minimum energy state (although energy may
increase at intermediate steps).

In Sect. 2, we briefly review neural network models as related to basic theory
of Dynamical Systems. We then introduce basic aspects of the Fokker-Planck
formalism. In Subsect. 4.2, we show that it is possible to introduce a drift or force
term not arising from the gradient of a potential, which is related to asymmetric
couplings, and still achieve stationary states for the probability density function,
in the phase space describing the system. We also mention further developments
and present our conclusions in the last section.

2 Dynamical Systems and Neural Networks

For a continuous deterministic dynamical system with phase space variables
{X1,X2, · · · ,XN}, considering that there is no noise, the equations of motion
can be expressed as

dX1

dt
= G1(X1,X2, · · · XN )
...

dXN

dt
= GN (X1,X2, · · · XN ), (4)

which in self-explanatory vector notation is expressed as dX
dt = G(X), with

X,G ∈ �N . That is, the time evolution of the system’s state X is described
by a phase space flux given by the vectorial field G. Neural networks have been
widely studied within this framework [10]. In neural network models, the synaptic
weight wij expresses the intensity of the influence of neuron j on neuron i (the
coupling). So the net signal input to neuron i is given by

ui =
∑

j

wijVOj
, (5)

where VOj
is the output signal of neuron j.

It is possible to generalize the McCulloch-Pitts (discrete activation) neural
model, in order to consider continuous state variables [10,11], so that VOi

(in
equilibrium) is updated by a continuous function of ui,

VOi
(t + Δt) = g(ui(t)). (6)

In Eq. (6), the activation function g(u) is usually nonlinear and saturates for
large values of |u|, such as a sigmoid or tanh(u). One possible continuous-time
rule for updating the VOi

[11,15], is the set of differential equations

dVOi

dt
=

−VOi
+ g(ui)
τi

= Gi(VO1 , VO2 , . . .), (7)

where τi are suitable time constants.
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In traditional neural network models of memory, such as the Hopfield model,
BM and GSA, wij = wji is a necessary condition for reaching stationary states
(memory). This symmetry restriction seems to be biologically unrealistic. In
this contribution we comment on the similarities between the synaptic symmetry
problem and some features of the nonlinear Fokker-Planck dynamics, which may
shed new light on this problem and suggest possible ways to tackle it.

3 Fokker-Planck Equation

We now consider an ensemble of identical systems, each consisting of N elements,
that evolve from different initial conditions. This ensemble is described by a
time-dependent probability density in phase space P(X1, · · · ,XN , t) obeying
the Liouville equation

∂P
∂t

+
N∑

i=1

∂(PGi)
∂Xi

= 0. (8)

If the system presents noisy behavior, it is necessary to add a new diffusion-like
term in Eq. (8), which results in the Fokker-Planck equation (FPE)

∂P
∂t

= D

(
N∑

i=1

∂2P
∂X2

i

)
−

N∑

i=1

∂(PGi)
∂Xi

, (9)

where D is the diffusion coefficient and the second term on the right, involving
the field G, is referred to as the drift term. We shall call G the drift field. If

G1 = −∂V/∂X1,
...

GN = −∂V/∂XN , (10)

for some potential function V (X), there is a Boltzmann-Gibbs-like stationary
solution to Eq. (9),

PBG =
1
Z

exp
[
− 1

D
V (X)

]
, (11)

where Z is an appropriate normalization constant. That is, PBG satisfies (9)
with ∂PBG

∂t = 0. The distribution PBG maximizes the Boltzmann-Gibbs entropy
SBG under the constraints of normalization and the mean value 〈V 〉 of the
potential V .

Note that a dynamical system with a flux in phase space of the form (10)
(gradient form) corresponds to a system that evolves so as to minimize V , i.e.
down-hill along the potential energy surface. For a field G of the form (10) one
has,

∂Gi

∂Xj
=

∂Gj

∂Xi
=

∂2V

∂Xi∂Xj
. (12)
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In the case of a Hopfield Neural Network, if the activation g(u) is linear, for
example in Eq. (7), Gi ∝ ∑

j

wijXj (corresponding to linear forces),

∂Gi

∂Xj
= wij , (13)

and therefore, by Eq. (12), wij = wji. We see that the general condition (12),
that guarantees that the Fokker-Planck dynamics evolves towards a stationary
Boltzmann-Gibbs distribution (11), is very similar to the synaptic symmetry
requirement, necessary for a neural network to evolve towards minima of an
energy surface. This similarity is, of course, also closely related to the fact that
the simulated annealing technique provides a useful algorithm to find the minima
of the network’s energy landscape. In the Fokker-Planck case, however, it is
possible to relax the condition (12), considering more general drift fields, and
still have a dynamics that leads to a stationary Boltzmann-Gibbs distribution.
This suggests that the Fokker-Planck scenario with non-gradient drift fields may
be relevant to the synaptic symmetry problem. In the following sections we
explore some basic aspects of this scenario, within the more general context of
the nonlinear Fokker-Planck equation.

4 Nonlinear Fokker-Planck Equation

In [16], Ribeiro, Nobre and Curado state: “The linear differential equations in
physics are, in many cases, valid for media characterized by specific conditions,
like homogeneity, isotropy, and translational invariance, with particles interact-
ing through short-range forces and with a dynamical behavior characterized by
short-time memories”. It is possible to introduce a nonlinear diffusion term to
the FPE to describe a physical ensemble of interacting particles, so that the
nonlinearity is an effective description of the interactions [16–20]. Physical sys-
tems characterized by spatial disorder and/or long-range interactions seem to be
natural candidates for this formalism, which has recently attracted considerable
attention from the complex systems research community.

We thus use the nonlinear Fokker-Planck equation (NLFP)

∂P
∂t

= D

[
N∑

i=1

∂2

∂X2
i

(P2−q
)
]

−
N∑

i=1

∂(PGi)
∂Xi

, (14)

to study systems which may deviate from the linear description. Since we need
to model stable properties of interesting physical systems, such as the stored
memory states in a neural network, we search for possible stationary solutions
to Eq. (14).
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4.1 Stationary Solution - G of Gradient Form

In the most frequently studied case, where the field G is of the gradient form
(10), the stationary solution of the NLFP is found by solving,

D

[
N∑

i=1

∂2

∂X2
i

(P2−q
)
]

−
N∑

i=1

∂(PGi)
∂Xi

= 0, (15)

considering the Tsallis ansatz [20]

Pq = A[1 − (1 − q)βV (X)]
1

1−q , (16)

where A and β are constants to be determined. One finds that the ansatz given
by Eq. (16) is a stationary solution of the NLFP equation, if

A = [(2 − q)βD]
1

q−1 . (17)

We call Eq. (16) the q-exponential ansatz. As already mentioned, it constitutes
a stationary solution of the NLFP equation, when G is minus the gradient of a
potential V (Eq. (10)), and A and β satisfy Eq. (17). The distribution Pq is also
called a q-maxent distribution because it optimizes the nonextensive q-entropy
Sq, under the constraints of normalization and the mean value of the potential
V [17,20]. In the limit q → 1, the q-maxent stationary distribution (16) reduces
to the Boltzmann-Gibbs one (11), with β = 1/D.

4.2 Stationary Solution - G Not of the Gradient Form

Now we consider the NLFP equation, with a drift term not arising from the
gradient of a potential and with the form

G = F + E, (18)

where F is equal to minus the gradient of some potential V (X), while E does
not come from a potential function (that is, we have ∂Ei/∂Xj �= ∂Ej/∂Xi). We
then substitute this G and Pq (Eq. (16)) in the stationary NLFP Eq. (15) and
obtain

D

[
N∑

i=1

∂2

∂X2
i

(P2−q
q

)
]

−
[

N∑

i=1

∂(PqFi)
∂Xi

]
−

[
N∑

i=1

∂(PqEi)
∂Xi

]
= 0. (19)

The first two terms in Eq. (19) vanish, because we know that Pq is a stationary
solution of Eq. (15), when only the gradient field F is present. In order for Pq to
satisfy (19), we then require

∑N
i=1 ∂(PqEi)/∂Xi = 0. If this relation is satisfied,

then Pq is also a stationary solution of the full NLFP equation, including the
non-gradient term corresponding to E. We therefore require

N∑

i=1

∂

∂Xi

(
Ei[1 − (1 − q)βV ]

1
1−q

)
= 0, (20)
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This equation constitutes a consistency requirement that the potential function
V , the non-gradient field E, the inverse temperature β, and the entropic parame-
ter q have to satisfy in order that the nonlinear Fokker-Planck equation admits
a stationary solution of the q-maxent form. In the most general β-dependent
situation, the condition given by Eq. (20) leads to a rather complicated relation
between the non-gradient component E and the potential V . However, there are
cases where a β-independent set of constraints can be obtained. We illustrate
this with a two-dimensional example. Consider two-dimensional fields F and G
with components of the form,

(F1; F2) = (−w11X1 − w12X2; −w22X2 − w12X1)
(E1; E2) = (h11X1 + h12X2; h21X1 + h22X2), (21)

with the wij and hij constant real parameters. The field F is minus the gradient
of the potential

V (X1,X2) =
1
2

(
w11X

2
1 + 2w12X1X2 + w22X

2
2

)
. (22)

It can be verified after some algebra that the q-maxent distribution (16) is a
stationary solution of the NLFP equation, if the parameters characterizing the
potential V and the (non-gradient) drift term E satisfy,

h11 = h22 = w12 = 0,
w11h12 + w22h21 = 0. (23)

We see that we have a family of noisy dynamical systems (described by NLFP
equations) characterized by 3 independent parameters, that have q-maxent sta-
tionary solutions in spite of having drift fields not necessarily arising from a
potential. This can be appreciated from the fact that the constraints (23) are
compatible with h12 �= h21. Therefore, the drift field given by Eq. (21) does not
necessarily comply with the symmetry restriction described by Eq. (12), which
is akin to the standard symmetry condition in neural networks.

We are preparing an extended manuscript with a more detailed and general
discussion of the ideas that we presented here briefly, due to space limitations.
There we plan to explore systematically the conditions for having a q-maxent
stationary state in more general scenarios described by NLFP equations, where
the deterministic part of the concomitant dynamics involves a phase space flux
not having the gradient form.

5 Conclusions

Inspired on the symmetry problem in neural networks, we explored properties
of multi-dimensional NLFP equations endowed with drift fields not arising from
a potential. We considered drift fields having both a gradient term and a non-
gradient contribution. The non-gradient component of the drift field exhibits
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asymmetric features akin to those associated with the dynamics of neural net-
works with asymmetric synaptic weights. We identified cases where a NLFP
equation having a non-gradient drift field still has a stationary solution of the
q-maxent form (i.e. a q-exponential of the potential associated with the gradient
part of the drift field). In future contributions, we plan to continue exploring
the connections between the NLFP equation and the synaptic symmetry prob-
lem in the dynamics of neural networks, in order to apply the formalism of a
non-potential drift term to account for attractor states in neuronal circuits, with
asymmetric synaptic interactions.
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G. (eds.) ICANN 2012, Part I. LNCS, vol. 7552, pp. 379–386. Springer, Heidelberg
(2012)

4. Freud, S.: Introductory Lectures on Psycho-Analysis, Standard Edition. W. W.
Norton and Company, New York, London (1966). First German edition (1917)

5. Kandel, E.: Psychiatry, Psychoanalysis, and the New Biology of Mind. American
Psychiatric Publishing Inc., Washington, D.C., London (2005)

6. Shedler, J.: The efficacy of psychodynamic psychotherapy. Am. Psychol. 65(2),
98–109 (2010)

7. Cleeremans, A., Timmermans, B., Pasquali, A.: Consciousness and metarepresen-
tation: a computational sketch. Neural Netw. 20, 1032–1039 (2007)

8. Taylor, J.G., Villa, A.E.P.: The “Conscious I”: a neuroheuristic approach to the
mind. In: Baltimore, D., Dulbecco, R., Francois, J., Levi-Montalcini, R. (eds.)
Frontiers of Life, pp. 349–368. Academic Press (2001)

9. Taylor, J.G.: A neural model of the loss of self in schizophrenia. Schizophrenia
Bull. 37(6), 1229–1247 (2011)

10. Hertz, J.A., Krogh, A., Palmer, R.G. (eds.): Introduction to the Theory of Neural
Computation. Lecture Notes, vol. 1. Perseus Books, Cambridge (1991)

11. Cohen, M.A., Grossberg, S.: Absolute stability of global pattern formation and
parallel memory storage by competitive neural networks. IEEE Trans. Syst. Man
Cybern. 13, 815–826 (1983)

12. Tsallis, C., Stariolo, D.A.: Generalized simulated annealing. Phys. A 233, 395–406
(1996)

13. Parisi, G.: Asymmetric neural networks and the process of learning. J. Phys. A
Math. Gen. 19, L675–L680 (1986)



Assymetries and the Nonlinear Fokker-Planck Formalism 27

14. Xu, Z.B., Hu, G.Q., Kwong, C.P.: Asymmetric hopfield-type networks: theory and
applications. Neural Netw. 9(3), 483–501 (1996)

15. Hopfield, J.J.: Neurons with graded responses have collective computational prop-
erties like those of two-state neurons. Proc. Nat. Acad. Sci. U.S.A. 81, 3088–3092
(1988)

16. Ribeiro, M.S., Nobre, F., Curado, E.M.F.: Classes of N-dimensional nonlinear
Fokker-Planck equations associated to Tsallis entropy. Entropy 13, 1928–1944
(2011)

17. Plastino, A.R., Plastino, A.: Non-extensive statistical mechanics and generalized
Fokker-Planck equation. Phys. A 222, 347–354 (1995)

18. Tsallis, C., Buckman, D.J.: Anomalous diffusion in the presence of external forces:
Exact time-dependent solutions and their thermostatistical basis. Phys. Rev. E
54(3), R2197–R2200 (1996)

19. Franck, T.D.: Nonlinear Fokker-Planck Equations: Fundamentals and Applica-
tions. Springer, Heidelberg (2005)

20. Tsallis, C.: Introduction to Nonextensive Statistical Mechanics. Approaching a
Complex World. Springer, New York (2009)


	Asymmetries in Synaptic Connections and the Nonlinear Fokker-Planck Formalism
	1 Introduction
	2 Dynamical Systems and Neural Networks
	3 Fokker-Planck Equation
	4 Nonlinear Fokker-Planck Equation
	4.1 Stationary Solution -  of Gradient Form
	4.2 Stationary Solution -  Not of the Gradient Form

	5 Conclusions
	References


