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Abstract. This paper investigates inverse recurrent forward models
for many-joint robot arm control. First, Recurrent Neural Networks
(RNNs) are trained to predict arm poses. Due their recurrence the RNNs
naturally match the repetitive character of computing kinematic for-
ward chains. We demonstrate that the trained RNNs are well suited to
gain inverse kinematics robustly and precisely using Back-Propagation
Trough Time even for complex robot arms with up to 40 universal joints
with 120 articulated degrees of freedom and under difficult conditions.
The concept is additionally proven on a real robot arm. The presented
results are promising and reveal a novel perspective to neural robotic
control.
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1 Introduction

Moving robotic arms requires typically forward as well as inverse kinematic con-
trol and planning. Planning trajectories of robotic arms in high dimensional
configuration space is nontrivial. This planning process gets even more diffi-
cult under the objective to obtain feasible, smooth and collision free trajectories
or if one includes orientation constraints, for example moving a cup of coffee
without spilling. Consequently, in some cases planners fail to find a solution for
given problem. State-of-the-art algorithms like Rapid Exploring Random Trees
[5] or the Covariant Hamiltonian Optimization Motion Planner [12] need several
hundred milliseconds to several seconds to plan trajectories, depending on the
complexity of the planning task.

In this research we investigate Recurrent Neural Networks (RNNs), particu-
larly Dynamic Cortex Memorys (DCMs) [7,8], for computing inverse kinematics
of robot arms, particularly with many joints. More concretely, we learned to esti-
mate poses for given arm configurations with RNNs, which match the sequential
nature of computing kinematic forward-chains. Back-Propagation Through Time
(BPTT) is used to to generate the inverse mapping. We show that the presented
approach can handle arms even with up to 120 articulated degrees of freedom
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(DoF) and that it also works on real robot arms. Handling robot arms with many
DoF have studied, e.g., by Rolf et al. in [9] in which the inverse kinematics of
a bionic elephant trunk was learned, making use of known (explored) mappings
from target space to configuration space.

2 Methodology

Our first step towards gaining inverse kinematics is to train a recurrent forward
model. Particularly, the neural network must first learn to estimate end-effector
poses based on configuration vectors, i.e. joint angles. Therefore, a set of configu-
ration vector and pose pairs is required. When the mathematical forward model
of the arm is known, samples can be computed directly. Otherwise, another feed-
back mechanism providing end-effector poses is required, for instance, a tracking
system. The starting point is a general arm model with universal joints, each
providing a yaw-pitch-roll rotation at once with three DoF. Note that this proce-
dure can later be applied to realistic and more specific arms, which usually have
only one DoF per joint. On the other hand, the configuration commands must
not necessarily be angles, but can also be, for instance, muscular contraction
forces, as used in octopus-arms [11].

2.1 Dynamic Cortex Memory Networks

A DCM [7,8] is in principle an LSTM with forget gate [2] and peephole connec-
tions [3], but additionally provides a communication infrastructure that enables
the gates to share information. This infrastructure is established through two
connection schemes. The first scheme is called cortex and connects each gate
with every other gate. The second scheme equips each gate with a self-recurrent
connection providing a local gate-state. In the original study [7] it was pointed
out, that these two schemes used in combination lead to a synergy effect. In
comparison with an LSTM block, a DCM block has nine additional connections
that are all weighted and, hence, trainable.

Beyond the structural modification, DCMs are used exactly like LSTMs and
are trained in the same manner. In this paper all recurrent networks are trained
using gradient descent with momentum term, whereas the gradients are com-
puted with Back Propagation Through Time (BPTT) [10]. The presented exper-
iments were performed using the JANNLab neural network framework [6].

2.2 Learning the Forward Model

Let us consider an arm with n universal joints. The three angles for the j-th
joint are given by a vector ϕ(j) ∈ [−π, π]3. We refer to the entire sequence for
all joints here as configuration state denoted by Φ. Let now M be the forward
model of the robot arm, which maps a configuration state to the corresponding
end-effector frame (denoted by N) relative to the base frame (denoted by 0)

Φ =
(
ϕ(1), . . . ,ϕ(n)

)
M�−→ 0

NA =
[
0
NR 0

Np
0 1

]
, (1)
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where 0
NA ∈ R

4×4 can be decomposed into the rotation, i.e., the orientation of
the end-effector, given by an orthonormal base 0

NR ∈ SO(3) ⊂ R
3×3 and the

translation, i.e., the position of end-effector, given by 0
Np ∈ R

3. It is important
to mention that M also considers the lenghts of the segments and other possible
offsets. They are, however, left out in the formulation, because they are constant
and, moreover, the neural networks do not need them for learning the forward
model. Preliminary experiments indicated that constant translations (joints off-
sets etc.) can be deduced by the networks using trainable biases. Given such
an observable model, our first objective is to train an RNN to become a neural
approximation of M , able to produce pose estimates 0

NÃ for given configuration
states. In the case of universal joints there are three variables per joint. At this
point, the key aspect of the recurrent forward model comes into play: each joint
transformation is considered as a “computing time-step” in the RNN. Accord-
ingly, the RNN requires then only three input neurons, fully independently from
the number of joints. The angle triples are presented to the network in a sequen-
tial manner. Due to this, the network is forced to use its recurrence to handle the
repetitive character of computing chains of mostly very similar transformations.
This forward computing procedure is illustrated in Fig. 1.

Fig. 1. The RNN based forward computation. The angle-triples of the joints are inter-
preted as a sequence. One computation step in the RNN is associated with a certain
joint (3 rotations) and, implicitly, with its corresponding segment (translation). Thus,

each hidden state x
(j)
h of the RNN at time step j is computed based on the associated

angle triple ϕ(j) and the previous hidden state x
(j−1)
h with x

(0)
h =0. The output of the

RNN after n time steps is the pose estimate with regard to the given angles.

While the position can be represented directly using three output neurons,
there are several options to represent the orientation. For this proof-of-concept
we used a vector-based representation of the two base axes z and x, which worked
significantly better than, e.g., 3 rotation angles. Thus, the orientation requires
six output neurons such that the RNNs have overall nine linear output neurons,
whereas we denote the final output vector (after n computing steps) of an RNN
by y ∈ R

9 in which the first three components encode the position estimate 0
N p̃

and the last six components encode the orientation estimate 0
NR̃. In the long

run, however, it could make sense to use a quaternion-based representation in
combination with a special output layer providing normalized outputs directly.
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2.3 Inverse Recurrent Model

During training of the forward model, the network learned to encode and decode
the kinematic behavior of the robot arm using an internal representation – a
recursive superimposition of sigmoidals – that is possibly a simplification of
the “real” kinematic relationships. To gain the inverse mapping, we utilize the
backward-pass of the network, namely, we back-propagate through time a change
in the output space. Note that a similar idea was used earlier for inverting feed-
forward networks in [4]. This allows us to yield a direction in the input space
in which the input must be adapted such that the output gets closer to the
desired output, i.e., the target pose. In an iterative process, starting from any
possible configuration state, when following the negative gradient through the
configuration space, we can obtain a possible solution for the inverse kinematics.
Let Φ be the current configuration state from which we start computing the
inverse kinematic and let 0

N

∗
A be the target pose. First, we perform a forward

pass with the RNN, yielding a pose estimate 0
NÃ with respect to Φ. Second, we

present the target pose 0
N

∗
A as the desired output, like in a regular training step,

and perform the backward pass, which propagates the influence to the output
discrepancy (loss) L reversely in “time” though the recurrent network. Third,
we need to derive the influence of each input to L. Since all δ

(j)
h are known we

can apply the chain rule as a step upon BPTT to yield

∂L
∂ ϕ(j)

i

=
H∑

h=1

[
∂net

(j)
h

∂ ϕ(j)
i

∂L
∂net

(j)
h

]
H∑

h=1

wihδ
(j)
h . (2)

This procedure of computing the input gradient joint-wise is illustrated in Fig. 2.
In LSTM-like networks the gradient can be kept more stable over time during
back-propagation, which plays obviously a major role for the proposed method,
particularly for arms with many joints, since traditional RNNs were not able to
learn the forward model precisely. Fourth, we update Φ by simply applying the
rule

Φ(τ + 1) ←− Φ(τ) − η∇Φ(τ)L + μ [Φ(τ) − Φ(τ − 1)] (3)

where τ denotes the current iteration step, η ∈ R is a gradient scale factor
(cf. learning rate in gradient descent learning). Note that large step size η >
0.5 may cause oscillations during this process. Optionally, we added the last
update step as momentum scaled with the rate μ ∈ R (i.e., μ ≈ 0.5), which
results in a faster convergence. The entire procedure is repeated until the current
pose estimate is sufficiently close to 0

N

∗
A. The proposed method can be applied

offline, where a full solution is searched first and then the controller interpolates
towards it, or online, where the search process is (partially) synchronized with the
arm movement, whereas the motion-trajectory basically represents the gradient-
guided trajectory in configuration space.

A drawback of the approach is that the accuracy of potential solutions is lim-
ited to the accuracy of the neural forward model. However, this can be compen-
sated if the “real” pose of the robot arm with respect to a given Φ is accessible
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Fig. 2. Inverse computing using BPTT. After an input sequence (the current state
of the arm) is presented, the discrepancy between the output and the desired pose is
back-propagated through the network.

either via the exact mathematical forward model or another feedback provided.
The idea is as follows: Instead of presenting the desired target, encoded as a
vector z ∈ R

9 analogously to y in Sect. 2.2, we present a “modified” version z̃.
Let u ∈ R

9 be the true current pose, which encodes 0
Np in the same manner, we

compute z̃ with respect to a given Φ through

z̃ =
[

[yi + γ1(zi − ui)]1≤i≤3

[yj + γ2(zj − uj)]4≤j≤9

]�
, (4)

where γ1, γ2 ∈ [0, 1] are additional scaling factors weighting the influence of the
position discrepancy and the orientation discrepancy respectively. The modifi-
cation causes the networks to converge towards the real target pose.

3 Exerimental Results

The results presented in this section are based on four different simulated arms
with 5, 10, 20, and 40 universal joints. The rotations along the segment axis
z are restricted to angle range [−π/4,+π/4,], whereas both orthogonal rotations
(x, y) are restricted to the angle range [−π/2,+π/2]. A larger angle range for
the z rotation caused problems during earlier experiments and we hence limited
the range as stated above for the moment. To learn these arms 20, 000 random
configurations and associated poses are used. To show that the approach also
works on a real robot arm, we additionally included a CrustCrawler manipulator
in our experiments. This is a light-weight, low budget manipulator with 9 Robotis
Dynamixel servomotors, which we used in a four articulated DoF setup. For
training also 20, 000 random poses were computed using the Trac-IK kinematic
plugin [1] for ROS MoveIt1. Note, that only one parameter per computation step
is required, whereby we do not have to distinguish the rotation axis – the correct
association is ensured by the trained network – such that we can directly use
the angles given in DH (Denavit-Hartenberg) notation. It should be mentioned

1 ROS MoveIT see http://moveit.ros.org.

http://moveit.ros.org
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Fig. 3. Convergence (average MSE over 100 random samples) towards target poses for
different arm models during 500 iterations.

that the position values in all experiments were normalized such that each arm
has a unit-less length of 1.

The experiments are based on RNNs with two hidden layers, each consisting
of 24 DCM blocks for the universal arms and 20 DCM block for the CrustCrawler,
respectively. In both architectures each hidden block contains 3 inner cells and
has variable biases for cells and gates. Further, each hidden layer is not recur-
rently connected to itself, but both hidden layers are mutually fully connected.

Fig. 4. The first two rows show the movement towards the target pose (blue) for a
20-joint arm (top) and a 40-joint arm (middle). In the bottom row it is shown that
inverse kinematics can be produced even under difficult conditions (from left to right):
Unreachable poses, heavily screwed, locked joints.(Color figure online)
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This was the best architecture we discovered in preliminary investigations. Dur-
ing training, the learning rate was repeatedly decreased every 20 epochs (from
0.01 over 5·10−3, 10−3, 5·10−4, 10−4, 5·10−5 to 10−5) and the momentum rate
was fixed to 0.95. However, with 10, 20, and 40 joints there was an issue con-
cerning the covered angle ranges within the training samples. With increasing
the number of joints, the learnable angle ranges descreased. We figured out that
for those arms the forward model can be significantly improved, if the network
is pretrained either on an arm with less joints or with limited angles. For these
retraining procedures we performed similarly as described above but skipped the
first two largest learning rates.

To analyze whether target poses can be reached reliably, we computed ran-
dom configurations for which we then determined their corresponding poses using
the known forward model. For the resulting poses we generated the inverse kine-
matics with the RNNs. Based on this configurations we computed again the pose
using the forward model and finally compared both poses. Figure 3 shows the
the average convergence of the pose error (MSE) over 100 random poses within
500 iterations on different arms.

As can be seen, on all arms the approach shows a relatively similar conver-
gence behavior. Already after 50 iterations the end-effector poses are sufficiently
close to the target poses. The results clearly indicate that for all arms, even for
the one with 40 universal joints, precise solutions could be found consistently.
Note that on the CrustCrawler for some random poses (≈ 10 %) the process
got stuck in a local minimum. These cases were left out for computing the

Fig. 5. In the top row the MoveIT rviz plug-in is displayed. The current configuration
of the arm is rendered in black and the goal in orange. A movement of the marker
changes the arm’s goal pose. The kinematics solver is called and the goal configuration
is rendered. In images from left to right the transition to the goal state is illustrated.
Note that for this image series, we use one of MoveIT’s planning algorithms for the
real arm’s trajectory generation in order to exclude self-collisions – nonetheless each
particular call of the inverse kinematics is solved with the RNN.(Color figure online)
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average curve. Figures 4 and 5 visually confirm the success of our approach,
since the desired target poses are reached exactly. Figure 4 also demonstrates
that good solutions can be found even under difficult conditions. If a target
pose is unreachable the network drives the arm towards a close plausible pose.
But also in the case when an arm is heavily screwed, the target can be reached
robustly. Furthermore, entirely locked joints can also be easily compensated on
the fly.

4 Conclusion

In this paper we introduced an approach for computing inverse kinematics of
many-joint robot arms with inverse recurrent forward models. First, we learned
to estimate poses for given arm configurations with RNNs. While the RNNs
match the sequential nature of computing forward-chains, Back-Propagation
Through Time (BPTT) is used to to generate the inverse mapping.

We verified our method on complex simulated 3D arms with multi-axis spher-
ical joints. It was shown that the approach scales well, since we could effectively
control arms with 5-joint, 10-joint, 20-joints, and even with 40-joints (the latter
has 120 DoF). It is also shown that the approach can produce inverse kinematics
precisely for a real robot arm. This research is to be regarded as a proof-of-
concept and a first step towards a novel perspective on neural arm-control.

Acknowledgments. We would like to thank Martin V. Butz for helpful discussions
concerning the method and its distinction to related approaches, Yann Berquin for
constructive discussions, and Sebastian Buck for valuable technical support.
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