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Abstract. Predictions on sequential data, when both the upstream and
downstream information is important, is a difficult and challenging task.
The Bidirectional Recurrent Neural Network (BRNN) architecture has
been designed to deal with this class of problems. In this paper, we
present the development and implementation of the Scaled Conjugate
Gradient (SCG) learning algorithm for BRNN architectures. The model
has been tested on the Protein Secondary Structure Prediction (PSSP)
and Transmembrane Protein Topology Prediction problems (TMPTP).
Our method currently achieves preliminary results close to 73 % correct
predictions for the PSSP problem and close to 79 % for the TMPTP prob-
lem, which are expected to increase with larger datasets, external rules,
ensemble methods and filtering techniques. Importantly, the SCG algo-
rithm is training the BRNN architecture approximately 3 times faster
than the Backpropagation Through Time (BPTT) algorithm.
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1 Introduction

Even though a number of Machine Learning (ML) algorithms have been designed
to process and make predictions on sequential data, the mining of such data types
is still an open field of research due to its complexity and divergence [1]. Analy-
sis and development of optimisation algorithms for specific ML techniques must
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take into account (a) how to capture and exploit sequential correlations, (b) how
to design appropriate loss functions, (c) how to identify long-distance interac-
tions, and (d) how to make the optimisation algorithm fast [2]. One of the most
successful classes of models which has been designed to deal with these questions
is Recurrent Neural Networks (RNNs) [3]. The most common learning algorithm
for such models is the Backpropagation Through Time (BPTT) [4,5], which is
based on the gradient descent algorithm. Unfortunately, this kind of algorithms
have a poor convergence rate [6]. Moreover, they depend on parameters which
have to be specified by the user and are usually crucial for the performance of
the algorithm. In order to eliminate these drawbacks, more efficient algorithms
must be developed. One such algorithm is the Scaled Conjugate Gradient (SCG)
[6], a second-order learning algorithm, that has been found to be superior to the
conventional BPTT algorithm in terms of accuracy, convergence rate and the
vanishing-gradient problem [7]. In addition, the original form of the algorithm
[6] does not depend on any parameters.

Predictions on sequential data are particularly challenging when both the
upstream and downstream information of a sequence is important for a specific
element in the sequence. Application examples include problems from Bioinfor-
matics such as Protein Secondary Structure Prediction (PSSP) [8–10] and other
related problems (e.g., Transmembrane Protein Topology Prediction (TMPTP)
[11]). In such sequence-based problems the events are dynamic and located down-
stream and upstream, i.e., left and right in the sequence. A ML model designed
for such data must learn to make predictions based on both directions of a
sequence. To predict these events, researchers utilise Bidirectional Recurrent
Neural Network (BRNN) architectures [8]. The BRNN has proved to be a very
efficient architecture for the PSSP problem with accuracy of approximately 76 %
[8], while for the TMPTP problem to the best of our knowledge the BRNN archi-
tecture has not been used so far. The BRNN architectures are currently trained
with an extension of the BPTT algorithm [5] with the error propagated in both
directions of the BRNN. However, the SCG algorithm has not been developed
for this architecture.

This paper introduces the mathematical analysis and development of the
SCG learning algorithm for the BRNN architecture. The implemented model
and learning algorithm is then tested on the PSSP and TMPTP problems.

2 Methodology

2.1 The BRNN Architecture

The BRNN architecture of Baldi et al. [8] consists of two RNNs and a Feed
Forward Neural Network (FFNN). The novelty of this architecture is the con-
textual information contained in the two RNNs, the Forward RNN (FRNN) and
the Backward RNN (BwRNN). The prediction at step t, for a segment in a
sequence, is processed based on the information contained in a sliding window
Wa. The FRNN iteratively processes the (Wa − 1)/2 residues located on the left
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side of the position t to compute the forward (upstream) context (Ft). Simi-
larly, the BwRNN iteratively processes the (Wa − 1)/2 residues located on the
right side of the position t to compute the backward (downstream) context (Bt).
Hence, the two RNNs are used to implement Ft and Bt. These RNNs correlate
each sequence separately and hold an internal temporary knowledge to form the
network’s internal memory [3].

Fig. 1. The BRNN architecture

The BRNN architecture in Fig. 1 is inspired by the work of Baldi et al. [8].
Layer 0 in Fig. 1 is not an active layer, layers 1 and 2 have a hyperbolic tangent
transfer function, while layer 3 is a softmax output layer which is calculated
based on the result of Eq. 1. Box U stands for input nodes, F for the set of
forward states and B for the set of backward states. The links between boxes
oF and F and between boxes oB and B represent the recursive connections
providing the information of the given number of states of current input U.

oUi = softmax

(
1

2ψ

Nφ∑
j=1

wFij · fi,t +
Nβ∑
j=1

wBij · bi,t +
NhU∑
j=1

wUij · hUi,t

)
(1)

where ψ is the number of training patterns. Nφ, Nβ and NhU are the dimensions
of oF, oB and hU layers, respectively. i stands for the position of a neuron in
oU. wFij , wBij are the connection weights between layer 2 and 3, and wUij

between layer 1 and 3. Finally, fi,t, bi,t and hUi,t are the outputs of each neuron
at time t of oF, oB and oU, respectively.

2.2 Development of the SCG Algorithm for BRNNs

As the Scaled Conjugate Gradient (SCG) learning algorithm [6] has not been pre-
viously developed for the BRNN architecture, we have mathematically analysed
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and developed the corresponding learning formulas and optimisation procedure.
These formulas were based on an unfolded BRNN. Since stationarity is assumed,
the connection weights do not change over time and the unfolding architecture
of the BRNN is as indicated by the work of Baldi et al. [8]. We have used the
straightforward cost function given by 2:

E =
1

2ψ

ψ∑
p=1

s∑
i=1

(yp,i,t − yp,i,t)2 (2)

where s the number of neurons in the output layer, yp,i,t the target output and
yp,i,t the system output for an input pattern p.

The partial derivatives with respect to the weights are hidden in the system
output as usual. Consequently, the general formula of the partial derivative of
E with respect to any weight in Fig. 1 can be written as below:

∂E

∂w
=

1

ψ

(
∂E

∂yp,i,t
· ∂yp,i,t

∂oUt
· ∂oUt

∂w

)
=

1

ψ

(
(yp,i,t − yp,i,t) · yp,i,t · (1− yp,i,t) · ∂oUt

∂w

)
(3)

Finally, based on Eq. 3, we have calculated the derivatives which are used in
the SCG algorithm for training the weights of the BRNN architecture in Fig. 1.
After the partial derivatives of the cost function of Eq. 2 with respect to indi-
vidual weights were calculated, they were directly applied to the SCG algorithm
in the work of Møller [6] and represent the formulas of updating weights in the
unfolded version of the BRNN.

One of the most undesirable difficulties during the training of a RNN is
the vanishing gradient problem. A mechanism introducing shortcut connections
between the forward and backward states of the sequence was used (as in [8]),
forming shorter paths along the sequence where gradients can be propagated.
Therefore, the gradient information at each step t includes a strong signal from
the whole sequence to encounter for the vanishing gradient problem and conse-
quently avoid long range dependencies elimination.

Furthermore, we have introduced a couple of minor modifications on the SCG
algorithm to increase the convergence rate and the ability of the algorithm to
search for the best solution in a complicated error surface of such a network:

1. An Adaptive Step Size Scaling Parameter ScSS was introduced at step 7
of the SCG algorithm (see [6]). We have modified the algorithm’s update weight
vector rule to Eq. 4:

wk+1 = wk + ScSSakpk (4)

where ak is the step size and pk is the search direction. During the first itera-
tions this scalar is high, assuming that the algorithm has identified a direction
to a minimum. Hence, we force the algorithm to use bigger step size in a spe-
cific direction to approach a minimum faster. The adaptive scaling parameter is
exponentially decreasing as the algorithm approaches a minimum to avoid losing
the lowest point of the curve. Furthermore, this parameter is redefined each time
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the SCG algorithm restarts. Empirically, the use of this parameter is mandatory
for training a complicated BRNN architecture with the SCG algorithm.

2. Restart Algorithm Condition: The original SCG algorithm is restarted if
the number of learning iterations surpasses the number of the network’s para-
meters. However, this condition is successful only if the algorithm is used to
optimize a quadratic function. Clearly, in the case of the BRNN architecture this
condition fails because the error surface is more complicated than a quadratic
function. Hence, we have chosen to restart the algorithm only if the training
process develops slowly (improvement in training error <10−7) and after the
constant number of 20 iterations. Furthermore, our algorithm, before a restart,
stores all the weight vectors and the respective training errors. Finally, after the
algorithm reaches the final training iteration, it returns a trained model with
the weight vector which was assigned to the lowest training error. Consequently,
this version of the algorithm is widely exploring the respective error surface and
is less likely to get stuck for a long time in a local minimum.

2.3 Application Domains and Data

High quality datasets for training and validation purposes are mandatory when
constructing a prediction model. Therefore, we have chosen two well known
bioinformatics problems which are suited to the BRNN architecture.

Protein Secondary Structure Prediction: The prediction of a protein’s Sec-
ondary Structure (SS) from its Primary Structure (PS) is an important interme-
diate step to the identification of a protein’s three-dimensional (3D) structure,
which is crucial because it specifies the protein’s functionality. Experimental
methods for the determination of a protein’s 3D structure are expensive, time
consuming and frequently inefficient [8]. A protein is typically composed of 20
different amino acid types, which are chemically connected, folding into a 3D
structure by forming short-, mid- and long-range interactions. When an exper-
imentally determined 3D structure is available, each amino acid residue can
be assigned to a SS class, usually under a commonly accepted scheme: helix
(H ), extended (E ) and coil/loops (L). We use the CB513 [13], a non-redundant
dataset, which has been heavily used as a PSSP benchmark dataset. Multi-
ple sequence alignment (MSA) profiles have been shown to enhance machine
learning-based PSSP, since they incorporate useful evolutionary information
for the encoding of each position of a protein. More specifically, each protein
sequence position is replaced by a 20-dimensional vector, which corresponds to
the frequencies of 20 different amino acid types as calculated from a PSI-BLAST
[12] search against the NCBI-NR (NCBI: http://www.ncbi.nlm.nih.gov/) data-
base.

Transmembrane Protein Topology Prediction: Knowledge of the struc-
ture and topology of Transmembrane (TM) proteins is important since they
are involved in a wide range of important biological processes and more than
half of all drugs on the market target membrane proteins [11]. However, due to

http://www.ncbi.nlm.nih.gov/
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experimental difficulties, this class of proteins is under-represented in structural
databases. Similarly to the PSSP problem, a TMPTP dataset consists of the
proteins’ PS and each amino acid can be assigned to a topology class: inside
a cell (I ), outsite a cell (O) and inside a cell’s membrane (T ). Such a dataset
has been introduced by Nugent and Jones [11] which contained 131 sequences
(TM131) with all available crystal structures, verifiable topology and N-terminal
locations. As in the PSSP problem, MSA profiles have been used to represent a
sequence’s PS.

3 Results and Discussion

The developed SCG learning algorithm for BRNNs has been implemented and
tested on both PSSP and TMPTP problems. To train the BRNNs, we have
used the already mentioned CB513 and TM131 datasets. More specifically, the
model’s input vector was a sliding window on a protein’s PS. The target output
class was the SS class for PSSP and topology class for TMPTP which was
assigned to the segment at the middle point of a sliding window.

A single BRNN has been trained each time. At this stage, we carried out
multiple experiments to tune up our model and extract preliminary results,
which are shown in Tables 1 and 2. One of the most important parameters with
a big impact on the results is the sliding window size. Particularly, we have used
3 window size parameters. Parameter Wa stands for the sliding window size on
the PS sequence. The first (Wa − 1)/2 residues of the sliding window are used
as input to Ft and similarly the last (Wa − 1)/2 residues are used an input to
Bt. The Wc window parameter represents the number of Wa residues which are
located at the center of the window and are used as input to hU . Finally, the
Wfb window parameter represents the number of residues that are used as input
to Ft and Bt at each step. Each one of the 3 window size parameters is multiplied
by 20 which is the length of each amino acid MSA representation. Furthermore,
we had to tune up the parameters that determine the network’s architecture.
The parameter n is the length of the context vectors oF and oB. In addition,
the parameter hn is the number of hidden units in hU layer and similarly hfb is
the number of hidden units in hF and hB layers. We have also used the already
mentioned adaptive step size scaling parameter ScSS. Finally, we have used the
Sfb and Sout, which are the numbers of additional consecutive context vectors
in the future and the past of Ft/BT and Ot, respectively. In all experiments,
the 2/3 of the datasets were used to train the model and the 1/3 for validation
purposes. The performance of our model has been evaluated by the Q3 metric,
which corresponds to the percentage of the correctly predicted residues [14].

Firstly, we have trained the BRNN architecture on the PSSP problem. For
the purpose of tuning up the network’s parameters we have used a subset of
CB513 dataset, which contained 150 randomly selected protein sequences. The
results can be seen in Table 1. After we have tuned up the network architecture,
we have noticed that in order to maximize the algorithm’s performance the three
windows Wa, Wfb and Wc must have values of 25, 3 and 3, respectively. Thus,
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shorter sliding window does not provide the network with enough information
and longer sliding window cannot be captured by the network. As it can be seen
from experiments 2 and 5 in Table 1, the correct tuning up of the sliding window
parameter Wa can increase the algorithm’s performance more than 3 %. Further-
more, we have noticed that the ScSS parameter should be set to 100 to increase
the convergence rate for this problem. As it can be seen from experiments 1, 3
and 5 in Table 1, this parameter can increase the performance of the algorithm
near to 4 %. The final Q3 metric has also increased by 2 % after we dropped the
Sfb and Sout parameters from 3 to 2, as it can be seen from experiments 6 and
7 in Table 1. Finally, the best Q3 result was 73.90% which has been achieved
in 500 training iterations, the 1/3 of BPTT learning iterations.

Table 1. Experimental results using 1/3 of the CB513 subset as a test set (see text
for description of the parameters)

A/A Wa Wfb Wc ScSS n hn hfb Sfb Sout Q3(%)

1 25 3 3 10 11 11 11 2 2 69.64

2 31 3 3 100 11 11 11 2 2 70.26

3 25 3 3 1000 11 11 11 2 2 69.10

4 25 3 3 100 9 9 9 2 2 67.56

5 25 3 3 100 11 11 11 2 2 73.03

6 25 3 3 100 14 14 14 2 2 73.90

7 25 3 3 100 14 14 14 3 3 71.26

Similarly, we have used the TM131 dataset to train the model with the results
shown in Table 2. The network needed for this problem was much bigger com-
pared to the one used for the PSSP problem. Importantly, the Wfb window had
to be always set to 1, as larger size windows reduced the algorithm’s perfor-
mance. Furthermore, the ScSS parameter was set to 10 to increase more than
2 % the algorithm’s Q3 accuracy, as it can be seen from experiments 2 and 3 in
Table 2. Surprisingly, the network cannot converge with any value more than 0
for the Sout parameter. The best Q3 achieved was 78.85%. This Q3 accuracy
was achieved with no external rules, ensemble methods or filtering techniques,
which will be used in our final methodology and we expect to increase the perfor-
mance of our system. Consequently, our results are lower than the 89 % correct
predictions of Nugent and Jones [11] on the same dataset. This observation shows
that, at least with regards to the output layer, context networks seem to be less
important compared to the PSSP problem. This fact was actually expected, since
TM regions are on average much longer than SS elements in globular proteins.

The preliminary results on the PSSP and TMPTP problems have shown that
a BRNN trained with our version of the SCG learning algorithm can capture pat-
terns and make predictions on complicated sequences where the information in
both upstream and downstream direction is important. Furthermore, the SCG
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Table 2. Experimental results using 1/3 of the TM131 as a test set (see text for
description of the parameters)

A/A Wa Wfb Wc ScSS n hn hfb Sfb Sout Q3(%)

1 25 1 25 10 40 40 40 3 3 54.20

2 25 1 25 10 40 40 40 3 0 72.56

3 25 1 25 100 40 40 40 3 0 70.36

4 25 1 25 10 37 37 37 3 0 73.06

5 25 1 25 10 30 30 40 3 0 77.73

6 25 1 25 10 25 25 25 3 0 78.85

7 25 1 15 10 40 40 40 3 0 70.09

learning algorithm needs much less training iterations than the conventional
BPTT learning algorithm. This is very important if we take into account the
latest developments in the field which demand very big datasets and network
architectures, which consequently increase exponentially the training time. In
addition, many of these methods are used in ensemble methods (as in Baldi
et al. [8]) where the training time is increased even further. Furthermore,
our experiments have shown that in the absence of the ScSS parameter, the
SCG algorithm training the BRNN architecture could not converge (results not
shown).

Importantly, our final methodology will be based on our previous work in
[9,10]. Our current preliminary results, for the PSSP problem, are slightly lower
than the 76 % Q3 accuracy of Baldi et al. [8], as no big datasets, external rules,
ensemble methods or filtering techniques have yet been used, through which we
expect (based on the results of our previous work [9,10]) to increase the final
Q3 accuracy for both the PSSP and TMPTP problems. Moreover, we do not
have in this paper a direct comparison with the results of Baldi et al. [8] because
the dataset used is different. Consequently, the final results of training a BRNN
with SCG on the PSSP and TMPTP problems and the direct comparison with
similar methods will be presented at the conference.

References

1. Schuster, M., Paliwal, K.K.: IEEE Trans. Signal Proces. 45, 2673–2681 (1997)
2. Dietterich, T.G.: Machine learning for sequential data: a review. In: Caelli, T.M.,

Amin, A., Duin, R.P.W., Kamel, M.S., de Ridder, D. (eds.) SSPR&SPR 2002.
LNCS, vol. 2396, pp. 15–30. Springer, Heidelberg (2002)

3. Elman, J.L.: Cogn. Sci. 14, 179–211 (1990)
4. Werbos, P.J.: Proc. IEEE 78(10), 1550–1560 (1990)
5. Frasconi, P., Gori, M., Sperduti, A.: IEEE Trans. Neural Netw. 9, 768–786 (1998)
6. Møller, M.F.: Neural Netw. 6, 525–533 (1993)
7. Hochreiter, S., Schmidhuber, J.: Neural Comput. 9, 1735–1780 (1997)



Training BRNN Architectures with the SCG Algorithm 131

8. Baldi, P., Brunak, S., Frasconi, P., Soda, G., Pollastri, G.: Bioinformatics 15, 937–
946 (1999)

9. Kountouris, P., Agathocleous, M., Promponas, V., Christodoulou, G., Hadjicostas,
S., Vassiliades, V., Christodoulou, C.: IEEE ACM Trans. Comput. Biol. Bioinform.
9, 731–739 (2012)

10. Agathocleous, M., Christodoulou, G., Promponas, V., Christodoulou, C., Vassili-
ades, V., Antoniou, A.: Protein secondary structure prediction with Bidirectional
recurrent neural nets: can weight updating for each residue enhance performance?
In: Papadopoulos, H., Andreou, A.S., Bramer, M. (eds.) AIAI 2010. IFIP AICT,
vol. 339, pp. 128–137. Springer, Heidelberg (2010)

11. Nugent, T., Jones, D.T.: BMC Bioinf. 10, 159 (2009)
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