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Abstract. We investigate scaling properties of human brain functional
networks in the resting-state. Analyzing network degree distributions,
we statistically test whether their tails scale as power-law or not. Ini-
tial studies, based on least-squares fitting, were shown to be inade-
quate for precise estimation of power-law distributions. Subsequently,
methods based on maximum-likelihood estimators have been proposed
and applied to address this question. Nevertheless, no clear consensus
has emerged, mainly because results have shown substantial variability
depending on the data-set used or its resolution. In this study, we work
with high-resolution data (10K nodes) from the Human Connectome
Project and take into account network weights. We test for the power-
law, exponential, log-normal and generalized Pareto distributions. Our
results show that the statistics generally do not support a power-law, but
instead these degree distributions tend towards the thin-tail limit of the
generalized Pareto model. This may have implications for the number of
hubs in human brain functional networks.

Keywords: Power-law distributions · Functional connectivity · Gener-
alized pareto · Model fitting · Maximum likelihood · Connectome · Brain
networks

1 Introduction

Much interest in theoretical neuroscience has revolved around graph-theoretic
scaling properties of the network of structural and functional correlations in the
human brain. Some authors have described the degree distribution of nodes in
brain functional networks as scale-free; that is, these networks follow a power-law
degree distribution P (k) ∼ k−α with an exponent close to 2 [7,11], indicating the
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presence of a small number of hub-nodes that connect widely across the network.
Other studies have suggested that functional brain networks are not scale-free,
but instead are characterized by an exponentially truncated distribution [1,8,10].
The scaling characteristics of these networks are associated with the number and
organization of network hubs and consequently may have implications with our
understanding of how the brain responds to disease or damage [1,2]. This calls for
a rigorous statistical methodology to infer underlying models that best describe
the degree distribution of brain functional networks.

Initial studies were based on least-square fitting of log-log plots of fre-
quency distributions to answer this question. This approach, although seemingly
straightforward, is inadequate from a statistical point of view as elaborated in
[6]. Least-square fitting may give systematically biased estimates of the scaling
parameters and most of the inferential assumptions for regression are violated.
Moreover, in all these studies no statistical testing was mentioned to measure
the goodness-of-fit of each fitted degree distribution. As an alternative, Maxi-
mum Likelihood Estimation (MLE) of the scaling parameters should be used
and alternative distributions should be also tested. In [6] an analytical frame-
work for performing such tests for power-law models is provided, which has
been subsequently extended for testing other distributions as well. However, it
has been noted that results are still very much dependent on the way the data
is preprocessed, how the network is extracted, its dimensions and whether one
uses region or voxel-based networks. For instance, Hayasaka et al. [10] found
that, although degree distributions of all analysed functional networks followed
an exponentially truncated model, the higher the resolution, the closer the dis-
tribution was to a power-law.

In this work, as a first step to address this issue we analyzed the resting-
state fMRI (rs-fMRI) data of 10 subjects obtained from the Human Connectome
Project database. Using the MLE method, advocated in [6], we estimate the scal-
ing parameters for the best possible fit for a model distribution and then check
the goodness-of-fit for this distribution by comparing it to synthetic generated
data. We do this for four model distributions: power-law, exponential, log-normal
and generalized Pareto. The reason for choosing the generalized Pareto model is
due to the fact that it interpolates between fat-tail and thin-tail distributions,
including the power-law and exponential as special cases. In what follows, we
find that at a resolution of 10 K nodes, the statistics favor the generalized Pareto
thin-tail distributions.

2 Materials and Methods

2.1 Subjects, Imaging Data and Network Extraction

High-quality, high-resolution resting state fMRI scans of 10 subjects from the
Human Connectome Project (Q1 data released by the WU-Minn HCP consor-
tium in March 2013 [13]) were analysed in this study (age range: 26–35, 16.7 %
male). Individual rs-fMRI data were acquired for ∼15 min providing a total of
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Fig. 1. A. Overview of the processing steps used to generate graph-based brain con-
nectivity functional networks (see the main text for further details about the overall
procedures). B. Degree distributions for three different values of the functional corre-
lation threshold for a representative subject (top) and averaged over the 10 data-sets
included in the study (bottom).

∼98,300 grayordinates time–series of 1,200 time points each. A schematic illus-
tration of the process used to build the networks is provided in Fig. 1A. Building
and visualizing functional networks was done using the BrainX3 platform [3–5].
For all the subjects, the original data-set was downsampled to ∼10,000 nodes by
averaging the time-series of neighbouring grayordinates within a 5 mm3 cube.

Pearson’s correlation coefficients were calculated between each possible pair
of nodes to build a N ×N functional connectivity matrix, which is symmetric by
construction and with self-connections set to zero. The matrix was then thresh-
olded to derive weighted undirected adjacency matrices. We examined a range
of 18 different thresholds (R) between −0.7 and 0.8, at 0.1 steps. Outside this
range, the functional matrices become too sparse for meaningful analysis. For a
positive threshold, each entry in the correlation matrix is set to 0 if its value is
less than the threshold value and maintains its value otherwise. For a negative
threshold, absolute values of the entries less than the threshold are maintained,
while others are set to 0. In a weighted network, the weighted degree of a node
is defined as the sum of all weighted edges connected to that node. Figure 1B
illustrates the degree distributions of extracted networks across three different
thresholds for a representative subject and averaged over all 10 data-sets.

2.2 Fitting Parametric Models to Weighted Degree Networks

For every network generated from subject data, the vector of degrees x =
[x1, x2, ..., xn] is sorted in ascending order for each threshold. For every xi, fol-
lowing [6], we use the method of maximum likelihood to estimate the scaling
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Table 1. Fit results of the exponential (p(x) = Ce−λx) and the power law distributions
(p(x) = Cax−α)

Exponential
Thr λ xmin TL KS p -value TLr

+0.8 0.000 0.000 0.0 0.000 0.0000 0.714
+0.7 0.162 1.186 83.5 0.056 0.3125 0.500
+0.6 0.089 3.887 130.5 0.058 0.4840 0.306
+0.5 0.038 15.544 175.5 0.050 0.6170 0.187
+0.4 0.020 23.051 440.5 0.037 0.7305 0.160
+0.3 0.012 44.067 805.0 0.030 0.3305 0.167
+0.2 0.008 44.049 1552.5 0.024 0.0895 0.205
+0.1 0.006 25.520 4350.5 0.031 0.0015 0.433
+0.0 0.007 545.110 1597.0 0.037 0.0290 0.159
−0.0 0.021 123.255 1678.0 0.021 0.0485 0.168
−0.1 0.023 53.151 141.0 0.072 0.1835 0.014
−0.2 0.095 7.104 123.0 0.170 0.0170 0.105
−0.3 0.348 0.330 95.5 0.224 0.0000 0.534
−0.4 0.000 0.000 0.0 0.000 0.0000 0.876
−0.5 0.000 0.000 0.0 0.000 0.0000 0.881
−0.6 0.000 0.000 0.0 0.000 0.0000 0.510
−0.7 0.000 0.000 0.0 0.000 0.0000 -
−0.8 0.000 0.000 0.0 0.000 0.0000 -

Power law
Thr α xmin TL KS p -value TLr

+0.8 0.000 0.000 0.0 0.000 0.0000 0.655
+0.7 2.257 1.427 83.0 0.120 0.0005 0.437
+0.6 2.324 4.387 94.5 0.099 0.0070 0.336
+0.5 2.765 21.077 201.0 0.085 0.0275 0.141
+0.4 2.946 48.800 300.0 0.079 0.0020 0.099
+0.3 3.711 180.624 224.0 0.079 0.0650 0.045
+0.2 5.541 360.395 281.5 0.079 0.0060 0.036
+0.1 8.615 745.120 208.0 0.0666 0.1490 0.021
+0.0 12.594 931.660 246.5 0.059 0.1810 0.025
−0.0 5.303 142.645 1249.0 0.021 0.5085 0.124
−0.1 2.402 11.896 2352.5 0.044 0.0000 0.236
−0.2 2.417 3.349 521.5 0.052 0.0030 0.277
−0.3 2.367 1.089 118.5 0.088 0.0105 0.319
−0.4 0.000 0.000 0.0 0.000 0.0000 0.332
−0.5 0.000 0.000 0.0 0.000 0.0000 0.399
−0.6 0.000 0.000 0.0 0.000 0.0000 0.510
−0.7 0.000 0.000 0.0 0.000 0.0000 -
−0.8 0.000 0.000 0.0 0.000 0.0000 -

All data are expressed as median values. Legend: Thr, R threshold; λ, α model parameters; xmin, lower bound
for model distribution; TL, length of the tail; KS, Kolgomorov-Smirnov statistic; p-value, plausibility of the model;
TLr , proportion of non-zero nodes in the tail.

parameter α providing the best possible fit for the hypothetical power-law dis-
tribution P (x) ∼ Cx−α for the tail of the observed data in the range xi to xn.
Next, we calculate the Kolmogorov-Smirnov (KS) statistic for this power-law dis-
tribution with respect to xi. Out of all possible xi from the data, the one with
the smallest KS statistic corresponds to the lower bound xmin for power-law
behavior in the data. The next step is to verify whether this is indeed a good fit
for the data. For that, a large number of synthetic data-sets are sampled from a
true power-law distribution with the same scaling parameter α and bound xmin

as the ones estimated for the best fit of the empirical data. We fit each synthetic
data-set to its own power-law model and calculate the KS statistic for each one
relative to its own model. An empirical p-value is then calculated as the fraction
of the time the empirical distribution outperforms the synthetically generated
ones (by having a smaller KS statistic value). If p-value � 0.1, the power-law
hypothesis can be ruled out as a non plausible explanation of the data. Never-
theless, large p-values do not guarantee that the power-law is the best model
and the power-law fit has to be compared to a class of competing distributions.

3 Results

Power-law testing was performed on Matlab (Mathworks Inc., USA) using [6].
Further, for testing exponential, log-normal and generalized Pareto models we
adapted the framework provided in [6] to include these competing hypothesis.
For each subject, we analyzed thresholds in the range −0.7 to 0.8, with 0.1 incre-
ments. The parametric goodness-of-fit test was conducted over 1,000 repetitions,
ensuring precision of p-value up to two decimal digits.

Our results are summarized in Tables 1 and 2, respectively. An hypothesis is
considered plausible if the p-value is larger than 0.1. Averaging over subjects, the
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Table 2. Fit results of generalized Pareto distribution (p(x) = 1
σ
(1 + k x−xmin

σ
)−1− 1

k )

and of log-normal distribution (C 1
x
exp[−(ln(x)−μ)2

2σ2 ]).

Generalized Pareto
Thr k σ xmin TL KS p -value TLr

+0.8 0.000 0.000 0.000 0.0 0.000 0.0000 0.696
+0.7 0.000 3.663 1.539 58.5 0.049 0.1315 0.531
+0.6 0.118 11.094 2.943 172.5 0.048 0.3305 0.440
+0.5 0.031 28.656 20.072 338.5 0.034 0.7380 0.229
+0.4 0.001 62.035 34.191 372.5 0.027 0.6155 0.174
+0.3 -0.128 102.619 85.215 638.5 0.021 0.7975 0.176
+0.2 -0.178 152.365 136.945 938.5 0.014 0.8275 0.135
+0.1 -0.226 241.640 201.475 2387.0 0.010 0.7555 0.238
+0.0 -0.224 218.500 380.050 4681.5 0.009 0.6750 0.467
−0.0 0.182 32.619 127.480 1195.5 0.012 0.8425 0.119
−0.1 0.426 12.883 9.690 1469.0 0.020 0.1725 0.149
−0.2 0.439 2.549 0.763 820.5 0.030 0.1890 0.457
−0.3 0.433 0.996 0.649 101.5 0.062 0.0105 0.405
−0.4 0.000 0.000 0.000 0.0 0.000 0.0000 0.253
−0.5 0.000 0.000 0.000 0.0 0.000 0.0000 1.000
−0.6 0.000 0.000 0.000 0.0 0.000 0.0000 1.000
−0.7 0.000 0.000 0.000 0.0 0.000 0.0000 -
−0.8 0.000 0.000 0.000 0.0 0.000 0.0000 -

Log normal
Thr μ σ xmin TL KS p -value TLr

+0.8 0.000 0.000 0.000 0.0 0.000 0.0000 0.639
+0.7 0.618 0.599 1.141 58.0 0.039 0.1033 0.466
+0.6 1.804 0.957 2.589 110.5 0.040 0.1867 0.381
+0.5 3.363 0.794 15.167 246.5 0.033 0.7017 0.223
+0.4 3.459 0.799 24.044 543.5 0.027 0.4883 0.186
+0.3 4.809 0.535 72.627 525.0 0.023 0.4633 0.114
+0.2 5.754 0.434 209.015 759.5 0.023 0.3950 0.100
+0.1 6.143 0.299 418.120 852.0 0.019 0.6450 0.085
+0.0 6.299 0.236 472.295 1684.5 0.015 0.3150 0.168
−0.0 4.298 0.588 81.662 4837.0 0.010 0.3500 0.482
−0.1 2.176 1.197 7.105 1764.0 0.019 0.3600 0.180
−0.2 0.486 1.317 0.610 879.0 0.034 0.0167 0.599
−0.3 -0.243 1.237 0.543 106.0 0.072 0.0050 0.592
−0.4 0.000 0.000 0.000 0.0 0.000 0.0000 0.825
−0.5 0.000 0.000 0.000 0.0 0.000 0.0000 0.607
−0.6 0.000 0.000 0.000 0.0 0.000 0.0000 -Inf
−0.7 0.000 0.000 0.000 0.0 0.000 0.0000 -
−0.8 0.000 0.000 0.000 0.0 0.000 0.0000 -

All data are expressed as median values. Legend: Thr, R threshold; k, σ, μ model parameters; xmin, lower bound
for model distribution; TL, length of the tail; KS, Kolgomorov-Smirnov statistic; p-value, plausibility of the model;
TLr , proportion of non-zero nodes in the tail.

p-values indicate that the power law hypothesis is rejected in the 83.3% of the
analyzed thresholds. Instead, 61.1% of the examined thresholds are consistent
with a generalized Pareto hypothesis, 55.6% with a log-normal hypothesis and
in 33.3% of the cases with the exponential hypothesis, with several of these
thresholds passing multiple tests. Median p-values are consistently larger for the
generalized Pareto hypothesis (Fig. 2).

For each threshold examined, we then perform log-likelihood ratio tests to
check which one among the consistent models is the most plausible in describ-
ing the empirical data. For all the positive thresholds up to 0.7 the evidence
strongly goes in favor of the generalized Pareto distribution. Overall, the gener-
alized Pareto model is outperforming the other candidate models in 41% of the
examined cases (all subjects and all thresholds). In a 13% of the comparisons
the log-normal distribution resulted in a better fit, 3% were better fitted by an
exponential model, 2% by a power law, whereas the remaining 41% could not be
explained by any model (due to insufficient data points and extreme thresholds).

For several positive thresholds the k parameter is equal or close to zero, thus
approaching an exponential distribution, whereas for other thresholds in the
positive range, the generalized Pareto model passes with negative k, meaning a
suppressed tail (Fig. 3).

4 Discussion

In this study we sought to systematically analyze scaling properties of human
brain functional networks in the resting state, obtained from high-resolution
fMRI data. We constructed networks of 10,000 nodes. Our analysis took into
account actual weighted degree distributions from the data and we scanned
through the full range of positive as well as negative correlation thresholds. For
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Fig. 2. Population averaged goodness-of-fit tests (left) and percentage of the tail of
the distribution explained by the model (right) across different thresholds for each of
the four distributions. Horizontal dashed lines in the boxplots indicate the acceptance
criteria for a model to be considered plausible (p-value > 10%). The central mark is the
median, the edges of the boxes are the 25th and 75th percentiles. Asterisks correspond
to outliers.



Scaling of Brain Functional Networks 113

Correlation Threshold

0

5

10

15

-.8 -.4 -0 .8

Correlation Threshold

0

0.5

1

1.5

0 .4 -.8 -.4 -0 .80 .4

-.8 -.4 -0 .80 .4

Correlation Threshold

-0.5

0

0.5

1

1.5

2

k

-.8 -.4 -0 .80 .4

Correlation Threshold

Exponential Power law

Generalized Pareto

-2

0

2

4

6

Log Normal

Fig. 3. Population averaged estimates of λ (top-left), α (top-right), k (bottom-left) and
σ (bottom-right) model parameters for the four tested distributions across different
thresholds.

model selection, we imposed a criterion of p-value > 0.1 and we conducted a
log-likelihood ratio test among the different hypothesis.

We have shown that the degree distribution of the nodes does not follow
a scale-free topology, as reported in [7]. The power law hypothesis is strongly
rejected in the majority of the thresholds we examined. Indeed, it is the general-
ized Pareto distribution that is consistently preferable to the competing models
for most of the thresholds.

These results suggest that after taking into account continuously weighted
rather than binary networks, the dynamics of brain functional networks might
not be governed by as many ultra-high degree hubs as a typical scale-free network
might suggest. This bodes well for real brain networks when considering resilience
to attacks, compared to their scale-free counterparts. For future work, we intend
to test whether these distributions hold for different network resolutions and
parcellations. Moreover, it would be interesting to see how these results compare
to the “core-periphery” organization of brain structural networks [9,12], which
shows a preference for a distributed core, rather than few ultra-high degree hubs.
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