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Abstract. In this paper, we propose an Improved Chaotic Multidirec-
tional Associative Memory (ICMAM). The proposed model is based on
the Chaotic Multidirectional Associative Memory (CMAM) which can
realize one-to-many associations. In the conventional CMAM, the one-
to-many associative ability is very sensitive to chaotic neuron parame-
ters. Moreover, although the Chaotic Multidirectional Associative Mem-
ory with adaptive scaling factor of refractoriness can select appropri-
ate scaling factor of refractoriness α based on internal states of neurons
automatically, their one-to-many association ability is lower than that of
well-tuned Chaotic Multidirectional Associative Memory with variable
scaling factor of refractoriness when the number of layers is large. In the
proposed model, one-to-many association ability which does not depend
on the number of layers is realized by dividing internal states of neurons
by the number of layers. We carried out a series of computer experi-
ments in order to demonstrate the effectiveness of the proposed model,
and confirmed that the one-to-many association ability of this model
almost equals to that of well-tuned Chaotic Multidirectional Associa-
tive Memory with variable scaling factor of refractoriness even when the
number of layers is large.

1 Introduction

In the field of neural networks, a lot of associative memories have been proposed.
However, most of these models can deal with only one-to-one associations [1,2].
In contrast, as the model which can realize one-to-many associations, some mod-
els which are based on the chaotic neuron models [3] or chaotic neuron-based
models [4,5] have been proposed [6–11]. However, the association ability of neural
networks composed of chaotic neuron models or chaotic neuron-based models
are very sensitive to chaotic neuron parameters such as scaling factor of refrac-
toriness α and damping factor k and so on. And, in these models, appropriate
parameters have to determined by trial and error. Although the Chaotic Multidi-
rectional Associative Memory with adaptive scaling factor of refractoriness [12]
can select appropriate scaling factor of refractoriness α based on internal states
of neurons automatically, their one-to-many association ability is lower than that
of well-tuned Chaotic Multidirectional Associative Memory with variable scaling
factor of refractoriness when the number of layers is large.
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Fig. 1. Structure of proposed ICMAM.

In this paper, we propose an Improved Chaotic Multidirectional Associa-
tive Memory (ICMAM). In the proposed model, one-to-many association ability
which does not depend on the number of layers is realized by dividing internal
states of neurons by the number of layers.

2 Improved Chaotic Multidirectional Associative
Memory

Here, we explain the proposed Improved Chaotic Multidirectional Associative
Memory (ICMAM). The proposed ICMAM is based on the conventional Chaotic
Multidirectional Associative Memory [7], and can realize one-to-many associa-
tion of M -tuple binary patterns.

2.1 Structure

The proposed model has three or more layers as similar as the conventional
Chaotic Multidirectional Associative Memory. Figure 1 shows the structure of
the proposed model which has three layers. Each layer consists of two parts;
(1) Key Input Part composed of conventional neuron models and (2) Context
Part composed of chaotic neuron models [3]. Since chaotic neuron models in the
Context Part change their states by chaos, plural patterns corresponding to the
input common term can be recalled, that is, one-to-many association can be
realized.

2.2 Learning Process

In the proposed model, pattern sets are memorized by the orthogonal learning.
In the proposed model which has M layers, the connection weights from the
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layer x to the layer y is given by

wyx = X y(X T
xX x)−1X T

x (1)

wxy = X x(X T
y X y)−1X T

y (2)

and X x and X y are given by

X x = {X (1)
x , · · · ,X (p)

x , · · · ,X (P )
x } (3)

X y = {X (1)
y , · · · ,X (p)

y , · · · ,X (P )
y } (4)

where P is the number of the training pattern sets, and X (p)
x is the pattern p

which is stored in the layer x, X (p)
y is the pattern p which is stored in the layer y.

Each element of training patterns takes −1 or 1.
In the orthogonal learning, since the stored common pattern causes super-

imposed pattern in the recall process, the pattern sets including one-to-many
relation can not be memorized. In the proposed model, each learning pattern is
memorized together with its own contextual information in order to memorize
the training set including one-to-many relations as similar as the conventional
CMAM. Here, the contextual information patterns are generated randomly.

2.3 Recall Process

In the recall process of the proposed model, only neurons in the Key Input Part
receives input in the first step. This is because we assume that contextual infor-
mation is usually unknown for users. In the proposed model, since the chaotic
neurons in the Context Part change their states by chaos, plural patterns corre-
sponding to the input common pattern can be recalled.

Step 1: Input to Layer x
The input pattern is given to the key input part in the layer x.

Step 2: Propagation from Layer x to Other Layers
The information in the layer x is propagated to the key input part in other

layers. The output of the neuron k in the key input part of the layer y (y �= x)
at the time t, xy

k(t) is calculated by

xy
k(t) = f

⎛
⎝

Nx∑
j=1

wyx
kj xx

j (t)

⎞
⎠ (5)

where Nx is the number of neurons in the layer x, wyx
kj is the connection weight

from the neuron j in the layer x to the neuron k in the layer y, and xx
j (t) is the

output of the neuron j in the layer x at the time t.
Step 3: Propagation from Other Layers to Layer x

The information in other layers is propagated to the layer x. The output of
the neuron j in the Key Input Part of the layer x, xx

j (t + 1), is given by

xx
j (t + 1) = f

⎛
⎝ 1

M − 1

M∑
y �=x

(
ny∑
k=1

wxy
jkxy

k(t)

)
+ vAx

j

⎞
⎠ (6)



6 H. Sato and Y. Osana

where M is the number of layers, ny is the number of neurons in the key input
part of the layer y, wxy

jk is the connection weight from the neuron k in the layer y
to the neuron j in the layer x, and v is the connection weight from the external
input.

Ax
j is the external input to the neuron j in the layer x and is given by

Ax
j =

{
0 (t < tin)
x̂x
j (tin) (tin ≤ t) (7)

tin = min

⎧⎨
⎩t

∣∣∣∣
nx∑
j=1

(x̂x
j (t) − x̂x

j (t − 1)) = 0

⎫⎬
⎭ (8)

x̂x
j (t) =

{
1 (0 ≤ xx

j (t))
−1 (xx

j (t) < 0) (9)

where x̂x
j (t) is the quantized output of the neuron j in the layer x at the time t.

The output of the neuron j of the Context Part in the layer x, xx
j (t + 1) is

given by

xx
j (t + 1) = f

⎛
⎝ 1

M − 1

M∑
y �=x

(
ny∑
k=1

wxy
jk

t∑
d=0

kd
mxd

k(t − d)

)

−α(t)
t∑

d=0

kd
rx

x
j (t − d)

)
(10)

where km and kr are damping factors. And, α(t) is the scaling factor of refrac-
toriness at the time t, and it is given by

α(t) = a + b sin
(
c · π

12
· t

)
(11)

Step 4: Repeat
Steps 2 and 3 are repeated.

3 Computer Experiment Results

Here, we show the computer experiment results in order to demonstrate of
effectiveness of the proposed ICMAM. The experimental conditions is shown
in Table 1. In the experiments, the N binary random pattern sets which have
1-to-N relation were memorized, and the common pattern is given to the
network.

3.1 One-to-Many Association Ability

Here, we compared the one-to-many association ability in the 3∼7-layered pro-
posed ICMAM with the well-turned 3∼7-layered conventional Chaotic Multi-
directional Associative Memory with variable scaling factor of refractoriness
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(Adjusted Model) and conventional Chaotic Multidirectional Associative Mem-
ory with adaptive scaling factor [12] (Conventional Model).

Figure 2 shows the one-to-many association ability of the proposed model, the
adjusted model and the conventional model. As shown in this figure, the one-
to-many association ability of the proposed model almost equals to that of the
adjusted model. Moreover, the one-to-many association ability of the proposed
model is superior to that of the adjusted model when the number of stored
patterns are large.
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Fig. 2. One-to-many association ability.
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3.2 One-to-Many Association Ability in Various Size Networks

Figure 3 shows the one-to-many association ability of the various size proposed
model. In this experiments, we used the network composed of 300 or 400 or 500
neurons in the Key Input Part and 100 neurons in the Context Part.

From these results, we confirmed that the proposed model in various size has
good one-to-many association ability as similar as in the result shown in Fig. 2.

Figure 4 shows the one-to-many association ability in the network which has
8 or 9 layers. In the conventional model, when the number of layers is large,
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Fig. 3. Relation between one-to-many association ability and the number of neurons
in key input part.
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Fig. 4. One-to-many association ability in 8 or 9-layered network.

Table 1. Experimental conditions

The number of neurons in key input part 400

The number of neurons in context part 100

Damping factor km 0.86

Damping factor kr 0.89

Coefficient in scaling factor a 0.9

Coefficient in scaling factor b 0.47

Coefficient in scaling factor c 2

Steepness parameter ε 0.013

Connection weight from external input v 10

one-to-many association ability decreases. In contrast, as shown in Fig. 4, one-
to-many association ability of the proposed ICMAM which has 8 or 9 layers is
almost similar as that of the proposed ICMAM when the number of layers are
small.

4 Conclusion

In this paper, we have proposed the Improved Chaotic Multidirectional Asso-
ciative Memory (ICMAM). The proposed model is based on the Chaotic Mul-
tidirectional Associative Memory (CMAM) [7] which can realize one-to-many
associations. In the proposed model, one-to-many association ability which does
not depend on the number of layers is realized by dividing internal states of
neurons by the number of layers.

We carried out a series of computer experiments and confirmed that the
proposed model has following features.
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(1) One-to-many association ability of the proposed model is almost equal to
that of the well-tuned Chaotic Multidirectional Associative Memory with
variable scaling factor of the refractoriness.

(2) The parameters can be determined appropriately in various size networks
even when the number of layers is large.
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