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Abstract The present article introduces a new scalar theory of gravity based on the
Einstein’s assumption that gravitation is an expression of the geometrical structure
of the spacetime. In the geometric scalar theory of gravity all kind of matter and
energy interacts with the gravitational (scalar) field only through a metric structure
that naturally arises with the non linear dynamics of the scalar field. This allows
us to overcome the problems from the previous scalar theories and construct a new
scalar theory for gravitation which is in accordance at least with the observational
data coming from our solar system.

1 Introduction

Since its formulation until the present days, the Einstein’s theory of general relativity
(GR) remains consistent with all experimental tests performed, the so called
classical tests of gravitation (Turyshev 2009). Notwithstanding, over all these years,
there have always been open questions that led physicists to seek alternative paths in
the description of gravitational phenomena. Alternative theories of gravitation exist
in large numbers and in the most diverse formulations, whereas those following
Einstein’s ideas, choosing describe gravitation as a geometric phenomenon, are
those that obtained greatest success. Inside this extensive group, scalar-tensor
theories and f .R/ theories are the ones that most currently stand (Clifton 2006).

In the class of the purely scalar metric theories, i.e. where the gravitational field
is represented by one or more scalar functions that generate a gravitational metric,
much was done up to mid-seventies, but all formulations failed to comply with
all classical tests. In 1972, Wei-Tou Ni wrote a compendium of metric theories
containing a broad review and analysis of scalar theories (Ni 1972).
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Table 1 Different proposals
for scalar theories of
gravitation according to
Eqs. (1) and (2)

Scalar theories of gravitation

Author (year) Basic functions

Nordström (1912) f D ˆ

k D 1

Nordström (1913–1914) f D � ln ˆ

k D ˆ

Littlewood (1953) f D �2 ln .1 � ˆ/

Bergmann (1956) k D 1

Following Ni, these various proposals have the common property of being
conformally flat. Its gravitational metrics have the general form,

g�� D e�2f .ˆ/ ��� ; (1)

where ˆ is the gravitational potential and ��� is the Minkowski metric. The field
equations of these theories can be summarized in the expression,

�ˆ / k.ˆ/ T ; (2)

with the � being the d’Alembertian operator constructed with the metric (22) and
T the trace of the energy-momentum tensor of the source of the gravitational field.
The f .ˆ/ and k.ˆ/ functions have distinct forms according to the theory which
one wants to describe. The table below shows the main scalar theories and its
correspondent functions (Table 1).

The fact that all these theories are conformally flat is the main cause why one
can not couple gravity and electromagnetism, since the Maxwell equations are
conformally invariants. Also, with the source of the gravitational field being the
trace of the energy-momentum tensor, which is zero for the electromagnetic field,
shows that this fields can not produce gravitation. Thus none of the theories in the
table above are in agreement with the measurement of the bending of light. Further,
all these theories fail to provide the correct advance of the perihelion of Mercury.
However, Ni’s paper does not cite the theory proposed by Dowker in 1965, which
although not predicting the bending of light, gives the right answer for the Mercury’s
perihelion precession (Dowker 1965).

Though, the role of the scalar field representing the gravitational potential is
not fully determined, as I will show here. A recent study of effective metrics in
non linear scalar theories shows that is possible to establish a metric structure, not
conformally flat, which describe the dynamic of the field itself (Goulart et al. 2011).
In the next section I show how this mathematical property emerges. The physical
aspects of such property can only be determined if one introduces a way by which
this metric will interact with the other fields of nature. In other words, in order to
interpret the scalar field as the gravitational potential and the metric generated by
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it as the physical metric, one needs to say how matter/energy interacts with it. This
will constitute the grounds of the geometric scalar gravity (GSG).

2 Geometrization of a Nonlinear Scalar Theory

Consider a relativistic scalar field ˆ with a nonlinear dynamic in the Minkowski
spacetime. The action describing its dynamic is given by,

S D
Z

L.ˆ;w/
p�� d4x ; (3)

where � is the determinant of the Minkowski metric and,

w � ��� @�ˆ @�ˆ : (4)

The notation @� indicates a simple derivative in relation with the coordinate x� . The
minimal action principle returns the equation of motion of the scalar field,

1p��
@�

�p�� Lw ���@�ˆ
�

� 1

2
Lˆ D 0 ; (5)

where LX indicates a derivative in relation with the variable X .
Introducing the metric tensor,

q�� D ˛ ��� C ˇ

w
@�ˆ @�ˆ ; (6)

with ˛ and ˇ being functions of ˆ and w, and the correspondent covariant
expression, defined by q�˛ q˛� D ı

�
� , given by

q�� D 1

˛
��� � ˇ

˛ .˛ C ˇ/w
@�ˆ @�ˆ ; (7)

Eq. (5) is rewritten as

Lw
˛ C ˇ

"
� qˆ C .˛ C ˇ/

˛ 3=2Lw

3=2

@�

 
˛ 3=2Lwp

˛ C ˇ

!
���@�ˆ � Lˆ

2 Lw
.˛ C ˇ/

#
D 0;

(8)

where the subscript in the d’Alembertian operator indicates that it is constructed
with the metric q�� .

Note that by a simple choice of the coefficients ˛ and ˇ is possible to describe the
nonlinear dynamic of ˆ as if it were embedded in a curved spacetime (generated by
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the field itself) where it interacts minimally with q�� . In order to do this we restrict
the second order derivatives of ˆ to appear only in the �qˆ term of the above
equation.

The simplest manner is the imposition

˛ 3=2Lwp
˛ C ˇ

D C ; (9)

where C is a constant. The resultant equation is,

� qˆ D j.ˆ ; @ˆ/ ; (10)

where we have defined

j.ˆ ; @ˆ/ � ˛3

2C
Lˆ Lw : (11)

Equations (5) and (10) are equivalents, allowing us to interpret the dynamic of ˆ as
(1) nonlinear in the Minkowski spacetime or (2) “linear” in the metric q�� with a
source j.ˆ; @ˆ/ . Important to emphasize that the use of the word “linear” is made
here in a metaphoric sense, given that, since the metric q�� depends on ˆ , the
dynamic remains nonlinear.

A second possibility of geometrization consist in relax the condition (9) by
substituting the constant C by a function of ˆ only,

˛ 3=2Lwp
˛ C ˇ

D F.ˆ/ : (12)

Using this in the Eq. (8) we get,

Lw
˛ C ˇ

�
� qˆ C .˛ C ˇ/

�
Fˆ

F
w � Lˆ

2Lw

��
D 0 ; (13)

and, by appropriately choosing the function F , we can write the dynamic of ˆ as
“free field” (again in a metaphoric way) without the source of the previous case.
Thus, we have,

� qˆ D 0 : (14)

If the function F.ˆ/ satisfies the condition

Fˆ

F
w � Lˆ

2Lw
D 0 : (15)

Note that these two cases are equal when Lˆ D 0 .
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In GR, matter/energy curves the spacetime where it propagates and, in this
sense that we understand how the metric structure q�� can be associated with a
gravitational process. The scalar field itself curves the spacetime around it. But if
we want to assign to ˆ the role of a gravitational potential, with q�� being the
gravitational metric, we need to determine how it will interact with other fields in
the nature. The next section is occupied of this task.

We will use the second geometrization method present in this section to
describe the dynamic of ˆ in the q-spacetime. The hypothesis postulated and the
observational data should help us to determine the Lagrangian of the scalar field
and the functional dependence of the metric coefficients ˛ and ˇ .

3 The Fundamentals of the GSG

In order to propose the main properties of GSG we will follow the basic ideas of
Einstein’s theory. Field formulation of GR describe the gravitational metric as sum
of a flat metric (Minkowski) plus a perturbation h�� (not necessarily small),

g�� D ��� C h�� : (16)

Although the above expression be exact, its covariant version is indeed an infinity
series (Feynman et al. 1995),

g�� D ��� � h�� C h�˛h
˛

� � : : : (17)

According to this formulation we can cite the basic properties of GR as
follows.

• Gravitational interaction is described by a second order tensor field h�� that
satisfies a non linear dynamic equation (Einstein’s equation);

• The theory reproduces Newton’s gravity in a weak field approximation;
• Any kind of matter and energy interacts with the gravitational field only through

the metric g�� ;
• Test particles and electromagnetic waves follows geodesics in the curved space-

time described by g�� ;
• The g�� metric interacts universally with all fields in the nature following the

minimum couple principle.

Now, we postulate the basic properties of the GSG.

• Gravitational interaction is described by scalar field ˆ that satisfies a non linear
dynamic equation;

• The theory reproduces Newton’s gravity in a weak field approximation;
• Any kind of matter and energy interacts with the gravitational field only through

the metric q�� [cf. (6)];
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• Test particles and electromagnetic waves follows geodesics in the curved space-
time described by q�� ;

• The q�� metric interacts universally with all fields in the nature following the
minimum couple principle.

Note that, different from GR, the covariant version of the gravitational metric in
GSG is not an infinite series, as shown in Eq. (7).

Immediately, as it is in GR, the coupling between gravitation and electromag-
netism in GSG is granted by this hypothesis. The Maxwell’s field, under the
influence of gravity, will be described by the action,

SE D � 1

16�c

Z
F

p�g d4x ; (18)

where F D F��F�� , and F�� D @�A� � @�A� is the Maxwell tensor. When
varying SE in relation with A� we get precisely the Maxwell’s equations in a curved
spacetime, q�� in this case.

Assuming that the test particles follow geodesics relative to the geometry q�� ,
and the Newtonian limit in the static weak field approximation and low velocities,
we have that

d2xi

dt2
D � c2� i

00 D � @i ˆN ; with i D 1; 2; 3: (19)

The last equality is relating the particle acceleration with the Newtonian gravita-
tional force, where ˆN represents Newton’s potential.

From Eq. (7), we have

� i
00 � � 1

2
@i ln ˛: (20)

It follows that the Newtonian potential ˆN is approximately given by

ˆN

c2
� � 1

2
ln ˛ ; (21)

which yields the relation between the q00 component and the Newtonian potential,

q00 D 1

˛
� 1 C 2

ˆN

c2
D 1 � 2

GM

c2r
; (22)

where G is the Newtonian constant and M is the mass of the source.
However, this relation is determined up to a first order approximation in ˆ , and

in the development of GSG we will extrapolate the above relation by considering a
more general expression for the ˛ coefficient,

˛ D e�2ˆ : (23)
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The theory that we are constructing here presents three functions that have
to be entirely determined by the end, the Lagrangian of the scalar field and the
functions ˛ and ˇ. Since the geometrization method of the previous section gives a
condition between them, and with ˛ now being fixed, only remains to determine the
Lagrangian of ˆ .

4 Field Equation

Let us consider the following shape for the scalar field Lagrangian,

L D V.ˆ/w : (24)

Following the second geometrization method in Sect. 2 we have that, in absence of
other fields, the field equation is

�ˆ D 0 ; (25)

and conditions (12) and (15) reduce to the expression

˛ C ˇ D ˛3 V : (26)

Important to note that we are not using the subscript q in the d’Alembertian operator
anymore. Since in GSG Minkowski metric appears only as an auxiliary structure,
we assume that all relevant quantities are constructed with the gravitational metric
q�� .

To select among all possible Lagrangians of the above form we look for
indications from the various circumstances in which reliable experiments have been
performed. In this vein, we initiate the discussion by analyzing the consequences of
GSG for the solar system.

4.1 The Static and Spherically Symmetric Solution

Any theory of gravity must account for planetary orbits. In general relativity this
motion is described by geodesics of the Schwarzschild geometry. In the GSG
particles follow geodesics in the q�� metric.

Let us start by rewriting the auxiliary Minkowski background metric in spherical
coordinates

ds2
M D dt2 � dR2 � R2 d�2: (27)
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Changing the radial coordinate to R D p
˛ r, where ˛ D ˛.r/ we get

ds2
M D dt2 � ˛

�
r

2˛

d˛

dr
C 1

�2

dr2 � ˛ r2 d�2: (28)

Since we are looking for static spherically symmetric solution we assume that the
field depends only on the radial variable ˆ D ˆ.r/. Then the gravitational metric (7)
takes the form

ds2 D 1

˛
dt2 � B dr2 � r2 d�2; (29)

where we have defined

B � ˛

˛3V

�
r

2˛

d˛

dr
C 1

�2

: (30)

From the PPN analysis of the classical tests of gravitation (Will 2006) we know
that the agreement with observations will be satisfied if we have

q00 � 1 � 2GM=c2r � 2.GM=c2r/2 and q11 � 1 C 2GM=c2r : (31)

Then, looking to Eq. (22), we can guarantee the correspondence between GSG and
observations if we assume B � ˛. However, we will again extrapolate this condition
choosing a more general expression where B D ˛. Using this the field equation can
be easily solved, returning

ˆ D 1

2
ln

�
1 � 2

GM

c2r

�
; (32)

where we have used the asymptotic behavior to determine the integration constants
and, from Eq. (30), we get

V.ˆ/ D .˛ � 3/2

4 ˛3
: (33)

With these results the line element of the static and spherically symmetric
vacuum solution in GSG is given by

ds2 D
�
1 � rH

r

�
dt2 �

�
1 � rH

r

��1

dr2 � r2d�2: (34)

This geometry has the same form as in general relativity and yields the observed
regime for solar tests. Thus, the present geometric scalar gravity is a good descrip-
tion of planetary orbits and also for light rays trajectories that follow geodesics
(time-like and null-like, respectively) in the q�� geometry. If new observations
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would require a modification of the metric in the neighborhood of a massive body
this should be made by adjusting the form of the potential V.ˆ/:

4.2 Action Principle

Now that we have defined all functions for the theory we are in position to write
its dynamical equation. Let us start by the action of the scalar field written in the
auxiliary Minkowski background. From variational principle

ıSˆ D 1

	c
ı

Z p��V.ˆ/wd4x ; (35)

we get,

ıSˆ D � 2

	c

Z p��

�
1

2
V 0w C V ���@�@�ˆ

�
ıˆ d4x ; (36)

where 	 is a constant with dimensions of distance/energy and the prime indicates a
derivative in relation to ˆ . The expression in parentheses above is just the left hand
side of Eq. (5) and, by comparing with (8) using (26), it returns �ˆ=˛3 . Rewriting
� in terms of q we finally get,

ıSˆ D � 2

Z p�q
p
V �ˆ ıˆ d4x : (37)

In presence of matter we add a corresponding term Lm to the total action,

Sm D 1

c

Z p�q Lm d4x : (38)

The first variation of this term as usual yields

ıSm D � 1

2

Z p�q T��ıq�� d
4x ; (39)

where we have defined the energy-momentum tensor in the standard way

T�� � 2p�q

ı.
p�q Lm/

ıq��
:

General covariance leads to conservation of the energy-momentum tensor
T�� I� D 0 .
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The equation of motion is obtained by the action principle

ıS1 C ıSm D 0 : (40)

However, in the GSG theory, the metric q�� is not the fundamental quantity. We
have to write the variation ıq�� as function of ıˆ . After some calculation we get

ıSm D � 1

c

Z �
T C

�
2 � V 0

2V

�
E C C 
I


�
ıˆ

p�q d4x ; (41)

where we have defined some quantities as follows,

T � T�� q��; E � T�� @�ˆ @�ˆ

�
; (42)

C
 � ˇ

˛ �

�
T
� � E q
�

	
@�ˆ ; (43)

and “ I ” means the covariant derivative in respect to the q-metric.
Finally, the equation of motion for the gravitational field ˆ takes the form

p
V �ˆ D 	 �; (44)

with the notation simplified by writing

� D � 1

2

�
T C

�
2 � V 0

2V

�
E C C
I


�
: (45)

Equation (44) describes the dynamics of GSG in presence of matter, under the
assumptions (23) and (33). The quantity � involves a non-trivial coupling between
the gradient of the scalar field and the complete energy-momentum tensor of the
matter, and not uniquely its trace. This property allows the electromagnetic field to
interact with the gravitational field. The Newtonian limit gives the identification

	 � 8�G

c4
: (46)

5 Final Comments

GSG is an alternative propose to describe the gravitational process using a single
scalar field, but it still treats gravity as a geometrical effect and all kind of matter
and energy interact with gravitational potential only through metric q�� in Eq. (7).
With different premises from that previous scalars theories, GSG overcomes the
problems surrounding the scalar gravity.
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Guided by observations too, we develop GSG choosing the Lagrangian of ˆ as
L D Vw, with

V D .3 � ˛/

4˛3

2

; (47)

where the Newtonian limit of the theory led us to work with

˛ D e�2ˆ : (48)

The geometrization technique is what gives the relation between the ˇ coefficient
of the metric and these two other functions, namely

˛ C ˇ D ˛3 V : (49)

Therewith, the field equation of the theory is given by

p
V �ˆ D 	 � ; (50)

with � defined in (45) .
Even so, the GSG can be seen as a little more than an unique theory in the sense

that it represents a way in which is possible to develop scalar theories of gravitation.
Relaxing the expressions for ˛ and V can still be in agreement with observations
while given a very different gravitational theory.

GSG is a result of a wonderful work with Mario Novello, Ugo Moschella,
Eduardo Bittencourt and others. The ideas here can be found with more details in
Novello et al. (2013). Also, in Bittencourt et al. (2014), there is the consequences of
this theory for the cosmology.
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