
Physics of the Cosmic Microwave Background
Radiation

David Wands, Oliver F. Piattella, and Luciano Casarini

Abstract The cosmic microwave background (CMB) radiation provides a remark-
able window onto the early universe, revealing its composition and structure. In
these lectures we review and discuss the physics underlying the main features of the
CMB.

1 Introduction

The cosmic microwave background (CMB) radiation provides a remarkable window
onto the early universe, revealing its composition and structure. It is a relic, thermal
radiation from a hot dense phase in the early evolution of our Universe which
has now been cooled by the cosmic expansion to just 3ı above absolute zero. Its
existence had been predicted in the 1940s by Alpher and Gamow (Alpher et al.
1948; Alpher 2014) and its discovery by Penzias and Wilson at Bell Labs in New
Jersey, announced in 1965 (Penzias and Wilson 1965) was convincing evidence for
most astronomers that the cosmos we see today emerged from a Hot Big Bang more
than 10 billion years ago.

Since its discovery, many experiments have been performed to observe the CMB
radiation at different frequencies, directions and polarisations, mostly with ground-
and balloon-based detectors. These have established the remarkable uniformity of
the CMB radiation, at a temperature of 2.7K in all directions, with a small ˙3:3mK
dipole due to the Doppler shift from our local motion (at 1million km/h) with
respect to this cosmic background.

However, the study of the CMB has been transformed over the last 20 years by
three pivotal satellite experiments. The first of these was the Cosmic Background
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Explorer (CoBE), launched by NASA in 1990 (Smoot et al. 1992; Mather et al.
1994). It confirmed the black body spectrum with an astonishing precision, with
deviations less than 50 parts per million (Fixsen et al. 1996). And in 1992
CoBE reported the detection of statistically significant temperature anisotropies
in the CMB, at the level of ˙30 �K on 10ı scales (Smoot et al. 1992). COBE
was succeeded by the Wilkinson Microwave Anisotropy Probe (WMAP) satellite,
launched by NASA in 2001, which produced full sky maps in five frequencies
(from 23 to 94GHz) mapping the temperature anisotropies to sub-degree scales
and determining the CMB polarisation on large angular scales for the first time. The
Planck satellite, launched by ESA in 2009, sets the current state of the art with nine
separate frequency channels, measuring temperature fluctuations to a millionth of
a degree at an angular resolution down to 5 arc-min. Planck intermediate data was
released in 2013 (Ade et al. 2014a).1

These lectures draw upon the excellent reviews of CMB physics by Hu and
Dodelson (Hu and Dodelson 2002; Hu 2008, 2016), Komatsu (2016) and Crittenden
(2016). We also refer the reader to comprehensive reviews on cosmological pertur-
bations by Mukhanov et al. (1992) and Malik and Wands (2009). Useful textbooks
are those of Peebles (1994), Dodelson (2003), Mukhanov (2005) and Weinberg
(2008). Throughout this chapter we will use natural units such that „ D kB D c D 1.

2 Background Cosmology and the Hot Big Bang Model

We start by recalling the mathematical framework describing the expansion of the
universe and the Hot Big Bang. Much of modern cosmology is based on general
relativity and the framework of Friedmann, Lemaître, Robertson and Walker in the
1920s and 30s (Friedmann 1924; Lemaitre 1927; Robertson 1935), and Hubble’s
discovery of the expansion of the universe (Hubble 1929). We can “slice” four-
dimensional spacetime into expanding three-dimensional space at each cosmic
time, t, with a uniform matter density and spatial curvature. Requiring spatial
homogeneity and isotropy at each cosmic time is known as the cosmological
principle, which picks out the following space-time metric:

ds2 D �dt2 C a2.t/

�
dr2

1 � �r2
C r2d�2

�
; (1)

where a.t/ is the scale factor and � is the curvature of the maximally symmetric
spatial slices, and we chose spherical coordinateswith infinitesimal solid angle d�2.
We will sometimes find it convenient to use conformal time, �, where dt D ad� and

1After these lectures were given, full-mission data was released in 2015 (Adam et al 2015), with
final polarisation data still to come.
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the line element takes the form

ds2 D a2.�/

�
�d�2 C dr2

1 � �r2
C r2d�2

�
; (2)

The Hubble expansion rate is defined as H � Pa=a, where a dot denotes a
derivative with respect to cosmic time t. The present value of H is called the Hubble
constant and denoted as H0. The value of H0 is often given in the form

H0 D 100 h km s�1 Mpc�1 : (3)

Using the energy constraint, from Einstein’s equations of general relativity, one gets
the Friedmann equation for the Hubble expansion

H2 D 8�G

3
� C ƒ

3
� �

a2
; (4)

where we introduce the cosmological constant, ƒ, and �, the energy density. The
latter includes electrons, baryons (protons, neutrons and atomic nuclei), radiation
(photons and neutrinos) and dark matter (non-baryonic massive particles, non-
relativistic by the present day).

Dividing through by H2, Eq. (4) can be cast in the following dimensionless form:

1 D � C �ƒ C �� ; (5)

where we define the relative contributions to the Hubble expansion

� � 8�G�

3H3
; �ƒ � ƒ

3H2
; �� � ��

a2H2
: (6)

In order to get a closed system of equations we must determine the evolution of
the density, � in Eq. (4), as a function of the scale factor. For this we can use the
continuity (energy conservation) equation

P� D �3H. � C P/ ; (7)

plus an equation of state for the pressure, P.�/. We will be interested in three
important cases:

• � D �r D 1, radiation domination:

Pr D 1

3
�r ) �r / a�4 ) a / t1=2 / � : (8)

• � D �m D 1, matter domination (Einstein-de Sitter):

Pm D 0 ) �m / a�3 ) a / t2=3 / �2 : (9)
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• �ƒ D 1, ƒ domination (de Sitter):

a / eHt / .�1 � �/�1 : (10)

The CMB consists of photons which survive from an early, radiation-dominated,
Hot Big Bang and have a small density with respect to non-relativistic matter today.
Nonetheless the CMB holds a rich store of information about the history of our
Universe, as we shall see. For example, recent observations of the CMB by Planck
(Ade et al. 2014b) can be used to infer values for the above cosmological parameters
at the present-day:

h D 0:674˙0:014 ; �0 D 0:314˙0:020 ; �ƒ0 D 0:686˙0:020 ; ��0 D �0:04˙0:05 :

(11)

The data are consistent with a flat universe, � D 0, which will be our working
hypothesis hereafter. We see that the expansion today is dominated by a cosmolog-
ical constant (or some form of matter which acts very much like a cosmological
constant) but in the recent past it was dominated by non-relativistic matter, and
before that by radiation.

2.1 Black-Body Spectrum

The CMB is observed to have a black-body spectrum characteristic of a thermal
equilibrium distribution, consistent with the hypothesis that our Universe emerged
from a hot, dense Big Bang.

Photons follow a null trajectory in the FLRW metric (2) such that

dxi

d�
D Oni ; (12)

where Oni is a unit 3-vector, gij Oni Onj D 1. The 3-momentum of a photon is pi D pOni,
where p is the wavenumber (remembering that we are using units such that „ D 1

and c D 1, so that p also describes the energy of a massless photon).
CMB photons have an isotropic Bose-Einstein distribution function with temper-

ature T

f . p/ D 1

exp. p=T/ � 1
: (13)

Given this isotropic distribution, we can compute the number density of CMB
photons

n� D 2

Z
4�p2dp

.2�/3
f . p/ � 2:4

�2
T3 ; (14)
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where the photons have two independent polarisation states and 4�p2dp is the
volume of an infinitesimal shell in three-dimensional momentum-space. Their
energy density is

�� D 2

Z
4�p2dp

.2�/3
pf . p/ D �2

15
T4 : (15)

However, the CMB photons are no longer in equilibrium with the matter we
see in the universe today. The photons are free to propagate through the universe
after electrons and baryons have recombined into neutral atoms, so the black-body
spectrum must be propagated to the present day from the early universe. Freely
propagating photons follow the geodesic equation in curved space-time

dP	

d

C �	

�P
�P D 0 ; (16)

where �
	
� is the Christoffel symbol. We define the photon 4-momentum as

P	 D dx	=d
, where 
 is an affine parameter, and the modulus-squared of the
3-momentum is p2 D gijPiPj where gij is the spatial part of FLRW metric (1). From
the geodesic equation in the conformal FLRW metric (2) we obtain

1

p

dp

d�
D �1

a

da

d�
: (17)

Integrating this up to the present we obtain the cosmological redshift of the photon
momentum, defined as

1 C z � p

p0

D a0

a
: (18)

We can interpret this simply as the expansion of the universe stretching the
wavelength of a photon, reducing (redshifting) its energy and momentum.

Note that the form of the Bose-Einstein distribution (13) is preserved

f . p/ D 1

exp. p=T/ � 1
D 1

exp. p0=T0/ � 1
; (19)

where the temperature is also redshifted with the expansion

1 C z D T

T0

: (20)

Thus we see that the energy density (15) of the photons decreases as the universe
expands

�� / a�4 : (21)
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Although photon density is small is in the universe today, it dominated the hot,
dense, early universe.

2.2 Hot Big Bang

At sufficiently high temperatures we expect all particles to be relativistic. If these
particles interact and efficiently redistribute energy they will share the same thermal
equilibrium temperature. To be relativistic we require T � m, i.e., the thermal
energy is much larger than the rest mass of a given particle species. At this stage of
the primordial universe we can write the energy density using the same form given
in Eq. (15) for all the relativistic species:

� D geff
�2

30
T4 ; (22)

where geff is the sum of the effective number of degrees of freedom. Each bosonic
species in thermal equilibrium contributes one per spin state (e.g., photons con-
tribute C2, corresponding to two polarisations), whereas each fermion contributes
7=8 per spin state, due to the different statistics.2

In a radiation-dominated universe (8) the time dependence of the scale factor is
given by a / t1=2 and thus from Eq. (4) we have

� D 3H2

8�G
D 3

32�Gt2
; (23)

so that from (22) time and temperature are related by

t D
s

3

32�G

30

geff�2

1

T2
: (24)

Thus we have the simple, approximate temperature-time relation

t

1 s
� 1p

geff

�
1 MeV

T

�2

: (25)

2If a species decouples from this thermal bath, but remains relativistic, it can contribute with a
different temperature in the above equation. This is what happens for neutrinos. They decouple
relativistically from the primordial soup, at T � 1MeV and their temperature today is expected to
be .4=11/1=3 times that of the photons because photons are heated by e�-eC annihilation.
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2.3 Spectral Distortions

The black-body shape of the CMB spectrum is maintained at early times because of
the high interaction rate of photons with the other particles of the primordial plasma.
We can identify two principal scattering processes which contribute to maintaining
an isotropic, equilibrium distribution:

• Compton scattering: scattering of photons and relativistic electrons, redistribut-
ing energy and momentum, conserving photon number

e� C � $ e� C � :

At low energies this reduces to Thomson scattering, i.e., elastic scattering of
photons off non-relativistic electrons, exchanging momentum, but conserving
photon energy and number.

• Double (radiative) Compton scattering: scattering of photons and relativistic
electrons, redistributing energy and momentum, and changing photon number

e� C � $ e� C � C � :

Many processes in the early universe before the time of recombination could
potentially lead to measurable distortions in the CMB spectrum, which might
be measured with future missions. Particle annihilation or decay would heat the
primordial plasma, and hence the photons, or even the evaporation of primordial
black holes in the relevant mass range. Even the damping of small scale density
variations in the primordial plasma due to photon diffusion can lead to deviations
from an exact black-body spectrum. For more detail about CMB spectral distortions
and what might cause them, see Chluba and Sunyaev (2012).

Efficient Compton and double Compton scattering maintains a full thermal
equilibrium spectrum above a redshift (Hu 2008)

zth D 2 � 106

�
�bh2

0:02

��2=5

; (26)

where �bh2 determines the density of baryons and hence (in an electrically neutral
universe) electrons.

Below this redshift Compton scattering can still redistribute energy and momen-
tum between photons and electrons, but double Compton scattering becomes
inefficient. In the absence of double Compton scattering, interactions cannot create
or remove photons from the plasma. Compton scattering still maintains a statistical
equilibrium above redshift (Hu 2008)

z	 D 5 � 104

�
�b0

0:02

��1=2

: (27)
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Thus if additional energy is dumped into the primordial plasma below redshift zth
the CMB photons acquire a statistical equilibrium distribution

f . p/ D 1

expŒ. p � 	/=T� � 1
(28)

with non-zero chemical potential 	. This is known as a 	-distortion in the CMB
spectrum. Limits from the COBE satellite give an upper limit on the size of such a
distortion (Fixsen et al. 1996):

j	j
T

< 9 � 10�5 at 95% CL : (29)

Below the redshift z	 Compton scattering off relativistic electrons becomes
inefficient. High-energy electrons along the line of sight can still transfer energy to
low-frequency photons via inverse Compton scattering, without reaching statistical
equilibrium. This leads to a characteristic “y-distortion” where low energy photons
are boosted to higher frequencies, leading to a deficit in the CMB intensity at low
frequencies in the Rayleigh-Jeans region, equivalent to a temperature deficit

�T

T

ˇ̌̌
ˇ
p�T

D �2y (30)

and an enhancement at high frequencies. The Compton y-parameter is defined as
the line-of-sight integral of the electron pressure

y D
Z

Te
me

neTdl ; (31)

where ne is the density of free electrons and T is the Thomson scattering
cross-section, see Eq. (33) below. Constraints from COBE/FIRAS give the upper
limit (Fixsen et al. 1996)

jyj < 1:5 � 10�5 at 95% CL : (32)

These constraints still rely on COBE observations, more than 20 years ago.
An important source of y-distortions seen in specific directions in the CMB is

the Sunyaev-Zeldovich effect (Sunyaev and Zeldovich 1970), from hot cluster gas
along the line of sight after recombination. The Planck satellite has now compiled
a catalogue of 439 clusters detected in the Planck data via their SZ signal (Ade
et al. 2015) with many more being detected by ground-based experiments such as
the Atacama Cosmology Telescope (Hasselfield et al. 2013) and the South Pole
Telescope (Bleem et al. 2015).
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2.4 Tight-Coupling and Sudden Recombination

At low energies (much smaller than the electron rest mass) electrons and photons
interact via Thomson scattering, whose cross-section is3

T D 8�˛2

3m2
e

D 6:65 � 10�29 m2 : (33)

The corresponding mean-free-path for photons associated with Thomson scattering
is given by


mfp D 1

neT
: (34)

Around z � 1100 the mean-free-path is approximately 2:5 kpc, corresponding to
a comoving scale of order 2:5Mpc at present (Hu 2008). On scales much larger
than the mean-free-path, 
 � 
mfp, the photons are tightly coupled to the electrons,
while electrons are tightly coupled to protons through the Coulomb interaction. In
this regime, photons, electrons and protons can be treated as a single fluid with
common 3-velocity, and isotropic pressure.

The mean-free-path is time-dependent because the free-electron density, ne, is
time-dependent. As the Universe cools down the capture of electrons by protons
becomes efficient. As the wavelengths of photons are redshifted by the cosmic
expansion, fewer photons have sufficient energy (the ionisation energy, 13:6 eV)
required to break the binding energy of an electron in a neutral hydrogen atom.
Therefore, the density of free electrons, ne, rapidly drops around z � 1100, leading
to a rapid increase in the Thomson mean-free-path beyond the Hubble radius.

This process is called decoupling, because photons no longer interact with
electrons. It is also called recombination because this is the epoch when protons and
electrons recombine to form hydrogen atoms. Recombination and decoupling are
practically simultaneous because the rapid drop in the density of free electrons due
to recombination affects the Thomson scattering rate. By solving the corresponding
Boltzmann equation we see that recombination and decoupling occur at redshift (Hu
2008)

1 C z� D 1089

�
�mh2

0:14

�0:0105 �
�bh2

0:024

��0:028

: (35)

3The full cross-section describing the process e� C � ! e� C � is given by the Klein-
Nishina formula (Klein and Nishina 1929), which displays not only the dependence on the photon
energy but also on its polarization and the scattering angle. Since the energies involved in the
recombination process are much smaller than the electron mass, we can safely use Thomson cross-
section.
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Note that this is some time after (but not long after) matter-radiation equality,

1 C zeq D 3:4 � 103

�
�mh2

0:14

�
: (36)

Another way to define when recombination/decoupling takes place is via the
Thomson optical depth

� D
Z �0

�

neTdt ; (37)

which represents the integrated scattering rate from a conformal time � until today
�0, i.e., the average number of scattering events between these two times. The spatial
hyper-surface of constant � D ��, where �� is the conformal time corresponding
to � D 1, is called the last-scattering surface. Of course, recombination is not
an instantaneous phenomenon, but it occurs sufficiently rapidly that a useful
approximation on comoving scales greater than about 2:5Mpc is the so-called
sudden recombination, as if it really happened at a single instant, ��.

3 CMB Anisotropies

Anisotropies observed in the CMB radiation are caused by inhomogeneities in the
cosmological spacetime and matter distribution. Fortunately, these inhomogeneities
are small (about one part in 104) with respect to the background homogenous energy
density, thereby allowing us to use perturbation theory to model their behaviour. In
the following we shall consider a linearly perturbed distribution.

We do not measure the plasma density directly, but rather anisotropies, in the
CMB photon distribution function, f ! Nf C ıf . At first order these can be described
by a perturbation in the temperature of the Bose-Einstein distribution (13), where

T.�; x; Op/ D NT.�/ Œ1 C ‚.�; x; Op/� ; (38)

where Op denotes the direction of the photon propagation. The temperature fluctua-
tion in the plasma is related to the photon density contrast via Eq. (15) as

‚ � ıT

T
D 1

4

ı��

��

� 1

4
ı� : (39)
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3.1 Spherical Harmonics

Since we observe CMB on the celestial sphere, it is useful to expand ‚ in spherical
harmonics

‚.�; x; Op/ D
1X

`D0

X̀
mD�`

a`m.�; x/Y`m. Op/ : (40)

Since the spherical harmonics form a complete orthonormal basis on the sphere,

Z
d�nY`m. On/Y �̀

0m0

. On/ D ı``0ımm0 : (41)

The coefficients alm describe the temperature fluctuations at a given angular
multipole `. An isotropic distribution has an angular power spectrum Cl:

ha�̀
ma`0m0i D ı``0ımm0C` : (42)

In this case the correlation between the temperatures in two directions on the CMB
sky depends only on the angular distance between the two directions and not on the
orientation of the arc which joins them.

For a fixed `, one has 2`C1 different a`m’s, i.e., 2`C1 independent estimates of
the true C`. The “observed”Cobs

` corresponds to our best estimate of the true angular
power spectrum:

Cobs
` � 1

2` C 1

X
m

.aobs`m /�aobs`m ; (43)

i.e., it is an average over the observed multipole moments, m, at fixed `. We define
the cosmic variance as the expected error in our determination of the true power
spectrum

�
�C`

C`

�2

cosmic variance
�
* 

C` � Cobs
`

C`

!2+
: (44)

Calculating the expectation in the above equation, with the help of Eq. (42), one
obtains

�
�C`

C`

�
cosmic variance

D
r

2

2` C 1
: (45)
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Thus at small multipoles, `, corresponding to very large angular scales, the cosmic
variance is significant and represents the minimal uncertainty in estimating the true
angular power spectrum given that we have only one realisation of the CMB sky.

3.2 Last-Scattering Sphere

Since most photons are last scattered at ��, we will be mostly interested in their
distribution, ‚.�; x; Op/ in Eq. (38), at evaluated at recombination, i.e., at initial time
� D �� and comoving displacement with respect to an observer at the origin, x� D
�D� Op, where the comoving distance to last-scattering D� D �0 � �� ' �0. Then
we propagate this photon distribution until today using the free-streaming equations,
i.e., the collision-less Boltzmann equation for photons.

Adopting the sudden-recombination approximation, we assume that the photons
are tightly coupled with an isotropic distribution up until last scattering,

‚�. Op/ D ‚ .��; x�/ : (46)

The CMB temperature varies across our sky due to the variation in the photon
temperature across the last-scattering surface.

We can decompose this 3D CMB temperature field into Fourier modes

‚.�; x/ D 1

.2�/3

Z
d3k‚.�;k/ eik�x : (47)

Linear modes with different comoving wavevectors, k, then evolve independently at
first order. We assume that these perturbations are stochastic quantities drawn from
some distribution, which usually is assumed to be Gaussian.

The expectation value of eachmode is zero and its variance is the power spectrum

h‚�.�;k1/‚.�;k2/i D .2�/3ı3.k1 C k2/P‚.k1; �/ : (48)

Note that P‚ is function of the modulus of k1 only, i.e., we assume statistical
isotropy. The correlation function in real space is given by the Fourier transform
of the power spectrum

�‚.r/ � h‚.�; x/‚.�; x C r/i D 1

.2�/3

Z
d3keik�rP‚.k/ : (49)

Angular brackets denote the ensemble average. That is, one imagines different
possible realizations of our universe. In theories such as inflation, where primordial
fluctuations are quantum in their origin and then become effectively classical
through an exponential phase of expansion, it is possible to predict the primordial
form of the power spectrum.After that, it is evolved up until today using the classical
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equations of cosmological perturbation theory. Thanks to the ergodic theorem, we
can swap the ensemble average into a position average, see AppendixD ofWeinberg
(2008).

Since P‚ depends only on the modulus k, we can perform the angular integration
in (49) and find

�‚.r/ D 1

2�2

Z 1

0

dk

k
k3P‚.k/

sin kr

kr
: (50)

From the above result, we can identify the dimensionless power spectrum

P‚.k/ � k3P‚.k/

2�2
: (51)

We can decompose the temperature field on the last-scattering surface into
spherical harmonics using the plane-wave expansion

eik�r D 4�

1X
lD0

lX
mD�l

i`j`.kr/Y
�̀
m. Ok/Y`m.Or/ : (52)

where the spherical Bessel function j`.x/ is defined in terms of the regular Bessel
function J`C1=2.x/ as j`.x/ D .�=2x/1=2J`C1=2.x/. Substituting this expansion
into (47) and comparing with (40) evaluated at x� D �D� Op we obtain the spherical
harmonic coefficients

a`m D i`

2�2

Z
d3k‚.��;k/ jl.kD�/ Y �̀

m. Ok/ ; (53)

and hence the angular power spectrum (42), by using Eqs. (41) and (48), becomes:

C` D 4�

Z 1

0

dk

k
P‚.k/j2`.kD�/ : (54)

The window function

W`.k/ � 4�j`.kD�/2 ; (55)

peaks about k D `=D�, so one obtains approximately that

`.` C 1/

2�
C` � P‚.`=�0/ ; (56)

by using D� � �0 and the result

Z 1

0

dk

k
j2`.k�0/ D 1

2l.l C 1/
: (57)
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This is the origin of the ubiquitous prefactor l.l C 1/ in CMB spectrum plots. In
order to obtain the full result one should include contributions from the metric
perturbations and the dipole at recombination and the ISW effect, which we present
in the following section.

4 Sachs-Wolfe Formula

In the previous section we discussed the basic quantities which describe the CMB
temperature anisotropies at last-scattering, and in particular the angular power
spectrum, C`. In this section we link these to the observed temperature fluctuations
including the effect of inhomogeneities in the metric and the density distribution of
the matter content in the universe. We will derive the Sachs-Wolfe formula. In order
to do this, we present the essential elements of relativistic cosmological perturbation
theory, focusing on first-order fluctuations. The pioneering work in this field is due
to Lifshitz (1946) but we also refer the reader to more recent reviews, such as Malik
and Wands (2009).

4.1 Metric Perturbations

The starting point for discussing cosmological perturbations is the perturbed FRLW
metric (Malik and Wands 2009)

ds2 D a2
˚�.1 C 2A/d�2 C 2riBdx

id� C �
.1 C 2C/ıij C 2rirjE

�
dxidxj

�
;

(58)

where A, B, C, and E are scalar functions of the coordinates. In the above metric,
we are considering only scalar perturbations, neglecting for now vector and tensor
(gravitational wave) perturbations. Because of the tensorial nature of the metric, the
above scalar functions change when changing the reference frame. It could happen
that a reference frame exists in which A D B D C D D D 0. In this case
then there are no metric perturbations, since we recover the original unperturbed
FLRW metric. So, the fact of having four scalar functions of the coordinates in
the above metric does not guarantee that we are actually dealing with cosmological
perturbations, because the latter may be coordinate artifacts. This is the well-known
gauge problem.

In order to know if we are really dealing with cosmological perturbations, a
useful tool is to construct combinations of the above scalars which remain invariant
under first order coordinate changes. There are three combinations independent of
the spatial threading: A, C and  � E0 � B, where the prime denotes differentiation
with respect to the conformal time �. There are then two combinations independent
of time slicing, for example, the Bardeen potentials (Bardeen 1980; Mukhanov et al.
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1992; Malik and Wands 2009)

‰ � A � H �  0 ; ˆ � C � H : (59)

In the above definition H � a0=a, is the conformal Hubble parameter, i.e. defined
with respect to the conformal time.

A particularly useful gauge is the conformal Newtonian gauge, where the metric
becomes diagonal since the choice is B D E D 0. The Bardeen potentials (59) can
be identified with the metric perturbations A and C in this conformal Newtonian
gauge (where  D 0). The perturbed metric thus takes the form (Hu 2008)

ds2 D a2
˚�.1 C 2‰/d�2 C .1 C 2ˆ/ıijdx

idxj
�

: (60)

It can be shown by writing down explicitly the Einstein equations that their spatial
traceless part depends on ˆ C ‰. For example, the quadruple moment of the matter
distribution acts as source of the spatial traceless part of the Einstein equation. In the
tight coupling limit, there is no anisotropic stress because the high interaction rate
of photons due to Thomson scattering establishes an isotropic distribution, which
implies that ˆ C ‰ D 0.

One can construct other gauge-invariant variables, e.g., involving matter quanti-
ties, such as the density contrast and velocity potential in the conformal Newtonian
gauge

ı � ı� � �0
�

; V � v C E0 ; (61)

or the curvature perturbation

� � C � H
�0 ı� ; (62)

which can be identified with the metric perturbations C in the uniform-density
gauge. This is a particularly useful variable on large scales since � is conserved
for adiabatic perturbations on super-Hubble scales (k � aH) (Wands et al. 2000).
For example, simple slow-roll inflation models typically produce an approximately
scale-invariant dimensionless power spectrum, P�.k/, on large scales at the start of
the radiation dominated era. Thus we will typically set initial conditions in terms of
� and/or isocurvature perturbations.

Note that these different perturbation variables are not necessarily independent.
For example we can express � in terms of the conformal Newtonian gauge
quantities:

� D ˆ � H�

�0 ı : (63)
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4.2 Perturbed Geodesics

What is the form of a perturbed geodesics in the conformal Newtonian gauge (60)?
By setting ds2 D 0 for a null trajectory, we find the coordinate velocity of a photon

dxi

d�
D .1 C ‰ � ˆ/Opi ; (64)

where Opi is a unit vector, ıij Opi Opj D 1. Defining the 4-momentum as P	 D
dx	=d
 and the modulus of the 3-momentum p2 D gijPiPj, the perturbed geodesic
equation (16) can be written as follows:

1

p

dp

d�
D �

�
1

a

da

d�
C @ˆ

@�

�
� Opi @‰

@xi
: (65)

The term in parenthesis is the usual Hubble redshift corrected by the metric
perturbation, which makes the expansion not homogeneous and isotropic, as it was
in the background. The last term represents the gravitational blueshift or redshift
experienced by a photon falling into or climbing out of a potential well. Introducing
the total time derivative along the photon path, i.e.

d‰

d�
D @‰

@�
C Opi @‰

@xi
; (66)

the geodesic equation (65) becomes

1

p

dp

d�
D �1

a

da

d�
� d‰

d�
C @

@�
.‰ � ˆ/ : (67)

This can be formally integrated along the photon trajectory from recombination, ��,
until today, �0,

ln

�
p0

p�

�
D � ln

�
a0

a�

�
� ‰0 C ‰� C

Z �0

�
�

.‰0 � ˆ0/d� : (68)

Splitting the momentum in a background part plus perturbation, i.e. p ! p C ıp,
one obtains

�
ıp

p

�
0

D
�

ıp

p

�
�

C ‰� � ‰0 C
Z �0

�
�

.‰0 � ˆ0/d� : (69)

This relative perturbation in the photon momentum causes a relative temperature
fluctuation in the CMB, ‚ D ıp=p. So, one sees that at recombination photons get
a redshift escaping from over-densities on the last-scattering surface with a negative
gravitational potential ‰�. This is part of the Sachs-Wolfe effect (Sachs and Wolfe
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1967). The integral term in (69), named the integrated Sachs-Wolfe effect, accounts
for the time-dependence of the potentials along the line of sight from recombination
until today.

The observed temperature fluctuation includes a Doppler shift due to the relative
peculiar velocity (in addition to the expansion) between the last-scattering surface
and the observer

‚ D ıp

p
C On � V : (70)

The full Sachs-Wolfe formula is thus

‚obs D 1

4
ı�� C ‰� � On � V� C

Z �0

�
�

.‰0 � ˆ0/d� � ‰0 C On � Vobs ; (71)

where we have identified the relative momentum perturbation for photons on the
last scattering surface with the radiation density contrast ı� D 4ıp=p. The first three
terms represent the intrinsic Sachs-Wolfe effect (on the last-scattering surface) and
the fourth the integrated one we already mentioned. ‰0 is the gravitational potential
at the observer today and gives an undetectable correction to the monopole (that is,
the solid-angle-averaged temperature). The last term is a dipole anisotropy induced
by the observer’s velocity.

4.3 Adiabatic and Isocurvature Perturbations

In order to evaluate the relative contribution of different terms in the Sachs-Wolfe
formula (71) we need to determine the evolution of linear perturbations, in particular
at the time of last scattering.

The behaviour of the scalar perturbations previously introduced is given by the
Einstein evolution equations (coming from the spatial part of the Einstein equations
written in an arbitrary gauge):

C00 C 2HC0 � HA0 � .2H0 C H2/A D �4�Ga2

�
ıP C 2

3
r2…

�
; (72)

 0 C 2H � C � A D 8�Ga2… ; (73)

subject to the Einstein energy-momentum constraints (the time-time and time-space
components of the Einstein equations):

3H.�C C HA/ C r2.C � H/ D �4�Ga2ı� ; (74)

�C0 C HA D �4�Ga2.� C P/.v C B/ : (75)
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Finally, not independent from the above equations, we also have the energy and
momentum conservation (continuity and Euler) equations:

ı�0 C 3H.ı� C ıP/ C 3.� C P/C0 C .� C P/r2.v C E0/ D 0 ; (76)

.v C B/0 C .1 � 3c2
s /H.v C B/ C � C 1

� C P

�
ıP C 2

3
r2…

�
D 0 : (77)

Note that the fluid quantities above introduced (ı�, ıP, etc.) refer to the total matter
content, but if the components do not interact among themselves, these equations
can also be considered individually for each one of the components that make up
the balance of the cosmic energy budget.

Exploiting the gauge freedom, we may consider the continuity equation written
in the uniform density gauge, i.e. for ı� D 0 where � D C in Eq. (62):

3HıPnad C 3.� C P/� 0 C .� C P/r2V D 0 ; (78)

where we identify the pressure perturbation with the non-adiabatic pressure in this
uniform-density gauge, ıPand � ıP � . p0=�0/ı�, and the conformal Newtonian
velocity V was defined in Eq. (61). Rearranging (78) we have

� 0 D �H ıPnad

� C P
� 1

3
r2V : (79)

For fluids with a barotropic equation of state, P D P.�/, we automatically have zero
non-adiabatic pressure, ıPnad D 0. Thus, on large scales, where the contribution
from the divergence of the conformal Newtonian velocity, r2V , can be neglected,
we have � being conserved.

The same argument can be applied to any non-interacting barotropic fluids
(Lyth and Wands 2003). Thus, generalising the definition of the curvature pertur-
bation (62), we get conserved perturbations on large scales for radiation and matter,
�� and �m. These can be written in terms of conformal Newtonian gauge quantities
as

�� D ı�

4
C ˆ ; (80)

�m D ım

3
C ˆ : (81)

Initial conditions are set up at sufficiently early times and on very large scales.
Considering only radiation and matter, we have the total curvature and entropy
perturbations

� D 4���� C 4�m�m

4�� C 3�m
; Sm D 3.�m � �� / : (82)
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Adiabatic initial conditions are defined as:

� D �m D �� D constant ; Sm D 0 : (83)

And the isocurvature initial conditions are defined as

�� D 0 ; Sm D 3�m D constant : (84)

A full treatment of the initial conditions requires neutrinos and baryons to be dealt
with separately, giving rise to two more isocurvature density modes (Bucher et al.
2000).

The above constants are in general dependent on the scale. This dependence
is set during an inflationary era and is thought to come from primordial quantum
fluctuations. A slow time-dependence of the evolution during inflation leads to a
weak scale-dependence of the dimensionless power spectrum.

n � 1 � d lnP�

d ln k
� 0 ; (85)

The intrinsic Sachs-Wolfe effect (71) on large scales (neglecting the velocityV�)
can then be written as

ıT

T
D 1

4
ı�� C ‰� D �� C 2‰� : (86)

Let’s now see how the evolution of the gravitational potential looks like, since we
have seen its role in determining the Sachs-Wolfe effect. Consider a barotropic fluid
with equation of state p D w� and constant w. Neglecting anisotropic stresses, so
that ˆ D �‰, the evolution equation is computed from the spatial trace of the
Einstein equation (72) and reads:

‰00 C 3.1 C w/H‰0 C wr2‰ D 0 : (87)

On large scales or during matter domination (w D 0), where one can neglect the
spatial gradient, we obtain a constant solution

‰0 D �3.1 C w/

5 C 3w
� ; (88)

where we related this constant to � which we have already shown to be conserved
on large scales and for adiabatic perturbations. This sets the initial conditions for
the scales which subsequently enter the horizon.

The evolution of the gravitational potential behaves in a two very different ways
from the radiation dominated phase compared to the matter dominated era. In
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radiation, w D 1=3, for a comoving wavenumber k, we find

‰k.�/ D ��

"
6

.k�/2
cos

�
k�p

3

�
� 6

p
3

.k�/3
sin

�
k�p

3

�#
: (89)

For super horizon scales (k� � 1) the above solution tends to a constant: ‰k !
�2��=3. But for sub horizon scales (k� ! 1) the potential oscillates and decays,
‰k ! 0. Thus the growth of matter inhomogeneities will also be suppressed in this
regime.

In the matter dominated era (w D 0) the gravitational potential is constant at all
scales

‰k.�/ D �3�m=5 : (90)

With this result, the intrinsic Sachs-Wolfe effect on large scales can be written as

ıT

T
D �� C 2‰� D �� � 6

5
�m ; (91)

where we used the matter-dominated solution for the gravitational potential because,
as previously noted, recombination takes place in this regime, z� < zeq. For adiabatic
perturbations (Sm D 0 and �m D �� ) the contribution is:

ıT

T

ˇ̌
ˇ̌
ad

D �1

5
�� D 1

3
‰� ; (92)

whereas for isocurvature perturbations (�� D 0, Sm D 3�m):

ıT

T

ˇ̌
ˇ̌
iso

D �2

5
Sm D 2‰� : (93)

With these two formulas, the large-scale approximation (56) can be written as
follows:

l.l C 1/

2�
Cl � 1

25
P�.l=�0/ C 4

25
PS.l=�0/ C 4

25
C�S.l=�0/ ; (94)

i.e. a contribution coming from the adiabatic perturbations, P� , another from the
isocurvature perturbations,PS, and their cross-correlation, C�S (recall that the power
spectrum is a quadratic function of the perturbation variables).
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5 Acoustic Oscillations

One of the striking features of CMB power spectrum is the presence of acoustic
oscillations, which originate from sound waves in the baryon-photon fluid at
the time of last scattering. We present here the physics which lies behind this
phenomenon, following the approach of Hu (2008).

The coupled first-order energy and momentum conservation equations for radi-
ation perturbations in conformal Newtonian gauge (neglecting for the moment the
effect of baryons) are

1

4
ı0

� D �1

3
r � V� � ˆ0 ; (95)

V0
� D �1

4
rı� � r‰ : (96)

Eliminating V� yields an oscillator equation:

�
1

4
ı� C ‰

�00
� 1

3
r2

�
1

4
ı� C ‰

�
D .‰ � ˆ/00 : (97)

5.1 Matter Era

It is easy to solve this equation in the matter era, since ‰ D �ˆ D constant,
therefore the right-hand-side vanishes and we get

�
1

4
ı� C ‰

�
D
�

1

4
ı� C ‰

�
0

cos.ks/ ; (98)

for k � keq, where keq is the comoving wave-number of a scale which crosses
the Hubble horizon at matter-radiation equivalence, i.e. keq D Heqaeq. The sound
horizon for the relativistic fluid is given by

s D
Z �

0

csd�0 D 1p
3

� : (99)

We shall see later that the presence of baryons affects the sound horizon since it
modifies the speed of sound.

At recombination, for adiabatic perturbations, the above solution can be written
as

�
1

4
ı� C ‰

�
�

D �1

5
�� cos.ks�/ : (100)
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Fig. 1 Evolution of the effective temperature, Eq. (98), and its absolute value (corresponding to
the power peaks, solid lines) (Hu 2008; Hu and Dodelson 2002)

We see in Fig. 1 the characteristic oscillating behaviour of the CMB temperature
fluctuations, known as acoustic oscillations. Note that the power spectrum corre-
sponds to the square of the amplitude so that peaks in the power spectrum occur at
maxima or minima of the amplitude.

The first peak takes place when the argument of the cosine is equal to � , i.e. the
comoving acoustic scale, 
A, is defined as

kAs� D � ) 
A D 2��p
3

: (101)

Dividing by the comoving distance to recombination, we find the angular scale

�A D 
A

�0 � ��
; (102)

which in the matter-dominated universe can be approximated as

�A � ��
�0

� z�1=2
� � 2ı : (103)

This is the angular scale of the particle horizon at recombination. It spans only 2ı
in the sky, and yet we see a high degree of isotropy in the CMB sky on all angular
scales. No causal process could lead to isotropy on scales separated by more than 2ı
in the classical hot big bang because of the lack of causal connection on any large
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scales. This is the well-known horizon problem in the big bang model which is most
clearly seen in the CMB, and to which inflation offers a solution.

5.2 Radiation Driving

In the radiation dominated era, the gravitational potentials cannot be assumed to be
constant and they rapidly oscillate and decay as each scale enters the horizon, i.e.
ˆ D �‰ ! 0 as k� ! 1. Thus we can neglect the source term in the oscillator
equation (97) for k� � 1 to obtain

�
1

4
ı� C ‰

�
� 1

4
ı� / cos.ks/ : (104)

Extrapolating forward to the matter era, we obtain the same oscillations for the
radiation density as before, Eq. (100), but with larger amplitude the potentials are
negligible. For scales that enter the horizon well before matter-radiation equality,
k � keq, we find

�
1

4
ı� C ‰

�
�

� ��� cos.ks�/ : (105)

Comparing with Eq. (100), we find that the amplitude of oscillations for k > keq can
be five times larger for low matter density, as this delays matter-domination, which
causes the gravitational potential to decay on sub-horizon scales during the radiation
era, see Fig. 2.

5.3 Baryon Loading

What happens if we include the effect of baryons which are strongly coupled to the
electrons, and hence photons, before recombination? Intuitively, since baryons are
massive particles, they would slow down the oscillations.

We define the coupled baryon-photon velocity, Vb� , using

.�� C P� /V� C .�b C Pb/Vb D .1 C R/.�� C P� /Vb� ; (106)

where the baryon-to-photon ratio is given by

R � �b C Pb

�� C P�

D 3

4

�b

��

: (107)

In the tight-coupling limit, Vb� D V� D Vb.
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Fig. 2 Evolution, starting in the radiation era, of the gravitational potential, ‰ (red), the effective
temperature, .1=4/ı� C ‰ (blue), and the anisotropic pressure due to photon diffusion, �� (green)
(Hu 2008)

Using the coupled energy and momentum conservation equations we can write

1

4
ı0

� D �1

3
r � Vb� � ˆ0 ; (108)

�
.1 C R/Vb�

�0 D �1

4
rı� � .1 C R/r‰ : (109)

Neglecting the time-variation of ‰ and R (i.e., ‰0 � R0 � 0, which is a reasonable
approximation) one gets the following oscillator equation:

�
1

4
ı� C .1 C R/‰

�00
� 1

3.1 C R/
r2

�
1

4
ı� C .1 C R/‰

�
� 0 : (110)

Comparing with the earlier oscillator equation neglecting baryons, (97), we see that
the adiabatic speed of sound (the term multiplying the Laplacian is the square of the
sound speed), and now is reduced by the presence of baryons by a factor .1 C R/.
The solution for the above equation is:

�
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4
ı� C .1 C R/‰

�
D
�

1

4
ı� C .1 C R/‰

�
0

cos.ks/ ; (111)
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where now the sound horizon is

s �
Z

csd� D
Z

d�

3.1 C R/
: (112)

So the matter-era solution for k � keq, (100), corrected by the presence of baryons
is now:

�
1

4
ı� C ‰

�
�

� Œ3R � .1 C 3R/ cos.ks�/�
1

5
�� : (113)

The oscillations are now asymmetric: compression and rarefaction are no longer
symmetric because baryons tend to collapse under their own gravity, more than they
become more rarefied.

In Fig. 3 we present how the baryon loading modifies the shape of the CMB
temperature power spectrum. We vary the baryon density �bh2 but keep all the
other parameters fixed. Because of Friedmann constraint (5)

1 D �b C �c C �ƒ C �k ; (114)

we must therefore let h vary while keeping �b fixed. Increasing the baryonic density
increases the height of the first peak and lowers the second peak. This is due to the

Fig. 3 CMB temperature power spectra, for different values of �bh2, showing the effect of baryon
loading. We used the CAMB code (Lewis et al. 2000) for the fiducial ƒCDM model given with
the following parameters fixed �bh2 D 0:022, �ch2 D 0:12, �ƒ D 0:7, � D 0:1 and �k D 0
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fact that, the first peak is a maximum of compression, it is enhanced by a heavier
baryon load, while the second peak is a rarefaction peak.

In Fig. 4 we present how the dark matter content modifies the shape of the CMB
power spectrum.We use the same strategy as in Fig. 3, but now we let �ch2 vary. As
one can see, increasing this quantity causes the whole peak structure to decrease in
amplitude. Since �bh2 is fixed, the matter-radiation equivalence epoch takes place
at earlier times when increasing �ch2. This implies weaker radiation driving and a
smaller amplitude of oscillations.

There is also another very important feature characterising CMB anisotropies on
small scales. On scales comparable to the photon diffusion scale the tight-coupling
approximation breaks down. The diffusion comoving scale has the following
expression in terms of cosmological parameters (Hu 2008)


D � 64:5 Mpc

�
�mh2

0:14

��0:278 �
�bh2

0:024

��0:18

: (115)

Photon diffusion translates into a damping of the oscillations, see Fig. 2, and a decay
in the correlation, i.e., the angular power spectrum,Cl. This is easily understood. On
very small scales, below 
D, cold and hot photons mix thereby averaging to zero the
correlation.

Thus far we have assumed that all photons last scattered at the time of recom-
bination, but this is an approximation. The absence of a Gunn-Petersen trough (no

Fig. 4 CMB temperature power spectra, for different values of �ch2, showing the effect of
radiation driving
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Fig. 5 Effects of reionisation on the temperature (solid lines), EE (dotted lines) and BB (dashed
lines) power spectra

absorption by neutral hydrogen in quasar spectra) suggests that neutral gas has been
reionised by a redshift z > 6. Reionisation leads to an optically thin “smog” between
us and recombination with an optical depth � � 0:1, i.e., 10% of the photons are
scattered again. This reionisation suppresses small-scale anisotropies by rescattering
the photons which also tends to average out the temperature anisotropies. The effect
of varying the reionisation optical depth is shown in Fig. 5.

5.4 Parameter Constraints from Peak Structure

The dependence of the acoustic peak structure on a variety of different physical
parameters enables cosmologists to determine these cosmological parameters with
unprecedented accuracy from detailed measurements of the CMB sky. This is often
referred to as the era of “precision cosmology”.

From Planck, we have a precise constraint on the angular scale of the first
acoustic peak (Ade et al. 2014b):

�� D .1:04148 ˙ 0:00066/ � 10�2 : (116)
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In flat space this angle is given by �� D s�=D�, i.e., the ratio between the sound
horizon at recombination

s� D
Z �

�

0

csd� / �mh
2 ; (117)

and the present horizon distance to recombination

D� D �0 � �� D
Z z

�

0

dz

H.z/
/ h�1 : (118)

Thus in flat space we find

�� D s�
D�

/ �mh
3 D 0:0959 ˙ 0:0006 : (119)

More generally, in a curved space with curvature radius R, we have �� D s�=DA,
see Fig. 6. The angular diameter distance, DA, can be written for D� � R as

DA D R sin

�
D�
R

�
� D�

�
1 C �kH2

0D
2�

6

�
; (120)

Fig. 6 Effects of varying the cosmological constant (solid lines showing �m C �ƒ D 1) and
spatial curvature (dashed lines showing �m C �k D 1)
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from which we obtain the bound (Ade et al. 2014b)

�k D �0:0042C0:043
�0:048 : (121)

As yet there is no evidence for spatial curvature.
We can derive a lot more information from the peak structure. For example, as

discussed earlier, the second peak height relative to the first peak is related to the
baryon loading. As shown in Fig. 3, this suppresses the even (rarefaction peaks)
peaks with respect to the odd numbered peaks (compression peaks). From the
relative height of the second peak, the following constraint on the baryon content is
found (Ade et al. 2014b):

�bh
2 D 0:02207 ˙ 0:00033 : (122)

The decay of the gravitational potential in the radiation era enhances the third
and higher peaks. The less matter there is, the higher the peaks are enhanced, as
shown in Fig. 4. This enables us to put a constraint on the matter density today (Ade
et al. 2014b):

�mh
2 D 0:1423 ˙ 0:0029 : (123)

Note that combining the two bounds (119) and (123) yields a bound on the Hubble
constant (3) directly from the CMB (Ade et al. 2014b)

H0 D 67:3 ˙ 1:2 km s�1 Mpc�1 : (124)

The diffusion length (115) and hence the damping tail is then fixed once �bh2

and�mh2 are specified in the basicƒCDM cosmology. Reionisation also suppresses
anisotropies at all small angles, above l D 20. This is approximately degenerate with
the primordial spectral tilt (85), but this degeneracy can be broken by polarisation
(see next section). Planck data combined with WMAP polarisation data requires a
spectral tilt (Ade et al. 2014b)

n D 0:9603 ˙ 0:0073 : (125)

6 Polarisation

Thomson scattering is due to the motion of charged particles responding to an
incident electromagnetic wave. The outgoing radiation emitted by an electron
responding to a single incident wave is polarised in the direction of motion of the
electron. However for the CMB photons emitted in a given direction at last scattering
to have a net polarisation requires the electrons on the last scattering surface to see
an anisotropic distribution of incoming photons. We have seen that tight-coupling
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between electrons and photons leads to an approximately isotropic distribution of
photons before recombination, therefore CMB radiation from last-scattering is only
weakly polarised, due to a small quadrupole moment caused by small, but finite
photon diffusion before last scattering. However about 10% of CMB photons are
re-scattered long after recombination due to reionisation, when the photon field
is anisotropic, and hence reionisation provides a source of polarisation on large
angular scales.

In general we define the polarization tensor in terms of the electric field, E (Hu
2008),

Pij / hEE�i /
�

‚ C Q U
�U ‚ � Q

�
; (126)

where Q and U are the two possible states of linear polarization and the angular
brackets here denote the time average. Circular polarization is neglected here.

Since the polarisation state is invariant under a 90ı rotation, it corresponds to a
spin-2 field. Like the temperature anisotropy, we can decompose the polarisation in
any direction into harmonic functions, E and B modes, across the whole sky,

Q. On/ ˙ iU. On/ D
X
`;m

.E`m ˙ iB`m/ ˙2Y`m. On/ ; (127)

where ˙2Y`m. On/ are spin-2 spherical harmonics.
Scalar perturbations are longitudinal wave-modes where the inhomogeneities

which give rise to polarised radiation are in the same direction as the wave
propagates. This symmetry ensures that only E-mode polarisation is generated
by scalar perturbations at linear order, corresponding to polarisation parallel or
perpendicular to density gradients. Figure 7 shows the angular power spectrum for
E-modes alongside the temperature power spectrum, and their cross-correlation. It
shows the E-mode polarisation “bump” at large angular scales (` < 20) which can
be used as a sensitive measure of reionisation and optical depth � .

B-mode polarisation can only be generated at first order by transverse waves,
i.e., vector or tensor perturbations. Initial vector perturbations decay at linear order
in an expanding cosmology, and are completely absent in inflation driven by scalar
fields. However tensor perturbations correspond to free perturbations of the metric,
i.e., gravitational waves.

Consider a spatial metric perturbation:

hij.x; �/ D
Z

d3k
.2�/3=2

eik�x �hkeij.k/ C Nhk Neij.k/
�

: (128)

Tensor perturbations must be transverse and traceless, i.e.,

kieij D 0 ; ki Neij D 0 ; gijeij D 0 ; gijNeij D 0 : (129)
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Fig. 7 Effects of varying tensor-to-scalar ratio, r. The solid lines (top) correspond to the total
intensity (temperature) angular power spectrum. The dashed lines correspond to the E-mode power
spectrum and the dotted lines correspond to the temperature-E-mode cross-correlation. These are
dominated by scalar modes. The dot-dashed lines show the B-mode angular power spectrum for
different values of the primordial tensor-to-scalar ratio, r

This leaves only two independent degrees of freedom,which are the two polarisation
modes characterising a gravitational wave.

The Einstein equations give the following evolution equation for the gravitational
wave amplitude

Rhk C 3H Phk C k2

a2
hk D 0 ; (130)

i.e., a wave equation for a massless field, including a damping term due to the
expansion of the Universe. Quantum vacuum fluctuations in massless fields during
slow-roll inflation generate an almost scale-invariant spectrum of primordial per-
turbations on super-Hubble scales k < aH. Therefore, we can predict a primordial
power spectrum for gravitational waves from inflation:

PT.k/ D 2
4�k3

.2�/3
hhh�i � 2

32�

M2
Pl

H2

2�

ˇ̌
ˇ̌
kDaH

; (131)

where the average is the vacuum expectation value, classically promoted to a
variance. The power spectrum is thus directly determined by the Hubble parameter,
H, during inflation.
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It is customary to introduce the tensor-to-scalar ratio:

r � PT

P�

: (132)

From Planck constraints on the temperature power spectrum we obtain (Ade et al.
2014b), r < 0:11, and the energy scale at the end of inflation is constrained to be
V < 2 � 1016 GeV. Nonetheless there is considerable interest in searching for B-
mode polarisation in the CMB, either from future satellite experiments or dedicated
ground-based experiments, as a direct signal of primordial gravitational waves. If
an almost scale invariant, Gaussian distribution of primordial gravitational waves
were discovered then these would surely be strong evidence for inflation, and our
first evidence for the quantum nature of gravity.

7 The Next Frontier in CMB Theory

The observed CMB sky is remarkably uniform with temperature variations less
than one part in 104. These lectures have reviewed the analysis of the homo-
geneous “background” CMB sky and anisotropies in the CMB temperature and
polarisation, modelled using first-order perturbation theory. As the precision of
CMB experiments improves the next challenge in CMB theory may be to accurately
model non-linearity in the CMB anisotropies, both at last scattering and along the
subsequent line-of-sight.

Non-linear interactions lead to departures from Gaussianity, evident in the CMB
bispectrum, i.e., a non-zero correlation between different spherical harmonics.
Primordial non-Gaussianity is often described in terms of the dimensionless non-
linearity parameter (Bartolo et al. 2004)

fNL � B�.k1; k2; k3/

P�.k1/P�.k2/ C P�.k2/P�.k3/ C P�.k1/P�.k3/
; (133)

i.e., the primordial bispectrum, B�.k1; k2; k3/, relative to the square of the power
spectrum. This fNL 	 1 corresponds to a primordial bispectrum B�.k1; k2; k3/ 	
10�18. It is related to the three-point correlation function, which is identically
vanishing in the Gaussian case, along with all the odd-order correlation functions.
In general, fNL defined in this way is a scale- and shape-dependent function of the
three wave numbers, but for local-type non-Gaussianity fNL is a constant parameter
(Wands 2010).

Non-linear interactions also lead to important conceptual differences from the
simple assumptions valid in linear theory. Small but non-zero vector and tensor
perturbations, hence B-mode polarisation, are generated at second-order from first-
order scalar perturbations (Mollerach et al. 2004; Fidler et al. 2014). Also, second-
order anisotropies in the photon distribution can no longer be described simply by
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a black-body spectrum with anisotropic temperature. Second-order effects lead to
anisotropic spectral distortions. For example, the angular power spectrum of the
Compton y-distortion could provide a powerful tracer of reionisation (Pitrou et al.
2010).

Weak lensing along the line of sight is already an important nonlinear effect seen
in current data, and needs to be taken into account in parameter estimates using
Planck data. It is caused by many small-angle deflections by non-linear structures
along the line of sight. This redistributes power in the small-scale angular power
spectrum, smoothing out peaks at high ` in the power spectrum. This anisotropic
lensing of the small scale power in the CMB has been used by the Planck team to
create a map of the lensing potential and hence a measure of the integrated mass
distribution along the line of sight (Ade et al. 2014c).

CMBweak-lensing also provides a non-zero contribution the angular bispectrum.
Gravitational lensing leads to a second order anisotropy which is correlated with the
integrated Sachs-Wolfe effect along the line of sight (Goldberg and Spergel 1999;
Seljak and Zaldarriaga 1999; Lewis et al. 2011). This contributes a significant bias
to estimates of the non-linearity parameter, and fNL � 7 has been seen in the Planck
analysis. After subtracting this effect, Planck measurements remain consistent with
vanishing primordial non-Gaussianity, fNL D 2:7 ˙ 5:8 (Ade et al. 2014d).

Most current bounds on primordial non-Gaussianity are based upon theoretical
templates based on non-linear modelling of inflationary (or alternative) models,
as non-Gaussian initial conditions for standard, linear Boltzmann codes such as
CAMB (Lewis et al. 2000) or CLASS (Lesgourgues 2011). However the process of
decoupling and the Sachs-Wolfe effect on temperature (and spectrum) anisotropies
is in reality a non-linear process. As bounds on primordial non-Gaussianity become
tighter we also need templates for the intrinsic non-Gaussianity expected from non-
linear physics at recombination. There are now second-order general relativistic
Boltzmann codes which have been developed (Huang and Vernizzi 2013; Pettinari
et al. 2013; Su et al. 2014) building on pioneering early work (Pitrou 2011).
Intrinsic non-Gaussianity at last-scattering provides a small bias, fNL ' 1, which
remains below the observational uncertainty of current experiments. However we
are now in the position to be able to build a template for the intrinsic non-linearity
at recombination which could be a target for future all-sky (hence space-based)
missions, as shown in Fig. 8. This would make novel tests of physical process at
last-scattering, e.g., gravitational wave production from density waves at second
order.

8 Outlook

The standard ƒCDM cosmology provides a remarkably successful base model, able
to explain many detailed features of the CMB revealed over the past 50 years by a
series of ground-, balloon- and space-based experiments. In particular the Sachs-
Wolfe plateau at large angular scales, the series of acoustic peaks in the angular
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Fig. 8 Signal-to-noise ratio of the intrinsic bispectrum signal as a function of maximum multipole
for Planck and proposed future satellite missions using temperature only (dashed lines) or
temperature and polarisation (solid lines). Figure reproduced from Pettinari et al. (2014)

power spectrum, and the damping tail at small angular scales can be described by
this model with just six cosmological parameters: the Hubble constant, the baryon
and matter densities, the reionisation optical depth, and the amplitude and tilt of
primordial perturbations. These six parameters are increasingly tightly constrained
in the new era of precision cosmology, and bounds are set to become ever tighter,
especially through new combinations with other data sets, such as high redshift
galaxy surveys and HI (neutral hydrogen) survey data. The framework already
successfully accommodates new observational discoveries such as the effect of weak
lensing now seen in the CMB power spectrum and bispectrum.

Nonetheless there is no reason to believe this is the final theory of cosmology.
Even the simplest, single-field models of inflation in the very early universe make
predictions for additional features in the primordial perturbations, including a
spectrum of tensor (gravitational wave) perturbations and small but finite running of
the scalar spectral index. Many inflation models make further predictions including
primordial isocurvature perturbations and/or non-Gaussianity. Any of these addi-
tional parameters would radically change our views about the likely mechanisms
generating primordial structure. There are many additional cosmological parameters
possible, including additional particle species and/or interactions, but there is no
clear evidence yet requiring any more than the six basic parameters.

The present theoretical framework now being constrained by data was estab-
lished in the 1970s and 80s well before the golden age of CMB experiments was
begun by the COBE satellite results. Work now in progress will set new theo-
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retical challenges for future experiments. Ground-based experiments are currently
targeting CMB polarisation from weak-lensing and the elusive B-mode signature of
primordial gravitational waves. Future space-based experiments are likely to focus
on polarisation, spectral distortions and/or non-Gaussianity. The CMB will remain
a key testing ground for cosmological theory for many years to come.

Acknowledgements DW is grateful to the organisers of the second José Plínio Baptista school
for their warm hospitality. The authors are grateful to Rob Crittenden for helpful comments. This
work is supported by STFC grants ST/K00090/1 and ST/L005573/1.

References

Adam, R., et al.: Planck 2015 results. I. Overview of products and scientific results (2015).
arXiv:1502.01582

Ade, P.A.R., et al.: Planck 2013 results. I. Overview of products and scientific
results. Astron. Astrophys. 571, A1 (2014a). arXiv:1303.5062.
doi:10.1051/0004-6361/201321529.

Ade, P.A.R., et al.: Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys. 571,
A16 (2014b). arXiv:1303.5076. doi:10.1051/0004-6361/201321591

Ade, P.A.R., et al.: Planck 2013 results. XVII. Gravitational lensing by large-
scale structure. Astron. Astrophys. 571, A17 (2014c). arXiv:1303.5077.
doi:10.1051/0004-6361/201321543

Ade, P.A.R., et al.: Planck 2013 Results. XXIV. Constraints on primordial non-
Gaussianity. Astron. Astrophys. 571, A24 (2014d). arXiv:1303.5084.
doi:10.1051/0004-6361/201321554

Ade, P.A.R., et al.: Planck 2015 results. XXIV. Cosmology from Sunyaev-Zeldovich cluster counts
(2015). arXiv:1502.01597

Alpher, V.S.: Ralph A. Alpher, George Antonovich Gamow, and the prediction of the cosmic
microwave background radiation. Asian J. Phys. 2, 17–26 (2014). arXiv:1411.0172

Alpher, R.A., Bethe, H., Gamow, G.: The origin of chemical elements. Phys. Rev. 73, 803–804
(1948). doi:10.1103/PhysRev.73.803

Bardeen, J.M.: Gauge invariant cosmological perturbations. Phys. Rev. D22, 1882–1905 (1980).
doi:10.1103/PhysRevD.22.1882

Bartolo, N., Komatsu, E., Matarrese, S., Riotto, A.: Non-Gaussianity from inflation: theory
and observations. Phys. Rep. 402, 103–266 (2004). arXiv:astro-ph/0406398.
doi:10.1016/j.physrep.2004.08.022

Bleem, L.E., et al.: Galaxy clusters discovered via the Sunyaev-Zel’dovich effect in the 2500-
square-degree SPT-SZ survey. Astrophys. J. Suppl. 216(2), 27 (2015). arXiv:1409.0850.
doi:10.1088/0067-0049/216/2/27

Bucher, M., Moodley, K., Turok, N.: The general primordial cosmic pertur-
bation. Phys. Rev. D62, 083508 (2000). arXiv:astro-ph/9904231.
doi:10.1103/PhysRevD.62.083508

Chluba, J., Sunyaev, R.A.: The evolution of CMB spectral distortions in the early Uni-
verse. Mon. Not. R. Astron. Soc. 419, 1294–1314 (2012). arXiv:1109.6552.
doi:10.1111/j.1365-2966.2011.19786.x

Crittenden, R.: http://icg.port.ac.uk/~crittenr/teaching.html (2016). Online. Accessed 7 July 2016
Dodelson, S.: Modern cosmology. Academic (2003)

http://arxiv.org/abs/1502.01582
http://arxiv.org/abs/1303.5062
http://dx.doi.org/10.1051/0004-6361/201321529
http://arxiv.org/abs/1303.5076
http://dx.doi.org/10.1051/0004-6361/201321591
http://arxiv.org/abs/1303.5077
http://dx.doi.org/10.1051/0004-6361/201321543
http://arxiv.org/abs/1303.5084
http://dx.doi.org/10.1051/0004-6361/201321554
http://arxiv.org/abs/1502.01597
http://arxiv.org/abs/1411.0172
http://dx.doi.org/10.1103/PhysRev.73.803
http://dx.doi.org/10.1103/PhysRevD.22.1882
http://arxiv.org/abs/astro-ph/0406398
http://dx.doi.org/10.1016/j.physrep.2004.08.022
http://arxiv.org/abs/1409.0850
http://dx.doi.org/10.1088/0067-0049/216/2/27
http://arxiv.org/abs/astro-ph/9904231
http://dx.doi.org/10.1103/PhysRevD.62.083508
http://arxiv.org/abs/1109.6552
http://dx.doi.org/10.1111/j.1365-2966.2011.19786.x
http://icg.port.ac.uk/~crittenr/teaching.html


38 D. Wands et al.

Fidler, C., Pettinari, G.W., Beneke, M., Crittenden, R., Koyama, K., et al.: The intrinsic
B-mode polarisation of the cosmic microwave background. JCAP 1407, 011 (2014).
arXiv:1401.3296. doi:10.1088/1475-7516/2014/07/011

Fixsen, D.J., Cheng, E.S., Gales, J.M., Mather, J.C., Shafer, R.A., et al.: The cosmic microwave
background spectrum from the full COBE FIRAS data set. Astrophys. J. 473, 576 (1996).
arXiv:astro-ph/9605054. doi:10.1086/178173.

Friedmann, A.: On the possibility of a world with constant negative curvature of space. Z. Phys.
21, 326–332 (1924). doi:10.1007/BF01328280

Goldberg, D.M., Spergel, D.N.: Microwave background bispectrum. 2. A probe of the low
redshift universe. Phys. Rev. D59, 103002 (1999). arXiv:astro-ph/9811251.
doi:10.1103/PhysRevD.59.103002

Hasselfield, M., Hilton, M., Marriage, T.A., Addison, G.E., Barrientos, L.F., et al.: The
Atacama Cosmology Telescope: Sunyaev-Zel’dovich selected galaxy clusters at 148
GHz from three seasons of data. JCAP 1307, 008 (2013). arXiv:1301.0816.
doi:10.1088/1475-7516/2013/07/008

Hu, W.: Lecture Notes on CMB Theory: From Nucleosynthesis to Recombination (2008).
arXiv:0802.3688

Hu, W.: http://background.uchicago.edu/~whu/ (2016). Online. Accessed 29 August 2016
Hu, W., Dodelson, S.: Cosmic microwave background anisotropies. Ann. Rev.

Astron. Astrophys. 40, 171–216 (2002). arXiv:astro-ph/0110414.
doi:10.1146/annurev.astro.40.060401.093926

Huang, Z., Vernizzi, F.: Cosmic microwave background bispectrum from
recombination. Phys. Rev. Lett. 110(10), 101303 (2013). arXiv:1212.3573.
doi:10.1103/PhysRevLett.110.101303

Hubble, E.: A relation between distance and radial velocity among extra-galactic nebulae. Proc.
Natl. Acad. Sci. 15, 168–173 (1929). doi:10.1073/pnas.15.3.168

Klein, O., Nishina, T.: Über die Streuung von Strahlung durch freie Elektronen nach der neuen
relativistischen Quantendynamik von Dirac. Zeitschrift fur Physik 52, 853–868 (1929).
doi:10.1007/BF01366453

Komatsu, E.: http://www.mpa-garching.mpg.de/~komatsu/ (2016). Online. Accessed 7 July 2016
Lemaitre, G.: A homogeneous Universe of constant mass and growing radius accounting for the

radial velocity of extragalactic nebulae. Ann. Soc. Sci. Brux. Ser. I Sci. Math. Astron. Phys.
A47, 49–59 (1927). doi:10.1007/s10714-013-1548-3

Lesgourgues, J.: The Cosmic Linear Anisotropy Solving System (CLASS) I: Overview (2011).
arXiv:1104.2932

Lewis, A., Challinor, A., Lasenby, A.: Efficient computation of CMB anisotropies in closed FRW
models. Astrophys. J. 538, 473–476 (2000). arXiv:astro-ph/9911177

Lewis, A., Challinor, A., Hanson, D.: The shape of the CMB lensing bispectrum. JCAP 1103, 018
(2011). arXiv:1101.2234. doi:10.1088/1475-7516/2011/03/018

Lifshitz, E.: On the Gravitational stability of the expanding universe. J. Phys. (USSR) 10, 116
(1946)

Lyth, D.H., Wands, D.: Conserved cosmological perturbations. Phys. Rev. D68, 103515 (2003).
arXiv:astro-ph/0306498. doi:10.1103/PhysRevD.68.103515

Malik, K.A., Wands, D.: Cosmological perturbations. Phys. Rep. 475, 1–51 (2009).
arXiv:0809.4944. doi:10.1016/j.physrep.2009.03.001

Mather, J.C., Cheng, E.S., Cottingham, D.A., Eplee, R.E., Fixsen, D.J., et al.: Measurement of the
cosmic microwave background spectrum by the COBE FIRAS instrument. Astrophys.J. 420,
439–444 (1994). doi:10.1086/173574

Mollerach, S., Harari, D., Matarrese, S.: CMB polarization from secondary vector and
tensor modes. Phys. Rev. D69, 063002 (2004). arXiv:astro-ph/0310711.
doi:10.1103/PhysRevD.69.063002

Mukhanov, V.: Physical foundations of cosmology. Cambridge university press, Cambridge (2005)

http://arxiv.org/abs/1401.3296
http://dx.doi.org/10.1088/1475-7516/2014/07/011
http://arxiv.org/abs/astro-ph/9605054
http://dx.doi.org/10.1086/178173
http://dx.doi.org/10.1007/BF01328280
http://arxiv.org/abs/astro-ph/9811251
http://dx.doi.org/10.1103/PhysRevD.59.103002
http://arxiv.org/abs/1301.0816
http://dx.doi.org/10.1088/1475-7516/2013/07/008
http://arxiv.org/abs/0802.3688
http://background.uchicago.edu/~whu/
http://arxiv.org/abs/astro-ph/0110414
http://dx.doi.org/10.1146/annurev.astro.40.060401.093926
http://arxiv.org/abs/1212.3573
http://dx.doi.org/10.1103/PhysRevLett.110.101303
http://dx.doi.org/10.1073/pnas.15.3.168
http://dx.doi.org/10.1007/BF01366453
http://www.mpa-garching.mpg.de/~komatsu/
http://dx.doi.org/10.1007/s10714-013-1548-3
http://arxiv.org/abs/1104.2932
http://arxiv.org/abs/astro-ph/9911177
http://arxiv.org/abs/1101.2234
http://dx.doi.org/10.1088/1475-7516/2011/03/018
http://arxiv.org/abs/astro-ph/0306498
http://dx.doi.org/10.1103/PhysRevD.68.103515
http://arxiv.org/abs/0809.4944
http://dx.doi.org/10.1016/j.physrep.2009.03.001
http://dx.doi.org/10.1086/173574
http://arxiv.org/abs/astro-ph/0310711
http://dx.doi.org/10.1103/PhysRevD.69.063002


Physics of the Cosmic Microwave Background Radiation 39

Mukhanov, V.F., Feldman, H.A., Brandenberger, R.H.: Theory of cosmological perturbations. Part
1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions. Phys.
Rep. 215, 203–333 (1992). doi:10.1016/0370-1573(92)90044-Z

Peebles, P.J.E.: Principles of physical cosmology. Princeton University Press, Princeton (1993)
Penzias, A.A., Wilson, R.W.: A measurement of excess antenna temperature at 4080-Mc/s.

Astrophys.J. 142, 419–421 (1965). doi:10.1086/148307
Pettinari, G.W., Fidler, C., Crittenden, R., Koyama, K., Wands, D.: The intrinsic bispectrum

of the cosmic microwave background. JCAP 1304, 003 (2013). arXiv:1302.0832.
doi:10.1088/1475-7516/2013/04/003

Pettinari, G.W., Fidler, C., Crittenden, R., Koyama, K., Lewis, A., et al.: Impact of polarization on
the intrinsic cosmic microwave background bispectrum. Phys. Rev. D90(10), 103010 (2014).
arXiv:1406.2981. doi:10.1103/PhysRevD.90.103010

Pitrou, C.: The tight-coupling approximation for baryon acoustic oscillations. Phys. Lett. B698,
1–5 (2011). arXiv:1012.0546. doi:10.1016/j.physletb.2011.02.058.

Pitrou, C., Bernardeau, F., Uzan, J.-P.: The y-sky: diffuse spectral distortions of the
cosmic microwave background. JCAP 1007, 019 (2010). arXiv:0912.3655.
doi:10.1088/1475-7516/2010/07/019

Robertson, H.P.: Kinematics and world-structure. Astrophys. J. 82, 284–301 (1935).
doi:10.1086/143681

Sachs, R.K., Wolfe, A.M.: Perturbations of a cosmological model and angular
variations of the microwave background. Astrophys. J. 147, 73–90 (1967).
doi:10.1007/s10714-007-0448-9

Seljak, U., Zaldarriaga, M.: Direct signature of evolving gravitational potential from cosmic
microwave background. Phys. Rev. D60, 043504 (1999). arXiv:astro-ph/9811123.
doi:10.1103/PhysRevD.60.043504

Smoot, G.F., Bennett, C.L., Kogut, A., Wright, E.L., Aymon, J., et al.: Structure in the
COBE differential microwave radiometer first year maps. Astrophys.J. 396, L1–L5 (1992).
doi:10.1086/186504

Su, S.C., Lim, E.A., Shellard, E.P.S.: Cosmic microwave background bispectrum
from nonlinear effects during recombination. Phys. Rev. D90(2), 023004 (2014).
doi:10.1103/PhysRevD.90.023004

Sunyaev, R.A., Zeldovich, Ya.B.: Small scale fluctuations of relic radiation. Astrophys. Space Sci.
7, 3–19 (1970)

Wands, D.: Local non-Gaussianity from inflation. Class. Quant. Grav. 27, 124002 (2010).
arXiv:1004.0818. doi:10.1088/0264-9381/27/12/124002

Wands, D., Malik, K.A., Lyth, D.H., Liddle, A.R.: A new approach to the evolu-
tion of cosmological perturbations on large scales. Phys. Rev. D62, 043527 (2000).
arXiv:astro-ph/0003278. doi:10.1103/PhysRevD.62.043527

Weinberg, S.: Cosmology. Oxford University Press, Oxford (2008)

http://dx.doi.org/10.1016/0370-1573(92)90044-Z
http://dx.doi.org/10.1086/148307
http://arxiv.org/abs/1302.0832
http://dx.doi.org/10.1088/1475-7516/2013/04/003
http://arxiv.org/abs/1406.2981
http://dx.doi.org/10.1103/PhysRevD.90.103010
http://arxiv.org/abs/1012.0546
http://dx.doi.org/10.1016/j.physletb.2011.02.058
http://arxiv.org/abs/0912.3655
http://dx.doi.org/10.1088/1475-7516/2010/07/019
http://dx.doi.org/10.1086/143681
http://dx.doi.org/10.1007/s10714-007-0448-9
http://arxiv.org/abs/astro-ph/9811123
http://dx.doi.org/10.1103/PhysRevD.60.043504
http://dx.doi.org/10.1086/186504
http://dx.doi.org/10.1103/PhysRevD.90.023004
http://arxiv.org/abs/1004.0818
http://dx.doi.org/10.1088/0264-9381/27/12/124002
http://arxiv.org/abs/astro-ph/0003278
http://dx.doi.org/10.1103/PhysRevD.62.043527

	Physics of the Cosmic Microwave Background Radiation
	1 Introduction
	2 Background Cosmology and the Hot Big Bang Model
	2.1 Black-Body Spectrum
	2.2 Hot Big Bang
	2.3 Spectral Distortions
	2.4 Tight-Coupling and Sudden Recombination

	3 CMB Anisotropies
	3.1 Spherical Harmonics
	3.2 Last-Scattering Sphere

	4 Sachs-Wolfe Formula
	4.1 Metric Perturbations
	4.2 Perturbed Geodesics
	4.3 Adiabatic and Isocurvature Perturbations

	5 Acoustic Oscillations
	5.1 Matter Era
	5.2 Radiation Driving
	5.3 Baryon Loading
	5.4 Parameter Constraints from Peak Structure

	6 Polarisation
	7 The Next Frontier in CMB Theory
	8 Outlook
	References


