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Preface

The cosmic microwave background (CMB) radiation is one of the most important
phenomena in physics and a fundamental probe of our universe when it was only
400,000 years old. It is an extraordinary laboratory where we can learn from particle
physics to cosmology; its discovery in 1965 has been a landmark event in the history
of physics.

The observations of the anisotropy of the cosmic microwave background radia-
tion through the satellites COBE, WMAP, and Planck provided a huge amount of
data which are being analyzed in order to discover important informations regarding
the composition of our universe and the process of structure formation.

The series of texts composing this book is based on the lectures presented during
the II José Plínio Baptista School of Cosmology, held in Pedra Azul (Espírito Santo,
Brazil) between 9 and 14 March 2014. This II JBPCosmo has been entirely devoted
to the problem of understanding theoretical and observational aspects of CMB.

We thank the speakers and the participants for their enthusiasm and for having
provided a very nice environment to discuss this important topic of modern
cosmology. The II JBPCosmo has been supported by CNPq, CAPES, FAPES, and
UFES.

Vitória, Brazil Júlio C. Fabris
Oliver F. Piattella

Davi C. Rodrigues
Hermano E.S. Velten

Winfried Zimdahl
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Mini Courses



Physics of the Cosmic Microwave Background
Radiation

David Wands, Oliver F. Piattella, and Luciano Casarini

Abstract The cosmic microwave background (CMB) radiation provides a remark-
able window onto the early universe, revealing its composition and structure. In
these lectures we review and discuss the physics underlying the main features of the
CMB.

1 Introduction

The cosmic microwave background (CMB) radiation provides a remarkable window
onto the early universe, revealing its composition and structure. It is a relic, thermal
radiation from a hot dense phase in the early evolution of our Universe which
has now been cooled by the cosmic expansion to just 3ı above absolute zero. Its
existence had been predicted in the 1940s by Alpher and Gamow (Alpher et al.
1948; Alpher 2014) and its discovery by Penzias and Wilson at Bell Labs in New
Jersey, announced in 1965 (Penzias and Wilson 1965) was convincing evidence for
most astronomers that the cosmos we see today emerged from a Hot Big Bang more
than 10 billion years ago.

Since its discovery, many experiments have been performed to observe the CMB
radiation at different frequencies, directions and polarisations, mostly with ground-
and balloon-based detectors. These have established the remarkable uniformity of
the CMB radiation, at a temperature of 2.7 K in all directions, with a small ˙3:3mK
dipole due to the Doppler shift from our local motion (at 1 million km/h) with
respect to this cosmic background.

However, the study of the CMB has been transformed over the last 20 years by
three pivotal satellite experiments. The first of these was the Cosmic Background
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4 D. Wands et al.

Explorer (CoBE), launched by NASA in 1990 (Smoot et al. 1992; Mather et al.
1994). It confirmed the black body spectrum with an astonishing precision, with
deviations less than 50 parts per million (Fixsen et al. 1996). And in 1992
CoBE reported the detection of statistically significant temperature anisotropies
in the CMB, at the level of ˙30�K on 10ı scales (Smoot et al. 1992). COBE
was succeeded by the Wilkinson Microwave Anisotropy Probe (WMAP) satellite,
launched by NASA in 2001, which produced full sky maps in five frequencies
(from 23 to 94 GHz) mapping the temperature anisotropies to sub-degree scales
and determining the CMB polarisation on large angular scales for the first time. The
Planck satellite, launched by ESA in 2009, sets the current state of the art with nine
separate frequency channels, measuring temperature fluctuations to a millionth of
a degree at an angular resolution down to 5 arc-min. Planck intermediate data was
released in 2013 (Ade et al. 2014a).1

These lectures draw upon the excellent reviews of CMB physics by Hu and
Dodelson (Hu and Dodelson 2002; Hu 2008, 2016), Komatsu (2016) and Crittenden
(2016). We also refer the reader to comprehensive reviews on cosmological pertur-
bations by Mukhanov et al. (1992) and Malik and Wands (2009). Useful textbooks
are those of Peebles (1994), Dodelson (2003), Mukhanov (2005) and Weinberg
(2008). Throughout this chapter we will use natural units such that „ D kB D c D 1.

2 Background Cosmology and the Hot Big Bang Model

We start by recalling the mathematical framework describing the expansion of the
universe and the Hot Big Bang. Much of modern cosmology is based on general
relativity and the framework of Friedmann, Lemaître, Robertson and Walker in the
1920s and 30s (Friedmann 1924; Lemaitre 1927; Robertson 1935), and Hubble’s
discovery of the expansion of the universe (Hubble 1929). We can “slice” four-
dimensional spacetime into expanding three-dimensional space at each cosmic
time, t, with a uniform matter density and spatial curvature. Requiring spatial
homogeneity and isotropy at each cosmic time is known as the cosmological
principle, which picks out the following space-time metric:

ds2 D �dt2 C a2.t/

�
dr2

1 � �r2
C r2d�2

�
; (1)

where a.t/ is the scale factor and � is the curvature of the maximally symmetric
spatial slices, and we chose spherical coordinates with infinitesimal solid angle d�2.
We will sometimes find it convenient to use conformal time, �, where dt D ad� and

1After these lectures were given, full-mission data was released in 2015 (Adam et al 2015), with
final polarisation data still to come.
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the line element takes the form

ds2 D a2.�/

�
�d�2 C dr2

1 � �r2 C r2d�2

�
; (2)

The Hubble expansion rate is defined as H � Pa=a, where a dot denotes a
derivative with respect to cosmic time t. The present value of H is called the Hubble
constant and denoted as H0. The value of H0 is often given in the form

H0 D 100 h km s�1 Mpc�1 : (3)

Using the energy constraint, from Einstein’s equations of general relativity, one gets
the Friedmann equation for the Hubble expansion

H2 D 8�G

3
� C ƒ

3
� �

a2
; (4)

where we introduce the cosmological constant, ƒ, and �, the energy density. The
latter includes electrons, baryons (protons, neutrons and atomic nuclei), radiation
(photons and neutrinos) and dark matter (non-baryonic massive particles, non-
relativistic by the present day).

Dividing through by H2, Eq. (4) can be cast in the following dimensionless form:

1 D �C�ƒ C�� ; (5)

where we define the relative contributions to the Hubble expansion

� � 8�G�

3H3
; �ƒ � ƒ

3H2
; �� � ��

a2H2
: (6)

In order to get a closed system of equations we must determine the evolution of
the density, � in Eq. (4), as a function of the scale factor. For this we can use the
continuity (energy conservation) equation

P� D �3H. �C P/ ; (7)

plus an equation of state for the pressure, P.�/. We will be interested in three
important cases:

• � D �r D 1, radiation domination:

Pr D 1

3
�r ) �r / a�4 ) a / t1=2 / � : (8)

• � D �m D 1, matter domination (Einstein-de Sitter):

Pm D 0 ) �m / a�3 ) a / t2=3 / �2 : (9)
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• �ƒ D 1, ƒ domination (de Sitter):

a / eHt / .�1 � �/�1 : (10)

The CMB consists of photons which survive from an early, radiation-dominated,
Hot Big Bang and have a small density with respect to non-relativistic matter today.
Nonetheless the CMB holds a rich store of information about the history of our
Universe, as we shall see. For example, recent observations of the CMB by Planck
(Ade et al. 2014b) can be used to infer values for the above cosmological parameters
at the present-day:

h D 0:674˙0:014 ; �0 D 0:314˙0:020 ; �ƒ0 D 0:686˙0:020 ; ��0 D �0:04˙0:05 :
(11)

The data are consistent with a flat universe, � D 0, which will be our working
hypothesis hereafter. We see that the expansion today is dominated by a cosmolog-
ical constant (or some form of matter which acts very much like a cosmological
constant) but in the recent past it was dominated by non-relativistic matter, and
before that by radiation.

2.1 Black-Body Spectrum

The CMB is observed to have a black-body spectrum characteristic of a thermal
equilibrium distribution, consistent with the hypothesis that our Universe emerged
from a hot, dense Big Bang.

Photons follow a null trajectory in the FLRW metric (2) such that

dxi

d�
D Oni ; (12)

where Oni is a unit 3-vector, gij Oni Onj D 1. The 3-momentum of a photon is pi D pOni,
where p is the wavenumber (remembering that we are using units such that „ D 1

and c D 1, so that p also describes the energy of a massless photon).
CMB photons have an isotropic Bose-Einstein distribution function with temper-

ature T

f . p/ D 1

exp. p=T/� 1
: (13)

Given this isotropic distribution, we can compute the number density of CMB
photons

n� D 2

Z
4�p2dp

.2�/3
f . p/ � 2:4

�2
T3 ; (14)
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where the photons have two independent polarisation states and 4�p2dp is the
volume of an infinitesimal shell in three-dimensional momentum-space. Their
energy density is

�� D 2

Z
4�p2dp

.2�/3
pf . p/ D �2

15
T4 : (15)

However, the CMB photons are no longer in equilibrium with the matter we
see in the universe today. The photons are free to propagate through the universe
after electrons and baryons have recombined into neutral atoms, so the black-body
spectrum must be propagated to the present day from the early universe. Freely
propagating photons follow the geodesic equation in curved space-time

dP	

d

C �	�P

�P D 0 ; (16)

where �
	
� is the Christoffel symbol. We define the photon 4-momentum as

P	 D dx	=d
, where 
 is an affine parameter, and the modulus-squared of the
3-momentum is p2 D gijPiPj where gij is the spatial part of FLRW metric (1). From
the geodesic equation in the conformal FLRW metric (2) we obtain

1

p

dp

d�
D �1

a

da

d�
: (17)

Integrating this up to the present we obtain the cosmological redshift of the photon
momentum, defined as

1C z � p

p0
D a0

a
: (18)

We can interpret this simply as the expansion of the universe stretching the
wavelength of a photon, reducing (redshifting) its energy and momentum.

Note that the form of the Bose-Einstein distribution (13) is preserved

f . p/ D 1

exp. p=T/� 1 D 1

exp. p0=T0/ � 1 ; (19)

where the temperature is also redshifted with the expansion

1C z D T

T0
: (20)

Thus we see that the energy density (15) of the photons decreases as the universe
expands

�� / a�4 : (21)
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Although photon density is small is in the universe today, it dominated the hot,
dense, early universe.

2.2 Hot Big Bang

At sufficiently high temperatures we expect all particles to be relativistic. If these
particles interact and efficiently redistribute energy they will share the same thermal
equilibrium temperature. To be relativistic we require T � m, i.e., the thermal
energy is much larger than the rest mass of a given particle species. At this stage of
the primordial universe we can write the energy density using the same form given
in Eq. (15) for all the relativistic species:

� D geff
�2

30
T4 ; (22)

where geff is the sum of the effective number of degrees of freedom. Each bosonic
species in thermal equilibrium contributes one per spin state (e.g., photons con-
tribute C2, corresponding to two polarisations), whereas each fermion contributes
7=8 per spin state, due to the different statistics.2

In a radiation-dominated universe (8) the time dependence of the scale factor is
given by a / t1=2 and thus from Eq. (4) we have

� D 3H2

8�G
D 3

32�Gt2
; (23)

so that from (22) time and temperature are related by

t D
s

3

32�G

30

geff�2
1

T2
: (24)

Thus we have the simple, approximate temperature-time relation

t

1 s
� 1p

geff

�
1 MeV

T

�2
: (25)

2If a species decouples from this thermal bath, but remains relativistic, it can contribute with a
different temperature in the above equation. This is what happens for neutrinos. They decouple
relativistically from the primordial soup, at T � 1MeV and their temperature today is expected to
be .4=11/1=3 times that of the photons because photons are heated by e�-eC annihilation.
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2.3 Spectral Distortions

The black-body shape of the CMB spectrum is maintained at early times because of
the high interaction rate of photons with the other particles of the primordial plasma.
We can identify two principal scattering processes which contribute to maintaining
an isotropic, equilibrium distribution:

• Compton scattering: scattering of photons and relativistic electrons, redistribut-
ing energy and momentum, conserving photon number

e� C � $ e� C � :

At low energies this reduces to Thomson scattering, i.e., elastic scattering of
photons off non-relativistic electrons, exchanging momentum, but conserving
photon energy and number.

• Double (radiative) Compton scattering: scattering of photons and relativistic
electrons, redistributing energy and momentum, and changing photon number

e� C � $ e� C � C � :

Many processes in the early universe before the time of recombination could
potentially lead to measurable distortions in the CMB spectrum, which might
be measured with future missions. Particle annihilation or decay would heat the
primordial plasma, and hence the photons, or even the evaporation of primordial
black holes in the relevant mass range. Even the damping of small scale density
variations in the primordial plasma due to photon diffusion can lead to deviations
from an exact black-body spectrum. For more detail about CMB spectral distortions
and what might cause them, see Chluba and Sunyaev (2012).

Efficient Compton and double Compton scattering maintains a full thermal
equilibrium spectrum above a redshift (Hu 2008)

zth D 2 � 106
�
�bh2

0:02

��2=5
; (26)

where �bh2 determines the density of baryons and hence (in an electrically neutral
universe) electrons.

Below this redshift Compton scattering can still redistribute energy and momen-
tum between photons and electrons, but double Compton scattering becomes
inefficient. In the absence of double Compton scattering, interactions cannot create
or remove photons from the plasma. Compton scattering still maintains a statistical
equilibrium above redshift (Hu 2008)

z	 D 5 � 104
�
�b0

0:02

��1=2
: (27)
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Thus if additional energy is dumped into the primordial plasma below redshift zth
the CMB photons acquire a statistical equilibrium distribution

f . p/ D 1

expŒ. p � 	/=T� � 1 (28)

with non-zero chemical potential 	. This is known as a 	-distortion in the CMB
spectrum. Limits from the COBE satellite give an upper limit on the size of such a
distortion (Fixsen et al. 1996):

j	j
T
< 9 � 10�5 at 95% CL : (29)

Below the redshift z	 Compton scattering off relativistic electrons becomes
inefficient. High-energy electrons along the line of sight can still transfer energy to
low-frequency photons via inverse Compton scattering, without reaching statistical
equilibrium. This leads to a characteristic “y-distortion” where low energy photons
are boosted to higher frequencies, leading to a deficit in the CMB intensity at low
frequencies in the Rayleigh-Jeans region, equivalent to a temperature deficit

�T

T

ˇ̌̌
ˇ
p�T

D �2y (30)

and an enhancement at high frequencies. The Compton y-parameter is defined as
the line-of-sight integral of the electron pressure

y D
Z

Te
me

neTdl ; (31)

where ne is the density of free electrons and T is the Thomson scattering
cross-section, see Eq. (33) below. Constraints from COBE/FIRAS give the upper
limit (Fixsen et al. 1996)

jyj < 1:5 � 10�5 at 95% CL : (32)

These constraints still rely on COBE observations, more than 20 years ago.
An important source of y-distortions seen in specific directions in the CMB is

the Sunyaev-Zeldovich effect (Sunyaev and Zeldovich 1970), from hot cluster gas
along the line of sight after recombination. The Planck satellite has now compiled
a catalogue of 439 clusters detected in the Planck data via their SZ signal (Ade
et al. 2015) with many more being detected by ground-based experiments such as
the Atacama Cosmology Telescope (Hasselfield et al. 2013) and the South Pole
Telescope (Bleem et al. 2015).
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2.4 Tight-Coupling and Sudden Recombination

At low energies (much smaller than the electron rest mass) electrons and photons
interact via Thomson scattering, whose cross-section is3

T D 8�˛2

3m2e
D 6:65 � 10�29 m2 : (33)

The corresponding mean-free-path for photons associated with Thomson scattering
is given by


mfp D 1

neT
: (34)

Around z � 1100 the mean-free-path is approximately 2:5 kpc, corresponding to
a comoving scale of order 2:5Mpc at present (Hu 2008). On scales much larger
than the mean-free-path, 
 � 
mfp, the photons are tightly coupled to the electrons,
while electrons are tightly coupled to protons through the Coulomb interaction. In
this regime, photons, electrons and protons can be treated as a single fluid with
common 3-velocity, and isotropic pressure.

The mean-free-path is time-dependent because the free-electron density, ne, is
time-dependent. As the Universe cools down the capture of electrons by protons
becomes efficient. As the wavelengths of photons are redshifted by the cosmic
expansion, fewer photons have sufficient energy (the ionisation energy, 13:6 eV)
required to break the binding energy of an electron in a neutral hydrogen atom.
Therefore, the density of free electrons, ne, rapidly drops around z � 1100, leading
to a rapid increase in the Thomson mean-free-path beyond the Hubble radius.

This process is called decoupling, because photons no longer interact with
electrons. It is also called recombination because this is the epoch when protons and
electrons recombine to form hydrogen atoms. Recombination and decoupling are
practically simultaneous because the rapid drop in the density of free electrons due
to recombination affects the Thomson scattering rate. By solving the corresponding
Boltzmann equation we see that recombination and decoupling occur at redshift (Hu
2008)

1C z� D 1089

�
�mh2

0:14

�0:0105 �
�bh2

0:024

��0:028
: (35)

3The full cross-section describing the process e� C � ! e� C � is given by the Klein-
Nishina formula (Klein and Nishina 1929), which displays not only the dependence on the photon
energy but also on its polarization and the scattering angle. Since the energies involved in the
recombination process are much smaller than the electron mass, we can safely use Thomson cross-
section.
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Note that this is some time after (but not long after) matter-radiation equality,

1C zeq D 3:4 � 103
�
�mh2

0:14

�
: (36)

Another way to define when recombination/decoupling takes place is via the
Thomson optical depth

� D
Z �0

�

neTdt ; (37)

which represents the integrated scattering rate from a conformal time � until today
�0, i.e., the average number of scattering events between these two times. The spatial
hyper-surface of constant � D ��, where �� is the conformal time corresponding
to � D 1, is called the last-scattering surface. Of course, recombination is not
an instantaneous phenomenon, but it occurs sufficiently rapidly that a useful
approximation on comoving scales greater than about 2:5Mpc is the so-called
sudden recombination, as if it really happened at a single instant, ��.

3 CMB Anisotropies

Anisotropies observed in the CMB radiation are caused by inhomogeneities in the
cosmological spacetime and matter distribution. Fortunately, these inhomogeneities
are small (about one part in 104) with respect to the background homogenous energy
density, thereby allowing us to use perturbation theory to model their behaviour. In
the following we shall consider a linearly perturbed distribution.

We do not measure the plasma density directly, but rather anisotropies, in the
CMB photon distribution function, f ! Nf C ıf . At first order these can be described
by a perturbation in the temperature of the Bose-Einstein distribution (13), where

T.�; x; Op/ D NT.�/ Œ1C‚.�; x; Op/� ; (38)

where Op denotes the direction of the photon propagation. The temperature fluctua-
tion in the plasma is related to the photon density contrast via Eq. (15) as

‚ � ıT

T
D 1

4

ı��

��
� 1

4
ı� : (39)
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3.1 Spherical Harmonics

Since we observe CMB on the celestial sphere, it is useful to expand‚ in spherical
harmonics

‚.�; x; Op/ D
1X
`D0

X̀
mD�`

a`m.�; x/Y`m. Op/ : (40)

Since the spherical harmonics form a complete orthonormal basis on the sphere,

Z
d�nY`m. On/Y �̀

0m0

. On/ D ı``0ımm0 : (41)

The coefficients alm describe the temperature fluctuations at a given angular
multipole `. An isotropic distribution has an angular power spectrum Cl:

ha�̀
ma`0m0i D ı``0ımm0C` : (42)

In this case the correlation between the temperatures in two directions on the CMB
sky depends only on the angular distance between the two directions and not on the
orientation of the arc which joins them.

For a fixed `, one has 2`C1 different a`m’s, i.e., 2`C1 independent estimates of
the true C`. The “observed”Cobs

` corresponds to our best estimate of the true angular
power spectrum:

Cobs
` � 1

2`C 1

X
m

.aobs
`m /

�aobs
`m ; (43)

i.e., it is an average over the observed multipole moments, m, at fixed `. We define
the cosmic variance as the expected error in our determination of the true power
spectrum

�
�C`
C`

�2
cosmic variance

�
* 

C` � Cobs
`

C`

!2+
: (44)

Calculating the expectation in the above equation, with the help of Eq. (42), one
obtains

�
�C`
C`

�
cosmic variance

D
r

2

2`C 1
: (45)
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Thus at small multipoles, `, corresponding to very large angular scales, the cosmic
variance is significant and represents the minimal uncertainty in estimating the true
angular power spectrum given that we have only one realisation of the CMB sky.

3.2 Last-Scattering Sphere

Since most photons are last scattered at ��, we will be mostly interested in their
distribution,‚.�; x; Op/ in Eq. (38), at evaluated at recombination, i.e., at initial time
� D �� and comoving displacement with respect to an observer at the origin, x� D
�D� Op, where the comoving distance to last-scattering D� D �0 � �� ' �0. Then
we propagate this photon distribution until today using the free-streaming equations,
i.e., the collision-less Boltzmann equation for photons.

Adopting the sudden-recombination approximation, we assume that the photons
are tightly coupled with an isotropic distribution up until last scattering,

‚�. Op/ D ‚.��; x�/ : (46)

The CMB temperature varies across our sky due to the variation in the photon
temperature across the last-scattering surface.

We can decompose this 3D CMB temperature field into Fourier modes

‚.�; x/ D 1

.2�/3

Z
d3k‚.�;k/ eik�x : (47)

Linear modes with different comoving wavevectors, k, then evolve independently at
first order. We assume that these perturbations are stochastic quantities drawn from
some distribution, which usually is assumed to be Gaussian.

The expectation value of each mode is zero and its variance is the power spectrum

h‚�.�;k1/‚.�;k2/i D .2�/3ı3.k1 C k2/P‚.k1; �/ : (48)

Note that P‚ is function of the modulus of k1 only, i.e., we assume statistical
isotropy. The correlation function in real space is given by the Fourier transform
of the power spectrum

�‚.r/ � h‚.�; x/‚.�; x C r/i D 1

.2�/3

Z
d3keik�rP‚.k/ : (49)

Angular brackets denote the ensemble average. That is, one imagines different
possible realizations of our universe. In theories such as inflation, where primordial
fluctuations are quantum in their origin and then become effectively classical
through an exponential phase of expansion, it is possible to predict the primordial
form of the power spectrum. After that, it is evolved up until today using the classical
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equations of cosmological perturbation theory. Thanks to the ergodic theorem, we
can swap the ensemble average into a position average, see Appendix D of Weinberg
(2008).

Since P‚ depends only on the modulus k, we can perform the angular integration
in (49) and find

�‚.r/ D 1

2�2

Z 1

0

dk

k
k3P‚.k/

sin kr

kr
: (50)

From the above result, we can identify the dimensionless power spectrum

P‚.k/ � k3P‚.k/

2�2
: (51)

We can decompose the temperature field on the last-scattering surface into
spherical harmonics using the plane-wave expansion

eik�r D 4�

1X
lD0

lX
mD�l

i`j`.kr/Y
�̀
m.

Ok/Y`m.Or/ : (52)

where the spherical Bessel function j`.x/ is defined in terms of the regular Bessel
function J`C1=2.x/ as j`.x/ D .�=2x/1=2J`C1=2.x/. Substituting this expansion
into (47) and comparing with (40) evaluated at x� D �D� Op we obtain the spherical
harmonic coefficients

a`m D i`

2�2

Z
d3k‚.��;k/ jl.kD�/ Y �̀

m.
Ok/ ; (53)

and hence the angular power spectrum (42), by using Eqs. (41) and (48), becomes:

C` D 4�

Z 1

0

dk

k
P‚.k/j2`.kD�/ : (54)

The window function

W`.k/ � 4�j`.kD�/2 ; (55)

peaks about k D `=D�, so one obtains approximately that

`.`C 1/

2�
C` � P‚.`=�0/ ; (56)

by using D� � �0 and the result

Z 1

0

dk

k
j2`.k�0/ D 1

2l.l C 1/
: (57)



16 D. Wands et al.

This is the origin of the ubiquitous prefactor l.l C 1/ in CMB spectrum plots. In
order to obtain the full result one should include contributions from the metric
perturbations and the dipole at recombination and the ISW effect, which we present
in the following section.

4 Sachs-Wolfe Formula

In the previous section we discussed the basic quantities which describe the CMB
temperature anisotropies at last-scattering, and in particular the angular power
spectrum, C`. In this section we link these to the observed temperature fluctuations
including the effect of inhomogeneities in the metric and the density distribution of
the matter content in the universe. We will derive the Sachs-Wolfe formula. In order
to do this, we present the essential elements of relativistic cosmological perturbation
theory, focusing on first-order fluctuations. The pioneering work in this field is due
to Lifshitz (1946) but we also refer the reader to more recent reviews, such as Malik
and Wands (2009).

4.1 Metric Perturbations

The starting point for discussing cosmological perturbations is the perturbed FRLW
metric (Malik and Wands 2009)

ds2 D a2
˚�.1C 2A/d�2 C 2riBdx

id�C �
.1C 2C/ıij C 2rirjE

�
dxidxj

�
;

(58)

where A, B, C, and E are scalar functions of the coordinates. In the above metric,
we are considering only scalar perturbations, neglecting for now vector and tensor
(gravitational wave) perturbations. Because of the tensorial nature of the metric, the
above scalar functions change when changing the reference frame. It could happen
that a reference frame exists in which A D B D C D D D 0. In this case
then there are no metric perturbations, since we recover the original unperturbed
FLRW metric. So, the fact of having four scalar functions of the coordinates in
the above metric does not guarantee that we are actually dealing with cosmological
perturbations, because the latter may be coordinate artifacts. This is the well-known
gauge problem.

In order to know if we are really dealing with cosmological perturbations, a
useful tool is to construct combinations of the above scalars which remain invariant
under first order coordinate changes. There are three combinations independent of
the spatial threading: A, C and  � E0 � B, where the prime denotes differentiation
with respect to the conformal time �. There are then two combinations independent
of time slicing, for example, the Bardeen potentials (Bardeen 1980; Mukhanov et al.
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1992; Malik and Wands 2009)

‰ � A � H �  0 ; ˆ � C � H : (59)

In the above definition H � a0=a, is the conformal Hubble parameter, i.e. defined
with respect to the conformal time.

A particularly useful gauge is the conformal Newtonian gauge, where the metric
becomes diagonal since the choice is B D E D 0. The Bardeen potentials (59) can
be identified with the metric perturbations A and C in this conformal Newtonian
gauge (where  D 0). The perturbed metric thus takes the form (Hu 2008)

ds2 D a2
˚�.1C 2‰/d�2 C .1C 2ˆ/ıijdx

idxj
�
: (60)

It can be shown by writing down explicitly the Einstein equations that their spatial
traceless part depends onˆC‰. For example, the quadruple moment of the matter
distribution acts as source of the spatial traceless part of the Einstein equation. In the
tight coupling limit, there is no anisotropic stress because the high interaction rate
of photons due to Thomson scattering establishes an isotropic distribution, which
implies that ˆC‰ D 0.

One can construct other gauge-invariant variables, e.g., involving matter quanti-
ties, such as the density contrast and velocity potential in the conformal Newtonian
gauge

ı � ı� � �0
�

; V � v C E0 ; (61)

or the curvature perturbation

� � C � H
�0 ı� ; (62)

which can be identified with the metric perturbations C in the uniform-density
gauge. This is a particularly useful variable on large scales since � is conserved
for adiabatic perturbations on super-Hubble scales (k � aH) (Wands et al. 2000).
For example, simple slow-roll inflation models typically produce an approximately
scale-invariant dimensionless power spectrum, P�.k/, on large scales at the start of
the radiation dominated era. Thus we will typically set initial conditions in terms of
� and/or isocurvature perturbations.

Note that these different perturbation variables are not necessarily independent.
For example we can express � in terms of the conformal Newtonian gauge
quantities:

� D ˆ� H�
�0 ı : (63)
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4.2 Perturbed Geodesics

What is the form of a perturbed geodesics in the conformal Newtonian gauge (60)?
By setting ds2 D 0 for a null trajectory, we find the coordinate velocity of a photon

dxi

d�
D .1C‰ �ˆ/Opi ; (64)

where Opi is a unit vector, ıij Opi Opj D 1. Defining the 4-momentum as P	 D
dx	=d
 and the modulus of the 3-momentum p2 D gijPiPj, the perturbed geodesic
equation (16) can be written as follows:

1

p

dp

d�
D �

�
1

a

da

d�
C @ˆ

@�

�
� Opi @‰

@xi
: (65)

The term in parenthesis is the usual Hubble redshift corrected by the metric
perturbation, which makes the expansion not homogeneous and isotropic, as it was
in the background. The last term represents the gravitational blueshift or redshift
experienced by a photon falling into or climbing out of a potential well. Introducing
the total time derivative along the photon path, i.e.

d‰

d�
D @‰

@�
C Opi @‰

@xi
; (66)

the geodesic equation (65) becomes

1

p

dp

d�
D �1

a

da

d�
� d‰

d�
C @

@�
.‰ �ˆ/ : (67)

This can be formally integrated along the photon trajectory from recombination, ��,
until today, �0,

ln

�
p0
p�

�
D � ln

�
a0
a�

�
�‰0 C‰� C

Z �0

�
�

.‰0 �ˆ0/d� : (68)

Splitting the momentum in a background part plus perturbation, i.e. p ! p C ıp,
one obtains

�
ıp

p

�
0

D
�
ıp

p

�
�

C‰� �‰0 C
Z �0

�
�

.‰0 �ˆ0/d� : (69)

This relative perturbation in the photon momentum causes a relative temperature
fluctuation in the CMB, ‚ D ıp=p. So, one sees that at recombination photons get
a redshift escaping from over-densities on the last-scattering surface with a negative
gravitational potential ‰�. This is part of the Sachs-Wolfe effect (Sachs and Wolfe
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1967). The integral term in (69), named the integrated Sachs-Wolfe effect, accounts
for the time-dependence of the potentials along the line of sight from recombination
until today.

The observed temperature fluctuation includes a Doppler shift due to the relative
peculiar velocity (in addition to the expansion) between the last-scattering surface
and the observer

‚ D ıp

p
C On � V : (70)

The full Sachs-Wolfe formula is thus

‚obs D 1

4
ı�� C‰� � On � V� C

Z �0

�
�

.‰0 �ˆ0/d��‰0 C On � Vobs ; (71)

where we have identified the relative momentum perturbation for photons on the
last scattering surface with the radiation density contrast ı� D 4ıp=p. The first three
terms represent the intrinsic Sachs-Wolfe effect (on the last-scattering surface) and
the fourth the integrated one we already mentioned.‰0 is the gravitational potential
at the observer today and gives an undetectable correction to the monopole (that is,
the solid-angle-averaged temperature). The last term is a dipole anisotropy induced
by the observer’s velocity.

4.3 Adiabatic and Isocurvature Perturbations

In order to evaluate the relative contribution of different terms in the Sachs-Wolfe
formula (71) we need to determine the evolution of linear perturbations, in particular
at the time of last scattering.

The behaviour of the scalar perturbations previously introduced is given by the
Einstein evolution equations (coming from the spatial part of the Einstein equations
written in an arbitrary gauge):

C00 C 2HC0 � HA0 � .2H0 C H2/A D �4�Ga2
�
ıP C 2

3
r2…

�
; (72)

 0 C 2H � C � A D 8�Ga2… ; (73)

subject to the Einstein energy-momentum constraints (the time-time and time-space
components of the Einstein equations):

3H.�C C HA/C r2.C � H/ D �4�Ga2ı� ; (74)

�C0 C HA D �4�Ga2.� C P/.v C B/ : (75)
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Finally, not independent from the above equations, we also have the energy and
momentum conservation (continuity and Euler) equations:

ı�0 C 3H.ı�C ıP/C 3.�C P/C0 C .�C P/r2.v C E0/ D 0 ; (76)

.v C B/0 C .1 � 3c2s /H.v C B/C � C 1

�C P

�
ıP C 2

3
r2…

�
D 0 : (77)

Note that the fluid quantities above introduced (ı�, ıP, etc.) refer to the total matter
content, but if the components do not interact among themselves, these equations
can also be considered individually for each one of the components that make up
the balance of the cosmic energy budget.

Exploiting the gauge freedom, we may consider the continuity equation written
in the uniform density gauge, i.e. for ı� D 0 where � D C in Eq. (62):

3HıPnad C 3.�C P/� 0 C .�C P/r2V D 0 ; (78)

where we identify the pressure perturbation with the non-adiabatic pressure in this
uniform-density gauge, ıPand � ıP � . p0=�0/ı�, and the conformal Newtonian
velocity V was defined in Eq. (61). Rearranging (78) we have

� 0 D �H ıPnad

�C P
� 1

3
r2V : (79)

For fluids with a barotropic equation of state, P D P.�/, we automatically have zero
non-adiabatic pressure, ıPnad D 0. Thus, on large scales, where the contribution
from the divergence of the conformal Newtonian velocity, r2V , can be neglected,
we have � being conserved.

The same argument can be applied to any non-interacting barotropic fluids
(Lyth and Wands 2003). Thus, generalising the definition of the curvature pertur-
bation (62), we get conserved perturbations on large scales for radiation and matter,
�� and �m. These can be written in terms of conformal Newtonian gauge quantities
as

�� D ı�

4
Cˆ ; (80)

�m D ım

3
Cˆ : (81)

Initial conditions are set up at sufficiently early times and on very large scales.
Considering only radiation and matter, we have the total curvature and entropy
perturbations

� D 4���� C 4�m�m

4�� C 3�m
; Sm D 3.�m � �� / : (82)
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Adiabatic initial conditions are defined as:

� D �m D �� D constant ; Sm D 0 : (83)

And the isocurvature initial conditions are defined as

�� D 0 ; Sm D 3�m D constant : (84)

A full treatment of the initial conditions requires neutrinos and baryons to be dealt
with separately, giving rise to two more isocurvature density modes (Bucher et al.
2000).

The above constants are in general dependent on the scale. This dependence
is set during an inflationary era and is thought to come from primordial quantum
fluctuations. A slow time-dependence of the evolution during inflation leads to a
weak scale-dependence of the dimensionless power spectrum.

n � 1 � d lnP�
d ln k

� 0 ; (85)

The intrinsic Sachs-Wolfe effect (71) on large scales (neglecting the velocity V�)
can then be written as

ıT

T
D 1

4
ı�� C‰� D �� C 2‰� : (86)

Let’s now see how the evolution of the gravitational potential looks like, since we
have seen its role in determining the Sachs-Wolfe effect. Consider a barotropic fluid
with equation of state p D w� and constant w. Neglecting anisotropic stresses, so
that ˆ D �‰, the evolution equation is computed from the spatial trace of the
Einstein equation (72) and reads:

‰00 C 3.1C w/H‰0 C wr2‰ D 0 : (87)

On large scales or during matter domination (w D 0), where one can neglect the
spatial gradient, we obtain a constant solution

‰0 D �3.1C w/

5C 3w
� ; (88)

where we related this constant to � which we have already shown to be conserved
on large scales and for adiabatic perturbations. This sets the initial conditions for
the scales which subsequently enter the horizon.

The evolution of the gravitational potential behaves in a two very different ways
from the radiation dominated phase compared to the matter dominated era. In
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radiation, w D 1=3, for a comoving wavenumber k, we find

‰k.�/ D ��

"
6

.k�/2
cos

�
k�p
3

�
� 6

p
3

.k�/3
sin

�
k�p
3

�#
: (89)

For super horizon scales (k� � 1) the above solution tends to a constant: ‰k !
�2��=3. But for sub horizon scales (k� ! 1) the potential oscillates and decays,
‰k ! 0. Thus the growth of matter inhomogeneities will also be suppressed in this
regime.

In the matter dominated era (w D 0) the gravitational potential is constant at all
scales

‰k.�/ D �3�m=5 : (90)

With this result, the intrinsic Sachs-Wolfe effect on large scales can be written as

ıT

T
D �� C 2‰� D �� � 6

5
�m ; (91)

where we used the matter-dominated solution for the gravitational potential because,
as previously noted, recombination takes place in this regime, z� < zeq. For adiabatic
perturbations (Sm D 0 and �m D �� ) the contribution is:

ıT

T

ˇ̌
ˇ̌
ad

D �1
5
�� D 1

3
‰� ; (92)

whereas for isocurvature perturbations (�� D 0, Sm D 3�m):

ıT

T

ˇ̌
ˇ̌
iso

D �2
5
Sm D 2‰� : (93)

With these two formulas, the large-scale approximation (56) can be written as
follows:

l.l C 1/

2�
Cl � 1

25
P�.l=�0/C 4

25
PS.l=�0/C 4

25
C�S.l=�0/ ; (94)

i.e. a contribution coming from the adiabatic perturbations, P� , another from the
isocurvature perturbations,PS, and their cross-correlation, C�S (recall that the power
spectrum is a quadratic function of the perturbation variables).
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5 Acoustic Oscillations

One of the striking features of CMB power spectrum is the presence of acoustic
oscillations, which originate from sound waves in the baryon-photon fluid at
the time of last scattering. We present here the physics which lies behind this
phenomenon, following the approach of Hu (2008).

The coupled first-order energy and momentum conservation equations for radi-
ation perturbations in conformal Newtonian gauge (neglecting for the moment the
effect of baryons) are

1

4
ı0
� D �1

3
r � V� �ˆ0 ; (95)

V0
� D �1

4
rı� � r‰ : (96)

Eliminating V� yields an oscillator equation:

�
1

4
ı� C‰

�00
� 1

3
r2

�
1

4
ı� C‰

�
D .‰ �ˆ/00 : (97)

5.1 Matter Era

It is easy to solve this equation in the matter era, since ‰ D �ˆ D constant,
therefore the right-hand-side vanishes and we get

�
1

4
ı� C‰

�
D
�
1

4
ı� C‰

�
0

cos.ks/ ; (98)

for k � keq, where keq is the comoving wave-number of a scale which crosses
the Hubble horizon at matter-radiation equivalence, i.e. keq D Heqaeq. The sound
horizon for the relativistic fluid is given by

s D
Z �

0

csd�
0 D 1p

3
� : (99)

We shall see later that the presence of baryons affects the sound horizon since it
modifies the speed of sound.

At recombination, for adiabatic perturbations, the above solution can be written
as

�
1

4
ı� C‰

�
�

D �1
5
�� cos.ks�/ : (100)
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Fig. 1 Evolution of the effective temperature, Eq. (98), and its absolute value (corresponding to
the power peaks, solid lines) (Hu 2008; Hu and Dodelson 2002)

We see in Fig. 1 the characteristic oscillating behaviour of the CMB temperature
fluctuations, known as acoustic oscillations. Note that the power spectrum corre-
sponds to the square of the amplitude so that peaks in the power spectrum occur at
maxima or minima of the amplitude.

The first peak takes place when the argument of the cosine is equal to � , i.e. the
comoving acoustic scale, 
A, is defined as

kAs� D � ) 
A D 2��p
3
: (101)

Dividing by the comoving distance to recombination, we find the angular scale

�A D 
A

�0 � ��
; (102)

which in the matter-dominated universe can be approximated as

�A � ��
�0

� z�1=2
� � 2ı : (103)

This is the angular scale of the particle horizon at recombination. It spans only 2ı
in the sky, and yet we see a high degree of isotropy in the CMB sky on all angular
scales. No causal process could lead to isotropy on scales separated by more than 2ı
in the classical hot big bang because of the lack of causal connection on any large
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scales. This is the well-known horizon problem in the big bang model which is most
clearly seen in the CMB, and to which inflation offers a solution.

5.2 Radiation Driving

In the radiation dominated era, the gravitational potentials cannot be assumed to be
constant and they rapidly oscillate and decay as each scale enters the horizon, i.e.
ˆ D �‰ ! 0 as k� ! 1. Thus we can neglect the source term in the oscillator
equation (97) for k� � 1 to obtain

�
1

4
ı� C‰

�
� 1

4
ı� / cos.ks/ : (104)

Extrapolating forward to the matter era, we obtain the same oscillations for the
radiation density as before, Eq. (100), but with larger amplitude the potentials are
negligible. For scales that enter the horizon well before matter-radiation equality,
k � keq, we find

�
1

4
ı� C‰

�
�

� ��� cos.ks�/ : (105)

Comparing with Eq. (100), we find that the amplitude of oscillations for k > keq can
be five times larger for low matter density, as this delays matter-domination, which
causes the gravitational potential to decay on sub-horizon scales during the radiation
era, see Fig. 2.

5.3 Baryon Loading

What happens if we include the effect of baryons which are strongly coupled to the
electrons, and hence photons, before recombination? Intuitively, since baryons are
massive particles, they would slow down the oscillations.

We define the coupled baryon-photon velocity, Vb� , using

.�� C P� /V� C .�b C Pb/Vb D .1C R/.�� C P� /Vb� ; (106)

where the baryon-to-photon ratio is given by

R � �b C Pb

�� C P�
D 3

4

�b

��
: (107)

In the tight-coupling limit, Vb� D V� D Vb.
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Fig. 2 Evolution, starting in the radiation era, of the gravitational potential, ‰ (red), the effective
temperature, .1=4/ı� C‰ (blue), and the anisotropic pressure due to photon diffusion, �� (green)
(Hu 2008)

Using the coupled energy and momentum conservation equations we can write

1

4
ı0
� D �1

3
r � Vb� �ˆ0 ; (108)

�
.1C R/Vb�

�0 D �1
4

rı� � .1C R/r‰ : (109)

Neglecting the time-variation of ‰ and R (i.e., ‰0 � R0 � 0, which is a reasonable
approximation) one gets the following oscillator equation:

�
1

4
ı� C .1C R/‰

�00
� 1

3.1C R/
r2

�
1

4
ı� C .1C R/‰

�
� 0 : (110)

Comparing with the earlier oscillator equation neglecting baryons, (97), we see that
the adiabatic speed of sound (the term multiplying the Laplacian is the square of the
sound speed), and now is reduced by the presence of baryons by a factor .1 C R/.
The solution for the above equation is:

�
1

4
ı� C .1C R/‰

�
D
�
1

4
ı� C .1C R/‰

�
0

cos.ks/ ; (111)
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where now the sound horizon is

s �
Z

csd� D
Z

d�

3.1C R/
: (112)

So the matter-era solution for k � keq, (100), corrected by the presence of baryons
is now:

�
1

4
ı� C‰

�
�

� Œ3R � .1C 3R/ cos.ks�/�
1

5
�� : (113)

The oscillations are now asymmetric: compression and rarefaction are no longer
symmetric because baryons tend to collapse under their own gravity, more than they
become more rarefied.

In Fig. 3 we present how the baryon loading modifies the shape of the CMB
temperature power spectrum. We vary the baryon density �bh2 but keep all the
other parameters fixed. Because of Friedmann constraint (5)

1 D �b C�c C�ƒ C�k ; (114)

we must therefore let h vary while keeping�b fixed. Increasing the baryonic density
increases the height of the first peak and lowers the second peak. This is due to the

Fig. 3 CMB temperature power spectra, for different values of�bh2, showing the effect of baryon
loading. We used the CAMB code (Lewis et al. 2000) for the fiducial ƒCDM model given with
the following parameters fixed �bh2 D 0:022, �ch2 D 0:12, �ƒ D 0:7, � D 0:1 and �k D 0
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fact that, the first peak is a maximum of compression, it is enhanced by a heavier
baryon load, while the second peak is a rarefaction peak.

In Fig. 4 we present how the dark matter content modifies the shape of the CMB
power spectrum. We use the same strategy as in Fig. 3, but now we let�ch2 vary. As
one can see, increasing this quantity causes the whole peak structure to decrease in
amplitude. Since �bh2 is fixed, the matter-radiation equivalence epoch takes place
at earlier times when increasing �ch2. This implies weaker radiation driving and a
smaller amplitude of oscillations.

There is also another very important feature characterising CMB anisotropies on
small scales. On scales comparable to the photon diffusion scale the tight-coupling
approximation breaks down. The diffusion comoving scale has the following
expression in terms of cosmological parameters (Hu 2008)


D � 64:5 Mpc

�
�mh2

0:14

��0:278 �
�bh2

0:024

��0:18
: (115)

Photon diffusion translates into a damping of the oscillations, see Fig. 2, and a decay
in the correlation, i.e., the angular power spectrum, Cl. This is easily understood. On
very small scales, below 
D, cold and hot photons mix thereby averaging to zero the
correlation.

Thus far we have assumed that all photons last scattered at the time of recom-
bination, but this is an approximation. The absence of a Gunn-Petersen trough (no

Fig. 4 CMB temperature power spectra, for different values of �ch2, showing the effect of
radiation driving
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Fig. 5 Effects of reionisation on the temperature (solid lines), EE (dotted lines) and BB (dashed
lines) power spectra

absorption by neutral hydrogen in quasar spectra) suggests that neutral gas has been
reionised by a redshift z > 6. Reionisation leads to an optically thin “smog” between
us and recombination with an optical depth � � 0:1, i.e., 10 % of the photons are
scattered again. This reionisation suppresses small-scale anisotropies by rescattering
the photons which also tends to average out the temperature anisotropies. The effect
of varying the reionisation optical depth is shown in Fig. 5.

5.4 Parameter Constraints from Peak Structure

The dependence of the acoustic peak structure on a variety of different physical
parameters enables cosmologists to determine these cosmological parameters with
unprecedented accuracy from detailed measurements of the CMB sky. This is often
referred to as the era of “precision cosmology”.

From Planck, we have a precise constraint on the angular scale of the first
acoustic peak (Ade et al. 2014b):

�� D .1:04148˙ 0:00066/� 10�2 : (116)
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In flat space this angle is given by �� D s�=D�, i.e., the ratio between the sound
horizon at recombination

s� D
Z �

�

0

csd� / �mh
2 ; (117)

and the present horizon distance to recombination

D� D �0 � �� D
Z z

�

0

dz

H.z/
/ h�1 : (118)

Thus in flat space we find

�� D s�
D�

/ �mh
3 D 0:0959˙ 0:0006 : (119)

More generally, in a curved space with curvature radius R, we have �� D s�=DA,
see Fig. 6. The angular diameter distance, DA, can be written for D� � R as

DA D R sin

�
D�
R

�
� D�

�
1C �kH2

0D
2�

6

�
; (120)

Fig. 6 Effects of varying the cosmological constant (solid lines showing �m C �ƒ D 1) and
spatial curvature (dashed lines showing �m C�k D 1)
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from which we obtain the bound (Ade et al. 2014b)

�k D �0:0042C0:043
�0:048 : (121)

As yet there is no evidence for spatial curvature.
We can derive a lot more information from the peak structure. For example, as

discussed earlier, the second peak height relative to the first peak is related to the
baryon loading. As shown in Fig. 3, this suppresses the even (rarefaction peaks)
peaks with respect to the odd numbered peaks (compression peaks). From the
relative height of the second peak, the following constraint on the baryon content is
found (Ade et al. 2014b):

�bh
2 D 0:02207˙ 0:00033 : (122)

The decay of the gravitational potential in the radiation era enhances the third
and higher peaks. The less matter there is, the higher the peaks are enhanced, as
shown in Fig. 4. This enables us to put a constraint on the matter density today (Ade
et al. 2014b):

�mh
2 D 0:1423˙ 0:0029 : (123)

Note that combining the two bounds (119) and (123) yields a bound on the Hubble
constant (3) directly from the CMB (Ade et al. 2014b)

H0 D 67:3˙ 1:2 km s�1 Mpc�1 : (124)

The diffusion length (115) and hence the damping tail is then fixed once �bh2

and�mh2 are specified in the basicƒCDM cosmology. Reionisation also suppresses
anisotropies at all small angles, above l D 20. This is approximately degenerate with
the primordial spectral tilt (85), but this degeneracy can be broken by polarisation
(see next section). Planck data combined with WMAP polarisation data requires a
spectral tilt (Ade et al. 2014b)

n D 0:9603˙ 0:0073 : (125)

6 Polarisation

Thomson scattering is due to the motion of charged particles responding to an
incident electromagnetic wave. The outgoing radiation emitted by an electron
responding to a single incident wave is polarised in the direction of motion of the
electron. However for the CMB photons emitted in a given direction at last scattering
to have a net polarisation requires the electrons on the last scattering surface to see
an anisotropic distribution of incoming photons. We have seen that tight-coupling
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between electrons and photons leads to an approximately isotropic distribution of
photons before recombination, therefore CMB radiation from last-scattering is only
weakly polarised, due to a small quadrupole moment caused by small, but finite
photon diffusion before last scattering. However about 10 % of CMB photons are
re-scattered long after recombination due to reionisation, when the photon field
is anisotropic, and hence reionisation provides a source of polarisation on large
angular scales.

In general we define the polarization tensor in terms of the electric field, E (Hu
2008),

Pij / hEE�i /
�
‚C Q U

�U ‚ � Q

�
; (126)

where Q and U are the two possible states of linear polarization and the angular
brackets here denote the time average. Circular polarization is neglected here.

Since the polarisation state is invariant under a 90ı rotation, it corresponds to a
spin-2 field. Like the temperature anisotropy, we can decompose the polarisation in
any direction into harmonic functions, E and B modes, across the whole sky,

Q. On/˙ iU. On/ D
X
`;m

.E`m ˙ iB`m/˙2Y`m. On/ ; (127)

where ˙2Y`m. On/ are spin-2 spherical harmonics.
Scalar perturbations are longitudinal wave-modes where the inhomogeneities

which give rise to polarised radiation are in the same direction as the wave
propagates. This symmetry ensures that only E-mode polarisation is generated
by scalar perturbations at linear order, corresponding to polarisation parallel or
perpendicular to density gradients. Figure 7 shows the angular power spectrum for
E-modes alongside the temperature power spectrum, and their cross-correlation. It
shows the E-mode polarisation “bump” at large angular scales (` < 20) which can
be used as a sensitive measure of reionisation and optical depth � .

B-mode polarisation can only be generated at first order by transverse waves,
i.e., vector or tensor perturbations. Initial vector perturbations decay at linear order
in an expanding cosmology, and are completely absent in inflation driven by scalar
fields. However tensor perturbations correspond to free perturbations of the metric,
i.e., gravitational waves.

Consider a spatial metric perturbation:

hij.x; �/ D
Z

d3k
.2�/3=2

eik�x �hkeij.k/C Nhk Neij.k/
�
: (128)

Tensor perturbations must be transverse and traceless, i.e.,

kieij D 0 ; ki Neij D 0 ; gijeij D 0 ; gijNeij D 0 : (129)
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Fig. 7 Effects of varying tensor-to-scalar ratio, r. The solid lines (top) correspond to the total
intensity (temperature) angular power spectrum. The dashed lines correspond to the E-mode power
spectrum and the dotted lines correspond to the temperature-E-mode cross-correlation. These are
dominated by scalar modes. The dot-dashed lines show the B-mode angular power spectrum for
different values of the primordial tensor-to-scalar ratio, r

This leaves only two independent degrees of freedom, which are the two polarisation
modes characterising a gravitational wave.

The Einstein equations give the following evolution equation for the gravitational
wave amplitude

Rhk C 3H Phk C k2

a2
hk D 0 ; (130)

i.e., a wave equation for a massless field, including a damping term due to the
expansion of the Universe. Quantum vacuum fluctuations in massless fields during
slow-roll inflation generate an almost scale-invariant spectrum of primordial per-
turbations on super-Hubble scales k < aH. Therefore, we can predict a primordial
power spectrum for gravitational waves from inflation:

PT.k/ D 2
4�k3

.2�/3
hhh�i � 2

32�

M2
Pl

H2

2�

ˇ̌
ˇ̌
kDaH

; (131)

where the average is the vacuum expectation value, classically promoted to a
variance. The power spectrum is thus directly determined by the Hubble parameter,
H, during inflation.
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It is customary to introduce the tensor-to-scalar ratio:

r � PT

P�
: (132)

From Planck constraints on the temperature power spectrum we obtain (Ade et al.
2014b), r < 0:11, and the energy scale at the end of inflation is constrained to be
V < 2 � 1016 GeV. Nonetheless there is considerable interest in searching for B-
mode polarisation in the CMB, either from future satellite experiments or dedicated
ground-based experiments, as a direct signal of primordial gravitational waves. If
an almost scale invariant, Gaussian distribution of primordial gravitational waves
were discovered then these would surely be strong evidence for inflation, and our
first evidence for the quantum nature of gravity.

7 The Next Frontier in CMB Theory

The observed CMB sky is remarkably uniform with temperature variations less
than one part in 104. These lectures have reviewed the analysis of the homo-
geneous “background” CMB sky and anisotropies in the CMB temperature and
polarisation, modelled using first-order perturbation theory. As the precision of
CMB experiments improves the next challenge in CMB theory may be to accurately
model non-linearity in the CMB anisotropies, both at last scattering and along the
subsequent line-of-sight.

Non-linear interactions lead to departures from Gaussianity, evident in the CMB
bispectrum, i.e., a non-zero correlation between different spherical harmonics.
Primordial non-Gaussianity is often described in terms of the dimensionless non-
linearity parameter (Bartolo et al. 2004)

fNL � B�.k1; k2; k3/

P�.k1/P�.k2/C P�.k2/P�.k3/C P�.k1/P�.k3/
; (133)

i.e., the primordial bispectrum, B�.k1; k2; k3/, relative to the square of the power
spectrum. This fNL 	 1 corresponds to a primordial bispectrum B�.k1; k2; k3/ 	
10�18. It is related to the three-point correlation function, which is identically
vanishing in the Gaussian case, along with all the odd-order correlation functions.
In general, fNL defined in this way is a scale- and shape-dependent function of the
three wave numbers, but for local-type non-Gaussianity fNL is a constant parameter
(Wands 2010).

Non-linear interactions also lead to important conceptual differences from the
simple assumptions valid in linear theory. Small but non-zero vector and tensor
perturbations, hence B-mode polarisation, are generated at second-order from first-
order scalar perturbations (Mollerach et al. 2004; Fidler et al. 2014). Also, second-
order anisotropies in the photon distribution can no longer be described simply by
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a black-body spectrum with anisotropic temperature. Second-order effects lead to
anisotropic spectral distortions. For example, the angular power spectrum of the
Compton y-distortion could provide a powerful tracer of reionisation (Pitrou et al.
2010).

Weak lensing along the line of sight is already an important nonlinear effect seen
in current data, and needs to be taken into account in parameter estimates using
Planck data. It is caused by many small-angle deflections by non-linear structures
along the line of sight. This redistributes power in the small-scale angular power
spectrum, smoothing out peaks at high ` in the power spectrum. This anisotropic
lensing of the small scale power in the CMB has been used by the Planck team to
create a map of the lensing potential and hence a measure of the integrated mass
distribution along the line of sight (Ade et al. 2014c).

CMB weak-lensing also provides a non-zero contribution the angular bispectrum.
Gravitational lensing leads to a second order anisotropy which is correlated with the
integrated Sachs-Wolfe effect along the line of sight (Goldberg and Spergel 1999;
Seljak and Zaldarriaga 1999; Lewis et al. 2011). This contributes a significant bias
to estimates of the non-linearity parameter, and fNL � 7 has been seen in the Planck
analysis. After subtracting this effect, Planck measurements remain consistent with
vanishing primordial non-Gaussianity, fNL D 2:7˙ 5:8 (Ade et al. 2014d).

Most current bounds on primordial non-Gaussianity are based upon theoretical
templates based on non-linear modelling of inflationary (or alternative) models,
as non-Gaussian initial conditions for standard, linear Boltzmann codes such as
CAMB (Lewis et al. 2000) or CLASS (Lesgourgues 2011). However the process of
decoupling and the Sachs-Wolfe effect on temperature (and spectrum) anisotropies
is in reality a non-linear process. As bounds on primordial non-Gaussianity become
tighter we also need templates for the intrinsic non-Gaussianity expected from non-
linear physics at recombination. There are now second-order general relativistic
Boltzmann codes which have been developed (Huang and Vernizzi 2013; Pettinari
et al. 2013; Su et al. 2014) building on pioneering early work (Pitrou 2011).
Intrinsic non-Gaussianity at last-scattering provides a small bias, fNL ' 1, which
remains below the observational uncertainty of current experiments. However we
are now in the position to be able to build a template for the intrinsic non-linearity
at recombination which could be a target for future all-sky (hence space-based)
missions, as shown in Fig. 8. This would make novel tests of physical process at
last-scattering, e.g., gravitational wave production from density waves at second
order.

8 Outlook

The standardƒCDM cosmology provides a remarkably successful base model, able
to explain many detailed features of the CMB revealed over the past 50 years by a
series of ground-, balloon- and space-based experiments. In particular the Sachs-
Wolfe plateau at large angular scales, the series of acoustic peaks in the angular
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Fig. 8 Signal-to-noise ratio of the intrinsic bispectrum signal as a function of maximum multipole
for Planck and proposed future satellite missions using temperature only (dashed lines) or
temperature and polarisation (solid lines). Figure reproduced from Pettinari et al. (2014)

power spectrum, and the damping tail at small angular scales can be described by
this model with just six cosmological parameters: the Hubble constant, the baryon
and matter densities, the reionisation optical depth, and the amplitude and tilt of
primordial perturbations. These six parameters are increasingly tightly constrained
in the new era of precision cosmology, and bounds are set to become ever tighter,
especially through new combinations with other data sets, such as high redshift
galaxy surveys and HI (neutral hydrogen) survey data. The framework already
successfully accommodates new observational discoveries such as the effect of weak
lensing now seen in the CMB power spectrum and bispectrum.

Nonetheless there is no reason to believe this is the final theory of cosmology.
Even the simplest, single-field models of inflation in the very early universe make
predictions for additional features in the primordial perturbations, including a
spectrum of tensor (gravitational wave) perturbations and small but finite running of
the scalar spectral index. Many inflation models make further predictions including
primordial isocurvature perturbations and/or non-Gaussianity. Any of these addi-
tional parameters would radically change our views about the likely mechanisms
generating primordial structure. There are many additional cosmological parameters
possible, including additional particle species and/or interactions, but there is no
clear evidence yet requiring any more than the six basic parameters.

The present theoretical framework now being constrained by data was estab-
lished in the 1970s and 80s well before the golden age of CMB experiments was
begun by the COBE satellite results. Work now in progress will set new theo-
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retical challenges for future experiments. Ground-based experiments are currently
targeting CMB polarisation from weak-lensing and the elusive B-mode signature of
primordial gravitational waves. Future space-based experiments are likely to focus
on polarisation, spectral distortions and/or non-Gaussianity. The CMB will remain
a key testing ground for cosmological theory for many years to come.
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The Observational Status of Cosmic Inflation
After Planck

Jérôme Martin

Abstract The observational status of inflation after the Planck 2013 and 2015
results and the BICEP2/Keck Array and Planck joint analysis is discussed. These
pedagogical lecture notes are intended to serve as a technical guide filling the
gap between the theoretical articles on inflation and the experimental works on
astrophysical and cosmological data. After a short discussion of the central tenets
at the basis of inflation (negative self-gravitating pressure) and its experimental
verifications, it reviews how the most recent Cosmic Microwave Background
(CMB) anisotropy measurements constrain cosmic inflation. The fact that vanilla
inflationary models are, so far, preferred by the observations is discussed and
the reason why plateau-like potential versions of inflation are favored within this
subclass of scenarios is explained. Finally, how well the future measurements, in
particular of B-Mode CMB polarization or primordial gravity waves, will help to
improve our knowledge about inflation is also investigated.

1 Introduction

With the release of the Planck data 2013 (Ade et al. 2014a,b, 2013) and 2015 (Planck
2015; Ade et al. 2015a,b), and the recent BICEP2/Keck Array and Planck joint
analysis (BICEP2/Keck et al. 2015), the theory of cosmic inflation (Starobinsky
1979, 1980; Guth 1981; Linde 1982; Mukhanov and Chibisov 1981, 1982; Starobin-
sky 1982) has acquired a new status. Several of its predictions such as spatial
flatness of our Universe, the presence of Doppler peaks in the Cosmic Microwave
Background (CMB) multipole moments, almost scale invariant power spectrum
for density perturbations have been definitively confirmed by the recent CMB
anisotropy measurements. That makes inflation a predictive and verified theory of
the early Universe.

In fact, another remarkable outcome of the Planck data is that they also allow
us to identify which version of inflation is most likely to have been realized in
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Nature (Martin et al. 2014a,b; Martin 2013). As is well-known, inflation comes in
different flavors but these different scenarios make different predictions and, thus,
one can, at least in principle, distinguish among them. The fact that the primordial
fluctuations are adiabatic and Gaussian to a relatively high degree of accuracy (Ade
et al. 2014b, 2013) is an important indication that we probably deal with single-field
slow-roll inflation (with standard kinetic term), the simplest but non-trivial model
of inflation. Of course, the final word has not yet been spoken since many non-
vanilla inflationary scenarios are still compatible with the data. But, presently, they
are just not needed in order to explain CMB measurements even if this situation
could change in the future.

The fact that we now have high accuracy CMB data at our disposal also allows
us to detect the “fine structure” of inflation and to constrain the shape of the inflaton
potential. Here again, the Planck data have provided precious information. We
now know that the potential is of the plateau type and that simple monomials are
disfavored (Ijjas et al. 2013; Martin et al. 2014a,b; Martin 2013). Moreover, we
now start probing the reheating epoch (Martin and Ringeval 2010; Martin et al.
2015). Reheating is the epoch, after inflation and before the radiation dominated era
of the standard hot Big bang phase, where the inflaton field decays and where all
matter we see around us was produced (Turner 1983; Traschen and Brandenberger
1990; Kofman et al. 1997; Amin et al. 2015). It is therefore of major conceptual
importance. And Planck 2013 and 2015 data put non trivial constraints on the
physical processes that took place at that time (Martin and Ringeval 2006, 2010;
Lorenz et al. 2008a; Martin et al. 2015; Munoz and Kamionkowski 2015; Dai et al.
2014; Gong et al. 2015).

The goal of these lectures, given at the second Jose Plinio Baptista school on
Cosmology held in Pedra Azul (Brazil) in March 2014, is to review how the above
conclusions can be established. Many reviews on inflation can be found in the
literature (Martin 2004, 2005, 2008; Sriramkumar 2009) and there are technical
papers reporting the astrophysical and cosmological observations, such as the
Planck papers (Ade et al. 2014a,b, 2013). But, in between, few things can be found
and the present article aims at filling this gap. In some sense, it can be viewed as
a technical guide which, from a reasonable prior knowledge of inflation, permits a
detailed understanding of the implications for inflation of the recent high accuracy
CMB data.

These lecture notes are also written at a special time: the Planck 2013 and
2015 data (Ade et al. 2013, 2014a,b, 2015a,b; Planck 2015) have been released
and their consequences (in fact, mainly the consequences of Planck 2013) already
analyzed in several works. Moreover, very recently, a joint analysis made by the
BICEP2/Keck Array team and the Planck collaboration (BICEP2/Keck et al. 2015)
has been published showing that the BICEP2 detection of B-mode CMB polarization
announced in Ade et al. (2014c) is mainly due to dust and cannot be attributed
to primordial gravity waves produced during inflation. At the time of writing, the
Planck 2015 scientific products (in particular, the likelihood) are expected to be
delivered in June 2015 only. This means that reproducing or extending the Planck
2015 analysis is not yet possible. However, from what is already known, the Planck
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2015 results are in good agreement with Planck 2013. Therefore, the conclusions
discussed in the present article (model comparison, constraints on reheating etc . . . )
will most likely remain valid for the second release of the Planck data. Whenever
available, we quote the values obtained by Planck 2015.

These lectures are also related to the lectures given by C. Byrnes on Non-
Gaussianities (Byrnes 2014) and by D. Wands on CMB physics. Hopefully, these
three reviews should provide the reader with a rather complete overview of modern
primordial Cosmology and its observational implications. In particular, Byrnes
(2014) reviews how Non-Gaussianities are produced in non-vanilla inflationary
models while, here, we restrict ourselves to simple scenarios for which Non-
Gaussianities are very small. The two lectures are therefore complementary. The
lecture notes by D. Wands, O.F. Piattella and L. Casarini explain in details how
CMB anisotropies are generated while, here, we just take it as a known fact (see
also the recent review (Bucher 2015)). Therefore, the present article and the one on
CMB physics are also complementary.

These lecture notes are organized as follows. In the next section, Sect. 2, we
present general considerations on inflation. Rather than discussing inflation in detail,
which can be found in many review articles, we just give the basics and choose to
focus on the fundamental principles at the basis of the inflationary mechanism and
its experimental justifications. In Sect. 3, we discuss how inflation can be realized in
practice. In particular, in Sect. 3.1, we review how inflation can be embedded in high
energy physics. Recently, alternative parameterizations have been considered and
we discuss them in Sect. 3.2. In Sect. 3.3, we also review how the reheating phase
can be described. Then, in Sect. 4, we discuss the theory of inflationary cosmological
perturbations of quantum-mechanical origin. This part of the inflationary scenario
is especially important because this is how one can relate theoretical predictions
to astrophysical observations. In Sect. 4.1, we present the calculation of the two-
point correlation functions, or power spectra, for scalar and tensor perturbations in
the slow-roll approximation. In Sect. 4.2, we review the calculation of the three-
point correlation function, or bispectrum, and in Sect. 4.3, the calculation of the
four-point correlation function, or tri-spectrum. All these considerations are made
in the slow-roll approximation and for single-field models with minimal kinetic
terms. In Sect. 4.4, we discuss the isocurvature perturbations and how they can
be produced in the framework of inflation. In Sect. 5, we use the tools introduced
before and compare the inflation predictions to the high accuracy CMB Planck
data. In Sect. 5.1, we consider the measurements of spatial curvature, in Sect. 5.2
the measurements of isocurvature perturbations and, in Sect. 5.3, those of Non-
Gaussianities. Since these data indicate that single field models are preferred, we
then focus on this class of scenarios. In Sect. 5.4, we give the constraints on the
slow-roll parameters and on the derived power-law parameters, such as the spectral
index, the running or the tensor-to-scalar ratio. We also discuss the implications
of the recent joint analysis made by the BICEP2/Keck Array team and the Planck
collaboration. In Sect. 5.5, we carry out a Bayesian analysis to do model comparison
and determine what are the best models of inflation. In Sect. 5.6, we present the
constraints on reheating that can be inferred from the Planck data. Finally, in
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Sect. 6, we recap our main results and discuss which lesson can be drawn for our
understanding of inflation and primordial cosmology.

2 General Considerations on Inflation

The motivations for introducing a phase of inflation, i.e. a phase of accelerated
expansion, are well-known: postulating Ra > 0 (a is the Friedmann-Lemaître-
Roberston-Walker -FLRW- scale factor) allows us to avoid the puzzles of the
standard hot Big Bang theory (for a detailed discussion of these issues, see Martin
2004; Mukhanov 2005; Peter and Uzan 2009). If gravity is described by General
Relativity (GR), then, in a homogeneous and isotropic Universe, the equations of
motion are given by

H2 C K
a2
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� Pa
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C K
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D 1

3M2
Pl
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i
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3M2
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Pl
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i

pi � 1

M2
Pl
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where �i and pi are respectively the energy density and the pressure of the fluid
“i”. In the standard model of Cosmology, we have indeed a collection of different
fluids, pressure-less matter (made of baryons and cold dark matter), radiation (made
of photons and neutrinos) and dark energy. These different types of matter source
the Einstein equations and control the dynamics of the expansion. Notice that the
expansion rate of the Universe is given by the Hubble parameter which, according
to the above equations, is defined by H � Pa=a where a dot means a derivative
with respect to cosmic time. The quantity MPl is the reduced Planck mass and, in
the following, we will also use the quantity � � 1=M2

Pl D 8�GN, GN being the
Newton constant. Finally, the quantity K, that can always be normalized to 0 or ˙1,
represents the curvature of the spatial sections. Notice that one can also define an
effective curvature energy density by �curv � �3K=.�a2/ such that the Friedmann
equation takes the form H2 D .�=3/

P
i �i C .�=3/�curv. Defining �i � �=�cri and

�K D �curv=�cri, where the critical energy density is �cri D 3H2=�, the Friedmann
equation can be rewritten as

P
i�i C�K D 1.

Let us now discuss under which physical conditions inflation can be obtained.
The above equations can be combined and lead to the following formula which
relates the acceleration of the expansion to the matter content of the Universe

Ra
a

D � 1

6M2
Pl

X
i

.�i C 3pi/ : (3)
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This immediately implies that, in order to have inflation, the pressure must be
negative, i.e. p < ��=3 where � and p are defined in Eqs. (1) and (2). Having
realized that we need a negative pressure, the next question is of course which
kind of matter can possess this property and this will be the subject of the two
next sections. Of course, as is well-known, we will see that scalar fields are ideal
candidates.

But before starting this discussion, it is interesting to notice that inflation is a
genuine relativistic effect since it involves the term 3p in the above Eq. (3), which
is absent in Newtonian physics. Indeed, let us consider a sphere of radius R.t/ and
of uniform density �. A galaxy of mass m, located at the edge of the sphere, feels
a gravitational field G that can be simply evaluated by means of the Gauss’s law,R
G � dS D 4�GNM, where M is the mass of the sphere. This gives G D GNM=R

2.
As a consequence, the acceleration of the galaxy can be written as

m RR D �m
GNM

R2
; (4)

or

RR
R

D �4�GN

3
� D � �

6M2
Pl

; (5)

where we have used M D 4��R3=3. This equation is similar to Eq. (3) except that
the term 3p is not present. The physical reason behind the presence of this term is
deeply rooted in the fundamental principles of GR: in GR, every form of energy
weighs, including pressure.

The term 3p is so important for inflation that it is interesting to ask whether
it plays a role in other physical situations and if its appearance has been tested
experimentally and/or observationally. This is a difficult question since, in ordinary
cases, the contribution of pressure is usually negligible, p � �. In fact, four
situations where a gravitating pressure is important can be identified: inflation, dark
energy but in some sense this is the same as inflation, neutron stars and Big Bang
Nucleosynthesis (BBN). In particular, it is interesting to see what can be said about
the 3p terms in the last two examples.

Let us start with the internal structure of a neutron star (Schwab et al. 2008). As is
well-known, it is controlled by the Tolman-Oppenheimer-Volkoff equations that can
be obtained in the following way. The metric for a static and spherically symmetric
solution can be written as

ds2 D �e2ˆdt2 C e2
dr2 C r2
	
d�2 C sin2 �d'2



; (6)

where t is time, r a radial coordinate and � and ' angular coordinates. The quantities
ˆ and 
 are functions of r only. Matter is assumed to be described by a perfect fluid,
the stress energy tensor of which can be expressed as

T	� D .� C p/ u	u� C pg	�; (7)
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where g	� is the metric tensor and the normalized 4-velocity reads u	 D	�eˆ; 0; 0; 0


. Then, the time-time and r � r component of the Einstein equations

read
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On the other hand, energy conservation, r	T	� D 0, more precisely its radial
component, implies that

dp

dr
D � .�C p/

dˆ

dr
: (10)

The other components lead to the fact that � does not depend on time, � or ', that
is to say � D �.r/. If we now define the gravitational mass m.r/ by

GNm.r/ D r

2

	
1 � e�2

 ; (11)

then Eq. (9) implies that

dm

dr
D 4��.r/r2: (12)

Introducing the expression of the mass (11) in Eq. (8) in order to express dˆ=dr and,
then, inserting the corresponding expression in the conservation Eq. (10) leads to

dp

dr
D �.�C p/

GN

r2.1 � 2mGN=r/

�
m.r/C 3p.r/

�
4

3
�r3

��
: (13)

The important point in this formula is that the term 3p participates to this expression.
This means that self-gravity of pressure affects the internal structure of the neutron
stars. In practice, in order to calculate this internal structure, one has first to choose
an equation of state � D �. p/. Once this is done, one can integrate the two following
equations

d�

dr
D d�

dp

dp

dr
;

dm

dr
D 4��.r/r2; (14)

the last equation being nothing but Eq. (12). This leads to the functions �.r/ and
m.r/. The radius of the star, Rstar, is defined by � .Rstar/ D 0 and its mass is given
by Mstar � m .Rstar/. One can then plot the mass-radius relation Mstar.Rstar/. Of
course, one obtains different mass-radius relations for different equations of state.
Let us also notice that, at fixed equation of state, one obtains a curve, and not a
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Fig. 1 Mass-radius relations of neutron stars for different equations of state (“standard” in the left
panel, more “exotic” in the right panel). Black curves correspond to the standard GR calculation
while red curves represent the case where self-gravity of pressure is absent. Figure taken from
Schwab et al. (2008)

unique prediction, because one needs to specify � .r D 0/ to be able to integrate the
above equations. One thus has a family of points parametrized by � .r D 0/. Several
examples are displayed in Fig. 1 (black lines).

The fact that the structure of a neutron star depends on the general relativistic
3p term opens the possibility to experimentally test it. In order to do so, the idea of
Schwab et al. (2008) is to study an ad-hoc modification of the Tolman-Openheimer-
Volkoff equation such that

dp

dr
D �.� C p/

GN

r2.1� 2mGN=r/

�
m.r/C 3�p.r/

�
4

3
�r3

��
; (15)

where � is a new, phenomenological, parameter introduced by hand. The term 3p
weighs normally when � D 1 and does not weigh at all when � D 0. Notice that
� D 0 is not the Newtonian limit because there are other relativistic terms in Eq. (15)
(for instance 1 � 2mGN=r at the denominator). So the idea is now to re-derive the
mass-radius relation for neutron stars and to see the influence of a parameter � ¤ 1,
the hope being to be able to put constraints on � from astronomical observations.
The results are shown in Fig. 1. The fact that red curves (namely those obtained with
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Fig. 2 Mass radius relations for different equations of state and associated theoretical uncer-
tainties. In black are represented the mass radius relations obtained when � D 1 (standard GR
calculation) while, in red, are represented the mass radius relations obtained without self-gravity
pressure (namely � D 0). The hatched regions show the theoretical uncertainty associated with
the fact that the equation of state is in fact unknown. It is clear from the plot that this completely
dominates the differences between the � D 1 and � D 0 situations. Figure taken from Schwab
et al. (2008)

� D 0) are different from the black ones (those obtained in the standard GR case)
confirms that the 3p term has a significant influence of the mass-radius relation.

However, as shown in Fig. 2, the fact that the equation of state is not known
accurately completely blurs the effect. Indeed, one sees that the corresponding
uncertainty is typically of the same order of the effect we try to detect. Therefore,
the conclusion is that, although it is true that self-gravity is crucial in order to predict
correctly their mass-radius relation, at least for the moment, neutron stars cannot be
used to experimentally test the 3p term.

Let us now turn to the other possibility, namely BBN (Rappaport et al. 2008).
Since BBN takes place during the radiation dominated era for which p D �=3, it
is clear that the 3p term should have an important impact on BBN. In order test
the influence of the 3p term, we follow the same strategy as for neutron stars and
introduce an ad-hoc modification of GR characterized by the � parameter, namely

Ra
a

D � 1

6M2
Pl

.�C 3�p/: (16)
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This equation should be compared to Eq. (3). In order to derive the Friedmann
equation, we need another equation and we can use the first law of thermodynamics
for an adiabatic expansion, namely d.a3�/ D �pd.a3/, written for a co-moving
volume or, equivalently, P� C 3Pa.� C p/=a D 0. Then, noticing that Ra=a D
1=.2Paa/d.Pa2/=dt and using the conservation equation, it is straightforward to derive
the following relation

d
	Pa2
 D � 1

3M2
Pl

�
.1 � 3�/ �ada � �a2d�

�
: (17)

If � D 1, it is easy to check that

d
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Pl
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; (18)

which gives

H2 D �

3M2
Pl

C C

a2
; (19)

where C is an integration constant leading to a curvature term. Now, if � ¤ 1 and
p D w�, where w is a constant equation of state parameter, then one obtains

H2 D 1C 3�w

1C 3w

�

3M2
Pl

C C

a2
: (20)

Using this modified Friedmann equation with w D 1=3 and ignoring the curvature
term (which is sub-dominant in presence of radiation as shown by the cosmological
data), one obtains

H2 D 1C �

2

�rad

3M2
Pl

: (21)

Therefore, the effect of the term proportional to � is to modify the expansion rate of
the Universe in the radiation dominated era. Or, if one uses the fact that the energy
density of radiation is �2g�T4=30, we see that this is also equivalent to changing
the effective number of relativistic degrees of freedom, namely g0� D g�.1C �/=2.

Rappaport et al. (2008) has performed BBN calculations, assuming Eq. (21), and
computed the abundance of deuterium, helium-4 and lithium-7. The isocontours
are represented in Fig. 3 in the plane .�10; �/. The parameter �10 is defined by
�10 � 1010� where � � nB=n� D �Bh

2�2�cri=ŒmBh
22T3�.3/� ' 2:73 � 10�8�Bh

2
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Fig. 3 Light elements abundances calculated when the Friedmann equation is modified according
to Eq. (21). Green contours are for deuterium abundance, blue ones for helium-4 and purple ones
for lithium-7. The two gray ellipses indicate the region in parameter space allowed by observations.
Figure taken from Rappaport et al. (2008)

[in the last expression, mB ' 939:6MeV is the baryon (neutron) mass, �cri '
8:099 � 10�47GeV4 is the critical energy density today, T ' 2:7255K is the
CMB temperature and �.3/ ' 1:20206]. Green contours represent the deuterium
abundance .D=H/P , blue contours are helium-4 abundance YP and purple contours
are lithium-7 abundance. We see that deuterium abundance mainly determines
�10 while helium-4 abundance gives good constraints on the new parameter �.
Observations indicate that log .D=H/

P
D �4:55 ˙ 0:04 (O’Meara et al. 2006) and

YP D 0:24˙ 0:006 (Steigman 2007). Then, one can identify the region in the space
.�10; �/ which is consistent with those observations. This is indicated in Fig. 3 by
the two gray ellipses (corresponding to two slightly different assumptions about the
abundances inferred from the observations). Without entering a detailed discussion,
the conclusion is that � ' 1 is compatible with observations and that the value
� D 0 is strongly ruled out. Therefore, self-gravity of pressure is, in some sense,
confirmed by cosmological observations.

The previous considerations “validate” the mechanism on which inflation is
based. Inflation thus appears as a well-justified theory. In the next section, we
therefore describe this theory in more detail and discuss the micro-physics of
inflation.
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3 The Micro-Physics of Inflation or How to Parametrize
Inflation

3.1 Inflation and High Energy Physics

We have seen in the last section that, in order to have a phase of inflation, we need
a situation where the fluid dominating the matter content of the Universe has a
negative pressure. The next question is of course which type of matter can have
this property. In order to answer this question, let us first remark that inflation is
a high energy phenomenon by particle physics standards since it is supposed to
occur in the early Universe. In this situation, the relevant framework to describe
matter is not fluid mechanics but field theory. And the simplest field, compatible
with isotropy and homogeneity, is a time dependent scalar field �.t/ since it has no
preferred direction and is space-independent. Moreover, in a FLRW Universe, the
energy density and pressure of a scalar field are given by

� D P�2
2

C V.�/; p D P�2
2

� V.�/: (22)

As a consequence, in a situation where the potential energy dominates over the
kinetic energy, namely when the field moves slowly or, equivalently, when the
potential is flat, one obtains a negative pressure and, hence, inflation. The field which
drives inflation is called the “inflaton”.

Let also notice that, when V.�/ � P�2, the equation of state is p ' �� which,
using the conservation equation, immediately implies that the energy density, and
therefore the Hubble parameter H, is almost a constant. The Friedmann equation
then leads to a scale factor a.t/ / eHt. In other words inflation is also a phase of
quasi-exponential expansion. Moreover, using the expressions established above,
one also has

j�Kj �
ˇ̌
ˇ̌�curv

�cri

ˇ̌
ˇ̌ D jKj

a2H2
; (23)

and we see that �K goes exponentially to zero during inflation. We therefore
expect to measure a vanishing spatial curvature: this is a first generic prediction
of inflation and we will see in Sect. 5 that it is good agreement with the most recent
cosmological observations.

As mentioned before, inflation is a high energy phenomenon and, therefore, a
concrete implementation necessarily rests on high energy physics. In the modern
view, the micro-physics of inflation should therefore be described by an effective
field theory characterized by a cutoff ƒ. If the gravitational sector is described by
GR, which itself is viewed as an effective theory with a cutoff at the Planck scale,
then ƒ < MPl. On the other hand, we know that the Hubble parameter during the
part of the inflationary phase we have observationally access to can be as large as
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1015GeV and this suggests ƒ > 1015GeV. Clearly, at those energy scales, particle
physics remains speculative and this is the reason why there is currently a plethora
of different inflationary scenarios. A priori, without any further theoretical guidance,
the effective action can therefore be written as
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In the above equation, the first line represents the effective Lagrangian for gravity
(ƒB is the cosmological constant). In practice, we will mainly work with the
Einstein-Hilbert term only. The second line represents the contribution of matter. We
assumed that several scalar field are present (a priori, there is no reason to assume
that only one field plays a role). The two first terms are the canonical Lagrangian
while Oi represents a higher order operator of dimension ni > 4, the amplitude
of which is determined by the coefficient di. Those corrections can modify the
potential but also the (standard) kinetic term (Chialva and Mazumdar 2014). The
last term encodes the interaction between the inflaton fields and the rest of the
world, i.e. the gauge fields A	 and the fermions ‰. The dots stand for the rest of
the terms such as the Lagrangians of A	, of ‰, the corresponding higher order
operators etc . . . . Notice that the above description is not completely general. For
instance, suppose that the action of the inflation field is of the Dirac-Born-Infeld
(DBI) type (Alishahiha et al. 2004), namely

S D
Z

d4x
p�g

"
M2

Pl

2
R � T.�/

s
1 � 2

X

T.�/
C T.�/ � V.�/

#
; (25)

where X � �1=2g	�@	�@��. An expansion in X gives

S D
Z

d4x
p�g

�
M2

Pl

2
R � X C V C X2

2T.�/
C � � �

�
; (26)

and we see that the higher order terms are not suppressed by a fixed cutoff ƒ but
by T.�/. In this case, in some sense, the cutoff has become field dependent. As
a consequence, the canonical Lagrangian X � V is not necessarily always the first
term of the series and it makes sense to also consider more complicated cases, even
at “leading order”.

Another, but related, question is whether the higher order operators can be
neglected during inflation. Firstly, it is necessary that the field excursion �� be
small in comparison with the cutoff scale, i.e. �� < ƒ. Whether this is the case or
not depends on the model. Second, the tree level potential V can receive corrections
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that can be difficult to control. For instance, if there is a mass term, then typically
the mass m becomes

m2 ! m2 C gM2 ln

�
ƒ

	

�
; (27)

where 	 is a renormalization scale, M the mass of a heavy field and g the coupling
between � and the heavy field. If M > ƒ then one has m > H since we have
ƒ > H. This means that the potential is no longer flat enough to support inflation,
an embarrassing problem indeed! Ways out consist in assuming that the coupling g
is small or, more convincingly, that symmetries forbid this type of corrections.

Finally, let us say a few words about the interaction term. Usually, it is considered
to be negligible during the slow-roll phase. If this is not the case, it leads to warm
inflation (Berera 1995; Yokoyama and Linde 1999; Berera et al. 2009). Even if
it does not play a role during the accelerated phase, the interaction term is of
fundamental importance for inflation since it is responsible for the reheating stage,
that is to say it explains how inflation is smoothly connected to the standard hot Big
Bang epoch.

We see that, using theoretical considerations only, it is difficult to restrict the
Lagrangian of inflation to a simple form. But, in fact, the point is that the CMB
Planck data can do the job and can constrain the Lagrangian (24). For instance, we
will see in the following that the perturbations are adiabatic (at least for the moment;
this could of course very well change when more accurate data are collected) and
this supports the idea that only one scalar field is at play during inflation. Moreover,
we will also show that Non-Gaussianities have been measured to be compatible
with zero and this supports the fact that the kinetic term must be standard. We are
therefore led to consider that inflation is described by the simplest scenario, namely
single-field slow-roll with a standard kinetic term. It is important to emphasize
that we are pushed to this class of models, which is clearly easier to analyze than
Eq. (24), not because we want to simplify the scenario but because this is what the
CMB data suggest. In this framework, the inflationary Lagrangian can be written as

L D �1
2
g	�@	�@�� � V.�/C Lint.�;A	;‰/: (28)

In the following, we will ignore the interaction term during the accelerated phase
and will consider its effect only at the end of inflation (the “reheating” phase). We
see that we are left with a model that contains only one arbitrary function, the poten-
tial V.�/. Therefore, what remains to be done in order to completely characterize
inflation is to constrain this a priori arbitrary function with cosmological data. This
line of research has played a dominant role in the recent years.

Let us now describe the slow-roll formalism which is used in practice to derive
the inflationary predictions of the models mentioned above. As already remarked
previously, one can distinguish two different phases of evolution: the slow-roll phase
and the reheating phase. In principle, once V.�/ and Lint.�;A	;‰/ are known,
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the model is completely specified. In practice, however, one proceeds in a slightly
different way. The function V.�/ is considered to be relevant for a limited range of
field values only, corresponding to our observable window. Then, the evolution of
the system is controlled by the Friedmann and Klein-Gordon equations, namely

H2 D 1

3M2
Pl

" P�2
2

C V.�/

#
; (29)

R� C 3H P� C V� D 0; (30)

where we remind that H � Pa=a denotes the Hubble parameter and where a subscript
� means a derivative with respect to the inflaton field. It is also interesting to
introduce the Hubble flow functions �n defined by Schwarz et al. (2001) and Leach
et al. (2002)

�nC1 � d ln j�nj
dN

; n 
 0; (31)

where �0 � Hini=H starts the hierarchy and N � ln.a=aini/ is the number of e-folds.
These parameters provide useful information about the inflationary dynamics. For
instance, the first slow-roll parameter can be expressed as

�1 D �
PH
H2

D 1 � Ra
aH2

; (32)

and, therefore, inflation (Ra > 0) occurs if �1 < 1. In fact, since the parameters �n are
defined in terms of H and since H is determined once V.�/ is known, see Eqs. (29)
and (30), it follows that one can also express them in terms of the potential. For
instance, �1 is given by

�1 D 3 P�2
2

1

P�2=2C V.�/
: (33)

In fact, it is not sufficient to have �1 < 1 but one also needs �1 � 1. Indeed, from the
above expression, we see that this corresponds to a situation where P�2=2 � V.�/
or, in other words, to a situation where the potential is very flat since the field must
roll very slowly. We just recover the case considered in the previous section. In this
situation, referred to as the slow-roll approximation, one has in fact �n � 1 for any
n. If this is the case, then the Hubble flow functions can be expressed as (Liddle
et al. 1994)

�1 ' M2
Pl

2

�
V�
V

�2
; (34)
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�2 ' 2M2
Pl

"�
V�
V

�2
� V��

V

#
; (35)

�2�3 ' 2M4
Pl

"
V���V�

V2
� 3V��

V

�
V�
V

�2
C 2

�
V�
V

�4#
: (36)

The slow-roll approximation allows us to simplify the equations of motion and
to analytically integrate the inflaton trajectory. Indeed, Eqs. (29) and (30), which
control the evolution of �, can be rewritten as

H2 D V

M2
Pl.3 � �1/ ; (37)

�
1C �2

6 � 2�1

�
d�

dN
D �M2

Pl

d lnV

d�
: (38)

As a consequence, in the slow-roll approximation, one has H2 ' V=.3M2
Pl/ and

d�=dN ' �M2
Pld lnV=d�, from which one obtains

N � Nini D � 1

M2
Pl

Z �

�ini

V.�/

V�.�/
d� ; (39)

�ini being the initial vacuum expectation value of the field. It is clear from the above
considerations that the inflaton dynamics is entirely determined once the potential
V.�/ has been specified. Since, in addition, the function V.�/ allows us to make
the connection with high energy physics, it appears as a natural tool to parameterize
inflation.

3.2 Other Parameterizations?

Recently, other parameterizations of inflation have been considered. The motivation
of these works was to establish a general framework in order to characterize what
the generic or typical predictions of cosmic inflation are. In this section, we discuss
them and show that, in fact, they all boil down to choosing a specific potential.

The first alternative parametrization that we discuss is the so-called “horizon-
flow approach” (Hoffman and Turner 2001; Kinney 2002; Liddle 2003; Ramirez
and Liddle 2005; Chongchitnan and Efstathiou 2005). It has been recently discussed
in detail in Vennin (2014). Let us define a new set of parameters `
 given by

`
 D 	
2M2

Pl


` .H0/`�1

H`

d`C1H
d�`C1

: (40)
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Of course, this new definition does not bring any new information. The new
parameters can be expressed in terms of the previous ones, for instance 1
 D
�1 � �2=2, 2
 D �21 � 3�1�2=2 C �2�3=2, etc . . . . It only shows that, if the �n’s are
all of the same order in slow-roll, the `
 are of increasing order. Then, the simple
equation, see Eq. (31)

d�n
dN

D �n�nC1 (41)

is replaced with

d�1
dN

D �1�2; (42)

d�2
dN

D 22
 � 2�21 � 3�1�2; (43)

d`


dN
D �`C1
 � `


�
` � 1

2
�2 � �1

�
: (44)

The idea is now to truncate this hierarchy at some orderM, i.e. to assume that `
 D 0

for ` > M, maybe motivated by the fact that higher order equations deal with higher
order slow-roll parameters and are thus, in some sense, negligible. Then, this finite
set of equations (in practice, the case M D 5 has been considered) is numerically
integrated many times with different initial conditions (Hoffman and Turner 2001).
In this way, one obtains different values of the slow-roll parameters at Hubble radius
crossing and, since the observables such as the spectral index nS or the tensor-to-
scalar ratio r can be expressed in terms of these parameter (see below), different
inflationary predictions. The next step consists in searching systematic patterns in
these predictions which, as a consequence, would be considered as “typical” of
inflation. In particular, it has been claimed that the different predictions for nS and r
obtained in this way cluster around the relation (Kinney 2002; Ramirez and Liddle
2005)

r16 ' 1

3
.1 � nS/; (45)

where r16 � r=16. The above equation is then viewed as a generic prediction of
inflation, obtained without the need to specify a particular potential V.�/.

However, the above claim is not correct (Vennin 2014). Indeed, truncating the
hierarchy at order M clearly means that one assumes, see Eq. (40),

dMC2H
d�MC2 D 0; (46)
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an equation which can be easily integrated (!) and leads to Liddle (2003)

H.�/ D H0

"
1C

MC1X
iD1

Ai

�
�

MPl

�i
#
: (47)

Then, from this expression of the Hubble parameter, one can easily calculate the
corresponding inflationary potential and one obtains

V.�/ D 3M2
PlH

2.�/ � 2M4
PlH

0.�/ (48)

D 3M2
PlH

2
0

"
1C

MC1X
iD1

Ai

�
�

MPl

�i
#2

� 2M3
PlH0

MC1X
iD1

iAi

�
�

MPl

�i�1
: (49)

The whole procedure is therefore nothing but a particular choice of a potential V.�/
depending on M C 1 parameters, Ai. Moreover, Vennin (2014) has shown that the
“mysterious” coefficient 1=3 in Eq. (45) can be easily recovered if one carries out a
standard slow-roll analysis of the potential (48). We conclude that this approach is
not generic at all and only consists in studying a very particular potential.

More recently, it has also been argued that, rather than choosing a potential V.�/,
it is more generic to choose the equation of state during inflation, see Mukhanov
(2013, 2015) and Binetruy et al. (2015). So, in practice, what is done is an educated
guess for w.N/ D p=�. Notice that, since

1C w.N/ D 2

3
�1.N/; (50)

this is also equivalent to choosing a particular function �1.N/, which is the strategy
followed in Roest (2014), Garcia-Bellido and Roest (2014) and Binetruy et al.
(2015). Concretely, one takes

1C w.N/ D ˇ

.Nend � N/˛
; (51)

where ˛ and ˇ are two free and positive parameters and Nend is the number of e-
folds at the end of inflation. However, again, this choice is in fact a choice of V.�/.
Indeed, the slow-roll trajectory (39), dN D �Vd�=.M2

PlV
0/ can be re-written as

M2
Pl

d

dN
.lnV/ ' �

�
d�

dN

�2
; (52)

and, from the exact formula

�1 D 1

2M2
Pl

�
d�

dN

�2
; (53)
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one obtains the following system of equations

�
d�

dN

�2
D 3M2

Pl Œ1C w.N/� ; (54)

d

dN
.lnV/ D �3 Œ1C w.N/� : (55)

When the above set of equations is solved one obtains �.N/ and V.N/ and,
eventually eliminating N, the function V.�/. We conclude that giving w.N/ and/or
�1.N/ is not a new generic parametrization but just a particular choice of a potential.
In order to illustrate this point, let us see how it works in practice for the case of
Eq. (51). The trajectory, given by Eq. (54), can be written as

�

MPl

D C1 ˙
p
3ˇ

2

˛ � 2 .Nend � N/.2�˛/=2 ; (56)

where C1 is an integration constant. For the potential, the integration of Eq. (55) is
also straightforward and one finds

lnV D C2 C 3ˇ

1 � ˛ .Nend � N/1�˛ ; (57)

where C2 is another integration constant. Then, from Eq. (56), one arrives at

Nend � N D
"

˙ ˛ � 2
2
p
3ˇ

�
�

MPl

� C1

�#2=.2�˛/
; (58)

and, inserting this result in Eq. (57), one obtains

lnV D C2 C 3ˇ

1 � ˛

"
˙ ˛ � 2

2
p
3ˇ

�
�

MPl

� C1

�#2.1�˛/=.2�˛/
: (59)

This shows that Eq. (51) is, in the slow-roll approximation, completely equivalent
to the choice

V.�/ D M4eı�
�

; (60)

where ı and � are constants (Mukhanov 2015). This potential is almost identical to
Logamediate inflation, LMI in the terminology of Martin et al. (2014a,b), V.�/ D
M4x˛eıx

�
, with x D .� ��0/=MPl, in the case where ˛ D 0. This model was studied

in detail in Martin et al. (2014a,b). The only difference is that, for LMI, one has
˛ D 4.1 � �/ implying � D 1 when ˛ D 0, which is not the case here (i.e. ˛ D 0

but � is still free).
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We conclude that all the so-called “alternative” parameterizations of inflation
considered so far are in fact strictly equivalent to specifying a potential. Claiming
that it is either new or different or better seems definitively far-fetched. In addition,
discussing inflation in terms of V.�/ has the advantage to make the link with high
energy physics explicit. For these reasons, we conclude that working in terms of
V.�/ and scanning the inflationary landscape by considering all possible models
seems to be the most efficient method to learn about inflation.

3.3 Parametrization of Reheating

Let us now consider the end of inflation, namely the reheating phase, and how
one can describe it. When �1 D 1, the potential is no longer flat enough to
support an accelerated phase and inflation stops. Usually, this happens in the
vicinity of the ground state (concretely, the minimum of the potential). At this
time, the inflaton field starts oscillating and decaying. Then, these decay products
thermalize (Podolsky et al. 2006) and the radiation dominated epoch of the hot Big
Bang phase commences. The micro-physics of reheating is described by the term
Lint.�;A	;‰/ in Eq. (28). But, in fact, in order to parameterize reheating, we do not
need to have such a detailed description. Indeed, as we will see in the following,
the inflationary observational predictions are expressed in terms of �n� � �n.��/,
where �� is the value of � when the pivot scale kP leaves the Hubble radius during
inflation (the pivot scale is conveniently chosen in the middle of the observable
window). Since, in the slow-roll approximation, we know the trajectory � D �.N/,
we just need to determine N� such that �� D �.N�/. This can be done as follows.
The physical pivot scale during inflation is given by

kP

a.N/
D kP

anow

anow

areh

areh

aend

aend

a.N/
D kP

anow

anow

areh

areh

aend
eNend�N ; (61)

where aend denotes the scale factor at the end of inflation and areh the scale factor at
the end of reheating. In the above expression, kP=anow is known and, concretely,
we take kP=anow D 0:05Mpc�1. The quantity anow=areh is also known since it
only involves the standard thermal history of the Universe. On the other hand, the
ratio areh=aend depends on what happens during reheating and this is precisely the
reason why the inflationary predictions are sensitive to this phase of evolution. To
go further, we write the above equation at the time N D N�. Since, by definition,
kP=a.N�/ D H.N�/, Eq. (61) becomes

H.N�/ D 1

MPl

s
V.N�/

3 � �1.N�/
D kP

anow

anow

areh

areh

aend
eNend�N

� ; (62)
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the first expression being just the Friedmann equation, see Eq. (37). We see that this
is a transcendental equation for N� which, therefore, needs to be solved numerically.
We also see that it depends on the potential V.�/ and, hence, on the model under
consideration. Finally, in order to solve this equation, one needs to estimate the
quantity areh=aend. Let � and p be the total energy density and pressure during
reheating. Notice that one can have several fluids, possibly interacting which each
other. The treatment presented here is therefore completely general. Conservation
of total energy density (we emphasize again that it is not necessary to assume that
the energy density of each fluid is separately conserved) implies that

� .N/ D �end exp

�
�3

Z N

Nend

Œ1C wreh .n/� dn

�
; (63)

where wreh � p=� is the “instantaneous” equation of state during reheating. Then,
let us define the mean equation of state parameter, wreh, by

wreh � 1

�N

Z Nreh

Nend

wreh.n/dn; (64)

where �N � Nreh � Nend is the total number of e-folds during reheating. It follows
that

�reh D �ende�3.1Cwreh/�N ; (65)

and, therefore,

e�N D areh

aend
D
�
�reh

�end

��1=.3C3wreh/

: (66)

As a consequence, the ratio areh=aend depends on two quantities only: the energy
density at the end of reheating, �reh, and the mean equation of state during reheating,
wreh. Once a model of inflation is known, �end can be calculated so this is not a
new quantity (but, again, it introduces an additional dependence on the inflationary
potential). Inserting Eq. (66) into the above expression (62) leads to

H.N�/ D 1

MPl

s
V.N�/

3 � �1.N�/
D kP

anow

anow

areh

�
�reh

�end

��1=.3C3wreh/

eNend�N
� : (67)

The above formula still contains areh, a quantity that we would like to eliminate from
the final expression. For this purpose, we write anow=areh as anow=aeq � aeq=areh,
where aeq is the scale factor at matter-radiation equality. Then, we use the fact that,
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during the radiation dominated era, a / ��1=4, to write

H.N�/ D 1

MPl

s
V.N�/

3 � �1.N�/
D kP

anow

anow

aeq

�
�reh

�eq

�1=4 �
�reh

�end

��1=.3C3wreh/

eNend�N
�

(68)

D kP
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MPl

�
1=4
eq

�
1=2
end

M2
Pl

MPl

�
1=4
end

�
�reh

�end

�1=4�1=.3C3wreh/

eNend�N
� : (69)

Except the quantities that are known from standard cosmology (since they only
depend on post-inflationary physics), such as anow=aeq � MPl=�

1=4
eq , we see that

this equation singles out the following combination (by definition, the “reheating”
parameter) (Martin and Ringeval 2006, 2010; Lorenz et al. 2008a; Martin et al.
2015)

R � �
1=4
end

MPl

Rrad; (70)

with

Rrad �
�
�reh

�end

��1=4C1=.3C3wreh/

D
�
�reh

�end

�.1�3wreh/=.12C12wreh/

: (71)

Notice that we have a term �
1=2
end=M

2
Pl left in Eq. (69). It is introduced because it

produces a term proportional to the square root of the potential at the end of
inflation and combines nicely with the

p
V� on the left hand side of Eq. (69). The

arguments presented above can be easily generalized to take into account a change
of relativistic degrees of freedom between the reheating epoch and today, see Martin
et al. (2014a).

The reheating parameter encodes what can be learned about reheating from the
CMB. In Sect. 5, we will see that the Planck data already put constraints on its value.

4 Inflationary Perturbations

In this section, we review the theory of inflationary perturbations (Mukhanov et al.
1992; Bardeen 1980; Peter 2013). This part of the inflationary scenario is very
important because it allows us to use astrophysical data to put constraints on cosmic
inflation. In the following, we pay special attention to the question of how one
can calculate the correlation functions of the perturbations and to the concept of
adiabatic and isocurvature perturbations. As will be seen in Sect. 5, these quantities
carry useful information about the type of inflationary model that is realized in
Nature. This section can therefore be viewed as a preparation to Sect. 5 in the sense
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that we discuss in some detail the meaning of the quantities that have been measured
recently by the Planck experiment.

To describe CMB anisotropies and large scale structures, one must go beyond
the cosmological principle. This is a priori a technically difficult task but since
the inhomogeneities are small in the early Universe, one can use a perturba-
tive approximation which, obviously, greatly simplifies the problem. Then, the
idea is to write the metric tensor as g	�.�; x/ D gFLRW

	� .�/ C ıg	�.�; x/ C � � � ,
where gFLRW

	� .�/ represents the metric tensor of the FLRW Universe and where
ıg	�.�; x/ � gFLRW

	� .�/. In fact, ıg	�.�; x/ can be expressed in terms of three types
of perturbations, scalar, vector and tensor. In the context of inflation, only scalar
and tensor are important. Scalar perturbations are directly coupled to the perturbed
stress-energy tensor while tensor fluctuations are independent of ıT	� and, in fact,
are nothing but gravity waves. The equations of motion of each type of fluctuations
are given by the perturbed Einstein equations, namely ıG	� D �ıT	� .

In order to calculate the behavior of the fluctuations, we also need to specify
the initial conditions. This is done by postulating that the perturbations are of
quantum-mechanical origin and that, initially, their quantum state is the vacuum.
This is possible because, at the beginning of inflation, the physical wavelengths of
the Fourier modes of the perturbations are smaller than the Hubble radius. This
means that, initially, space-time curvature is not felt and that, as a consequence, a
well-motivated vacuum state can be defined.

4.1 Inflationary Two-Point Correlation Functions

Once the equations of motion have been derived and the initial conditions specified,
one can determine all the statistical properties of the fluctuations, in particular
their two-point correlation functions or, in Fourier space, power spectra. The scalar
perturbations are curvature perturbations defined by �.�; x/ � ˆ C 2.H�1ˆ0 C
ˆ/=.3C 3w/, with w D p=� the equation of state during inflation and ˆ being the
Bardeen potential (Bardeen 1980) (not to be confused with the scalar field �). As
usual in a linear theory, it is convenient to work in Fourier space and, therefore, we
write

�.�; x/ D 1

.2�/3=2

Z
dk �k.�/ e�ik�x: (72)

As explained before, in the framework of the theory of cosmological perturbations
of quantum-mechanical origin, the source of the perturbations is the unavoidable
zero-point vacuum fluctuations. As a consequence, �.�; x/ must in fact be viewed
as a quantum operator and can be expressed as

O�.�; x/ D
Z

d3k
.2�/3=2

h
akgk.�/e

ik�x C a�kg
�
k .�/e

�ik�xi ; (73)
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where ak and a�k are respectively the annihilation and creation operators satisfying

Œak; a
�
p� D ı.3/.k�p/. The quantum state of the perturbations is the vacuum j0i which

is, by definition, annihilated by the operator ak, namely akj0i D 0. The function
gk.�/ is the mode function and the Fourier transform of �.�; x/ is given by �k.�/ D
akgk.�/C a��kg

�
k .�/. This last equation leads to h0j�k1 �k2 j0i D jgk1 j2ı.3/ .k1 C k2/.

From the previous considerations, it follows that the two-point correlation function
is given by

h�2.�; x/i D
Z

dk

k
P�.k/ D

Z
dk

k

k3

2�2
jgkj2; (74)

where P�.k/ is, by definition, the power spectrum of scalar perturbations. An exact
calculation of this power spectrum is rarely available but a perturbative expansion
into the slow-roll parameters (since they are small parameters) can be done and
results in

P�.k/
P�0.kP/

D a.S/0 C a.S/1 ln

�
k

kP

�
C a.S/2

2
ln2
�
k

kP

�
C : : : ; (75)

where, as already mentioned, kP is the pivot scale and the overall amplitude can be
written as

P�0 D H2�
8�2�1�M2

Pl

; (76)

a star meaning that a quantity is evaluated at the time at which the pivot scale
crossed out the Hubble radius during inflation. We see that the amplitude of the
power spectrum depends on H� but also on the first slow-roll parameter, �1�. The
coefficients a.S/i can be expressed in terms of the Hubble flow functions. For scalar
perturbations, at second order in the slow-roll approximation, one gets (Schwarz
et al. 2001; Martin and Schwarz 2003; Casadio et al. 2005a,b,c; Gong and Stewart
2001; Choe et al. 2004; Leach et al. 2002; Lorenz et al. 2008b; Martin et al. 2013;
Jimenez et al. 2013)

a.S/0 D 1 � 2 .C C 1/ �1� � C�2� C
 
2C2 C 2C C �2

2
� 5

!
�21�

C
 
C2 � C C 7�2

12
� 7

!
�1��2� C

 
1

2
C2 C �2

8
� 1

!
�22�

C
 

�1
2
C2 C �2

24

!
�2��3� C � � � ; (77)

a.S/1 D �2�1� � �2� C 2.2C C 1/�21� C .2C � 1/�1��2� C C�22� � C�2��3� C � � � ; (78)
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a.S/2 D 4�21� C 2�1��2� C �22� � �2��3� C � � � ; (79)

a.S/3 D O.�3n�/ ; (80)

where C � �E C ln 2 � 2 � �0:7296, �E being the Euler constant.
For tensor fluctuations, the approach is exactly similar to what we have just

described. In particular, the tensor power spectrum Ph can be written in the same
way as Eq. (75) but with a global amplitude now given by

Ph0 D 2H2�
�2M2

Pl

: (81)

This time, the amplitude only depends on the Hubble parameter during inflation.
Moreover, the coefficients a.T/i have a similar structure and can be written as

a.T/0 D 1 � 2 .C C 1/ �1� C
�
2C2 C 2C C �2

2
� 5

�
�21�

C
�

�C2 � 2C C �2

12
� 2

�
�1��2� C � � � ; (82)

a.T/1 D �2�1� C 2.2C C 1/�21� � 2.C C 1/�1��2� C � � � ; (83)

a.T/2 D 4�21� � 2�1��2� C � � � ; (84)

a.T/3 D O.�3n�/ : (85)

The coefficients in front of the ln k term are related to the spectral indices and, at first
order in the slow-roll parameters (we will discuss them in more detail in Sect. 5),
they can be expressed as

nS D 1 � 2�1 � �2; nT D �2�1; (86)

where the first expression refers to scalar perturbations while the second is for tensor
perturbations. Notice that, sometimes, the power spectrum is written as knS�1. In
the context of slow-roll inflation, this is clearly not justified as it would amount to
keep an infinite number of higher order terms while nS has been evaluated at first
order only. It is worth stressing that power-law power spectra are predictions of
power-law inflation only, that is to say the inflationary model for which V.�/ /
exp.�C�/ (Lucchin and Matarrese 1985). From Eqs. (76) and (81), one can also
estimate the relative contribution of tensor and scalar amplitudes

r � Ph

P�
D 16�1�; (87)

which means that, since �1� � 1, tensor are sub-dominant. This is of course rather
unfortunate since a direct measurement of gravity wave would directly lead to the
energy scale during inflation, H�.
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4.2 Inflationary Three-Point Correlation Functions

We have just derived the slow-roll inflationary two-point correlation functions
but, of course, higher-order correlation functions are also interesting and the
field of Non-Gaussianity has played an important role in the recent years, see
Gangui et al. (1994), Gangui (1994), Wang and Kamionkowski (2000), Gangui
and Martin (2000a,b) and Gangui et al. (2002) for original works on this question
and Maldacena (2003), Seery and Lidsey (2005), Chen et al. (2007), Hotchkiss
and Sarkar (2010), Chen (2010), Martin and Sriramkumar (2012), Hazra et al.
(2012, 2013), Sreenath et al. (2013, 2015), Martin et al. (2014c), and Sreenath
and Sriramkumar (2014) for later works. For a complete overview of the subject,
we refer to the lecture notes by Byrnes (2014). Here, in order to be able to fully
appreciate the relevance of the Planck data on Non-Gaussianities, we discuss how
the three-point inflationary correlation functions can be calculated in the case of
single-field slow-roll inflation with a minimal kinetic term.

For the two-point correlation, we have seen that it is convenient to work in
Fourier space and to define the power spectrum. In the same way, for the three-
point correlation function, we can define the bispectrum as a correlator in Fourier
space, namely h�k1 .�/ �k2 .�/ �k3 .�/i. In fact, we will rather calculate the quantity
hRk1 .�/Rk2 .�/Rk3 .�/i where R � �‰ � Hı�.gi/=�0, ‰ D ˆ (valid if a scalar
field dominates the matter content of the Universe) being another Bardeen potential
and ı�.gi/ being the gauge invariant scalar field fluctuation (Mukhanov et al. 1992).
This amounts to a simple change of sign of the three-point function (and no change
at the power spectrum level, namely P� D PR, because the power spectrum is
quadratic in the Fourier amplitudes) since R D ��.1 Concretely one has

hR.�; x/R.�; x/R.�; x/i D
Z

d3k1
.2 �/3=2

Z
d3k2

.2�/3=2

Z
d3k3

.2�/3=2
hRk1 .�/Rk2 .�/Rk3 .�/i

� ei .k1Ck2Ck3/�x: (91)

1Indeed, the space time component of the perturbed Einstein equation reads

� 2

a2
@i .HˆCˆ0/ D �.�C p/@iv

.gi/; (88)

where, for a scalar field, v.gi/ D �ı�.gi/=�0. As a consequence

ˆC H�1ˆ0 D �a2

2H .�C p/
ı�.gi/

�0

: (89)

Using this last expression in the definition of � and the Friedmann equation H2 D �a2�=3, one
obtains

� D ˆC 2

3

H�1ˆ0 Cˆ

1C w
D ˆC H ı�

.gi/

�0

D �R; (90)

namely the equation mentioned in the text.
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In the above expression Rk.�/ obviously represents the Fourier transform of the
curvature (scalar) perturbation R.�; x/, namely

R.�; x/ D 1

.2�/3=2

Z
dkRk.�/ e�ik�x: (92)

As explained before, in the framework of the theory of cosmological perturbations
of quantum-mechanical origin, it is an operator and it can be expressed as

OR.�; x/ D
Z

d3k
.2�/3=2

h
ak fk.�/e

ik�x C a�kf
�
k .�/e

�ik�xi ; (93)

leading to hRk1Rk2i D j fk1 j2ı.3/ .k1 C k2/ since Rk D ak fk C a��kf
�
k . Here, the

creation and annihilation operators are the same as those appearing in Eq. (73). Of
course working in terms of Rk.�/ instead of �k.�/ is both harmless and trivial since
Rk D ��k and fk.�/ D �gk.�/! We do it since many papers on Non-Gaussianities
use this variable.

At this stage, it may be useful to say a few words about conventions. In this
article, we are using Fourier transforms as defined in Eq. (92). Another convention,
often used in the literature on Non-Gaussianities, is

R.�; x/ D 1

.2�/3

Z
dk NRk e�ik�x; (94)

so that NRk D .2�/3=2Rk. This implies that h NRk1
NRk2i D .2�/3j fk1 j2ı.3/ .k1 C k2/.

Notice that the two-point correlation function is sometimes defined as h NRk1
NRk2i �

.2�/3PR.k1/ı.3/ .k1 C k2/ which leads to the identification PR.k1/ D j fk1 j2 [the
quantity PR.k1/ should not be confused with PR.k1/ D k31j fk1 j2=.2�2/�. These

definitions imply that NRk D .2�/3=2

ak fk C a��kf

�
k

�
which can be rewritten

as NRk D Nakfk C Na��kf
�
k with Nak D .2�/3=2ak. In particular, since Œak; a

�
p� D

ı.3/ .k � p/, we now have ŒNak; Na�p� D .2�/3ı.3/ .k � p/. Different conventions
basically correspond to different choices for where the factors 2� appear in the
equations. In principle straightforward, it can sometimes be confusing when one
tries to check a result in the existing literature.

The bispectrum can be evaluated using the standard rules of quantum field theory.
It is given by Maldacena (2003) and Seery and Lidsey (2005)

hRk1 .�/Rk2 .�/Rk3 .�/i D �i
Z �e

�ini

d� a.�/ hŒRk1 .�/Rk2 .�/Rk3 .�/;Hint.�/�i ;

(95)

where �ini represents an initial time at the beginning of inflation (in practice we take
�ini ! �1) and �e a final time at the end of inflation when all the scales relevant
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to the problem are outside the Hubble radius (in practice we take �e ! 0). The
quantity Hint is the interaction Hamiltonian. It can be obtained from the action of the
system expanded up to third order in R, the action of the system being the Einstein-
Hilbert action plus that of a scalar field (the inflaton). A now standard calculation
gives (Maldacena 2003; Seery and Lidsey 2005; Chen et al. 2007; Chen 2010)

S3ŒR� D M2
Pl

Z
dt d3x

"
a3 �21 R PR2 C a �21 R .@R/2 � 2 a �1 PR .@iR/ .@i�/

C a3

2
�1 P�2R2 PR C �1

2a
.@iR/ .@i�/ .@2�/C �1

4 a
.@2R/ .@�/2 C F

�
ıL2
ıR

�#
;

(96)

where ıL2=ıR denotes the variation of the second order action with respect to R,
and is given by

ıL2
ıR D PƒC Hƒ� �1 @

2R; (97)

and the quantitiesƒ and � are defined by

ƒ � a2 P�2
2M2

PlH
2

PR D a2�1 PR; � � @�2ƒ: (98)

The term F.ıL2=ıR/ introduced in Eq. (96) stands for the following complicated
expression

F
�
ıL2
ıR

�
D a

2
�2

�
ıL2
ıR

�
R2 C 2a

H

�
ıL2
ıR

�
PRR

C 1

2aH

(
.@iR/ .@i�/

�
ıL2
ıR

�
C ıij

�
ƒ.@iR/C .@2R/ .@i�/

�

� @j

�
@�2

�
ıL2
ıR

��
C ıimıjn

H
.@iR/ .@jR/ @m@n

�
@�2

�
ıL2
ıR

��)
:

(99)

The terms which involves ıL2=ıR can be removed by a suitable field redefinition
of R of the following form (Maldacena 2003; Seery and Lidsey 2005; Chen et al.
2007; Chen 2010):

R ! Rn C �2
R2

n

4
: (100)
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After this redefinition, the perturbed action (96) becomes a functional of Rn. In
the following, in order to avoid too complicated notations, we will still use R in
place of Rn. Then, with the redefinition (100), the interaction Hamiltonian can be
expressed as

Hint.�/ D �M2
Pl

Z
d3x

�
a �21 RR02 C a �21 R .@R/2 � 2 �1R0 .@iR/ .@i�/

C a

2
�1 �

0
2R2R0 C �1

2 a
.@iR/ .@i�/

	
@2�


C �1

4 a

	
@2R



.@�/2

�
: (101)

where we remind that a prime means a derivative with respect to conformal time.
The first three terms are second order in the slow-roll parameters while the three
last ones are third order. As a consequence, already at this stage, we see that the
bispectrum will be a small quantity. Since we now know the interaction Hamiltonian
we can insert its expression in Eq. (95) in order to derive the bispectrum explicitly.
One finds that

hRk1 .�e/Rk2 .�e/Rk3 .�e/i D .2 �/3

.2�/9=2
M2

Pl

6X
CD1

"
fk1 .�e/ fk2 .�e/ fk3 .�e/GC .k1; k2; k3/

C f �
k1 .�e/ f

�
k2 .�e/ f

�
k3 .�e/G�

C
.k1; k2; k3/

#
ı.3/ .k1 C k2 C k3/ ; (102)

where the delta function ensures momentum conservation. Written in this way, the
correlator is obviously real. In the above expression, the term GC .k1; k2; k3/ with
C D .1; 6/ correspond to the six terms in the interaction Hamiltonian (101) (the six
“vertices”), and are explicitly given by Maldacena (2003)

G1.k1; k2; k3/ D 2i
Z �e

�ini

d� a2 �21
	
f �
k1 f

0�
k2 f

0�
k3 C two permutations



; (103)

G2.k1; k2; k3/ D �2i
Z �e

�ini

d�a2 �21 f
�
k1 f

�
k2 f

�
k3 .k1 � k2 C two perms/ ; (104)

G3.k1; k2; k3/ D �2i
Z �e

�ini

d� a2 �21

�
f �
k1 f

0�
k2 f

0�
k3

�
k1 � k2
k22

�
(105)

Cfive permutations

�
; (106)

G4.k1; k2; k3/ D i
Z �e

�ini

d� a2 �1 �0
2

	
f �
k1 f

�
k2 f

0�
k3 C two permutations



; (107)

G5.k1; k2; k3/ D i

2

Z �e

�ini

d� a2 �31

�
f �
k1 f

0�
k2 f

0�
k3

�
k1 � k2
k22

�
(108)

Cfive permutations

�
; (109)
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G6.k1; k2; k3/ D i

2

Z �e

�ini

d� a2 �31

�
f �
k1 f

0�
k2 f

0�
k3

�
k21

k22 k
2
3

�
.k2 � k3/

C two permutations

�
: (110)

Actually, an additional seventh term arises due to the field redefinition (100), and its
contribution to the three point correlation function is found to be

hRk1 .�e/Rk2 .�e/Rk3 .�e/i.7/ D .2 �/3

.2�/9=2
�2

2

	j fk2 j2 j fk3 j2 C two permutations



�ı.3/ .k1 C k2 C k3/ : (111)

The other terms in Eq. (99) do not contribute because they all contain a derivative
(time derivative and/or space derivative) and, at the end of inflation, on super Hubble
scales, � D �R is constant.

In order to calculate each of the above terms, one obviously needs to know the
mode function fk. Since we evaluate the bispectrum at leading order in slow roll,
it is in fact sufficient to use the de Sitter mode function, namely fk D iH.1 C
ik�/e�ik�=.2MPl

p
k3�1/ (which is properly normalized). Moreover, we only need to

calculate the first three terms and G7.k1; k2; k3/, the other contributions being of
higher orders in slow-roll. In order to illustrate how the calculation proceeds, let us
explain in detail how G2.k1; k2; k3/ can be calculated (this term is easier than the
others since we do not have to use the derivative of the mode function). Inserting
the de Sitter mode function into Eq. (104), one obtains

G2.k1; k2; k3/ D �2i .�iH/3

8M3
Pl

q
�31�k31k32k33

1

H2
�21� .k1 � k2 C two permutations/

�
Z �e

�ini

d�

�2
eikT � .1 � ik1�/.1 � ik2�/.1 � ik3�/; (112)

D �2i .�iH/3

8M3
Pl

q
�31�k31k32k33

1

H2
�21� .k1 � k2 C two permutations/

�
Z �e
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�2

�
1 � ikT� � .k1k2 C k2k3 C k1k3/ �

2 C ik1k2k3�
3

�
eikT � ;

(113)

where kT � k1Ck2Ck3 is the “total” wave-number. This expression is made of four
integrals that we need to calculate. The first and the fourth ones can be integrated
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by parts and the third one can be directly performed. This leads to

G2.k1; k2;k3/ D �2i .�iH/3

8M3
Pl
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�31�k31k32k33

1
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(114)

and we see that the second integral exactly cancels the term arising from the
integration by parts of the first integral. In principle, at this stage, it is sufficient
to take �ini D �1 in the above expression in order to get the final result. But,
obviously, the result would be ill-defined. So what is done is to slightly rotate the
integration path in the complex plane and replace �ini with �1.1 � iı/ where ı
is a small parameter. This produces a term e�ikT 1�kT ı1 which, in fact, kills all
terms proportional to eikT�ini . It is worth noticing that this should not be viewed as an
arbitrary technical trick but as the standard method to properly identify the correct
vacuum state (Peskin and Schroeder 1995). As a result, one obtains the following
expression

G2.k1; k2; k3/ D �2i .�iH/3

8M3
Pl

q
�31�k31k32k33

1

H2
�21� .k1 � k2 C two permutations/
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��1
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T

!�
: (115)

Then, the final step is to take �e ! 0. Clearly, there is a problem with the first term
and, therefore, in the following expressions, we will keep �e unspecified. For the
other terms, the above expression simplifies and one is led to

G2.k1; k2; k3/ D �2i .�iH/3

8M3
Pl
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�31�k31k32k33

1
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�21� .k1 � k2 C two permutations/
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��1
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k1k2k3

�
: (116)
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This completes the calculation of G2.k1; k2; k3/. Now, we insert the above
result into Eq. (102) in order to determine the contribution of G2.k1; k2; k3/ to
hRk1 .�e/Rk2 .�e/Rk3 .�e/i. To perform this calculation, we need fk.�e/, which we

take to be iH=Œ8M3
Pl

q
�31.�e/k31k

3
2k
3
3� since the limit �e ! 0 does not cause any

problem in that case. As a result, one finds that
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(117)

which, combined with Eq. (116), leads to

hRk1 .�e/Rk2 .�e/Rk3 .�e/i.2/ D .2�/3
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: (118)

This expression can be simplified further and one obtains the following formula

hRk1 .�e/Rk2 .�e/Rk3 .�e/i.2/ D .2�/3

.2�/9=2
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� 2H6�21�
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: (119)

We see that the limit �e ! 0 is now well defined and can be taken. The term
in G2.k1; k2; k3/ was singular but, combined with its complex conjugate in the
correlator, the limit has become regular. Therefore, the appearance of a singular
limit was just a temporary technical problem and, in the expression of the physical
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quantity, the problematic term has disappeared. The final expression reads

hRk1 .�e/Rk2 .�e/Rk3 .�e/i.2/ D .2�/3
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ı.3/ .k1 C k2 C k3/ : (120)

As expected the amplitude is controlled by the Hubble parameter (to the power four
while the amplitude of the power spectrum was quadratic in H) and the (first) slow-
roll parameter. We also see that the scale dependence is quite complicated.

The calculation proceeds exactly the same way for the first and third terms.
Explicitly, one obtains
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(121)

hRk1 .�e/Rk2 .�e/Rk3 .�e/i.3/ D � .2�/3
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Finally, the seventh term given by Eq. (111) can be re-written in terms of the two-
point correlation function

hRk1 .�e/Rk2 .�e/Rk3 .�e/i.7/ D .2�/3

.2�/9=2
2�4�2

1

.k1k2k3/3

�
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k31PR.k2/PR.k3/C k32PR.k1/PR.k3/C k33PR.k1/PR.k2/

�
ı.3/ .k1 C k2 C k3/ ;

(123)

where, in order to evaluate the last term, we have made use of the definition
introduced before: PR.k/ D k3j fkj2=.2�2/, see Eq. (74).

We have now completed the calculation of the three-point correlation function in
Fourier space. We notice that, as already mentioned above, the dependence in k1, k2,
k3 is rather non trivial. In order to emphasize this point, it is interesting to recalculate
the three-point correlation function in the following simple setup. Suppose that we
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write the curvature perturbation as

R.�; x/ D RG.�; x/� 3 f loc
NL

5
R2

G
.�; x/C � � � ; (124)

where RG denotes a Gaussian quantity, and the factor of 3=5 arises due to the
relation between the Bardeen potential and the curvature perturbation during the
matter dominated epoch. The amplitude of the quadratic term is constant and
conventionally called f loc

NL
. Let us notice that this assumption is highly non trivial and

that, a priori, the coefficient in front of the quadratic term is expected to be a function
of space. Postulating that it is a constant enforces a particular scale dependence of
the three-point correlation function as we are going to see. In Fourier space, the
Gaussian part is written RG D .2�/�3=2

R
dkRG

k e�ik�x and it follows that

R2.�; x/ D 1

.2�/3=2

Z
dk .2�/�3=2

Z
dpRG

p RG
k�p e�ik�x; (125)

from which we can read the Fourier coefficient of the non-linear curvature pertur-
bation, namely

Rk D RG
k � 3 f loc

NL

5
.2�/�3=2

Z
dpRG

p RG
k�p: (126)

Using this expression, one can now evaluate the bispectrum. One obtains

hRk1 .�/Rk2 .�/Rk3 .�/i D
�"

RG
k1 � 3 f loc

NL

5
.2�/�3=2

Z
dp1RG

p1
RG

k1�p1

#

�
"
RG

k2
� 3 f loc

NL

5
.2�/�3=2

Z
dp2RG

p2
RG

k2�p2

#

�
"
RG

k3
� 3 f loc

NL

5
.2�/�3=2

Z
dp3RG

p3
RG

k3�p3

#�
; (127)

and, therefore,

hRk1 .�/Rk2 .�/Rk3 .�/i D ˝RG
k1
.�/RG

k2
.�/RG

k3
.�/
˛

� 3 f loc
NL

5
.2�/�3=2

Z
dp3

D
RG

k1 .�/RG
k2 .�/RG

p3
.�/RG

k3�p3
.�/
E

C two permutations C � � � ;
(128)
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where the dots denote the higher order terms. Since the three point correlation
function vanishes for Gaussian statistics, the previous expression reduces to

hRk1 .�/Rk2 .�/Rk3 .�/i D �3 f
loc

NL

5
.2�/�3=2

Z
dp3

D
RG

k1
.�/RG

k2
.�/RG

p3
.�/RG

k3�p3
.�/
E

C two permutations C � � � : (129)

As expected, the three-point correlation function is proportional to the coefficient
f loc

NL
. To proceed, one can evaluate this expression by means of the Wick’s theorem.

Then, one obtains

hRk1 .�/Rk2 .�/Rk3 .�/i D

� 3 f loc
NL

5
.2�/�3=2

Z
dp3

�˝
RG

k1
.�/RG

k2
.�/
˛ D
RG

p3
.�/RG

k3�p3
.�/
E

C
D
RG

k1
.�/RG

p3
.�/
E D
RG

k2
.�/RG

k3�p3
.�/
E

C
D
RG

k1
.�/RG

k3�p3
.�/
E D
RG

k2
.�/RG

p3
.�/
E

C two permutations C � � �
�
: (130)

Since the two-point correlation functions are nothing but the power spectrum, the
above expression takes the following form

hRk1 .�/Rk2 .�/Rk3 .�/i D �3 f
loc
NL

5
.2�/�3=2

�
Z

dp3

�
.2�/2

2

PR.k1/
k31

ı.3/ .k1 C k2/
.2�/2

2

PR. p3/
k33

ı.3/ . p3 C k3 � p3/

C .2�/2

2

PR.k1/
k31

ı.3/ .k1 C p3/
.2�/2

2

PR.k2/
k32

ı.3/ .k2 C k3 � p3/

C .2�/2

2

PR.k1/
k31

ı.3/ .k1 C k3 � p3/
.2�/2

2

PR.k2/
k32

ı.3/ .k2 C p3/

C two permutations C � � �
�
: (131)

Then, the integral over p3 can be easily performed, thanks to the presence of the
Dirac delta functions. We see that the first term in the above expression is different
from the two next ones. Indeed, it leads to a term ı.3/.k3/ which can be ignored
since, in some sense, it is homogeneous and only participates to the background. The
two other terms yield a ı.3/.k1 C k2 C k3/ which ensures momentum conservation.



The Observational Status of Cosmic Inflation After Planck 75

The final expression reads

hRk1Rk2Rk3i D �3 f
loc

NL

10
.2 �/4 .2 �/�3=2

1

k31 k
3
2 k

3
3

ı.3/.k1 C k2 C k3/

� �k31 PR.k2/ PR.k3/C two permutations
�
: (132)

We see that the scale dependence of the bispectrum for this simple model does
not reproduce what we obtained in the case of inflation, see Eqs. (120)–(123). The
inflationary case is clearly much more complicated. In fact, Eq. (132) has a similar
structure as hRk1 .�e/Rk2 .�e/Rk3 .�e/i.7/, see Eq. (123). But the three extra terms
hRk1 .�e/Rk2 .�e/Rk3 .�e/i.1;2;3/ are such that the full slow-roll bispectrum differs
from Eq. (132).

At this stage, it is worth discussing again our conventions. We have seen below
Eq. (94) that, often in the literature, the two-point correlation function is defined as
h NRk1

NRk2i � .2�/3PR.k1/ı.3/ .k1 C k2/, where NRk1 � .2�/3=2Rk1 and PR.k1/ �
j fk1 j2 ¤ PR.k1/. Then, in order to mimic and/or generalize the definition of the two-
point correlation function, the following definition of the bispectrum BR.k1; k2; k3/
is introduced

h NRk1
NRk2

NRk3i D .2�/3BR.k1; k2; k3/ ı.3/ .k1 C k2 C k3/ : (133)

Notice that we could have also used another definition hRk1Rk2Rk3i D
.2�/3BR.k1; k2; k3/ ı.3/ .k1 C k2 C k3/, which would have resulted in a difference
by a factor of .2�/9=2 [and, by the way, explains the appearance of such a factor in
Eq. (102)]. Here, we do not follow this route and use the convention (133). Then,
Eq. (132) implies that

BR.k1; k2; k3/ D �6
5
f loc

NL

	j fk2 j2j fk3 j2 C two permutations



(134)

D �6
5
f loc

NL
ŒPR.k2/PR.k3/C two permutations� : (135)

It is also frequent to define the bispectrum of the Bardeen potential ˆ rather than
the conserved quantity R. Concretely, the definition reads2

h N̂ k1
N̂ k2

N̂ k3i D .2�/3Bˆ.k1; k2; k3/ ı.3/ .k1 C k2 C k3/ : (138)

2As already mentioned, our convention for the Fourier transform is such that

ˆ.�; x/ D 1

.2�/3=2

Z
dkˆk.�/ e�ik�x (136)
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Since � D 5ˆ=3 D �R, we have Bˆ D �27BR=125. However, since fk D
�.5=3/uk, we also have PR D .25=9/Pˆ. As a consequence, from Eq. (135), one
obtains that

Bˆ.k1; k2; k3/ D 2f loc
NL
ŒPˆ.k2/Pˆ.k3/C two permutations� ; (139)

which is a formula that often appears in the literature.
Of course, we can also put the slow-roll bispectrum calculated before under

the form given by Eq. (133). For this purpose, let us write Eqs. (121), (120), (122)
and (123) as

hRk1 .�e/Rk2 .�e/Rk3 .�e/i.i/ � .2�/3

.2�/9=2
F .i/ 1

k31 k
3
2 k

3
3

ı.3/.k1 C k2 C k3/; (140)

where the concrete expression of the F .i/ can be read off from those equations.
Then, the bispectrum for single-field slow-roll models can be written as

Bsr
R.k1; k2; k3/ D 1

k31 k
3
2 k

3
3

X
iD1;2;3;7

F .i/: (141)

The previous result can also be used to define an effective, scale dependent, fNL

parameter. If we equate the full bispectrum
P

iD1;2;3;7hRk1 .�e/Rk2 .�e/Rk3 .�e/i.i/
to the expression of Eq. (132), one obtains

f sr
NL
.k1; k2; k3/ D �10

3
.2 �/�4

X
iD1;2;3;7

F .i/

� �k31 PR.k2/ PR.k3/C two permutations
��1

: (142)

If, for instance, we evaluate this quantity for k1 D �k2 and a vanishing k3 (so that
k1Ck2Ck3 is also zero which is mandatory given the presence of the Dirac function
in the above expressions), then the expressions of F .i/ simplify such that one obtains

X
iD1;2;3;7

F .i/ D H4k3

16M4
Pl�1

�
1

2
C 3

2
C 0C �2

�1

�
D H4k3

16M4
Pl�
2
1

.2�1 C �2/; (143)

and, following the notation that we have already introduced, N̂ k D .2�/3=2ˆk. Moreover, if the
Bardeen potential quantum operator is written as

Ô .�; x/ D
Z

d3k
.2�/3=2

h
akuk.�/e

ik�x C a�ku
�

k .�/e
�ik�x

i
; (137)

then one has Pˆ � jukj2 and P� � k3jukj2=.2�2/.
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which, using Eq. (86), can be written as (Maldacena 2003; Renaux-Petel 2010)

f sr;sq
NL

D 5

12
.nS � 1/; (144)

where “sq” means “squeezed” and refers to the fact that we have taken the particular
configuration k1 D �k2 and a vanishing k3. Notice that, since we calculate a three-
point correlation function, the sign of fNL is non trivial. The sign that we have
obtained results from the choice made in Eq. (124) and from the fact that we evaluate
the correlator of R. Finally, very roughly speaking (see Sect. 5 for a more complete
discussion) the present status of the art is such that one can detect Non-Gaussianities
if j fNL j > 5. For slow-roll models, since nS ' 0:96, one obtains f sr;sq

NL
' �1:6�10�2,

a number that is therefore undetectable. This conclusion is in fact valid for any
configuration one may choose. Let us also mention that other consistency relations
for Non-Gaussianities have recently been studied in Sreenath et al. (2013, 2015) and
Sreenath and Sriramkumar (2014).

Clearly, a detection of a non-vanishing three-point correlation function, given
present day technology, would immediately rule out single field slow-roll models
with a standard kinetic term. It is therefore quite remarkable that Non-Gaussianity
has not been detected so far. Let us also stress that the opposite statement is not
true. The fact that we do not see Non-Gaussianities does not imply that the more
complicated models of inflation are necessarily ruled out even if some of them do
predict large Non-Gaussianities. For the calculation of the three-point correlation
functions of these more complicated models, we again refer to Byrnes (2014).

4.3 Inflationary Four-Point Correlation Functions

Obviously, the next step is to calculate the four-point correlation function or
trispectrum (Seery et al. 2007; Byrnes et al. 2006; Arroja and Koyama 2008).
Of course, when we consider higher order correlation functions, the calculations
become more and more complicated. In the previous sub-section, we calculated the
action at third order in the perturbations in order to derive the inflationary three-
point correlation function. In order to calculate the four-point correlation function,
one therefore needs to evaluate the perturbed action at fourth order. In order to get
an idea of how involved it can be, let us consider again Eq. (124) but expanded up
to third order

R.�; x/ D RG.�; x/� 3 fNL

5
R2

G
.�; x/C 9

25
gNLR3

G
.�; x/ � � � ; (145)

thus introducing the parameter gNL . Here, we write fNL in order to avoid cumbersome
notations but it should be clear that fNL D f loc

NL
(and this will be the case in the rest of
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this section). The cube of the curvature perturbation can be expressed as

R3
G
.�; x/ D 1

.2�/3=2

Z
dk .2�/�3

Z
dp dqRk�p�q Rp Rq e�ik�x; (146)

which allows us to identify the Fourier transform of the cube of the curvature
perturbation [as we identified the Fourier transform of the square of the curvature
perturbation in Eq. (126)]. Then, the four-point correlator takes the form

˝Rk1Rk2Rk3Rk4
˛ D

��
RG

k1
� 3 fNL

5
.2�/�3=2

Z
dp1RG

p1
RG

k1�p1
C 9gNL

25
.2�/�3

Z
dp1dq1RG

k1�p1�q1
RG

p1
RG

q1

�

�
RG

k2
� 3 fNL

5
.2�/�3=2

Z
dp2RG

p2
RG

k2�p2
C 9gNL

25
.2�/�3

Z
dp2dq2RG

k2�p2�q2
RG

p2
RG

q2

�

�
RG

k3
� 3 fNL

5
.2�/�3=2

Z
dp3RG

p3
RG

k3�p3
C 9gNL

25
.2�/�3

Z
dp3dq3RG

k3�p3�q3
RG

p3
RG

q3

�

�
RG

k4
� 3 fNL

5
.2�/�3=2

Z
dp4RG

p4
RG

k4�p4
C 9gNL

25
.2�/�3

Z
dp4dq4RG

k4�p4�q4
RG

p4
RG

q4

��
:

(147)

Expanding this expression, one arrives at the following formula

˝Rk1Rk2Rk3Rk4
˛ D

D
RG

k1
RG

k2
RG

k3
RG

k4

E

� 3 fNL

5
.2�/�3=2

�Z
dp4

D
RG

k1
RG

k2
RG

k3
RG

p4
RG

k4�p4

E
C three permutations

�

C 9

25
f 2
NL
.2�/�3

�Z
dp1

Z
dp2

D
RG

p1
RG

k1�p1
RG

p2
RG

k2�p2
RG

k3
RG

k4

E
C five permutations

�

C 9

25
gNL.2�/

�3
�Z

dp4

Z
dq4

D
RG

k1
RG

k2
RG

p3
RG

k4�p4�q4
RG

p4
RG

q4

E

C three permutations
�

C � � � ; (148)

where the dots denote higher order terms. The first term in the above expansion is
non-vanishing but can be expressed as the square of two-point correlation functions
and will be ignored in the following. The second term is zero since it involves five-
point correlation functions of Gaussian quantities. The two last terms are the terms
of interest. We see that they are given in terms of a six-point correlation function,
a quantity which is not zero for Gaussian quantities. These terms can be evaluated
by means of the Wick’s theorem and lead to the sum of fifteen terms, each of them
being made of the product of three two-point correlation functions. For the term
proportional to f 2

NL
, among the fifteen only eight of them actually contribute. An
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example of a term contributing is given by

Z
dp1dp2

D
RG

p1
RG

p2

E D
RG

k1�p1
RG

k3

E D
RG

k2�p2
RG

k4

E

D
Z

dp1dp2
.2�/2

2p31
PR. p1/ı.3/.p1 C p2/

.2�/2

2k33
PR.jk1 � p1j/ı.3/.k1 � p1 C k3/

� .2�/2

2k34
PR.jk2 � p2j/ı.3/.k2 � p2 C k4/

D .2�/6

8

Z
dp1

PR. p1/
p31

PR.jk1 � p1j/
k33

PR.jk2 C p1j/
k34

ı.3/.k1 � p1 C k3/

� ı.3/.k2 C p1 C k4/

D .2�/6

8

1

jk1 C k3j3k33k34
PR.jk1 C k3j/PR.k3/PR.k4/ı.3/.k1 C k2 C k3 C k4/:

(149)

In fact among the eight terms mentioned above, four are identical to the one we have
just calculated and the remaining four are all given by Eq. (149), but with jk1 C k3j
replaced with jk1Ck4j. On the other hand, an example of a non-contributing term is

Z
dp1dp2

D
RG

p1
RG

k1�p1

E D
RG

p2
RG

k2�p2

E ˝
RG

k3
RG

k4

˛
: (150)

We see that the first two-point correlation function appearing in the above integral
will lead to a term proportional to ı.3/.p1 C k1 � p1/ D ı.3/.k1/, which, in some
sense, is homogeneous. This explains why the term in Eq. (150) can be ignored.

Let us now come back to Eq. (148) and consider the term proportional to gNL .
Using again Wick’s theorem, this term can be expressed as the sum of fifteen
terms made of the product of three two-point correlation functions. Among these
fifteen terms, only six participate to the final expression (and they all give the same
contribution). One example is

Z
dp4dq4

D
RG

k1R
G
k4�p4�q4

E D
RG

k2RG
p4

E D
RG

k3RG
q4

E

D
Z
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.2�/2

2k31
PR.k1/ı.3/.k1 C k4 � p4 � q4/

.2�/2

2k32
PR.k2/ı.3/.k2 C p4/

� .2�/2

2k33
PR.k3/ı.3/.k3 C q4/

D .2�/6

8

1

k31k
3
2k
3
3

PR.k1/PR.k2/PR.k3/ı.3/.k1 C k2 C k3 C k4/: (151)



80 J. Martin

Putting everything together, one obtains the following expression

˝Rk1Rk2Rk3Rk4

˛ D 9f 2
NL

25
.2�/�3

�
4 � .2�/6

8

1

jk1 C k3j3k33k34
PR.jk1 C k3j/PR.k3/PR.k4/

Celeven permutations

�
ı.3/.k1 C k2 C k3 C k4/C 9gNL

25
.2�/�3

�
6� .2�/6

8

1

k31k
3
2k
3
3

�PR.k1/PR.k2/PR.k3/C three permutations

�
ı.3/.k1 C k2 C k3 C k4/ (152)

D 36f 2
NL

25
.2�/�3

�
j fk1Ck3 j2j fk3 j2j fk4 j2 C eleven permutations

�
ı.3/.k1 C k2 C k3 C k4/

C54gNL

25
.2�/�3

�
j fk1 j2j fk3 j2j fk3 j2 C three permutations

�
ı.3/.k1 C k2 C k3 C k4/:

(153)

The fact that we have eleven permutation in the first term comes from the fact that
we had six terms and that each of these terms separates in two groups. At the end,
this gives twelve terms. Usually, the definition of the trispectrum is given in terms
of NRk (see the above discussions about conventions) and reads

˝ NRk1
NRk2

NRk3
NRk4

˛ D .2�/3TR.k1; k2; k3; k4/ı.3/.k1 C k2 C k3 C k4/; (154)

with

TR.k1; k2; k3; k4/ D �NL

�
j fk1Ck3 j2j fk3 j2j fk4 j2 C eleven permutations

�

C 54gNL

25

�
j fk1 j2j fk3 j2j fk3 j2 C three permutations

�
: (155)

One can check that our result (153) matches exactly this form provided that

�NL D 36f 2
NL

25
: (156)

This equation is called the Suyama-Yamaguchi consistency relation (Suyama et al.
2010) (more precisely, it is in fact a particular case of �NL 
 36f 2

NL
=25). The above

equation indicates that the tri-spectrum is expected to be quadratic in the slow-
roll parameters and, hence, even harder to detect than the three-point correlation
function. Of course, it should be stressed again that the scale dependence of
Eq. (155) is not what would emerge from an exact calculation starting from the
perturbed action at fourth order. In Sect. 5, we will discuss the constraints put by the
Planck experiment on the tri-spectrum.
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4.4 Adiabatic and Isocurvature Perturbations

Another important consequence that follows from the Planck data is that the
perturbations are adiabatic. Before discussing in more detail in Sect. 5 how this
conclusion is reached, we now explain what it means and what it implies for
inflation.

The post inflationary Universe is made of four fluids: photons, neutrinos, baryons
and cold dark matter (we are ignoring dark energy). In order to calculate the CMB
anisotropies, one needs to integrate the equations governing the behavior of these
four fluids. But we also need to specify initial conditions, just after inflation, at the
onset of the radiation dominated era. Different initial conditions will lead to different
subsequent evolutions and, therefore, to different CMB patterns. Adiabaticity refers
to a situation where one has (Bucher et al. 2000)

ıcdm D ıb D 3

4
ı� D 3

4
ı�; (157)

where ıX � ı�X=�X is the density contrast (“cdm” stands for cold dark matter, “b”
for baryons, � for photons and � for neutrinos). It may be surprising that CMB
data single out particular initial conditions and it is interesting to discuss why the
conditions (157) play an important role. Equally important is the question of what
they can teach us about inflation: after all, these initial conditions are the results of
what happened during inflation. As a consequence, they certainly tell us something
about the type of inflationary expansion that took place in the early Universe.

Let us start by giving the equations controlling the evolution of the four fluids
mentioned before. Each fluid is characterized by its density contrast ıX and by its
velocity vX . From energy conservation, one can derive the following equations

.ıc � 3‰/0 � k2vc D �0
c � k2vc D 0; (158)

.ıb � 3‰/0 � k2vb D �0
b � k2vb D 0; (159)

	
ı� � 4‰


0 � 4

3
k2v� D �0

� � 4

3
k2v� D 0; (160)

.ı� � 4‰/0 � 4

3
k2v� D �0

� � 4

3
k2v� D 0; (161)

where ‰ is the second Bardeen potential already considered before (but, in the
present context, we no longer necessarily have ‰ D ˆ) and where the quantities
�X are defined by the above equations. The space component of the conservation
equation gives an equation for the velocities. For cold dark matter, one obtains

v0
c C Hvc Cˆ D 0; (162)
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where ˆ is the other Bardeen potential. In the early Universe, baryons and photons
are tightly coupled. This means that vb D v� � vb� . The corresponding equation of
motion reads

v0
b� C R

1C R
Hvb� CˆC 1

4

ı�

1C R
C 4�b�

3a��

R

1C R
k2vb� D 0; (163)

where �b� is the viscosity (or anisotropic stress) of the fluid made of baryons
and photons and R is three quarters of the baryon to photon energy density ratio,
namely R � 3�b=.4��/. Finally, the conservation equation for the neutrinos can be
written as

v0
� CˆC 1

4
ı� C ��

a��
k2v� D 0; (164)

where �� is the neutrinos viscosity (notice that the viscosity does not appear in the
time component of the conservation equations). Since the above formulas contain
the two Bardeen potentials, they must be supplemented by additional equations
governing the behavior of ˆ and ‰. These are of course the perturbed Einstein
equations. By combining the time-time and time-space Einstein equations, one
arrives at

� k2

H2
‰� 9

2
‰
X
X

�X.1CwX/ D 3

2

X
X

�X�X � 9
2
H
X
X

�X.1CwX/vX; (165)

where the sum runs over the four species mentioned above, where wX is the equation
of state parameter of the fluid X and H � a0=a. Finally the space component of the
Einstein equations (with i ¤ j) leads to

k2

H2
.ˆ �‰/ D 6k2

a�cri

	
�b�k

2vb� C ��k
2v�


; (166)

where we remind that �cri is the critical energy density. At this stage we have all
the equations necessary to understand the behavior of the four fluids: we have
ten quantities (namely four ıX, four vX , ‰ and ˆ) and ten equations, namely
Eqs. (158)–(166) (the tenth equation is simply vb D v� ). The only thing which
remains to be done is to specify the initial conditions. Integrating this system of
ten equations analytically is not possible (even if linear). This has to be done
numerically. However, since we are mainly interested in the behavior of the system
on large scales, the problem gets simplified. Indeed, let us introduce the quantity,
introduced by Bardeen, Steinhardt and Turner, �BST defined by Bardeen et al. (1983)
and Martin and Schwarz (1998)

�BST D �‰ � H
�0 ı� D

X
X

�0
X

�0 �X ; (167)
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where � D P
X �X is the total energy density and �X can be expressed as

�X D �‰ C ıX

3 .1C wX/
: (168)

From Eqs. (158)–(161), we see that, on large scales (where the terms / k2vX go to
zero), each �X is conserved, namely � 0

X D 0. Now, we understand the particular role
of the conditions (157). Indeed, they amount to simply choose

�cdm D �b D �� D �� � �adia: (169)

and, in this case, we have

�BST D �adia

X
X

�0
X

�0 D �adia; (170)

which is a constant. Therefore, for adiabatic initial conditions, the quantity �BST is
conserved on large scales. Another way to see the same thing is to differentiate �BST

(using the expression of ı�0 obtained from energy conservation). Then, one arrives
at the following equation

� 0
BST

D � H
� C p

ıpnad � 1

3
@i@

iv.gi/ ; (171)

which shows that, on large scales, the conservation of �BST is controlled by the
non-adiabatic pressure [here, v.gi/ is the scalar component of the gauge-invariant
velocity]. This quantity is defined by the following expression

ıpnad D ıp � c2
S
ı� ; (172)

where ı�, ıp are the total perturbed energy density and pressure, respectively. The
quantity c2

S
� p0=�0 is the (total) sound velocity. In the case where one has two

fluids (in order to keep things simple), expressing the perturbed energy density and
the perturbed pressure explicitly, one arrives at

ıpnad D 	
ıp1 � c2

S1
ı�1

C 	

ıp2 � c2
S2
ı�2



C 	
c2

S1
� c2

S2


 .�1 C p1/ .�2 C p2/

�C p
S12 ; (173)

where S12 is given by

S12 D ı�1

�1 C p1
� ı�2

�2 C p2
D 3 .�1 � �2/ : (174)



84 J. Martin

and where cSi � p0
i=�

0
i. The non-adiabatic pressure contains two contributions. The

terms ıpi � c2
Si
ı�i originate from intrinsic entropy perturbations (if any) of the fluids

under consideration while the term proportional to S12 represents the entropy of
mixing. Let us summarize: for adiabatic perturbations, �BST is a conserved quantity.
For non adiabatic perturbations, this quantity can evolve even on large scales and
this evolution is given by Eq. (167).

Let us also remark that one can work in terms of the quantity � defined by Martin
and Schwarz (1998) and already introduced before

� D ˆC 2

3

H�1ˆ0 Cˆ

1C !
: (175)

If one has ‰ D ˆ, then

�BST D �� � k2

3�1H2
ˆ ; (176)

and, in the standard situation, when there is no entropy perturbations, the quantities
� and �BST are both conserved on super-Hubble scales. Notice that, strictly speaking,
� stays constant only in absence of shear viscosity.

Let us now try to understand how the presence or the absence of adiabatic pertur-
bations can affect CMB anisotropies. On large scales, the temperature fluctuations
can be expressed as

ıT

T
' 1

4
ı� jlss Cˆjlss; (177)

where “lss” means “last scattering surface” and indicates when the radiation density
contrast and the Bardeen potential must be evaluated. Since last scatterings occur
during the matter dominated era, using the time-time component of the perturbed
Einstein equation, one obtains �2ˆjlss ' Rcdmıcdmjlss C Rbıbjlss where Rcdm �
�cdm=.�cdm C �b/ and Rb � �b=.�cdm C �b/. It is conventional to measure the
non-adiabatic perturbation with respect to photons. Therefore, one introduces the
notation SX � SX� � 3.�X � ��/. Then, one obtains

ˆjlss D �3
5
�� � 1

5
RcdmScdm � 1

5
RbSb; (178)

where we recall that Rb and Rcdm are evaluated at last scattering. Notice also
that, in principle, we do not need a subscript “lss” for �X or SX because they are
constant (in time) quantities since �X is conserved. In particular, they should be
viewed as the value of �X at the onset of the radiation dominated era, just after
inflation and, therefore, SX could also be written as Sini

X in order to emphasize
this point. To calculate the temperature anisotropies, we use Eq. (177) and write
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ıT=T D ı�=4jlss Cˆlss D �� C 2ˆjlss. As a result, one obtains

ıT

T
D �1

5
�� � 2

5
RcdmScdm � 2

5
RbSb: (179)

Finally, during the Radiation Dominated (RD) era, one can write

�RD D R��� C R��� D �� C R�
S�
3
; (180)

with R� � ��=.�� C ��/ and R� � ��=.�� C ��/, these quantities being evaluated
during the RD era. Using Eq. (180) to obtain an expression of �� and using this
expression in Eq. (179), it follows that

ıT

T
D �1

5
�RD � 2

5
RcdmScdm � 2

5
RbSb C 1

15
R�S�; (181)

which coincides with Eq. (7) of Gordon and Lewis (2003). The term �RD=5 repre-
sents the adiabatic contribution. In fact, one can also define an effective isocurvature
mode taking into account both cold dark matter and baryons entropy fluctuations by
defining

Seff
cdm � Scdm C Rb

Rcdm
Sb; (182)

such that Eq. (181) now reads

ıT

T
D �1

5
�RD � 2

5
RcdmS

eff
cdm C 1

15
R�S�: (183)

We therefore have two adiabatic modes that are, as will be seen in Sect. 5, denoted
by the Planck collaboration CDI (for the effective cold dark matter) and NDI (for
neutrinos). In fact, there is a third mode, NVI, related to neutrinos velocity. Since the
expression of the temperature is modified by the presence of isocurvature modes, the
temperature multipole moments will also be affected, for concrete and quantitative
results see for instance Langlois and Riazuelo (2000). As a consequence, when
compared to the CMB data, one can put constraints on their amplitude.

As will be discussed in Sect. 5, so far, CMB measurements are consistent
with adiabaticity. This gives non trivial information about inflation. Indeed, if non
adiabatic perturbations were observed it would mean that inflation can not be driven
by a single scalar field. As for Non-Gaussianities, this would have implied that
single-field slow-roll inflation with a standard kinetic term were ruled out. This
class of models has therefore passed another non-trivial test. Of course, this is
the situation now and this could very well change in the future. In that case,
what would be the implications for inflation? A natural explanation would be to
have multiple field inflation and we now explain in detail why using a simple
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example (Polarski and Starobinsky 1992, 1994; Peter et al. 1994; Langlois 1999;
Langlois and Riazuelo 2000; Gordon et al. 2001; Amendola et al. 2002; Bartolo
et al. 2001; Wands et al. 2002; Gordon and Lewis 2003; Byrnes and Wands 2006;
Wands 2008; Choi et al. 2009).

Assume that, instead of having one field, we now have a collection of fields that
all play a role during inflation. For simplicity, and because we want to be explicit, let
us consider the case where we have two fields, �h and �`, and where the potential is
quadratic for each field, without interaction term, namely V D VhCV` � m2h�

2
h=2C

m2`�`=2. Then, the equations of motion for the background are given by

H2 D �

3

�
1

2
P�2h C 1

2
P�2` C 1

2
m2h�

2
h C 1

2
m2`�

2
`

�
; (184)

R�h C 3H P�h C m2h�h D 0; (185)

R�` C 3H P�` C m2`�` D 0; (186)

where, as is standard in the literature, we have used notations that make obvious
the fact that one field is heavy and the other light, meaning that R � mh=m` > 1

[not to be confused with the R introduced in Eq. (163)]. These equations cannot be
solved exactly but one can use the slow-roll approximation. The first Hubble flow
parameter is given by, see Eq. (34)

�1 D �

2H2

	 P�2h C P�2`


; (187)

and �1 � 1 implies that � P�2h=.2H2/ � 1 and � P�2`=.2H2/ � 1. These two
conditions are similar to what would be obtained in the single-field case. This means
that, as usual, the kinetic term can be neglected in the Friedmann equation. On the
other hand, the second Hubble flow parameter can be written as

�2 D 2�1 C 2

H

R�h P�h C R�` P�`
P�2h C P�2`

: (188)

In the single-field case, this relation reduces to �2 D 2�1 C 2 R�=.H P�/ and the
acceleration in the Klein-Gordon equation can also be neglected since �2 �
1 implies that R�=.H P�/ � 1. However, in the two-field case, the properties
R�h=.H P�h/ � 1 and R�`=.H P�`/ � 1 cannot be deduced from �2 � 1. As a

consequence, neglecting the acceleration in the Klein-Gordon equations for the
heavy and light fields is in fact an additional assumption that we will make in the
following. Then, using that PH D �� 	 P�2h C P�2`



=2 (which, by the way, shows that

the Hubble parameter always decreases) and the slow-roll Klein-Gordon equation
to relate the first time derivative of the fields to the derivative of the potential, one
obtains

�1 ' 2M2
Pl

R4�2h C �2`	
R2�2h C �2`


2 : (189)
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If the heavy field dominates, R�h � �` or, equivalently, mh�h � m`�`, then �1 '
2M2

Pl=�
2
h . As expected, this expression is similar to that one would obtain in single

Large Field Inflation (LFI). And if the light field dominates, i.e. if �` � R2�h, then
�1 ' 2M2

Pl=�
2
` . Therefore, we will assume the following initial conditions which

guarantee that slow-roll is valid

�h � p
2MPl; �` � p

2MPl; R�h � �`: (190)

The second condition is a priori less obvious so let us discuss it a little bit more. The
domination of the heavy field comes to an end when R�h D �`. At this transition,
the first Hubble flow parameter is given by �1t D 2M2

Pl.1CR2/=�2`t. So inflation does
not stop provided �`t � p

2
p
1C R2MPl 	 p

2RMPl. Since the light field is almost
constant during the phase dominated by the heavy field (see below), this justifies
our initial condition. But it is also possible to consider a situation where inflation
stops at the transition, namely �`t <

p
2RMPl (Polarski and Starobinsky 1992, 1994;

Peter et al. 1994). After the transition, �1 ' 2M2
Pl=�

2
` and if one wants inflation to

start again, one needs the condition (190) for the light field.
As long as the slow-roll approximation is valid, the equations of motion can be

integrated and the solution for the field vacuum expectation values reads (Polarski
and Starobinsky 1992, 1994; Peter et al. 1994)

�h D
r
4s

�
sin Œ�.s/� ; �` D

r
4s

�
cos Œ�.s/� ; (191)

while the Hubble parameter is given by

H2.s/ D 2s

3
m2`
�
1C 	

R2 � 1



sin2 �
�
: (192)

This is a parametric representation of the solution in terms of the variable s defined
by s D � ln.a=aend/, with

s D s0
.sin �/2m

2
`=.m

2
h�m2`/

.cos �/2m
2
h=.m

2
h�m2`/

: (193)

The initial phase, dominated by the heavy field, corresponds to � ! �=2, s ! 1,
�1 ! 0 and �h=�` D tan � ! 1. As already mentioned, this happens when
mh�h > m`�` or � < �t where the “transition angle” �t is given by tan �t � R�1.
The fact that R > 1 implies that �t < �=4. If R � 1 then �t ' R�1 is a small angle.
In that case (i.e. R � 1), in the regime where � � �t (i.e. � is not a small angle),
we have the following behavior for s: s ' s0 cos�2 � . This implies that the heavy
and light fields are given by

�h '
r
4s0
�

tan � � MPl; �` '
r
4s0
�
: (194)
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In this regime, the heavy field is super-Planckian and the model is effectively
equivalent to large field inflation (LFI). This is confirmed by writing the Friedmann
Eq. (192) using Eq. (194)

H2 ' 2s

3
m2`R

2 sin2 � D 2s0
3

m2h tan2 � D �

6
m2h�

2
h ; (195)

which is exactly the Friedmann equation for LFI. On the other hand, as announced
above, the light field is frozen and its back-reaction is negligible. This provides an
interpretation for the parameter s0: it is nothing but the vacuum expectation value of
the frozen light field. Let us also notice that the condition �` � p

2MPl translates
into s0 � 1=2. Moreover the condition for avoiding an interruption of inflation
reads s0 � R2=2.

Then, the next question is to calculate the behavior of the two scalar fields after
the transition. The light field now drives the expansion of space-time. The situation
is a little subtle because one can still have PH � H2 but 3H P�h ¤ �m2h�h. In
other words, the background still inflates but the heavy field, that has become a
test field, is not necessarily in slow-roll. In that case, this, in principle, invalidates
Eqs. (191)–(193) since they all assume PH � H2 and the two fields in slow-roll: in
other words, having the kinetic terms negligible in the Friedmann equation and only
one field in slow-roll is not sufficient to derive Eqs. (191)–(193). In that case, we
need to return to the exact Klein-Gordon equation for the heavy field. If we write
�h D a�3=2fh, then it takes the form

Rfh �
�
3

2

�
PH C 3

2
H2

�
� m2h

�
fh D 0: (196)

Since the background is still in slow-roll, one can neglect the term PH in the above
equation. Then, we see that the behavior of the field depends on the ratio H=mh.
Since H is decreasing, the term proportional to the mass necessarily becomes
dominant at some time and then the field oscillates, namely

�h ' a�3=2 cos .mht/ : (197)

The frequency of the oscillations is given by the mass of the field. The amplitude
of the oscillations decreases as / a�3=2 and, therefore, the heavy field becomes
negligible very rapidly. During the oscillations of the heavy field, inflation continues
driven by the light field. It comes to an end when the vacuum expectation of the light
field becomes sub-Planckian.

Having described the behavior of the background, we can now turn to the
perturbations. They are described by the Bardeen potential already introduced
before, ˆ, and the two perturbed scalar fields ı�h and ı�`. The corresponding
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equations of motion read

P̂ C Hˆ D �

2

	 P�hı�h C P�`ı�`


; (198)

Rı�h C 3H Pı�h C
�
k2

a2
C m2h

�
ı�h D 4 P�` P̂ � 2m2`ˆ�`; (199)

Rı�` C 3H Pı�` C
�
k2

a2
C m2`

�
ı�` D 4 P�` P̂ � 2m2`ˆ�`: (200)

Unfortunately, this system of equations cannot be solved analytically. However, on
large scales, namely for wavelengths larger than the Hubble radius, the expression
of the growing mode of the Bardeen potential and of the two perturbed scalar fields
can be established. They read (Polarski and Starobinsky 1992, 1994; Peter et al.
1994)

ˆ D �C1
PH
H2

� H
d

dt

�
dhVh C d`V`
Vh C V`

�
; (201)

ı�h

P�h
D C1

H
� 2H

�
dhVh C d`V`
Vh C V`

� dh

�
; (202)

ı�`
P�`

D C1
H

� 2H
�
dhVh C d`V`
Vh C V`

� d`

�
; (203)

where C1.k/, dh.k/ and d`.k/ are integration constants. At this point, the following
remark is in order. We have seen that, in the theory of cosmic inflation, the source
of the perturbations are the quantum vacuum fluctuations. This of course remains
true in a model where we have several scalar fields. This means that the quantities
ˆ, ı�h and ı�` are in fact quantum operators. A convenient way to describe this
situation without introducing all the machinery of quantum field theory is simply to
write that the amplitude of the perturbed fields at Hubble radius crossing are given
by ı�h D H=

p
2k3eh.k/ and ı�` D H=

p
2k3e`.k/, where eh.k/ and e`.k/ are two

independent Gaussian stochastic processes satisfying heh.k/i D he`.k/i D 0 and
heh.k/eh.k0/i D ı.3/.k � k0/, he`.k/e`.k0/i D ı.3/.k � k0/, heh.k/e`.k0/i D 0. This
parametrization raises in fact non trivial questions such as the quantum-to-classical
transition of quantum cosmological perturbations but, in this review, we will not
discuss these issues (Grishchuk and Martin 1997; Polarski and Starobinsky 1996;
Martin et al. 2012).
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Then, let us simplify the expression of the perturbed heavy scalar field, see
Eq. (202), by using the explicit form of the potential. One arrives at

ı�h

P�h
D D C1

H
� 2H .d` � dh/

V`
Vh C V`

(204)

D C1
H

� 2H .d` � dh/
m2`�

2
`

m2h�
2
h C m2`�

2
`

(205)

' C1
H

C 2HC3; (206)

where C3 � dh � d` and where, in the last equality, we have assumed that the light
field was dominant (namely the second phase of inflation). Then, one can use the
slow-roll relation 3H P�h ' �m2h�h and obtains

ı�h ' �C1
3

m2h
H2
�h � 2

3
C3m

2
h�h ' �2

3
C3m

2
h�h; (207)

where, in the last equality, we have used the fact that, before the onset of oscillations,
H � mh. Then, as already mentioned above, the field starts oscillating and the
slow-roll approximation is no longer valid. As a consequence, the above equations
can no longer be used. During the oscillations, one has equipartition between the
kinetic and potential energy. As a consequence, h�hi ' m2h�2hi. This implies that
ı�h ' m2h2�hı�h and, therefore,

ı�h

�h
' 2

ı�h

�h
: (208)

But, in fact, the perturbed Klein-Gordon equation for large scales modes, if one
neglects its right hand side, is the same as the background Klein-Gordon equation
provided the potential is quadratic in the field (which is precisely the case in the
present situation). As a consequence, ı�h is in fact always proportional to �h, the
slow-roll approximation being satisfied or not. In other words, ı�h=�h and hence
ı�h=�h are constant. So if we assume that the heavy field decays into cold dark
matter after its oscillations, one has (Polarski and Starobinsky 1992, 1994; Peter
et al. 1994)

ıcdm D ı�h

�h

ˇ̌̌
ˇ
end osci

D ı�h

�h

ˇ̌̌
ˇ
start osci

D 2
ı�h

�h

ˇ̌̌
ˇ
start osci

D �4
3
C3.k/m

2
h: (209)

We conclude that, if one is able to express the constant C3.k/, then one can establish
the expression of the cold dark matter density contrast. But this is in fact an easy
task. Indeed, reproducing the same calculation as the one which led to Eq. (205),
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one obtains

ı�`
P�`

D C1
H

� 2HC3
m2h�

2
h

m2h�
2
h C m2`�

2
`

: (210)

Then, using this formula and Eq. (205), one can eliminate C1.k/ and find an
expression for C3.k/. Straightforward manipulations lead to

C3.k/ D � 1

2H

�
ı�`
P�`

� ı�h

P�h

�
: (211)

The next step is to replace the derivatives of the fields by their slow-roll expressions
and ı�h by Heh=

p
2k3 (and a similar expression for ı�`) as was discussed after

Eq. (203). One arrives at

C3.k/ D 3H

2m2h

1p
2k3

�
m2h
m2`
��1
` e` � ��1

h eh

�
: (212)

Finally, one can estimate the entropy perturbation. According to the definitions
introduced before, see Eq. (174), one has Scdm � Scdm� � 3

	
�cdm � ��


 D
ıcdm � 4ı�=3 ' ıcdm because ı�cdm 	 ı�� and, during the radiation dominated
era, �� � �cdm. As a consequence, one has

Scdm;k ' �
r
2

k3
H
�
R2��1

` e`.k/� ��1
h eh.k/

�
; (213)

where the quantities H, �h and �` should be viewed here as scale dependent
quantities since they are expressed at Hubble radius crossing. In fact, as will
be discussed in Sect. 5, their scale dependence permits the calculation of the
isocurvature perturbations power spectrum. With these equations, one can now
predict the CMB temperature anisotropies by using Eq. (181). But, in fact, the most
important conclusion is of course that Scdm;k ¤ 0. This means that, in a model of
inflation with more than one field, isocurvature perturbations can be produced. This
justifies our claim that, if non-adiabatic perturbations are observed in the future, a
natural explanation will be to consider that several scalar fields play a role during
inflation.

In fact, there is even more. Indeed, during the radiation dominated era, the
adiabatic perturbations can be written as �RD D 3ˆ=2 D C1.k/. The constant C1.k/
can also be evaluated easily using the solutions (202) and (203). The corresponding
expression reads

�RD D ��
2

Hp
2k3

Œ�heh.k/C �`e`.k/� : (214)
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In particular, one has introduced before the power spectrum of the conserved
quantity �k according to h�k1��

k2
i D 2�2=k31P.k1/ı.3/.k1�k2/.3 In the same manner,

one can define the power spectrum of the non-adiabatic perturbations by

hScdm;k1S
�
cdm;k2i � 2�2

k31
PScdm.k1/ı

.3/ .k1 � k2/ : (215)

But the most important aspect of the above calculations is that adiabatic and
isocurvature perturbations turn out to be correlated (Langlois 1999; Langlois and
Riazuelo 2000). This means that the correlator h�k1S�

cdm;k2i is non-vanishing. This
correlator can be expressed as

<h�k1S�
cdm;k2i � 2�2

k31
C�;Scdmı

.3/ .k1 � k2/ : (216)

This is because the expressions of �k, see Eq. (214), and Scdm;k, see Eq. (213), both
depend on eh and e`. From the above definition, let us also notice that one can define
a correlation spectrum by

P�;Scdm � C�;Scdmp
P�
p
PScdm

: (217)

Let us stress that, when one constrains the amplitude of isocurvature modes using
the CMB data, it is of course important to take into account the fact that adiabatic
and isocurvature perturbations can be correlated. As we will see in the next section,
this was done in the analysis of the Planck data.

5 Inflation After Planck

We have previously studied the predictions of inflation for different cosmological
observables. In this section, we review what is experimentally known about these
observables and discuss the corresponding implications for cosmic inflation.

The Planck CMB data have been released for the first time in 2013 (Ade
et al. 2014a) and, more recently, in 2015, new measurements have been made
public (Planck 2015). Planck 2013 has measured the CMB temperature anisotropies
and the corresponding multipole moments CTT

` are represented in Fig. 4. Let us
remind that these quantities are defined as follows. After foregrounds subtraction,
the Planck measurements can be used to construct a map of the CMB temperature

3Notice that this expression is consistent with the definition given above, in the text between
Eqs. (73) and (74), namely h�k1 �k2i D 2�2=k31P.k1/ı.3/.k1 C k2/ because �

�k2 D ��

k2 .
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Fig. 4 Temperature anisotropy multipole moments obtained from the Planck 2013 data versus the
angular scale ` (notice that, for ` 	 49, the scale is logarithmic). The gray points denote the value
of the multipole C` for each ` while the blue points represent the value of C` averaged in bands
of width �` ' 31. The red solid line shows the prediction of the best fit six-parameters ƒCDM
model. The error bars correspond to ˙1 uncertainties. The lower panel shows the residual signal
once the best fit model has been subtracted. Figure taken from Ade et al. (2014a)

anisotropy, namely

ıT

T
.e/ D

X
`m

a`mY`m.e/; (218)

where Y`m are the spherical harmonics and where the vector e specifies a direction
in the sky. In practice, ıT=T can be expressed as

ıT

T
.e/ D

Z
dk

.2�/3=2

�
F.k/C G.k/

@

@�0

�
eidAk�e=a.�lss/ ; (219)

where dA D a.�lss/r0 C a.�lss/ .�0 � �lss/ (r0 being Earth’s radial coordinate and
�0 denoting the present time) is the angular distance to the surface of last scattering
and the quantity k=a.�lss/ represents the physical wavenumber of the Fourier mode
under consideration at the time of recombination. The quantities F.k/ and G.k/
encode the behavior of cosmological perturbations and are called “form factors”
in Weinberg (2002). Already at this stage, we see that the configuration where the
wavelengths of the perturbations become equal to the angular distance of the last
scattering surface plays a preferred role. Then, the two-point correlation function in
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Fig. 5 Same as Fig. 4 but with the Planck 2015 data. Notice that the quantity D` is defined by
D` D `.`C 1/C`=.2�/. This plot should be compared to Fig. 4. Figure taken from Planck (2015)

real space can be written as

�
ıT

T
.e1/

ıT

T
.e2/

�
D 1

4�

C1X
`D0
.2`C 1/CTT

` P`.cos �/; (220)

where � is the angle between the two vectors e1 and e2. This expression defines the
multipole moments CTT

` .
The big novelty of the Planck 2015 data (Planck 2015; Ade et al. 2015a) is that

they not only lead to a more accurate measurements of the CTT
` , see Fig. 5, but they

also provide measurements of the E-mode CMB polarization. One can then define
quantities similar to the CTT

` for the correlation between temperature and E-mode
polarization fluctuations and for the E-mode power spectrum. The corresponding
multipole moments CTE

` and CEE
` are represented in Figs. 6 and 7.

Before focusing on the consequences of these data for inflation, let us briefly
discuss their implications for the standard model of Cosmology. It is important
to understand that the constraints on the cosmological parameters can depend
on the model analyzed and on the data used to perform the analysis. In 2013,
Planck used the temperature anisotropy measurement plus the WMAP polarization
measurement on large scales (` � 23), the corresponding likelihood function
being denoted PlanckTT+WP. In 2015, at least five different likelihoods have been
used: PlanckTT utilizes temperature data only and is an hybrid, meaning that the
temperature likelihood is not the same for low multipoles (` � 30) and high
multipoles; PlanckTT+lowP makes use of PlanckTT and low-` polarization data;
PlanckTE+lowP corresponds to the TE likelihood at ` 
 30 plus low-` polarization
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data only; PlanckTT,TE,EE +lowP makes use of the TT, TE and EE likelihoods at
` 
 30 and of the temperature and polarization data at small scales. Depending on
which likelihood is used, the constraints on cosmological parameters can slightly
change.

The theoretical framework used to analyze the data is the flat [i.e. K D 0 in
Eq. (1)] ƒCDM model. In order to specify it, we need to know the energy budget
of the Universe, i.e. the photon energy density �� , the neutrino energy density �� ,
the baryons energy density �b, the cold dark matter energy density �c and the dark
energy density �ƒ (here assumed to be a cosmological constant). Then, in principle,
on can calculate the behavior of the scale factor a.t/ since we know � � P

i �i in
the right hand side of the Friedmann Eq. (1). Of course we also need the Hubble
rate today, H0 or h � H0=.100 km � s�1 � Mpc�1/ which is, therefore, another
free parameter. We also need the power spectrum of scalar fluctuations assumed
to be of the power-law form P.k/ / ASk

nS �1 where AS is the amplitude of the
fluctuations and nS the spectral index. Here, gravitational waves are supposed to be
absent, r D 0. So, in this simple framework, the perturbations are characterized by
two numbers. In the case of inflation, we need three parameters, the amplitude of
scalar fluctuations and the two first slow-roll parameters. We notice (again!) that the
parametrization used here is different from what we generically obtain from inflation
where the power spectrum is not of the power-law form and where r is necessarily
non-vanishing (but can be very small). Finally, we need a parameter describing
reionization and we take the optical depth � . The interpretation of this parameter is
as follows. After recombination, the photons are supposed to propagate freely from
the surface of last scattering to us. However, at the epoch of the formation of the
first stars, estimated to be zre 	 10, the Universe is ionized again. As a consequence,
some of the CMB photons scatter off free electrons again. The probability to “avoid”
this additional scattering is e�� where

� � T

Z tnow

tre

nedt; (221)

is the optical depth. In this expression, T is the Thomson cross-section and ne is the
number density of free electrons. When additional scattering occur, the direction
of the photon change randomly and this washes out the CMB anisotropy on small
angular scales, ` > `re, namely a`m ! a`me�� . For ` < `re, the CMB anisotropies
are not changed. The value of `re clearly depends on zre. The previous considerations
imply that, on small scales, the amplitude of the fluctuations becomes AS e�2� and
there is therefore a partial degeneracy between AS and � .

In the Planck papers, one of the free parameters is in fact taken to be �MC, where
the subscript “MC” reminds that this quantity is used in COSMOMC. By definition,
it is equal to be �MC � 100.rS=dA/japprox. Here, rS is the sound horizon at last
scattering, namely

rS D
Z �lss

0

cS d�; (222)
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where cS is the sound speed of the baryon-photon fluid, i.e.

c2
S

D ıpb��
ı�b��

D ıp�
ı�b C ı��

D 1

3

4��

4�� C 3�b
D 1

3

1

1C R
; (223)

where R D 3�b=.4��/. The quantity dA is, as already mentioned, the angular
distance to the last scattering surface and naturally appears in the expression of
the multipole moments, see Eq. (219). Therefore, rS=dA is in fact the angular size of
the sound horizon. �MC is defined approximately because its value is calculated at a
redshift which is given by a fitting formula (Hu and Sugiyama 1996)

zlss D 1048
h
1C 0:00124

	
�bh

2

�0:738i h

1C g1
	
�mh

2

g2i

; (224)

where the function g1 and g2 can be expressed as

g1 D 0:0783
	
�bh

2

�0:238 h

1C 39:5
	
�mh

2

0:763i�1

; (225)

g2 D 0:560
h
1C 21:1

	
�bh

2

1:81i�1

: (226)

with�m D �bC�c. In practice, instead of including h in the list of free parameters,
we consider �MC .

We conclude that, a priori, we have a 9 parameters: h or �MC , �� , �� , �b, �c, �ƒ,
AS , nS and � . However, the photon energy density is not a free parameter because it
is given by �2T40=15 where T0 D 2:7255˙ 0:00006 K is the CMB temperature. In
the same way, the neutrino energy density is fixed since �� D Neff.7=8/.4=11/

4=3��
with Neff D 3. Moreover, the fact that the spatial sections are assumed to be flat
means that, say �ƒ, can be deduced from the knowledge of the other parameters.
Therefore, the “base” model used in the Planck articles is in fact a six-parameter
scenario and it is sufficient to fit the CMB data.

Planck 2013 (i.e. PlanckTT+WP using the terminology introduced before) found
the following results (68% confidence limits) (Ade et al. 2014a)

�bh
2 D 0:022032˙ 0:00028; �ch

2 D 0:1199˙ 0:0027; (227)

100�MC D 1:04131˙ 0:00063; � D 0:089C0:012
�0:014 ; (228)

nS D 0:9603˙ 0:0073; ln
	
1010AS


 D 3:089C0:024
�0:027 : (229)

On the other hand, Planck 2015 with PlanckTT, TE, EE+lowP (as already men-
tioned, using the other likelihoods described before would lead to slightly different
numbers) gives (Planck 2015)

�bh
2 D 0:02225˙ 0:00016; �ch

2 D 0:1198˙ 0:0015; (230)

100�MC D 1:04077˙ 0:00032; � D 0:079˙ 0:017; (231)

nS D 0:9645˙ 0:0049; ln
	
1010AS


 D 3:094˙ 0:0049: (232)
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The consistency between Planck 2013 and Planck 2015 is evidently very good.
More involved data analysis can be carried out by opening the parameter space

(for instance by considering gravitational waves, a running for the scalar power
spectrum, a time-dependent dark energy equation of state etc . . . ) and/or adding
more data sets. In the following, we will describe the corresponding results for the
observables that are especially relevant for inflation.

5.1 Spatial Curvature

As discussed in Sect. 3.1, see Eq. (23), maybe the most important prediction of
inflation is that our Universe should be spatially flat (although there are contrived
inflationary models for which this is not true (Linde and Mezhlumian 1995)).
Therefore, one can follow the strategy described above and relax the assumption
that the curvature of spacelike sections is flat. Then, the Planck 2013 data plus the
WMAP data on large scale polarization imply that (Ade et al. 2014a,b)

�K D �0:058C0:046
�0:026 : (233)

If, in addition, Baryonic Acoustic Oscillations (BAO) data are included, one obtains
�K D �0:004˙ 0:0036.

Planck (2015) results have confirmed and tightened this conclusion. Indeed, at
95% confidence level, PlanckTT,TE,EE+lowP leads to �K D �0:040C0:038

�0:041 . If
lensing data and BAO are taken into account, one arrives at the impressive following
result

�K D 0:000˙ 0:005: (234)

Therefore, we live in a spatially flat Universe in agreement with one of the most
basic prediction of inflation.

As already mentioned, when one relaxes the assumption that the Universe is
spatially flat, this introduces a new parameter and, therefore, we are no longer in
the framework of the six-parameters ƒCDM base model considered before. As a
consequence, a priori, the constraints on the other parameters may change. This
is in particular the case of the spectral index nS and its significant deviation from
the scale-invariant case which is very important for inflation. However, Ade et al.
(2015a) has shown that in the framework where �K ¤ 0 and where tensor modes
are present, the constraint on nS becomes

nS D 0:969˙ 0:005; (235)

using PlanckTT,TE,EE+lowP. The conclusion that the scale invariant case is ruled
out seems therefore robust. In fact, Ade et al. (2015a) has shown that this conclusion
is valid for other type of extensions such as different relativistic degrees of freedom
(the parameter Neff defined above, running, dark energy equation of state etc . . . ).
This is of course crucial for inflation.



The Observational Status of Cosmic Inflation After Planck 99

5.2 Isocurvature Perturbations

Let us now investigate the Planck constraints on isocurvature perturbations (Ade
et al. 2014a,b, 2015a). We have discussed before, in Sect. 4.4, two types of
isocurvature perturbations. Firstly, there is the effective mode taking into account
cold dark matter and baryons entropy fluctuations, see Eq. (182) denoted, as already
mentioned, CDI in the Planck papers. Secondly, there is also the Neutrino Density
Isocurvature (NDI) mode and the Neutrino Velocity Isocurvature (NVI) mode. Each
mode is characterized by its power spectrum as in Eq. (215) and each cross term
can also be described by the correlation spectrum as in Eq. (217). Therefore, the
most general situation can be parametrized by the 4 � 4 matrix Pab.k/ where
a D �; SCDI; SNDI; SNVI with the convention that P�� � P� and similar expressions
for the diagonal terms. Of course, this matrix is symmetrical.

Usually, only a 2 � 2 matrix is analyzed and a power law is assumed for each of
the power spectra with independent spectral index. But this is not the route followed
by the Planck team. Instead, they have assumed the following phenomenological
form for Pab.k/

Pab.k/ D exp

��
ln k � ln k2
ln k1 � ln k2

�
lnPab.k1/C

�
ln k � ln k1
ln k2 � ln k2

�
lnPab.k2/

�
;

(236)

where the two scales k1 and k2 are chosen to be k1 D 2 � 10�3 Mpc�1 and k2 D
0:1Mpc�1 so that the entire Planck window is spanned. The positive definiteness of
the matrix requires .Pab/

2 � PaaPbb.
Then, the following quantities are defined

˛ab .`min; `max/ D .�T/2ab .`min; `max/

.�T/2tot .`min; `max/
; (237)

where

.�T/2ab .`min; `max/ D
`D`maxX
`D`min

.2`C 1/CTT
ab;`: (238)

In this expression, the quantity CTT
ab;` represents the multipole moments calculated

with the primordial spectrum taken to be Pab. .�T/2tot is just the sum of all
contributions. So, in the standard situation, there is just one contribution and the
multipole moments are computed with P�� D P� . If one has ˛�� D 1, this means
that the perturbations are fully adiabatic.

In Figs. 8 and 9, we have respectively represented the one-dimensional posterior
distribution of ˛ab .`min; `max/ and the two-dimensional distribution for the power
spectra Pab.k1;2/ for the three modes, CDI, NDI and NVI obtained from Planck
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Fig. 8 Posterior distributions for the quantities ˛ab .`min; `max/ introduced in Eq. (237), inferred
from the Planck 2013 data. No statistically significant deviation from adiabaticity is found. Notice
that R D �� is used in this plot. Figure taken from Ade et al. (2014b)

2013. The conclusion is clear: there is no statistically significant deviation from
pure adiabaticity.

In Ade et al. (2015a), the constraints on isocurvature modes implied by the
Planck 2015 data have been derived. This work is particularly interesting since one
expects the polarization data to have a good constraining power on the amplitude
of the isocurvature modes. In this analysis, uniform priors for P��.k1/ and P��.k2/
are assumed in the range

�
10�9; 10�8�. For the power spectrum of the isocurvature

power spectra, the same choice is made in the range
�
0; 10�8�. Finally, the adiabatic-

isocurvature correlation function at k D k1 is taken in the range
��10�8; 108

�
. The

same quantity, but at k D k2, is fixed through an assumption about the correlation
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Fig. 9 Two-dimensional distributions for the quantities Pab.k1;2/ � P .1;2/
ab inferred from the

Planck 2013 data for a D R, CDI (red), NDI (blue) and NVI (green). Again, amplitude of
isocurvature spectra and correlation spectra are all consistent with adiabaticity. In these plots,
notice that Pab has indices a D R, I with I � CDI;NDI;NVI. Figure taken from Ade et al.
(2014b)

spectrum, see Eq. (217). Ade et al. (2015a) restricts itself to scale independent
correlation spectrum,

cos�ab D Pabp
PaaPbb

(239)

in the range Œ�1; 1�. Writing the above equation at k D k1 and k D k2 and requiring
that the value be the same (since the correlation spectrum is scale-independent)
allows us to derive the parameter Pab.k2/.

The constraints on Pab.k1/ and Pab.k2/ obtained from Planck 2015 are repre-
sented in Fig. 10. The constraints on the quantities ˛ab.`min; `max/ are displayed
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Fig. 10 Two-dimensional distributions for the quantities Pab.k1;2/ � P .1;2/
ab inferred from the

Planck 2015 for different choices of likelihoods indicated by different colors (gray, blue and red).
This plot should be compared to Fig. 9. The six upper plots correspond to a situation where we have
a mixture of adiabatic (denoted ADI) and CDI modes, the six middle plots to a situation where we
have ADI and NDI and the bottom six plots to a case where one has ADI and NVI. Figure taken
from Ade et al. (2015a)
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Fig. 11 Posterior distributions for the quantities ˛ab .`min; `max/ introduced in Eq. (237), inferred
from the Planck 2015 data. This plot should be compared to Fig. 8. Figure taken from Ade et al.
(2015a)

in Fig. 11. The conclusions obtained from Planck 2013 are confirmed and even
tightened. No isocurvature mode is detected and the primordial fluctuations are fully
compatible with exact adiabaticity. This has of course very important implications
for inflation. As explained before, this is a non trivial test for single-field slow-roll
models. The Planck 2013 data were compatible with this simple class of models
and did not require to introduce additional fields. The results of Planck 2015 do
not modify this claim. As we are going to see in the next section, this is also the
conclusion reached by the Planck measurements of Non-Gaussianities.

5.3 Non-Gaussianties

Let us now turn to the constraints on primordial Non-Gaussianity, see Ade et al.
(2013). Before discussing what was measured by the Planck satellite, it is interesting
to review how the results are sometimes presented in the literature (Komatsu
2010). In order to visualize the bispectrum, it is convenient to plot the quantity
BR.k1; k2; k3/.k1k2k3/2 in terms of the ratios x � k3=k1 and y � k2=k1 with the
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Fig. 12 Visualization of the bispectrum shape. From the fact that the three vectors k1, k2 and k3
form a triangle, it is possible to faithfully represent the bispectrum in the white triangle. Then,
different configurations correspond to vertices or edges of that triangle

conditions that k1 C k2 C k3 D 0 and k1 
 k2 
 k3. This immediately implies that
0 � x � 1 and 0 � y � 1 and, therefore, the visualization can be restricted to this
square, see Fig. 12. The fact that k2 
 k3 means that y > x and, as a consequence,
the red hatched region is in fact forbidden. Then, since the three vectors k1, k2 and
k3 form a triangle, every edge length is smaller than the sum of the length of the
two other edges. This means that y > 1 � x and the green hatched region is also
forbidden. The conditions k2 < k1 C k3 (namely y < 1 C x) and k3 < k1 C k2
(namely y > x � 1) lead to new constraints but outside the square Œ0; 1� � Œ0; 1�

and, therefore, are not interesting for us. The previous considerations show that it is
sufficient to plot BR.k1; k2; k3/.k1k2k3/2 in the white, non hatched, region in Fig. 12
in order to have a complete representation of the bispectrum.

It is common practice to single out particular configurations. The squeezed
triangle corresponds to k1 	 k2 � k3 which means x 	 0 and y 	 1. The equilateral
configuration is given by k1 	 k2 	 k3 or x 	 y 	 1. The folded case is defined
by k1 ' 2k2 ' 2k3 or x 	 y 	 1=2. These three configurations correspond to three
vertices of the white triangle in Fig. 12. Another configuration is the elongated one
for which k1 	 k2C k3 or xC y 	 1 and is therefore represented by a line in Fig. 12.
The same is true for the isosceles triangle k1 > k2 	 k3 or x 	 y.

Let us now study how the local bispectrum looks like in this representation. From
Eq. (135), one can write

BR.k1; k2; k3/ D �6f
loc

NL

5
.2�2/2

A2
S

k61

1

x3y3
.1C y3 C x3/: (240)

where P.k/ D AS.k=k�/nS�1 and, for simplicity, we have taken nS D 1 [strictly
speaking, one should consider the power spectrum of Eq. (75) but, in fact, this
does not change significantly the result of this calculation]. It follows, since
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Fig. 13 Bispectrum for different shape configuration: local (top left panel), equilateral (top right
panel), orthogonal (bottom left panel). The bottom right panel represents the slow-roll prediction
computed for a model where V D m2�2=2. Notice that the absolute normalization in these figures
is irrelevant

BR.k1; k2; k3/.k1k2k3/2 D k61y
2x2BR that

BR.k1; k2; k3/.k1k2k3/2 D �6f
loc

NL
A2

S

10
.2�2/2

1

xy
.1C y3 C x3/: (241)

In Fig. 13 (top left panel) we have represented this function (without the overall
factor in the above expression). As it is clear from the plot (and also from the
analytical expression), the local shape peaks at the squeezed triangle. The local
shape has been constrained by the Planck 2013 data and one obtains (Ade et al.
2013) f loc

NL
D 2:7 ˙ 5:8 at 68%CL. The Planck 2015 data (Ade et al. 2015b) with

temperature only implies f loc
NL

D 2:5 ˙ 5:7 and including polarization data, one
arrives at

f loc
NL

D 0:8˙ 5; (242)

thus tightening the conclusion that the perturbations are Gaussian.
Another shape that was studied by the Planck team is the equilateral one. It is

defined by
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; (243)
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where, again, one has taken nS D 1 for simplicity. One can re-express the bispectrum
in terms of our variables x and y and then multiply by .k1k2k3/2. This gives

BR.k1; k2; k3/.k1k2k3/2 D 18

5
f eq

NL
.2�2/2A2

S

1

xy

	
x3 C 1C y3 C 2xy � y � x � y2

�y2x � x2 � x2y


: (244)

The corresponding bispectrum has been represented in Fig. 13 (top right panel). The
coefficient f eq

NL
has been constrained by Planck 2013 which finds (Ade et al. 2013)

f eq
NL

D �42 ˙ 75, a value compatible with zero. With the Planck 2015 data (Ade
et al. 2015b) (temperature only), one obtains that f eq

NL
D �16 ˙ 70 and, including

polarization,

f eq
NL

D �4˙ 43: (245)

Finally, the last shape studied by Planck is the orthogonal one for which the
bispectrum can be expressed as
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which leads to

BR.k1; k2; k3/.k1k2k3/2 D 18
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3x3 C 3C 3y3 C 8xy � 3y � 3x � 3y2

�3y2x � 3x2 � 3x2y
; (247)

and is plotted in Fig. 13 (bottom left panel). The coefficient f ortho
NL

has been measured
by Planck 2013 and the result reads (Ade et al. 2013): f ortho

NL
D �25 ˙ 39. This

conclusion is confirmed by the Planck 2015 measurements (Ade et al. 2015b),
namely f ortho

NL
D �34 ˙ 33 (temperature only). If polarization data are included,

then one finds

f ortho
NL

D �26˙ 21: (248)

Once again, the measured value is compatible with Gaussian primordial fluctua-
tions.

It is also interesting to represent explicitly the slow-roll result using the same
visualization tools. This bispectrum was derived in Eq. (141). Expressed in terms of
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x and y, each term F .i/ reads
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If we write F .i/ � H4=.16M4
Pl�1/k

3
1f
.i/ D .2�/2�1A2Sk

3
1f
.i/, then we see from the

above Eqs. (249)–(252) that the functions f .i/ only depend on x and y. In particular,
this definition factors out the term k31. As a consequence, using Eq. (141), the
quantity Bsr

R.k1; k2; k3/.k1k2k3/
2 can be written as (Hazra et al. 2013)
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R.k1; k2; k3/.k1k2k3/

2 D 	
2�2


2
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S

xy

X
iD1;2;3;7

f .i/.x; y/: (253)

This bispectrum is represented in Fig. 13 (bottom right panel). We notice that it is
similar (up to a sign) to the equilateral shape (243).

Finally, Planck 2013 has also measured the four point correlation function for the
local configuration. The corresponding constrain on the �NL reads (Ade et al. 2013)

�NL < 2800; (254)

at 95% confidence level, that is to say, a result compatible with Gaussianity. A
recent analysis (Feng et al. 2015) has confirmed this conclusion. Feng et al. (2015)
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has indeed found �NL D 0:3˙0:9�104 and gNL D �1:2˙2:8�105. Finally, Planck
2015 (Ade et al. 2015b) obtained gNL D .�9:0˙7:7/�104 at 68% confidence level.

We conclude this section on Non-Gaussianity measurements as we concluded
the section on isocurvature modes: the fact that we do not detect a signal beyond the
vanilla situation is another non-trivial test for single-field slow-roll inflation with a
minimal kinetic term. In the remaining part of this review, we therefore focus on
this class of models and derive the corresponding implications that can be inferred
from the Planck data.

5.4 Slow-Roll Inflation

We have seen in Sect. 4.1 that the power spectra of scalar and tensor perturbations
can be expressed in terms of the slow-roll parameters. Since the CMB measurements
constrain the power spectra, they also constrain the slow-roll parameters (Martin
et al. 2014d). In Fig. 14, we show the two dimensional marginalized posterior
distributions for the parameters �1, �2, �3 and P�, where this last quantity represents
the overall normalization of the power spectrum4 obtained from the Planck 2013
data. We see that P� and �2 are well constrained while there only exists an
upper bound on �1 and almost no constraints on �3. Explicitly, one has 3:035 .
ln
	
1010P�



. 3:15, log .�1/ . �2:01 and 0:023 . �2 . 0:063 at the two

sigma level. Planck 2015 (Ade et al. 2015a) has also analyzed this question and
found �1 < 0:0068 and �2 D 0:029C0:008

�0:007 using PlanckTT+lowP and restricting the
hierarchy at first order in slow-roll. When high-` polarization data are included in
the analysis, one finds �1 < 0:0066 and �2 D 0:030C0:007

�0:006 .
Let us now discuss the physical information on inflation that can be inferred from

the above results. Firstly, from Eqs. (75) and (76), one has at next-to-leading order
on slow-roll

P� D P�0a0 D H2�
8�2�1�M2

Pl

Œ1 � 2 .C C 1/ �1 � C�2� ; (256)

from which we deduce that, at second order in slow-roll, the Hubble parameter
during inflation can be expressed as (Martin et al. 2014d)

H2�
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Pl

D 8�2�1P� Œ1C 2.1C C/�1 C C�2� : (257)

4That is to say, we have re-written Eq. (75) as
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; (255)

which defines the quantity P
�

.
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Fig. 14 Two dimensional posterior distributions of the parameters �1, �2, �3 and P
�

obtained from
the Planck 2013 data. The pivot scale is chosen to be k

�

D 0:05Mpc�1 and the priors are taken to
be as follows: a Jeffreys’ prior (i.e. a flat prior on the logarithm of the corresponding quantity) for
P

�

such that ln.1010P
�

/ 2 Œ2:7; 4:2�, a Jeffreys’ prior for �1 such that log.�1/ 2 Œ�5;�0:7� (the
choice of the upper bound ensures that �1 < 0:2 and, therefore, that the slow-roll approximation
is valid) and flat priors for �2 and �3 such that �2 2 Œ�0:2; 0:2� and �3 2 Œ�0:2; 0:2�. Figure taken
from Martin et al. (2014b)

Since we know the posterior of P� and �1, one can derive the corresponding one
for H�. The result is represented in Fig. 15, see the red dashed curves. Clearly, the
fact that we only have an upper bound on �1 implies that we also only have an
upper bound on H�. With the Jeffreys’ prior on �1 (see the left panel in Fig. 15), one

obtains ln

�
105

H�
MPl

�
. 1:6, that is to say

H� . 1:2 � 1014GeV: (258)
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Fig. 15 Marginalized posterior distribution for the inflationary Hubble parameter at the time of
pivot crossing with a Jeffreys’ prior (left panel) and a flat panel (right panel) on �1 (left panel).
The dashed red line represents the distribution obtained from the Planck 2013 data while the solid
black line corresponds to the case where the Planck 2013 data are combined with the BICEP2
measurement (here, interpreted as a detection of gravity waves) and illustrates how a detection of
primordial gravitational waves could allow us to determine the energy scale of inflation. Figure
taken from Martin et al. (2014d)

One obtains a similar number if a flat prior on �1 is assumed (see the right panel in
Fig. 15). Those values can be expressed into gravitating energy scales through

�
1=4
� D 31=4

p
H�MPl . 2:2 � 1016GeV; (259)

where this value assumes a Jeffreys’ prior on �1 (again, a similar result is obtained
with a flat prior). If primordial gravity waves are detected, then this would fix the
value of r and, hence, the energy scale of inflation. This is illustrated in Fig. 15
where we have also plotted the posterior distribution of H� obtained when the
BICEP2 results (Ade et al. 2014c) are taken into account (assuming, for the sake
of illustration, that they correspond to a detection of gravity waves).

Secondly, let us now study what the constraints on the slow-roll parameters mean
for the shape of the inflation potential (Martin et al. 2014d). From Eq. (34), we see
that this gives an upper bound on the first derivative of the inflation potential, namely

ˇ̌
V�
ˇ̌

. 0:14
V

MPl

: (260)

Using PlanckTT+lowP, the recent Planck 2015 data (Ade et al. 2015a) implies that
jV�j . 0:116 .V=MPl/. On the other hand, the second Hubble flow parameter gives
information about the second derivative of the inflaton potential. From Eq. (35), one
sees that

M2
Pl

V��
V

D 2�1 � �2

2
: (261)
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From this expression, we also obtain bounds on the second derivative of the
potential. Indeed, one has M2

PlV��=V > ��2sup and M2
PlV��=V < 2�1sup � �2min=2.

Explicitly, one has

� 0:03 . M2
Pl

V��
V

. 0:008: (262)

Planck 2015 (Ade et al. 2015a), using PlanckTT+lowP, finds the following value
M2

PlV��=V D �0:01C0:005
�0:009 at 95% confidence level.

Thirdly, although the shape of the power spectrum is entirely characterized
by Eq. (75), it is also interesting to derive constraints on the so-called power-law
parameters (Martin et al. 2014d). These parameters are in fact simple combinations
of the Hubble flow parameters, as exemplified by Eqs. (86). We now investigate this
question in more detail. In Eqs. (86), we gave the spectral indices at first order in
slow-roll. At second order, they read

nS D 1 � .2�1 C �2/ � 2�21 � .3C 2C/�1�2 � C�2�3;

nT D �2�1 � 2�21 � 2.1C C/�1�2;
(263)

while the tensor-to-scalar ratio can be expressed as [see also Eq. (87)]

r D 16�1.1C C�2/: (264)

One can also define the runnings for scalar and tensor and, in the slow-roll
approximation, they are second-order quantities and their expressions read

˛S D �2�1�2 � �2�3; ˛T D �2�1�2; (265)

Finally, let us mention that the running of the running for the tensor mode is also
completely specified by the first three Hubble flow functions and is given by

ˇT D �2�1�2 .�2 C �3/ : (266)

One sees that, in general, one has six independent quantities, namely r, nS, nT, ˛S, ˛T

and ˇT. However, the predictions of slow-roll inflation can be expressed in terms of
three Hubble flow parameters (at least at this order), �1, �2 and �3. This implies that
all the parameters describing the tensor sector can, in fact, be expressed in terms
of those characterizing the scalar sector. Explicitly, these so-called consistency
relations can be expressed as

nT ' � r

8
;

˛T ' r

8

h r
8

C .nS � 1/
i
;

ˇT ' r

8

h r
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�
C r

8
˛S:

(267)
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As before, since we know the posterior distributions of the slow-roll parameters
for the Planck 2013 data, we can infer those of the power-law parameters. They
are represented in Fig. 16, see the red dashed and dotted green lines. We see that the
scalar spectral index nS is very well constrained and is around nS ' 0:96 (the Planck
2013 value, with WMAP large-angle polarization, reads nS D 0:9603˙0:0073). On
the other hand, we only have an upper bound on the tensor-to-scalar ratio which is
of course expected since r / �1. At two sigmas, one obtains log.r/ . �0:88 which
gives

r . 0:13: (268)

Notice that this result is obtained assuming a Jeffeys’ prior on �1. If, instead,
a flat prior is chosen, one has log.r/ . �0:64, leading to r . 0:23. This is
because a flat prior has the tendency to favor large values of r compared to what
is obtained with a Jeffrey’s prior. In Fig. 16, we have also represented the results
obtained by combining Planck 2013 and BICEP2 assuming that this last signal is
due to primordial gravity waves. Of course, in that case r is determined and, as
a consequence, the tensor spectral index is also fixed. It is now known that the
BICEP2 signal can be entirely explained by dust contamination (Ade et al. 2016)
but, nevertheless, it is interesting to see what would be the implications for inflation
of a detection of primordial gravity waves.

Recently, Planck 2015 (Ade et al. 2015a) has also put constraints on r. As
usual, these constraints depend on the data sets used and on the assumptions
made about the theoretical frameworks. Here we just quote two numbers. Using
PlanckTT,TE,EE+lowP and considering that r is the only extra parameter beyond
the base ƒCDM model, one obtains

r0:002 < 0:1; (269)

at 95% confidence limit. If instead PlanckTT+lowP+WP (we remind that WP means
the polarization data on large scales measured by WMAP), this number becomes
r0:002 < 0:09. Here, the subscript “0:002” indicates that the pivot scale is taken to
be 0:002Mpc�1.

Very recently, a joint analysis by the BICEP2/Keck Array team and the Planck
collaboration was released (BICEP2/Keck et al. 2015). The results are presented
in Fig. 17. In Ade et al. (2014c), BICEP2 announced the detection of primordial
gravity waves at a level corresponding to a tensor-to-scalar ratio of r 	 0:16. The
reason for this claim can be seen in Fig. 17. In this plot, the red solid curve is the
signal due to the weak lensing of E-mode that produces B-modes on small angular
scales. This contribution is necessarily present in the standard model of Cosmology
and its amplitude can be inferred unambiguously once we know the value of the
cosmological parameters. The black dots represent the signal measured by BICEP2
and Keck Array. As is well visible, in the range ` 	 Œ50; 120�, there is an excess of
power with respect to the red solid line and, hence, there must be another source of
B-modes. BICEP2 interpreted this excess as a contribution coming from primordial
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Fig. 16 Marginalized posterior distributions for the derived power law parameters nS, r, nT, ˛S,
˛T and ˇT obtained by importance sampling from the distributions of the second order slow-roll
parameters. The dashed red line and the dotted green lines are the distributions obtained from
Planck 2013. We have also represented the results obtained by combining Planck 2013 with
BICEP2 (see the solid black line and the dotted dashed blue line). The most striking feature
which would follow from a detection of gravity waves (here illustrated by including the BICEP2
results taken at face value) is of course that r, and therefore nT using the slow-roll consistency
relations (267), would now be measured. Figure taken from Martin et al. (2014d)
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Fig. 17 B-mode CMB polarization multipole moments compared to the lensing signal (solid red
curve). The black dots represent the values of CBB

` obtained from the BICEP2/Keck array map. On
recognizes the bump in the range ` 
 Œ50; 120� that deviates from the lensing curve and that was
interpreted as a detection of primordial gravity waves with r 
 0:16 in Ade et al. (2014c). The
blue dots correspond to the same multipole moments but after subtraction of the dust contribution,
estimated from the cross-spectrum with the Planck 353GHz channel. Clearly, the new data are in
good agreement with what is expected from lensing. Figure taken from BICEP2/Keck et al. (2015)

gravity waves. However, there is another known source of contamination: dust.
BICEP2 could not measure accurately the dust contribution because it operates at a
single frequency only. The BICEP2 team therefore used theoretical models available
at that time to remove the dust signal. On the other hand, Planck measures the CMB
at different frequencies and, as a consequence, can estimate with good precision the
dust contribution. It is therefore clear that a joint analysis between the two teams is
the best way to use at the same time the good sensitivity of BICEP2/Keck Array and
the good control of the dust signal of the Planck team. The result of this analysis
are the blue dots in Fig. 17. We see that the bump has disappeared which means
that the excess of power observed was probably entirely due to dust contamination
and not to primordial gravity waves. The signal is now compatible with lensing.
The new analysis suggests that the best value of r is now r 	 0:05 but with very
low significance and r 	 0 cannot be excluded. In other words, there is no longer
a detection of primordial gravity waves. In addition, one obtains a new upper limit
which is now r < 0:12 (at 95% confidence limit) instead of r < 0:11 from the
Planck 2013 data. Notice that we obtained before r < 0:13 from the Planck 2013
data, see Eq. (268), and not r < 0:11, but this is just due to some differences between
our analysis and the Planck one (essentially, different priors).

In Martin et al. (2014d), it was demonstrated that the sets of inflationary models
preferred by Planck alone and BICEP2 alone are almost disjoint, indicating a clear
tension between the two data sets. Using a Bayesian measure of compatibility
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between BICEP2 and Planck, it was indeed shown that, for models favored by
Planck 2013 the two data sets tended to be incompatible, whereas there was a
moderate evidence of compatibility for the BICEP2 preferred models. This means
that the three assumptions (1) slow-roll inflation is the correct description of
the early Universe (2) Planck 2013 data accurately measure CMB temperature
anisotropies and (3) BICEP2 measurement is due to primordial gravity waves are
mutually exclusive. In other words, if one has the theoretical prejudice that slow-
roll inflation did occur in the early Universe, then Martin et al. (2014d) already
proved that the value r 	 0:16 was likely to be overestimated. In some sense, the
fact that dust contamination can explain the BICEP2 signal reinforces our trust in
inflation!

Let us now turn to the scalar running ˛S. At 95% confidence level, one finds

� 0:012 . ˛S . 0:006; (270)

that is to say a value consistent with no running. Finally, one notices that the
quantities ˛T and ˇT are well-constrained. It is easy to understand why on the
example of ˛T. One has ˛T D .r=8/2 C .nS � 1/.r=8/, see Eq. (267). In this
equation nS � 1 is known, one can take nS � 1 ' �0:04 which means that ˛T '
.r=8/2�0:04.r=8/. This parabola has a minimum at r=8 ' 0:02 which corresponds
to ˛T ' �9 � 10�5. The maximum is for r ' 0:13 and gives ˛T ' �0:0004. We
therefore expect �0:0004 . ˛T < �9�10�5 and which (roughly speaking) explains
why the distribution of ˛T in Fig. 16 is peaked (see the red dashed line).

A last remark is in order at this point. Very often, as already pointed out, the
power spectrum is parametrized as

P�.k/ D AS

�
k

k�

�nS�1C˛S=2 ln.k=k
�

/C���
; (271)

and a similar expression for the tensors. Clearly, this is not exactly what inflation
predicts since not expanding nS �1 D �2�1 � �2 (if one works at first order in slow-
roll) in the above formula means in fact keeping an infinite number of higher order
corrections which is clearly inconsistent since nS is determined at a fixed order. Of
course, since nS � 1 is small, for all practical purposes, this does not impact a lot the
final results.

5.5 Model Comparison

Let us now turn to model comparison (Martin et al. 2011, 2014a,b,d). We would like
to determine the models of inflation that perform the best being given the current
CMB data. From a statistical point of view, this question is subtle. Indeed, suppose
we have two models: M1 characterized by one parameter �11 and M2 characterized
by two parameters �21, �22. What does it mean to claim that model M1 is better
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than model M2 (or the opposite)? Naively, one could compare the likelihoods of
the two models for the values of the parameters leading to the best fits. But model
M2 has one extra parameter and, therefore, one expects this model to automatically
improve the fit. Therefore, in some sense, it would be “unfair” to claim that M2 is
better than M1 since it is “more complicated”. Moreover, suppose that only for, say,
�21 2 �

10�20; 10�19� does M2 lead to a good �2 while, a priori, �12 could vary, in
say Œ�1; 1�. Suppose, in addition, that this does not happen for M1, namely that for
�11 in its natural range of variation, the fit is always “reasonable”. How do we take
into account this wasted parameter space for model M2 in our assessment of the
respective performance of the two models?

In order to answer these questions, one recalls that if L2.�21; �22/ �
p.Dj�21; �22;M2/ is the likelihood of model M2 (D represents the data, here
we have of course CMB data in mind), then the probability of the parameters
�21; �22; can be expressed as (the Bayes’ theorem) (Trotta 2008)

p.�21; �22jD;M2/ D 1

E.DjM2/
L2.�21; �22/�.�21jM2/�.�22jM2/; (272)

where � represents the prior distributions and E is a normalization factor which
depends on the data and the model. We would like to calculate the probability
p.M2jD/ of model M2 and, therefore, we expect a similar equation to hold, namely

p.M2jD/ D 1

p.D/
p.DjM2/�.M2/; (273)

where p.D/ is a normalization factor depending on the data only and � encodes our
a priori information about model M2. Clearly, Eqs. (272) and (273) have the same
structure since they represent two applications of the Bayes’s theorem. To make
progress we need to know p.DjM2/. But this quantity is in fact easy to calculate
since

R
p.�21; �22jD;M2/d�21d�22 D 1, Eq. (272) leads to

E.DjM2/ D
Z

L2.�21; �22/�.�21jM2/�.�22jM2/d�21d�22

D
Z

p.Dj�21; �22;M2/�.�21jM2/�.�22jM2/d�21d�22

D p.DjM2/: (274)

Of course the previous considerations apply in general and the quantity E.DjMi/ is
called the Bayesian evidence of the model Mi and its definition reads (Trotta 2008)

p.DjMi/ � E .DjMi/ D
Z

d�ijL
	
�ij


�
	
�ijjMi



: (275)
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The Bayesian evidence is often normalized to a reference model MREF and one
defines Bi

REF � E.DjMi/=E.DjMREF/. In that case, the posterior probability of the
model Mi (for non-committal model priors) can be re-expressed as

p .MijD/ D Bi
REFP
j B

j
REF

: (276)

In the following, we will give Bi
REF since this quantity is in one-to-one correspon-

dence with the probability of the model Mi. In particular, one sees that p.Mi/ >

p.Mj/, namely model Mi is better than Mj (or more probable), if E.Mi/ > E.Mj/

or, equivalently, Bi
REF > Bj

REF.
In order to see why computing the Bayesian evidence answers the questions

asked before and can give a fair estimate of the performances of a model, let us
consider the idealized following situation. Let us assume that the likelihood function
of model M1 has width ı�11 and that the prior is flat and has width��11. Since � is
normalized, we have �.�11/ D 1=��11. We also assume that the likelihood is more
informative than the prior, namely ı�11 < ��11. Then, Eq. (275) is approximately
given by

E.DjM1/ ' L1;max
ı�11

��11
: (277)

A similar calculation for M2 leads to

E.DjM2/ ' L2;max
ı�21

��21

ı�22

��22
: (278)

For simplicity, one can take the reference model to be model M1 and, of course,
one has B1REF D 1. For B2REF, one finds

B2REF D L2;max

L1;max

��11

ı�11

ı�21

��21

ı�22

��22
: (279)

On this last equation, we see that deciding whether model M1 is better or worse
than M2 does not reduce to the comparison of the likelihood function at the best fit,
L2;max=L1;max but that this ratio is corrected by a factor which describes how much
parameter space has been wasted. So the best model is not the one which has the
largest �2 but the one which achieves the best compromise between quality of the
fit and simplicity of the theoretical description.

As explained before, here, we focus on single-field slow-roll inflationary models
(with minimal kinetic term) only. At this stage, the strategy is clear: one must
evaluate the Bayesian evidence of each of these models in order to rank them
according to their ability to fit the data. This first requires to identify all models of
this type and this was recently done in Encyclopaedia Inflationaris, see Martin et al.
(2014a). In this work, about 200 models have been identified. A model corresponds
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to a specific choice of potential and of priors for its parameters. Two different
models can have the same potential but different priors. Each model is denoted by
an acronym according to the terminology introduced in Martin et al. (2014b) and, in
the present lecture, we just make use of this convention. A detailed justification of
the priors chosen can also be found in that reference. In Fig. 18, we have represented
the Bayesian evidence of the different models (being given the Planck 2013 data) by
an horizontal bar the length of which is proportional to lnBi

REF, see also the caption
of Fig. 18 and Martin et al. (2014a,b,d), and Ringeval (2014). In order to translate
the numerical value of the evidence into strength of belief, we introduce the Jeffrey’s
scale (Trotta 2008). If j lnBi

REFj < 1, then the model is in the “inconclusive zone”, if
1 < j lnBi

REFj < 2:5, then it is in the “weak evidence zone”, if 2:5 < j lnBi
REFj < 5,

then it is in the “moderate evidence zone” and, finally, if j lnBi
REFj < 5, it is in the

“strong evidence zone”. If the reference model is taken to be the best model, then,
by definition all lnBi

REF are negative. In that case, the best models are those in the
inconclusive zone and those in the “strong evidence zone” can be considered as
ruled out.

In Fig. 18, we see that the best Planck 2013 model is KMIII and that 52
models end up being in the inconclusive zone, namely: KMIII, ESIp

2, BI6s, MHIs,
BIs, ESI, BI5s, KKLTIs, KMIIV>0, BI4s, ESIo, ESIp

2=3, KMII, HI, BI3s, BI2s,
RGIs, RGI1=16, BIph, AI, BI1s, MHI, SFIl, SFI, KKLTIstg, BIstg, KKLTI, SBI, RGI,
SFIs, PSNIoA, SFI4l, PSNIft2, PSNIoB, PSNIft1, PSNIoC, LI˛>0, SFI4, ESIl, SSBI2,
PSNIft3, PSNIepA, SSBI4, TWI�0 , RGIl, SFI4s, MHIl, PSNIepB, TWIr

�0
, SBI˛min , LI,

SFI3l. They represent 	 26% of the models analyzed. We also find that 21% of
the models are in the “weak evidence zone”, 17% in the “moderate evidence zone”
and 34% in the “strong evidence zone”. Planck 2013 is therefore able to rule out
about one third of the inflationary models. Model comparison with Planck 2015 data
cannot yet be done since the scientific products are not delivered. However, given
the consistency of these two data sets, we do not expect very different results.

We have seen before that the “winner” is KMIII which is a string inspired model
with the following potential (Conlon and Quevedo 2006)

V.�/ D M4

"
1 � ˛

�
�

MPl

�4=3
eˇ.�=MPl/

4=3

#
; (280)

where ˛ and ˇ are two free parameters. Its heir apparent is ESIp
2 the potential of

which is given by Stewart (1995), Dvali and Tye (1999) and Cicoli et al. (2009)

V.�/ D M4

1 � e�p

2�=MPl

�
: (281)

The fourteenth on the list is the Starobinsky model (Starobinsky 1980; Bezrukov
and Shaposhnikov 2008), namely

V.�/ D M4

1 � e�p

2=3�=MPl

�2
: (282)
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Fig. 18 lnBi
REF for the all single field slow-roll models with minimal kinetic terms. The reference

model is taken to be the one where the priors are directly chosen on the Hubble flow parameters.
Each model is represented by a bar, the length of which is directly proportional to lnBi

REF (the
numerical value of lnBi

REF being indicated on the same line). A bar on the left means that lnBi
REF < 0

and a bar on the right that lnBi
REF > 0. The color code refers to the Schwarz-Cesaro Escalante

classification (Schwarz et al. 2001). The vertical dotted black line indicates the Jeffreys’ categories,
see the text for more explanations. Figure taken from Martin et al. (2014b)
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Actually, all these models being in the “inconclusive zone”, the difference between
their Bayesian evidence is not significant. This means that, for instance, one should
view the Starobinsky model as good as KMIII. In fact, the main common point
between all these scenarios is that they all possess a “plateau-like” potential,
meaning that V�.�/ ! 0 as � ! 1. We conclude that Planck 2013 has
been able to constrain the shape of the inflationary potential, a truly remarkable
achievement when one remembers that inflation can take place at 1015GeV, and
certainly something impossible to do in an accelerator!

We have seen before that, in order to explain the data, we do not need to consider
models more complicated than single field slow-roll inflation with a minimal kinetic
term. This does not mean that more complicated models are ruled out (in the
frequentist point of view) in the sense that, with a carefully chosen set of parameters,
they can lead to good fits. However, from the previous considerations, we see that
those models must have a very “bad” Bayesian evidence. Computing the evidence of
those more complicated models is certainly a difficult task (for instance, for models
predicting a non negligible level of Non-Gaussianities, one would need to take into
account the higher order correlation functions). But, in fact, we do not need to carry
out such a calculation which, at this stage appears to be useless. Indeed we know
in advance that they are much “worse” than single-field models because of their
huge wasted parameter space (Giannantonio and Komatsu 2015). It is sufficient to
know that they all are in the “strong evidence zone” and, clearly, we are not much
interested in knowing the ranking in this Jeffreys category since the models are ruled
out (in the Bayesian sense) anyway.

We have seen how the Bayesian evidence allows us to rank the various infla-
tionary models. However, two models with a different number of parameters can
have the same evidence if the extra parameters are not constrained by the data. This
is certainly not a desirable property as the model with less parameters is clearly
simpler and, therefore, should be favored. In order to break this degeneracy, we now
introduce the Bayesian complexity (Kunz et al. 2006). For a model Mi, it is defined
by (Kunz et al. 2006)

Ci
b D ˝�2 logL

	
�ij

˛C 2 logL

	
�ML
ij



; (283)

where h�i means averaging over the posteriors and �ML
ij represents the maximum

likelihood estimate of the model’s parameters. One can easily show, see for instance
(Martin 2013), that the number of unconstrained parameters, given a data set, can
be expressed as

Ni
uc D Ni

param � Ci
b; (284)

where Ni
param represents the number of free parameters of model Mi. We see that

this gives us a new criterion to discriminate the various models since a model
such that 0 < Ni

uc < 1 ought to be preferred. The Bayesian complexities (given
the Planck 2013 data) of all the Encyclopaedia Inflationaris models have been
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Fig. 19 Inflationary models in the space
	
Nuc; lnBi

REF



. Each model is represented by a circle (the

radius of which has no meaning) with its acronym, taken from Martin et al. (2014b), written inside.
The four panels corresponds to successive zooms towards the best region (indicated by the dashed
rectangles), the one with 0 < Nuc < 1, namely where all the parameters are constrained by the data
and a large value of the evidence, namely the model achieves a good fit without wasting parameter
space. Figures taken from Martin et al. (2014b)

computed in Martin et al. (2014b). In Fig. 19, we have represented these scenarios in
the space

	
Nuc; lnBi

REF



. It can be noticed that, among the models in the Planck 2013

inconclusive zone, those with a minimal number of unconstrained parameters are:
ESIp

2, ESIp
2=3, HI, BI2s, RGIs, AI, BI1s, MHI, RGI, SFI4l, LI˛>0, SFI4, ESIl, RGIl,

MHIl, SBI˛min and SFI3l. The number of preferred models is now 17, that is to say
	 9% of the total number of models analyzed here. Of course, as already remarked,
these models are all of the plateau shape. The distribution of models in the four
Jeffreys categories versus the number of unconstrained parameters is summarized
in Fig. 20.
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Fig. 20 Occurrences of inflationary models in the four Jeffreys categories for different values of
the unconstrained number of parameters. Figure taken from Martin (2013)

5.6 Reheating

We now describe the constraints on reheating that can be inferred from the Planck
2013 data. This question was recently studied in Martin et al. (2015). In Sect. 3.3,
we have seen that, as far as CMB data are concerned, reheating can be entirely
described by the parameter Rrad, see Eq. (71) or, equivalently, Rreh, see Eq. (70). For
each inflationary model, Martin et al. (2015) has calculated the posterior distribution
of the parameter lnRreh. In order to estimate how much reheating is constrained, it
is convenient to introduce the ratio ��lnRreh=�PlnRreh . In this formula, ��lnRreh is
the standard width of the prior while �PlnRreh is the standard width of the posterior
distribution. Therefore if��lnRreh=�PlnRreh D 1, the posterior is as wide as the prior
and reheating is not constrained at all. If, however,��lnRreh=�PlnRreh > 1, then the
posterior distribution is more peaked than the prior and there is information gain.
Clearly, the larger the ratio ��lnRreh=�PlnRreh , the more peaked the posterior.

The prior on lnRreh has to be chosen carefully and must be justified by physical
considerations. Clearly, the energy density at the end of reheating must be smaller
than that at the end of inflation and larger than at the BBN time where �nuc D
.10MeV/4. Therefore, we require �nuc < �reh < �end. For the mean equation of
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state, we take �1=3 < wreh < 1 since, by definition, reheating is a non accelerated
phase of expansion. As a consequence, one can show that this leads to

ln

 
�
1=4
nuc

MPl

!
< lnRreh < ln

 
�
1=4
nuc

MPl

!
C 4

3
ln

 
�
1=4
end

MPl

!
: (285)

The order of magnitude of Rreh being unknown, we choose a Jeffreys prior in
the above range. Notice that this differs from what was done in the Planck
2013 paper (Ade et al. 2014b). Indeed, in that work, specific reheating scenarios
were considered such as instantaneous reheating or “restrictive reheating” where,
apparently without a strong justification, the reheating energy density is fixed to
109GeV. Moreover, it seems that a prior on the quantity �N� was chosen which
is clearly awkward since it does not necessarily guarantee that the two physical
conditions on �reh and wreh discussed previously are valid.5 In the Planck 2015
paper (Ade et al. 2015a), it seems that this weird approach has been given up.
The new method now seems closer to what is done in the present article. Notice,
however, that, if the prior on the reheating energy density appears reasonable, only
specific values of wreh are considered which is, of course, not the most general case.
Let us also remark that Ade et al. (2015a) introduces an equation of state parameter
during reheating, denoted wint, called the “effective equation of state” but without
defining it precisely. In particular, it is difficult to know if it is equal to the parameter
introduced in Eq. (64), which is the correct parameter that ought to be used and was
introduced for the first time in Martin and Ringeval (2010).

In Fig. 21, we have represented each Encyclopaedia Inflationaris model in
the space

	
��lnRreh=�PlnRreh ; lnB

i
REF



: good models are on the right and models

for which reheating is constrained are on the top. The horizontal dashed line
��lnRreh=�PlnRreh D 1 locates the models for which reheating is not constrained.
In order to globally assess the value of the constraints, we can define the following
quantity

�
��lnRreh

�PlnRreh

�
� 1P

j Ej

X
i

Ei
�
��lnRreh

�PlnRreh

�
i

; (286)

which is the mean value of ��lnRreh=�PlnRreh weighted by the Bayesian evidence,
i.e. the mean value in the space of models. This is a fair estimate since disfavored
models will not contribute a lot to this quantity due to their small evidence.

5An additional problem comes from the description of Martin and Ringeval (2010) by Ade et al.
(2014b). Indeed it is claimed in this last paper that, for large field models where V.�/ 
 �n, Martin
and Ringeval (2010) considered only scenarios of reheating for which wreh D .n � 2/=.n C 2/, a
wrong claim as can be checked directly by reading Martin and Ringeval (2010).
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Fig. 21 The quantity ��lnRreh=�PlnRreh , quantifying how much the reheating is constrained,
versus the Bayesian evidence for Encyclopaedia Inflationaris models (each model is represented
by a circle the size of which has no meaning). The inset shows the posterior distribution of the
reheating parameter for the ten best Planck 2013 models. Figure taken from Martin et al. (2015)

Numerically, the Planck 2013 data are such that
�
��lnRreh

�PlnRreh

�
' 1:66 (287)

which, therefore, indicates that reheating is indeed constrained.
It is also interesting to assume that the mean equation of state is known. In that

case, the parameter Rreh only depends on the energy density at the end of reheating
or, equivalently, on the reheating temperature. In Fig. 22, we have represented the
similar quantities as in Fig. 21 for four different values of wreh, namely wreh D
�0:3;�0:2; 0; 0:2. The most striking feature of this plot is that, for positive values
of wreh, the models tend to cluster around the horizontal line��lnRreh=�PlnRreh D 1.
This indicates that, for those values of the mean equation of state, reheating is not
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Fig. 22 Same as in Fig. 21 but assuming the mean equation of state during reheating is known.
The prior-to-posterior width for the reheating energy density ln.�reh=M4

Pl/ is represented assuming
four values of the mean equation of state wreh, namely wreh D �0:3 (top left panel), wreh D �0:2
(top right panel), wreh D 0 (bottom left panel) and wreh D 0:2 (bottom right panel). Figures taken
from Martin et al. (2015)

constrained. As a consequence, the number obtained in Eq. (287) comes in fact from
a region in parameter space where wreh < 0. This conclusion makes sense since, for
wreh < 0, the dispersion of the predictions in the .r; nS/ space is much bigger than
for positive equation of state. More details can be found in Martin et al. (2015), in
particular concrete bounds on the reheating temperature for different models.

Concluding, the reheating phase is already constrained by the Planck 2013 data.
The precise values of the allowed reheating temperatures depend on the model under
consideration and on the mean equation of state. If wreh > 0, the constraints are very
mild. It is also worth noticing that two identical models with two different reheating
histories can have different Bayesian evidence. This means that, given the accuracy
of the CMB measurements, reheating now needs to be properly included in data
analysis.
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6 Conclusion

In this last section, we briefly summarize what we have learned about inflation in the
recent years. Inflation is a “violent” phenomenon since it could occur at energies as
high as the Grand Unified Theory scale, i.e. 	 1016 GeV. It is thus quite remarkable
to be able to say something about physics at such a high energy scale. The picture
that seems to emerge from the recent high accuracy astrophysical measurements
is that inflation is realized in its simplest version, namely single-field slow-roll
with a minimal kinetic term. Additional features, such as the presence of several
fields or non-minimal kinetic term, which may appear as (natural) consequences of
embedding inflation in high energy physics, do not seem to be relevant. If, indeed,
inflation is really realized in its vanilla version, an important challenge will be (is)
to understand, from the high energy point of view, why these extra ingredients are in
fact not present. Also, important questions such as the physical nature of the inflaton
field remains unanswered.

The shape of the potential is also constrained and appears to be of the “plateau
shape”, a typical example of this class of scenarios being the Starobinsky model.
Popular models such as monomial potentials are now disfavored.

Interestingly enough, inflationary reheating is also constrained by the Planck
data. The constraints are model dependent and correspond to an average reduction
of the prior-to-posterior of about 40%.

Given this situation, what should be done to increase our knowledge of inflation?
It is clear that in order to measure more precisely the shape of the potential, one
needs to constrain the values of the Hubble flow parameters �n. So far, we only have
a good measurement of the scalar spectral index which is a specific combination of
�1 and �2, namely nS D 1 � 2�1 � �2. To measure �1 and �2 separately, one needs
another observable. A more accurate measurement of the scalar power spectrum
cannot really do the job since it involves an additional parameter, �3, see Eq. (265).
We are therefore left with either the tensor-to-scalar ratio r, which is directly
proportional to �1, see Eq. (87), or the bispectrum which depends on �1 and �2 in
a different combination than the spectral index, see Eqs. (253) and (249)–(252).

Measuring primordial Non-Gaussianities has one great advantage: we already
know in advance where one should find the signal. If one dares an analogy, it is like
searching for the Higgs boson. We know that if it is not found in a specific window,
the consequences would be drastic. However, the shortcoming is that the amplitude
of the signal, fNL ' 0:01, is so small that it is not clear whether it is technologically
feasible. On the other hand, improving the limits on Non-Gaussianities could be
very rewarding. Many non-vanilla scenarios predict fNL ' 1 and reaching this limit
could allow us to rule out single field slow-roll models!

Measuring the tensor-to-scalar ratio is the other possibility. It requires to measure
the tensor contribution which can be done through a detection of B-mode CMB
polarization. At the moment, there are considerable efforts in this direction. The
first claim of a detection of primordial gravity waves was of course made by the
BICEP2 team (Ade et al. 2014c). The signal corresponds to a tensor-to-scalar ratio
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of r 	 0:16. However, as later shown by the Planck team and already discussed
before, the signal can probably be entirely explained by dust emission (Ade et al.
2016). Other ground based experiments are currently operating in Antarctica such
as BICEP3 & Keck (three channels: 100, 150 and 200GHz, sky coverage of
1–2% and resolution of 300), SPTPol/SPT3G (90GHz and 150GHz, 6%, 1:20),
in Chile such as Atacama B-mode Search (ABS) (145GHz, 2%, 300), Atacama
Cosmology Telescope (ACTPol)/AdvACT (30, 40, 90, 150 and 230GHz, 6%,
1:40), POLARBEAR/SIMONS (90, 150 and 220GHz, 6%, 3–50) and in the Canary
islands such as QUIJOTE (11–20 and 30GHz, 65%, 150–550). Soon (2016) in Chile,
the experiment Cosmology Large Scale Surveyor (CLASS) (40, 90 and 150GHz,
70%) will start taking data. There are also balloon borne experiments such as EBEX
(150, 250 and 410GHz, 8%, 100) and SPIDER (90, 150 and 280GHz, 8%, 300–400)
which are operating in Antarctica and Primordial Inflation Polarization Explorer
(PIPER) (200, 270, 350 and 600GHz, 70%, 100–200) which will be starting in 2016
in Palestine in USA (Texas). The most efficient of these experiments will reach a
level corresponding to r 	 0:01 in the following 3–5 years. If one wants to go
further, one needs space missions. Two projects appear to be particularly promising:
the Lite satellite for the studies of B-modes polarization and Inflation from cosmic
background Radiation Detection (LiteBIRD) (Matsumura et al. 2014) selected as
one of the prioritized projects in the master plan 2014 by the Science Council
of Japan and the Cosmic Origins Explorer (COrE+) (The COrE Collaboration
2011) which is a proposal for European Space Agency (ESA) M4 space mission.
LiteBIRD has a polarization sensitivity of 	 4:5 �K � arcmin, a resolution of
�fwhm D 38:50 and a sky coverage of 70%. COrE+ can be “light” with a sensitivity of
	 2:5 �K�arcmin and a resolution of �fwhm D 60 or “extended” with a sensitivity of
	 1:5 �K�arcmin and a resolution of �fwhm D 40 (in both cases, the sky coverage is
70%). With these space missions, one should be able to gain one order of magnitude
on r and reach r 	 10�3 in the next decade, assuming no delensing. With delensing,
one might be able to probe even smaller values of r.

Using the above analogy, measuring r is like searching for super-symmetry. We
do not know at which level it should show up (we do not know the super-symmetry
breaking scale) but it could be around the corner and, hence, technologically
realistic. In fact, a determination of r would immediately lead to the inflaton field
excursion. An excursion which is just Planckian corresponds to a tensor-to-scalar
ratio of r 	 10�3 that is to say precisely the limit reached by future space missions.
Therefore, given that r D 16�1, if �1 & 10�4, then one should be able to measure it
in the next decade.

Of course, a detection of primordial gravity waves would also impact model
comparison. It was recently shown in Martin et al. (2014e) that this could allow us
to rule out almost three-quarters of the inflationary models compared to one-third
for Planck 2013.

In conclusion, detecting B-mode CMB polarization and, hence, primordial
gravity waves, is probably the next challenge for primordial Cosmology. An
additional step would then be to check the consistency relation, r D �8nT, which
would constitute the final proof that vanilla inflation occurred in the early Universe.
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However, if r is very small, this measurement might be too difficult. In any case,
at the time of writing, detecting primordial gravity waves appears to be the next
frontier for inflation. Only time will tell whether this is true or not.
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Lecture Notes on Non-Gaussianity

Christian T. Byrnes

Abstract We discuss how primordial non-Gaussianity of the curvature perturbation
helps to constrain models of the early universe. Observations are consistent with
Gaussian initial conditions, compatible with the predictions of the simplest models
of inflation. Deviations are constrained to be at the sub percent level, constraining
alternative models such as those with multiple fields, non-canonical kinetic terms or
breaking the slow-roll conditions. We introduce some of the most important models
of inflation which generate non-Gaussian perturbations and provide practical tools
on how to calculate the three-point correlation function for a popular class of non-
Gaussian models. The current state of the field is summarised and an outlook is
given.

1 Introduction and the Aims of These Lecture Notes

The theory of inflation, a period of quasi-exponential expansion of the universe very
shortly after the big bang, is now widely regard as part of the standard cosmological
model. The predictions of the simplest inflationary models have passed increasingly
stringent tests from observations of the cosmic microwave background (CMB), most
recently by the Planck satellite. Remarkably, the apparently crazy idea that the
formation of all structures in our universe such as galaxies were caused by quantum
perturbations of the field driving inflation, does have strong observational evidence.
Inflation therefore provides a mechanism to relate the smallest and largest scales in
the universe.

Despite the evidence that inflation occurred, rather little is known about the
properties of inflation. The energy scale could be anywhere between the TeV and
the GUT scale, an enormous range, notable for stretching far beyond the highest
energies we can ever reach with a terrestrial experiment such as a particle collider.
This provides cosmologists with the opportunity to provide constraints on extremely
high energy physics, as witnessed by the study on the field of embedding inflation
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into models of string theory. It is both an opportunity and a challenge that we have
limited information about the relevant model of particle physics during inflation. For
example, was inflation driven by one or more fields, what form did their potential(s)
take, and their kinetic term(s)? What is the energy scale of inflation, and how did
the universe become radiation dominated after inflation ended?

Our best way to answer these questions is by studying the statistical properties of
the perturbations generated during inflation for different classes of models and then
evolving this spectrum of perturbations forwards in time to make predictions for the
pattern of temperature perturbations in the CMB, as well as the density perturbations
of large scale structure such as galaxy clusters.

Over the past decade, the study of the Gaussianity of the primordial perturbations
has become a large field, being the main theme of many focused conferences and
workshops every year (Komatsu et al. 2009). The simplest models of inflation
are expected to produce perturbations which are extremely close to Gaussian
(Maldacena 2003). Any observation of non-Gaussianity would rule out the simplest
models. Gaussian perturbations are very tightly constrained by the definition of
Gaussianity, for example all information about the correlation functions of the
perturbations is encoded in the two-point function alone. By contrast, non-Gaussian
perturbations could be anything else. This opens a Pandoras box full of possibilities
to search a huge observational data set for anything and everything, which leads
to the danger of coincidental patterns in the data being interpreted as signals of
real physics. Anomalies of this sort, strange patterns which were not predicted in
advance of analysing the data do exist, but all are of a reasonably small statistical
significance, especially when taking into account the “look elsewhere” effect, i.e. if
100 people search for different non-Gaussian patterns in a Gaussian data set, then
one of these patterns will probably be “detected” at the 99% confidence level due
to the statistical fluctuations in the data.

Fortunately general classes of inflationary models do predict specific shapes
of non-Gaussianity, for example certain templates of the bispectrum (the three-
point function, which is zero for a Gaussian distribution) would point towards a
requirement that multiple fields contributed to the physics of inflation, while a non-
canonical kinetic term of the inflaton fields Lagrangian predict a different signature
in the bispectrum which is observationally distinct. Classifying different models
according to the form of non-Gaussianity they generate, and finding observational
constraints on the corresponding scenario has become a major topic within the study
of inflation.

The aim of these lectures is to provide both a background knowledge about non-
Gaussianity of the primordial perturbations which gave rise to all structures as well
as some concrete calculations for reasonably simple scenarios, thereby developing a
real working knowledge of the field and providing the tools to perform calculations
yourself for some scenarios. The course contents are up to date and much of the
content here is not contained in any textbook, at least at the time of publishing these
notes.

These lecture proceedings are based on a 4 h lecture course held at the II JBP
Cosmology school in Espirito Santo, Brasil. The slides are available from the
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school’s website (http://www.cosmo-ufes.org/jpbcosmo2-mini-courses-seminars--
posters.html). The most closely related courses were on Inflationary Cosmology by
Jérôme Martin and CMB theory by David Wands.

Students wishing to learn more may turn to many review articles about non-
Gaussianity, here we just list a selection published during or after 2010. However
note that all predate the Planck data release which significantly improved the
constraints on non-Gaussianity. Reviews which are more focused towards how the
observational constraints are made include Komatsu (2010), Yadav and Wandelt
(2010), Liguori et al. (2010), Desjacques and Seljak (2010), Verde (2010), Bartolo
et al. (2010) and focus on tests relating to isotropy and anomalies are considered in
Abramo and Pereira (2010), Copi et al. (2010). Perhaps the most comprehensive
review of non-Gaussian inflationary models is given in Chen (2010). Reviews
focused on the local model of non-Gaussianity include Wands (2010), Byrnes and
Choi (2010).

The plan of the lectures is as follows: We first provide more introduction and
motivation for this topic, presented in a novel manner. We then study some specific
models of non-Gaussianity, and the classes of models which give rise to them,
Sect. 3. In Sect. 4.1 we provide a practical introduction to a simple method of
calculation inflationary perturbations to non-linear order, the ıN formalism and use
this to derive some general formulae which are useful for calculating the amplitude
of the three and four-point functions of the inflationary perturbations. We then go
into great detail to study a concrete example of a popular inflationary model whose
perturbations are non-Gaussian, the curvaton scenario, see Sect. 5. In Sect. 6 we
provide some nontechnical question and answers about the subject and its current
status after the first major data release from the Planck satellite, which has made by
far the most stringent constraints on non-Gaussianity available. Finally we conclude
in Sect. 7.

2 Gaussian Distributions

A Gaussian (or normal) distribution is defined by the probability distribution
function (pdf)

1p
2�

e� .x�x0/
2

22 ; (1)

where x0 is the mean of the distribution and 2 the variance. Gaussian distributions
are relatively simple and have many neat properties, some of which we will explore
in these lectures. It only has two free parameters, and we will see that in cosmology
the mean can usually be redefined to be zero, leaving only the variance. In contrast,
non-Gaussian distributions can have an arbitrary number of free parameters.

http://www.cosmo-ufes.org/jpbcosmo2-mini-courses-seminars--posters.html
http://www.cosmo-ufes.org/jpbcosmo2-mini-courses-seminars--posters.html
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The central limit theorem states that in the limit of a large number of mea-
surements, if all measurements are drawn from independent, identically distributed
pdfs then the limiting distribution will the Gaussian. Because many processes in
nature depend only on the average of many “small scale” processes, we often find
nearly Gaussian perturbations in nature. Therefore a good first guess for an unknown
distribution is often that it will be nearly Gaussian.

In quantum mechanics, the ground state of the simple harmonic oscillator is
Gaussian distributed. Since inflation predicts that the primordial density pertur-
bation is generated from the quantum fluctuations of a light scalar field, which
is quantised analogously to the simple harmonic oscillator, we may expect the
curvature perturbation to be Gaussian.

This means, for example, that if you divide the CMB sky into many small
patches, there will be the same number of patches which are hotter than average
as those which are colder than average, and that if you plotted a histogram of
the temperature deviations in each patch, they would form a normal (bell) curve.
Similarly if you were to divide the early universe into little cubes, the density
distribution would fit a Gaussian curve. However, doing the same in the late time
universe, when the density perturbations have become large this changes, since

� 1 � � � N�
N� � 1; (2)

where N� is the average density over the total volume, and � the density in the patch
being measured, is not a symmetric distribution, unlike the Gaussian distribution.
The asymmetry arises because there is a limit to how empty space can become
(� D 0), whilst there is almost no limit to how overdense it can become.

There are two lessons which can be learnt from this. Firstly that small perturba-
tions can more easily be Gaussian in practice, for example the CMB temperature is
given by T D 2:75˙ 10�5 K, and so although the temperature cannot be lower than
absolute zero, in practice no perturbation will ever come close to being so large.
We will later see that the temperature distribution of the CMB comes extremely
close to following a Gaussian distribution. Secondly gravity acts both to make the
density perturbation larger (overdense regions become denser due to gravitational
attraction, leaving the voids emptier) and less Gaussian. A Gaussian distribution
remains Gaussian under a linear transformation (which corresponds to shifting
the mean value or changing the variance), but becomes non-Gaussian under any
non-linear transformation, for example squaring a Gaussian distribution leads to a
chi-squared distribution. In practise, we will always identify the linear perturbation
with a Gaussian perturbation, and all higher-order terms as being non-Gaussian
corrections. The lowest order corrections, the quadratic corrections, follow a chi-
squared distribution.

Since the gravitational equations of motion are non-linear (thats what makes
them hard to solve!), the perturbations will not only grow, but they will also become
non-Gaussian, even if the initial perturbations were exactly Gaussian. The non-
Gaussianity generated if one starts with a Gaussian primordial density perturbation
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is known as the secondary non-Gaussianity. Until the time that the CMB formed, this
secondary non-Gaussianity was very small and the corrections can be neglected. For
large scale structure, the secondary non-Gaussianity becomes large at later times,
and at smaller scales which have a larger amplitude and are hence less linear. This
means that detecting primordial non-Gaussianity is easier in the CMB than large
scale structure; most (or all) of the non-Gaussian signal measured in the clustering
of galaxies is secondary non-Gaussianity. These lectures will focus exclusively on
primordial non-Gaussianity, which we aim to use as a probe into the physics of the
early universe. Fundamental questions which we hope to answer include how many
scalar fields were present during inflation, what form their Lagrangian had and how
reheating proceeded after inflation.

2.1 Distinct Characteristics of Gaussian Distributions

As described above, a Gaussian distribution has just two free parameters, the mean
and variance. The mean can typically be defined to be zero, since it is convenient to
define a perturbed quantity as being its deviation from the average value. Physically
the mean tells us about the homogeneous universe, but nothing about the primordial
perturbations. For example, the mean density of the universe has been measured
as being very close to the critical density, which corresponds to a spatially flat
universe. The average value of the CMB temperature redshifts with time and hence
provides us with no information about inflation. The only additional information
we can learn for a Gaussian distribution is how the variance depends on scale, for
example whether the variance becomes larger if we divide the CMB sky into larger
patches. In practise such a measurement is usually discussed in Fourier space, where
the Fourier wavenumbers satisfy k D jkj 	 .physical scale/�1, and the two-point
correlator of the curvature perturbation is related to the power spectrum by

h�k�k0i D P�.k/.2�/
3ı 3.k C k0/ ; (3)

and the variance per logarithmic interval in k-space is given by

P�.k/ D 4�k3

.2�/3
P�.k/ D As

�
k

kpivot

�ns�1
: (4)

As denotes the amplitude of the scalar perturbations, it corresponds to the variance
of the perturbations at the pivot scale. The spectral index, ns � 1 parametrises a
possible scale dependence, where ns D 1 corresponds to scale independence (in
which case the power spectrum does not depend on k). Using combined Planck and
WMAP data, see Table 2 of Ade et al. (2014c), the values of the two primordial
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spectra parameters are

ln
	
1010As


 D 3:089C0:024
�0:027 ; (5)

ns � 1 D 0:9603˙ 0:0073: (6)

The assumptions of homogeneity and isotropy imply that the power spectrum
is only a function of k. The parametrisation (4) is a simple ansatz for the scaling
which has got nothing to do with whether the perturbations follow a Gaussian
distribution or not. This simple ansatz is a good match to observations, meaning that
we only require two parameters to describe the primordial power spectrum. If the
perturbations are Gaussian, then all of the information is contained in the two-point
correlation function, or equivalently the power spectrum. All of the odd n-point
correlators are zero, while all of the even n-point correlators can be reduced to
disconnected products of the two-point function, which contain no new information
(this is known as Wick’s theorem, we will not prove it here, it is a standard proof
in quantum field theory courses). Hence Gaussian statistics are very prescriptive
but not very informative, everything can be learnt just by measuring the two-point
function. Given that we have not detected primordial non-Gaussianity, and we can
parametrise the power spectrum using just two numbers, we face the remarkable
fact that observations of millions of pixels on the CMB sky, which lead to over one
thousand well measured power spectrum amplitudes (the Cl’s), can be described by
primordial perturbations which are fully specified by only two parameters. Such a
simple state of affairs is perfectly consistent with inflation, a period of quasi de Sitter
expansion being driven by a single slowly-rolling scalar field can naturally lead to a
spectrum of nearly Gaussian and nearly scale invariant perturbations.

In order to learn more about inflation, we must carefully check how consistent
this simple picture is, both theoretically and as a match with observations. The rest
of these lectures will hopefully motivate why the difficult search for non-Gaussianity
is worthwhile and exciting, despite the lack of any clear observational detection of
primordial non-Gaussianity.

3 Different Models of Non-Gaussianity

As described in the last section, Gaussianity is very prescriptive. Non-Gaussianity
is anything else, so in principle we should search for all possible patterns in the data
when hunting for non-Gaussianity. Apart from the fact that this is computationally
unfeasible, it is also clear that there will be random patterns distributed in any large
data set, many of which are statistical flukes of no cosmological significance. If the
underlying distribution is Gaussian, then we should still expect one in a hundred
tests to appear non-Gaussian at the 99% confidence level. This is the well known
issue about anomalies in the CMB and the difficulty of quantifying the unlikeliness
of posterior distributions. For example see the review article about large angle
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anomalies (Copi et al. 2010) and the WMAP paper (Bennett et al. 2011), which
often do not reach the same conclusions.

The path we will take in these lectures is to study which types of non-Gaussianity
simple models of inflation predict. A major advance from the last decade in this
field is the realisation that different types of extensions of the simplest inflationary
models produce specific and predictable types of non-Gaussianity (Komatsu et al.
2009). Models of single-field, slow-roll inflation with canonical kinetic terms and a
Bunch-Davies initial vacuum state produce Gaussian perturbations. Breaking any
one of these four conditions produce specific shapes of non-Gaussianity. These
shapes are then searched for with data and the constraints can be interpreted in
terms of model parameters, for example constraining how strongly the kinetic term
of the inflaton field is allowed to deviate from a canonical form.

In analogy with the two-point function which defines the power spectrum, (3),
we define the bispectrum via the three-point function of the curvature perturbation

h�.k1/�.k2/�.k3/i D .2�/3ı 3.k1 C k2 C k3/B�.k1; k2; k3/: (7)

The delta function comes from assuming statistical homogeneity, assuming isotropy
in addition allows us to write the bispectrum in terms of just the three amplitudes of
the wave vectors (i.e. the three side lengths of a triangle in Fourier space). Compared
to the power spectrum which was a function of just one amplitude, we see that the
bispectrum may contain a lot more information, i.e. information about its shape as
well as about its amplitude.

3.1 Local Non-Gaussianity

We have previously described how the linear perturbations can be identified as
the Gaussian perturbations. An obvious next step would be to consider the linear
term as the first in a Taylor series expansion, in which the second order term is of
order the linear term squared, and so on for higher orders. Given that the amplitude
of the linear term is observed to be 10�5, we may expect the convergence to be
strong, and that we are unlikely to need to include terms up to a high order. This
approach is not only mathematically quite simple, but also quite well motivated by
many classes of physical models. We first study how the model is defined, and we
provide a technique for calculations before providing examples of concrete models.
In particular, we will make an in depth study of the curvaton scenario, and use
this case both as a justification of the local model, and to motivate extensions to
this simple model. We will then see how non-Gaussianity provides an observational
probe to distinguish between different models of inflation.

The local model of non-Gaussianity, in its simplest form, is defined by

�.x/ D �G.x/C 3

5
fNL.�

2
G.x/� h�2G.x/i/: (8)
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The name comes from the fact that it is defined locally in real space, � is a local
function of position. The factor of 3=5 comes from the original definition being in
terms of the Bardeen potential (Komatsu and Spergel 2001), which is related on
large scales to the primordial curvature perturbation in the matter dominated era by
ˆ D .3=5/�. The variance term has been subtracted from the quadratic part in order
that the expectation value satisfies h�i D 0, any other choice would leave a non-zero
expectation value, which would be degenerate with the background term, meaning
that � would not be a purely perturbed quantity. When working in Fourier space, this
constant term is only important for the k D 0mode (zero wavelength corresponds to
a homogeneous mode), and is therefore often neglected. Under a Fourier transform,
the quadratic term becomes a convolution,

�.k/ D �G.k/C 3

5
fNL

1

.2�/3

Z
d3q�G.q/�G.k � q/: (9)

In general, the local bispectrum is defined by

Blocal
� D 2

3

5
f local
NL

	
P�.k1/P�.k2/C 2 perms



; (10)

which in the case of a scale-invariant power spectra reduces to

Blocal
� D 2A2s f

local
NL

�
1

k31k
3
2

C 2 perms

�
: (11)

Although (8) does imply (10) the reverse is not the case, more general models for
� can give rise to the same bispectrum. We will study generalisations of the local
model in Sect. 4, and we will see how (1) the scale dependence of fNL in Sect. 4.2
and (2) the trispectrum in Sect. 4.3 may be used to break the degeneracy between
these different expansions for � which generate equal amplitudes (and shapes) of
the bispectrum.

3.2 Equilateral and Orthogonal Shapes

If the inflaton field has a non-canonical kinetic term, interaction terms may give rise
to a large bispectrum. The bispectrum is maximised for three modes which have the
strongest interaction, for this model this corresponds to the time when all three of
the modes exit the horizon during inflation, and hence all have similar wavelengths.
Two templates which are both maximised in the limit of an equilateral triangle have
been commonly used as a test of such models are the equilateral and orthogonal, the
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latter was designed to be orthogonal to the equilateral (Senatore et al. 2010), as the
name suggests.

Bequil
� D 6A2s f

equil
NL

�
�
�

1

k31k
3
2

C2 perms

�
� 2

.k1k2k3/2
C
�

1

k1k22k
3
3

C5 perms

��
;

(12)

Bortho
� D 6A2s f

ortho
NL

�
�3

�
1

k31k
3
2

C2 perms

�
� 8

.k1k2k3/2
C3

�
1

k1k22k
3
3

C5 perms

��
:

(13)

For both cases we ignore the scale dependence of the power spectrum and the
intrinsic scale dependence of the bispectrum itself (Chen 2005).

Popular models of inflation with non-canonical kinetic terms include k-inflation
(Armendariz-Picon et al. 1999) and Dirac-Born-Infeld (DBI) inflation (Silverstein
and Tong 2004; Alishahiha et al. 2004). DBI inflation is one of the most popular
string theory inspired models of inflation, for a recent review of the models see
Baumann and McAllister (2014), and it generically predicts such a large equilateral
non-Gaussianity that some of the “simplest” realisations have already been ruled
out, see e.g. Lidsey and Huston (2007).

Single field models can be parametrised as L D P.X; �/, where the kinetic term
is X D g	�@	�@��, and a model with canonical kinetic term satisfies L D �X=2�
V.�/, and hence has a speed of sound equal to unity, where

c2s D P;X
P;X C 2XP;XX

: (14)

We note that despite the widespread use of the subscript s in the literature, (14) really
defines the phase speed of the perturbations, which is the same as the adiabatic
sound speed for classical fluids but not for scalar fields. See Christopherson and
Malik (2009) for a clarification of this point. For models with a sound speed much
less than one, one has fNL 	 1=c2s for both the equilateral and orthogonal models,
and hence the Planck constraints provide a lower bound on this parameter c2s & 0:1

(Ade et al. 2014b).

3.3 Feature Models

It is possible to generate large non-Gaussianity in single-field models with canonical
kinetic terms if slow-roll is violated. By definition, inflation requires that � < 1, but
higher-order derivatives of this parameter can become large. They can only become
large for short periods of time, otherwise typically � will quickly grow to become
order unity and end inflation before 60 efoldings of inflation have been achieved.
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A temporary break down of slow-roll can be achieved by adding a step like
feature into the potential, for example of the form (Chen et al. 2007a)

V.�/ D V.�/sr

�
1C c tanh

�
� � �s

d

��
; (15)

where V.�/sr is the potential which generates slow-roll inflation, c is the height of
the step, d the width of the step and �s determines the position of the step. Only
the modes which exit the horizon while the inflaton is traversing the step will have
an enhanced non-Gaussianity, hence the bispectrum will have a localised shape in
Fourier space around a characteristic scale, determined by the Hubble scale when
� D �s. If this scale does not fit inside the range of about seven efoldings which the
CMB probes there is almost no hope of a detection. The bispectrum typically also
has fast oscillations imprinted on it, which makes it observationally hard to detect
or constrain (Chen et al. 2007a). However a violation of slow roll will generically
also produce a feature in the power spectrum at the same scale, so correlating this
feature with the bispectrum should aid a detection in such models.

3.4 Other Bispectral Shapes

Although the four shape templates already described above are among the most
popular, plenty of others exist and have been searched for. Other well known
examples include

1. Flattened/folded configuration, which can be generated by models where the
initial state of the perturbations is not the usual Bunch-Davies vacuum state, but
an excited state (Chen et al. 2007b; Holman and Tolley 2008; Meerburg et al.
2009). The name comes because this shape has the largest signal in the limit of a
flattened isosceles triangle, satisfying k1 ' k2 ' k3=2.

2. Cosmic strings or other topological defects are strongly non-Gaussian objects
which generate a complicated non-Gaussian shape, which has still not been
fully calculated. For a review see Ringeval (2010). The Planck constraints on
topological defects coming from both the power spectrum and bispectrum are
given in Ade et al. (2014a).

3. Magnetic fields are ubiquitous in the universe and have been observed to exist
in galaxies, galaxy clusters and even in voids. Their origin remains a mystery.
Magnetic fields are intrinsically non-Gaussian objects and their abundance is
constrained by the observed Gaussianity of the CMB perturbations. Interestingly,
the trispectrum is claimed to provide a tighter constraint on the magnetic field
abundance than the bispectrum (Trivedi et al. 2012). For a review of this topic
see Durrer and Neronov (2013).
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3.5 How Similar are the Bispectral Shapes?

Given that a huge number of bispectral shapes can be generated, many of which
are very similar to one of the standard shapes considered earlier in this section, it is
useful to be able to calculate how correlated two different shapes are. Since these
shapes are a function of three variables, this is hard to do analytically or “by eye”.
For example, DBI inflation predicts a bispectral shape which is highly correlated
to the equilateral shape, but it is numerically much harder work with since it is not
separable in to a product of the three side lengths. Knowing that they have nearly the
same shape, one may use the observation constraint on equilateral non-Gaussianity
to constrain the sound speed of DBI inflation.

A scale invariant non-linearity parameter corresponds to a bispectrum which
scales as B / P2 / k�6, so it is helpful to define a shape function which factors out
this momentum dependence

S.k1; k2; k3/ D 1

fNL
.k1k2k3/

2 B�.k1; k2; k3/: (16)

The shape correlator is defined as the inner product of two shapes, to which a
volume weighting 1=†ki is applied, designed in order to match the signal to noise
which comes from experiments, for details see Fergusson and Shellard (2009). The
inner product between the two shapes S and S0 is given by

F.S; S0/ D
Z
Vk

S.k1; k2; k3/S
0.k1; k2; k3/

1

k1 C k2 C k3
dVk; (17)

where Vk is the allowed volume in Fourier space of the k modes, which must satisfy
the delta function condition†ki D 0. It should also satisfy constraints on the largest
and smallest modes available to the experiment, defined respectively by the volume
and resolution of the survey. In practise, the results are often reasonably insensitive
to these choices, and if (17) converges when integrated over all ki, this value is
sometimes used without applying any cut offs. The shape correlator is defined by

C.S; S0/ D F.S; S0/p
F.S; S/F.S0; S0/

: (18)

The equilateral shape is about 50% correlated with the local shape (Fergusson and
Shellard 2009) and uncorrelated with the orthogonal shape (Senatore et al. 2010).

4 Local Non-Gaussianity and Its Extensions

We will first provide a convenient method to calculate the curvature perturbation �,
which is especially convenient for the local model of non-Gaussianity. We will also
see how this can be used to study generalisations of the local model to include scale
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dependence of fNL in Sect. 4.2, and to higher order in perturbation theory to study
the trispectrum in Sect. 4.3.

4.1 The ıN Formalism

The flat, unperturbed FRW metric is given by

ds2 D �dt2 C a.t/2ıijdx
idxj; (19)

and neglecting vector and tensor perturbations, the perturbed space-space part is
given by

gij D a.t/2e2�.t;x/ıij: (20)

Therefore, the curvature perturbation � is the difference between the local expansion
rate and the global expansion rate

�.t; x/ D ıN D N.t; x/ � N.t/; (21)

where

N.t/ D ln

�
a.t/

ainitial

�
D
Z

da

a
D
Z

H.t/dt: (22)

N should be integrated from a spatially flat hypersurface shortly after horizon
crossing, to a final uniform energy density (or equivalently a uniform Hubble)
hypersurface. For some references which developed the ıN formalism to linear
order see Starobinsky (1985), Sasaki and Stewart (1996), Sasaki and Tanaka (1998),
Lyth et al. (2005).

During inflation, the scalar fields provide the only contribution to the energy
density, and within the slow-roll approximation their time derivatives do not
provide a second degree of freedom (i.e. the field value and its derivative are not
independent). Therefore

� D N.�a C ı�a/� N.�a/; (23)

where a labels the scalar fields, and we may expand this as a Taylor series to find
the key result

� D Naı�a C 1

2
Nabı�aı�b C � � � ; (24)
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where the field perturbations should be evaluated at the initial time (shortly after
horizon crossing), summation convention is used and

Na D @N

@�a�
: (25)

Notice that the derivatives of N depend only on background quantities, so provided
that the statistical distribution of the field perturbations is known at horizon crossing,
we can do perturbation theory using only background quantities. For some intuition
about this remarkable fact, see for example (Wands et al. 2000).

Assuming canonical kinetic terms, Bunch Davies vacuum and slow roll, the
initial conditions are very simple. The field perturbations are Gaussian, and

hı�a.k/ı�b.k0/i D ıabP�.k/.2�/3ı 3.k C k0/; (26)

where

P�.k/ D 4�k3

.2�/3
P�.k/ D

�
H�
2�

�2
: (27)

The cross correlation terms in (26) are slow-roll suppressed and hence neglected
(Byrnes and Wands 2006). Using these results and the linear part of (24), we may
calculate the power spectrum

P�.k/ D NaNaP�.k/ : (28)

To calculate fNL, we first need the three-point function of �. The first non-zero
contribution comes from taking two first-order terms and one second-order term
from (24), we arbitrarily take the second-order term to correspond to the k3 term,
the other two choices correspond to the two permutations which are added

h�.k1/�.k2/�.k3/i

D 1

2
NaNbNcdhı�a.k1/ı�b.k2/

Z
d3q
.2�/3

ı�c.q/ı�d.k3 � q/i C 2 perms

D 1

2
NaNbNcd2

Z
d3q
.2�/3

hı�a.k1/ı�c.q/ihı�b.k2/ı�d.k3 � q/i C 2 perms

D NaNbNcd

Z
d3qıacP�.k1/ı 3.k1 C q/hı�b.k2/ı�d.k3 � q/i C 2 perms

D NaNbNcdıacıbdP�.k1/P�.k2/ı 3.k1 C k2 C k3//C 2 perms

D NaNbNab
1

.NcNc/
2
P�.k1/P�.k2/C 2 perms: (29)
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In going from the first to the second line, we have applied Wick’s theorem to split
the four-point function into two two-point functions. Placing the ı�c and ı�d in to
the same angle bracket results in zero unless k3 D 0, which is not observationally
relevant. This leaves us with two ways to get a non-zero result, and both of those
cases lead to exactly the same result which explains the factor of 2. We have
applied (26) to go to the third line and performed the integration to reach the fourth
line. The final line follows by application of (28).

Then using the definition of the bispectrum (7), as well as that of f local
NL , (10), we

find

fNL D 5

6

NaNbNab

.NcNc/
2
: (30)

This result was first derived by Lyth and Rodriguez in 2005, and is very useful since
it allows us to calculate the bispectrum amplitude using only background quantities
(and we know it must have the local shape).

4.1.1 Single-Field Inflation

In the case of single-field inflation, the derivatives of N are given by

N0 ' NH
PN' ' 1p

2

1

MPl

1p
�

	 O

�� 1

2

�
; (31)

N00 ' �1
2

1

M2
Pl

1

�
.�� 2�/ 	 O .1/ ; (32)

where the slow-roll parameters are defined by

� D M2
Pl

2

�
V 0

V

�2
; � D M2

Pl
V 00

V
: (33)

This suggests that

fNL D 5

6

N00

N02 D 5

6
.�� 2�/ (34)

but since fNL is slow-roll suppressed for this model, we should have also included
the equally small non-Gaussianity of the field perturbations at horizon exit.

The final result, known as the Maldacena consistency relation (Maldacena 2003),
states that

fNL � 5

12
lim
k1!0

B.k1; k2; k3/

P.k1/P.k2/
D 5

12
.1 � ns/: (35)
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See Creminelli and Zaldarriaga (2004) for a general proof, valid for any single field
model (even with non-canonical kinetic terms, breaking slow roll and a non Bunch-
Davies vacuum state). The exciting result is that a detection of the bispectrum in
the squeezed limit (similar to local non-Gaussianity) would rule out all single-field
models. A detection of non-Gaussianity in any non-squeezed configuration would
not do this.

4.1.2 Single-Source Inflation

If we instead assume that a single-field generated the primordial curvature pertur-
bation, which was not the inflaton field, then large local non-Gaussianity is possible
(but not required or even generic). Many models in the literature fit into this case,
for example

• the curvaton scenario (to be studied in depth in Sect. 5)
• modulated (p)reheating (the duration of reheating varies with position) (Dvali

et al. 2004; Zaldarriaga 2004; Suyama and Yamaguchi 2008; Ichikawa et al.
2008)

• inhomogeneous end of inflation (the duration of inflation varies with position)
(Bernardeau and Uzan 2002, 2003; Lyth 2005; Huang 2009)

• multiple-field slow-roll inflation can produce large non-Gaussianity for certain
trajectories which turn in field space (Alabidi 2006; Byrnes et al. 2008; Peterson
and Tegmark 2011; Wang 2010; Elliston et al. 2011)

What they all have in common is that the duration of periods with differing
equations of state varies with position. This is required in order that N becomes
perturbed, since it only depends on the amount of expansion, i.e. H. In modulated
reheating, the equation of state is 0 while the inflaton oscillates in a quadratic
potential, but jumps to 1=3 after the inflaton has decayed into radiation. This means
that varying the time of reheating will change the expansion history, and hence N
and �. For more on how these models are related see e.g. Vernizzi (2004), Alabidi
et al. (2010), Elliston et al. (2014).

4.2 Scale Dependence of fNL

As defined in (8), fNL is just a constant modulating the second order term in the
expansion. Whilst this is a very good approximation in many models, it is generally
not exact. Similarly to how the power spectrum usually has a spectral index of order
the slow-roll parameters (reflecting evolution during inflation), the non-Gaussianity
typically has a similar sized scale dependence. The analogy is not exact since there
are simple models in which the scale invariance is exact (such as the quadratic
curvaton model that we will study later), and there are other cases where the scale
dependence is large, despite all fields obeying the slow-roll conditions.
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In analogy to the spectral index, we define

nfNL � d ln j fNL.k/j
d ln k

: (36)

Strictly speaking, this is only defined for an equilateral triangle, for which all three
k0s are equal. However at lowest order, this spectral index is the same for any shape
of triangle provided that one scales all three sides by the same ratio as shown in
Byrnes et al. (2010). Corrections do become important in the case that one strongly
deforms the triangle while changing its scaling (Shandera et al. 2011; Dias et al.
2013).

The most general formula for nfNL which also allows for a non-trivial field space
metric is given in Byrnes and Gong (2013). There it was shown that there are three
effects which may give rise to scale dependence: (1) multiple field effects, from
fields with different spectral indices contributing to the curvature perturbation (2)
non-linearity of the field perturbation equation of motion, which is only absent in
the case of a field with a quadratic potential and no backreaction from gravity and
(3) a non-trivial field space metric. One example of a case with a scale independent
fNL is the quadratic curvaton scenario, where the curvaton field’s energy density
is subdominant by construction and the perturbations from the inflaton field are
neglected. However this is clearly an idealised case, and in general we should expect
some scale dependence.

How large can we expect the scale dependence to be? The answer is model
dependent, but in some cases relatively simple results are known and may be used
to gain intuition. In the case of a single-source inflation model (see the previous sub
section), in which the corresponding field direction was an isocurvature mode during
inflation (otherwise the non-Gaussianity is very small if the field is the inflaton)

fNL D 5

6

N
N2

; (37)

nfNL ' N
N

V 000

3H2
' 5

6

sgn.N /

fNL

r
rT

8

V 000

3H2
: (38)

In order for fNL to be observable, the term 1=fNL must be less than unity. We also
have the observational constraint from the tensor-to-scalar ratio that

p
rT=8 . 0:1.

However the last term in (38) may be arbitrarily large, it is not a slow-roll parameter.
Clearly it is zero in the case of a quadratic potential. The best studied case with non
quadratic potentials, which often requires a numerical treatment, is the curvaton
scenario. In this case, the scale-dependence is typically of a similar size to the slow-
roll parameters but in some cases it may be much larger, even nfNL 	 1 is possible,
at which values the formalism used for the calculation becomes inaccurate. See
Sect. 5.2 for details.

If multiple-fields generate the curvature perturbation, e.g. both the inflaton and
the curvaton, then fNL will generically be scale dependent even when the non-
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Gaussian field has a quadratic potential. This is due to fNL being defined as the
ratio of the bispectrum to the square of the power spectrum (10). The bispectrum
is only sourced by the non-Gaussian field, while the power spectrum is sourced by
both fields. Unless the power spectra of both fields have the same scale-dependence,
the relative importance of the two fields perturbations will depend on scale. On the
scales where the non-Gaussian field is more important fNL is larger, while in the
opposite case where the Gaussian (inflaton) field perturbations dominate fNL will be
negligible. An explicit realisation of this case is presented in Sect. 5.1.

4.3 The Trispectrum

The (connected) four point function of the primordial curvature perturbation is
defined by

h�k1 �k2 �k3�k4ic � T�.k1;k2;k3;k4/.2�/3ı 3.k1 C k2 C k3 C k4/ ; (39)

which using the ıN formalism, and assuming that the fields have a Gaussian
distribution at Hubble exit see Sect. 4.1, is given by

T�.k1;k2;k3;k4/ D�NL
�
P�.k13/P�.k3/P�.k4/C .11 perms/

�

C 54

25
gNL

�
P�.k2/P�.k3/P�.k4/C .3 perms/

�
; (40)

where k13 D jk1Ck3j and the trispectrum non-linearity parameters can be calculated
using (Alabidi and Lyth 2006; Seery and Lidsey 2007; Byrnes et al. 2006)

�NL D NabNacNbNc

.NdNd/3
; (41)

gNL D 25

54

NabcNaNbNc

.NdNd/3
: (42)

Hence we see that the trispectrum depends on two non-linearity parameters
(as opposed to one, fNL, for the bispectrum), and they may be observationally
distinguishable since they are prefactors of terms with different shape dependences
in (40). The observational constraints on �NL are tighter than those on gNL because
the pre factor for �NL is large when either ki ! 0 or kij ! 0, while it is large only
in the former case for gNL.

No constraint has yet been made with Planck data on gNL, from WMAP9 data
(Sekiguchi and Sugiyama 2013) found gNL D .�3:3 ˙ 2:2/ � 105 while Regan
et al. (2015) found gNL D .�4:1 ˙ 2:3/ � 105. From scale-dependent bias data,
Giannantonio et al. found �5:6� 105 < gNL < 5:1� 105 (2-) assuming that fNL D
0, which weakens to �5:9 � 105 < gNL < 4:7 � 105 when marginalising over fNL
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(Giannantonio et al. 2014). Using the same technique, Leistedt et al. recently found
�4:0 � 105 < gNL < 4:9 � 105 (2-) when marginalising over fNL (Leistedt et al.
2014). The constraint on (positive definite) �NL comes from the Planck collaboration
and is significantly tighter than the constraint on gNL, being �NL < 2800 at 2 � 

(Ade et al. 2014b).
The derivation of (41) and (42) is similar to that of fNL in Sect. 4.1, see

Byrnes et al. (2006) for details. The different forms of the contraction in the
numerator follow due to �NL consisting of two first-order terms and two-second
order terms, while gNL is made out of three first-order terms and one third-order
term [corresponding to the third derivative of N in (42)]. In both cases the total four-
point function is sixth order in ı�, or third order in the power spectrum. Thats why
there is a pre factor proportional to the power spectrum cubed in from of the �NL

and gNL terms in (40).

4.4 Suyama-Yamaguchi Inequality

Applying the Cauchy-Schwarz inequality to (30) and (41) one may derive the
Suyama-Yamaguchi inequality (Suyama and Yamaguchi 2008)

�NL 

�
6fNL

5

�2
: (43)

In the single-source limit the inequality saturates to an equality, and this is the most
widely considered test of whether the curvature perturbation was generated by a
single field (which we stress is not the same as asking whether inflation was driven
by a single field, in fact the single field which generates the perturbations must
not be the inflaton field in order for their to be any possibility of the trispectrum
parameters being large enough to observe). Unfortunately the tight constraints on
fNL and difficulty in constraining �NL means that we are only likely to be able to
detect �NL if �NL � f 2NL, while testing the equality is beyond observational reach for
the foreseeable future (Biagetti et al. 2013; Grassi et al. 2014).

5 The Curvaton Scenario as a Worked Example

The curvaton scenario is arguably the most popular model for studying non-
Gaussianity (Enqvist and Sloth 2002; Lyth and Wands 2002; Moroi and Takahashi
2001) [see also Mollerach (1990), Linde and Mukhanov (1997) for earlier related
work]. The scenario is quite minimal in that it requires only the smallest possible
extra complication for a model to be able to generate large local non-Gaussianity,
and analytical solutions are possible, making this an excellent pedagogical example.
We will consider this model in several parts, starting from the simplest case and
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then gradually dropping model assumptions and seeing how the picture becomes
both richer and more complex. Often, dropping a model assumption also leads to
the existence of a new observable, meaning that the different cases of the curvaton
scenario are (at least in principle) distinguishable.

The curvaton is an additional scalar field present during inflation. In order to
pick up scale invariant perturbations its mass must be light compared to the Hubble
scale, in addition it is required to have a subdominant energy density compared to
the inflaton by assumption. Until Sect. 5.2 we will assume it has a quadratic potential

V D 1

2
m2

2: (44)

Due to the assumption that the curvatons energy density is small, its equation of
motion for both the background and perturbation are the same during inflation, in
the special case of a quadratic potential

R C 3H P C V; D 0; (45)

Rı C 3H Pı C V; ı D 0: (46)

Neglecting the kinetic energy density of the curvaton, its energy density perturbation
is a constant, and is given by

ı�

�
' V. C ı/ � V./

V./
D 2

ı


C
�
ı



�2
: (47)

It is not possible to get the correct numerical factors using this simple treatment, but
it is nonetheless a useful approximation to relate the first term to the linear curvature
perturbation caused by the curvaton, �.1/ D ı


and the second order term �

.2/
 D	

ı



2
, so that (neglecting numerical factors), � D �

.1/
 C�.2/ is a constant. However

the total curvature perturbation is different and not conserved, it is proportional to
� D �=�tot, assuming that the curvaton is the only perturbed component of the
universe

� 	 �� : (48)

We will later consider what changes when all of these assumptions are dropped.
We may already learn two important lessons which remain true in more general
contexts, fNL / �.2/=�.1/2 / 1=� , and gNL D 0. The first lesson is quite general,
and states that even if the perturbations of a field as nearly Gaussian, as is the case
for the curvaton, then an inefficient transfer of that fields curvature perturbation to
the total curvature perturbation will generate non-Gaussianity. This follows since
the transfer multiplies the curvature perturbation equally at all orders, making the
second order term larger when compared to the square of the first order term.
The second lesson is that quadratic potentials tend to only generate quadratic non-
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Gaussianity, notice that it is only for a quadratic potential that (47) can be truncated
at second order.

We now study the crucial parameter ��, which we have seen will affect both
the amplitude of perturbations and the level of non-Gaussianity. During inflation,
the curvaton will roll slowly due to the assumption that it is light, m� � H.
However the total energy density is also slowly varying (due to the requirement
that � D � PH=H2 � 1), so �� ' ��=�� � 1 is approximately constant (and very
small) during this period. After inflation ends, the inflaton decays into radiation,
which redshifts as a�4. The curvaton will initially remain almost stationary, so that
�� / a4, until its mass become comparable to the Hubble rate at which time
it will start to oscillate. Oscillations about a quadratic minimum correspond to a
pressureless equation of state, so �� / a�3 and �� / a. During this period the
relative energy density of the curvaton can grow a lot, potentially dominating the
energy density of the universe if it either decays late enough or is much lighter
than the Hubble parameter at the end of inflation. Finally the curvaton decays into
radiation and thereafter�� D ��jdecay becomes a constant, and the perturbations in
its field (which were initially isocurvature perturbations) have been converted into
the primordial density perturbation. For a diagram displaying this process, see Fig. 4
of Dimopoulos (2011).

Including numerical factors, see e.g. Sasaki et al. (2006) for a derivation, the
curvature perturbation is given by

� D rdec�
.1/
 C

�
3

2rdec
� 2 � rdec

� 	
�.1/


2
; (49)

where

rdec D 3�

4�radiation C 3�
D 3�

4C 3�

ˇ̌
ˇ
decay

: (50)

From (49) the full result for fNL is

fNL D 5

4rdec
� 5

3
� 5

6
rdec; (51)

which in the limit of a subdominant curvaton reduces to

fNL / 1

rdec
/ 1

�

; for rdec D 3

4
� � 1; (52)

in agreement with the arguments made above. In the opposite limit of a dominant
curvaton at the decay time we find fNL D �5=4 which is much less Gaussian than
the slow-roll value predicted by single-field models [the Maldacena consistency
relation, see (35)], but observationally indistinguishable from a Gaussian distribu-
tion. Observationally probing values of fNL 	 1 is an important target for future
experiments. Values of fNL even closer to zero are possible in the curvaton scenario,
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but require a finally tuned value of rdec, while rdec D 1 is the asymptotic value in the
limit that the curvaton decays late.

If one had to choose one value of fNL as a prediction from the curvaton, it would
be fNL D �5=4. If the curvaton instead decayed when it was subdominant, then a
large and positive value of fNL is predicted. The Planck constraint of fNL . 10 results
in the bound rdec & 0:1, notice that prior to an fNL constraint being made, rdec 	
10�5 was possible which would generate the correct power spectrum amplitude if
ı= was approximately unity. Even without a detection of non-Gaussianity, the
constraints have taught us under which circumstances the curvaton scenario can
still be a viable model.

5.1 Including the Inflation Field Perturbations

So far we have assumed that the inflation field perturbations are negligible, however
the field perturbations of any light scalar field are expected to have the same
amplitude at horizon crossing, with the expectation value of their amplitude of
perturbations at horizon crossing being

ı� D ı D H

2�
: (53)

The question is whether the curvature perturbation from the curvaton or the inflaton
will be larger.

In this subsection, we will assume that the curvaton is subdominant at decay,
rdec � 1 and we will neglect numerical factors of order unity. The curvature
perturbation is given by

� 	 �� C rdec.� C �2 /; (54)

where

�� 	 1

MPl
p
��
ı��; � 	 ı



ˇ̌
ˇ�; (55)

and quantities to be evaluated around horizon crossing are marked with a “�”. The
power spectra due to the two fields are

P�� 	 1

��

�
H�
2�

�2
; P� 	 �2



1

2�

�
H�
2�

�2
; (56)

and the total power spectrum is the sum, based on the good approximation that the
perturbations of the two fields are uncorrelated (Byrnes and Wands 2006)

P� � Ptotal
� D P�� C P� : (57)
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Because the inflaton perturbations are Gaussian, the bispectrum is unchanged from
the pure curvaton limit

B� D B� ' 1

rdec


P�

�2
; (58)

but fNL is reduced because the power spectrum is enhanced by the Gaussian inflaton
field perturbations

fNL D 5

6

B�
P2�

D 5

6

B�
P2�

	 1

rdec

�P�
P�

�2
/ k2.n�ns/; (59)

where the spectral index n is defined by P
� / kn�1. In the curvaton limit

n ! ns so fNL becomes scale-invariant (assuming that it has a quadratic potential).
Alternatively in the limit that the curvaton power spectrum is scale invariant, we
have

nfNL ! �2.ns � 1/ ' 0:1: (60)

The tensor-to-scalar ratio is also reduced compared to the single-field inflation
limit, whose value is rT D 16��, to

rT D 16��
P��
P�
: (61)

In the curvaton limit P�� � P� , so rT is expected to be negligible (remember that
� < 1 is required in order to have inflation).

The trispectrum parameter �NL is instead enhanced compared to f 2NL, we have

�NL D P�
P�

�
6fNL

5

�2
>

�
6fNL

5

�2
; (62)

which obeys the Suyama-Yamaguchi inequality (43). Notice that �NL is also reduced
by the addition of Gaussian inflaton perturbations, but by a lesser amount than f 2NL.
Finally gNL will remain negligible under the additional contribution of Gaussian
perturbations from the inflation field.

5.2 The Self-Interacting Curvaton

Due to our assumption of a quadratic potential, the density and curvature perturba-
tion are only present up to second order. There are subleading corrections in 1=rdec

which give rise to higher order terms, but they are too small to ever be observed. For
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non-quadratic potentials there is a potentially large third order term in (47), which
can be constrained or measured by observations of gNL. In general we may expect
gNL 	 �NL 	 f 2NL from the curvaton scenario, unless it has a quadratic potential.

There is no fundamental reason why a quadratic potential is more “natural” or
likely than non-quadratic cases, but most of the literature has focused on quadratic
potentials due to the great computational simplicity which follows and allows
analytical results to be found. When we include self interactions of the curvaton,
i.e. extensions beyond a quadratic potential, the equation of motion for the curvaton
becomes non-linear [see (45) and (46)] and ı= is no longer conserved. This can
lead to very interesting behaviour (Enqvist et al. 2010), such as strongly scale-
dependent non-Gaussianity. For certain (finely tuned) initial conditions one has
nfNL � O.�; �/, turning this into an additional potential observable (Byrnes et al.
2011). Another difference from the quadratic case is that there is no lower bound of
fNL, and the value of fNL in the limit rdec ! 1 depends on the curvaton’s potential.
Generically the prediction does remain that fNL is of order unity, but not exactly
�5=4.

5.3 Curvaton Scenario Summary

We close this section with a table demonstrating how the many different realisations
of the curvaton scenario could be distinguished using multiple non-Gaussian
observables. This has provided us with a concrete realisation of how powerful
an observation of non-Gaussianity would be, as well as how even the current
constraints without a detection provide interesting information about the curvaton
(Table 1).

Table 1 Four different curvaton scenarios, with a quadratic or non-quadratic curvaton potential
and either including or neglecting the inflaton perturbations

Scenario
Curvaton
potential fNL nfNL

�NL=

.6fNL=5/
2 gNL

Pure curvaton
scenario

Quadratic � � 5
4

0 1 Small

Non-quadratic Unrestricted Potentially
large

1 Potentially
large

Mixed
inflaton-curvaton

Quadratic � � 5
4

Slow-roll
 10�2 � 1 Small

Non-quadratic Unrestricted Potentially
large

� 1 Potentially
large

The three columns of non-Gaussian observables show how we can (in principle) distinguish
between the different cases
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6 Frequently Asked Questions

Note that these lectures were written after the first Planck cosmology data release
in Spring 2013, but before the final data release which is expected in late 2014 or
2015.

• Do the Planck non-Gaussianity constraints imply that there is negligible
non-Gaussianity?

Not really. For the local model of non-Gaussianity, they do imply the sky
is over 99.9 % Gaussian, which is a remarkable result. For other templates, the
constraint could be much weaker. But the constraint jf local

NL j . 10 are still two to
three orders of magnitude larger than the single-field consistency relation for the
squeezed limit of the bispectrum, fNL ' ns � 1. Clearly a large window is left for
models which strongly deviate from this consistency relation, but have a level of
non-Gaussianity which is not yet detectable.

• Do the Planck non-Gaussianity constraints imply that alternatives to single
field inflation are strongly disfavoured?

No. Single field inflation remains consistent with the observations, which does
suggest they should be preferred from a Bayesian/Occams razor perspective. This
was also true before we had Planck results. However it is important to bear two
points in mind: (1) A model which is parametrised with the fewest parameters
might not be the simplest or most natural from a model building perspective, (we
know little about physics at the inflationary energy scale) and (2) there are many
multiple field models which predict non-Gaussianity with j fNLj � 1, and hence
are far from being ruled out.

• Is there a natural target for future non-Gaussianity experiments?
Yes, to a certain extent. Several models which convert an isocurvature

perturbation present during inflation into the primordial adiabatic perturbation
after inflation have a large parameter range in which j f local

NL j 	 1. For example,
the simplest version of the curvaton scenario, in which the curvaton potential is
quadratic and it is dominant at the decay time (which it will be the case if it
decays sufficiently late) makes a definite prediction, f local

NL D �5=4. Similarly,
a particularly simple realisation of modulated reheating predicts f local

NL D 5=2.
Hence having an experiment which is capable of discriminating between f local

NL D
1 and f local

NL D 0 would have great value in disfavouring popular non-Gaussian
models. See the next question for an idea of when we might reach this target.

For the equilateral model of non-Gaussianity, f equil
NL 	 1 is also a natural target

for testing models with a non-canonical kinetic term (Baumann et al. 2015).
• What are the prospects for future non-Gaussianity measurements?

The final Planck data release, which will contain double the observation time
compared to the first release as well as Planck polarisation data, is expected
to only lead to a relatively modest improvement to the fNL constraints, about
20%, compared to a factor of two for several other cosmological parameters
including the spectral index. The next significant improvement in the constraint
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for f local
NL is expected around 2020 from the Euclid survey, which is forecasted to

reach an error bar of around 2–3 (i.e. around a factor of two tighter than Planck)
(Giannantonio et al. 2012). Combined with SKA data in perhaps a decade, the
constraints are forecasted to be able to distinguish f local

NL D 0 from f local
NL D ˙1

at about 3 �  confidence (Yamauchi et al. 2014). Beyond this, there is no clear
timeline to future experiments which will have even tighter constraints, although
several experiments have been proposed, for example Core, Prism and Pixie
which would measure the CMB to greater accuracy and to smaller scales.

• Which forms of non-Gaussianity can we best constrain with future experi-
ments?

Currently, the only concrete expectation for a significant improvement in
non-Gaussianity constraints comes from the Euclid satellite. The forecasts have
mainly been made for the scale dependent halo bias, which is sensitive to the
squeezed limit of the bispectrum and hence primarily to local non-Gaussianity.
The prospects for the other shapes is weaker, but limited work has been done
on studying the galaxy bispectrum and using this as an estimator which could
potentially improve sensitivity to all shapes of the bispectrum. This work is
very challenging since the secondary signal from non-linear collapse is much
larger than the primordial signal (implying observations will have to deal with
many potentially large systematic effects). Even starting with Gaussian initial
conditions, structure formation is a challenging topic.

7 Conclusions and Future Outlook

Non-Gaussianity is a window on to the physics of the very early universe. The
distribution of the primordial perturbations contains much more information if it
is non-Gaussian, providing signatures on to the high energy physics of inflation.

We have provided an introduction to the field of primordial non-Gaussianity.
In contrast to a Gaussian perturbation, which is simple to describe and has only a
variance as a free parameter, a non-Gaussian perturbation could be anything else
and have any number of free parameters. Fortunately well motivated models of the
early universe tend to predict a reasonably small number of non-Gaussian templates,
which may be efficiently parametrised in terms of the three-point function of the
curvature perturbation (or temperature perturbation on the CMB). For a Gaussian
perturbation all information is included in the two-point function (i.e. the power
spectrum) and the three-point function is zero. Hence any detection of the three
point function would prove the primordial perturbations were non-Gaussian and the
cosmology community has made a great effort to studying the bispectrum. This
effort includes calculating the amplitude and shape dependence for classes of infla-
tionary models as well as constraining these templates against observations. Planck
has made the tightest ever constraints of the bispectrum, which are significantly
tighter than anything which existed before. Although there was no detection of non-
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Gaussianity, the constraints already rule out or put some inflationary models under
observational pressure, and constrain the primordial perturbations to be more than
99:9% Gaussian.

The simplest models of single-field slow-roll inflation predict a much smaller
deviation from Gaussianity, to a level which is probably too small to ever be tested.
However for other models of inflation there is still hope to for a future detection of
non-Gaussianity, for example we have seen how fNL D �5=4 is a natural prediction
of the curvaton scenario, and this value is within an order of magnitude of the current
constraints. Improving the constraints so much will not be possible with CMB data,
but may be possible with the next generation of large scale structure surveys in
about a decade. They probe three dimensional information which allows them to
alleviate the cosmic variance limits which the last scattering surface of the CMB
suffers from, since we only have one sky to observe. However large scale structure
has undergone more evolution through gravitational collapse than the CMB, and the
non-linear equations of GR have made the perturbations less linear. The hard task is
then to separate the primordial non-Gaussianity from the already detected secondary
non-Gaussianities.

A detection of primordial non-Gaussianity would either be a signature of non-
linear physics acting during the generation of the primordial perturbations or a
non-linear transformation of the primordial perturbation between the initial scalar
field perturbation and the curvature perturbation. An example of the former case
is inflation with a reduced sound speed of perturbations due to a non-canonical
kinetic term, while an in depth study of the latter case was made for the curvaton
scenario. A general formalism (ıN) was also provided for calculating this non-
linear transformation, which for many models allows a study of the perturbations
even to non-linear order just by calculating background quantities. This remarkable
simplification is possible for the (many) models in which the perturbations are
Gaussian at Hubble crossing during inflation and leads to local non-Gaussianity,
described by a combination of a Gaussian perturbation and chi-squared non-
Gaussianity.

While nature has not provided many clues to the physics of inflation, the search
is continuing in a large way. The primordial perturbations have been convincingly
demonstrated to deviate from scale invariance at a level consistent with slow-roll
inflation. The search for primordial tensor perturbation, non-Gaussianity, isocurva-
ture perturbations and features in the power spectrum, etc, continues. Whether or not
these extra signatures are detected, it is only by studying a large range of inflationary
models that we learn what to search for with the ever improving data sets, and what
the constraints tell us about the first fraction of a second after the big bang.
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Problems of CMB Data Registration
and Analysis

O.V. Verkhodanov

Abstract In this short course, we consider some radio astronomical fundamentals
and problems of radio astronomical observations. We discuss the main observational
cosmological tests which are investigated with radio astronomy. The most crucial
tests are connected with the Cosmic Microwave Background (CMB). Several radio
telescopes for CMB study and their basic results are discussed. Some stages of the
CMB data analysis pipeline are considered and examples of observational CMB
anomalies are discussed. At the end of the course (Appendix 3), the short application
of the GLESP package is presented for simulation of the CMB map.

1 Introduction

In the last decade of cosmological research, both ground-based and ambitious
space observations of cosmic microwave background (CMB) have been carried
out. Among these experiments, WMAP1 (Wilkinson Microwave Anisotropy Probe)
of NASA (Bennett et al. 2003; Hinshaw et al. 2007, 2009; Jarosik et al. 2011;
Bennett et al. 2013), which was completed in 2010, and Planck2 of the ESA
(Planck Collaboration 2014a), which was completed in 2013. Among the most
discussed ground based experiments in the last 3 years, there are observations and
results obtained with the Atacama Cosmology Telescope (ACT) (Das et al. 2014)
(see Rolando Dünner’s lecture), the South Pole Telescope (SPT) (Schaffer et al.
2011) and BICEP2 (BICEP2 Collaboration 2014). The meaning of these and other
CMB experiments is determined by the fact that they provide important insight
into our understanding of the model of the Universe and accurately measure the
main parameters of the Universe. The achieved progress is, first of all, due to
new technologies and instruments in centimeter, millimeter, and sub-millimeter

1http://lambda.gsfc.nasa.gov.
2http://www.rssd.esa.int/Planck/.
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astronomy. Modern CMB data processing allows one comparing these observations
with theoretical descriptions of the physical processes that were underway in the
early Universe.

2 Observational Cosmological Tests of Radio Astronomy

Among the basic astronomy discoveries in the second half of the twentieth century,
professional astronomers are sure to mention radio galaxies, quasars, molecular
lines, pulsars, cosmic microwave background radiation. These objects and phenom-
ena are interconnected so that they are visible and studied in a separate area of
astronomy—radio astronomy. Apparently, it may be said without exaggeration that
our modern understanding about cosmology is largely based on observational data
obtained by means of radio astronomy observations, as noted once (Peebles 1993).
Radio astronomy research in cosmology is devoted to radio galaxies and quasars,
their evolutionary properties, as well as the CMB.

Back in the 70s of the last century, Longair (1978) identified three main areas in
which radio observations provide an important contribution to cosmology: study
of the background radiation at millimeter wavelengths, study of the properties
of the intergalactic gas and spatial distribution and cosmological evolution of
extragalactic radio sources. Observations of intergalactic gas and different pop-
ulations of radio sources were necessary in order to implement these projects,
which allowed the construction of models for extragalactic sources and to count
sources versus flux density. In addition, it was proposed to construct and study the
relations “luminosity—volume”, “redshift—magnitude”, “angular size—redshift”
and “angular size—flux density’ for different populations of radio sources.

Thus, the basic radio cosmology tests which could be considered to study
Universe properties are:

• The CMB:

– power spectrum;

� properties of low multipoles (` < 300);
� properties of high multipoles (` > 300);

– the statistical properties of the signal (Gaussian);
– physics from E-mode polarization (e.g. reionization history);
– physics from B-mode polarization (e.g. the earliest Universe);
– mm/submm study of clusters of galaxies.

• Radio galaxies:

– dependence “size—redshift”;
– dependence “flux density—redshift”;
– dependence “logN � log S” (“the number of sources—the flux density”);
– gravitational lensing;
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– the formation of large-scale structure;
– rotational speed of galaxies and dark matter search according HI;
– the age of stellar systems.

• Pulsars:

– binary pulsars—emission of gravitational waves;
– dimensional grid of pulsars—registration of gravitational waves.

This list can be expanded further by adding secondary studies effects occurring
in the ionosphere by heavy particles interaction in cosmic rays; research of “normal”
radio sources polluting cosmic relic background, and even the radar radio astronomy
allowing one to explore the features of the gravitational field in the solar system with
asteroid observation.

Here are the main milestones of the radio astronomical studies which signifi-
cantly contributed to cosmology:

1. identification of radio galaxies (1947–1951);
2. identification of quasars (1961);
3. counts radio logN � log S (1964–1997);
4. the discovery of the CMB (1965, 1978);
5. correction theory of the formation of large scale structure (LSS) (1970–1980);
6. aperture synthesis (1967–1974);
7. discovery of pulsars (1967–1974);
8. kinematics of galaxies in HI (21 cm): data on the distribution of dark matter;
9. study of the binary pulsar (1974, 1993);

10. discovery of CMB fluctuations (1992, 2006);
11. definition of the cosmological parameters (2003).

Some results are shown in bold when the achievements marked the Nobel Prize (as
well as the award year). Upon receiving these results there were used very different
tools to work in different wavelength ranges with different angular resolution and
sensitivity. But all of these tools are unified by one definition—they are radio
telescopes.

Before we begin to discuss the CMB analysis, we introduce some concepts.

3 Few Fundamentals of Radio Astronomy

What is a radio telescope? Like any other telescope, it is the astronomical instrument
to receive radiation (in our case, the radio emission) of celestial objects which has
two main elements: an antenna device and a radiometer. Antenna design of radio
telescopes are very diverse, because of the very wide range of wavelengths used
in astronomy. The radioastronomical range of the electromagnetic scale continues
from millimeter to kilometer waves. In the context of the observation of the universe,
radioastronomy is determined by the window which is transparent to radio waves in
the atmosphere (Fig. 1).
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Fig. 1 The windows of atmospheric transparency in the electromagnetic spectrum. X-ray and
gamma radiation only reaches heights of 30–40 km, the UV emission is absorbed by the ozone
layer at a height of about 30 km. The first narrow window transparency transmits visible light with
the adjacent thereto UV and near-IR where the atmosphere has a few narrow windows, caused by
mechanisms of radiation absorption by water molecules, and carbon dioxide. Most of the infrared is
absorbed by water vapor, carbon dioxide and oxygen, which are contained in the lower atmosphere.
Radio astronomy window extends from 1 cm to 30 m. Longer radio waves are already reflected by
the ionosphere

The main characteristic of the radio telescope is the antenna beam pattern (BP).
The BP is the solid angle covering the area from which the antenna is receiving
a signal. In a more correct definition, the BP describes dependence of the gain
(directivity factor) of the antenna from the antenna direction in a predetermined
plane. The BP of the radio telescope has a main and side lobes, the shape and
amplitude of the response which depend on the configuration of the radio telescope.
Thus, the antenna of a radio telescope actually receives the signal in the solid
angle of 4� (Fig. 2). Typically, the radiation pattern is normalized, i.e. divided by
the maximum value of the response (in the main lobe). The shape of the antenna
pattern are divided into narrowly focused and broadly directional. Highly directional
antennas have one pronounced maximum, which is called the main lobe, and the
secondary maxima (side lobes), to reduce the impact of using a variety of hardware
and algorithmic methods. The broadly directional antennas have a size of the main
lobe of 2� , at least, in one plane. They are used in broadcasting. The BP has
the property of reciprocity, i.e. is transmitting and receiving similar. The radio
telescope BP can be calculated from the shape of the antenna. In radio astronomy, to
determine the BP of the telescope, point radio sources are observed. The radiation
patterns are characterized by the width of the main lobe at 0.5 level of the maximum
value (abbreviated HPBW—Half Power Beam Width). This value is connected with
another parameter of the radio telescope—resolution—minimum angular distance
between two objects, at which one may distinguish them as separate sources (Wed
Rayleigh criterion). This parameter is determined by the diffraction of radio waves
at the aperture of the telescope as

�min D 


D
; (1)

where 
 is the wavelength, D is the aperture diameter. To improve the resolving
power, it is necessary either to reduce the wavelength, or to increase the aperture.
When using short wavelengths, a higher quality of the mirror surface is demanded.
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Fig. 2 Example of a directional antenna radiation pattern in polar coordinate system

3.1 Equation of Antenna Smoothing

Other main parameter of the radio telescope is the sensitivity, which is determined
by the level of flux density fluctuations S:

�S D P

Aeff
p
�ft

; (2)

whereP is the telescope noise power,Aeff is the effective area (the collecting surface)
antenna, �f is the bandwidth, t is the time of signal acquisition. To increase the
sensitivity of radio telescopes, their collecting surface should be increased, and low-
noise receivers should be used.

As well as an optical telescope, a radio telescope plays a role of the linear
operator acting on the function describing the object investigated. Each point in
the distribution of radio brightness over the investigated object is represented in the
focus of the radio telescope in the form of diffraction spots or the circle of confusion.
Using only the principle of superposition of these spots from different points of the
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object, one can write the equation of the antenna smoothing:

I.x; y/ D
1Z

�1

1Z
�1

B.x � x0; y � y0/G.x0; y0/dx0dy0 ; (3)

where B.x; y/ is the radio brightness distribution on the object, G.x0; y0/ is the
antenna BP, I.x; y/ is the observed power distribution in the telescope focal plane
produced by the emitted source. To be absolutely correct, it is necessary to take
into account the normalization to the integral under the instrumental function.
This integral is equal to 1 from the condition of thermodynamic equilibrium
between the antenna and the environment when brightness temperature is constant
in the surrounding antenna space. In addition, the output of the system “antenna—
radiometer” one also registers random variations in the power N.x; y/, caused by
instability of the receiver, antenna, and radiation of the earth. Then, the actual
observed brightness distribution can be represented in the form:

I.x; y/ D

1R
�1

1R
�1

B.x � x0; y � y0/G.x0; y0/dx0dy0

1R
�1

1R
�1

A.x0; y0/dx0dy0
C N.x; y/ (4)

or in abbreviated form:

I D B � A C N : (5)

Here I is the result of observations, B is the actual distribution of brightness of the
subject, A is a hardware function, consisting of a system of ‘appliance + eye’, N is
the multicomponent noise, N D Nsky �ACN rmsys, where Nsky is the noise associated
with the passage of the signal through the galactic gas and the earth’s atmosphere
(smoothed by instrumental function)N rmsys the system noise “telescope C Receiver
C eye”. The symbol ‘*’ (asterisk) denotes the convolution operation.

3.2 Sampling Theorem

Another important property, the one used in the analysis of any data, formulated in
the sampling theorem (Whittaker 1915; Kotelnikov 1947) (or in another formulation
Nyquist-Shannon sampling theorem): Any data (with minor limitations for us) is a
continuous function f .x/, whose spectrum is limited to a frequency band of 0 to Fc,
completely determined by its sequence of values counted by intervals�x D 1

2F mboxc
.

The converse is also true: if the function exists only in the interval (�x0=2; x0=2),
i.e. limited in space, then for a complete determination of its spectrum is quite
measuring the spectral components that are separated from each other at a frequency
interval�F D 1=x0.
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Here is an example of the use of this theorem in radio astronomy: Space-
frequency response of the antennas is limited by frequency (F rm c D D=
, D
is the maximum size of the antenna) hence measured brightness distribution Ia.x/
should have a limited range. Information bearing samples as a function of Ia.x/ are
located at intervals not less than�x D 1=2Fc D 
=2D. This interval determines the
resolution of the radio telescope. It was named the antenna natural interval.

4 Some Telescopes for CMB Study

Beginning of the ‘precision cosmology’ era is associated with the study the cosmic
microwave background. The relic background carries unique information to restore
all the major cosmological parameters with accuracy, almost unattainable in other
experiments. For this reason, specialized radio telescope and bolometers massively
received funding at the end of the last century and early this one. How many
experiments to study the cosmic microwave background radiation have already
been done? The answer is “more than 100 !” (see examples at http://lambda.gsfc.
nasa.gov/product/expt). Here we consider some telescopes with specialized tools
for studying the microwave background. In this short review, we will not describe
the Atacama Cosmology Telescope of which the special review was prepared by
Rolando Dünner at the School.

4.1 Horn Antenna of the Bell Laboratory

The history of the discovery of the CMB is dramatic. We note four points associated
with the observations. (1) As early as in 1941, McKellar et al. (1941) noticed that at
the observed population of rotational levels of the cyanogen molecule (CN) J D 1

in the interstellar medium, with transition from the lower level J D 0 (absorption
line), requires the presence of radiation with temperature (for the case of black-
body) 2.3 K. (2) In 1955, T. A. Shmaonov, under the leadership of Prof. S. E. Haikin
in the Main Astronomical Observatory (Pulkovo, St.Petersburg, Soviet Union),
measuring the temperature of the background radiation at a wavelength of 3.2 cm,
received a temperature value equal to 4 K, which did not depend on the zenith
distance z up z D 30ı and constant over time (Shamonov 1957; Naselsky et al.
2006). Although the accuracy of the measurement was low, the temperature was
2 K possible above the effective temperature of the troposphere. The explanation
for this phenomenon at the time was found. (3) In 1964, Soviet astrophysicists A.
G. Doroshkevich and I. D. Novikov, assuming the correctness of the Hot Universe
theory, calculated the spectrum of an electromagnetic radiation taking into account
the evolution of galaxies, the redshift and the expected temperature of microwave
background. They showed the presence of the supervisory window in the spectrum,
where temperature of the blackbody microwave background is above interfering

http://lambda.gsfc.nasa.gov/product/expt
http://lambda.gsfc.nasa.gov/product/expt
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Fig. 3 Robert Wilson (left) and Arno Penzias (right) on the back of the horn antenna. Figure
reproduced from the site http://bell-labs.com

components, and also indicated the type of the horn antenna, which can be observed.
An article in the Proceedings of the USSR Academy (Doroshkevich and Novikov
1964; Naselsky et al. 2006) went unnoticed at that moment. (4) In the same
year, American researchers ‘Bell Labs’ Pezias Arno (Arno Penzias) and Robert
Wilson (Robert Wilson) studied radio response of balloons using an ultra-sensitive
sixth horn antenna (Holmdell horn antenna; Fig. 3) chilled with the liquid helium

http://bell-labs.com
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(4 K) receiver. A horn antenna (Fig. 3) had a length of 15 m and an aluminum 6-
m aperture. The antenna was supplied with 10 m rotary impeller for setting the
observation height. In the observation booth, it was installed a receiver created
by the Dicke scheme, for observations at a frequency of 4.08 GHz. Struggling
with the noise, the researchers found unexplained excess of the noise background
equal to 3.5 K, as they have reported, particularly at the Massachusetts Institute
of Technology at the seminars organised by Bernard Burke. Earlier in the same
seminars, Robert Dicke and James Peebles made a report about possible temperature
of the microwave background radiation. Because of these seminars, Bernard Burke
put the four speakers in contact with each other and thus they were able to interpret
the excess of the background noise as the residual radiation from the moment of
recombination in the hot universe theory. Relevant works were published in the
same issue of the Astrophysical Journal (Dicke et al. 1965; Penzias and Wilson
1965).

In 1978, A. Penzias and R. Wilson were awarded by the Nobel Prize with the
wording “for their discovery of cosmic microwave background radiation”.

4.2 COBE

Without dwelling on the theory of the formation of large-scale structure and
arising irregularities as well as relevant observational effects, we note that in 1978,
astrophysicists from the Zeldovich group (Doroshkevich et al. 1977) calculated
possible observable effects ‘printed’ as fluctuations in the distribution of the CMB,
starting physical investigation of the problem for structures formation. To search
and study these fluctuations, several experiments were prepared. The most famous
among them is COBE (Cosmic Background Explorer) which was launched as
NASA space mission (with an orbit 900 km). COBE had a differential microwave
radiometer with high accuracy (�T=T 	 10�5). The experiment confirmed the
existence of CMB anisotropy (Smoot et al. 1992), anisotropy map at full celestial
sphere.

Three instruments were installed on COBE (Fig. 4). They were differential
microwave radiometer (Differential Microwave Radiometer—DMR) to search for
fluctuations in CMB, the head was George Smoot; spectrophotometer in the far
infrared (Far-IR Absolute Spectrophotometer—FIRAS) for the study of Planck
(blackbody) CMB spectrum range 0.1–10 mm, the head was John Mather; bolome-
ter for the study of the diffuse infrared background (Diffuse IR Background
Experiment—DIRBE) for the study of dust emission percentage between 1.25–
240�m, the head was Mike Hauser. To prepare a CMB anisotropy map, there
were used radiometers on three frequencies 31.5, 53 and 90 GHz, which permitted
a separation of the signal components. And it was the best way at the time to obtain
the signal to the microwave background.
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Fig. 4 The COBE satellite with the installed devices. Figure from the site http://lambda.gsfc.nasa.
gov

Fig. 5 Left: map of CMB fluctuations according to the COBE DMR. Right: CMB blackbody
radiation spectrum according to COBE FIRAS. Figures from http://lambda.gsfc.nasa.gov

So, for serious cosmological results: definition of the blackbody radiation
spectrum and CMB drawing a map of microwave background anisotropy (Fig. 5)
John Mather and George Smoot were awarded the Nobel Prize in physics with the
wording “for their discovery of the blackbody form and anisotropy of the cosmic
microwave background radiation” in 2006.

http://lambda.gsfc.nasa.gov
http://lambda.gsfc.nasa.gov
http://lambda.gsfc.nasa.gov
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Fig. 6 A team of researchers of the project against the backdrop of the interferometer DASI.
Figure from http://astro.uchicago.edu/dasi/

4.3 DASI

The Degree Angular Scale Interferometer (DASI) is the 13-element interferometer
(Fig. 6), created to measure temperature anisotropy and polarization of the CMB
to a large range of angular scale with high sensitivity and the establishment of the
University of Chicago station Amundsen–Scott South Pole. The instrument used
cooled amplifiers HEMP, operating in the frequency

http://astro.uchicago.edu/dasi/
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Fig. 7 The polarization cross-spectrum (T–E) according to the DASI. Figure from http://astro.
uchicago.edu/dasi/

In addition to confirm and measure the CMB fluctuations at high harmonics
(multipoles ` > 500), DASI proved the existence of the E-mode polarization of the
CMB (Kovac et al. 2002), and measured the polarization cross-spectrum (Fig. 7).

4.4 CBI

The Cosmic Background Imager (CBI) is the tool for imaging of the cosmic
background range 26–36 GHz. The 13-element interferometer (like DASI) with
parabolic antennas of diameter of 0.9 m and a 6-m platform (Fig. 8) was established
by the international collaboration of universities (uniting California Institute of
Technology, Canadian Institute for Theoretical Astrophysics, University of Chicago,
NRAO, Max Planck Institute for Radio Astronomy, Oxford and Manchester uni-
versities, the University of Chile) at the altitude of 5080 m in the Chajnantor
Observatory near San Pedro de Atacama in the Chilean Andes. Interferometer
observations began in 1999 and continued until 2008 (with improved characteristics
from 2006, including antennas of increased diameters to 1.4 m). Bandwidth of
receivers was 26–36 GHz. There were three measured polarization modes: I, Q, U.

The task of CBI was to observe several areas of the sky (Fig. 9) in microwave
range for the construction of the angular power spectrum on scales of 5 arcmin to
1ı (multipole range 300 < ` < 3000). CBI reliably identified the second, third and
fourth peaks of the power spectrum (Fig. 10) (Readhead et al. 2004).

http://astro.uchicago.edu/dasi/
http://astro.uchicago.edu/dasi/
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Fig. 8 Interferometer CBI. Figure from http://www.astro.caltech.edu/~tjp/CBI

Fig. 9 Zones of observations with CBI. Figure from http://www.astro.caltech.edu/~tjp/CBI

4.5 BOOMERanG

Among the balloon experiments such as BOOMERanG, MAXIMA, Archeops et
al., from our point of view, the first one—BOOMERanG (Balloon Observations
Of Millimetric Extragalactic Radiation ANd Geophysics) is the most effective,
when taking into account the background of interfering components. BOOMERanG
observations were carried out at an altitude of 37 km over Antarctica and continued
about 12 days from December 1998 to January 1999 and later in 2003. Balloon flight
(Fig. 11) was maintained with a stable polar vortex wind around the South Pole, the

http://www.astro.caltech.edu/~tjp/CBI
http://www.astro.caltech.edu/~tjp/CBI
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Fig. 10 Correlational power spectra of temperature anisotropy TT (left) and E-mode polarization
with temperature TE (right) according to CBI. Figures from http://www.astro.caltech.edu/~tjp/CBI

Fig. 11 Balloon and telescope of the BOOMERanG experiment. Figure from http://www.astro.
caltech.edu/~lgg/boomerang/boomerang_front.htm

effect of which gave the name of the experiment. In observations, there were used
the 1.2-m mirror and 16 horns receivers on the focal plane for registration in the
three frequency bands: 145, 245 and 345 GHz (de Bernardis et al. 2002). During the
flight in 2003, the prototype of polarization Planck HFI receiver at the frequency
143 GHz was established in BOOMERanG.

Among the main results of the experiment, we mention the confirmation of the
existence dark energy and the flat geometry of the universe, building maps (Fig. 12),
as well as the measurement of the polarization CMB (E-mode) according to the
polarization observations of the second run.

http://www.astro.caltech.edu/~tjp/CBI
http://www.astro.caltech.edu/~lgg/boomerang/boomerang_front.htm
http://www.astro.caltech.edu/~lgg/boomerang/boomerang_front.htm


Problems of CMB Data Registration and Analysis 181

Fig. 12 CMB map from the BOOMERanG experimental data. Figure from http://www.astro.
caltech.edu/~lgg/boomerang/boomerang_front.htm

5 WMAP

The launch of the NASA mission WMAP (Wilkinson Microwave Anisotropy Probe)
was the crucial step in the CMB science. The WMAP data analysis and results, as
well as providing an archive in common use allowed to translate the experimental
(and theoretical) cosmological research in the area in a really exact science.

The mission WMAP (Fig. 13) is designed to detect geometry, composition
and evolutionary properties of the universe by mapping the cosmic microwave
background radiation with a resolution of 13 arcmin. The Satellite orbit (an orbit
around the Lagrange point L2 in the Sun–Earth system), observing strategy and
the design of the probe are selected so as to obtain non-correlated noise pixel,
minimal systematic errors, and accurate calibration. Observations in the WMAP
mission were conducted from 2001 to 2010 at five frequency bands: 23 (K), 33
(Ka), 41 (Q), 61 (V), and 94 GHz (W), where in the K and Ka bands used two
radiometers, Q and V used four ones, and W used eight ones. Data are presented
to the community for the 1st, 3rd, 5th, 7th and 9th years observations. According
to the analysis of data, there was produced an anisotropy map with a resolution of
` � 100 (Fig. 14) and built a CMB angular power spectrum 1 � ` � 600 for
the temperature anisotropy and polarization. All the basic cosmological parameters
were independently identified with high precision unattainable in other experiments
(Komatsu et al. 2011a).

http://www.astro.caltech.edu/~lgg/boomerang/boomerang_front.htm
http://www.astro.caltech.edu/~lgg/boomerang/boomerang_front.htm
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Fig. 13 The CMB probe WMAP. Figure from http://lambda.gsfc.nasa.gov

Fig. 14 Left: the CMB map by WMAP data of the 7th year. Right: the CMB angular power
spectrum. From http://lambda.gsfc.nasa.gov

6 Planck Mission

The Planck mission of the European Space Agency with the assistance of NASA
(by JPL) was launched on 14 May 2009 and intended for research temperature
anisotropy and polarization CMB in a wide wavelength range (from mm to the
far-IR) with very high accuracy and sensitivity. Initially, the mission was called
COBRAS/SAMBA and after the improvement of the project in 1996, Planck was
named in honor of the German physicist Max Planck. Measurements are taken from
the Lagrange point L2 as well as in the WMAP mission. The duration of the mission
was 4 years. The design consists of two off-axis parabolic mirrors: the primary one
has a size of 1:9 � 1:5m and the secondary one of 1:1 � 1:0m. On the probe, two

http://lambda.gsfc.nasa.gov
http://lambda.gsfc.nasa.gov
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Fig. 15 The probe Planck. Figure from http://www.rssd.esa.int/Planck/

tools are placed (Fig. 15): the low frequency instrument (LFI) with bands at 30, 44,
70 GHz and high frequency instrument (HFI) with bands at 100, 143, 217, 353, 545,
857 GHz. LFI uses the high electron mobility transistors. HFI uses 48 bolometric
detectors developed at JPL (Caltech) for photon detection. Planck has advantages
over the WMAP by a number of parameters:

• higher resolution (three times) that will measure angular power spectrum to large
`,

• higher sensitivity (ten times)
• 9 frequency bands that will improve the model background components.

Cosmological results of the mission were presented in 2013. Among the
main scientific objectives, there were the measurement of the total intensity (see
Fig. 16) and polarization (including B-modes), building catalogues of clusters of
galaxies using data about the Zeldovich–Sunyaev effect (see Fig. 17), observation
of gravitational lensing of CMB, as well as observations of bright galactic nuclei,
interstellar medium, the magnetic field of the Galaxy and objects in the solar system
(Tauber et al. 2010). According to last results (Planck Collaboration 2014b), Planck
improved the accuracy of determination of cosmological parameters, prepared maps
of CMB, dust, galactic gas CO, y-comptonization, CMB gravitational lensing and
other. In September 2014, it was also demonstrated that in B-mode polarization
maps, cold magnetic dust corns are dominated practically everywhere on the sky.

http://www.rssd.esa.int/Planck/
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Fig. 16 The CMB map (left) and angular the power spectrum (right) of the CMB according to the
Planck data. Figure from http://www.cosmos.esa.int/web/planck

44 GHz 70 GHz 100 GHz 143 GHz 217 GHz 353 GHz 545 GHz

Fig. 17 Example manifestations of the Zeldovich–Sunyaev effect for the cluster of galaxies
Abell 2319. From left to right, the same region of the sky at frequencies 44, 70, 100, 143, 217, 353,
545 GHz. At low frequencies (left), there is a “dimple” in the image center. At high frequencies
(right), distribution of radiation has a visible source. Figure from http://www.cosmos.esa.int/web/
planck

7 Sky Mapping

The pipeline of the CMB data processing and measurement of cosmological
parameters includes several steps: (1) receiving time-ordered data (TOD); (2)
map-making, CMB data pixelization and preparation of multifrequency sky maps;
(3) cosmological signal rectification using observational data at different wave-
lengths; (4) statistical analysis of CMB maps; (5) harmonic transformations “map—
spherical harmonics”; (6) calculation and analysis of the angular power spectra
C.`/; (7) estimation of cosmological parameters.

Sky pixelization is closely related to map-making that allows one constructing
a two-dimensional map of emission distribution on a sphere. For completeness, we
outline the map-making algorithm for one-horned experiments (Natoli et al. 2001).
We assume that the time-ordered data (TOD) output d and a map in pixels m are
linearly dependent:

d D Pm C n ; (6)

where n is the vector of random noise and P is the known matrix relating the signals
d and m. The rectangular Nd � Np matrix P is called the pointing matrix. Here,
Nd is the number of sky observations and Np is the number of sky pixels of the size
	FWHM/3, where FWHM is the full width at half maximum of antenna beam. That

http://www.cosmos.esa.int/web/planck
http://www.cosmos.esa.int/web/planck
http://www.cosmos.esa.int/web/planck
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is, applying PT to the TOD collects them into a map. The value of a pixel of this
map is the sum of all the observations of that pixel made at different times according
to a given scanning strategy.

The structure of the matrix P depends on what we assume for m. If m contains a
pixelized but unsmeared image of the sky, then P must account for beam smearing.
That is a very general assumption, which, for example, allows properly treating an
asymmetric beam profile, such as quasi-Gaussian beams in the WMAP experiments,
or possible effects of horn degradation during experiment (Naselsky et al. 2007).
In this case, applying the matrix P to vector m implies both convolving the sky
pattern with the detector beam response and unfolding m into ‘a signal-only’ time
stream. If, on the other hand, the beam is at least approximately symmetric, then it
is possible and certainly more convenient to regard P as a beam-smeared pixelized
sky. The structure of P for a one-horned experiment would then be very simple. Only
one element per row would differ from zero: the one connecting the observation of
the jth pixel to the ith element of the TOD. Many methods have been proposed to
estimate m in Eq. (6). Because the problem is linear in m, the generalized least-
squares (GLS) method can be used. This involves minimizing the quantity

�2 D nTVn D .dT � mTPT/V.d � Pm/ (7)

for some non-singular symmetric matrix V . In order to have a ‘low noise’ algorithm
of the �2 estimation (a so-called estimator), we have to find a V that minimizes
the variance of Qm. This is attained if we take V to be the noise inverse covariance
matrix, i.e., V�1 D N D hnnTi. We can then construct the estimator Qm for the map:

Qm D .PTVP/�1PTVd : (8)

The GLS solution of the map-making problem is then

Nm D †�1PTN�1d ; (9)

where

† D PTN�1P :

The map-making uses the chosen sky pixelization which also provides the inte-
gration accuracy when doing harmonic expansion of the signal. The problem of
integration on a sphere was already discussed in 1970s. This problem became
relevant in astrophysics when all-sky surveys appeared, and it became necessary
to expand extended signals in spherical harmonics. Presently, sky map pixelization
algorithms, namely, the decomposition of the sky in areas into which observational
data are integrated using certain rules, are important ingredients of CMB data
processing (Verkhodanov and Doroshkevich 2012).
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8 Pixelization Grids

The problem of restoration of the initial CMB distribution is connected with the sky
grid selection, since integration in pixel of TOD is required. First, we should note the
problem of integration on a sphere, discussed in 1970s (Stroud 1971; Sobolev 1974;
Mysovskikh 1976; Konjaev 1979). In the real physical analysis, the problem turns
to real digital technologies realized in the celestial grid. To follow this, we should
select a pixelization scheme. The simplest one uses equal divisions in latitude and
longitude .�; �/. This has been called the Equidistant Cylindrical Projection (ECP).
It has the advantages of being both azimuthal and simply hierarchical, in that the
data can be easily coarse grained by combining neighboring pixels. The azimuthal
symmetry allows for fast spherical harmonic transforms, speeding many operations
such as map simulation and inversion (Driscoll and Healy 1994; Muciaccia et al.
1997). The biggest failure of the ECP pixelization is that the pixels near the poles
are small and very distorted. In a real experiment, they could be very noisy or even
contain no data at all. The ECP scheme can be improved upon by grouping more
and more pixels together as one approaches the pole.

Also we should mention the Hierarchical Triangular Mesh3 (HTM) (Kunszt et al.
2001) developed for the Sloan Digital Sky Survey. The HTM sphere pixelization
scheme uses triangular pixels which can recursively be subdivided into four pixels.
The base pixels are 8, where 4 are for each hemisphere. They are obtained by
the intersection on the sphere of three major big circles. On Earth they can be
represented by the equator and two meridians passing at longitudes 0 and 90ı. These
base spherical triangles all have the same area. Each of them can then be further
divided into four spherical triangles, or trixels, by connecting the three sides middle
points using great circle segments.

The first all sky CMB maps, produced by the COBE satellite, used a pixelization
based on the Quadrilateralized Sky Cube Projection, or “quad cube” (Greisen and
Calabretta 1993). The edges of a cube are projected onto a sphere, dividing the
sky into six equal areas. These are subdivided into a roughly square, hierarchical
lattice. The main drawback of the resulting pixelizations is their lack of azimuthal
symmetry, making spherical harmonic transforms time consuming.

At least four methods of the CMB celestial sphere pixelization have been
proposed and implemented after the COBE pixelization scheme: the Icosahedron
pixelizing by Tegmark (1996), the Igloo pixelization by Crittenden and Turok
(1998), the HEALPix4 method by Górski et al. (1999, 2005), and GLESP5

(Doroshkevich et al. 2003, 2011).

3http://skyserver.org/htm.
4Currently http://healpix.jpl.nasa.gov.
5http://www.glesp.nbi.dk.

http://skyserver.org/htm
http://healpix.jpl.nasa.gov
http://www.glesp.nbi.dk


Problems of CMB Data Registration and Analysis 187

When thinking of possible sky pixelization schemes, Max Tegmark (1996) was
the first to ask the question: which sky map pixelization should be considered good
? Tegmark focused on two criteria that can be used in choosing the location of N
points (or pixel centers) on a sphere: (1) it is necessary to minimize the largest
distance d to the nearest pixel (for example, from corner points to the center of a
pixel in a square grid); (2) the grid must provide precise integration at the nodes.

For a quadrilateral projection, as in the COBE data analysis, when pixels are
located on a rectangular grid on faces of a cube (in the tangent plane), the number
of “stretches” increases in going to the face edges. Both the tangential and radial
projections somewhat deform the pixel form, such that the further away from the
center of an initial face, the more pixels on a sphere differ from those for a regular
grid. In this case, it is highly desirable to make faces as small (and hence flat) as
possible. A platonic solid with the smallest faces and hence maximum number of
such faces is an icosahedron, consisting of 20 triangles (Fig. 18).

Such a partition is advantageous in having the number of faces three times as
large as in the cube case, which turn increases the calculation accuracy due to almost
the same pixels areas. In addition, the triangles cover the sky in more regular way
(with area distortion) (Fig. 18, right) (Tegmark 1996).

The icosahedron pixelization scheme is similar to that used in the COBE
experiment: (1) an icosahedron is inscribed into a sphere, and its faces are divided
into a regular triangular grid; (2) the points (centers of pixels) are radially projected
onto the sphere; (3) the points are somewhat shifted to make all pixels approximately
equal in area.

The icosahedron pixelization is advantageous compared with the quadrilaterized
scheme in having a larger number of rotational symmetries. The corresponding
rotational matrices can be included in the software in advance and can later be called
on if necessary in the data analysis.

Fig. 18 Left: the icosahedron-based pixelization. Right: the cube-based pixelization. From
Tegmark (1996)
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8.1 Igloo Tilings

Crittenden and Turok (1998) suggested another pixelization scheme, called igloo
tilings (because the similarity with the Eskimo house). In this scheme, a sphere
is divided into rows with edges of constant latitude and each row is divided into
identical pixels by lines of constant longitude (Fig. 19). The pixels are roughly
trapezoidal, becoming nearly rectangular away form the poles. The northern and
southern hemispheres are tiled identically. Igloo tiling have many advantages: (1)
they are quite simple; (2) they are naturally azimuthal and can be easily made of
equal areas, with most pixels nearly square; (3) most of all, the pixel edges are
defined along constant lines of the spherical polar coordinates � and �, allowing fast
and exact spherical harmonic transformations using pixel values. This is essential in
constructing exact simulated skies and in optimally recovering the angular power
spectrum from the real data in order to evaluate the igloo scheme.

When using the scheme with pixels that are of nearly (or exactly) equal area,
the number of pixels in each row must decrease in approaching the poles (see
Fig. 19). Igloo pixelizations with either rows equally spaces in latitude, or pixels
of uniform area can be constructed. The advantage of equal-latitude spacing is that
the pixelization can be created by a simple rebinning. In addition, by letting the
pixel areas vary, one can make them less distorted. The equal area pixelization is
not exactly equally spaced in latitude, but has the advantage that all the pixels have
the same statistical weight.

In standard igloo tilings, the authors of Crittenden and Turok (1998) have chosen
to initially divide the cap of each pole into three equal wedges. Higher-resolution
pixelizations are found by dividing each wedge into four pieces, one central wedge
and three pieces surrounding it. This process is iterated.

Fig. 19 Left: picture of the polar cap region in the Igloo scheme, showing three levels of
subdivision to higher resolution pixels. Right: picture of the 3:6:3 equal area pixelization, which
divides the sky into 12 base patches, three at either cap and six 60ı � 60ı patches at the equator.
Here, each base pixel is broken up into 64 smaller pixels. From Crittenden and Turok (1998)
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8.2 HEALPix Hierarchical Pixelization

HEALPix6 (Hierarchical Equal Area isoLatitude Pixelization) was in fact the first
pixelization scheme supplied with a well-documented computer code (Górski et al.
1999).

The authors of Górski et al. (2005) formulated a list of desiderata for the
mathematical structure of discrete whole sky maps arranged into three points.

(1) Hierarchical structure of the data base. This is recognized as essential for very
large databases, and was already postulated in constructing the Quadrilater-
alized Spherical Cube. A simple argument in favour of these states that the
data elements that are neighbours in a multidimensional configuration space
(here, on the surface of a sphere) are also neighbours in the tree structure of the
database. This property facilitates various topological methods of analysis, and
allows easy construction of wavelet transforms on triangular and quadrilateral
grids with a fast choice of neighboring pixels.

(2) Equal areas of discrete elements of partition. This is advantageous because
white noise at the sampling frequency of the instrument is integrated exactly
into white noise in the pixel space, and sky signals are sampled without regional
dependence, although care must still be taken to choose a pixel size sufficiently
small compared to the instrumental resolution to avoid excessive and pixel-
shape-dependent signal smoothing.

(3) Iso-latitude distribution of discrete area elements on a sphere. This property
is essential for computation speed in all operations involving evaluations
of spherical harmonics. Because the associated Legendre polynomials are
evaluated via slow recursion, any sampling grid deviations from an isolatitude
distribution result in a prohibitive loss of computational performance with the
growing number of sampling points.

All requirements formulated above are satisfied by a construction with the
HEALPix of the sphere, which is shown in Fig. 20.

The HEALPix base-resolution comprised 12 pixel in three rings around the poles
and the equator. The next hierarchical level is formed from the previous by dividing
each pixel of the previous-resolution level into four equal parts. The resolution of
the grid is expressed by the parameter Nside (see Fig. 20), which defines the number
of divisions along the side of a base-resolution pixel that is needed to reach the
desired high-resolution partition, for example, due to a horn beam. All iso-latitude
rings located between the upper and lower corners of the equatorial base-resolution
pixels (�2=3 < cos �� < 2=3) or in the equatorial zone are divided into the same
number of pixels: Neq D 4Nside. The remaining rings are located within the polar cap
regions (j cos ��j > 2=3) and contain a varying number of pixels, increasing from
ring to ring with increasing distance from poles by one pixel within each quadrant.

6http://healpix.jpl.nasa.gov.

http://healpix.jpl.nasa.gov
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Fig. 20 Orthographic view of HEALPix division of a sphere. Overplot of equator and meridians
illustrates octahedral symmetry of the HEALPIx construction. The lowest resolution corresponds
to 12 base-resolution pixels. The sphere is hierarchically mosaically partitioned into curvilinear
quadrangles. Light-gray shading shows one of eight (four north and four south) identical polar
base-resolution pixels. Dark-gray shading shows one of four identical equatorial base-resolution
pixels. The grid resolution of the mosaic increases in three steps from the base level (from Fig. a
consecutively to Figs. b, c and, d). The grid resolution is characterized by the parameter Nside [equal
to 1(2), 2(b), 4(c) and 8(d)] which determines the total number of pixels Nrmpix D 12N2side, i.e. the
sphere is partitioned into 12(a), 48(b), 192(c) and 768(d) pixels. Pixels are equal in area for each
grid resolution. All pixel centers are located on rings of constant latitude, which is important for
harmonic analysis and calculation of spherical harmonics

Hence, a HEALPix-pixelized map consists of Npix D 12N2side pixels with the same
area �pix D �=.2N2side/.

The authors of Górski et al. (2005) use two system of indexation which are
applied to process and store maps in the form of FITS-file (Flexible Image Transport
System): with iso-latitude, or ring, index and nested index (Fig. 20). In the first case,
we can simply count the pixels moving down from the north to the south pole along
each isolatitude ring. In the second case, we can replicate the tree structure of pixel
numbering by using a certain algorithm (Górski et al. 2005). The nested indexation
allows applying the HEALPix scheme inside a database. Special procedures of the
HEALPix package allow using alternative indexation schemes for the analyzed map.
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The HEALPix software package, consisting of individual programs and program
libraries, includes procedures for harmonic expansion on a sphere of the temperature
and polarization anisotropy maps. Among the most frequently used procedures are
synfast, for construction (and simulating) of maps; anafast, for multipole expansion,
the angular power spectrum calculation (there is a possibility of data masking; and
map2gif, for imaging maps on a sphere.

9 GLESP

In this subsection devoted to the GLESP approach we shall focus on the problem of
processing on the sphere and then determine the scheme of pixelization. As it was
noted above the pixelization of the CMB data on the sphere is only some part of
the general problem, which is the determination of the coefficients of the spherical
harmonic decomposition of the CMB signal for both anisotropy and polarization.
These coefficients, which we call a`m, are used in subsequent steps in the analysis
of the measured signal, and in particular, in the determination of the power spectra,
C.`/, of the anisotropy and polarization, in some special methods for components
separation (Stolyarov et al. 2002; Naselsky et al. 2003) and phase analysis (Chiang
et al. 2003; Naselsky et al. 2003, 2004a; Coles et al. 2004).

Below we describe a specific method to calculate the coefficients a`m. It is based
on the so-called Gaussian quadratures and is presented in the following subsection.
In this specific pixelization scheme corresponds the position of pixel centers along
the �-coordinate to so-called the Gauss–Legendre quadrature zeros and it will be
shown that this method increases the accuracy of calculations essentially.

Thus, the method of calculation of the coefficients alm dictates the method of
the pixelization. We call our method GLESP, the Gauss–Legendre Sky Pixelization
(Doroshkevich et al. 2003, 2011). We have developed a special code for the GLESP
approach and a package of codes which are necessary for the whole investigation
of the CMB data including the determination of anisotropy and polarization power
spectra, C`, the Minkowski functionals and other statistics.

This subsection is devoted to description of the main idea of the GLESP method,
the estimation of the accuracy of the different steps and of the final results, the
description of the GLESP code and its testing. We do not discuss the problem
how to make integration over a finite pixel size for the time ordered data. The
simplest scheme of integration over pixel area is to use equivalent weight relatively
to the center of the pixel. The GLESP code uses this method as e.g. HEALPix and
Igloo do.
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9.1 Main Ideas and Basic Relations

The standard decomposition of the measured temperature variations on the sky,
�T.�; �/, in spherical harmonics is

�T.�; �/ D
1X
`D2

mDX̀
mD�`

a`mY`m.�; �/ ; (10)

Y`m.�; �/ D
s
.2`C 1/

4�

.` � m/Š

.`C m/Š
Pm
` .x/e

im� ; x D cos � ; (11)

where Pm
` .x/ are the associated Legendre polynomials. For a continuous �T.x; �/

function, the coefficients of decomposition, a`m, are

a`m D
Z 1

�1
dx
Z 2�

0

d��T.x; �/Y �̀
m.x; �/ ; (12)

where Y �̀
m denotes complex conjugation of Y`m. For numerical evaluation of the

integral Eq. (12) we will use the Gaussian quadratures, a method which was
proposed by Gauss in 1814, and developed later by Christoffel in 1877. As the
integral over x in Eq. (12) is an integral over a polynomial of x, we may use the
following equality (Press et al. 1992):

Z 1

�1
dx�T.x; �/Y �̀

m.x; �/ ��
NX
jD1

wj�T.xj; �/Y
�̀
m.xj; �/ ;

where wj is a proper Gaussian quadrature weighting function. Here the weighting
function wj D w.xj/ and�T.xj; �/Y �̀

m.xj; �/ are taken at points xj which are the net
of roots of the Legendre polynomial

PN.xj/ D 0 ; (13)

whereN is the maximal rank of the polynomial under consideration. It is well known
that the Eq. (13) has N number of zeros in interval �1 � x � 1. For the Gaussian–
Legendre method Eq. (13), the weighting coefficients are Press et al. (1992)

wj D 2

1 � x2j
ŒP

0

N.xj/�
�2 ; (14)

where 0 denotes a derivative. They can be calculated together with the set of xj with
the “gauleg” code (Press et al. 1992).
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In the GLESP approach, there are the trapezoidal pixels bordered by � and �
coordinate lines with the pixel centers (in the � direction) situated at points with
xj D cos �j. Thus, the interval �1 � x � 1 is covered by N rings of the pixels. The
angular resolution achieved in the measurement of the CMB data determines the
upper limit of summation in Eq. (10), ` � `max. To avoid the Nyquist restrictions we
use a number of pixel rings, N 
 2`max. In order to make the pixels in the equatorial
ring (along the � coordinate) nearly squared, the number of pixels in this direction
should be Nmax

� � 2N. The number of pixels in other rings, Nj
� , must be determined

from the condition of making the pixel sizes as equal as possible with the equatorial
ring of pixels.

Figure 21 shows the weighting coefficients, wj, and the position of pixel centers
for the case N D 31. Figure 22 compares some features of the pixelization schemes
used in HEALPix and GLESP. Figure 23 compares pixel shapes and distribution on
a sphere in a full sky Mollweide projections of HEALPix and GLESP maps.

In the definition (10) are the coefficients a`m complex quantities while �T is
real. In the GLESP code started from the definition (10) we use the following
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Fig. 21 Gauss–Legendre weighting coefficients (wj) versus Legendre polynomial zeros (xj D
cos �j) being centers of rings used in GLESP for the case of N D 31. Positions of zeros are
plotted by vertical lines
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Fig. 22 Ring center position (xj D cos�j) vs ring number for two pixelization schemes, HEALPix
(solid) and GLESP (dashed). Figure demonstrates the case of N D 31

Fig. 23 Schematic representation of two types of pixelization on sphere: HEALPix (top) and
GLESP (bottom). Various color of pixels is used to show their shape

representation of the �T

�T.�; �/ D
`maxX
`D2

a`0Y`0.�; �/C

C
`maxX
`D2

X̀
mD1

.a`mY`m.�; �/C al;�mY`;�m.�; �// ; (15)

where

Yl;�m.�; �/ D .�1/mY�
l;m.�; �/; a`m D .�1/ma�

l;�m :
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Thus,

�T.�; �/ D 1p
2�

`maxX
`D2

Re.a`;0/P
0
`.cos �/C

C
r
2

�

`maxX
`D2

lX
mD1

s
2`C 1

2

.` � m/Š

.`C m/Š
Pm
` .cos �/�

� ŒRe.a`m/ cos.m�/ � Im.a`m/ sin.m�/� ; (16)

where Pm
` .cos �/ are the well known associated Legendre polynomials. In the

GLESP code, we use normalized associated Legendre polynomials whose recur-
rence relation is given in Appendix 1.

9.2 Properties of GLESP

Following the previous discussion we define the new pixelization scheme GLESP
as follows:

• In the polar direction x D cos� , we define xj; j D 1; 2; ::;N, as the net of roots of
Eq. (13).

• Each root xj determines the position of a ring with Nj
� pixel centers with �-

coordinates �i.
• All the pixels have nearly equal area.
• Each pixel has weight wj [see Eq. (14)].

In our numerical code which realizes the GLESP pixelization scheme we use the
following conditions.

• Borders of all pixels are along the coordinate lines of � and �. Thus with a
reasonable accuracy they are trapezoidal.

• The number of pixels along the azimuthal direction � depends on the ring
number. The code allows an arbitrary number of these pixels to be chosen. The
number of pixels depends on the `max accepted for the CMB data reduction.

• To satisfy the Nyquist’s theorem, the number N of the ring along the x D cos.�/
axis must be taken as N 
 2`max C 1.

• To make equatorial pixels roughly square, the number of pixels along the
azimuthal axis, �, is taken as Nmax

� D int.2�=d�k C 0:5/, where k D int.N=2C
0:5/, and d�k D 0:5.�kC1 � �k�1/.

• The nominal size of each pixel is defined as Spixel D d�k�d�, where d�k is the
value on the equatorial ring and d� D 2�=Nmax

� on equator.

• The number Nj
� of pixels in the jth ring at x D xj is calculated as Nj

� D
int.2�

q
1 � x2j =Spixel C 0:5/;
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• Polar pixels are triangular.
• Because the number Nj

� differs from 2k where k is integer, we use for the Fast
Fourier transformation along the azimuthal direction the FFTW code. This code
permits one to use not only 2n-approach, but other base-numbers too, and provide
even higher speed.

With this scheme, the pixel sizes are equal inside each ring, and with a maximum
deviation between the different rings of 	1.5 % close to the poles (Fig. 24).
Increasing resolution decreases an absolute error of an area because of the in-
equivalence of polar and equator pixels proportionally to N�2.

Figure 25 shows that this pixelization scheme for high resolution maps (e.g.
`max > 500) produces nearly equal thickness d� for most rings.
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GLESP has not the hierarchical structure, but the problem of the closest pixel
selection is on the software level. Despite GLESP is close to the Igloo pixelization
scheme in the azimuthal approach, there is a difference between the two schemes
in connection with the �-angle (latitude) pixel step selection. Therefore, we can not
unify these two pixelizations. The Igloo scheme applied to the GLESP latitude step
will give very different pixel areas. The pixels will be neither equally spaced in
latitude, nor of uniform area, like Igloo requires.

9.3 Re-pixelization Problem

Unifying ideas of the non-hierarchical structure of the pixelization, but orienting
onto the accuracy of a`m calculation, we prepared the GLESP package at http://
www.glesp.nbi.dk (see also Appendix 2) giving accuracy limited only by precision
of the stored data format. However, there are natural limits of the CMB map
accuracy connected with

• level of the system noise,
• level of knowledge about local, galactic and extragalactic foregrounds to be

removed,
• instability of reconstruction methods,
• superimposed systematics errors.

The last one connected with some operations often used for map analysis like
map rotation in pixel domain and re-pixelization which could be used for map
conversion between different pixelization systems.

To transfer a sky distribution map from one pixel grid (e.g. from HEALPix to
GLESP) to another one, we should use one of two ways:

1. to calculate a`m-coefficients and after that to restore a map in a new grid;
2. or to use re-pixelization procedures on the current brightness distribution.

Any re-pixelization procedure will cause loss of information and thereby intro-
duce uncertainties and errors. The GLESP code has procedures for map re-
pixelization based on two different methods in the �T.�; �/-domain: the first one
consists in averaging input values in the corresponding pixel, the second one is
connected with spline interpolation inside the pixel grid.

In the first method, we consider input pixels which fell in our pixel with
values�T.�i; �i/ to be averaged with a weighting function. The realized weighting
function is a function of simple averaging with equal weights. This method is widely
used in appropriation of a given values to the corresponding pixel number.

In the second method of re-pixelization, we use a spline interpolation approach. If
we have a map �T.�i; �i/ recorded in the knots different from the Gauss–Legendre
grid, it is possible to repixelize it to our grid �T.� 0

i ; �
0
i / using approximately

the same number of pixels and the standard interpolation scheme based on the
cubic spline approach for the map re-pixelization. This approach is sufficiently fast

http://www.glesp.nbi.dk
http://www.glesp.nbi.dk
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because the spline is calculated once for one vector of the tabulated data (e.g. in
one ring), and values of interpolated function for any input argument are obtained
by one call of separate routine (see routines “spline” to calculate second derivatives
of interpolating function and “splint” to return a cubic spline interpolated value in
Press et al. (1992).

Our spline interpolation consists of the three steps:

• we set equidistant knots by the �-axis to reproduce an equidistant grid;
• we change the grid by x D cos.�/-axis to the required GLESP grid;
• after that, we recalculate �-knots to the rings corresponding to the GLESP x-

points.

Figure 26 demonstrates the deviation of accuracy of the power spectrum in a case
of re-pixelization from a HEALPix map to a GLESP map with the same resolution.
As one can see, for the range ` � `max=2, re-pixelization reproduces correctly all
properties of the power spectra. For ` 
 `max=2 some additional investigations need
to be done to take into account the pixel-window function.

The most standard accurate way is to produce maps just from the timed ordered
data or to use transformation from a map of one pixelization to a`m-coefficients and
converse them to a map of another pixelization system.
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Fig. 26 Power spectra calculated for the initial HEALPix map (upper curve) with `max D 1000,
Nside D 1024, pixel size = 11.8026.0/2 , and Ntot=12 582 912, and for resulting re-pixelized GLESP
map (lower curve) with the closest possible pixel size = 11.8038.0/2 , Ntot=12 581 579. Deviations
of the power spectra at high ` illustrate the ratio of the HEALPix and GLESP window functions



Problems of CMB Data Registration and Analysis 199

10 Component Separation

Besides CMB, the signal measured in experiments involves contributions from
galactic background components and from galactic and extragalactic radio sources.
These can be taken into account by superposing masks, i.e., by excluding certain
patches of the celestial sphere from consideration [e.g., 22 % in the case of the
KQ85y7 mask used for the data collected by the WMAP mission (Gold et al. 2011)].
But there is another way. It is possible, however, to restore the CMB signal over
the whole celestial sphere using the results of multifrequency observations. One
of the methods for determining the complete CMB temperature map is based on a
combination of observational data at different frequencies, additionally multiplied
by certain coefficients permitting the exclusion of the galactic signal from the
result and, thus, singling out the microwave relic background (Hinshaw et al.
2007). In this approach, the idea used is that the radiation spectra of galactic
background components (namely, of synchrotron radiation, free–free radiation, and
of the radiation of dust) differ from the CMB spectrum which is produced in
random process and has black body emission spectrum. All modern methods of
CMB restoration (Stolyarov et al. 2002; Hinshaw et al. 2007; Planck Collaboration
2014c; Doroshkevich and Verkhodanov 2011) use these properties.

As an example, one can consider the WMAP separation method realized in
Internal Linear Combination (ILC) of multifrequency observation maps (Hinshaw
et al. 2007). Because the combination of channels in the WMAP mission is achieved
without using observations from other experiments, this method has been termed
Internal Linear Combination. The coefficients can be determined by minimizing the
dispersion in the resultant map, equating their sum to unity, so as to preserve the
overall normalization of the CMB signal. In describing this procedure, we first note
that from the results of simulation (Hinshaw et al. 2007), the instrumental noise has
been established to not affect the situation significantly, because it only provides a
shift of the order of 10 mK in the estimate of the signal in the galactic plane. In
the simple case where the instrumental noise can be neglected and the background
components have the same spectrum in the region investigated and differ from
each other in different parts of this region only in temperature, the sought ILC
temperature can be written as a linear combination of signals from the maps for
different frequencies �i:

TILC. p/ D
X
i

�iTi. p/ D
X
i

�iŒTc. p/C SiTf . p/� D Tc. p/C �Tf . p/ : (17)

Here, Ti. p/ � T.�i; p/ is the map of the signal observed at the frequency �i, p
is a certain pixel of the image (the smallest region of the map with the measured
temperature), the map of the signal Ti. p/ D Tc. p/CSiTf . p/ is represented as a sum
of the CMB maps Tc. p/ and of the background component SiTf . p/, the coefficient
Si � S.�i/ describes the total frequency spectrum of background radiation, and
Tf . p/ is the distribution of the background radiation temperature. The coefficients
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�i that are to be determined satisfy the normalization condition
P
i
�i D 1. The

notation � � P
i
�iSi was introduced in Eq. (17).

The coefficients �i are determined by minimizing the dispersion of TILC. p/. For
this dispersion, we have (Hinshaw et al. 2007)

2ILC D hT2ILC. p/i � hTILC. p/i2 D hT2c i � hTci2 C 2�ŒhTcTf i � hTcihTf i�C �2
h
hT2f i � hTf i2

i

D 2c C 2�cf C �22f (18)

where the angular brackets ‘hi’ denote averaging over the pixels of the selected
region. The minimization of 2ILC

0 D ı2ILC

ı�i
D 2

ı�

ı�i
cf C 2�

ı�

ı�i
f (19)

yields � D �cf =2f and

TILC. p/ D Tc. p/� cf

2f
Tf . p/ :

In the ideal case, where no correlation between the CMB and the background
exists, i.e., cf D 0, the ILC map coincides with the CMB map. Actually, as
emphasized in Hinshaw et al. (2007), ILC map is shifted toward a decrease in the
correlation between the CMB signal and the signal from background components.

We note that different versions of the ILC method exist in both pixel space
and harmonic space (see the review in Planck Collaboration 2014c). The regions
where this method is used can be determined as follows: (1) by dividing the sphere
into separate zones (Hinshaw et al. 2007) (for example, in the analysis of WMAP
data, the sphere was divided into 12 regions, most of which were situated in the
galactic plane); (2) by applying selection rules for averaged pixels (Doroshkevich
and Verkhodanov 2011); (3) by fixing a certain set of harmonics (Kim et al. 2009).
It is also possible to use other combinations of radio-frequency observations. The
modifications result in only a few different maps being obtained. Moreover, there are
different versions of the actual procedure for producing a map of an internal linear
combination (for instance, the Lagrange ILC, LILC, method (Eriksen et al. 2004a),
which yields the same results as ILC). Finally, separation of the signal components
and the production of CMB maps is also possible with other methods, such as the
Maximum Entropy Method (MEM) (Hinshaw et al. 2007; Stolyarov et al. 2002),
fitting templates of background components to other observations (Hinshaw et al.
2007; Stolyarov et al. 2002), Wiener filtration (the Wiener-filtered map, WFM)
performed in Tegmark et al. (2003), or weighted removal of the background (the
foreground-cleaned map (FCM) in Tegmark et al. 2003). The last was used to
produce CMB maps exhibiting a higher resolution (`max D 600) than the WMAP.



Problems of CMB Data Registration and Analysis 201

Fig. 27 Maps of the observed microwave radiation in WMAP frequency channels: (a) 23 GHz
(band K), (b) 33 GHz (band Ka), (c) 41 GHz (band Q), (d) 61 GHz (band V), and (e) 94 GHz (band
W) from data obtained during the 7th year of WMAP observations. The maps are produced in
galactic coordinates. From http://wmap.gsfc.nasa.gov

In what follows, we mainly deal with the ILC WMAP map, although maps obtained
by other methods are also mentioned.

Observations were performed by the WMAP within five frequency bands:
23 GHz (band K), 33 GHz (band Ka), 40 GHz (band Q), 61 GHz (band V), and
94 GHz (band W) (Fig. 27), involving intensity and polarization measurements.
Data arrays collected by the mission during 1, 2, 5, 7 and 9 years of work were
put on a website for general use (Bennett et al. 2003, 2013; Hinshaw et al.
2007, 2009; Jarosik et al. 2011). As a result of observational data processing,
which included the registration and storage of time series, map making and sky
pixelization, and the separation of signal components and their subsequent analysis,
data were obtained on the anisotropy and polarization distributions of the CMB
and of background components (synchrotron and free-free radiation, the radiation
of dust), and their power spectra were also calculated. The ILC WMAP map
produced was smoothed out by a Gaussian-shaped diagram with a 1ı resolution.
The entire archive of observational and processed data is available and accessible to
the scientific community at the WMAP website.

http://wmap.gsfc.nasa.gov
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Fig. 28 The ILC CMB map made in galactic coordinates and based on the data obtained by the
WMAP during its 7th year of work (shown with resolution of up to `max D 150). From http://
wmap.gsfc.nasa.gov

Fig. 29 Angular power spectrum `.` C 1/C.`/=2� of the WMAP map for the 7th year of
observations (Komatsu, et al. 2011b) and measurement results of the angular power spectrum
of temperature fluctuations in ACBAR (Reichardt et al. 2009) and QUaD (Brown et al. 2009)
experiments. The results are shown for the multipole range up to ` < 2000, within which the
contribution of the Zeldovich–Sunyaev effect and of point sources is not high. The solid curve
shows the simulated spectrum for ƒCDM–cosmology with parameters determined on the bases of
WMAP results. From http://wmap.gsfc.nasa.gov

In Fig. 28, a map of the CMB anisotropy distribution reconstructed by the
ILC method is presented for not very high harmonics (` � 150). Figure 29
shows the angular power spectrum produced using data from the WMAP mis-
sion and from the ACBAR (Arcminute Cosmology Bolometer Array Receiver)

http://wmap.gsfc.nasa.gov
http://wmap.gsfc.nasa.gov
http://wmap.gsfc.nasa.gov
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Fig. 30 CMB maps restored from the WMAP (left, ILC map) and Planck (right, SMICA map)
observational data and smoothed up to `max=100. From http://wmap.gsfc.nasa.gov

Fig. 31 Four CMB maps (Commander–Ruler, NILC, NILC, SMICA) restored by different
methods from the Planck observational data. From http://wmap.gsfc.nasa.gov

(Reichardt et al. 2009) and QUaD (QUEST (Q and U Extragalactic Sub-mm
Telescope) at DASI) experiments (Brown et al. 2009).

In Figs. 30 and 31, the restored CMB maps of WMAP and Planck experiments
are shown.

For the restored CMB signal, the angular power spectrum is calculated using the
so called a`m-coefficients:

C.`/ D 1

2`C 1

"
ja`0j2 C 2

X̀
mD1

ja`mj2
#
: (20)

http://wmap.gsfc.nasa.gov
http://wmap.gsfc.nasa.gov
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The a`m-coefficients are obtained in the standard decomposition of the measured
temperature variations on the sky,�T.�; �/, in spherical harmonics (multipoles):

�T.�; �/ D
1X
`D2

mDX̀
mD�`

a`mY`m.�; �/ ; (21)
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im� ; x D cos � ;

where Pm
` .x/ are the associated Legendre polynomials. For a continuous �T.x; �/

function, the coefficients of decomposition, a`m, are

a`m D
Z 1

�1
dx
Z 2�

0

d��T.x; �/Y �̀
m.x; �/ ; (22)

where Y �̀
m denotes complex conjugation of Y`m. This angular spectrum being the

measured characteristics of the CMB, from one hand, is the function of the main
cosmological parameters

C` � C`.h; �bh
2;�CDMh

2;�ƒ ;��; n; : : :/ ;

from another hand, which can be calculated using corresponding computational
facilities (Seljak and Zaldarriaga 1996; Lewis et al. 2000).

11 Non-Gaussianity

In the standard cosmological scenario with the Big Bang and simple inflation
(Starobinsky 1979; Sato 1981; Guth 1981; Albrecht and Steinhardt 1982; Linde
1982), quantum fluctuations of the scalar field generate inhomogeneities in the
distribution of visible and dark matter (Mukhanov and Chibisov 1981; Hawking
1982; Starobinsky 1982; Guth and Pi 1982; Bardeen et al. 1983), which leads to
fluctuations in the microwave background radiation of the Universe. Temperature
and polarization fluctuations of the cosmic microwave background (CMB) are
expected, and confirmed at a certain level of precision by observations, to be
Gaussian random fields, statistically isotropic in space. Nevertheless, certain models
predict small but quite noticeable deviations of the signal from the Gaussian
statistic and/or statistical isotropy, which, in principle, may be due to a number
of reasons. Within the inflation theory, a relatively strong non-Gaussianity arises
in models involving complex inflation (Allen et al. 1987; Linde and Mukhanov
1977; Bernardeau and Uzan 2002; Dvali et al. 2004; Kofman 2003; Barnaby
and Cline 2007) (for example, when a nonlinear relation exists between classical
fluctuations of the scalar field generated at the inflation stage and the observed
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field of matter density fluctuations), while statistical anisotropy may be caused
by anisotropic expansion at the inflationary stage (Gumrukcuoglu et al. xxxx,
2007, 2010; Ackerman et al. 2007; Watanabe et al. 2009; Dimopoulos et al.
2010; Watanabe et al. 2010; Dulaney and Gresham 2010), related, for instance,
to the presence of classical vector fields. Other sources of non-Gaussianity and
of statistical anisotropy, interesting from the standpoint of cosmology, could be a
nontrivial topology of space (Starobinsky 1993; de Oliveira-Costa et al. 1996; Inoue
et al. 2000; Dineen et al. 2005; Kunz et al. 2008), topological defects (Turok 1991;
Turok and Spergel 1990; Durrer 1999; Cruz et al. 2007), anisotropic expansion
(Jaffe et al. 2005; Demiański and Doroshkevich 2007), the primordial magnetic field
(Durrer et al. 1998; Mack et al. 2002; Naselsky et al. 2004b; Kahniashvili and Ratra
2005; Kahniashvili et al. 2008), etc. Owing to the appearance of new complete-
sphere data (Planck Collaboration 2014a), the issue of searching for and explaining
the non-Gaussian properties of the CMB has become especially important. Although
non-Gaussianity and statistical anisotropy are far from being identical concepts, they
are quite close to each other from a cosmological standpoint.

For searching for and analyzing the non-Gaussian properties of the CMB
temperature, methods have been developed that use the distribution of temperature
fluctuations over the celestial sphere, �T.�; �/, where � and � are the angles in a
polar coordinate system, as well as methods based on the expansion of temperature
fluctuations with respect to spherical harmonics. Theoretically, the relation between
the primary inhomogeneities, representing adiabatic scalar perturbations, and the
coefficients a`m is linear (Komatsu and Spergel 2001):

a`m D .�i/`
Z

d3k
.2�/3

ˆ.k/gT`.k/Y �̀
m.

Ok/ ; (23)

where ˆ.k/ describes the primary perturbation of the density (more precisely, of
the gravitational potential) in Fourier space, gT`.k/ is the transfer function, and Ok
is the unity vector directed along the wave vector k. A linear relation also exists
between the temperature fluctuations �T.�; �/ and the primary fluctuations ˆ.k/.
The total radiation transfer function gT`.k/ can be computed with the aid of the
CMBFAST (Seljak and Zaldarriaga 1996) or CAMB (Lewis et al. 2000) program.
A simple linear relation permits, at least theoretically, relating the CMB signal
statistics and the statistics of primary perturbations: if the primary fluctuations
ˆ.k/ are non-Gaussian, the non-Gaussianity can also be observed in the CMB. In
sensitive surveys of the entire sky, for instance, the WMAP and Planck missions, it
is already possible to search for deviations of the signal from the Gaussian statistics.

We note an issue that must be raised in discussing the problems of CMB non-
Gaussianity, related to the calculation of the angular power spectrum C.`/. By
definition,

C.`/ D 1

2`C 1

"
ja`0j2 C 2

X̀
mD1

ja`mj2
#
; (24)
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and the coefficients a`m are obtained by transforming the map into harmonics:

a`m D
Z �

0

sin �d�
Z 2�

0

d��T.x; �/Y �̀
m.x; �/ : (25)

In this case, the two-point correlator (with the averaging performed over the
ensemble of universes) has the form

ha`ma�
`0m0

i D C`ı``0ımm0 : (26)

In the case of averaging at a given `, the meaning of the quantity C` for non-
Gaussian data is no longer obvious.

The simplest and best studied quantity in which the non-Gaussianity of CMB
fluctuations may be manifested is the three-point correlation function or its har-
monic analog, the bispectrum

ha`1m1a`2m2a`3m3i : (27)

The bispectrum is quite sensitive to certain forms of non-Gaussianity that are
considered ‘standard’. These include the so-called local form obtained under the
assumption that primary fluctuations exhibit a nonlinearity local in the coordinate
space (Komatsu and Spergel 2001):

ˆ.x/ D ˆL.x/C fNL.ˆ
2
L.x/� hˆ2L.x/i/ ; (28)

where ˆL.x/ denotes a linear Gaussian field, hˆL.x/i=0, and fNL is a constant
describing the nonlinearity in the form of a quadratic correction to perturbations
of the gravitational potential (curvature). Such a form of non-Gaussianity indeed
arises in some inflationary models involving an additional scalar field (curvaton)
(Linde and Mukhanov 1977; Lyth and Wands 2002; Moroi and Takahashi 2002)
and/or the nontrivial dynamics of postinflational modulated reheating (Dvali et al.
2004; Kofman 2003). The ‘equilateral’ (Creminelli et al. 2006) and ‘orthogonal’
(Senatore et al. 2010) forms of non-Gaussianity are also considered to be ‘standard’.
The WMAP mission team devoted some of its work to the investigation of these and
of certain other forms of non-Gaussianity, the main instrument being precisely the
angular bispectrum of the CMB temperature. The authors of Komatsu, et al. (2011b)
established the results of an analysis of 7-year-long observations performed by the
WMAP mission to be consistent, at a 95 % confidence level, with the hypothesis
that primary fluctuations are Gaussian, and upon combining their results with those
of the Sloan Digital Sky Survey (SDSS) [�29 < fNL < 70 (Slosar et al. 2008)] they
found, in particular, that �5 < fNL < 59.

According to the Planck data (Planck Collaboration 2014d), the non-Gaussianity
was estimated with unprecedented accuracy. Using three optimal bispectrum estima-
tors, separable template-fitting, binned, and modal, there were obtained consistent
values for the primordial local, equilateral, and orthogonal bispectrum amplitudes:
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result fNLlocal D 2:7 ˙ 5:8, fNLequil D �42 ˙ 75, and fNLorth D �25 ˙ 39 (68 %
CL statistical). The detected non-Gaussianity was found using skew-C` statistics in
a nonzero bispectrum from residual point sources, and the integrated Sachs–Wolfe
lensing bispectrum at a level expected in the ƒCDM scenario.

12 Anomalies

Among the most discussed anomalies violating our expectation from the CMB
Gaussian distribution, there are Axis of Evil (Land and Magueijo 2005), Cold
Spot (Cruz et al. 2005), violation of parity in the power spectrum (Kim and
Naselsky 2010), asymmetry ‘North–South’ in galactic coordinate system (Eriksen
et al. 2004c). And the Planck data added a new unexpected phenomena—too low
amplitude of low harmonics (Planck Collaboration 2014f). All these anomalies
occur at the largest angular scales (� > 1ı) and demonstrate observation of
statistical anisotropy being a sign of non-Gaussianity at low multipoles.

There are two basic approaches in understanding the origin of anomalies.
The first one is based on suggestions of complex processes during early stages
of Universe. The second one follows the idea of connection of anomalies with
foregrounds and/or data analysis procedures. To distinguish the contribution of
different effects, we should look attentively to the observations and data analysis
of the CMB.

Below we describe the main anomalies registered both in WMAP and Planck
data.

12.1 Axis of Evil

The Axis of Evil (Fig. 32) is the most famous among non-Gaussian features
of the WMAP CMB data. The Axis unifies some problems which require spe-
cial explanations. They are the planarity and alignment of the two harmonics,

Fig. 32 Axis of Evil: planarity and alignment of the quadrupole (left) and the octupole (right) on
the WMAP CMB map
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quadrupole and octupole, and, partly, the problem of extremely low amplitude of
the quadrupole. Different estimations of the significance of existence of this axis,
and several hypotheses on its origin were made. Various studies, e.g. Copi et al.
(2006), Gruppuso and Burigana (2009) investigated the contribution of background
components and their influence on the alignment of multipoles (` D 2 and ` D 3),
and indicated a small probability of the background effect on the orientation of the
low multipoles. In Copi et al. (2006), where the multipole vectors were used for
the estimates of this effect, it was also noted that the positions of the quadrupole
and octupole axes correspond to the geometry and direction of motion of the Solar
System and are perpendicular to the ecliptic plane and the plane, given by the
direction to the dipole. Randomness of such an effect is estimated by the authors as
unlikely at the significance level exceeding 98 % and exclude the effect of residual
contribution of background components. Continuing the research done, Copi et al.
(2009) conclude that the characteristics of low multipoles are abnormally different
from random, which may be due to the statistical anisotropy of the universe at large
scales, or to the problems of the ILC signal deconvolution method. Park et al. (2007)
note that the planarity of the quadrupole and octupole is not statistically significant.
They also stress that the residual photon radiation in the ILC map does not affect
significantly the level of the effect.

Cosmological models were developed to explain the prominence of the axis in
the orientation of multipoles. The alignment of the quadrupole and octupole could
be explained within the framework of these models. Various models include the
anisotropic expansion of the Universe, rotation and magnetic field (Jaffe et al. 2006;
Demiański and Doroshkevich 2007; Koivisto and Mota 2008).

There are some hints demonstrating that the problem of existence of Axis of Evil
can be connected with the instability of CMB reconstruction at low multipoles (2 �
` � 10) in ILC method (Naselsky and Verkhodanov 2007; Naselsky et al. 2008).
Another possible solution of the problem is to construct the separation methods on
the homogeneous samples of pixels where possible to tune selection of subsample
in such a way that the quadrupole amplitude of the restored map grows and phase
changes, so, no axis of evil exist (Doroshkevich and Verkhodanov 2011).

The Planck team using new data (Planck Collaboration 2014f) detected the angle
between planes of quadrupole and octupole is equal 	 13ı (against 	 3ı or 	 9ı
for WMAP data at different observational years) and declared that significance of
the quadrupole-octupolealignment is substantially smaller than for the WMAP data,
falling to almost 98 % confidence level for the Commander-Ruler and SEVEM
maps and 96.7 % confidence level for the NILC map. However, later, Copi et al.
(2013) demonstrated that the WMAP and Planck data confirm the alignments of the
largest observable CMB modes in the Universe. Using different statistical methods
to control the mutual alignment between the quadrupole and octupole, and the
alignment of the plane defined by the two harmonics with the dipole direction,
authors obtained that both phenomena are at the greater than 3 level for three
Planck maps (SMICA, SEVEM, NILC) studied.
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12.2 Cold Spot

The next exited feature discussed in Introduction is the Cold Spot (CS) (Fig. 33).
This is a cold region exhibiting a complex structure identified in the CMB using
spherical Mexican hat wavelets Cruz et al. (2005). The non-Gaussianity of the
signal in the Southern hemisphere was explained precisely by the existence of this
region. The galactic coordinates of center of the spot are b D �57ı, l D 209ı. The
probability of the signal in CS being consistent with the Gaussian model if spherical
wavelets are used is about 0.2 % Cruz et al. (2005). After obtaining indication of the
signal non-Gaussianity at the CS as well as messages on the reduced density of
source (Rudnick et al. 2007) in smoothed maps of radio survey NVSS at 1.4 GHz
(Condon et al. 1998), several hypotheses concerning the origin of the Cold Spot
were discussed which were related to the integrated Sachs–Wolfe effect (Rudnick
et al. 2007), the topological defect (Cruz et al. 2007), anisotropic expansion (Jaffe
et al. 2005), the artifact of data analysis (Naselsky et al. 2010), and simply a random
deviation (Bennett et al. 2011).

As was noted in Naselsky et al. (2010), the possible galactic foreground residuals
in the CMB maps can produce such a type of the spot as a part of non-Gaussianity at
low multipoles. We should add that the CS is also manifested in the data of 1982 in
maps of a low-frequency survey (Haslam et al. 1982) where synchrotron radiation
contributes significantly to the background (Fig. 34). The following fact supports the

Fig. 33 Cold Spot: position of the Cold Spot on the WMAP CMB map (left) and its shape (right)

Fig. 34 Cold Spot on the WMAP CMB map (left) and 408 MHz map (right) with synchrotron
emission
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hypothesis of the CS being the Galactic phenomena: there exists a high correlation
of positions of peaks of CMB fluctuation and galactic magnetic field distribution
(Hansen et al. 2012).

12.3 Violation of the Power Spectrum Parity

A remarkable manifestation of non-Gaussian properties of low multipoles consists
in parity asymmetry first noticed in Kim and Naselsky (2010) and confirmed in
Planck data (Planck Collaboration 2014f). For a Gaussian random field of primary
perturbations ˆ.k/ with a flat power spectrum, the presence of a plateau in the
CMB angular power spectrum is expected at low multipoles, which is due to the
Sachs–Wolfe effect, namely, to the fact that `.` C 1/C` � const. Spherical
harmonics change as Y`m. On/ D .�1/`Y`m.�On/ when the coordinates are reversed.
Therefore, an asymmetry in the angular power spectrum for even and odd harmonics
can be regarded as the asymmetry of the power of even and odd components of
map. The authors Kim and Naselsky (2010) found the power of odd multipoles
to systematically exceed the power of even multipoles of low ` and termed this
phenomenon ‘parity asymmetry’. To describe such an asymmetry quantitatively, the
following quantities are proposed for consideration:

PC D
X

Even `<`max

`.`C 1/C`=2�

P� D
X

Odd `<`max

`.`C 1/C`=2� :

Using the data of WMAP power spectrum and the results of Monte Carlo simu-
lations, the authors Kim and Naselsky (2010) calculated the ratio PC=P� for the
multipole ranges 2 � ` � `max, where `max lies between 3 and 23. Comparing
PC=P� for the WMAP data with the similar ratio obtained for simulated maps
allows estimating the quantity p equal to the fraction of simulated spectra in which
PC=P� is less than or equal to the same quantity for the WMAP map. The value
of p was found to reach its lower boundary at `max D 18, where p equals 0.004
and 0.001 for the data obtained by the WMAP mission during 5 and 3 years
of observations, respectively. This fact means that there is a preference for odd
multipoles 2 � ` � 18 in the WMAP data at a confidence level of 99.6 % with a
screening mask imposed on the data, and of 99.76 % without any mask. The authors
believe the low amplitude of the WMAP CMB quadrupole may be part of the same
anomaly as the parity asymmetry. Because the power asymmetry of the CMB signal
in the northern and southern hemispheres is manifested more strongly in the case of
multipoles with 2 � ` � 19 than multipoles with 20 � ` � 40, the authors also
believe that the general origin of anomalies (such as the power asymmetry in the
hemispheres, the low quadrupole amplitude, and the parity asymmetry) lie in the
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region of small ` and that the explanation can be either cosmological or related to
the presence of systematic errors in observations that were not revealed and/or were
additionally introduced in the course of analysis of the data obtained by the WMAP
mission.

12.4 Hemispherical Asymmetry

The asymmetry of hemispheres (see e.g. Fig. 30) was detected just after publishing
the first year all sky maps of the WMAP (Eriksen et al. 2004c). Then, in Hansen
et al. (2004), some calculations based on the angular power spectrum were presented
and shown that this spectrum, when estimated locally at different positions on
the sphere, appears not to be isotropic. Park (2004) also presented evidence for
the existence of such hemispherical asymmetry, in which a particular statistical
measure is considered to change discontinuously between two hemispheres on
the sky, applying Minkowski functionals to the WMAP data. Since the preferred
direction according to Eriksen et al. (2004c) stays close to the ecliptic plane, it was
also demonstrated that the large-angular scale N-point correlation functions were
different in behaviour when computed on ecliptic hemispheres.

Several studies were focused on the hemisphere difference and its connection
with the ecliptic coordinate system (Schwarz et al. 2004; Verkhodanov et al. 2009;
Verkhodanov and Khabibullina 2010). Hemispherical asymmetry was also detected
with other measures of non-Gaussianity (Eriksen et al. 2004b, 2005; Räth et al.
2007). The Planck team repeated the analysis (Eriksen et al. 2005) on the Planck
component separated data. As was shown in Planck Collaboration (2014f), the
probabilities of obtaining a value for the �2 the Planck fiducial ƒCDM model are
different both for North and South. For example, using SMICA map, one obtains
0.932 for Northern ecliptic and 0.592 for Southern ecliptic hemispheres. Thus, the
observed properties of the Planck data are consistent with a remarkable lack of
power in a direction towards the north ecliptic pole, consistent with the simpler
one-point statistics (Planck Collaboration 2014f).

12.5 Difference of the WMAP and Planck Angular Power
Spectra

One of the main anomalies first detected in the Planck data was the lack of power
at low multipoles detected for angular power spectrum C.`/. Using the WMAP and
Planck officially published spectra, we can compare them via the calculation the
difference of maps including only the harmonics with maximum C.`/ difference
(Fig. 35).
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Fig. 35 The angular power spectrum D.`/ D `.` C 1/C`=2� in the multipole 2 	 ` < 50.
The solid line shows WMAP ILC data of the 7th year of observations. The dotted line marks
WMAP9 ILC data. The Planck data are marked by the dashed line. The rectangles show the most
different angular moments of distributions. The vertical lines mark limits of the multipole range in
` 2 Œ41I 46�

Fig. 36 Left to right: the octupole (` D 3) of the Planck CMB map SMICA, the octupole of the
ILC WMAP9 map, and the map of these signals difference

Fig. 37 Left to right: the map of ` D 5 of the Planck CMB map SMICA, the ` D 5 of the ILC
WMAP9 map, and the map of these signals difference. The equatorial coordinate grid is overlaid
on the map of difference

Following Verkhodanov (2014), let us consider the differences of maps corre-
sponding to the harmonics having the maximum difference of power. These ranges
are marked by rectangles on Fig. 35. The vertical lines demonstrate limits of the
multipole range in ` 2 Œ41I 46�. On Figs. 36, 37, and 38, there are shown maps of
harmonic differences at ` D 3, ` D 5 and ` D 7, respectively. Some features of
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Fig. 38 Left to right: the map of ` D 7 of the Planck CMB map SMICA, the ` D7 of the ILC
WMAP9 map, and the map of these signals difference. The ecliptic coordinate grid is overlaid on
the map of difference

Fig. 39 Left to right: the map of ` D 13 of the Planck CMB map SMICA, the ` D13 of the ILC
WMAP9 map, and the map of these signals difference. The ecliptic coordinate grid is overlaid on
the map of difference

Fig. 40 Left to right: the map of ` D 29 of the Planck CMB map SMICA, the ` D 29 of the ILC
WMAP9 map, and the map of these signals difference. The equatorial coordinate grid is overlaid
on the map of difference

Fig. 41 Left to right: the map of ` D 37 of the Planck CMB map SMICA, the ` D 37 of the ILC
WMAP9 map, and the map of these signals difference. The equatorial coordinate grid is overlaid
on the map of difference

these differences show the position of spots along the Galactic plane, sensitivity of
difference map at ` D 5 to the equatorial coordinate system (equatorial poles are
placed in singular points—saddles), and the axis of the multipole ` D 7 lies on the
Galactic plane and simultaneously, the saddle points of ` D 7 are placed in ecliptic
poles.

At the scales less 20ı, there are three harmonics ` D 13 (Fig. 39), ` D 29

(Fig. 40), ` D 37 (Fig. 41) which have the maximum difference in power. Following
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Fig. 42 Left to right: the summarized signal of multipole ` 2 Œ41I 46� for the Planck CMB map
SMICA, harmonics ` D 41� 46 of WMAP9 ILC, and map of difference of these signals

the difference of signal at the selected multipole maps, we can find the features close
to the detected ones earlier.

The map of multipole difference at ` D 13 (angular size of 	 6:5ı) contains a
feature similar to the harmonic ` D 7 where the ecliptic poles are placed in singular
points—local map minima and maxima. The multipole difference at the scales ` D
29 (	 3ı) and ` D 37 (	 2:5ı) contains a similar structure of spots placement.
One line drawn by the very contrast spots formed with m-modes combinations of
the ` D 29 and ` D 37 coincides with the ecliptic plane. Curiously, that a structure
of the bright spots placement for ` D 29 and ` D 37 in the right hemisphere
corresponds the anisotropic model BianchiVIIh discussed in Planck Collaboration
(2014f). There is the range of multipoles (` 2 Œ41I 46�) where the spectrum strongly
differ for the WMAP and Planck data (Figs. 35 and 42). The map difference for
these multipole range shows the extended structure near the Galactic center.

Note, that there are two important moments observed in multipole differences.
First, all the maps of multipole difference with high amplitude contain features tied
with galactic, ecliptic or/and equatorial (terrestrial) coordinate systems. Second,
there is the �` D 8 period for multipoles numbers having a big difference in
amplitude. Peculiar harmonics have numbers ` D 5; 13; 29; 37; 45.

13 Summary

We have considered some radio astronomical fundamentals and problems of
radio astronomical observations. Then, we have discussed the main observational
cosmological tests which are investigated with radio astronomy, including radio
galaxies, radio pulsar and cosmic microwave background radiation. Of course, the
most crucial tests among them are connected with the CMB. Tens of radio telescopes
operated to study the CMB signal and to measure its fluctuations. We have marked
several radio telescopes for CMB study and discussed their basic results.

Also, some stages of the CMB data analysis pipeline are considered. We also
described problems of data processing which can distort statistical results of
the restored CMB maps. Examples of observational CMB anomalies have been
considered.
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Staying on the discussions of the CMB anomalies, we can see from their details
that most of them manifest the properties sensitive to local environment. Three
main environments of the cosmic observatory are displayed in the CMB signal
distribution. They are our Galaxy—Milky Way, the Solar (ecliptic) system and
some features connected with the equatorial system. The Galaxy is a source of
the non-Gaussian residuals visible in positions of CMB spots (see discussion in
Verkhodanov 2012). The Cold Spot is a special feature visible in synchrotron
emission and on a map of the distribution of the Faraday rotation depth. Thus, it
is probably connected with an ionized cloud from Galaxy or its vicinity.

The Solar system objects are considered as a source of additional residuals on
the CMB map which are difficult to account in the standard component separation
methods. Possible sources of residual signal are the satellite antenna far side-
lobes sensitive to the Sun and bright planets, solar wind focusing by the Earth
magnetosphere and passing through the Lagrange point L2, the objects at boundary
of Solar system like the Kuiper belt.

The equatorial system features detected in some CMB correlation maps or in the
single harmonic maps can be due by the influence of the Earth microwave emission
also through the antenna back lobes or possible Solar wind emission modulated by
the Earth magnetosphere where the magnetic axis is close the Earth rotation axis.

All these explanations may shed light on the origin of CMB low multipoles
anomalies. The mismatch of the WMAP and Planck data, from one hand, and
BICEP2 (BICEP2 Collaboration 2014) results of B-mode polarization, from another
hand, connected with an amplitude of angular power spectrum also can be con-
sidered as a problem of low multipoles. For example, authors of Liu et al. (2014)
demonstrated that effect of the charged dust emission connected with the Galaxy
synchrotron loops can manifest some anomalies at low polarization harmonics
and, thus, should be taken into account when microwave components of a signal
are separated. This result was later confirmed by the Planck analysis of the cold
magnetic dust (Planck Collaboration xxxx).

Also, it is necessary to note that there are some anomalies in the Planck
data detected at high (` > 600) harmonics. There is a disagreement between
cosmological parameters determination using the CMB angular power spectrum
(including or not other experiments) and using only the Sunyaev-Zeldovich clusters
(Planck Collaboration 2014e). Such a disaccordance, as discussed also in this
contribution, can be explained by the biased estimates cluster parameters with the
X-ray data.

Another reason of anomalies is some kinds of systematics in data analysis. There
is a comparatively small difference (about 1.1) between cosmological parameters
determined with the WMAP and Planck data (Planck Collaboration 2014b). Authors
of the paper (Spergel et al. 2015) discussed these differences and repeated the
component separation procedure using Planck multifrequency observational maps.
They detected that in case of excluding the Planck 217 GHz channel from the
data processing, the cosmological parameters measured with the WMAP9 data are
restored by the Planck observations with the high accuracy (< 1:1). The authors
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Spergel et al. (2015) conclude that there exist some problems in the calibration of
this channel data.

Thus, we can say that

1. WMAP and Planck data have practically the same low multipole anomalies;
2. all the visible anomalies can be understood in the frame of the local (galactic and

ecliptic) sources of microwave emission;
3. The difference of WMAP and Planck power spectra looks like one due to

systematic effects of maps preparation;
4. Planck data are comparatively good (in resolution and sensitivity) when we take

into account strangeness, e.g. some “bad” multipoles and 217 GHz data;
5. We are waiting for a new release in the second half of 2014: maps of temperature

anisotropy and polarization.

At the end of the course (Appendix 3), the short application of the GLESP
package is presented for simulation of the CMB map.
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Appendix 1: Normalized Associated Legendre Polynomials

In the GLESP code, we use the normalized associated Legendre polynomials f m` :

f m` .x/ D
s
2`C 1

2

.` � m/Š

.`C m/Š
Pm
` .x/ ; (29)

where x D cos � , and � is the polar angle. These polynomials, f m` .x/, can be
calculated using two well known recurrent relations. The first of them gives f m` .x/
for a given m and all ` > m:

f m` .x/ D x

s
4`2 � 1

`2 � m2
f m`�1�

�
s
2`C 1

2` � 3

.` � 1/2 � m2

`2 � m2
f m`�2 : (30)

7http://www.glesp.nbi.dk.

http://www.glesp.nbi.dk
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This relation starts with

f mm .x/ D .�1/mp
2

s
.2m C 1/ŠŠ

.2m � 1/ŠŠ
.1 � x2/m=2;

f mmC1 D x
p
2m C 3f mm :

The second recurrent relation gives f m` .x/ for a given ` and all m � l:

p
.` � m � 1/.`C m C 2/f mC2

` .x/C 2x.m C 1/p
1 � x2

f mC1
` .x/

C
p
.` � m/.`C m C 1/f m` .x/ D 0 : (31)

This relation is started with the same f `` .x/ and f 0` .x/ which must be found with (30).
As is discussed in Press et al. (1992, Sect. 5.5), the first recurrence relation (30)

is formally unstable if the number of iteration tends to infinity. Unfortunately, there
are no theoretical recommendations about the maximum iteration one can use in
the quasi-stability area. However, it can be used because we are interested in the
so-called dominant solution (Press et al. 1992, Sect. 5.5), which is approximately
stable. The second recurrence relation (31) is stable for all ` and m.

Appendix 2: The GLESP Package

Structure of the GLESP Code

The code is developed in two levels of organization. The first one, which unifies F77
FORTRAN and C functions, subroutines and wrappers for C routines to be used
for FORTRAN calls, consists of the main procedures: ‘signal’, which transforms
given values of a`m to a map, ‘alm’, which transforms a map to a`m, ‘cl2alm’,
which creates a sample of a`m coefficients for a given C` and ‘alm2cl’, which
calculates C` for a`m. Procedures for code testing, parameters control, Kolmogorov-
Smirnov analysis for Gaussianity of a`m and homogeneity of phase distribution,
and others, are also included. Operation of these routines is based on a block
of procedures calculating the Gauss–Legendre pixelization for a given resolution
parameter, transformation of angles to pixel numbers and back.

The second level of the package contains the programs which are convenient for
the utilization of the first level routines. In addition to the straight use of the already
mentioned four main procedures, they also provide means to calculate map patterns
generated by the Y20, Y21 and Y22 spherical functions, to compare two sets of a`m
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Fig. 43 Structure of the GLESP package

coefficients, to convert a GLESP map to a HEALPix map, to convert a HEALPix
map, or other maps, to a GLESP map.

Figure 43 outlines the GLESP package. The circle defines the zone of the GLESP
influence based on the pixelization library. It can include several subroutines and
operating programs. The basic program ‘cl2map’ of the second level, shown as a big
rectangle, interacts with the first level subroutines. These subroutines are shown by
small rectangles and call external libraries for the Fourier transform and Legendre
polynomial calculations. The package reads and writes data both in ASCII table and
FITS formats. More than ten programs of the GLESP package operate in the GLESP
zone.

The package satisfies the following principles:

• Each program is designed to be easily joined with other modules of a package. It
operates both with a given file and standard output.

• Each program can operate separately.
• Each program is accessible in a command string with external parameters. It has

a dialogue mode and could be tuned with a resource file in some cases.
• Output format of resulting data is organized in the standard way and is prepared

in the FITS format or ASCII table accessible for other packages.
• The package programs can interact with other FADPS procedures and CATS

database (http://cats.sao.ru).

http://cats.sao.ru
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Main Operations

There are four types of operations accessible in the GLESP package:

• Operations related to maps:

1. Spherical harmonic decomposition of a temperature anisotropy map into a`m
(cl2map).

2. Spherical harmonic decomposition of a temperature anisotropy and Q,U-
polarization maps into a`m and e; b`m-coefficients (polalm).

3. Smooth a map with a Gaussian beam (cl2map).
4. Sum/difference/averaging between maps (difmap).
5. Scalar multiplication/division (difmap).
6. Map rotation (difmap).
7. Conversion from Galactic to equatorial coordinates (difmap).
8. Cut temperature values in a map (mapcut).
9. Cut a zone in/from a map (mapcut).

10. Cut out cross-sections from a map (mapcut).
11. Produce simple patterns (mappat).
12. Read ASCII into binary (mappat).
13. Read point sources to binary map (mappat).
14. Print values in map (mapcut).
15. Find min/max values in map sample per pixel (difmap).
16. Simple statistic on a map (difmap).
17. Correlation coefficients of two maps (difmap).
18. Pixel size on a map (ntot).
19. Plot figures ( f2fig).

• Operations related to a`m :

1. Synthesize the temperature anisotropy map from given a`m (cl2map).
2. Synthesize the temperature anisotropy and Q,U-polarization maps from

given a`m and e; b`m-coefficients (polmap).
3. Sum/difference (difalm).
4. Scalar multiplication/division (difalm).
5. Vector multiplication/division (difalm).
6. Add phase to all harmonics (difalm).
7. Map rotation in harmonics (difalm).
8. Cut out given mode of harmonics (difalm).
9. Calculate angular power spectrum C` (alm2dl).

10. Calculate phases (alm2dl).
11. Select the harmonics with a given phase (alm2dl).
12. Compare two a`m samples (checkalm).
13. Produce a`m of map derivatives (dalm).
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• Operations related to angular power spectrum C` :

1. Calculate power spectrum C` (alm2dl).
2. Simulate a map by a given C` (cl2map).
3. Simulate a`m by C` (createalm).

• Operations related to phases �`m and amplitudes ja`mj :

1. Calculate phases �`m (alm2dl).
2. Calculate amplitudes ja`mj (alm2dl).
3. Simulate a`m by phases (createalm).
4. Select harmonics with a given phase (alm2dl).
5. Add a phase to all harmonics (difalm).

Main Programs

The following procedures organized as separate programs in the pixel and harmon-
ics domain are realized now:

alm2dl calculates spectra and phases by a`m-coefficients.
checkalm compares different a`m-samples.
cmap converts HEALPix format maps to the GLESP package format.
cl2map converts a map to a`m-coefficients and a`m-coefficients to a map, simu-

lates a map by a given C`-spectrum.
createalm creates a`m-coefficients by phases, amplitudes or/and C`-spectrum.
dalm calculates the first and second derivatives by a`m-coefficients
difalm calculates arithmetic operations over a`m-samples.
difmap calculates arithmetic operations over maps, produces coordinates trans-

formations.
f2fig produces color pictures in GIF-images.
f2map converts a GLESP map to a HEALPix format map.
mapcut cuts amplitude and coordinates in a GLESP map, produces one-

dimensional cross-sections.
mappat produces standard map patterns, reads ASCII data to produce a map,

reads point sources position from ASCII files.
polalm converts temperature and Q,U-polarization anisotropy maps to a`m and

e; b`m-coefficients
polmap converts a`m and e; b`m-coefficients tp temperature and Q,U-polarization

anisotropy maps

Data Format

The GLESP data are represented in two formats describing a`m-coefficients and
maps.
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a`m-coefficients data contains index describing number of ` and m modes
corresponding to the HEALPix, real and imaginary parts of a`m. These three
parameters are described by three-fields records of the Binary Table FITS format.

Map data are described by the three-fields Binary Table FITS format containing
a vector of xi D cos � positions, a vector of numbers of pixels per each layer N�i ,
and set of temperature values in each pixel recorded by layers from the North Pole.

Appendix 3: Practical Work “Study of Power Spectrum”

Task

1. Construct map CMB within the ƒCDM.
2. Generate card template with radio and its smooth Gaussian radiation pattern.
3. Find the power spectrum of the sum of these cards.

Necessary Resources

Packet data analysis of background radiation on the sphere GLESP8 (Doroshkevich
et al. 2003), Library of calculating the fast Fourier transform FFTW9 Version 3.2
not earlier, the Internet, a computer running OS Linux (or any type of Unix).

Running Time 2 h.

Description

Highlighting the CMB, we can, on the one hand, build its power spectrum and
its shape estimate cosmological parameters, and, on the other hand, research the
statistics of the fluctuations. CMB power spectrum shows how much energy at
any angular scales contained in the incoming radiation. For the full sphere, it is
determined by as the average value of the squares of harmonic modes

C.`/ D 1

2`C 1

"
ja`0j2 C 2

X̀
mD1

ja`;mj2
#
:

8http://www.glesp.nbi.dk.
9http://www.fftw.org.

http://www.glesp.nbi.dk
http://www.fftw.org
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This expression contains double harmonic mode m > 0, which is explained by
complex conjugation of harmonics and, consequently, the equality of the squares
their amplitudes. Note that in the calculation of the power spectrum, we explicitly
apply the hypothesis of a random Gaussian distribution primary perturbation
amplitudes which is reflected in the distribution of amplitudes of the harmonics
of the CMB. This hypothesis is used in the procedure of averaging all modes m for
a given multipole `. Variation of harmonic mode amplitudes for a given ` occurs
inside the confidence interval defined as the cosmic variance.

The power spectrum of C.`/ reflects the physical conditions in the early Universe
and thus is a function of the relevant cosmological parameters (Naselsky et al. 2006),

C.`/ � C`.h; �bh
2;�CDMh

2;�ƒ;��; n; : : :/ :

Here, in particular, it has been indicated the Hubble constant h D
H0=100 km/s/Mpc, the density of baryonic matter �b, hidden mass density �CDM ,
the density of the “dark energy” �ƒ, the density of massive neutrinos �� , spectral
index of adiabatic perturbations n and other parameters. The resulting current values
of the main parameters are: Hubble constant h D 0:674 pmC0:014, matter density
�m D 0:314 ˙ 0:020, baryon density 100�bh2 D 2:207 ˙ 0:033, age of the
universe t0 D 13:813 ˙ 0:058Gyr, spectral index ns D 0:9616 ˙ 0:0094 at scale
k D 0:05Mpc�1 (Planck Collaboration 2014b), established in 2013 by the Planck
collaboration.

The solution of the functional associated with the fitting cosmological model to
the observational data, currently almost automated and executes a program CAMB
(Lewis et al. 2000) CMBFast, (Seljak and Zaldarriaga 1996), receiving from its
entrance cosmological parameters and outputs the result in the form of a smooth
power spectrum of the microwave background radiation (Fig. 14).

In this practical work on data analysis of CMB the following stages:

1. Simulation maps of the CMB model for the UniverseƒCDM.
2. Adding a model map radio sources with different flux density.
3. Smoothing card directivity pattern size selected in the field of spatial harmonics.
4. Calculation of the power spectrum.

Procedures in GLESP

The first step is to generate a map for a given power spectrum. Angular power
spectrum can be calculated using on-line program CAMB at

http://lambda.gsfc.nasa.gov/toolbox/tb_camb_form.cfm.
For further analysis and modeling can be used FITS-file table containing encoded

ASCII, or pre-calculated file available online
http://sed.sao.ru/~vo/cosmo_school/presentations/vo/LCDM.dat ,

http://lambda.gsfc.nasa.gov/toolbox/tb_camb_form.cfm
http://sed.sao.ru/~vo/cosmo_school/presentations/vo/LCDM.dat
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which recorded a two-column table with the symbolic numbers of multipoles and
the corresponding values power spectrum in the model of the Universe ƒCDM
(�ƒ=0.693,�CDM=0.257,�b=0.0481) (Planck Collaboration 2014b).

To simulate the map, one can use the program ‘cl2map’ of the GLESP package,
which is run with the following parameters:

cl2map -Dl LCDM.dat -r 6 -lmax -nx 1000 2001 4002 -np -ao alm.fts -o map.fts
In this command, the format contains the following flags: ‘-Dl’ indicates that

the next parameter ‘LCDM.dat’ is the name of the file containing the power
spectrum; the flag ‘-r’ indicates that there will be generated a random Gaussian
noise corresponding to the random Gaussian fields of initial density perturbations,
with some starting seed, set the following parameters string (for example, here is
6); the flag ‘-lmax 1000’ indicates that the maximum multipole for the generated
map is `max D1000; ‘-nx 2001 -np 4002’ are the resolution keys: ‘-nx’ and ‘-np’
set the pixelization grid determining the number of rings and the number of pixels
in a equatorial ring respectively (the number of rings must always be less than
nx D 2`max, and the number of pixels in the equatorial ring is 2nx, to comply with
the Nyquist theorem and make the pixels quasisquare); the flag ‘-ao’ indicates that
the following parameter ‘alm.fts’ is the name of output file containing generated
spherical harmonic coefficients a ellm in the form of FITS-file; the flag ‘-o’ indicates
that the following parameter ‘map.fts’ is the file of the generated output map of
CMB temperature anisotropy.

The map can be visualized by placing in the GIF-image and displayed, for
example, by using the program ‘xv’:

f2fig map.fts -o map.gif; xv map.gif
To see the coefficients a ellm, one can move them from a binary representation in

ASCII-table using the ‘alm2dl’:
alm2dl -g alm.fts > alm.dat; less alm.dat
In the second phase of work, one should create a file a list of radio sources,

which then should be applied to the sky. The file contains information written in the
ASCII-format:

hh:mm:ss1 dd:mm:ss1 amplitude1
hh:mm:ss2 dd:mm:ss2 amplitude2
hh:mm:ss3 dd:mm:ss3 amplitude3,

wherein the first and second columns show the equatorial coordinates of radio
sources, and the third contains the flux density in mJy. Lists of real sources can
be obtained using a database CATS.10 For example, one can construct a sample of
radio sources from the NVSS survey (Condon et al. 1998) (Fig. 44), conducted on
radio interferometer VLA (USA).

To add sources to the CMB map, one should first generate a source map with the
following command:

mappat -fp src.dat -o src.fts -nx 2001 -np 4002

10http://cats.sao.ru.

http://cats.sao.ru
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Fig. 44 Map of radio sources in the survey NVSS (Condon et al. 1998)

Resolution of both maps (the number of rings and pixels in the equatorial ring)
must be identical. The flag ‘–fp’ suggests that the next parameter ‘src.dat’ is the file
with a list of radio sources. The flag ‘-o’ is used to enter the name of the output file
‘src.fts’.

Further, both maps: with CMB and sources can be stacked with the command
‘difmap’:

difmap -sum src.fts map.fts -o map_src.fts .
In the third stage of the workshop, must be decomposed into spherical harmonics

new map ‘map_src.fts’ and smooth it Gauss diagram orientation. To calculate the
expansion in spherical harmonics applying the used earlier procedure ‘cl2map’, but
with a new flag:

cl2map -map map_src.fts -lmax 1000 -ao alm_src.fts > /dev/null
Here, the flag ‘–map’ indicates that the map is used to enter ‘map_src.fts’ for the

harmonic analysis.
Smoothing is done with the procedure ‘rsalm’:
rsalm alm_src.fits -fw 10 -o alm_sm.fits
Here, the glag ‘-fw 10’ suggests that the smoothing is done with a Gaussian beam

pattern of 100. The resulting harmonics are written into the FITS-file ‘alm_sm.fits’.
Using the program ‘alm2dl’, one can calculate the power spectrum of C.`/:
alm2dl -lmax 1000 alm_sm.fits -cl > cl.dat,
which is visualized as a two-column ASCII-table, for example, using the

‘xmgr’. Maps ‘alm_sm.fits’ can be constructed from harmonics using the procedure
‘cl2map’:

cl2map -lmax -nx 1000 2001 4002 -np -ai alm_sm.fts -o map_sm.fts
f2fig map_sm.fts -o map_sm.gif
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Cosmic Microwave Background Observations

Rolando Dünner

Abstract The observations of the CMB.

1 Introduction

Cosmology has intrigued humanity since very early times. Questions like “How did
the Universe begin?”, “How old is it?” or “How big is it?” are natural questions
that accompanied society and religion well before modern Science had a say in our
understanding of nature. Despite all this interest, and despite the effort of the greatest
minds of their times, it was not until the sixteenth century that science finally proved
that it was the Earth that went around the Sun, demolishing many centuries of
dogmatic thinking that placed the Earth at the center of the Universe. Among others,
there was a key factor that made this possible: the invention of the telescope by
Galileo drastically expanded the horizons of astronomical observation, producing
the required experimental evidence to clear all doubts around such fundamental
question. This event marked an inflection point in human Cosmology, followed by
a series of great discoveries, always related to new technologies, allowing for finer
and deeper observations. It was like this that four centuries later (1927), Edwin
Hubble, observing from the world’s largest telescope at Mount Wilson, made one
of the most amazing discoveries by showing that the Universe is not steady but
expanding, giving a new twist to the newly developed theory of gravity developed
by Einstein (General Relativity) and providing the base for the revolutionary ideas
that gave birth to the Big Bang Cosmology. Wait another 35 years, and the advances
in electronics and telecommunications made possible another astonishing discovery,
when two engineers, Arno Penzias and Robert W. Wilson, while testing a new
transatlantic communication system, fortuitously detected the afterglow of the Big
Bang, or Cosmic Microwave Background (CMB), settling the idea that the Universe
experienced a hot and dense era before expanding into its current state. These
examples prove how scientific development is tightly linked to the incorporation of
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new technologies to improve the observation of nature, providing new experimental
evidence to support theoretical ideas.

The study of the Cosmic Microwave Background has revolutionized Cosmology,
as it provides a snapshot of the early state of the Universe with detailed information
about its composition, structure and physical state. This signal, the oldest in the
form of electromagnetic radiation, reaches us with as a 2.76 K blackbody spectrum,
carrying most of the relevant information as tiny fluctuations on the order of tenths
of micro-Kelvin in temperature and a few micro-Kelvin in polarization. Moreover,
the signal is extended on the sky, requiring large high-fidelity maps to extract the
relevant information. Measuring this signal is a huge technical challenge which has
only been achieved recently thanks to the development of high sensitivity detectors
and readout systems, cryogenics, well understood reflective and refractive optical
designs and powerful computer systems able to analyze huge volumes of data.

These pages summarize four lectures given at the II JPBCosmo School (2014)
about the state of the art CMB Observation, centered around the case of the Atacama
Cosmology telescope, and including a description of the instrument, observing
techniques, data reduction and analysis, and new prospects for observing the CMB
polarization signal.

2 Precision Cosmology

Historically speaking, Cosmology was always considered a very speculative and
uncertain science, characterized by brave hypotheses and little evidence. The term
“Precision Cosmology” appeared after CMB observations brought in fantastic
experimental evidence, allowing us to strongly constrain our cosmological models
(to better than 1 % in precision), producing this change of paradigm.

After the Penzias and Wilson’s discovery in 1964 (Penzias and Wilson 1965),
another 30 years had to pass until two instruments on board of the COBE satellite
unambiguously measured the spectrum and anisotropies of the CMB for the first
time (Smoot et al. 1992; Mather et al. 1994). COBE’s discovery was followed by
a rush of ground-based and balloon experiments (for examples see de Bernardis
et al. 1999; Hanany et al. 2000; Devlin et al. 1999; Carlstrom & DASI Collaboration
2000) which systematically contributed to the development of new technologies and
techniques required to dig into the rich information frozen on the CMB signal. Most
of these experiments were intended to measure the tiny angular anisotropies of the
CMB, requiring increasing sensitivities and angular resolutions. In 2001 the WMAP
satellite was launched by NASA, later producing the most precise measurement
of the CMB. After 9 years of observations “the allowed volume of cosmological
parameters was reduced by a factor in excess of 68,000” http://map.gsfc.nasa.gov,
2013 justifying the concept of precision cosmology.

WMAP produced a full map of the sky with an angular resolution of 0.2ı,
meaning multipoles of less than ` � 500, which is enough to measure the first three
peaks of the CMB power spectrum, and with enough sensitivity to determine those

http://map.gsfc.nasa.gov
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multipoles to their cosmic variance limit. Further exploration of the CMB required
mapping finer resolutions and measuring the polarization of the signal, which was
only done to a more limited degree by WMAP. In 2009 the European Space Agency
launched Planck (http://www.esa.int/Our_Activities/Space_Science/Planck, 2013),
another space observatory with improved WMAP sensitivity and resolution, which
reached 5 arcmin, measuring multipoles well down the diffusion damping tail of
the CMB power spectrum up to ` � 2000. Planck greatly confirmed and improved
WMAP results, further constraining cosmological parameters and characterizing the
microwave signal across the sky, and continues to release results today. One of the
most expected results from Planck is the polarization maps and analysis, which may
possibly shed light on the very early epochs of the inflationary universe.

The spacial resolution of CMB observations from space is limited by the size of
the optics that can be put on a satellite. This means that finer angular resolutions
are better achieved from the ground. This brings another set of great challenges,
especially because the atmosphere strongly interacts with millimeter wavelengths,
mostly due to its water vapor content. This forces observations to be done in sites
where the atmosphere is extremely dry and thin, as can be found in Antarctica or
at the highlands of the Atacama Desert in Chile. This complication is balanced
by the possibility of implementing large arrays of high-sensitivity detectors at a
much lower cost. In 2007, the South Pole Telescope (SPT http://pole.uchicago.
edu, 2013) and the Atacama Cosmology Telescope (ACT http://www.princeton.
edu/act, 2014), with 10 and 6 m main apertures, began observing from the South
Pole and from the Atacama Desert respectively. Their higher resolution, combined
with an extreme sensitivity provided by their kilo-pixel class cameras, allowed these
experiments to produce super-fine maps of the CMB over thousands of square
degrees in the sky. With this finer resolution (order 1 arcmin), these experiments
measured the CMB power spectrum all the way down the diffusion tail and into the
secondary anisotropy region, dominated by the cosmic infrared background, thermal
and kinetic Sunyaev-Zel’dovich clustering signals and radio sources, dramatically
expanding the available science to later epochs of the Universe, while improving the
“standard” CMB science by measuring and decoupling this foreground signal from
the CMB.

Figure 1 compares the maps from COBE, WMAP, Planck and ACT, stressing the
effect of increasing the resolution of the map.

In the following we will describe technical aspects of the Atacama Cosmology
Telescope, as reference for the technologies and techniques required to observe the
CMB from the ground.

3 The Atacama Cosmology Telescope

The Atacama Cosmology Telescope is a 6 m telescope installed at 5200 m on Cerro
Toco, a few kilometers away from the ALMA site in the Chajnantor valley. It is
a dedicated instrument to measure the CMB at millimeter wavelengths over large

http://www.esa.int/Our_Activities/Space_Science/Planck
http://pole.uchicago.edu
http://pole.uchicago.edu
http://www.princeton.edu/act
http://www.princeton.edu/act
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Fig. 1 Direct comparison of the resolution achieved by COBE, WMAP, Planck and ACT maps.
The Increase in resolution is evident when moving from left to right. The finer resolution of
ACT (lower right circle) clearly detects foreground galaxies and clusters of galaxies through their
thermal Sunyaev-Zel’dovich effect signature, as indicated

areas of the sky. It started operation in 2007 with MBAC, a 3-K TES pixel bolometer
camera observing in three bands (150, 220 and 280 GHz) with unprecedented
sensitivity (Swetz et al. 2011). At these frequencies, the resolution reaches less
than 1 arcmin, permitting the direct detection of a large number of extragalactic
point sources. Moreover, the three bands are chose to probe the decrement, null and
increment frequencies of the Sunyaev-Zel’dovich (SZ) effect, clearly distinguishing
clusters of galaxies from the background, producing a redshift-independent blind
survey of these objects only limited by their mass.

MBAC observed for four seasons before being decommissioned in 2011. During
those years it mapped nearly 2000 square degrees over two long stripes of the
sky. The scientific outcome was a long list of publications (for main results and
references see Niemack et al. 2008; Menanteau et al. 2010, 2013; Sherwin et al.
2011; Hand et al. 2012; Dünner et al. 2013; Sifón et al. 2013; Calabrese et al.
2013; Sievers et al. 2013; Hasselfield et al. 2013a,b; Dunkley et al. 2013; Sehgal
et al. 2013; Das et al. 2014; Louis et al. 2014; Marsden et al. 2014) ranging from
new cosmological parameter constraints, through detection of dozens of galaxy
clusters and extragalactic sources, first detection of kinetic SZ effect, first detection
of gravitational lensing effects on the CMB, first detection of Dark Energy effects
purely using CMB data, to the new observing and data processing techniques
required to achieve these results.
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At the relevant frequencies, radiation strongly interacts with rotational and
vibrational water modes, thus observing the CMB requires very dry atmosphere
conditions, measured as Precipitable Water Vapor (PWV). Normal PWV values
around de Earth range from 2 to 50 mm, while the median PWV at the ACT site
is only 0.5 mm, justifying such an extreme location for the telescope.

To measure temperature fluctuations of only a few micro-Kelvins we need
extremely sensitive detectors, which imply having extremely low noise levels.
As you may know, any electronic element produces noise proportional to its
temperature. Then to measure such a low temperature radiation the detectors must
also operate at very low temperature. In the case of MBAC, the detectors operated
at only 0.3 K, together with most of the superconducting readout electronics. These
temperatures are achieved using cryogenics systems based in He4 and He3, which
is a Helium isotope, operating in a very similar way as a fridge does. For these
the whole refractive optics and detectors are kept under vacuum inside the camera,
which is constructed as Matryoshka doll, with layers at decreasing temperatures up
to the lowest is reached at the center where the detectors are.

The detectors in MBAC were Transition Edge Sensors (TES), which are super-
conducting devices that are operated in the transition between being normal and
super conductors. This means that tiny changes in temperature of the device produce
large changes in resistivity, which is measured by running a current through it. So
in practice they are thermometers. When radiation falls on one of these detectors it
warms it up, so we can detect very tiny changes in radiation loading. As they do
not discriminate between the wavelength of the incoming radiation, but only on the
temperature achieved by the device, these detectors are called bolometers.

An important property of TES’s is that they can be micro-fabricated using
techniques similar to those developed in the electronics industry, so they can
be cheaply stacked together in large arrays, increasing this way the telescope
sensitivity. For instance MBAC had three cameras, each one containing 1024
detectors.

The optical design of the telescope and camera are very important to achieve a
good result. As this is an extended source, and considering that at these wavelengths
the images produced are limited by diffraction (as opposed to optical telescopes
where the image resolution is normally limited by the turbulences in the atmosphere,
or seeing), the shape of the features in the maps produced is directly affected by the
properties of the optics. Moreover, at such low temperatures, stray radiation from the
surrounding landscape can enter the telescope producing ghost images, motivating
the installation of large baffles around the telescope to direct all the stray light to
the sky. To reduce diffraction features, the optical design is off-axis, clearing up
the optical path. To achieve a large focal plane, necessary to accommodate many
detectors, the camera contains refractive optics composed of filters, lenses and a
Lyot-stop to limit the illumination of the primary mirror and minimize spillover.
These lenses are very similar so optical lenses, but their materials are very different
because then operate at these long wavelengths.

The observations are performed by continuously scanning the sky at constant
elevation while the Earth rotation slowly moves the sky across the field of view.
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This is important to keep the airmass constant, as the water vapor is the main
source of radiation as mentioned before. The same patch of the sky is observed
while rising and setting, producing a cross-linked observation patterns which is
important to reconstruct modes in all directions during map making. Contrarily
to optical telescopes, which integrate the radiation falling in their detectors while
staring at a single place in the sky, ACT is continuously reading its detectors while
scanning, producing long time-streams of data occupying many terabytes of disk
space. We call these time-streams Time Ordered Data or TOD. All this data must
then be reduced offline to produce the image of the sky.

The raw data from the telescope is very noisy. Most of its power comes from the
atmospheric turbulence, which is clearly predominant at low frequencies in the time-
streams, forming strong correlations between detectors (a strong common mode).
At higher frequencies the TOD is dominated by detectors noise, which is mostly
Gaussian noise. The CMB signal is then buried under the noise in a single TOD and
can only be recovered after combining many TODs.

The map making procedure consists in estimating the best possible map of the
sky given all the data from the time-streams. This implies performing a likelihood
minimization given the best noise model we can produce. The map-making equation
can be written as

MT N�1M x D MT N�1 d (1)

where M is a pointing matrix that relates every sample from the TODs with a pixel
in the map, N is the noise covariance matrix from the TODs, d is the time-space
data samples and x is the map. Given the huge amount of data used to produce the
map, it is impossible to express and invert this equation in its full form, so iterative
methods are used instead. These methods only used a block diagonal version of
the noise matrix, grouping TODs obtained simultaneously by different detectors,
while modeling the frequency dependence by computing the noise matrix divided
in frequency bins. The whole process can only be done in a reasonable time using a
supercomputer with thousands of cores.

4 Polarization Sensitive Maps (ACTpol)

MBAC was decommissioned in 2011 and used to build a new polarization sensitive
camera called ACTpol. This new camera also used TES detectors, but operating at
only 0.1 K using a dilution refrigerator, device that uses the latent heat in a mixture
of He3 and He4 to reach these super cold temperatures. Also several improvements
were introduced to the optics and to the detector coupling, which was now done
using a wafer feed-horn array. The polarization was achieved by coupling each
feed-horn to two orthogonal microstrip antennas, each one coupled to its own TES
detectors, such that each detector is coupled to a single polarization. Antenna-pairs
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were distributed across the array in several directions to evenly cover Q and U
polarizations on the sky.

One advantage of measuring polarization is that the atmosphere is not polarized,
significantly reducing the level of noise in the data. On the other hand, the polarized
signal is about an order of magnitude dimmer than the temperature signal, increasing
the experimental challenge to measure it correctly.

ACTpol began observing in 2013, mapping nearly 200 degrees on the sky. The
polarized maps were used to measure the E-mode CMB polarization (Naess et al.
2014), although the reached sensitivity in a single year of observations was not
enough to reach the B-mode polarization signal. ACTpol is expected to achieve the
sensitivity to measure B-mode polarization after the next 2 years of observations,
ending in early 2016.

5 What is Coming

As mentioned before, the field of CMB observations is developing very rapidly,
with its prime focus towards reaching finer angular resolutions and high polarization
sensitivities. Associated to these observational goals there is an ambitious set of
scientific aims, like characterizing the lensing signal on the CMB to measure the
distribution of matter at redshifts peaking at z � 2, and detecting primordial B-
modes produced by gravitational waves formed during the epoch of inflation.

Inflation is one of the largest mysteries still to be resolved, as it implies
understanding the very beginning of the Universe. Several experiments are now
competing to be the first to detect this signal, some of them being BICEP, ABS,
CLASS, Planck, SPTpol and AdvACT, which is the successor of ACTpol on the
ACT telescope. The challenge is huge, as primordial B-modes are expected to
be a tiny signal over degree scales on the sky, while being strongly affected by
foreground signals like synchrotron and polarized dust from our galaxy. Decoupling
this signals will require measuring the sky at several frequency bands and over large
areas of the sky. Moreover, measuring large features on the sky require mapping
large areas, favoring low latitude locations for ground based telescopes.

Wrapping up, measuring large areas of the sky require excellent atmospheric
conditions, access to large areas of the sky and very fast telescopes. The latter
implies increasing the sensitivity of the detectors, which is now reaching its optical
limit. A way to overcome this is adding more and more detectors in the focal plane,
and of course using optical designs with large focal planes. In my opinion, the
implementation of these new techniques will require at least a few iterations of these
lower cost ground experiments before justifying new satellite missions, while the
seek for finer resolutions imply large telescopes which are also impractical in orbit.
Then the field is probably going to point towards a rapid development of ground and
balloon experiments, with a significant amount of technological development.
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Physics of Baryons

J.A. de Freitas Pacheco

Abstract In this lecture, different milestones in the cosmological history of baryons
are reviewed. First, the appearance of hadrons as a consequence of the confinement
of quarks is discussed. Then the era in which nuclei interact to produce light
elements like deuterium, helium and lithium is described. The third relevant episode
is the decoupling between matter-radiation and the properties of the “last scattering”
surface. The next covered aspect refers to the value of the residual ionization
fraction when “freezing” occurs and the thermal decoupling of matter from CMB
photons. As stars appear in the Universe, their UV radiation begins to reionize the
intergalactic medium and such a process is also discussed in this lecture. Finally,
results from cosmological simulations are presented, permitting to describe where
baryons can be found either in the form of stars or in the form of cold, warm and
hot gas.

1 Introduction

In the matter-energy budget of the Universe, baryons contribute with only 4 % , the
remaining 96 % representing components of unknown nature dubbed respectively
dark matter and dark energy, which dominate the present dynamics of the Universe.
Only in the early past the energy density under the form of radiation and relativistic
particles surpassed that associated to the dark components and thus, controlled the
cosmic expansion.

Even constituting only a small fraction of the matter-energy content of the
Universe, baryons play a fundamental role in cosmology since they are able to emit
electromagnetic radiation, and hence they can be used as tracers of the evolution
of cosmic structures. Moreover, baryons form stars and planets, the pillars for the
existence of life in the Universe.

In the present lecture different topics related to the physics of baryons will be
discussed. The appearance of hadrons in the Universe, the primordial nucleosynthe-
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sis, the decoupling of baryons from photons and the consequences for the cosmic
microwave background (CMB), as well as the present distribution of baryons, either
in the form of stars or in the form of gas (cold and hot), derived from cosmological
simulations.

2 The Appearance of Hadrons

Presently baryons are not elementary particles but complex structures constituted by
quarks. In the very early Universe the baryonic charge was carried by the elementary
constituents of matter, the quarks. These particles are normally confined, forming
hadrons, but at the very high pressure and temperature prevailing in the primitive
Universe, they are in a state of “asymptotic” freedom. As the Universe expands, the
temperature (and the pressure) of the cosmic plasma decreases and the conditions
for the existence of a state of “asymptotic” freedom are no more satisfied, leading
to the confinement and, consequently, to the appearance of hadrons.

The confining property of quarks and gluons manifests itself in the long range
behavior of the “heavy” quark potential. At zero temperature, the potential rises
approximately linearly with the particle separation, i.e., Vqq.r/ � r, where 
denotes the string tension. The resulting force obliges quarks and gluons to be
confined into a hadronic bag. On the other side, chiral symmetry breaking leads
to a non-vanishing quark anti-quark condensate in the vacuum. Inside the hadron
bag, however, the condensate vanishes. At high temperatures the individual hadronic
bags are expected to merge and quarks and gluons can move freely. This bag picture
is closely related to percolation models for the QCD phase transition. It provides
an intuitive argument for the occurrence of deconfinement and chiral symmetry
restoration. Consequently, two distinct phase transitions are expected to occur—one
associated to chiral symmetry restoration at the temperature T�, related to models
like the SU(3) gauge theory, and another to the deconfinement at the temperature
Td. In general, T� < Td. In “pure” QCD, however, there seems to be only one
transition from the low temperature hadronic regime to the high temperature quark-
gluon plasma phase.

From a thermodynamical point of view, in a first approximation, the confinement
can be treated as a first order phase transition. Under this assumption, the transition
occurs when the chemical potential and the pressure of both phases (quark &
hadrons) are equal.

The equation of state (EoS) for the quark-gluon plasma is still quite uncertain and
here the following (simple and pedagogical) procedure will be adopted. Assuming
that the pressure and the energy density of the quark-gluon plasma depend only on
the temperature, the first law of thermodynamics can be written as

dS D V

T

�
d"

dT

�
dT C .P C "/

T
dV : (1)
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In the equation above V is the volume of the system, T is the temperature, P is
the pressure, " is the energy density and S is the entropy. Since Eq. (1) is an exact
differential, using the Schwarz condition the following equation can be obtained

T
dP

dT
� P D " : (2)

This differential equation can be integrated if the energy density as a function of the
temperature is specified. Supposing that quarks and gluons in the asymptotic regime
are fully relativistic, their energy density can be written as

" D �2

30
geff

.kT/4

.„c/3 C B ; (3)

where geff is the effective number of degrees of freedom, including the contribution
of quarks and gluons, and the constant B was introduced phenomenologically to
represent the bag constant or the confinement energy density in the context of
the so-called MIT model (Shuryak 1980; Cleyman et al. 1986). In this case, the
constant B is necessarily positive. However, as we shall see below, this may not be
the case and, in this context it should be considered as a phenomenological (free)
parameter measuring thermodynamic deviations from an ideal Stephan gas when
the temperature approaches the critical transition value.

Replacing Eq. (3) into Eq. (2) and integrating, one obtains

P D �2

90
geff

.kT/4

.„c/3 � B � A.kT/ ; (4)

where A is an integration constant that has the dimension of an inverse volume.
Quantum chromodynamics (QCD) calculation in a lattice permits also an

estimate of the EoS of the quark-gluon plasma and a rich literature on this subject is
available (see, for instance, Karsch 1995, 2002; Brown et al. 1988; Khan et al. 2001
and references therein). EoS derived from the SU(3) gauge theory thermodynamics
on lattices of various sizes were discussed in Boyd et al. (1995, 1996). These authors
found a deviation from the ideal gas behavior of about 15–20 %, even at high
temperatures. Indeed, at high temperatures one expects, according to Eq. (4), that the
quantity P=T4 approaches the Stephan-Boltzmann limit, i.e., P=T4 ! �2geff=90.
However, this is not the case according to these calculations. An explanation for this
behavior was proposed by Begun et al. (2010) by considering the variation of the
effective mass of the gluon with the temperature, leading to a dispersion relation
of the form !2 D k2 C m2.T/ and a factor less than the unity that multiplies the
Stephan constant.

If the quantity ."�3P/=T4 is plotted against the temperature normalized in terms
of the critical temperature Tc corresponding to a first order transition in pure SU(3)
gluodynamics, a peaked maximum is observed at Tmax D 1:1Tc. Such a temperature
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maximum is not predicted by Eq. (4) since

d

dT

�
." � 3P/

T4

�
D �16B

T5
� 9A

T4
: (5)

The equation above indicates that a maximum exists only if B or A is negative.
Assuming that Eq. (4) represents adequately the EoS of the quark-gluon plasma,

the effective degree of freedom and the constants A and B can be considered as
free parameters, which can be evaluated by fitting QCD lattice data derived from a
quark-gluon plasma including three flavors. Figure 1 shows the resulting fit (solid
curve) and lattice data taken from Karsch (2002).

From the fitting procedure, it results that �2geff=90 D 4:25 instead of 5.209
expected for a 3 flavor quark-gluon plasma, B D �390:8MeV fm�3 and A D
4:24 fm�3. Note that a negative bag constant has resulted from the fitting procedure,
a conclusion also reached by the authors in Begun et al. (2010). In this case, the
parameter B should not be interpreted as the “bag” constant as mentioned before.
Anyway, the usual fuzzy bag model is unable to explain the maximum of the
relation ." � 3P/=T4 which, using the values of the parameters estimated by the
fitting procedure occurs at Tmax D 164MeV, corresponding to a deconfinement
temperature Td D 0:909Tmax � 149MeV. Notice that Karsch (2002) obtained from
his own calculations Td D 154˙8MeV and a similar value was derived by Bazarov
et al. (2012).

The deconfinement temperature can be also estimated by comparing the pressure
of the hadronic phase, supposed to be constituted by pions (bosons), which are
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Fig. 1 Best fit of QCD lattice results for a 3 flavor quark-gluon plasma using the Eq. (4) given in
the text
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carriers of the strong force. The pressure due to pions, neglecting their self-
interaction is

P� D g�
2�2

.kT/4

.„c/3 I.y/ ; (6)

where we have introduced

I.y/ D �
Z 1

y
x
p
x2 � y2 lg.1 � e�x/dx ; (7)

with y D m�c2=kT. In the numerical calculations, the number of degrees of freedom
was taken as g� D 3 (three pions: one neutral and two charged) and the mass m� of
all of them was taken to be equal to 140MeV=c2. The transition temperature can be
estimated from the equality of both pressures given respectively by Eqs. (4) and (6).

Numerical solution of the aforementioned equations gives for the transition
temperature Td � 142MeV, a value consistent with the previous estimate. It
is interesting to compare these numbers with estimates derived from heavy ion
collisions, which indicate deconfinement temperatures in the range 150–180MeV.
The energy density of the quark-gluon plasma at this temperature is 0:44 GeV fm�3
also consistent with lattice calculations (see Karsch 2002), while at the hadron phase
the energy density is only 2:4MeV fm�3

The evolution of the temperature of the cosmic plasma after inflation and
reheating is given by

T � 1:423p
t

MeV ; (8)

where the time is given in seconds. Replacing the temperature Td 	 145MeV
derived for the quark-hadron phase transition in the equation above, one obtains
that hadrons appear when the Universe was approximately 96�s old.

Another interesting question to be answered is how long was the duration of
the phase transition? The process begins with the appearance of small bubbles of
hadrons in the cosmic plasma. The bubbles grow and coalesce until all quarks
are confined. The process occurs in conditions where both the pressure and the
temperature remain constant. Despite the constancy of the pressure and of the
temperature, the total energy density varies during the phase transition since the
energy density of the deconfined phase is higher than that of the hadron phase.
The difference being the “latent heat” of the transition, i.e., L D ."1 � "2/, with
"1 � 0:68 GeV fm�3 and "2 � 0:25 GeV fm�3 being respectively the total energy
density of the quark and of the hadron phases at the transition point. Note that in
order to get the total energy density (or total pressure) in both phases at the transition
point it is necessary to add the contribution of photons and leptons. When added
either to the quark-gluon pressure or to the pion pressure, one obtains for the total
pressure during the transition the value of 0:096 GeV fm�3.
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If x is the fraction of matter in the quark phase, then the total energy density at
any instant of the transition is " D x"1 C .1 � x/"2. The conservation of the energy
is given by the equation T�0I� D 0 that can be explicitly written as

d"

dt
C 3H.P C "/ D 0 ; (9)

where H is the Hubble parameter whose evolution is controlled by the equation

H2 D 8�G

3c2
" : (10)

Equation (9) can be rewritten in terms of the variable x and, in this case one obtains

dx

dt
C

p
24�G

Lc
.P C "2 C xL/

p
"2 C xL : (11)

This equation should be integrated with the conditions: at t1, beginning of the phase
transition, x D 1 and at t2, end of the process, x D 0. Hence, the duration �t D
.t2 � t1/ of the phase transition is given by

�t D 2cp
24�GP

�
arctan

�r
"1

P

�
� arctan

�r
"2

P

��
: (12)

Using the values for the (constant) pressure during the transition and the energy
densities at the beginning and at the end of the transition, one obtain for the duration
of the process�t � 13�s.

3 Primordial Nucleosynthesis

Just after the phase transition quarks are confined into protons and neutrons. The
abundance ratio between these two species is fixed by the Boltzmann factor, i.e.,

n

p
D exp

�
� Q

kT

�
; (13)

where Q D 1:294MeV is the mass difference between the neutron and the proton.
With T D 145MeV, it results n=p � 0.991. Thus, just after the quark-hadron
transition, the density of neutrons and protons is nearly the same but as the Universe
expands and cools, the neutron-to-proton ratio decreases. Equation (13) fixes the
relative abundances of neutrons and protons while they are in statistical equilibrium,
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which is maintained by a series of weak interaction reactions as, for instance

n $ p C e� C N�e ; (14)

eC C n $ p C N�e ;
n C �e $ p C e� ;

The statistical equilibrium is broken when the rate �� of the weak interactions that
interconvert neutrons and protons becomes comparable to the expansion rate H�1
of the Universe. The cross-section for the reaction n�e $ pe� is

.E�/ D 0

�
E� C Q

mec2

�2
; (15)

where me is the electron mass, Q as before is the mass difference between the
neutron and the proton and

0 D 2�2„3
f �nm3ec

4
D 2:61 � 10�44 cm2 : (16)

In order to derive the numerical value above, we have taken f D 1:636 for the
phase space factor and �n D 887 s for the neutron life time. In this case, the weak
interaction rate per nucleon is obtained by integrating over the energy distribution
of neutrinos, supposed to be still in statistical equilibrium

�� D c
Z 1

0

.E�/
dn�
dE�

dE� : (17)

Numerically, the solution of the equation above gives �� � 0:92 .T=MeV/5. On
the other side, using Eq. (10) and geff D 10.75, one obtains H D 0:68 .T=MeV/2.
Both quantities are comparable when T � 1:1MeV, a temperature that corresponds
to an age for the Universe of t � 1:7 s. At this moment, the neutron-to-proton ratio
is n=p � 0:308.

After the decoupling of neutrinos, the expected abundance of neutrons and
protons should be “frozen” but neutrons begin to decay and interact with protons
to produce deuterium according to the reaction

n C p $ 2D C � : (18)

In this evolutionary phase, the density of neutrons varies as

dnn
dt

D �3Hnn � nn
�n

� nnnp < v >D CnD n : (19)
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In this equation, the first term on the right side represents the variation of the
neutron density due to the expansion of the universe, the second represents the
losses of neutrons due to their decay, the third represents the losses due to
deuterium formation and the last one represents the production of neutrons due
to the photodisintegration of deuterium. A similar equation can be written for the
evolution of the proton density, namely

dnp
dt

D �3Hnp C nn
�n

� nnnp < v >D CnD n : (20)

Introducing respectively the particle concentration of neutrons Xn D nn=nb, protons
Xp D np=nb and deuterium nuclei XD D nD=nb, where nb is the total baryon density
that obeys the conservation equation

dnb
dt

C 3Hnb D 0 ; (21)

Eqs. (19) and (20) can be simplified as

dXn

dt
D �Xn

�n
� XnXpnb < v >D CXD n ; (22)

dXp

dt
D Xn

�n
� XnXpnb < v >D CXD n ;

If the reaction (18) occurs in a situation of quasi-equilibrium, we have the relation

XnXp

XD
D  n

nb < v >D
D 2

3

�
mkT

4�„2
�3=2

;
e�B=kT

nb
D F.T; nb/ (23)

where B D 2:225MeV is the binding energy of a deuterium nucleus. In terms of the
radiation temperature, the density of baryons can be written as

nb D 3H2
0�b

8�Gm

geff.T/

geff.T0/

�
T

T0

�3
D 8:66 � 1023.�bh

2/
geff

g0

�
T

MeV

�3
: (24)

In the equation above �b is the critical baryonic density parameter (ratio between
the baryon density and the critical density), m is the mass of a nucleon, T0 is the
present radiation temperature and the geff’s are the effective degree of freedom at
the considered temperature.

Although the nucleosynthesis process does not occur in an equilibrium situation,
it is interesting to perform some estimates based on this hypothesis. The critical
temperature at which the relative concentration of deuterium satisfies XnXp=XD � 1

(equivalent to a deuterium concentration of XD � 0:1), can be estimated from the
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condition logF.T; nb/ D 0 [see Eqs. (23) and (24)]. Numerically, one obtains the
equation

24:891� 3

2
logTMeV � 2:225

TMeV
� log�bh

2 D 0 : (25)

Since the critical deuterium concentration is expected to occur after the annihilation
of the eCe� pairs, we have assumed that geff=g0 D 1 in order to derived the equation
above. Taking �bh2 D 0:0221, the numerical solution of this equation gives for the
critical temperature Tc � 0:068MeV. At this temperature the Universe is about
438 s old.

When the deuterium concentration attains the aforementioned critical value, a
series of new reactions take place leading to the helium synthesis, namely

2D C 2D ! 3He C n $ 3H C p ; (26)

3H C 2D ! 4He C n :

Thus, in a first approximation, the resulting abundance of 4He can be estimated if
one assumes that all the free available neutrons will be locked into helium nuclei due
to its high stability. At the critical point, the conservation equations indicate Xn �
0:13, Xp � 0:77 and XD � 0:1. If all free neutrons go into helium nuclei, then the
resulting mass abundance is Y.4He/ � 2Xn � 0:26. This is close to observed values
of “primordial” helium in extragalactic HII regions, i.e., Y.4He/ D 0:2565˙0:0010
[see, for instance, Izotov and Thuan (2010)].

In Fig. 2 are plotted the primordial abundances of light elements derived from
detailed nucleosynthesis calculations as a function of the baryon-to-photon ratio �
given by

� D nb
n�

D 2:68 � 10�8.�bh
2/ : (27)

The abundances of 4He are by mass while the others are by number. Horizontal
lines indicate observed values or upper limits as in the case of 3He. The width of the
lines indicates the uncertainties in observations. The vertical line intends to show
a common value of � in the intersections between observed and calculated values.
Note there is still a tension with respect to the primordial lithium abundance. The
resulting value for the baryon-to-photon ratio is � D 6:2 � 10�10 and replacing this
in Eq. (27) one obtains �bh2 D 0:0221, in agreement with the value derived from
the amplitude of the peaks of the angular power spectrum of the cosmic microwave
background (CMB). Polynomial fits representing the abundance curves shown in
Fig. 2 can be found in Burles et al. (2001). These fits can be used to estimate the
cosmological baryon-to-photon ratio from measured abundances of the primordial
elements.
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Fig. 2 Primordial abundances of 4He, 3He, 2D and 7Li given as a function of the baryon-to-photon
ratio �. The 4He abundance is by mass whereas those of the other isotopes are by number

4 The Recombination Era

After the nucleosynthesis era, the cosmic plasma is constituted mainly by photons,
eCe� pairs, neutrinos and ionized baryons. These components, excepting neutrinos,
are strongly coupled through electromagnetic interactions. The dynamics of the
Universe is dominated by the relativistic matter, namely, photons, neutrinos and
eCe� pairs. Around kT 	 mec2 D 0:511MeV, just after neutrino decoupling, the
positron-electron pairs are no more in chemical equilibrium and annihilate. The
released energy goes to photons but not to neutrinos since they are not coupled
to the plasma. By entropy conservation, the temperature of photons increase with
respect that of neutrinos in proportion to the variation of the number of degrees
of freedom. Hence, before annihilation geff D 11=2 and after geff D 2 (only
photons are present). Initially the neutrino temperature was equal to that of photons
and after the annihilation of positron-electron pairs their relative temperature is
T� D .4=11/1=3T� .
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The cosmic expansion dominated by radiation ends when the energy density of
photons and neutrinos becomes comparable to that under the form of non-relativistic
matter. The equality occurs when

�2

30
geff

.kT0/4

.„c/3 .1C z/4 D 3H2
0c
2�m

8�G
.1C z/3 ; (28)

where geff D g� C .T�=T� /4g� D 3:557 takes into account the fact that neutrinos
are colder than photons and �m is the critical total matter density parameter. The
equation above can be written numerically

.1C zeq/ D 22760.�mh
2/ : (29)

Using results from the Planck mission Ade et al. (2014), i.e., �mh2 D 0:143, the
redshift of matter-radiation equality is .1 C zeq/ � 3250, which corresponds to a
radiation temperature of T � 8900K.

At these temperatures photons and baryons are still coupled, since the photon
mean free path due to Thomson scattering on free electrons is less than the Hubble
radius c=H. Thus, decoupling occurs when the following condition is satisfied

H.z/

ne.z/Tc
� 1 : (30)

In this equation ne is the electron density and T D 6:65�10�25 cm2 is the Thomson
cross section. Assuming ionization equilibrium and neglecting the contribution of
helium, the ionization fraction of hydrogen obeys the Saha equation, this is

X2H
1 � XH

D G.T/

n
; (31)

where we have considered that np D ne, i.e., the proton density is equal to the
electron density, n D nH C ne with nH being the density of neutral hydrogen, XH D
ne=n and

G.T/ D
�
mekT

2�„2
�3=2

e�I=kT ; (32)

where I D 13:6 eV is the ionization potential of hydrogen and the total hydrogen
density n is given by

n.z/ D 1:12 � 10�5�bh
2.1C z/3 D n0.1C z/3 : (33)

Numerical solution of Eqs. (10), (30) and (31) gives for the baryon-radiation decou-
pling redshift .1C zion/ D 1124, corresponding to a temperature of Tion D 3063K.
When decoupling occurs the residual ionized fraction of hydrogen is XH � 0:0071.
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4.1 The Last Scattering Surface

All the CMB photons do not decouple at the same redshift since scattering is a
random process, and thus they have a non-zero probability of being observed today
even if they were “last-scattered” in a region with an optical depth with respect to
the line-of-sight larger than unity.

The probability for a photon to be “last” scattered in the redshift interval z; z C
dz is

P.z/dz D e��s.z/
ˇ̌
ˇ̌d�s.z/

dz

ˇ̌
ˇ̌ dz : (34)

In the above equation, the scattering optical depth is given by

�s.z/ D
Z z

0

Tcne.z
0/
ˇ̌̌
ˇ dtdz0

ˇ̌̌
ˇ dz0 D (35)

D Tc

H0

Z z

0

n.z0/XH.z0/dz0

.1C z0/
p
�V C�m.1C z0/3

:

Figure 3 shows the last scattering probability as a function of the redshift. The
maximum escape probability occurs at .1 C z/ D 1114. This means that CMB
photons observed today have a maximum probability of have being scattered at
this redshift for the last time. For lower redshifts the number of scatters (free
electrons) decreases as well as the probability for the photon to have an interaction.
On the other side, for higher redshifts the probability P.z/ also decreases because
the Thomson optical depth increases and the photon will probably have other
interactions before “escaping”. The mean last scattering redshift derived from the
computed distribution is < .1 C z/ >D 1097 with a dispersion of z D 48. The
width of the last scattering surface, measured at half-maximum of the probability
distribution is �z100.

4.2 Thermal Decoupling

After the baryon-radiation decoupling, there is still a residual ionization of the
order of XH � 0.0071 as we have seen previously. Since the recombination rate
of electrons and protons is higher than the cosmic expansion rate, the ionization
fraction decreases continuously until “freezing” occurs. The evolution of the
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Fig. 3 Photon last scattering probability distribution as a function of the redshift

ionization fraction is governed by the equation

dXH

dz
D ˛BŒT.z/�n.z/

X2H
H0.1C z/

p
�V C�m.1C z/3

; (36)

where ˛B.T/ is the total hydrogen recombination coefficient, excepting to the
ground level that produces a photon able to reionize hydrogen. Solution of this
equation permits to calculate the evolution of the hydrogen ionization fraction and
the recombination timescale. The latter becomes comparable to the Hubble time
at .1 C z/ � 540 when the ionization fraction is about XH � 0:0003. For lower
redshifts the hydrogen ionization fraction is frozen at such a value.

The residual hydrogen ionization estimated above is rather small but even so the
free electrons interact with CMB photons, suffering a drag that keeps the matter
temperature close to the radiation temperature. Thus, due to this thermal coupling,
the matter temperature evolves as

dTm
dt

D 8Tu�
3mec

XH

.1C XH/
.T� � Tm/ ; (37)
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where u� is the energy density of CMB radiation. This equation permits to define
the Compton cooling timescale as

tc D Tm
j dTm=dt j D 3:69 � 1019

.1C z/4XH

�
Tm

T� � Tm

�
: (38)

Thermal decoupling occurs when the Compton cooling timescale becomes compa-
rable to the Hubble time, this is tc D H�1. From this condition one obtains

.1C z/5=2 � 3:981 � 105
p
�mh2 ; (39)

where it was assumed that .T� � Tm/=Tm D 1 and the hydrogen ionization fraction
was taken to be equal to the freezing value. The relation above implies that thermal
decoupling occurs at .1C z/ � 120. This means that for lower redshifts the matter
temperature varies only due to the expansion losses and is given approximately by

Tm � 160

�
.1C z/

120

�2
K : (40)

5 Reionization

The spectra of QSOs obtained at different redshifts show dramatic variations.
Objects at z > 6 indicate that the radiation shortward Lyman-˛ is completely
absorbed, suggesting the presence of neutral hydrogen along the line-of-sight of
those quasars. This effect is the so-called Gunn-Peterson (GP) trough. Figure 4,
taken from Fan et al. (2000) shows an example of a quasar at z D 5:8, where it
is possible to observe the GP effect. Note that at shorter wavelengths Lyman-ˇ and
OVI emission lines have non-zero fluxes, suggesting that this enhanced transmission
occurs thanks to the presence of ionized hydrogen bubbles along the line-of-sight.
Moreover, since the optical depth is proportional to the product of the line oscillator
strength to the wavelength, i.e., � / f
, the Ly-ˇ optical depth is about 6.2 times
smaller than Ly-˛, giving a higher flux transmission in that transition.

For closer QSOs, namely, for objects at z < 5:0, the flux shortward Lyman-˛ is
clearly detected and the Ly-˛ absorption is resolved into a multitude of individual
absorption lines, which constitute the so-called “Lyman-˛ forest”. The number
density of these features increases with the redshift approximately as N / .1Cz/5=2

(Tytler et al. 2004). Some authors have considered that these absorption features
are due to “clouds” of neutral hydrogen in the line-of-sight of the quasar and that
are located in filaments forming the cosmic web (Chiu et al. 2003; Miralda-Escudé
2000). The present belief is that the absorption features are formed in the low density
gas constituting the intergalactic medium (IGM). This gas is probably in thermal
equilibrium, heated by photoionization and cooled by the cosmic expansion and
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Fig. 4 Spectrum of the quasar SDSS 1044-0125 at z D 5:8. The flux attenuation shortward

Lyman-˛ is clearly observed as well as an increase in the transmission around 
 D 7000
o

A,
where the emission lines due to Lyman-ˇ and OVI are seen. Figure from Fan et al. (2000)

radiative losses (Fan et al. 2006). Spectra of two QSOs at z D 0:16 and z D 3:6 are
shown in Fig. 5, where the aforementioned absorption features can be seen.

Moreover, a moderate fraction of neutral hydrogen at z 	 6 is required in order
to explain the damped wing of Ly-˛ absorption features seen in the afterglow of
some gamma-ray bursts (Totani et al. 2006, 2014). Additionally, the fraction of Ly-
˛ emitting galaxies drops around z 	 7, indicating again an important absorption by
neutral hydrogen present in the intervening medium (Treu et al. 2013).

All these observations suggest that as the star formation process begins around
z 	20–30, the UV radiation of the young (and probably massive) stars ionize
the nearby gas producing HII bubbles or “Strömgren spheres”. These bubbles
grow in volume and in number thanks to newly formed stars in recent assembled
galaxies, then overlap producing a medium totally ionized. The first phase, when
the UV sources isolated inside their own bubbles evolve, is relatively slow but
the process accelerates when bubbles begin to overlap, since the mean free path
of Lyman-continuum photons increase. Other UV sources may also contribute
to the process as quasars formed in massive proto-halos, whose central black
hole in a state of accretion, has a massive disk able to emit a large amount of
ionizing photons (Montesinos et al. 2011). However, the contribution of quasars
is probably not important for z > 6 � 7. After the end of the overlapping phase,
the intergalactic medium becomes optically thin but still contains a small fraction
of neutral hydrogen able to absorb Ly-˛ photons.
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Fig. 5 Spectra of two quasars showing absorption features associated with neutral hydrogen
clouds in the line-of-sight of these objects. Note also that the continuum shortward Lyman-˛ is not
absorbed, indicating a transparent medium or that the gas in front of these quasars is ionized. Figure
from http://pages.astronomy.ua.edu/keel/agn/forest.html, courtesy of professor William Keel

A simple analytical description of the overlapping process can be obtained in the
following way (Barkana and Loeb 2001): imagine a HII bubble of proper volume
Vp with an uniform particle density nion. Then, the variation of the total number
of ionized atoms depends on the absorption rate of UV photons and on the rate of
recombinations occurring inside the bubble, i.e.,

d.nionVp/

dt
D dNuv

dt
� ˛B.T/n

2
ionVp : (41)

In this equation ˛B.T/, as before, is the total recombination coefficient between
protons and electrons, excluding the fundamental level and it was assumed again that
the electron density is equal to the proton density. In other words, the contribution
of helium as an electron donor was neglected. Recalling that the comoving volume
V is related to the proper volume as Vp D a3V and that particles are conserved,
Eq. (41), after a suitable average over the different bubble volumes, can be recast as

d < V >

dt
D 1

n0

dNuv

dt
� ˛B.T/Cn0 < V >

a3
: (42)

http://pages.astronomy.ua.edu/keel/agn/forest.html
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In the equation above, n0 is the present particle density (see Eq. (33)) and C D<
n2ion > = < nion >

2 is the volume-averaged clumping factor of the gas inside the
bubble. Recall also that niona3 D n0.

The maximum possible ionized volume can be estimated from Eq. (42) if
recombinations are neglected. In this case, < Vmax >D Nuv=n0. In order to estimate
the number of UV photons emitted by the stars that formed the considered HII
region, the following assumptions are made: Let Quv be the number of ionizing
photons emitted by unit of mass of formed stars. An average performed using a
Salpeter initial mass function gives Quv D 6:62 � 1060 ph M�1ˇ . Consider a proto-
halo of mass M and let be f� the fraction of the baryonic mass converted into stars
and fesc the fraction of UV photons that escapes from the star formation region,
being able to ionize the environmental gas. In this case,

Vmax D Quv

n0
M

�
�b

�m

�
f�fesc : (43)

Typically, f� 	 0:3 and fesc 	 0:1. If spherical, the radius of such a volume is
about rmax � 1:13 .M=Mˇ/1=3 kpc and for a proto halo with a mass of 108 Mˇ, the
maximum radius of the HII region is around 520 kpc.

Define now the ionization filling factor F that measures the ionized fraction of
the Hubble volume VH . This can be obtained by summing all the bubbles inside VH ,
i.e.,

F D
X
ion

< Vion >

VH
: (44)

Performing such a sum in Eq. (42) one obtains

d

dt

X
ion

< Vion >

VH
D 1

n0VH

X
ion

dNuv

dt
� ˛B.T/Cn0

a3
X
ion

< Vion >

VH
: (45)

Working the terms appearing in this equation gives respectively: the term on the left
side is simply

d

dt

X
ion

< Vion >

VH
D dF

dt
: (46)

The first term on the right side can be written as

1

n0VH

X
ion

dNuv

dt
� 1

n0

X
ion

Quv

��
M�
VH

fesc � QuvR�
n0

fesc ; (47)

where �� is the mean life time of the ionizing stars, M� is the mass of formed stars
and R� is the cosmic star formation rate, given in Mˇ yr�1 Mpc�3. The last term
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is trivial, since it is sufficient to apply the definition of F. Using these relations
and taking the redshift instead of time as the independent variable permit to recast
Eq. (45) as

dF

dz
D .1C z/2

˛BCn0
H.z/

F � QuvR�fesc

n0.1C z/H.z/
: (48)

This equation governs the evolution of the ionized volume fraction of the intergalac-
tic medium, assuming that the cosmic star formation rate controls the production of
UV photons when z > 6.

In order to solve numerically Eq. (48) some assumptions need to be made. The
first point concerns the temperature of the ionized region, which will be assumed
constant and the same for all bubbles. Studies in the vicinity of quasars Raskutti et al.
(2012) suggest that the temperature of the IGM for z > 8 is, in fact, approximately
constant and equal to 11,000 K. In the redshift interval 6 � z � 8 the temperature
increases up to 15,800 K. Since we expect that reionization will be completed at
z 	 6, this variation will discarded. The second point refers to the adopted star
formation rate, which is given by the expression

R�.z/ D .0:0103C 0:12z/

Œ1C .z=4/2:8�
Mˇ yr�1 Mpc�3 : (49)

This equation provides a good fit of the existing data (Hopkins and Beacom 2006)
and is consistent with the cosmological simulations by Filloux et al. (2011, 2010).
Figure 6 shows the adopted cosmic star formation rate (solid black curve) compared
with data and simulations. Two free parameters remain: the clumping factor of
the ionized gas and the escape fraction of photons from the star formation region.
Concerning the clumping factor, early simulations yield large C-values of the order
of 30. However the volume average performed in these studies included the very
dense halo gas, increasing the clumpiness of the IGM. As we shall see in the next
section, for z > 6, only a small fraction of baryons have collapsed and most of them
constitute the intergalactic medium. The clumpiness of the gas is small and C-values
of about 1–3 seem to be more reasonable (Shull et al. 2012). It should be emphasized
that if C > 1 a complete overlap of the HII bubbles should not occur because of mass
conservation. The escape fraction of UV photons can be estimated by requiring that
the calculated scattering optical depth �s in the line-of-sight reproduces the observed
value. This is given by Kuhlen and Faucher-Gighère (2012)

�s D
Z zD30

0

ne.z/TcF.z/
dz

.1C z/H.z/
: (50)

From Planck’s data, �s = 0.0925 (Ade et al. 2014). Numerical solution of Eq. (48)
for C D 1 with the initial condition F D 0 at z D 30 indicate that F D 1, this is
complete overlapping of the ionized bubbles, occurs at z D 5:89 with �s D 0:0926
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Fig. 6 The cosmic star formation rate: data points are from a compilation by Hopkins and Beacom
(2006). The red and the blue curves represent respectively the star formation rate in red and blue
galaxies derived from the simulation AGN Kerr (Filloux et al. 2011, 2010). The black curve is the
total cosmic star formation rate for which a fit is given in the text

if fesc D 0:019. Note that this fraction is in nice agreement with the estimates by
Chiu et al. (2003) in this redshift range. Figure 7 shows the evolution of the fraction
of the ionized Hubble volume as a function of the redshift. It is worth mentioning
that the reionization of the IGM is by no means “instantaneous”. Half of the Hubble
volume becomes reionized only at z � 7:2 and at z 	 11:5 only 10 % of the IGM
is reionized. This simple analysis suggests that star-forming galaxies are probably
the main sources of UV-photons, being able to reionize the universe. The process
begins around z 	 30 and is achieved around z 	 6.

5.1 Lyman-˛ Absorption

As we have seen, the reionization of the Universe by star-forming galaxies is nearly
complete around z 	 6. However, the ionization fraction is such that there is still
enough neutral hydrogen atoms to produce a substantial absorption in the Lyman
series.

In order to estimate the fraction of neutral atoms, we proceed in different steps.
Firstly, the mean radiation intensity shortward the Lyman continuum is computed by
solving the transfer equation. Considering, in a first approximation, that all ionizing
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Fig. 7 Fraction of the ionized Hubble volume as a function of the redshift for C = 1 (Note that in
ordinates is given the decimal logarithm of ionized volume fraction)

photons are emitted by stars near the Lyman limit, the emissivity coefficient can be
written as

j�.z/ D QuvR�.z/fesch�L
4�

ıD.� � �L/ ; (51)

where ıD.x/ stands for the Dirac’s delta distribution function and h�L is the energy
of a photon at the edge of the Lyman continuum. In the ionized region, the mean
free path of a Ly-c photon is larger than the mean distance between sources, namely,
the mean distance between galaxies. Thus, absorption can be neglected and, in this
case, the solution of the transfer equation is trivial, giving for the intensity

I�.z/ D .1C z/3
Z zmax

z

cj�.z0/
.1C z0/4H.z0/

dz0 D QuvhcfescR�.z/
4�H.z/

: (52)
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Once the intensity of the ionizing radiation is obtained, the second step is to compute
the ionization rate, which is given by

�ion D 4�

Z 1

�L

I�
h�L

�d� D Quvc0
2H0

fescR�.z/p
�V C�m.1C z/3

; (53)

where � D 0.�L=�/
3 is the approximate ionization cross section for hydrogen

with 0 D 6:3 � 10�18 cm2. Note that although the Ly-C absorption was neglected
in the solution of the transfer equation, it is not possible to guarantee that
the ionizing radiation intensity be homogeneous since the sources (galaxies) are
strongly clustered.

The next step is to compute the Ly-˛ optical depth, which as we shall see below,
is a “local” quantity due to effects of the cosmic expansion. The Ly-˛ absorption
cross section is

12.�/ D �e2

mec
f12�.� � �L/ ; (54)

where �.� � �L/ is the line profile and �L is the line frequency in the local standard
of rest. The line profile satisfies the normalization condition when integrated over
frequencies. For an observer located at a position characterized by a redshift z, the
element of optical depth in the radial direction is

d�˛.�/ D �e2

mec
f12nH�.� � �L/dr ; (55)

where nH stands for the density of hydrogen atoms in the fundamental level and
f12 D 0:4162 is the line oscillator strength. A photon emitted with a frequency �L at
redshift z0 will be detected with a frequency � at redshift z as a consequence of the
cosmic expansion, i.e.,

� D �L � �L
V

c
D �L � �L Hr

c
: (56)

Therefore, a variation dr in the proper radial distance corresponds to a variation of
the photon frequency given by

dr D c

�L

d.� � �L/
j dV=dr j D c

�L

d.� � �L/

H.z/
: (57)

Substituting this result into Eq. (55) one obtains

d�˛.�/ D �e2

mec
f12nH

c

�L
�.� � �L/d.� � �L/

H.z/
: (58)
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The integration along the line-of-sight was transformed in an integration in fre-
quency along the profile (this is simply the so-called Sobolev approximation,
very well known of stellar astrophysicists). Taking into account the normalization
condition, one finally obtains

�˛.�/ D �e2

mec
f12
12

nH

H.z/
: (59)

As already anticipated, this relation depends only on local quantities, consequence
of the Sobolev approximation.

The density of neutral H atoms is related to the total density by nH D .1�XH/n,
where XH is the ionized fraction. In order to compute XH (or 1 � XH), ionization
equilibrium is usually assumed in the literature either in analytical studies or in
numerical simulations. Here, the evolution of the ionization fraction is supposed to
occur out of equilibrium and this is governed by the equation

d.1 � XH/

dz
D .1 � XH/

�ion

.1C z/H.z/
� ˛Bn0�.z/.1C z/2

H.z/
(60)

where �.z/ is the fraction of non-collapsed baryons, still present in the diffuse IGM
(see next section).

Numerical solutions of Eq. (60) were obtained for different values of the escape
fraction fesc, this is 0.25, 0.30 and 0.35, neglecting clumping effects. Here higher
values for the escape fraction of UV photons were considered, since the IGM is
completely ionized as well as the gas in filaments or that inside halos. This increases
dramatically the escape fraction of ionizing photons from star forming regions and
the adopted range of values is similar to those adopted in other studies based on
ionization equilibrium (Schirber 2003; Robertson et al. 2013). In Fig. 8 is shown the
solution of Eq. (60) for fesc D 0:35. For comparison, it is also shown the evolution
of the neutral hydrogen fraction when ionization equilibrium is assumed. Note that
at z 	 6:5 the non-equilibrium solution predicts a neutral hydrogen fraction more
than one order of magnitude higher than the value expected from the equilibrium
solution. This implies that even without an important clumping, there is enough
neutral atoms in the IGM to produce a non-negligible Ly-˛ absorption.

Figure 9 shows the expected Ly-˛ flux transmission calculated from T D
exp.��Ly¸/ where the optical depth was computed from Eq. (59) combined with the
solution of Eq. (60). The best agreement with data by Songaila et al. (2004), Fan
et al. (2006) is obtained with fesc D 0:35.

6 Baryons, Where Are You?

As we have seen previously, primordial nucleosynthesis and CMB data indicate
that baryons represent about 4 % of the matter-energy content of the Universe.
Then, we may ask how these baryons are distributed throughout the Universe.
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Fig. 8 Evolution of the fraction of neutral hydrogen as a function of the redshift. The upper (red)
curve corresponds to a non-equilibrium solution discussed in the text, while the lower (black) curve
corresponds to an equilibrium situation (note that ordinates are the decimal logarithm of the neutral
hydrogen fraction)

Past investigations (Fukujita et al. 1998) lead to the conclusion that presently stars
represent about 12 % of the total amount of baryons with the remaining fraction
being under the form of cold, warm and hot gas. The cold gas (T � 15;000K) and
dense gas is present in galaxies, constituting the reservoir from which new stars
are formed. The cold, rarefied and photoionized gas constitutes the intergalactic
medium while the warm-hot gas can be found in different environments. In the one
hand, gas at temperatures around 105–106 K is found in filaments constituting the
cosmic web and halos, and in the other hand, gas at temperatures of about 107–108 K
is found in the intracluster medium.

From the observational point of view, damped Ly-˛ absorption features (DLAs)
observed in spectra of quasars are probably associated to the cold gas phase.
Features with line-widths less than 40 km/s (narrow absorption lines or NLAs)
are supposed to formed by clouds constituted by cold photoionized gas in the
intergalactic medium, while broader features (BLAs) are thought to be formed
in a warmer medium with temperatures around 105 K. This picture is supported
by high-resolution UV spectra of low redshift quasars obtained with the COS



262 J.A. de Freitas Pacheco

Fig. 9 Theoretical flux transmission shortward Ly-˛ as a function of the redshift (solid curves)
for different values of the escape fraction of ionizing photons. From the lower to the top curve, the
escape fraction fesc is respectively 0.25, 0.30 and 0.35. Data points are from Songaila et al. (2004)

spectrograph on board of the Hubble Space Telescope, which show the presence of
OVI absorption lines. About 37 % of the OVI absorbers have velocities coincident
with those of the HI features. If these lines trace the same medium, they suggest a
temperature T � 105 K. Approximately 53 % of the OVI absorbers have complex
structures suggesting higher temperatures. The fraction of baryons in these different
phases in rather uncertain because it depends on badly known parameters as the
distribution of clouds with the redshift, ionization fraction and abundance. Different
estimates suggest that at low redshift 30 % of the baryons are in the cold phase
where DLA features are formed and about 20 % are in the warm phase traced by the
broad and complex OVI absorption features. Including the contribution of stars, it is
easy to conclude that a fraction of baryons is “missing” in the global budget.

Cosmological simulations are certainly an adequate tool to investigate the
evolution of the distribution of baryons since they permit to probe a significant
volume of the Universe. Moreover, cosmological simulations permit to follow
consistently the evolution of dark matter and baryons in different phases, to test
star formation conditions and to include feedback effects due to massive stars
(stellar winds and UV ionizing radiation), supernovas and AGNs. Past investigations
based in this approach (Cen and Ostriker 1999a,b, 2006; Davé 2001) suggest that
the “missing” baryons might be in a gaseous phase at temperatures 105–107 K.
According to these studies, the warm-hot (WHIM) gas is primarily heated by shocks
resulting of the formation of structures like filaments by gravitational instability,
with the feedback of supernovas playing a secondary role. These investigations have
also shown that there is a continuous transfer of gas from the diffuse IGM to the
WHIM that is accentuated when z < 3.
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6.1 The Nice Cosmological Code

The Nice cosmological code is based on the structure of the GADGET code, in a
formulation that conserves energy and entropy (Springel 2005). The code is fully
adaptive in space and time, allowing simulations with an adequate dynamic range
required to study both high and low density regions. Different physical mechanisms
affecting the dynamics and the thermodynamics of the gas were included such
as, cooling including collisional excitation of HI, HeI and He II levels, free-free
transitions, radiative recombination, hydrogen molecular emission, atomic fine-
structure level excitations of trace elements and Compton interactions with the CMB
photons. Local heating and ionization produced by UV radiation of newly formed
stars were also included as well as mechanical energy injected either by supernovas
or AGNs.

Some particular aspects of the Nice code should be emphasized. For instance,
the return of mass to the interstellar medium, consequence of the stellar evolution,
implying that masses associated to gas and star particles vary in time. The delay
between the onset of type Ia and type II supernovas is also taken into account
in the code. Moreover, the chemical enrichment of the environment is made via
an adequate algorithm for SPH codes that is able to simulate a turbulent diffusion
process.

Concerning the injection of mechanical energy by AGNs in the surrounding
medium, this is performed through two opposite jets with an opening angle of about
30ı with a power derived from the AGNs simulations (Koide et al. 2002).

The results presented here are from simulations performed in a cube with a
size of 50h�1 Mpc, using a flat ƒCDM cosmology with H0 D 70 km/s/Mpc.
The normalization of the matter density fluctuation spectrum was taken to be
8 D 0:9. The mass resolution for “gas particles” is about 1:18 � 108Mˇ and all
the computations were performed at the “Center for Numerical Computations of the
Cote d’Azur Observatory” at Nice.

Figure 10 shows the evolution of the baryon fraction in different phases. At z 	
6, most of gas in the diffuse intergalactic medium, which as we have seen before
is now completely ionized by the UV radiation of stars. Notice that at this redshift
only 0.8 % of the baryons are under the form of stars but even this small fraction
is enough to reionize the IGM. As the Universe evolves, at z 	 2.5, the collapsed
fraction of baryons has increased: stars represent now 4.6 % of the baryon budget
while the fraction under the form of cold and dense gas or WHIM is respectively of
14.6 % and 7 %. Most of the baryons (73.6 %) are still in the diffuse IGM. Presently,
the major fraction of baryons is in the warm-hot shocked medium (43 %) and in the
diffuse IGM (36 %). The remaining fraction constitutes the stars (14 %) and the cold
and dense gas present in the interstellar medium of galaxies (7 %).

These simulations permit also to predict the evolution of the metallicity of the
cold and dense phase, supposed to be responsible for the formation of DLA features
observed in the spectra of QSOs. Figure 11 shows the predicted metallicity of the



264 J.A. de Freitas Pacheco

Fig. 10 Evolution of the baryon fraction in different phases derived from cosmological simula-
tions

Fig. 11 Predicted evolution of the metallicity of the cold and dense phase compared with
metallicities derived from DLA systems

cold and dense phase as a function of the redshift compared with metallicities
derived from DLAs systems. A more detailed analysis can be found in Durier and
de Freitas Pacheco (2011, 2012).
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7 Summary

As we have seen in this lecture, hadrons appear has a consequence of a phase
transition in which quarks and gluons in a state of asymptotic freedom become
confined. Such a transition occurs when the Universe has cooled to a temperature of
about 145 MeV, corresponding to an age of 96�s. The duration of this transition is
about 13�s.

When hadrons appear, the relative abundance of neutrons and protons is fixed
by statistical equilibrium conditions maintained by weak interaction reactions.
Just after the quark-hadron transition the neutron-to-proton ratio is about unity,
decreasing as the Universe expands and cools.

Neutrinos decouple from the cosmic plasma when the temperature decreased to
about 1.1 MeV or when the Universe is aged of 	 1.7 s. At neutrino decoupling, the
neutron-to-proton ratio is n=p 	 0.308. After neutrino decoupling the n=p ratio is no
longer given by its statistical equilibrium value. Neutrons begin to decay and interact
with protons to produce deuterium. When the cosmic plasma cools to a temperature
of 	 70 keV the neutron fraction is nn=nb 	 0.13, a series of reactions take place
leading to helium production as well as to small amounts of deuterium and lithium.
The resulting abundances depend on the baryon-to-photon ratio, a nearly conserved
quantity. From the observed abundances of helium in H II regions present in metal-
poor galaxies and deuterium abundances derived from absorption features in the
spectra of quasars, it is possible to estimate the abundance of baryons in the universe
using the results of primordial nucleosynthesis. This is in nice agreement with
determinations issued from the angular power spectrum of the CMB.

Protons are coupled to radiation through the interaction between photons and
electrons. When the mean free path due to Thomson scattering becomes less than
the Hubble radius, matter decouples from radiation and this occurs around z 	 1120,
when T 	 3000 K. Since scattering is a random process, the “last-scattering” surface
is not defined by a unique redshift. CMB photons seen today are, on the average,
originated from redshift < .1C z/ >D 1097 with a dispersion z D 48.

After matter-radiation decoupling, the residual ionization fraction of hydrogen
continues to decrease because recombinations occur in a rate faster than the
expansion rate of the Universe. This condition is broken when .1 C z/ 	 540.
For lower redshifts the ionization fraction remains “frozen” at XH 	 0.0003. Even
with such a low ionization level, matter is thermally coupled to CMB photons and
decoupling occurs when the Compton cooling timescale becomes comparable to
H�1. This occurs at .1Cz/ � 120. After thermal decoupling, the matter temperature
decays as the inverse of the square of the scale factor (adiabatic expansion).

As the star formation activity begins around z 	 20–30, UV photons are
produced, escape from their host galaxies, ionizing the intergalactic medium. The
HII bubbles formed around star forming galaxies overlap around z 	 6, when the
IGM becomes totally ionized. However, the fraction of neutral hydrogen atoms is
enough to produce a significant Lyman-˛ absorption in the spectra of quasars.
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Presently, baryons can be found in different phases: most of them are either in
the warm-hot medium pervading filaments and the intracluster medium (	 43%)
or in the diffuse photoionized IGM (	 36%). The remaining fraction is collapsed
into stars (	 14%) or constitutes the cold-dense gas present in galaxies, reservoir
of new stars.
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Peculiar Velocity Effects on the CMB

Miguel Quartin

Abstract The aberration effect due to our peculiar velocity ˇ with respect to
the CMB induces mixing among multipoles and off-diagonal correlations at all
scales which can be used as a measurement of ˇ, which is independent of the
standard measurement using the CMB temperature dipole. Here we review the
two techniques that allow this measurement and the forecasts for the achievable
precision with which these correlations can be measured in a number of CMB
missions. The forecast in the case of Planck was later shown to be very accurate
when the collaboration released their first set of data and measured the CMB
aberration for the first time. Finally, we show that a proper accounting for the
aberration effect solves the mystery of the power asymmetries in the CMB, present
since the WMAP era.

1 Introduction

The dipole of the CMB is measured to be much larger than the other multipoles
and this is usually attributed to a Doppler effect due to our peculiar velocity ˇ

with respect to the CMB rest frame. Under this assumption we can infer, by
combining the measured temperatures of WMAP dipole (Hinshaw et al. 2009) with
the COBE monopole (Lineweaver et al. 1996; Mather et al. 1999), its direction to
be l D 263:99ı ˙ 0:14ı, b D 48:26ı ˙ 0:03ı in galactic coordinates, and its
modulus to be ˇ � jˇj D .1:231 ˙ 0:003/ � 10�3. These very precise numbers
rely however entirely on the above assumption, but generically the CMB dipole
is not necessarily due only to a relative velocity. One way to test this assumption
was originally proposed in Burles and Rappaport (2006). Recently it has also been
pointed out (Challinor and van Leeuwen 2002; Kosowsky and Kahniashvili 2011;
Amendola et al. 2011) that all the CMB multipoles a`m have a correction due to
our local peculiar velocity because the primordial anisotropies are distorted by the
Doppler and aberration effects. This shows up as a correlation between different
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multipoles ` and could be used as an alternative way of measuring our velocity, as
an independent consistency check. This offers also a way to test the isotropy of the
Universe, not only on very large scales, but as we will discuss below, also at small
scales.

The analysis of these CMB correlations has been performed (Challinor and van
Leeuwen 2002; Kosowsky and Kahniashvili 2011; Pereira et al. 2010; Amendola
et al. 2011) relying upon a Taylor expansion in orders of ˇ of boost effects (Doppler
and aberration) on the multipole coefficients aX`m, whereX stands for T (temperature)
or E;B (the E and B modes of polarization). It was shown in Amendola et al. (2011)
that one can non-trivially and very efficiently define three different estimators in
order to measure directly the three cartesian components of ˇ, without having to
scan all the possible directions in the sky. Moreover it was shown in Chluba (2011),
Notari and Quartin (2012), that although a first order Taylor expansion breaks down
for individual a`m’s, it works surprisingly well for the full estimators all the way to
` 	 3000.

Even though the linear expansion seem to work surprisingly well, the concep-
tually safer path is to compute the full aberration kernel given by a transformation
aŒA�`m D P1

`0D0 K`0 `m aŒP�`0m ; between the aberrated ŒA� frame and the primordial ŒP�
correlations. One in principle would have to compute the matrix elements K`0`m ,
sometimes referred to as the aberration kernel, which are integrals of spherical
harmonics with different arguments, plug the matrix elements into all the possible
two-point correlation functions and compare with the data. While in principle
straightforward this procedure has some disadvantages: (1) this can be a heavy
and delicate numerical task, because of the highly oscillating integrands and also
because of the huge number of correlators that one has to consider (Planck alone
measures multipoles up to ` ' 2000 for both temperature and polarization); (2) it
is not obvious to understand in this case whether the three simple estimators can
be written explicitly for the three cartesian components of the velocity for any n
in a�̀

ma`˙nm0 , so perhaps the procedure would have to be carried out scanning the
sky in all possible directions which would probably make this approach even more
expensive in terms of computational time. This approach was explored in Notari and
Quartin (2012), and very simple analytical approximations were empirically found.
These solutions were later confirmed when they were re-derived mathematically
from first principles in Dai and Chluba (2014).

The ability to measure exotic contributions to the dipole is of great interest to
test Cosmology on very large scales, which could hide non-trivial phenomena, as
suggested by some reported anomalies on the low-` CMB multipoles itself (Copi
et al. 2010; Bennett et al. 2011) [see also Notari and Quartin (2012) and references
therein].

Interestingly, it was shown in Notari et al. (2014) that the aberration and Doppler
effects provide not only a signal but also a noise in the form of a bias to the
CMB. Although such a bias does not affect traditional parameter estimation when
measuring the full sky (Catena and Notari 2013) or some common non-Gaussianity
measurements (Catena et al. 2013), it does introduce a significant amount of power
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anomalies to the CMB (Notari et al. 2014; Quartin and Notari 2015). In fact, it
was concluded in Quartin and Notari (2015) that with a proper accounting of boost
effects and noise asymmetry no significant power asymmetries seem to be present
in the full Planck data set. Interestingly, without proper removal of Doppler and
aberration effects one would find spurious anomalies at high ` between 3 and 5 .
Even when considering only ` < 600 we find that the boost is non-negligible and
alleviates the discrepancy by roughly half- .

2 Fitting Functions for the Aberration Kernel

It was shown in Challinor and van Leeuwen (2002), Kosowsky and Kahniashvili
(2011), Amendola et al. (2011) that when subjected to an aberration effect the
a`m coefficients of the spherical harmonic decomposition of the temperature (and
polarization) contrast transform in the following way

aX ŒA�`m D
1X
`0D0

KX
`0 `m aX ŒP�`0m ; (1)

where the superscript X stands for either temperature (T) or one of the two
independent modes of polarization (E and B) and where ŒA� denotes the aberrated
coefficients, to be contrasted with ŒP�, the primordial (non-aberrated) ones.

In the case of temperature, the exact coefficients of (1) are given by Kosowsky
and Kahniashvili (2011) [we here follow Amendola et al. (2011) for the convention
of the sense of ˇ which results in an overall sign change in the velocity ˇ]

KT
`0 `m D

Z 1

�1
dx

� .1 � ˇx/
QPm
`0

.x/ QPm
`

�
x � ˇ

1 � ˇx
�
; (2)

where � � 1=
p
1 � ˇ2 is the standard Lorentz factor and

QPm
` .x/ �

s
2`C 1

2

.` � m/Š

.`C m/Š
Pm
` .x/ ; (3)

and where Pm
` are the associated Legendre polynomials. For polarization the

formulae are similar if one makes use of spin-weighted spherical harmonics (s QYm
` ).

Following Challinor and van Leeuwen (2002), we get

KP
`0 `m D 1

2

�
2K`0 `m C �2K`0 `m

�
; (4)
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in which

sK
P
`0 `m D

Z 1

�1
dx

� Œ1 � ˇx�
s QPm
`0

.x/ s QPm
`

�
x � ˇ

1 � ˇx

�
(5)

and where in turn s QPm
` .x/ � p

2� sYm
` .x; � D 0/ (see Notari and Quartin 2012).

The oscillatory nature of these integrals poses a numerical challenge, which make
their direct computation very slow for high `. In a recent work (Chluba 2011)
a recursive method was developed which is claimed to allow fast and accurate
evaluation of these integrals. In this section we follow instead a different route and
compute some of the integrals just by numerical integration. Surprisingly, we found
out numerically that these integrals can be fit very precisely by Bessel functions,
which greatly simplifies the analysis.

Following Challinor and van Leeuwen (2002) it is convenient to define the
quantities

sG`m �
s
`2 � m2

4`2 � 1

�
1 � s2

`2

�
; (6)

where again s represents a spin weight which is 0 for temperature and 2 for the E
and B modes of polarization. Note that we always have 0 � sG`m . 1=2, the lower
limit being achieved when jmj D ` and the higher one when m D 0. An exquisite
fit for small scales to the full non-linear integral for general m is given by

KT
`�1 `m ' J1


� 2 ˇ ` 0G`m

�
;

KT
`C1 `m ' J1


2 ˇ .`C 1/ 0G`C1m

�
;

(7)

where J1 is the Bessel function of the first kind. Moreover, we find that similar
relations to the above one apply also for non-neighboring correlations (i.e., between
any ` and `˙ n, n 
 1) and also for polarization:

KX
`�n `m ' Jn

0
@�2 ˇ

"
n�1Y
kD0

�
.` � k/ sG`�k m

�#1=n1A ;

KX
`Cn `m ' Jn

0
@ 2 ˇ

"
nY

kD1

�
.`C k/ sG`Ck m

�#1=n1A ;
(8)

which we find to be accurate to around 0:2% for all values of ` and m and all
values of n. For n D 0 one cannot apply Eq. (8) directly, but we find that an
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analogous fit is given by (with the same precision)

KX
` `m ' J0

 
ˇ

p
2

�
� .`C 1/ .`C 2/ .sG`C1m/2 � ` .` � 1/ .sG`m/2

C `.`C 1/� m2 C 1 � s2 C s2m2

`.`C 1/

� 1
2

!
:

(9)

As can be seen from the above relations, the temperature and polarization aberration
kernels become almost indistinguishable for small scales (usually for any ` � 1, or
when jmj ' `, for ` � 5).

A Taylor expansion of the Bessel functions yields to leading order

Jn.x/ D 1

2n nŠ
xn C O

	
xnC2
 ; (10)

which is valid for positive integer values of n. Expanding the above fits in orders
of ˇ we find that the coefficients with the Doppler correction exactly up to leading
order for any value of n for both temperature and polarization. In other words, for a
given n the fits are exact to order O

	
ˇn


. This was confirmed through direct analytic

integration of the leading order of the Taylor expansion in ˇ of Eq. (2) for specific
values of f`; `0; mg. This is an interesting result, as the f`; `˙ 3g, f`; `˙ 4g and
so forth leading order coefficients were never derived before in the literature. The
f`; ` � 3g is for instance simply:

KT
`�3 `m D � 1

6
ˇ3 `.` � 1/.`� 2/ 0G`m 0G`�1m 0G`�2m C O

	
ˇ5


; (11)

and similarly simple expressions hold for other f`; ` ˙ ng correlations. Another
cross-check of the above formulae is to confront the expansion up to second order
with the coefficients in Challinor and van Leeuwen (2002).

One could therefore conceive of the above fitting formula as direct method
to estimate the correlators which bypasses the need to pre-deboost the CMB.
Nevertheless this is a subtle point since, as shown in Amendola et al. (2011), in
the velocity estimator there is a nearly-exact cancelation of the leading-order term
in ` and it is thus possible that small corrections to the value of the coefficients lead
to moderate corrections to the estimators. One would therefore need to carefully to
check whether the accuracy provided by the fits here proposed is enough for such
analysis. Moreover, as stated in Sect. 1 the usefulness of such method would also
be dependent on whether also in this case three simple estimators can be written
explicitly for the three cartesian components of the velocity, thus avoiding the need
to compute and minimize a �2 for all possible sky directions. If both issues can be
circumvented, then this would provide a technique to measure our velocity, which
could be used as a cross-check for the pre-deboost technique.
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As a side note, the fit Eq. (8) gets worse for high values of ˇ and in fact breaks
down whenever ˇ is close to 1. This can be understood as one must have on physical
grounds that ˇ < 1 and from Eq. (2) that the integrals must approach zero in the
limit ˇ ! 1; the proposed fit instead does not go to zero in the same limit.1 This
fact is not important for the realistic case, since ˇ 	 10�3, but it might be relevant
if one tries to use our fitting function to try and guess an exact analytic solution
to the integrals Eq. (2). In fact, the very high precision and breadth of applicability
of an arguably simple fitting function Eq. (8) (which holds for any n and either
temperature or polarization) hints to the existence of an analytical solution involving
these Bessel functions, which perhaps can only be derived in some special limit. An
analytical derivation of Eq. (2) or Eq. (5) was later found in Dai and Chluba (2014),
confirming its validity as a very good approximation for ˇ . 0:1.

3 Applications to Current and Future CMB Experiments

3.1 Summary of CMB Experiments

In this section we explore the idea in more detail and estimate the expected signal
strength and detection possibilities in a number of CMB experiments. As it turns out,
experiments which cover only a few percent of the sky are not favored to detect the
proposed correlations, due to extra contribution from cosmic variance (see Eqs. (12)
and (24) below). We will focus instead on the experiments which cover a substantial
fraction of the sky, in particular WMAP, Planck and SPT as well as some of the
proposed future ones (ACTPol, SPTPol, Cosmic Origins Explorer—COrE and The
Experimental Probe of Inflationary Cosmology—EPIC).

Estimates in this section refer to statistical noise alone; care must be taken when
interpreting these due to the presence of foregrounds and systematic noise.

In Table 1 we list a short summary of the above CMB experiments. In each case
we list only the best frequency channel for measuring the spectra. Here, �fwhm is
the beam size diffraction limit with full width at half maximum (fwhm); T is
the thermodynamic temperature sensitivity per pixel (a square the side of which
is the fwhm extent of the beam); P likewise for the polarization quantities Q
and U; `Tcvlim is the multipole at which the temperature noise spectrum equals
cosmic variance; `T;Emax is the multipole for which the TT or EE spectrum equals
the instrument (statistical) noise (i.e., S=N D 1). For both SPTPol and ACTPol we
assume a net 9-h per day observation time.

1There is a correction to the proposed fits for ˇ & 0:1: the fits get much better as ˇ ! 1 (but not
exact) if one replaces ˇ by ˇ=.1 � ˇ2/1=4 in the argument of the Bessel functions. Note that in
practice, however, such a correction is irrelevant as we know that ˇ 
 10�3.
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Table 1 Summary of selected CMB experiments

Experiment Best � .GHz/ T P �fwhm fsky (%) `Tcvlim `Tmax `Emax

WMAP (9 years) 94 14 20 13:20 78 600 900 5

Planck (30 months) 143 1.0 1.7 7:20 80 1800 2500 1700

ACTPol Wider (4 yrs) 150 2.5 3.5 1:40 40 3600 4600 3300

COrE (4 years) 225 0.2 0.36 4:70 80 3100 3700 3000

EPIC 4K 220 0.24 0.34 3:80 80 3400 4300 3300

EPIC 30K 220 0.56 0.79 3:80 80 3000 3900 3000

Values quoted stand for the optimal frequency band with respect to a combination of temperature
and angular sensitivities. T is the thermodynamic temperature sensitivity per pixel (in units of
106	K/K); P likewise for the polarization quantities E and B; `Tcvlim is the approximate multipole
at which the temperature noise spectrum equals cosmic variance; `T;Emax is the approximate
multipole for which the TT or EE spectrum equals the instrument (statistical) noise. Note that
T , �fwhm , fsky, `Tcvlim and `Xmax are related by Eq. (13) [Table from Notari and Quartin (2012)]

The quantities �fwhm , `Tcvlim , fsky and T are related by the expression for the
noise power-spectrum (see e.g. Dodelson 2003):

�C` D
s

2

fsky.2`C 1/

h
C` C N`

i
; (12)

where the first term stands for the cosmic variance (CV`) and N` for the instrumental
noise (see Knox 1995; Dodelson 2003; Perotto et al. 2006; Nolta et al. 2009):

N` D �2fwhm
2
T exp

�
`.`C 1/

�2fwhm

8 ln 2

�
: (13)

Cosmic variance is predominant at lower and intermediate values of ` (to wit for
` < `Tcvlim); instrumental noise dominates for ` > `Tcvlim and determines `Xmax.
Note that in the case of Earth experiments the estimate (13), sometimes referred
to as the Knox formula, is inaccurate for ` . 500 due to possible atmospheric
fluctuations (Niemack et al. 2010). Note also that we list sensitivities per pixel
in 	K=K, but some of the references here listed prefer to describe them as either
noise-equivalent temperatures (NET) in 	KCMB

p
s (for a single detector—e.g. one

bolometer) or as sensitivity in 	K� arcmin (for a given frequency band, with all
detectors in that band combined). To convert between these quantities one has to
make use of the following relations (Bock et al. 2009):

.	K � arcmin/ D
s
8�fsky

�
NET.	KCMB

p
s/
�2

tmission.s/ Ndetectors

10; 800

�
; (14)



�
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�
D .	K � arcmin/
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: (15)
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Also worth noticing is the relation between T and EIB. If both linear polar-
ization states are given equal integration times (as is usually the case), the total
number of photons available for the temperature measurement will be twice
the number available for either polarization measurement, and one has EIB Dp
2T (Kamionkowski et al. 1997). This relation, however, assumes that all

detectors (being either coherent receivers, like HEMT amplifiers, or incoherent
ones, like bolometers) in the experiment are sensitive to polarization. If that is not
the case, then one has instead the relation

EIB D
s
2
Ntotal

Npolar
T ; (16)

where Ntotal stands for the total number of detectors and Npol � Ntotal is the number
of polarization detectors.

Finally, the measurements in the different frequency bands are formally inde-
pendent, so one can combine different channels to get lower instrumental noises
(cosmic variance is completely correlated in all frequency bands and therefore
cannot be mitigated) and thus probe higher multipoles. For Planck, as an example,
combining two channels (143 and 217 GHz) allows us to increase `Tmax by around
20 %. However, more important than an increase in `Tmax, the lower instrumental
noise after combining all channels means that the correlations here addressed can
be detected with higher S=N ratios. To wit, combining the different bands one gets

Ncomb
` D

"
#bandsX
iD1


Ni
`

��2
#�1=2

; (17)

where Ni
` is the instrument noise spectra for the i-th frequency band.

One must nevertheless be aware that different channels are subject to largely
different foregrounds and systematics, so that actually the usable fsky differs for
each frequency range. In what follows, for simplicity, we will assume a fixed fsky in
all frequency bands for each experiment.

3.2 Detectability of Our Proper Motion

In this subsection we seek to answer the following question: for a given CMB
experiment, what is the smallest value of ˇres it can in principle detect (say, S=N D 1

or 3)?
Using the induced off-diagonal a`m correlations, an estimator for our peculiar

velocity was built in Amendola et al. (2011). We summarize below the procedure.
We first define the following basic quantities:

FXY
`m � aX�

`ma
Y
`C1m ; (18)
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in the appropriate frame, where X;Y stands for either temperature (T) or one of the
polarization channels (E;B). The useful quantities are the real part of the above (the
imaginary part has zero average)

f XY`m � 1

2
.FXY

`m C FXY
`�m/ : (19)

Note that f XY`m D f XY`�m. Given a peculiar velocity ˇres, we can predict the average
value of the f XY`m

0s, which are given by Amendola et al. (2011):

h f XY`m i D c�Y
`C1mCXY

` C cCX
`m CXY

`C1 ; (20)

The c˙X
`m coefficients are different in the case of temperature and polarization and

are given by Eq. (7); to wit:

cCX
`m D ˇres.`C 1/ sG`C1m ;

c�X
`m D �ˇres ` sG`m ;

(21)

where s D 0 for temperature and s D 2 for polarization, and where we made use
of Eq. (6). Note that in the limit of flat spectra (CXY

` D CXY
`C1), one has h f XY`m i D 0.

One can show, using Eq. (8), that this remains true up to O
	
ˇ3


. Therefore h f XY`m i is

generically higher the more wiggled the power spectrum is.
Since h f XY`m i is proportional to ˇres, it is useful to define a related quantity

h f XY`m i � ˇres hOf XY`m i : (22)

From these predictions, we can compute an estimator
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where (see Amendola et al. 2011; Perotto et al. 2006; Verde 2010)

C` � 1p
fsky

	
C` C N`



(24)

and the sums are in principle carried out with �` � m � `, but can also be
simplified to a sum on 0 � m � ` since f XY`m D f XY`�m. An approximate value for

the variance of Ǒ
res can also be written as (Amendola et al. 2011)

ıˇ �
q
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This leads to an important conclusion: the estimate of ıˇ does not depend on the
value of ˇres itself. Note that this is physically motivated by the simple fact that the
error in ˇ is mainly due to cosmic variance which, to leading order, is independent
on ˇ. Therefore, one can determine the achievable precision of a given experiment
without knowledge of the residual velocity ˇres. Likewise, one can also determine
what is the minimal value ˇres that a given experiment could detect (for a given
S=N).

Finally, it was also shown in Amendola et al. (2011) that the estimate on the
direction of the velocity is directly related to the one of the magnitude. To wit if one
chooses the fiducial velocity as the z-axis, for small angles the error on the absolute
value of the velocity and the error in the magnitude of the direction are related by

ı� D ıˇ

ˇres
: (26)

Note that although as stated above the achievable precision in ıˇ does not depend
on the fiducial value of the velocity (and thus does not depend whether one pre-
deboosts the CMB or not), the same is not true for ı� , so clearly the direction of the
residual velocity will be measurable only if ˇres is significantly larger than ıˇ for a
given experiment.

Figure 1 depicts the expected precision of some of the CMB experiments listed
in Table 1 as a function of the highest multipole ` taken into account. Here we made
use of CAMB (Lewis 2000) and took its default cosmological parameters as our

Fig. 1 Precision in the measurement of ıˇ achieved by different experiments using the tempera-
ture T, the E mode of polarization the TE cross power-spectra and the combination of all these.
Here we still assume ˇres D 1:231 � 10�3 (i.e., no pre-deboosting). Top to bottom: ACTPol Wide
(1 year); Planck (30 months); ACTPol Wider (4 years); EPIC (30K); Core (4 years); EPIC (4K)
and finally, represented by the dashed line, an ideal experiment (no noise) [Figure from Notari and
Quartin (2012)]
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fiducial ones. Note that even the best experiments (Core and EPIC 4K) fall short of
the (arguable) target of 	 1% fractional precision on the velocity. Nonetheless,
their precision would be able to detect a non-standard signal which amounts to
at least 8% in the CMB dipole. It would take an even better experiment, with
sensitivities and beam sizes which are respectively high and small enough to probe
temperature and polarization multipoles up to ` ' 5000 to achieve the level of
2%. Note however that going to smaller and smaller scales the signal gets more and
more contaminated by local sources, and if they are not taken properly into account
this could prevent using this part of the spectrum, because it could introduce an
additional preferred direction in the data.

The bottomline is that Planck can measure our peculiar velocity v with a
precision of 55 km=s [completely consistent with what was actually measured later
in Aghanim et al. (2014)], whereas Core and EPIC 4K/30K could do the same with
only 20–25 km=s of error. Finally, an ideal experiment probing temperature and
polarization multipoles up to ` ' 5000 could achieve ıv ' 8 km=s.

The results in Sect. 2 allow us to estimate the accuracy of the first order expansion
we use here, as ˇres` approaches unity. A direct estimate would be obtained by
comparing the non-linear fitting functions (7) with a linear expansion. However,
a more careful comparison has to be done at the level of the hf`mi, because of
the leading-order cancellations, which could be disrupted by small changes in the
coefficients. We therefore evaluated, using Eq. (8), hf`mi up to third order in ˇ
(second order contributions are identically zero for the f`; ` C 1g correlations)
and compared the result with the first order hf`mi. Amazingly, the leading order
cancelation is basically undisturbed, and the correction to hf`mi is found to be small
even for high values of ˇres: it is 	 1% for ˇres D 5 � 10�4.

4 Power Anomalies

Besides introducing a new signal in the sky, aberration can also introduce a system-
atic noise, if not corrected for. In fact, it was shown in Notari et al. (2014), Quartin
and Notari (2015) that it generates power anomalies in the CMB. In particular,
aberration and Doppler were shown to be responsible for both hemispherical power
asymmetries and for a dipolar modulation of power of the spectrum. In a nutshell,
the hemispherical power asymmetry is related to the fact that in two hemispheres
in the sky (usually labelled “north” and “south”), the spectrum looks statistically
different (mostly in their overall amplitude). The dipolar power modulation is a
related statistical anisotropy, described by an ad-hoc model in which the amplitude
of the power spectrum varies smoothly in the sky in a way described by a constant
summed to a cosine function. These anomalies have been studied and discussed for
a full decade now (see, e.g. Eriksen et al. 2004, 2007; Hansen et al. 2004a,b; Bernui
et al. 2008; Hansen 2009; Hoftuft et al. 2009; Paci et al. 2013; Ade et al. 2013;
Akrami et al. 2014). See Ade et al. (2013) for a more detailed discussion on these
and other “anomalies” of the CMB.
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When analysing the CMB data for power anomalies, it is very important to take
three factors into account: the effect of the mask used, the asymmetry of the noise
and the boost effects. A mask is usually defined in pixel space and it consists of a
Boolean map of 1’s and 0’s. On the edge of the mask this leads to sharp transitions,
which result in high-frequency modes in harmonic space. Therefore, such a mask
introduces spurious high-`modes in the observed spectrum (the observed spectrum
is a convolution of the primordial one with the mask power spectrum).

For each of the above mentioned three directions we finally compute the spectra
D.N;S/` � C.N;S/` `.`C 1/=.2�/, and depict the difference

ıD`
D`

� DN
` � DS

`

Daverage
`

� 2
DN
` � DS

`

DN
` C DS

`

; (27)

in Fig. 2, comparing with mean and standard deviation of the same quantity for
the simulations. Note that for simulations the D`’s contain also the boost effects
and the noise power in each hemisphere. All results are obtained after binning the
spectra in 50-` bins. We also depict (dashed black curve) the average bias due to
Doppler and aberration, which is oscillating and has non-zero mean. Such bias was
found in Notari et al. (2014) to be extremely well approximated by the analytical
expression

ıD`
D`

' 4ˇ C 2ˇ `

�
1 � Dth

`C1
Dth
`

�
; (28)

where Dth
` is the fiducial power spectrum and ˇ is the average

ˇ D ˇhcos �iR D ˇ

Z
R
d� cos � ; (29)

where in turn R is the region of interest integrated over the solid angle d� and �
is the angle relative to the boost direction. We can also see that the simulations at
` & 1300 start having a net positive bias and this is due to the anisotropic noise
which has been added to them and which becomes important at such high `.

In Fig. 2 we show the final results for three directions [respectively defined by the
galactic axis, dipole direction and the maximal asymmetry direction found in Ade
et al. (2013)] and include also the statistical significance of the asymmetry summing
from ` D 2 to different `max, in order to illustrate its evolution as we probe ever
smaller scales. For a given D` the uncertainty is given by [see Hivon et al. (2002) or
Eq. (11.27) in Dodelson (2003)]

D` D
s

2

.2`C 1/fsky
.Dth

` C NMC
` / ; (30)



Peculiar Velocity Effects on the CMB 279

Fig. 2 Hemispherical asymmetry and its statistical significance along three different directions.
Left: The relative difference between D`’s in two opposite halves of the sky as a function of `.
The brown line is the Planck data while the green curve and band represent the mean and 1 band
from 500 simulations, binned in 50�` bins. The black dashed curves are the analytical estimate of
Eqs. (28)–(29), which ignores all noise. Right: The corresponding statistical (in)significance of the
anomaly, summing all multipoles from 2 to `max. The brown curve represents the correct estimate;
the dotted blue curve is the spurious significance if one ignores to boost the simulations. Note that
naively ignoring the boost can lead to a spurious anomaly at high ` between 2:5 and 2:9 [Figure
from Quartin and Notari (2015)]

where NMC
` is the noise power spectrum (obtained as an average through Monte

Carlo simulations) multiplied by `.`C 1/=.2�/. As it can be seen, after taking into
account all systematics, the anomaly level is consistently below 2 .

For the case of the dipolar modulation, it was also shown in Quartin and Notari
(2015) that the proper accounting for the boost also reduces the so-called anomaly
from 3 (or even 5 , in case of a posteriori statistics) to less than 1 , when all scales
are considered.
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5 Conclusions

The peculiar velocity of the solar system introduces both Doppler and aberration
effects in the sky. For the CMB in particular, this can be used to measure our
velocity through the aberration effect, opening a new window to measure the CMB
rest frame.

On the other hand, if not properly taking into account, it can introduce spurious
anomalies in the sky, which have no relation to any primordial or more fundamental
physics. One should therefore either work on the CMB rest frame, or if not, properly
and carefully take the peculiar velocity into account.
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Warm Inflation, Cosmological Fluctuations
and Constraints from Planck

Rudnei O. Ramos

Abstract Nonisentropic (warm) inflation models are characterized by radiation
production due to the decay of fields coupled to the inflaton during inflation.
The continuous radiation production might sustain a thermal radiation bath during
inflation as a result of the dissipative particle production. The presence of the
radiation bath can impact on the dynamics of inflation and, consequently, on the
observable quantities measured from the cosmic microwave background radiation
(CMBR). Besides of dissipative effects, these are also accompanied by stochastic
fluctuations. Both the origin and the impact of these effects on the inflationary
dynamics are reviewed here.

1 Introduction

Inflation is the most acceptable paradigm that solves the flatness and horizon
problems of the standard Big-Bang cosmological model (Liddle and Lyth 2000). We
generically define inflation as an early accelerated expansion dominated by vacuum
energy density and driven by a fluid with negative pressure:

Inflation ) Ra > 0; p < ��=3:

Besides of solving the flatness and horizon problems of the hot Big-Bang theory,
inflation also provides a solution of how inhomogeneities can originate, thus
giving a mechanism through which large-scale structures can form. Inflation is
typically driven by a scalar field, the inflaton field. Density perturbations are sourced
by perturbations of this inflaton field, which can be either of quantum and/or
thermal origin. Inflation also solves some outstanding problems related to Grand-
Unified theories (GUT), like the problem of dangerous heavy relics (e.g., magnetic
monopoles).
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In the standard scenario of inflation, which we call cold inflation, the interactions
of the inflaton field with other field degrees of freedom are negligible during
inflation. In this case the universe enters in a vacuum dominated phase and any
previous (if any) initial radiation energy density, �r, quickly redshifts away. In cold
inflation, the inflationary phase must end with a reheating phase, through which
the universe enters in the radiation dominated phase, such that the standard Big-
Bang cosmological evolution follows. The standard theory of inflation, as a bonus,
predicts that the large scale distribution of galaxies can be traced back to quantum
vacuum fluctuations of a weakly coupled field, the inflaton, during the inflationary
era (Liddle and Lyth 2000).

However, there can be regimes of parameters such that the inflaton interactions
with other field degrees of freedom are not negligible. It then happens that these
interactions can generate dissipation terms, such that a small fraction of vacuum
energy density can be converted to radiation. If the magnitude of these dissipation
terms are strong enough to compensate the redshift of the radiation by the expansion,
then a steady state can be produced, with the inflationary phase happening in a
thermalized radiation bath. This scenario is called warm inflation (WI) [for a recent
review see Berera et al. 2009]. In warm inflation, the evolution equation for the
radiation gets modified to P�r C4H�r D ‡ P�2, where H D Pa=a and‡ is a dissipation
term that can be a function of both the inflaton field � and temperature T. Typically,
in warm inflation it is assumed that T & H, in which case thermal fluctuations
dominate over the quantum ones. As a consequence, density fluctuations are now
sourced by thermal fluctuations as opposite to quantum fluctuations in the cold
inflation scenario.

WI dynamics can be viewed as an analogous of that of open systems. Dissipative
dynamics along with stochastic forces are typical manifestations for the dynamics
of a system interacting with some large environment. We can think of such similar
dynamics to also manifest in the early universe. For instance, when the matter
content of the universe can be split into a subsystem interacting with a large energy
reservoir, then physical processes may be represented through effective dissipation
and stochastic noise terms.

The presence of a radiation bath in WI can impact on the dynamics of
inflation and, consequently, on the observable quantities measured from the cosmic
microwave background radiation. In particular, the amplitude of primordial curva-
ture perturbations is enhanced and this is particularly significant when a non-trivial
statistical ensemble of inflaton fluctuations is also maintained. Since gravitational
modes are decoupled from the radiation bath for energies well below the Planck
scale, the presence of the thermal radiation bath and/or a non vanishing statistical
ensemble for the inflaton generically lowers the tensor-to-scalar ratio and yields
a modified consistency relation for warm inflation, as well as changing the tilt of
the scalar spectrum. This is able to alter the landscape of observationally allowed
inflationary models, with for example the quartic chaotic potential being in very
good agreement with the Planck results for nearly-thermal inflaton fluctuations,
whilst essentially ruled out for an underlying vacuum state. Besides of dissipative
effects, these are also accompanied by stochastic fluctuations. Both the origin and
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the impact of these effects on the inflationary dynamics is reviewed in the next
sections. We show how the dissipative and stochastic forces associated are able to
alter the landscape of observationally allowed inflationary models, with for example
the quartic chaotic potential being in very good agreement with the Planck results for
nearly-thermal inflaton fluctuations. We also connect the results obtained from warm
inflation with the recent BICEP2 measurement of a B-mode in the CMBR, believed
to come from gravitational waves of primordial origin, and how warm inflation can
conciliate both Planck and BICEP2 results.

2 Warm Inflation Dynamics

Warm inflation is defined in terms of the effective evolution equation for the inflaton
field while averaging out (functionally integrating over) the other field degrees of
freedom. This produces a stochastic (Langevin-like) equation of motion for the
inflaton which is of the form (Ramos and Silva 2013)

R�.x; t/C3H P�.x; t/C
Z

d4x0†R.x; x
0/�.x0/CV;� � 1

a2
r2�.x; t/ D �qC�T ; (1)

where †R.x; x0/ is a self-energy contribution and �q and �T are stochastic fields,
with Gaussian distributions, describing quantum and thermal (noise) fluctuations,
respectively. They satisfy appropriate fluctuation and dissipation relations. For
example, two-point correlation function for �T is related to thermal part of†R.x; x0/.
The self-energy term can be put in the form of a dissipative term in the adiabatic
approximation, P�=�;H; PT=T < � , where � is a decay rate term. In the most
recent implementations of warm inflation (Berera et al. 2009), � is the decay
width of a heavy scalar field coupled to the inflaton field and that can decay into
light radiation fields. Under the adiabatic approximation, we can approximate the
self-energy term in Eq. (1) as

R
d4x0†R.x; x0/�.x0/ � ‡ P�.x; t/ and the two-point

correlation function for the stochastic source � turns into a local correlation function:
h�T.x; t/�T.x0; t0/i D a�3‡Tı.x � x0/ı.t � t0/. Likewise, the two-point correlation
function for the quantum noise term can be expressed as h�q.x; t/�q.x0; t0/i D
H2 .1C 2N / =2 a�3ı.x � x0/ı.t � t0/, where N accounts for the possibility of a
non-trivial distribution of inflaton particles, produced as a result of the dissipative
processes occurring during inflation. For sufficiently fast interactions, this is
expected to approach a Bose-Einstein distribution: N � nBE.k/ D 1=Œexp.k=aT/�
1�.

The dissipation coefficient‡ is found (Bastero-Gil et al. 2011, 2013) to have the
following generic power law dependence with � and T

‡ D C�
Tc

�c�1 ; (2)



286 R.O. Ramos

where the value of the power c dependent on the specifics of the model construction
for WI and on the temperature regime of the thermal bath. Typically, it is found that
c D 3 (low temperature), c D �1 (high temperature) or c D 0 (constant dissipation).
For example, c D 3 corresponds to the case where the inflaton interacts with a heavy
(scalar) boson field, which in turn decays into light scalars. This is the case we use
throughout this work, unless otherwise specified. The effectiveness of WI can be
parametrized by the ratio Q � ‡=3H. The strong dissipative regime for WI is for
Q � 1, while for Q � 1, it is the weak dissipative regime for WI.

As usual, we can study the dynamics by splitting the inflaton field in a
background homogeneous part and perturbations, �.x; t/ D �.t/ C ı'.x; t/. The
background quantities �.t/ and the radiation energy density �r.t/ satisfy

R� C .3H C ‡/ P� C V;� D 0; (3)

P�r C 4H�r D ‡ P�2 ; (4)

3H2 D 8�G� : (5)

Prolonged inflation requires the slow-roll conditions j�Xj � 1, where �X D
�d lnX=Hdt, and X is any of the background field quantities. These slow-roll
coefficients in WI satisfy

� D m2P
2

�
V;�
V

�2
� 1C Q ;

� D m2P

�
V;��
V

�
� 1C Q ;

ˇ D m2P

�
‡;�V;�
‡V

�
� 1C Q ; (6)

where mP is the reduced Planck mass, mP D 1=
p
8�G D 2:4 � 1018GeV.

3 Perturbations and Connection with CMBR Measurable
Quantities

From Eq. (1) in the local approximation, the equation of motion for the fluctuations
ı'.x; t/ at linear order (in Fourier momentum space) is given by

Rı'.k; t/C .3H C ‡/ Pı'.k; t/C V 00.�/ı'.k; t/C k2

a2
ı'.k; t/ D Q�T.k; t/C Q�q.k; t/ :

(7)
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The solution of this equation can be expressed in terms of a Green function and
from it we define the power spectrum for the inflaton field perturbations,

Pı'.z/ D k3

2�2

Z
d3k0

.2�/3
hı'.k; z/ı'. k0; z/i ; (8)

where z D k=.aH/. These perturbations at some scale k get frozen as soon these
scales cross the horizon, z� D 1 and are imprinted in the CMBR when they reenter
the horizon again at the decoupling era. The power spectrum can then be related to
the CMBR quantities like the amplitude �R for the curvature perturbation (defined
in terms of the gauge invariant curvature perturbation � D �Hı'= P�),

�2
R D H2

P�2 PR D �2
R.k0/

�
k

k0

�ns�1
; (9)

and the spectral index ns, (Ne is the number of e-folds of inflation):

ns � 1 D d ln�2
R

dNe
D d ln�2

R

d ln k
; (10)

where Ne is the number of e-folds of inflation.
For a generic inflaton phase-space distribution at the time when observable CMB

scales leave the horizon during inflation, z D z�, the dimensionless power spectrum
of curvature perturbations in WI found to be given by (Ramos and Silva 2013)

�2
R D

�
H�
P��

�2 �H�
2�

�2 "
1C 2n� C

�
T�
H�

�
2
p
3�Q�p

3C 4�Q�

#
; (11)

which yields the standard cold inflation result,
	
H�= P��


2
ŒH�=.2�/�2, in the limit

n�;Q�;T� ! 0.
Another quantity that can be used to constrain the many different inflation

models is the tensor to scalar curvature perturbation ratio, r D �2
T=�

2
R. Inflation

in general also predicts a spectrum of gravitational waves. Gravitational wave
perturbations also gets amplified during inflation, just like vacuum and thermal
(in WI) perturbations of the inflaton field. Gravity waves are weakly coupled
to the thermal bath and the spectrum of tensor modes retains its vacuum form,
�2

T D .2=�2/.H2�=m2P/. This therefore suppresses the tensor-to-scalar ratio, yielding
a modified consistency relation in the case of WI,

r ' 8jntj
1C 2n� C 2�Q�T�=H�

; (12)
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where nt D �2�� is the tensor index, while the spectral index ns in WI is (Bartrum
et al. 2014)

ns � 1 ' 2�� � 6�� C 2��
1C ��

.7�� � 4�� C 5�/ ; (13)

where  D m2PV
0=.�V/ < 1CQ and we have used the slow-roll equations, 3H.1C

Q/ P� ' �V 0.�/ and �R ' .3=4/Q P�2, to determine the variation of � � 2�QT=H
as different scales become super-horizon during inflation.

Modifications are, however, more prominent in the opposite limit of nearly-
thermal inflaton fluctuations, with n� ' nBE�. For T� & H� and Q� � 1 we
then obtain:

ns � 1 ' 2� � 2�� ; (14)

which is, in particular, independent of the curvature of the potential, which only
determines its running:

n0
s ' 2�.� C 2�� � ��/� 4��.2�� � ��/ : (15)

In this case, a red-tilted spectrum, ns < 1, corresponds to either potentials with
a negative slope, such as hill-top models, or large field models where �� >

2.mP=��/2.
The above results for r and ns in WI also easily goes to the cold inflation result

when n�;Q�;T� ! 0. In cold inflation (see, e.g., Liddle and Lyth 2000), it is found
that r D 16", ns D 1C 2�� 6".

The observed amplitude of curvature perturbations from the recent measurements
from Planck (Ade et al. 2013) gives�2

R ' 2:2�10�9. The recently released Planck
results also give for the tensor to scalar amplitude ratio the result r < 0:11 at 95%
CL (when the high-` CMB ACT+SPT data are added) and for the spectral index
ns D 0:9600 ˙ 0:0072, while when including the Planck lensing likelihood gives
ns D 0:9653 ˙ 0:0069 and r < 0:13, and by also adding BAO data, it gives ns D
0:9643˙ 0:0059 and r < 0:12.

Let us show some of the results that are obtained from the above expressions,
which were derived in the context of WI. For that, we specialize in the particular
case of a chaotic quartic inflation potential,

V.�/ D 
�4 : (16)

In the cold inflation case, it is known that such potential for inflation is not consistent
with the present data, since it predicts a tensor-to-scalar ratio r and spectral index ns
outside of the allowed region as recently determined by the results from Planck (Ade
et al. 2013).

Our results for WI (Bartrum et al. 2014) are shown in Fig. 1.
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Fig. 1 Trajectories in the .ns; r/ plane for V.�/ D 
�4 as a function of the dissipative ratio,
Q

�

< 0:01, 50–60 e-folds before the end of inflation, compared with the Planck results (Ade
et al. 2013), for g

�

D 228:75 relativistic degrees of freedom. The dark green (light blue) curves
correspond to nearly-thermal (negligible) inflaton occupation numbers n

�

, with dashed branches
for T

�

	 H
�

. Note that corresponding curves converge in the cold inflation limit, T
�

;Q
�

! 0.
Figure from Bartrum et al. (2014)

The results in Fig. 1 for the trajectories in the .ns; r/ plane show that depending on
the values of dissipation ratio Q and the statistical state for the inflatons, particularly
in the case where the inflatons are in a quasi-thermalized state with a Bose-Einstein
distribution nBE, the trajectories fall just easily in the allowed region from Planck.

4 Accounting for the Perturbations of the Radiation Bath:
Coupled Two-Fluid System

It should be noticed that the inflaton and the radiation bath can be considered as
a coupled two-fluid system. At the same time, inner interactions in the radiation
fluid can produce decay and departure from equilibrium in the radiation fluid.
These, in turn, can be related to dissipative fluxes in the radiation fluid, which in
hydrodynamics can be described in terms of transport coefficients (the shear and
bulk viscosities).

From hydrodynamics (Weinberg 1972), the shear and bulk viscosity coefficients
can be expressed, respectively, as

�s D 4

15
�r�; �b D 4�r�

�
1

3
� v2s

�2
: (17)
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where � is a time scale for equilibration in the radiation fluid and vs is the speed of
sound.

Note that for conformal field theories v2s D 1=3, dilatation is a symmetry and
the fluid remains always in equilibrium. The same holds for scale invariant field
theories, in which we have an ideal equation of state, !r D 1=3, implying that
�b D 0. However, quantum corrections can break scale invariance, which then leads
to a nonvanishing bulk viscosity in general, �b ¤ 0. For example, modeling the
radiation bath with m2

2=2 C 

4=4Š, (m � T; 
 � 1), the bulk and shear

viscosity coefficients are found to be given by

�b ' 8:9 � 10�5
T3ln2.0:064736
/; �s ' 3:04 � 103 T
3


2
: (18)

We recall that in the inflaton effective equation of motion both dissipation and
fluctuation (stochastic noise) are present as a result of interactions. The same is
expected to happen for the radiation fluid (analogous to Landau’s theory of random
fluids). Random sources and dissipative stresses in the radiation fluid equations are
introduced via a stress term …ab in the stress-energy tensor,

T.f /ab D .p.f / C �.f // ua
.f /ub

.f / C p.f / gab C…ab; (19)

where

…ij D �
�
�sriuj

.f / C �srjui
.f / C .�b � 2

3
�s/ıijrku

.f /k

�
�†ij; (20)

where fluctuations terms are generated by a Gaussian noise term †ab. The cor-
relation functions of the stochastic noise term †ij are assumed to be local and
determined by the fluctuation-dissipation relation,

h†ij.x; t/†kl.x
0; t0/i D

2T

�
�sıikıjl C �sıilıjk C .�b � 2

3
�s/ıijıkl

�
ı.3/.x � x0/ı.t � t0/: (21)

5 Cosmological Fluctuations

Starting now from the perturbed spacetime metric:

ds2 D �.1C 2˛/dt2 � 2ˇ;idt dxi C a2
	
ıij.1C 2'/C 2�;ij



dxidxj; (22)
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where

� D a.ˇ C a P�/; (23)

� D 3H˛ � 3 P' � r2�: (24)

The perturbed Einstein equations in gauge-ready form can be expressed as
(Hwang and Noh 2002)

r2' C H� D �4�Gı�; (25)

� C r2� D �12�G.�C p/ıv; (26)

P�C H� � ˛ � ' D 8�Gı…; (27)

P� C 2H� C r2˛ � 3.�C p/˛ D 4�G.ı�C 3ıp/: (28)

The inflaton and radiation perturbation equations now become

.ı P� � ˛ P�/P C 3H.ı P� � ˛ P�/� r2ı� C�;��ı� � � P�
Cı‡ P� C ‡ı P� � ˛ R� D .2‡T/1=2�.�/ (29)

ı P�.f / � ˛T Ps C 3H.ı�.f / C ıp.f / � �b�/

C.Ts � 3H�b/.r2ıv.f / � �/C s;�ıq D �ıQ.�/; (30)

a�3fa3.Ts � 3H�b/ıv
.f /gP C ˛.Ts � 3H�b/C ıp.f /

��b� � �0r2.ıv.f / C �/ D �ıJ.�/ C .2�0T/1=2�.f /: (31)

where we have defined �0 as

�0 D 4

3
�s C �b: (32)

In the radiation perturbation equations we have energy and momentum transfer
terms that can be expressed as

ıQ.�/ D �ı‡ P�2 � 2‡ P� .ı P� � ˛ P�/C .2‡T/1=2 P� �.�/ C r � P; (33)

ıJ.�/ D ‡ P� ı� C r�2r � . PP C 4HP/; (34)

where P is a stochastic energy flux added to the stress energy tensor:

P D �CP.2‡T/1=2 P� r�2r�.�/: (35)

The two cases CP D 0 and CP D 1 govern whether the noise source �.�/ appears in
the energy flux or in the momentum flux.



292 R.O. Ramos

Recalling the background equations:

R� C .3H C‡/ P� C V;� D 0; (36)

P�r C 4H

�
�r � 9

4
H�b

�
D ‡ P�2 ; (37)

3H2 D 8�G� ; (38)

prolonged inflation requires the slow-roll conditions j�Xj � 1, where �X D
�d lnX=Hdt, and X is any of the background field quantities.

At leading order in the slow-roll approximation, we have that:

3H.1C Q/ P� ' �V;� ; (39)

4�r ' 3Q P�2 C 9H�b; (40)

3H2 ' 8�GV; (41)

where Q D ‡=.3H/.
In the numerical results that follows, we will study the results for a dissipative

parameter with cubic dependence with the temperature, c D 3, ‡ D C� T3

�2
, and a

quartic chaotic model with inflationary potential V D 
�4=4.
For the metric perturbations, we can choose a gauge (e.g. the zero-shear gauge,

� D 0). From the slow-roll equations, the gauge-invariant curvature perturbation
(Lukash variable)ˆ, is defined as

ˆ D � 1

1C Q
�� � Q

1C Q
�v ; (42)

where

�� D �' C Hı�= P� ; (43)

�v D ' C Hı�r=4�r : (44)

At late times, when z � k=.aH/ ! 0, we have ˆ D ��� D ��v . The power
spectrum is found from

h� i.k; t/� i.k0; t/i D Pi.k; t/ .2�/3ı.3/.k C k0/ : (45)

We consider the following cases:

• N� D 0 for a nonthermal (vacuum) inflaton fluctuation, or
• N� D nBE.k/ D 1=.ek=.aT/ � 1/ for a thermal statistical state for the inflaton
• CP D 0, field stochastic �.�/ term in the energy flux
• CP D 1, no field stochastic �.�/ term in the energy flux
• with and without viscosities
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The effect of each term to the power spectrum and for the spectral tilt are shown in
Fig. 2.

The effects of the viscosities on the power spectrum are exemplified in Fig. 3.
A more throughout analysis of both bulk and shear viscosities on the power

spectrum and the spectral tilt in warm inflation can be found in Bastero-Gil et al.
(2014a).
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6 The BICEP2 Recent Results and Possible Consequences
for WI

The BICEP2 experiment (Ade et al. 2014) has recently reported evidence for a large
tensor-to-scalar ratio r D 0:20C0:07

�0:05 (without foreground dust subtraction) from the
observation of B-mode polarization in the CMBR at degree angular scales. While
this is good news for the inflationary paradigm (Liddle and Lyth 2000), which
predicts a primordial tensor component in the CMBR spectrum, BICEP2’s value
seems to be in tension with the constraint on the tensor-to-scalar ratio reported by
the Planck collaboration last year (Ade et al. 2013). The Planck collaboration has,
in particular, placed an upper bound r < 0:11 (95 % CL), assuming that primordial
scalar curvature perturbations are described solely by an adiabatic component with
a simple power-law spectrum, i.e. no running of the spectral index.

The constraints obtained by BICEP2 in the .ns; r/ plane are illustrated in Fig. 4,
where we superimpose them in the same Fig. 1 that includes the WI trajectories.
Note from the figure that WI can also be consistent with the BICEP2 results. The
figure also illustrates the discrepancy (at the 2- level) of the BICEP2 results from
that from Planck in the absence of a running for the spectral index (n0

s D dns=d ln k).
On the one hand, Planck has also confirmed a significant deficit of power on

large angular scales with respect to their best-fit ƒCDM model, with a primordial
spectrum characterized by a constant red-tilted spectral index, so that any additional
contributions like gravity waves are naturally rather constrained. On the other
hand, any modification of the primordial spectrum that tends to reduce the power
on large scales will help relaxing the above constraint on r. Several possibilities
were already mentioned by the Planck collaboration, and they have been further

Fig. 4 Trajectories in the .ns; r/ plane. Same as in Fig. 1, but now including the contours from
BICEP2
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explored in view of the BICEP2 result, for example a negative running of the scalar
spectral index, sterile neutrinos as extra relativistic degrees of freedom, a blue-tilted
tensor spectrum, or isocurvature perturbations (Kawasaki and Yokoyama 2014). In
particular the tension in the bound on the tensor-to-scalar ratio r between Planck
and BICEP2 can be resolved by introducing isocurvature perturbations that are anti-
correlated with the main adiabatic component.

As shown in Bastero-Gil et al. (2012), a cosmological baryon asymmetry can
be produced through dissipative particle production during inflation, a mechanism
known as warm baryogenesis. The produced baryon-to-entropy ratio �s D nb=s was
shown in that reference to be consistent with the observed cosmological asymmetry
7:2 � 10�11 < �s < 9:2 � 10�11. Since the produced asymmetry �s depends on
the inflaton field and temperature, super-horizon fluctuations of the inflaton field
will also be imprinted in the CMB temperature anisotropies in the form of baryon
isocurvature perturbations. These have the same origin and will thus be fully (anti-
)correlated with the main adiabatic curvature perturbations. This is a very distinctive
feature of warm baryogenesis and makes it a testable model, which is not the case
of most of the baryogenesis mechanisms proposed in the literature. Besides baryon
isocurvature perturbations, dark matter isocurvature ones can equally be produced
by the same mechanism during WI. These isocurvature perturbations Bm can be
produced at a level still consistent with the upper bounds set by Planck, jBmj <
0:079, yet, they can affect the CMB temperature anisotropies h.�T=T/2i strongly,

h.�T=T/2i 	 P�

�
1C 5

6
reff

�
; (46)

where

reff D r C 6

5

	
4B2m C 4Bm



; (47)

such that for anti-correlated isocurvature perturbations a smaller effective tensor-to-
scalar ratio can be obtained.

It is important to mention that in deriving the bounds on the tensor-to-scalar
ratio r from CMB temperature anisotropies, the Planck collaboration has assumed
that primordial scalar curvature perturbations are described uniquely by an adiabatic
component. The effects of any other component such as baryon isocurvature modes
are then necessarily absorbed into an effective tensor-to-scalar ratio, reff, which
is smaller than the true tensor contribution if the additional components are anti-
correlated with the dominant adiabatic modes. Using this effect of an anti-correlated
matter isocurvature perturbation that can be generated during WI, an either partial
or even full screening is naturally present and may reconcile the BICEP2 detection
of B-mode polarization with the upper bound on the tensor-to-scalar ratio placed by
Planck, as shown in details in Bastero-Gil et al. (2014b). A partial screening would,
in particular, be interesting if there is future evidence for a non-zero tensor-to-scalar
ratio in the temperature power spectrum that is somewhat smaller than the value
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Fig. 5 Trajectories in the ns �r plane for the quartic model (thermal inflaton occupation numbers)
with 50 e-folds of inflation and g

�

D 228:75, with baryon (rbeff), CDM (rceff), and full matter
isocurvature perturbations (rbCc

eff ). The shaded regions show the 68 % and 95 % CL Planck
contours (Ade et al. 2013), including the results of WMAP and BAO observations, and the 1
interval for r derived by the BICEP2 collaboration (Ade et al. 2014) after taking into account dust
contributions. These results correspond to the range T

�

=H
�

D 0 � 13 (Q
�

D 0 � 0:01). Figure
from Bastero-Gil et al. (2014b)

inferred from the polarization data. This screening can, in fact, be effective for a
wide range of values for the tensor-to-scalar ratio and is not inherent to the large
value obtained by the BICEP2 collaboration, which is presently is under scrutiny.

An example of this effect of screening of the tensor-to-scalar ratio is shown in
Fig. 5, again for the case of a quartic inflaton potential in WI.

7 Summary and Perspectives

We have seen that warm inflation is able to describe in a concomitantly and natural
way the effects of both quantum and thermal fluctuations. While the observational
constraints involving the spectral index ns and the tensor to scalar curvature ratio
r already rule out a large class of inflaton polynomial potentials V 	 �p, with
p > 3, dissipative effects and thermal fluctuations can make these higher polynomial
inflaton potentials compatible again with the observational constraints, as shown
recently in Ramos and Silva (2013) and in Bartrum et al. (2014). We have here
shown the results for the particular case of a quartic inflaton potential and seen how
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easily WI can make it in concordance with the recent results from Planck. The most
important effect of dissipation and/or a non-trivial inflaton particle distribution is the
lowering of the tensor-to-scalar ratio in the modified consistency relation in Eq. (12),
so we expect next upcoming Planck release and future CMB B-mode polarization
searches to shed new light on the nature of inflaton fluctuations.

We have also seen that WI can naturally account for the baryon asymmetry of
the universe. As an additional bonus, we predicts the production of anti-correlated
isocurvature perturbations as a result of the matter production due to dissipative
effects during WI. The obtained results for chaotic models suggest that a large
tensor-to-scalar ratio could be accommodated by the current Planck results due to
the presence of these matter isocurvature modes associated with an asymmetric
dissipation of the inflaton’s energy density into baryonic or CDM species. This
provides a way of reconciling the Planck results with the recent results from the
BICEP2 experiment on B-modes measurements on the CMB.
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A Brief History of the Brazilian Participation
in CMB Measurements

Thyrso Villela

Abstract This contribution is a short report on the Brazilian participation in
Cosmic Microwave Background (CMB) observational programs. It includes brief
descriptions of the experiments aiming to measure both CMB properties and
Galactic microwave signals that hamper these measurements. The work done by
Brazilian researchers involved in the development of these experiments and in the
subsequent observations is briefly described as well.

1 Introduction

The history of Cosmic Microwave Background (CMB) measurements in Brazil
began in the early 1980s, when groups from Princeton University and University of
California at Berkeley flew instruments on board stratospheric balloon platforms to
map the angular distribution of this radiation in the southern sky. These experiments
were carried out with the support from the National Institute for Space Research
(Instituto Nacional de Pesquisas Espaciais—INPE). In particular, the collaboration
between the University of California and INPE evolved to a fruitful joint work that
produced several scientific and technological results related to CMB measurements
and to topics as CMB foreground characterization.

The CMB signal can be measured from a few GHz up to a few hundreds GHz.
The full characterization of the CMB radiation field requires measurements of its
spectrum, polarization and angular distribution. CMB spectrum measurements have
to deal with a signal level of the order of a few kelvins, while CMB anisotropy signal
is in the range of millikelvins to microkelvins. The CMB polarization signal, on the
other hand, is only detected at a few microkelvins level. These signal intensities
impose serious experimental and observational constraints.

T. Villela (�)
Divisão de Astrofísica, Instituto Nacional de Pesquisas Espaciais - INPE, São José dos Campos,
SP, Brazil
e-mail: thyrso.villela@inpe.br

© Springer International Publishing Switzerland 2016
J.C. Fabris et al. (eds.), The Cosmic Microwave Background, Astrophysics
and Space Science Proceedings 45, DOI 10.1007/978-3-319-44769-8_9

299

mailto:thyrso.villela@inpe.br


300 T. Villela

Depending on the frequency range, this signal can be picked up from the ground,
but, in general, it is necessary to use space platforms to avoid the atmosphere during
the observations. So, over the years, balloon borne and satellite platforms were
employed to allow precise measurements of the spectrum, angular distribution and
polarization of the CMB. Besides the atmosphere, other contaminants can hamper
CMB observations as well, like the radio and microwave emissions from our own
galaxy and extragalactic radio sources. The detailed knowledge of such signals is of
pivotal importance to better characterize the CMB data.

In order to measure these weak CMB signals, besides the development of very
sensitive experiments, it is necessary to account for the spurious signals that can
hamper the CMB observations. Thus, CMB measurement requires a strict control of
systematic errors.

Observational efforts in Brazil were carried out over the past three decades to
measure all three CMB characteristics and their contaminant foregrounds. This
contribution presents a brief report about the history of the work done by Brazilian
scientists and technicians in CMB measurements and related programs.

2 CMB Measurements and Related Programs

We show below some of the results related to CMB measurements programs,
including hardware development and data analysis, in which Brazilian scientists
were involved since 1982. The Brazilian institutions that took part in this effort
were INPE and, later, the Federal University of Itajubá (Universidade Federal de
Itajubá—Unifei).

2.1 CMB Angular Distribution: 3mm Experiment

The first Brazilian involvement in CMB measurements was in the 3:3mm (90GHz)
experiment. This instrument was a test bed and precursor for the Cosmic Back-
ground Explorer (COBE) 90GHz Differential Microwave Radiometer (DMR)
channel, which was launched on November 1989. With a noise temperature of
130K, a bandwidth of 600MHz and a beam width of 7ı FWHM, the 3mm
experiment was mounted on a gondola which rotated with a period of 100 s. It made
a very precise measurement of the CMB dipole anisotropy and placed a stringent
upper limit for the quadrupole (Villela et al. 1983; Lubin et al. 1985; Lubine and
Villela 1985; Villela 1987). Figure 1 shows parts of the experiment and Fig. 2
presents the instrument assembled and taking off for its Brazilian flight.
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Fig. 1 90GHz horn (left) and radiation shield to avoid spurious ground pick-up (right) used in the
3 mm experiment

In this flight, the gondola was launched from INPE’s campus in Cachoeira
Paulista, state of São Paulo, in November 19, 1982. The instrument performed very
well and took CMB data at an average altitude of 30 km for several hours. The CMB
dipole could be seen in real time as the gondola rotated at 1 rpm. Unfortunately,
due to a failure in the separation mechanism that connects the gondola do the
flight ladder and balloon, the flight extended for several hours beyond the estimated
duration and the payload was lost, as the batteries ran out of charge causing a
communication breakdown between the payload and the ground control station. The
gondola was recovered about 2 years later. A history of this flight and the gondola
recovery in Tapiraí, SP, in February 1985 can be seen in Villela (1994).

Despite the fact that the payload was lost, the telemetered data were used to
analyze the data. A very precise measurement of the CMB dipole was made as well
as a stringent CMB quadrupole was set through the combination of these data with
data collected in two previous flights from the Northern Hemisphere. The final result
of the 3 mm experiment showed a dipole intensity of 3:44˙0:17mK in the direction
˛ D 11h:2˙0h:1; ı D �60:0˙10:5. An rms quadrupole amplitude upper limit was
set to a 90% confidence level as 7�10�5 (Lubin et al. 1985; Villela 1987). Figure 3
shows a map of the CMB dipole measured by the 3 mm experiment.

Table 1 shows a comparison of the 90 GHz dipole measurement (Lubin et al.
1985; Villela 1987) with the Relikt (Strukov et al. 1987) and COBE (Smoot et al.
1991) satellite measurements. It can be seen from this table that the 3 mm data were
in good concordance with satellite data.

The balloon experiments carried out in the early 1980s (Fixsen et al. 1983; Lubin
et al. 1985; Lubin and Villela 1986) paved the way for the COBE satellite, as shown
in Fig. 4.
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Fig. 2 (Left) 3 mm experiment assembled in the laboratory and (right) the gondola taking off from
Cachoeira Paulista, SP, for its balloon flight in November 19, 1982

With the advent of the COBE satellite, it was possible to use the DMR data to
constrain the topology of the universe, work done by an INPE graduate student
Angélica de Oliveira-Costa, who went to Berkeley to work with COBE data (de
Gouveia dal Pino et al. 1995).
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Fig. 3 CMB dipole anisotropy map, in celestial coordinates, covering 80% of the celestial sphere.
The lack of data is evident in the black region in the lower left corner of the map, which was due
to the non-recovery of the experiment during the Southern Hemisphere 1982 campaign

Table 1 CMB dipole
measurements

Experiment Amplitude (mk) l (0) b (0)

Relikt 3:16˙ 0:07 266:4˙ 2:3 48:5˙ 1:6

3 mm 3:44˙ 0:17 264˙ 1:9 49:2˙
COBE 3:3˙ 0:1 265˙ 1 48˙ 1

2.2 ACME, HACME and BEAST Experiments

As a natural extension of the large angular scales experiments, a series of exper-
iments to search for CMB anisotropy at medium angular scales was conducted
by groups from the University of California (campuses of Berkeley and Santa
Barbara) in which INPE’s researchers, including graduate students, were involved.
These experiments were performed in the 1990s. The Advanced Cosmic Microwave
Explorer (ACME), shown in Fig. 5, was developed at that time (Meinhold et al.
1993).

Four balloon flights were performed in which the detectors were bolometers [the
ACME-MAX series: e.g. Gundersen et al. 1993; Clapp et al. 1994; Devlin et al.
1994; Tanaka et al. 1996; Lim 1996], and four observational campaigns at the South
Pole, in which the detectors employed were High Electron Mobility Transistors
(HEMT) [the ACME-SP series: Santos et al. 2012; Gundersen et al. 1995].
For instance, Carlos Alexandre Wuensche worked on the MAXIMA experiment
(Wuensche 1995). Newton Figueiredo also participated in these observations. For
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Fig. 4 Results from the balloon-borne experiments that paved the way for COBE. The left side of
the figure shows a combination of the 12 and 3 mm data obtained from balloon flights, while the
right side of the picture shows COBE results (P. Lubin)

Fig. 5 Balloon gondola of the ACME experiment. This platform was designed to automatically
point the telescope during the flights. It used inertial sensors to achieve this goal (Meinhold et al.
1993)
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Fig. 6 CMB maps obtained with the HACME experiment

information on the scientific results of these experiments see Wuensche and Villela
(2010) and references therein.

The next generation of medium angular scale experiments was the HEMT on
ACME (HACME) experiment (Staren et al. 2000). It was flown in 1996 and made
observations covering 1150 square degrees of the celestial sphere near the stars �
Ursae Minoris and ˛ Leonis at the frequencies of 39, 41, and 43 GHz, with an 	
0:077 beam (FWHM). The detected cosmic signal was smaller than 77�K. Figure 6
shows the CMB maps obtained from these observations (Tegmark et al. 2000).

After ACME and HACME, a new experiment was designed to search for
anisotropies in CMB angular distribution with better sensitivity. The Background
Emission Anisotropy Scanning Telescope (BEAST) (Childers et al. 2005;
Figueiredo 1997) was developed as a collaboration involving the University of
California Santa Barbara, INPE, Jet Propulsion Laboratory, Unifei, University of
Milan, University of Rome, IASF/CNR, Caltech and University of Illinois. INPE
provided several microwave parts for this experiment. The BEAST primary dish
is the largest mirror ever flown in a CMB experiment. The BEAST innovative
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Table 2 BEAST optical
parameters (Figueiredo et al.
2005)

Primary mirror

Focal distance 1250:0mm

Semi-major axis 2200:00mm

Aperture 1966:1mm

Secondary mirror

Semi-major axis 600:0mm

Semi-minor axis 575:4mm

Focal distance 170:0mm

Eccentricity 0:2833

Flat mirror

Diameter 2600:0mm

Fig. 7 BEAST optical design (a). In (b) it is shown the mold for the 2.6-m diameter primary
mirror

optical design, which had a large focal plane, was part of the work done by Newton
Figueiredo, an INPE graduate student, for his thesis work. Table 2 and Fig. 7 show
BEAST optical design parameters.

BEAST, besides data collected in balloon flights, also collected CMB data from
the ground at White Mountain Research Station (USA) at an altitude of 3800 m. An
astronomical site survey at the Barcroft Facility of the White Mountain Research
Station was made (Marvil et al. 2006) in order to better characterize this site for
CMB measurements. BEAST maps cover about 2500 square degrees in the celestial
sphere in the declination band 33ı � ı � 42ı and right ascension band 0 h �
˛ � 24 h. Most of the observations were in the Ka band (300 FWHM) and Q band
(230 FWHM). BEAST map results are presented in Meinhold et al. (2005), while
Galactic contamination in these maps is described in Mejía et al. (2005), whose
author was a post-doc at INPE at the time working on BEAST data analysis (Figs. 8
and 9). The resulting BEAST data CMB power spectrum is presented in O’Dwyer
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Fig. 8 BEAST experiment before flight showing the 2.6-m diameter flat mirror

(2005). Figure 10 shows a slice of the BEAST Q band sky map compared to the
same slice of the sky observed by WMAP.

The BEAST rms signal level was 57 ˙ 5�K (noise, without Galaxy, beam
smoothed to 300). The cosmic signal was 30˙3�K. INPE graduate student Agenor
Pina worked on the analysis of the BEAST data (Pina 2002). An independent
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Fig. 9 BEAST experiment before flight on the crane (a) and the dome where it operated at the
White Mountain Research Station

Fig. 10 WMAP map section (above) compared to same sky region as observed by BEAST (below)
in the Q band

calculation of BEAST CMB angular power spectrum has been done by Donzelli
et al. (2006).

3 CMB Polarization: WMPol Experiment

BEAST was adapted to operate as a polarimeter and became the White Mountain
Polarimeter (WMPol). INPE provided several parts for this instrument and Rodrigo
Leonardi, an INPE graduate student at that time, worked in its development and
operations. BEAST was deployed at the White Mountain Research Station site and
operated there for several months taking data at 42 and 90 GHz. These observations
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allowed us to set an upper limit of 14�K for the CMB E-mode polarization in the
170 < l < 240 multipole interval (Leonardi 2006; Levy et al. 2008) at 42 GHz.

Figures 11 and 12 show some of the microwave parts provided by INPE for
the BEAST and WMPol experiments. Some of these parts were jointly developed
by INPE and companies in the São José dos Campos and Campinas regions. The
know-how acquired in such developments was important for these companies, as
they qualified themselves to be providers of precise mechanical parts.

Fig. 11 WMPol transitions (a) and amplifiers bodies compared in size to a Brazilian 10 cents coin
(b)

Fig. 12 WMPol microwave hardware (a) mounted in the dewar (b)
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Fig. 13 WMPol fully assembled for observations at its White Mountain Research Station
observing site

Figure 13 is a picture of WMPol in its working configuration. It observed the
sky at 42 and 90 GHz. These observations allowed us to set an upper limit for CMB
polarization at 42 GHz. Figure 14 presents this result.
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Fig. 14 WMPol upper limit on CMB polarization (Leonardi 2006; Levy et al. 2008)

4 CMB Spectrum: ARCADE Experiment

The search for distortions in the CMB spectrum and the need for precise measure-
ments on the lower frequency part of the this spectrum lead to the development
of the Absolute Radiometer for Cosmology, Astrophysics, and Diffuse Emission
(ARCADE) experiment, a collaboration involving Goddard Space Flight Center
(GSFC/NASA), University of California, Santa Barbara, Jet Propulsion Laboratory
(JPL/NASA), University of Maryland, and INPE. ARCADE was designed to
operate on board high altitude balloons in order to measure the CMB frequency
spectrum at centimeter wavelengths and to search for signals from the first stars to
form after the Big Bang. The instrument was cooled down to �270 ıC, through a
radical thermal design that puts cold components outside the dewar.

INPE provided horns and microwave transitions at 90, 30, 10, 8, 5, and 3 GHz
for the ARCADE project. The transitions were fabricated in Copper through
electrodeposition process. The corrugated horns were made out of Aluminum.
Figure 15 show these horns and transitions, respectively, while Fig. 16a, b show
some of them assembled in the instrument.

ARCADE was launched in July 22, 2006 from Palestine, TX, USA. The flight
had a total of 4 h at the float altitude of 37 km. Successful thermal operations were
carried out during the flight consisting in comparing the sky to an on-board target
several times, while maintaining the instrument within 0.1 K of the sky temperature.
This procedure allowed 2.5 h of science data to be collected.

The ARCADE data showed a detection of a bright radio background that is
six times brighter than the expected combined contribution from all known radio
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Fig. 15 Horns (a, b) and transitions (c) provided by INPE for the ARCADE 2 experiment

galaxies (Fig. 17). This unexpectedly bright radio background has unknown origin
up to now. Moreover, this ARCADE result is consistent with existing radio surveys,
which makes this detection a very intriguing one, as radio source counts are well
known, and their emissions don’t even come close to making up the detected
background. New sources, too faint (10x) to be directly observed, would have to
vastly outnumber (100x) all the galaxies in the universe (Kangas et al. 2005a; Fixsen
et al. 2011; Seiffert et al. 2011).
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Fig. 16 Transitions (left, (a)) and horns (right, (b)) mounted on the ARCADE 2 experiment

Fig. 17 ARCADE results showing an excess intensity in the lower frequency part of the spectrum
compared to the 2.7 K CMB temperature (Fixsen et al. 2011)
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5 Radio and Microwave CMB Foregrounds: GEM
and COFE Experiments

Brazilian scientists and technicians have also been involved in the characterization
of CMB foregrounds. The Galactic Emission Mapping (GEM) project (de Amici
et al. 1994; Torres et al. 1996) is a collaboration encompassing the University
of California, Berkeley, in the USA, University of Milan, in Italy, Instituto de
Telecomunicazioni, in Portugal, and INPE, aiming to map the Galactic synchrotron
radiation at 408, 1465, 2.3, 5 and 10 GHz. It employs a 5.5-m diameter dish, which
rotates at constant speed to scan the sky, and extension panels to avoid ground
emission pick-up (Tello 1997; Tello et al. 1999, 2000). A schematic view of the
GEM dish set up, including the fence used to avoid ground emission pick up is
shown in Fig. 18. The GEM observational is also presented in Fig. 18.

GEM is currently operating at INPE campus in Cachoeira Paulista, SP (Fig. 19).
From this site, it can observe the sky in the declination interval between 52o23’14.1”
and C7o 8’50.98”, covering about 33% of the sky. GEM has already produced maps
at 1.465 GHz, a work done by Camilo Tello in his Ph.D. thesis (Tello 1997) and
2.3 GHz (Tello et al. 2013). A preliminary map at 408 MHz (Souza 2000) has been
produced. Preliminary maps of the polarized Galactic emission at 5 GHz have also
been produced by Ivan Ferreira, a former INPE graduate student who worked on
the development of the 5 GHz polarimeter (Ferreira 2008). Figure 20 is a picture of
GEM in its current observing site in Cachoeira Paulista, SP.

COsmic Foreground Explorer (CoFE) is a balloon-borne microwave polarimeter
designed to measure the low-frequency and low-l characteristics of the dominant
diffuse polarized foregrounds. Short duration balloon flights from the Northern and
Southern Hemispheres will allow the telescope to cover up to 80 % of the sky with
an expected sensitivity per pixel better than 100�K=deg2 from 10 to 20 GHz. This

Fig. 18 GEM schematic views of the parabolic dish, extension halo panels, and fence (a) and
observational strategy (b)
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Fig. 19 Picture of the GEM experiment in Cachoeira Paulista, SP, Brazil

Fig. 20 GEM map of the Galactic Center at 1465 GHz (a) and GEM map of the sky at 2.3 GH (b)

is an important effort toward characterizing the polarized foregrounds for future
CMB experiments, in particular the ones that aim to detect primordial gravity wave
signatures in the CMB polarization angular power spectrum (Leonardi et al. 2006).
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6 Concluding Remarks

The collaborative works described in this paper benefited a couple of generations of
Brazilian and US students. Brazilian students went to the University of California,
at Santa Barbara and Berkeley, to work on Lubin’s and Smoot’s groups. US students
visited INPE to work on the GEM project. These collaborations with Philip Lubin
and George Smoot are still active.

Regarding instrument developments, all joint projects provided interesting spin-
offs for other projects and careers (Kangas et al. 2005a). Camilo Tello quit his
position as a researcher at INPE and is working now in the USA in a mobile
phone company, where he employs his expertise in microwaves acquired during his
thesis work. He is still very involved and active in the GEM project. In particular,
the experience acquired with the development of the ACME instrument, where a
stabilized balloon-borne platform was built, has been used at INPE to develop a
stabilized platform for the Masco X- and gamma-ray imaging telescope (Villela
2000, 2002). A concise compilation of some of the instrumental work done in these
collaborations can be found in (Wuensche and Villela 2010; Villela et al. 2011) and
a general approach on CMB observations can be found in (Villela and Wuensche
2009).

Besides the instrumental work, emphasis has also been given to the analysis of
CMB data obtained with satellites. COBE data were used to investigate possible
large scale fractal structure in the universe (de Gouveia dal Pino et al. 1995);
investigations of the CMB angular distribution measured by WMAP (Abramo et al.
2006; Bernui et al. 2006a; Santos et al. 2012) and Planck (Santos et al. 2012)
were carried out; CMB temperature maps obtained by WMAP have been used
to investigate possible Gaussian departures (Bernui et al. 2006a,b). As general
approaches for CMB data analysis, an alternative algorithm for the harmonic
analysis of CMB distribution has been tested (Wuensche et al. 1994) and simulations
of the CMB power spectrum for a class of mixed, non-Gaussian, primordial random
fields have been performed (Andrade et al. 2004).

Just for the sake of curiosity, it is interesting to draw a quick line on what
happened in CMB measurements after the balloon flights in Brazil in the early
1980s. The Princeton University group leader was David Wilkinson. Dale Fixsen
and Edward Cheng completed the team. The University of California, Berkeley,
team had Philip Lubin and George Smoot as leaders and Gerald Epstein and myself
as graduate students. Cheng, Fixsen, Lubin, Smoot and Wilkinson were part of
the COBE satellite team. For their work in this experiment they were awarded the
Gruber Prize in Cosmology in 2006, along with John Mather and the COBE team.
George Smoot won the 2006 Nobel Prize in Physics for the DMR/COBE results
(Smoot et al. 1992), to which he was the principal investigator. He shared this prize
with John Mather, principal investigator of the FIRAS/COBE. David Wilkinson
became involved in the so-called Microwave Anisotropy Probe (MAP), that later
was renamed Wilkinson Microwave Anisotropy Probe (WMAP) in his honor after
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he passed away in September 5, 2002. WMAP, as COBE, was a great scientific
success, being followed by the Planck satellite.

As far as the Brazilian scientists that have been involved in the collaborations and
experiments mentioned in this paper, it is worth to mention that all of them made
relevant contributions to the field of CMB and its foregrounds. Carlos Alexandre
Wuensche is a senior researcher at INPE, where he works on CMB data analysis
and is training new students in CMB science. Angélica de Oliveira-Costa left for
the USA, where she worked in CMB data analysis and CMB foregrounds. Newton
Figueiredo and Agenor Pina hold positions as professors at the Federal University
of Itajubá, where they are training new students in CMB related work. Ivan Ferreira
is a professor at the Institute of Physics of the University of Brasília. Larissa Santos
went to Italy, where she got a Ph.D. in physics from the University of Rome Tor
Vergata. She is now a post-doc in China. Rodrigo Leonardi is deeply involved in the
Planck satellite mission. He joined the mission in 2005, and provided support for the
integration and testing of the Low Frequency Instrument (LFI), one of the scientific
payloads on board the spacecraft. In 2009, just after the satellite launch, he went to
work for the Planck Science Office at the European Space Agency, supporting the
scientific operations of the Planck payload, and helping with the development of the
Planck Legacy Archive, a system which distributes Planck’s final scientific products
to the public.

In summary, over the past three decades, Brazilian participation in CMB
measurements programs has produced some interesting scientific and technological
results. These results were used for thesis development for both Brazilian and US
students and helped the advancement of observational cosmology.
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On Dark Degeneracy

Saulo Carneiro and Humberto A. Borges

Abstract Let DF be a unified dark fluid with equation of state p D !�, with
�1 � ! < 0. We show that: (1) DF is observationally indistinguishable from a
fluid formed by pressureless dark matter DM and a dark energy DE with equation-
of-state parameter ! D �1. In general these components interact and DF is
non-adiabatic. (2) If the momentum transfer between the components is negligible,
DE does not cluster and DM coincides with clustering matter. This is the case if DM
is non-relativistic. These results imply the following corollaries. Let us consider a
dark energy candidate with equation-of-state parameter �1 � ! < 0. (1) Any
observational analysis which identifies cold dark matter with clustering matter leads
to ! � �1. (2) If, in addition, such an analysis assumes that dark matter is
conserved, the concordance is given by the ƒCDM model.

The vacuum energy problem is certainly the most difficult challenge in the interface
of theoretical cosmology and quantum field theory. The vacuum density in curved
backgrounds is derived by an appropriate renormalisation procedure which subtracts
the divergent contribution of flat spacetime. In the high energy limit, the result can
be used to obtain a non-singular inflationary scenario where a radiation phase is
born from a previous de Sitter universe through a continuous and fast transition
along which the vacuum density decays producing relativistic matter (Carneiro and
Tavakol 2009; Carneiro 2012). Nevertheless, any model with matter creation from a
decaying vacuum has phenomenological status because vacuum energy-momentum
conservation is one of the conditions behind renormalisation techniques (Wald
1994). In the low energy limit, estimates of the energy density of the QCD vacuum
condensate in the FLRW spacetime leads to ƒ � m3H, where m � 150MeV is the
energy scale of the QCD phase transition and H is the expansion rate (Schutzhold
2002). In an approximate de Sitter universe with ƒ � H2, this leads to ƒ � m6,
which coincides with the observed value of ƒ. Needless to say, these estimates are
not free of the difficulties inherent to non-perturbative QCD in curved backgrounds.
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These theoretical limitations oblige us to look for an observational route to the
late-time cosmological term, usually referred to as dark energy (DE). Observations
show that the Universe is in accelerated expansion. This means that the dark energy
equation-of-state parameter !, defined by

p D !�; (1)

is a negative function of time.1 However, as pointed out in Kunz (2009), background
observations cannot uniquely fix this function because the effects of DE and dark
matter (DM) are degenerated in a way that will be clarified below. We will show
that such a degeneracy can be broken at perturbation level, provided that:

• Dark matter is defined as the clustering component observed in galaxies and
clusters.

• Dark matter is assumed to be cold, that is, non-relativistic.

On this basis the degeneracy will be reduced to two distinct classes of DE models
with ! D �1, namely theƒCDM model, with a constantƒ, and interacting models
with an energy flux from DE to DM. We will also show a specific example of dark
degeneracy, namely a unified dark sector modeled by a single scalar field.

Dark degeneracy is formulated here as follows. Let us split dark fluid (1) as

� D ƒC �m; (2)

pƒ D �ƒ; (3)

pm D 0; (4)

with ƒ > 0. From (1)–(4) we have

�m D �! C 1

!
ƒ: (5)

For �1 � ! < 0 we have �m 
 0, and this component can be interpreted as
dark matter. This degeneracy in the definitions of DE and DM is unavoidable at
the background level. Nevertheless, we will see below that the degeneracy can be
broken at perturbation level if we correctly define the observed dark matter and
assume that DM is non-relativistic.

With densities and pressures given by (2)–(4), the Friedmann and continuity
equations assume the form2

�m Cƒ D 3H2; (6)

1We are assuming that the dark fluid respects the weak energy condition, i.e. � > 0 and
�1	! <0.
2We are considering the spatially flat case and using c D „ D 8�G D 1.
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P�m C 3H�m D � Pƒ; (7)

where the dot means derivative with respect to cosmological time. Equation (7)
expresses total energy conservation, and it means that the two components may
interact in general (Zimdahl et al. 2001). Differentiating (6) and using (7) we derive

�m D �2 PH: (8)

Using (5) in (6) we have

ƒ D �3!H2: (9)

Differentiating (9) and using (8), (6) and (5) we obtain

Pƒ D
�
3!H � P!

! C 1

�
�m: (10)

Hence, Eq. (7) can be rewritten as

P�m C 3H�m D ��m; (11)

with � given by

� D P!
! C 1

� 3!H: (12)

Writing �m D Mn, where M and n are defined as the DM particle mass and number
density respectively, and using H D Pa=a, where a is the scale factor, we obtain
from (11)

� D 1

na3
d

dt
.na3/; (13)

which shows that � defines the rate of DM creation.
The energy-conservation equation (7) can be written in the covariant form

T	�m I� D Q	; (14)

T	�ƒ I� D �Q	; (15)

where T	�A (A D m; ƒ) are the energy-momentum tensors of each component,
and Q	 is the energy-momentum transfer from DE to DM. The latter can be
decomposed as

Q	 D Qu	 C NQ	; (16)
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with u	 NQ	 D 0, where u	 is the dark fluid 4-velocity. From (3) we see that T	�ƒ D
ƒg	� , which shows that ƒ is an invariant. Hence, from (15) it is easy to obtain

Q D �ƒ;�u
�; (17)

NQ	 D ƒ;� .u
	u� � g	�/ : (18)

In the dark fluid comoving frame we have NQ	 D 0, and Q D � Pƒ D ��m. The
former shows that there is no momentum transfer in the isotropic background, while
the latter shows that Q represents the energy transfer between the components. For
pressureless DM we can write Q D �g	�T

	�
m , which shows that � is also invariant.

A linear perturbation of (18) leads to

ı NQ0 D 0; (19)

ı NQi D .ıƒC Pƒ�/;i; (20)

where � is the dark fluid velocity potential, Er� D ıEu. Assuming that dark matter
is non-relativistic, the momentum transfer should be negligible compared to the
energy transfer, that is, dark matter particles are created with negligible momentum
compared to their rest energy. This means that NQ	 is zero at both background and
perturbation levels, which also means that DM follows geodesics in the dark fluid
rest frame (Koyama et al. 2009). Hence, from (20) we obtain

ıƒc � ıƒC Pƒ� D 0; (21)

where ıƒc is the (gauge-invariant) comoving perturbation of the DE component
(Malik and Wands 2009). Equation (21) means that if dark matter in the decompo-
sition (2) is non-relativistic, the dark energy defined by (2) and (3) does not cluster.
Therefore, the DM component defined in (2) and (4) coincides with that observed
in galaxies and clusters.

Condition (21) is also necessary to avoid the presence of unobserved oscillations
and instabilities in the DM power spectrum. From the perturbed Einstein equations
for a perfect fluid we have Borges et al. (2013)

ˆ00
B C 3H.1C c2a/ˆ

0
B C Œ2H0 C .1C 3c2a/H2 C c2s k

2�ˆB D 0 ; (22)

where ˆB is the Bardeen gravitational potential, H D aH, k is the perturbation
comoving wave-number, c2a D Pp= P� is the squared adiabatic sound speed, c2s D
ıpc=ı�c is the squared effective sound speed, and the prime means derivative with
respect to conformal time. As in (21), the upper-index c means a gauge-invariant
comoving perturbation. The term proportional to k2 in (22) induces oscillations and
instabilities in the gravitational potential, which are reflected in the matter power
spectrum through the Poisson equation. In order to avoid these oscillations and
instabilities we must have jcsj � 1. For the two-component fluid (2) we have
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c2s D �ıƒc=ı�c, and the last condition is satisfied for ıƒc D 0, that is, NQ	 D 0.
As discussed in Borges et al. (2013), c2s ¤ c2a owing to the presence of late-time
entropic perturbations related to the energy flux from dark energy to dark matter.

Let us now examine an example of a unified dark sector modeled by a single
scalar field, where dark degeneracy can be made explicit.3 In the FLRW spacetime,
the energy density and pressure of a minimally coupled scalar field � are given by

� D V C
P�2
2
; (23)

p D �V C
P�2
2
; (24)

where V.�/ is the scalar field self-interaction potential. Let us split this field into
components

ƒ D V �
P�2
2
; pƒ D �ƒ; (25)

�m D P�2; pm D 0: (26)

The field equations are given, as usual, by

3H2 D V C 2H02; (27)

P� D �2H0; (28)

where now the prime means derivative with respect to �. Substituting (25)–(26) into
the conservation equation (7) we derive the Klein-Gordon equation

R� C 3H P� C V 0.�/ D 0: (29)

All this is general, but we shall now particularise to the special case of a constant
creation rate. For a constant � , Eqs. (11), (8) and (7) are consistent with4

ƒ D 2�H: (30)

Equations (9), (12) and (30) lead to the evolution equation

3H2 � 2�H C 2 PH D 0: (31)

3For a further example, see Borges et al. (2013), Carneiro and Pigozzo (2014), where the non-
adiabatic generalised Chaplygin gas is studied.
4More generally, (11), (8) and (7) lead toƒ D 2�H C 
, where 
 is an integration constant.
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The solution is given by Borges and Carneiro (2005)

H D 2�=3

1 � e��t : (32)

It represents a universe that evolves from an Einstein-de Sitter phase, dominated
by matter, to an asymptotically de Sitter era. This solution has been tested against
the most precise observations, with very good concordance (Alcaniz et al. 2012).
Furthermore, it was explicitly shown in Zimdahl et al. (2011) that ıƒc � ı�cm in the
observed scales, as required in order to have a coincidence between our definition of
DM and that observed in galaxies and clusters. Now, from (25), (27), (28) and (30)
we obtain

V D 3H2

2
C �H: (33)

Substituting this potential into (27) we have

4H02 C 2�H � 3H2 D 0: (34)

The solution is

H D 2�

3
cosh2

 p
3�

4

!
; (35)

where an integration constant was conveniently chosen. The corresponding poten-
tial (33) presents a minimum at � D 0, around which it can be expanded as

V � 4�2

3
C 1

2

�
3�2

4

�
�2: (36)

We then see that the mass of the scalar field is given by M D p
3�=2. On the other

hand, at the minimum we have, from (35), HdS D 2�=3, where HdS is the expansion
rate in the de Sitter limit. This result can also be obtained from (32).

We have shown that dark degeneracy can be broken with the help of two
observationally based statements. The first is an appropriate definition of dark matter
as the clustering component observed in large scale structures, a definition that
is meaningful only if the defined DE component does not cluster. We have seen
that this can be achieved by additionally assuming that dark matter is cold, an
assumption corroborated by observations. Therefore, we can reduce the degeneracy
to two competitive classes of DE models with ! D �1. In particular, this means
that an observational joint analysis which identifies DM as the matter observed in
large scale structures should naturally give ! � �1. At the same time, these results
translate the problem of vacuum density to the following question: Is there DM
creation at late-time stages of the expansion? If DM cannot be produced at low
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energies, there is a constant DE density. However, the creation of ultralight and cold
DM particles cannot be ruled out. A constant-rate creation would correspond to a DE
density which decays linearly with H, which would corroborate its association to the
vacuum condensate of strongly interacting fields and the corresponding association
of DM to condensate fluctuations. Discriminating between these two theoretical
possibilities on an observational basis is an exciting endeavour.
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The Quantum-to-Classical Transition
of Primordial Cosmological Perturbations

Nelson Pinto-Neto

Abstract There is a widespread belief that the classical small inhomogeneities
which gave rise to all structures in the Universe through gravitational instability
originated from primordial quantum cosmological fluctuations. However, this tran-
sition from quantum to classical fluctuations is plagued with important conceptual
issues, most of them related to the application of standard quantum theory to the
Universe as a whole. In this contribution, it is shown how these issues can easily be
overcome in the framework of the de Broglie-Bohm quantum theory. This theory is
an alternative to standard quantum theory that provides an objective description of
physical reality, where rather ambiguous notions of measurement or observer play
no fundamental role, and which can hence be applied to the Universe as a whole.
In addition, it allows for a simple and unambiguous characterization of the classical
limit. This contribution is a compilation of the works done by Grasiele Santos, Ward
Struyve and myself cited in Pinto-Neto et al. (Phys Rev D 85:083506, 2012; Phys
Rev D 89:023517, 2014), where all details can be found.

1 Introduction

Presently, there is a vivid discussion in the literature about conceptual issues
concerning the transition from primordial cosmological quantum fluctuations to the
small classical inhomogeneities which gave rise to the structures in the Universe,
such as stars and galaxies (Guth and Pi 1985; Albrecht et al. 1994; Polarski and
Starobinsky 1996; Lesgourgues et al. 1997; Kiefer and Polarski 1998, 2009; Burgess
et al. 2008; Perez et al. 2006; Sudarsky 2011).

All cosmological pictures of structure formation, either inflationary (Liddle and
Lyth 2000; Mukhanov 2005; Weinberg 2008; Lyth and Liddle 2009; Peter and Uzan
2009) or bouncing models (Novello and Perez Bergliaffa 2008), rely on the fact
that in its far past the Universe became so homogeneous and isotropic that only
quantum vacuum fluctuations of inhomogeneities could have survived. Initially, the
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modes of the fluctuations of cosmological interest have their physical wavelengths
much smaller than the curvature scale of the background, and their quantum state
is very close to the Minkowski vacuum. In the course of cosmological evolution,
the physical wavelengths of these fluctuations become of the size of the curvature
scale, at which point they begin to feel the background gravitational field. Once the
wavelengths are much bigger than the curvature scale, the fluctuations are believed
to become classical. They then give rise to the structures in the Universe, through
gravitational instability.

The quantum-to-classical transition of the fluctuations is often seen as a result
of the squeezing of the vacuum state. The squeezing results in an approximately
definite momentum, while the spread in the field distribution becomes very large
(due to the Heisenberg uncertainty). It is then argued that the squeezed state is
somehow equivalent to an element of an ordinary ensemble of classical fields
(see e.g. Guth and Pi 1985; Albrecht et al. 1994; Polarski and Starobinsky 1996;
Lesgourgues et al. 1997; Kiefer and Polarski 1998, 2009; Burgess et al. 2008;
Weinberg 2008). The argument often invokes decoherence, which is assumed to
lead to loss of possible quantum interference for degrees of freedom of interest, due
to their interaction with other degrees of freedom.

However, as pointed out by Sudarsky and collaborators (Perez et al. 2006;
Sudarsky 2011), the usual accounts of the quantum-to-classical transition have
serious shortcomings. They argued that no satisfactory justification has been given
on why the quantum state, which is translational and rotational invariant, and which
remains so during Schrödinger time evolution, results in a non-invariant state. Even
when there is suitable decoherence, which suppresses interference between different
non-invariant terms into which the quantum state can be decomposed, it is not
explained why one of these terms is selected. According to standard quantum theory,
a transition to a non-invariant state could only be obtained by collapse. For instance,
in a spherically symmetric s-wave decay state of an atom, there is an actual photon
which is detected in a particular direction because somewhere in this process there
is a halt in the unitary Schrödinger evolution: the wave function collapses, due to
the intervention of an external agent, into a non spherically symmetric function
corresponding to an actual particular momentum direction of the photon. It is
very unclear what causes the collapse: the external agent could be the rest of the
world outside the system and its measurement device, a classical domain, observers,
macroscopic systems, and many other imprecise examples. In the cosmological
context, however, this inaccurate description becomes intolerable: here we are
talking about cosmological primordial fluctuations, that is, fluctuations which will
give rise to all structures in the Universe. There are no external agents. Hence,
as the wave function of the perturbations is always translational and rotational
invariant, how these symmetries can be broken without an external agent, like in
the s-wave example? This is the problem with the cosmological scenario, already
acknowledged in Liddle and Lyth (2000, p. 64), Mukhanov (2005, p. 348) and Lyth
and Liddle (2009, pp. 386–387).

Sudarsky and collaborators (Perez et al. 2006; De Unánue and Sudarsky 2008;
León and Sudarsky 2010; Sudarsky 2011; Landau et al. 2012; Leon et al. 2013)
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proposed to solve this problem in the context of spontaneous collapse theories,
in which the collapse is an unambiguous, objective stochastic process. The whole
framework is still under construction and may yield possible deviations from the
standard predictions.

In this paper, we will address the problem within the de Broglie-Bohm the-
ory (Bohm and Hiley 1993; Holland 1993; Dürr and Teufel 2009). In this theory,
the Universe is described by the universal wave function, together with an actual
configuration for gravity (e.g. an actual three metric) and a configuration for the
matter (e.g. particle positions or fields). The universal wave function should satisfy
the appropriate quantum cosmological wave equation. Its role is to determine the
dynamics of the actual configuration, which is deterministic.

For the problem at hand, we will not consider the full quantum cosmological
framework, but instead restrict ourselves to the effective theory for the perturbations
in terms of the Mukhanov-Sasaki variable, which represents a gauge invariant
combination of perturbations of the metric and inflaton field.1 Although the quantum
state remains translational and rotational invariant in this framework, the actual
de Broglie-Bohm field corresponding to the perturbations breaks this symmetry.
The initial field configuration is not determined by the theory, but in quantum
equilibrium it is distributed according to the quantum mechanical distribution.

Also the question of the classical limit is straightforward in the de Broglie-
Bohm theory: the classical limit is obtained whenever the actual field configuration
evolves approximately according to the classical equations. We will see that the
actual de Broglie-Bohm perturbations reach the classical limit at the expected stage
and that the quantum equilibrium ensemble of these perturbations then corresponds
exactly to the classical ensemble that is assumed in Guth and Pi (1985), Albrecht
et al. (1994), Polarski and Starobinsky (1996), Lesgourgues et al. (1997), Kiefer and
Polarski (1998), and Kiefer and Polarski (2009).

This contribution is a compilation of the works done by Grasiele Santos, Ward
Struyve and myself cited in Pinto-Neto et al. (2012, 2014), where all details can be
found.

2 Linear Cosmological Perturbations

Let us first consider the classical description of cosmological perturbations. In the
next section we will turn to the quantum description.

The perturbations are considered in a background Friedmann-Robertson-Walker
model, with scale factor a and uniform total matter distribution with density �
and pressure p, and are described by the Mukhanov-Sasaki variable v.�; x/, which

1In the de Broglie-Bohm approach, it is possible to obtain the effective theory of perturbations
from the full quantization of the background geometry and linear perturbations, see Falciano and
Pinto-Neto (2009).
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combines both fluctuations of the matter and metric. The parameter � is conformal
time defined by ad� D dt, t being cosmic time. The Lagrangian for the Mukhanov-
Sasaki variable, which can be derived from the Einstein-Hilbert action, is given by

Lv D
Z

d3x
1

2

"
v02 C

�
z0

z

�2
v2 � c2sı

ijv;iv;j � 2 z
0

z
vv0
#
; (1)

where the primes denote derivatives with respect to conformal time and

z D
p
ˇ

xHcs
; ˇ D 3

2

8�G

3c4
a2 .� C p/ ; c2s D dp

d�
: (2)

H D a0=a is the conformal Hubble function, which relates to the Hubble function
H D a�1da=dt throughH D aH and x D a0=a is the red-shift function. Subscripts 0
refer to present day values. The Lagrangian yields the following equations of motion
for the Fourier modes vk.�/,

v00
k C

�
c2s k

2 � z00

z

�
vk D 0: (3)

Defining � D �=�c, where �c is the critical density today, and using the energy
conservation equation

d�

dt
C 3H.�C p/ D 0 ) d�

dx
D 3 .�C p/

x
; (4)

we obtain

ˇ D 1

2xR2H

d�
dx ; z2 D 1

2c2s x�
d�
dx ;

c2s D x
3

d
dx ln

	
1
x2

d�
dx



; (5)

where RH D c=.a0H0/ is the co-moving Hubble radius.
In the case the background matter is a single hydrodynamical fluid with p D w�

we have � D �0x3.1Cw/ and

c2s D w; z2 D 3.1C w/

2wx2
; (6)

and Eq. (3) reduces to

v00
k C

�
wk2 � a00

a

�
vk D 0: (7)
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The general solution of the mode equation (3) can be formally expanded in
powers of k2 as Mukhanov (2005)

vk
z D A1;k

�
1 � k2

Z �

�i

d N�
z2 . N�/

Z N�
c2s z

2
	 NN�
 d NN�C : : :

�
C

A2;k

Z �

�i

d N�
z2 . N�/

�
1 � k2

Z N�
c2s z

2
	 NN�
 d NN�

Z NN� d NNN�
z2
 NNN�
� C : : :

�
;

(8)

where we have presented the terms up to order O.k2/. The lower bounds �i in the
integrals are related to initial conditions that depend on the specific model being
analyzed and we consider only the primitives of the indefinite integrals. The coef-
ficients A1;k and A2;k are two constants, determined by the initial conditions, which
are roughly the same order of magnitude.2 We will be interested in the situation
where c2s k

2 � z00=z and hence we will take only the first terms of the series above.
This description of the perturbations is valid, in the case where entropy perturba-

tions are negligible, whenever the dynamics describing the inflationary phase or a
bounce is given by the General Relativity Einstein’s equations. They are also valid in
the case of the quantum bounce which we will be discussed in section IV. For general
bounces, it is not clear that solution (8) is valid through the bounce, neither do we
have any particular analytic solution in order to evaluate it away from the bounce as
we have in the case of the quantum bounce presented in Peter et al. (2007), which
will be considered in section IV. However, if the bounce is short enough, an estimate
of Eq. (8) away from the bounce, where General Relativity is valid, will be sufficient
to evaluate the orders of magnitude of the amplitudes, assuming that a short bounce
does not change the mode evolution too much.

Let us first consider the inflationary case. At the onset of inflation, physical
modes are assumed to have wavelengths much smaller than the curvature scale, i.e.,
c2s k

2 � z00=z, so that their equation of motion approximately reduces to that of a
free mode in Minkowski space-time. In many inflationary models [like power-law
inflation or slow-roll (Peter and Uzan 2009)], the precise behavior of these physical
modes at early times (� ! �i, where �i is some initial time, with j�ij � 1), is
given by

yk.�/ 	 e�ik�

�
1C Ak

�
C : : :

�
: (9)

The physical modes will grow larger during inflation and will eventually obtain
wavelengths much bigger than the curvature scale, i.e., c2s k

2 � z00=z. At that stage,

2In fact, as A1 and A2 depend on k, this assertion depends on the scale we are talking about.
For an almost scale invariant spectrum of cosmological perturbations, the A2 term is larger than
the A1 term for all scales of cosmological interest, which enforces the argumentation described
below for the transition of quantum-to-classical behavior in bouncing models. Only for very short
wavelengths can the A1 term be bigger than A2.
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in many models, the modes are approximately given by

yk.�/ 	 Ad
k�
˛d C Ag

k�
˛g � Ag

k�
˛g ; (10)

where ˛d > 0 and ˛g < 0. The first term represents the decaying mode and the
second one the growing mode, which dominates in yk.

In order to analyze the bouncing models, we focus on the term

A2;k

Z �

�1
d N�
Nz2 ; (11)

which appears in the solution (8) (we are assuming that the contracting phase begins
at a very large negative conformal time, which we take to be �i ! �1). This term
grows with time. We can write

Z �

�1
d N�

z2. N�/ D
�
B �

Z 1

�

d N�
z2. N�/

�
; (12)

where

B D
Z 1

�1
d� z�2 (13)

is a constant. For the case the bounce is dominated by a single fluid with equation
of state parameter wq, this constant was evaluated in Vitenti and Pinto-Neto (2012)
and reads

B � 4xb
3.1� wq/E.xb/z2.xb/

; (14)

where E D H=H0 D p
�.x/, a subscript b refers to the values of the physical

quantities at the bounce. It must be understood that, although evaluated at xb, the
functions E.x/ and z2.x/ in Eq. (14) are the usual general relativistic expressions for
them which are valid just before the bounce but maybe not through the bounce itself.

For realistic bounces occurring at energy scales bigger than the nucleosynthesis
energy scale we have xb D a0=ab � 1010. Furthermore, since wq � 1, which is
needed in order to obtain a scale invariant spectrum (see Peter et al. 2007), it follows
that B � 1010. Hence, the solution for the mode functions vk around the bounce
(where � is of order O.1/) is given by

vk � ŒA1;k C A2;kB�z.�/ � A2;kz.�/
Z 1

�

d N�
z2. N�/

� A2;kz.�/

�
B �

Z 1

�

d N�
z2. N�/

�
: (15)
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In the last approximation we assumed that A1 and A2 are roughly of the same order.
Equation (15) will be used to achieve the classical limit. Remember that it is valid

for perturbation modes for which c2s k
2 6 z00=z (i.e., when their physical wavelengths

are much larger than the curvature scale of the contracting background) and in case
the background space has already contracted enough.

3 The deBroglie-Bohm Approach to Perturbations

Let us now turn to the corresponding quantum theory. The details of the quantization
can for example be found in Polarski and Starobinsky (1996). In the functional
Schrödinger picture, the state is a wave functional ‰.y; y�; �/ (the symbol y corre-
sponds to the Mukhanov-Sasaki variable v) and satisfies a functional Schrödinger
equation determined by the quantum Hamiltonian corresponding to (1). In the
special case the wave functional is a product ‰ D …k2R3C‰k.yk; y�

k ; �/, like for
the vacuum, each mode wave function satisfies the Schrödinger equation (note that
we formally treat yk; y�

k as independent fields; equivalently, their real and imaginary
components can be used, defined by yk D .yk;r C iyk;i/=

p
2):

i
@‰k

@�
D
�
� @2

@y�
k@yk

C c2s k
2y�

kyk � i
z0

z

�
@

@y�
k

y�
k C yk

@

@yk

��
‰k: (16)

For the ground state, the mode wave functions are given by (see Polarski and
Starobinsky 1996)

‰k D 1p
2� j fk.�/j

exp
�

� 1

2j fk.�/j2 jykj2 C i
�� j fk.�/j0

j fk.�/j � z0
z

�
jykj2 �

Z � d Q�
2j fk. Q�/j2

��
;

(17)

with fk a solution to the classical mode equation, and fk.�i/ D 1=
p
2k, where j�ij �

1. This state is homogeneous and isotropic.
In order to pass to the de Broglie-Bohm approach, we write ‰k D RkeiSk , with

Rk D j‰kj, so that the Schrödinger equation (16) yields the two real equations

@Sk
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C @Sk
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@Sk
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D 0; (18)
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��
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We can then postulate an actual field y.�; x/, whose modes obey the de Broglie-
Bohm guidance equations

y0
k D @Sk

@y�
k

C z0

z
yk; y�

k
0 D @Sk

@yk
C z0

z
y�
k : (20)

By Eq. (19), these equations of motion guarantee that the mode distribution R2k D
j‰kj2 is preserved over time (and this is exactly the motivation to introduce these
equations of motion). That is, if the initial distribution of the field modes is given
by j‰kj2, then it will be given by j‰kj2 at any time. The particular distribution
R2k D j‰kj2 plays the role of an equilibrium distribution and is called the quantum
equilibrium distribution.

The guidance equations also follow from the Hamilton equation y0
k D pk C

z0

z yk corresponding to the classical Hamiltonian, with pk replaced by @Sk
@y�

k
. The

Eq. (18) then resembles the Hamilton-Jacobi equation corresponding to the classical
Hamiltonian, with an extra potential

Qk � � 1

Rk

@2Rk

@y�
k@yk

; (21)

called the quantum potential.
Taking the time derivative of these equations and using (18), we obtain

y00
k C

�
c2s k

2 � z00

z

�
yk D �@Qk

@y�
k

: (22)

This is just the classical equation of motion (3) (written in terms of y), modified
with an additional quantum force. The classical limit is obtained when this quantum
force is negligible.

For the ground state, the guidance equations of motion are easily integrated and
yield

yk.�/ D yk.�i/
j fk.�/j
j fk.�i/j : (23)

Note that this result is independent of the precise form of fk.�/ and hence is
quite general. In quantum equilibrium, the probability distribution of the initial
configuration yk.�i/ is given by j‰k

	
yk.�i/; y�

k.�i/; �i

 j2.

For physical wave lengths and � ! �i, the behavior of fk.�/ is given by Eq. (9).
As such,

yk.�/ 	
�
1C ReAk

�
C : : :

�
(24)
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(in many inflationary scenarios, ReAk D 0 and the first order term disappears). So
yk tends to be time independent for j�j � 1. (This is compatible with the fact
that the de Broglie-Bohm field configuration is stationary for the ground state of a
quantized scalar field in Minkowski space-time (Holland 1993).) Hence, the time
dependence of the de Broglie-Bohm field configuration is completely different from
that of classical solutions, which oscillates for j�j � 1 and c2s k

2 � z00=z, see Eq. (9).
When the wavelengths become much bigger than the curvature scale (c2s k

2 �
z00=z), the behavior of fk.�/ is approximately given by the growing mode, see
Eq. (10) for inflation and Eq. (15) for bouncing models, so that j fkj equals fk, up to a
time-independent complex factor. As such, the de Broglie-Bohm field configuration
approximately evolves according to the classical field equation (3), so that the
classical limit has been attained.

The classical limit can also be investigated by examining the behavior of the
quantum force and leads to the same result. For the ground state (17), the quantum
force is given by

FQ;k � �@Qk

@y�
k

D yk
4j fkj4 (25)

for the mode k. The classical force can be read from Eq. (3) and their ratio is

FC;k

FQ;k
D �4j fkj4

�
c2s k

2 � z00

z

�
: (26)

For c2s k
2 � z00

z , this ratio is approximately �1, so that the quantum force cancels
the classical force and the mode evolves freely. The guidance equations further
restrict the velocities to be zero, so that the mode stands still. For c2s k

2 � z00

z , this
ratio becomes very big because of the growing mode, so that the quantum force
becomes negligible with respect to the classical force. As a result, the mode will
evolve according to the classical equation of motion. In this way, the transition from
quantum to classical behavior is clear and simple.

Let us now turn to the statistical predictions. First, let us denote y.�; xI yi/, with yi
a field on space, a solution to the guidance equations such that y.�i; xI yi/ D yi.x/.
As noted before, if the initial field yi is distributed according to quantum equilib-
rium, i.e., j‰.yi; �i/j2, then y.�; xI yi/ will be distributed according to j‰.y; �/j2. For
such an equilibrium ensemble, we can consider the two-point correlation function

hy.�; x/y.�; x C r/idBB (27)

D
Z

Dyij‰.yi; �i/j2y.�; xI yi/y.�; x C rI yi/ (28)

D
Z

Dyj‰.y; �/j2y.x/y.x C r/ (29)
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which is the usual expression for the correlation function, and can be calculated to
yield

hy.�; x/y.�; x C r/idBB D 1

2�2

Z
dk

sin kr

r
kj fk.�/j2; (30)

in the case of the ground state. Just as in the usual account, this ensemble average
should approximately be equal to the spatial average of an actual field configuration
for the universe. This could be justified by adopting the usual assumption that the
spatial integral can be taken over a larger volume than that over which the fields are
correlated (Liddle and Lyth 2000; Mukhanov 2005; Weinberg 2008).

4 Conclusions

Using the de Broglie-Bohm theory, we have established the quantum-to-classical
transition of primordial perturbations for inflationary models and for a large class
of bouncing models. We also considered the particular example of a quantum
bounce described in Peter et al. (2007), for which there is an analytical solution
for perturbations during the bounce.

While the wave function of the perturbations is homogeneous and isotropic, the
actual perturbation v.x; �/ is not symmetric. It is a superposition of A1;k and A2;k
modes. As we have shown, after an inflationary phase or a long contraction, the
A1;k mode becomes negligible compared to the A2;k mode [see Eq. (15)], so that the
mode vk.�/ and hence the field v.x; �/ behave classically.

Note that we did not invoke decoherence. If at some stage in this transition there
is decoherence in the field basis, this will not destroy the classical behavior of the
fields.

Acknowledgements I would like to thank CNPq of Brazil for financial support and Daniel
Sudarsky for some illuminating discussions on this problem.
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A Path-Integral Approach to CMB

Paulo H. Reimberg

Abstract The fluctuations in the temperature and polarization of the cosmic
microwave background are described by a hierarchy of Boltzmann equations. In its
integral form, this Boltzmann hierarchy can be converted from the usual Fourier-
space base into a position-space and causal description. We shall here restrict
ourselves to a particular case when the evolution of the temperature is uncoupled
to the polarization, and show that probability densities for random flights play a key
role in this description. The integral system can be treated as a perturbative series
in the number of steps of the random flights, and the properties of random flight
probabilities impose constraints on the domains of dependence.

1 Introduction

In the early stages of the evolution of the Universe, radiation and matter (which
was fully ionized up to tdec D 380.000 years after the Big Bang) were coupled
by different kinds of processes. As the universe expands and cools down, these
interaction channels progressively close, and eventually (at t ' tdec) photons decou-
ple from matter, propagating freely ever since—this is, of course an approximation
that neglects some astrophysical effects. This is the Cosmic Microwave Background
(CMB) radiation.

If we point a telescope at any given direction, most of the CMB photons that we
observe have propagated freely ever since they decoupled from matter at t 	 tdec.
However, their energies and polarizations bear the imprint of the physics during
the epoch leading to the time of decoupling. Roughly speaking, that period can be
divided in two phases: one of strong coupling, when photons are more energetic,
and a late phase, when photons are only barely coupled to matter through elastic
low-energy Thomson scatterings with electrons.

The temperature and polarization of the CMB photons are mathematically
described by a system of Boltzmann’s equations codifying the collisional physics
and free propagation (Straumann 2006). Because of metric perturbations due to
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overdensities (or underdensities) of matter in the Universe, we don’t measure exact
equilibrium distributions, but, more interestingly, fluctuations around equilibrium
distributions. These fluctuations allow cosmologists to extract information about
the matter content and evolution of the Universe, and a large number of experiments
have been (and are) devoted to its measurement, such as the satellites COBE,
WMAP, PLANCK, and others (Smoot et al. 1992; Bennett et al. 2012; Planck
Collaboration et al. 2014).

Since we observe CMB photons coming from all directions in sky, multipolar
decompositions for temperature and polarization are usually employed, and have
interesting consequences: because of the nature of low energy photon-electrons
interactions, temperature and polarization are only coupled by their quadrupoles.
The particular form of low energy limit for Thomson scattering S-Matrix implies
also that the evolution of the quadrupoles during the phase of weak coupling
between radiation and matter can be related to averages of source terms weighted
by random flight probability density functions.

Random flights are a classical problem in mathematical physics (Watson 1944),
with many applications in physics and astronomy (Chandrasekhar 1943). The
problem was first proposed in the beginning of the twentieth century in context
of the study of bird migrations. Lord Rayleigh, soon after, applied the same ideas
in acoustics. Further contributions on this subject are described in Dutka (1985).
In very simple terms, a random flight (in a D-dimensional space) is the trajectory
performed by a body which moves at constant speed and changes its direction of
motion into another random direction after randomly or deterministic set of time
intervals. If the movement has a fixed origin, we may ask, based on the length of the
intermediate displacements, as well as on the number of displacements, what is the
probability for the moving body to reach a distance r from the origin.

Following the description introduced in Reimberg and Abramo (2013), that
we shall revisit here, the number of steps performed during the random flight is
related to the scatterings suffered by the photons, which naturally propagate at
constant speed; the steps’ lengths relate to the displacement of the photons between
scatterings; and the isotropic distribution of angles at each change of direction of
propagation is due to the particular behavior of the quadrupole scattering at those
energy scale. Finally, the dimension of the space where the random flight happens
is related to number of degrees of freedom associated with the quadrupole.

This paper is organized as follows: after introducing the Boltzmann hierarchy in
the integral form in Sect. 2, we decouple the evolution of the temperature from the
polarization, and show the consequences of this simplification for the expression
of the temperature and polarization in Sect. 3. We then show, in Sect. 4, how the
family of integrals over spherical Bessel functions that appears in that description
is related to random flight probability densities functions, and give an interpretation
to the process of polarization of CMB photons in a path-integral fashion. We should
observe that uncoupled evolution of the temperature is taken here as a simplification,
but can be treated in full generality, as shown in Reimberg and Abramo (2013), that
serves as basis for the topics presented in the sequence.
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2 Boltzmann’s Equations

The hierarchy of Boltzmann’s equations describing CMB temperature fluctuations
and polarization can be written in terms of a set of coupled integral equations—see,
e.g., Seljak and Zaldarriaga (1996). Let the temperature anisotropies observed at
position xo and at (conformal) time �o along the direction Oo be given in terms of its
momenta as:

‚.xo; �o; Oo/ D
Z

d3k
.2�/3=2

eik�xo 4�
X
lm

il‚l.k; �o/Y�
lm.

Ok/Ylm.Oo/ : (1)

Similarly, the polarization, in terms of the usual Stokes parameters Q, U and I, is
decomposed as:

Q C iU

4I
.xo; �o; Oo/ D

Z
d3k

.2�/3=2
eik�xo 4�

X
lm

il ˛l.k; �o/Y�
lm.

Ok/ 2Ylm.Oo/ ; (2)

where 2Ylm are the spin-weighted spherical harmonics (Straumann 2006).
The momenta of the CMB temperature and polarization are then given by the

integral equations:

‚l.k; �o/ D
Z �o

0

d� e�	.�/
(
	0.�/

"
�SW.k; �/ jl.k��0/ � k Vb.k; �/ j0l.k��0/

C1

2

h
‚2.k; �/ � p

6˛2.k; �/
i �3
2
j00l .k��0/C 1

2
jl.k��0/

�#

C.‰0 Cˆ0/.k; �/ jl.k��0/
)
; (3)

and

˛l.k; �o/ D �3
2

s
.l C 2/Š

.l � 2/Š
Z �o

0

d�	0.�/e�	.�/ 1

2

h
‚2.k; �/ � p

6˛2.k; �/
i jl.k��0/
.k��0/2

:

(4)

In Eqs. (3)–(4) a prime denotes a derivative with respect to conformal time
�, the optical depth to Thomson scattering is 	.�/, and we have defined the
interval ��0 D �o � �. It is sometimes convenient to define the ubiquitous

source term P.k; �/ D 1
2

h
‚2.k; �/ � p

6˛2.k; �/
i
. The system above is closed

once the perturbed Einstein equations are used to determine how the linear
scalar cosmological perturbations �SW , Vb, ˆ and ‰ evolve with time. How-
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ever, both the precise nature of the perturbed Einstein equations, or of the ini-
tial conditions that are used to evolve those equations, are irrelevant for our
results.

Equations (3)–(4) show that the primary sources of temperature fluctuations are
the Sachs-Wolfe term, �SW , the baryon velocity, Vb, and the gravitational potentials
ˆ and ‰ (also known as the Bardeen potentials—we work in the conformal-
Newtonian gauge). The primary source of the polarization of the CMB, on the other
hand, is the quadrupole of the temperature fluctuations. The integral equations then
couple all the momenta of temperature and polarization, mediated by the visibility
function g.�/ D 	0.�/e�	.�/.

Henceforth we will take xo D 0, i. e., the observer is taken to be at the origin of
the coordinate system employed for the description of the problem.

3 Uncoupling the Temperature Evolution

We can decouple Eqs. (3)–(4) by neglecting the term ˛2 in Eq. (3). This truncation
represents the approximation whereby deviations from the equilibrium temperature
are described by the Sachs-Wolfe (SW) and integrated Sachs-Wolfe (ISW) effects.
Within this approximation, then Eq. (3) becomes:

‚l.k; �o/ D
Z �o

0

d�
n
g.�/

�
�SW.k; �/ jl.k��0/� k Vb.k; �/ j0l.k��0/

�

C e�	.�/.‰0 Cˆ0/.k; �/ jl.k��0/
�
: (5)

Neglecting polarization as a source term for the temperature anisotropies is
in fact a very good approximation, and the reason for this underlies the
argument presented in this paper. The visibility function g.�/ should be
regarded as the probability per unit (conformal) time that photons will scatter
with some free electron—and, in fact, g.�/ is defined in such a way that
this probability is normalized,

R1
0 d� g.�/ D R1

0 d	 e�	 D 1. This means
that each time a factor of the visibility function intermediates a source term,
that source term is damped by a factor �, with 0 < � < 1. Since the
lowest-order polarization term has at least one factor of the visibility function,
it contributes as a source term to the temperature with two factors of the
visibility function. Hence, the SW and ISW effects dominate the intensity of
the signal, and Eq. (5) accounts for the largest contribution to the temperature
anisotropies.
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3.1 CMB Temperature in Position Space

Let’s now take the lowest-order contribution to the temperature anisotropies, and
express it in terms of position space. Expressing Eq. (1) as:

‚.�o; Oo/ D
X
lm

�lm.�o/Ylm.Oo/ ; (6)

the coefficients �lm.�o/ are given by:

�lm.�o/ D 2 il
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Z
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(7)

We shall then define the primary source term operator as:

Slm.k; �/ D
Z

d2 Ok e�	.�/
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@
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�
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�
Y�

lm.
Ok/ ;
(8)

where we stress the fact that we have included the optical depth to Thomson
scattering in the definition of the source term. In terms of Eq. (8), Eq. (7) can be
written as:

�lm D 2 il
Z �o

0

d�
Z

dk

.2�/1=2
k2 Slm.k; �/ jl.k��o/ : (9)

In order to obtain a position-space description, we will express the coefficients
Slm.k; �/ in terms of their counterparts in position space, by means of a Hankel
transform:

Slm.k; �/ D 2 .�i/l
Z

dX

.2�/1=2
X2 Slm.X; �/ jl.k X/ : (10)

Using now the orthogonality relation for spherical Bessel functions,

Z
dk k2 jL.ak/ jL.bk/ D �

2

bL

aLC2 ı.a � b/ ;

we obtain:

�lm D
Z �o

0

d� Slm.X D ��0; �/ : (11)
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Equation (11) has a straightforward interpretation: it states that, in order for a source
term at time � contribute to the CMB signal at time �o, that source must be located
at the spherical shells of radius ��0 D �o � � centered at the observer. The set of
those spherical shells is a hypersurface which corresponds, of course, to the past
light cone of the observer on fxo; �og. Since the visibility function is highly peaked
at the time of decoupling, the primary source term contributes the most to the signal
near the epochs when z.�/ ' 1100.

3.2 CMB Polarization in Position Space

We shall now decompose the polarization as:

Q C iU

4I
.�o; Oo/ D

X
lm

�lm.�o/ 2Ylm.Oo/ ; (12)

with the aim of determining the coefficients �lm.�o/. The source terms in Eq. (4) are
‚2 and ˛2, which are built iteratively from an initial temperature quadrupole. We
can, therefore, organize the iterative solution as a series into powers of the visibility
function. As a first step in the iterative solution, for example, ˛2 (which is of higher
order in the visibility function) will not be taken into account—only the temperature
quadrupole will contribute to generate polarization at this order. The first iteration
is, therefore:

�
.1/
lm .�o/ D �3

4
2 il

s
.l C 2/Š

.l � 2/Š
Z �o

0

d�1 g.�1/
Z �1

0

d�
Z

dk

.2�/1=2
k2 Slm.k; �/

�j2.k��1/ jl.k��0/
.k��0/2

; (13)

where the time intervals are defined as ��1 D �1 � � and ��0 D �o � �1. The
source term Slm is the same as was defined in Eq. (8). Using once again the Hankel
transform of Eq. (10) we can recast Eq. (13) as:

�
.1/
lm .�o/ D � 3

2�

s
.l C 2/Š

.l � 2/Š

Z �o

0

d�1 g.�1/
Z �1
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dX X2 Slm.X; �/

�
Z 1

0

dk k2 jl.kX/
jl.k��o/

.k��o/2
j2.k��1/ : (14)

The interpretation of the expression above is the following: at time � a source
term generates a temperature quadrupole. That quadrupole then generates, through
a scattering at time �1, the polarization which is finally observed at time �o. As we
shall see, the integral of the second line of Eq. (14) guarantees that the source term,
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at a distance X from the origin, is located in the past lightcone of the observer, for
all possible �1 and �. The variable X will also be upper-bounded, and therefore
the upper limit in the integration over the source terms will be replaced by a
finite value that, as we shall see, corresponds the radius of the observer’s past
lightcone.

The next step in the iterative solution is to take the�.1/2m just computed and use it as
a source term for the polarization itself—this means that now the polarization piece
of the source term in Eq. (4), ˛2, is no longer assumed to vanish. This contribution,
which we will call �.2/lm , is therefore given by:
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where now the interval ��1 D �1 � �2. In terms of the primary sources in position
space, after using Eq. (11) we obtain:
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The term �
.2/
lm .�o/ is weighted twice by the visibility function and corresponds, as

we will show in details, to the contribution to the total polarization coming from
photons that have Thomson scattered twice during the recombination.

At this point it is important to clarify our notation. We will always count the
photon scatterings backwards in time: the time the photons are observed is always
taken to be �o; the last time that the photons scattered before being observed is
�1; and so on. By convention, we will always evaluate the primary source term
Slm at the instant �, so the sequence of scatterings ends with �. Hence if, as in
the case described by Eq. (16), there are two scatterings between the generation
of the signal at � and its observation at �o, then we have �o 
 �1 
 �2 
 �,
and the time intervals always express the differences between one time and the
previous one, so in that case ��0 D �o � �1, ��1 D �1 � �2, and ��2 D
�2 � �.
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The general term in the iterative series expansion with n intermediate scatterings
can be written as Reimberg and Abramo (2013):

�
.n/
lm .�o/ D � 3

2�

s
.l C 2/Š

.l � 2/Š

Z �o

0

d�1 g.�1/ � 1

.n � 1/Š

Z �1

0

d�2 : : : d�n Tfg.�2/ : : : g.�n/g

�
Z �n

0

d�

Z
1

0

dX X2 Slm.X; �/

�9.n�1/

Z
dk k2 jl.kX/

jl.k��o/

.k��o/2
j2.k��1/

.k��1/2
: : :

j2.k��n�1/

.k��n�1/2„ ƒ‚ …
.n�1/ times

j2.k��n/ (17)

Here, T stands for the time-ordered product of the sub-intervals, whose purpose is
to reproduce the chain of integrations mediated by visibility functions.

The coefficients �lm appearing in Eq. (12) can be expressed, therefore, as:

�lm.�o/ D
1X
nD0

�
.n/
lm .�o/ ; (18)

with �.n/lm .�o/ given by Eq. (17).
An important condition for the validity of this perturbative expansion of the CMB

temperature and polarization is that all the terms in the expansion of Eq. (12), with
an arbitrary number n of intermediate scatterings, must be expressed in position
space. However, this can only be true if the k integrals over products of spherical
Bessel functions appearing in Eq. (17) can be in fact performed, and are well-
behaved. In the next Section we will show that, in fact, these integrals are probability
densities for random flights with n steps, in a space of suitable dimensionality.

4 Random Flights and the CMB

From the previous Section—specially from Eq. (17)—it is evident that a complete
treatment of the CMB in position space requires that some specific integrals of
products of spherical Bessel functions should be computed. In order to fulfill this
requirement, we will proceed in the following way: first, we will present a simplified
version of those integrals, and we will show that they give rise to probability
densities associated with random flights. Next, we will show how the integrals we
have to solve can be expressed in terms of the random flight integrals.

Let’s recall the well-known identities satisfied by spherical Bessel functions:

zLC 3
2 JLC 1

2
.z/ D d

dz

h
zLC 3

2 JLC 3
2
.z/
i
:
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Since the spherical Bessel functions are defined as:

jn.z/ D
r
�

2 z
JnC 1

2
.z/ ;

we are able to write:

Z 1

0

dk k2 jL.k r/
n�1Y
iD1

jL.k ri/

.k ri/L
jL.k rn/ D

	
�
2


.nC1/=2
�
�
	
L C 3

2


�n�1
rLn
rLC2

� d

dr

( �
�

�
L C 3

2

��n�2 Z 1

0

dk r

�
k r

2

�LC 1
2

JLC 3
2
.k r/

nY
iD1

JLC 1
2
.k ri/

.k ri/LC 1
2

)
:

(19)

The derivative of the second line in Eq. (19) is, in fact, the probability density
associated with a random flight—see, e.g., Watson (1944). This is the probability
density that a particle which moves with a constant (and finite) speed, and which
starts from a given position in space, will be at a distance r from the point of origin,
after changing randomly directions n times during its trajectory. The length of the
intermediate steps are denoted by ri, i D 1; : : : ; n. The order L of the spherical
Bessel functions in these integrals is related to the dimensionality of the space where
the flight takes place: namely, the dimension D of that space is given by D D 2LC3.

Following the notation employed by Watson (1944) we shall denote:

pn.rI r1; : : : ; rn j 2L C 3/ WD d

dr

( �
�

�
L C 3

2

��n�1

�
Z 1

0

dk r

�
kr

2

�LC 1
2

JLC 3
2
.kr/

nY
iD1

JLC 1
2
.kri/

.kri/LC 1
2

)
: (20)

However, the integral (19) is still not what we need in order to solve the momentum
integrals that appear in our iterations—see, e.g., the Fourier integration of Eq. (17).

We will now extend the random flight integrals to include the scenario that
appears in the context of the CMB. If l 
 L (which is always the case in our
iterative solutions), then the product of two spherical Bessel functions of order l
can be written in terms of a single spherical Bessel function of order L. This is
a consequence of Gegenbauer’s relation (Watson 1944; Talman 1968) and of the
orthogonality of associated Legendre polynomials—see Abramo et al. (2010) for a
derivation:

jl.kX/ jl.kR/ D .�1/L
2

Z XCR

jX�Rj
dr kL

�
XR

r

�L�1
P�L
l .cos˛/ .sin ˛/L jL.kr/

(21)
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where r, R and X must form a triangle, with the angle ˛ being given implicitly in
terms of the relation r2 D R2 C X2 � 2RX cos˛, and P�L

l .cos˛/ is an associated
Legendre polynomial. Applying Eqs. (21) and (19) with L D 2 we can recast the
Fourier integral in Eq. (17) as:

Z 1

0

dk k2 jl.kX/
jl.k��0/

.k��0/2

n�1Y
iD1

j2.k��i/

.k��i/2
j2.k��n/

D 1

2

	
�
2


.nC1/=2
�
�
	
7
2


�n�1

Z
d.cos˛/

�
X��n
r3

�2
P�2
l .cos˛/ sin2 ˛

� pn.rI��1; : : : ; ��n j 7/ ; (22)

where we used the notation introduced in Eq. (20).
We should examine Eq. (22) more carefully. As anticipated, the presence of

the term pn.rI��1; : : : ; ��nj7/ should not be surprising, due to the interpretation
of a random flight process and its validity with respect to the physics of the
recombination. The dimensionality (D D 2 � 2 C 3 D 7) of the space associated
with the random flight, however, is not yet fully understood. That dimension is
determined by the order of the spherical Bessel functions which mediate the sources
of anisotropies and the final CMB signal, but since only the quadrupole of the
temperature fluctuation contributes to the polarization, the spherical Bessel function
of order 2 is the one that characterizes the random flight for the CMB. A possible
explanation for this dimension is that, after separating the angular dependence of
the CMB from its radial and time dependence through the spherical harmonic
decomposition, the light cone has only two dimensions left. Since the multipole
L has 2L C 1 degrees of freedom, we end up with 2L C 3 dimensions where our
relevant variables can perform random flights. However, a more refined argument to
explain the dimension 7 is not yet known.

Looking back now at Eq. (17), we recognize that for the �.n/lm term in the polariza-
tion expansion, the probability density pn.rI��1; : : : ; ��n j 7/ appears clearly. The
interpretation of an expansion in the number of interactions during recombination is
therefore strengthened.

As discussed above, the intervals ��1; : : : ; ��n express the times elapsed
between consecutive scatterings. All these subintervals are elements of a partition
of the time interval �1 ��, which is therefore the total time elapsed since the instant
the photon leaves equilibrium with matter, at time �, until the instant �1 when
the photon has last scattered prior to its observation. This time interval represents,
therefore, the effective duration of recombination for a given photon. The lengths
of each subinterval are weighted by the visibility functions, and integrated in order
to contemplate all possible histories for photons during recombination. The interval
�o��1 expresses the time elapsed since the photon scattered for the last time, before
it is observed at the time �o (we are assuming that no further scatterings take place
during this interval). We can represent a photon’s history by means of Fig. 1: on the
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Δη

Δη

Δη
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Δ
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η
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Δη

Fig. 1 Connection between scatterings of a photon during recombination (left) with a diagram-
matic representation of the random flight (right). The steps��n; : : : ; ��1 correspond to the lengths
of the photon’s trajectory between successive scatterings.��0 corresponds to the propagation since
the photon’s last scattering during recombination, at time �1, and the observation at time �o. In both
diagrams the observation takes place at the upper vertex

left we show the photon’s interactions prior to observation at the vertex of the cone,
while on the right we show a diagrammatic representation of that history, with the
relevant elements that appear in Eq. (22).

We call special attention to the diagram represented on the right of Fig. 1.
This diagram represents the extended random flight performed by a photon during
recombination. The steps��n, . . . ,��1 (going forward in time) belong to a standard
random flight, and describe the trajectory of a photon that has left equilibrium with
matter at an instant �, then propagated freely for a distance (or a time interval)��n,
then Thomson-scattered with an electron at time �n, then propagated freely for a
distance ��n�1, and so on until the instant �1, when it scattered for the last time.
The standard random flight ends at the instant �1. The photon, at that moment, is a
radius r away from the point where the flight started. The steps indicated by ��0
and X do not belong to the standard random flight, but are present in the extended
random flight, and are introduced through the spherical Bessel functions of different
order in the k integral of Eq. (22). This is necessary because those two steps are
not associated with any movement between successive scatterings, but are in fact
associated with the distance from the observer to the origin of the photon, and to
the end-point of the random flight. It should be strengthened that ��0, X and r are
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related by r2 D ��20CX2�2��0 X cos˛. Since 0 � r � ��1C��2C : : :C��n,
it follows that 0 � X � ��0 C��1 C��2 C : : :C��n, which then determines the
domain of dependence of the problem.

5 The Polarization in Position Space: The
‘Path-Integral’ness

We shall now go back to Eq. (17). In terms of the extended random flight just
introduced, the polarization coefficient to nth order, �.n/lm .�o/, can be written as:
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l .cos˛/ sin2 ˛ pn.rI��1; : : : ; ��n j 7/ ; (23)

where we have already used the aforementioned upper bound for the variable X.
The Eq. (23) can be understood as the combination of three procedures:

• The integration over ˛ corresponds to a marginalization over all possible paths
composed of n steps of lengths ��1 C : : : C ��n that have a net displacement
r determined by X and ��0, as shown in Fig. 2. This “average over paths” is a
function of X, ��0, ��1; : : : ; ��n.

• The contribution from the primary source term, Slm.X; �/, is then mediated by
this “average over paths” that was just described, for all possible values of X. The
maximum value that X may reach is ��0 C��1 C : : : C��n D �o � �, which
is nothing but the radius of the observer’s past light cone up to the time �. After
computing the contribution of the source terms, we end up with an expression
that is a function of ��0;��1; : : : ; ��n.

• The last step is to let the intervals��0;��1; : : : ; ��n assume any values through
the integrations, each one weighted by its corresponding factor of the visibility
function to take into account the probability that the photon will scatter at that
instant of time. This accomplishes the goal of accounting for the contribution
from sources at all distances, and over any possible number of intermediate steps
of the extended random flights.
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r

0

x

α

Δη

Fig. 2 Marginalization over all paths with n steps, composed of the intermediate displacements
��1; : : : ; ��n, which lead to a fixed displacement r with respect to the origin of the flight. The
distance r is determined by X and ��0 for all possible angles ˛

Adding the contributions from all �.n/lm we obtain:

�lm D � 3

4�

s
.l C 2/Š

.l � 2/Š

Z �o

0

d�1 g.�1/
1X
nD1

1

.n � 1/Š

Z �1

0

d�2 : : : d�n Tfg.�2/ : : : g.�n/g

�9
n�1

	
�
2


.nC1/=2

�
�
	
7
2


�n�1

Z �n

0

d�
Z

1

0

dX X2 Slm.X; �/

�
Z

d.cos ˛/
�
X��n
r3

�2
P�2
l .cos˛/ sin2 ˛ pn.rI��1; : : : ;��n j 7/ : (24)

6 Discussion

We have obtained in Eq. (24) the general expression for the expansion coefficients
for the CMB polarization, that should be inserted in Eq. (12). Together with Eqs. (6)
and (11), they complete the description in position space of the simplified version
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of the Boltzmann’s equations for the CMB temperature and polarization we took in
consideration. The treatment of the complete version of the Boltzmann’s equations
can also be given in the same language, as shown in Reimberg and Abramo (2013).

The simplicity brought by uncoupling the temperature from polarization illus-
trates the geometrical nature of the problem, and justifies the choice of the term
‘path-integral’ to the approach shown here. The CMB temperature fluctuations are
due to the nature of regions from where photons have emerged (over/underdensities,
baryons velocity, gravitational potentials), and the time variation of the gravitational
potentials along the photons paths (the integrated Sachs-Wolfe effect). The tem-
perature fluctuations, therefore, carry information about the instant when photons
decouple, and their travel toward us. The polarization signal, however, accumulates
information about the history of scatterings suffered by the photons prior to their
decoupling.

Frequent interactions of photons and electrons would bring the system to thermal
equilibrium, where no net polarization is present, and the temperature distribution
follows the equilibrium distribution determined by the nature of the interaction, and
the structure of the space-time where the equilibrium is set. Less frequent scatterings
produced as the recombination proceeds, move the system toward a slightly non-
equilibrium configuration, where most of the energy distribution is that determined
by equilibrium condition [what can be seen when the complete Boltzmann hierarchy
is taken into consideration (Reimberg and Abramo 2013)], but the polarization
signal is a clear signature that some scatterings happen in this non-equilibrium phase
prior to complete decoupling.

We learn from Eq. (24) that all possible histories of photons scatterings during
recombination contribute to the final CMB polarization. We add all possible number
of scatterings, happening in all possible orders, for all possible time interval between
them allowed by the visibility function, and weight each of these histories by the
probability density for the random flight with corresponding number of steps, and
intermediate displacements.

Because each scattering carries an additional power of the visibility function,
the signal coming from a large number of scatterings term is suppressed. Also,
properties of random flight processes assure that probability density function for
random flights with large number of steps are highly picked around the origin,
making their contribution to vanish in the expansion given in Eq. (24), what leads to
an illustration of Boltzmann’s H-theorem, as discussed in Reimberg and Abramo
(2013). This is parallel to the quantum version of path integrals where, beyond
the suppression introduced by small parameter in terms of which perturbative
expansions are performed, diminishing weights are associated to paths far form the
classical solution.

Finally, we can foresee some possible applications of this work. The series
expansion in terms of the number of scatterings can be used for numerical
simulations of constrained maps of temperature and polarization. Due to the general
vanishing property of the probability density functions for the extended random
flight if intermediate displacements do not form a polygon, and the decreasing of
the visibility function for z >> 103, we can in practice take all the sources to vanish
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outside of a sphere of radius R sufficiently large, and calculate the temperature and
polarization corrections using Fourier-Bessel expansions, as shown in Abramo et al.
(2010). In Fourier-Bessel basis only a discretized tower of modes contribute to each
observable at each multipole, and the computational advantages of this approach are
described in Leistedt et al. (2012). In what concerns the convergence of the iterative
process, depending on the desired accuracy, application or the angular scale that one
wishes to examine, it may be sufficient to consider only the first couple of scatterings
of the photons, since going further in the expansion would bring only contributions
from terms highly suppressed by powers of the visibility function.
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Geometric Scalar Theory of Gravity

Júnior Diniz Toniato

Abstract The present article introduces a new scalar theory of gravity based on the
Einstein’s assumption that gravitation is an expression of the geometrical structure
of the spacetime. In the geometric scalar theory of gravity all kind of matter and
energy interacts with the gravitational (scalar) field only through a metric structure
that naturally arises with the non linear dynamics of the scalar field. This allows
us to overcome the problems from the previous scalar theories and construct a new
scalar theory for gravitation which is in accordance at least with the observational
data coming from our solar system.

1 Introduction

Since its formulation until the present days, the Einstein’s theory of general relativity
(GR) remains consistent with all experimental tests performed, the so called
classical tests of gravitation (Turyshev 2009). Notwithstanding, over all these years,
there have always been open questions that led physicists to seek alternative paths in
the description of gravitational phenomena. Alternative theories of gravitation exist
in large numbers and in the most diverse formulations, whereas those following
Einstein’s ideas, choosing describe gravitation as a geometric phenomenon, are
those that obtained greatest success. Inside this extensive group, scalar-tensor
theories and f .R/ theories are the ones that most currently stand (Clifton 2006).

In the class of the purely scalar metric theories, i.e. where the gravitational field
is represented by one or more scalar functions that generate a gravitational metric,
much was done up to mid-seventies, but all formulations failed to comply with
all classical tests. In 1972, Wei-Tou Ni wrote a compendium of metric theories
containing a broad review and analysis of scalar theories (Ni 1972).
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Table 1 Different proposals
for scalar theories of
gravitation according to
Eqs. (1) and (2)

Scalar theories of gravitation

Author (year) Basic functions

Nordström (1912) f D ˆ

k D 1

Nordström (1913–1914) f D � lnˆ

k D ˆ

Littlewood (1953) f D �2 ln .1�ˆ/

Bergmann (1956) k D 1

Following Ni, these various proposals have the common property of being
conformally flat. Its gravitational metrics have the general form,

g	� D e�2f .ˆ/ �	� ; (1)

where ˆ is the gravitational potential and �	� is the Minkowski metric. The field
equations of these theories can be summarized in the expression,

�ˆ / k.ˆ/ T ; (2)

with the � being the d’Alembertian operator constructed with the metric (22) and
T the trace of the energy-momentum tensor of the source of the gravitational field.
The f .ˆ/ and k.ˆ/ functions have distinct forms according to the theory which
one wants to describe. The table below shows the main scalar theories and its
correspondent functions (Table 1).

The fact that all these theories are conformally flat is the main cause why one
can not couple gravity and electromagnetism, since the Maxwell equations are
conformally invariants. Also, with the source of the gravitational field being the
trace of the energy-momentum tensor, which is zero for the electromagnetic field,
shows that this fields can not produce gravitation. Thus none of the theories in the
table above are in agreement with the measurement of the bending of light. Further,
all these theories fail to provide the correct advance of the perihelion of Mercury.
However, Ni’s paper does not cite the theory proposed by Dowker in 1965, which
although not predicting the bending of light, gives the right answer for the Mercury’s
perihelion precession (Dowker 1965).

Though, the role of the scalar field representing the gravitational potential is
not fully determined, as I will show here. A recent study of effective metrics in
non linear scalar theories shows that is possible to establish a metric structure, not
conformally flat, which describe the dynamic of the field itself (Goulart et al. 2011).
In the next section I show how this mathematical property emerges. The physical
aspects of such property can only be determined if one introduces a way by which
this metric will interact with the other fields of nature. In other words, in order to
interpret the scalar field as the gravitational potential and the metric generated by
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it as the physical metric, one needs to say how matter/energy interacts with it. This
will constitute the grounds of the geometric scalar gravity (GSG).

2 Geometrization of a Nonlinear Scalar Theory

Consider a relativistic scalar field ˆ with a nonlinear dynamic in the Minkowski
spacetime. The action describing its dynamic is given by,

S D
Z

L.ˆ;w/
p�� d4x ; (3)

where � is the determinant of the Minkowski metric and,

w � �	� @	ˆ@�ˆ : (4)

The notation @	 indicates a simple derivative in relation with the coordinate x	 . The
minimal action principle returns the equation of motion of the scalar field,

1p�� @	
p�� Lw �	�@�ˆ

�
� 1

2
Lˆ D 0 ; (5)

where LX indicates a derivative in relation with the variable X .
Introducing the metric tensor,

q	� D ˛ �	� C ˇ

w
@	ˆ@�ˆ ; (6)

with ˛ and ˇ being functions of ˆ and w, and the correspondent covariant
expression, defined by q	˛ q˛� D ı

	
� , given by

q	� D 1

˛
�	� � ˇ

˛ .˛ C ˇ/w
@	ˆ@�ˆ ; (7)

Eq. (5) is rewritten as

Lw
˛ C ˇ

"
� qˆC .˛ C ˇ/

˛ 3=2Lw

3=2

@	

 
˛ 3=2Lwp
˛ C ˇ

!
�	�@�ˆ � Lˆ

2 Lw
.˛ C ˇ/

#
D 0;

(8)

where the subscript in the d’Alembertian operator indicates that it is constructed
with the metric q	� .

Note that by a simple choice of the coefficients ˛ and ˇ is possible to describe the
nonlinear dynamic of ˆ as if it were embedded in a curved spacetime (generated by
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the field itself) where it interacts minimally with q	� . In order to do this we restrict
the second order derivatives of ˆ to appear only in the �qˆ term of the above
equation.

The simplest manner is the imposition

˛ 3=2Lwp
˛ C ˇ

D C ; (9)

where C is a constant. The resultant equation is,

� qˆ D j.ˆ ; @ˆ/ ; (10)

where we have defined

j.ˆ ; @ˆ/ � ˛3

2C
Lˆ Lw : (11)

Equations (5) and (10) are equivalents, allowing us to interpret the dynamic ofˆ as
(1) nonlinear in the Minkowski spacetime or (2) “linear” in the metric q	� with a
source j.ˆ; @ˆ/ . Important to emphasize that the use of the word “linear” is made
here in a metaphoric sense, given that, since the metric q	� depends on ˆ , the
dynamic remains nonlinear.

A second possibility of geometrization consist in relax the condition (9) by
substituting the constant C by a function of ˆ only,

˛ 3=2Lwp
˛ C ˇ

D F.ˆ/ : (12)

Using this in the Eq. (8) we get,

Lw
˛ C ˇ

�
� qˆC .˛ C ˇ/

�
Fˆ
F

w � Lˆ
2Lw

��
D 0 ; (13)

and, by appropriately choosing the function F , we can write the dynamic of ˆ as
“free field” (again in a metaphoric way) without the source of the previous case.
Thus, we have,

� qˆ D 0 : (14)

If the function F.ˆ/ satisfies the condition

Fˆ
F

w � Lˆ
2Lw

D 0 : (15)

Note that these two cases are equal when Lˆ D 0 .
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In GR, matter/energy curves the spacetime where it propagates and, in this
sense that we understand how the metric structure q	� can be associated with a
gravitational process. The scalar field itself curves the spacetime around it. But if
we want to assign to ˆ the role of a gravitational potential, with q	� being the
gravitational metric, we need to determine how it will interact with other fields in
the nature. The next section is occupied of this task.

We will use the second geometrization method present in this section to
describe the dynamic of ˆ in the q-spacetime. The hypothesis postulated and the
observational data should help us to determine the Lagrangian of the scalar field
and the functional dependence of the metric coefficients ˛ and ˇ .

3 The Fundamentals of the GSG

In order to propose the main properties of GSG we will follow the basic ideas of
Einstein’s theory. Field formulation of GR describe the gravitational metric as sum
of a flat metric (Minkowski) plus a perturbation h	� (not necessarily small),

g	� D �	� C h	� : (16)

Although the above expression be exact, its covariant version is indeed an infinity
series (Feynman et al. 1995),

g	� D �	� � h	� C h	˛h
˛
� � : : : (17)

According to this formulation we can cite the basic properties of GR as
follows.

• Gravitational interaction is described by a second order tensor field h	� that
satisfies a non linear dynamic equation (Einstein’s equation);

• The theory reproduces Newton’s gravity in a weak field approximation;
• Any kind of matter and energy interacts with the gravitational field only through

the metric g	� ;
• Test particles and electromagnetic waves follows geodesics in the curved space-

time described by g	� ;
• The g	� metric interacts universally with all fields in the nature following the

minimum couple principle.

Now, we postulate the basic properties of the GSG.

• Gravitational interaction is described by scalar field ˆ that satisfies a non linear
dynamic equation;

• The theory reproduces Newton’s gravity in a weak field approximation;
• Any kind of matter and energy interacts with the gravitational field only through

the metric q	� [cf. (6)];
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• Test particles and electromagnetic waves follows geodesics in the curved space-
time described by q	� ;

• The q	� metric interacts universally with all fields in the nature following the
minimum couple principle.

Note that, different from GR, the covariant version of the gravitational metric in
GSG is not an infinite series, as shown in Eq. (7).

Immediately, as it is in GR, the coupling between gravitation and electromag-
netism in GSG is granted by this hypothesis. The Maxwell’s field, under the
influence of gravity, will be described by the action,

SE D � 1

16�c

Z
F

p�g d4x ; (18)

where F D F	�F	� , and F	� D @	A� � @�A	 is the Maxwell tensor. When
varying SE in relation with A	 we get precisely the Maxwell’s equations in a curved
spacetime, q	� in this case.

Assuming that the test particles follow geodesics relative to the geometry q	� ,
and the Newtonian limit in the static weak field approximation and low velocities,
we have that

d2xi

dt2
D � c2� i

00 D � @iˆN ; with i D 1; 2; 3: (19)

The last equality is relating the particle acceleration with the Newtonian gravita-
tional force, whereˆN represents Newton’s potential.

From Eq. (7), we have

� i
00 � � 1

2
@i ln˛: (20)

It follows that the Newtonian potentialˆN is approximately given by

ˆN

c2
� � 1

2
ln ˛ ; (21)

which yields the relation between the q00 component and the Newtonian potential,

q00 D 1

˛
� 1C 2

ˆN

c2
D 1 � 2

GM

c2r
; (22)

where G is the Newtonian constant and M is the mass of the source.
However, this relation is determined up to a first order approximation in ˆ , and

in the development of GSG we will extrapolate the above relation by considering a
more general expression for the ˛ coefficient,

˛ D e�2ˆ : (23)
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The theory that we are constructing here presents three functions that have
to be entirely determined by the end, the Lagrangian of the scalar field and the
functions ˛ and ˇ. Since the geometrization method of the previous section gives a
condition between them, and with ˛ now being fixed, only remains to determine the
Lagrangian of ˆ .

4 Field Equation

Let us consider the following shape for the scalar field Lagrangian,

L D V.ˆ/w : (24)

Following the second geometrization method in Sect. 2 we have that, in absence of
other fields, the field equation is

�ˆ D 0 ; (25)

and conditions (12) and (15) reduce to the expression

˛ C ˇ D ˛3 V : (26)

Important to note that we are not using the subscript q in the d’Alembertian operator
anymore. Since in GSG Minkowski metric appears only as an auxiliary structure,
we assume that all relevant quantities are constructed with the gravitational metric
q	� .

To select among all possible Lagrangians of the above form we look for
indications from the various circumstances in which reliable experiments have been
performed. In this vein, we initiate the discussion by analyzing the consequences of
GSG for the solar system.

4.1 The Static and Spherically Symmetric Solution

Any theory of gravity must account for planetary orbits. In general relativity this
motion is described by geodesics of the Schwarzschild geometry. In the GSG
particles follow geodesics in the q	� metric.

Let us start by rewriting the auxiliary Minkowski background metric in spherical
coordinates

ds2M D dt2 � dR2 � R2 d�2: (27)
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Changing the radial coordinate to R D p
˛ r, where ˛ D ˛.r/ we get

ds2M D dt2 � ˛
�

r

2˛

d˛

dr
C 1

�2
dr2 � ˛ r2 d�2: (28)

Since we are looking for static spherically symmetric solution we assume that the
field depends only on the radial variableˆ D ˆ.r/. Then the gravitational metric (7)
takes the form

ds2 D 1

˛
dt2 � B dr2 � r2 d�2; (29)

where we have defined

B � ˛

˛3V

�
r

2˛

d˛

dr
C 1

�2
: (30)

From the PPN analysis of the classical tests of gravitation (Will 2006) we know
that the agreement with observations will be satisfied if we have

q00 � 1 � 2GM=c2r � 2.GM=c2r/2 and q11 � 1C 2GM=c2r : (31)

Then, looking to Eq. (22), we can guarantee the correspondence between GSG and
observations if we assume B � ˛. However, we will again extrapolate this condition
choosing a more general expression where B D ˛. Using this the field equation can
be easily solved, returning

ˆ D 1

2
ln

�
1 � 2GM

c2r

�
; (32)

where we have used the asymptotic behavior to determine the integration constants
and, from Eq. (30), we get

V.ˆ/ D .˛ � 3/2
4 ˛3

: (33)

With these results the line element of the static and spherically symmetric
vacuum solution in GSG is given by

ds2 D

1 � rH

r

�
dt2 �


1 � rH

r

��1
dr2 � r2d�2: (34)

This geometry has the same form as in general relativity and yields the observed
regime for solar tests. Thus, the present geometric scalar gravity is a good descrip-
tion of planetary orbits and also for light rays trajectories that follow geodesics
(time-like and null-like, respectively) in the q	� geometry. If new observations
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would require a modification of the metric in the neighborhood of a massive body
this should be made by adjusting the form of the potential V.ˆ/:

4.2 Action Principle

Now that we have defined all functions for the theory we are in position to write
its dynamical equation. Let us start by the action of the scalar field written in the
auxiliary Minkowski background. From variational principle

ıSˆ D 1

�c
ı

Z p��V.ˆ/wd4x ; (35)

we get,

ıSˆ D � 2

�c

Z p��
�
1

2
V 0w C V �	�@	@�ˆ

�
ıˆ d4x ; (36)

where � is a constant with dimensions of distance/energy and the prime indicates a
derivative in relation to ˆ . The expression in parentheses above is just the left hand
side of Eq. (5) and, by comparing with (8) using (26), it returns �ˆ=˛3 . Rewriting
� in terms of q we finally get,

ıSˆ D � 2
Z p�q

p
V �ˆıˆ d4x : (37)

In presence of matter we add a corresponding term Lm to the total action,

Sm D 1

c

Z p�q Lm d4x : (38)

The first variation of this term as usual yields

ıSm D � 1

2

Z p�q T	�ıq	� d
4x ; (39)

where we have defined the energy-momentum tensor in the standard way

T	� � 2p�q

ı.
p�q Lm/

ıq	�
:

General covariance leads to conservation of the energy-momentum tensor
T	� I� D 0 .
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The equation of motion is obtained by the action principle

ıS1 C ıSm D 0 : (40)

However, in the GSG theory, the metric q	� is not the fundamental quantity. We
have to write the variation ıq	� as function of ıˆ . After some calculation we get

ıSm D � 1

c

Z �
T C

�
2 � V 0

2V

�
E C C 
I


�
ıˆ

p�q d4x ; (41)

where we have defined some quantities as follows,

T � T	� q	�; E � T	� @	ˆ@�ˆ

�
; (42)

C
 � ˇ

˛ �

	
T
	 � E q
	



@	ˆ ; (43)

and “ I ” means the covariant derivative in respect to the q-metric.
Finally, the equation of motion for the gravitational field ˆ takes the form

p
V �ˆ D � �; (44)

with the notation simplified by writing

� D � 1

2

�
T C

�
2 � V 0

2V

�
E C C
I


�
: (45)

Equation (44) describes the dynamics of GSG in presence of matter, under the
assumptions (23) and (33). The quantity � involves a non-trivial coupling between
the gradient of the scalar field and the complete energy-momentum tensor of the
matter, and not uniquely its trace. This property allows the electromagnetic field to
interact with the gravitational field. The Newtonian limit gives the identification

� � 8�G

c4
: (46)

5 Final Comments

GSG is an alternative propose to describe the gravitational process using a single
scalar field, but it still treats gravity as a geometrical effect and all kind of matter
and energy interact with gravitational potential only through metric q	� in Eq. (7).
With different premises from that previous scalars theories, GSG overcomes the
problems surrounding the scalar gravity.
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Guided by observations too, we develop GSG choosing the Lagrangian of ˆ as
L D Vw, with

V D .3 � ˛/

4˛3

2

; (47)

where the Newtonian limit of the theory led us to work with

˛ D e�2ˆ : (48)

The geometrization technique is what gives the relation between the ˇ coefficient
of the metric and these two other functions, namely

˛ C ˇ D ˛3 V : (49)

Therewith, the field equation of the theory is given by

p
V �ˆ D � � ; (50)

with � defined in (45) .
Even so, the GSG can be seen as a little more than an unique theory in the sense

that it represents a way in which is possible to develop scalar theories of gravitation.
Relaxing the expressions for ˛ and V can still be in agreement with observations
while given a very different gravitational theory.

GSG is a result of a wonderful work with Mario Novello, Ugo Moschella,
Eduardo Bittencourt and others. The ideas here can be found with more details in
Novello et al. (2013). Also, in Bittencourt et al. (2014), there is the consequences of
this theory for the cosmology.
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