
Consumer Privacy on Distributed
Energy Markets
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Abstract. Recently, several privacy-enhancing technologies for smart
grids have been proposed. However, most of these solutions presume the
cooperation of all smart grid participants. Hence, the privacy protec-
tion of consumers depends on the willingness of the suppliers to deploy
privacy-enhancing technologies. Since electrical energy is essential for
our modern life, it is impossible for consumers to opt out. We propose a
novel consumer-only (do-it-yourself) privacy-enhancing approach under
the assumption that users can obtain their energy from multiple suppliers
on a distributed market. By splitting the demand over multiple suppli-
ers, the information each of them can collect about a single consumer
is reduced. In this context, we suggest two different buying strategies:
a time and a sample diversification strategy. To measure their provided
level of privacy protection, we introduce a new indistinguishability metric
λ-Indistinguishability (λ-IND) that measures how relative consumption
changes can be hidden in the total consumption. We evaluate the pre-
sented strategies with λ-IND and derive first privacy boundaries. The
evaluation of our buying strategies on real-world energy data sets indi-
cates their ability to hide load profiles of privacy sensitive appliances at
low communication and computational overhead.

1 Introduction

Currently, users of the electrical grid are facing the risk of privacy breaches
through the upcoming smart grid technology. The idea of the smart grid is
to modernize the traditional electricity grid by establishing a communication
infrastructure in parallel to the energy delivery network. This results in a con-
stant flow of fine-grained consumption information from individual consumers
to the energy suppliers. Furthermore, this data enables automatic billing, pre-
diction and stabilizing tasks for suppliers. However, as research has shown, this
data can also be used to infer detailed user profiles. Even further, Non-Intrusive
Load Monitoring (NILM), the technique to disaggregate energy consumption, is
still developing. Recent progress shows that given high resolution load profiles,
content displayed on a larger LCD can be identified [12] as well as rendered web
pages [5]. Thus, reporting the consumption information is bearing a risk for the
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individuals privacy. This is especially the case in a scenario where ‘opt out’ is
not an option, as is the participation in the electricity grid.

Previous presented solutions, which fulfill the suppliers’ functional require-
ments and protect the privacy of users, depend on either the electricity suppliers
voluntary commitment to complex cryptographic protocols or on the deploy-
ment of physical batteries. Cryptographic protocols are challenging in the correct
implementation and require the willingness of the supplier to invest in the nec-
essary hardware and software to run these protocols. Physical batteries require
a huge investment in batteries for the consumer. From the individual’s point of
view, it would be preferable to be protected with less supplier dependency and
without costly investments.

Based on these observations, we present a novel privacy enhancing approach
that enables the clients to protect their consumption data without the need
of involving suppliers. We discuss our solution in the context of smart grids,
though it can be generalized for privacy protection on distributed markets. Our
main contributions can be structured according to the following two research
questions:

How can the consumer’s privacy on distributed markets be pro-
tected without the technical involvement of suppliers? We answer this
question by presenting a novel data perturbation based approach. The idea is to
utilize the distributed market by randomly splitting the consumer’s demand onto
multiple suppliers. Thus, only a fraction of the total demand is observed by each
supplier. This approach does not presume any further technical requirements
while still guaranteeing accurate trades.

To which degree can privacy be protected and how can this pro-
tection be measured? On distributed markets, multiple parties usually trade
a good directly and hence need to have knowledge of each other, which turns
privacy definitions based on anonymity inapplicable. Furthermore, we show that
that our buying strategies can hide only relative changes in the power con-
sumption. As a consequence, the prerequisites of differential privacy or plain
indistinguishability are too demanding. Therefore, we introduce a new privacy
notion that uses strong formal guarantees to measure the protection of relative
changes in the power consumption.

The paper is structured as follows. We discuss the related work in Sect. 2,
before introducing our formal model and privacy metric in Sect. 3. Moreover,
in Sect. 4 two novel buying strategies are presented and analyzed. Then, the
strategies are evaluated on real world data sets in Sect. 5. Finally, we conclude
our work in Sect. 6.

2 Related Work

In this section we discuss the state of the art in privacy protection mechanism
for the smart grid. Furthermore, we discuss relevant statistical privacy metrics
used to measure privacy in the smart grid.
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Privacy Mechanisms. According Jawurek et al. [14] Privacy-enhancing technolo-
gies (PETs) for the smart grid can be classified into the following categories:

Data perturbation based protection mechanisms enable privacy friendly live
monitoring by adding random noise to every raw reading, e.g., Bohli et al. [4] and
Shuang et al. [26]. Hence, the actual reported readings are noisy. However, given
a sufficiently large number of smart meters, the noise cancels out and thus, the
supplier’s aggregate becomes accurate. More sophisticated approaches for data
perturbation are presented by Acs and Castelluccia [1] and Lin et al. [18] that
combine data perturbation and additive blinding. All of these approaches either
require a second protocol to allow accurate billing, an infeasible large number of
smart meters, or an implementation of the encryption protocol at supplier side.

Batteries can reduce the entropy of the readings by flattening the actual
electricity consumption [2,15,24]. Depending on the capacity and throughput of
the battery, different privacy goals can be realized. However, it turns out that
adequately sized batteries are expensive.

Furthermore, Trusted-Third-Parties (TTPs) have been utilized as PETs in
smart grids, e.g., [4,10]. While TTPs can fulfill any privacy definition, they bear
two risks: first, any trusted third party can also be compromised and represents
a single point of failure; and second, deploying a TTP requires infrastructure
and protocol changes at smart meters and suppliers.

One of the most promising solutions are aggregation protocols, which enable
accurate live monitoring. Based on various cryptographic primitives, multiple
variants have been presented. For example, Garcia et al. [11] and Kursawe
et al. [17] presented protocols using either additive secret sharing or homo-
morphic cryptosystems. These protocols guarantee anonymity on a group level.
However, they all make use of expensive computation or require bidirectional
communication between groups of smart meters. Moreover, the proposed proto-
cols have an inherent complexity and need to be implemented on the supplier
side. Hence, they disqualify as consumer-only approaches.

Lastly, commitment schemes and zero knowledge proofs have been proposed
to offload the bill calculation onto the consumers [7,20,23]. Here verifiable com-
putation guarantees the correct calculation of the overall bill without revealing
individual readings. This approach requires a protocol implementation on the
supplier side and is incompatible to live monitoring, as only the smart meters
sum is computed and verified.

Privacy Metrics. We focus on privacy metrics for smart grids that measure the
protection level of approaches based on data perturbation.

Quantitative metrics based on statistical and information theoretic measures
have been presented. Shuang et al. [26] use the F-Test measure to compare raw
and noisy load profiles. Kalogridis et al. [15] measured this relationship using
relative entropy and correlation metrics. Furthermore, the authors suggest to use
the accuracy of clustering algorithms as a privacy measures. All these metrics
are useful when comparing different privacy mechanisms. However, they have
the drawback that a measurable threshold for a desired privacy level cannot be
given.
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To evaluate a battery based approach, Backes et al. [2] developed a met-
ric based on differential privacy for streams, which ensures event-level privacy.
The authors make use of the probabilistic variant of differential privacy,
i.e., with a small probability δ the definition of differential privacy does not
need to be met. Even so, this metric is based on the well defined grounds of
differential privacy, it suffers practicability, as the authors note. This is because
load signatures of appliances are typically characterized by more than one event,
which are not necessarily covered by the presented definition.

Yet, a metric that shows the protection of multiple events is desirable. Bohli
et al. present such a metric in [4], which is based on a cryptographic game
of the type right-or-left. In this game, an adversary is challenged to identify
the originating scenario from a transcript. A scenario consists of load profiles,
i.e., load samples in a defined time span from multiple smart meters. We build
on this idea in the reminder of this paper.

3 A Formal Smart Grid Model

In this section, we present the distributed market model. First, we define the
major actors and actions. Then, we introduce the attacker model and the notion
of λ-IND.

3.1 Energy Market Model

We define a distributed market as a virtual place where consumers purchase
goods or services from multiple suppliers. In this paper, we focus on a single good
market, i.e., the energy market. Nevertheless, for markets that offer multiple
goods, the presented ideas can be applied multiple times in parallel. We assume
that all communication is secured, i.e., communication channels are available
all the time and guarantee confidentiality as well as integrity. Hence, a trade is
not visible to any third party. The practical realization of such a market place
requires supplier discovery and price formation services, which is beyond the
scope of this work.

We deduce a formal model and its assumptions: the model consists of two
participating parties, namely a set of consumers C and a set of suppliers S.
Moreover, a discrete notion of time, denoted as t, is used. In each time period
t, a consumer ci ∈ C is attributed with a demand di,t. Consumers can cover
their demand by buying from one or multiple suppliers sj ∈ S. As we are only
interested in modelling consumption privacy instead of anonymity, it is sufficient
to consider only one single consumer c ∈ C in all following discussions.

The act of a consumer to buy a certain amount of energy in a given time
period from a supplier is called trade. All trades of one consumer are denoted by a
two dimensional matrix. Each entry bj,t ≥ 0 of this matrix describes the amount
of the good bought by a consumer from supplier sj at time t. Consequently, the
demand at time t of the consumer is the sum of all trades with all suppliers
dt =

∑
sj∈S bj,t. In the following privacy analysis, we refer to the time series
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Fig. 1. Distributed market model. The consumer’s demand d is split between multiple
suppliers s1, s2, . . . , sn.

of a consumer d =< d1, d2, . . . , dn > as original load profile and for the time
series that a supplier observes bj =< bj,1, bj,2, . . . , bj,n > as reported load profile.
Figure 1 illustrates the distribution model for a given demand d.

A consumer that cannot produce or store energy needs to cover all its demand
via the market. Hence, its entire demand profile is at risk to be leaked. Contrary
to consumers, so-called prosumers exist, who are capable of producing and stor-
ing energy to a certain extent, e.g., via a solar panel and an additional battery.
Thus, by partially covering their demands through (unpredictable) third sources,
they have more possibilities to protect their load profiles. We note, that given the
possibility to report arbitrary and negative trades, two non-colluding suppliers
are sufficient to trivially guarantee information theoretic security, by reporting
b1,t = rt to the first supplier with rt being a random number and b2,t = dt − rt

to the second supplier. Such a protocol guarantees correctness and privacy but
is incompatible with time-of-use tariffs and practical live monitoring.

For the remainder of this paper we will focus on consumers only, as they
are the more challenging case for privacy-protection. Therefore, to restrict our
analysis adequately to the capabilities of consumers, we define all trades to be
non-negative bj,t ≥ 0.

3.2 Attacker Model

Assuming a secure communication network, the only possible point to attack is
at the end-users, namely compromising a supplier. Furthermore, we assume that
the attacker is interested in reconstructing the original load profiles of consumers
from reported consumption information. As this kind of attacker is completely
passive, consumers are unable to differentiate between honest and compromised
suppliers. Moreover, as a first step we assume that only one supplier is com-
promised, which is sufficient to show the impact of the considered attacker on
distributed energy markets.

3.3 Privacy Metric - λ Indistinguishability

We define a Load Signature Hiding Game (LSHG) based on Bohli et al. [4] to
measure the privacy of a Smart Metering Application (SMA). An adversary A
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selects two possible load profiles, namely the vectors d0 =< d0
1, d

0
2, ..., d

0
n > and

d1 =< d1
1, d

1
2, ..., d

1
n >, and sends them to a challenger. After receiving the two

scenarios the challenger randomly draws a bit β ∈ {0, 1} and simulates dβ . The
simulation result is a transcript, which is then sent back to the adversary A.
Following the described market scenario, the transcript consists of all trades
with one randomly chosen supplier: b =< b1, b2, ..., bn >. The adversary outputs
a bit δ and wins the game by correctly guessing which scenario was used to
create the transcript, hence, iff δ = β. The privacy of the SMA is measured by
the difference between random guessing and correctly answering which of the
two scenarios belongs to the transcript. As in [4] the two demand load profiles
are required to have the same aggregate, since this information has to be known
by the supplier for billing purposes. Otherwise, distinguishing load profiles is
trivial.

To measure the privacy protection provided by the buying strategies intro-
duced later in this paper, we present the idea of λ-IND. Even though deviating
from common privacy metrics is bearing risks, we propose a new privacy metric
and advocate the notions of indistinguishably, due to the following reasons:

– As discussed in Sect. 2, other common privacy metrics are either inapplicable,
e.g., anonymity metrics, or provide insufficient protection in this scenario.
For example, differential privacy under continual observation [9] only provides
event-level protection that does not span over multiple events.

– Cryptographic games provide a strong formal tool and have successfully been
applied as privacy metrics in different scenarios, e.g., for privacy preserving
RFID tags [25].

– The strict indistinguishability notion for the smart grid by Bohli et al. [4]
assumes a very strong adversary, who is allowed to choose arbitrary load sig-
natures. This definition is too strong to show that only a part of the load
profile is protected.

The goal of λ-IND is to show that high resolution attacks are infeasible. We
are convinced that this is an important stepping stone between none and full
protection, i.e., perfect indistinguishability in the LSHG. Our idea is as follows,
instead of challenging the privacy mechanism with two totally different load
profiles, the load samples from the same time period are restricted to be in
relative distance to each other.

Formalizing this concept, we introduce the privacy parameter λ that
expresses the maximal relative difference between two load samples taken from
two load profiles in the privacy game, respectively. The new privacy metric λ-IND
is based on the definition of the LSHG with the exception that two load samples
in both scenarios are allowed to differ by at most a factor λ. Hence, given a load
sample d0

t in the first scenario, the demand in the second scenario is restricted
to d1

t ∈ [d0
t , λ · d0

t ]. Without loosing generality, λ > 1 is assumed for all further
discussion. We refer to this restriction as the λ requirement and introduce the
following definition:
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Fig. 2. Applicability of λ-IND for exemplary load profiles from two different house-
holds. At approximately 11 am both households switch on their AC, which leads to a
similar power consumption. After a period of high energy usage in both households
with different duration, no further activity in the household represented by the solid
line is visible, whereas in the second household a TV is turned on. Thus, after 1 pm
only a small λ is sufficient to show the running TV is hidden with λ-IND.

Definition 1. Considering the LSHG(β) game fulfilling the λ requirement
and the adversary A for a given distribution algorithm Alg, the (λ-
Indistinguishability) advantage of A is defined as

Advλ-IND
Alg = |Pr[LSHG(0)A

Alg,λ = 0] − Pr[LSHG(1)A
Alg,λ = 0]|.

We illustrate λ-IND with an example. Given λ = 1.2 and load samples of
1000 Wh in the first profile, the maximum load sample an attacker can choose in
the second profile is 1200 Wh. Thus, the chosen loads for the second profile have
to be in between the corridor from 1000 Wh to 1200 Wh. Consequently, given a
base load of 1000 Wh, an additional appliance with a load signature of maximal
200 Wh is undetectable. This concept is also illustrated in Fig. 2. Summarizing, a
privacy mechanism guaranteeing λ-IND makes all load samples indistinguishable
that are in relative distance to each other.

4 Buying Strategies

In this section, we introduce and evaluate multiple buying strategies in our for-
malized distributed market scenario. First, we introduce the notion of fair buying
strategies, i.e., strategies where no supplier is favored. Second, we introduce the
Temporal Diversification (TD) and Sample Diversification (SD) buying strate-
gies and evaluate both strategies in the (unrestricted) LSHG model as well as
under λ-IND.

A buying strategy is an algorithm that distributes an input demand dt among
multiple suppliers s ∈ S in every time period. Thus, each supplier sj observes a
reported load profile of load samples bj =< b1,j , b2,j , . . . , bn,j >. By observing
these load samples over a larger timeperiod and assuming a steady input demand d,
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each approached supplier sj observes an distribution Pj(b) of load samples. We
focus on fair buying strategies, i.e., buying strategies that do not favor any supplier
over time. Thus, we propose the following formal definition for fair distribution
algorithms:

Definition 2. A distribution algorithm Alg with input load sample dt and out-
put vector consisting of |S| load samples b′

t =< bt,1, bt,2, ..., bt,|S| > is called fair,
iff for all x ∈ [0, dt] the following condition holds:

Pr[bt,1 = x] = Pr[bt,2 = x] = ... = Pr[bt,|S| = x].

Note, even though unfair strategies might be interesting for the consumer, e.g.,
because of economic or ecological preferences, distribution algorithms that favor
certain suppliers have the drawback that an attacker may obtain information on
these preferences. This background information might undermine the consumers
privacy. Hence, in the light of privacy protection, we recommend fair distribution
algorithms. Among such fair algorithms are the TD and SD strategies that are
introduced in the following two subsections.

4.1 Buying Strategy - Temporal Diversification (TD)

Consumers that cover their demand according to the TD strategy, have to meet
their demand dt per time period t through only one, yet changing supplier.
Several variants of this strategy are possible w.r.t. the order (deterministic or
stochastic) suppliers are approached.

An example for a deterministic variant is to use a round-robin scheme, i.e.,
suppliers are approached subsequently in an ordered sequence. Once the last
supplier in the sequence is reached, the process starts with the first supplier
again. In the second variant, suppliers are randomly chosen from the set of
available suppliers. Several variations of such a random strategy are possible,
e.g., the same supplier can be approached for k subsequent time periods. Hence,
depending on the consumer’s goals the granularity of the observed time frame
can be controlled by parameter k.

Round-robin and random TD strategies can only offer limited privacy, as long
as the number of suppliers is limited. This is because, consumers will inevitably
return to the same supplier at some point. However, these strategies reduce
the temporal resolution of a compromised attacker. For the indistinguishability
analysis we apply LSHG and λ-IND on a randomized TD strategy and leave out
the round-robin variant due to its static and predictable results. These are that
each supplier is approached after at most |S| time periods. An analysis of the
TD strategy prepares the evaluation of the more complex SD strategy in the
LSHG and λ-IND.

To analyze strategies with the help of cryptographic games, the attacker
needs to construct two scenarios for the challenger. With respect to the TD
strategy, it turns out that any two non-equal demand profiles are distinguishable,
by setting one half of the first demand profile to an arbitrary d0 > 0 and the
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other half to d1 �= d0, d1 > 0. The requirement for non-zero loads d0, d1 > 0
is necessary for the adversary to distinguish between zero consumption and not
being approached at all. The second demand profile is constructed by swapping
d0’s and d1’s. As a result of this construction, the sum of all load values is the
same in both scenarios, as required. The adversaries advantage is then equivalent
to the probability to observe a non-zero load sample:

AdvLSHG
TD = 1 −

( |S| − 1
|S|

)n

.

We further observe that the attacker advantage in the LSHG is equal to the
advantage in λ-IND, Advλ-IND

TD = AdvLSHG
TD . This is because, the λ-requirement

does not prevent the adversary from choosing load samples that uniquely identify
a load profile.

4.2 Buying Strategy - Sample Diversification (SD)

Consumers that deploy the Sample Diversification (SD) strategy cover their
demand by using multiple suppliers simultaneously. A randomized algorithm
splits the input demand into multiple smaller samples that are sent out to dif-
ferent suppliers. Hence, each supplier only observes a share of the total demand.

For example, given |S| = 3 suppliers and a demand of dt = 1000Wh. A
consumer deploying a SD strategy could meet its demand by buying b1,t =
511Wh from the first supplier, b2,t = 89Wh and b3,t = 400Wh from the second
and third supplier. Several variations of this strategy are possible and can be
differentiated by their distribution of load samples, e.g., exponential or uniform.
Below we present an approach to derive the upper bound of the adversaries
advantage for any SD variant.

Upper Bound for the Adversaries Advantage in the LSHG Game. We
analyze the SD strategy in LSHG. For this the adversary needs to choose two load
profiles that show the largest difference to maximize its advantage. However, a
binary difference, namely zero and non-zero load is already sufficient, as we show.
Thus, in the first load profile one half of the load samples is set to zero and the other
half to a value greater than zero, e.g., one. The second scenario is constructed by
swapping zeros and ones ensuring equal demands in both scenarios. Since any ran-
domized reported consumption bj,t to supplier sj is bounded by zero and the actual
demand, i.e., 0 ≤ bj,t ≤ dt, a smart meter has to report zero consumption in times
of zero demand and non zero consumption to one or more suppliers in times of
demand. In the following calculation, we denote the number ns, as the number of
suppliers being approached in every time period. Receiving a load sample greater
than zero allows the challenger to deduce the simulated scenario, namely the one
where the sample in the load sequence bj is greater than zero. For simplicity rea-
sons we assume an even number of load samples per profile. Since n

2 loads per sce-
nario are greater than zero, the adversaries advantage is bound by the probability
to observe such a non-zero load:
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AdvLSHG
SD = 1 −

( |S| − ns

|S|
)n/2

.

Upper Bound for the Adversaries Advantage under λ-IND. To derive an
upper bound on the adversaries advantage under λ-IND, we first have to describe
an optimal adversary. According to the Neyman-Pearson Lemma [21], the best
possible advantage when distinguishing distributions is achieved when using a
maximum likelihood-ratio distinguisher. Given such an optimal distinguisher, its
advantage is equal to the statistical distance, also known as total variation dis-
tance DTV . The statistical distance between two discrete1 probability functions
P0, P1 for a given sample x is defined as

DTV (P0, P1) =
1
2
‖P0(x) − P1(x)‖1 =

1
2

∑

x∈Ω

|P0(x) − P1(x)| dx.

The singular case can be extended to multiple samples by computing the 1-norm
over all possible combinations [3]. As this can be computationally expensive,
Pinsker’s inequality [6,22] can be used to compute an upper bound on the dis-
tinguishing advantage more efficiently. Pinsker’s inequality connects the statis-
tical distance DTV with the Kullback-Leibler divergence DKL and is defined for
multi-samples n as

DTV (Pn
0 , Pn

1 ) =
1
2
‖Pn

0 (x) − Pn
1 (x)‖1 ≤

√
2n · DKL(P0‖P1).

To minimize the adversaries advantage in λ-IND, an optimal strategy has to
distribute demands d0 and d1, which differ by at most λ, in such a way that
the distributions of observed load samples show minimal statistical distance.
First, we consider the case where a load profile consists of only one demand
(n = 1). The least statistical distance is achieved when the transport between
the two distributions observed by the adversary in the LSHG is minimized. As
the two distribution P0 and P1 have to differ, because the originate different input
demands, the best possible way to construct distribution P1 from a given P0 is
realized by transporting probability from the two extremes 0 and max(d0, d1).
This minimizes the amount of transported probability and thus, the statistical
distance. Given a number of available suppliers |S| and the privacy parameter
λ, the statistical distance is then bound to (cf. AppendixA):

Advλ-IND
SD,1 =

λ − 1
|S| · λ

.

Following the same strategy for load profiles consisting of multiple samples
(n > 1), a maximum likelihood-ratio distinguisher can only decide according
the transported probabilities and has thus an advantage of at most

Advλ-IND
SD,n = 1 −

(

1 − λ − 1
|S| · λ

)n

.

1 For simplification purposes, in this work we make use of discrete instead of continu-
ous probability distributions. This is reasonable when considering a finite metering
resolution (e.g., 10(−7) kWh).
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4.3 Heuristics for the SD Strategy

A distribution strategy as presented above cannot directly be deployed in prac-
tical settings. This is because, in a real world deployments of a smart meter
all values from zero to a households maximum consumption will be observed at
some point. Thus, the static assignment with minimal transport from and to
a single value has to be replaced by a continuous approach. Furthermore, the
values for upcoming dt are unknown to the distribution algorithm, and there-
fore a proportional distribution scheme is desirable. Thus, the fraction of the
demand observed by an individual supplier is independent of the input demand.
Moreover, a heuristic should function with little computational cost to avoid
expensive smart meter hardware. Finally, a practical heuristic should reduce the
communication costs and should only report noticeable consumption. Thus, tiny
load samples could be grouped and sent out to only one supplier. However, this
variation impacts the privacy and is evaluated further in Sect. 5.

We present an efficient heuristic that considers the afore-mentioned thoughts.
It is uses the idea that the probability transport is kept minimal and that the
distribution should become uneven towards the extremes. Moreover, as a variant,
all samples below a threshold τ can aggregated and grouped together to avoid
the communication of arbitrarily small samples. The core idea of the heuristic, as
presented in Algorithm 1, is to iteratively draw the reported samples according
a uniform distribution over the remaining demand:

Algorithm 1. Communication Optimized Distribution Algorithm
1: input d, |S|, τ
2: b2 ← · · · ← b|S| ← 0
3: b1 ← rand() � First load is drawn uniformly from [0, d]
4: l ← 1 − b1 � Remaining load
5: for i = 2, . . . , |S| − 1 ∧ l > 0 do
6: bi ← rand() · l
7: l ← l − bi
8: if l < τ then � Threshold variant: Compare with threshold
9: bi ← bi + l � Aggregate the rest

10: l ← 0
11: end if
12: end for
13: b|S| ← l
14: b ← shuffle(< b1, b2, . . . , b|S| >) � Shuffle for fair distribution
15: b ← d · b
16: output b

The algorithm takes a demand d, a number of suppliers |S| and (optional)
a threshold τ as input and outputs a vector of load samples, whose sum is the
given input demand. In a first step the interval [0, 1] is split into two parts
according to a value b1 drawn uniformly from the same interval. The left part of
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the interval becomes the first reported load. The remaining load l1 = d − b1 is
further split by a random value b2 drawn from the uniform distribution on the
interval [0, l1]. In the further steps the remaining load is updated, l2 = l1 − b2.
This iterative procedure continues for all suppliers or until the remaining load
reaches the threshold (if given). In both cases, the last reported load b|S| is set
to l|S|−1 to distribute the remaining load. As a result, earlier drawn bj are more
likely to be larger than those which have been drawn at the end of the recursive
procedure. To achieve a fair distribution for all suppliers, in its final steps the
algorithm performs a random permutation (shuffle) on b1, . . . , b|S| and multiplies
each fraction bj with the total demand.

5 Evaluation

We discuss the applicability of our results in an evaluation on real world data sets
in this section. First, we identify a reasonable value for the privacy parameter
λ. Then, we study the influence of different parameter choices, e.g., the number
of suppliers, on the adversaries advantage against the SD strategy.

5.1 Privacy Sensitive Appliances

To show that λ-IND has practical relevance, we identify appliances that in our
opinion show the highest privacy risk. In a second step, we evaluate their energy
consumption in comparison with the total consumption. The latter give us an
insight on a reasonable choice for λ.

One group of privacy sensitive appliances are digital screens. Recently
Greveler et al. [12] showed that the TV program can be identified in the aggre-
gate power consumption. Moreover, Clark et al. [5] showed an attack, where
rendered websites could be identified through power analysis. Since LC-Displays
also display private information, we are convinced that digital devices need spe-
cial protection. Similar concerns have been raised by Backes et al. [2]. Another
example of noteworthy appliances are alarm systems. A remote detection of their
functionality can compromises the households inhabitants safety [13].

We evaluate the energy consumption of the mentioned appliances on two
larger public data sets that are used in NILM research:

The Reference Energy Disaggregation Data Set (REDD) was published by J.
Zico Kolter and Matthew J. Johnson [16]. It contains fine granulated energy data
collected from six houses around Boston, Massachusetts. Kolter et al. measured
not only the total consumption but also monitored multiple labeled sub-circuits
within the households. The dataset consists of low (1 Hz) and high frequency
(15 kHz) measurements.

The Almanac of Minutely Power data set (AMPds) was released by Stephen
Makonin et al. [19]. The AMPds provides one year of data from a single household
from the Vancouver region in British Columbia. Similar to the REDD data set,
the AMPds provides readings of 21 sub-metered circuits with a frequency of one
reading per minute.
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For our evaluation we used the statistics programming language R. First, all
incomplete and implausible entries are removed from the data sets, e.g., entries
where sub-metered circuits are not measured or the power consumption of appli-
ances exceeds the total consumption. Second, all load samples are aggregated
in 15 min intervals. Third, all time periods with zero consumption of sensitive
devices are removed. Finally, a histogram is created over the fraction of energy
used by the sensitive devices.
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Fig. 3. Fraction of energy spent on electronic devices for two houses in the REDD and
the energy spent on entertainment and security system in the AMPds.

Figure 3a and b show the results for the REDD for two distinct households,
which have a sub-metered circuits labeled electronics. The histograms illustrate
the number of time periods in which the fraction energy consumption of enter-
tainment appliances is within the range printed on the x-axis. Figure 3c illus-
trates the fraction of energy used entertainment appliances in the AMPds and
Fig. 3d illustrates the same for the alarm system. Taking these numbers into
account, in more than 80% of all time periods the measured fraction is below
or equal 10%. Furthermore, with the exception of ‘house 6’, in more than 95%
of all time periods, the sensitive appliances consume less than 20% of the total
energy. The alarm systems always require less than 20% of the total energy
consumption. Unfortunately, no breakdown of the sub-metered circuits is given.
Thus, the actual consumption of a individual sensitive appliances could be even
less. The results support the idea that λ-IND with small λ, e.g., λ = 1.2, is of
practical use to measure the protection of privacy sensitive appliances.
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5.2 λ-IND Evaluation of the SD Strategy

In Sect. 4, we have introduced the SD strategy and have proposed a theoretical
distribution strategy as well as heuristics. In this section, we evaluate both with
different parameters under λ-IND. Thus, the relationship between the λ, the
number of suppliers, and the adversaries advantage is studied.

In Sect. 4 a formula for computing an upper bound on the adversaries
advantage for given distribution is presented. The described heuristics, however,
require a further investigation, as the resulting distribution are not described in
closed-form. Therefore, to evaluate these we follow a numerical Monte Carlo app-
roach. First, we distribute a constant demand onto |S| suppliers by applying the
heuristics. Repeating this experiment k = 107 times, a probability distribution
of load samples is observed. Given this distribution, an optimal likelihood-ratio
distinguisher is used to calculate the adversaries advantage under λ-IND. The
heuristic and the evaluation itself are written and executed in R.

The upper bound on the advantage of the adversary as computed in Sect. 4
depending on the number of samples for a different number of suppliers is
illustrated in Fig. 4a. The parameter λ is fixed to 1.2 and we observe that, as
expected, an increasing number of suppliers decreases the adversaries advantage.
Figure 4b shows the distinguishing advantage in dependence on the number of
samples for different choices of λ using a fixed number of suppliers |S| = 16.
When increasing λ, the maximal advantage of the attacker also increases. Thus,
the consumer faces the trade-off between the protected time span and the level
of protection, i.e., the maximal fraction of energy that can be protected. How-
ever, we observe that the advantage is never negligible. Moreover, as others have
already discussed [8], the question which advantage is acceptable is of social
concern and not of technical interest.

The results of the numerical evaluation of the heuristic described in Algo-
rithm 1 are presented in Fig. 4. The advantage of the heuristics with/out thresh-
old are compared with the earlier computed boundary. A value of λ = 1.2 is
chosen and the number of suppliers is set to |S| = 16. We note that both heuris-
tics perform close to the computed bound, with the threshold variant providing
slightly less privacy. However, we observed that the threshold algorithm com-
municates on average with suppliers 3.29 per time period, which is far less than
the available 16 suppliers. Thus, aggregating small samples reduces the required
communication effort with minimal privacy trade-off.

5.3 Computation and Communication Complexity

The computation costs for distribution algorithms that implement the TD and
SD strategy are very low in comparison to the proposed cryptographic aggre-
gation protocols. The costs depend on a few, at most linear in the number of
suppliers, symmetric cipher operations per time period. This is because the TD
strategy only requires the generation of one secure random number per time
period. The non-optimized heuristic for the SD strategy requires at most two
random numbers per approached supplier.
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Fig. 4. Distinguishing advantage against both variants of the distribution algorithm.

Studying the communication patterns of both strategies, we observe that
unidirectional communication is sufficient. Yet, the communication complexity
varies for the TD and SD strategy. The TD strategy requires the same number
of messages as an unprotected SMA, namely one message per load sample. In
contrast, the SD strategy requires messages linear in the number of used suppliers
O(|S|). When using the presented threshold algorithm, on average the number
of required messages reduces significantly.

In summary, being dependant on only symmetric ciphers and unidirectional
communication, the computational and communication costs are very low when
compared with other proposed solutions.

6 Conclusion

In this paper, we have introduced privacy-preserving, randomized buying strate-
gies for an application in smart grids. Contrary to most approaches in the state
of the art, these strategies do not presume the cooperation of suppliers nor
expensive hardware at consumer side.
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Our approach employs a distributed market to buy energy from multiple
sources in order to protect the privacy of consumers. Our results indicate that
it is not possible to conceal the complete energy consumption of a consumer,
but at least it is feasible to conceal sensitive appliances, e.g., an alarm system.
Based upon a formal model, we propose the indistinguishability notion of λ-IND
that is capable of measuring the protection of such privacy sensitive appliances,
which is supported by an evaluation on real-world data sets. Moreover, we have
been able to show boundaries in the LSHG and under λ-IND in dependence on
the number of readings to be protected and the number of available suppliers.
Furthermore, we have developed an heuristic that approximates the SD strategy
with low computational and communication overhead.

However, the provided level of privacy protection is fairly low compared to
other approaches suggested so far. Even under the comparable weak definition of
λ-IND, an adversary achieves non-negligible advantage when observing a larger
number of samples. Privacy solutions in which consumers and utilities cooperate,
e.g., aggregation protocols, provide stronger privacy protection.

Further work will be a detailed analysis of attackers with access to the
information of multiple suppliers, e.g., colluding suppliers. Furthermore, hybrid
strategies as well as algorithms that utilize unfair distribution strategies might
be interesting candidates for a privacy analysis. Additionally, attacks against
diversification strategies through pricing strategies could be evaluated.
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A Constructing Minimal Distinguishable Distributions

To derive an optimal distribution strategy under λ-IND, multiple steps are nec-
essary. First, we discuss the idea of probability transports. Then, given an input
distribution and a new desired mean, we construct a new distribution with the
specified mean, which has the least statistical distance to the input distribution.
Finally, we compute the distinguishing advantage against this construction.

Probability Transport. A probability transport is the change of occurrence prob-
abilities of two values in a (discrete) distribution. Transporting probability y > 0
from xs to xd implies that the likelihood to observe xs decreases, while the like-
lihood to observe xd increases by y. Given two distributions P0 and P1 that are
separated by one transport, the change of mean Δμ = μ1 −μ0 can be computed
by Δμ = (xd − xs) · y, where y describes the transported probability, xs the
source, and xd the destination value.
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Optimal Construction. Given the definition of a transport and an input distri-
bution P0 with mean μ0, we show how to construct the least distinguishable
distribution P1 that has a mean of μ1 = λ · μ0. The best construction of P1

is by transporting probability from the smallest possible xs, where P0(xs) > 0
holds, to the largest possible xd = d1 = λ · d0. By this construction the mean
increases with the least increase in the statistical distance, which only depends
on the transported probability y. The accurate value y that is necessary for the
transport to achieve a mean μ1 is

y =
Δμ

xd − xs
=

μ1 − μ0

d1 − xs
.

Note that multiple transports might be required if P0(xs) does not provide suf-
ficient probability.

Distinguishing Advantage. Given this construction, we show how the first distri-
bution P0 should be chosen, such that construction produces a pair of distribu-
tions that is the least distinguishable pair of distributions for the means μ0 and
μ1. A transport from xs = 0 to xd = d1 provides the best and thus least increase
in the adversaries advantage while increasing the mean. Thus, we deduce that
distribution P0 needs sufficient probabilities P0(0) ≥ y for a transport from 0.
If this is the case then only one transport from 0 to d1 is necessary to construct
P1 from P0. A transport from some xs > 0 implies that a larger amount has to
be transported and therefore would result in a larger statistical distance.

Given two distributions constructed according the derived properties, we are
able to link the advantage with the privacy parameter λ and the number of
available suppliers |S|. The latter determines the required mean, when assum-
ing a fair distribution algorithm. With only one transport, we can deduce the
following distinguishing advantage:

Advλ-IND
SD,1 = y =

Δμ

xd − xs
=

μ1 − μ0

d1 − 0
=

d1/|S| − d0/|S|
d1

=
λ · d0 − d0

|S| · λ · d0
=

(λ − 1) · d0

|S| · λ · d0

=
λ − 1
|S| · λ

.
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114 N. Büscher et al.

20. Molina-Markham, A., Shenoy, P., Fu, K., Cecchet, E., Irwin, D.: Private memoirs
of a smart meter. In: Proceedings of the 2nd ACM Workshop on Embedded Sensing
Systems for Energy-Efficiency in Building, pp. 61–66. ACM (2010)

21. Neyman, J., Pearson, E.S.: On the problem of the most efficient tests of statistical
hypotheses. In: Kotz, S., Johnson, N. (eds.) Breakthroughs in Statistics. Springer
Series in Statistics, pp. 73–108 (1992)

22. Pinsker, M.S.: Information and information stability of random variables and
processes (1960)

23. Rial, A., Danezis, G.: Privacy-preserving smart metering. In: Proceedings of the
10th Annual ACM Workshop on Privacy in the Electronic Society, pp. 49–60. ACM
(2011)

24. Varodayan, D., Khisti, A.: Smart meter privacy using a rechargeable battery: min-
imizing the rate of information leakage. In: IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pp. 1932–1935 (2011)

25. Vaudenay, S.: On privacy models for RFID. In: Kurosawa, K. (ed.) ASIACRYPT
2007. LNCS, vol. 4833, pp. 68–87. Springer, Heidelberg (2007)

26. Wang, S., Cui, L., Que, J., Choi, D.-H., Jiang, X., Cheng, S., Xie, L.: A randomized
response model for privacy preserving smart metering. IEEE Trans. Smart Grid
3(3), 1317–1324 (2012)


	Consumer Privacy on Distributed Energy Markets
	1 Introduction
	2 Related Work
	3 A Formal Smart Grid Model
	3.1 Energy Market Model
	3.2 Attacker Model
	3.3 Privacy Metric -  Indistinguishability

	4 Buying Strategies
	4.1 Buying Strategy - Temporal Diversification (TD)
	4.2 Buying Strategy - Sample Diversification (SD)
	4.3 Heuristics for the SD Strategy

	5 Evaluation
	5.1 Privacy Sensitive Appliances
	5.2 -IND Evaluation of the SD Strategy
	5.3 Computation and Communication Complexity

	6 Conclusion
	A  Constructing Minimal Distinguishable Distributions
	References


