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Abstract. There is an increasing importance of problems regarding the
analysis of propositions of experts and clustering of information con-
tained in databases. Propositions of experts can be presented as formulas
of n-valued logic L,,. This paper is concerned with defining metrics and
degrees of uncertainty on formulas of n-valued logic. After metrics and
degrees of uncertainty (as well as their useful properties) have been estab-
lished, they are used for the cluster analysis of the sets of n-valued for-
mulas. Various clustering algorithms are performed and obtained results
are analyzed. Established methods can be further employed for experts
propositions analysis, clustering problems and pattern recognition.
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1 Introduction

The problem of ranking the statements of experts according to their informative-
ness and inducing the metric on the space of statements was introduced by Lbov
and Zagoruiko in the early 1980s [5,8,12]. Expert statements were written in the
form of logical formulas. Thus, the task of comparing and ranking the statements
of experts turned into a task of comparing and ranking the logical formulas. In
order to do this, the distance between the formulas and the uncertainty measure
of the formulas were introduced.

Lbov and Vikent’ev used the normalized symmetric difference of the formulas
models as a distance for the case of two-valued logic [3]. Then the model-theoretic
approach to the analysis of multivalued formulas was proposed [1,2,4]. Formulas
belong to the n-valued logic L, [10]. Using the theory of models for n-valued
formulas, the different versions of the distances and uncertainty measures were
introduced and the properties of those quantities were established [4]. Then,
to rank the statements of experts the clustering analysis of the finite sets of
formulas of n-valued logic was performed based on the introduced distances and
uncertainty measures. Clustering was performed for small n, and the utilized
distance had constant weights [9].
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In this paper we introduce a new distance, which generalizes the distances
used for multivalued logical formulas previously. The metric properties of the new
distance are proven and it is shown that there is a continuum of such distances.
A new uncertainty measure of multivalued logical formulas is also introduced.
Using those new quantities the clustering analysis of finite sets of the formulas
of n-valued logic L,, is performed. The results of various clustering algorithms
are obtained for different dimensions n of logic L.

2 Definitions and Notations

In this section we define n-valued logic L, and some useful model-theoretic
properties.

Definition 1. Propositional language L consists of the following propositional
symbols:

1.z, 9y, z, ... — propositional variables;

2. =, — — propositional logical connectives;

3. (, ) — auziliary symbols.

Definition 2. Formulas are the finite sequences of propositional symbols defined
the following way:

1. x, vy, z, ... — elementary formulas;

2. If ¢ and ¢ are formulas, then —p, o — 1 are formulas;

8. No other finite sequences of propositional symbols, except those mentioned
in 1, 2, are formulas.

Now we can introduce n-valued logic L,,.

Definition 3. N-valued logic Ly, is defined the following way:
M, = (Vp,—,—,{1}) — n-valued Lukasiewicz matriz (n € N,n > 2);

1 -2
Vv, = {O, o n T 1} — set of truth values;
n

— 1 PIEEES) nf
=:V, — V., — unary negation operation;
—: Vi, X V,, = V,, = binary implication operation;
{1} — selected value of truth.

Let us now introduce other logical connectives for the truth values of n-valued
logic L,,.

Definition 4. Logical connectives on V,, are defined from the input connectives:
-z =1—1x — negation;
x—y=min{l,1 — x4y} — implication;
xVy=(x—y) —y=max{x,y} — disjunction;
x Ay =-(-zV-y) =min{z,y} — conjunction.

We also formulate model-theoretic properties and notations that will be used
further in this paper.
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Definition 5. Let X' be the finite set of formulas of L,,. The set of propositional
variables S(p) used for writing a formula ¢ of n-valued logic L, is called the
support of a formula ¢.

S(X) = UpexS(p) is called the support of the set X.

Definition 6. A model M is a subset of attributed variables. P(S(X)) is the set
of all models.

We use the notation Pk if the formula ¢ has the value %, k=0,..,n—1
on a model M.

M((p%l) is the number of models on which formula @ has the value %

M(@%W%l) is the number of models on which ¢ has the value n% and

1
l
Y has the value .

Notes and Comments. The cardinality of the set of models P(S(X)) is

| P(S(2)) |=n!5)] (1)

The proof of this fact as well as the definition of the logical connectives on
models and other auxiliary statements are detailed in papers [1,4].

3 Model Distances and Uncertainty Measures

Let us show how to introduce a distance between formulas ¢ and v of n-valued
logic L,,. It is natural to assume, that the less the absolute difference between
the values of the formulas is, the closer those formulas are. So we will multiply
the number of models with the same absolute difference values by the coefficient
which considers the proximity of the values of the formulas. Those coefficients
used to be precisely the truth values of L,,, so the model distance py between
formulas ¢ and ¢ of n-valued logic L, used to be defined as the normalized
quantity go [9]:

1 n71n71|k_l|
Po(%l/f):m'zz n—1 ‘M(@nﬁlﬂﬁﬁ)- (2)

Ezample 1. Let n =5. Then po(p A, o V) = 0.4, po(p AP AXAw,p — w) =
0.2576.

E
I
=
I
=

The particularity of the quantity (2) is that its coefficients (weights) -~ Le=l] ” are

constant. This particularity does not allow to adjust the weight of the quantlty
M(p et ) (the number of models with the same absolute difference values)
to be properly included in the final distance pg.

The uncertainty measure Iy of formula ¢ of n-valued logic L, used to be
defined as follows [9]:

Dno1-i Ml o)
Iofg) = e 1) = 3 P e )
=0

n—1
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Ezample 2. Let n = 5. Then Io(p — ¢) = 0.2, Iy(¢ V¢ V x Vw) = 0.1416.

The quantity (3) possesses the same particularity as the quantity (2): its
weight = _1 ¢ is constant. This particularity also does not allow to adjust the
weight of the quantity M (<p i ) to be properly included in the final uncertainty

measure Io(p).

Let us modify the quantities above to get rid of the particularities associated
with the rigid structure of the weights. In order to do this, we substitute constant
weights of the quantities py and Iy for arbitrary acceptable weights.

Definition 7. The model distance between formulas ¢ and ¥ of n-valued logic
L., S(p)US®W) CS(X) on P(S(X)) is called the quantity

n—1ln—1

po ) = stz D D N Mlpa 1) @)

k=0 1=0
O=Xs<<.. <=1
n > 2.

Definition 8. The uncertainty measure I of formula ¢ of n-valued logic L,
S(p)US(y) C S(X) on P(S(X)) is called the quantity

)= X e~ %)

n—1

a;+ap 1, =1Vi=0,..., 5

Notes and Comments. We got a new continuum of distances, possessing the
properties of metrics.

In Definition 8 the coefficients « of the uncertainty measure I actually depend
on the coeflicients A of the model distance p because the uncertainty measure is
itself a distance. Moreover,

I(p) = p(ep, 1). (6)

So the given definition of the uncertainty measure for n-valued logic corresponds
with the earlier ideas of Lbov and Bloshitsin for two-valued logic [8].

Let us now establish some of the properties of the model distance (4) and
uncertainty measure (5). We start with the properties of the distance p intro-
duced in Definition 7.
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Theorem 1. For any formulas p,v,x of X the following assertions hold:

L0 p(p, ) <15

2. p(p, ) =0 & ¢ =

3. p(p, ) = p(¥, );

4. p(o, ) < plo,x) + p(X: )3

5. 0= 1,9 =1 = ple, ) = pler, ).

Proof. Each of the assertions will be treated separately.

1. The distance calculation formula involves all models with coefficients from
0 to 1. p(¢,¥) = 0 when ¢ = ¢ and p(¢,¢) = 1 when ¢ = —). ¢ and ¢ take
only the values 0 and 1 on the models involved. So 0 < p(p,v) < 1.

2. Necessity follows from the proof of the previous assertion. Sufficiency fol-
lows from that, given the definition of equivalence, if ¢ = v then the values of ¢
and 1 are the same on all models. Then for k = [ every M(@ﬁvqﬁﬁ) in the
formula p(¢, ) is multiplied by 0 hence p(p, %) = 0.

3. Symmetrical pairs M(gp k ,1/) ) #+ M(p
the same coefficient. So p(¢p, 1/)) = p(z/) ga)

4. Follows from the model-theoretic properties given in Sect.2 and the
paper [9].

5. Follows from the definition of equivalence of the two formulas [11]. O

1,1/1 ke ) are multiplied by

Notes and Comments. Assertions 2-4 are the properties of the metric. This
means we can define a metric on the equivalence classes of the formulas of L,,.

Let us now establish the properties of the uncertainty measure I introduced
in Definition 8.

Theorem 2. For any formulas ¢, of X the following assertions hold:
1.0<I(p) <1
2. 1(p) + I(=p) = 1;
3. I(p A1) = max{I(e), I(v)};
4- IV ) <min{I(e), 1(4)};
5. (e AY)+1(p V) 2 1(p) +1(¥).

Proof. Each of the assertions will be treated separately.

1. I(p) = p(p,1) hence 0 < I(p) <
2. I(p)+1(~p) = ap- ‘((“’))‘
_P(S()

n\S(E)I

M(%;) B
+ap_1- n|5(2)|+z o+ - ’L n\S(E)I -

=1

M(( sMw) i)
3. I(pAY) = Zaz 50| =

=0

= = M S" sy d)nél) M(sonil /\wniil) M(Sonil nil)
Z nlS(2)I + nlS(2)| i nlS()| ’

k=1
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& Mlpos Ay
I(¢) = Z%‘ZW
=0 k=0
n—2 n—1 ((pni1 i M( ni /\1/) ) M(@nil nil)
:Z;ai ; RIS +;o nIS(® T nIS® '
n—2 i M((p i ) n—2n—1 M( i /\1!)71)
e A ) = 1(8) = > > (o W+ZZ s 2
i=0 k=0 i=0 k=1
> 0.

So I(w A) = I(p). Similarly we have an evaluation for ¢: I(¢ A ) = I().
Hence I(¢ A 1/1) > masc{[( ), I(¢)}.
((pAY) o)
4. I(p V) = Z ozl I65)] =

n—2 (n—l ) M(Sonil
L
=0 k=1

\s<2)| + nlS(®)]
n—2
- Z IS(®)]

(pnil AN_i )

AO
=
:»
=

N

N———
L
=
= |
2

4
i

S Ml AP k)

Mo A LM A\ M ne)
=D RIS +2 n\5<2>| )]
=0 k=1 k:O
n—2 1 4,0 B n—2 1 w ; )
n 1 n—1
I(p)=I(pVy) = ZZO‘% |5(2)| ZZO‘Z IS >
=0 k=0 1=0 k=0
2l M(p_ AY_x)
> ) e 20

i=0 k=0
So I(¢ V) < I(p). Similarly we have an evaluation for ¢: I(¢ V ¢) < I(¢).

Hence I(p V ¢) < min{I(¢),I(¥)}.
5. Follows from the equalities used in the proof of assertions 3 and 4. O

4 Clustering the Formulas of N-valued Logic

Clustering analysis is quite important while working with databases, statements
of experts or performing statistical modeling [6]. For the sets of statements we
know only the distances between the formulas and uncertainty measures of for-
mulas. So two algorithms based on the distances were chosen for the clustering
analysis — the hierarchic algorithm and the k-means algorithm. Those algorithms
were adapted to work with multivalued formulas [7]. The complexity of comput-
ing the distance is exponential.

For the experiments below there was created a knowledge base, consisting of
300 multivalued formulas. The finite subsets of those formulas were randomly
picked up for the clustering analysis. After that the value n for the logic L,, was
chosen, the clustering algorithm was picked up and the weights \ were entered.
Then the clustering analysis was performed utilizing either hierarchic algorithm
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or k-means algorithm. Both algorithms are based on new model distances and
uncertainty measures introduced in Definitions 7 and 8 respectively. The results
of the performed clusterings are presented in tables.

4.1 Hierarchic Algorithm, n = 5.

Let n = 5. Consider the set test 1, which consists of 8 formulas of five-valued
logic Ls: o1 =2 — y, p2 = ~(z = y), p3 = (xV2) =y, 1 = ~((xzAy)Vz) — w,
ps=y— (xN2), 06 =(TyV(z—2)), pr=2—(xVy), ps =((zAy) — .

We perform clustering analysis of the set test 1 using hierarchic algorithm.
We choose the following weights: \g = 0,A; = i, Ay = %, A3 = %7 A =1
(the standard weights). Based on the distances matrix the minimal distance is
pa6 = 0,0510, so the first cluster is 4 . After six more iterations the results of
the performed clustering are presented in Table 1.

Table 1. Hierarchic algorithm, test 1, n =5

Iteration | A Clusters

0,0000 | @1, w2, @3, Pa, Y6, P5, 7, P8
0,0508 | 1, Y2, 3, P46, Y5, P7, P8
0,1000 | ¢1,3, @2, 4,6, Y5, P7, P8
0,1376 | 1,3, ©2, P4,6,7, ¥5, P8
0,1376 | ©1,3, ¥2, 4,6, P58

0,2092 | 2, ©5,8, ¥1,3,4,6,7

0,2092 | 2, ©1,3,4,5,6,7,8

DU |W N =] O

To stop our clustering algorithm we use the quantity A — the maximal value
of uncertainty measure among all elements of every cluster. For instance, if we
set A = 0,1500, then the algorithm stops after fourth iteration and gives 4
clusters as a result: @13, 2, Y46, Pss. We set A = 0,2100, so the algorithm stops
after sixth iteration giving 2 clusters as a result: ¢, 1 .34.56,7,8. If we do not
stop the algorithm, then after seven iterations all 8 formulas merge into a single
cluster.

4.2 K-means Algorithm, n = 5.

Let n = 5. Consider the set test 1, which consists of 8 formulas of five-valued
logic Ls: o1 =2 = y, p2 = ~(z — y), 3 = (xV2) =y, pa = ~((zAYy)Vz) — w,
ps =y — (®N2), p6=(yV(z—2), pr=2—(xVy), ps =((zAy) - 2.

We perform clustering analysis of the set test 1 using k-means algorithm.
Suppose we need 3 clusters as a result. We choose the following weights: Ay =
0,\ = i, Ao = %,)\3 = %,)\4 = 1. Based on the matrix of distances we choose
3 centres: o, @4, 5 (the centres are approximately equidistant from each other
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and the sum of distances between them is maximal). The remaining formulas
are distributed into the source clusters according to those centres. This gives
us the following clusters: @2, ¢1,3.4,6,7, ¥5,8. Then the algorithm calculates the
centres of mass again and redistributes the formulas according to the renewed
centres. After this we have the following clusters: @2, ¢1,3.4,6,7, ¥5,8. As we see,
the clusters didn’t change — this means the algorithm stops. The results of the
performed clustering are presented in Table 2.

Table 2. K-means algorithm, test 1, n =5

Iteration | Centres | Clusters

1 D2, P4, P5 | P2,91,3,4,6,7, £5,8
2 ©2,P3, 95 | P2,01,3,4,6,7, 95,8

The algorithm stops after second iteration giving 3 clusters as a result:
©2,$1,3,4,6,75 5,8+

The results obtained after the clustering of the set test 1 utilizing the algo-
rithms based on new distances and uncertainty measures are different from the
results obtained after the clustering of the same set using the distances and
uncertainty measures with rigid weights in [9]. This demonstrates the feasibility
of using different distances in clustering algorithms.

4.3 Hierarchic Algorithm, n = 9.

Let n = 9. Consider the set test 2, which consists of 10 formulas of nine-valued
logic Lg: o1 = =(2VYy), p2 = (x = y) = w, p3 = =((z — y)Az2), pa = (xV2) Ay,
g5 = 2 — (2Vy), 9o = (~yV (& = 2)), or = WA(x — 2), g5 = (yV'2) = (zVw),
P9 =2z— (xAw), p10 = ~(z = y).

We perform clustering analysis of the set test 2 using hierarchic algorithm.
We choose the following weights: A\g = 0, \; = %, Ao = %, A3 = 1—10, Ay = %, As =
13—0, A = %, A7 = %, Ag = 1. The stopping criterion is A = 0,2000. The results of
the performed clustering are presented in Table 3.

Table 3. Hierarchic algorithm, test 2, n =9

Iteration | A Clusters

0,0000 | @1, P2, P3, Pa, P5, 96, LT, P8, P9, P10
0,0073 | 1, 02,3, P4, 5, 6, P7, P8, P9, P10
0,0173 | 2,3, 4, P5,$1,6,7, P8, P9, P10
0,0952 | p2 3, @4, 5, P1,6,7, ¥8,9, P10

0,0952 | 2.3, ¥5, ©1,4,6,7, ¥8,9, P10

0,1907 | 2,3, 5, P1,4,6,7, ¥8,9,10

0,1907 | v2,3,5, ¥1,4,6,7, ¥8,9,10

DO |W N =] O
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The algorithm stops after sixth iteration giving 3 clusters as a result:
$2,3,554$1,4,6,75 ¥8,9,10-

4.4 K-means Algorithm, n = 7.

Let n = 7. Consider the set test 3, which consists of 15 formulas of seven-
valued logic L7: p1 =y — (x A 2), pa = 7z = w(@ Ay), g3 =z — (x Vy),
e = ((xAYy)V2) = w, o5 =2(xAz) =y 06 = (Y V(2 — 2), 07 =
z—=(@Vy), g8 =((zAy) = 2,09 =7z =z, 010 =z ANy V2) - w,
11 =y = (@Aw) = 2, P12 =YV (z — 2), P13 = 2A (T = Y), 14 = (TN2) > w,
p15 = (T Vw) —y.

We perform clustering analysis of the set test 3 using k-means algorithm.
Suppose we need 4 clusters as a result. We choose the following weights: A\g =
0,M = 5, h0 = 20 = 3,01 = 2,05 = 2,X\¢ = 1. We also select the future
centres of the clusters: s, 5, 7, 9. During every iteration of the algorithm
the formulas are distributed into the source clusters (according to the centres),
then the centres of mass are calculated, and the resulting clusters are updated.
The results of the performed clustering are presented in Table 4.

Table 4. K-means algorithm, test 3, n =7

Iteration | Centres Clusters

1 P2, 95, 07,09 | P1,2,3,8,10, 5,14, 6,7, P4,9,11,12
2 P8, P5,P7, P9 | P2,3,8,10, ¥5,145 ¥6,7, $1,4,9,11,12
3 ©8, 05, P7, P4 | ©2,3,8,10, 5,14, 6,7, P1,4,9,11,12

The algorithm stops after third iteration giving 4 clusters as a result:
%2,3,8,10, ¥5,145 6,7, $1,4,9,11,12-

5 Conclusions

In this paper, a continuum of new distances and uncertainty measures is offered
for logical multivalued formulas. The new quantities are generalizations of the
quantities that were used previously. Theorems 1 and 2 which respectively estab-
lish the properties of the new model distance and uncertainty measure are
proven. Those new quantities can be used to analyse knowledge bases, to create
expert systems, or to construct logical decision functions for the problems of
recognition.

Based on new quantities the clustering analysis of multivalued logical formu-
las is performed. The formulas belong to the n-valued logic L,,. The software
package for clustering analysis of sets of logical formulas, using the hierarchical
and k-means algorithms is developed. The number of formulas, the dimension
of logic L, and the values of weights were chosen differently. The results are
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obtained for n = 5,;n = 7,n = 9 (and more). A comparison of the clustering
results with the results of previous works for the case n = 5 is also performed.

In the future we plan to use the new quantities for the analysis of the large

sets of statements of experts. For this purpose the coefficient matrix composed of
weights Ajz_;; will be used. This approach will explore the relationship between
the selection of the optimal clustering and the properties of the coefficient matrix
and multivalued logic.
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