
Combining Ontologies and IFML Models Regarding
the GUIs of Rich Internet Applications

Naziha Laaz(✉) and Samir Mbarki(✉)

MISC Laboratory, Faculty of Science Kenitra, Ibn Tofail University, Kenitra, Morocco
laaznaziha@gmail.com, mbarkisamir@hotmail.com

Abstract. Rich Internet Applications (RIAs) is a new kind of web applications.
These applications provide more effective graphical components and promote the
fusion of traditional applications and client-server applications. They also furnish
convivial and interactive interfaces similar to desktop applications. However
RIAs designing and implementation are time and cost consuming. To meet RIAs
requirements, we propose a new approach based on Model Driven Engineering
methodology to generate GUIs from abstract models. The structural and dynamic
aspects of GUIs are modeled to represent complete RIA interfaces. Our model
driven development process is based on Ontology and IFML; The logical descrip‐
tion of UI components is presented by the ontology domain and their interactions
are captured by IFML. The proposed process takes as input abstract models. Then,
we apply transformations on these models to produce a code representing Flex
rich interfaces. Our approach is illustrated by an example of an e-commerce web
site interface.

Keywords: Ontology Definition Metamodel (ODM) · Ontologies · Interaction
Flow Modeling Language (IFML) · Platform Independent Model (PIM) · Model
Driven Engineering (MDE) · Graphical User Interface (GUI) · Rich Internet
Application (RIA)

1 Introduction

Last decade and half ago, systems have been equipped with sophisticated GUIs, and
their complexity increases in time. Powerful interaction functionalities are implemented
on top of variety of technologies and platforms whose boundaries are becoming less
distinguishable: client-server applications, Web applications, rich Internet applications,
mobile applications. Our proposal is focused on GUIs of RIAs; these applications have
combined the richness and interactivity of desktop interfaces into the web distribution
model.

However, software development needs to be more abstract with developed practices
[1]. So, researches in software development have focused on abstract models of user
interfaces and new modeling language standards have appeared. They have become
more powerful in expressing requirements at a high abstraction level. Indeed, the Object
Management Group (OMG) launched an effort known as the Model Driven Architecture
[2] to align with these changes in technology, and raise the level of abstraction of

© Springer International Publishing Switzerland 2016
C. Dichev and G. Agre (Eds.): AIMSA 2016, LNAI 9883, pp. 226–236, 2016.
DOI: 10.1007/978-3-319-44748-3_22



physical systems. Consequently, many solutions have been emerged to describe and
generate graphical interfaces; most of them respect MDA approach. In parallel, many
ideas have been proposed which are based on ontologies by integrating it in the descrip‐
tion and generation of graphical interfaces. In order to make these ideas functional and
evolve to better ontology-driven development practices using, OMG took the initiative
to define the Ontology Definition Metamodel [3] by marrying ontologies with meta‐
modeling. Most of works based on ODM are focused on the database and business layers
[4], while some works was done to generate presentation form of GUIs. In the other
hand, IFML was recently defined to describe the elements and behavior of user interfaces
in order to generate code implementation of these interfaces [5].

To meet these requirements, we present a new MDE approach combining the two
new standards IFML and ODM to benefit from each other in order to generate rich user
interfaces of RIA platform. We used known frameworks and technologies of model-
driven engineering, such as Eclipse Modeling Framework (EMF) for Meta Models,
Query View Transformation (QVT) for model transformations and Acceleo for code
generation. The approach allows to quickly and efficiently generate a RIA focusing on
the graphical aspect of the application. It can be replicated for different target technol‐
ogies and platforms.

The rest of this paper is organized as follows: Sect. 2 describes our contribution; we
have two sub-sections in this part: The formal ontology of GUIs respecting the syntax
OWL 2.0 and IFML. Section 3 is dedicated to the related work. In Sect. 4, we explain
the process of Ontology-Driven UIs; it is divided into tree sub-parts: The definition of
PIM models, PIM to PSM transformation and code generation from PSM model. Finally,
the last part will present a conclusion indicating the status of the objectives and
describing future work.

2 Methodology and Contribution

Nowadays, the GUIs are deployed in heterogeneous and interactive spaces: They are
spread over a different kind of platforms. This allows thinking of adapting new ways of
developing the presentation layer of the application. In this work, we present an approach
based on MDA, which proposes a solution for the GUIs abstract representation and their
automatic generation to a specific platform.

Since, our ultimate goal is to raise the abstraction level of the GUIs definition that
include the structural and dynamic aspects. These two aspects cover all information
related to the nature of graphical components, their properties and interactions. Instead,
we have developed a process to automatically map from a high-level representation to
a lower-level language. The proposed approach specifies two transformations during the
development cycle, models becoming more and more concrete until obtaining the code
by successive transformations, We have two PIM; two models of the most abstract level,
are transformed into a PSM, then a second transformation is established to generate code
from the specific model to the Flex platform. After a study on the various GUIs PIM,
we detected that the difficult resides in the choice of abstract input models. The two
chosen PIM represent two specifications proposed by the OMG. The first PIM, ODM,

Combining Ontologies and IFML Models Regarding the GUIs of RIAs 227



is the metamodel that defines ontologies which supports several different ontology
representation systems. With this metamodel, we developed our ontology of graphical
components. The approach exploits the new language IFML as a second PIM by
extending the graphical part of the MetaModel to fit the RIAs’ needs. We choose IFML
because it allows obtaining all information of interactions between components repre‐
sented in the GUI ontology.

We established an analysis to represent different aspects of GUIs with these two
specifications as presented in the following sub sections.

2.1 GUIs Ontology Respecting OWL2.0 Syntax

We present a semantic approach to the problem by defining ontology for graphical user
interfaces. In this section, we show how the GUI domain concepts are presented in OWL
2.0 using OWL DL. The GUI ontology is formed by three concepts: Declarations,
Axioms and Assertions. The basic elements of user interfaces domain are expressed by
Declarations. There are five declaration types: Classes, ObjectProperty, DataProperty,
DataTypes and Individuals. The GUI contains elements divided into: containers and
controls; The containers provide a space where controls can be located, and the controls
are the elements that display content or accept user input in interfaces (buttons, fields,
lists e.g.). These two concepts are represented as classes to group items with similar
characteristics resources (buttons, Menus, Field, Window e.g.), and individuals repre‐
sent instances of classes.

Object and data properties can be used to represent relationships in the domain [6].
The relationship between individuals of the two classes is represented by ObjectProp‐
erty, we use this property to link a container with controls or a container with another
container. For example, we have defined an objectProperty named “composedOf” to
say that the class Menu consists of several MenuItem classes, or, to define the relation‐
ship between the two classes List and ListItem, etc. Howerver, datatypes are sets of
literals such as strings or integers. All these declarations are grouped by axioms, in order
to form complex descriptions from the basic entities.

There are three kinds of axioms: Class Axioms, ObjectProperty Axioms and Data‐
Property Axioms. Each axiom is associated with an expression. Properties Expressions
are characterized by a domain and range; a domain is represented by classes and ranges
can be classes or dataTypes. However, there are other types of axioms linked to Class‐
Expression. We consider two classes: Control and List. Control is more general than
List, which means that every time we know that an individual is a list, this individual
must be a control. In OWL 2, this is done by a so-called axiom subClassOf, that has List
as subClass Expression and Control as superClass Expression.

To distinguish between the different types of containers and controls, we defined
DataProperties Axioms which have Boolean datatype as Range. The sets of this data
Properties are represented in Table 1. For example, we chose isDefault for container
when it is a default container such as homepage or welcome interface. In addition to this
data properties that give semantics to widgets, there are another dataproperties that
define several characteristics such as a geometry (x, y, width, height) and “hasText”,
“hasname”; text and name attaching to widgets.

228 N. Laaz and S. Mbarki



Table 1. Nature of GUI Concepts

GUI concept DataProperties Description
List isSimple Scrolls elements vertically, on a single column.

isCombo list items vertically by displaying only the selected item.
Field isStatic the components that display text

isEntry the controls that allow the user to enter text
Button isPush graphical control element that provides the user a simple

way to trigger an event
isRadio Represents a selection of one item from a list of items.

Occur only in groups. Selecting one radio button
deselects the others. 

isCheck Possibility of multiple selections
Window isModal Designed to block any user interaction in all other

previously active containers.
isDefault A home page or welcome default container.
isXOR the Container comprising child or containers that are

displayed alternatively
isLandmark container is reachable from any other element of the user

interface without having interactions with other
containers

We can add some subPropertyOf Axioms by attaching them with dataProperty and
their subProperty Expressions (subPropertyOf Axiom has “hasSize” as dataProperty and
“width”, “height” as subProperties). After detailed declarations and axioms, it remains
to talk about the role of the assertions in the concepts definition of GUI domain. The
assertions can be Class Assertions, ObjectProperty Assertions, or DataProperty Asser‐
tions. The assertions are intended to clarify how individuals relate to other individuals.
In the section reserved to the ontology-driven UI development process, we will present
the logic model of GUIs as result of this analysis, respecting the ODM metamodel that
meets the syntax OWL2.0.

2.2 Extending Interaction Flow Modeling Language

The new OMG Interaction Flow Modeling Language standard (IFML) is defined in
March 2014 [7]. IFML is a platform independent model (PIM) that can be used to express
interaction design decisions independently of the implementation platform. It allows to
capture the user interaction and content of the front-end (user interface) and model the
control behavior of that system’s user interface.

In the approach presented in this paper, we used IFML as PIM-level interaction flow
modeling, it brings several benefits to user interfaces development process of web appli‐
cations. It permits the formal specification of the different perspectives of the user inter‐
face such as interface composition, interaction and navigation options. This work uses
one of four technical artifacts defined by the present specification [5], which is the IFML
metamodel.

Combining Ontologies and IFML Models Regarding the GUIs of RIAs 229



IFML metamodel is composed of three packages: The Core package, the Extensions
package and the DataTypes package. The Core package contains the concepts that build
up the interaction infrastructure of the language in terms of InteractionFlowElements,
InteractionFlows, and Parameters. The Extension package extends the concepts defined
by Core package by concrete concepts with more complex behaviors. While The Data‐
Types package contains the basic data types defining in the UML metamodel, and
specializes a number of UML metaclasses as the basis for IFML metaclasses, and
presumes that the IFML DomainModel is represented in UML. After studying the
various packages of IFML metamodel, we noted that the part defining the graphical
application components and their characteristics did not provide sufficient information.
IFML is extensible, in fact, we thought to expand it to meet the needs of RIA develop‐
ment and implementation of overall output platforms.

We have completed the IFML metamodel by defining the GUI ontology. In addition,
we modify the core package of the metamodel. So, we added Ereference to ViewCom‐
ponent metaclass which has isContainment() as a method because ViewComponent can
be composed of viewcomponents like a form composed of List As seen in (Fig. 1).

Fig. 1. IFML extension.

3 Related Work

Ontologies provide a formal representation of knowledge and the relationships between
concepts [8]. Recently, a number of use cases have been proposed that employ ontologies
for modeling user interfaces and their components, Examples are automatic generation
of explanations for user interfaces, adaptation of user interfaces for different needs and
contexts, and integration of user interface components [9].

Those use cases require a strongly formalized ontology of the domain of user inter‐
faces and interactions. In this regard, many works have been developed. In [10], the
authors discuss the differences between the UI description languages and formal ontol‐
ogies and how they can benefit from each other. Their goal is to define a formal ontology

230 N. Laaz and S. Mbarki



of user interfaces and interactions domain. The formal ontology will not replace user
interface description languages, but will be a valuable enhancement.

With the appearance of MDE, great research effort has been dedicated to this meth‐
odology marrying it with ontology. Lot of them are focused on conceptual models. The
most relevant are: [11–15]. In the other hand, few UI generation approaches based on
MDE have been defined in recent years. In [16], the authors describe a method for rich
UI development for data-intensive Web applications based on OWL2 ontologies, which
applies model-driven engineering to derive a user interface from the domain ontology,
incorporating modern rich components for Web-based interfaces. The model-driven
process proposed is supported by the TwoUse Toolkit [19] for OWL2 authoring and
management. In our approach we also use ontologies as domain model, but we combine
it with IFML model to derive a complete presentation of Web UIs.

However, [17] presents an approach to the problem of porting graphical user inter‐
faces by aligning representations of user interfaces in different technologies to an
abstract semantic web model for graphical user interfaces. Our proposal has similarities
with this approach in sense that we also assemble ontology concepts to give a high
abstract representation of UIs.

4 The Model Driven Development Process

We present an approach deriving User Interface (UI) of Rich Internet Applications from
the combination of OWL2 ontology and IFML to automatically generate UI according
to models specifications. Semantics of UI elements and their characteristics can be
induced from the GUIs ontology’s domain. However, IFML is responsible for capturing
the interactions and actions related to concepts defined in the logical model of UIs. The
model-driven process proposed was implemented using MDE tools of Eclipse Modeling
Project.

This process is projected on a case study shown in (Fig. 2). It starts with abstract
Models, in order to produce a flex Model as a target model. The choice of RIA as desti‐
nation was not arbitrary because the design and implantation of GUI for RIAs is known
for its complexity and difficulty in using existing tools. The chosen case study represents
an interface containing a form for billing in e-commerce website. We will see later, how

Fig. 2. Case study: billing form.

Combining Ontologies and IFML Models Regarding the GUIs of RIAs 231



the elements composing this interface are represented with their various types of inter‐
action. The process is divided into three steps: The definition of PIM Models, the defi‐
nition of PSM Model and M2M Transformation. Figure 3 shows the Model-driven
process combining ODM and IFML to generate UIs of Rich Internet Applications.

Fig. 3. Process overview.

4.1 PIM Models

In a first step, we define two PIM models: Logic model respecting the syntax of ODM
metamodel, and Interaction model deriving from IFML metamodel. The two metamo‐
dels are defined with EMF (Eclipse Modeling Framework) in ecore format.

To define the logic model, we applied the analysis detailed in Sect. 2 to our case
study. As Depicted in (Fig. 2). The interface comprises two containers; Window and
Form which contain controls; six static fields, seven entry fields, two lists and a submit
button. The representation of these elements in the logic model is defined as follows:
containers and controls are represented by Individuals instanced from owl: Class distin‐
guished by their data Properties as an example see (Fig. 4).

The second abstract model respects the syntax of IFML metamodel. We analyzed
the IFML metamodel to select the required packages for an independent intermediate
representation of interactions related to UIs. In our process, we will focus on the two
packages: Core and extensions. These packages represent abstractly the structure of user
interfaces, and dependencies between their elements in terms of interactions.

According to IFML metamodel, An IFML model is the top-level container of all
the rest of the model elements. It contains an InteractionFlowModel, which contains
all the elements of the user view of the application represented by the
InteractionFlowModelElement. InteractionFlowModelElement has seven direct
subtypes: InteractionFlowElement, InteractionFlow, Expression, The elements of an
IFML model that are visible at the user interface level are called ViewElements,
which are specialized in ViewContainers and ViewComponents. ViewContainers like
windows, menus are containers of other ViewContainers or ViewComponents, while
ViewComponents are elements of the interface that display content or accept input
from the user. The extension package includes concrete examples of

232 N. Laaz and S. Mbarki



ViewComponents such as List, Details and Form, and ViewComponentParts such as
Fields and Slots [5].

In the example shown in (Fig. 2), a view container is tagged as «window» and marked
as Default. The Form is composed of OnSubmit Event. The effect is represented by a
navigation flow connecting the event associated with the OnSubmit Event. The navi‐
gation flow expresses a change of state of the user interface. The occurrence of the event
causes a transition from a Form (source Interaction Flow element) to other windows
(targets Interaction Flow elements). We associated the form with two Expressions; an
activation Expression that denotes the condition that must be satisfied by the current
interaction context for the event that triggers an action to become active and Interaction
Flow Expression that determines which InteractionFlow is followed after an event
occurrence. These expressions are expressed by javascript Language. The model
instance is an abstract form to our case study respecting the IFML metamodel syntax [5].
Thus, with this two ODM and IFML models, we can easily have a UI target model in
multiple platform as desktop, web or mobile.

4.2 Model to Model Transformation (PIM 2 PSM)

Once the Meta Modeling phase established, we defined the transformation rules. For
this work, we used the QVT-Operational mappings language implemented by Eclipse
modeling Framework [18]. The PIM, the most abstract level model is transformed into
PSM Model. Since we have defined PIM models and PSM Metamodel for RIA, we
define the Model To Model transformation using the QVTo standard respecting a defined
algorithm. The entry metamodels are ODM and IFML metamdels, and the target one is
Flex metamodel.

Fig. 4. Defining submit button with ODM.

Combining Ontologies and IFML Models Regarding the GUIs of RIAs 233



The entry point of the transformation is the main method. This method makes the
correspondence between all elements of the IFML and Ontology models of the input
models and the elements of type Flex output model.

For instance, each NamedIndividual which is an instance of “Window” class that
has a dataProperty “isDefault”, it would be mapped to BorderContainer. Form is
obtained from “Form” Individual, and the NamedIndividuals of “Button” and “Field”
and “List” classes, are mapped as Button, Text Input and List in Flex model. The data‐
properties (width, height, name, size, etc.) are mapped to properties figured in the Flex
metaclasses. The (Fig. 5) below shows an excerpt of the Transformation program:

Fig. 5. Query view transformation code excerpt.

4.3 PSM Model and Code Generation

This step describes the gradual refinement from a higher to a lower level of abstraction
[19]. By applying the transformation rules mentioned before, each element figured in
ODM and IFML models will be transformed to an element of Flex metamodel. It
includes the generation of the target model in compliance with Flex metamodel. This
model contains all the elements, properties, interactions collected from the two PIM
models. This file is used to produce the necessary code by applying M2T transformation.

5 Conclusion and Future Work

With this paper, we have given a new approach MDE assembling two important abstract
specifications defined by the OMG to derive UIs Rich Internet Apps. Our approach is
based on the assumption that a UI for rich internet applications can be induced from
IFML and ontologies. IFML allows representing abstractly the structure of user inter‐
faces, and dependencies between its elements in terms of interactions. However, ODM

234 N. Laaz and S. Mbarki



captures presentation features related to the UI and represent the basic concepts consti‐
tuting a user interface. The major contribution in the proposed approach is the addition
of the extension part to IFML and the definition of the GUI ontology that describe
efficiently the graphical components of the application. Our challenge is to generate
RIAs by using this Model Driven method without having to know all the technical
specification of the execution platform.

Future works will cover the implementation of more refined code generator. Also,
to obtain an enhanced result, this work can be extended to supplementary platforms like
mobile Plateform starting from the same input models. Moreover, we can consider inte‐
grating other frameworks like JavaFX and GWT for Rich Internet Application.

References

1. Schmidt, D.C.: Guest editor’s introduction: model-driven engineering. Computer 39(2),
25–31 (2006)

2. OMG, MDA. Guide Version 1.0. 1. Object Management Group (2003)
3. Object Management Group: Ontology Definition Metamodel. Version 1.0, OMG (2009).

http://www.omg.org/spec/ODM/1.0/
4. Paulheim, H., Probst, F.: A formal ontology on user interfaces yet another user interface

description language. In: 2nd Workshop on Semantic Models for Adaptive Interactive
Systems (SEMAIS) (2011)

5. Object Management Group: Interaction Flow Modeling Language. Version 1.0, IFML (2015).
http://www.omg.org/spec/IFML/1.0/

6. OWL 2 Web Ontology Language Structural Specification and Functional-Style Syntax W3C
Editor’s Draft 14 September 2009 This version: http://www.w3.org/2007/OWL/draft/ED-
owl2-syntax-20090914/

7. Brambilla, M., Fraternali, P.: Interaction Flow Modeling Language: Model-driven UI
Engineering of Web and Mobile Apps with IFML. Morgan Kaufmann, San Francisco (2014)

8. Pan, J.Z., Staab, S., Aßmann, U., Ebert, J., Zhao, Y.: Ontology-Driven Software
Development. Springer Science & Business Media, Heidelberg (2012)

9. Paulheim, H., Probst, F.: Ontology-enhanced user interfaces: a survey. Semantic-Enabled
Advancements on the Web: Applications Across Industries: Applications Across Industries,
p. 214 (2012)

10. Paulheim, H.: Ontology-Based Application Integration. Springer Science & Business Media,
New York (2011)

11. Gaševic, D., Djuric, D., Devedžic, V.: Model Driven Engineering and Ontology
Development. Springer Science & Business Media, Heidelberg (2009)

12. Parreiras, F.S., Staab, S., Winter, A.: TwoUse: Integrating UML models and OWL ontologies.
Inst. für Informatik (2007)

13. Brockmans, S., Haase, P., Hitzler, P., Studer, R.: A Metamodel and UML profile for rule-
extended OWL DL ontologies. Springer, Heidelberg (2006)

14. Bumans, G.: Mapping between Relational Databases and OWL Ontologies: an example.
Comput. Sci. Inf. Technol. 756, 99–117 (2010). Scientific Papers, University of Latvia

15. Parreiras, F.S., Staab, S.: Using ontologies with UML class-based modeling: the TwoUse
approach. Data Knowl. Eng. 69(11), 1194–1207 (2010)

16. Canadas, J., Palma, J., Túnez, S.: Model-Driven Rich User Interface Generation from
Ontologies for Data-Intensive Web Applications (2011)

Combining Ontologies and IFML Models Regarding the GUIs of RIAs 235

http://www.omg.org/spec/ODM/1.0/
http://www.omg.org/spec/IFML/1.0/
http://www.w3.org/2007/OWL/draft/ED-owl2-syntax-20090914/
http://www.w3.org/2007/OWL/draft/ED-owl2-syntax-20090914/


17. Wysota, W.: Porting graphical user interfaces through ontology alignment. In: Ryżko, D.,
Rybiński, H., Gawrysiak, P., Kryszkiewicz, M. (eds.) Emerging Intelligent Technologies in
Industry. SCI, vol. 369, pp. 91–104. Springer, Heidelberg (2011)

18. OMG, QVT. Meta Object Facility 2.0, Query/View/Transformation Specification, OMG
(2008). http://www.omg.org/spec/QVT/1.0/PDF

19. Wagner, C.: Model-Driven Software Migration: A Methodology: Reengineering, Recovery
and Modernization of Legacy Systems. Springer, Wiesbaden (2014)

236 N. Laaz and S. Mbarki

http://www.omg.org/spec/QVT/1.0/PDF

	Combining Ontologies and IFML Models Regarding the GUIs of Rich Internet Applications
	Abstract
	1 Introduction
	2 Methodology and Contribution
	2.1 GUIs Ontology Respecting OWL2.0 Syntax
	2.2 Extending Interaction Flow Modeling Language

	3 Related Work
	4 The Model Driven Development Process
	4.1 PIM Models
	4.2 Model to Model Transformation (PIM 2 PSM)
	4.3 PSM Model and Code Generation

	5 Conclusion and Future Work
	References


