
Chapter 4
Fully Scalable Parallel Hardware
for Wheeled Robot Navigation Using
Fuzzy Control

Nadia Nedjah, Paulo Renato S.S. Sandres and Luiza de Macedo Mourelle

Process control is one of the many applications that took advantage of the fuzzy
logic. Controllers are usually embedded into the controller device. This chapter aims
at presenting the development of a reconfigurable efficient architecture for fuzzy
controllers, suitable for embedding. The architecture is parameterizable so it allows
the setup and configuration of the controller, so it can be used for various problem
applications. An application of fuzzy controllers was implemented and its cost and
performance have been evaluated.

4.1 Introduction

Computational systemmodeling is full of ambiguous situations, wherein the designer
cannot decide, with precision, what should be the outcome of the system. In [7],
L. Zadeh introduced for the first time the concept of fuzziness as opposed to crispiness
in data sets.

Fuzzy logic and approximate reasoning [6] can be used in system modeling and
control as well as data clustering and prediction, to name only few appropriate appli-
cations. Furthermore, they can be applied to any discipline such as finance, image

N. Nedjah (B) · L. de Macedo Mourelle
Department of Electronics Engineering and Telecommunications, State University
of Rio de Janeiro, Rio de Janeiro, Brazil
e-mail: nadia@eng.uerj.br

L. de Macedo Mourelle
e-mail: ldmm@eng.uerj.br

P.R.S.S. Sandres
Department of Systems Engineering and Computation, State University of Rio
de Janeiro, Rio de Janeiro, Brazil
e-mail: paulo.sandres@eng.uerj.br

© Springer International Publishing Switzerland 2017
N. Nedjah et al. (eds.), Designing with Computational Intelligence,
Studies in Computational Intelligence 664,
DOI 10.1007/978-3-319-44735-3_4

69

70 N. Nedjah et al.

processing, temperature and pressure control, robot control, among many others.
The fuzzy logic is a subject of great interest in scientific circles, but it is still not
commonly used in industry, as it should be. Eventually, we found some literature
containing practical applications that is being currently used in industry [3, 4].

There are many related works that implemented a fuzzy controller on a FPGA, but
most of thempresent controller designs that are only suitable for a specific application
[2, 4]. Mainly, the designs do not use 32-bit floating-point data. The floating-point
data representation is crucial for the sensibility of the controller design. In contrast,
all the required computation in the proposed controller are performed by a simple
precision floating-point coprocessor.

The purpose of the development of a reconfigurable hardware of a shell fuzzy
controller, which can include any number of inputs and outputs as well as any number
of rules, is the possibility of creating a device that can be used more widely and
perhaps spread the concept of fuzzy logic in the industrial final products.

This paper is divided into three sections. First, in Sect. 4.2, we introduce briefly
some concepts of fuzzy controller, which will be useful to follow the description
of the proposed architecture. Then, in Sect. 4.4, we describe thoroughly, the macro-
architecture of the fuzzy controller developed. After that, in Sect. 4.5, we give details
about the main components included in the macro-architecture. Subsequently, in
Sect. 4.3, we present the fuzzy model used to control the navigational process of a
wheeled robot. Then, in Sect. 4.6, we show, via the project of a the fuzzy controller
presented, that the proposed architecture is functionally operational and promising
in terms of cost and performance. Finally, in Sect. 4.7, we draw some conclusions
and point out some new direction for the work in progress.

4.2 Fuzzy Controlllers

Fuzzy control, which directly uses fuzzy rules, is the most important and common
application of the fuzzy theory [5]. Using a procedure originated by E. Mamdani [3],
three steps are followed to design a fuzzy controlled machine:

1. fuzzification or encoding: This step in the fuzzy controller is responsible of encod-
ing the crisp measured values of the system parameter into a fuzzy term using the
respective membership functions;

2. inference: This step consists of identifying the subset of fuzzy rules that can be
fired, i.e., those with antecedent propositions with truth degree not zero, and draw
the adequate fuzzy conclusions;

3. defuzzification or decoding: This is the reverse process of fuzzification. It is
responsible of decoding a fuzzy variable and compute its crisp value.

The generic architecture of a fuzzy controller is given in Fig. 4.1. The main com-
ponents of a fuzzy controller consist of a knowledge repository, the encoder or
fuzzification unit, the decoder or defuzzification unit and the inference engine. The

4 Fully Scalable Parallel Hardware for Wheeled Robot … 71

Fig. 4.1 Generic
architecture of fuzzy
controllers

knowledge base stores two kind of data: the fuzzy rules that are required by the
inference engine to reach the expected results and knowledge about the fuzzy terms
together with their respective membership functions as well as information about
the universe of discourse of each fuzzy variable manipulated within the controller.
The encoder implements the transformation from crisp to fuzzy and the decoder
the transformation from fuzzy to crisp. Of course, the inference engine is the main
component of the controller architecture. It implements the approximate reasoning
process.

4.3 Fuzzy Models for Wheeled Robot Navigation

The control of a wheeled robot navigation uses a series of control loops to operate
on a surface following a predefined trajectory. Figure4.2 shows the schematics of
the used robot.

This application consists of three subcontrollers: (i) the steering control, which
uses two controllers requiring two inputs and one output, each; the linear and angular
speed controls, which use the same control process requiring two inputs and one
output. Although this application has four controllers, this paper will only show one
of them, because the drivers are identical in pairs, i.e., the membership functions and
rules of the controllers are the same for the the linear and angular velocity.

4.4 The Proposed Macro-architecture

The macro-architecture of the proposed fuzzy controller consists of three main units:
(i) the fuzzification unit (FU), which is responsible for translating the input values of
the system into fuzzy terms using the respective membership functions. This unit has
as many Fuzzy blocks as required in fuzzy systemmodel that is being implemented,

72 N. Nedjah et al.

Fig. 4.2 Model of the wheeled robot used in this application [1]

i.e., one for each input variable; (ii) the inference unit Inference, which checks
all the included fuzzy rules, verifying which membership function applies, and if any
is so, generating its value and thus identifying the membership functions to be used
in the sequel; (iii) the defuzzification unit (DU), which is responsible for translating
the fuzzy terms back so as to compute the crisp value of the fuzzy controller output.
The defuzzification unit includes as many Defuzzy blocks as required by the fuzzy
systemmodel that is being implemented, i.e., one for each output variable. The block
diagram of the proposed macro-architecture is shown in the Fig. 4.3, wherein N and
M represent the number of input and output variables, respectively.

Note that, besides the main units, the macro-architecture also includes a compo-
nent that allows to compute the membership function characteristics, which are used
by both the fuzzification and defuzzification units. This component will be called
membership function unit (MFU). It includes as many MF blocks as required input
variable of the fuzzy model. Note that all the membership function-related data are
stored in the membership function memory, called MF MEM. This memory is formed
by as many memory segments as required input variables, i.e., one for each mem-
bership function used. The rules used by the inference unit are stored in a read-only
memory block, called Rules. Component Controller, which in the sequel may
be calledmain controller, imposes the necessary sequencing and/or the simultaneity
of the required steps of the fuzzy controller via a concurrent finite state machine.
More details on this are given subsequently.

4 Fully Scalable Parallel Hardware for Wheeled Robot … 73

Theproposed fuzzy controller is designed to begeneric andparametric, so it allows
configuring the number of input and output variables, the number of linguistic terms
used to model the membership functions, and the number of inference rules, so as the
fuzzy system model that is being implemented can fit in. Allowing the configuration
of these parameters makes it possible, as well as easy, to adjust the controller design
to any desired problem.

As it can be seen in Fig. 4.3, at configuration time, all the membership functions
used by the controller are computed and stored in the respective MF MEM segment
of the membership function memory. All the computed data will be readily available
to be used by the pertinent Fuzzy and/or Defuzzy block in the fuzzification and
defuzzification unit, respectively. Note that this configuration step is done only once.
During the operation step, the fuzzy controller iterates the required steps, triggering
the Fuzzy blocks then Inference unit then Defuzzy blocks in sequence. After
that, it waits for a new set of input data to be read by the system sensors and thus
arrive at the Fuzzy blocks input ports. The finite state machines that control the
Fuzzy blocks all run in parallel, so do those that control the Defuzzy blocks.

In the following sections of this chapter, more light will be shed on the internal
micro-architecture of the proposed design as well as the control used therein.

Fig. 4.3 Macro-architecture of the designed fuzzy controller

74 N. Nedjah et al.

4.5 Micro-architecture of the Functional Units

In this section, we describe the micro-architecture of the main components, included
in the macro-architecture of Fig. 4.3. These are the functional unit responsible for the
computation of the member function (MF), including the memory-based component
(MF MEM), the basic component responsible for the fuzzification process (Fuzzy),
the component that implements the inference process (Inference) using the avail-
able rule base (Rules), and the basic component that handles the defuzzification
process (Defuzzy). In general, all blocks that perform floating-point computations
include an FPU unit, which performs the main mathematical operations with simple
precision (32 bits). The operations needed are addition, subtraction, multiplication
and division.

4.5.1 Membership Function Unit

A membership function is viewed as a set of linguistic terms, each of which is
defined by two straight lines. In the proposed design, the triangular shape is used
to represent linguistic terms. Nevertheless, it is possible to adjust the design as to
accept other used shapes such as trapezes and sigmoid. Figure4.4 shows a generic
example of membership function with Q linguistic terms, wherein the horizontal
axis x represents the controller’s input, probably read from a sensor, and the vertical
axis y represents the truth degree associated with the linguistic terms. This is a real
value, between 0 and 1, handled as a simple precision floating-point number of 32
bits. Linguistic terms of triangular membership function are completely defined by
Max Point or mp and Range or r , as illustrated Fig. 4.4.

The MF block is designed to compute the values of any variable x , according
to y = ax + b of the two straight lines, that represent the linguistic term of the
membership function. The required basic data that completely define these shapes
need to be identified.

The input data of the MF block are MaxPoint – Mp, Left Interval – Li and Right
Interval – Ri for each straight line used to define the linguistic terms of the member-
ship function. The block utilizes them and precompute coefficients a and b accord-
ingly and stored them in themembership functionmemory segments. Three cases are
possible: the leftmost linguistic term (see linguistic term 0 in Fig. 4.4); An in-between
linguistic term (see linguistic term 1 and 2 in Fig. 4.4); and finally, the rightmost lin-
guistic term (see linguistic term Q in Fig. 4.4). The computation of a and b of the
straight lines of the leftmost, middle, and rightmost linguistic terms are defined as in
(4.1)–(4.3), respectively.

μL(x) =
⎧
⎨

⎩

1, if x ≤ Mp
− 1

Ri × x + Mp
Ri + 1, if Mp > x ≥ Mp + Ri

0, otherwise
(4.1)

4 Fully Scalable Parallel Hardware for Wheeled Robot … 75

Fig. 4.4 Membership function of Q linguistic terms

μM(x) =

⎧
⎪⎨

⎪⎩

1
Li × x − Mp−Li

Li , if Mp − Li < x ≤ Mp

− 1
Ri × x + Mp

Ri + 1, if Mp > x ≥ Mp + Ri
0, otherwise

(4.2)

μR(x) =
⎧
⎨

⎩

1
Li × x − Mp−Li

Li , if Mp − Li < x ≤ Mp

1, if x > Mp
0, otherwise

(4.3)

Themicro-architecture of themembership function blocksMF is shown in Fig. 4.5.
It uses a floating-point unit to perform the required mathematical operations. The
obtained results are then stored in the MF MEM segments.

An MF block includes a controller that is implemented as a finite state machine.
It allows to synchronize the setting up of all the linguistic terms, necessary to the
complete definition of the membership function for each input variable. The control
sequence of this controller is given in Algorithm 1.

4.5.2 Membership Function Memory

As explained earlier, this memory block responds to write commands received from
the MF block and read commands issued by the FU. Each word of this memory
holds four data that allows the complete computation of the truth degree of a given

76 N. Nedjah et al.

Fig. 4.5 The micro-architecture of the membership function block

linguistic term. The four-fold memory word contains min: minimum limit of the
straight line; max : maximum limit of the straight line; a: angular coefficient of the
straight line; b: linear coefficient of the straight line.

So, every time the MF block requests a memory write, this memory block register
these values at an address, that represents the order number of the line within all
the line that need to be processed, starting from zero. This block also allows the
configuration of the number of lines that can be registered in the memory, which
will depend on parameter Q, which determines the number of linguistic terms per
membership function.

4.5.3 Fuzzification Unit

The Fuzzy block performs the necessary computation to obtain the fuzzy version
the input value. The computation consists of a comparison that may, in most cases, be
followed by a multiplication then an addition, depending on the comparison result.
This is repeated Q times for all the linguistic terms included in the membership func-
tion of the input variable under consideration. The Fuzzy block micro-architecture
is shown in Fig. 4.6. It includes a Comparator that determines in which linguis-
tic term range the input value falls, 2 sets of Q flip-flops to hold the result of the
comparison. Their contents identify which linguistic terms are actually active.

4 Fully Scalable Parallel Hardware for Wheeled Robot … 77

Algorithm 1Membership function configuration
Require: Mpk , Lik and Rik , k = 1 . . . Q;
Ensure: mink ,maxk , ak e bk , k = 1 . . . 2 × Q;
Ensure: min,max, a and b;
if enable = 1 then
Address ← 0;
for k ← 1 to Q do
for FP ← 1 to 2 do
Write ← 0; Address ← Address + 1;
if k = 1 then
if FP = 1 then
min ← −∞; max ← Mpk ; a ← 0; b ← 1;

else
min ← Mpk ; max ← Mpk + Rik ;
a ← −1/Rik ; b ← (Mpk/Rik) + 1;

end if
end if
if 1 < k < Q then
if FP = 1 then
min ← Mpk − Lik ; max ← Mpk ;
a ← 1/Lik ; b ← −((Mpk − Lik)/Lik);

else
min ← Mpk ; max ← Mpk + Rik ;
a ← −1/Rik ; b ← (Mpk/Rik) + 1;

end if
end if
if k = Q then
if FP = 1 then
min ← Mpk − Lik ; max ← Mpk ;
a ← 1/Lik ; b ← −((Mpk − Lik)/Lik);

else
min ← Mpk ; max ← +∞; a ← 0; b ← 1;

end if
end if
wri te ← 1;

end for
end for

end if

The obtained results for the two straight lines modeling the linguistic term are
kept in two distinct 32-bit registers. These are the truth degrees, once it is delivered
by the FPU. The block includes two sets of 32-bit registers, namely TuFP1 and
TuFP2, one for each linguistic term modeling the membership function of the input
variable.

The inputs of a Fuzzy block are the characteristics of the linguistic terms of the
membership function associated with the input variable under consideration. These
characteristics are a, b, min and max stored in MF MEM segment corresponding to
the input variable, as explained in Sect. 4.5.2. The output of aFuzzy block are: signal
EnFi , for i = 1 . . . Q bits, i.e., one for each included linguistic term and signal uFi ,

78 N. Nedjah et al.

Fig. 4.6 Fuzzy block micro-architecture

for i = 1 . . . Q 32-bit floating-point values, each of which represents the truth degree
of the corresponding linguistic term. Note that linguistic terms that do not apply have
0 as a truth degree. When bit EnFi is activated, this indicates that linguistic term
number i of the membership function is valid with truth degree uFi �= 0. Recall that
the truth degree is the product of a and input value augmented by b. In Algorithm 2,
we give an overview on how the Fuzzy block operates.

4.5.4 Inference Unit

The inference unit main purpose is to identify, for each one of the output variables
of the fuzzy controller, the linguistic terms that are active as well as computing the
associated truth degrees.

Before describing the details of the inferenceunit, let usfirst introduce the structure
used to format the rules of the fuzzy system.A ruleRhas twodefiningparts: a premise
P and a consequent C as described in (4.4), wherein Ii , for i = 1 . . . N are the input
variables and T Ii

k for k = 1 . . . Q are the linguistic terms associated to it, O j , for

j = 1 . . . M are the output variables and T O j

k for � = 1 . . . Q are the linguistic terms
associated with it. Note that in general, the number of linguistic terms is distinct from
one variable to another. However, in this work, we assume, without loss of generality,
that all the variables, both of input and output, are modeled using the same number
of linguistic terms Q. A rule may check only few of of the N input variables, and it
may also, enable only few of the output variables.

4 Fully Scalable Parallel Hardware for Wheeled Robot … 79

Algorithm 2 Operation of the Fuzzification block
Require: sensor,min,max, a e b;
Ensure: uFi e EnFi , i = 1 . . . 2 × Q;
if enable = 1 then
for i ← 1 to 2 × Q do
Address ← i ; read ← 1;
if min < sensor < max then
FPUouti ← sensor × a + b; COMPouti ← 1;

else
FPUouti ← 0; COMPouti ← 0;

end if
end for
read ← 0; k ← 1;
for i ← 1 to Q do
EnFi ← (COMPoutk OR COMPoutk+1);
if COMPoutk = 1 then
uFi ← FPUoutk ;

else if COMPoutk+1 = 1 then
uFi ← FPUoutk+1;

else
uFi ← 0;

end if
k ← k + 2;

end for
end if

R : P ⇒ C, where for j, k, � = 0 . . . Q :
P is I0 = T I0

j ∧ I1 = T I1
k ∧ · · · ∧ IN−1 = T IN−1

�

C is O0 = T O0
j ∧ O1 = T O1

k ∧ · · · ∧ ON−1 = T ON−1
�

(4.4)

The rule base memory Rules has a word size that allows to store one rule. All
the rules of the model have the same structure. They include all the input and output
variables. When a variable is not checked or inferred, the all the linguistic terms are
checked off.

A given rule fires when signal EnFi , as delivered by the FU, for every checked of
linguistic term of every input variable of the premise part of the rule under consider-
ation is set. Furthermore, every linguistic term of any output variable that is checked
in the consequent part of a fired rule need to be reported to the defuzzification unit
FU. Note that there are at most M , one for each output variable. Besides this, FU
needs also to receive the truth degree for each of these checked terms.

The truth degree of an output variable linguistic term is the smallest truth degree,
considering all those associatedwith the input variable linguistic terms in the premise
part of the fired rule. When the same output variable linguistic term appears on two
or more fired rules, the highest truth degree is used. Thus, this done considering all
the rules that fires. Recall that the truth degree of the input variable linguistic terms
are provided by the FU.

80 N. Nedjah et al.

Fig. 4.7 Inference block micro-architecture

Figure4.7 shows the micro-architecture of the Inference block. Its inputs
consist of the Q flags EnFi , for i = 1 . . . Q and the corresponding Q truth degrees
uFi , for i = 1 . . . Q, which are the resulting output of FU, as described in Sect. 4.5.3.
Its outputs are a set of M Q-bit signals EnDi , for i = 1 . . . M , that identify the
linguistic terms that were inferred and their respective truth degrees uDi , for i =
1 . . . M , which are signals of Q × 32 bits. Theand gate determineswither the current
rule can be fired. In Algorithm 3, we sketch how the operation of the inference block
is controlled. The M ANDQbits components are simply na and-arrays. In this
design, the process of min-max inference is used. So, components Minimum and
Maximum return the smallest of N floats and the highest of M floats, respectively.
Their internal structure is omitted here for a lack of space. TheInference includes
three memory blocks: the rule base Rules, a truth degree memory MEM floats
and a bit memory MEM bits.

4.5.5 Defuzzification Unit

The defuzzification unit’s main purpose is to compute the crisp value of the output
variables, given the fuzzy linguistic terms and their corresponding truth values, as
identified and computed by the inference unit. The centroid is used to perform the
defuzzification process. Recall that uDi for i = 1 . . . Q are the truth degrees of the
linguistic terms associated with the output variable O. The computation is done
according to the steps of Algorithm 4.

4 Fully Scalable Parallel Hardware for Wheeled Robot … 81

Algorithm 3 Inference control and computation

Require: uF j
i , EnF j

i , i = 1 . . . Q, j = 1 . . . N and Ruleslr , r = 1 . . . P, l = 1 . . . (N +
M) × Q;

Ensure: uDk
i e EnDk

i , k = 1 . . . M, i = 1 . . . Q;
if enable = 1 then
for r ← 1 to P do
R ← Rulesr ;
if R Valid then
for j ← 1 to N do
I ← R j ; AndInput j ← I & EnF j ; MinInput j ← uF j ;

end for
RuleFired ← AND(And Input);
if RuleFired then
Min ← MIN(MinInput);
for k ← 1 to M do
O ← RN+k ;
for i ← 1 to Q do
if Oi = 1 then
MEMfloatsk×i

r ← Min; MEMbitsk
r ← O;

else
MEMfloatsk×i

r ← 0; MEMbitsk
r ← 0;

end if
end for

end for
end if

else
MEMfloatsr ← 0; MEMbitsr ← 0;

end if
end for
for k ← 1 to M do
for i ← 1 to Q do
uDk

i ← MAX(MEMfloatsk×i); EnDk
i ← OR(MEMbitsk×i);

end for
end for

end if

Algorithm 4 Computation of the centroid
R0 ⇐ 0; R1 ⇐ 0; R2 ⇐ 0;
if EnD �= 00 . . . 0 then
for i := 1 to Q do
if EnDi = 1 then
R0 ⇐ uDi × mpi ;
R1 ⇐ R1 + R0; R2 ⇐ R2 + uDi ;

end if
end for
R0 ⇐ R1/R2;

end ifreturn R0;

82 N. Nedjah et al.

4.6 Performance Results

The application presented in the following is for the angular velocity control. It
requires two input variables that shape the radius and angle in polar form representing
the error and error variation of speed, 15 fuzzy rules as described in Table4.1, 5
linguistic terms and 1 output variable that represents the linear velocity of the robot
movement. Figure4.8 shows the membership functions used for each of the input
and output variables.

Table4.2 shows the sensor input values tested, the rules fired, according to
Table4.1. Also it shows the number of linguistic terms that were activated at the
start of the defuzzification process, the number of clock cycles, the execution time
in microseconds, based on clock of 112.410 MHz and the scalar value of the result
of the hardware controller.

Figure4.9 shows the control surface based on the configuration of the fuzzy con-
troller for this application. The computation of the quadratic error, as defined in (4.5),
is 3.1237 × 10−7, which shows an excellent accuracy in comparison to the software
implementation using MATLAB. In (4.5), xhi is the i th result returned by the recon-

Fig. 4.8 Membership function used

Table 4.1 Fuzzy rules for the autonomous robot navigation

Rule Radius

ZE PS PB

Angle PB r0: ZE r1: NM r2: NB

PM r3: ZE r4: PM r5: PB

ZE r6:ZE r7: PM r8: PB

NM r9: ZE r10: NM r11: NB

NB r12:ZE r13: NM r14: NB

4 Fully Scalable Parallel Hardware for Wheeled Robot … 83

Table 4.2 The results obtained by the the reconfigurable hardware for the robot navigation control

Radius Angle Rules fired
defuzzy

Number of
defuzzy

Cycles
clock

Time (μseg) Velocity

0.00 +1.0 r3 e r6 1 1043 9.28 0.0000

0.80 −2.0 r11 e r14 1 1043 9.28 −3.0000

0.50 +2.5 r2 e r5 2 1090 9.70 −0.4286

0.05 −1.0 r6, r7, r9 e r10 3 1137 10.11 −0.1875

0.09 +2.0 r0, r1, r3 e r4 3 1137 10.11 +0.4545

0.30 +2.0 r1, r2, r4 e r5 4 1184 10.53 0.0000

0.20 −0.5 r7, r9, r11 e r12 4 1184 10.53 +0.4091

0.20 +2.5 r1, r2, r4 e r5 4 1184 10.53 −0.4091

Fig. 4.9 Control surface for the wheeled robot navigation

figurable controller hardware, xmi is the i th result of returned by the toolbox FIS of
MATLAB, and n represents the total number of obtained results. In this case, we use
17 distinct set of inputs.

Error =

n∑

i=1
(xhi − xmi)

2

n
(4.5)

Using a clock frequency of 100 MHz in FPGA, the entire controller runs, in the
worst case, with Defuzzy4 in 2,246 clock cycles, i.e., 22.46µs. The synthesis results
show that the maximum clock frequency accepted by the design developed for this
application is 112.410 MHz, which resulted in an execution time of 19.98 µs. As the
operation time of block FP is not accounted for in the normal cycle of the controller
loop, the latter will be at most of of 1,184 clock cycles, i.e., 10.53 µs, considering
the maximum allowable clock frequency. Figure4.10 displays the number of clock
cycles for each block of reconfigurable controller, including variations in numbers of
cycles for block Fuzzy. Figure4.11 shows the execution times of each block, using
the maximum clock frequency.

84 N. Nedjah et al.

Fig. 4.10 Number of clock
cycles required by the
reconfigurable controller

Fig. 4.11 Execution time, in
microseconds, of the blocks
in the FPGA

Fig. 4.12 Hardware area
usage in the FPGA

Figure4.12 shows the hardware area required in the FPGA to program the entire
fuzzy controller. Considering the 69,120 LuTs available in the FPGA, only 54.1%
and used.

4.7 Conclusion

This paper proposes a massively parallel completely configurable design for fuzzy
controllers. It is applicable to almost any applications in the industry that do not have
a prescribed solution. The proposed architecture is parametric so that any number of

4 Fully Scalable Parallel Hardware for Wheeled Robot … 85

inputs, outputs, and rules can be accommodate with no extra effort. The design was
implemented on reconfigurable FPGA and the cost and performance requirements
analyzed.The fuzzy controller supervises the navigational process of awheeled robot.
The next steps in the design of this controller are to investigate the generalization
of the design so that to allow the use of trapezoidal and sigmoid the membership
functions.

References

1. Lin WS, Huang CL, Chuang MK (2005) Hierarchical fuzzy control for autonomous navigation
of wheeled robots. IEE Proc-Control Theory Appl 152(5):598–606

2. McKennaM,Wilamowski B (2001) Implementing a fuzzy system on a field programmable gate
array fuzzy sets and systems. In: Proceedings IJCNN ’01 - international joint conference on
neural networks, vol 1, pp 189–194. IEEE, Washington, DC

3. Pappis CP, Mamdani EH (1977) A fuzzy logic controller for a traffic junction. IEEE Trans Man
Cybern 7(10):707–717

4. Poorani S, Urmila Priya T, Udaya K, Renganarayanan S (2005) FPGA based fuzzy logic con-
trollers for electric vehicle. J Inst Eng 45(5):1–14

5. Zadeh L (1968) Fuzzy algorithms. J Inf Control 12(2):94–102
6. Zadeh L (1984) Making computers think like people. IEEE Spectr 21(8):26–32
7. Zadeh L (1988) Fuzzy logic. IEEE Comput J 21(4):83–93

	4 Fully Scalable Parallel Hardware for Wheeled Robot Navigation Using Fuzzy Control
	4.1 Introduction
	4.2 Fuzzy Controlllers
	4.3 Fuzzy Models for Wheeled Robot Navigation
	4.4 The Proposed Macro-architecture
	4.5 Micro-architecture of the Functional Units
	4.5.1 Membership Function Unit
	4.5.2 Membership Function Memory
	4.5.3 Fuzzification Unit
	4.5.4 Inference Unit
	4.5.5 Defuzzification Unit

	4.6 Performance Results
	4.7 Conclusion
	References

