Chapter 3

Simultaneous Navigation and Mapping
in an Autonomous Vehicle Based

on Fuzzy Logic

Alvaro Luiz Sordi Filho, Leonardo Presoto de Oliveira,
André Schneider de Oliveira, Jodao Alberto Fabro
and Marco Aurélio Wehrmeister

This research presents the navigation control and mapping of an autonomous car
by fuzzy logic that enables automatic obstacle avoidance in unknown environments.
The strategy is based on a map of the environment, which is created according to nav-
igation, to plan the trajectories avoiding obstacles through the search algorithm A*.
The proposed approach is evaluated in a virtual environment, where the autonomous
car should move among different obstacles.

3.1 Introduction

Autonomy is the capability of a vehicle (or robot) to move around a known envi-
ronment, partially known or unknown, based on the perceptions of the environ-
ment(sensing), by building the map (mapping), making it possible to plan and replan
the routes to the destination point, maneuvering around the obstacles without any
interference from an outer source.
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The fuzzy logic is a tool used in the development of control strategies that allows
a higher level of flexibility in the rules of the controller, and so, allows the implemen-
tation of the autonomous capability. The operation mode of a fuzzy system allows
different approaches, like in [1], where the implementation of a fuzzy logic is used
in reconfigurable systems, used in the speed in a vehicle’s cruise control. Another
similar approach is found in [2]. The fuzzy logic can also be used to control the
motors in an electric vehicle as showed in [3].

Strategies for ADAS (advanced driving assistant systems) are also a reasonable
application for fuzzy systems. In [4], a Fuzzy approach to adjust a PID control is
discussed, to guide the vehicle to keep inside the lane. In [5], approach for collision
avoidance for autonomous vehicle is taken. In [6] fuzzy systems are used to control
the speed of a vehicle’s cruise control, with online learning.

The navigation in a dynamic environment, as roads and highways, is a complex
task due the amount of obstacles and environment changes that may happen (failures
in the road, lack of traffic signs, inter-vehicle interaction, animals, pedestrian cross-
ing, etc). The application of fuzzy systems is advised to situations like these, in [7],
for example, a method to navigate in unknown environments based on different type
of sensors is introduced. In [8], fuzzy systems are utilized in a autonomous vehicle’s
distributed control system.

This work focus on the capability of a vehicle to be autonomous, which means
nothing more than an agent that is able to extract the information of an environment
and use it to move around such environment in an efficient manner. The possible appli-
cations for these robots is huge, they can be used in the industry (AGV - autonomous
guided vehicles), in the military (UAV - unguided autonomous vehicle), exploration,
among others [9].

This work proposes a fuzzy system to control the navigation of an autonomous
vehicle inserted in and static, partially observable (the sensing system cannot access
all the environment information at all times), deterministic, discreet, and single agent.
The validation experiments are developed in a simulation environment, and for these,
arealistic vehicle model with sensors and actuators available in the market were used.

In the following sections, the concepts and the techniques used in the simulation
are going to be discussed (Sects. 3.2, 3.3 and 3.4), the methodology adopted in the
development (Sect. 3.5), the results and the final conclusions (Sects. 3.6 and 3.7).

3.2 Virtual Robot Experimentation Platform

The VREP (virtual robot experimentation platform) has resources to create, com-
pose, and simulate robots. It has verification systems and can monitor remotely the
actions performed by the robot under review [VREP 2015]. The VREP calculation
module can determine the optimal parameters of a mobile joint to achieve the correct
positioning, quickly calculates the possibility of a collision, allows planning a way to
run in finite space, operates and interacts with programmed mechanisms and scene
objects.
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Fig. 3.1 Software VREP

The scene’s objects can have cameras and lights, proximity sensors, force sensors,
image interpretation cameras, and paths defined on 2D and 3D graphics. The simula-
tion can be started, paused, and stopped at any instant of time and can be performed
in real time or by approximate running time. Figure3.1 illustrates the simulation
environment VREP and scene’s objects.

The self-guided car was imported and prepared from the robot library avail-
able in VREP. Environmental obstacles were inserted with properties “collidable,”
“detectable,” and “measurable”. The choice of the path to be traveled by the vehicle
considered a starting point, the properties of the chosen path, coordinate or objective
to achieve (meaning the goal location). Data was also inserted in the environment
as the minimum and maximum detection distance and the minimum diameter of
carriage movement.

The VREP has the application programming interface (API) that lets you access
your library and services available through another programming language or appli-
cation. It is possible to use C/C++, Java, Python, or mathematical software Matlab.

3.3 Autonomous Vehicle

Autonomous vehicles can have different topologies, which are dependent mainly of
the mobility and maneuvering necessary for the application. An autonomous car can
be considered as a mobile robot with different sensing systems, used in the perception
of the environment. This robot is also able to move without the interference of an
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Fig. 3.2 Renault Fluence autonomous vehicle, and range of the sensing systems

extern operator. This vehicle uses a drive system called Ackerman geometry, which
hold four wheels, of which two are fixed and the other two are directional. A further
discussion about this geometry is available in [10].

The environment perception is acquired by sensors that measure the environ-
mental quantities. Autonomous vehicle, typically, use sensors to identify objects
(cameras, radars, LIDAR-light detection, and ranging, among others). In this con-
text, the current work utilizes a regular sedan vehicle, more specifically a Renault
Fluence, which was modeled in a virtual experimentation system V-REP (Virtual
Robot Experimentation Platform), of Coppelia Robotics [11]. In the vehicle, were
placed four radar systems (ultrasound) of medium range to identify possible objects
on the sides (typically used to lane change assistance, and automated parking). At
the front, a long range radar (ultrasound) was placed to detect object even in high
speed. At the rear, parking sensors (ultrasound) was placed and also a LIDAR sensor
(Hukuyo, a laser sensor) to help in the environment perception, as can be seen in
Fig.3.2.

3.4 Navigation and Mapping

The Renault Fluence’s autonomy is achieved with a group of techniques called SLAM
(simultaneous localization and mapping), which allows that the building of the map
itself, is done during the robot’s navigation (a further discussion about this approach
is presented in [12]).

SLAM is one of the most addressed methods in the robotic area. This technique
refers to how the robot is going to behave in a unknown environment and how it
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Fig. 3.3 Simultaneous localization and mapping structure (SLAM)

is going to develop the knowledge, while it moves around in the environment. The
environment perception is performed by sensors that can be classified accordingly to
its measurement as: proprioceptives (measure the greatness of the vehicle’s inside)
or exteroceptives (measure environmental greatness). They can also be classified as:
passive (measure the environment energy) or active (they emit their own energy) [12].
There sensors detect the information that the robot needs to create its own navigation
map. Figure 3.3 represents the inner structure of a SLAM system.

Sensors capture the perceptions of the environment and send them to the Mapping
mechanism, which is responsible to create and update the knowledge map. The
environment information allows the robot to locate itself (inside the environment),
and then deliberate on how to act (navigate). This structure can also predicts the
presence of an object that is not currently present in the environment.

The constant updates on the map is a basic need of the SLAM technique, because
as the robot is moving around the map and detecting new obstacles on the map, in
a second pass through the same position the object might not be there anymore. Is
this case, if a static map was used, the robot will act as if the object was still there,
resulting in errors.

The creation of the knowledge map uses a data structure called costmap, in which
the robot define the cost of each point in the map. The costmap is used to calculate the
route to the destination (trajectory planning), which is going to be used as reference
to the navigation controller. The trajectory is calculated using the costmap, looking
for the path with the smallest cost [13].

The information added to the map have error in both position and size, due to the
face of measurement errors, which directly interfere in the navigation and might lead
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to collisions. Therefore, every object present in the map has a shadowed boundary,
with costs smaller than the obstacle itself, which lower the probability of the robot
choosing that region on its route. This a fundamental characteristic in situations
where the vehicle must calculate if it can move through a narrow pass.

3.4.1 Trajectory Planning

According to Delling [14], the A* algorithm search for and finds if possible, the path
with the smallest cost from a start to a goal node (of one or more possible goals).
To achieve this A* algorithm move through a graph (map) and follows the way with
the lower expected cost, holding a priority ordered queue, in which each elements
represents a piece of an alternate route along the way.

The A* algorithm uses a cost function of a node n (usually called f(n)), which is
defined by the cost already known, g(n), added to the cost of the estimated path, h(n)
(h for heuristic), to choose in which order each node is going to be visited in the tree.
This cost function is the sum of two functions: f(n) = g(n) + h(n).

Delling [14] also says that h(n) must be na admissible heuristic, it should not
overestimate the cost for the destination. Therefore, for the application that must
calculate the distance between two points, h(n) can represent the straight line between
start and objective, because this is always the smallest distance between two points
or nodes. This is also called the Euclidean distance.

If the heuristic h satisfies the additional condition h(x) = d(x, y) + h(y) for each
edge (x, y) of the graph (where d indicates the length of edge), h is the called consis-
tent. In this case, the A* algorithm can be implemented more efficiently, roughly, no
node needs to be processed more than once and A* is equivalent to running Dijkstra’s
algorithm with reduced cost d'(x, y) = d(x, y) — h(x) + h(y) [10].

The A* algorithm is responsible for allowing the autonomous vehicle plan the
optimal path between the point that it is up to the chosen goal. An adjustment was
made in the A* algorithm that instead of returning all points of the optimal path, the
A* algorithm returns only the conversion points present in the optimal path. It was
determined that conversion point is a point at which the car should make a turn, the
distance between two turning point should be done in a straight line. For example,
if the car is in the space (0, 0) (X, y); and must get to the point (10, 10). The A*
algorithm can return the following way: (0.1) (0.2) (0.3) (0.4) (0.5) (0.6) (0.7) (0.8)
(0.9) (0.10) (1.10) (2.10) (2.10) (4.10) (5.10) (6.10) (7.10) (8.10) (9.10) (10.10); in
all are 20 points. With the adjustment made the algorithm returns only (0, 0), (0, 10),
(10, 10). In this way, you can determine a straight line between the points (0,0) and
(0.10), and another straight line between the points (0.10), (10:10), and this will be
the path that the car will follow.
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3.4.2 Navigation

Fuzzy systems are based on fuzzy logic, which has different characteristics from
traditional logic. A traditional logical proposition has two specific situations: it is
completely true or entirely false. But in fuzzy logic, a premise can vary between true
or false, that is, instead of being only values O or 1, can occur in a premise assume a
value between 0 and 1. As can happen to a premise be partly true or false [15].

The process of a fuzzy system is based on fuzzy sets, the membership functions,
and the fuzzy rules. The sets are partitions of all the possible values for the input
variables. The membership functions define the fuzzy sets. The rules are used in the
system inference engine. They use complementary operators, union, and intersection
to establish the relationship between the input variables and system output [Coppin
2013].

The partition of a fuzzy set assigns degrees of relevance to the elements of this set.
The data used to create the rules were generated based on tests done on the platform.
Aspects were tested as braking and acceleration time of the simulated vehicle. From
these tests it was created a data table, which served as the entrance to the creation of
inference rules. To create the fuzzy inference rules were used the concepts of Wang
Mendel algorithm [16].

This Wang Mendel algorithm is used for the automatic extraction of the relevant
rules to a fuzzy system and can be summarized in the following steps: Define the num-
ber of linguistic terms and partition the universe of all the input variables; Building
a fuzzy rule for each member of the set of training points—For each input variable,
select the higher level membership function; Calculate the degree of activation of all
rules using an appropriate operator.

In the autonomous vehicle, the fuzzy system is designed to control not only the
car’s speed, but also control the rotation of the wheels when it is needed. In all three
are applied Fuzzy controllers.

The first fuzzy system consists of two inputs (distance and speed of the front
wheels) and an output (speed). The goal of this fuzzy system is to ensure that the
car do not collide with the obstacle. Figure 3.4 illustrates this system. The variable
“distance” ranges between 5 and 20 m, the “rotation” variable ranges between —40°
(left oriented) and 40° (right oriented) and the output ranges between 15 and 40
km/h. Another simple control system complements the operation and ensures that if
the car is 0.5 m from the obstacle, a reverse maneuver is performed, since from that
position this is the only alternative.

When the car is at a shorter distance than 5 m, the control is based on the front
sensors and causes the car to turn to the side closest to the desired point. This control
determines the difference between the direction the car is and the direction it should
be to follow the optimal path. The output is the angle that the car should turn to follow
the desired path and varies from 180 (left) to 180 (right), as illustrated in Fig. 3.5.
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Fig. 3.6 Fuzzy system to supervise the car turning, so that it reaches the correct orientation to reach
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The third fuzzy control system (Fig. 3.6) oversees the car turning and determines
both rotation of the wheels, and the speed of movement. This control is important
because if the car is in a narrow place, the maneuver cannot be performed in a single
movement.

3.4.3 Decision Tree

Decision tree is the simplest form among the most used decision models, but is quite
effective. Among its main strengths, its transparency and the ease of developing are
highlighted.

The decision tree structure is very similar to the if-then structure, widely used in
expert systems and rating systems [17].

At the entrance of a decision tree are received attributes that can be continuous or
discrete, then the tree will reach a final decision based on their tests. In the tree struc-
ture, each node represents a different test and each leaf node of this tree represents
a value that is returned if this leaf node is reached.

In the decision tree, each node is the knowledge of the expert leading the search for
one of its child nodes. So as tou move down the tree, the desired system configuration
will be selected and thus choosing the desired behavior [18].

For the autonomous vehicle, the decision tree is used to select which group of
actions the agent must take, i.e., to decide if it should just follow the path determined
by the trajectory planner, dodge an obstacle, or to stop and make a reverse in case of
the available space is not sufficient to maneuver.
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3.5 Simulation

Figure 3.7 presents the architecture of the simulation to be developed.

The VREDP is responsible for simulating the environment, the agent (vehicle), and
the navigation positioning information (which is calculated by MATLAB). Agent
perceptions (signals picked up by the sensors) are sent from VREP to MATLAB and
this in turn is responsible for performing the trajectory calculations (A*), determine
the correct speed that the car should be in accordance with the current situation
(Fuzzy), in addition to building the mapping and planning trajectories. MATLAB
then returns the commands, which are these trajectory and velocity information that
the vehicle must follow.

For the simulation to work correctly, there must be integration of code developed
in MATLAB, with the components created in VREP. Communication between the
two software is executed via socket, and to facilitate this, in this paper we chose to
use the API developed by Coppelia (company responsible for VREP).

The modeling agents is described in more detail in the online tutorial VREP;
however, it is required that each vehicle component is declared as a clear object
name, since to access these components via MATLAB the names that were defined
in VREP are used as unique identifiers.

For example, when you want to turn the front wheel 30° right, the following
command is sent.

e vrep.simxSetJointTargetPosition(clientID, RhtWheelHandle, —degtorad(30),
vrep.simx_opmode_oneshot);

The vrep.simxSetJointTargetPosition command is used to rotate a particular com-
ponent present in VREP. Arguments are, respectively, clientID — name of the simu-
lation; RhtWheelHandle — the name given to the right front wheel; —degtorad(30),
which converts 30° to its equivalent value in radians, and vrep.simx_opmode_oneshot
— representing that this command must be run only once. In this example, it is clear
that the choice of name facilitated in performing the function, as RhtWheel can be
easily associated with the front right wheel.
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3.6 Case Study

The case study is a Renault Fluence (Fig.3.8) vehicle, which is placed in a virtual
environment with many obstacles. As defined by the Ackerman geometry, only the
front wheels determine the direction, i.e., the rear wheels are free. When the car
needs to make a turn, only the front wheels must be acted on. The car’s size is about
4 m long and 2 m wide.

The environment is a closed area of 100 m x 100 m, as illustrated in Fig.3.9. In
this space were defined spaces by which the vehicle can follow and also obstacles
that it should divert. Altogether there are four obstacles in the shaped of cubes of
varying sizes. Besides the obstacles, there are walls which limit the passage of the
vehicle.

The side tracks (bounded by walls) are narrow to hinder a possible curve the car
must do. This difficulty requires the control to be more efficient because, depending
on the speed it is not possible that the car maneuver without having to move in the
opposite direction (reverse) or maneuver itself to fir the curve.

The experiment starts with the car stopped at a certain point and the map of empty
knowledge. At that moment, the objective point is designated for the autonomous
vehicle. The first task is to carry out the planning of the trajectory based on the
knowledge map, then the path is calculated by A* and then when the algorithm
returns the “sub-goals” (turning points) the car starts moving at the resulted path.
The fuzzy controllers are responsible for making the car follow the planned trajectory.

Fig. 3.8 Autonomous vehicle—virutal Renault Fluence
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Fig. 3.9 A car that interact in this environment, which is unknown at first (but is being mapped),
whose object reaches a certain point, traversing the optimum path (derived from the A* algorithm)

The car follows the optimum path at the same time it updates the environment
map. When one eventually is very near or in the planned trajectory, the fuzzy control
action operates on the front sensor for the vehicle to deviate from obstacles.

Figure 3.10 depicts the map of the environment being built as the car moves. The
brighter areas represents he position where the obstacle was encountered, while the
area in gray is the inflation that the car has to calculate around obstacles.

When the obstacle is overcome, the control indicates that the car should go back to
follow the path determined by the trajectory planner, but the car may not be oriented
in a way that is must only move forward. At this point, another fuzzy controller is
activated to correct the orientation of the vehicle according to the desired trajectory
(determined by the trajectory planner).

After adjusting the orientation of the vehicle to the optimum path, the car return
to the state of following the path determined by the trajectory planner to reach its
goal. Due to the car’s size, it was determined that the goal is any point in a distance
of 1 m from the goal point (tolerance range). This measure was taken to prevent the
vehicle to keep making small maneuvers to be exactly at the desired point, since
these maneuvers took a long time and are negligible, since the car was already above
the point and was just trying to align the car’s center with the goal point.
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Fig. 3.10 Environment
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The fuzzy controller for steering correction, used interactively, enables the direc-
tion (orientation) fine tuning. The fuzzy controller responsible for the vehicle’s speed
depending on the distance of the obstacles was important to ensure that the car does
not collide with objects.

The correction in the direction of the vehicle is an intrinsic difficulty to the prob-
lem, because as it is a regular vehicle, any direction adjustment requires continuous
forward and backward movements, until it reaches the desired angle.

The vehicle was also tested in a different scenario. This time the scenario is a bit
closer to a real-life situation. The car was placed inside a parking lot of a shopping
mall. Figure 3.11 represents this scenario with an upper view. The whole scenario is
composed by the shopping mall at the middle, the vehicle at the left upper corner
and eight light posts, being 4 at the north and 4 at the south wall The textures
of the shopping mall exterior and the parking lot floor were removed to improve
performance of the simulation.

As the previous experiment, different positions were used as goal for the vehicle.
When the car reached its destination, another point was set as goal. By switching
destinations, it was nearly possible to map the entire parking lot with the shopping
mall at the middle. Figure 3.12 contains the resulting map of the scene.

The places that were not mapped in Fig.3.12 are spots where the vehicle did not
get close enough so its sensors were able to identify the walls. This happened because
during the path planning stage, the search algorithm was able to find a better path
that did not go through the unmapped spots.



66 A.L. Sordi Filho et al.

Fig. 3.11 Shopping mall and parking lot scenario

Fig. 3.12 Partial map of the
shopping mall and parking
lot scenario
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3.7 Conclusions

The simulations show that the system responds effectively. Initially in a totally unfa-
miliar environment, with a goal position, the robot calculates the optimal route, this
being a straight line. As the robot detects objects and updates its knowledge map, as
soon as it finds an obstacle in its path the route is recalculated.

The method A* was used, despite producing the desired result, it requires relatively
much computational time, causing the car, in the simulation, stand still while the
trajectory planner find the optimal path. The fuzzy control systems (Fuzzy) have
proven their efficiency in relation to what was expected. The guidance control to the
next sub-goal returned valid responses to any situation where the car and the goal
met.

The SLAM used in the work also proved to be satisfactory to map the environment.
The detail to be highlighted at this point is that inflation in the mapping area can
interfere decisively in the development of history. In the case of this work was
necessary to increase the inflation area to ensure that the car does not collide with the
corners in the environment. The autonomous vehicle is able to navigate in different
environments, with smoother curves, and less narrow lanes.

In addition to different environments, it is suggested to implement a control to
make the transition from the direction of the vehicle between softer sub-goals.
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