
Chapter 2
Monocular Pose Estimation
for an Unmanned Aerial Vehicle
Using Spectral Features

Gastón Araguás, Claudio Paz, Gonzalo Perez Paina and Luis Canali

Pose estimation of Unmanned Aerial Vehicles (UAV) using cameras is currently a
very active research topic in computer and robotic vision, with special application in
GPS-denied environments. However, the use of visual information for ego-motion
estimation presents several difficulties, such as features search, data association (fea-
ture correlation), inhomogeneous features distribution in the image, etc. We propose
a visual position and orientation estimation algorithm based on the discrete homog-
raphy constraint, induced by the presence of planar scenes, and the so-called spec-
tral features in the image. Our approach has the following unique characteristics:
it selects the appropriate distribution of the features in the image, it does not need
either initialization process or search for features, and it does not depend on the
presence of corner-like features in the scene. The position and orientation estimation
is made using a down-looking monocular camera rigidly attached to a quadrotor. It
is assumed that the floors over which the quadrotor flights are planar, and therefore
two consecutive images are related by a homography induced by the floor plane. This
homography constraint is more appropriate than the well-known epipolar constraint,
which vanishes for a zero translation and loses rank in the case of planar scenes. The
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pose estimation algorithm is tested in a simulated dataset, and the robustness of the
spectral features is evaluated in different conditions using a conveyor belt.

2.1 Introduction

In the last years quadrotors have gained popularity in entertainment, aero-shooting
and many other civilian or military applications, mainly due to their low cost and
great controllability. Between other tasks, they are a good choice for operation at low
altitude, in cluttered scenarios or even for indoor applications. Such environments
limit the use of GPS or compass measurements which are indeed excellent options
for attitude determination in wide open outdoor areas [1, 12]. These constraints have
motivated, over the last years, the extensive use of on-board cameras as a main sensor
for state estimation [5, 14, 16]. In this context, we present a new approach to estimate
the ego-motion of a quadrotor in indoor environments for smooth flights, using a
down-looking camera for translation and rotation calculation. As a continuation of
the work presented in [3], we propose the utilization of a fixed number of patches
distributed on each image of the sequence to determine the ego-motion of the camera,
based on the plane-induced homography that relates the patches in two consecutive
frames.

A number of spatial and frequency domain approaches have been proposed to
estimate the image-to-image transformation, between two views of a planar scene,
most of them limited to similarities. Spatial domain methods need corresponding
points, lines, conics, etc. [7, 9, 10], whose identification in many practical situations
is non-trivial, thereby limiting their applicability. Scale, rotation, and translation
invariant features have been popular facilitating recognition under these transforma-
tions. Geometry of multiple views of the same scene has been a subject of extensive
research over the past decade. Important results relating corresponding entities such
as points and lines can be found in [7, 9]. Recent work has also focused on more
complex entities such as conics and higher-order algebraic curves [10]. However,
these approaches depend on extracting corresponding entities such as points, lines or
contours and do not use the abundant information present in the form of the intensity
values in the multiple views of the scene. Frequency domain methods are in general
superior to methods based on spatial features because the entire image information
is used for matching. They also avoid the crucial issue regarding the selection of the
best features.

Our work proposes the use of a fixed number of patches distributed on each
image of the sequence to determine the pose change of a moving camera. The pose
of the camera (and UAV) is estimated trough dead-reckoning, performing a time
integration of ego-motion parameters determined between frames. We concentrate
in the XY-position and the orientation estimation in order to fuse these parameters
with the on-board IMU and altimeter sensors measurements. The camera ego-motion
is estimated using the homography induced by the (assumed to be flat) floor, and
the corresponding points needed to estimate the homography are obtained on the
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frequency domain. A point in the image is represented by the spectral information of
an image patch, which we call spectral feature [2, 3]. The correspondence between
points in two consecutive frames is determined by means of the phase correlation
between each spectral feature pair. These kind of features perform better than the
interest points basedon the image intensitywhenobserving afloorwith homogeneous
texture. Moreover, since their position in the image plane is previously selected, they
are always well distributed.

The transformation that relates two images taken from different views (with a
moving camera) contains information about the spatial rotation and translation of
the views, or the camera movement. Considering a downward-looking camera, and
assuming that the floor is a planar surface, all the space points imaged by the camera
are coplanar and there is a homography between the world and the image planes.
Under this constraint, if the camera center moves, the images taken from different
points of view are also related by a homography. The spatial transformation that
relates both views can be completely determined from this homography between
images.

The chapter is organized as follows: Sect. 2.2 details the homography-based pose
estimation, with a review of the so-called plane-induced homography. In this section
the homography decomposition used to obtain the translation and rotation of the
camera is also presented; and in order to estimate the homography, the so-called
spectral features are introduced in Sect. 2.3. The implementation details and the
results are presented in Sect. 2.4, and finally Sect. 2.5 remarks the conclusions and
future work.

2.2 Homography-Based Pose Estimation

The visual pose estimation is based on the principle that two consecutive images of
a planar scene are related by a homography. The planar scene corresponds to the
floor surface, which is assumed to be relatively flat, observed by the down-looking
camera on the UAV. The spatial transformation of the camera, and therefore of the
UAV, is encoded in this homography. Knowing the homography matrix that relates
both images, the transformation parameters that describe the camera rotation and
translation can be obtained.

In order to estimate the homography induced by the planar surface, a set of cor-
responding points on two consecutive images must be obtained. This process is
performed selecting a set of features in the first image and finding the corresponding
set of features in the second one. Then, the image coordinates of each feature in
both images conform the set of corresponding image points needed to calculate the
homography.

The image features used in our approach are the so-called spectral features, a
Fourier domain representation of an image patch. Selecting a set of patches in both
images (the same number,with the same size and position), the displacement between
them is proportional to the phase shift between the associated spectral features, and
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Fig. 2.1 Block diagram of the implemented visual pose estimation approach

can be obtained using the Fourier shift theorem. This displacement, in addition to
the feature center, determines the correspondence between features in both images:
that is, the set of corresponding points needed to estimate the homography.

InFig. 2.1 a blockdiagramof the estimation process is shown.Here, as an example,
nine spectral features in both images are used.

2.2.1 Review of Plane-Induced Homography

Given a 3D scene point P, and two coordinate systems,CSA andCSB, the coordinates
of the point P on each one can be denoted by XA and XB respectively. If RB

A ∈ SO(3)
is the rotation matrix that changes the representation of a point in CSA to CSB, and
TB ∈ R

3×1 is the translation vector of the origin ofCSA w.r.tCSB (expressed inCSB),
then the representations of the point P relate each other as

XB = RB
AXA + TB. (2.1)

We suppose now that the point P belongs to a plane π, denoted in the coordinate
system CSA by its normal nA and its distance to the coordinate origin dA. Therefore,
the following plane equation holds
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(nA)
TXA = dA ⇒ (nA)

TXA

dA
= 1, (2.2)

Plugging (2.2) into (2.1) we have

XB =
(
RB
A + TB

dA
(nA)

T

)
XA = HB

AXA, (2.3)

with

HB
A

.=
(
RB
A + TB

dA
(nA)

T

)
. (2.4)

The matrix HB
A is a plane-induced homography, in this case induced by the plane π.

As can be seen, this matrix encodes the transformation parameters that relate both
coordinates systems (RB

A and TB), and the structure parameters of the environment
(nA and dA).

Considering now a moving camera associated to the coordinate system CSA at
time tA and by CSB at time tB, according to the central projection model the relations
between the 3D points and their projections on the camera normalized plane are
given by

λAxA = XA; λBxB = XB (2.5)

where λA ∈ R
+ and λB ∈ R

+. Using (2.5) in Eq. (2.3) we have

λBxB = HB
AλAxA ⇒ xB = λHB

AxA, (2.6)

with λ = λA
λB
. Given that both vectors xB and λHB

AxA have the same direction

xB × λHB
AxA = x̂BHB

AxA = 0, (2.7)

with x̂B the skew-symmetric matrix associated to xB. The Eq. (2.7) is known as the
planar epipolar restriction, and holds for all 3D points belonging to the plane π.
Assuming that the camera is pointing to the ground (downward-looking camera) and
that the scene structure is approximately a planar surface, all the 3D points captured
by the camera will fulfill this restriction.

The homographyHB
A represents the transformation of the camera coordinate sys-

tems between instant tA and tB, hence, it contains the information of the camera
rotation and translation between these two instants. This homography can be esti-
mated knowing at least four corresponding points of two images. In our case the
correspondence between these points is calculated in the spectral domain, by means
of the spectral features. The complete process is detailed in Sect. 2.3.
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2.2.2 Homography Decomposition

Following [13] H can be decomposed in order to obtain a non-unique solution

(exactly four different solutions)
{
Ri,ni,

Ti
di

}
. Then, adding some extra data for dis-

ambiguation we can arrive to the appropriate
{
RB
A,nA,

TB
dA

}
solution.

Normalization

Given that the planar epipolar constraint ensures equality only in the direction of
both vectors (Eq. (2.7)), what is actually obtained after the homography estimation
is λH, that is1

Hλ = λH = λ

(
R + T

d
nT

)
. (2.8)

The unknown factor λ included inHλ can be found as follows. Consider the product

HT
λHλ = λ2 (I + Q) (2.9)

with I the identity, Q = anT + naT + ||a||2nnT and a = 1
dR

TT ∈ R
3×1. The vec-

tor a × n, perpendicular to a and n, is an eigenvector of HT
λHλ associated to the

eigenvalue λ2, being that

HT
λHλ(a × n) = λ2(a × n). (2.10)

So, if λ2 is an eigenvalue of HT
λHλ, then |λ| is a singular value of Hλ. It is easy to

show that Q in (2.9) has one positive, one zero and one negative eigenvalue, what
means that λ2 is the second ordereigenvalue of HT

λHλ, and |λ| will be the second
order singular value of Hλ. That is, if σ1 > σ2 > σ3 are the singular values of Hλ,
then

H = ±Hλ

σ2
(2.11)

To get the right sign of H, the positive depth condition in (2.6) must be applied. In
order to ensure that all the considered points are in front of the camera, all 3D points
in plane π projected in the image plane must fulfill

(xjB)
THxjA = 1

λj
> 0, ∀j = 1, 2, . . . , n. (2.12)

where
(
xjA, x

j
B

)
are the projections of all points {P}nj=1 lying on the plane π, at time

tA and tB respectively.

1To avoid the abuse of notation we do not use here the sub and supra indexes A and B that refer to
the corresponding coordinate systems.
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Estimation of n

The homography H induced by the plane π preserves the norm of any vector in the
plane, i.e. given a vector r such that nTr = 0, then

Hr = Rr (2.13)

and therefore ||Hr|| = ||r||. Consequently, knowing the space spanned by the vectors
that preserve the norm under H, the perpendicular vector n is also known.

The matrix HTH is symmetric, and therefore admits eigenvalue decomposition.
Being σ2

1,σ
2
2,σ

2
3 the eigenvalues and v1, v2, v3 the eigenvectors of HTH, then

HTHv1 = σ2
1v1, HTHv2 = v2,

HTHv3 = σ2
3v3

(2.14)

since by the normalization σ2
2 = 1. That is, v2 is perpendicular to n andT, so its norm

is preserved under H. From (2.14) it can be shown that the norm of the following
vectors

u1
.=

√
1−σ2

3v1+
√

σ2
1−1v3√

σ2
1−σ2

3

,

u2
.=

√
1−σ2

3v1−
√

σ2
1−1v3√

σ2
1−σ2

3

(2.15)

is preserved under H too, as well as all vectors in the sub-spaces spanned by

S1 = span {v2,u1} , S2 = span {v2,u2} (2.16)

Therefore, there exist two possible planes that can induce the homographyH, π1 and
π2, defined by the normal vectors to S1 and S2

n1 = v2 × u1, n2 = v2 × u2. (2.17)

Estimation of R

The action of H over v2 and u1 is equivalent to a pure rotation

Hv2 = R1v2, Hu1 = R1u1 (2.18)

since both vectors are orthogonal to n1. The rotation of n1 can be computed as

R1n1 = Hv2 × Hu1. (2.19)

Defining the matrix U1 = [v2,u1,n1] and W 1 = [Hv2,Hu1,Hv2 × Hu1], from
(2.18) and (2.19) we have
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R1U1 = W 1 (2.20)

and given that the set of vectors {v2,u1,n1} form an orthogonal base inR3, thematrix
U1 is non-singular, therefore

R1 = W 1UT
1 , (2.21)

that is

R1 = [Hv2,Hu1,Hv2 × Hu1][v2,u1,n1]T . (2.22)

Considering now the set {v2,u2,n2}, in the same way we arrive to

R2 = W 2UT
2 (2.23)

where U2 = [v2,u2,n2] and W 2 = [Hv2,Hu2,Hv2 × Hu2], that is

R2 = [Hv2,Hu2,Hv2 × Hu2][v2,u2,n2]T . (2.24)

Estimation of T
d

Once R and n are known, the estimation of T
d is direct, as

T1

d1
= (H − R1)n1, (2.25)

T2

d2
= (H − R2)n2, (2.26)

which completes both solutions of the H decomposition.

Desambiguation

However, it should be noted that the term T
d n

T in H introduces a sign ambiguity,
since T

d n
T = −T

d (−nT ), therefore the number of possible solutions rises to four,

{
R1,n1,

T1
d1

}
,

{
R1,−n1,

−T1
d1

}
,{

R2,n2,
T2
d2

}
,

{
R2,−n2,

−T2
d2

}
.

(2.27)

In order to ensure that the plane inducing the homography H appears in front of the
camera, each normal vector ni must fulfill nz < 0, and therefore only two solutions
remain. These two solutions are both physically possible, but given that most of the
time the camera on the UAV is facing-down, we choose the solution with the normal
vector n closest to [0, 0,−1]T in terms of the norm L2.
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2.3 Spectral Features Correspondence

The estimation of the homography given by two consecutive images from a mov-
ing camera requires a set of corresponding points. Classically, this set of points is
obtained by detecting features, such as lines and corners in both images, and deter-
mining correspondences. The feature detectors are typically based on image gradient
methods. An alternative to this approach is to use frequency-based features, or spec-
tral features, and to determine correspondences in the frequency domain.

The so-called spectral feature refers to the Fourier domain representation of an
image patch of 2n × 2n, where n ∈ N

+ is set accordingly to the allowed image dis-
placement [3]. The power of 2 of this patch size is selected based on the efficiency
of the Fast Fourier Transform (FFT) algorithm. The number and position of spectral
features in the image are set beforehand. Even though a minimum of four points are
needed to estimate the homography, a higher number of features are used to increase
the accuracy, and the RANSAC algorithm [8] is used for outliers elimination.

Consider two consecutive frames, where spectral features on each image were
computed. To determine the correspondence between features is equivalent to deter-
mine the displacement between them. This displacement can be obtained using the
spectral information by means of the Phase Correlation Method (PCM) [11]. This
method is based on the Fourier shift theorem, which states that the Fourier transforms
of two identical but displaced images differ only in a phase shift.

Given two images iA and iB of size N × M differing only in a displacement (u, v),
such as

iA(x, y) = iB(x − u, y − v) (2.28)

where

u ≤ x < N − u, v ≤ y < M − v, (2.29)

their Fourier transforms are related by

IA(ωx,ωy) = e−j(uωx+vωy)IB(ωx,ωy), (2.30)

where IA and IB are the Fourier transforms of images iA and iB, respectively; u
and v are the displacements for each axis. From (2.30), the amplitudes of both
transformations are the same and only differ in phase which is directly related to the
image displacement (u, v), and therefore this displacement can be obtained using
the cross-power spectrum (CPS) of the given transformations IA and IB. The CPS of
two complex functions is defined as

C(F,G) = F(ωx,ωy)G∗(ωx,ωy)

|F(ωx,ωy)||G∗(ωx,ωy)| (2.31)

where G∗ is the complex conjugate of G.
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Using (2.30) in (2.31) over the transformed images IA and IB, gives

IAI∗B
|IA||I∗B|

= e−j(uωx+vωy). (2.32)

The inverse Fourier transform of (2.32) is an impulse located exactly in (u, v), which
represents the displacement between the two images

F−1[e−j(uωx+vωy)] = δ(x − u, y − v). (2.33)

Using the discrete Fast Fourier Transform (FFT) algorithm instead of the continuous
version, the result will be a pulse signal centered in (u, v) [17].

2.3.1 Corresponding Points

The previous subsection describes how to calculate the displacement between two
images using PCM. Applying this method to each image patch pair, the displacement
between spectral features is determined. The set of corresponding points required to
estimate the homography can be constructed with the patch centers of the first image
and the displaced patch centers of the second one, that is

{xAi ↔ xAi + Δdi = xBi} (2.34)

where Δdi represents the displacement between the i-th spectral feature, and xAi

the center of the i-th spectral feature in the CSA. This is schematically shown in the
zoomed area of Fig. 2.2. As shown in Sect. 2.2.1, this set of corresponding points is

Fig. 2.2 Estimation of the rotation and translation between two consecutive images based on
spectral features
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Fig. 2.3 Displacements
between patches

related by a homography from which, using linear methods plus nonlinear optimiza-
tion, the associated homography matrix can be computed [9].

In Fig. 2.3 a real set of spectral features is shown,where the black crosses represent
each patch center and the yellow circles represent the output of PCM. It is important
to note that the number, size, and position of spectral features are set beforehand:
therefore, neither a search nor a correspondence process needs to be performed.

2.4 Implementation and Results

Summarizing,Algorithm1 shows the proposed procedure to estimate the position and
orientation, Algorithm 2 shows the procedure to determine the displacement between
patches, and in Algorithm 3 the homography decomposition process is detailed.

Algorithm 1 Position and orientation estimation: function poseEstimation(it, it−1)
Extract patches pi t and pi t−1 from it y it−1
for ∀{pi t, pi t−1} do
Δdi ← findDisplacement(pi t, pi t−1)

xi t ← xi t−1 + Δdi
end for
Hλ ← findHomography(xi t, xi t−1)

R, n, T/d ← getRtn(Hλ)

return R, n, T/d
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Algorithm 2 Patches displacement determination: function findDisplacement

(pi t, pi t−1)
Pi t ← FastFourierTransform(pi t)
Pi t−1 ← FastFourierTransform(pi t−1)

C ← CrossPowerSpectrum(Pi t,Pi t−1)

r ← InverseFastFourierTransform(c)
Δdi ← argmax r
return Δdi

Algorithm 3 Homography matrix decomposition: function getRtn(Hλ)

Uλ, Σλ, VT
λ ← SVDecomp(Hλ)

H ← Hλ/σ2
U, Σ , VT ← SVDecomp(H)[
v1 v2 v3

] ← V

u1 ← v1
√
1 − σ2

3 + v3
√

σ2
1 − 1√

σ2
1 − σ2

3

; u2 ← v1
√
1 − σ2

3 − v3
√

σ2
1 − 1√

σ2
1 − σ2

3
n1 ← v2 × u1 ; n2 ← v2 × u2
Choose only the two physically possible solutions (this ensures that n1 and n2 have nz positive
component)
U1 ← [

v2 u1 n1
] ; U2 ← [

v2 u2 n2
]

W1 ← [
Hv2 Hu1 Hv2 × Hu1

] ; W2 ← [
Hv2 Hu2 Hv2 × Hu2

]
R1 ← W1UT

1 ; R2 ← W2UT
2

T1/d ← (H − R1)n1 ; T2/d ← (H − R2)n2
Choose the solution with nz of each normal plane vector closest to zero
return R, n, T/d

2.4.1 Spectral Features Evaluation

In order to evaluate the performance of the spectral features in comparison with
the intensity features, we use Shi-Tomasi algorithm [15] to detect intensity fea-
tures in the first frame and Lucas–Kanade algorithm [4] to track these features
in the second frame. OpenCV implementations of these algorithms are called
goodFeaturesToTrack() and calcOpticalFlowPyrLK(). The evaluation
was done using a camera mounted on a conveyor belt, shown in Fig. 2.4a, simulating
a camera movement along Y axis at a constant height. In this way two frames differ
only on a pure translation, without changes in scale or angles that affect the test.
The displacement of the conveyor belt is measured with a laser telemeter, and the
running distance in all the tests is of 0.3m. The parameters estimated using spectral
features are plotted in red, and those estimated using optical flow are plotted in blue.
The texture of the floor seen by the camera is shown on Fig. 2.4b.

The performance of the algorithm with both types of features is tested using a
zone in the conveyor belt plenty of corner-like features. In this case both approaches
perform with low error and high stability. The results are shown in Fig. 2.5: the
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Fig. 2.4 a Camera mounting over a conveyor belt used to compare the performance of spectral
feature against Shi-Tomasi algorithm. b Floor texture

Fig. 2.5 Pose estimation using a textured floor. Plots are x, y, z in m and roll, pitch, yaw in rad
versus time in s. Red spectral features, Blue corner-like features

distance measurements along the Y , X and Z axes, and the calculated yaw, pitch and
roll angles using both types of features.

In Fig. 2.6 the estimated odometry using the conveyor belt texturewith less corner-
like features is shown, where the estimation with spectral features are plotted in red
and the remaining in blue. As can be seen, themeasurements calculated using spectral
features are more accurate and stable.

Figure2.7 shows a situation (pretty common when the floor contains low quality
of corner-like features) where the intensity features failed, making the computation
of the odometry totally incorrect. This failure is a consequence of a mismatch in the
correlation of features, and occurs evenmorewhen the image goes out of focus,which
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(a)

(b)

Fig. 2.6 Pose estimation using a floor with low number of corner-like features, similar to that
shown in Fig. 2.4a. Red spectral features, Blue corner-like features

is a very usual situation during a quadrotor flight. In the third image of the sequence
shown in Fig. 2.8 it is possible to appreciate this mismatch on the correlation of the
features used by the optical flow algorithm, which are drawn in blue. This sequence
corresponds to the pose estimation shown in Fig. 2.7d.

2.4.2 Pose Estimation in Simulated Quadcopter

The evaluation of the proposed visual pose estimation approach is performed with
synthetic images obtained from a simulated quadrotor. In order to generate a six
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(a) (b)

(d)(c)

Fig. 2.7 XY plot of the pose estimation in a floor with low corner-like features. Red spectral
features, Blue corner-like features

degrees of freedom motion similar to the motion of a real quadrotor, a simulated
dynamic model was used. The truth robot position and orientation obtained in this
way are then used to crop a sequence of images from a big one representing the
observed flat surface. The ground truth pose is also used for evaluation purposes.
The simulation of the quadrotor is based on Simulink, and the dynamic model is
presented in [6]. Figure2.9 shows an example of the path followed by the quadrotor
used to generate the synthetic dataset.

The path consists on a change of altitude followed by two loops maintaining
constant radius. During the loops, the heading angle, also called yaw angle, was set
to grow up to 2π radians.

The images were obtained from a virtual downward-looking camera following
the path described above, cutting portions of 640 × 480 from a bigger image of
uniformly distributed noise in order to simulate a carpet. The virtual camera was
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Fig. 2.8 Image sequence corresponding to a wrong pose estimation using intensity features. The
floor texture is a low quality corner-like features type, similar to that shown in Fig. 2.4a.Red spectral
features, Blue corner-like features

Fig. 2.9 Simulated position
of a quadrotor with a
six-degrees-of-freedom
motion

configured with a pixel size of 5.6µm and a focal length of approximately 1mm.
The algorithm was set with 42 patches of 128 × 128 pixels, equally distributed in
the image.
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Fig. 2.10 Estimation of the
XY-position and yaw angle
of the UAV during a 20 s
flight

In Fig. 2.10 the estimated parameters together with the ground truth are shown.
The graphic at the top shows the X position estimation of the UAV, which performs
a total of 2.5m of change in the complete trajectory. The Y position estimation is
plotted in the middle, and it has a similar behavior to the X one. As can be seen, the
estimation error remains bounded in both axes all the time. The last graphic shows
the yaw angle estimation, which follows the ground truth with a very small error.

2.5 Conclusions

In this work a new approach for visual estimation of the pose change of a quadrotor
with a down-looking camera was presented. The proposed algorithm is based on the
plane-induced homography that relates two views of the floor, and uses what we call
“spectral features” to establish point-correspondences between images.

The main advantage of using spectral features as in this implementation is its
robustness in low quality corner-like features floors. Evaluation of this was done
using a conveyor belt to simulate a displacement of the camera, and comparing
the performance of the spectral features with the Shi-Tomasi intensity features. The
spectral features have shown to bemore accurate and stable than the intensity features,
especially in those scenarios with low quality corner-like features which appears
frequently when the camera goes out of focus.

The evaluation of the visual algorithm using a synthetic dataset has shown that
the XY-position is estimated without significant absolute error, despite the typical
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accumulated error of the integration process. It is important to note that the view
changes introduced by the orientation change (roll and pitch) over the flight did not
induce any considerable error in theXY-position estimation. Likewise, the estimation
of the heading (yaw) angle has shown to be accurate enough to be used in an IMU-
camera fusion schema.
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