
Chapter 10
Evolving Connection Weights of Artificial
Neural Network Using a Multi-Objective
Approach with Application to Class
Prediction

Andrei Strickler and Aurora Pozo

InArtificialNeuralNetwork (ANN), the selection of connectionweights is a key issue
and Genetic and Evolution Strategies have been found to be promising algorithms
to solve this important task. Motivated by that, this study investigates the applicabil-
ity of using two novel Multi-Objective Evolutionary Algorithms (MOEA): Speed
constrained Multi-Objective Particle Swarm Optimization (SMPSO) and Multi-
ObjectiveDifferential EvolutionAlgorithmbasedonDecompositionwithDynamical
Resource Allocation (MOEA/D-DE-DRA). ANNs are training to learn data classi-
fication using sensibility and specificity for different UCI databases. The results are
compared using the Hypervolume as quality indicator and statistical test.

10.1 Introduction

Most training algorithms, such as Backpropagation (BP) and conjugate gradient
algorithms, are based on gradient descent [15]. There have been many successful
applications of BP in various areas, but BP has drawbacks due to the use of gradi-
ent descent. It often gets trapped in a local minimum of the error function and is
incapable of finding a global minimum if the error function is multimodal and/or
non-differentiable.

In the other side, Evolutionary Algorithms (EAs) can help to avoid the problem
of convergence to local minima and explore global search for training MLP. EAs

A. Strickler (B) · A. Pozo
Computer Science Department, Federal University of Paraná, Curitiba, Brazil
e-mail: astrickler@inf.ufpr.br

A. Pozo
e-mail: aurora@inf.ufpr.br

© Springer International Publishing Switzerland 2017
N. Nedjah et al. (eds.), Designing with Computational Intelligence,
Studies in Computational Intelligence 664,
DOI 10.1007/978-3-319-44735-3_10

177

178 A. Strickler and A. Pozo

can be used effectively to find a near-optimal set of connection weights without
computing gradient information. The fitness of an ANN can be defined according to
different needs. Moreover, the task of learning the connection weights can be stated
as a Multi-Objective task and Multi-Objective Evolutionary Algorithms (MOEAs)
can be used to solve this task.

In this study, two different MOEAs are investigated: Speed constrained
Multi-Objective Particle Swarm Optimization (SMPSO) [8] and Multi-Objective
Differential EvolutionAlgorithmBased onDecomposition (MOEA/D-DE) [19]with
Dynamical Resource Allocation (DRA - MOEA/D-DE-DRA) [20].

The algorithmof Speed constrainedMulti-Objective Particle SwarmOptimization
(SMPSO) is a technique of optimization based on Particle Swarm Optimization
(PSO). PSO developed by Kennedy and Eberhart [8], is a population-based heuristic
inspired by the social behavior of bird flocking aiming to find food. PSO have some
similarities with evolutionary algorithms: both systems are initialized with a set of
solutions, possibly random, and search for optima by updating generations. Despite
these similarities, there are two main differences between them. First, there is no
notion of offspring in PSO, the search is guided by the use of leaders. Secondly,
PSO has no evolution operators such as crossover or mutation. In Particle Swarm
Optimization, the set of possible solutions is a set of particles, called swarms moving
in the search space, in a cooperative search procedure. Thesemoves are performed by
an operator that is guided by a local and a social component [9]. SMPSO algorithm is
an extension of PSO for solving Multi-Objective problem. Researchers like SMPSO
algorithmbecause this algorithm is easy to programwhen compared to otherMOEAs.

Multi-Objective Differential Evolution Algorithm based on Decomposition
(MOEA/D) is an evolutionary algorithm that optimize multi-objectives problems,
using the idea of decomposition [19].MOEA/D decompose themulti-objective prob-
lem into different sub-problems using scalar weight functions. Thus, the algorithm
solves these sub problems simultaneously evolving a population of solutions using
differential evolution operators. In each generation, the population is composed by
the best solution found so far for each sub-problem.The relation among sub-problems
are set based on the distances between their weighting vectors [19]. The MOEA/D-
DE-DRA algorithm [20] uses the same concepts of MOEA/D [19], but the amount
of computational resources (memory) reserved to solve each sub-problem is based
on a utility function. Nowadays, MOEA/D-DRA is a state of art on MOEAs.

These two MOEAs are used to train ANN to classify data. With this purpose,
two fitness functions are used: the sensitivity and specificity criteria that are directly
related to the quality of the classification. An empirical evaluation is made using dif-
ferent UCI databases and the comparison show the effectiveness of these algorithms.

This work is structured as follow: Sect. 10.2 present the basic concepts of ANN
(Sect. 10.2.1), Evolutionary Algorithms (Sect. 10.2.2), SMPSO (Sect. 10.2.2.1),
MOEA/D-DE-DRA (Sect. 10.2.2.2), Hypervolume (Sect. 10.2.3) and the classifi-
cation problem (Sect. 10.2.4); Sect. 10.3 describes the configuration of experiments
and the obtained results. Finally, Sect. 10.4 has the conclusion and future works.

10 Evolving Connection Weights of Artificial Neural Network … 179

10.2 Elementary Concepts

In this section, we describe concepts of MLP, multi-objective optimization and the
algorithms used in the study. Moreover, elementary concepts of classification are
presented.

10.2.1 Artificial Neural Networks - ANN

Researches on neural networks look to the organization of the brain as a model
for building intelligent machines. Moreover, the human brain processes information
in an entirely different way than conventional digital computer [5]. The brain is a
highly complex computer, non-linear and parallel. It has the ability to organize their
structural components, known as neurons, in order to perform certain tasks, such as
pattern recognition, sense and motor control, much faster than the fastest existing
digital computer.

AnANN consists of a set of processing elements, also known as neurons or nodes,
which are interconnected. It can be described as a directed graph in which each node
i performs a transfer function fi as described by Eq.10.1

yi = fi

⎛
⎝

n∑
j=1

(wij · xj) + bias

⎞
⎠ (10.1)

where yi is the output of the node i, xi is the jth input to the node, andwij is the connec-
tion weight between nodes i and j. The threshold is the bias of the node. Usually, fi is
nonlinear, such as a heaviside, sigmoid, or Gaussian function. Equation10.2 shows
the sigmoid function.

out = 1

1 + e−net
(10.2)

A neural network topology represents the way in which neurons are connected
to form a network. In other words, the neural network topology can be seen as the
relationship between the neurons by means of their connections. The topology of
ANNs can be divided into feedforward (FFNN) and recurrent classes according to
their connectivity. AnANN is a feedforward if the information flow is unidirectional.
A unit sends information to another unit from which it does not receive any informa-
tion. There are no feedback loops. They are used in pattern generation, recognition
and classification. In recurrent ANNs, feedback loops are allowed. They are used in
content addressable memories.

180 A. Strickler and A. Pozo

Fig. 10.1 Representation of an ANN - MLP

Basically, there are two kinds of FFNN: single-layer perceptron (SLP), and multi-
layer perceptron (MLP). The SLP networks consist of a single layer of output nodes,
which are fed directly by input layer via a set of weights. MLP networks consist of
multiple layers: an input layer, one or more hidden layers and an output layer. Each
layer has nodes and each node is fully weighted interconnected to all nodes in the
subsequent layer. Figure10.1 shows an illustration of an ANN of the type MLP.

Themost important feature of anANN is how its learning process occurs. Accord-
ing to Haykin [5], the learning is defined as a process where the free parameters of
a neural network are adjusted by a stimulation process by the environment where it
is inserted.

In supervised learning, training is performed by presenting a large set of examples,
called the training set, to the network. Each example consists of a set of inputs
presented to the input layer and the respective set of desired outputs. Although
training an ANN can be time-consuming, once this stage is successful completed,
the input–outputmapping is evaluated almost instantaneously.However, caremust be
taken to use an adequate training set, representative of the sampling space. In many
cases this is not feasible, and the sampling space must be restricted to a specific
sub-domain. This means that ANNs are best applied to specific well and defined
problems [3].

When using a MLP to solve a problem, the first activity is to train the MLP.
Training depends on chosen initial weights and usually applies gradient learning
algorithms to adapt weight values. Among these algorithms, error Backpropagation
(BP) method [15] is one of the most used. In BP, the weight adjustment starts in
the output nodes, where the measure of the error is available, and proceeds back-
propagating this error through the previous layers. BP is a method based in gradient
descendent, what means BP does not assure to find a global minimum and can get
stuck on local minima, where it will stay indefinitely. However, BP is popular and
widely used on ANN training [17].

10 Evolving Connection Weights of Artificial Neural Network … 181

As alternative, evolutionary algorithms can be applied to global searches within
the weight space of a typical feedforward neural network (FFNN) and outline local
minima and enable adaptive selection of control parameters [7, 16].

10.2.2 Multi-Objective Evolutionary Algorithms-MOEAs

According to Yao [18], the EAs can be used in the global evolution, to find a set of
optimal (or near-optimal) weights of connections, and without gradient calculation.
The error value can be defined based on the specific needs of the task to run. A
commonly used factor in the formulation of the error function is the difference,
called the error between the expected output and the actual output.

Two MOEAs are chosen for this study: MOEA/D-DE-DRA a state of art on
MOEAs and SMPSO algorithm because this algorithm is easy to program when
compared to other MOEAs.

10.2.2.1 SMPSO

Particle SwarmOptimization (PSO) is a stochasticmeta-heuristic based on themove-
ment of bird flocks looking for food, created to optimize nonlinear functions. In this
method a swarm (population) of particles (solutions) moves across the search space
(evolves) guided by personal and social leaders. A particle as two components: posi-
tion and velocity. These components are updated at each generation.

Equations10.3 and 10.4 present the rules for updating the speed (vi) and posi-
tion (pi) of a particle i. The first member of the Eq.10.3 is the inertia term, the
second term is a movement to the personal best position pBestti and the third term is
a movement towards the global best position gBestti (social term).

To expand the PSO to solve multi-objective problems, and create a Multi-
Objective Particle Swarm Optimization (MOPSO) [14] algorithm, some modifica-
tions are needed. The first of them is the creation of an external archive (repository)
to store the better (non-dominated) solutions found so far, another modification is in
the leader selection scheme, which has to choose from a set of equally good leaders
according to some criterion. As the number of non- dominated solutionsmay become
very large, an archiving method is needed to prune the repository and keep only a
predefined number of solutions, discarding some non-dominated solutions according
to its criterion.

A MOPSO that has shown very good results in the literature is the Speed-
constrained Multi-objective PSO (SMPSO) [11]. It was noted that in some con-
ditions the velocity of the particles in a MOPSO can become too high, generating
erratic movements towards the limits of the decision space. To avoid such situations,
SMPSO presents a velocity constriction mechanism based on a factor χ that varies
based on the values of the influence coefficients of personal and global leaders (C1
and C2 respectively). In SMPSO, the (global) leader selection method uses a binary

182 A. Strickler and A. Pozo

tournament based in the Crowding Distance metric from [2], and the archiving strat-
egy also uses the Crowing Distance.

vt+1
i =

inertia︷ ︸︸ ︷
ω · vt

i +
personal︷ ︸︸ ︷

c1 · rt1(pBestti − pti)+
social︷ ︸︸ ︷

c2 · rt2(gBestti − pti) (10.3)

pt+1
i = pti + vt+1

i (10.4)

Algorithm 9 Pseudocode of SMPSO algorithm
Require: swarm size;
Ensure: repository;
1: initialize(particles)
2: repository = initializeRepository(particles)
3: gen = 0;
4: while gen < max_generations do
5: for each particle in the repository do
6: selectGlobalLeader(particle, repository)
7: ComputeSpeed(particle)
8: updatePosition(particle)
9: mutation(particle)
10: evaluation(particle)
11: updatePersonalLeader(particle)
12: end for
13: repository = updateRepository(particles)
14: gen++;
15: end while
16: return repository;

At Algorithm 9 the pseudo-code of the SMPSO algorithm is presented. First the
swarm and leaders archive (repository) are initialized and the evolutionary process
begin. At each generation, for each particle in the population, the leaders are calcu-
lated and then the speed and position are updated. After, it is performed the Polyno-
mial mutation for each particle, and the particles are evaluated. Finally, the particles
update the leaders archive. The output of SMPSO is the leaders archive or repository.

10.2.2.2 MOEA/D-DE-DRA

The decomposition is another way to solve a problem with multi-objectives. The
MOEA/D-DE-DRA decompose one multi-objective optimization problem (MOP),
in many single-objective sub-problems.

There are two main components in MOEA/D. First, the mechanism to decom-
pose MOP into sub-problems. Normally weight vectors are generated randomly and

10 Evolving Connection Weights of Artificial Neural Network … 183

each one defines a sub-problem. The objective of each sub-problem is a (linear or
nonlinear) weighted aggregation of all the individual objectives in the MOP.

The second main component is the neighborhood relations among these sub-
problems. The neighborhood relations are defined based on the distances between
their weight vectors. Each sub-problem (i.e., scalar aggregation function) is opti-
mized in MOEA/D by using information from its neighboring sub-problems.

TheMOEA/D-DEwithDynamical ResourceAllocation (DRA) is a versionwhere
different amounts of computational effort are allocated to different problems. In
MOEA/D with Dynamical Resource Allocation (MOEA/D-DE-DRA), the version
of MOEA/D used in this paper, the utility πi for each subproblem is used.

MOEA/D-DE and its variants can use any decomposition approach for defin-
ing their sub-problems. This work uses the Tchebycheff [20] approach. Using this
decomposition method, each sub-problem can be formulated as in Eq.10.5:

Min gte(x | λ, z∗) = max1≤j≤M {λj | fj(x) − z∗j | } (10.5)

subject to x ∈ Ω

wherein gte is the Tchebycheff function, f (x) = (f1(x), . . . , fM(x)) is the set of func-
tions that has to be minimized, and λ = (λ1, . . . ,λM) is the weight vectors.

The sub-problems are evolved using Differential Evolution(DE) operators. DE
uses a simple mutation operator based on differences between pairs of solutions
(called vectors) with the aim of finding a search direction based on the distribution
of solutions in the current population. DE also utilizes a steady-state-like replacement
mechanism, where the newly generated offspring (called trial vector) competes only
against its corresponding parent (old object vector) and replaces it if the offspring
has a higher fitness value.

TheMOEA/D-DE-DRA is presented atAlgorithm10.Thefirst steps ofMOEA/D-
DE-DRA is to initialize various data structures, analogous to most MOEA/D
variants. The weight vectors λi, i = 1, . . . ,N , representing coefficients associated
with each objective, are generated using a uniform distribution. The neighborhood
(Bi = i1, . . . , iC) of weight vector λi stores the indexes of the C weight vectors clos-
est to λi. The initial population is randomly generated and evaluated. Each individual
(xi) is associated with the ith weight vector. The empirical ideal point (z∗) is initial-
ized as the minimum value of each objective found in the initial population and the
generation (g) is set to 1.

After initialization steps, the algorithm enters its main loop. The first step of the
main loop is to determine which individuals from the population will be processed. A
10-tournament selection based on the utility value of each sub-problem (πi , calculated
accordingly toEq.10.6) is used to determine the individuals to evolve.Next, the scope
used during the generation of the individual and the population update is randomly
chosen. DE heuristics (mutation strategies and crossover) are applied considering
individuals randomly selected from scope. In this work, scope can swap from the
neighborhood to the entire population (and vice-versa) It is composed by the indexes

184 A. Strickler and A. Pozo

Algorithm 10 Pseudocode of MOEA/D-DE-DRA algorithm
Require: Population size (N); number of objectives (M)
1: λi = genWeightVectors(N);
2: λi = (λi

1, ...,λ
i
M); i = 1, ...,N

3: for i = 1, ...,N do
4: define the set of neighbor indexes Bi = {i1, ..., iC}, where {λi1 , ...,λiC } are C weight vectors

closest to λi (Euclidian Distance)
5: end for
6: pop ← initializeRandomly();
7: Evaluate each individual i ∈ pop and associate to its weight vector λi;
8: Initialize z∗ = (z∗1, ..., z∗M);
9: z∗j = min1≤i≤N fj(xi)
10: g = 1;
11: while g > max evaluations do
12: I = Select using 10-tournament with (πi);
13: for each Individual i ∈ I do
14: if rand < δ then
15: scope = Bi;
16: else
17: scope = {1, ...,N};
18: end if
19: y = Crossover(DE/Rand/1/bin, i);
20: y

′
= PolynomialMutation(y);

21: evaluate(y
′
);

22: update z∗; z∗j = min(z∗j , fj(y
′
))

23: for each subproblem k (k randomly selected from scope) do
24: if gte(y

′ |λk, z∗) < gte(xk |λk, z∗) then
25: if a new replacement may occur then
26: Replace xk by y

′
and increment nr ;

27: end if
28: end if
29: end for
30: g++;
31: end for
32: computeUtility();
33: end while

of chromosomes from either the neighborhood Bi (with probability δ) or from the
entire population (with probability 1 − δ). Based on the chosen strategy, a modified
chromosome y is generated in step 19 and modified by the polynomial mutation in
step 20, generating y

′ = (y
′
1, . . . , y

′
n) from y.

In step 22, if the new chromosome y
′
has an objective value better than the value

stored in the empirical ideal point, z∗ is updated with this value. The next steps
involve the population update process (steps 23–26) which is based on the com-
parison of the fitness of individuals. In the MOEA/D-DE framework, the fitness of
an individual is measured accordingly to a decomposition function. In this work the
Tchebycheff function is used (Eq.10.5) Accordingly to what is selected for the scope
(steps 15 or 17), the neighborhood or the entire population is updated.

10 Evolving Connection Weights of Artificial Neural Network … 185

To avoid the proliferation of y
′
to a great part of the population, amaximumnumber

of updates (NR) is used. The population update is as follows: if a new replacement
may occur, (i.e., while nr < NR and there are unselected indexes in scope), a random
index (k) from scope is chosen. If y

′
has a better Tchebycheff value than xk (both

using the kth weight vector - λk) then y
′
replaces xk and the number of updated

chromosomes (nr) is incremented. If the current generation is a multiple of 50, then
the utility value of each sub-problem is updated using Eq.10.6. The evolutionary
process stops when the maximum number of evaluations is reached.

π2 =
{
1, ifΔi > 0.001

(0.95 + 0.05 ∗ Δi/0.001) ∗ πi, otherwise
(10.6)

10.2.3 Hypervolume

The performance comparison of one or more multi-objective optimization methods
is a complex task. Two goals of multi-objective optimization are: convergence and
diversity of solutions.

A widely used metric in the evaluation of multi-objectives algorithms is the indi-
cator of Hypervolume (HV). In HV, the volume of the covered area between the
points of the solutions on the Pareto front P (non-dominated solutions) and a ref-
erence point W is calculated. Each solution i ∈ P, constitutes a hypercube, vi with
reference to a point W [21]. This reference point can be found by building a vector
with the worst values of the objective function. The union of all hypercubes found is
the result of the metric and, as higher is the value of HV better are the results. Higher
values of HV indicate that there is a higher spreading between the solutions in P and
indicate that there is a better convergence to the Pareto front.

Hypervolume corresponds to the area formed by the union of all rectangles, as
shown in Fig. 10.2.

10.2.4 Classification Problem

Classification is one of the main tasks of Data Mining. According to Han and
Kamber [4] classification is the process of finding a model or function that describes
and distinguishes data elements or concepts in order to be able to use the model to
predict the class of an object whose class is unknown. The derived model is based
on analysis of a set of training data.

The training data consist of pairs of inputs (vectors) and desired outputs. For
example, in a classification problem, a hospital may want to classify medical patients
into those who have high, medium or low risk to acquiring a certain illness.

186 A. Strickler and A. Pozo

Fig. 10.2 Hypervolume area

The model generated by a learning algorithm should both fit the input data well
and correctly predict the class labels of records it has never seen before. Therefore, a
key objective of the learning algorithm is to build models with good generalization
capability; i.e., models that accurately predict the class labels of previously unknown
records.

A general approach for solving classification problems consist of two steps. First,
a training set consisting of records whose class labels are known must be provided.
The training set is used to build a classification model, which is subsequently applied
to the test set, which consists of records with unknown class labels.

Evaluation of the performance of a classification model is based on the counts
of test records correctly and incorrectly predicted by the model. These counts are
tabulated in a table known as a confusion matrix (Table10.1).

From the confusion matrix (10.1) is possible to calculate measures such as: True
Positive rate (TP rate), True Negative rate (TN rate or specificity), False Positive
rate (FP rate) and False Negative rate (FN rate). TP rate, also called sensitivity, is
the precision between the positive examples (Eq. 10.7). Its complement is the FN
rate (i.e., FNrate = 1 − FPrate). Specificity is the precision between the negative
examples (Eq.10.8). Its complement is the FP rate.

Table 10.1 Confusion matrix

Class = 1 Class = 0 Predicted class

Class = 1 TP FP TP + FP

Class = 0 FN TN FN + TN

ActualClass TP + FN FP + TN N

10 Evolving Connection Weights of Artificial Neural Network … 187

sensitivity = TP

TP + FN
(10.7)

specificity = TN

TN + FP
(10.8)

For several years, the most used performance measure for classifiers was the
accuracy [1]. The accuracy is the fraction of examples correctly classified, showed
on Eq.10.9. Despite of its use, the accuracy maximization is not an appropriate goal
for many of the real-world tasks [13]. A tacit assumption in the use of classification
accuracy as an evaluation metric is that the class distribution among examples is
constant and relatively balanced. In real world this case is rare, moreover, the cost
associatedwith the incorrect classification of each class can be different because some
classifications can lead to actions which could have serious consequences [12].

accuracy = TP + TN

TP + TN + FP + FN
(10.9)

Classification is one of the most dynamic exploratory and application areas of
ANNs. However, as mentioned before the selection of connection weights is a key
issue and here this issue is tackle with two MOEAs.

10.3 Experimental Evaluation and Results

The experimental evaluation aims at answering the following research questions:

RQ1: Is there difference of performance among the configurations of each algo-
rithm?

RQ2: Is there difference of performance between SMPSO andMOEA/D-DE-DRA?
RQ3: What are the advantages of the multi-objective versus mono-objective

approach for evolving connection weights of ANN for classification task?

To answer RQ1, first different configurations of the algorithms are used to learn
ANNs for each training database using sensitivity and specificity as fitness functions.
Second, the learned ANNs are applied into the test databases obtaining a new set of
values of sensitivity and specificity. Finally, the different configurations are compared
using the Hypervolume indicator and the Friedmann rank test [6].

The goal of RQ2 is to verify whether exists one algorithm with better results than
the other. The results obtained in RQ1 are now compared using the best configuration
obtained for each algorithm. Again the Friedmann rank test is used.

To answer RQ3, the results generated by applying the ANNs to each test databases
are analyzed using the accuracy, sensitivity and specificity.

In order to verify statistical difference among the results found by all algorithms
and settings, all of them were run 30 times and Friedmann [10] and Mann–Whitney
tests were executed with 0.05 significance level.

188 A. Strickler and A. Pozo

This section explains the methodology adopted to evolve connection weights of
artificial neural network using a multi-objective approach and its application in class
Prediction. The Java language was used to implement the ANN and to compute the
two fitness functions: sensitivity and specificity. The implementation of SMPSO and
MOEA/D-DE-DRA available at the JMetal Framework were used.

The following databases were used:

1. Breast Cancer Wisconsin (Original) Data Set (called as Cancer);
2. Pima Indians Diabetes Data Set (called as Diabetes);
3. Glass Identification Data Set (called as Glass);
4. Statlog (Heart) Data Set (called as Heart).

Each database was divided into 2 groups of instances, each one corresponding to
training set and testing set. These groups were set up with different sizes depending
on the database as shown in Table10.2.

The topologies of the ANNs were defined according to the databases. The input
layers are defined according to the numbers of attributes and the output layer accord-
ing to the number of classes. The complete definition of the used topologies is
presented at Table10.3.

The topology defines the size of the individuals that were evolved by the algo-
rithms, one dimension for each connection plus the bias for each neuron, i.e., each
individual defines one ANN. The neurons used a sigmoid function.

The algorithms were executed with two different population sizes: 50 and 100 and
two different number of generations: 500 and 1000, given four different configura-
tions for each algorithm. C1 with a population size of 50 and number of generations
set to 500; C2 with a population size of 50 and number of generations set to 1000;
C3 with a population size of 100 and number of generations set to 500 and, C4

Table 10.2 Separation of databases

Data base Training Testing Total

Cancer 500 183 683

Diabetes 650 118 768

Glass 170 44 214

Heart 220 50 270

Table 10.3 Number of neurons of each layer

Base Attributes (Input) Classes (Output) Hidden

Cancer 9 2 5

Diabetes 8 2 10

Glass 9 7 10

Heart 13 2 5

10 Evolving Connection Weights of Artificial Neural Network … 189

Table 10.4 Parameters values used

Parameter Value

F 0.3

CR 0.7

NR 2

T 20

Δ (delta) 0.9

c1 [1.5:2.5]

c2 [1.5:2.5]

r1 [0.0:1.0]

r2 [0.0:1.0]

ω 0.1

with a population size of 100 and number of generations set to 1000. The remaining
parameters were set as presented at Table10.4 using the default values of the JMetal.

Next we present and discuss the results of the experiments in order to answer the
research questions.

10.3.1 RQ1 - Comparing Different Configuration of Each
Algorithm

As mentioned before, different configurations of each algorithm were compared to
set the values of the parameters: population size and number of iterations.

Table10.5 shows the mean values and standard deviation of Hypervolume indica-
tor. At the top of theTable, the results of the SMPSOare reported and at the bottom the
results of MOEA/D-DE-DRA. For SMPSO, the best configuration for Cancer is C1,
Diabetes is C4, Glass is C3 and for Heart is C4. In the case of MOEA/D-DE-DRA,
the best configuration for Cancer, Diabetes and Heart is C2 and for Glass is C4. How-
ever, the difference between the values of Hypervolume is not high. For a deep analy-
sis on these values the Kruskal–Wallis at 0.5 significance level was applied. These
results are reported at Table10.6, for SMPSO and MOEA/D-DE-DRA. Analyzing
the Kruskal–Wallis results, is possible to observe that for SMPSO the configuration
C4 always get best or equivalent results for all databases. For MOEA/D-DE-DRA,
the configuration C2 almost always get best or equivalent results for all databases,
with exception in Glass where C4 is the best configuration.

The confirmation of these findings is given by the average rankings of con-
figurations obtained using Friedman test. These results are showed for SMPSO
and MOEA/D-DE-DRA at Tables10.7 and 10.8 respectively. Summarizing, the
Friedman test point out configuration C4 for SMPSO and C2 for MOEA/D-DE-

190 A. Strickler and A. Pozo

Table 10.5 Results of Hypervolume in each configuration

Algorithm Data Base Mean HV
C1 (Std)

Mean HV
C2 (Std)

Mean HV
C3 (Std)

Mean HV
C4 (Std)

SMPSO Cancer 0.99889
(0.002572)

0.99586
(0.008267)

0.99500
(0.013317)

0.99802
(0.005244)

Diabetes 0.81054
(0.075324)

0.85761
(0.038138)

0.85706
(0.039694)

0.85878
(0.050186)

Glass 0.99573
(0.001395)

0.99035
(0.003285)

0.99681
(5.8690E-4)

0.99672
(0.001294)

Heart 0.64645
(0.037708)

0.64999
(0.032952)

0.66789
(0.032417)

0.67879
(0.027469)

MOEA/D-DE-DRA Cancer 0.94478
(0.045548)

0.97901
(0.031272)

0.97803
(0.032959)

0.94298
(0.041491)

Diabetes 0.50173
(0.027114)

0.62406
(0.041031)

0.60731
(0.038475)

0.50856
(0.037513)

Glass 0.83237
(0.002012)

0.98992
(0.035803)

0.99217
(0.026678)

0.99849
(0.002765)

Heart 0.65033
(0.074096)

0.72171
(0.073602)

0.71988
(0.069996)

0.69071
(0.079847)

DRA as the better considering all databases. So, these configurations were chosen
for being used in the following experiments.

10.3.2 RQ2 - Comparing Different Algorithms

To answer RQ2, we compared the results from SMPSO algorithm with MOEA/D-
DE-DRA, using the configurations chosen according to the results presented previ-
ously. Table10.9 shows the results of the Wilcoxon test at 0.5 significance level and
the effect size. It possible to observe that the algorithms present significant differ-
ent results for each database. However, SMPSO presents better results for Cancer,
Diabetes and Glass. For Heart the best results are for MOEA/D-DE-DRA.

Figure10.3 depicts the obtained fronts using SMPSO andMOEA/D-DE-DRA for
Diabetes. Tables10.10 and 10.11 present the values of sensitivity and specificity of
each of the solutions in the fronts, for SMPSO andMOEA/D-DE-DRA respectively.
These fronts are the obtained fronts after executing 30 times the algorithms and
removing dominated and repeated solutions.

For Diabetes, SMPSO clearly outperforms MOEA/D-DE-DRA. The same hap-
pens for Heart but, in this case, is MOEA/D-DE-DRA that outperforms SMPSO.
Then, the average rankings was obtained using Friedman test. These results are pre-
sented at Table10.12, there is possible to observe that SMPSO is slightly better than
MOEA/D-DE-DRA considering the Hypervolume.

10 Evolving Connection Weights of Artificial Neural Network … 191

Table 10.6 Kruskal–Wallis at 0.05 significance level for Hypervolume

Dataset Algorithm Conf. C1 C2 C3 C4

Cancer SMPSO C1 – TRUE TRUE FALSE

C2 TRUE – FALSE TRUE

C3 TRUE FALSE – TRUE

C4 FALSE TRUE TRUE –

MOEA/D-
DE-DRA

C1 – TRUE TRUE FALSE

C2 TRUE – FALSE TRUE

C3 TRUE FALSE – TRUE

C4 FALSE TRUE TRUE –

Diabetes SMPSO C1 – TRUE TRUE TRUE

C2 TRUE – FALSE TRUE

C3 TRUE FALSE – TRUE

C4 TRUE TRUE TRUE –

MOEA/D-
DE-DRA

C1 – TRUE TRUE FALSE

C2 TRUE – FALSE FALSE

C3 TRUE FALSE – TRUE

C4 FALSE FALSE TRUE –

Glass SMPSO C1 – TRUE TRUE TRUE

C2 TRUE – TRUE TRUE

C3 TRUE TRUE – FALSE

C4 TRUE TRUE FALSE –

MOEA/D-
DE-DRA

C1 – TRUE TRUE TRUE

C2 TRUE – FALSE TRUE

C3 TRUE FALSE – TRUE

C4 TRUE TRUE TRUE –

Heart SMPSO C1 – FALSE TRUE TRUE

C2 FALSE – FALSE TRUE

C3 TRUE FALSE – TRUE

C4 TRUE TRUE TRUE –

MOEA/D-
DE-DRA

C1 – TRUE TRUE TRUE

C2 TRUE – FALSE TRUE

C3 TRUE FALSE – TRUE

C4 TRUE TRUE TRUE –

192 A. Strickler and A. Pozo

Table 10.7 SMPSO average rankings of configurations (Friedman)

Configuration Ranking

C1 3.0

C2 2.75

C3 2.5

C4 1.75

Table 10.8 MOEA/D-DE-DRA average rankings of configurations (Friedman)

Configuration Ranking

C1 3.75

C2 1.5

C3 2.0

C4 2.75

Table 10.9 Wilcoxon test at 0.05 significance level, SMPSO xMOEA/D-DE-DRA, Hypervolume
results

Dataset p-value Observation
diff.

Critical diff. Diff. Effect size

Cancer 0.0008472 16.62222 8.837967 TRUE 0.6822841
(medium)

Diabetes 0.0009271 14.93333 8.837967 TRUE 0.7488889
(large)

Glass 0.0009148 6.81322 8.837967 TRUE 0.573216
(small)

Heart 0.0071166 12.43255 8.837967 TRUE 0.421211
(small)

10.3.3 RQ3 - Advantages of a Multi-Objective Approach

In the task of learning classification algorithms as ANNs, the goal is to create algo-
rithms that have good performance for classification. Hence, the great majority of
the methods aims to optimize the performance of the classification by improving
the accuracy in the set. Despite of its use, the accuracy maximization is not an
appropriate goal for many of the real-world tasks [13]. A tacit assumption in the
use of classification accuracy as an evaluation metric is that the class distribution
among examples is constant and relatively balanced. In real world this is rarely the
case, because classification leads to actions which could have serious consequences.
Therefore, recent researches point out sensitivity and specificity as better metrics
to be used for induction of classification algorithms. Sensitivity is a relative mea-
sures of instances of the positive class that are well classified. Hence, the greater the

10 Evolving Connection Weights of Artificial Neural Network … 193

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

S
en

si
tiv

ity

Specificity

Diabetes
SMPSO

MOEA/D-DE-DRA

Fig. 10.3 Obtained Fronts, SMPSO and MOEAD/D-DE-DRA for Diabetes

sensitivity, the greater the number of instances in the positive class that are correctly
classified. Specificity is the same measure of sensitivity, but for negative instances.
The greater its value, the lower the number of instances in the negative class that are
misclassified. Sensitivity and specificity are inversely proportional, meaning that as
the sensitivity increases, the specificity decreases and vice versa. For understanding
the advantages of a multi-objective approach based on these two metrics in the fol-
lowing the ANNs obtained by SMPSO for Diabetes are deeply analyzed. Table10.13
presents TP, FP, TN, FN and accuracy of the ANNs sorted by increased value of TP.
It possible to note that as TP increases, TN decreases. The best value of accuracy
achieved is 0.7288135593, with TP = 127, FP = 19, TN = 45 and FN = 45. Or
in other words, 127 patients that have diabetes were diagnostic as having diabetes
but 19 patients that have not diabetes were included in the diagnostic. In the other
hand, 45 patients that have not diabetes were confirmed as not having the diseases
but 45 patients that have diabetes were diagnostic as without diabetes. This can be
dangerous because a treatment at time can make a good difference on the quality of
life for these patients. Having access to all these informations another ANN could
be used. That is, the user as more freedom to adequate the ANN that is better for its
preference.

10.4 Conclusion

ANNs are specially used to find a general solution in problems where a pattern needs
to be extracted, such as data-mining. The main difficulty to apply ANN in some
domainproblem is to train theANNto learn andpredict.ANNprovides differentways
to solve many nonlinear problems that are hard to solve by conventional techniques.

194 A. Strickler and A. Pozo

Table 10.10 SMPSO obtained Pareto Front for Diabetes

Solution Sensitivity Specificity

s1 0.9863013699 0

s2 0.9109589041 0.0111111111

s3 0.7808219178 0.0555555556

s4 0.7123287671 0.0777777778

s5 0.6849315068 0.0444444444

s6 0.6301369863 0.1222222222

s7 0.5890410959 0.1333333333

s8 0.5616438356 0.1666666667

s9 0.5410958904 0.1888888889

s10 0.4863013699 0.2111111111

s11 0.4452054795 0.2444444444

s12 0.4383561644 0.2555555556

s13 0.3493150685 0.2777777778

s14 0.3424657534 0.3111111111

s15 0.3219178082 0.3333333333

s16 0.2945205479 0.3555555556

s17 0.2671232877 0.3777777778

s18 0.2397260274 0.4111111111

s19 0.2054794521 0.4444444444

s20 0.1780821918 0.4666666667

s21 0.1301369863 0.5

s22 0.1095890411 0.6555555556

s23 0.0616438356 0.7222222222

s24 0.0410958904 0.8

s25 0.0273972603 0.8555555556

s26 0.0068493151 0.9

The use of evolutionary algorithms has excelled to problem solving that requires
space of global search optimization in several types problems. Theses algorithms
have also been used to train ANNs. This paper describes and compares the results
obtained in ANN training with two different algorithms: based on particle swarm
optimization (SMPSO) and differential evolution(MOEA/D-DE-DRA). ANNs are
trained for classification task, moreover, to properly tackle this task, ANNs need to
maximize two metrics: sensitivity and specificity.

An experiment was conducted using different benchmark databases. First the
goal was to determine the values of two important parameters of the algorithms: the
population size and number of generations. After then, the best configurations were

10 Evolving Connection Weights of Artificial Neural Network … 195

Table 10.11 MOEAD obtained Pareto Front for Diabetes

Solution Sensitivity Specificity

S1 0.6643835616 0.2

S2 0.5684931507 0.3

S3 0.5547945205 0.3111111111

S4 0.5 0.3777777778

S5 0.4657534247 0.4222222222

S6 0.4520547945 0.4333333333

S7 0.4383561644 0.4444444444

S8 0.3904109589 0.5

S9 0.3835616438 0.5333333333

S10 0.3424657534 0.5666666667

S11 0.3082191781 0.5888888889

S12 0.2808219178 0.6

S13 0.2397260274 0.6222222222

S14 0.2123287671 0.6555555556

S15 0.1917808219 0.6777777778

S16 0.1643835616 0.7111111111

S17 0.1369863014 0.7222222222

S18 0.0890410959 0.7888888889

S19 0.0616438356 0.8666666667

S20 0.0547945205 0.8888888889

S21 0.0136986301 0.9777777778

S22 0.0068493151 1

Table 10.12 Average rankings of the algorithms (Friedman)

Algorithm Ranking

SMPSO 2.3125

MOEAD 2.6875

compared to answer which is the best algorithm for the task. Here, it was possible to
observe that the best algorithm depends on the database, however, SMPSO presented
slightly better results. Finally, using the results found for Diabetes the advantages of
using sensibility and specificity were illustrated.

Future works include analyzing the influence of other parameters of the algo-
rithms, for example to use an adaptive version of MOEA/D-DE-DRA. It is known
that an appropriate configuration of parameters can produce better results.

196 A. Strickler and A. Pozo

Table 10.13 SMPSO obtained solutions for Diabetes

Solution TP FP TN FN Accuracy

S1 2 144 90 0 0.3898305085

S2 13 133 89 1 0.4322033898

S3 32 114 85 5 0.4957627119

S4 42 104 83 7 0.5296610169

S5 46 100 86 4 0.5593220339

S6 54 92 79 11 0.563559322

S7 60 86 78 12 0.5847457627

S8 64 82 75 15 0.5889830508

S9 67 79 73 17 0.593220339

S10 75 71 71 19 0.6186440678

S11 81 65 68 22 0.6313559322

S12 82 64 67 23 0.6313559322

S13 95 51 65 25 0.6779661017

S14 96 50 62 28 0.6694915254

S15 99 47 60 30 0.6737288136

S16 103 43 58 32 0.6822033898

S17 107 39 56 34 0.6906779661

S18 111 35 53 37 0.6949152542

S19 116 30 50 40 0.7033898305

S20 120 26 48 42 0.7118644068

S21 127 19 45 45 0.7288135593

S22 130 16 31 59 0.6822033898

S23 137 9 25 65 0.686440678

S24 140 6 18 72 0.6694915254

S25 142 4 13 77 0.656779661

S26 145 1 9 81 0.6525423729

Acknowledgments Authors would like to thank CNPq and CAPES for financial support.

References

1. Baronti F, Starita A (2007) Hypothesis testing with classifier systems for rule-based risk pre-
diction (chap), pp 24–34). doi:10.1007/978-3-540-71783-6_3

2. Deb K, Agrawal S, Pratap A, Meyarivan T (2000) A fast elitist non-dominated sorting genetic
algorithm for multi-objective optimisation: NSGA-II. In: Proceedings of the 6th international
conference on parallel problem solving from nature, PPSN VISpringer, London, UK, pp 849–
858

http://dx.doi.org/10.1007/978-3-540-71783-6_3

10 Evolving Connection Weights of Artificial Neural Network … 197

3. Gaspar-Cunha A, Vieira A (2005) A multi-objective evolutionary algorithm using neural net-
works to approximate fitness evaluations. Int J Comput Syst Signal 6(1):18–36

4. Han J,KamberM(2006)Datamining: concepts and techniques.MorgamKaufmannPublishers,
Amsterdam

5. Haykin S (2001) Redes neurais. Bookman
6. Hodges JL, Lehmann E (2012) Rank methods for combination of independent experiments

in analysis of variance. In: Rojo J (ed) Selected works of E.L. Lehmann, selected works in
probability and statistics. Springer, US, pp. 403–418. doi:10.1007/978-1-4614-1412-4_35

7. Ilonen J, Kamarainen JK, Lampinen J (2003) Differential evolution training algorithm for feed-
forward neural networks. Neural Process Lett 17(1):93–105. doi:10.1023/A:1022995128597

8. Kennedy J, Eberhart R (1995) Particle swarmoptimization. In: Proceedings of ieee international
conference on neural networks, 1995, vol 4, pp 1942–1948. doi:10.1109/ICNN.1995.488968

9. Kennedy J, Eberhart RC (2001) Swarm intelligence. Morgan Kaufmann Publishers Inc., San
Francisco

10. Kruskal WH (1952) A nonparametric test for the several sample problem. Ann Math Statist
23(4):525–540. doi:10.1214/aoms/1177729332

11. Nebro AJ, Durillo JJ, Garcia-Nieto J, Coello CAC, Luna F, Alba E (2009) SMPSO: A new
PSO-based metaheuristic for multi-objective optimization. In: Computational intelligence in
multi-criteria decision-making, IEEE, pp. 66–73

12. Provost FJ, Fawcett T (1997) Analysis and visualization of classifier performance: comparison
under imprecise class and cost distributions. In: KDD, pp 43–48

13. Provost F, Fawcett T, Kohavi R (1998) The case against accuracy estimation for comparing
induction algorithms. In: proceedings 15th international conference on machine learning, Mor-
gan Kaufmann, San Francisco, CA, pp 445–453

14. Reyes-SierraM, Coello CAC (2006)Multi-objective particle swarm optimizers: a survey of‘the
state-of-the-art. Int J Comput Intell Res 2(3):287–308

15. Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal representations by error
propagation. Parallel distributed processing: explorations in the microstructure of cognition,
vol 1. MIT Press, Cambridge, pp 318–362. http://dl.acm.org/citation.cfm?id=104279.104293

16. Slowik A (2011) Application of an adaptive differential evolution algorithm with multiple trial
vectors to artificial neural network training. IEEE Trans Ind Electron 58(8):3160–3167. doi:10.
1109/TIE.2010.2062474

17. vanOoyenA,NienhuisB (1992) Improving the convergence of the back-propagation algorithm.
Neural Netw 5(3):465–471. doi:10.1016/0893-6080(92)90008-7

18. Yao X (1999) Evolving artificial neural networks. Proc IEEE 87(9):1423–1447. doi:10.1109/
5.784219

19. Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decompo-
sition. IEEE Trans Evol Comput 11(6):712–731

20. Zhang Q, Liu W, Li H (2009) The performance of a new version of MOEA/D on CEC09
unconstrained MOP test instances. IEEE Congr Evol Comput 1:203–208

21. Zitzler E, Thiele L, Laumanns M, Fonseca C, da Fonseca V (2003) Performance assessment
of multiobjective optimizers: an analysis and review. IEEE Trans Evol Comput 7(2):117–132.
doi:10.1109/TEVC.2003.810758

http://dx.doi.org/10.1007/978-1-4614-1412-4_35
http://dx.doi.org/10.1023/A:1022995128597
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1214/aoms/1177729332
http://dl.acm.org/citation.cfm?id=104279.104293
http://dx.doi.org/10.1109/TIE.2010.2062474
http://dx.doi.org/10.1109/TIE.2010.2062474
http://dx.doi.org/10.1016/0893-6080(92)90008-7
http://dx.doi.org/10.1109/5.784219
http://dx.doi.org/10.1109/5.784219
http://dx.doi.org/10.1109/TEVC.2003.810758

	10 Evolving Connection Weights of Artificial Neural Network Using a Multi-Objective Approach with Application to Class Prediction
	10.1 Introduction
	10.2 Elementary Concepts
	10.2.1 Artificial Neural Networks - ANN
	10.2.2 Multi-Objective Evolutionary Algorithms-MOEAs
	10.2.3 Hypervolume
	10.2.4 Classification Problem

	10.3 Experimental Evaluation and Results
	10.3.1 RQ1 - Comparing Different Configuration of Each Algorithm
	10.3.2 RQ2 - Comparing Different Algorithms
	10.3.3 RQ3 - Advantages of a Multi-Objective Approach

	10.4 Conclusion
	References

