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Overview

Recently, the first author has extended the definition of the zeta function associated
with fractal strings to arbitrary bounded subsets A of the N-dimensional Euclidean
space R

N , where N is any integer ≥ 1. It is defined by

ζA(s) =
∫

Aδ
d(x,A)s−Ndx,

where d(x,A) denotes the distance from x to A and Aδ is a δ -neighborhood of A.
In this monograph, we investigate various properties of this “distance zeta func-
tion”. In particular, we prove that the zeta function is holomorphic in the half-plane
{Res > dimBA}, and that under mild hypotheses, the bound dimBA is optimal. Fur-
thermore, we show that the abscissa of convergence of ζA is always equal to dimBA,
which generalizes to arbitrary dimensions a well-known result for fractal strings (or
equivalently, for arbitrary compact subsets of the real line R). Here, dimBA denotes
the upper box (or Minkowski) dimension of A. Extended to a meromorphic func-
tion ζA, this “distance zeta function” is shown to be an efficient tool for finding the
box dimension of several new classes of subsets of RN , like fractal nests, geometric
chirps and multiple string chirps. It is also used to develop a higher-dimensional
theory of complex dimensions of arbitrary fractal sets in Euclidean spaces.

For the sake of simplicity, we pay particular attention in this monograph to
the principal complex dimensions of A, defined as the poles of ζA located on the
“critical line” {Res = dimBA}. We also introduce a new zeta function, denoted by
ζ̃A and called a “tube zeta function”, and show, in particular, how to calculate the
Minkowski content of a suitable (Minkowski measurable) bounded set A in R

N in
terms of the residue of ζ̃A(s) at s = dimB A, the box dimension of A. More generally,
without assuming that A is Minkowski measurable, we obtain analogous results,
but now expressed as inequalities involving the upper and lower Minkowski con-
tents of A. In addition, we obtain a new class of harmonic functions generated by
fractal sets and represented via singular integrals. Furthermore, a class of sets is
constructed with unequal upper and lower box dimensions, possessing alternating
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viii Overview

zeta functions. Moreover, by using a suitable notion of equivalence between zeta
functions, we simplify some aspects of the theory of geometric zeta functions at-
tached to fractal strings.

In addition, we study the problem of the existence and the construction of the
meromorphic extensions of zeta functions of fractals; in particular, we provide a nat-
ural sufficient condition for the existence of such extensions. An analogous problem
is studied in the context of spectral zeta functions associated with bounded open
subsets in Euclidean spaces with fractal boundary. We introduce transcendentally
quasiperiodic sets, and construct a class of such sets, using generalized Cantor sets
with two parameters, along with the Gel’fond–Schneider theorem from the theory
of transcendental numbers.

With the help of this construction, we obtain an explicit example of a maximally
hyperfractal set; namely, a compact set A ⊂ R

N such that the associated distance
and tube zeta functions have the critical line {Res = dimBA} as a natural boundary.
Actually, for this example, much more is true: every point of the critical line is a
nonisolated singularity of the fractal zeta functions ζA and ζ̃A; so that given any
point s on the critical line, ζA and ζ̃A cannot be extended meromorphically (and
hence, also holomorphically) to some punctured open neighborhood of s.

Furthermore, we introduce the notion of relative fractal drum, which extends the
usual notions of fractal string and of fractal drum. The associated definition of rela-
tive box dimension is such that it can achieve negative values as well, provided the
underlying geometry is sufficiently “flat”. Using known results about the spectral
asymptotics of fractal drums, and some of our earlier work, we recover known re-
sults about the existence of a (nontrivial) meromorphic extension of the spectral zeta
function of a fractal drum. We also use some of our new results to establish the opti-
mality of the upper bound obtained for the corresponding abscissa of meromorphic
continuation of the spectral zeta function.

Moreover, we develop a higher-dimensional theory of fractal tube formulas, with
or without error terms, for relative fractal drums (and, in particular, for bounded
sets) in R

N , for any N ≥ 1. Such formulas, interpreted either pointwise or distribu-
tionally, enable us to express the volume of the tubular neighborhoods of the under-
lying fractal drums in terms of the associated complex dimensions. Therefore, they
make apparent the deep connections between the theory of complex dimensions and
the intrinsic oscillations of fractals. Accordingly, a geometric object is said to be
“fractal” if it has at least one nonreal complex dimension or else, the corresponding
fractal zeta function has a partial natural boundary along a suitable curve; so that its
associated fractal zeta function cannot be meromorphically continued beyond this
curve. We also formulate and establish a Minkowski measurability criterion for rel-
ative fractal drums (and, in particular, for bounded sets) in R

N , for any N ≥ 1. More
specifically, under suitable assumptions, a relative fractal drum (and, in particular,
a bounded set) in R

N is shown to be Minkowski measurable if and only if its only
complex dimension with real part equal to its Minkowski dimension D is D itself,
and it is simple.

We also obtain certain results about fractal tube formulas and Minkowski mea-
surability criteria showing the concrete geometric role played not only by the poles
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but also by the essential singularities of fractal zeta functions, thereby suggesting a
further possible extension of the notion of complex dimensions.

Throughout the book, we illustrate our results by a variety of examples, such as
the Cantor set and string, the Cantor dust, a version of the Cantor graph (i.e., the
“devil’s staircase”), fractal strings (including self-similar strings), fractal sprays (in-
cluding self-similar sprays), the Sierpiński gasket and carpet as well as their higher-
dimensional counterparts, along with non self-similar examples, including fractal
nests and geometric chirps.

Finally, we propose a classification of bounded open sets in Euclidean spaces,
based on the properties of their tube functions (that is, the volume of their δ -neigh-
borhoods, viewed as a function of the small positive number δ ), and propose a
number of open problems concerning distance and tube zeta functions, along with
their natural extensions in the context of “relative fractal drums”. Moreover, we
suggest several directions for future research in the higher-dimensional theory of
the fractal complex dimensions of arbitrary compact subsets of Euclidean spaces
(as well as more generally, of suitable metric measure spaces).

We stress that a significant advantage of the present theory of fractal zeta func-
tions, and therefore, of the corresponding higher-dimensional theory of complex
dimensions of fractal sets developed in this book, is that it is applicable to arbi-
trary bounded (or equivalently, compact) subsets of RN , for any N ≥ 1. (At least
in principle, it can also be extended to arbitrary compact metric measure spaces,
although this is not explicitly done in this work.) In particular, no assumption of
self-similarity or, more generally, of “self-alikeness” of any kind, is made about the
underlying fractals or, within the broader theory developed here, about the relative
fractal drums under consideration.



Preface

The present research monograph is a testimony to the fact that Fractal Analysis
is deeply connected to numerous areas of contemporary Mathematics. Here, we
have in mind, in particular, Complex Analysis, Geometry (including Fractal Ge-
ometry, Spectral Geometry and Geometric Measure Theory), Harmonic Analysis,
Number Theory, Oscillation Theory, Mathematical Physics and Partial Differential
Equations.

This monograph is a natural consequence of the rapid and exciting development
of the theory of geometric zeta functions of fractal strings and their complex di-
mensions over the past twenty years, the foundations of which have been laid out
by the first author and his collaborators, including especially, Machiel van Franken-
huijsen [Lap-vFr1–3], since the early 1990s. An important impetus for the present
work came from an interesting and little known result from 1970, due to Harvey
and Polking [HarPol, p. 42] in their study of the singularities of the solutions of cer-
tain linear partial differential equations, providing some sufficient conditions for the
Lebesgue integrability of the (negative) powers of the distance function x �→ d(x,A)
over any bounded open neighborhood Ω of a given compact subset A of Euclidean
space R

N , expressed in terms of its upper box (or Minkowski) dimension dimBA:
for any real number γ , we have that

γ < N −dimBA =⇒
∫
Ω

d(x,A)−γdx < ∞. (A)

Inspired by this result, in 2009, the first author realized the possibility of introduc-
ing a new kind of fractal zeta function, expressed as a Dirichlet-type integral and
denoted by ζA, which we call the distance zeta function of A:

ζA(s) :=
∫
Ω

d(x,A)s−Ndx. (B)

Here, s is a complex number with a sufficiently large real part. Moreover, it immedi-
ately follows from relation (A) that ζA(s) is well defined when Res > dimBA. It has
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xii Preface

enabled us to extend the existing theory of geometric zeta functions ζL (of bounded
fractal strings L ) to zeta functions ζA of arbitrary compact subsets A of Euclidean
spaces.

A key consequence of this new definition is the possibility to define the complex
dimensions of any given bounded (fractal) subset A, as the poles of the distance zeta
function ζA (suitably meromorphically extended), analogously to what was done
earlier in the case of bounded fractal strings in [Lap-vFr1–3]. Clearly, the set of
complex dimensions of A is at most countable, since the poles of any meromorphic
function are isolated points in the complex plane.

This definition has led to a number of fruitful results in Chapter 2 (and elsewhere
in the book), where, in particular, we have shown that the abscissa of (absolute)
convergence D(ζA) of ζA coincides with dimBA, the upper box dimension of A; see
Theorem 2.1.11. Also, ζA is shown to be holomorphic for Res > dimBA and hence,
all of the complex dimensions of A lie on or strictly to the left of the “critical line”
{Res = dimBA}. Furthermore, the residue of ζA computed at s = D, where D is the
box (or Minkowski) dimension of A (assumed to exist), is very closely related to the
lower and upper Minkowski contents of A; see Theorem 2.2.3.

Moreover, our study of generalized Cantor sets (with two parameters) has en-
abled us to construct a class of quasiperiodic sets with finitely many (and even
infinitely many) quasiperiods; see Theorem 3.1.15. In order to establish this latter
result, we have used a deep theorem from Analytic Number Theory, due to Alan
Baker and for which he was awarded the Fields medal in 1970. The precise state-
ments of the corresponding results can be found in Chapter 3 and, in a more general
context, in Chapter 4; see, in particular, Theorem 3.1.20 and Corollary 4.6.28. These
explicit constructions are used both to explore the boundaries of the notion of “frac-
tality” in our context (the so-called maximally hyperfractal sets) and to show that
the bounds obtained earlier by the first author for the abscissae of meromorphic con-
tinuation of the spectral zeta functions of fractal drums are best possible, in general.

During our study of bounded fractal strings and their geometric zeta functions, it
became clear that fractal strings could be viewed from a much broader perspective,
as relative fractal drums (RFDs) in the real line. In fact, the notion of RFDs can
even be introduced in arbitrary Euclidean spaces of any dimension, and this is de-
scribed and investigated in detail in Chapter 4. As was alluded to just above, some of
the applications include the study of the meromorphic continuations of the spectral
zeta functions associated with elliptic differential operators defined on bounded do-
mains with fractal boundary in Euclidean spaces; see Section 4.3 about the spectral
asymptotics of fractal drums.

Why are the complex dimensions ω ∈ C of a given bounded subset A of R
N

important? One of the principal reasons lies in the fact that, under fairly general
assumptions, they enable us to reconstruct the tube function of the set A, defined by
(0,1) � t �→ |At |; here, At := {x ∈ R

N : d(x,A)< t} is the t-neighborhood of A and
|At | is the N-dimensional Lebesgue measure of At . More specifically, under suitable
hypotheses, the following fractal tube formula (without error term) holds:

|At |=∑
ω

cω tN−ω , (C)
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for all t > 0 sufficiently small, where ω ranges over the set of complex dimen-
sions of A and the complex coefficients cω depend only on the set A and on the
ambient dimension N. (In fact, in the present case of simple poles, we have that
cω = res(ζA,ω)/(N−ω).) Furthermore, the sum on the right-hand side of the iden-
tity (C) is, in general, an infinite series, and not just a sum involving finitely many
terms (as is the case for convex and smooth geometries).

We point out that the nonreal complex dimensions ω always appear in complex
conjugate pairs, and cω = cω . Hence, by writing ω = (Reω)+ i(Imω) and cω =
|cω |exp(iϕω), where ϕω ∈ R and i :=

√
−1, we obtain that

cω tN−ω + cω tN−ω = 2tN Re{cω t−ω}= 2tN−Reω Re{cω t−i(Imω)}
= 2|cω | · tN−Reω cos

(
(Imω)(log t−1)+ϕω

)
.

Therefore, the series in (C) reduces to

|At |= 2 ∑
ω, Imω>0

|cω | · tN−Reω cos
(
(Imω)(log t−1)+ϕω

)

+ ∑
ω, Imω=0

cω · tN−ω .
(D)

As we can see from (D), any nonreal complex dimension ω of the set A (i.e., such
that Imω 
= 0) is the source of oscillations in the fractal tube formula (C), viewed as
a function of sufficiently small values of t > 0. The larger the imaginary part of ω ,
the greater the oscillation rate (i.e., the frequency of the oscillations) corresponding
to the complex dimension ω . Furthermore, still for small enough t > 0, the larger the
real part of ω , the greater the amplitude |cω |tN−Reω of the oscillations correspond-
ing to ω . The oscillations of the function t �→ |cω | ·tN−Reω cos

(
(Imω)(log 1

t )+ϕω
)

for small t > 0, corresponding to nonreal complex dimensions ω , are called intrinsic
oscillations in the geometry of A.

The fractal tube formulas associated with fractal sets (and their generalizations,
relative fractal drums) are the focus of Chapter 5. They extend in part the classical
tube formulas due to Steiner, Minkowski, Weyl and Federer, dealing with special
bounded subsets A of RN (namely, convex compact sets, smooth compact submani-
folds and, more generally, compact sets of positive reach) in which the tube formula
(C) only involves a sum containing finitely many terms, corresponding to the fi-
nite set of complex dimensions of A (which happen to all be real numbers and, in
fact, integers in {0,1, . . . ,N}). They also fully extend to arbitrary dimensions and
to arbitrary bounded sets (or, more generally, RFDs) in R

N the fractal tube formu-
las obtained for bounded fractal strings in [Lap-vFr1–3] and for fractal sprays, in
[LapPe3, LapPeWi1].

It is often stated that fractals are not well defined mathematical objects. In his
celebrated book [Man1], Benoı̂t Mandelbrot, in response to such a criticism, has
proposed to define a “fractal” as a geometric object whose Hausdorff dimension is
strictly greater than its topological dimension. However, an obvious conterexample
to this definition (and of which Mandelbrot was aware of) is the classic Cantor
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curve (or “devil’s staircase”). This paradox has always bothered and intrigued the
first author. As a result, it has served as a powerful stimulus for developing the
mathematical theory of complex dimensions.

Following the earlier work in [Lap-vFr1–3] but now equipped with a general defi-
nition of fractal zeta function and hence, of complex dimensions (valid, in particular,
for any bounded subset of RN , with N ≥ 1 arbitrary), we say that a geometric object
is “fractal” if it admits at least one nonreal complex dimension. We also allow in our
definition for the possibility of more complicated singularities or the nonexistence
of suitable meromorphic extensions. Therefore, according to the above discussion
of fractal tube formulas, nonreal complex dimensions are a signature of fractality.
We will illustrate this statement by a number of examples, including (variants of) the
Cantor curve, several classic self-similar fractals, and new or known non self-similar
geometries. Classic Euclidean shapes, such as circles, triangles and squares, or com-
pact convex sets and smooth subvarieties, will also be shown to be non-fractal, in
the above sense.

If we were to select just a dozen of the most important results appearing in the
present monograph, our choice would be the following:

Chapter 2

• Theorem 2.1.11 (abscissa of convergence of the distance zeta function ζA and
Minkowski dimension of the bounded set A) on page 57

• Theorem 2.2.3 (residue of ζA and Minkowski content of A) on page 114
• Theorem 2.3.37 (meromorphic extension of ζA, Minkowski measurable and non-

Minkowski measurable cases) on page 166

Chapter 3

• Theorem 3.1.15 (construction of transcendentally n-quasiperiodic sets) on
page 198

• Theorem 3.3.6 (construction of complex dimensions of higher order) on page 213

Chapter 4

• Theorem 4.1.7 (abscissa of convergence of the relative distance zeta function
ζA,Ω and relative Minkowski dimension of the RFD (A,Ω)) on page 250

• Theorem 4.1.14 (residue of ζA,Ω and Minkowski content) on page 253
• Theorem 4.2.19 (principal complex dimensions of arbitrarily prescribed finite or

infinite order) on page 288
• Theorem 4.6.9 (construction of transcendentally ∞-quasiperiodic RFDs) on

page 376
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Chapter 5

• Theorem 5.1.11 (pointwise fractal tube formula with error term) on page 421
• Theorem 5.3.13 and Corollary 5.3.14 (exact pointwise fractal tube formula, via
ζA,Ω ) on pages 446 and 447, respectively

• Corollary 5.4.26 (characterization of the Minkowski measurability of RFDs in
terms of the nonreal principal complex dimensions) on page 472

A more detailed selection of about fifty new results from this book can be found
on pages xxix–xxxi.

The bibliography provided at the end of the present book represents just a small
portion of the vast literature concerning various aspects of fractal analysis and frac-
tal or spectral geometry. This monograph complements (but is independent of) the
one that the first author wrote in collaboration with Machiel van Frankenhuijsen,
[Lap-vFr3]. In some sense, it can be considered as its natural continuation, now de-
veloping the higher-dimensions theory of fractal zeta functions (and the associated
complex dimensions) as well as opening the door to many new possible research di-
rections. Therefore, for further study, we would recommend to the reader to consult
[Lap-vFr3], which contains many other references, as well as a systematic survey
of numerous results of the first author and his coauthors, obtained during the past
twenty five years.

The present book is intended for researchers and graduate students working in
Fractal Analysis, Fractal Geometry, Geometric Measure Theory, Nonsmooth Ge-
ometry and Analysis, Harmonic Analysis, Complex Analysis, Number Theory, Dy-
namical Systems, Oscillation Theory, Mathematical Physics, Spectral Geometry, the
Spectral Theory of Elliptic Equations, as well as in a number of related areas. Spe-
cialists in Number Theory may find it interesting to see an application of the well-
known Baker theorem from the Theory of Transcendental Numbers in the construc-
tion of transcendentally quasiperiodic sets provided in Sections 3.1 and 4.6. In some
sense, this construction, involving a countable collection of two-parameter gener-
alized Cantor sets, can be viewed as a fractal-geometric interpretation of Baker’s
theorem.

This monograph is accessible to graduate students of Mathematics and Physics.
In particular, we only assume that the reader is familiar with the basics of Real
and Complex Analysis and with the fundamentals of Lebesgue Integration Theory.
Throughout the book, we have illustrated our main results by a variety of detailed
examples, in order to facilitate the understanding of the theory. Furthermore, at the
end of the monograph, we have provided a relatively long list of open problems (see
Subsections 6.2.2 and 6.2.3), as a stimulus for further research.

Comments and suggestions concerning the content of the book are welcome and
can be sent directly to the authors.

Riverside, California, USA and Paris, France Michel L. Lapidus,
Zagreb, Croatia Goran Radunović and Darko Žubrinić
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to the Sierpiński carpet A (after [HorŽu]); fractal stalagmites associated with A

Figure 2.3 on p. 51 The graph of y= d(x,A)−γ for γ > 0, where A is the Sierpiński
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Chapter 1
Introduction

Das Wesen der Mathematik liegt in ihrer Freiheit.

[The essence of Mathematics lies in its freedom.]

Georg Cantor (1845–1918)

Abstract This research monograph provides a potentially useful and significant
extension of the theory of zeta functions for fractal strings (which can be viewed
as objects associated to bounded fractal sets on the real line), to fractal sets and
arbitrary compact sets in Euclidean spaces of any dimension. The zeta function on
which it is based has been introduced in 2009 by the first author (M. L. Lapidus); see
its definition given below in Equation (1). We denote this zeta function by ζA and
refer to it as a “distance zeta function”. Here, by a fractal set, we mean any bounded
set A of the N-dimensional Euclidean space R

N , with N ≥ 1. Fractality refers to the
fact that the notion of fractal dimension, more precisely, of the upper box dimension
of a bounded set (also called the upper Minkowski dimension), is a basic tool in the
study of the properties of the associated zeta functions considered in this book. This
new class of zeta functions enables us to extend in a useful manner the definition of
the complex dimensions of fractal strings, introduced by Lapidus and van Franken-
huijsen, to arbitrary bounded fractal sets and more generally, to arbitrary bounded
or compact sets in Euclidean spaces of any dimension. More specifically, given any
bounded set A ⊂ R

N , its distance zeta function ζA is defined by

ζA(s) =
∫

Aδ
d(x,A)s−Ndx, (1)

for all s ∈ C with Res sufficiently large. Here, Aδ = {x ∈ R
N : d(x,A) < δ} is the

δ -neighborhood of A and d(x,A) denotes the Euclidean distance from x ∈ R
N to A.

The dependence of ζA on the choice of δ is inessential. Note that without loss of
generality, we could assume that A is an arbitrary compact set in R

N . A similar
comment could be made about the tube zeta function ζ̃A, also studied in this book
and defined by

ζ̃A(s) =
∫ δ

0
ts−N−1|At |dt, (2)

for all s∈C with Res sufficiently large. It involves the tube function (0,δ )� t �→ |At |
of the set A, where |At | is the N-dimensional Lebesgue measure of At . The basic
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2 1 Introduction

property of both of these fractal zeta functions (namely, the distance zeta function
ζA and the tube zeta function ζ̃A) is that they are absolutely convergent in the sense
of Lebesgue for all s ∈ C such that Res > dimBA and define a holomorphic func-
tion on the open half-plane {Res > dimBA}, where dimBA is the upper Minkowski
dimension of the set A. More specifically, dimBA coincides with the abscissa of con-
vergence of both ζA and ζ̃A; i.e., {Res > dimBA} is the largest open right half-plane
on which each of the integrals defining ζA and ζ̃A in (1) and (2), respectively, is
absolutely convergent (and hence, convergent). Further, under mild hypotheses, it is
also the largest open right half-plane on which ζA and ζ̃A are holomorphic. We also
introduce fractal zeta functions in the more general and more flexible context of rel-
ative fractal drums (or RFDs) (A,Ω), where A ⊆R

N is not necessarily bounded and
Ω is an open subset of RN of finite volume contained in a δ -neighborhood of A for
some δ > 0. Then, the distance and tube zeta functions, ζA,Ω and ζ̃A,Ω , are defined
much as in (1) and (2), respectively, but with Aδ replaced by Ω . (See Chapter 4.)
In this general setting, the aim is to study the corresponding relative tube function
t �→ |At ∩Ω | of the RFD (A,Ω), and in particular, to express it as a sum over the un-
derlying complex dimensions (i.e., the poles of ζA,Ω , or, equivalently, of ζ̃A,Ω ); the
resulting formula is called a fractal tube formula. (See Chapter 5.) New phenomena
arise in this setting, including the fact that the relative Minkowski (or box) dimension
dimB(A,Ω) may be negative, and even take the value −∞, a property related to the
“flatness” of the corresponding RFD (A,Ω). The special case of a bounded subset
A of RN discussed earlier in the text surrounding Equations (1) and (2) then corre-
sponds to the choice of Ω = Aδ , i.e., to the RFD (A,Aδ ). Fractal strings and their
higher-dimensional analogs, fractal sprays, are also very special cases of RFDs. As
was mentioned above, the complex dimensions of a bounded set (or, more generally,
of an RFD), are defined as the poles of the associated zeta function. As such, they
form a finite or countable (as well as discrete) subset of the complex plane. The
main goal of this book is to develop a comprehensive theory of complex dimensions
(and of the associated tube formulas, see Chapter 5), valid for general bounded sets
(and RFDs) in R

N , with N ≥ 1 arbitrary, as well as to illustrate it via a variety of
concrete classic and new examples. A number of geometric and spectral applica-
tions are also provided throughout the monograph. This book should be accessible
and of interest to experts and nonexperts alike, working in a broad range of areas
of mathematics (including fractal geometry, dynamical systems, spectral geometry,
complex, real and harmonic analysis, number theory, partial differential equations
and mathematical physics) and its physical or engineering applications.

Key words: zeta function, distance zeta function, tube zeta function, fractal set,
fractal string, intrinsic oscillations of a fractal set, box dimension, complex dimen-
sions, principal complex dimensions, Minkowski content, Minkowski measurable
set, singularity, residue, Cantor string, Cantor function.
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1.1 Motivations, Goals and Examples

The mathematical concept of dimension began to be seriously studied during the
19th century. It has emerged, in particular, out of attempts to define in reasonable
generality the notions of a ‘line’, a ‘curve’, and of a ‘surface’, as well as of higher-
dimensional algebraic varieties and smooth manifolds. Below, we present a short
sketch of the fascinating history of Dimension Theory, by dividing it into the fol-
lowing three parts: the history of integer dimensions, fractal dimensions and then,
complex dimensions.

Integer dimensions. Until the beginning of the 20th century, the notion of ‘di-
mension’ has been in use exclusively in its usual intuitive meaning, namely, as a
nonnegative integer. In the 19th century, it was rigorously introduced for linear
spaces, appearing in Linear Algebra. More specifically, the dimension of a given
linear space was defined as the number of elements of any of its bases, as we still
define it today. Soon, several other integer dimensional quantities have been intro-
duced in much more general situations, in General Topology, in order to study var-
ious properties of arbitrary subsets of Euclidean spaces and their generalizations.
These fundamental topological dimensions are now known as the small inductive
dimension (Menger–Urysohn), the large inductive dimension (Brouwer–Čech) and
the covering dimension (Čech–Lebesgue). A detailed account of the history of the
extremely complex subject of topological dimensions can be found in the survey
article [CriJo].

Fractal dimensions. The foundations of the theory of fractal dimensions, which
may assume arbitrary nonnegative real values instead of just integer values, were
laid out in the 1920s, in the works of Minkowski, Hausdorff, Besicovich and Bouli-
gand, in order to better understand geometric properties of very general subsets of
Euclidean spaces. These developments resulted in the Hausdorff dimension and the
Minkowski dimension or the Minkowski–Bouligand dimension (also called the box
dimension), which have become basic tools of contemporary Fractal Geometry and
related fields. There are also numerous other fractal dimensional quantities, which
we do not mention here.

Many distinguished researchers have contributed in various ways to spreading
and developing this seemingly counterintuitive concept of fractal dimension. See,
for example, [Man1, Chapter XI]. The methods of Fractal Geometry are today fre-
quently used in various scientific fields, not only within Mathematics, but in other
areas as well, ranging from Physics, Engineering, Computer Science, Biology and
Medicine to Economy and Finance, and even to the Visual Arts. It is therefore not
surprising that there are now several high-quality professional research journals ded-
icated exclusively to the study of problems emerging from Fractal Geometry. An
overview of the history of Fractal Geometry can be found in [Man1], as well as in
[Lap11]. A history of the notions of fractal dimensions appearing in the theory of
Dynamical Systems is discussed in [ŽupŽu].

Complex dimensions. The idea of complex dimension of bounded fractal strings
has been proposed at the beginning of the 1990s by the first author of this book,
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based in part on earlier work in [Lap1–3, LapPo1–2, LapMa1–2]. A bounded fractal
string is a bounded open subset Ω of the real line R. In most applications, ∂Ω is a
fractal subset of R.

A well-known example of a fractal string is provided by the Cantor string LCS

or ΩCS, whose boundary ∂ΩCS is the classic ternary Cantor set C. Then, ΩCS is
defined as the complement of C in [0,1] or, equivalently, as the disjoint union of
the deleted open intervals (the open ‘middle thirds’) in the usual construction of the
Cantor set. Alternatively, LCS, viewed as a sequence of lengths (or ‘scales’), namely,
the lengths (repeated according to their multiplicities) of the deleted intervals, is
given by

LCS = (� j)
∞
j=1 :=

(1
3
,

1
9
,

1
9
,

1
27

,
1

27
,

1
27

,
1
27

, . . .
)
, (1.1.1)

where the length 1/3n is repeated 2n−1 times, for each n ∈ N.

As we shall see in Equation (2.1.79) of Subsection 2.1.4 below, bounded fractal
strings L can also be identified with certain bounded subsets AL of the positive real
line.1 In order to define the complex dimensions of a given bounded fractal string
L , one has to assign to L the corresponding (geometric) zeta function ζL . More
specifically,

ζL (s) :=
∞

∑
j=1

�s
j, (1.1.2)

for all s ∈ C with Res sufficiently large, where L = (� j)
∞
j=1 is the sequence of

lengths of the open intervals of which any geometric realization Ω of the fractal
string is comprised. Note that L is independent of the choice of this realization.

The ‘complex dimensions’ of the bounded fractal string are then defined as the
poles of a suitable meromorphic extension of ζL , assuming that the meromorphic
extension exists. The development of the mathematical theory of complex dimen-
sions of fractal strings and their generalizations can be found in the extensive mono-
graph [Lap-vFr3]. See also the earlier books [Lap-vFr1–2].

In the present research monograph, we define the notion of ‘complex dimen-
sions’ for any nonempty bounded subset A of a given Euclidean space. To this end,
we introduce a suitable zeta function ζA (see Equation (1.1.6) below), called the
distance zeta function of A and such that its poles can be considered as the ‘complex
dimensions’ of a given set A (assuming that a suitable meromorphic extension of ζA

is possible).
For example, for the Cantor string LCS and in light of Equations (1.1.1) and

(1.1.2) above, we have that

ζLCS(s) =
∞

∑
n=1

2n−1(3−n)s = 3−s
∞

∑
n=1

(2 ·3−s)n−1 =
3−s

1−2 ·3−s =
1

3s −2
,

1 The set AL := {ak : k ∈N}, associated to a given bounded fractal string L := (�k)
∞
k=1, is uniquely

determined by the following two conditions: (i) ak → 0+ as k → ∞ and (ii) ak −ak+1 = �k, for all
k ∈ N. See also Figure 2.7 in Subsection 2.1.4.
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for all s ∈ C such that Res > log3 2; hence, upon meromorphic continuation, we
obtain that

ζLCS(s) =
1

3s −2
, for all s ∈ C. (1.1.3)

It follows that the complex dimensions of LCS are obtained by solving the equation
3s = 2, s ∈ C, and, hence, are given by2

D∗
CS =

{
log3 2+

2π
log3

ki : k ∈ Z

}
, (1.1.4)

where i :=
√
−1 is the imaginary unit and D := log3 2 is the Minkowski (or box)

dimension of the Cantor string LCS or, equivalently, of the ternary Cantor set, the
boundary of ΩCS. In the present case, D = log3 2 happens to also coincide with the
Hausdorff dimension of the Cantor set.

Note, however, that ζL and hence also, D and D∗
CS, would remain the same if

we were to rearrange the intervals of which the fractal string is comprised so that
the boundary would become a sequence of distinct points in [0,1] decreasing to zero
(and with zero as its only accumulation point). Then, as was observed just above, the
Minkowski dimension would remain invariant under such rearrangements (namely,
D = log3 2), whereas the Hausdorff dimension DH would change from log3 2 to 0
(namely, DH = 0), because the boundary would become a countable set.

It is a general fact that the distance zeta function ζA, where A = ALCS or ∂ΩCS,
yields the same result as in (1.1.4); that is, the same complex dimensions (except
possibly at s= 0). See Example 2.1.82 of Chapter 2, where the distance zeta function
ζA of the ternary Cantor set is computed; see also Example 1.1.2 below. In fact, it
turns out that for the Cantor string (or, more generally, for any bounded fractal string
L ), we have

ζAL
(s) =

21−s

s
ζL (s)+ v(s), (1.1.5)

where v(s) is a holomorphic function on the open right half-plane {Res > 0}; see
Equation (2.1.85) in Subsection 2.1.4 below.3

More details about the history of the study of the notions of Minkowski content,
Minkowski measurability and Minkowski dimension in Euclidean spaces can be
found in Subsection 6.1.2 of Chapter 6.

The meaning of the dimension D as a nonnegative integer is intuitively clear for
the simplest classes of (piecewise smooth) subsets of Euclidean spaces, such as, for
example, balls and cubes (for which D= 3), polygons (D= 2), lines (D= 1), a point
(D = 0), etc. In that context, the dimension D can roughly be understood as a de-
gree of ‘spaciousness’ of the set under consideration. However, for general bounded

2 In terms of the distance zeta function, the set of complex dimensions DCS is given by DCS =
D∗

CS ∪{0}; see Equation (1.1.5) and footnote 3 on page 5, along with Equation (1.1.15).
3 More specifically, v = v(s) can be uniquely meromorphically extended to the whole complex
plane C, with s = 0 as its only pole, which is simple; see footnote 25 in Subsection 2.1.4, on
page 90.
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subsets of RN , it is natural to extend the definition of the dimension D to include
“fractional” values as well, that is, to take on as possible values all nonnegative real
numbers in [0,N]. One can think, for example, of subsets of the form of a ‘cloud’ in
the three-dimensional Euclidean space R3, which are locally highly irregular. In that
case, the fractal dimension D can take any noninteger value D in [0,3], depending,
roughly, on the local complexity of A. Intuitively, the more irregular (or ‘rough’) the
set A is, the larger the value of its fractal dimension D.

Among the various fractal dimensions that have been introduced in the course
of the 20th century, the Minkowski (or box) dimension, to be defined by Equation
(1.3.4) below, is of special significance in this monograph.

If A is a given 3-dimensional body in R
3, it is natural to consider its 3-

dimensional Lebesgue volume, as a measure of its “3-dimensional content”. More
generally, if we take any (Minkowski measurable) nonempty bounded subset A of
R

N , of (possibly noninteger) Minkowski dimension D ∈ [0,N], one can nevertheless
define its D-dimensional Minkowski content (denoted by M D(A); see Equation
(1.3.1) below, for r := D and with the upper limit replaced by a true limit). In-
tuitively, the “D-dimensional Minkowski content” of A can be thought of as its
“D-dimensional fractal volume”.4 For integral values of D, this “content” coin-
cides with the usual volume (more specifically, with the N-dimensional Lebesgue
measure), up to a multiplicative constant depending on N; see Remark 1.3.1 below.

We will be especially interested in the intrinsic ocillations of a given nonempty
bounded subset A of RN , with N ≥ 1 arbitrary. Heuristically, these intrinsic oscil-
lations may be thought as being associated with geometric (spectral, or dynamical)
waves whose amplitudes (resp., frequencies) are directly connected to the real parts
(resp., the imaginary parts) of the underlying complex dimensions.

The existence of intrinsic oscillations is closely related to the existence of nonreal
complex dimensions of A. By ‘intrinsic (or inner) oscillations’ of A, we mean, for
example, the oscillations of the tube function t �→ |At | as t → 0+, where |At | is the N-
dimensional Lebesgue measure of At , the open t-neighborhood of A (i.e., the set of
points in the ambient space RN which lie within a distance less than t from A). More
specifically, we are interested, in particular, in the case when the subset A under
consideration is such that its D-dimensional lower and upper Minkowski contents
of A (introduced in Equation (1.3.1) of Subsection 1.3.1 below) are (i) not equal
and (ii) are respectively positive and finite; such a set is said to be (i) Minkowski
nonmeasurable and (ii) Minkowski nondegenerate.5

As an example, consider a bounded subset A of RN such that the corresponding
tube function has the following asymptotics:

|At |= tN−D
(

G
(

log t−1)+O(tα)
)

as t → 0+,

4 Here, we should note that, for a noninteger dimension D, the “D-dimensional Minkowski content”
does not satisfy the usual countable additivity property, by contrast to the standard N-dimensional
Lebesgue measure.
5 When the lower and upper Minkowski contents of A are equal and are nontrivial (i.e., when
M D(A) := limt→0+ |At |/tN−D exists in (0,+∞)), then A is said to be Minkowski measurable; see
Subsection 1.3.1.
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where G is a nonconstant periodic function of positive amplitude and α > 0.6 The
source of the leading oscillations in the geometry of A in this case is the nonconstant
and multiplicatively periodic function t �→ f (t) := G

(
log t−1

)
, which is oscillating

faster and faster as t → 0+. This class of examples includes the Cantor ternary set,
the Sierpiński gasket, the Sierpiński carpet, the N-Sierpiński carpet in R

N for any
N ≥ 3, as well as many other classes of bounded subsets of Euclidean spaces. All of
them have principal complex dimensions (that is, the complex dimensions s having
the largest possible real part, i.e., Res = D) of the form

D+pki for k ∈ Z,

where p is a positive constant called the oscillatory period of the set A. In other
words, the principal complex dimensions of A form an arithmetic set (or equiva-
lently, a vertical arithmetic progression of length p) contained in the critical line
{Res = D}.

As was already mentioned above, this research monograph provides a poten-
tially very useful and significant extension of the theory of zeta functions for fractal
strings (which can be viewed as objects associated to bounded fractal sets on the
real line), to fractal sets and arbitrary compact sets in Euclidean spaces of any di-
mension. The zeta function on which it is based has been introduced in 2009 by the
first author (M. L. Lapidus); see its definition given below in Equation (1.1.6). We
denote this zeta function by ζA and refer to it as a “distance zeta function”. Here, by
a fractal set, we mean any bounded set A of the Euclidean space R

N , with N ≥ 1.
Fractality refers to the fact that the notion of fractal dimension, more precisely, of
the upper box dimension of a bounded set (also called the upper Minkowski dimen-
sion, Bouligand dimension, or limit capacity, etc.) is a basic tool in the study of the
properties of the associated zeta functions considered in this monograph. As was
already mentioned, this new class of zeta functions enables us to extend in a useful
manner the definition of the complex dimensions of fractal strings, introduced by
the authors of [Lap-vFr1], [Lap-vFr2] and [Lap-vFr3], to arbitrary bounded fractal
sets and more generally, to arbitrary bounded or compact sets in Euclidean spaces
of any dimension.

More specifically, given any bounded set A ⊂R
N , its distance zeta function ζA is

defined by

ζA(s) =
∫

Aδ
d(x,A)s−Ndx, (1.1.6)

for all s ∈ C with Res sufficiently large. Here, Aδ = {x ∈ R
N : d(x,A) < δ} is

the δ -neighborhood of A and d(x,A) denotes the (Euclidean) distance from x ∈ R
N

to A. As will be shown in Proposition 2.1.76, the dependence of ζA on the choice
of δ is inessential. Note that without loss of generality, we could assume that A
is an arbitrary compact set in R

N . Indeed, replacing A with A, the closure of A,
does not change the δ -neighborhood or the distance zeta function: Aδ = (A)δ since
d( · ,A) = d( · ,A), and so ζA = ζA . A similar comment could be made about the tube

6 Then, a posteriori, the function G must be nonnegative and continuous.
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zeta function ζ̃A, studied in Subsection 2.2.2 of Chapter 2. The just mentioned tube
zeta function of A is defined by

ζ̃A(s) =
∫ δ

0
ts−N−1|At |dt, (1.1.7)

for all s∈C with Res sufficiently large. It involves the tube function (0,δ )� t �→ |At |
of the set A, where |At | is the N-dimensional Lebesgue measure of At .

The basic property of both of these fractal zeta functions (namely, the distance
zeta function ζA and the tube zeta function ζ̃A) is that they are absolutely conver-
gent in the sense of Lebesgue for all s ∈ C such that Res > dimBA and define a
holomorphic function on the open half-plane {Res > dimBA}, where dimBA is the
upper Minkowski dimension of the set A. More specifically, dimBA coincides with
the abscissa of convergence of both ζA and ζ̃A; i.e., {Res > dimBA} is the largest
open right half-plane on which each of the integrals defining ζA and ζ̃A in (1.1.6)
and (1.1.7), respectively, is absolutely convergent (and hence, convergent).

As we will now explain, it is also natural and extremely useful to consider not just
bounded subsets A of RN , per se, but, more generally, suitable ordered pairs (A,Ω),
that we call relative fractal drums (RFDs; see Definition 4.1.2 in Chapter 4.1), in
which A is a (not necessarily bounded) subset of RN , while Ω is an open subset
of RN of finite N-dimensional Lebesgue measure. In this more general context, the
aim is to study the fractal properties of the set A relative toΩ . More specifically, the
corresponding relative tube function of the RFD (A,Ω) is now t �→ |At ∩Ω |. The
associated relative Minkowski (or box) dimension dimB(A,Ω) of the RFD (A,Ω) is
then defined so that its value can be even negative, i.e., dimB(A,Ω) ∈ [−∞,N]; see
Definition 4.1.4 in Section 4.1. The case when the relative Minkowski dimension is
negative corresponds to the intuitive idea of flatness of A with respect to Ω . A spe-
cial case of the relative box dimension is the so-called ‘one-sided box dimension’,
introduced independently in 2010 by C. Tricot in [Tri4], where it was noticed that
it could sometime be negative. In Subsection 4.1.1 of Chapter 4, we shall introduce
the distance zeta function of a relative fractal drum (A,Ω), denoted by ζA,Ω , and
which will enable us to define the complex dimensions of RFDs. It is defined by

ζA,Ω (s) :=
∫
Ω

d(x,A)s−N dx, (1.1.8)

for all s ∈ C with Res large enough, where as above, d(x,A) denotes the Euclidean
distance from x ∈R

N to A. Similarly, the tube zeta function ζ̃A,Ω of the RFD (A,Ω)
is defined exactly as in (1.1.7), except for |At | being replaced with |At ∩Ω |.

The special case of a bounded subset A of RN discussed earlier around Equation
(1.1.6) then corresponds to the choice of Ω = Aδ , i.e., to the RFD (A,Aδ ).

We note that the set of complex dimensions of a bounded open set (or, more
generally, of a relative fractal drum) is a finite or countable set of complex numbers,
with finite multiplicities (as poles of the associated fractal zeta function). Moreover,
since it is the set of poles of a meromorphic function, it is a discrete subset of the
complex plane.



1.1 Motivations, Goals and Examples 9

0 /3 /3

Ω2 =( 0,1)2

Ω1 =( 0,1)× (−1,0)

1

121

A

Fig. 1.1 The Cantor grill A :=C× [0,1], where C is the ternary Cantor set, viewed from the open
squares Ω1 := (0,1)× (−1,0) and Ω2 := (0,1)2, has different respective relative box dimensions:
dimB(A,Ω1) = dimB C = log3 2, while dimB(A,Ω2) = dimB C+1 = log3 2+1. See Example 1.1.1.

Example 1.1.1. (Cantor grill). As an example illustrating the notion of relative box
dimension, let A be a subset of the plane R2 defined by A =C× [0,1] (which we call
the Cantor grill), where C is Cantor’s ternary set; see Figure 2.15 in Subsection 2.2.4
of Chapter 2, along with Figure 1.1. Then, forΩ1 :=(0,1)×(−1,0), we clearly have
dimB(A,Ω1) = log3 2, while for Ω2 := (0,1)2, we have dimB(A,Ω2) = 1+ log3 2.
Indeed, viewed from Ω1, the set Ω1 is ‘seen’ just as the usual Cantor ternary set
C×{0}, contained in the boundary of Ω1, while viewed from Ω2, the set A has the
form of the Cantor grill.

The above example exhibits a situation where the notion of RFD can be useful
and interesting. Moreover, throughout the book, we will see how in many situations
the distance zeta function of a complicated fractal set A can be explicitly computed
by subdividing the set A into a union of simple ‘relative fractal subdrums’ and
then computing the relative distance zeta function of each subdrum separately. This
method can be illustrated most prominently in the process of computing the zeta
function of the Cantor dust (Example 4.7.15), where we also use a result about the
invariance of the complex dimensions with respect to the dimension of the ambient
space.

Even more interestingly, the example of the Cantor dust C×C (i.e., the Carte-
sian product of two ternary Cantor sets; see Figure 1.2) then shows that not only
the expected complex dimensions,7 log3 4+pki, for k ∈ Z and with p := 2π

log3 , are

7 These complex dimensions are expected since dimB(C×C) = 2log3 2 = log3 4. More precisely,
some but not all of these complex dimensions which are nonreal may (in principle) be canceled by
means of zero-pole cancellations.
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F (1) F (2)

Fig. 1.2 The first two iterations of the sequence of prefractals (F(k))k≥1 defininig the Cantor dust.
It is clear that F(k+1) ⊂F(k) ⊂ [0,1]2, for all k ≥ 1, and C×C =∩k≥1F(k). Here, F(k) :=E(k)×E(k),
with k ≥ 1, where E(k) ⊂ [0,1] is the usual k-th prefractal approximation of the ternary Cantor set C.

obtained by means of the corresponding fractal zeta functions but also the com-
plex dimensions log3 2+pki, for k ∈ Z, which actually coincide with the principal
complex dimensions of the ternary Cantor set C itself. In other words, this is an ex-
ample in which we can explicitly see how the complex dimensions also ‘encode’ the
‘lower-dimensional fractality’ of the Cantor dust C×C, which evidently coincides
with an uncountable union of vertical translates of the ternary Cantor set C×{0} in
the plane; namely,

C×C =
⋃
c∈C

(C×{c}) =
⋃
c∈C

(
C×{0}+(0,c)

)
. (1.1.9)

Therefore, this geometric fact is naturally reflected in the set of complex dimensions
of the Cantor dust.

Many analogous results are discussed throughout the book, where the geometric
properties of the given bounded sets or of the RFDs are reflected in the correpond-
ing sets of complex dimensions. We expect this type of phenomenon to be a general
property of complex dimensions which has yet to be precisely formulated as a suit-
able principle and then properly established.

Also, the notion of RFDs provides us with a unified category under which frac-
tal strings, bounded subsets of Euclidean spaces (of arbitrary dimension) and open
subsets of Euclidean spaces with fractal boundary (also known as fractal drums)
fall into. By developing the theory in this generality, we can apply it to all of these
settings simultaneously, without the need to distinguish them separately; this broad
fexibility is one of the powers and great advantages of the present theory.

Example 1.1.2. (The Cantor set revisited: the Cantor string RFD and its distance
zeta function). We now illustrate the above discussion by revisiting the example of
the Cantor string from the new perspective of relative fractal drums and the associ-
ated distance zeta functions. (Some readers may wish to note the main results for
now and then return to this example later, if and when necessary.) As before, let C be
the ternary Cantor set constructed in [0,1] and let I := (0,1), so that our associated
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0 11/3 2/3

y= d(x,C)

I1,1I2,1 I2,2

Fig. 1.3 The graph of the distance function x �→ d(x,C), where C is the ternary Cantor set. The
intervals In,k, where k = 1,2, . . . ,2n−1, correspond to the n-th generation of deleted open intervals
during the construction of the Cantor set. See Equation (1.1.11) in Example 1.1.2.

relative fractal drum is (C, I). It is now straightforward to compute the distance zeta
function of (C, I) by integrating over the set I:

ζC,I(s) =
∫

I
d(x,C)s−1 dx =

∞

∑
n=1

2n−1

∑
k=1

∫
In,k

d(x,C)s−1 dx, (1.1.10)

where In,k denotes the k-th open interval removed from I in the n-th step of the
construction of the ternary Cantor set; see Figure 1.3. Furthermore, for obvious
reasons of symmetry, for a fixed n ≥ 1 the integrals over the intervals In,k are all
equal to each other. Moreover, since In,k is an interval of length 3−n and d(x,C) =
d(x,∂ In,k) for all x∈ In,k, it is easy to deduce, by using local coordinates (see Remark
1.1.3 on page 13 below), that

ζC,In,k(s) =
∫

In,k
d(x,C)s−1 dx

=
∫

In,k
d(x,∂ In,k)

s−1 dx = 2
∫ 1

2 3−n

0
xs−1 dx =

21−s

3nss
,

(1.1.11)

for all s ∈ C such that Res > 1 (and then, upon meromorphic continuation, wee see
that ζC,In,k is still given by the right-hand side of Equation (1.1.11) for all s ∈ C).
Combining the above equality with (1.1.10) now leads to

ζC,I(s) =
2−s

s

∞

∑
n=1

(
2
3s

)n

=
21−s

s(3s −2)
, (1.1.12)

valid initially for all s ∈ C such that Res > log3 2. Clearly, upon meromorphic con-
tinuation, we deduce that

ζC,I(s) =
21−s

s(3s −2)
, (1.1.13)

for all s ∈C. As a consequence, the set of all complex dimensions of the RFD (C, I)
(that is, the set of poles of ζC,I) is given by

P(ζC,I) = {0}∪ (D+ ipZ), (1.1.14)
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where D+ ipZ := {D+ ikp : k ∈ Z}. Observe that

ζC,I(s) =
21−s

s
ζLCS(s), (1.1.15)

for all s ∈ C, where ζLCS is the geometric zeta function of the Cantor string. We
stress that a functional equation precisely analogous to (1.1.15) is actually valid
for any fractal string L , where the associated relative fractal drum we consider is
equal to (∂ΩL ,ΩL ) andΩL is any geometric realization of the given fractal string
L ; i.e., ΩL is a disjoint union of open intervals of lengths equal to the lengths
(written in nonincreasing order) of the fractal string L counted with multiplicities;
see Equation (1.1.27) below.

Another powerful and very useful way to obtain the expression for ζC,I is to
use the scaling property of the distance zeta function. In short, the scaling property
gives us a functional equation which connects the distance zeta function of an RFD
(A,Ω) and its scaled version (λA,λΩ), where λ > 0 is an arbitrary scaling factor
and λA := {λx : x ∈ A}. More specifically, the scaling property states that for any
RFD (A,Ω), we have

ζλA,λΩ (s) = λ sζA,Ω (s); (1.1.16)

this identity is valid on any open connected set U ⊆ C to which any of the two
zeta functions above has a meromorphic continuation. In other words, the complex
dimensions of an RFD are invariant under scaling.

Returning to the Cantor set RFD (C, I), we observe that since I = (0,3−1)∪
[3−1,2 ·3−1]∪ (2 ·3−1,1), we can subdivide as follows the integral initially defining
ζC,I in Equation (1.1.10):

ζC,I(s) =
∫
(0,3−1)

d(x,C)s−1 dx+
∫
[3−1,2·3−1]

d(x,C)s−1 dx+
∫
(2·3−1,1)

d(x,C)s−1 dx

=
∫
(0,3−1)

d(x,3−1C)s−1 dx+
∫ 2/3

1/3
d(x,C)s−1 dx (1.1.17)

+
∫
(2·3−1,1)

d(x,3−1C+2/3)s−1 dx.

In the first integral appearing in the second line of Equation (1.1.17), we have used
the self-similarity of the Cantor set C, i.e., the identity

C = 3−1C∪ (3−1C+2 ·3−1), (1.1.18)

in order to conclude that the part of C contained inside the interval of integration
(0,3−1) = 3−1I is equal to 3−1C (except for the values of 0 and 1/3, which are
inessential). Analogously, in the last integral appearing in Equation (1.1.17), the part
of the Cantor set C contained in the interval of integration (2 ·3−1,1) = 3−1I +2/3
is equal to 3−1C + 2/3 (except for the values 2/3 and 1, which are inessential as
well).
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Note that the fourth and sixth integral appearing in Equation (1.1.17) above ac-
tually represent the distance zeta functions of the RFDs

(
3−1C,(0,3−1)

)
and

(
3−1C+2 ·3−1,(2 ·3−1,1)

)
=

(
3−1C+2/3,(0,3−1)+2/3

)
,

respectively, which are copies of the original RFD (C, I) scaled by the factor 1/3
(with the second one being translated by 2/3 to the right). In light of this, Equa-
tion (1.1.17) reduces to

ζC,I(s) = ζ3−1C,3−1I(s)+
∫ 2/3

1/3
d(x,C)s−1 dx+ζ3−1C+2/3,3−1I+2/3(s). (1.1.19)

By the scaling property of the distance zeta function stated in Equation (1.1.16),
we now deduce that (see Remark 1.1.4 below)

ζC,I(s) = ζ3−1C,3−1I(s)+
∫ 2/3

1/3
d(x,C)s−1 dx+ζ3−1C,3−1I(s)

= 2 ·3−sζC,I(s)+
∫

I1,1
d(x,C)s−1 dx,

(1.1.20)

valid for all s ∈C with Res sufficiently large. Recalling that the integral over I1,1 :=
(1/3,2/3) is given by (1.1.11), with n = k = 1 (see Remark 1.1.3 just below) and
solving the above equation for ζC,I , we recover (1.1.13).

Remark 1.1.3. Note that d(x,C) is in fact equal to the distance from x ∈ (1/3,2/3)
to the boundary of I1,1, i.e., to the two-point set ∂ I1,1 = {3−1,2 · 3−1}. Hence, we
have that

∫
I1,1

d(x,C)s−1 dx =
∫ 2/3

1/3
d(x,C)s−1 dx =

∫ 2/3

1/3
d(x,{3−1,2 ·3−1})s−1 dx

=

∫ 1/2

1/3
(x−3−1)s−1 dx+

∫ 2/3

1/2
(2 ·3−1 − x)s−1 dx.

for all s ∈ C with Res > 0. Instead of computing the last two easy integrals im-
mediately, we can proceed more elegantly as follows. These two integrals corre-
spond to the distance zeta functions of relative fractal drums

(
{3−1},(3−1,2−1)

)
and

(
{2 · 3−1},(2−1,2 · 3−1)

)
, respectively. Translating both RFDs by −3−1 and

−2 · 3−1, respectively, we see that the corresponding distance zeta functions coin-
cide with the one associated with the RFD

(
{0},(0,1/6)

)
(whereby in the case of

the second RFD, it is convenient to orient the x-axis in the negative direction); so
that ∫

I1,1
d(x,C)s−1 dx = 2ζ{0},(0,1/6)(s) = 2

∫ 1/6

0
xs−1 dx = 2 ·6−ss−1,

for all s ∈ C with Res > 0. See Figure 1.4.
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(∂I1,1, I1,1)

= ∪

= ∪

= 2×

Fig. 1.4 Intuitive explanation of the identity ζ∂ I1,1,I1,1 (s) = 2 ·ζ{0},(0,1/6)(s), for all s ∈C such that
Res > 0, appearing in Remark 1.1.3. Here, I1,1 = (1/3,2/3).

Remark 1.1.4. It is easy to verify that the distance zeta function of a relative fractal
drum (A,Ω) in R

N remains unchanged by translating the RFD. More specifically,
for any vector a ∈ R

N , we have that ζA,Ω (s) = ζA+a,Ω+a(s), for all s ∈ C with Res
sufficiently large. A more general statement can be found in Equation (4.2.63) ap-
pearing in Lemma 4.2.23 of Subsection 4.2.3. In short, the distance zeta functions
(and hence also, the complex dimensions) of RFDs are invariant under the group of
displacements of RN (the group generated by the rotations, translations and reflec-
tions of RN).

In general, we stress that the procedure described in Example 1.1.2 above can
be applied to a wide variety of RFDs exhibiting a self-similar structure, as will be
shown in many examples in this monograph. See, e.g., Theorem 4.2.17 in Section
4.2 of Chapter 4 and Equations (4.2.47) and (4.2.48) preceding it (self-similar sprays
viewed as RFDs), Theorem 4.2.19 and its proof (self-similar sprays and their higher
order counterparts), as well as Examples 4.2.10 (higher-order Cantor sets), 4.2.24
(relative Sierpiński gasket), 4.2.26 (inhomogeneous Sierpiński N-gasket RFD, with
N ≥ 2 arbitrary), 4.2.29 (relative Sierpiński carpet), 4.2.31 (the classic Sierpiński N-
carpet, with N ≥ 2 arbitrary), 4.2.33 (the 1/2-square fractal), 4.2.34 (the 1/3-square
fractal) and 4.2.35 (a self-similar fractal nest).

For instance, the above procedure, based on using the self-similarity of the RFD
and the scaling property of its associated fractal zeta function, can be applied to the
well-known Sierpiński gasket A (contained in the unit triangle), in which case the
calculation of its zeta function is then reduced to the calculation of the zeta function
of the RFD (∂Ω0,Ω0), where Ω0 is the middle open equilateral triangle of side
lengths 1/2 which is removed in the first step of the construction of A. We encourage
the interested reader to try to calculate the distance zeta function of A by choosing
the parameter δ from Equation (1.1.6) to be greater than 1/4, as an exercise and
motivation for further reading of this monograph or, alternatively, to see Proposition
3.2.3 for details. Here, we only give the closed form for the corresponding distance
zeta function of the Sierpiński gasket:

ζA(s) =
6(
√

3)1−s2−s

s(s−1)(2s −3)
+2π

δ s

s
+3
δ s−1

s−1
, (1.1.21)
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meromorphic on all of C and with δ > 1/4. Notice also that the dependence on δ >
1/4 on the right hand side of (1.1.21) is inessential, in the sense that it does not affect
the principal part of the above zeta function in any way. Moreover, observe that it
follows from Equation (1.1.21) that (independently of δ ) the complex dimensions
of the Sierpiński gasket A are 0, 1 and log2 3+ 2π

log2 ki for every k ∈ Z, and that all of
them are simple.

An even deeper connection between the complex dimensions of a given RFD
(or, in particular, of a bounded subset) in R

N and its inner geometry can be seen in
the fractal tube formulas which we obtain in Chapter 5 of this monograph. Roughly
speaking, a fractal tube formula for an RFD (A,Ω) is an asymptotic formula for its
relative tube function t �→ |At ∩Ω | as t → 0+, expressed as a sum of residues of
ζA,Ω (or ζ̃A,Ω ) taken over the set of (visible) complex dimensions of (A,Ω). These
formulas are valid under suitable mild conditions, with or without error term and
pointwise or in the sense of Schwartz distributions. Generally, the validity of these
formulas for a given RFD (A,Ω) depends on the existence of a meromorphic con-
tinuation of the corresponding distance or tube zeta function to a suitable connected
open subset U ⊆ C and on its growth properties on that set. A large class of RFDs
satisfy these conditions and, as will be shown in detail in Chapter 5 (and particularly,
in Section 5.1), we can apply the theory developed in this book in order to obtain
their fractal tube formulas.8

For instance, in the case when the zeta function of an RFD (A,Ω) in R
N can

be meromorphically extended to all of C with only simple poles and when suitable
growth conditions are satisfied, we obtain the following exact pointwise fractal tube
formula:

|At ∩Ω |= ∑
ω∈P(ζA,Ω )

tN−ω

N −ω res
(
ζA,Ω ,ω

)
, (1.1.22)

valid for all t > 0 sufficiently small. Here, the set P(ζA,Ω ) denotes all of the com-
plex dimensions of (A,Ω).

Example 1.1.5. (The fractal tube formula for the Cantor string RFD). Both the Can-
tor set RFD (C, I) and the Sierpiński gasket A discussed above satisfy the appropriate
conditions and we can use Equation (1.1.22) to obtain their well-known fractal tube
formulas. In the case of the Cantor set RFD, we have9

8 We refer the interested reader to the introduction of Chapter 5 (on pages 408–411) for a discussion
of the history and the geometric interpretation of the classic tube formulas of Steiner, Weyl and
Federer (among many others) for “nice” subsets of RN (e.g., compact convex sets and smooth,
compact submanifolds), prior to the advent of fractal tube formulas in the late 1990s.
9 The exact computation is given in Example 5.5.3 of Subsection 5.5.2.
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|Ct ∩ I|= ∑
ω∈P(ζC,I)

t1−ω

1−ω res(ζC,I ,ω)

=
1

2log3

∞

∑
k=−∞

(2t)1−ωk

(1−ωk)ωk
−2t

=
(2t)1−D

2log3

∞

∑
k=−∞

(2t)−ikp

(1−ωk)ωk
−2t

= t1−DG
(
log3(2t)−1)−2t,

(1.1.23)

where P(ζC,I) := {0}∪(D+ipZ) is the set of all of the complex dimensions of the
RFD (I,C) and ωk := D+ikp for each k ∈Z; furthermore, D := dimB(C, I) = log3 2
and p := 2π

log3 denote, respectively, the relative Minkowski dimension and the ‘os-
cillatory period’ of the Cantor string RFD (C, I). Here, G is a positive, nonconstant
1-periodic function, which is bounded away from zero and infinity; specifically, it
is given by the following Fourier series expansion (which is absolutely convergent
and hence, pointwise convergent for all x ∈ R):

G(x) :=
2−D

log3 ∑k∈Z
e2πikx

ωk(1−ωk)
. (1.1.24)

Observe that the presence of the nonconstant periodic function G in (1.1.23) im-
plies that, as is well known (see [LapPo2] and [Lap-vFr3]), the Cantor set RFD
(or the Cantor string) is not Minkowski measurable. This fact and the presence of
nonreal complex dimensions of the RFD (C, I) on the critical line {Res = D} are
not coincidental but in fact, closely related. More precisely, in this book, we also
obtain a criterion for the Minkowski measurability of RFDs which is formulated
in terms of the locations of the principal complex dimensions (i.e., the poles of
the fractal zeta function with real part D); this criterion generalizes the analogous
known result for fractal strings (see [Lap-vFr3, Section 8.3]). More specifically,
it states that under suitable assumptions, the Minkowski measurability of an RFD
(A,Ω) is equivalent to the absence of nonreal complex dimensions on the critical
line {Res = dimB(A,Ω)}, along with the condition that the complex dimension
D := dimB(A,Ω) is simple.

We point out that in the case when N = 1, the fractal tube formula (1.1.22) be-
comes the well-known fractal tube formula for fractal strings (see [Lap-vFr3, Sec-
tions 8.1 and 8.4]). More precisely, under appropriate conditions and in the case
when the geometric zeta function ζL of a given fractal string L is meromorphic on
all of C and has only simple poles, we have
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VL (t) := |(∂ΩL )t ∩ΩL |

= ∑
ω∈P(ζ∂ΩL ,ΩL

)

tN−ω

N −ω res
(
ζA,Ω ,ω

)

= ∑
ω∈P(ζL )

(2t)1−ω

ω(1−ω) res(ζL ,ω)+{2tζL (0)} .

(1.1.25)

Here, the term {2tζL (0)} is equal to 2tζL (0) if 0 is not a pole of ζL . If, however, 0
is a simple pole of ζL , then we replace {2tζL (0)} on the right-hand side of (1.1.25)
with the term

2t(1− log(2t)) res(ζL ,0)+2tζL [0]0, (1.1.26)

where ζL [0]0 stands for the constant term in the Laurent series expansion of ζL
around s = 0. This is in agreement with [Lap-vFr3, Corollary 8.10] under the as-
sumption of exactness, i.e., the absence of an error term. The last equality in Equa-
tion (1.1.25) follows from the general functional equation connecting the zeta func-
tions ζL and ζ∂ΩL ,ΩL

which, as has already been mentioned, is the generalization
to any fractal string of Equation (1.1.15) obtained above; i.e., we have that

ζ∂ΩL ,ΩL
(s) =

21−s

s
ζL (s), (1.1.27)

a key identity which is valid for all s ∈ C with Res > dimB(∂ΩL ,ΩL ) and hence,
more generally, on every connected open set U ⊆C to which any (and thus both) of
the two zeta functions has a meromorphic continuation.

Going back to the Sierpński gasket A, since all of its complex dimensions are
simple, we can obtain its fractal tube formula by using (1.1.22) and (1.1.21):

|At |= ∑
ω∈P(ζA)

t2−ω

2−ω res(ζA,ω)

= t2−log2 3 6
√

3
log2

∞

∑
k=−∞

(4
√

3)−ωk t−ikp

(2−ωk)(ωk −1)ωk
+

(
3
√

3
2

+π

)
t2,

(1.1.28)

valid for all t ∈ (0,1/2
√

3), where ωk := log2 3+ ikp (for each k ∈ Z) and p :=
2π/ log2. The presence of the oscillatory function in (1.1.28) (namely, the noncon-
stant multiplicatively periodic function represented by its absolutely convergent and
hence, convergent Fourier series) shows that the Sierpiński gasket is not Minkowski
measurable, a well-known fact which is reflected in the presence of nonreal complex
dimensions of the Sierpiński gasket located on the critical line {Res = log2 3}.

Many further examples of computations of fractal zeta functions, complex di-
mensions and fractal tube formulas are provided throughout this monograph, both
for classic self-similar and non self-similar fractals, as well as for new classes of
bounded sets and relative fractal drums.
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Along with several collaborators, the first author has undertaken since the early
1990s a systematic study of zeta functions associated with fractal strings and their
counterparts in certain higher-dimensional situations, namely, for fractal sprays; see,
in particular, his joint papers with C. Pomerance [LapPo1–3]. In a series of papers
and several research monographs (including three books with M. van Franken-
huijsen [Lap-vFr1–3], and the book [Lap6]), it has grown into a well-established
theory and is today an active and rapidly growing area of research. For the theory
of fractal strings and/or complex dimensions in a variety of situations, beside the
aforementioned books, see, for example, [CranMH], [DemDenKoÜ], [DemKoÖÜ],
[DenKoÖÜ], [deSLapRRo] [DubSep], [ElLapMacRo], [Es1–2], [EsLi1–2], [Fal2],
[Fr], [FreKom], [HamLap], [HeLap], [HerLap1–5], [KeKom], [Kom], [LalLap1–2],
[Lap1–3], [Lap7–10], [LapLéRo], [LapLu1–3], [LapLu-vFr1–2], [LapMa1–2],
[LapPe1–3], [LapPeWi1–2], [LapPo1–3], [LapRo1–2], [MorSep], [MorSepVi1–2],
[Ol1–2], [Pe], [PeWi], [Ra1–2], [RatWi2], [Steinh], [Tep1–2], [Wi], [WiZä],
[Zä4–5], along with the relevant references therein. In addition, we point out that
Chapter 13 of [Lap-vFr3] contains an exposition of several recent developments
in the theory, prior to the present general higher-dimensional theory of complex
dimensions.

Other, very different approaches to a higher-dimensional theory of certain fractal
sets (namely, fractal sprays and self-similar tilings) were developed in references
[LapPe1–3] and [LapPeWi1–2] by the first author, E. Pearse and S. Winter, as well
as in the related works [Pe] and [PeWi], via fractal tube formulas and the associ-
ated scaling and tubular zeta functions. An earlier approach, based directly on tube
formulas but not using any kind of zeta function, was proposed in [LapPe1]. See, re-
spectively, [Lap-vFr3, Sections 13.1 and 12.2.1] of the second revised and enlarged
edition of [Lap-vFr2], for an exposition of these approaches.

Since the zeta functions introduced in [LapPe2–3] and [LapPeWi1] are very dif-
ferent in nature from those studied in this monograph, it would be of interest to deter-
mine when they give rise to the same or closely related results, as far as the complex
dimensions are concerned. This will be done in Subsection 5.5 by using the general
higher-dimensional theory of fractal tube formulas developed in Chapter 5. We note
that in [LapPe3], an example is provided for which the complex dimensions depend
on the choice of the iterated function system giving rise to that self-similar fractal
set. It might also be interesting to see whether one can obtain fractal tube formu-
las in the setting of our monograph, and, in the special case of the Koch snowflake
curve, compare the resulting formula with the one obtained in [LapPe1], while in
the case of fractal sprays and self-similar tilings, with the tube formulas obtained
and used in [LapPe2–3] and [LapPeWi1–2].

We stress that a significant advantage of the present theory of fractal zeta
functions—and, therefore, of the corresponding higher-dimensional theory of com-
plex dimensions developed in this book—is that it is applicable to arbitrary bounded
(or equivalently, compact) sets in R

N , and can be extended (at least, in principle) to
the general setting of arbitrary compact metric measure spaces. In particular, no
assumption of self-similarity, or, more generally, of “self-alikeness” of any kind, is
made about the underlying fractals (or, within the broader setting of Chapter 4, about
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the relative fractal drums under consideration). In addition, the fractals in question
do not have to be the boundaries of fractal sprays (in the sense of [LapPo3]), that is,
of countable disjoint unions of scaled copies of a given bounded set.

We hope that the results obtained in this monograph will provide a new impe-
tus and direction to the higher-dimensional theory of complex dimensions of fractal
sets. The zeta functions studied thus far have proved to be an important tool in
various fields of mathematics, including complex analysis, number theory, arith-
metic geometry, operator algebras, representation theory, fractal geometry, func-
tional analysis, mathematical physics, differential equations, and dynamical sys-
tems. Likewise, the new zeta functions introduced and studied in this book should
prove to be useful tools in the rapidly expanding theory connecting aspects of fractal
geometry, number theory, harmonic analysis, geometric analysis, differential equa-
tions and dynamical systems.

1.2 A Short Survey of the Contents

Let us briefly describe the contents of this monograph. In Section 2.1, we estab-
lish the holomorphy of the distance zeta function ζA on the right half-plane {Res >
dimBA} of the complex plane C, where dimBA is the upper box (or Minkowski) di-
mension of A, and show that the lower bound dimBA is optimal; see Theorem 2.1.11.
In other words, we establish the equality of dimBA and the abscissa of (absolute)
convergence of ζA. Therefore, if we know the zeta function of a fractal set A, we
can determine the upper box dimension of A; see Corollary 2.1.63. Moreover, under
some mild additional hypotheses on A, we show that the half-plane of convergence
{Res > dimBA} and the half-plane of holomorphic continuation of ζA coincide.

In Subsection 2.1.5, we introduce an equivalence relation between zeta functions
of fractal sets; see Definition 2.1.69. This enables us to allow for more flexibility in
the study and the understanding of the main features of the zeta functions discussed
in this monograph. We also show that the distance zeta function has a suitable conti-
nuity property with respect to any nonincreasing sequence of compact sets (Ak)

∞
k=1;

see Theorem 2.1.78.
In Section 2.2, we show that the residue of the meromorphic extension of the

distance zeta function of a fractal set to a connected open neighborhood of D :=
dimB A (provided the extension exists), computed at the simple pole s=D, is closely
related to the D-dimensional Minkowski content of A; see Theorem 2.2.3.

A new fractal zeta function, denoted by ζ̃A, is introduced in Equation (2.2.20)
of Definition 2.2.8; it is referred to as the “tube zeta function” of A and involves
the function (0,δ ) � t �→ |At | instead of the function Aδ � x �→ d(x,A) in Equa-
tion (2.1.1) of Definition 2.1.1, where |At | and d(x,A) denote, respectively, the N-
dimensional volume of the t-neighborhood of A and the distance from x to A. If a
bounded or compact set A⊂R

N is Minkowski measurable (and under some mild ad-
ditional hypotheses), we show that the residue of ζ̃A(s) at s= dimB A, the Minkowski
(or box) dimension of A, is equal to the Minkowski content of A. More generally,
even if A is not Minkowski measurable, we obtain analogous results, expressed as
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inequalities involving the upper and lower Minkowski contents of A; see Theorem
2.2.14. Finally, we show that, provided dimBA < N, the half-plane of (absolute)
convergence of ζ̃A is exactly the same as for ζA (as described above). Hence, the
abscissa of convergence of the Dirichlet integral initially defining ζ̃A coincides with
dimBA, the upper box dimension of A; see Equation (2.2.52) in Proposition 2.2.19.

Moreover, still assuming that dimBA < N, we show that given any domain U ⊆C

(containing the critical line {Res = dimBA}), ζ̃A has a meromorphic continuation
to U if and only if ζA does, and in that case, ζ̃A and ζA have the same poles (with
the same multiplicities) in U . Hence, the (visible) complex dimensions of A can be
defined indifferently via ζA or ζ̃A. It also follows that, in addition to having the same
half-plane of convergence {Res > dimBA}, ζA and ζ̃A have the same half-plane of
holomorphic continuation. Note that the condition according to which dimBA < N
is satisfied by most fractals of interest and implies that |A|N = 0.

Section 2.3 is devoted to solving (in certain frequently encountered situations) the
problem of the existence and the construction of the meromorphic extensions of var-
ious zeta functions. We first deal with zeta functions associated with the perturbation
of the Riemann strings (Theorem 2.3.2) and of Dirichlet strings (Theorem 2.3.10).
We then deal with the distance and tube zeta functions of a class of Minkowski mea-
surable sets in Euclidean spaces (Theorem 2.3.18 and Theorem 2.3.37), as well as
with the fractal zeta functions of a class of Minkowski nonmeasurable sets (Theo-
rem 2.3.25, Corollary 2.3.26 and Theorem 2.3.37). In particular, we provide natural
sufficient conditions for the existence of the meromorphic continuation of those dis-
tance and tube zeta functions. (The case of the distance zeta function is dealt with in
Theorem 2.3.37.) This is significant from the point of view of future developments,
in light of the fact that the complex dimensions of the given fractal set can be defined
as the poles of the meromorphic continuation (in a suitable region) of the associated
distance (or tube) zeta function.

In Section 3.1, we introduce a class of quasiperiodic sets. Using generalized Can-
tor sets with two parameters, we provide a construction of such sets, based on the
Gel’fond–Schneider theorem from the theory of transcendental numbers.

In Section 3.2, we study the distance zeta functions of the Sierpiński carpet and
the Sierpiński gasket. We also compute the corresponding principal complex di-
mensions. The method used in the computation of these distance zeta functions will
serve as a motivation to introduce the notion of ‘relative fractal drums’, which will
be the central object of study in Chapter 4.

In Section 3.3, we construct a class of bounded fractal strings L with principal
complex dimensions of any prescribed order; see Theorem 3.3.6. Furthermore, a
class of fractal strings with principal complex dimensions of infinite order (that is,
with essential singularities on the corresponding critical line) is also constructed in
the same theorem. The construction is based on using iterated tensor products of
suitably chosen bounded fractal strings.

In Section 3.4, we also introduce the notion of weighted zeta function, establish
a corresponding holomorphicity result, and show that the derivative of a weighted
zeta function is again a weighted zeta function; see Theorem 3.4.4. Furthermore, in
Corollary 3.4.7, we obtain new classes of harmonic functions associated with fractal
sets.
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In Section 3.5, we introduce the notion of fractal nest. Using our zeta functions,
we extend to the N-dimensional case Tricot’s formula for the box dimension of a
discrete spiral of the focus type or of the limit cycle type; see Equations (3.5.14)
and (3.5.17).

In Section 3.6, we introduce the notion of geometric chirp and compute the as-
sociated distance zeta function. This enables us to extend Tricot’s formula for the
box dimensions of related chirp curves in R

2 to spherically symmetric chirp-like
surfaces in R

N , for any N ≥ 2; see Proposition 3.6.2. The case when N = 3 is of
particular interest since it arises naturally in the study of spherically symmetric so-
lutions of p-Laplace boundary value problems. We also introduce the notions of
multiple strings and string chirps, which include geometric chirps as a special case,
and study their fractal zeta functions. At the end of this section, we introduce the no-
tion of Cartesian product of fractal strings, and in Theorem 3.6.5, we determine the
associated distance zeta function as well as the corresponding upper box dimension.

The aim of Section 3.7 is to study the fractal zeta functions of a class of fractal
sets (called ‘zigzagging fractals’) for which the upper and lower box dimensions do
not coincide. It is noteworthy that the associated zeta functions are alternating; see
Theorem 3.7.2 and Equation (3.7.2).

In Section 4.1, we introduce the notion of relative zeta function associated to
an ordered pair (A,Ω), where A is a possibly unbounded subset of RN and Ω is
an open subset of R

N having finite N-dimensional Lebesgue measure (but being
also possibly unbounded). We propose to call (A,Ω) a “relative fractal drum” (or
RFD, in short). The associated optimal half-plane of holomorphic continuation in-
volves dimB(A,Ω), the relative upper box dimension of A with respect to Ω . In
other words, under mild hypotheses, we show that the relative zeta function ζA,Ω (s)
is holomorphic on the right half-plane {Res > dimB(A,Ω)}, and that the lower
bound is optimal; see Theorem 4.1.7. More precisely, we prove that the abscissa
of (absolute) convergence of ζA,Ω (s) always coincides with dimB(A,Ω) (determin-
ing the maximal right half-plane of absolute or Lebesgue convergence; see part (b)
of Theorem 4.1.7), and that under mild assumptions, it also coincides with the ab-
scissa of holomorphic continuation of ζA,Ω (determining the maximal right half-
plane of holomorphic continuation; see part (c) of Theorem 4.1.7). We note that in
this generality, the relative box dimension had been introduced earlier in [Žu4]. (Ear-
lier special cases had been used, for example, in [BroCar], [Lap1–3], [LapPo2–3],
[LapMa2], [HeLap] and [Lap-vFr1–3].) In light of the above result, we deduce that
using zeta functions, it is possible to consider unbounded geometric chirps relative
to the associated bounding envelope Ω , and then to show that the natural extension
of Tricot’s formula also holds in this case; see Example 4.4.1.

Note that any bounded subset A ⊂ R
N can be viewed as a relative fractal drum

of the form (A,Aδ ), for any δ > 0. Consequently, the theory of fractal zeta func-
tions of RFDs and their associated complex dimensions developed in Chapter 4 (and
Chapter 5) extends naturally its counterpart for bounded subsets of RN developed in
Chapters 2 and 3.

Example 4.2.10 provides an explicit construction of a relative fractal drum of
R which possesses an infinite set of poles of arbitrary order or even essential
singularities located on the critical line in arithmetic progression. The construction
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is based on an “iterated Cantor spray” and can be generalized to a large class of
relative fractal drums of RN (with N ≥ 1 arbitrary), as is stated in Theorem 4.2.19
and Remark 4.2.21.

In Theorem 4.4.5, we consider the zeta function of the Cartesian product of
three strings relative to the related bounding rectangular parallelepiped. We also
study the fractal zeta functions of a class of relative fractal drums with logarith-
mic gauge functions; see Theorem 4.5.1 for the Minkowski measurable case, and
Theorem 4.5.2 for the Minkowski nonmeasurable case. Hence, such relative fractal
drums scale naturally according to a non power law.

In Section 4.3, we discuss some of the known results about the spectral asymp-
totics of a (relative) fractal drum, focusing on the leading term (of the asymptotics of
the eigenvalues of the Dirichlet Laplacian) and a corresponding (sharp) error term,
obtained in [Lap1] and expressed in terms of the (upper) Minkowski (or box) di-
mension of the boundary. We then apply this remainder estimate, along with some
of our earlier techniques, to establish the existence of a (nontrivial) meromorphic
extension of the spectral zeta function of a fractal drum, a result already obtained by
the first author in [Lap3] (in a slightly different manner). We also use our results in
Sections 4.5 and 4.6 below in a key manner in order to establish the optimality of the
upper bound obtained for the corresponding abscissa of meromorphic continuation;
this latter result is new.

In Section 4.5, we construct a class of relative fractal drums with explicit val-
ues of the abscissa of meromorphic continuation of the corresponding relative zeta
functions. We interpret these results in terms of the geometric zeta functions of frac-
tal strings, as well as in terms of the distance zeta functions of bounded sets on the
real line. The fractal string interpretation is obtained by using a countable union
of generalized Cantor strings C(a j), with suitably chosen parameters a j ∈ (0,1/2),
involving a sequence of prime numbers; see Theorem 4.5.20. This shows, in par-
ticular, that our main results on meromorphic extensions of tube and distance zeta
functions, obtained in Section 2.3, are in general optimal.

In Section 4.6, we construct a class of quasiperiodic relative fractal drums pos-
sessing infinitely many algebraically independent quasiperiods; see Theorem 4.6.9.
These drums are said to be transcendentally ∞-quasiperiodic. Furthermore, we con-
struct a relative fractal drum (A,Ω) such that each of the points on the ‘critical line’
{Res = dimB(A,Ω)} is a nonisolated singularity of the corresponding relative dis-
tance or tube zeta function; see Theorem 4.6.13. These drums are also transcenden-
tally quasiperiodic of infinite order, in the sense of Definition 4.6.7, and their explicit
construction provided in this section makes an essential use of the celebrated Baker
theorem (Theorem 3.1.14 on page 198) about transcendental numbers, itself a gen-
eralization of the aforementioned Gel’fond–Schneider theorem (Theorem 3.1.7 on
page 192). We also construct fractal strings and bounded sets in the real line with the
same property; see Corollary 4.6.17. We call these new geometric objects (maximal)
hyperfractals; see Definition 4.6.23. For these latter constructions, we use a suitable
family of generalized Cantor sets C(m,a) with two parameters; see Definition 3.1.1.
More generally, strong hyperfractals are subsets A of RN such that the associated
fractal zeta function ζA (or, equivalently, ζ̃A) admits the critical line {Res = dimBA}
as a (meromorphic) partial natural boundary (that is, ζA cannot be meromorphically
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continued beyond the critical line); see Definition 4.6.23. Finally, even more gener-
ally, hyperfractals have the same property, but with respect to some suitable curve,
called a screen, and not just the critical line.

In Section 4.7, we show that the complex dimensions of relative fractal drums
are preserved under embeddings into higher-dimensional spaces. As a result of
the proof, so are the residues of the corresponding fractal zeta functions at any
(simple) complex dimension. This provides a significant generalization of Kneser’s
result [Kne, Satz 7] (see also [Res]), where the independence of the normalized
Minkowski content on the dimension of the ambient space was established. The-
orem 4.7.9 provides a connection between the relative tube zeta function of the
original relative fractal drum and the relative tube zeta function of its embedding
into a higher-dimensional space. The results of Section 4.7 can be used in order to
determine the possible complex dimensions of special types of higher-dimensional
relative fractal drums without explicitly computing the corresponding distance (or
tube) zeta functions. This application is nicely illustrated in Example 4.7.15, where
the (possible) complex dimensions of the Cantor dust are determined.

The main goal of Chapter 5 is to obtain and establish general pointwise and dis-
tributional tube formulas for relative fractal drums in R

N (with N ≥ 1 arbitrary), and,
in particular, for bounded subsets of RN . These results extend to arbitrary dimen-
sions the (pointwise and distributional) fractal tube formulas originally obtained for
fractal strings in [Lap-vFr1–3](see, especially, [Lap-vFr3, Chapters 5 and 8]) and
then extended to suitable fractal sprays and self-similar tilings in [LaPe2–3], and,
more generally, in [LapPeWi1]. We also extend to higher dimensions the Minkowski
measurability criterion obtained for fractal strings in [Lap-vFr1–3] (see, especially,
[Lap-vFr3, Section 8.3]), as well as illustrate those results by means of a variety of
examples, including fractal strings, self-similar fractal sprays, the Sierpiński gasket
and carpet and their higher-dimensional analogs, along with non self-similar exam-
ples such as “fractal nests” and “geometric chirps”.

Recall from [Lap-vFr3] that, essentially, “fractal tube formulas” consist in ex-
pressing the N-dimensional volume of the t-neighborhoods of relative fractal drums
in terms of the underlying complex dimensions, appearing as the (co-)exponents of
the resulting generalized Fourier series (in the t-variable). Accordingly, fractal tube
formulas enable us to obtain a very precise understanding of the intrinsic oscilla-
tions of fractals and thereby, to make explicit the key relationship between complex
dimensions and oscillatory phenomena in fractal geometry. The theory developed in
Chapter 5 extends this essential connection to any dimension (i.e., to any Euclidean
space R

N , with N ≥ 1), without making any assumption of self-similarity or of a
particular type of underlying fractal geometry.

More specifically, the contents of Chapter 5 can be described in more detail as
follows:

In Section 5.1, the main result is Theorem 5.1.14, which provides a pointwise
fractal tube formula, with or without an error term, depending on the growth prop-
erties of the corresponding relative tube zeta function.

In Section 5.2, in order to weaken the growth conditions imposed in Theorem
5.1.14, we use a distributional approach and derive a fractal tube formula that holds
distributionally (on an appropriate space of test functions), also with or without an
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error term (depending on the hypotheses). Accordingly, the main results of Section
5.2 are Theorem 5.2.6, which is the distributional analog of Theorem 5.1.14, and
Theorem 5.2.11, which provides an estimate for the corresponding distributional
error term.

In Section 5.3, we “translate” under essentially the same growth assumptions the
results of Sections 5.1 and 5.2 (which were expressed in terms of the relative tube
zeta function) in terms of the more flexible and practical (as well as geometric) no-
tion of relative distance zeta function. In order to do so, we introduce in Definition
5.3.1 a new type of fractal zeta function, called the relative shell zeta function. In
the process, we derive the main properties of the relative shell zeta function as well
as functional equations that connect it to the relative tube and distance zeta func-
tions; see Theorems 5.3.2, 5.3.3 and 5.3.6. Finally, we note that the main results of
Section 5.3 are the pointwise and distributional tube formulas of Theorems 5.3.16
and 5.3.21, respectively.

In Section 5.4, under suitable hypotheses, we obtain a necessary and sufficient
criterion for the Minkowski measurability of a large class of relative fractal drums,
expressed in terms of their fractal zeta functions and to be described below. The suf-
ficiency part (Theorem 5.4.2) of this criterion is a consequence of the well-known
Wiener–Pitt Tauberian theorem. In short, it states that a relative fractal drum (and,
in particular, a bounded set) in R

N is Minkowski measurable if the only pole of
its corresponding fractal zeta function located on the critical line is real and simple.
Furthermore, this pole is then equal to the relative box dimension of the drum. More-
over, Theorem 5.4.2 then establishes a useful connection between the Minkowski
content of the given relative fractal drum and the residue of the corresponding frac-
tal zeta function evaluated at this pole. On the other hand, if, in addition, there are
other poles on the critical line, the Wiener–Pitt Tauberian theorem only yields an
upper bound for the upper Minkowski content of the relative fractal drum under
consideration (see Theorem 5.4.4).

In order to establish the other direction of the characterization of Minkowski
measurability, we introduce (in Definition 5.4.6) a new fractal zeta function, called
the relative Mellin zeta function. Its basic properties are given in Theorems 5.4.7,
5.4.9 and 5.4.10. This new zeta function is needed in order to extend the distribu-
tional tube formula of Theorem 5.3.21 to a larger space of test functions, which
allows one to use the uniqueness theorem for almost periodic distributions in the
proof of Theorem 5.4.15. Finally, by combining Theorem 5.4.2 and 5.4.15, we ob-
tain the sought for Minkowski measurability criterion, in Theorem 5.4.20.

More specifically, under suitable hypotheses, the Minkowski measurability cri-
terion obtained in Theorem 5.4.20 states that an RFD (A,Ω) (and, in particular, a
bounded set) in R

N is Minkowski measurable if and only if it does not admit any
nonreal principal complex dimensions (i.e., D = dimB(A,Ω) is its only complex
dimension of real part D) and D is simple. According to the fractal tube formu-
las obtained in Chapter 5, this means that, under appropriate assumptions, an RFD
(A,Ω) (or, in particular, a bounded set) in R

N is Minkowski measurable if and only
if its tube function (expressing the volume |At ∩Ω |N of its t-neighborhoods At ∩Ω )
does not have any oscillations of leading order (i.e., of order tN−D as t → 0+) or,
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equivalently, in the terminology introduced and used in various places in Chapters
4 and 5, if and only if it is not “fractal in dimension D”.

Subsection 5.4.4 is dedicated to the notion of h-Minkowski measurability, rela-
tive to a suitable (and nontrivial) gauge function (and thereby corresponding physi-
cally and geometrically to a scaling behavior which does not obey a pure power law).
More specifically, a general result about a class of relative fractal drums having (at
most) finitely many complex dimensions located on the critical line {Res = D} and
such that the multiplicity m of s = D is strictly greater than the multiplicities of the
nonreal poles with real part D, is given in Theorems 5.4.27 and 5.4.32 of Subsec-
tion 5.4.4. In short, such a relative fractal drum is then Minkowski degenerate with
infinite Minkowski content, but is also h-Minkowski measurable, with respect to an
appropriate gauge function. More specifically, h(t) := (log t−1)m−1 for all t ∈ (0,1)
and m is the order of the associated complex dimension D. Furthermore, an explicit
expression for the h-Minkowski content is also given in terms of the −m-th coeffi-
cient in the Laurent expansion of the corresponding fractal zeta function around the
pole D. Theorem 5.4.29 shows that the optimal tube function asymptotic expansion
involves the difference between the abscissa of (absolute) convergence and the ab-
scissa of meromorphic continuation of the fractal zeta function. Moreover, Theorem
5.4.30 can be viewed as the converse of Theorem 4.5.1. In particular, the results
obtained in this subsection also show that our results obtained in Chapter 2 and 4
about the existence of meromorphic extensions of fractal zeta functions are, in some
sense, optimal.
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Fig. 1.5 The third approximationΓ3 of the graphΓ of the Cantor function fC : [0,1]→R, defined in
the caption of Figure 1.6 just below. The first approximation is defined by Γ1 := [1/3,2/3]×{1/2},
that is, as the longest line-segment (i.e., of length 1/3), while the second approximation, Γ2 :=
Γ1 ∪

(
[1/9,2/9]×{1/4}

)
∪
(
[7/9,8/9]×{3/4}

)
, consists of Γ1 and the next two longest line-

segments, of length 1/9 each. Here, we have that Γ1 ⊂Γ2 ⊂Γ3 and Γ3 is equal to the union of seven
pairwise disjoint line-segments. As we can see, the approximations Γj , for j = 1,2,3, . . . , of the
graph of the Cantor function fC follow the construction of Cantor’s ternary set.
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In Section 5.5, we discuss in details several interesting examples and applications
of the fractal tube formulas for relative fractal drums developed in Sections 5.1–5.4.
Notable among them is the example of a relative fractal drum based on a version of
the graph of the Cantor function (Example 5.5.14), often called (after [Man1]) the
devil’s staircase in the literature on fractal geometry; see Figures 1.5, 1.6 and 1.7,
along with Remark 1.2.1 just below.

Remark 1.2.1. The Cantor function, whose graph is depicted in Figure 1.7 near the
point P of its graph Γ (see also Figure 1.6), is α-Hölderian, with α = log3 2. Here,
we can see a striking difference between the scaling rate in the vertical direction
(which is equal to 2− j at step j ∈ N of the construction) and the scaling rate in
the horizontal direction (which is equal to 3− j). Since 2− j/3− j = (3/2) j → ∞ as
j → ∞, we have a dramatic elongation in the vertical direction near the points of
the graph of fC, corresponding to the points of the middle-third Cantor set. This is
a reflection of the fact that the Cantor graph Γ is not self-similar, but is instead an
inhomogeneous self-affine set; i.e. (see Figure 1.5),

Γ = S(Γ )∪Γ1, (1.2.1)

where
S(Γ ) := MΓ ∪

(
MΓ +(2/3,1/2)�

)
,

M :=

[
1/3 0
0 1/2

]
, MΓ := {Mx : x ∈ Γ }

(1.2.2)

and Γ1 := [1/3,2/3]×{1/2} is a nonhomogeneous part of Equation (1.2.1). For
example, MΓ corresponds to the ‘left third’ of Γ (i.e., to the subset {x = (x1,x2) ∈
Γ : 0 ≤ x1 ≤ 1/3} of Γ ), which is obtained from Γ by scaling it by the factor
1/3 in the horizontal direction and then by the factor 1/2 in the vertical direction.
The matrix M is called the affinity matrix. The ‘right third’ of Γ (i.e., the subset
{x = (x1,x2) ∈ Γ : 2/3 ≤ x1 ≤ 1} of Γ ) is obtained by translating its ‘left third’ MΓ
by (2/3,1/2)� (here, by � we denote the matrix operation of transposition). More
information about inhomogeneous self-affine sets can be found in Remark 2.1.87 of
Subsection 2.1.6.

Note that the points (3− j,2− j), for j ∈N, near the point (0,0) of the graph of the
Cantor function, satisfy the equation y = xα with α = log3 2. Also note that the part
of Γ7 contained in the rectangle of width 3−4, with vertices at P and Q, is congruent
to the part of Γ7 in the analogous rectangle near the origin, containing the points
(0,0) and (3−4,2−4). In fact, the same is true for all subsequent approximations Γj

of Γ , where j ≥ 7. It is easy to see that the subsets Γj of the plane converge to Γ in
the Hausdorff metric, as j → ∞.

As is well known, the box dimension (and hence also, the Hausdorff dimension)
of the graph of the Cantor function is trivial; that is, it is equal to one because the
graph is rectifiable (i.e., it has finite length). Therefore, according to Mandelbrot’s
definition of fractality given in [Man1], the Cantor graph is not “fractal”. On the
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Fig. 1.6 The fourth approximation Γ4 of the graph Γ of the Cantor function fC : [0,1]→ R. Here,
Γ is defined as the closure of the subset ∪∞j=1Γj of the plane R

2, where the approximations Γj , for
j = 1,2,3, . . . , are indicated in this figure and in Figure 1.5 above. For example, Γ4 is equal to the
union of 15 pairwise disjoint line segments. Note that Γj ⊂ Γj+1 for all j ∈N. The Cantor function
fC is continuous and nonconstant, but its pointwise derivative is equal to 0 almost everywhere in
[0,1] (more specifically, it vanishes identically on the complement of the Cantor set with respect to
[0,1]). Hence, as is well known, it is not absolutely continuous, since the Newton–Leibniz formula,
fC(y)− fC(x) =

∫ y
x f ′C(t)dt, is no longer valid for all x,y ∈ [0,1]. For example, fC(1)− fC(0) = 1,

while
∫ 1

0 f ′C(t)dt = 0. A part of the seventh approximation Γ7 between the points P and Q is shown
in Figure 1.7 below.

other hand, intuitively, one would still like to refer to this graph as being “frac-
tal”; the results obtained in Example 5.5.14 provide a partial justification for that.
Namely, they show that the zeta function of the relative fractal drum based on the
Cantor graph has nonreal poles located to the left of the critical line {Res = 1} and
having real part equal to the box dimension of the middle-third Cantor set (that is,
to log3 2 ≈ 0.63), as was predicted in [Lap-vFr1–3] on the basis of an approximate
tube formula (see, in particular, [Lap-vFr3, Section 12.1]). We then deduce from the
theory developed in Chapter 5 that these poles generate lower-order oscillations in
the asymptotic expansion of the tube function of the relative fractal drum associated
to the Cantor graph. According to the definition of fractality introduced in Chapter 4
and further discussed as well as refined in Chapter 5, it follows that the Cantor graph
RFD is “fractal”. More specifically, it is not fractal in dimension D = 1 (the largest
possible real dimension), but it is fractal in dimension d = log3 2, the dimension of
the ternary Cantor set. We also conjecture that the same is true for the actual Cantor
graph and provide partial evidence towards this conjecture.
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P

Q

Γ7

Fig. 1.7 A part of the seventh approximation Γ7 of the graph Γ of the Cantor function fC , shown
near the point P(2/3,1/2). (The upper right interval near the point Q is of length 3−4 ≈ 0.01, and
also belongs to Γ4; see also Figure 1.6 just above.) The slope of the line joining the points P and Q
is equal to 2−4/3−4 = (3/2)4 ≈ 5. The slope of the line joining the point P with the left endpoint
of the shortest line-segment of Γ7 just above P, is equal to 2−7/3−7 = (3/2)7 ≈ 17. Moreover, it
is easy to see that the right derivative of the Cantor function fC at the point P is equal to +∞.
An analogous property holds for the right endpoint of any of the segments appearing in ∪∞j=1Γj .
See also Remark 1.2.1 on page 26. If we denote by σ(Γj) the number of line segments of the j-th
approximation Γj of the graph of the Cantor function, then it is easy to see that σ(Γj) = 2 j −1 for
all positive integers j. In particular, we have that σ(Γ7) = 27 −1 = 127. This figure shows only 9
of the 127 line-segments of Γ7.

Alongside other examples in Section 5.5, we also analyze fractal nests (Exam-
ple 5.5.16) and unbounded geometric chirps (Example 5.5.19), which are not self-
similar. The example of a family of fractal nests depending on a real parameter
exhibits an interesting new phenomenon; namely, two simple complex dimensions
(i.e., simple poles of the associated fractal zeta function) which “merge” for a partic-
ular value of the parameter, form a single complex dimension of second order (i.e.,
a pole of multiplicity two). This second order complex dimension then generates
logarithmic terms in the asymptotic expansion of the associated (relative) tube zeta
function.

Towards the end of Section 5.5, we show how some of the already established re-
sults about the complex dimensions of self-similar sprays (see [LaPe2–3, LaPeWi1,
DeKÖÜ]) can be recovered from the results of Chapter 5 as well as significantly
extended and placed in the much broader context of the new higher-dimensional
theory developed in this book.



1.2 A Short Survey of the Contents 29

According to the definition of fractality proposed in [Lap-vFr1–3], a geomet-
ric object is said to be “fractal” if it has at least one nonreal complex dimension10

(see, e.g., [Lap-vFr3, Subsection 12.1.2, pp. 337–342]) or else (according to the re-
fined definition proposed in [Lap-vFr1–3], see e.g., [Lap-vFr3, Subsection 13.4.3,
pp. 473–474]) if it has a partial natural boundary (along a suitable curve). Therefore,
since (by the results of Chapter 2) distance (and tube) zeta functions are holomor-
phic on the open right half-plane {Res > dimBA}, maximal hyperfractals are the
most fractal objects possible. The construction of maximal hyperfractals discussed
above (in the description of Chapter 4, especially of Section 4.6) makes it intuitively
clear that such objects are plentiful, especially among random fractals. (See, e.g., the
comment following Definition 4.6.23.) However, we expect that many (determinis-
tic) classical fractals (such as self-similar sets, for example) are not of this type. It
remains to be determined whether (possibly after having chosen a suitable gauge
function) some of the fractals encountered in complex dynamics (such as Julia sets
and the Mandelbrot set) or in conformal geometry (such as limit sets of Fuchsian or
Kleinian groups) are hyperfractal or even maximally hyperfractal. (See, in partic-
ular, Problems 6.2.20–6.2.21, along with Problem 6.2.32.) In Section 6.1, we first
propose (in Subsection 6.1.1) a classification of bounded sets in Euclidean spaces,
based on their tube functions, while later, in Subsection 6.1.2, we briefly comment
on the history of some aspects of this topic, with particular attention to the notions
of Minkowski measurability and Minkowski nondegeneracy.

Section 6.2 contains several concluding remarks and many open problems, along
with suggestions for further investigation concerning the possible use of distance
and tube zeta functions, as well as their weighted or their relative counterparts, in a
variety of situations.

Finally, the main text of the book is completed by three appendices. In Ap-
pendix A, we introduce a general notion of Dirichlet-type integral (DTI) or func-
tion, of which all fractal zeta functions introduced and used in this book are special
cases, and develop many aspects of the resulting theory. Furthermore, in Appendix
B, we introduce a suitable notion of local distance zeta function. Moreover, in Ap-
pendix C, we provide a table of the distance zeta functions and the principal complex
dimensions of several basic relative fractal drums used throughout the text.

Some of the many new results presented in this monograph are also discussed
in the research articles [LapRaŽu1–6], as well as in the survey articles [LapRaŽu7]
and [LapRaŽu8].

Although we have tried to keep this research monograph relatively self-
contained, we have preferred to keep the overlap with the research monographs
[Lap-vFr1–3] to a minimum. Hence, we refer the interested reader to those mono-
graphs, and especially, to [Lap-vFr3], the second edition of [Lap-vFr2], entitled

10 Complex dimensions are interpreted in this book as the poles (of a meromorphic extension)
of the associated zeta function; that is, in the present geometric situation, as the poles of the
associated distance (or, equivalently, tube) zeta function. We note that in the theory developed
in [Lap-vFr1–3], except in very special (but important) situations (such as fractal strings and
fractal sprays) no suitable general geometric definition of a zeta function attached to a (higher-
dimensional) fractal is provided.
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Fractal Geometry, Complex Dimensions and Zeta Functions (and subtitled Geome-
try and Spectra of Fractal Strings), for a detailed exposition of fractal strings theory
and of the associated theory of complex fractal dimensions, as well as for a variety
of applications, including, for example, to self-similar fractal strings, generalized
explicit formulas, fractal tube formulas, spectral asymptotics, a reformulation of
the Riemann hypothesis in terms of inverse spectral problems for fractal strings,
along with the distributions of zeros of arithmetic zeta functions and other aspects
of number theory. We note that except when needed (for instance, to indicate the
chronology of a given result), we will usually refer to [Lap-vFr3], rather than to
[Lap-vFr1] or [Lap-vFr2] (or else, to related papers).

We close this section with a few words about the interdependence of some of
the chapters and sections. Chapter 2 provides the foundations for the remaining part
of the monograph. Sections 3.4–3.7, 4.3, 4.4.2 and 4.6 can be omitted upon a first
reading. Indeed, the results therein are of independent interest but are not used in the
rest of the book.11 Also, Sections 3.1 through 3.7 are independent of one another.
Finally, Sections 2.3 and 3.1 are prerequisites for Sections 4.3.2, 4.5 and 4.6.

1.3 Basic Notation and Definitions

In Subsection 1.3.1, we first introduce the notions of Minkowski contents and box
dimensions, with a special emphasis on their scaling properties. In Subsection1.3.2,
we review and introduce several definitions pertaining to the singularities of analytic
functions, as they will be needed in several parts of this book. Finally, Subsection
1.3.3 provides a short review of standard mathematical notation which we shall
need throughout this monograph. Additional notation and definitions are introduced
throughout the text, as well as in the glossary.

1.3.1 Minkowski Contents and Box (or Minkowski) Dimensions
of Bounded Sets

By |E|N , we denote the N-dimensional Lebesgue measure of a measurable subset
E of RN . When no ambiguity may arise, we simply write |E| instead of |E|N . The
upper r-dimensional Minkowski content M ∗r(A) of a bounded subset A of RN , r ∈
R,12 is defined by

11 However, the notion of hyperfractal introduced in Subsection 4.6.2 and the construction (in the
same subsection) of ∞-quasiperiodic relative fractal drums and strings that are maximally hyper-
fractal should play an important role in the future developments of the (higher-dimensional) theory
of complex dimensions and of fractal zeta functions.
12 It suffices to consider r ≥ 0 here, but we want to emphasize that the more general situation when
r ∈ R will be important in the case of relative box dimensions; see, especially, page 249, along
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M ∗r(A) = limsup
t→0+

|At |
tN−r , (1.3.1)

and the lower r-dimensional Minkowski content of A, denoted by M r
∗ (A), is de-

fined analogously (with a lower limit instead of an upper limit in the counterpart
of (1.3.1)). Clearly, we always have 0 ≤ M r

∗ (A) ≤ M ∗r(A) ≤ ∞. Here and in the
sequel, as in Section 1.1,

At := {x ∈ R
N : d(x,A)< t} (1.3.2)

denotes the t-neighborhood (or tubular neighborhood of radius t) of A. If for some
real number r we have M r

∗ (A) = M ∗r(A) ∈ [0,+∞], then the common value is
denoted by M r(A) and called the r-dimensional Minkowski content of A.

All of the conclusions in this monograph remain valid if, instead of using the
definition given in Equation (1.3.2), we define At := {x ∈ R

N : d(x,A) ≤ t}. This
follows from the fact that the boundary of At is negligible in the Lebesgue sense,
that is, |∂ (At)| = 0; see [Sta]. We point out that there exist open subsets U of RN

such that |∂U |> 0; see Remark 2.1.2 on page 46.

Remark 1.3.1. Note that if A is any bounded subset of RN , then we can easily con-
clude from the definition of the Minkowski content that M N(A) exists and

M N(A) = |A|N . (1.3.3)

Indeed, since inft∈(0,δ ) |At | = limt→0+ |At | = |A|, then by letting δ → 0+ we obtain
that M N

∗ (A) = |A|, while from supt∈(0,δ ) |At | = |Aδ | and then letting δ → 0+, we

conclude that M ∗N(A) = |A|. Note that the present remark shows that the claim
stated in [Fed2, Theorem 3.2.39] holds without any rectifiability assumption on A,
provided m = N in that theorem.

The upper box (or Minkowski) dimension of A is defined by

dimBA = inf{r ∈ R : M ∗r(A) = 0}; (1.3.4)

it is easy to see that we also have

dimBA = sup{r ∈ R : M ∗r(A) = +∞} (1.3.5)

and
dimBA = inf{r ∈ R : M ∗r(A)< ∞}. (1.3.6)

Furthermore, as was observed in footnote 12 on page 30, in the present case of
bounded subsets A of RN , it would clearly suffice to consider r ∈ R, r ≥ 0 in Equa-
tions (1.3.4)–(1.3.6).

with Corollary 4.1.38 and Remark 4.1.39 where the associated (relative) Minkowski dimension is
equal to −∞.
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The lower box (or Minkowski) dimension of A, denoted by dimBA, is de-
fined analogously as in either of Equations (1.3.4)–(1.3.6), with M r

∗ (A) instead of
M ∗r(A) in the counterpart of (1.3.4)–(1.3.6). Since A is bounded, we always have

0 ≤ dimBA ≤ dimBA ≤ N. (1.3.7)

Moreover, if both dimensions dimBA and dimBA coincide, then their common
value is denoted by dimB A, and is called the box dimension of A (or Minkowski–
Bouligand dimension of A), or else, simply, the Minkowski dimension of A. (We then
say that dimB A exists.) According to (1.3.7), the upper and lower box dimensions
of a bounded set A ⊂ R

N belong to [0,N]. Hence, the same is true of the box (or
Minkowski) dimension of A, when it exists.

The values of the upper and lower Minkowski contents of a given bounded subset
A of RN depend on N, in general, since A can also be viewed as a subset of RN+1. On
the other hand, it is easy to see that the values of dimBA and dimBA do not depend
on N; see [Res, Proposition 1]. (See also the much earlier reference [Kne] where,
however, no clear distinction seems to have been made between dimBA and dimBA.)

If A is a bounded subset of R
N such that dimBA < N, then |A| = 0, where A

denotes the closure of A in R
N . By contraposition, this property can be stated equiv-

alently as follows:

If |A|> 0, then dimB A exists and is equal to N.13 (1.3.8)

To prove this property, note that the condition dimBA < N implies that M N
∗ (A) = 0

(by the counterpart of Equation (1.3.4) for dimBA); i.e., liminft→0+ |At | = 0. Since
∩t>0At = A and t �→ |At | is nondecreasing, we deduce that |A|= limt→0+ |At |= 0.

If there exists D ≥ 0 such that14

0 < M D
∗ (A)≤ M ∗D(A)< ∞, (1.3.9)

we say that A is Minkowski nondegenerate. (By definition, the condition (1.3.9) of
Minkowski nondegeneracy is equivalent to |At |  tN−D as t → 0+. The notation 
is explained in Subsection 1.3.3 on page 41.) Otherwise, we say that A is Minkowski
degenerate. In other words, if A is degenerate, then either (a) dimBA < dimBA
(i.e., A is strongly degenerate) or (b) D := dimB A exists and either M D

∗ (A) = 0
or M ∗D(A) = +∞ (i.e., A is weakly degenerate). More details about degenerate sets
can be found on pages 544 and 550. Note that if A is nondegenerate, it then follows
from (1.3.4)–(1.3.5) and their counterpart for M r

∗ (A) that dimB A exists and is equal
to D.

Finally, as we have already stated, if M D
∗ (A) = M ∗D(A), then their common

value is denoted by M D(A) and called the Minkowski content of A. If, in addition,

M D(A) ∈ (0,+∞), (1.3.10)

13 If dimBA = N, then the inequalities in (1.3.7) imply that dimBA = N as well.
14 It is easy to verify that, if D ≥ 0 is such that 0 < M D

∗ (A) ≤ M ∗D(A) < ∞, then dimB A exists
and dimB A = D.
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r

+∞ r∗ (A) = ∗r(A) = +∞
for r < D

D := dimB A

D∗ (A)

∗D(A)

r∗ (A) = ∗r(A) = 0 for r > D

Fig. 1.8 The graphs of the functions r �→ M r
∗ (A) and r �→ M ∗r(A), assuming that A is Minkowski

nondegenerate and nonmeasurable; i.e., D := dimB A exists and 0 < M D
∗ (A)< M ∗D(A)< ∞.

r

+∞ r(A) = +∞ for r < D

D := dimB A

D(A)

r(A) = 0 for r > D

Fig. 1.9 The graph of the function r �→ M r(A), assuming that A is Minkowski measurable; i.e.,
both D := dimB A and M D(A) exist and 0 < M D(A)< ∞.

then A is said to be Minkowski measurable.15 (See Figures 1.8 and 1.9.) Hence,
a Minkowski measurable set is necessarily Minkowski nondegenerate. If A is not
Minkowski measurable, we say that it is Minkowski nonmeasurable.16

The intuitive meaning of the box dimension of a bounded set A in R
N can be best

understood by considering the asymptotic behavior of the associated tube function
t �→ |At | as t → 0+. If we assume that A is such that

|At |  tγ as t → 0+, (1.3.11)

15 Condition (1.3.10) of Minkowski measurability is easily seen to be equivalent to |At | ∼CtN−D

as t → 0+, where C ∈ (0,+∞); then, we must have M D(A) = C. The notation ∼ is explained in
Subsection 1.3.3 on page 41.
16 Note that A is Minkowski nonmeasurable if and only if either (a) dimBA < dimBA, or (b)
D := dimB A exists but M D

∗ (A) = 0 or else M ∗D(A) = +∞ or 0 < M D
∗ (A)< M ∗D(A)< ∞.
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for some γ ∈ (0,N] (which is true for most of the classical fractal sets), then D :=
dimB A exists and dimB A = N − γ . In other words,

dimB A = N − lim
t→0+

logt |At |. (1.3.12)

Clearly, (1.3.11) can be written as

|At |  tN−D as t → 0+, (1.3.13)

and this property is equivalent to the Minkowski nondegeneracy of A. We shall
encounter various refinements of condition (1.3.13) throughout this monograph, in
the form

|At |= tN−D(F(t)+o(1)) as t → 0+,

for various classes of functions F . See, for instance, Section 2.3 (especially, Equa-
tions (2.3.26), (2.3.30), (2.3.54)–(2.3.55), (2.3.70) and (2.3.77)–(2.3.78)), Section
2.4, Section 3.1 (especially, Equations (3.1.2)–(3.1.3), (3.1.13) and (3.1.29), Theo-
rems 3.1.12, 3.1.15, and 3.1.20), Section 4.3.2 [particularly Equations (4.5.9) and
(4.5.22), along with Theorems 4.5.1, 4.5.2, 4.5.8 (and their proof)], Section 4.6.1
[especially, Equation (4.6.4), Theorem 4.6.9 (and its proof), Corollary 4.6.17 and
Example 4.6.21], Section 6.1 (Equations (6.1.1), (6.1.4)–(6.1.6), along with Defini-
tions 6.1.4 and 6.1.7 as well as Example 6.1.5, Problems 6.2.2, 6.2.3 and 6.2.16).

The asymptotic behavior (1.3.13) is expected to be equivalent17 to

Nb(δ ) δ−D as δ → 0+, (1.3.14)

where the box-counting function Nb(δ ) is the number of δ -mesh cubes in R
N that

intersect A. (It can easily be shown that it suffices to consider diadic meshes of the
form δ = 2−k as k → ∞.) In particular,

dimB A = lim
δ→0+

log1/δ Nb(δ );

see [Fal1, p. 41]. Passing to the general case, that is, assuming that A is any bounded
set A in R

N , it is not difficult to show that

dimBA = N − limsup
t→0+

logt |At |,

dimBA = N − liminf
t→0+

logt |At |
(1.3.15)

17 When N = 1, this equivalence is established in [LapPo1–2], using the language of fractal strings
and hence, is valid for any compact (or, equivalently, bounded) subset A of R.
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and
dimBA = liminf

δ→0+
log1/δ Nb(δ ),

dimBA = limsup
δ→0+

log1/δ Nb(δ ).
(1.3.16)

If we use as an alternative notation lim and lim for liminf and limsup, respectively,
both equations appearing in (1.3.16) can be written even more succintly as follows:

dimBA = lim
δ→0+

log1/δ Nb(δ ), dimBA = lim
δ→0+

log1/δ Nb(δ ).

As was already mentioned, the map δ �→ Nb(δ ), δ > 0, is called the box-counting
function of A. Equation (1.3.16) therefore provides a natural motivation for the name
of the upper and lower box-counting dimensions. Other variations of (1.3.16), that
is, of the definition of Nb(δ ), can be found in [Fal1, p. 41].

Throughout this book, we will assume, most often implicitly, that the bounded
set A ⊂ R

N is nonempty, in order to avoid trivial exceptions to the statements of
some of our results.

We conclude this subsection with a few words about the scaling properties of
Minkowski contents. In the sequel, for any given nonempty bounded subset A of RN

and λ ∈ R, we let λA := {λx : x ∈ A}.
Let Pb(R

N) be the family of all bounded subsets of RN and let A ∈ Pb(R
N)

be a given nonempty bounded subset. A function M : Pb(R
N) → [0,+∞] is said

to be homogeneous with respect to A (or D(A)-homogeneous) if there exists a real
number D(A) such that

M (λA) = λD(A)M (A), for all λ > 0.

If M is homogeneous with respect to every nonempty bounded subset A in R
N ,

we say that the function M is homogeneous. For example, the function M ∗ :
Pb(R

N)→ [0,+∞] defined by M ∗(A) := M ∗D(A)(A) (i.e., the upper D(A)-dimen-
sional Minkowski content of A), where D(A) := dimBA, is homogeneous; that is,

M ∗D(A)(λA) = λD(A)M ∗D(A)(A), for all λ > 0. (1.3.17)

We say for short that the upper Minkowski content is homogeneous. See Remark
1.3.2. Much as in Equation (1.3.17), the lower Minkowski content is homogeneous
in the following sense:

M
D(A)
∗ (λA) = λD(A)M

D(A)
∗ (A), for all λ > 0, (1.3.18)

where D(A) := dimBA. These scaling results are easily obtained by noting that
λ (At) = (λA)λ t for any t > 0. It is easy to see that the scaling (or homogeneity)
properties (1.3.17) and (1.3.18) are equivalent to the following equations:

M ∗s(λA) = λ sM ∗s(A), M s
∗ (λA) = λ sM s

∗ (A) (1.3.19)
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for all λ > 0 and s ∈ R. Indeed, if s < D(A), then both sides of the first equation
are equal to +∞, whereas for s > D(A) both sides are equal to zero. We can argue
analogously in the case of the second equation. A more general result, extending
the scaling properties (1.3.19) from bounded subsets of RN to the setting of relative
fractal drums, can be found in Lemma 4.6.10.

Remark 1.3.2. It is clear that dimB(λA) = dimBA, i.e., D(λA) = D(A), for every
λ > 0, and similarly for the lower box dimension. This is a very special case of the
property of bi-Lipschitz invariance of box dimensions: if A is a bounded set in R

N

and f : A → R
N is a bi-Lipschitz function; that is, there exist positive constants c1

and c2 such that c1|x−y| ≤ | f (x)− f (y)| ≤ c2|x−y| for all x,y ∈ A, then (see [Fal1,
p. 44]), we have

dimB f (A) = dimBA and dimB f (A) = dimBA.

Remark 1.3.3. Unless explicitly stated otherwise, the bounded sets A ⊆ R
N consid-

ered in this book are implicitly assumed to be nonempty; furthermore, when work-
ing with a relative fractal drum (A,Ω), as in Chapters 4–6, we will also assume that
A is nonempty and, in addition, that the open set Ω ⊆ R

N is nonempty.

Remark 1.3.4. Since d( · ,A) = d( · ,A), where A denotes the closure of A in R
N , it

follows that the t-neighborhood At of a bounded subset A of R
N is equal to that

of its closure; namely, At = (A)t , for every t ≥ 0. As a result, the same is true
for the volume |At |, as well as for the (upper, lower) Minkowski dimension and
for the (upper, lower) Minkowski content of A. For example, dimB A = dimB A and
M ∗D(A) = M ∗D(A). Since, in a Euclidean space R

N , a subset A is compact if and
only if it is closed and bounded, it follows that when we work with the distance zeta
function (or later on, the tube zeta function) of a bounded set A ⊂ R

N , we may as
well asume that A is compact.

1.3.2 Singularities of Analytic Functions

Since singularities of holomorphic functions play an important role in this book, we
briefly recall their definitions and classification.

Let f : U \ {s0} → C be a given holomorphic function, where U is a connected
open subset of the complex plane C and s0 ∈U . We say that s0 is an isolated singu-
larity of f if it is either a removable singularity or a pole or an essential singularity.
Here, we say that:

(a) s0 is a removable singularity of f if the limit lims→s0 f (s) exists and is a com-
plex number;18 equivalently, there exists a holomorphic extension F of the function

18 All of the limits as s → s0 are implicitly assumed to hold as s → s0, s ∈U .
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f from U \{s0} to the whole of U (in other words, F : U → C is holomorphic and
f (s) = F(s) for all s ∈U \{s0}, i.e., f = F |U\{s0});

(b) s0 is a pole of order k of f , where k ∈ N, if the limit lims→s0(s− s0)
k f (s)

exists and is equal to a complex number different from zero. Equivalently, s0 is a
pole of f if lims→s0 | f (s)|=+∞ and in that case, the order of s0 is the integer k for
which the above nonzero limit exists. If k = 1, the pole s0 is said to be simple and in
that case, the residue of f at s0 is given by res( f ,s0) := lims→s0(s− s0) f (s);

(c) s0 is an essential singularity of f if it is neither a removable singularity nor a
pole of f ; in other words, the limit lims→s0(s− s0)

k f (s) does not exist in C, for any
k ∈ N.

Remark 1.3.5. Simple illustrations of isolated singularities of the types (a)–(c)
above, respectively, and in the case when s0 := 0 and U := C\{0}, are: (a) f (s) =
sins/s, (b) f (s) = 1/sk for some k ∈ N, and (c) f (s) = exp(1/s) = ∑∞k=1 1/(k!sk).

Equivalently, s0 ∈ U is an isolated singular point of a holomorphic function
f : U \ {s0} → C if there exists an ε-neighborhood Bε(s0) of s0, in the complex
plane, where ε > 0 and such that f is holomorphic on the punctured ε-neighborhood
Bε(s0) \ {s0} of s0. (Here, Bε(s0) denotes the open disk of center s0 and radius ε .)
Recall that it then follows that f can be expanded into a Laurent series arround s0

in the punctured disk Bε(s0)\{s0}:

f (s) =
∞

∑
n=−N

an(s− s0)
n, (1.3.20)

where N ∈N0∪{∞} and an ∈C for every finite n. Then, s0 is a removable singularity
of f if and only if N = 0. Furthermore, it is a pole of order N of f if and only if
N ∈ N and a−N 
= 0; in that case, ∑−1

n=−N an(s− s0)
n, the principal part of f at s0, is

nontrivial but contains only finitely many terms. Finally, s0 is an essential singularity
of f if and only if N = ∞; more precisely, if and only if N = ∞ and the principal
part of f at s0, ∑−1

n=−∞ an(s− s0)
n, contains infinitely many terms such that an 
= 0

with n < 0.

In several places in this book, particularly in Chapters 4 and 6,19 we will also
work with the nonisolated singularities of a holomorphic function f defined on a
given connected open subset U of C. In that case, such singularities will consist of
the set of accumulation points s0 of U such that Bε(s0) \ {s0} ⊆ U for sufficiently
small ε > 0 and the associated cluster set C (s0, f ) is not reduced to a single point.20

Here, the cluster set C (s0, f ) of f at s0 ∈ C̃ (where C̃ := C∪{∞} is the Riemann

19 In Chapter 4, see, e.g., Theorem 4.3.21 in Subsection 4.3.2, Lemma 4.5.10 and Figure 4.16
in Subsection 4.5.2, Theorem 4.6.9 in Subsection 4.6.1, Theorem 4.6.13 and Corollary 4.6.17 in
Subsection 4.6.2, Corollary 4.6.28 in Subsection 4.6.4, along with Subsection 4.6.3. In Chapter 6,
see, e.g., Problem 6.2.18 and Problems 6.2.21–6.2.26.
20 If C (s0, f ) consists of a single point, and we assume that f is holomorphic in Bε (s0)\{s0}, then
s0 is an isolated singularity which is either a pole or a removable singularity of f .



38 1 Introduction

sphere equipped with its natural topology) is the set of all τ ∈ C̃ such that there ex-
ists a sequence (sn)

∞
n=1 satisfying sn ∈U for all n ≥ 1, sn → s0 and f (sn)→ τ in C̃,

as n → ∞. Such a nonisolated singularity is also sometimes called an “essential sin-
gularity point of f ”. (See, e.g., [Haz].) This is, of course, a more general notion than
the usual type of essential singularity encountered in elementary complex analysis
and discussed earlier in this subsection.

Assume that f : U → C is a holomorphic function, where U is a connected open
subset of the complex plane C and s0 belongs to the boundary of U , i.e., s0 ∈ ∂U .
If there is no ε > 0 such that f can be holomorphically extended to a punctured
ε-neighborhood Bε(s0)\{s0} of s0, we say that s0 is a nonisolated singularity of f .

For example, if there exists a sequence of isolated singularities (sk)k≥1 of f con-
verging to s0, then s0 is a nonisolated singularity of f .

Definition 1.3.6. Given a holomorphic function f : U →C, where U is a connected
open subset of C, as above, we say that K := ∂U is a (holomorphic) natural bound-
ary of f if there is no s ∈ K and ε > 0 for which an analytic (i.e., holomorphic)
continuation of f is possible to Bε(s). (Here, as before in this subsection, Bε(s) de-
notes the open disk of center s and radius ε in C.) Then, U is called a domain of
holomorphy for f .

Remark 1.3.7. The only nonisolated singularity of the function f (s) := 1/sin(1/s)
is s = 0. Indeed, sk = 1/(kπ), with k ∈ N, are simple poles of f converging to 0 as
k → ∞; here, U := C \ ({1/(kπ) : k ∈ N}∪{0}). Another well-known example is
provided by the lacunary series defined by g(s) := ∑∞k=1 s2k

= 1+ s2 + s4 + s8 + . . . ,
where s ∈ U := B1(0), for which it can be shown that the unit circle K = {s ∈ C :
|s|= 1} is a corresponding (holomorphic) natural boundary of g; in particular, each
point s0 ∈ K is a nonisolated singularity of the function g. Equivalently, the open
unit disk U := {s ∈ C : |s| < 1} is a domain of holomorphy for g, in the sense of
Definition 1.3.6.

Let U be a connected open subset of the complex plane C and let C̃ :=C∪{∞} be
the one-point compactification of C, also referred to as the Riemann sphere. We say
that a function f : U → C̃ is meromorphic if there exists a subset S of U consisting
of isolated points in U , such that f is holomorphic on U \S and each s0 ∈ S is a pole
of f . Here, since it is discrete, the set S is necessarily at most countable, possibly
empty. As is well known, if f is extended to become a C̃-valued function f̃ (i.e.,
f̃ : U → C̃, with f̃ (s) := ∞ for all s ∈ S and f̃ (s) := f (s) for all s ∈U \S) and C̃ is
viewed as a compact Riemann surface, then the meromorphic function f : U → C

becomes a holomorphic function f̃ : U → C̃. The converse of this statement is also
true (and in that case, S := f−1({∞}) is the set of poles of f ); see, e.g., [Ebe].

Finally, let us still assume that U is a connected open subset (i.e., a domain)
of C. Then, recall that a function f : U → C is meromorphic if and only if it can
be written as the ratio of two holomorphic functions on U : f = ϕ/ψ , where ϕ and
ψ are holomorphic on U . In that case, provided ϕ and ψ do not have any common
zeros, the set S of poles of f coincides with the zeros of ψ: S := {s ∈U :ψ(s) = 0}.
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(In general, it is clearly contained in S.) The above factorization property implies
that, as is well known, the principle of analytic continuation extends to meromor-
phic functions. More specifically, if two meromorphic functions f and g on a given
domain U of C coincide on a subset of U having a limit point in U , then they co-
incide everywhere in U . This ‘principle of meromorphic continutation’ will be used
throughout this book, and often referred to as the principle of analytic continuation.
Furthermore, recall that as a simple consequence of the principle of analytic con-
tinuation, a meromorphic function admits at most one meromorphic extension to a
given connected open set; in other words, on any domain V of C, the meromorphic
continuation of f , if it exists, is unique.

In the remainder of this book, we will need the following nonstandard defini-
tions, especially when discussing the notions of hypefractality (and strong hyper-
fractality), as well as maximal hyperfractality, in Subsection 4.6.3 of Chapter 4. For
now, the reader may wish to omit these definitions upon a first reading, and return
to them later, when necessary.

Definition 1.3.8. Let f : U →C be a meromorphic function, where U is a connected
open set in C with boundary K := ∂U .

(i) We say that f admits K as a (meromorphic) partial natural boundary (or that K
is a (meromorphic) partial natural boundary of f ) if f cannot be meromorphically
continued beyond K or, more precisely, if there exist s0 ∈ K and ε > 0 such that f
cannot be meromorphically extended to Bε(s0). Equivalently, given any open set V
of C containing U ∪{s0}, f cannot be meromorphically continued to V . (See also
Remark 1.3.9 below.) We then say that U is a partial domain of meromorphy for f .

(ii) Moreover, K is called a (meromorphic) natural boundary of f if there does
not exist s0 ∈ K and ε > 0 for which a meromorphic extension of f is possible to
Bε(s0). Equivalently, given any s0 ∈ K and any open set V of C containing U ∪{s0},
f cannot be meromorphically extended to V . We then say that U is a domain of
meromorphy for f .21

Note that unlike the traditional notion of (holomorphic) natural boundary recalled
earlier (on page 38), the above definition of (meromorphic) partial natural boundary
or of (meromorphic) natural boundary refers to the meromorphic continuation rather
than to the holomorphic continuation of f .

We will only need to use the notion of (meromorphic) partial natural boundary,
not its obvious holomorphic counterpart (which is not an equivalent notion). There-
fore, when no ambiguity may arise, we will sometimes omit the adjective “mero-
morphic” when referring to a partial natural boundary.

21 Clearly, a meromorphic natural boundary is a holomorphic natural boundary (in the sense re-
called in Definition 1.3.6 on page 38), but the converse is not true, in general. Indeed, if a fractal
zeta function cannot be extended meromorphically to some connected open subset in C, then a
fortiori, it cannot be extended holomorphically. Equivalently, if U is a domain of meromorphy for
f , then it is also a domain of holomorphy for f (still in the sense of Definition 1.3.6).
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Remark 1.3.9. (a) We will only use Definition 1.3.8 when K is a screen S (with as-
sociated window W ), in the sense of [Lap-vFr3] recalled in Definition 5.1.1, and f
is one of the fractal zeta functions discussed in this book. In that case, U is the inte-
rior of the window and its boundary K =S = ∂U is a suitable curve in C (extending
vertically in both directions). Consequently, f is assumed to be meromorphic to the
right of the screen S. We point out that in the important special case when K = S
is the critical line {Res = D}, this hypothesis is automatically satisfied because by
part (a) of Theorem 2.1.11 below, the fractal zeta function is then holomorphic for
Res > D.

(b) It would be reasonable to strenghten part (i) of Definition 1.3.8 by requiring
that there exists an infinite sequence of distinct points sn ∈K and of positive numbers
εn such that for each n ≥ 1, f cannot be meromorphically extended to Bεn(sn). The
examples of strongly hyperfractal RFDs (that are not maximally hyperfractal) given
in this book would still satisfy this stronger property, with f being the associated
fractal zeta function and K coinciding with the critical line {Res = D}.

1.3.3 Standard Mathematical Symbols and Conventions

Throughout this book, we will use the special symbol i for the imaginary unit:

i :=
√
−1. (1.3.21)

This will enable us, in particular, to use the ordinary symbol i as a running index,
either as a subscript or superscript. We use the upright (‘Roman’) e and d to denote,
respectively, the base of the natural logarithm and the differentiation sign.

The logarithm of x > 0 in base a > 0 is denoted by loga x. Recall that, by defini-
tion, y = loga x is equivalent to x = ay. The natural logarithm, that is, the logarithm
in base e ≈ 2.718, is denoted by logx. It is easy to see that for any c > 0, the follow-
ing useful property holds: loga x = logc x/ logc a. In particular, loga x = logx/ loga.

We shall also need to use the notation

ωm :=
2πm/2

mΓ(m/2)
, (1.3.22)

where Γ is the gamma function and m is any positive real number. If m is a positive
integer, then ωm is equal to the m-dimensional Lebesgue measure of the unit ball in
R

m. Recall that Γ(x+ 1) = xΓ(x) for any positive real number x and Γ(1) = 1, so
that Γ(n+1) = n! for any n ∈ N. Also, Γ(1/2) =

√
π , so that Γ(m/2) can be easily

calculated when m is odd.
Recall that given a function f : (0,a)→ R, with fixed a > 0, its lower and upper

limits as t → 0+ are defined, respectively, by

liminf
t→0+

f (t) := lim
δ→0+

inf
t∈(0,δ )

f (t), limsup
t→0+

f (t) := lim
δ→0+

sup
t∈(0,δ )

f (t).
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For any two sequences of positive real numbers (ak)
∞
k=1 and (bk)

∞
k=1, we write

ak  bk as k → ∞

if there exists a positive constant c such that c ≤ ak/bk ≤ c−1 for all k ≥ 1. If
ak/bk → 1 (or more generally, if bk = ak(1+ o(1))) as k → ∞, we write ak ∼ bk

as k → ∞. [Here, o(1) (“little o” of one) means that the implied error term tends to
zero as k → ∞.] We adopt entirely analogous notation for functions of a real vari-
able and for the asymptotic behavior of such functions at finite or infinite values.
Furthermore, the same symbol ∼ will be used for the equivalence of zeta functions
(see Definition 2.1.69), and the different meanings of the symbol ∼ used in the text
should be clear from the context. Also, we write ∑∞k=1 ak  ∑∞k=1 bk if the series are
simultaneously convergent or divergent. This is the case if ak  bk as k → ∞.

We say that a sequence (l j) j≥1 of real numbers is: increasing if l j < l j+1 for all
j ≥ 1; decreasing if l j > l j+1 for all j ≥ 1; nondecreasing if l j ≤ l j+1 for all j ≥ 1:
nonincreasing if l j ≥ l j+1 for all j ≥ 1. We adopt an analogous terminology for real
functions of a real variable.

We also recall the notion of a bounded fractal string L (see [Lap-vFr1–3] and
the beginning of Subsection 2.1.4). It is defined as a nonincreasing sequence L =
(�k)k∈N of positive real numbers with finite total length |L |1; i.e., such that |L |1 :=
∑∞k=1 �k < ∞. Alternatively, we will also consider and use the geometric definition
of a bounded fractal string, namely, as an open subset Ω of R such that |Ω |1 <
∞; see Subsection 2.1.4 along with [Lap-vFr3, LapPo2, Lap3]. Furthermore, we
define the tensor product L1 ⊗L2 of two bounded fractal strings L1 and L2 as
the bounded fractal string consisting of all possible products λ ·μ with λ ∈ L1 and
μ ∈ L2, counted with their corresponding multiplicities. See Definition 4.2.2 for
more details. It is clear that |L1⊗L2|1 = |L1|1 · |L2|1. Similarly, we can define the
union of two bounded fractal strings, L1 �L2, as the union of the corresponding
multisets; that is, as the usual union but also with the corresponding multiplicities
taken into account (see also Definition 4.5.11).

One can easily check that |L1 �L2|1 = |L1|1 + |L2|1. Furthermore, if we de-
note the collection of all bounded fractal strings by Lb, it is easy to see that both
(Lb,⊗) and (Lb,�) are commutative semigroups, while Lb is a convex cone in
the standard Banach space (�1(R),+) of absolutely summable sequences (xk)k∈N
of real numbers. The union � can be extended to include an infinite sequence of
bounded fractal strings (Lk)k∈N. More specifically, the infinite union �∞k=1Lk is a
bounded fractal string, provided ∑∞k=1 |Lk|1 < ∞. Finally, for any bounded fractal
string L and c > 0, we define the c-scaled string cL as cL := (cλ )λ∈L .

Given α ∈ R, we denote by {Res > α} the open right half-plane

{s ∈ C : Res > α}.
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We use a similar convention for the left half-plane {Res < α}, for example. Analo-
gously, we denote by {Res = α} the vertical line

{s ∈ C : Res = α}.

Finally, by a countable set A, we mean an infinite set which is in bijection with
the set of natural numbers N = {1,2,3, · · ·}. Equivalently, a countable set can be
represented as an infinite sequence, A = (ak)k∈N, such that ai 
= a j for any pair of
distinct indices i and j ∈ N.



Chapter 2
Distance and Tube Zeta Functions

Le plus court chemin entre deux vérités dans le domaine réel
passe par le domaine complexe.

[The shortest path between two truths in the real domain passes
through the complex domain.]

Jacques Hadamard (1865–1963)

Abstract Distance and tube zeta functions of fractals in Euclidean spaces can be
considered as a bridge between the geometry of fractal sets and the theory of holo-
morphic functions. This is first seen from their fundamental property: the upper
box dimension of any bounded fractal is equal to the abscissa of convergence of
its distance and tube zeta functions. Furthermore, under some natural conditions,
the residue of the tube zeta function of a fractal, evaluated at its abscissa of conver-
gence, is equal to its Minkowski content, a fractal analog of its volume. It is possible
to obtain very general results dealing with the problem of meromorophic continua-
tion of these two fractal zeta functions. We show, in particular, that the distance zeta
function and the tube zeta function contain essentially the same information, both
from the point of view of their meromorphic continuation (when it exists) to a given
domain of the complex plane, of their poles (called visible complex dimensions)
and their residues (or, more generally, their principal parts), which are related in
a simple manner. Consequently, the higher-dimensional theory of complex dimen-
sions can be developed by using either of these two fractal zeta functions, and much
preferably, both of them since one of these zeta functions is often more natural or
simpler to use in a given situation or example. A variety of examples are studied
from this point of view throughout the book (including in this chapter, the (N −1)-
dimensional sphere, generalized Cantor sets and the a-string, and in later chapters,
the N-dimensional analogs of the Sierpiński carpet and the Sierpiński gasket, as well
as fractal nests, self-similar fractal sprays, two-parameter generalized Cantor sets,
discrete and continuous spirals, geometric chirps, etc.). In the one-dimensional case
(that is, in the case of fractal strings), we show that the geometric zeta function of a
fractal string and the corresponding distance zeta function are equivalent (in a suit-
able sense), and, in fact, define the same complex dimensions (except possibly at
s = 0); in particular, they have the same abscissa of convergence, equal to the upper
Minkowski dimension of the fractal string (or, equivalently, of the associated frac-
tal subset of the real line). As we shall see in later chapters, distance and tube zeta
functions can also be viewed as a bridge to the transcendental theory of numbers.
For these reasons, these new fractal zeta functions deserve to be seriously studied.
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In fact, as is suggested by the title of this research monograph, they are the cen-
tral object of investigation in this chapter and, along with their poles (or ‘complex
dimensions’), throughout the entire book.

Key words: distance zeta function, tube zeta function, geometric zeta function,
fractal set, fractal string, box dimension, complex dimensions, principal complex
dimensions, Minkowski content, Minkowski measurable set, residue, Dirichlet se-
ries, Dirichlet-type integral, meromorphic extension, abscissae of meromorphic and
absolute convergence, generalized Cantor set, Sierpiński carpet, average Minkowski
content, average Minkowski dimension.

Distance and tube zeta functions of fractals in Euclidean spaces can be considered
as a bridge between the geometry of fractal sets and the theory of holomorphic func-
tions. This is first seen from their fundamental property: the upper box dimension
of any bounded fractal is equal to the abscissa of convergence of its distance and
tube zeta functions (see Theorem 2.1.11 and Theorem 2.2.11). Furthermore, under
some natural conditions, the residue of the tube zeta function of a fractal, evaluated
at its abscissa of convergence, is equal to its Minkowski content, a fractal analog of
its volume; see Subsection 2.2.2, along with its counterpart for distance zeta func-
tions, Subsection 2.2.1. It is possible to obtain very general results dealing with
the problem of meromorophic continuation of these two fractal zeta functions; see,
especially, Theorems 2.3.18, 2.3.25 and 2.3.37.

We show, in particular, that the distance zeta function and the tube zeta func-
tion contain essentially the same information, both from the point of view of their
meromorphic continuation (when it exists) to a given domain of the complex plane,
of their poles (called visible complex dimensions) and their residues (or, more gen-
erally, their principal parts), which are related in a simple manner; see, especially,
Corollary 2.2.20. Consequently, the higher-dimensional theory of complex dimen-
sions can be developed by using either of these two fractal zeta functions, and much
preferably, both of them since one of these zeta functions is often more natural or
simpler to use in a given situation or example. A variety of examples are studied
from this point of view throughout the book (including in this chapter, the (N −1)-
dimensional sphere, generalized Cantor sets and the a-string, and in later chapters,
the N-dimensional analogs of the Sierpiński carpet and the Sierpiński gasket, as well
as fractal nests, fractal sprays, two-parameter generalized Cantor sets, discrete and
continuous spirals, geometric chirps, etc.).

In the one-dimensional case (that is, in the case of fractal strings), we show that
the geometric zeta function of a fractal string and a corresponding distance zeta
function are equivalent (in a suitable sense), and, in fact, define the same complex
dimensions (except possibly at s = 0); in particular, they have the same abscissa
of convergence, equal to the upper Minkowski dimension of the fractal string (or,
equivalently, of the associated fractal subset of the real line). See Subsection 2.1.4,
especially, Proposition 2.1.59.

As we shall see in later chapters (Sections 3.1 and 4.6), distance and tube zeta
functions can also be viewed as a bridge to the transcendental theory of numbers.
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For these reasons, we believe that these new fractal zeta functions deserve to be
seriously studied. In fact, as is suggested by the title of this research monograph,
they are the central object of investigation in this chapter and, along with their poles
(or ‘complex dimensions’), throughout the entire book.

2.1 Basic Properties of the Zeta Functions of Fractal Sets

In this section, we introduce a new class of zeta functions, which we call distance
zeta functions; see Definition 2.1.1. They represent a natural extension of the ge-
ometric zeta functions of bounded fractal strings, introduced by the first author in
the early 1990s in [Lap1–3] (see also [LapPo1–3], [LapMa1–2] and [HeLap]) and
studied extensively in [Lap-vFr1–3]. Especially important is the notion of equiva-
lence of zeta functions, as well as the definition of principal complex dimensions of
fractals; see Section 2.1.5.

2.1.1 Definition of the Distance Zeta Functions of Fractal Sets

We study some of the basic properties of the distance zeta function ζA = ζA(s)
associated with an arbitrary bounded set A in R

N . Here, s is a complex variable. The
definition of this new fractal zeta function, introduced by the first author in 2009 (see
Definition 2.1.1), involves the Euclidean distance from x to A, denoted by d(x,A),
and the δ -neighborhood (or tubular neighborhood) of A, that is,

Aδ = {x ∈ R
N : d(x,A)< δ}.

Definition 2.1.1. Let δ be a fixed positive number. Then, the zeta function ζA of a
bounded set A in R

N , or distance zeta function of A, is defined by

ζA(s) =
∫

Aδ
d(x,A)s−Ndx, (2.1.1)

for all s ∈C with Res sufficiently large. The integral is taken in the Lebesgue sense
(and hence, is absolutely convergent).

We shall see in Theorem 2.1.11 below that ζA is holomorphic in the half-plane
{Res > dimBA}, with an expression still given by (2.1.1), and that the lower bound
dimBA is the best possible. The integral occurring in Equation (2.1.1) above can be
taken over Aδ \A instead of Aδ ; see Proposition 2.1.22. Also, we shall extend the
definition of the distance zeta function so that the value of δ will become inessential;
see Definition 2.1.79. Furthermore, we will simplify (or rather, supplement and ex-
tend) the original definition of the complex dimensions of fractal strings introduced
by the first author and M. van Frankenhuijsen in [Lap-vFr1–3]; see, in particular,
Subsections 2.1.4 and 2.1.5. Here, we deal with the principal complex dimensions
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(i.e., the poles of ζA located on the critical line {Res = dimBA}), as well as with
the visible complex dimensions (i.e., the poles of ζA within a suitable subset of C
containing the closed half-plane {Res ≥ dimBA}), in the higher-dimensional case;
see, respectively, Definition 2.1.67 and Definition 2.1.68.

We will place some emphasis on the principal complex dimensions of A. Indeed,
as is the case in [Lap-vFr1–3] where is developed a general theory of explicit tube
formulas and of fractal tube formulas, these principal complex dimensions should
also provide in the higher-dimensional case the leading asymptotic behavior in the
geometry (for example, the volume of the tubular neighborhoods or t-tubes of frac-
tals as t → 0+), the spectrum (of associated fractal drums), and the dynamics (of
underlying dynamical systems, when applicable). In other words, they should give
rise to the oscillatory terms with the largest amplitudes; see, especially, Chapters
5–11 of [Lap-vFr3]. Indeed, this is the case in the geometric situation, as is amply
demonstrated in Chapter 5 on fractal tube formulas.

We will do this mostly for technical reasons, one of the main goals of the present
monograph being to illustrate the power of this method in the effective computation
of the box dimension for some classes of fractal sets, in particular, for the fractal
nests introduced in Definition 3.5.3, the geometric chirps and string chirps; see Sec-
tions 3.5 and 3.6. The situation with general complex dimensions is already quite
nontrivial in the one-dimensional case; see [Lap-vFr1–3]. As we shall see later in
this book, all of the visible complex dimensions play a role in the fractal tube for-
mulas obtained in Chapter 5.

The value of the distance zeta function in (2.1.1) remains unchanged if we replace
the domain of integration Aδ with its closure Aδ . This follows from the fact that for
any δ > 0, the boundary ∂ (Aδ ) of Aδ is (N − 1)-Minkowski measurable; see [Sta,
Theorem 2], and hence, its N-dimensional Lebesgue measure is equal to zero, that
is, |∂ (Aδ )|= 0.

Remark 2.1.2. The analogous claim is not true for an arbitrary bounded open set U
in R

N . Indeed, in this more general situation, one may have |∂U |> 0. For example,
let N = 1 and let U be the open subset of the unit interval I = (0,1), obtained as the
union of the deleted intervals during a slightly modified Cantor ternary procedure,
in which instead of deleting the usual sequence of the ‘middle’ open intervals of
lengths 3−k, with multiplicities 2k−1, k ∈ N, we delete the halves of the indicated
lengths. It is then easy to see that if U is the union of the deleted intervals, then
|U |1 = 1/2. Note that the set I \U is totally disconnected, but has positive Lebesgue
measure.

By a slight change of the argument, one can construct an open subset U of [0,1],
the boundary of which has Lebesgue measure arbitrarily close to 1. The idea is to
follow the Cantor construction, but by deleting very small open intervals (instead of
the middle thirds), such that the (one-dimensional) Lebesgue measure of their union
is equal to an arbitrarily small prescribed positive real number ε . The boundary of
the union U of these deleted open intervals is equal to [0,1] \Ω , and its Lebesgue
measure is equal to 1− ε .
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2.1.2 Analyticity of the Distance Zeta Functions

The main result of this section is stated in Theorem 2.1.11. It shows that the zeta
function ζA is analytic (i.e., holomorphic) in the half-plane {Res> dimBA}, and that
under mild assumptions, the lower bound dimBA cannot be improved; see parts (a)
and (b) of Theorem 2.1.11, along with Corollary 2.1.20. In addition, we show that
this bound is always best possible from the point of view of the convergence of the
Lebesgue integral defining ζA; see part (a) of Theorem 2.1.11 along with Corollary
2.1.20 In other words, the abscissa of convergence D(ζA) of the ‘Dirichlet-type
integral’ on the right-hand side of (2.1.1) is equal to dimBA, the upper box dimension
of A; see Definition 2.1.28.

In the proof, we shall need an interesting result, due to Harvey and Polking, and
stated without proof in [HarPol, p. 42]. We formulate it in a different, but equivalent,
way than in [HarPol]. Following [Žu3, Lemma 1], we use the dyadic decomposition
of the set Aδ \ A, i.e., of the deleted δ -neighborhood of A, in order to establish
this result. We note that the goal of [HarPol] was to study the singularities of the
solutions of certain linear partial differential equations.

Lemma 2.1.3 (Harvey–Polking, [HarPol, p. 42]). Assume that A is an arbitrary
bounded subset of RN and let δ be an arbitrary positive number.

If γ ∈ (−∞,N −dimBA), then
∫

Aδ
d(x,A)−γdx < ∞, where γ is real. (2.1.2)

Note that, in light of Definition 2.1.1, this statement precisely means that for any
real number s > dimBA, we have that ζA(s)< ∞.

Proof. Observe that the claim of the lemma is obviously true when γ ∈ (−∞,0],
since then the function x �→ d(x,A)−γ is continuous and thus bounded on the set Aδ
(since it must be bounded on the compact set Aδ ). Therefore, it suffices to assume
that γ > 0.

Let us choose any real number s ∈ (dimBA,N − γ). Note that the latter interval is
nonempty, since by assumption, γ <N−dimBA. The function (0,δ ]� t �→ |At |/tN−s

is continuous; hence, since M ∗s(A) = 0, the supremum of this function is finite. If
we denote the supremum by C(δ ), then |At | ≤C(δ )tN−s, for all t ∈ (0,δ ].

We now use the following dyadic decomposition of the set Aδ \A:

Aδ = A∪
( ∞⋃

i=1

Bi

)
, Bi := A2−iδ \A2−i−1δ . (2.1.3)

Let us first show that

I(A) :=
∫

A
d(x,A)−γdx < ∞.

If |A| = 0, then the integral is equal to zero. In the case where |A| > 0, we have
dimBA = N. (See Equation (1.3.8) and the discussion following it, on page 32).
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Hence, γ ∈ (−∞,0], and in this case, as we have noted, the claim of the lemma is
clear.

We may assume without loss of generality that δ ∈ (0,1]. (Indeed, if δ > 1, then
we choose any δ1 ∈ (0,1] and write

∫
Aδ

d(x,A)−γdx =
∫

Aδ1

d(x,A)−γdx+
∫

Aδ \Aδ1

d(x,A)−γdx.

The last integral is finite since d(x,A)−γ is bounded on Aδ \Aδ1
.) Using (2.1.3) and

the assumption 0 < γ < N− s (with s ∈R) from the beginning of the proof, we have
successively:

∫
Aδ

d(x,A)−γdx = I(A)+
∞

∑
i=0

∫
Bi

d(x,A)−γdx ≤ I(A)+
∞

∑
i=0

∫
A2−iδ

d(x,A)−γdx

≤ I(A)+
∞

∑
i=0

(2−i−1δ )−γ |A2−iδ |

≤ I(A)+C(δ )
∞

∑
i=0

(2−i−1δ )−γ(2−iδ )N−s

≤ I(A)+
2γC(δ )

1−2γ−N+s δ
N−s−γ < ∞.

Here, the first inequality follows from the fact that for all i ≥ 0,

Bi := A2−iδ \A2−i−1δ ⊆ A2−iδ .

This completes the proof of the lemma. ��

Lemma 2.1.3 can be viewed as a far-reaching extension of the following simple
fact from the basic theory of integration in R

N : for any fixed δ > 0, if γ < N then∫
Bδ (0)

|x|−γdx <∞, where Bδ (0) is the open unit ball centered at 0 (i.e., Bδ (0) is the
δ -neighborhood of {0}). Note that in this case, A = {0} and dimB A = 0.

For a discussion of Lemma 2.1.3 and its various extensions, see [Žu3, Theorem
2], [Žu4, Sections 3 and 4] and [Žu5, Theorem 4.1]. (If we assume that D = dimB A
exists and M D

∗ (A) > 0, then the converse of Lemma 2.1.3 holds as well, i.e., the
condition γ ∈ (−∞,N − dimB A) is equivalent to

∫
Aδ

d(x,A)−γdx < ∞; see [Žu5,
Theorem 4.1].) Here, we state and prove a more general fact than in Lemma 2.1.3,
because we shall need it later on.

Lemma 2.1.4. Let A be any bounded set in R
N. Then, for every value of the param-

eter γ in the open interval (−∞,N −dimBA), the following identity holds:

∫
Aδ

d(x,A)−γ dx = δ−γ |Aδ |+ γ
∫ δ

0
t−γ−1|At |dt. (2.1.4)

Furthermore, both of the integrals appearing in (2.1.4) are finite; hence, they are
convergent as Lebesgue integrals.
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Fig. 2.1 The Sierpiński carpet A is obtained by consecutive deletion of open squares from the
closed unit square. Only the first three generations of deleted squares are indicated. Figure 2.2
below shows the graph of the distance function associated with A.

To prove Lemma 2.1.4, we shall need the following well-known technical result.
For completeness, we provide a proof of this elementary result. An alternative and
independent proof of Lemma 2.1.4 is provided on pages 53 and 55 below.

Lemma 2.1.5 (See, e.g., [Foll, p. 198]). Let f : RN → [0,+∞] be any nonnegative
Lebesgue measurable function and let α ∈ (0,+∞). Then

∫
RN

f (x)αdx = α
∫ +∞

0
tα−1|{ f > t}|dt, (2.1.5)

where { f > t} := {x ∈ R
N : f (x)> t}.

Proof. First, observe that if |{ f > t}|=+∞ for some t > 0, then both of the integrals
in (2.1.5) are infinite. If this is not the case we first consider f : RN → R to be a
simple function and check that the identity holds. Let A1, . . . ,An be a finite family
of pairwise disjoint Lebesgue measurable subsets of RN and define

f (x) :=
n

∑
i=1

aiχAi(x), (2.1.6)

where 0< a1 < a2 < · · ·< an and for each i= 1, . . . ,n, χAi denotes the characteristic
function of the set Ai; that is, χAi(x) := 1 for x ∈ Ai and χAi(x) := 0 for x ∈ R

N \
Ai. Note that for any t ∈ (ai−1,ai) we have { f > t} = Ai ∪Ai+1 ∪ ·· · ∪An, where
we let a0 := 0, and hence, |{ f > t}| = ∑n

j=i |A j|. Starting from the right-hand side
of (2.1.5), we have

α
∫ +∞

0
tα−1|{ f > t}|dt = α

n

∑
i=1

∫ ai

ai−1

tα−1|{ f > t}|dt = α
n

∑
i=1

∫ ai

ai−1

tα−1
n

∑
j=i

|A j|dt

=
n

∑
j=1

|A j|
j

∑
i=1

∫ ai

ai−1

αtα−1 dt =
n

∑
j=1

|A j|aαj =
∫
RN

f (x)α dx.
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Fig. 2.2 Fractal stalagmites associated with the Sierpiński carpet. The graph of the distance func-
tion y = d(x,A), defined on the unit square, where A is the Sierpiński carpet. Only the first three
generations of the countable family of pyramidal tents (called ‘stalagmites’, see page 107) are
shown. The figure is scaled vertically by the factor 3; i.e., it represents in fact the graph of
y = 3d(x,A).

Finally, in order to establish the lemma in the general case, we take a nondecreasing
sequence of simple functions (gn)

∞
n=1 that monotonically converges (i.e., increases)

to f . We then observe that { f > t} is equal to the increasing union of the measurable
sets {gn > t}, where n = 1,2, . . . , from which we conclude that (λgn)

∞
n=1 pointwise

increases and converges to λ f , where λg(t) := tα−1|{g > t}| for a given measurable
function g on [0,+∞). It now suffices to apply the monotone convergence theorem
in order to complete the proof of the lemma. ��

Proof of Lemma 2.1.4. We consider the following three cases:

(a) Case when γ > 0: Since 0 < γ < N − dimBA, we proceed much in the same
way as in [Žu5, Lemma 4.1 and Theorem 4.1(a)]. We shall use Lemma 2.1.5, with
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Fig. 2.3 Fractal stalactites associated with the Sierpiński carpet depicted in Figure 2.1 on page
49. The graph of the function y = d(x,A)−γ , defined on the unit square, where A is the Sierpiński
carpet. Since A is known to be Minkowski nondegenerate (see [Lap3], [Lap-vFr3] or [HorŽu]), the
function is Lebesgueintegrable if and only if γ ∈ (−∞,2−D), D = dimB A = log3 8 (see Lemma
2.1.3). For γ > 0, the graph consists of countably many connected components, called ‘stalactites’
(see Definition 2.1.83 on page 106), all of which are unbounded. In the present figure, γ := 0.1.

α := γ and the Borel (and hence, Lebsesgue) measurable function f : RN → [0,+∞]
given by

f (x) :=

{
d(x,A)−1, for x ∈ Aδ ,

0, for x ∈ R
N \Aδ .

Here, by definition, f (x) = +∞ for x ∈ A; furthermore, note that since dimBA < N,
then |A| = 0 (see the discussion preceding Equation (1.3.9), on page 32). It is easy
to see that the set {x ∈ R

N : f (x)> t} is equal to A1/t for t > δ−1 and to a constant
set Aδ for t ∈ (0,δ−1). Therefore,
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Fig. 2.4 Fractal stalactites associated with the Sierpiński carpet, revisited. Another view of the
graph of the function y = d(x,A)−γ , where A is the Sierpiński carpet, similar to the one provided
in Figure 2.3. The level set of this function tends to the Sierpiński carpet in the Hausdorff metric,
when the level tends to +∞. This is a special case of Proposition 2.1.89 on page 109. Here, we
have let γ := 0.1, as in Figure 2.3.

∫
Aδ

d(x,A)−γdx = γ
(∫ 1/δ

0
+

∫ +∞

1/δ

)
tγ−1|{ f > t}|dt

= γ |Aδ |
∫ 1/δ

0
tγ−1dt + γ

∫ +∞

1/δ
tγ−1|A1/t |dt.

Equation (2.1.4) now follows by using the change of variable τ = 1/t in the last
integral. In order to show that the last integral in (2.1.4) is finite, let ε > 0 be small
enough so that γ ∈ (0,N −D− ε), where D := dimBA. Then M ∗(D+ε)(A) = 0, and
thus, there exists a positive constant C = C(δ ) such that |At | ≤ CtN−D−ε for all
t ∈ (0,δ ]. Hence,

∫ δ

0
t−γ−1|At |dt ≤C

∫ δ

0
tN−D−ε−γ−1dt < ∞.
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(b) Case when γ = 0: If we assume that γ = 0 < N −dimBA (which implies that
|A| = 0), then it suffices to show that I :=

∫ δ
0 t−1|At |dt < ∞. Letting D = dimBA,

we then have D+ ε < N for ε > 0 small enough; hence, since M ∗(D+ε)(A) = 0,
there exists a positive constant C such that |At | ≤ CtN−D−ε for all t ∈ (0,δ ). This
immediately implies that I ≤C

∫ δ
0 tN−D−ε−1dt < ∞.

(c) Case when γ < 0: It is clear that in this case, the left-hand side of (2.1.4) is fi-
nite. We shall use Lemma 2.1.5, where α =−γ and the Borel (and hence, Lebesgue)
measurable function f : RN → [0,+∞] is given by

f (x) :=

{
d(x,A), for x ∈ Aδ ,

0, for x ∈ R
N \Aδ .

First, note that { f > t} = /0 for t ≥ δ , and { f > t} = Aδ \At for 0 < t < δ , where
At is the closure of the set At . We now show that for any t > 0, |At | = |At |. This
is an immediate consequence of the fact that the boundary of At is of Lebesgue
measure zero, that is, |∂ (At)| = 0. Indeed, as was noted earlier, according to [Sta,
Theorem 2], the set ∂ (At) is Minkowski measurable and dimB ∂ (At) = N−1 for any
t > 0; so that, by Equation (1.3.3), |∂ (At)| = M N(∂ (At)) = 0. (Since N > N − 1,
the second equality follows from the definition of the Minkowski dimension; see
Figures 1.8 and 1.9 on page 33, along with Equation (1.3.4) on page 31.) Therefore,
for 0 < t < δ we have

|{ f > t}|= |Aδ |− |At |= |Aδ |− |At |.

Using (2.1.5), we then obtain

∫
Aδ

d(x,A)αdx = α
∫ δ

0
tα−1(|Aδ |− |At |)dt = δα |Aδ |−α

∫ δ

0
tα−1|At |dt,

which proves (2.1.4). ��

For the sake of completeness, we provide an alternative proof of (2.1.4), and thus
of Lemma 2.1.4, based on the generalized change of variables formula and on an
integration by parts. It is essentially the same as in [Žu2, Theorem 2.9(a)].

An alternative proof of Lemma 2.1.4. We shall need the assumption that γ < N −
dimBA from Lemma 2.1.4 only in case (c) below. Introducing the new variable t =
d(x,A) and the function V (t) = |At |, t > 0, we can arrive to the desired result by
using the following formal computation (with ∇ f (x) denoting the pointwise almost
everywhere defined gradient of f ):
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∫
Aδ

d(x,A)−γdx
(a)
=

∫ δ

0
t−γdV (t)

(b)
= t−γV (t)

∣∣∣∣
δ

t=0
−

∫ δ

0
V (t)(−γ)t−γ−1dt

(c)
= δ−γ |Aδ |+ γ

∫ δ

0
t−γ−1|At |dt.

(2.1.7)

Let us justify this computation in the following three steps:

(a) In order to prove the first equality in (2.1.7), let us set f (x) = d(x,A) and
g(x) = d(x,A)−γ for all x in Aδ , and f (x) = g(x) = 0 for all x in R

N \Aδ . We then
have

∫
Aδ

d(x,A)−γdx =
∫

Aδ
g(x) |∇ f (x)|dx =

∫ δ

0

[∫
f−1(t)

g(x)dHN−1
]

dt

=
∫ δ

0
t−γHN−1(∂ (At))dt =

∫ δ

0
t−γdV (t),

(2.1.8)

where HN−1 is the (N−1)-dimensional Hausdorff measure on f−1(t) = ∂ (At). The
first equality in (2.1.8) follows from the fact that |∇ f | = 1 a.e. in Aδ , which is a
consequence of Rademacher’s theorem, according to which a Lipschitz function on
R

N is (Lebesgue) almost everywhere differentiable (see, e.g., [EvGa, Theorem 2
in Section 3.1.2]), and the proof of [Fed2, Lemma 3.2.34]. The second equality in
(2.1.8) follows from the generalized change of variables formula (see, e.g., [EvGa,
Theorem 2 in Section 3.4.3] or [JohLap, Theorem 3.3.2]). Now, the first equal-
ity in (2.1.7) follows from the fact that V ′(t) = HN−1(∂ (At)) for (Lebesgue) a.e.
t > 0, where V (t) = |At | as above and V ′ is the Lebesgue almost everywhere defined
derivative of V ; see Stachó’s result given in [Sta, Theorem 2 and Lemma 2(ii)].
(Moreover, the identity V ′(t) = HN−1(∂ (At)) holds for all t > 0 outside a countable
set; see [Sta, Theorem 2 and Lemma 2(ii)].) Note that the Lebesgue integrability of
the function d( · ,A)−γ , defined on Aδ , is ensured by Lemma 2.1.3.

(b) The second equality in (2.1.7) is due to the integration by parts formula for
Lebesgue–Stieltjes integrals; see [Foll, Theorem 3.36]. Indeed, it suffices to use this
result on intervals of the form (ε ,δ ] for ε ∈ (0,δ ) (note that both t−γ and V (t) are
of bounded variation and continuous on these intervals), and then pass to the limit
as ε → 0+.

(c) In order to justify the last equality in (2.1.7), we must show that

lim
t→0+

t−γV (t) = 0.

The assumption γ <N−dimBA implies that the open interval (dimBA,N−γ) in R is
nonempty. Let us take any d ∈ (dimBA,N−γ). Since d > dimBA, there exists Cd > 0
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such that V (t)≤CdtN−d for all t ∈ (0,δ ]. We conclude that 0< t−γV (t)≤CdtN−d−γ ,
and the claim follows by passing to the limit as t → 0+. ��

In the sequel, we shall also need the following result, which complements
Lemma 2.1.3.

Lemma 2.1.6. Let A be a bounded set in R
N and δ > 0. If γ > N − dimBA, then∫

Aδ
d(x,A)−γdx =+∞.

Proof. Note that for all γ > 0, we have

Iδ :=
∫

Aδ
d(x,A)−γdx = δ−γ |Aδ |+ γ

∫ δ

0
s−γ−1|As|ds ≥ δ−γ |Aδ |, (2.1.9)

where the second equality of (2.1.9) is precisely the content of [Žu5, Lemma 4.1].
For the sake of completeness, we next reproduce the proof of the second equality

in (2.1.9). The argument is similar to the proof of Lemma 2.1.4. Let us define f (x) =
d(x,A)−1 for x ∈ Aδ , and f (x) = 0 for x ∈ R

N \Aδ . Since {x : f (x)> t}= A1/t for
t > 1/δ , and {x : f (x)> t}= Aδ for t < 1/δ , we deduce from Lemma 2.1.5 that

∫
Aδ

d(x,A)−γdx = γ |Aδ |
∫ 1/δ

0
tγ−1dt + γ

∫ ∞

1/δ
tγ−1|A1/t |dt.

The desired equality follows by using the change of variable s = 1/t.
We now continue the proof of Lemma 2.1.6. Let us write d = dimBA and choose

σ < d sufficiently close to d so that γ > N −σ . Then M ∗σ (A) = +∞ (see (1.3.5)),
which implies that there exists a sequence of positive numbers sk converging to zero
and such that

Ck :=
|Ask |
sN−σ

k

→+∞ as k → ∞.

Since δ �→ Iδ is nondecreasing (see also (2.1.9)), we have for all k large enough

Iδ ≥ Isk ≥ (sk)
−γ |Ask |=Ck · sN−σ−γ

k →+∞

as k → ∞. Hence, Iδ =+∞, as desired. ��
Remark 2.1.7. If γ := N − dimBA, then the conclusion of Lemma 2.1.6 does not
hold, in general. A class of counterexamples is provided in [Žu4, Theorem 4.3].

Definition 2.1.8. Following and extending the commonly used terminology for
Dirichlet series and integrals (see, e.g., [Ser], [Pos] and Subsection 2.1.3 below),
we define the abscissa of convergence D(ζA) of ζA by the following equality:1

1 This is really the abscissa of absolute convergence of the (generalized) Dirichlet integral ζA,
but we will not stress this point in the sequel. In fact, since the integral defining ζA in Equation
(2.1.1) is interpreted here as a Lebesgue integral (and since the corresponding integrand, x �→
d(x,A)s−N , is continuous and hence, Borel measurable on R

N ), there is no difference between
absolute convergence and convergence of the integral.
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D(ζA) := inf

{
α ∈ R :

∫
Aδ

d(x,A)α−Ndx < ∞
}
. (2.1.10)

Note that D(ζA) ∈ R∪{±∞}. Alternatively, in light of Lemma 2.1.9 below, D(ζA)
can be uniquely defined by the property according to which the open right half-plane
{Res > D(ζA)}, called the half-plane of convergence of ζA and denoted by Π(ζA),
is the maximal (i.e., the largest) open right half-plane (of the form {Res > α},
with α ∈ R∪ {±∞}), on which the integral defining ζA is absolutely convergent
(i.e.,

∫
Aδ

|d(x,A)s−N |dx =
∫

Aδ
d(x,A)Res−N dx < ∞), or equivalently, on which the

Lebesgue integral
∫

Aδ
d(x,A)s−Ndx is convergent (see footnote 1 on page 55).2

Finally, when D(ζA) is real, the vertical line {Res = D(ζA)} is called the critical
line of convergence of ζA (or simply, the critical line, when no ambiguity may arise).

Lemma 2.1.9. If the Lebesgue integral ζA(s) :=
∫

Aδ
d(x,A)s−Ndx converges for

some s = s0 ∈ C, then it also converges for any s ∈ C such that Res > Res0.

Proof. Assume the hypothesis of the lemma and fix s∈C with Res>Res0. Without
loss of generality, we may assume that δ ≤ 1. Indeed, if δ > 1, we write the disjoint
union Aδ = A1 ∪ (Aδ \A1), and hence,

∫
Aδ

|d(x,A)s−N |dx =
∫

A1

d(x,A)Res−Ndx+
∫

Aδ \A1

d(x,A)Res−Ndx =: I1 + I2.

Since the function x �→ |d(x,A)s−N |= d(x,A)Res−N is continuous and nowhere van-
ishing on the compact set Aδ \ A1 (indeed, note that this set is contained in the
complement of the 1-neighborhood of A, which is the set of zeros of the function),
the function x �→ |d(x,A)|Res−N is continuous as well on Aδ \A1 (regardless of the
sign of the exponent Res−N), and therefore, I2 < ∞.

More precisely, if Res ≥ N, then |d(x,A)|Res−N ≤ δRes−N for all x ∈ Aδ \A1,
while for Res < N we have that |d(x,A)|Res−N ≤ 1Res−N = 1 for the same values of
x. Therefore,

I2 ≤ |Aδ \A1|N ·max{δRes−N ,1}< ∞.
Next, let us assume that 0 < δ ≤ 1. Then3

∫
Aδ

|d(x,A)s−N |dx =
∫

Aδ
d(x,A)Res−Ndx

≤
∫

Aδ
d(x,A)Res0−Ndx =

∫
Aδ

|d(x,A)s0−N |dx < ∞,

2 By convention, when D(ζA) = +∞, we have Π(ζA) = /0 while when D(ζA) = −∞, we have
Π(ζA) = C. A similar comment could be made later on about the half-plane of holomorphic con-
tinuation H (ζA) when Dhol(ζA) =±∞, as well as for the half-plane of meromorphic continuation
Mer(ζA) when Dmer(ζA) =±∞.
3 If Res0 ≤ N, then the assumed convergence of the Lebesgue integral ζA(s0) implies that |A|= 0.
On the other hand, if Res0 > N, then |A| may be positive.
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by hypothesis. Note that in the inequality just above, we have used the fact that
d(x,A)≤ 1 for all x ∈ Aδ since δ ≤ 1. This concludes the proof of the lemma. ��

Remark 2.1.10. Here and in the sequel, given w ∈ C, we use the following conven-
tion:

0w :=

{
0, for Rew > 0,

+∞, for Rew < 0.
(2.1.11)

Furthermore, note that if the zero-set

Z := {x ∈ R
N : d(x,A) = 0} (2.1.12)

is of positive N-dimensional Lebesgue measure (i.e., |Z|> 0), then for all s∈C with
Res < N, the integral

∫
Aδ

|d(x,A)s−N |dx is equal to +∞, and hence, the Lebesgue

integral
∫

Aδ
d(x,A)s−Ndx does not converge (i.e., does not exist). Therefore, if the

latter integral is convergent, we must have Res ≥ N and so D(ζA) ≥ N. But since
by part (b) of Theorem 2.1.11 below, D(ζA) = dimBA ∈ [0,N], it then follows that
dimBA = N.

In light of (2.1.12), Z = A and Z∩Aδ = A for any δ > 0. (Indeed, given δ > 0, we
have A⊂ Aδ because if we take any δ ′ ∈ (0,δ ), then the closed set {x∈ A : d(x,A)≤
δ ′} is contained in Aδ and so, Aδ must contain A.) It follows that Z ∩Aδ (i.e., Z) is
of positive measure is equivalent to |A|> 0, and in light of (1.3.8), this implies that
dimB A exists and dimB A = N, which is consistent with the above claim.

It is now easy to deduce from Lemma 2.1.9 that the half-plane of convergence of
ζA, defined as above by Π(ζA) := {Res > D(ζA)}, where D(ζA) is the abscissa of
convergence of ζA defined by (2.1.10), is indeed the maximal open right half-plane
of convergence of the Lebesgue integral defining ζA in (2.1.1), as stated above. We
leave the verification as an exercise for the reader.

We are now ready to state the main result of this subsection.

Theorem 2.1.11. Let A be an arbitrary bounded subset of RN and let δ > 0. Then:

(a) The distance zeta function ζA defined by (2.1.1) is holomorphic (i.e., analytic)
in the open right half-plane {Res > dimBA}, and for all complex numbers s in that
region, its complex derivative is given as follows:

ζ ′A(s) =
∫

Aδ
d(x,A)s−N logd(x,A)dx. (2.1.13)

(b) The lower bound in the open right half-plane {Res > dimBA} is optimal,
from the point of view of the (absolute) convergence of the Dirichlet-type integral
defining ζA. In other words,

dimBA = D(ζA), (2.1.14)
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where D(ζA) is the abscissa of convergence of ζA, as defined in Equation (2.1.10).4

It follows that D(ζA) ∈ [0,N]. (See also Corollary 2.1.20 below for more detailed
information.) Furthermore, the identity (2.1.1) continues to hold in the half-plane
of (absolute) convergence {Res > dimBA} of ζA. Moreover, we have5

D(ζA) = inf

{
α ∈ [0,N] :

∫
Aδ

d(x,A)α−Ndx < ∞
}
. (2.1.15)

(c) If the box (or Minkowski) dimension D := dimB A exists, D < N, and
M D

∗ (A) > 0, then ζA(s) → +∞ as s ∈ R converges to D from the right.6 Accord-
ing to part (ii) of Corollary 2.1.20 below, it then follows that (under the additional
hypotheses of part (c) of the theorem), we have

dimB A = D(ζA) = Dhol(ζA), (2.1.16)

where Dhol(ζA), the abscissa of holomorphic continuation of ζA (as given by
(2.1.27) below), is defined so that {Res > Dhol(ζA)} be the maximal right half-
plane of the form {Res > α}, for some α ∈R∪{±∞}, to which ζA can be holomor-
phically continued. (For more details, see Corollary 2.1.20 and the text preceding
it.)

Proof. (a) We give here a direct and elementary proof of the holomorphicity of ζA,
not requiring any additional assumption about A. (See also Remark 2.1.51, based on
Theorem 2.1.45 in Subsection 2.1.3 below, for a different approach.) Let us denote
the right-hand side of (2.1.13) by I(s). To prove the holomorphicity of ζA, let us fix
any s such that Res > dimBA. We then have to show that

R(h) :=
ζA(s+h)−ζA(s)

h
− I(s) (2.1.17)

=
∫

Aδ

(
d(x,A)h −1

h
− logd(x,A)

)
d(x,A)s−Ndx

converges to zero as h → 0 in C, with h 
= 0.

4 See Subsection 2.1.3.2 below, along with Appendix A, for the more general setting of Dirichlet-
type integrals.
5 A priori, the infimum should be taken over all real numbers α ∈ R, but since D(ζA) = dimBA ∈
[0,N]) (in light of (2.1.14)) and for α > N the function x �→ d(x,A)α−N is bounded on Aδ , it can
be taken over all α ∈ [0,N].
6 Hence, D is a singularity (which may or may not be a pole) of ζA. Naturally, if ζA possesses a
meromorphic continuation to a connected open neighborhood of D, then it follows that D is a pole
of ζA. In Section 2.3 and Section 4.5 will be provided several sufficient conditions under which ζA

can be meromorphically continued beyond the critical line Res = D, and hence, in particular, to a
connected open neighborhood of D.
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Letting d := d(x,A) ∈ (0,δ ), we first consider

f (h) :=
dh −1

h
− logd =

1
h
(e(logd)h −1)− logd. (2.1.18)

Using the MacLaurin series ez = ∑ j≥0
z j

j! , which converges for all z ∈ C, we obtain
that

f (h) = h(logd)2
∞

∑
k=0

1
(k+2)(k+1)

· (logd)khk

k!
, (2.1.19)

for all h ∈ C. Furthermore, assuming without loss of generality that 0 < δ ≤ 1 (if
δ > 1, see Lemma 2.1.15 below applied to A and U := Aδ \A1) and hence, logd ≤ 0,
we have

| f (h)| ≤ 1
2
|h|(logd)2

∞

∑
k=0

(| logd| |h|)k

k!

=
1
2
|h|(logd)2e−(logd)|h| =

1
2
|h|(logd)2d−|h|.

Therefore,

|R(h)| ≤ 1
2
|h|

∫
Aδ

| logd(x,A)|2d(x,A)Res−N−|h|dx. (2.1.20)

Let ε > 0 be a sufficiently small number, to be specified below. Taking h ∈ C such
that |h|< ε , since δ ≤ 1 and hence, d(x,A)≤ 1 for all x ∈ Aδ , we have

|R(h)| ≤ 1
2
|h|

∫
Aδ

| logd(x,A)|2d(x,A)εd(x,A)Res−N−2εdx.

Clearly, there exists a positive constant C =C(δ ,ε) such that | logρ |2ρε ≤C for all
ρ ∈ (0,δ ). This implies that

|R(h)| ≤ 1
2

C|h|
∫

Aδ
d(x,A)Res−N−2εdx. (2.1.21)

Letting γ := 2ε +N −Res, we see that the integrability condition γ < N − dimBA
stated in Equation (2.1.2) of Lemma 2.1.3 is equivalent to Res > dimBA+2ε . Ob-
serve that this latter inequality holds for all positive ε small enough, due to the
assumption Res > dimBA. Hence, R(h)→ 0 as h → 0 in C, with h 
= 0. Therefore,
we conclude that ζA(s) is holomorphic for Res > dimBA, with (complex) derivative
ζ ′A(s) given by (2.1.13) as desired. This establishes part (a) of the theorem.

(b) In light of part (a), this follows immediately from Lemma 2.1.6. Indeed, the
latter result implies that for any real number α < D := dimBA (and hence, γ :=
N −α > N −D, as required in Lemma 2.1.6), we have

∫
Aδ

d(x,A)α−N dx =+∞.
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The claim now follows since in light of Lemma 2.1.3, we know that

ζA(α) =
∫

Aδ
d(x,A)α−N dx < ∞

for any real number α > D, as desired. We therefore deduce from the definition
(2.1.10) of D(ζA) that D(ζA) = dimBA, as desired.

Finally, the fact that the identity (2.1.1) continues to hold in the half-plane
{Res>D} follows from the principle of analytic continuation and the holomorphic-
ity of ζA on the domain (i.e., connected open set) of C given by {Res > D}. Recall
that the latter property of ζA has been established in part (a) of the proof or else,
alternatively, follows from the well-known properties of a (generalized) Dirichlet
integral (see Subsection 2.1.3.2, including, especially, Theorem 2.1.47 and Remark
2.1.51 below; see also Appendix A). This completes the proof of part (b).

(c) Note that since M D
∗ (A)> 0, then for any fixed δ > 0 there exists C > 0 such

that for all t ∈ (0,δ ), we have |At | ≥CtN−D. Using Lemmas 2.1.3 and 2.1.4, we see
that for any γ ∈ (0,N −D),

∞ > I(γ) =
∫

Aδ
d(x,A)−γdx = δ−γ |Aδ |+ γ

∫ δ

0
t−γ−1|At |dt

≥ γC
∫ δ

0
tN−D−γ−1dt = γC

δN−D−γ

N −D− γ .

Therefore, if γ ∈ R is such that γ → N −D from the left, then I(γ)→+∞. Equiva-
lently, if s ∈ R is such that s → D from the right, then ζA(s)→ +∞. For the proof
of the identity stated in Equation (2.1.16), that is, for the proof of the additional
equality D(ζA) = Dhol(ζA) under the hypotheses of part (c) of Theorem 2.1.11, we
refer to the corresponding part of the proof of part (ii) of Corollary 2.1.20 below (as
well as to the text preceding it for the necessary definitions).

This concludes the proof of the theorem. ��

Remark 2.1.12. It is clear that for real s, the values of ζA(s) are also real. Further-
more, using the principle of reflection (see, e.g., [Tit1, p. 155]), we deduce that for
all complex numbers s such that Res > dimBA, we have ζA(s) = ζA(s). Naturally,
this identity remains valid upon meromorphic continuation (in any region U ⊆ C

to which the distance zeta function ζA can be meromorphically extended). It fol-
lows from the above observation about the symmetry of ζA that provided the given
domain U ⊆ C is symmetric with respect to the real axis, the nonreal (visible) com-
plex dimensions of ζA in U (i.e., the poles of ζA in U) come in complex conjugate
pairs. The same is true for the complex dimensions of (ordinary) fractal strings; see
[Lap-vFr3, Remarks 1.6 and 1.16].

Proposition 2.1.13. Assuming that |A|= 0 (which is always the case if dimBA < N,
see Equation (1.3.8) on page 32), and given any δ > 0, we can compute the distance
zeta function ζA in Equation (2.1.1) as follows, for every s ∈ C with Res > dimBA :
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ζA(s) = lim
ε→0+

∫
Aδ \Aε

d(x,A)s−Ndx. (2.1.22)

Proof. Fix δ > 0 and assume that 0 < ε < δ , in what follows. Then, the character-
istic function χAδ \Aε converges to χAδ (pointwise) a.e. in Aδ as ε → 0+. We now
claim that (2.1.22) holds and that the convergence on the right-hand side of (2.1.22)
is uniform as ε → 0+, with respect to all s such that Res > ξ0, where ξ0 > dimBA.
To see this, for such a complex number s and assuming without loss of generality
that ε ∈ (0,1), we note that

∣∣∣∣
∫

Aε
d(x,A)s−Ndx

∣∣∣∣≤
∫

Aε
d(x,A)Res−Ndx ≤

∫
Aε

d(x,A)ξ0−Ndx.

Let us choose any d ∈ (dimBA,ξ0). Since d > dimBA, then M ∗d(A) = 0, and there-
fore, there exists a positive constant C = C(d,N,A) such that |At | ≤ CtN−d for all
t ∈ (0,ε ]. Using Lemma 2.1.4 with γ := N −ξ0 < N −dimBA, it follows that

∫
Aε

d(x,A)ξ0−Ndx = ε−γ |Aε |+ γ
∫ ε

0
tγ−1|At |dt

≤ ε−γCεN−d + γ
∫ ε

0
tγ−1CtN−ddt =C1 · εξ0−d ,

where C1 :=C(N −d)/(ξ0 −d). Hence, using d < ξ0, we conclude that

sup
Res>ξ0

∣∣∣∣
∫

Aε
d(x,A)s−Ndx

∣∣∣∣≤C1 · εξ0−d → 0+ as ε → 0+. (2.1.23)

Equation (2.1.22) now follows from Definition 2.1.1. ��

We deduce from the proof of Proposition 2.1.13 that the distance zeta function
satisfies the following asymptotic property; see Equation (2.1.23) just above.

Proposition 2.1.14. Assume that A is a bounded subset of RN, ε ∈ (0,1), and define
the corresponding distance zeta function ζA,Aε by

ζA,Aε (s) :=
∫

Aε
d(x,A)s−N dx,

for s ∈ C with Res > dimBA. Then, for any ξ0 > dimBA and d ∈ (dimBA,ξ0), there
exists a positive constant C1 =C1(ξ0,d,N,A) such that

sup
Res>ξ0

|ζA,Aε (s)| ≤C1εξ0−d , for all ε ∈ (0,1).

In other words, supRes>ξ0
|ζA,Aε (s)|=O(εξ0−d) as ε→ 0+. Moreover, assuming that

M ∗D(A) < ∞, where D = dimBA, then the same conclusion holds with d replaced
by D.
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The following lemma deals with the distance zeta function associated with an
ordered pair (A,U) of suitable subsets of RN ; see (2.1.24). Such distance zeta func-
tions will be studied in a significantly more general setting (that of ‘relative fractal
drums’) in Chapter 4 (as well as in Appendix A, in even greater generality). The
lemma is a special case of Theorem 2.1.45(c) below.

Lemma 2.1.15. Let A and U be bounded sets in R
N which have disjoint closures,

that is, such that A∩U = /0. Further assume that U is Lebesgue measurable. Then

F : C→ C, F(s) :=
∫

U
d(x,A)s−Ndx, (2.1.24)

is an entire function and we have

F ′(s) =
∫

U
d(x,A)s−N logd(x,A)dx (2.1.25)

for all s ∈ C.

Proof. Let s be a fixed complex number and set R(h) = 1
h (F(s+h)−F(s))− I1(s),

for h ∈ C, h 
= 0, where I1(s) is defined by the right-hand side of (2.1.25). By using
the same procedure as in the proof of Theorem 2.1.11, we deduce that the identity
(2.1.19) involving f (d) defined by (2.1.18) yields

| f (d)| ≤ 1
2
|h| | logd|2 exp(| logd| |h|),

and from this it follows that

|R(h)| ≤ 1
2
|h|

∫
U
| logd(x,A) |2 exp(| logd(x,A)| |h|)d(x,A)Res−Ndx. (2.1.26)

The conditions on A and U imply the existence of positive and finite constants d1

and d2 such that d1 ≤ d(x,A) ≤ d2 for all x ∈ U . Therefore, the function under the
integral sign in (2.1.26), when restricted to U , is bounded from above by a positive
and finite constant C, uniformly for all h ∈C such that |h| ≤ ε , where ε > 0 is fixed:

C := max{(logd1)
2,(logd2)

2} exp(max{| logd1|, | logd2|}ε)
×max{dRes−N

1 ,dRes−N
2 }.

Hence, |R(h)| ≤ 1
2 |h|C |Ω |, and therefore R(h) → 0 as h → 0 in C, with h 
= 0. It

follows that F(s) is holomorphic in s, with complex derivative F ′(s) equal to I1(s);
that is, F ′(s) is given by the right-hand side of (2.1.25). Since s ∈ C is arbitrary, we
deduce that F(s) is entire and that (2.1.25) holds for all s ∈ C, as desired. ��

Lemma 2.1.15 can also be obtained as a consequence of Theorem 2.1.45(c) be-
low, in which we let ϕ(x) := d(x,A) and dμ(x) := d(x,A)−Ndx.
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We next comment on the hypotheses of part (c) of Theorem 2.1.11 (further com-
ments about Theorem 2.1.11 and its corollary, Corollary 2.1.20 below, will be pro-
vided in Remark 2.1.21):

(i) The condition M D
∗ (A)> 0 in Theorem 2.1.11(c) cannot be omitted. Indeed,

for N = 1, there is a class of subsets A ⊂ [0,1] such that D = dimB A exists and
M D

∗ (A) = 0, while ζA(D) =
∫

Aδ
d(x,A)D−Ndx < ∞; see [Žu4, Theorem 4.3]. Using

the Lebesgue dominated convergence theorem, it is then easy to see that for s ∈ R,
we have lims→D+ ζA(s) = ζA(D). Indeed, in order to verify this, it suffices to assume
without loss of generality that δ < 1, and observe that for all s ∈ R with s > D we
have d(x,A)s−N ≤ d(x,A)D−N ∈ L1(Aδ ). We note that this class of subsets of R can
be easily extended to R

N for any N ≥ 2 by letting B := A× [0,1]N−1 ⊂R
N and using

the results of Subsection 2.2.4 about the fractal zeta functions of fractal grills (see,
especially, Theorem 2.2.32 and Example 2.2.34).

(ii) The assumptions of Theorem 2.1.11(c) according to which D = dimB A ex-
ists, D < N and M D

∗ (A) > 0 are fulfilled by practically all of the standard exam-
ples of fractal sets.7 However, it is possible to construct fractal sets A for which
D = dimB A either does not exist (that is, dimBA < dimBA; see [Fal1, p. 53] or [Žu4,
Theorem 1.2]), or, as we have mentioned, for which D exists and M D

∗ (A) = 0. See
also Section 3.7 of this monograph, dealing with zigzagging fractals.

Example 2.1.16. The present simple example shows that the condition D < N in
Theorem 2.1.11(c) cannot be omitted. To see this, take A := [0,1]⊂ R, so that D =
N = 1. It is easy to see that ζA(s) = 2δ ss−1 for s > 1 (and not for s ∈ (0,1), since in
this case ζA(s) = 2δ ss−1 +

∫ 1
0 0s−1dx =+∞). Indeed, for s > 1 we have that

ζA(s) =
∫ 1+δ

−δ
d(x,A)s−1dx=

∫ 0

−δ
|x|s−1dx+

∫ 1

0
0dx+

∫ 1+δ

1
(x−1)s−1dx= 2δ ss−1.

It follows that the largest open right half-plane to which the distance zeta function of
A can be holomorphically extended is equal to {Res > 0}; i.e., H (ζA) = {Res >
0}, in the notation of the second part of Definition 2.1.17 just below. (Note that ζA

can be meromorphically extended in a unique way from {Res > 0} to the whole
complex plane by letting ζA(s) := 2δ ss−1 for all s ∈ C; hence, Mer(ζA) = C, in the
notation introduced in Equation (2.1.70) of Definition 2.1.53 below.) This example,
along with more complicated ones to be discussed further on in this book, motivates
us to introduce the following definition.8

7 One notable exception is the boundary A of the Mandelbrot set (viewed as a subset of R
2 �

C), for which dimH A = 2 (and hence, in particular, dimB A exists and dimB A = 2, since 2 =
dimH A ≤ dimBA ≤ dimBA ≤ 2; see the third displayed equation on page 77 of [Mat]), according to
Shishikura’s well-known theorem [Shi]. For the Mandelbrot set, one can try to use ζ̃A, the tube zeta
function of A, for which the condition D < N is no longer needed for the counterpart of Theorem
2.1.11(c). However, it does not seem to be known whether M 2

∗ (A)> 0 or whether a different gauge
function (other than one based on a mere power law, see [HeLap]) should be used in this case in
order to define the lower and upper Minkowski contents of A.
8 We are grateful to Erin Pearse for having provided us with this example.
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Definition 2.1.17. In part (c) of Theorem 2.1.11 above as well as in the sequel, we
denote by Dhol(ζA) the extended real number (i.e., Dhol(ζA) ∈ R∪{±∞}) defined
by

Dhol(ζA) := inf
{
α ∈ R : ζA is holomorphic on {Res > α}

}
(2.1.27)

and called the abscissa of holomorphic continuation of ζA. We stress that in Equa-
tion (2.1.27), when we write that f is holomorphic on {Res > α}, we mean that
f has a holomorphic continuation (necessarily unique) to the open right half-plane
(and hence, connected open set) {Res > α}. We will use a similar convention, most
often implicitly, in Subsections 2.1.3 and 2.1.5, as well as elsewhere in this book.

Much as in Definition 2.1.8, we let

H (ζA) := {Res > Dhol(ζA)} (2.1.28)

and call it the half-plane of holomorphic continuation of ζA. See also Definition
2.1.62 in Subsection 2.1.5 below for a more general setting.

Alternatively, in light of (2.1.27) and according to the principle of analytic con-
tinuation, H (ζA) is also the maximal (i.e., the largest) open right half-plane (of the
form {Res > α}, for some α ∈ R∪ {±∞}) to which ζA can be holomorphically
extended.

Definition 2.1.18. Finally, when Dhol(ζA) ∈ R, the vertical line {Res = Dhol(ζA)}
is called the critical line of holomorphic continutation (or the holomorphy critical
line) of ζA.

Remark 2.1.19. In the case of Example 2.1.16 above, in which A = [0,1], we have
that D(ζA) = 1, while Dhol(ζA) = 0.

We can now state the following corollary of Theorem 2.1.11.

Corollary 2.1.20. (i) Let A be an arbitrary bounded subset of RN. Then we have
the following inequality:

Dhol(ζA)≤ D(ζA) = dimBA, (2.1.29)

and hence, Π(ζA)⊆ H (ζA).

(ii) Furthermore, if, in addition, we assume (as in part (c) of Theorem 2.1.11)
that D := dimB A exists, D<N and M D

∗ (A)> 0, then we actually have the following
identity:

Dhol(ζA) = D(ζA) = dimBA, (2.1.30)

and hence, Π(ζA) = H (ζA). In particular, Dhol(ζA) ∈ [0,N], so that we also have

Dhol(ζA) = inf
{
α ∈ [0,N] : ζA is holomorphic on {Res > α}

}
, (2.1.31)

where
Π(ζA) := {Res > D(ζA)}= {Res > dimBA} (2.1.32)
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is the half-plane of convergence of ζA introduced in Definition 2.1.8 (where ζA is
viewed as a Dirichlet-type integral, in the sense of Subsection 2.1.3.2 and Appendix
A below) and H := {Res > Dhol(ζA)} is the half-plane of holomorphic continua-
tion of ζA, introduced in Definition 2.1.17.

Proof. (i) The first part of the corollary (Equation (2.1.29) of the corollary) follows
readily from parts (a) and (b) of Theorem 2.1.11.

(ii) The second part of the corollary (Equation (2.1.30) and the equality fol-
lowing it) follows from part (c) of Theorem 2.1.11 (along with the definitions of
D(ζA) and Dhol(ζA) given in Equations (2.1.10) and (2.1.27), respectively, and the
corresponding definitions of Π(ζA) and H (ζA)). Indeed, according to Theorem
2.1.11(c), if we assume that ζA admits a holomorphic continuation to {Res > α}
for some α < D(ζA), we obtain a contradiction, since then, D is a pole of ζA, be-
cause |ζA(s)| blows-up (i.e., tends to +∞) as s → D+ along the real axis. Therefore,
Dhol(ζA)≥ D(ζA). But then, we must have Dhol(ζA) = D(ζA), since we always have
Dhol(ζA)≤ D(ζA), according to Equation (2.1.29).

This concludes the proof of the corollary. ��

Remark 2.1.21. (a) In Remark 2.1.19, we have given a very simple example of a
subset A of the real line (namely, A := [0,1]) for which Dhol(ζA)< D(ζA). It would
be interesting to find (if possible) a class of bounded subsets A of RN for which the
corresponding distance zeta function ζA (meromorphically extended to a connected
open neighborhood of {Res ≥ D(ζA)}) possesses nonreal poles with positive real
parts, and such that Dhol(ζA) < D(ζA). A natural candidate could be the bounded
sets A ⊂ [0,1] studied in [Žu4, Theorem 4.3] and for which D := dimB A exists
and M D

∗ (A) = 0 but ζA(D) =
∫

Aδ
d(x,A)D−Ndx < ∞. Observe that by letting B :=

A× [0,1]N−1, one would then obtain a bounded subset of RN (for N ≥ 2 arbitrary)
having the exact same properties as A.

(b) The inequality (2.1.29) in Corollary 2.1.20 is sharp, i.e., is best possible,
in general. Indeed, we will construct in Corollary 4.6.17 to Theorem 4.6.9 an ex-
ample of a maximally hyperfractal bounded subset A of R

N .9 In particular (in
the terminology of Subsection 4.6.2 below; see parts (ii) and (iii) of Definition
4.6.23), ζA has a partial natural boundary along the vertical line {Res = D}, where
D = D(ζA) = dimBA; this means that ζA cannot be meromorphically (and let alone,
holomorphically) extended to a connected open neighborhood of this vertical line.
(In fact, for this example, all of the points of this line are singularities of ζA; hence
the name “maximal hyperfractal”. Therefore, {Res = D} is a holomorphic natu-
ral boundary of ζA, in the sense of Definition 1.3.6 of Subsection 1.3.2.) It follows
that Dhol(ζA)≥ D. Since we also have Dhol(ζA)≤ D, in light of (2.1.29), it follows

9 Of course, in the terminology of part (ii) of Definition 4.6.23 it would suffice for A to be strongly
hyperfractal but Corollary 4.6.17 provides an even more singular geometric object, namely, a max-
imal hyperfractal. Moreover, in Corollary 4.6.17, A is a bounded subset of R, but as is noted in
Remark 4.6.19, for any fixed N ≥ 2, by considering the Cartesian product B := A× [0,1]N−1, one
can readily obtain a corresponding bounded subset of RN having the exact same properties.
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that for this example of maximal hyperfractal obtained in Corollary 4.6.17 (and in
Remark 4.6.19), we have

D := dimBA = D(ζA) = Dhol(ζA).

We note in passing that with Dmer(ζA) denoting the abscissa of meromorphic con-
tinuation of ζA (defined like Dhol(ζA), except for “holomorphic” replaced by “mero-
morphic”), we also have

D := dimBA = D(ζA) = Dhol(ζA) = Dmer(ζA),

while in general, for any bounded subset A of RN , we have

Dmer(ζA)≤ Dhol(ζA)≤ D(ζA) = dimBA. (2.1.33)

Therefore, this new string of inequalities in Equation (2.1.33) is also sharp.

The following simple result is important for the development of the theory. It will
be used throughout the book, most often implicitly. In hindsight, it shows that we do
not have to worry about the set A on which the distance function x �→ d(x,A) (pre-
cisely) vanishes identically and hence, on which the integrand x �→ d(x,A)s−N (in
the definition of ζA(s) given in Equation (2.1.1) above) is singular, i.e., is identically
equal to +∞, when Res < N. See Remark 2.1.10 above for more details.

Proposition 2.1.22. Let A be an arbitrary bounded subset of RN. Then, we can
change the domain of integration in Equations (2.1.1) and (2.1.13) from Aδ to the
set Aδ \A without modifying ζA and hence, without changing its abscissa of con-
vergence. In particular, for any δ > 0 and every s ∈ C such that Res > dimBA, we
have:

ζA(s) =
∫

Aδ \A
d(x,A)s−Ndx,

ζ ′A(s) =
∫

Aδ \A
d(x,A)s−N logd(x,A)dx.

(2.1.34)

Proof. Indeed, if dimBA < N, then (according to the comment preceding Equation
(1.3.9) on page 32) the set A is necessarily of Lebesgue measure zero in R

N , so that
d(x,A)Res−N =+∞ on a (Lebesgue) negligible set only, provided Res∈ (dimBA,N).
If dimBA = N, then we have Res−N > 0 (see the comment preceding Equation
(1.3.9) on page 32), so that d(x,A)s−N = 0 for x ∈ A, in light of Theorem 2.1.11(b);
see also Remark 2.1.10 above. ��
Remark 2.1.23. We can easily conclude that if A is any bounded, Lebesgue nonmea-
surable set in R

N , then dimB A exists and dimB A = N. Indeed, assume the contrary,
i.e., that dimBA < N. We then deduce that |A|= 0 (see Equation (1.3.8) on page 32
above); so that A is of Lebesgue measure zero, and hence, is Lebesgue measurable
(by the completeness of the N-dimensional Lebesgue measure). However, this is a
contradiction. (See [LapRoŽu, Example 2.21].)
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Remark 2.1.24. The distance d(x,A) in Theorem 2.1.11 has been defined via the Eu-
clidean norm. Nevertheless, Theorem 2.1.11 remains valid, with the same proof, for
a distance d∗(x,A) associated to any other norm ‖·‖∗ in R

N . Indeed, as is well known
(see, e.g., [Foll]), all such norms are equivalent, from which one easily deduces that
the corresponding distance zeta functions have the same abscissa of convergence.
However, the corresponding zeta functions do not necessarily have the same (visi-
ble) poles; in other words, the choice of the norm (and hence, of metric) on R

N may
change the set of (visible) complex dimensions of A. More generally, transforming A
via a bi-Lipschitz homeomorphism of RN does not necessarily preserve the complex
dimensions of A.

Remark 2.1.25. In the proof of Theorem 2.1.11, we have shown that

ζA(s + h)−ζA(s) = ζ ′A(s)h+o(h) as h → 0,

where (in view of (2.1.21)) the remainder term o(h) = hR(h), with R(h) given by
(2.1.17), can be estimated by

|o(h)| ≤ |h|2C(δ ,ε)
∫

Aδ
d(x,A)Res−N−2εdx, (2.1.35)

provided ε ∈ (0, 1
2 (Res−dimBA)) and δ ∈ (0,1] are fixed, and |h| ≤ ε . The constant

C(δ ,ε) = max{| logd|2dε : d ∈ (0,δ ]} can be explicitly computed:

C(δ ,ε) =

{
4
e2 ε−2 if e−2/ε < δ ,

| logδ |2δ ε if e−2/ε ≥ δ ,

while the integral appearing on the right-hand side of (2.1.35), can be estimated as
follows, assuming that M ∗D(A)< ∞:

∫
Aδ

d(x,A)Res−N−2εdx ≤ N −D
Res−D−2ε

(
sup

t∈(0,δ )

|At |
tN−D

)
δRes−D−2ε ,

where D = dimBA; see [Žu2, Theorem 3.1(a)]. Using (2.1.35), and minimizing with
respect to ε ∈ I := (0, 1

2 (Res−D)), we obtain:

|o(h)| ≤ |h|2(N −D)

(
sup

t∈(0,δ )

|At |
tN−D

)(
inf
ε∈I

C(δ ,ε)
Res−D−2ε

δRes−D−2ε
)
.

It is easy to see that the infimum is achieved for some ε0 ∈ I, since the corresponding
function is continuous and tends to infinity as ε tends to either of the endpoints of
the interval I, while remaining within I. The above inequality holds for all h ∈ C

such that |h| ≤ ε0.

The following result shows that the distance zeta function has a natural additivity
property.



68 2 Distance and Tube Zeta Functions

Proposition 2.1.26. Let A and B be two bounded subsets of RN which are a positive
distance apart; that is, d(A,B) > 0, where d(A,B) := inf{|x− y| : x ∈ A, y ∈ B}.
Then, for any δ ∈ (0, 1

2 d(A,B)), where δ is the positive number used in Equation
(2.1.1) for defining ζA, ζB and ζA∪B, we have

ζA∪B(s) = ζA(s)+ζB(s), (2.1.36)

for Res > max{dimBA,dimBB}.

Proof. This follows easily from Equation (2.1.1). Fix δ ∈ (0, 1
2 d(A,B)) and s ∈

C with Res > max{dimBA,dimBB}. Then, since (A ∪ B)δ = Aδ ∪ Bδ , we have
ζA∪B(s) =

∫
Aδ

d(x,A∪B)s−Ndx+
∫

Bδ
d(x,A∪B)s−Ndx. Now, for any x ∈ Aδ , we ob-

viously have d(x,A∪B) = d(x,A), and analogously for x ∈ Bδ . Hence, the desired
conclusion follows from Definition 2.1.1. ��

2.1.3 Dirichlet Series and Dirichlet Integrals

The goal of this subsection is to review the notion of abscissa of convergence of
Dirichlet series and integrals, and to describe some of its basic properties. A concise
introduction to the theory of (generalized) Dirichlet series can be found in [Ser,
Section V.2.2]. We also refer to [HardWr] for a thorough exploration of the theory
of classical Dirichlet series, which are of the form ∑∞j=1 b j/ js, with b j ∈ C; that is,
for which l j := 1/ j, for all j ∈N. Furthermore, a discussion of Dirichlet integrals is
provided in [Pos, esp., Section 2.3].

2.1.3.1 Dirichlet Series

It is interesting (and well known) that it is possible to give an explicit expression
for the abscissa of convergence (see Definition 2.1.28 below) of the (generalized)
Dirichlet series

f (s) :=
∞

∑
j=1

b jl
s
j; (2.1.37)

see Theorem 2.1.33 below. Here, we assume that l j > l j+1 > 0 for all j ∈ N, and
l j → 0+ as j →∞. For simplicity, we assume that the ‘multiplicities’ b j are positive
real numbers. In the applications to fractal strings, they are natural numbers, inter-
preted as the actual multiplicities of the distinct ‘lengths’ (or ‘scales’) l j. In order
to formulate the corresponding result (stated in Theorem 2.1.33 below), we need to
introduce the following counting function b, defined on (0,+∞) by

b(x) := ∑
{ j : log l−1

j ≤x}
b j. (2.1.38)
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If b j ∈ N for each j, then clearly, b(x) → +∞ as x → +∞, and b(x) is called the
(geometric) counting function of the associated fractal string (defined as the multiset
consisting of all the distinct numbers l j with multiplicities b j). More precisely, in
order to be consistent with the terminology introduced in [Lap-vFr1–3], let us recall
that the geometric counting function Ng,L of a fractal string L = (� j)

∞
j=1, with

� j ≥ � j+1 for all j ∈ N and � j → 0+ as j → ∞, is defined by

Ng,L (x) = ∑
{ j:l−1

j ≤x}
b j,

for every x > 0. Hence, the counting function b can be viewed as the counterpart of
Ng,L when the ‘reciprocal scales’ are measured on a logarithmic scale.

In 1894, Cahen [Cah] proved the following important and classical result con-
cerning the convergence of Dirichlet series.

Theorem 2.1.27 (Cahen, [Cah]). If a Dirichlet series f (s) = ∑∞j=0 b jls
j converges

absolutely (and hence, converges) for some s1 ∈ C, then it converges absolutely
(and hence, converges) on the open right half-plane {Res > Res1}. Consequently,
the Dirichlet series is either convergent absolutely (and hence, convergent) for all
complex numbers s, or divergent absolutely for all s ∈ C, or else there exists a
(necessarily unique) real number D such that the Dirichlet series converges abso-
lutely (and hence, converges) on {Res > D} and diverges absolutely on {Res < D}
(i.e., is not absolutely convergent at any point s ∈ C with Res < D).

Note that in this generality, nothing can be said about the convergence of the
Dirichlet series for complex numbers s on the vertical line {Res =D}. Furthermore,
since the coefficients b j are assumed to be positive, the Dirichlet series converges
absolutely for Res > D.

Definition 2.1.28. The unique value of D∈R appearing in Theorem 2.1.27 is called
the abscissa of (absolute) convergence of the Dirichlet series, and is denoted by
D = D( f ). Following the usual conventions, we extend this definition to the case
where D ∈ R∪ {±∞}. Accordingly, the case where D = −∞ or D = +∞ corre-
sponds, respectively, to the first or second situation described in the statement of the
theorem.

Furthermore, much as in Subsection 2.1.2 above (see Equation (2.1.10) and
the text surrounding it), we let Π( f ) := {Res > D( f )} denote the half-plane of
(absolute) convergence of f . Then, according to Cahen’s theorem (Theorem 2.1.27),
Π( f ) is the maximal open right half-plane on which the Dirichlet series f converges
absolutely (and hence, is convergent).

Finally, when D ∈ R, the vertical line {Res = D} is called the critical line of f
(or sometimes in this book, the ‘critical line of convergence’).

Remark 2.1.29. For a Dirichlet series with complex (rather than positive) coeffi-
cients, there is an analogous theorem for the notion of ordinary (rather than absolute)
convergence of a Dirichlet series, allowing one to define the abscissa of conditional
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(rather than absolute) convergence of a Dirichlet series, denoted by Dcond( f ) and
which (thanks to Theorem 2.1.34 and Corollary 2.1.35) does not exceed Dhol( f );
see, e.g., [Ser], loc. cit. Furthermore, for a Dirichlet series with positive coefficients,
as is assumed in the present subsection (i.e., in Subsection 2.1.3.1), the abscis-
sae of absolute and conditional convergence are equal and also coincide with the
abscissa of holomorphic continuation: D( f ) = Dcond( f ) = Dhol( f ); see Corollary
2.1.36 below.

In contrast, a classic example of Dirichlet series with real coefficients for which
D( f ), Dcond( f ) and Dhol( f ) are all distinct is provided by f (s) :=∑∞n=1(−1)n−1/ns.
Then, a simple (but clever) computation shows that ζ (s) = f (s)+21−sζ (s), where
ζ = ζ (s) denotes the classic Riemann zeta function; i.e., f (s) = (1− 21−s)ζ (s).
This last identity shows that the simple pole of ζ (s) at s = 1 is precisely cancelled
by the simple zero of 1− 21−s at s = 1; so that f is an entire function (i.e., has a
holomorphic extension to all of C) and hence,

D( f ) = 1 > Dcond( f ) = 0 > Dhol( f ) =−∞, (2.1.39)

where Dcond( f ) is the abscissa of conditional convergence of f . It is easy to check
that Dcond( f )= 0 by using Abel’s partial summation theorem and noting that clearly,
the series initially defining f (s) diverges at s = 0.

Example 2.1.30. A well-known and interesting example of Dirichet series f for
which the abscissa of absolute convergence D( f ) and of conditional convergence
Dcond( f ) are expected to be different is given by the Möbius Dirichlet series

f (s) :=
∞

∑
n=1

μ(n)
ns , (2.1.40)

where μ is the Möbius function defined by μ(1) = 1, μ(n) = (−1)k if n is the
product of k distinct primes (with k ∈ N), and μ(n) = 0 otherwise (i.e., if n is not
square-free). Then, we always have that D( f ) = 1 and 1/2 ≤ Dcond( f )≤ 1. Further-
more, Dcond( f ) = 1/2 if and ony if the Riemann hypothesis is true (i.e., if and only if
ζ (s) = 0 for some s ∈ C with 0 < Res < 1 implies that Res = 1/2).10 More specif-
ically, we always have that, independently of the truth of the Riemann hypothesis
(i.e., unconditionally),

Dcond( f ) = sup{α ∈ [1/2,1) : ζ (s) = 0 for some s ∈ C with Res = α}, (2.1.41)

where ζ denotes the meromorphic continuation to all of C of the classic Riemann
zeta function.

The statement concerning Dcond( f ) follows from the fact that

∞

∑
n=1

μ(n)
ns =

1
ζ (s)

, for Res > 1 (2.1.42)

10 It is known from Hadamard’s theorem and the functional equation satisfied by ζ that ζ (s) 
= 0
for all s ∈ C with Res = 0 or Res = 1; see, e.g., [Edw] or [Tit3].
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(itself a consequence of Möbius’ inversion formula, see [Edw, Tit3]). Indeed, in
light of Equation (2.1.42) and since ζ can be meromorphically continued to all of
C, we deduce that f can be meromorphically continued to all of C and that

f (s) =
1
ζ (s)

, for all s ∈ C. (2.1.43)

Consequently, f (s) has a pole at every zero of ζ (s) and so Dcond( f ) is given by
the right-hand side of Equation (2.1.41) since ζ (s) has zeros along the critical line
{Res = 1/2}.

Now, to prove that D( f ) = 1, we proceed as follows. First, since |μ(n)| ≤ 1 for

all n∈N, it is clear that∑∞n=1
|μ(n)|
nRes <∞ for Res> 1. Hence, D≤ 1. Furthermore, for

s = 1, we have successively (with p1, . . . , pk, p running through the set of all prime
numbers, and such that in the first equality, the product p1 . . . pk is square-free, for
any k ∈ N):11

∞

∑
n=1

|μ(n)|
n

= 1+
∞

∑
k=1
∑

p1,...,pk

1
p1 . . . pk

≥∑
p1

1
p1

=∑
p

1
p
=+∞.

(2.1.44)

Hence, ∑∞n=1
|μ(n)|

n =+∞ and thus, D( f )≥ 1. This shows that D( f ) = 1, as claimed.
Furthermore, we note that since ζ (s) does not have any zeros for Res > 1 (be-

cause it is given by a convergent infinite product, the Euler product, in the right
half-plane {Res> 1}), we must have (in light of Equation (2.1.43)) that Dhol( f )≤ 1.
However, since ζ (s) has zeros on the critical line {Res = 1/2} and since (also in
light of Equation (2.1.43)) f (s) has a pole at s ∈ C if and only if ζ (s) = 0, it fol-
lows that 1/2 ≤ Dhol( f )≤ 1 and that, in fact, unconditionally, Dhol( f ) = Dcond( f ).
We deduce, in particular, that Dhol( f ) is also given by the right-hand side of Equa-
tion (2.1.41). Moreover, we observe that it follows from the last equality and from
Equation (2.1.41) that unconditionally

1 = D( f )> Dhol( f ) = Dcond( f ) (2.1.45)

due to existence of zero-free regions which are asymptotic to the vertical line
{Res = 1} (see, e.g., [Edw] or [Tit3]). Indeed, in light of Equation (2.1.41) above,
the hypothesis that Dcond( f ) = 1 is equivalent to the existence of a sequence (s j) j≥1

of critical zeros of ζ = ζ (s) tending to the vertical line {Res = 1} (i.e., such that
Res j → 1 as j → ∞, with Res j < 1) and this, in turn, contradicts the existence of a
zero-free region.

11 In the last equality of Equation (2.1.44), we are using the well-known fact according to which
the series of reciprocal primes, ∑p

1
p , is divergent; see, e.g., [Edw], [Tit3] or [Ser, Section VI.3.1,

Corollary 2].



72 2 Distance and Tube Zeta Functions

Finally, combining (2.1.41) and (2.1.45), we see that still unconditionally,
Dcond( f )
= (Dhol( f )) ∈ [1/2,1) and that (as was already noted above) Dcond( f ) = 1/2 if and
only if the Riemann hypothesis is true.

This concludes the discussion of this example.

The following definition will be useful in the sequel. See also Definition 2.1.62
in Subsection 2.1.5 below for a more general setting.

Definition 2.1.31. As before in Subsection 2.1.2, we denote by Dhol( f ) the abscissa
of holomorphic continuation of f and we call H ( f ) := {Res > Dhol( f )} the half-
plane of holomorphic continuation of f . More specifically, Dhol( f ) ∈ R∪ {±∞}
is given by (2.1.27), with ζA replaced by f , and it follows that H ( f ) := {Res >
Dhol( f )} is the maximal open right half-plane (of the form {Res > α}, for some
α ∈ R∪{±∞}) to which the Dirichlet series f can be holomorphically continued.

Finally, the vertical line {Res = Dhol( f )} is called the holomorphy critical line
of f (s) = ∑∞j=1 b jls

j.

Remark 2.1.32. The Dirichlet series ∑∞j=1 b jls
j can be viewed as a special case of

Stieltjes–Dirichlet integral, corresponding to the Laplace transform of a discrete
measure ν1 :=∑∞j=1 b jδlog l−1

j
(or equivalently, to the Mellin transform of the discrete

measure ν2 := ∑∞j=1 b jδl−1
j

). Here, for x > 0, δx denotes the (unit) Dirac mass (or

measure) concentrated at {x}.

Next, we formulate a result, also due to Cahen [Cah], containing an explicit for-
mula for the computation of the abscissa of convergence of a general Dirichlet se-
ries.

Theorem 2.1.33 (Cahen, [Cah]). Let b be the counting function defined by (2.1.38).
Assume that b(x) → +∞ as x → +∞. Then the abscissa of convergence D of the
Dirichlet series f (s) = ∑∞j=1 b jls

j is nonnegative and given by

D = limsup
x→+∞

logb(x)
x

. (2.1.46)

Moreover, in terms of the sequence (b j)
∞
j=1 of ‘multiplicities’, this value is also given

by

D = limsup
n→∞

1

log l−1
n

log
( n

∑
j=1

b j

)
. (2.1.47)

The following classic result, due to Perron, is a well-known extension of Ca-
hen’s theorem (Theorem 2.1.27). It will be used, in particular, in the proof of Theo-
rem 2.1.39 below.

Theorem 2.1.34 (Perron, [Per]). If a (generalized) Dirichlet series converges for
some s0 ∈ C, then it converges uniformly in any sector of the form Re(s− s0) > 0,
|arg(s− s0)| ≤Θ , withΘ ∈ (0,π/2).
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The proof of Perron’s theorem can be found, for example, in [Ser, Proposition 6,
Section VI.2.2]. It relies, in particular, on Abel’s partial summation formula (that is,
on a discrete analog of integration by parts).

Corollary 2.1.35. If a (generalized) Dirichlet series converges for some s0 ∈ C,
then it converges in the open right half-plane {Res > Res0} and the associated
function so defined is holomorphic in that region.

A priori, in light of Corollary 2.1.35, it follows from the definition of D( f ) and
Dhol( f ) given in Definition 2.1.28 and Definition 2.1.31, respectively, that we only
have the following inequality: Dhol( f )≤ D( f ). However, the next result (Corollary
2.1.36) will show that in our present situation, we actually have the following equal-
ity (due to the positivity of the coefficients of the Dirichlet series): Dhol( f ) = D( f ).

We note that, on the other hand, there are elementary examples of Dirichlet
series with real or complex coefficients for which Dhol( f ) < D( f ). For instance,
as was explained in Remark 2.1.29 (see, especially, Equation (2.1.39) in that re-
mark), for the Dirichlet L-function f (s) := ∑∞n=1(−1)n−1n−s, which will be revis-
ited in the text following Remark 2.1.37 below, we have Dhol( f ) = −∞ whereas
D( f ) = 1; see, e.g., [Ser, Section VI.3] for other examples of such L-functions
(namely, Dirichlet L-functions with nontrivial primitive characters). Also, for such
Dirichlet L-functions, we have Dcond( f ) = 0 and D( f ) = 1.

The next corollary of Perron’s theorem (Theorem 2.1.34 above) is well known
and relies in a crucial way on the fact that the Dirichlet series has positive coeffi-
cients. See, e.g., Proposition 7 in Section 2.3 of [Ser], where this result is stated in a
different, but equivalent manner.

Corollary 2.1.36. Assume that the coefficients b j are positive real numbers for all
j ∈ N. Then, the Dirichlet series f (s) := ∑∞j=1 b jls

j tends to +∞ as s tends to D( f )

from the right, along the real axis.12 Consequently, we have the following equality:

D( f ) = Dhol( f ). (2.1.48)

Remark 2.1.37. It follows from Corollary 2.1.36 and the definitions of D( f ) and
Dhol( f ) that we have the following equality, which is a restatement of Equation
(2.1.48):

D( f ) := inf

{
α ∈ R :

∞

∑
j=1

b jl
α
j < ∞

}

= inf
{
α ∈ R : f is holomorphic on {Res > α}

}
=: Dhol( f ).

(2.1.49)

In the case when the sequence defining the Dirichlet series is (infinite and) asso-
ciated with an ordinary fractal string L = (� j) j≥1, represented by a bounded open

12 Hence, if D := D( f ) ∈ R, then D is a singularity of f (located on the real axis). Moreover, if,
in addition, f can be meromorphically extended to a connected open neighborhood of the critical
line {Res = D}, then D is a pole of f .



74 2 Distance and Tube Zeta Functions

subset Ω of R, we can even assume that the infimum is taken over α ∈ [0,1] in the
first and second equalities of (2.1.49), and we also have several additional equalities:

Dhol(ζL ) = D(ζL ) = dimB∂Ω = dimBA, (2.1.50)

where ∂Ω is the boundary of Ω , ζL is the geometric zeta function of L , and A =
AL denotes the bounded subset of R associated with L (as explained in Subsection
2.1.4 below). See Subsection 2.1.4, especially Theorem 2.1.55 and Corollary 2.1.57.

Assume that we are in the setting of the first part of the previous remark (Re-
mark 2.1.37); that is, f (s) is a generalized Dirichlet series with positive coefficients,
as in the rest of the present subsection. In particular, Equation (2.1.48) holds. Let
D ∈ R∪{±∞} denote the common value of Dhol( f ) and D( f ). It then follows that
the Dirichlet series f (s) := ∑∞j=1 b jls

j, where the coefficients b j are positive, is ab-
solutely convergent (and hence, convergent) for Res > D and diverges for Res < D
(as stated in Theorem 2.1.27 above).

By contrast, as was noted earlier, for a Dirichlet series with real or complex
(but not positive) coefficients b j, we may have Dhol( f ) < D( f ). This is the case of
all Dirichlet L-functions with nontrivial primitive characters (see, e.g., [Ser, Tit2,
ParsSh1–2]), for which Dhol( f ) = −∞ whereas Dcond( f ) = 0 and D( f ) = 1. For
instance, for the (classic) Dirichlet series f (s) := ∑∞n=1(−1)n−1n−s (which is an
example of such a Dirichlet L-function), we have Dhol( f ) = −∞, Dcond( f ) = 0
and D( f ) = 1, where Dcond( f ) is the abscissa of conditional convergence of f .
(See Equation (2.1.39) in Remark 2.1.29.) This implies that the series converges
absolutely (and hence, converges) for Res > 1, ceases to converge absolutely for
Res ≤ 1, whereas it converges for Res > 0 and diverges for Res < 0. In partic-
ular, the Dirichlet series converges conditionally (but hence, not absolutely) for
0 < Res ≤ 1, i.e., for all s ∈ C such that 0 < Res ≤ D( f ).

In the classic terminology (see, e.g., [Ser] and [Pos]), D( f ) = 1 is the abscissa
of absolute convergence of f (in the precise sense of Theorem 2.1.27 and Definition
2.1.28 above), whereas (as was observed in Remark 2.1.29 on page 69) the abscissa
of conditional convergence of f (in the sense of Theorem 2.1.27 and Definition
2.1.31, but with “convergence” replaced with “conditional convergence”) is equal to
0. This situation is in sharp contrast with that encountered for (generalized) Dirichlet
series with positive coefficients, which is the situation of interest in this book.

By contrast, recall from part (a) of Remark 2.1.21 that we do not know whether
there exists generalized (Dirichlet) integrals f = f (s) of the type of the distance zeta
function (or, equivalently, of the tube zeta function) of a bounded subset A of RN for
which D < N and Dhol( f )< D( f ), with f := ζA (or, equivalently, f := ζ̃A).13 We do
not know of such an example even for a relative fractal drum (in the sense of Section
4.1). On the other hand, recall from part (b) of Remark 2.1.21 above that we have
explicit examples of bounded subsets of RN for which D < N and Dhol( f ) = D( f ),
for both f = ζA and f = ζ̃A.

13 In the case of the tube zeta function ζ̃A, we do not need to assume that D < N.
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It is noteworthy (although elementary) that any fractal string L = (� j) j≥1 (that
is, here, a nonincreasing sequence of positive real numbers (� j) j≥1 converging to
zero, see the beginning of Subsection 2.1.4 below) is uniquely determined by its
geometric (or scaling) zeta function ζL (s) = ∑∞j=1 �

s
j.

More precisely, the following result holds, and is a consequence of a well-known
uniqueness result about (generalized) Dirichlet series (see, e.g., [Ser, Corollary 4,
Section VI.2.2]). For completeness, we will nevertheless include a proof of this
theorem.

Remark 2.1.38. Here and in the sequel, we adopt the convention of [Lap-vFr2–3] ac-
cording to which (l j) j≥1 refers to a strictly decreasing sequence of positive numbers
whereas (� j) j≥1 refers to a nonincreasing sequence of positive numbers (repeated
according to their multiplicities). Hence, for all s ∈ C with Res > D(ζL ), we have

ζL (s) =
∞

∑
j=1

�s
j =

∞

∑
j=1

b jl
s
j, (2.1.51)

where for each j ≥ 1, b j is the multiplicity of l j.

Theorem 2.1.39. Assume that L = (� j) j≥1 and L ′ = (�′j) j≥1 are two fractal
strings such that their geometric zeta functions are holomorphic in an open right
half-plane G = {Res > σ} (or, equivalently, are such that their abscissae of con-
vergence do not exceed σ), for some σ ∈ R∪ {−∞}. If ζL (sk) = ζL ′(sk) for a
sequence (sk)k≥1 of elements of G possessing an accumulation point in G, then
L = L ′; i.e., � j = �′j for all j ≥ 1. Equivalently, in the notation of Remark 2.1.38,
we have l j = l′j and b j = b′j for all j ≥ 1.

Proof. Without loss of generality, we may assume that the sequences (� j) j≥1 and
(�′j) j≥1 are nonincreasing; see Subsection 2.1.4. By hypothesis, we must have
σ ≥ max{D(ζL ),D(ζL ′)}, where D(ζL ) and D(ζL ′) denote the abscissae of con-
vergence of L and L ′, respectively. Hence, according to the principle of analytic
continuation (see, e.g., [Con, Corollary 3.8]), the condition ζL (sk) = ζL ′(sk) for
all k ≥ 1 implies that ζL (s) = ζL ′(s) in G. Assume by contradiction that � j0 > �′j0 ,
with the smallest possible j0 ∈N. Canceling the first j0 −1 terms in the sums defin-
ing the two geometric zeta functions, we may assume without loss of generality that
j0 = 1. Dividing ζL (s) = ζL ′(s) by �s

1, we obtain the equality

1+(�2�
−1
1 )s + · · ·+(� j�

−1
1 )s + · · ·= (�′1�

−1
1 )s +(�′2�

−1
1 )s + · · ·+(�′j�

−1
1 )s + · · · .

(2.1.52)

Passing to the limit as s →+∞ in R, we deduce that 1 = 0, which is a contradiction.
Actually, we deduce that n= 0, where the integer n≥ 1 is equal to the multiplicity of
�1 (that is, to the number of times the value �1 is repeated in the sequence represent-
ing L ); i.e., n = b1 > 0. (Alternatively, in the notation of Remark 2.1.38, we have
�1 = · · ·= �n = l1.) Note that in order to justify the interchange of limit and sum in
(2.1.52), we use Theorem 2.1.34, where we have taken s0 > σ . More specifically,
Theorem 2.1.34 guarantees the uniform convergence in a sector containing the half-
line {s ∈R : s > s0} (and hence, in a neighborhood of +∞ in the extended real line)
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of each of the Dirichlet series appearing in Equation (2.1.52). In turn, this enables
us to justify the interchange of the limits as s →+∞ and of the infinite sums. ��

2.1.3.2 Dirichlet Integrals

Consider the Dirichlet-type integral (DTI, for short)

F(s) :=
∫

E
ϕ(x)sdμ(x), (2.1.53)

where E is a measurable space, ϕ is a suitable positive (or, more generally, under
a suitable assumption, nonnegative, see Remark 2.1.50) measurable function on E,
and μ is a local (or locally bounded) positive or complex measure on E.14 (Recall
that if μ is positive, then its total variation measure |μ | satisfies |μ | = μ , while if
μ is a local complex measure, then |μ | is a positive and locally bounded measure;
for more detailed information, see Definition A.1.1 in Appendix A and, e.g., [Coh],
[Foll] or [Ru], for classic measure theory.) The interested reader can find in Ap-
pendix A a thorough discussion of Dirichlet-type integrals (DTIs) and of extended
DTIs, along with some of their main properties.

For the purposes of the more general theory of Dirichlet-type integrals (DTIs)
developed in Appendix A, we will assume E to be a locally compact, Hausdorff (or
metrizable) topological space and that μ is a local positive (or complex) measure.
Roughly speaking, a local measure on E is a set-function on B(E), the Borel σ -
algebra of E, its total variation measure whose restriction to every compact subset
of E is bounded. Hence, if μ is a local complex measure, then |μ | is only locally
bounded. See Definition A.1.1 for the precise definition of a local measure.

In the sequel, we shall need the following definitions, which have already been
introduced in a less general, but closely related context in Subsections 2.1.2 and
2.1.3.1. (See also Subsection 2.1.5.) For the definitions of D(F) and Π(F), intro-
duced just below, to be meaningful, we have to assume that the function ϕ is non-
negative and bounded from above in the following sense:

There exists a constant C =C(F)> 0 such that 0 ≤ ϕ(x)≤C |μ |-a.e. on E.
(2.1.54)

We assume throughout this chapter that this condition is satisfied. (In Appendix A
such a DTI is said to be tamed.) See also Theorem 2.1.45 which discusses some
other possibilities. Note that in the case of the distance zeta function F := ζA, we
have E := Aδ and ϕ(x) := d(x,A) ∈ [0,δ ] for all x ∈ Aδ , so that condition (2.1.54)
is clearly satisfied.

Define the abscissa of convergence D(F) of the generalized Dirichlet integral
F(s) :=

∫
E ϕ(t)sdμ(t) in exactly the same manner as for (the special case of) the

distance zeta function ζA in Equation (2.1.10) of Subsection 2.1.2, except for the

14 When ϕ(x) = 0, we let ϕ(x)s := 0. (This is quite reasonable, at least for Res > 0.)
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integral
∫

Aδ
d(x,A)s−Ndx replaced by the Dirichlet-type integral

∫
E ϕ(t)sdμ(t) (and

with μ replaced by the total variation measure |μ | if μ is not a positive measure).
Namely,15

D(F) := inf

{
α ∈ R :

∫
E
ϕ(t)αd|μ |(t)< ∞

}
. (2.1.55)

Furthermore, call
Π(F) := {Res > D(F)} (2.1.56)

the half-plane of (absolute) convergence of F . The value of D(F) is well defined
due to the assumption (2.1.54), and for the same reason, the open right half-plane
Π(F) is also well defined; see Theorem 2.1.45 below.16 As before, we have D(F) ∈
R∪{±∞} and we use the standard convention according to which Π(F) = /0 or C
if D(F) = +∞ or −∞, respectively.

Moreover, if D(F) ∈ R, the vertical line {Res = D(F)} is called the critical line
of F , when no ambiguity may arise (or, less briefly, the critical line of convergence
of F).

As was the case in Subsection 2.1.2, one then deduces from the counterpart of
Lemma 2.1.9 in the present context that the half-plane of convergence Π(F) :=
{Res > D(F)} is the maximal right open half-plane of convergence (of the form
{Res > α}, for some α ∈ R∪ {±∞}) of the Lebesgue integral defining F(s) in
(2.1.53); see Theorem A.1.4 in Appendix A. Note that for s ∈C,

∫
E |ϕ(t)s|d|μ |(t) =∫

E ϕ(t)Res d|μ |(t)< ∞ implies that Res > α , and conversely.
Finally, we define Dhol(F), the abscissa of holomorphic continuation of F , ex-

actly as for ζA in Equation (2.1.27) of Subsection 2.1.2, except for the fact that ζA

is now replaced by F . Then, H (F) := {Res > Dhol(F)} is called the half-plane of
holomorphic continuation of F and the vertical line {Res = Dhol(F)} is referred to
as the critical line of continuation (or simply, the holomorphy critical line) of F .
See, also, Definition 2.1.62 at the beginning of Subsection 2.1.5 below.

The following three examples should be helpful to the reader, as they play a
central role in the book.

Example 2.1.40. (Distance zeta functions). Let A be a bounded subset of RN and ζA

be the associated distance zeta function (as in Subsection 2.1.1), initially defined by
(2.1.1) for some δ > 0. Let E := Aδ , ϕ(x) := d(x,A) for all x ∈ Aδ (so that ϕ ≡ 0 on
A, the closure of A) and consider the positive measure defined by μ(dx) := ρ(x)dx,
where ρ : E → R is defined by

ρ(x) :=

{
d(x,A)−N , for x ∈ E \A,

0, for x ∈ A,
(2.1.57)

15 Recall that all of the integrals are taken in the Lebesgue sense.
16 If we replace the condition appearing in (2.1.54) by ϕ(x)≥C |μ|-a.e. on E for a positive constant
C, then in the definition of D(F) in (2.1.55), we have to replace inf by sup and the corresponding
Dirichlet-type integral F(s) is then (absolutely) convergent on the open left half-plane {Res <
D(F)}. See case (b) of Theorem 2.1.45 below.
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and dx denotes the Lebesgue measure on R
N . Note that μ = |μ | (since μ is positive).

Then, in light of Theorem 2.1.45(a) below (or, simply, by definition of ϕ and μ) and
for Res large enough, using the common convention 0 · (+∞) = 0 in Lebesgue’s
integration theory, it follows that ζA coincides with the following Dirichlet-type
integral given by (2.1.53):

ζA(s) :=
∫

Aδ
d(x,A)s−Ndx =

∫
E
ϕ(x)sdμ(x) =: F(s).

Furthermore, according to parts (a) and (b) of Theorem 2.1.11, we have D(ζA) =
dimBA, the upper box dimension of A, and Dhol(ζA) ≤ D(ζA). Moreover, if in ad-
dition, we assume that D := dimB A exists, D < N and M D

∗ (A) > 0, then it follows
from part (c) of Theorem 2.1.11 that we also have the following string of equalities:

Dhol(ζA) = D(ζA) = dimB A (= D).

In closing this example, we note that the tameness condition (2.1.54) is clearly sat-
isfied since 0 ≤ ϕ(x) = d(x,A)≤ δ for all x ∈ Aδ and hence, for all x ∈ E.

Example 2.1.41. (Relative distance zeta functions). Looking ahead to Chapter 4, we
mention that a discussion entirely analogous to the one given in Example 2.1.40
can be provided (with E := Ω instead of E := Aδ , ϕ(x) := d(x,A) for all x ∈ Ω
and μ(dx) := ρ(x)dx, where ρ is still given by (2.1.57)) for the relative distance
zeta function ζA,Ω of a ‘relative fractal drum’ (A,Ω) (introduced in Definition 4.1.2
of Chapter 4), where A is any subset of RN , Ω is an open subset of RN such that
|Ω |< ∞, and there exists δ > 0 such that Ω ⊆ Aδ :

ζA,Ω (s) :=
∫
Ω

d(x,A)s−Ndx, (2.1.58)

for all s∈C with Res sufficiently large. (Neither A norΩ is assumed to be bounded,
in that case. However, since Ω ⊆ Aδ , it follows that d(x,A) < δ for all x ∈ Ω .
Hence, in light of (2.1.58), the DTI ζA,Ω is clearly tamed; more precisely, condition
(2.1.54) is satisfied with C := δ .) There too, we have (in light of parts (a) and (b) of
Theorem 4.1.7 along with Corollary 4.1.10 in Section 4.1.1 below) that D(ζA,Ω ) =
dimB(A,Ω), the relative upper box dimension of (A,Ω), and Dhol(ζA,Ω )≤D(ζA,Ω );
see Remark 2.1.42 below.

As will be stressed in Section 4.1, one important difference between ζA and
ζA,Ω is that dimBA ∈ [0,N] whereas dimB(A,Ω) ∈ [−∞,N]. Also, in light of part
(c) of Theorem 4.1.7 below, and provided D := dimB(A,Ω) exists, D < N and
M D

∗ (A,Ω)> 0, we then have

Dhol(ζA,Ω ) = D(ζA,Ω ) = dimB(A,Ω) (=: D).

We note that in this latter situation, the infimum implicit in the definitions of
Dhol(ζA,Ω ) and D(ζA,Ω ) must be taken over all α ∈ R (in fact, since dimB(A,Ω) ∈



2.1 Basic Properties of the Zeta Functions of Fractal Sets 79

[−∞,N], it suffices to take the infimum over all α ∈ (−∞,N]). The reason is that
in the definition of upper and lower Minkowski contents of a relative fractal drum
(A,Ω), we take the infimum over all r ∈ R; see Equation (4.1.4) below.

Remark 2.1.42. The analog of Proposition 2.1.22 also holds in the more general
setting of Example 2.1.41 because the function ϕ(x) := d(x,A), defined on E :=
Ω , vanishes identically on A∩Ω , while (much as in Example 2.1.40, and using
the standard convention in Lebesgue’s theory, according to which 0 · (+∞) = 0),
μ(dx) := ρ(x)dx, where as was explained above, the function ρ : E → R, with
E :=Ω , is defined by

ρ(x) :=

{
d(x,A)−N , for x ∈ E \A,

0, for x ∈ A.
(2.1.59)

Example 2.1.43. (Tube zeta functions and their relative counterparts). Also looking
ahead towards the rest of the book, we mention that the tube zeta function ζ̃A of a
bounded subset A of RN (see Definition 2.2.8 of Subsection 2.2.2 below) is a tamed
DTI. This statement is explained in detail in Lemma 2.2.9 (and its proof). More
generally, the tube zeta function ζ̃A,Ω of a relative fractal drum (A,Ω) in R

N (see
Equation (4.5.1) of Subsection 4.5.1 below) is a tamed DTI. This statement is proved
much as for its counterpart for the relative distance function in Example 2.1.41
above and is explained in the proof of part (1) of Proposition A.2.4 of Appendix A.

Example 2.1.44. (Generalized Dirichlet series and geometric zeta functions). The
generalized Dirichlet series studied in Subsection 2.1.3.1 can be easily viewed
as (tamed) Dirichlet-type integrals (DTIs, in short) of the form (2.1.53), as we
now explain. Indeed, let E := [log(1/�1),+∞) and with the notation of Subsection
2.1.3.1,17

ϕ(t) := e−t and μ(dt) :=
∞

∑
j=1

b jδlog(1/l j) (2.1.60)

(or, alternatively, E := (0, �1], ϕ(t) := t for all t ∈ E and μ(dt) := ∑∞j=1 b jδl j =

∑∞j=1 δ� j ; see, especially, Equation (2.1.51) in Remark 2.1.38 above). Then, the
generalized Dirichlet series f (s) := ∑∞j=1 b jls

j = ∑
∞
j=1 �

s
j, as given by (2.1.37) and

(2.1.51), coincides with the Dirichlet-type integral F(s) :=
∫

E ϕ(t)sdμ(t), as given
by (2.1.53). Moreover, since

0 < ϕ(t)≤C := ϕ(log(1/�1)) = �1

17 Recall from Subsection 2.1.3.1 (and, especially, Remark 2.1.38) that (� j)
∞
j=1 is a nonincreasing

sequence of positive numbers such that � j ↓ 0 as j →∞, and that (l j)
∞
j=1 is the sequence composed

of the distinct values of the �k’s. Furthermore, for each j ≥ 1, l j has multiplicity b j , when it appears
in the sequence (�k)

∞
k=1. In particular, we have �1 = · · ·= �b1 = l1.
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for all t ∈ E = [log(1/�1),+∞) (alternatively, 0 < ϕ(t) ≤ C := ϕ(�1) = �1 for all
t ∈ E = (0, �1]), condition (2.1.54) is satisfied; i.e., f is a tamed DTI, in the sense
of Definition A.1.3 of Appendix A. Here, if ϕ is given by (2.1.60) and the sequence
(� j)

∞
j=1 is nonincreasing, while the optimal choice of C is given by C = �1 = l1 (still

with the notation of Subsection 2.1.3.1).
As a result, for the geometric zeta function ζL (s) := ∑∞j=1 �

s
j of a bounded18

fractal string L := (� j)
∞
j=1 (in the sense of Subsection 2.1.4 below), we have

Dhol(ζL ) = D(ζL ) = inf

{
α ∈ [0,1] :

∞

∑
j=1

�αj < ∞
}
. (2.1.61)

More generally, the geometric zeta function ζη of a local (positive or com-
plex) measure η on (0,+∞) (as defined in [Lap-vFr3, Chapter 4] by ζη(s) :=∫ +∞

0 x−sη(dx) for all s ∈ C with Res sufficiently large) is a tamed DTI; see the
second half of part (2) of Proposition A.2.4 (and its proof). In particular, all arith-
metic zeta functions occurring in number theory (see, e.g., [ParsSh1–2, Edw, Tit3],
[Lap-vFr3, Appendix A], as well as [Lap6, Appendices B, C and E]) are tamed
DTIs. As a special case appearing in various parts of Subsection 2.1.3, let us men-
tion the Dirichlet L-functions and, in particular, the classic Riemann zeta function.

Finally, we close this example by pointing out that the spectral zeta functions of
relative fractal drums (RFDs) studied in Section 4.3 and defined in Definition 4.3.4
below (and, in particular, the spectral zeta functions of fractal strings) are tamed
DTIs since they can clearly be viewed as geometric zeta functions of generalized
fractal strings (and really, as generalized Dirichlet series, in the sense of Subsection
2.1.3.1).

We are now ready to state a theorem concerning the holomorphicity of the
Dirichlet-like integral F . It will imply, in particular, part (a) of Theorem 2.1.11 in
Subsection 2.1.2 above, as will be explained later.

We should point out that part (a) of Theorem 2.1.45 just below is a very special
case of a significantly more general result, provided in Appendix A (see Theorem
A.2.6 and Corollary A.2.7) and proved in a similar manner, by using Theorem 2.1.47
below. In particular, we should note that in part (a) of Theorem 2.1.45 below, it
suffices to assume that μ is a (positive or complex) local measure on E (in the sense
of Definition A.1.1, roughly speaking, a locally bounded set-function on B(E),
the Borel σ -algebra of E) and that ϕ is a positive measurable function satisfying
condition (2.1.54); i.e., F = ζ(E,ϕ,μ) (as given by (2.1.62) below and in the notation
of Appendix A, see Equation (A.1.2) of Appendix A) is a tamed Dirichlet-type
integral (DTI, in short); see Definition A.1.3. Moreover, for the fractal zeta functions
of interest considered in this book, ϕ is easily seen to be bounded from above (see
the hypothesis made in Theorem 2.1.45(a) below); for example, as was noted in
Examples 2.1.40 and 2.1.41, ϕ(x) := d(x,A) < δ for all x ∈ Aδ . As a result, all of

18 We say that a fractal L := (� j)
∞
j=1 string is bounded if ∑∞j=1 � j < ∞.
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these fractal zeta functions are tamed. See also Remark 2.1.46 below, along with
Proposition A.2.4 and Corollary A.2.7 of Appendix A.

Theorem 2.1.45. Let (E,B(E),μ) be a measure space, where E is a locally com-
pact metrizable space, B(E) is the Borel σ -algebra of E, and μ is a positive or com-
plex (local) measure, with total variation (local) measure denoted by |μ |. Further-
more, let ϕ : E → (0,+∞) be a measurable function satisfying condition (2.1.54).19

Then:

(a) If ϕ is essentially bounded (that is, if there exists C > 0 such that ϕ(t) ≤ C
for |μ |-a.e. t ∈ E), and if there exists σ ∈ R such that

∫
E ϕ(t)σd|μ |(t) < ∞, then

F(s) :=
∫

E
ϕ(t)sdμ(t) (2.1.62)

is holomorphic on {Res > σ}, and F ′(s) =
∫

E ϕ(t)s logϕ(t)dμ(t) in that region.
Furthermore, the abscissa of convergence D(F) of F (defined as in Equation
(2.1.55) above) and the abscissa of holomorphic continuation Dhol(F) of F (defined
either as above or as in Definition 2.1.62 of Subsection 2.1.5 below) satisfy the fol-
lowing inequality:

Dhol(F)≤ D(F). (2.1.63)

(b) If there exists C > 0 such that ϕ(t)≥C for |μ |-a.e. t ∈ E, and if there exists
σ ∈ R such that

∫
E ϕ(t)−σd|μ |(t)< ∞, then

G(s) :=
∫

E
ϕ(t)−sdμ(t) (2.1.64)

is holomorphic on {Res>σ}, and G′(s)=−
∫

E ϕ(t)−s logϕ(t)dμ(t) in that region.
Here, D(G), the abscissa of convergence of G, satisfies Dhol(G)≤ D(G).

(c) Finally, if there exist positive constants C1 and C2 such that C1 ≤ ϕ(t) ≤ C2

for |μ |-a.e. t ∈ E, and there exists σ ∈ R such that
∫

E ϕ(t)σd|μ |(t) < ∞, then the
Dirichlet-type integrals F and G in (a) and (b), respectively, are entire functions
(and hence, D(F) =Dhol(F) =−∞, where D= D(F) is the abscissa of convergence
of F and Dhol(F) is the abscissa of holomorphic continuation of F, and analogously
for G).

In many applications of interest to us in this book, the local measure μ is positive
and hence, |μ |= μ . Furthermore, the inequality (2.1.63) is actually an equality. This
is the case, for example, for the (generalized) Dirichlet series studied in Subsection
2.1.3.1 above (in light of Example 2.1.44, this is a consequence of Theorem 2.1.34
and Corollary 2.1.35) as well as, similarly, for the classic Dirichlet integrals (of
the form F(s) :=

∫+∞
0 e−stdμ(t), for some suitable positive Borel measure μ on

[0,+∞), supported away from 0; see, e.g., [Pos]). Under mild assumptions (namely,
the hypotheses of part (c) of Theorem 2.1.11 and Corollary 2.1.20), this is also

19 See Remark 2.1.50 (and the text following it) for the case when ϕ > 0 |μ|-almost everywhere.
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the case for the distance zeta functions of bounded sets. More generally, under the
hypotheses of part (c) of Theorem 4.1.7, it is also the case for the distance zeta
functions of relative fractal drums.

Remark 2.1.46. It is easy to check that all of the fractal zeta functions f = ζ(E,ϕ,μ)
discussed in Examples 2.1.40–2.1.44 above (and, more generally, all those encoun-
tered in this book) are such that ϕ is bounded from above (pointwise everywhere) on
E (i.e., not only |μ |-bounded from above). Indeed, either ϕ(x) := d(x,A)< δ for all
x ∈ Aδ , where A is any (bounded or unbounded) subset of RN , or ϕ(t) := t < δ for
all t ∈ (0,δ ). The latter choice of ϕ will correspond to tube zeta functions (and their
relative counterparts) to be introduced in Subsection 2.2.2 (and Subsection 4.5.1).

Theorem 2.1.45 will follow from a more general and well-known result (see,
e.g., [Carl, pp. 295–296] or [CarMi, pp. 152–153], dealing with the holomorphicity
of integrals depending on a parameter, of the form

H(s) =
∫

E
f (s, t)dμ(t). (2.1.65)

We state it without proof. When n = 1, the interested reader can easily establish it
by combining the Lebesgue dominated convergence theorem, Cauchy’s integral for-
mula, and/or Fubini’s theorem along with Morera’s characterization of holomorphic
functions (as having zero contour integrals along closed loops contained in the open
set V ). Note, however, that the latter characterization of holomorphicity is not really
needed if one shows directly that H is holomorphic with complex derivative given
by (2.1.66) below, with k := 1.

Theorem 2.1.47. Let V be an open set in C (or even in C
n, for any n ∈N). Further-

more, let (E,B(E),μ) be a measurable space, as in Theorem 2.1.45, with a positive
or complex (local) measure μ and the corresponding total variation (local) mea-
sure denoted by |μ |; see Equation (A.1.1) of Definition A.1.1 in Appendix A. Assume
that a function f : V ×E → C is given, satisfying the following three conditions:

(1) f ( · , t) is holomorphic for |μ |-a.e. t ∈ E,

(2) f (s, ·) is μ-measurable for all s ∈V , and

(3) a suitable growth property on f is fulfilled: for every compact set K contained
in V , there exists gK ∈ L1(|μ |) such that | f (s, t)| ≤ gK(t) for all s ∈ V and |μ |-a.e.
t ∈ K.

Then, the function H defined by (2.1.65) is holomorphic on V . Moreover, one can
interchange the derivative and the integral. More precisely, for every s ∈ V and
every k ∈ N, we have

H(k)(s) =
∫

E

∂ k

∂ sk f (s, t)dμ(t). (2.1.66)
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Note that conditions (1) and (2), appearing in Theorem 2.1.47, imply that the
complex-valued function f (s, t) satisfies the well-known Carathéodory conditions;
that is, f (s, t) is continuous with respect to s ∈ V for |μ |-a.e. t ∈ E, and is μ-
measurable with respect to t ∈ E for all s ∈V .

Remark 2.1.48. According to [Mattn] and as is well known, if conditions (1) and (2)
from Theorem 2.1.47 are satisfied, then condition (3) is equivalent to the following
condition, which is generally slightly more practical to verify:

(3′)
∫

E | f ( · , t)|d|μ |(t) is locally bounded; that is, for each fixed s0 ∈ V , there
exists δ > 0 such that

sup
s∈V, |s−s0|<δ

∫
E
| f (s, t)|d|μ |(t)< ∞. (2.1.67)

(See also Remark 2.1.49.) In other words, we can replace condition (3) with condi-
tion (3′) in the statement of Theorem 2.1.47. This is the case because the notion of
holomorphicity is local. For the same reason, we can verify the holomorphicity of F
on a relatively compact neighborhood of any given s0 ∈V , and therefore, work with
a local measure under the hypotheses indicated in the statement of Theorem 2.1.47.

Remark 2.1.49. We note that if μ is assumed to be a standard positive or complex
measure, then the counterpart of Theorem 2.1.47 is valid on an arbitrary measure
space; see, e.g., [JohLap, Lemma 15.2.9], where it is stated much more generally.

Proof of Theorem 2.1.45. We use Theorem 2.1.47. In our case, f (s, t) := ϕ(t)s,
V := {Res > σ}. Note that for any σ1 > σ , we have ϕ(t)σ1 ≤ ‖ϕ‖σ1−σ∞ ϕ(t)σ , so
that ϕσ ∈ L1(|μ |) implies that ϕσ1 ∈ L1(|μ |). In particular, since | f (s, t)|= ϕ(t)Res,
it follows that f (s, t) = ϕ(t)s ∈ L1(|μ |) for all s ∈ C such that Res > σ .

Let K be a compact subset of V = {Res > σ}. Since

| f (s, t)|= ϕ(t)Res ≤ ‖ϕ‖Res−σ
∞ ϕ(t)σ , (2.1.68)

we have that | f (s, t)| ≤ gK(t) := CKϕ(t)σ for all s ∈ K and |μ |-a.e. t ∈ E, where
CK = maxs∈K ‖ϕ‖Res−σ

∞ . This proves part (a) of the theorem.
Part (b) follows from part (a) applied to ϕ(t)−1.
Finally, part (c) follows similarly as in (a), by noting that

| f (s, t)|= ϕ(t)Res ≤ max{CRes−σ
1 ,CRes−σ

2 }ϕ(t)σ , (2.1.69)

for every complex number s. ��

Remark 2.1.50. Theorem 2.1.45 extends without any difficulty if ϕ(t) ≥ 0 for |μ |-
a.e. t ∈ E and |μ |({t ∈ E : ϕ(t) = 0}) = 0.
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In our present case, corresponding to the setting of Theorem 2.1.11, we have E :=
Aδ , ϕ(x) := d(x,A) for x ∈R

N (note that ϕ restricted to E is bounded, with values in
[0,δ )) and dμ(x) := d(x,A)−Ndx, where dx is the Lebesgue measure on R

N . More
precisely, we let E := Aδ\{ϕ = 0} and observe that the set {ϕ = 0} = {x ∈ R

N :
d(x,A) = 0} does not contribute to the integral defining ζA(s) in Equation (2.1.1).
Note that we know from Lemma 2.1.3 that σ ≥ dimBA and hence, {Res > σ} ⊆
{Res > 0}.

Since ϕ(x) = d(x,A) = 0 for x ∈ A ⊂ Aδ , the function ϕ vanishes on a set which
may not be of zero measure. If |A| > 0, then dimBA = N, and by using Theorem
2.1.11(b) we conclude that D(ζA) = N. On the other hand, if |A|= 0, then dimBA ≤
N, and we conclude that D(ζA)≤ N.

Remark 2.1.51. It is also worth pointing out that Theorem 2.1.11(a) can be derived
by using Theorem 2.1.45(a). Indeed, in light of this latter result, it suffices to show
that for any real number σ such that σ > dimBA we have that

∫
Aδ
ϕ(x)σdμ(x) =

∫
Aδ

d(x,A)σ−Ndx < ∞,

where ϕ(x) := d(x,A) and dμ(x) := d(x,A)−Ndx. But this follows immediately from
Lemma 2.1.3, using γ := N −σ < N −dimBA:

∫
Aδ

d(x,A)σ−Ndx =
∫

Aδ
d(x,A)−γdx < ∞.

We therefore conclude from Theorem 2.1.45(a) that ζA is holomorphic for σ =
Res > dimBA, and that its (complex) derivative ζ ′A(s) is given by (2.1.13), which is
precisely the statement of Theorem 2.1.11(a).

Since for any bounded set A in R
N the abscissa of convergence D(ζA) of the

distance zeta function ζA of A is equal to the upper box dimension of A, that
is, D(ζA) = dimBA (see Theorem 2.1.11(b)), and dimBA ∈ [0,N], it is clear that
D(ζA) ≥ 0. The following lemma provides a direct proof of the fact that D(ζA)
cannot be negative. On the other hand, for relative fractal drums, which we will in-
troduce in Section 4.1, the abscissa of convergence of the distance zeta function can
be negative, and even equal to −∞; see Subsection 4.1.2.

Lemma 2.1.52. For any bounded subset A of RN, we have D(ζA)≥ 0.

Proof. Assume the contrary, namely, that D(ζA)< 0. Then ζA(s) is well defined and
continuous for s ∈ (D(ζA),+∞), and in particular, it is continuous at s = 0.

Let us take any a ∈ A. Since Aδ ⊇ Bδ (a), and d(x,A)≤ |x−a|, we have that for
every real number s ∈ (0,N),

ζA(s) =
∫

Aδ
d(x,A)s−Ndx ≥

∫
Bδ (s)

d(x,A)s−Ndx

≥
∫

Bδ (a)
|x−a|s−Ndx = NωN

∫ δ

0
rs−NrN−1dr = NωN

δ s

s
,
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where we have passed to polar coordinates with the point a as the origin (and where
ωN is the volume of the unit ball in R

N). Therefore, ζA(s)→+∞ as s → 0+, s ∈ R.
This clearly contradicts the continuity of ζA at s = 0. ��

Fig. 2.5 The holomorphy critical line {Res = Dhol( f )}, on the right, and the meromorphy critical
line {Res = Dmer( f )}, on the left, associated with a given function f . Here, Dhol( f ) is the abscissa
of holomorphic continuation of f and Dmer( f ) is the abscissa of meromorphic continuation of
f . The half-plane of meromorphic continuation of f is defined by Mer( f ) := {Res > Dmer( f )},
while the half-plane of holomorphic continuation of f is defined by H ( f ) := {Res > Dhol( f )};
see Definition 2.1.53 and Definition 2.1.62, respectively.

In this monograph, we shall pay particular attention to meromorphic functions
f . It is therefore natural to introduce the following definition, which is analogous to
the definition of the abscissa of convergence D( f ). Compare with Definition 2.1.28
and Equation (2.1.49) above.

Definition 2.1.53. Let f : U → C be a meromorphic function on a domain U ⊆ C.
We define the abscissa of meromorphic continuation Dmer( f ) of f as the infimum
of all real numbers α such that f possesses a meromorphic extension to the open
right half-plane {Res > α}. Equivalently,

Mer( f ) := {Res > Dmer( f )} (2.1.70)

is the largest open half-plane (of the form {Res > α}, for some α ∈ R∪{±∞}) to
which f can be meromorphically extended. We then call Mer( f ) the half-plane of
meromorphic continuation of f , while, if Dmer( f )∈R, {Res = Dmer( f )} is referred
to as the critical line of meromorphic continuation, or, more briefly, the meromorphy
critical line of f ; see Figure 2.5.

We invite the reader to consult Remarks 2.3.39 and 2.3.40 on page 169 (in
Subsection 2.3.3 below), which provide additional information concerning Defini-
tion 2.1.53 (and Definition 2.1.62 below). For now, we limit ourselves to the follow-
ing comment.
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Fig. 2.6 Assume that f is a tamed Dirichlet-type integral, as in Subsection 2.1.3.2 above or in
Appendix A. Then, its abscissa of convergence D( f ) is well defined (see Equation (2.1.55) and
the surrounding explanations) and Dhol( f )≤ D( f ); see part (a) of Theorem 2.1.45. The half-plane
of convergence of f is defined by Π( f ) := {Res > D( f )}, while if D( f ) ∈ R, the vertical line
{Res = D( f )} is called the critical line of convergence (or, in short, critical line) of f .

Remark 2.1.54. It is clear that H ( f ) ⊆ Mer( f ), and therefore, that Dmer( f ) ≤
Dhol( f ), where Dhol( f ) is the abscissa of holomorphic continuation of f (as
given in Definition 2.1.62 below). If in addition, we assume that f is given by
a tamed Dirichlet-type integral (in the sense of Subsection 2.1.3.2 above, then
we also have Dhol( f ) ≤ D( f )); see Theorem 2.1.45(a) and Figure 2.6. In Theo-
rem 4.5.20, we will construct a class of bounded fractal strings L = (� j) j≥1 such
that Dmer(ζL ) < Dhol(ζL ), with a prescribed value of Dmer(ζL ). Furthermore, in
Corollary 4.6.17(a), we will construct a class of bounded fractal strings such that
Dmer(ζL ) = Dhol(ζL ) = D(ζL ) =: D and all the points of the holomorphy critical
line {Res=D} are nonisolated singularities of ζL . (Such fractal strings will be said
to be maximally hyperfractal; see Definition 4.6.23 and the comments surrounding
it.) In both cases, the fractal string L will be constructed as a union of a suitable
sequence of generalized Cantor strings.

2.1.4 Zeta Functions of Fractal Strings and of Associated
Fractal Sets

The following example shows that Definition 2.1.1 provides a natural extension of
the zeta function associated with a fractal string L = (� j) j≥1, where (� j) j≥1 is a
nonincreasing sequence of positive numbers such that ∑∞j=1 � j < ∞:

ζL (s) =
∞

∑
j=1

�s
j, (2.1.71)

for all s ∈ C with Res sufficiently large.
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This zeta function arose naturally in the early 1990s in joint work of the
first author [Lap1–3] with Carl Pomerance [LapPo1–3] and with Helmut Maier
[LapMa1–2] (see also, e.g., [Lap1–2] and [HeLap]) while investigating direct and
inverse spectral problems associated with the vibrations of a fractal string. Such a
zeta function, ζL , called the geometric zeta function of L , has been studied in a
number of references, including several monographs [Lap-vFr1–3].

Recall that geometrically, a fractal string is a bounded open set Ω ⊆ R. It can
be uniquely written as a disjoint union of (bounded) open intervals I j (Ω = ∪∞j=1I j)
with lengths � j. Without loss of generality, one may assume that (� j) j≥1 is written
in nonincreasing order and that � j → 0+ as j → ∞:

�1 ≥ �2 ≥ ·· · ≥ � j ≥ ·· ·> 0. (2.1.72)

From the point of view of fractal string theory, one may identify a fractal string
with the sequence L of its lengths (or scales): L = (� j) j≥1. For example, the
volume (i.e., length) of the (inner) tubular neighborhoods of a fractal string of Ω
depends only on L = (� j) j≥1. Consequently, the (inner) Minkowski content20 of
the boundary ∂L = ∂Ω of L , as well as the complex dimensions of L (to be
discussed just below), depend solely on L = (� j) j≥1; see [LapPo2], [Lap-vFr3,
Section 8.1]. The same is true for the spectrum (i.e., the eigenvalues) of the Dirichlet
Laplacian on Ω .

In the sequel, any bounded open setΩ =∪∞j=1I j ⊂R of the above type (i.e., such
that L = (� j)

∞
j=1 is the sequence of lengths of its connected components (I j)

∞
j=1)

will be called a geometric realization of the fractal string L . Furthermore, L will
often be called a bounded fractal string in order to emphasize that its total length
|L |1 = ∑∞j=1 � j is finite. (Of course, it would suffice to suppose that |Ω |1 < ∞ in-
stead of assuming that Ω is bounded.)

We now recall a basic property of ζL , first observed in [Lap2], using a key result
of Besicovich and Taylor [BesTay]. For a direct proof, see [Lap-vFr3, Theorem 1.10
or Theorem 13.111]; see also [LapLu-vFr2].

Theorem 2.1.55. If L is nontrivial (i.e., if L = (� j) j≥1 is an infinite sequence),
then the abscissa of convergence D(ζL ) of ζL coincides with the (inner) upper
Minkowski dimension21 δ∂Ω of ∂L = ∂Ω :22

D(ζL ) = Dhol(ζL ) = δ∂Ω . (2.1.73)

20 In the terminology introduced in Section 4.1 below, the inner Minkowski content is called the
Minkowski content of the relative fractal drum (∂Ω ,Ω), or the Minkowski content of ∂Ω relative
to Ω .
21 The inner Minkowski dimension δ∂Ω is a special case of the notion of a relative box dimension,
defined in Section 4.1. In this case it is denoted by dimB(∂Ω ,Ω).
22 In [Lap-vFr3], the abscissa of convergence of ζL is denoted by σL . Furthermore, if L =
(� j) j≥1 is a finite sequence, then D(ζL ) =−∞ whereas δ∂Ω = 0; so that in general, we have that
δ∂Ω = max{D(ζL ),0}.
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Recall that

D(ζL ) := inf
{
α ∈ R :

∞

∑
j=1

�αj < ∞
}
, (2.1.74)

while δ∂Ω is defined in terms of the volume of the inner epsilon neighborhoods of
∂Ω , namely, (∂Ω)ε ∩Ω = {x ∈Ω : d(x,∂Ω)< ε}; see [Lap-vFr3, Definition 1.2,
p. 11].

More specifically, we must let N = 1 and replace |At | by |(∂Ω)t ∩Ω |1 in order to
define the (inner) upper Minkowski content of A := ∂Ω and then define δ∂Ω by the
counterpart of Equation (1.3.4). Alternatively, in light of the counterpart of Equation
(1.3.15), we have that

δ∂Ω = 1− liminf
t→0+

logt |(∂Ω)t ∩Ω |1. (2.1.75)

Finally, in the notation to be introduced in Section 4.1, for the relative fractal drum
(A,Ω) := (∂Ω ,Ω), we have

δ∂Ω = dimB(∂Ω ,Ω), (2.1.76)

the relative upper Minkowski dimension of (∂Ω ,Ω); see Equations (4.1.3) and
(4.1.4).

Remark 2.1.56. We note that within the framework of the fractal zeta functions de-
veloped in this book, yet another (albeit indirect) proof of Theorem 2.1.55 can be
provided; see Proposition 2.1.72 and Remark 2.1.73 in Subsection 2.1.5, which
themselves make use of Example 2.1.58 below and part (b) of Theorem 2.1.11
above.

It follows from Theorem 2.1.55 that ζL is holomorphic for Res > δ∂Ω and that
{s ∈ C : Res > δ∂Ω} is the largest open right half-plane having this property. See
Subsection 2.1.3 above.

In fractal string theory, one is particularly interested in the meromorphic contin-
uation of ζL to a suitable region (when it exists), along with its poles, which are
called the complex dimensions of L . In particular, in the theory of complex dimen-
sions developed in [Lap-vFr1–3], are obtained explicit tube formulas applicable to
various counting functions associated with the geometry and the spectra of fractal
strings. These explicit formulas are expressed in terms of the complex dimensions
(i.e., the poles of ζL ) and the associated residues. Furthermore, they enable one
to obtain a very precise understanding of the oscillations underlying the geometry
and spectra of fractal strings (as well as of more general fractal-like objects); see
[Lap-vFr3].

From the perspective of the theory developed in the present monograph, a conve-
nient choice of geometric realization of the (nontrivial) fractal string L = (� j)

∞
j=1

and therefore, of the set A = AL corresponding to L , is the following canonical
geometric realization of L :
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Ωcan =Ωcan,L :=
∞⋃

k=1

(ak+1,ak), (2.1.77)

where
ak := ∑

j≥k

� j for each k ≥ 1; (2.1.78)

so that, assuming that L is nontrivial (i.e., L is an infinite sequence), we have
ak ↓ 0 as k → ∞; see Figure 2.7 below. (Note that, by construction, the length of
each connected component (ak+1,ak) of Ωcan is given by �k = ak −ak+1, for k ≥ 1.)
Then,

A := AL = {ak : k ≥ 1}= ∂Ωcan \{0} (2.1.79)

and we call this set the canonical geometric representation of the fractal string L .
As follows easily from Theorem 2.1.55 and the definition of AL , the function

ζL in (2.1.71) is holomorphic for Res > dimBAL . Moreover, still assuming that the
fractal string L is nontrivial, then this bound is optimal.23 In other words, dimBA
coincides with the abscissa of convergence of L . Furthermore, ζL (s) → +∞ as
s ∈ R converges to dimBA from the right; see [Lap-vFr3, p. 15] or [Ser, Section
VI.2.3]. Compare with Theorem 2.1.11.

As a result, {Res > dimBA} is the maximal right open half-plane to which ζL
can be holomorphically continued (i.e., Dhol(ζL ) = dimBA) and hence, in light of
(2.1.73) of Theorem 2.1.55 above, combined with parts (a) and (b) of Theorem
2.1.11, we have

D(ζL ) = Dhol(ζL ) = D(ζAL
) = Dhol(ζAL

) = dimBA = δ∂Ω , (2.1.80)

where δ∂Ω is given as in Theorem 2.1.55 and is therefore independent of the geo-
metric realization Ω of L (in particular, we have δ∂Ω = δ∂Ωcan ).

In summary, we can state the following result:

Corollary 2.1.57. In light of Theorem 2.1.55 and of Theorem 2.1.11, assuming that
L is nontrivial, we have the following equalities:

dimBAL = D(ζL ) = δ∂Ω . (2.1.81)

Example 2.1.58. With the above notation, let Ik = (ak+1,ak), k ≥ 1, and let s be a
complex variable. Using (2.1.1), we see that the distance zeta function of A is given
by24

ζA(s) = 2
∫ δ

0
xs−1dx+

∞

∑
k=1

∫
Ik

d(x,∂ Ik)
s−1dx = 2s−1δ s +

∞

∑
k=1

Jk(s), (2.1.82)

23 If a fractal string L is trivial, i.e., a finite sequence, then the bound is not optimal since in this
case D(ζL ) =−∞, while dimBAL = 0 (and hence, dimB AL exists and dimB AL = 0). Therefore,
for any bounded fractal string L , we have that D(ζL ) ∈ [0,1]∪{−∞}.
24 The second integral appearing in Equation (2.1.82), that is, ζ∂ Ik ,Ik (s) :=

∫
Ik

d(x,∂ Ik)
s−1dx, is

the distance zeta function of the so-called ‘relative fractal drum’ (∂ Ik, Ik), a notion which will be
introduced and studied in detail in Chapter 4.
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for all s ∈ C such that Res > D(ζA) (ensuring the convergence of the series), where
the first term corresponds to boundary points of the interval (0,a1) and for all k ≥ 1,
Jk(s) is defined in (2.1.83) just below. Assuming that δ ≥ �1/2, we have that for
all k,

Jk(s) := 2
∫ �k/2

0
xs−1dx = s−121−s�s

k. (2.1.83)

Here, we have integrated with respect to the local coordinate system placed at the
left endpoint of the interval Ik. In light of (2.1.71) and (2.1.82)–(2.1.83), we obtain
the following relation:

ζA(s) = s−121−sζL (s)+2s−1δ s. (2.1.84)

The case when 0 < δ < �1/2 yields an analogous relation:

ζA(s) = u(s)ζL (s)+ v(s), (2.1.85)

where again u(s) := s−121−s, with a single, simple pole at s = 0. Note that here, u(s)
and v(s) = v(s,δ ) are holomorphic functions in the open right half-plane {Res> 0};
(initially, for Res > D(ζL ) and then, after analytic continuation, for Res > 0).25

Hence, since ζL is holomorphic for Res > dimBA, the same relation still holds for
the meromorphic extension of ζA (when it exists) to any subdomain U of the right
half-plane {Res > 0}. An immediate consequence of (2.1.84) is that

D(ζAL
) = max{0,Dhol(ζL )}, (2.1.86)

which is in accordance with Lemma 2.1.52. This example will serve as a basic
motivation and guide for introducing and studying fractal nests, geometric chirps
and string chirps in higher dimensions; see, especially, Sections 3.5 and 3.6.

Fig. 2.7 Any nontrivial bounded fractal string L = (� j) j≥1 generates the sequence (ak)k≥1, where
ak := ∑ j≥k � j , converging to the origin as k → ∞. We denote by A = AL the corresponding subset
of the real line: AL := {ak : k ≥ 1}. Note that �k = ak −ak+1 for all k ≥ 1.

25 It can be easily shown that the function v = v(s), appearing in Equation (2.1.85), has the form

v(s) :=
2δ s

s
+ e(s),

where e = e(s) is an entire function and δ is the positive constant from Equation (2.1.1) defining
the distance zeta function ζA. For δ ≥ �1/2, as we have already seen in Equation (2.1.84), we
have that v(s) ≡ 0. For δ ∈ (0, �1/2), the claim follows from the fact that the difference e(s) :=
ζA(s;δ )−ζA(s;�1/2) is an entire function; see Proposition 2.1.76 below.
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The following result is in accordance with Lemma 2.1.52 and Theorem 2.1.55;
see Figure 2.7.

Proposition 2.1.59. Let L = (� j) j≥1 be a nontrivial, bounded fractal string, and
let AL = {ak = ∑ j≥k � j : k ≥ 1}. Then

D(ζAL
) = Dhol(ζAL

) = D(ζL ) = Dhol(ζL ) = dimBAL . (2.1.87)

Furthermore, the sets of poles of the meromorphic extensions of ζAL
and ζL to

any open right half-plane {Res > c}, with c ≥ 0 (if the extensions exist), coincide.
Moreover, the poles of ζAL

and ζL (in such a half-plane) have the same multiplic-
ities.

In particular, if either the geometric zeta function ζL or the corresponding dis-
tance zeta function ζAL

admits a meromorphic continuation (necessarily unique)
to a subdomain of the open right half-plane {Res > 0} containing the critical line
{Res = D(ζL )}, then so does the other one. Furthermore, in that case, these two
fractal zeta functions have exactly the same poles (or ‘visible complex dimensions’)
within {Res > 0}, with the same orders (or multiplicities). See also Remark 2.1.60
below.

Proof. The first claim, except for the first equality in Equation (2.1.87), follows
from Theorem 2.1.55 combined with parts (a) and (b) of Theorem 2.1.11.

To prove the first equality in (2.1.85), assume, by contradiction, that D(ζAL
) >

Dhol(ζAL
). We consider the following two cases:

(a) If Dhol(ζAL
) ≥ 0, then from Equation (2.1.85) we obtain that ζL can be

holomorphically extended at least to the open right half-plane {Res > Dhol(ζAL
)}.

Therefore, Dhol(ζL ) ≤ Dhol(ζAL
) < D(ζAL

) = D(ζL ). However, this contradicts
the equality Dhol(ζL ) = D(ζL ).

(b) The case when Dhol(ζAL
) < 0 is dealt with analogously, by taking into ac-

count the fact that the functions u and v, appearing in (2.1.85), have s = 0 as their
unique pole, and furthermore, this pole is simple. Indeed, the function ζAL

(s)−v(s)
has s = 0 as the only pole located in the corresponding (meromorphy) half-plane
{Res > Dmer(ζAL

)}. Therefore, the function s(ζAL
(s)− v(s)) is holomorphic in

this half-plane, which, in light of Equation (2.1.85), implies that ζL is holomophic
on the same half-plane as well. We deduce that D(ζL ) < 0. However, this contra-
dicts the fact that for any bounded fractal string L , we always have D(ζL ) ∈ [0,1].

The second and the third claims are an immediate consequence of (2.1.85). This
completes the proof of the proposition. ��

Remark 2.1.60. (a) In the first part of Proposition 2.1.59, one can replace the half-
plane {Res > c} by an arbitrary connected open subset U of C \ {0}. A similar
comment can be made about the second part of Proposition 2.1.59, with {Res > 0}
replaced by a domain U ⊆ C\{0} containing the critical line {Res = D(ζL )}.
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(b) This fact is significant from the point of view of the theory of complex di-
mensions of fractal strings developed in [Lap-vFr3]. Indeed, recall that according
to [Lap-vFr3], a fractal string L (or the associated fractal set AL ) is ‘fractal’ if it
has at least one complex dimension with positive real part. Hence, by the present
proposition, the notion of fractality is independent of the choice of the fractal zeta
function used to define it. See, in particular, part (c) of the present remark.

(c) According to the results obtained further on in this chapter (see, especially,
Theorem 2.2.11 and Proposition 2.2.19 of Subsection 2.2.2), the exact same results
(as in Proposition 2.1.59 above and Corollary 2.1.61 below) hold if the distance
zeta function ζAL

is replaced by the corresponding tube zeta function ζ̃AL
(in the

sense of Definition 2.2.8), throughout Proposition 2.1.59 above and Corollary 2.1.61
below.

One may naturally wonder whether in the above results, the geometric zeta func-
tion ζL can only be compared to the distance zeta function ζAL

, where A = AL

is defined by (2.1.79). In particular, AL ∪ {0} = ∂Ωcan is the boundary of the
canonical geometric representation of L . In other words, do the statements of
these results (including Theorem 2.1.55, Corollary 2.1.57, Example 2.1.58 and
Proposition 2.1.59) depend on the choice of the geometric realization Ω of L ?
The answer is that they do not depend on the geometric realization of L by a
bounded open set Ω ⊂ R, which is a very useful fact, indeed. The reason for the
simplicity of this answer is that in fractal string theory (see [Lap1–3], [LapPo2],
[LapMa2], [HeLap], [Lap-vFr1–3], [Lap6–10], . . . ), all of the quantities involved,
V (ε) = Vinn(ε) := |(∂Ω)ε ∩Ω |1, D (the Minkowski dimension or the upper box
dimension), etc., are defined in terms of the inner ε-neighborhood of ∂Ω (relative
to Ω ), and therefore (as was noted earlier) depend only on L = (� j)

∞
j=1 and not on

the geometric realization Ω of L .

Corollary 2.1.61. (i) The exact same results as in Theorem 2.1.55, Corol-
lary 2.1.57, Example 2.1.58 and Proposition 2.1.59 (along with Remark 2.1.60)
hold if given a bounded fractal string L , one replaces AL by A∂Ω (the boundary
of Ω), where Ω is any geometric realization of L by a bounded open subset of R.

(ii) Moreover, still for an arbitrary geometric realization Ω of L , one can re-
place ζAL

, the distance zeta function of AL , by ζ∂Ω ,Ω , the distance zeta function
of the relative fractal drum (∂Ω ,Ω), in the sense of Definition 4.1.1 of Subsection
4.1.1 below. In that case, the functional equation connecting the relative distance
zeta function ζ∂Ω ,Ω and the geometric zeta function ζL is even simpler than in the
counterpart of Equation (2.1.84) or (2.1.85). More specifically, for any geometric
realization Ω of the bounded fractal string L , we have

ζ∂Ω ,Ω (s) =
21−s

s
ζL (s), (2.1.88)

for all s ∈ C such that Res > D(ζL ), where

D(ζL ) = D(ζ∂Ω ,Ω ) = Dhol(ζL ) = Dhol(ζ∂Ω ,Ω ) = dimB(∂Ω ,Ω). (2.1.89)
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It follows that given any domain U of C containing {Res > D} (or equivalently,
containing the critical line {Res = D}),26 where D := D(ζL ), ζL has a meromor-
phic continuation to U if and only if ζ∂Ω ,Ω does, and in that case, ζL and ζ∂Ω ,Ω
have the same poles in U \ {0} and with the same multiplicities. Furthermore, for
any simple pole ω ∈U \{0} of ζ∂Ω ,Ω (and hence, also of ζL ), we have that

res(ζ∂Ω ,Ω ,ω) =
21−ω

ω
res(ζL ,ω). (2.1.90)

Proof. Part (i) is established exactly in the same way as for the specific canoni-
cal geometric realization Ωcan,L of L in the rest of this subsection (i.e., Subsec-
tion 2.1.4).

Part (ii) relies on a computation analogous to that in Equations (2.1.82)
and (2.1.83) above, as we now explain:

ζ∂Ω ,Ω (s) :=
∫
Ω

d(x,∂Ω)s−1dx =
∞

∑
k=1

∫
Ik

d(x,∂ Ik)
s−1dx

=
∞

∑
k=1

s−121−s�s
k = s−121−sζL (s),

(2.1.91)

for all s ∈ C such that Res > D(ζL ), which proves Equation (2.1.88). The rest of
(ii) follows immediately from this functional equation. (In fact, Equation (2.1.88)
can be deduced immediately from Equation (2.1.84), by noticing that ζAL

(s) =
ζ∂Ω ,Ω (s)+2s−1δ−s, provided δ ≥ �1/2.27) ��

Finally, we note that for the exact same reason as explained above, all of the
results concerning bounded fractal strings discussed in this book could be expressed
in terms of an arbitrary geometric realization of L via a bounded open subset of R;
that is, the distance zeta function ζAL

(or its counterpart, the tube zeta function ζ̃AL
)

could be replaced by ζ∂Ω ,Ω , the distance zeta function of the relative fractal drum
(∂Ω ,Ω), in the sense of Definition 4.1.1 of Subsection 4.1.1 below (or respectively,
by ζ̃∂Ω ,Ω , the tube zeta function of the relative fractal drum (∂Ω ,Ω)). Therefore,
the choice of the canonical geometric realization Ωcan and A∪{0} = AL ∪{0} =
∂Ωcan given by (2.1.77)–(2.1.79) is merely convenient, but not necessary. We will
not always recall this important fact in the sequel. See, however, Remark 2.1.73 in
Subsection 2.1.5 below.

26 Recall from Corollary 2.1.35 and Corollary 2.1.36 that ζL is holomorphic on {Res > D}.
27 To see this, it suffices to note that ζ∂Ω ,Ω = ζ∂Ωcan,L ,Ωcan,L

and (AL )δ = (−δ ,0)∪Ωcan,L ∪
(�,�+δ ), provided δ ≥ �1/2. Here, � := |Ωcan,L |1 =∑∞k=1 �k. We mention in passing that Equation
(2.1.90) is equivalent to Equation (5.5.15) appearing in Proposition 5.5.4 of Subsection 5.5.2 below.
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2.1.5 Equivalent Fractal Zeta Functions

In this section, we shall introduce an equivalence relation ∼ on the set of zeta func-
tions (see Definition 2.1.69) aimed, in particular, at identifying the zeta function ζA

with its simpler form ζL , by removing the inessential functions a(s) and b(s) ap-
pearing in Equation (2.1.85) above. As a result, the distance zeta function ζA will
enable us to recover some of the main features of the geometric zeta function ζL .

Definition 2.1.62. Given a meromorphic function f , it will be convenient to define
the abscissa of holomorphic continuation of f (if it exists), Dhol( f ), as the infimum
of the real numbers such that f admits a holomorphic continuation to the open right
half-plane {Res > α}:28

Dhol( f ) = inf{α ∈ R : f is holomorphic for Res > α}. (2.1.92)

In general, either Dhol( f ) does not exist (i.e., Dhol( f ) = +∞), or Dhol( f ) ∈
[−∞,+∞). In the sequel, and as was the case in Subsections 2.1.3.1 and 2.1.3.2, we
follow the usual convention and say that Dhol( f ) always exists as an extended real
number: Dhol( f ) ∈ R∪{±∞}.

The largest open right half-plane (of the form {Res > α}, for some α ∈ R∪
{±∞}) on which f is holomorphic, H ( f ) := {Res > Dhol( f )}, is called the half-
plane of holomorphic continuation of f . Here or in Equation (2.1.92), when we
write that f is holomorphic for Res > α , we mean that f admits a holomorphic
continuation to the open right half-plane {Res > α}.

Finally, the vertical line {Res = Dhol( f )} is called the critical line of holomor-
phic continuation of f (or, more briefly, the holomorphy critical line); see Figures
2.5 and 2.6 on page 85 and page 86.

From Theorem 2.1.11(a) and (b), we immediately deduce the following result,
which will be useful for the computation of the upper box dimension of some classes
of fractal sets. Note that according to Section 2.1.3.2, we have Dhol(ζA) ≤ D(ζA),
the abscissa of convergence of the Dirichlet-type integral defining the distance zeta
function ζA in (2.1.1).

Corollary 2.1.63. If A is any bounded subset of RN, then

dimBA = D(ζA). (2.1.93)

The next very useful result is just a restatement of part (ii) of Corollary 2.1.20.

Corollary 2.1.64. If, in addition, we assume that D := dimB A exists and M D
∗ (A)>

0, then
dimB A = D(ζA) = Dhol(A). (2.1.94)

28 Initially, f is defined on some domain U ⊆C. It is clear, then, that while f could a priori be any
complex-valued function on U , it must a posteriori be holomorphic on U .
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Following and adapting [Lap-vFr3, Sections 1.2.1 and 5.1] to our present more
general situation,29 in order to be able to define the key notions of complex di-
mensions and of principal complex dimensions (see Definition 2.1.68 and Defini-
tion 2.1.67, respectively), we assume that the set A has the property that ζA can be
extended to a meromorphic function defined on G ⊆ C, where G is an open and
connected neighborhood of the window W defined by

W = {s ∈ C : Res ≥ S(Ims)}.

Here, the function S :R→ (−∞,D(ζA)], called the screen, is assumed to be Lipschitz
continuous. The graph

S := {S(τ)+ iτ : τ ∈ R} (2.1.95)

of the function S, with the horizontal and vertical axes interchanged, is also called
the screen and the precise meaning will always be clear from the context. Note that
the closed set W has for boundary S (i.e., ∂W = S) and contains the critical line
{Res = D(ζA)}; in fact, W also contains the closed half-plane {Res ≥ D(ζA)}.
In other words, we assume that A is such that its distance zeta function can be
extended meromorphically to an open domain G containing the closed half-plane
{Res ≥ D(ζA)}. (Following the usual conventions, we still denote by ζA the mero-
morphic continuation of ζA to G, which is necessarily unique due to the principle
of analytic continuation. Furthermore, as in [Lap-vFr3], we assume that the screen
does not contain any poles of ζA.) A set A satisfying this property and for which ζA

is ‘languid’ (in the sense of [Lap-vFr3, Definition 5.2], that is, roughly speaking,
grows at most polynomially along the screen and a suitable sequence of horizontal
lines avoiding the poles of ζA) is said to be admissible. (There exist nonadmissi-
ble fractal sets; see Corollary 4.6.17 and [Lap-vFr3, Example 5.32].) In the present
monograph, we will need to consider, in particular, the set of poles of ζA located on
the critical line {Res = D(ζA)}:30

Pc(ζA) = {ω ∈W : ω is a pole of ζA and Reω = D(ζA)}, (2.1.96)

called the set of principal complex dimensions of A (see Definition 2.1.67). Since, as
was noted before, the window W contains the critical line {Res = D(ζA)}, Pc(ζA)
is a subset of the set of all poles of ζA in W (i.e., the set of all visible complex
dimensions of A, which we denote by P(ζA) or P(ζA,W ) (see Definition 2.1.68).

Remark 2.1.65. We stress that because, in most of this monograph (and with the ex-
ception of Chapter 5), we will not use or extend the pointwise and distributional
explicit tube formulas obtained in [Lap-vFr1–3] (and for the validity of which the
above polynomial growth conditions are essential, see [Lap-vFr3, Chapter 5]), we

29 We also take into account the fact that according to Theorem 2.1.11 and Corollary 2.1.20,
Dhol(ζA) ≤ D(ζA) (with equality if the hypotheses of part (c) of Theorem 2.1.11 or, equivalently,
of Corollary 2.1.20, are satisfied). See also Figure 2.6 on page 86 for the important special case
where f is given by a tamed Dirichlet-type integral, in the sense of Subsection 2.1.3.2.
30 Note that clearly (and in contrast to P(ζA) =P(ζA,W ) to be introduced in Definition 2.1.68),
Pc(ζA) is independent of the choice of the window W .
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do not need to include these polynomial growth conditions in our definition of ad-
missibility. Therefore, throughout most of this monograph, an admissible set A is
one for which a meromorphic continuation of ζA exists in a suitable open neigh-
borhood of the given window W (but without requiring any growth conditions on
ζA) and not having any pole along the screen S. The one exception to this general
statement will be provided by Chapter 5 in which we will establish and apply fractal
tube formulas in the general context of the higher-dimensional theory of complex
dimensions developed in this book. In that chapter, we will then make the appro-
priate hypotheses on the screen S and, especially, assume the growth (languidity)
conditions satisfied by the fractal zeta functions under consideration, much as in
[Lap-vFr3, Chapters 5 and 8].

Remark 2.1.66. In general, it seems to be difficult to check whether a set A is admis-
sible. For example, we do not know if the Mandelbrot set or if ‘typical’ Julia sets
are admissible (even in the weaker form of Remark 2.1.65). Further on, however,
we will provide natural sufficient conditions on a given bounded subset A of RN

guaranteeing that ζA has an appropriate meromorphic continuation to a nontrivial
open right half-plane (strictly containing the half-plane H (ζA) = {Res > D(ζA)}
of holomorphic continuation) and hence, that A is admissible (in the sense of Re-
mark 2.1.65). See Section 2.3; see also, more generally, Section 4.5.1, the main
results of which guarantee the admissibility of a large class of relative fractal drums
(A,Ω), in the sense of Section 4.1.1.

A class of Minkowski measurable admissible sets is described in Theorem 2.3.18,
and a class of Minkowski nonmeasurable admissible sets in Theorem 2.3.25. Fur-
thermore, a class of Minkowski measurable admissible sets on the real line, gener-
ated by perturbed Dirichlet strings, is described in Theorem 2.3.17.

The following definition is a slight modification of the notion of complex dimen-
sion for fractal strings introduced by the first author and Machiel van Frankenhui-
jsen in [Lap-vFr1–3], which depends not only on the string, but also on the window
W ; see [Lap-vFr3, Subsection 1.2.1]. The simplification is only introduced here
for technical reasons, and is useful especially when one of the main goals is the
computation of the box dimension of some new classes of fractal sets in R

N ; see
Section 3.5.

Another situation where such a notion is potentially very useful is when one
wants to understand the leading oscillatory behavior (that is, the oscillations of
largest amplitudes) in the geometry of fractal sets. This latter theme should be sig-
nificantly developed in later extensions of the theory (and of the present mono-
graph), especially when investigating ‘fractal tube formulas’ in higher dimensions;
see, e.g., Problem 6.2.38 in Subsection 6.2.3. See also many of the examples pro-
vided in Section 5.5 and illustrating the general fractal tube formulas obtained in
Chapter 5 (Sections 5.1–5.3).

Definition 2.1.67. Let A be an admissible subset of RN . The set of principal complex
dimensions of A, denoted by dimPC A, is defined as the set of poles of ζA which are
located on the critical line {Res = D(ζA)}:
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dimPC A := Pc(ζA), (2.1.97)

where Pc(ζA) is given by (2.1.96).

As we see, in Definition 2.1.67, if A ⊂ R
N is bounded, the singularities of ζA we

are interested in are located on the vertical line {Res = dimBA}. This observation
follows from part (a) of Theorem 2.1.11 above.

Following and extending the definition of complex dimensions of fractal strings
(and other fractals) provided in [Lap-vFr1–3], we also introduce the following nat-
ural higher-dimensional generalization in our context.

Definition 2.1.68. Let A be an admissible subset of R
N . Then, the set of visible

complex dimensions of A with respect to a given window W (often called, in short,
the set of complex dimensions of A relative to W , or simply the set of (visible)
complex dimensions of A if no ambiguity may arise or if W = C), is defined as the
set of all the poles of ζA which are located in the window W :

P(ζA) = {ω ∈W : ω is a pole of ζA}. (2.1.98)

When necessary, one may also denote it by P(ζA,W ), for clarity, and reserve the
notation P(ζA) to the cases where W = C or to where no ambiguity may arise.

Next, we would like to extend the class of zeta functions to which a slight mod-
ification of Definition 2.1.67 and Definition 2.1.68 can be applied. This definition
will be convenient, in particular, for the study of the zeta functions encountered in
the examples discussed in Section 3.5. Given a tamed Dirichlet-type integral f (i.e.,
a DTI given by (2.1.53) and satisfying condition (2.1.54)) which has a meromorphic
extension to a domain G ⊆ C containing the vertical line {Res = D( f )}, we define
the set Pc( f ) in much the same way as in (2.1.96):

Pc( f ) = {ω ∈ G : ω is a pole of f and Reω = D( f )}. (2.1.99)

It is a subset of the set P( f ) of all the poles of the meromorphic function f belong-
ing to G. In other words,

P( f ) = {ω ∈ G : ω is a pole of f}. (2.1.100)

When necessary, one may write P( f ,G) instead of P( f ), for more precision.

If f = ζA, where A is an admissible set for a given window W , then (with
G := W̊ , the interior of the window) Pc( f ) =Pc(ζA), the set of principal complex
dimensions of A, while P( f ,W̊ ) =P( f ) =P(ζA) =P(ζA,W ), the set of (visi-
ble) complex dimensions of A (relative to W ). This follows from the fact that since
A is admissible, ζA does not have any poles along the screen S; see the discussion
following Corollary 2.1.63.

Note that Pc( f ) is independent of the choice of the domain G containing the
critical line {Res = D( f )}. Moreover, since by Theorem 2.1.45(a) above (or, more
generally, by CorollaryA.2.7 in Appendix A below), the function f is holomorphic
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for Res > D( f ), there are no poles of f located in the open right half-plane {Res >
D( f )}; this is why we could equivalently require that the domain G⊆C contains the
closed half-plane {Res ≥ D( f )} in order to define Pc( f ) and P( f ). An entirely
analogous comment can be made about Pc(ζA) and P(ζA) in Definition 2.1.67
and Definition 2.1.68.

Finally, recall from Definition 2.1.62 that we call {Res > Dhol( f )} the half-plane
of holomorphic continuation of f . Indeed, it is the largest open right half-plane of
the form {Res > α} (for some α ∈ R∪{±∞}) to which f can be holomorphically
extended. See Figure 2.5 and also, in the important special case where f is initially
given by a tamed Dirichlet-type integral, Figure 2.6.

We next define the equivalence of two meromororphic functions having the form
of tamed Dirichlet-type integrals, a notion which will be very useful to us in the
sequel; see Remark 2.1.70 below.

Definition 2.1.69. Let f and g be two tamed Dirichlet-type functions (i.e., integrals)
f and g, having a (necessarily unique) meromorphic extension to a connected open
neighborhood U ⊆ C of the closed right half-plane {Res ≥ D( f )}.31 Then, they
are said to be equivalent if D( f ) = D(g) (and this common value is a real num-
ber), see Equation (2.1.55), and their sets of poles located on their common critical
line (of convergence) {Res = D( f ) = D(g)} coincide (see Equation (2.1.96)). More
succinctly, we have

f ∼ g
def.⇐⇒ D( f ) = D(g) (∈ R) and Pc( f ) = Pc(g). (2.1.101)

Remark 2.1.70. We also refer to Definition A.5.1 in Appendix A for a slightly more
general definition of equivalence relation, within the context of (tamed) DTIs of
type I (in the sense of Definition A.4.5), as well as to Definition A.6.6 in Appendix
A (and the text surrounding it, including Remark A.6.7) for a somewhat different
(but analogous) definition of “asymptotic equivalence” which is no longer a true
equivalence relation but presents the advantage of allowing the function g to be
merely assumed to be meromorphic in a suitable domain of C. The latter notion of
asymptotic equivalence should also be useful as a practical tool in many applications
of the theory developed in this book.

Remark 2.1.71. In Definition 2.1.69 above, the multiplicities of the poles should be
taken into account when writing Pc( f ) = Pc(g). (The only known exception to
this general statement is provided by Example 2.1.80 below, which is really cor-
responding to a “borderline case” of equivalence.) In other words, we must view
here the set of principal poles Pc( f ) as a multiset (i.e., as a set with multiplicities).
Indeed, to our knowledge, all the other examples encountered in this book (apart
from Example 2.1.80) and for which we use the symbol ∼ (in the present sense
of the equivalence of zeta functions), the multiplicities of the principal poles are
preserved.

31 As follows from the complete definition, this closed half-plane is actually the closure of the
common half-plane of convergence of f and g, given by Π :=Π( f ) =Π(g).
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If a tamed Dirichlet-type function f is given, the aim in this context is to find
an equivalent function g, defined by a simpler expression. Examples of tamed
Dirichlet-type functions g encountered in this context include functions of the form
g(s) = 1/P(s), where P(s) is a given polynomial with complex coefficients, as well
as g(s) = 1/(eωs − ρ), where ω and ρ are nonzero real numbers. (See Theorem
A.3.2 and Corollary A.3.3 in Appendix A.) Satisfactory results can already be ob-
tained with functions g of the form g(s) = u(s) f (s)+ v(s), for a suitable choice of
the holomorphic functions u and v, with u nowhere vanishing in the given domain.

Proposition 2.1.72. Assume that u(s), v(s) and f (s) are meromorphic functions on
the right half-plane {Res> 0}, with f a tamed Dirichlet-type integral. Furthermore,
assume that u(s) and v(s) have no poles on the closed right half-plane {Res ≥
D( f )}, and that u(s) has no zeros on the critical line {Res = D( f )}. If D( f ) > 0,
then

f (s)∼ u(s) f (s)+ v(s).

In particular, the geometric zeta function ζL of a bounded fractal string L =
(� j) j≥1 such that D(ζL ) > 0 is equivalent to the distance zeta function ζA of the
corresponding set A = AL = {ak = ∑ j≥k � j : k ∈ N} ⊆ R; that is,

ζL ∼ ζA.

Hence, according to Definition 2.1.69, we have that

D(ζL ) = D(ζA) and Pc(ζL ) = Pc(ζA).

Proof. The first claim follows immediately from the definition. The second claim
follows from the first one, combined with Equation (2.1.85), obtained in Exam-
ple 2.1.58. ��

Remark 2.1.73. In keeping with the discussion concluding Subsection 2.1.4 above,
the exact analog of Proposition 2.1.72 holds if A is replaced by the relative fractal
drum (∂Ω ,Ω) in the sense of Definition in Chapter 4, where Ω is any geometric
realization of the fractal string L as a bounded open subset of R and ∂Ω is the
topological boundary of Ω , while ζ∂Ω ,Ω is the corresponding relative zeta function
defined in Subsection 4.1.1 below. It is clear that ζAL

(s) = ζ∂Ω ,Ω (s)+2s−1δ s, pro-
vided δ , appearing in (2.1.1), is such that δ ≥ �1/2, so that dimBL = dimB(∂Ω ,Ω).
Furthermore, the principal complex dimensions (and their corresponding multiplic-
ities) of the functions ζL , ζAL

and ζ∂Ω ,Ω coincide.
Moreover, under the analog of the hypotheses (c) of Theorem 2.1.11, we can also

state that Dhol(ζA,Ω ) = D(ζA,Ω ) and hence, that the lower bound dimBA is also op-
timal from the point of view of holomorphic continuation: H (ζA,Ω ) =Π(ζA,Ω ) =
{Res > dimBA}.

Example 2.1.74. It is easy to construct two bounded sets A and B which are not
bi-Lipschitz equivalent, but are such that ζA ∼ ζB. It suffices, for example, to con-
sider the ternary Cantor set B on the real line. Let L = (� j) j≥1 be the associated
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Cantor string. Specifically, B = ∂L and L is the sequence of lengths 3−n with
multiplicities 2n−1, for n = 1,2,3, . . .; see [Lap-vFr3, Section 2.3.1]. Now define the
set A = {ak}k≥1 by ak = ∑ j≥k l j, for each k ≥ 1. Then ζA(s) = ζB(s). In particular,
dimB A = dimB B. Note that dimH B = log3 2, while dimH A = 0, so that A and B
are not bi-Lipschitz equivalent. (Here, we denote by dimH A the Hausdorff dimen-
sion of A.) Similar examples of sets A and B generating the same fractal strings,
but having different Hausdorff dimensions have been discussed in [Lap1, Exam-
ple 5.1 and 5.1’], [Lap-vFr1–3], as well as revisited in [LapRo1], [LapLéRo] and
[ElLapMacRo], where certain “multifractal zeta functions” are introduced in order
to account, in particular, for such phenomena.

Definition 2.1.75. Let A be a bounded set in R
N , and let Ω be a bounded open set

such that A ⊂ Ω . We define ζA,Ω , the distance zeta function of A relative to Ω (or
relative distance zeta function,32 in short), by

ζA,Ω (s) :=
∫
Ω

d(x,A)s−Ndx, (2.1.102)

for all s ∈ C with Res sufficiently large.

This zeta function is holomorphic in the half-plane {Res> dimBA} and the lower
bound dimBA is optimal from the point of view of the convergence of the Lebesgue
integral on the right-hand side of (2.1.102); that is, the abscissa of (absolute) conver-
gence of ζA,Ω coincides with dimBA, and hence, Π(ζA,Ω ) = {Res > dimBA} is the
half-plane of (absolute) convergence of ζA,Ω ; see Equations (2.1.55) and (2.1.56)
and Figure 2.6. (We will discuss this issue in much greater generality in Subsec-
tion 4.1.1; see, especially, Theorem 4.1.7.) Indeed, the condition A ⊆Ω implies that
there exists δ > 0 such that Aδ ⊆Ω . Now, we apply Lemma 2.1.15 to the part of the
integral in (2.1.102) over the set Ω\Aδ and deduce that it is an entire function of s.
Applying Theorem 2.1.11 to the part of the integral in (2.1.102) over the set Aδ , we
reach the desired conclusion.

We still denote by ζA,Ω its meromorphic extension (if it exists, that is, if A is
admissible) to some open domain G containing a window W .

If A and Ω are disjoint, then ζA,Ω , defined by (2.1.102), is an entire function; see
Lemma 2.1.15. The usual distance zeta function of A (see Definition 2.1.1) corre-
sponds to the choice Ω = Aδ , for some δ > 0: ζA(s) = ζA,Aδ (s).

Proposition 2.1.76. Let A be a bounded set of RN, and letΩ1,Ω2 be bounded open
sets in R

N containing A. Then:

(a) The difference ζA,Ω1 − ζA,Ω2 can be extended to an entire function, and in
particular, ζA,Ω1 ∼ ζA,Ω2 . As a special case, if δ1 and δ2 are any two positive real
numbers, then ζA,Aδ1

− ζA,Aδ2
can be identified with an entire function, and in par-

ticular, ζA,Aδ1
∼ ζA,Aδ2

.

32 The notion of relative distance zeta function will be further extended in Section 4.1, where we
drop the condition A ⊂Ω and no longer assume that A and Ω are bounded; see Definition 4.1.1.
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(b) Let δ1 and δ2 be any two positive real nymbers. If a complex number s0 is a
simple pole of ζA,Aδ1

, then it is a simple pole of ζA,Aδ2
as well and the residues of

these two functions computed at s0 coincide:

res(ζA,Aδ1
,s0) = res(ζA,Aδ2

,s0). (2.1.103)

Proof. (a) For Res > dimBA, the difference of the functions ζA,Ω1(s) and ζA,Ω2(s)
is equal to

∫
Ω1\(Ω1∩Ω2)

d(x,A)s−Ndx−
∫
Ω2\(Ω1∩Ω2)

d(x,A)s−Ndx. (2.1.104)

In light of the inclusion A ⊂ Ω1 ∩Ω2, the set A is disjoint from Ω j \ (Ω1 ∩
Ω2), for j = 1,2. Therefore, both integrals in (2.1.104) are entire functions; see
Lemma 2.1.15.

(b) The claim follows immediately from part (a):

res(ζA,Aδ1
,s0) = res(ζA,Aδ2

,s0)+ res
(
ζA,Aδ1

−ζA,Aδ2
,s0

)
= lim

s→s0
(s− s0)ζA,Aδ2

(s)+ lim
s→s0

(s− s0)
(
ζA,Aδ2

(s)−ζA,Aδ2
(s)

)

= res(ζA,Aδ2
,s0).

This concludes the proof of the proposition. ��

The following result deals with the scaling property of the distance zeta function.
Here, as usual, we write ζA,Aδ (s) :=

∫
Aδ

d(x,A)s−Ndx, for Res > dimBA.

Proposition 2.1.77 (Scaling property of distance zeta functions). For any bounded
subset A of R

N, δ > 0 and λ > 0, we have D(ζλA,λ (Aδ )) = D(ζA,Aδ ) = dimBA and

ζλA,λ (Aδ )(s) = λ
sζA,Aδ (s), (2.1.105)

for all s ∈C with Res > dimBA. Furthermore, if ω ∈C is a simple pole of the mero-
morphic extension of ζA,Aδ (s) to some connected open neighborhood of the critical
line {Res = dimBA} (as usual, we use the same notation for the meromophically
extended function), then

res(ζλA,λ (Aδ ),ω) = λ
ω res(ζA,Aδ ,ω). (2.1.106)

Proof. Equation (2.1.105) follows easily by noting that λ (Aδ ) = (λA)λδ ; we leave
the details to the interested reader. To prove Equation (2.1.106), note that

res(ζλA,λ (Aδ ),ω) = lim
s→ω

(s−ω)ζλA,λ (Aδ )(s)

= lim
s→ω

(s−ω)λ sζA,Aδ (s) = λ
ω res(ζA,ω),

as desired. ��
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An extension of Proposition 2.1.77, formulated in the context of relative fractal
drums, can be found in Theorem 4.1.40 and Corollary 4.1.42.

The relative distance zeta function ζA,Ω has a suitable continuity property with
respect to any nonincreasing sequence of compact sets, as we now explain.

Theorem 2.1.78. Let Ω be a bounded open set, (Ak)k≥1 a nonincreasing sequence
of compact subsets of Ω such that Ak ↓ A as k → ∞; that is, Ak ⊇ Ak+1 for all k and
A = ∩k≥1Ak. Then

ζAk,Ω (s)→ ζA,Ω (s) as k → ∞, (2.1.107)

pointwise for Res > N.

Proof. For the sake of brevity and only in this proof, we write ζA(s) = ζA,Ω (s). Let
us fix any s ∈C such that Res > N. It suffices to show that for any subsequence (k′)
of (k), there exists a further subsequence (k′′) of (k′) such that ζAk′′ (s)→ ζA(s) as
k′′ → ∞.

In order to prove this, we use the Lebesgue dominated convergence theorem.
Let us fix x ∈ Ω . Consider a subsequence (k′) of (k). By the compactness assump-
tion, for each k′, there exists ak′ = ak′(x) ∈ Ak′ such that d(x,Ak′) = d(x,ak′). The
sequence (ak′) is bounded; therefore, there exists a convergent subsequence (ak′′)
converging to some a ∈ A1. It is easy to see that, in fact, a ∈ A. Indeed, defining
Bk = {a j : j ≥ k}, we have Bk ⊂ Ak and from this, it follows that a ∈ Bk ⊆ Ak for
each k. Hence, a ∈ ∩kBk ⊆ ∩kAk = A (clearly, ∩kBk = {a}). Therefore,

|d(x,Ak′′)−d(x,A)|= |d(x,ak′′)−d(x,a)| ≤ |ak′′ −a| → 0, (2.1.108)

as k → ∞, and hence d(x,Ak′′)
s−N → d(x,A)s−N for Res > N pointwise on Ω . The

sequence of complex-valued functions d(x,Ak′′)
s−N is dominated as follows:

|d(x,Ak′′)
s−N |= d(x,Ak′′)

Res−N ≤ d(x,A)Res−N =: F(x), (2.1.109)

where the last inequality results from the inclusion A ⊆ Ak′′ . Here, F ∈ L1(Ω) be-
cause F is continuous on Ω since Res > N. Therefore, ζAk′′ (s) → ζA(s), as de-
sired. ��

In Subsection 4.1.1, in connection with so-called “relative fractal drums” (A,Ω),
we will study the relative distance zeta function ζA,Ω under more general assump-
tions on A and Ω than those of Definition 2.1.75. In particular, Ω (and A) will be
allowed to be unbounded. As will be mentioned in Remark 4.1.9, Theorem 2.1.78
still holds (with essentially the same proof) in the general context of Section 4.1.1.

We now extend the notion of the zeta function of a fractal set A, as follows.

Definition 2.1.79. Let A be a bounded subset of R
N . Assume that A is admissi-

ble with associated window W . The zeta function ζA is defined as the family of
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meromorphic and tamed Dirichlet-type functions f : G →C (where G ⊆C is a con-
nected open set containing W ), such that D( f ) = D(ζA,Aδ ) and P( f ) = P(ζA,Aδ )
for some δ > 0. Each member of the family will be denoted by ζA, in short. In other
words, we identify the distance zeta function ζA (initially defined by (2.1.1)) with f
if ζA ∼ f in the sense of Definition 2.1.69, and the zeta function can be viewed as
the equivalence class ζA = [ζA] = { f : f ∼ ζA} with respect to the relation ∼ defined
on the set of all such meromorphic and tamed Dirichlet-type functions.

The aim is to find a representative f ∈ [ζA] of the zeta function of a given set A
which is as simple as possible.

In Definition 2.1.79, one could replace the notion of equivalence introduced in
Definition 2.1.69 by the more general and flexible notion of asymptotic equivalence
given in Definition A.6.6 of Appendix A.

The definitions and results about equivalent zeta functions given here are in the
spirit of (but not identical to) the corresponding ones obtained towards the beginning
of Chapter 5 of [Lap6] (see, especially, [Lap6, Sections 5.2 and 5.3]), where vari-
ous notions of equivalences of fractal strings (and of associated zeta functions) are
introduced in order to define and study the corresponding moduli spaces of fractal
strings (and fractal membranes).

Example 2.1.80. It is easy to check that the derivative ζ ′A is holomorphic pre-
cisely where the function ζA is. If we assume that a meromorphic extension of ζA

to a domain G ⊆ C containing the abscissa of convergence D(ζA) exists,33 then
the meromorphic extensions of ζA and ζ ′A to G have identical sets of poles (i.e.,
P(ζa) = P(ζ ′A)): if ζA has a pole at ω ∈ G, then ζ ′A has a pole at the same
point, and furthermore, if ζA is holomorphic at s ∈ G, so is ζ ′A. Hence, for the

fractal string L = (� j)
∞
j=1 in Example 2.1.58, we have ζL ∼ ζ (m)

L , where ζ (m)
L is

the m-th derivative of ζL for any fixed positive integer m, and we conclude that
∑ j≥1 �

s
j ∼ ∑ j≥1 �

s
j(log� j)

m.
Note, however, that the orders of the poles are not the same: indeed, if ω is a pole

of ζA of order n, then ω is a pole of ζ ′A of order n+ 1. Therefore, but only for this
“borderline” example of use of Definition 2.1.69 (see Remark 2.1.71), we do not
view here the set of poles P(ζA) as a multiset, that is, as a set with multiplicities.

More generally, for any positive integer m, we have that
∫

Aδ
d(x,A)s−Ndx ∼

∫
Aδ

d(x,A)s−N(logd(x,A))mdx, (2.1.110)

where the integrals are viewed as functions of a complex variable s, meromorphi-
cally extendable to a domain G ⊆ C containing their abscissae of convergence. The
last integral is a special case of a weighted zeta function, which we shall study in
Section 3.4.

33 Note that this is essential in order to avoid situations in which ζA could have a singularity that is
not a pole. A simple example is f (s) = logs and f ′(s) = 1/s.
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The following simple lemma will often be used without explicit mention. Its
proof is easy, and we omit it.

Lemma 2.1.81. Assume that h(s) = f (s)g(s), where g and h are meromorphic
functions defined on a domain containing {Res > α} for some real number α ,
and f has no zeros in that domain. Then D(h) = max{D( f ),D(g)}. If, in addi-
tion, f is holomorphic, then D(h) = D(g) and P(h) = P(g).34 In particular, if
h(s) = (s− c)−1g(s) for some real number c, then

D( f ) = max{c,D(g)}. (2.1.111)

Example 2.1.82. (Ternary Cantor set). Let C(1/3) be the standard ternary Cantor set
in [0,1]. In [Žu3, Example 7], it is shown that for any γ < 1− log3 2, the following
Lebesgue integral can be explicitly computed, using a simple summation of the
corresponding integrals over the open intervals Ik, k ≥ 1, defined by [0,1]\C(1/3) =
∪k≥1Ik:

Fig. 2.8 The graph of the distance function x �→ d(x,A), where A is the ternary Cantor set. Only
the first three generations of the countable family of tents are shown here.

Fig. 2.9 For the ternary Cantor set A = C(1/3), the function y = d(x,A)−γ , x ∈ Ω := (0,1), is
Lebesgue integrable if and only if γ < 1− log3 2. For γ > 0, its graph has countably many connected
components (all of which are unbounded) and uncountably many vertical asymptotes. For any
γ < 1− log3 2, the area of the set {(x,y) ∈Ω ×R : 0 < y < d(x,A)−γ} is equal to ζA(1− γ ,Ω).

34 Observe that in light of Definition 2.1.69, this implies that h ∼ g, but is also a significantly
stronger statement.
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∫ 1

0
d(x,C(1/3))−γ dx =

2 ·6γ−1

(1− γ)(1−2 ·3γ−1)
. (2.1.112)

See the graphs of the functions x �→ d(x,C(1/3)) and y = d(x,C(1/3))−γ in Figures
2.8 and 2.9 on page 104. Using the same procedure and the same formula with
γ = 1− s ∈ C, where Res > log3 2, we obtain successively (see (2.1.1)):

ζC(1/3) (s) =
∫ 1

0
d(x,C(1/3))s−1dx+

∫ 0

−δ
|x|s−1dx+

∫ 1+δ

1
(x−1)s−1 dx

=
∫ 1

0
d(x,C(1/3))s−1dx+2

∫ δ

0
xs−1 dx (2.1.113)

∼
∫ 1

0
d(x,C(1/3))s−1dx = 2

∞

∑
k=1

2k−1
∫ 1

2 3−k

0
xs−1dx

=
2 ·6−s

s(1−2 ·3−s)
∼ 1

1−2 ·3−s ,

which is equivalent to the geometric zeta function of the Cantor string ζCS obtained
in [Lap-vFr3, p. 22]. In particular, we recover the well-known fact (see [Lap-vFr3,
Section 2.3.1]) according to which the set of principal complex dimensions of the
Cantor set is given by

dimPC C(1/3) = {log3 2+ kpi : k ∈ Z}=: log3 2+piZ, (2.1.114)

where p= 2π/ log3 is the oscillatory period of the Cantor set, using the notation and
terminology from [Lap-vFr3, pp. 22-23]. Recall our convention according to which
i :=

√
−1 denotes the imaginary unit; see Equation (1.3.21) on page 40 above. From

Corollary 2.1.63, we deduce another well-known fact: dimB A = log3 2.
For the generalized Cantor set C(a) with a ∈ (0,1/2), defined in Example 2.2.6,35

we obtain in a similar way

ζC(a) (s)∼
1

1−2as . (2.1.115)

(See [Žu3, Example 7].) Hence, we recover the fact that (see [Lap-vFr3, p. 284]):

dimPC C(a) = log1/a 2+piZ, (2.1.116)

where p = 2π/ log(1/a) is the oscillatory period of C(a), and d = dimB C(a) =
log1/a 2. An extension of this fact to a two-parameter family of Cantor sets is ob-
tained in Proposition 3.1.2.

35 Generalized Cantor sets and their oscillations are studied in detail in [Lap-vFr3, Chapter 10].
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2.1.6 Stalactites, Stalagmites and Caves Associated with Fractal
Sets and Fractal Strings

Let A be a given bounded subset of RN , and let δ be a fixed positive real number.
The set Aδ \A can be represented as a disjoint union of its connected components
Uk =Uk(A,δ ), k ∈ J; that is,

Aδ \A =
⋃
k∈J

Uk, (2.1.117)

where the index set J is at most countable. Note that the topological structure of
the set Aδ \A can vary from being very simple to extremely complex, depending
on the choice of the fractal set A.36 On the other hand, if A is the von Koch curve,
then Aδ \A has a very simple topological structure (it is connected), while its metric
properties near A are complicated.

For any given nonzero real number r, we consider the function

f : Aδ → [0,+∞], f (x) := d(x,A)r. (2.1.118)

(If r < 0, we let 0r := +∞.) For each k ∈ J, let fk be the restriction of f to the
connected component Uk of the open set Aδ \A; i.e., fk := f |Uk . Note that f (x) ∈
(0,+∞) for each x ∈Uk and k ∈ N.

Definition 2.1.83. Assume that r 
= 0. Then, for each k ∈ J, the graph of the func-
tion fk, viewed as a subset of Uk × (0,+∞) ⊂ R

N+1,37 is called the k-th stalactite
associated with the fractal set A (and with parameters r and δ ).

Furthermore, the set cave(A) = cave(A,δ ,r), defined by

cave(A) := {(x,u) ∈ Aδ × (0,+∞) : 0 < u < f (x)} (2.1.119)

and viewed as a subset of Aδ ×(0,+∞)⊂R
N+1, is called the A-cave (corresponding

to the choice of r and δ > 0). In other words, the A-cave is the open subset of
Aδ × (0,+∞) located (strictly) between the graph of f and the x-hyperplane.

It is also convenient to define the epigraph of f as the closed38 subset of the
Cartesian product Aδ × [0,+∞] lying either above the graph of f or on it. More
precisely,

epi( f ) := {(x,u) ∈ Aδ × [0,+∞] : f (x)≤ u}. (2.1.120)

Note that for r < 0, each stalactite is unbounded since f (x)→+∞ as x ∈Uk and
x → ∂Uk.

36 If A = {a}, that is, if A is a one-point set, then the set Aδ \A = Bδ (a) \ {a} is connected for
N ≥ 2, while if A is the Cantor set contained in the real line, then Aδ \A has countably many
connected components.
37 Note that Uk ⊆ Aδ \A, so that x �→ d(x,A) does not vanish on Uk; hence, fk(x)<∞ for all x ∈Uk,
even if r < 0.
38 The epigraph of f is a closed subset of Aδ × [0,+∞] with respect to the relative topology in
Aδ × [0,+∞].
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If r > 0, then the union of all of the stalactites is a bounded subset of R
N+1.

Furthermore, note that f (x) → 0 as x → ∂Uk. If we view the graph of f from any
point in its epigraph, then the stalactites look like stalagmites. Therefore, in the
case when r > 0, we shall call them stalagmites instead. Note that, according to our
terminology, stalagmites are a special case of stalactites; namely, stalagmites are
bounded stalactites.

If A is the Sierpiński carpet, then Figures 2.10 and 2.11 illustrate the correspond-
ing stalagmites, i.e., the graphs of y = d(x,A)r for r > 0. For r = 1, see Figure 2.3
on page 51.

In the following proposition, we collect some basic properties of stalactites, sta-
lagmites and caves associated with fractal sets. Its proof is easy, and we leave it as an
exercise for the interested reader. It is instructive to illustrate its content in the case
of the Sierpiński carpet; see Figures 2.3 and 2.4 (on pages 51 and 52) corresponding
to the case when r is negative, along with Figures 2.2, 2.10 and 2.11 (respectively
on pages 50, 107 and 108) corresponding to the case when r is positive.39

Proposition 2.1.84. Let A be a bounded set in R
N. Assume that δ is a fixed positive

real number and let r 
= 0. Then:

Fig. 2.10 Sierpiński stalagmites in the Hölder case, i.e., when r ∈ (0,1). Here, r = 0.5.

(a) If r < 0, then there is a natural bijection between the family of connected com-
ponents of Aδ and the family of connected components of the A-cave. In particular,
if the set Aδ is connected, then the same property holds for the A-cave.

Furthermore, there is a natural bijection between the family of connected com-
ponents of the set Aδ \A and the family of stalactites (corresponding to A, δ and r).

39 We plan to create a virtual gallery of fractal caves generated by various planar fractal sets A and
for different values of r 
= 0. The notion of a ‘fractal cave’ already exists in mathematical geology,
at least since 1986, motivated in part by the earlier work of Mandelbrot [Man1]; see its definition in
[Cur] on page 168. That definition, based on the idea of the so-called ‘cave modulus’, is completely
different from ours.
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Fig. 2.11 Sierpiński stalagmites in the Lipschitz case, i.e., when r ≥ 1. Here, r = 1.3.

In particular, if the set Aδ \A has countably many connected components, then there
are countably many stalactites. All of the stalactites are unbounded.

(b) If r > 0, then there is a natural bijection between the family of connected
components of Aδ and the family of connected components of the interior of the
epigraph of the function f defined by (2.1.120).

Furthermore, there is a natural bijection between the family of connected com-
ponents of the set Aδ \A and the family of stalagmites (corresponding to A, δ and r).
In particular, if the set Aδ \A has countably many connected components, then there
are countably many stalagmites. The union of these stalagmites is bounded.

Next, let us formulate an interesting geometric result, which is just a restatement
of the corresponding one appearing in Lemma 2.1.3, and due to Harvey and Polking.
Note that for the exponents r ≥ 0, the claim is trivial.

Proposition 2.1.85. Assume that A is any bounded fractal set in R
N. Let us fix

δ > 0. If r > dimBA−N, then the corresponding A-cave in Aδ × (0,+∞) is of finite
volume (i.e., of finite (N +1)-dimensional Lebesgue measure).40

Example 2.1.86. If A is the Sierpiński carpet in the plane, then for r = 1 (and δ >
1/6) the corresponding countably infinite family of stalagmites can be found in
Figure 2.2 on page 50. On the other hand, for r < 0, the corresponding countably
infinite family of stalactites, along with the associated Sierpiński cave, can be found
in Figure 2.3 on page 51, and its total volume is finite if and only if r > log3 8−2.

If A is the ternary Cantor set, then for r = 1 (and δ > 1/6) the corresponding
countably infinite family of stalagmites can be found in Figure 2.8 on page 104,
while for r < 0 the corresponding stalactites, along with the associated Cantor cave,
can be found in Figure 2.9 on page 104. The Cantor cave is of finite volume if and
only if r > log3 2−1.

40 If A is such that there exists D := dimB A and M D
∗ (A)> 0, then the converse implication holds

as well; see [Žu5, Theorem 4.1].



2.1 Basic Properties of the Zeta Functions of Fractal Sets 109

Remark 2.1.87. It is easy to check that if A is the ternary Cantor set, then the graph
of the function y = d(x,A)r, x ∈ [0,1], where r is a nonzero real number, is an in-
homogeneous self-affine set (for the precise definition, see Fraser [Fra2], along with
the references cited therein, including [BarDemk]), with the affinity matrix equal
to diag(1/3,1/3r); see Figures 2.8 and 2.9. Let us provide a very brief description
of the notion of inhomogeneous self-affine set in this case. Recall that the ternary
Cantor set A is a homogeneous self-similar set, in the following sense:

A = S(A),

where S(A) := S1(A)∪S2(A) and the similarity transformations {Si}2
i=1 of R are de-

fined by S1(x) = 1
3 x and S2(x) = 1

3 x+ 2
3 , x∈ [0,1]. If we denote by G the graph of the

function y = d(x,A)r, x ∈ [0,1], and by G0 its subset corresponding to x ∈ [1/3,2/3]
(that is, to the middle interval), then G satisfies the following inhomogeneous fixed
point equation:

G = S̃(G)∪G0. (2.1.121)

Here, S̃(G) := S̃1(G)∪ S̃2(G) and S̃i(x,y) := (Si(x), 1
3r y), for i = 1,2.

In the case when A is the Sierpiński carpet, the function y = d(x,A)r, x ∈ [0,1]2,
where r is a nonzero real number, also has an inhomogeneous self-affine graph
(see Figures 2.2, 2.3 and 2.10), with the corresponding affinity matrix equal to
diag(1/3,1/3,1/3r). More precisely, the Sierpiński carpet A satisfies the homo-
geneous fixed point equation A = S(A), where S(A) = S1(A)∪ ·· · ∪ S8(A) and for
i = 1, . . . ,8, Si is the similarity transformation of R2 defined by Si(x) = 1

3 x+ai, for
x ∈ [0,1]2, while ai ∈R

2 is a suitable translation vector. Let S̃ := S̃1∪·· ·∪ S̃8, where
S̃i(x,y) := (Si(x), 1

3r y), and let G be the graph of y= d(x,A)r, x∈ [0,1]2; also, denote
by G0 the subset of the graph corresponding to x ∈ [1/3,2/3]2 (that is, to the middle
square). Then G satisfies the inhomogeneous fixed point equation G = S̃(G)∪G0.

For r = 1, in both cases we obtain functions which have inhomogeneous self-
similar graphs. Inhomogeneous self-similar sets have been introduced by Barnsley
and Demko in [BarDemk]; see also [Bar] and [Fra1–2, BakFraMa]. Each inhomo-
geneous self-similar set is obviously an inhomogeneous self-affine set.

Example 2.1.88. Let A be the von Koch curve in the plane. Let δ be a fixed positive
number. For r < 0, the corresponding von Koch cave is an unbounded connected
set. According to Proposition 2.1.85, since dimB A = log3 4, we conclude that von
Koch’s cave is of finite volume if and only if r > 1− log3 4.

Note that the topology of the stalactites and the stalagmites depends on the choice
of the parameter δ . This can be already seen in the case when A is just a two-point
set. If A is the Sierpiński carpet, then the content of the following proposition is
illustrated in Figure 2.2 (on page 50) in case (a), and in Figure 2.4 (on page 52)
in case (b). Recall that the Hausdorff distance between two (possibly unbounded)
subsets A and B of RN is defined as the infimum of all ε > 0 such that A ⊆ Bε and
B ⊆ Aε . We denote it by dH(A,B).
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Proposition 2.1.89. Let A be a bounded set in R
N. Given M ≥ 0, let f−1(M) be the

M-level set of the function f : Aδ → [0,+∞], defined by f (x) := d(x,A)r, where r is
a nonzero real number. Then the following properties hold:

(a) Assume that r > 0. Then, as M → 0+, the M-level set f−1(M) tends to the
boundary ∂A in the Hausdorff metric; that is,

lim
M→0+

dH( f−1(M),∂A) = 0.

(b) Assume that r < 0. Then, as M → +∞, the M-level set f−1(M) tends to the
boundary ∂A in the Hausdorff metric; that is,

lim
M→+∞

dH( f−1(M),∂A) = 0.

Proof. Let first us consider the case when r = 1. Let ε be a given (arbitrarily
small) positive real number. If we choose M such that M ∈ (0,ε), then we have
that f−1(M) ⊂ (∂A)ε and ∂A ⊂ ( f−1(M))ε . Hence, dH( f−1(M),∂A) < ε; that is,
limM→0+ dH( f−1(M),∂A) = 0.

The case when r 
= 0 (either for r > 0 or r < 0, respectively) is easily reduced to
the case when r = 1. ��

It is clear that, for any nontrivial bounded fractal string L = (� j) j∈N, it is possi-
ble to introduce analogous definitions. More specifically, let A := AL = {ak}k∈N
be the bounded subset of R defined by ak := ∑ j≥k � j, and let Uk := (ak+1,ak)
for any k ∈ N; see Figure 2.7 on page 90. Much as was done above, for a given
nonzero real number r, we can introduce the function f : (0,a1)→ [0,+∞] defined
by f (x) = d(x,AL )r. (As before, we let 0r = +∞ if r < 0.) For any k ≥ 1, the k-th
stalactite associated with the bounded fractal string L is the graph of the function
fk := f |Uk , the restriction of f to the k-th interval Uk = (ak+1,ak). Furthermore, the
fractal cave associated with the fractal string L (and with r) is defined as the subset
of (0,a1)× (0,+∞)⊂ R

2 given by

caveL := {(x,u) ∈ (0,a1)× (0,+∞) : 0 < u < f (x)}. (2.1.122)

For r < 0, the corresponding fractal cave is always simply connected, while for r > 0
it has countably many connected components.

Since (for Res > dimBA) the distance zeta function ζA(s) :=
∫

Aδ
d(x,A)s−Ndx is

defined via the function g : Aδ → C given by g(x) := d(x,A)s−N , it is of interest to
know the geometry of the graph of g for various values of the complex number s.

We first consider the case when s is a real number. We then have the following
two possibilities:

(a) If s ∈ (dimBA,N) (here, we assume that dimBA < N), then the corresponding
value r := s−N is negative, and the graph of the function g consists of at most count-



2.1 Basic Properties of the Zeta Functions of Fractal Sets 111

ably many stalactites. Furthermore, according to Proposition 2.1.85, the volume of
the associated A-cave is finite for the indicated values of s.

(b) If s > N, then the graph of the function g consists of at most countably many
stalagmites.

The case when s ∈ C\R is considered in the following subsection.

2.1.7 Oscillatory Nature of the Function x �→ d(x,A)s−N

Let A be a given subset of R
N and let δ > 0. Let s be a fixed nonreal complex

number; that is, s := ξ + ηi, with ξ ,η ∈ R and η 
= 0. Since the distance zeta
function ζA is defined via the function g : Aδ \A → C, where g(x) := d(x,A)s−N , it
is of interest to consider some basic properties of this complex valued-function. To
this end, let us fix t ∈ (0,δ ). Note that since ∂ (At) = {x ∈ R

N : d(x,A) = t}, then

Aδ \A = {x ∈ R
N : d(x,A) ∈ (0,δ )}=

⋃
t∈(0,δ )

∂ (At),

where the union is disjoint. The set ∂ (At) can be viewed as a t-shell around A. Since
the function g is constant on ∂ (At), and equal to ts−N , it is natural to study the
behavior of the function

h : (0,δ )→ C, h(t) := ts−N (2.1.123)

as t → 0+. In other words, we are interested in the behavior of the function g when
the shells ‘tend’ to the set A. Since

h(t) = tξ−Neiη log t

and η 
= 0, we see that the function h is oscillatory, in the sense that its range in C is
the curve defined in polar coordinates (r,θ) by r = tξ−N , θ = η log t, for t ∈ (0,δ ).
It is easy to see (by eliminating the parameter t) that the corresponding curve in the
complex plane is of the form r = exp( ξ−N

η θ); that is,

r = e
Res−N

Ims θ , θ ∈ (−∞,(Ims) logδ ). (2.1.124)

Let us assume that η = Ims > 0. We have the following three possibilites:

(a) if Res < N, then the curve described by (2.1.124) is the exponential spiral
tending to +∞ as t → 0+ (that is, θ →−∞);41

(b) if Res = N, then the curve described by (2.1.124) is the circle of radius 1;

41 Recall that, since t = d(x,A), then the condition t → 0+ is equivalent to d(x,A)→ 0+.
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(c) if Res > N, then the curve described by (2.1.124) is the exponential spiral
converging to zero as t → 0+.

In particular, when Res < N, then the function

(0,δ ) � t �→ Reh(t) = tRes−N cos((Ims) log t)

behaves like an unbounded chirp when t → 0+. Here, by a chirp we mean a function
g : (0,δ )→ R of the form f (t) = a(t)cosb(t), where b(t)→ +∞ or b(t)→−∞ as
t → 0+, while either a(t)→ 0+ (for bounded chirps) or a(t)→+∞ (for unbounded
chirps) as t → 0+.

An analogous discussion can be carried out when Ims < 0.

2.2 Residues of Zeta Functions and Minkowski Contents

In this section, we show that some important information concerning the geometry
of fractal sets in R

N is encoded in their associated fractal zeta functions. Therefore,
the distance zeta functions, as well as the tube zeta functions which we introduce
below (see Definition 2.2.8), can be considered as a useful tool in the study of the
geometric properties of fractals.

2.2.1 Distance Zeta Functions of Fractal Sets and Their Residues

We show here that the residue of any meromorphic extension of the distance zeta
function of a fractal set A in R

N is closely related to the Minkowski content of the
set; see Theorem 2.2.3 and Theorem 2.2.14. We use the notation ζA,Aδ (s) for the zeta
function instead of ζA(s), since we want to stress the dependence of the zeta function
on δ . We start with a result which is interesting in itself, and which leads to a new
class of zeta functions called tube zeta functions and described by Definition 2.2.8
below. We shall see in Equation (2.2.23) that this result can be interpreted as a key
functional equation connecting the distance and tube zeta functions.

Theorem 2.2.1. Let A be a bounded set in R
N, and let δ be a fixed positive number.

Then, for all s ∈ C such that Res > dimBA, the following identity holds:

∫
Aδ

d(x,A)s−Ndx = δ s−N |Aδ |+(N − s)
∫ δ

0
ts−N−1|At |dt. (2.2.1)

Furthermore, the function ζ̃A defined by ζ̃A(s) :=
∫ δ

0 ts−N−1|At |dt is absolutely
convergent (and hence, in particular, holomorphic) on the open right half-plane
{Res > dimBA}.
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Proof. Letting s := N−γ (with γ < N−dimBA) and using Lemma 2.1.4, we deduce
that equality (2.2.1) holds for all real numbers s ∈ (D,+∞). Let us denote the left-
hand side of (2.2.1) by f (s), and the right-hand side by g(s). Since f (s)= g(s) on the
subset (D,+∞)⊂ C, to prove the theorem, it suffices to show that f (s) and g(s) are
both holomorphic in the region {Res > D}. Indeed, the fact that (2.2.1) then holds
for all s ∈ C with Res > D follows from the principle of analytic continuation; see,
e.g., [Con, Corollary 3.8]. The holomorphicity of f (s) in that region is precisely the
content of Theorem 2.1.11(a).

To prove the holomorphicity of g(s) on {Res > D}, it suffices to consider
ζ̃A(s) :=

∫ δ
0 ts−N−1|At |dt. Note that ζ̃A(s) has the form of the tamed Dirichlet-

type integral, ζ̃A(s) =
∫

E ϕ(t)sdμ(x), where E := (0,δ ), ϕ(t) := t,42 dμ(x) :=
t−N−1|At |dt, and the latter measure is positive; see Section 2.1.3.2 and Theo-
rem 2.1.45(a). Therefore, it suffices to show that for any s such that Res > D,
the Dirichlet-type integral ζ̃A(s) is well defined. To see this, let ε > 0 be small
enough, so that Res > D+ ε . Since M ∗(D+ε)(A) = 0, there exists Cδ > 0 such that
|At | ≤Cδ tN−D−ε for all t ∈ (0,δ ]. Then

|ζ̃A(s)| ≤
∫ δ

0
tRes−N−1|At |dt

≤Cδ

∫ δ

0
tRes−D−ε−1dt =Cδ

δRes−D−ε

Res−D− ε
< ∞,

which completes the proof of the theorem. ��

Theorem 2.2.1 also extends the identity (2.1.4) from the case of real numbers
γ ∈ (−∞,N −D) to all complex numbers γ such that Reγ < N − dimBA. Further-
more, observe that the identity (13.129) for fractal strings appearing in [Lap-vFr3,
Lemma 13.110, p. 442] is a special case of our identity (2.2.1), obtained for N = 1
and δ = l1.

We can formulate Theorem 2.2.1 in a more condensed form, as follows.

Corollary 2.2.2. Let A be a bounded set in R
N, and let δ > 0 be fixed. If Res >

dimBA−N, then

∫
Aδ

d(x,A)sdx = δ s|Aδ |− s
∫ δ

0
ts−1|At |dt. (2.2.2)

The following theorem is a higher-dimensional generalization of Equation (8.25)
[Lap-vFr3, Theorem 8.15], and provides more information than the latter result
when N = 1, in the case when the underlying set is not Minkowski measurable.
(Here and in the sequel, given a meromorphic function ϕ = ϕ(s) in a connected
open neighborhood of s = ω ∈ C, we denote by res(ϕ,ω) its residue at s = ω .)

42 Note that the Dirichlet-type integral ζ̃A is tamed, in the sense of condition (2.1.54) (or of Defi-
nition A.1.3 of Appendix A), since ϕ(t) ∈ (0,δ ) for all t ∈ (0,δ ). See the proof of Lemma 2.2.9 in
Subsection 2.2.2 below for more details.
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Theorem 2.2.3. Assume that the bounded set A ⊂ R
N is Minkowski nondegenerate,

that is, 0 < M D
∗ (A)≤ M ∗D(A)< ∞ (in particular, dimB A = D), and D < N. If, in

addition, ζA,Aδ (s) can be extended meromorphically to a connected open neighbor-
hood of s = D, then D is necessarily a simple pole of ζA,Aδ (s), and

(N −D)M D
∗ (A)≤ res(ζA,Aδ ,D)≤ (N −D)M ∗D(A). (2.2.3)

Furthermore, the value of res(ζA,Aδ ,D) does not depend on δ > 0. In particular, if
A is Minkowski measurable, then

res(ζA,Aδ ,D) = (N −D)M D(A). (2.2.4)

Proof. Since M D
∗ (A)> 0, by using Theorem 2.1.11(c) we conclude that s = D is a

pole. Therefore, it suffices to show that the order of the pole at s = D is not larger
than 1. Let us take any fixed δ > 0, and let

Cδ := sup
t∈(0,δ ]

|At |
tN−D . (2.2.5)

Note that Cδ <∞ because M ∗D(A)<∞. Then, in light of (2.2.1), for all s ∈R with
D < s < N, we have

ζA,Aδ (s) =
∫

Aδ
d(x,A)s−Ndx = δ s−N |Aδ |+(N − s)

∫ δ

0
ts−N−1|At |dt

≤Cδ δ s−D +Cδ (N − s)
δ s−D

s−D
=Cδ (N −D)δ s−D 1

s−D
.

(2.2.6)

Therefore, 0 < ζA,Aδ (s) ≤ C1(s−D)−1 for all s ∈ (D,N). This shows that s = D
is a pole of ζA,Aδ (s) which is at most of order 1, and the first claim is established.
Namely, D is a simple pole of ζA,Aδ (s).

It is easy to see that for any positive real numbers δ and δ1, with δ < δ1, the
difference

ζA,Aδ1
(s)−ζA,Aδ (s) =

∫
Aδ1\Aδ

d(x,A)s−Ndx

is an entire function of s, since δ ≤ d(x,A) ≤ δ1 for any x ∈ Aδ1
\Aδ ; see Lemma

2.1.15 or Theorem 2.1.45(c). Therefore, the residue of ζA,Aδ (s) at D does not depend
on δ .

In order to prove the second inequality in (2.2.3), is suffices to multiply (2.2.6)
by s−D, with s real and s > D, and then take the limit as s → D+:

res(ζA,Aδ ,D)≤ (N −D) lim
s→D+

Cδ δ s−D = (N −D)Cδ . (2.2.7)

Since the residue of ζA,Aδ (s) at D does not depend on δ , (2.2.3) follows from (2.2.7)
by recalling the definition of Cδ given in (2.2.5) and passing to the limit as δ → 0+
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in the right-hand side of (2.2.7); note that the function δ �→Cδ is nondecreasing and
Cδ →M ∗D(A) as δ → 0+. The first inequality in (2.2.3) is proved analogously. ��

Example 2.2.4. There is a class of fractal sets A for which D := dimB A exists with
M D(A) = 0 and ∫

Aδ
d(x,A)D−Ndx < ∞, (2.2.8)

that is, ζA,Aδ (D)< ∞; see [Žu4, Theorem 4.2]. In particular, it follows that

lim
s→D+

ζA,Aδ (s) = ζA(D).

This shows that there is no meromorphic continuation of ζA,Aδ to a connected open
neighborhood of s = D, since in that case we would have lims→D+ ζA,Aδ (s) = +∞.
Here, the limit as s → D+ is taken along the real axis (i.e., for s > D) or, more
generally, within a sector (Res > D, |arg(s−D)|<Θ ) with half-angleΘ satisfying
0 ≤Θ < π/2; see, e.g., [Ser, Section VI.2] or [HardWr].

Example 2.2.5. Let A = {0} in R. Then ζA,Aδ (s) = 2δ ss−1. Hence, s = 0 is a simple
pole of ζA,Aδ , and for each δ > 0,

res(ζA,Aδ ,0) = lim
s→0

2δ s = 2.

Example 2.2.6. (Residues of the zeta function of the generalized Cantor set). Let
A = C(a) be the generalized Cantor set43 defined by the parameter a ∈ (0,1/2).
Recall that C(a) is obtained by deleting the middle interval of length 1−2a from the
interval [0,1], and then continuing in the usual way, scaling by the factor a at each
step (for a = 1/3, we obtain the middle third Cantor set). By a direct computation,
or using [Žu3, Equation (15) with γ := N − s], we obtain the corresponding zeta
function:

ζA,Aδ (s) =
21−s(1−2a)s

s(1−2as)
+2δ ss−1, (2.2.9)

where δ is a fixed positive real number. In particular,

ζA,Aδ (s)∼
1

1−2as . (2.2.10)

Its residue at D = D(a) := dimB A = log1/a 2 (see [Žu3]) is independent of δ (in
accordance with Theorem 2.2.3) and given by

res(ζA,Aδ ,D) =
2

log2

(
1
2
−a

)D

. (2.2.11)

On the other hand, the values of the lower and upper D-dimensional Minkowski
contents are respectively equal to (see [Žu2, Equations (3.12) and (3.13) for m= 2]):

43 An even more general class of Cantor sets will be introduced in Definition 3.1.1.
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M D
∗ (A) =

1
D

(
2D

1−D

)1−D

, M ∗D(A) = 2(1−a)

(
1
2
−a

)D−1

, (2.2.12)

and thus M D
∗ (A)< M ∗D(A). It follows that C(a) is not Minkowski measurable (for

a much more general result, see [Lap-vFr3, Theorem 2.16]; see also [Lap-vFr3,
Chapter 10]). (We note that in the case of the classical Cantor set, where a = 1/3
and D = log3 2, the values in (2.2.12) have been first obtained in [LapPo2, Theo-
rem 2.4].) Therefore, for any generalized Cantor set A =C(a), with a ∈ (0,1/2), we
have that

(1−D)M D
∗ (A)< res(ζA,Aδ ,D)< (1−D)M ∗D(A); (2.2.13)

see Figure 2.12. This is in agreement with (2.2.3) in Theorem 2.2.3, and also with
the inequalities in the first line of (2.3.62) in Theorem 2.3.37 below. In particular,
since the functions (0,1/2) � a �→ M D

∗ (A) and a �→ M ∗D(A) are bounded, and
D = log1/a 2 → 1− as a → 1/2−, we have that for any positive δ ,

lim
a→1/2−

res(ζA,Aδ ,D) = 0.

The residues of ζA,Aδ (s) at the poles sk := D+ kpi, k ∈ Z, on the critical line
{Res = D}, expressed in terms of the residue at D and of the oscillatory period
p := 2π/ log(1/a) of A, are the following:

res(ζA,Aδ ,sk) =
D2−kpi(1−2a)kpi

skakpi res(ζA,Aδ ,D), k ∈ Z. (2.2.14)

It is noteworthy that these residues tend to zero as k →±∞; more precisely,

| res(ζA,Aδ ,sk)|=
D
|sk|

res(ζA,Aδ ,D) 1
k

as k →±∞. (2.2.15)

This situation is different from that of the zeta function of the Cantor string L for
which a = 1/3 (see [Lap-vFr3, Subsection 2.3.1, p. 41–43]), where we have that the
residues of the meromorphic continuation of the geometric zeta function ζL (s) =
∑ j �

s
j at sk are all equal to 1/ log3 = 2 · 3−sk/ log3, with D = log3 2, p = 2π/ log3.

(See [Lap-vFr3, Subsection 2.3.1] for the Cantor set with basic length equal to 3; a
general result is stated in Theorem 2.16 and in Remark 2.18 of [Lap-vFr3].) This is
easily explained by the presence of the factor s−1 in (2.1.84).

Note that for a ∈ (0,1/2) the corresponding oscillatory period

p(a) :=
2π

log(1/a)

of the generalized Cantor set set A =C(a) tends to zero as a → 0+, which means that
the set of poles
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Fig. 2.12 On the left, the graphs of (respectively, from top to bottom) (1 − D)M ∗D(A),
res(ζA,Aδ ,D) and (1−D)M D

∗ (A), viewed as functions of a ∈ (0,1/2), are depicted in the case
of the generalized Cantor set A =C(a) studied in Example 2.2.6. Here, D = log1/a 2. The horizon-
tal a-axis is expanded ten times with respect to the vertical axis. On the right, the same figure is
represented, but with the natural scale on the horizontal axis. This illustrates the inequality (2.2.13);
see also (2.2.3).

P(a) = {D(a)+ kpi : k ∈ Z}= D(a)+piZ (2.2.16)

of the zeta function ζA,Aδ (s) converges to the imaginary axis in the Hausdorff metric,
as a → 0+. Furthermore,

D(a) =
log2
2π

p(a) = log1/a 2. (2.2.17)

Also, D(a) = dimB A → 0+ and d
da D(a) → +∞ as a → 0+, while D(a) → 1 and

d
da D(a) → 2/ log2 as a → 1/2−. The behavior of the residue for a near 0 is the
following:

lim
a→0+

res(ζA,Aδ ,D) =
2

log2
, lim

a→0+

d
da

res(ζA,Aδ ,D) =−∞. (2.2.18)

Also,

lim
a→0+

d
da

(1−D)M D
∗ (A) = +∞, lim

a→0+
(1−D)

d
da

M ∗D(A) =−∞. (2.2.19)

Remark 2.2.7. Much of the discussion in Example 2.2.6 parallels [Lap-vFr3, Sub-
section 12.1.3] about the lacunarity of a family of generalized Cantor sets. The
(semi-heuristic) notion of lacunarity has been introduced by Mandelbrot in [Man1,
Chapter X]; see also [Man2]. Mathematically, it has been further explored from dif-
ferent points of view in [BedFi], [Man2], [Lap-vFr3, Subsection 12.1.3], and in the
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relevant references therein. See also [Lap-vFr3, Remark 12.7] for several relevant
references from the physics and engineering literature.

2.2.2 Tube Zeta Functions of Fractal Sets and Their Residues

Going back to Theorem 2.2.1, we see that it is natural to introduce a new fractal zeta
function of bounded subsets A of RN .

Definition 2.2.8. Let δ be a fixed positive number, and let A be a bounded subset
of RN . Then, the tube zeta function of A, denoted by ζ̃A, is defined by

ζ̃A(s) :=
∫ δ

0
ts−N−1|At |dt, (2.2.20)

for all s ∈ C with Res > dimBA; see Theorem 2.2.1. As we know from the proof of
Theorem 2.2.1 (see also footnote 42 on page 113), the tube zeta function is a tamed
Dirichlet-type integral.

An immediate consequence of Theorem 2.2.1 is that for any bounded subset A of
R

N , we have
Dhol(ζ̃A)≤ D(ζ̃A)≤ dimBA. (2.2.21)

Furthermore, assuming that dimBA < N, then D(ζ̃A) = dimBA, as we shall see in
Corollary 2.2.10 below.

Note that the underlying space of scales can be viewed as the multiplicative group
(0,+∞) equipped with its natural Haar measure dt/t. The measure dμ(t) := dt/t
is the standard ‘Haar measure’ on the group G := (0,+∞), in the sense that it is
invariant under multiplication. More precisely, for any μ-measurable subset A of G
and for any g ∈ G, we have μ(gA) = μ(A). In our case, this follows easily from
the fact that μ(gA) =

∫
gA dt/t =

∫
A dσ/σ = μ(A), where we have used the change

of variables σ = g−1t. Hence, Equation (2.2.20) can be rewritten as follows (for
Res > dimBA):

ζ̃A(s) =
∫ δ

0
ts−N |At |

dt
t
. (2.2.22)

A similar comment can be made about the integral appearing on the right-hand
side of (2.1.4) in Lemma 2.1.4 and of (2.2.1) in Theorem 2.2.1.

We first note that ζ̃A is a tamed Dirichlet-type integral (in the sense that it is
of the form (2.1.53) and satisfies condition (2.1.54)). Hence, it follows from Theo-
rem A.1.4 of Appendix A that D(ζ̃A), the abscissa of convergence of ζ̃A (as given
by (2.1.55)), is well defined and Π(ζ̃A), the half-plane of convergence of ζ̃A (as
given by (2.1.56)) is the largest open right half-plane on which the Lebesgue inte-
gral appearing on the right-hand side of (2.2.20) is convergent (i.e., is absolutely
convergent).
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The following lemma and its proof supplement Example 2.1.43 above. See also
part (1) of Proposition A.2.4 in Appendix A.

Lemma 2.2.9. The tube zeta function ζ̃A is a tamed DTI.

Proof. With the notation of (2.1.53), we can let E := (0,δ ), ϕ(t) := t for all t ∈ E,
and μ(dt) := t−N−1|At |dt = t−N |At | dt

t , viewed as a local positive measure on E.
Clearly, we then have

ζ̃A(s) =
∫ δ

0
ts−N−1|At |dt =

∫
E
ϕ(t)sμ(dt),

for all s ∈ C such that Res > dimBA. Furthermore, we obviously have that 0 <
ϕ(t) = t < δ for all t ∈ E (so that condition (2.1.54) holds with C := δ ). Hence, ζ̃A

is a tamed DTI.
Alternatively, if we want to view dt/t as the scale invariant measure on (0,+∞),

we can let E := (0,+∞),

ϕ(t) :=

{
t, for t ∈ (0,δ ),
δ , for t ∈ E \ (0,δ ),

and μ(dt) := ρ̃(t)dt/t, where

ρ̃(t) :=

{
t−N |At |, for t ∈ (0,δ ),
0, for t ∈ E \ (0,δ ).

Again, it is clear that ζ̃A is a tamed DTI, also with the choice of C := δ in condition
(2.1.54), since 0 < ϕ(t)≤ δ for all t ∈ E. ��

We call ζ̃A the tube zeta function of A since its definition involves the tube func-
tion (0,δ ) � t �→ |At |. Relation (2.2.1) can be written as the following functional
equation:

ζA,Aδ (s) = δ
s−N |Aδ |+(N − s)ζ̃A(s), (2.2.23)

for any δ > 0 and for all s such that Res > dimBA. From Theorem 2.2.1, we see that
ζ̃A(s) is holomorphic on {Res > dimBA} and that the lower bound is optimal, from
the point of view of the convergence (i.e., absolute convergence) of the Lebesgue
integral defining ζ̃A(s) in Equation (2.2.20) or, equivalently, Equation (2.2.22).

Note that in light of the functional equation (2.2.23) connecting the tube and
distance zeta functions, one can have the impression that, provided dimBA < N,
the tube zeta function has a simple pole at s = N. However, as we have seen in
Theorem 2.2.1, the distance zeta function ζA is holomorphic in the open right half-
plane{Res > dimBA}. It follows, in particular, that ζ̃A is regular (i.e., holomorphic)
at s = N provided dimBA < N.

Assuming that there exists a meromorphic extension of ζ̃A(s) (or, equivalently,
of ζA(s)) to a connected open neighborhood of D := dimBA, and D is a simple pole,
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with D < N,44 then it follows from (2.2.23) that

res(ζ̃A,D) =
1

N −D
res(ζA,Aδ ,D). (2.2.24)

Indeed,

res(ζA,Aδ ,D) = lim
s→D

(s−D)[δ s−N |Aδ |+(N − s)ζ̃A(s)]

= (N −D) lim
s→D

(s−D)ζ̃A(s)

= (N −D) res(ζ̃A,D).

The following corollary is an immediate consequence of Proposition 2.2.19 be-
low and of the relevant definitions given earlier in Section 2.1.

Corollary 2.2.10. Let us assume that dimBA < N. Then, not only (2.2.52) in Propo-
sition 2.2.19 below holds (i.e., D(ζA) = D(ζ̃A) = dimBA), but ζA and ζ̃A also have
the same abscissae of holomorphic continuation and meromorphic continuation,
respectively:

Dhol(ζA) = Dhol(ζ̃A), Dmer(ζA) = Dmer(ζ̃A) (2.2.25)

with
Dmer(ζA)≤ Dhol(ζA)≤ D(ζA) = dimBA. (2.2.26)

Therefore, ζA and ζ̃A have the same half-planes of (absolute) convergence, holo-
morphic continuation and meromorphic continuation; that is,

{Res > dimBA}=Π(ζA) =Π(ζ̃A),

H (ζA) = H (ζ̃A) and Mer(ζA) = Mer(ζ̃A).
(2.2.27)

In particular, ζA and ζ̃A have the same critical line {Res = dimBA}, as well as the
same holomorphy critical line {Res = Dhol(ζA)} and the same meromorphy critical
line {Res = Dmer(ζA)}.

Recall from part (b) of Remark 2.1.21 (which relies on key results from Section
4.6 below, namely, Theorem 4.6.9 and Corollary 4.6.17 along with Remark 4.6.19)
that the inequalities in (2.2.26) are sharp. More specifically, given any N ≥ 1, there
exists an explicitly constructible bounded subset A of RN for which D := dimBA<N
and the following string of inequalities holds:

Dmer(ζA) = Dmer(ζ̃A) = Dhol(ζA) = Dhol(ζ̃A)

= D(ζA) = D(ζ̃A) = dimBA.
(2.2.28)

Moreover, the set A can be constructed to be maximally hyperfractal (in the sense
of part (iii) of Definition 4.6.23) and transcendentally ∞-quasiperiodic (in the sense
of Subsection 4.6.1).

44 Since A ⊆ R
N , we always have that D ≤ N.



2.2 Residues of Zeta Functions and Minkowski Contents 121

We summarize part of this discussion in the following theorem, which follows
form Equation (2.2.23) and Theorem 2.1.11. It is the exact counterpart for tube
zeta functions of Theorem 2.1.11 for distance zeta functions. A detailed comparison
between ζA and ζ̃A is provided in Proposition 2.2.19 and Corollary 2.2.20 below,
along with Corollary 2.2.10 above. We note that in light of the presence of the factor
(s−N) on the right-hand side of Equation (2.2.23), the case when dimBA = N is
discussed separately in the proof of Theorem 2.2.11 below.

Theorem 2.2.11. Let A be an arbitrary bounded subset of RN and let δ > 0. Then:

(a) The tube zeta function ζ̃A defined by (2.2.20) is holomorphic (i.e., analytic)
in the open right half-plane {Res > dimBA}, and for all complex numbers s in that
region,

ζ̃ ′A(s) =
∫ δ

0
ts−N−1 log t |At |dt. (2.2.29)

(b) The lower bound in the open right half-plane {Res > dimBA} is optimal,
from the point of view of the (absolute) convergence of the tamed Dirichlet-type
integral defining ζ̃A. In other words,

dimBA = D(ζ̃A), (2.2.30)

where D(ζ̃A) is the abscissa of convergence of ζ̃A, as defined in Equation (2.1.55).45

It follows that D(ζ̃A) ∈ [0,N]. (See also Corollary 2.2.10 above for more detailed
information.) Furthermore, the identity (2.2.20) continues to hold in the half-plane
of (absolute) convergence {Res > dimBA} of ζ̃A. Moreover, we have (see part (a)
of Remark 2.2.12 below)

D(ζ̃A) = inf

{
α ∈ [0,N + 1

10 ] :
∫ δ

0
tα−N−1|At |dt < ∞

}
. (2.2.31)

(c) If the box (or Minkowski) dimension D := dimB A exists and M D
∗ (A) > 0,

then ζ̃A(s) → +∞ as s ∈ R converges to D from the right. According to (2.2.21),
it then follows that (under the additional hypotheses of the present part (c) of the
theorem), we have

dimB A = D(ζ̃A) = Dhol(ζ̃A), (2.2.32)

where Dhol(ζ̃A), the abscissa of holomorphic continuation of ζ̃A (as given by
(2.1.27) above), is defined so that {Res>Dhol(ζ̃A)} be the maximal right half-plane
of the form {Res > α}, for some α ∈ R∪{±∞}, to which ζ̃A can be holomorphi-
cally continued. For more details, see Corollary 2.2.10 and Proposition 2.2.19 along
with part (b) of Remark 2.2.12 below.

45 See Subsection 2.1.3.2 above and Appendix A below for the more general setting of tamed
Dirichlet-type integrals.
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Proof. (b) If dimBA < N, the claim follows from the functional equation (2.2.23).
Therefore, let us consider the case when dimBA = N. Recall from Equation (1.3.7)
that we always have 0 ≤ dimBA ≤ N. Let ε > 0 and define σ := N−ε . We then have
that M ∗σ (A) = +∞, which implies that there exists a sequence of positive numbers
sk ∈ (0,δ ) converging to zero and such that

Ck :=
|Ask |
sN−σ

k

=
|Ask |

sεk
→+∞, as k → ∞.

Since t �→ |At | is nondecreasing, we now have

∫ δ

0
tσ−N−1|At |dt =

∫ δ

0
t−ε−1|At |dt ≥

∫ δ

sk

t−ε−1|At |dt

≥ |Ask |
∫ δ

sk

t−ε−1 dt =
|Ask |
εsεk

− |Ask |
εδ ε

≥ |Ask |
εsεk

− |Aδ |
εδ ε

.

By letting k →∞, we conclude that
∫ δ

0 tσ−N−1|At |dt =+∞, and since this is true for
every ε > 0, we have that D(ζ̃A) = N = dimBA.

(c) If dimB A < N, the claim follows from Equation (2.2.23). Let us therefore
assume that dimB A=N. Since M N

∗ (A)> 0, for a fixed δ > 0, there exists a constant
C > 0 such that for all t ∈ (0,δ ), we have |At | ≥ CtN−N = C. By choosing σ > N,
we then have

ζ̃A(σ) =
∫ δ

0
tσ−N−1|At |dt ≥C

∫ δ

0
tσ−N−1 dt =

Cδσ−N

σ −N

and hence, ζ̃A(σ)→+∞ when σ → N+. ��

Remark 2.2.12. (a) A priori, the infimum in Equation (2.2.31) of part (b) of The-
orem 2.2.11 should be taken over all real numbers α ∈ R, but since D(ζ̃A) =
dimBA ∈ [0,N] (in light of (2.2.30)) and for α > N the function t �→ tα−N−1|At |
is integrable on (0,δ ) (namely, it can be dominated by the function t �→C · tα−N−1,
where C := |Aδ |, which is clearly integrable on (0,δ )), it can be taken over all
α ∈ [0,N + 1

10 ]. In fact, instead of 1
10 , we may take any positive real number.

(b) It follows from part (c) of Theorem 2.2.11 that D is a singularity (which may
or may not be a pole) of ζ̃A. Naturally, if ζ̃A possesses a meromorphic continuation
to an open connected neighborhood of D, then it follows that D is a pole of ζ̃A.
In Section 2.3 and Section 4.5 will be provided several sufficient conditions under
which ζ̃A can be meromorphically continued beyond the critical line Res = D, and
hence, in particular, to a connected open neighborhood of D.
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The following proposition is the counterpart for tube zeta functions of Proposi-
tion 2.1.76. It will be useful in the proof of Theorem 2.2.14 below.

Proposition 2.2.13. Let A be a bounded subset of RN, and let δ1, δ2 be two positive
real numbers. Let us denote the corresponding two tube zeta functions by ζ̃A( · ;δ j),
for j = 1,2. Then:

(a) The difference ζ̃A( · ;δ1)− ζ̃A( · ;δ2) can be extended to an entire function,
and in particular, ζ̃A( · ;δ1)∼ ζ̃A( · ;δ2). As a special case, if δ1 and δ2 are any two
positive real numbers, then ζ̃A( · ;δ1)− ζ̃A( · ;δ2) can be identified with an entire
function, and in particular, ζ̃A( · ;δ1)∼ ζ̃A( · ;δ2).

(b) If a complex number s0 is a simple pole of ζ̃A( · ;δ1), then it is also a simple
pole of ζ̃A( · ;δ2) and we have that

res(ζ̃A( · ;δ1),s0) = res(ζ̃A( · ;δ2),s0). (2.2.33)

Proof. (a) Assuming without loss of generality that δ1 < δ2, we have that

ζ̃A(s;δ2)− ζ̃A(s;δ1) =

∫ δ2

δ1

ts−N−1ds. (2.2.34)

In the notation of (2.1.53), the last integral can be viewed as a tamed Dirichlet-type
integral (DTI) with E := (δ1,δ2), ϕ(t) := t for all t ∈ E and dμ(t) := t−N−1dt, by
noting that ϕ(t) ∈ (δ1,δ2) for all t ∈ E. This DTI defines an entire function, by case
(c) of Theorem 2.1.45. This completes the proof of case (a) of the proposition.

The proof of case (b) follows much in the same way as the proof of part (b) of
Proposition 2.1.76 above. ��

In light of the discussion surrounding Equation (2.2.24) and preceding the state-
ment of Theorem 2.2.11, the following result is an immediate consequence of The-
orem 2.2.3 (and relation (2.2.1)). More specifically, in light of those earlier results,
only the case when dimB A = N will be discussed in the proof.

Theorem 2.2.14. Assume that A is a Minkowski nondegenerate bounded subset of
R

N and there exists a (necessarily unique) meromorphic extension of ζ̃A to a con-
nected open neighborhood of D := dimB A.46 Then D is a simple pole of ζ̃A, and for
any positive δ , res(ζ̃A,D) is independent of δ . Furthermore, we have

M D
∗ (A)≤ res(ζ̃A,D)≤ M ∗D(A). (2.2.35)

In particular, if A is Minkowski measurable, then the residue of the tube zeta function
of A at s = D is equal to the D-dimensional Minkowski content of A; that is,

res(ζ̃A,D) = M D(A). (2.2.36)

46 Recall from Subsection 1.3.1 that dimB A exists since A is Minkowski nondegenerate.
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Proof. Let us only consider the case when dimB A = N. In the proof of Theo-
rem 2.2.11, it is shown that s = N is at least a simple pole of ζ̃A since M N

∗ (A)> 0.
We will show that its order cannot be greater than 1. Fix δ > 0 and let

Cδ := sup
t∈(0,δ ]

|At |
tN−N = sup

t∈(0,δ ]
|At |= |Aδ |< ∞. (2.2.37)

Then, for all s ∈ R such that s > N, we have

ζ̃A(s) =
∫ δ

0
ts−N−1|At |dt ≤ Cδ δ s−N

s−N
. (2.2.38)

Therefore, we have that 0 < ζ̃A(s)≤C1(s−N)−1 for all real numbers s > N; hence,
the order of the pole s = N is at most 1. It follows that ζ̃A has a simple pole at s = N.
By case (b) of Proposition 2.2.13 just above, we know that the residue of ζ̃A at s=N
does not depend on δ . We now multiply (2.2.38) by (s−N) and take the limit as
s → N+ of the resulting inequality in order to conclude that

res(ζ̃A,N)≤ lim
s→N+

Cδ δ s−N =Cδ . (2.2.39)

By recalling the definition of Cδ and letting δ → 0+ (note that δ �→ Cδ is nonde-
creasing) we get that res(ζ̃A,N)≤ M ∗N(A). The inequality M N

∗ (A)≤ res(ζ̃A,N) is
proved analogously. ��

Refinements and extensions of this result can be found in Theorems 2.3.18
and 2.3.25 below.

Remark 2.2.15. According to Remark 1.3.1 on page 31, we conclude that if A is
such that D := dimB A exists and D = N, then M N(A) exists as well and M N(A) =
|A|. Moreover, in this case, it follows from Theorem 2.2.14 that we also have that
res(ζ̃A,N) = |A|.

Remark 2.2.16. Returning to the case of the unit interval I := [0,1] in R, already
considered in Example 2.1.16, we will demonstrate how the distance zeta function
fails to provide useful information about the Minkowski content of I in this example
(since dimB I = 1), but the tube zeta function still does. Recall that, by the afore-
mentioned example, the distance zeta function of I is given by

ζI(s) =
2δ s

s
(2.2.40)

and is meromorphic on C with a simple pole at s = 0. Also recall that Dhol(ζI) =
0 < 1 = D(ζI).

One the other hand, one has that |It |= 1+2t and by an easy calculation,

ζ̃I(s) =
∫ δ

0
ts−2|At |dt =

∫ δ

0
ts−2(1+2t)dt =

2δ s

s
+
δ s−1

s−1
, (2.2.41)
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for all s ∈ C with Res > 1. Upon analytic continuation, we deduce that ζ̃I has a
meromorphic extension to all of C given by

ζ̃I(s) =
2δ s

s
+
δ s−1

s−1
, for all s ∈ C. (2.2.42)

Therefore, Dhol(ζ̃I) = D(ζ̃I) = 1 and

res(ζ̃I ,1) = 1 = |I|= M 1(I). (2.2.43)

We will encounter this type of bad behavior of the distance zeta function when-
ever s=N is a pole of the tube zeta function. This statement follows from the general
functional equation

ζA(s) = δ s−N |Aδ |− (s−N)ζ̃A(s) (2.2.44)

obtained in (2.2.23) for bounded subsets A of RN , since clearly the potential pole of
the tube zeta function at s = N (which is simple if it exists) is canceled by the factor
(N − s) and, hence the distance zeta function is then holomorphic at s = N.

Also note that if s = N is a simple pole of the tube zeta function ζ̃A (viewed via
the meromophic extension), then

ζA(N) = |Aδ |− res(ζ̃A,N). (2.2.45)

In particular, if s = N is a simple pole of ζ̃A, then ζA(N)< |Aδ |.47 We point this out
because one could wrongly conclude that the equality holds by substituting s = N in
the integral

∫
Aδ

d(x,A)s−N dx defining the distance zeta function ζA and evaluating it.

See also Equation (2.1.34) in Proposition (2.1.22). If |A|> 0 (and, hence, dimB A =
N according to (1.3.8)), the apparent contradiction can be explained by the fact
that we are integrating the indeterminate form 00 over a set A of positive Lebesgue
measure. In the case when dimBA < dimBA = D, it would be interesting to prove or
disprove that the tube zeta function cannot have a meromorphic continuation to a
connected open neighborhood of s = D.

Proposition 2.2.17. Assume that A is a bounded subset of RN such that its tube zeta
function ζ̃A can be meromorphically extended to a connected open neighborhood of
s = N. Then

ζA(N) = |Aδ |− res(ζ̃A,N). (2.2.46)

Moreover, if A is Minkowski measurable, then

ζA(N) = |Aδ \A|N . (2.2.47)

In other words, the value of ζA(N) is equal to the Lebesgue measure of the deleted
δ -neighborhood of A, i.e., of the set Aδ \A.

Proof. Equation (2.2.46) was already proved in Equation (2.2.45) in the case when
s = D is a nonremovable singularity (i.e., in the present case, a simple pole) of the

47 By contrast, we have the equality ζA(N) = |Aδ | here, whenever dimBA < N.
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tube zeta function ζ̃A. Since, in the case when s = N is a removable singularity, the
claim is obvious (by passing to the limit as s → N in Equation (2.2.44)), we have
thus proved the first result.

Equation (2.2.47) follows from Equation (2.2.36) of Theorem 2.2.14 and from a
result stated in Remark 1.3.1 on page 31:

ζA(N) = |Aδ |− res(ζ̃A,N) = |Aδ |−M N(A)

= |Aδ |− |A|= |Aδ \A|.
(2.2.48)

This concludes the proof of the proposition. ��

The next remark follows essentially from the discussion preceding Theo-
rem 2.2.14 and will be used in the sequel, most of the time implicitly.

Remark 2.2.18. Assume that D := dimBA < N. In light of Equation (2.2.23), for
any δ > 0, the two zeta functions ζA(s) := ζA,Aδ (s) and ζ̃A(s) differ by a function

δ s−N +(N − s− 1)ζ̃A(s), which according to (2.2.21), is holomorphic at least on
the open right half-plane {Res > D}. Therefore, if one of them has a meromorphic
continuation to some connected open set U ⊇ {Res > D}, so does the other, and
then they have exactly the same poles in U (with the same multiplicities): P(ζ̃A) =

P(ζA,Aδ ) or, more precisely, P(ζ̃A,U) = P(ζA,Aδ ,U). In particular,

Pc(ζ̃A) = Pc(ζA,Aδ ). (2.2.49)

Furthermore, in that case, if ω ∈U is a simple pole of ζ̃A(s), then it is also a simple
pole of ζA,Aδ (s) and the corresponding residues are related in much the same way
as in Equation (2.2.24) above (note that we must have ω 
= N since Reω ≤ D and
D < N):

res(ζ̃A,ω) =
1

N −ω res(ζA,Aδ ,ω). (2.2.50)

More generally, if ω ∈U is a pole of higher order, then the corresponding principal
parts (at s = ω) of the two zeta functions ζ̃A and ζA are related in a simple way,
which can also be deduced from the identity (2.2.23).

In light of Equation (2.2.23), it is not surprising that, under some natural con-
ditions, the distance and tube zeta functions of a given bounded subset of RN are
equivalent, in the sense of Definition 2.1.69. Further information will be provided
in Corollary 2.2.20 below.

Proposition 2.2.19. Assume that A is a bounded subset of RN such that dimBA <
N. Assume that either ζA or ζ̃A possesses a meromorphic extension to an open,
connected open neighborhood U of a window W , containing the closed half-plane
{Res ≥ dimBA}. Then, both ζA and ζ̃A can be (uniquely) meromophically extended
to U. Furthermore, P(ζA,W ) = P(ζ̃A,W ).
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More specifically, the tube and distance zeta functions ζA and ζ̃A, meromorphi-
cally extended to U,48 have exactly the same set of poles in W , with the same mul-
tiplicities. Hence, the fractal set A has the same set of visible complex dimensions,
whether they are defined via ζA or via ζ̃A. In particular,

ζA ∼ ζ̃A, that is, dimPC A := Pc(ζA) = Pc(ζ̃A). (2.2.51)

Also, the upper box dimension of A coincides with the abscissae of (absolute) con-
vergence of ζA and ζ̃A:

dimBA = D(ζA) = D(ζ̃A). (2.2.52)

Proof. In light of Equation (2.2.23), and since s �→ δ s−N |Aδ | is an entire function,
we have that ζA(s) ∼ (N − s)ζ̃A(s). Using the inequality dimBA < N and the same
equation, we conclude from Theorem 2.2.11(a) (or from Theorem 2.2.1) that s = N
cannot be a singularity of ζ̃A, since, otherwise, it would also be a singularity of ζA.
Therefore, (N − s)ζ̃A(s)∼ ζ̃A(s), and the claim follows immediately by transitivity
of the equivalence relation ∼.

Finally, the last part of the proposition (namely, Equations (2.2.51) and (2.2.52))
follows from the earlier part combined with Theorem 2.1.11(b). ��

The next corollary follows at once from Theorems 2.1.11, 2.2.3, 2.2.11 and
2.2.14, combined with Proposition 2.2.19, which it complements.

Corollary 2.2.20. If D := dimB A exists and satisfies D < N, then D is a simple pole
of both ζA and ζ̃A. Furthermore, we have

res(ζA,D) = (N −D) res(ζ̃A,D), (2.2.53)

while if, in addition, A is Minkowski measurable, we have

res(ζ̃A,D) = M D(A), res(ζA,D) = (N −D)M D(A). (2.2.54)

Moreover, if ω is a pole of the meromorphic continuation (assumed to exist) of ζ̃A to
a domain U ⊆C containing {Res > D} (or equivalently, containing the critical line
{Res = D}),49 then it is a pole (of the same order) of the meromorphic continuation
of ζA to U, while if, in addition, ω is a simple pole of ζ̃A (and hence, also, of ζA),50

then we also have
res(ζA,ω) = (N −ω) res(ζ̃A,ω), (2.2.55)

which is independent of δ .51

48 As usual, the notation ζA and ζ̃A for the meromorphic extensions is left unchanged.
49 Recall from Theorem 2.1.11(a) and Theorem 2.2.11(a) that ζA and ζ̃A are holomorphic on
{Res > D}.
50 Naturally, if ω is a multiple pole, and in light of Equation (2.2.20), the principal parts of ζ̃A and
ζA are related similarly.
51 In light of Proposition 2.2.19, the exact same results hold if the roles of ζ̃A and ζA are inter-
changed in the statement of Corollary 2.2.20.
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In the following example, we compute the complex dimensions of the (N − 1)-
dimensional sphere in R

N .52

Example 2.2.21. Let BR(0) be the ball in R
N centered at the origin and of radius

R > 0, and let A := ∂BR(0) be its boundary; i.e., the (N −1)-dimensional sphere of
radius R. We would like to compute its complex dimensions. To this end, we first
compute the corresponding tube zeta function ζ̃A. Let us fix any δ ∈ (0,R), and let
ck := 1−(−1)k; i.e., ck := 0 for even k and ck := 2 for odd k, where k ∈ {0,1, . . . ,N}.
Since |At |=ωN(R+t)N −ωN(R−t)N , where t ∈ (0,R) andωN is the N-dimensional
Lebesgue measure of the unit ball in R

N (see Equation (1.3.22)), we have that for
any fixed δ ∈ (0,R),

ζ̃A(s) =
∫ δ

0
ts−N−1|At |dt = ωN

∫ δ

0
ts−N−1((R+ t)N − (R− t)N)dt

= ωN

∫ δ

0
ts−N−1

(
N

∑
k=1

(
N
k

)
RN−k(1− (−1)k)tk

)
dt

= ωN

N

∑
k=0

ckRN−k
(

N
k

)∫ δ

0
ts−N+k−1dt

= ωN

N

∑
k=0

ckRN−k
(

N
k

)
δ s−N+k

s− (N − k)
,

for all s ∈C with Res > N−1. (Here, the numbers
(N

k

)
stand for the usual binomial

coefficients.) The last expression can be meromorphically extended to the whole
complex plane, and we still denote it by ζ̃A(s). Therefore, we have

ζ̃A(s) = ωN

N

∑
k=0

ckRN−k
(

N
k

)
δ s−N+k

s− (N − k)
, (2.2.56)

for all s ∈ C, where the constants ck are defined as above. It follows that

dimB A = D(ζ̃A) = N −1 (2.2.57)

and moreover, the set of complex dimensions of A (i.e., the set of poles of ζ̃A in
all of C, see Proposition 2.2.19), is given by (with �x� denoting the integer part of
x ∈ R)

P(ζ̃A) =
{

N − (2 j+1) : j = 0,1,2, . . . ,
⌊N −1

2

⌋}

=
{

N −1,N −3, . . . ,N −
(

2
⌊N −1

2

⌋
+1

)}
.

(2.2.58)

52 In Appendix B, we will propose a suitable notion of local distance and tube zeta functions. In
particular, in Example B.0.6, we will see that the set of complex dimensions generated by the local
tube zeta function is given by dimlocR

N = {0,1, . . . ,N}; see Equation (B.0.12).
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For odd N, the last number in this set is equal to 0, while for even N, it is equal
to 1.53 Furthermore, the residue of the tube zeta function ζ̃A at any of its poles
N − k ∈ P(ζ̃A) is given by

res(ζ̃A,N − k) = 2ωN

(
N
k

)
RN−k. (2.2.59)

Since
(N

k

)
=

( N
N−k

)
, we can write this result in an even more ‘symmetric’ form:

res(ζ̃A,d) = 2ωN

(
N
d

)
Rd , for all d ∈ P(ζ̃A). (2.2.60)

Note that in the case when d = D := N −1, we obtain

res(ζ̃A,D) = 2NωNRN−1 = M D(A), (2.2.61)

where the last equality is easily obtained from the definition of the Minkowski con-
tent:

M D(A) = lim
t→0+

|At |
tN−D = lim

t→0+

ωN(R+ t)N −ωN(R− t)N

t
= 2NωNRN−1.

In other words, A is Minkowski measurable and

M D(A) = 2HD(A), (2.2.62)

where HD denotes the D-dimensional Hausdorff measure.54 Equation (2.2.61) is in
accordance with Equation (2.2.36) in Theorem 2.2.14. See also the corresponding
Example 4.1.19 in the context of relative fractal drums, studied in Chapter 4.

Let A := ∂BR(0), as in Example 2.2.21. Since dimB A = N − 1 < N, it fol-
lows from Proposition 2.2.19 that the sphere A has the same complex dimensions,
whether they are computed via the distance or the tube zeta function. Namely,
P(ζA) = P(ζ̃A), as given by (2.2.58). Moreover, since D := D(ζA) = D(ζ̃A) =
N −1, we deduce from Equation (2.2.50) that for each m ∈ P(ζA),

res(ζA,m) = (N −m) res(ζ̃A,m), (2.2.63)

as given by the right-hand side of (2.2.60).

53 As we can see, the 0-dimensional sphere in R (which is just the pair of points {−1,1}) has 0 as
its only complex dimension. Similarly, the only complex dimension of the 1-dimensional sphere
in R

2 (i.e., the unit circle S1) is equal to 1, while the 2-dimensional sphere in R
3 has exactly two

complex dimensions (0 and 2), as well as the 3-dimensional sphere in R
4 (namely, 1 and 3). All of

these complex dimensions are simple.
54 Equation (2.2.62) is a special case of a much more general result proved by Federer in [Fed2,
Theorem 3.2.39].
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Tube zeta functions of fractal sets have a scaling property analogous to that of
distance zeta functions in Propositions 2.1.77; see Proposition 2.2.22 just below. We
use the following notation:

ζ̃A(s;δ ) :=
∫ δ

0
ts−N−1|At |dt for Res > dimBA.

Proposition 2.2.22 (Scaling property of tube zeta functions). For any bounded sub-
set A of RN, δ > 0 and λ > 0, we have D(ζ̃λA( · ;λδ )) = D(ζ̃A( · ;δ )) = dimBA
and

ζ̃λA(s;λδ ) = λ sζ̃A(s;δ ), (2.2.64)

for all s∈C with Res> dimBA. Furthermore, ifω is a simple pole of a meromorphic
extension of ζ̃A(s;δ ) to an open connected neighborhood of the critical line (as
always, we use the same notation for the meromophically extended function), then

res(ζ̃λA( · ;δ ),ω) = λω res(ζ̃A( · ;δ ),ω). (2.2.65)

Proof. Since |(λA)t |= |(λA)t |= λN |At/λ |, passing to the new variable τ = t/λ we
obtain successively:

ζ̃λA(s;λδ ) =
∫ λδ

0
ts−N−1|(λA)t |dt =

∫ λδ

0
ts−N−1λN |At/λ |dt

=
∫ δ

0
(λ t)s−N−1λN |Aτ |λdτ = λ s

∫ δ

0
τs−N−1|Aτ |dτ = λ sζ̃A(s;δ ).

Equation (2.2.65) is then obtained in much the same manner as in the proof of
Proposition 2.1.77. ��

Proposition 2.2.22 will be further extended in Proposition 4.6.11 to tube zeta
functions of relative fractal drums.

2.2.3 Zeta Functions of Generalized Cantor Sets and a-Strings

We provide here two examples illustrating some of the main results of this section,
as well as of Theorems 2.3.18, 2.3.25 and 2.3.37 below.

Example 2.2.23. (Generalized Cantor sets, Example 2.2.6 continued). Note that
the Minkowski contents appearing in (2.2.35) and (2.2.36) depend on N as well;
see (1.3.1). An illustration of inequality (2.2.35) in the case of generalized Cantors
sets, A =C(a), a ∈ (0,1/2), is provided in Figure 2.13 on page 131. It is worth ob-
serving (see Figure 2.13) that C(a) becomes almost like a Minkowski measurable set
for a close to 1/2, since both M ∗D(A) and M D

∗ (A) (where D = D(a) = log1/a 2))
tend to the common limit 1 as a → (1/2)−.
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Fig. 2.13 On the left, the graphs of M ∗D(A), res(ζ̃A,D) and M D
∗ (A), viewed as functions of

a ∈ (0,1/2), are respectively depicted from top to bottom in the case of the generalized Cantor
set A = C(a). Here, D = log1/a 2. The horizontal a-axis is expanded ten times with respect to the
vertical axis. The same graphs are exhibited on the right with adjusted scales on both axes. This
illustrates the inequality (2.2.35), as well as (2.3.36). For a = 1/2 we have that D = 1 and M 1(A)
exists, which is in accordance with our discussion in Remark 1.3.1 on page 31.

Moreover,
lim

a→0+
M ∗D(A) = 4, lim

a→0+
M D

∗ (A) = 2, (2.2.66)

and the function a �→ M ∗D(A)−M D
∗ (A) is decreasing on (0,1/2) from 2 to 0.

If we define the oscillatory amplitude of the Cantor set A by

am(A) := M ∗D(A)−M D
∗ (A) = 2(1−a)

(
1
2
−a

)D−1

− 1
D

(
2D

1−D

)1−D

,

then am(A) is monotonically decreasing as a function of a ∈ (0,1/2); see Figure
2.13. (A general definition of the oscillatory amplitude valid for a wide class of
bounded sets in R

N is provided in Subsection 6.1.1.1 on page 541.) Furthermore,

lim
a→0+

am(A) = 2, lim
a→1/2−

am(A) = 0. (2.2.67)

The following limits describe the behavior of the D-dimensional Minkowski con-
tents for a close to 0 and 1/2 (see the right side of Figure 2.13):

lim
a→0+

d
da

M ∗D(A) =−∞,

lim
a→1/2−

d
da

M ∗D(A) =−∞,
and

lim
a→0+

d
da

M D
∗ (A) = +∞,

lim
a→1/2−

d
da

M D
∗ (A) =−∞,

(2.2.68)

where we have used (2.2.12). The above limits at 1/2 help explain the spikes ob-
served in Figure 2.13. Using (2.2.11), we deduce that
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lim
a→0+

d
da

res(ζ̃A,D) = +∞,

lim
a→1/2−

d
da

res(ζ̃A,D) =−∞.
(2.2.69)

It is also possible to show that

lim
a→1/2−

M ∗D(A)−M D
∗ (A)

1/2−a
= 4(log2− log(log2)−1)≈ 0.2388. (2.2.70)

In particular, the oscillatory amplitude of A has the following asymptotics at a =
1/2, refining the second equation in (2.2.67):

am(A)∼ c ·
(1

2
−a

)
as a → 1/2−, (2.2.71)

where c is the value of the limit in (2.2.70). Indeed, we deduce from (2.2.12) that

lim
a→1/2−

M ∗D(A)−M D
∗ (A)

1−D
= log2− log(log2)−1 ≈ 0.0597,

and (2.2.70) follows since lima→1/2−
1−D

1/2−a = 4.

The lower D-dimensional Minkowski content M D
∗ (A), viewed as a function

of a ∈ (0,1/2), attains its maximum at a = 1/8, and the maximum value is
M D

∗ (C(1/8)) = 3. Furthermore, the residue of ζ̃A(s,Aδ ) at s = D attains its max-
imum at a ≈ 0.08649194033, and its maximum value is approximately given by
res(ζ̃A( · ,Aδ ),D)≈ 3.134663524.

Example 2.2.24. (a-strings). Given a > 0, let A := { j−a : j ∈ N}. This set is
Minkowski measurable,

M D(A) =
21−D

1−D
aD, D = D(a) =

1
1+a

, (2.2.72)

and the related string L = (� j) j≥1 defined by � j = j−a − ( j + 1)−a is called the
a-string; see [Lap1], [LapPo2] and [Lap-vFr3, Section 6.5.1] for the study of its
various properties. (Geometrically, the a-string is realized as the complement of A
in [0,1]; therefore, its boundary is equal to A∪{0}.) Due to (2.2.4) and (2.2.36), we
know that

res(ζA,Aδ ,D) = (1−D)M D(A), res(ζ̃A,D) = M D(A). (2.2.73)

The graphs of these two residues, viewed as functions of a > 0, are shown in Fig-
ure 2.14 on page 133. Using (2.2.72), we see that for any fixed positive number δ ,
we have

lim
a→0+

res(ζA,Aδ ,D) = 0, lim
a→0+

res(ζ̃A,D) = 1,
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Fig. 2.14 The graphs of the functions a �→ res(ζA,Aδ ,D) and a �→ res(ζ̃A,D), where a > 0, A =
{ j−a : j ∈ N} and D = 1/(1 + a). (See Example 2.2.24.) These two graphs coincide with the
graphs of a �→ (1−D)M D(A) and a �→ M D(A); see Equation (2.2.73).

lim
a→0+

d
da

res(ζA,Aδ ,D) = 1, lim
a→0+

d
da

res(ζ̃A,D) = +∞,

and

lim
a→+∞

d
da

res(ζA,Aδ ,D) = 2, lim
a→+∞

d
da

res(ζ̃A,D) = 2.

2.2.4 Distance and Tube Zeta Functions of Fractal Grills

It is of interest to understand the behavior of the distance and tube zeta functions
with respect to the Cartesian products of sets. We consider a very special type of
Cartesian products, called fractal grills, and we shall study their distance and tube
zeta functions.

Definition 2.2.25. Let A be a bounded subset of RN and let k be a positive integer.
Then, the subset of RN+k of the form A× [0,1]k is called the fractal grill (generated
by A). More generally, we can consider fractal grills of the form A× [a,b]k ⊂R

N+k,
where a and b are positive real numbers with a < b.

Since a given bounded subset A of RN can be naturally identified with A×{0} ⊂
R

N+1, it will be convenient to introduce the following notation (for all s ∈ C with
Res sufficiently large):

ζ [N]
A (s) :=

∫
Aδ

d(x,A)s−N dx, ζ̃ [N]
A (s) :=

∫ δ

0
ts−N−1|At |Ndt, (2.2.74)
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where the superscript [N] indicates that we view A as a subset of RN and |At |N is
the N-dimensional Lebesgue measure of the t-neighborhood of A in R

N . Hence,

ζ̃ [N+1]
A (s) =

∫ δ
0 ts−N−2|(A×{0})t |N+1dt. Note that, by writing |(A×{0})t |N+1, we

interpret (A×{0})t as the t-neighborhood of A×{0} in R
N+1. Furthermore, observe

that, in (2.2.74), ζ [N]
A and ζ̃ [N]

A are, respectively, the usual distance and tube zeta func-

tions of A (viewed as a bounded subset of RN) whereas, for example, ζ̃ [N+1]
A is the

tube zeta function of A×{0}, but now viewed instead as a subset of RN+1, where we
identify the subset A of RN with the subset A×{0} of RN+1. Moreover, in (2.2.79)

and (2.2.80) of Lemma 2.2.31 below, ζ [N+1]
A×[0,1] and ζ̃ [N+1]

A×[0,1] stand, respectively, for the

usual tube and zeta functions of A× [0,1] (naturally viewed as a subset of RN+1).
In the sequel, if Σ is a given set of complex numbers and ρ ∈ C a fixed complex

number, we let Σ+ρ := {s+ρ : s ∈ Σ}. We shall also need the following definition.

Definition 2.2.26. Assume that f (s) and g(s) are two tamed Dirichlet-type integrals
which are (absolutely) convergent on an open right half-plane {Res > α}, for some
α ∈ R. Let their difference h(s) := f (s)− g(s) be such that D(h) < D(g).55 Then
we say that f and g are weakly equivalent and write f � g.

Remark 2.2.27. The difference h := f −g, appearing in Definition 2.2.26, is a tamed
DTI. To see this, it suffices to apply Theorem A.2.3 of Appendix A with α = 1 and
β = −1. It then follows from Theorem A.1.4 of Appendix A that both D(h) and
Π(h) are well defined.

Note that in Definition 2.2.26, we do not assume that g possesses a meromor-
phic continuation to a connected open neighborhood of any point on its critical line
{Res = D(g)}. This is in contrast to the definition of equivalence ∼ introduced in
Definition 2.1.69 of Subsection 2.1.5 and extended in Section A.5 of Appendix A.

Case (c) of Lemma 2.2.28 below provides a simple and useful condition for the
implication f � g =⇒ f ∼ g to hold, where the equivalence ∼ is described in
Definition 2.1.69 above.

Lemma 2.2.28. Assume that f and g are two Dirichlet-type integrals such that f �
g, in the sense of Definition 2.2.26 above. Then, the following properties hold:

(a) We have D( f ) = D(g).

(b) The relation � is reflexive and symmetric. If in Definition 2.2.26 we consider
the class of tamed DTIs in the (complex) function space E(E,ϕ) introduced in Defi-
nition A.6.1 of Appendix A (see also Definitions A.1.1 and A.1.2), with a given pair
(E,ϕ), then � is a relation of equivalence on this vector space.

(c) If there exists a connected open set U ⊆ {Res > D( f − g)} containing the
critical line {Res = D(g)} and such that g can be meromorphically continued to U,
then f has the same property and Pc( f ) =Pc(g). In particular, f ∼ g in the sense
of Definition 2.1.69.

55 Alternatively, but equivalently, assume that there exists a real number β , β < D(g), such that
the integral defining h is absolutely convergent (and hence, holomorphic) on {Res > β}.
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Proof. (a) Since, by Definition 2.2.26, f (s) = g(s) + h(s) and D(h) < D(g), we
conclude that D( f )≤ D(g). If D( f )< D(g), we would then have

max{D( f ),D(h)}< D(g). (2.2.75)

On the other hand, the integral defining the function (i.e., the DTI) g(s) = f (s)−
h(s) is absolutely convergent on

{
Res > max{D( f ),D(h)}

}
, which is impossible

in light of (2.2.75). This contradiction proves that D( f ) = D(g).

Property (b) follows at once from (a) and Definition 2.2.26.

Property (c) follows easily from the relation f (s) = g(s)+ h(s). Indeed, the re-
flexivity f � f follows by taking h = 0. If f � g in the sense of Definition 2.2.26
(with a function h := f − g), then by noting that D(h) = D(−h), we conclude that
g � f (with the function −h = g− f ), which proves the symmetry of the relation �.
Finally, in order to prove the transitivity of the relation (under the stated additional
conditions), assume that f ,g,h ∈ E(E,ϕ) are such that f � g (with the corresponding
function h1) and g � h (with respect to h2). It then follows that f � h with respect
to h1 +h2, by observing that D(h1 +h2)≤ D(h1)+D(h2).

Note that by Theorem A.2.3 of Appendix A, the functions h1, h2 and h1 +h2 are
also tamed DTIs contained in the vector space E(E,ϕ) of all tamed DTIs of the form
ζE,ϕ,ρ (with the pair (E,ϕ) fixed and the local measure ρ arbitrary) introduced in
Definition A.6.1 (see also Definition A.1.2). ��

The following simple lemma is crucial, since it shows that the tube function of
the fractal grill A× [0,1] in R

N+1 is equal to the sum of the tube function of the
subset A of RN and the tube function of the subset A×{0} of RN+1.

Lemma 2.2.29 ([Res, Remark 1]). Let A be a bounded subset of RN. Then

|(A× [0,1])t |N+1 = |At |N + |(A×{0})t |N+1. (2.2.76)

Proof. We can represent the subset (A× [0,1])t of RN+1 as the union of three pair-
wise disjoint subsets:

(A× [0,1])t = At × [0,1]

∪ (A×{0})t ∩{xn+1 < 0})
∪ (A×{1})t ∩{xn+1 > 1}),

(2.2.77)

where {xN+1 < 0} := {x = (x1, . . .xN ,xN+1) ∈ R
N+1 : xN+1 < 0} and similarly

for {xn+1 > 1}. If we translate the subset (A×{1})t ∩ {xn+1 > 0} by the vector
(0, , . . . ,0,−1) ∈ R

N+1, the resulting subset (A×{0})t ∩{xn+1 > 0} still remains
disjoint with respect to the second set appearing on the right-hand side of Equation
(2.2.77). Therefore,
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|(A× [0,1])t |N+1 = |At × [0,1]|N+1

+ |(A×{0})t ∩{xn+1 < 0}∪ (A×{1})t ∩{xn+1 > 1}|N+1

= |At |N ·1
+ |(A×{0})t ∩{xn+1 < 0}∪ (A×{0})t ∩{xn+1 > 0}|N+1

= |At |N + |(A×{0})t \{xN+1 = 0}|N+1.

However, since the hyperplane {xN+1 = 0} has (N+1)-dimensional Lebesuge mea-
sure equal to zero, we conclude that |(A×{0})t \{xN+1 = 0}|N+1 = |(A×{0})t |N+1.
Hence, |(A× [0,1])t |N+1 = |At |N + |(A×{0})t |N+1 and this completes the proof of
the lemma. ��

Remark 2.2.30. By slightly modifying the proof of Lemma 2.2.29, we conclude that
for any bounded subset A of RN and for any two real numbers a and b such that
a < b, we have

|(A× [a,b])t |N+1 = |At |N(b−a)+ |(A×{0})t |N+1. (2.2.78)

Lemma 2.2.31. Let A be a bounded subset of RN. Then

ζ [N+1]
A×[0,1](s) = ζ

[N]
A (s−1)+ζ [N+1]

A (s) (2.2.79)

and
ζ̃ [N+1]

A×[0,1](s) = ζ̃
[N]
A (s−1)+ ζ̃ [N+1]

A (s), (2.2.80)

for all s ∈ C with Res > dimBA + 1. In particular, if A is such that ζA or
(equivalently, provided dimBA < N) ζ̃A admits a (necessarily unique) meromorphic
continuation to a connected open neighborhood of the critical line of Lebesgue
(absolute) convergence {Res = D(ζA)},56 then

ζ [N+1]
A×[0,1](s)� ζ

[N]
A (s−1) and ζ̃ [N+1]

A×[0,1](s)� ζ̃
[N]
A (s−1). (2.2.81)

Hence, if ζA can be meromorphically continued to a connected, open set U contain-
ing the critical line {Res = D(ζA)}, then Pc(ζA×[0,1]) = Pc(ζA)+1; that is,

dimPC(A× [0,1]) = dimPC A+1. (2.2.82)

In particular, if dimBA < N, then

D(ζ [N+1]
A×[0,1]) = D(ζ [N]

A )+1 = D(ζ̃ [N]
A )+1 = D(ζ̃ [N+1]

A×[0,1])

= dimB(A× [0,1]) = dimBA+1.
(2.2.83)

Proof. Let us first prove Equation (2.2.80). Substituting Equation (2.2.76) from
Lemma 2.2.29 into the second equality of (2.2.74), we conclude that

56 Recall from part (a) of Theorem 2.1.11 that D(ζA) = dimBA.
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ζ̃ [N+1]
A×[0,1](s) =

∫ δ

0
ts−N−2(|At |N + |(A×{0})t |N+1)dt

=
∫ δ

0
t(s−1)−N−1|At |Ndt +

∫ δ

0
ts−(N+1)−1|(A×{0})t |N+1dt

= ζ̃ [N]
A (s−1)+ ζ̃ [N+1]

A (s),

(2.2.84)

for all s ∈ C with Res > dimBA+ 1. Here, we also use the easily verified fact that
dimBA is the same in the case when A ⊂ R

N+1, as in the case when A ⊂ R
N ; that is,

the upper box dimension of a bounded set, as well as the lower box dimension, does
not depend on N; see [Had] or, e.g., [Res, Proposition 1]. This completes the proof
of Equation (2.2.80).

Moreover, let us note that all tube zeta functions can be viewed as tamed DTIs
based on the same underlying pair (E,ϕ), with E :=(0,δ ) and ϕ(t) := t for all t ∈E.
(See Definition 2.2.8 and the proof of Lemma 2.2.9 above.) It then easily follows

that ζ̃ [N+1]
A×[0,1] and ζ̃ [N]

A ( · − 1) are tamed DTIs based on the same pair (E,ϕ), so that
in light of Theorem A.2.3 of Appendix A below, the second weak equivalence in
(2.2.81) holds (see Definition 2.2.26).

Let us next establish Equation (2.2.79). To this end, we use (2.2.23), which we
write in the following form:

ζ̃ [N]
A (s) =

ζ [N]
A (s)−δ s−N |Aδ |N

N − s
, (2.2.85)

for all s ∈ C with Res > dimBA and s 
= N. Making use of Equation (2.2.84), we

deduce that

ζ [N+1]
A×[0,1](s)−δ

s−N−1|(A× [0,1])δ |N+1

(N +1)− s
=
ζ [N]

A (s−1)−δ (s−1)−N |Aδ |N
N − (s−1)

+
ζ [N+1]

A (s)−δ s−(N+1)|(A×{0})δ |N+1

(N +1)− s
,

(2.2.86)
for all s ∈ C with Res > dimBA and s 
= N +1. Since, in light of (2.2.76), we have
|(A × [0,1])δ |N+1 = |Aδ |N + |(A ×{0})δ |N+1, we conclude from (2.2.86) after a
short computation that

ζ [N+1]
A×[0,1](s) = ζ

[N]
A (s−1)+ζ [N+1]

A (s), (2.2.87)

for all s ∈ C with Res > dimBA+1, where we have also used the principle of ana-
lytic continuation. This completes the proof of Equation (2.2.79).

Note that, according to Theorem 2.1.11, both ζ [N]
A (s − 1) and ζ [N+1]

A×[0,1](s) are

holomorphic on {Res > dimBA+1} (recall that dimB(A× [0,1]) = dimBA+1, see
[Fal1]), while, according to the same theorem, the function
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ζ [N+1]
A×[0,1](s)−ζ

[N]
A (s−1) = ζ [N+1]

A (s) (2.2.88)

is holomorphic on {Res > dimBA}. Therefore, since

D(ζ [N+1]
A ) = dimBA < dimBA+1 = D(ζ [N]

A ( · −1)), (2.2.89)

it follows from Definition 2.2.26 that ζ [N+1]
A×[0,1](s) � ζ

[N]
A (s− 1). This completes the

proof of the first weak equivalence in (2.2.81).
The remaining part of Lemma 2.2.31 can be deduced from part (c) of Lemma

2.2.28 by noting that since ζA(s) can be meromorphically continued to the set U ,
then ζA(s−1) can be meromorphically continued to the set U+1. Hence, by Lemma

2.2.28(c), we have ζ [N+1]
A×[0,1](s) ∼ ζ

[N]
A (s− 1) in the sense of Definition 2.1.69, and

therefore,

Pc
(
ζ [N+1]

A×[0,1]

)
= Pc

(
ζ [N]

A ( · −1)
)
= Pc

(
ζ [N]

A

)
+1,

or, equivalently, dimPC(A× [0,1]) = dimPC A+ 1. This completes the proof of the
lemma. ��

Theorem 2.2.32. Let A be a bounded subset of RN and let d be a positive integer.
Then the following properties hold:

(a) The distance and tube zeta functions of A× [0,1]d ⊂R
N+d are given, respec-

tively, by

ζ [N+d]
A×[0,1]d

(s) =
d

∑
k=0

(
d
k

)
ζ [N+k]

A (s−d + k) (2.2.90)

and

ζ̃ [N+d]
A×[0,1]d

(s) =
d

∑
k=0

(
d
k

)
ζ̃ [N+k]

A (s−d + k), (2.2.91)

for all s ∈ C with Res > dimBA+d.

(b) If the distance zeta function ζA can be meromophically extended to a con-
nected open set containing the critical line {Res = dimBA}, then

ζ [N+d]
A×[0,1]d

(s)∼ ζ [N]
A (s−d), ζ̃ [N+d]

A×[0,1]d
(s)∼ ζ̃ [N]

A (s−d) (2.2.92)

and Pc(ζA×[0,1]d ) = Pc(ζA)+d; that is,

dimPC(A× [0,1]d) = dimPC A+d. (2.2.93)

In particular, if dimBA < N, then

D(ζ [N+d]
A×[0,1]d

) = D(ζ [N]
A )+d = D(ζ̃ [N]

A )+d = D(ζ̃ [N+d]
A×[0,1]d

)

= dimB(A× [0,1]d) = dimBA+d.
(2.2.94)
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Proof. (a) Let us first establish Equation (2.2.90). We do so by using mathematical
induction on d. The case when d = 1 has already been established in Lemma 2.2.31.

Now, let us assume that the claim holds for some fixed positive integer d ≥ 1. We
deduce from (2.2.79) that

ζ [N+d+1]
A×[0,1]d+1(s) = ζ

[N+d]
A×[0,1]d

(s−1)+ζ [(N+1)+d]
A×[0,1]d

(s).

Therefore,

ζ [N+d+1]
A×[0,1]d+1(s) =

d

∑
k=0

(
d
k

)
ζ [N+k]

A (s−1−d + k)+
d

∑
k=0

(
d
k

)
ζ̃ [N+1+k]

A (s−d + k)

= ζ [N]
A (s−d −1)+

d−1

∑
k=0

(
d

k+1

)
ζ [N+k+1]

A (s−d + k)

+
d−1

∑
k=0

(
d
k

)
ζ [N+1+k]

A (s−d + k)+ζ [N+1+d]
A (s)

=
d+1

∑
k=0

(
d +1

k

)
ζ [N+k]

A (s− (d+1)+ k),

where in the last equality we have used the fact that
(d

k

)
+

( d
k+1

)
=

(d+1
k+1

)
. This

completes the proof of Equation (2.2.90).
Equation (2.2.91) can be proved by mathematical induction in much the same

way as in the case of the distance zeta function. This completes the proof of part (a)
of the theorem.

0 1/3 2/3 1

1

Fig. 2.15 The distance zeta function associated with the Cantor grill A := C(1/3)× [0,1] satisfies
ζA(s) = ζC(1/3) (s−1)∼ (1−2 ·(1/3)s−1)−1 ∼ (3s−1−2)−1, and the corresponding set of principal
complex dimensions of A is given by dimPC A = (log3 2+1)+ 2π

log3 iZ; see Example 2.2.34.

(b) To prove that ζ [N+d]
A×[0,1]d

(s) ∼ ζ [N]
A (s− d), it suffices to note that, by Equation

(2.2.90), the function

h(s) := ζ [N+d]
A×[0,1]d

(s)−ζ [N]
A (s−d) =

d

∑
k=1

(
d
k

)
ζ [N+k]

A (s−d + k) (2.2.95)
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has for abscissa of convergence

D(h) = dimBA+(d −1)}< dimBA+d = D(ζ [N]
A ( · −d)); (2.2.96)

so that ζ [N+d]
A×[0,1]d

(s) � ζ [N]
A (s− d). Using part (c) of Lemma 2.2.28, we deduce that

ζ [N+d]
A×[0,1]d

(s) ∼ ζ [N]
A (s− d) in the sense of Definition 2.1.69, which proves the first

relation in (2.2.92). The second relation in (2.2.92) can be proved along the same
lines. This completes the proof of claim (b), as well as of the entire theorem. ��

Remark 2.2.33. The relations appearing in (2.2.92) can be written in a less precise
form as follows:

ζA×[0,1]d (s)∼ ζA(s−d) and ζ̃A×[0,1]d (s)∼ ζ̃A(s−d). (2.2.97)

We propose to call these two properties the shift properties of the distance and tube
zeta functions, respectively.

Example 2.2.34. (Generalized Cantor sets and Cantor grills). Let A = C(a) is the
generalized Cantor set introduced above in Example 2.2.6 and let d be a positive
integer. Then, using (2.2.92) and (2.2.10), we obtain that

ζC(a)×[0,1]d (s)∼
1

1−2as−d .

Furthermore, we conclude from (2.2.93) that (with i :=
√
−1, as usual)

dimPC(C
(a)× [0,1]d) = (log1/a 2+d)+

2π
log(1/a)

iZ. (2.2.98)

Moreover, by noticing that ζC(a)×[0,1]d can be meromorphically extended to the
whole complex plane, we conclude from Equation (2.2.90) above and from the
first part of Equation (3.1.6) below that the set of all complex dimensions of
C(a)× [0,1]d ⊂ R

1+d is well defined in C and given by

P(ζC(a)×[0,1]d ) = {0,1, . . . ,d}∪
d⋃

k=0

(
(log1/a 2+ k)+

2π
log(1/a)

iZ
)
. (2.2.99)

The sets of the form C(a) × [0,1]d appear, for example, in the study of the Smale
horseshoe map; see, e.g., [Sma]. They also appear naturally in the study of the sin-
gularities of Sobolev functions and of weak solutions of elliptic equations; see, e.g.,
[Žu1] and [HorŽu], where they are called ‘Cantor grills’.

Equations (2.2.98) and (2.2.99) also hold for a more general class of Cantor grills
C(m,a)× [0,1]d , involving a class of Cantor sets C(m,a) depending on two paramters
a and m, which we introduce in Definition 3.1.1 of Chapter 3 below.
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Example 2.2.35. (Fractal combs). Similarly as in Example 2.2.34, sets of the form
∂Ω × [0,1]N−1, where Ω =Ωa is a geometric realization of a fractal string (for ex-
ample, the so-called a-string,Ω = ∪∞j=1(( j+1)−a, j−a), where a > 0 and for which

∂Ω = { j−a : j ≥ 1}∪{0} satisfies dimB∂Ω = 1/(a+1); see Example 2.2.24), are
used in the study of fractal drums to extend certain results from one to higher dimen-
sions N ≥ 2; see [Lap1, Examples 5.1 and 5.1’]. See also Subsection 4.3.2 below
for further use of the same technique as in [Lap1–3], in a closely related context.

The open set Ω × (0,1)N−1, whose boundary is

∂ (Ω × (0,1)N−1) = (∂Ω × [0,1]N−1)∪
(
[0,1]×∂ ((0,1)N−1)

)
, (2.2.100)

and where ∂
(
([0,1]N−1

)
is taken in the space R

N−1, is called a ‘fractal comb’ in
[Lap1–3]. (See also [LapRaŽu7].) Note that the subset ∂

(
(0,1)N−1

)
of R

N−1 is
an (N − 2)-dimensional Lipschitz submanifold (which for N = 2 degenerates to a
pair of points); hence, the box dimension of [0,1]× ∂ ((0,1)N−1) is equal to N −
1. Therefore, by the property of ‘finite stability’ of the upper box dimension (see
[Fal1]), we have

dimB∂ (Ω × (0,1)N−1) = max{dimB(∂Ω × [0,1]N−1),N −1}
= dimB(∂Ω × [0,1]N−1) = dimB∂Ω +N −1.

Since, according to [Lap-vFr3, Theorem 6.21] (along with Example (2.1.58) and
Proposition (2.1.59) above),

dimPC ∂ (Ωa) = {ρ ,−ρ ,−2ρ ,−3ρ , . . .}, (2.2.101)

where ρ := 1/(a+1), we deduce from Theorem 2.2.32 that

dimPC ∂ (Ωa × (0,1)N−1) = dimPC(∂Ωa × [0,1]N−1)

= {N −1+ρ ,N −1−ρ ,N −1−2ρ ,N −1−3ρ , . . .},
(2.2.102)

still with ρ = 1/(a+1). Furthermore, all of these complex dimensions are simple.
More precisely, it could be that in Equation (2.2.101), beside ρ , which is always

a (simple) pole of ζ∂Ω , some of the numbers −nρ (n ≥ 1) are not poles of ζ∂Ω
(because the coresponding residue of ζ∂Ω happens to vanish, for some arithmetic
reason connected with the value of a). And hence, similarly, in Equation (2.2.102).

Finally, we point out that if, instead, Ω =ΩCS is the Cantor string (i.e., the com-
plement of the classic ternary Cantor set in [0,1]), then according to [Lap-vFr3,
Subsection 1.2.2, Equation (1.30)] (or else Equation (2.2.16) on page 117 above,
specialized to a = 1/3) and Theorem 2.2.32, we have

dimPC ∂ (ΩCS × (0,1)N−1) =
(
(N −1)+ log3 2

)
+

2π
log3

iZ, (2.2.103)

which is the special case of (2.2.98) corresponding to m := 2, a := 1/3 and d :=
N −1.
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Remark 2.2.36. Note that, as is expected, the a-stringΩa (or equivalently, its bound-
ary ∂Ωa) is not “fractal” in the sense of the theory of fractal dimensions developed
in [Lap-vFr1–3] (see, especially, [Lap-vFr3, Section 12.1 and 12.2]). Accordingly,
“fractality” is associated with the presence of a nonreal complex dimension (with
positive real part). This definition of fractality will be extended to higher dimensions
in Chapter 4 by using the theory of fractal zeta functions and the associated complex
dimensions developed in this book. (See, especially, Subsection 4.6.2, including Re-
mark 4.6.24; see also [LapRaŽu1–8].) Here, in light of Equation (2.2.101), all of the
complex dimensions of the a-string (or, equivalently, of the compact set ∂ (Ωa)⊂R)
are real. Hence, as expected, ∂ (Ωa) = { j−a : j ≥ 1}∪{0} (or, equivalently, the a-
string) is not fractal. Furthermore, in light of Equation (2.2.102), the same is true for
the boundary of the Cartesian product of the a-string Ωa by [0,1]N−1 (for any fixed
N ≥ 1)

In contrast, in light of Equation (2.2.16) on page 117 (specialized to a = 1/3),
the Cantor string ΩCS (or, equivalently, its boundary ∂ (ΩCS) ⊂ R, namely, the
ternary Cantor set) is fractal because it has nonreal complex dimensions with
positive real part. Moreover, in light of Equation (2.2.103), the same is true of
∂ (ΩCS × [0,1]N−1) ⊂ R

N for any N ≥ 2. Namely, in every dimension N, the com-
pact set A := ∂ (ΩCS × [0,1]N−1) ⊂ R

N admits nonreal (in fact, infinitely many)
complex dimensions with (positive) real part D(A) = N − 1+D(∂ (ΩCS)), where
D(∂ (ΩCS)) = log3 2 and ∂ (ΩCS) is the classic ternary Cantor set.

2.2.5 Surface Zeta Functions

To any bounded set A in R
N , we can associate its surface zeta function, defined by

ζA(s,∂ ) =
∫ δ

0
ts−NHN−1(∂ (At))dt (2.2.104)

for all s ∈ C with Res sufficiently large, where δ is a fixed positive number and
HN−1 denotes the (N −1)-dimensional Hausdorff measure. In Subsection 2.1.7, we
have already discussed the oscillatory nature of the function (0,δ ) � t �→ ts−N , for
any fixed nonreal complex number s.

Proposition 2.2.37. If Res > dimBA, then the distance zeta function and surface
zeta function are well-defined holomorphic functions and coincide (see Corollary
2.2.38 below for further related results):

ζA(s) = ζA(s,∂ ), (2.2.105)

for all s ∈ C with Res > dimBA.



2.3 Meromorphic Extensions of Fractal Zeta Functions 143

Proof. It suffices to use the identity

∫
Aδ

d(x,A)−γ dx =
∫ δ

0
t−γHN−1(∂ (At))dt,

where γ is a real number; see (2.1.8) or [Žu2, Equation (2.19)]. Note that for any
γ < N − D, where D := dimBA, the integral on the left-hand side is finite; see
Lemma 2.1.4. This proves (2.2.105) for s ∈ (D,+∞) ⊂ R. The claim then follows
much as in the proof of Theorem 2.2.1. ��

We say that a bounded set A in R
N is surface nondegenerate if there exists d ≥

0 such that HN−1(∂ (At))  tN−d−1 as t → 0+. It can be shown that the set A is
Minkowski nondegenerate if and only if it is surface nondegenerate, and in this case,
we necessarily have that dimB A exists and d = dimB A. This and other properties of
the mapping t �→HN−1(∂ (At)) have been established by Rataj and Winter [RatWi1];
see also [RatWi2].

In light of the results of Section 2.2.2 about the relationship between the distance
zeta function ζA = ζA( · ,Aδ ) and the tube zeta function ζ̃A (see, especially, Remark
2.2.18 and Proposition 2.2.19), the next result follows at once from Proposition
2.2.37 just above (and from its proof).

Corollary 2.2.38. Let A be a bounded subset of RN such that dimBA<N. If either of
the fractal zeta functions ζA, ζ̃A or ζA( · ,∂ ) possesses a meromorphic continuation
(necessarily unique) to a connected open neighborhood U of a window W , then
so do the other two zeta functions and the resulting meromorphic extensions of the
distance zeta function and of the surface zeta function coincide in U :

ζA(s) = ζA(s,∂ ), for all s ∈U.

Furthermore, the corresponding sets of (visible) complex dimensions coincide (see
Definition 2.1.68 and Equation (2.1.98) above):

P(ζA) = P(ζ̃A) = P(ζA( · ,∂ )).

The residues of the distance and surface zeta functions coincide at each (visible)
complex dimension. Similarly, the corresponding sets of principal complex dimen-
sions coincide (see Definition 2.1.67 and Equation (2.1.99)):

Pc(ζA) = Pc(ζ̃A) = Pc(ζA( · ,∂ )).

2.3 Meromorphic Extensions of Fractal Zeta Functions

The goal of this section is to describe a construction of meromorphic extensions
of zeta functions associated with some fractal strings that are in some sense close
to classical strings. As a rule, these classical zeta functions possess meromorphic
extensions to the entire complex plane. We also study meromorphic extensions of
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distance and tube zeta functions (henceforth also referred to as ‘fractal zeta func-
tions’), and obtain several refinements of Theorem 2.2.3 and Theorem 2.2.14. The
main results of this section are stated in Theorems 2.3.2 and 2.3.10, dealing with
the fractal zeta functions of the Riemann and Dirichlet strings, respectively, and
in Theorems 2.3.18 and 2.3.25, dealing with fractal zeta functions of Minkowski
measurable and Minkowski nonmeasurable sets, respectively.

As we have already indicated in Example 2.1.58 and in Theorem 2.1.59, the
study of the geometric zeta function ζL (s) := ∑∞j=1 �

s
j of any bounded fractal string

L = (� j) j≥1 is equivalent to the study of the corresponding distance zeta function

ζAL
(s) :=

∫ a1+δ

−δ
d(x,AL )s−1dx (2.3.1)

of the subset AL = {ak := ∑ j≥k � j : k ∈ N} of the real line, associated to L , where
δ is an arbitrary fixed positive real number. Note that here, a1 = ∑ j≥1 � j is the
total length of L and (ak)k≥1 is a nonincreasing sequence of positive real numbers
converging to zero as k → ∞.

More generally, the geometric zeta function ζL can be identified with the relative
zeta function

ζ∂Ω ,Ω (s) :=
∫
Ω

d(x,∂Ω)s−1dx, (2.3.2)

whereΩ :=�∞j=1I j is a disjoint union of open intervals I j of length � j for each j ≥ 1.
Analogously as in Example 2.1.58 of Subsection 2.1.4, it is easy to see that

ζ∂Ω ,Ω (s) =
∞

∑
j=1

∫
I j

d(x,∂ I j)
s−1dx = s−121−sζL (s) (2.3.3)

for all s ∈ C with Res > dimBL .
Recall (see the beginning of Subsection 2.1.4) that the disjoint family57 of open

intervals (I j) j≥1 is called the canonical geometric realization of the fractal string L .
Much more general relative zeta functions are studied Chapters 4 and 5.

A geometric realization of the fractal string L := (� j) j≥1 is an open set Ω ⊂ R

or an RFD (∂Ω ,Ω) in R, where Ω is any bounded open subset of R (or, more
generally, any open set Ω ⊂ R of finite length |Ω |1 < ∞) such that Ω = ∪∞j=1Jj,
where (Jj) j≥1 is a disjoint sequence of open intervals of R such that |Jj| = � j for
every j ≥ 1. Then, it follows from the discussion in Subsection 2.1.4 that the key
identity (2.3.3), namely,

ζ∂Ω ,Ω (s) = s−121−sζL (s), (2.3.4)

is independent of the choice of the geometric realization of the fractal string L by
an RFD (∂Ω ,Ω) in R.

57 Throughout this book, by a disjoint family of sets, we mean a family of pairwise disjoint sets.
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2.3.1 Zeta Functions of Perturbed Riemann Strings

The Riemann string is defined as L = ( j−1) j≥1. Note that it is unbounded, in the
sense that ∑∞j=1 j−1 =+∞. Its geometric zeta function ζL (s) = ζR(s) =∑∞j=1 j−s is
the classical Riemann zeta function; see (2.3.5) below. The Riemann string, also
called the harmonic string, was introduced by the first author in [Lap2, Exam-
ple 5.4(ii), pp. 171–172] and further discussed in [Lap3, pp. 144–145]; see also
[Lap-vFr3, pp. 123–129] and the later work [HerLap1–5] where it plays an impor-
tant role.

If (c j) j≥1 is a given sequence of real numbers, we can consider the perturbed Rie-
mann fractal string L ′ = (( j+ c j)

−1) j≥1 and the corresponding zeta function, see
(2.3.6) below. Throughout this subsection and the next one (i.e., Subsections 2.3.1
and 2.3.2), we assume that the perturbation is such that j + c j > 0 for all j, and
analogously for other strings.

Our aim in this subsection is to show that if we perturb the classical Riemann
zeta function

ζR(s) =
∞

∑
j=1

j−s (2.3.5)

by a sufficiently small sequence of real numbers (c j) j≥1, in the sense that c j =O( jβ )
as j → ∞, where β < 1, then the resulting perturbed Riemann zeta function

ζR,pert(s) =
∞

∑
j=1

( j+ c j)
−s (2.3.6)

possesses a (necessarily unique) meromorphic extension to {Res > β}. As in Defi-
nition 2.1.28, we denote by D(ζR,pert) the abscissa of convergence of ζR,pert(s); see
Section 2.1.3.

Remark 2.3.1. Recall that ζR is meromorphic in all of C, with a single, simple pole
located at s = 1; furthermore, res(ζR,1) = 1. See, e.g., [Tit3] or [Edw].

We first state the main result of this subsection:

Theorem 2.3.2. Let β ∈ (−∞,1) be fixed, and assume that the sequence (c j) j≥1

satisifes c j = O( jβ ) as j → ∞. Then, for the perturbed Riemann zeta function de-
fined by (2.3.6), we have D(ζR,pert) = 1, and ζR,pert(s) has a (necessarily unique)
meromorphic extension (at least) to the open right half-plane

{Res > β}. (2.3.7)

Furthermore, s = 1 is a pole of the meromorphic continuation in this half-plane;
it is simple, and res(ζR,pert ,1) = 1. The sets of poles of the classical Riemann zeta
function and of ζR,pert , located in {Res > β}, coincide, which means in the present
case that s = 1 is the only pole of ζR,pert in {Res > β}.
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In particular, if the sequence (c j) j≥1 is bounded, then there exists a unique mero-
morphic extension of ζR,pert(s) (at least) to the open right half-plane {Res > 0}; its
only pole is located at s = 1 and it is simple.

Remark 2.3.3. It would be interesting to know whether or not the bound β in (2.3.7)
is optimal; see Problem 6.2.10 in Chapter 6.

Remark 2.3.4. It is easy to see that the condition c j = O( jβ ) as j → ∞ in The-
orem 2.3.2 can be relaxed to c j = O( j(β ) as j → ∞, by which we mean that
c j = O( jβ0) as j → ∞ for all β0 > β ; that is,

O(t(β ) :=
⋂
β0>β

O(tβ0) as t →+∞. (2.3.8)

(Compare with Definition 2.3.20 below.) Equivalently, O(t(β ) :=
⋂
ε>0 O(tβ+ε) as

t →+∞. An example of such a (weaker) perturbation is c j := jβ log j, for all j ≥ 1.
Indeed, it follows from Theorem 2.3.2 that ζR,pert(s) has a unique meromorphic ex-
tension to each half-plane {Res > β0}, with β0 > β , and therefore, by the principle
of analytic continuation, it has a unique meromorphic extension to the union

⋃
β0>β

{Res > β0}= {Res > β}.

In the proof of Theorem 2.3.2, we shall use the following simple fact.

Lemma 2.3.5. Assume that ζ1(s) is a generalized Dirichlet integral with abscissa
of convergence equal to D(ζ1), such that it possesses a meromorphic extension to
the open right half-plane {Res > a1}, where a1 ∈ [−∞,D(ζ1)). Assume that ζ2(s) is
a holomorphic function with abscissa of convergence D(ζ2) such that a1 ≤ D(ζ2)<
D(ζ1). Then, for ζpert(s) := ζ1(s)+ ζ2(s), we have D(ζpert) = D(ζ1), and ζpert(s)
possesses a (necessarily unique) meromorphic extension (at least) to the open right
half-plane {Res > D(ζ2)}. Furthermore, the poles of ζpert(s) and ζ1(s) coincide in
this half-plane, as well as their corresponding multiplicities (or orders).

Proof. The function ζ1(s) is meromorphic in {Res > D(ζ2)}, while ζ2(s) is holo-
morphic in this same half-plane. Hence, their sum, ζpert(s), is meromorphic in this
half-plane. The equality D(ζpert) = D(ζ1) is obvious, since D(ζ2) < D(ζ1). As is
well known, the uniqueness of the meromorphic extension of ζpert(s) follows from
the principle of analytic continuation since any two meromorphic extensions must
coincide on {Res > D(ζ1)}. The poles of ζ1(s) in the half-plane {Res > D(ζ2)}, as
well as their corresponding multiplicities (or orders), do not change after adding the
holomorphic function ζ2(s). ��

In the applications of Lemma 2.3.5 which will be considered in this book, we
will most often have a1 = −∞; that is, ζ1 will be assumed to have a meromorphic
extension to all of C.



2.3 Meromorphic Extensions of Fractal Zeta Functions 147

Proof of Theorem 2.3.2. We shall use Lemma 2.3.5 with ζ1(s) = ζR(s) and

ζ2(s) = ζR,pert(s)−ζR(s) =
∞

∑
j=1

(
( j+ c j)

−s − j−s). (2.3.9)

Since D(ζ1) = 1 and ζ1 possesses a meromorphic extension to all of C, it suffices,
in light of Lemma 2.3.5, to show that D(ζ2)≤ β .

Let us first fix s = x+ yi, where x,y ∈R, and let us also fix j ∈N. Setting e(t) =
e−(y log t) i ∈ S1, for any t > 0, we can write t−s = t−xe(t). We have

( j+ c j)
−s − j−s = ( j+ c j)

−xe( j+ c j)− j−xe( j)

=
(
( j+ c j)

−x − j−x)e( j+ c j)+ j−x(e( j+ c j)− e( j)
)
,

and hence,

|( j+ c j)
−s − j−s| ≤ |( j+ c j)

−x − j−x|+ j−x|e( j+ c j)− e( j)|. (2.3.10)

By the Lagrange mean value theorem applied to g(t) = t−x, t ∈ [ j, j+ c j], we have

|( j+ c j)
−x − j−x| ≤ |x| j−x−1 |c j| ≤ K|x| j−x−1+β

for all j ∈ N, where the positive constant K is independent of j.
On the other hand, let us set ϕ(t) = −y log t. Due to the geometrically obvious

inequality, |e(t)−e(τ)| ≤ |ϕ(t)−ϕ(τ)|= |y| | log(t/τ)| for any t,τ ∈R, there exists
a positive constant K1 such that

|e( j+ c j)− e( j)| ≤ |y| log
j+ c j

j

= |y| log
(

1+
c j

j

)
≤ |y|c j

j
≤ K1|y| jβ−1

for all j ∈ N.
Using (2.3.10), we conclude that there is a positive constant K2 such that

|( j+ c j)
−x − j−x| ≤ K2(|x|+ |y|) j−(x−β+1) (2.3.11)

for all j ∈ N. This proves that the Dirichlet series initially defining ζ2(s) in (2.3.9)
converges absolutely and uniformly if |x|+ |y| ≤C for the positive constant C fixed
and arbitrarily large, and x−β+1 > 1+ε for some positive ε; that is, for x > β+ε .
Since x = Res, for any given s satisfying Res > β , we can find ε > 0 small enough
so that Res> β+ε . By letting ε→ 0+ and C →+∞, we conclude that D(ζ2)≤ β , as
desired. In light of Lemma 2.3.5, this proves that ζR,pert(s) can be meromorphically
extended to the open right half-plane {Res > β}, as desired. ��

Remark 2.3.6. It is interesting to note that the function g(t) := t−s, defined for t ∈
( j, j+ c j), with s = x+ iy fixed, appearing in the proof of Theorem 2.3.2, has the
property that for large j, its range is ‘almost’ equal to the ray {ϕ =−y log j}. More
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specifically, the range of g is contained in the sector between the rays {ϕ = ϕ( j)}
and {ϕ = ϕ( j + c j)}, where ϕ(t) := −y log t, and the opening angle of the sector
tends to zero for large j: |ϕ( j+ c j)−ϕ( j)|= |y| log

(
1+

c j
j

)
→ 0+ as j → ∞.

In the following corollary, we provide some sufficient conditions under which
the perturbed Riemann zeta function possesses a unique meromorphic extension to
the entire complex plane. The perturbing sequence (c j) j≥1 has to converge to zero
very fast as j → ∞.

Corollary 2.3.7. Assume that the sequence (c j) j≥1 is such that there exists a se-
quence (βk)k≥1 tending to −∞ as k →∞, and having the following property. For any
given k ≥ 1, there exists a constant Mk > 0 such that |c j| ≤Mk jβk for all j ≥ 1. Then,
the perturbed Riemann zeta function ζR,pert(s) defined by (2.3.6) has for abscissa
of convergence D(ζR,pert) = 1 and possesses a (necessarily unique) meromorphic
extension to the entire complex plane. The set of poles of ζR,pert coincides with the
set of poles of the classical Riemann zeta function ζ : P(ζR,pert) = P(ζ ) = {1}.
More precisely, ζR,pert(s) has a single, simple pole, located at s= 1 and with residue
res(ζR,pert ,1) = 1.

Proof. By Theorem 2.3.2, ζ (s) is meromorphic on {Res > βk} for any k, and there-
fore also on

⋃∞
k=1{Res > βk}= C. ��

Example 2.3.8. The sequence (c j) j≥1 defined by c j := ( j!)−1 for every j ≥ 1 satis-
fies the condition of Corollary 2.3.7 with βk := −k for every k ∈ N, since for any

fixed k ∈ N we have that
c j

j−k = jk

j! → 0+ as j → ∞. Therefore, by Corollary 2.3.7,
the corresponding perturbed Riemann zeta function

ζR,pert(s) =
∞

∑
j=1

(
j+

1
j!

)−s

is meromorphic on C. The set of poles of ζR,pert in C coincides with the set of poles
of the classical Riemann zeta function, namely, s = 1. Hence, ζR,pert has a unique
pole in C, located at s = 1, and this pole is simple.

Theorem 2.3.2 is easily seen to be equivalent to the following result.

Theorem 2.3.9. Let γ > 1, and assume that (d j) j≥1 is a sequence of real numbers
satisfying d j = O( j−γ) as j → ∞. Then, for the zeta function of the perturbed Rie-
mann string L = ( j−1 +d j) j≥1, defined by

ζL (s) =
∞

∑
j=1

( j−1 +d j)
s, (2.3.12)

we have D(ζL ) = 1, and ζL possesses a (necessarily unique) meromorphic exten-
sion (at least) to the open right half-plane {Res > 2− γ}. Furthermore, s = 1 is a
simple pole and is the only pole of this meromorphic continuation.
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2.3.2 Zeta Functions of Perturbed Dirichlet Strings

The following result shows that the zeta function of a sufficiently small perturbation
of the Dirichlet string, defined by L = ( j−a) j≥1 where a > 0 is fixed, possesses
a nontrivial meromorphic extension. If a > 1, the Dirichlet string is bounded. The
perturbed string L = (( j+c j)

−a) j≥1 is obtained from the Dirichlet string by adding
the sequence (c j) j≥1. The claim of Theorem 2.3.10 just below is easily seen to be
equivalent to Theorem 2.3.2 by introducing the new variable s1 = as.

Theorem 2.3.10. Let a > 0, β ∈ (−∞,1), and c j = O( jβ ) as j → ∞. Then, for the
zeta function of the perturbed Dirichlet string L = (( j+ c j)

−a) j≥1, defined by

ζL (s) = ζpert(s) =
∞

∑
j=1

( j+ c j)
−as, (2.3.13)

we have D := D(ζL ) = 1/a, and ζL has a unique meromorphic extension (at least)
to the open right half-plane {Res > β/a}. Furthermore, s = 1/a is a pole of the
meromorphic continuation in this half-plane; it is simple and res(ζL ,D) = D.

An analog of Corollary 2.3.7 can easily be formulated and proved in the context
of Dirichlet strings. Furthermore, in Theorem 2.3.10 and Corollary 2.3.7, we can
relax the condition c j = O( jβ ) to c j = O( j(β ) as j → ∞; see Remark 2.3.4.

If |β | is sufficiently large, the meromorphic continuation of ζL in the half-plane
{Res > β/a} will have additional poles, beside the pole with the largest possible
abscissa 1/a. In fact, we expect that the techniques used in proving [Lap-vFr3, The-
orem 6.21] can be useful in obtaining more precise results in this context. See the
comments preceding the statement of Corollary 2.3.13 below.

Theorem 2.3.10 is easily seen to be equivalent to the following result (compare
with Theorem 2.3.9). As indicated in the introduction to Subsection 2.3.1, we as-
sume that j−a + d j > 0 for all j ∈ N; that is, the numbers d j may have negative
values as well.

Theorem 2.3.11. Let 0 < a < γ , and let (d j) j≥1 be a sequence of real numbers such
that d j =O( j−γ) as j →∞. Then, for the zeta function associated with the perturbed
Dirichlet string L = ( j−a +d j) j≥1, defined by

ζL (s) =
∞

∑
j=1

( j−a +d j)
s, (2.3.14)

we have D :=D(ζL ) = 1/a, and ζL possesses a (necessarily unique) meromorphic
extension (at least) to the open right half-plane

{
Res >

1
a
−

(γ
a
−1

)}
.

Furthermore, s = 1/a is the only pole in the half-plane; it is simple, and the associ-
ated residue is given by res(ζL ,D) = D.
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Proof. Let the sequence (c j) j≥1 be defined by

j−a +d j = ( j+ c j)
−a. (2.3.15)

In light of Theorem 2.3.10, it suffices to prove that c j = O( jβ ), where β = 1+a−
γ < 1. Indeed, using (2.3.15) we have

c j = ( j−a +d j)
−1/a − j = j[(1+ jad j)

−1/a −1]

= j[1+O( jad j)−1] = O( j1+ad j) = O( j1+a−γ)

as j → ∞. ��

The following result will be useful in the study of spectral zeta functions of rela-
tive fractal drums, which we introduce in Section 4.3.1; see the proof of Proposition
4.3.10.

Theorem 2.3.12. Let a > 0, C > 0 and let (d j) j≥1 be a sequence of real numbers
such that d j = O( jγ) as j →∞, where γ < a (here, γ may be negative as well). Then,
for the zeta function ζL , associated with the fractal string L =

(
(C · ja+d j)

−1
)

j≥1,
defined by

ζL (s) =
∞

∑
j=1

(C · ja +d j)
−s, (2.3.16)

we have D := D(ζL ) = 1/a, and ζL possesses a unique meromorphic extension (at
least) to the open right half-plane

{
Res >

1
a
−

(
1− γ

a

)}
. (2.3.17)

Furthermore, s = 1/a is the only pole of ζL in the half-plane; it is simple and

res(ζL ,1/a) =
1
a

C−1/a. (2.3.18)

Proof. Let us define the sequence (e j) j≥1 by ja+d′
j = ( j+e j)

a, where d′
j :=C−1d j.

Then
e j = ( ja +d′

j)
1/a − j = j

(
(1+ j−ad′

j)
1/a −1

)
= j O( j−ad′

j) = O( j1−a+γ)) as j → ∞.

Note that
ζL (s) =C−sζL ′(s), (2.3.19)

where L ′ :=
(
( ja + d′

j)
−1

)
j≥1. The claim now follows from Theorem 2.3.10 ap-

plied to L ′, by taking β = 1−a+ γ . Using (2.3.19) we conclude that res(ζL ,D) =
C−D res(ζL ′ ,D) =C−DD. ��
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Let L = (� j) j≥1 be the a-string, that is, � j = j−a − ( j + 1)−a for each j ≥ 1,
where a > 0 is fixed; see Example 2.2.24.58 The following result shows that the ge-
ometric zeta function ζL of any a-string possesses a unique meromorphic extension
to {Res > 0}. We point out that this is a special case of a more general result proved
in [Lap-vFr3, Theorem 6.21], according to which the geometric zeta function ζL
associated to the a-string possesses a unique meromorphic extension (still denoted
by ζL ) to the entire complex plane. Furthermore, the poles of ζL are all simple, and
are located at D = 1/(a+1) (the dimension of the boundary of the string), and at (a
subset of) −D,−2D,−3D, · · · . The proof of the corollary below is surprisingly sim-
ple. (Although, in some sense, it parallels the beginning of the proof of [Lap-vFr3,
Theorem 6.21], it also places it in a broader context.)

Corollary 2.3.13. Let ζa(s) be the zeta function associated with an a-string; that
is, ζa(s) =∑∞j=1

(
j−a−( j+1)−a

)s
, for all s ∈C with Res > 1, where a > 0 is fixed.

(a) Then, D := D(ζa) = 1/(a+1) and the zeta function can be meromorphically
extended (at least) to the open right half-plane {Res > 0}.

(b) Furthermore, D = 1/(a+1) is the only pole in the half-plane {Res > 0}; it
is simple, and res(ζa,D) = DaD.

Proof. (a) If we show that � j = j−a−( j+1)−a has the form � j = a j−(a+1)+d j, and
d j = O( j−(a+2)) as j →∞, the claim will follow immediately from Theorem 2.3.11,
with a1 := a+1 and γ1 := a+2.

Since
(

1+
1
j

)−a

= 1+

(
−a
1

)
1
j
+O( j−2) = 1− a

j
+O( j−2)

as j → ∞, we have that

d j = � j −a j−a−1 = j−a
(

1− (1+
1
j
)−a

)
−a j−a−1

= j−a
(

a
j
+O( j−2)

)
−a j−a−1 = O( j−a−2)

as j → ∞, and the claim is proved.

(b) Since � j = a j−(a+1) +d j, then ζa has the form ζa = ζ1 +ζ2, where

ζ1(s) :=
∞

∑
j=1

(a j−(a+1))s = asζR((a+1)s) = asζR

( s
D

)

58 The a-string was introduced in [Lap1, Example 5.1] and used in [Lap1–3], [LapPo1–3], [HeLap]
and [Lap-vFr1–3], in particular, in order to illustrate various results and test or motivate several
conjectures.
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and ζR is the Riemann zeta function, while ζ2 is holomorphic in {Res > 0}. Hence,

res(ζa,D) = res(ζ1,D) = aD lim
s→D

(s−D)ζR

( s
D

)
.

Introducing a new variable z = s/D, we obtain

res(ζa,D) = DaD lim
z→1

(z−1)ζR(z) = DaD res(ζR,1) = DaD,

where we have used the fact that the residue of the Riemann zeta function at its
simple pole z = 1 is equal to 1; see Remark 2.3.1 above. ��
Remark 2.3.14. It was first proved in [Lap1, Theorem C, p. 523] that the a-string
(introduced in [Lap1, Example 5.1]) has Minkowski dimension D = 1/(a+1) and
is Minkowski measurable with Minkowski content

M = M D =
21−D

1−D
aD. (2.3.20)

This result helped formulate and illustrate the characterization of Minkowski mea-
surability (of fractal strings, or equivalently, of compact subsets of R) obtained in
[LapPo1–2]. Moreover, it was revisited in [Lap-vFr1–3] from the point of view of
the theory of complex fractal dimensions and significantly expanded since a fractal
tube formula was also obtained for the volume of the (inner) ε-neighborhoods of the
a-string; see [Lap-vFr3, Subsection 8.1.2].

Remark 2.3.15. According to [Lap-vFr3, Theorem 8.15], the Minkowski measura-
bility of the a-string L and the value of its Minkowski content M (as obtained in
[Lap1, Theorem C of Appendix C], see Remark 2.3.14) can be recovered from the
fact that D = 1/(a+1) is the only complex dimension of L located on the critical
line {Res = D = D(ζM )}. On the other hand, according to the Minkowski measur-
ability criterion obtained in [LapPo2, Theorem 2.2], the fact that L is Minkowski
measurable (with Minkowski content given by (2.3.20)) follows from the asymp-
totic relation � j = j−a − ( j+1)−a ∼ a j−1/D as j → ∞ (i.e., � j = a j−1/D(1+o(1))
as j → ∞).

Remark 2.3.16. According to [Lap-vFr3, Equation (8.25)], we have (still for the a-
string and with D = 1/(a+1))

M = M D =
21−D

D(1−D)
res(ζa,D) (2.3.21)

and therefore, comparing (2.3.20) and (2.3.21), we deduce that

res(ζa,D) = DaD, (2.3.22)

as claimed in part (b) of Corollary 2.3.13, and not aD as stated in [Lap-vFr3, Theo-
rem 6.21] and [Lap-vFr3, Equation (8.22)] where there seems to be a misprint.

In the following result, we deal with bounded Dirichlet strings, so that we need
the condition a > 1.
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Theorem 2.3.17. Let a > 1, β ∈ (−∞,1), and δ > 0. Assume that (c j) j≥1 is a se-
quence of real numbers such that c j = O( jβ ) as j → ∞. Let the set A be defined
by

A =
{

ak = L
∞

∑
j=k

( j+ c j)
−a : k ∈ N

}
,

where L > 0. In other words, A is the set associated with the perturbed Dirichlet
string L = (L( j+ c j)

−a) j≥1. Then:

(a) For the distance zeta function ζA(s) =
∫

Aδ
d(x,A)s−1dx, with Aδ ⊂R, we have

D :=D(ζA) = 1/a. Furthermore, ζA(s) possess a (necessarily unique) meromorphic
extension (at least) to the open right half-plane {Res > β/a}, and

res(ζA,D) = 21−DLD. (2.3.23)

(b) For the tube zeta function ζ̃A(s) =
∫ δ

0 ts−2|At |dt, we have D = D(ζ̃A) = 1/a.
Furthermore, ζ̃A(s) possess a (necessarily unique) meromorphic extension (at least)
to the open right half-plane {Res > β/a}; that is,

res(ζ̃A,D) = LD 21−D

1−D
. (2.3.24)

Proof. In both cases (a) and (b), it suffices to consider the geometric zeta function
ζL (s) =∑∞j=1(� j)

s of the string L = (� j) j≥1, where � j := L( j+c j)
−a; see (2.1.84)

and (2.2.23).
Since c j ∼ jβ as j → ∞, we deduce from Theorem 2.3.10 that ζL (s) can be

meromorphically extended to {Res > β/a}.
It is clear that � j ∼ L j−a as j →∞. Using [LapPo2, Theorem 2.2] or the counter-

part of [Lap1, Theorem C of Appendix C] (compare Remark 2.3.15), we conclude
that the set A is Minkowski measurable, its box dimension is equal to D = 1/a, and
the D-dimensional Minkowski content of A is given by

M D(A) = LD 21−D

1−D
. (2.3.25)

(It is worth noting that the presence of the factor LD on the right-hand side of (2.3.25)
is due to the scaling property of the Minkowski content; see Equation (1.3.19).) The
values of the residues in (a) and (b) are then obtained from Theorem 2.2.3 and
Theorem 2.2.14, respectively. (Compare Remark 2.3.16 above.) ��

It is easy to see that the conclusions of Theorem 2.3.17(a) hold for the distance
zeta function ζ1(s) =

∫ a1
0 d(x,A)s−1dx as well. Indeed, it suffices to take δ large

enough, so that Aδ = (−δ ,a1 +δ ), and then drop the integrals corresponding to the
intervals (−δ1,0) and (a1,a1+δ ), since they are both equal to δ ss−1, and therefore,
are meromorphic functions on C, with s = 0 as their only pole.
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2.3.3 Meromorphic Extensions of Tube and Distance Zeta
Functions

The following theorem (Theorem 2.3.18) shows that the tube zeta function of a class
of Minkowski measurable sets possess a nontrivial meromorphic extension, assum-
ing a mild technical condition on the growth rate of the tube function t �→ |At |. As we
see from Theorems 2.3.18 and 2.3.25, the second term in the asymptotic expansion
of the tube function plays a crucial role in order to reach such a conclusion. For a
counterpart of this result for the distance zeta functions of bounded sets and for the
geometric zeta functions of fractal strings, see Theorem 2.3.37 and Theorem 2.3.38,
respectively.

We note that conjecturally, and in light of the results obtained in [Lap-vFr3,
Chapters 2–3 and Subsection 8.3.3] (including [Lap-vFr3, Theorem 8.3]), as well
as of the results of [LapPe2–3, LapPeWi1–2] (as described in part in [Lap-vFr3,
Section 13.1]), the class of compact sets to which Theorem 2.3.18 applies should
include (under some mild additional assumptions, yet to be specifically determined)
all nonlattice self-similar sets (satisfying the open set condition, see [Hut, Fal1]).
Provided one assumes in addition that D < N, this comment also applies to Theo-
rem 2.3.37 (in the Minkowski measurable case), the counterpart of Theorem 2.3.18
for distance zeta functions. We refer to Problems 6.2.36 and 6.2.38 for a detailed
discussion of closely related issues.

Theorem 2.3.18 (Minkowski measurable case). Let A be a bounded subset of RN

such that there exist α > 0, M ∈ (0,+∞) and D ≥ 0 satisfying

|At |= tN−D (M +O(tα)) as t → 0+. (2.3.26)

Then, dimB A exists and dimB A = D. Furthermore, A is Minkowski measurable
with Minkowski content M D(A) = M . Moreover, the tube zeta function ζ̃A has
for abscissa of convergence D(ζ̃A) = dimB A = D and possesses a unique mero-
morphic continuation (still denoted by ζ̃A) to (at least) the open right half-plane
{Res > D−α}; that is,

Dmer(ζ̃A)≤ D−α.
The only pole of ζ̃A in this half-plane is s = D; it is simple, and res(ζ̃A,D) = M .

Proof. We have

ζ̃A(s) =
∫ δ

0
ts−N−1|At |dt =

∫ δ

0
ts−N−1tN−D(M +O(tα))dt

= M
δ s−D

s−D︸ ︷︷ ︸
ζ1(s)

+
∫ δ

0
tsO(t−D+α−1)dt

︸ ︷︷ ︸
ζ2(s)

,

provided Res > D. The function ζ1(s) is meromorphic in the entire complex plane
and D(ζ1) = D, while for ζ2(s) we have
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|ζ2(s)| ≤ K
∫ δ

0
tRes−D+α−1dt < ∞

for Res > D − α , where K is a positive constant. Therefore, D(ζ2) ≤ D − α <
D = D(ζ1), and the claim now follows from Lemma 2.3.5, since (in the notation
of Lemma 2.3.5) we have a1 =−∞ here. ��

Remark 2.3.19. Much as in Remark 2.3.4, a function of order O(tα) as t → 0+,
appearing in Theorem 2.3.18, can be replaced by a function of order O(tα)) as
t → 0+, in the precise sense of Definition 2.3.20 just below. In the statement of
Theorem 2.3.18, this enables us to replace functions of order O(tα) as t → 0+ with
more general functions, for example of the form tα log(1/t) or

tα log . . . log︸ ︷︷ ︸
q

(1/t),

near t = 0+, where the last factor is the q-th iterated logarithm for an arbitrary integer
q ≥ 1.

Definition 2.3.20. Let f be defined on an interval (0,δ ), for some δ > 0. Then,
given α ∈R, f is said to be of order O(tα)) as t → 0+ (which we write f (t) =O(tα))
as t → 0+) if for every α0 < α , it is of order O(tα0) as t → 0+; that is, symbolically,

O(tα)) :=
⋂
α0<α

O(tα0) as t → 0+. (2.3.27)

Equivalently, O(tα)) :=
⋂
ε>0 O(tα−ε) as t → 0+.

Example 2.3.21. Given an integer k ≥ 0, let A(a,k) = { j−a : j ∈N}× [0,1]k ⊂R
1+k,

as in [Lap1, Example 5.1’], where a> 0. For the set A(a)= { j−a : j ∈N} (associated
with the a-string; see Example 2.2.24 and Remark 2.3.15), we have

|A(a)t |R = t1−D
(

21−DaD

1−D
+O(t1+D

2 ))

)
as t → 0+,

where D= 1/(a+1), the (inner) t-neighborhood of the a-string is taken in R and t is
any positive number; see [Lap-vFr3, Equation (8.21) with J = 0] and the comment
following it. We therefore obtain that

|A(a,k)t |R1+k = t(1+k)−(k+D)

(
21−DaD

1−D
+O(t1+D

2 ))

)

as t → 0+, where the (inner) t-neighborhood and the Lebesgue measure are now
taken in R

1+k, and the notation O(t1+D
2 )) is explained in (2.3.27). By using Theo-

rem 2.3.18, we obtain that D(ζA(a,k)) = k+D, and since α = 1+ D
2 (see also Re-

mark 2.3.19), it follows that ζA(a,k)(s) possesses a unique meromorphic extension
(at least) to the open right half-plane {Res > (k+D)− (1+ D

2 ) = k−1+ D
2 }.
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Remark 2.3.22. Actually, in the present case, using the much more precise asymp-
totic expansion for |A(a)t |R (and hence, also for |A(a,k)t |R1+k = |A(a)t |R) given by
[Lap-vFr3, Equation (8.21)], namely, for every integer J ≥ 1, we have

|A(a)t |R =
(2t)1−D

1−D
aD −

J

∑
j=1

(2t)1+ jD

jD(1+ jD)
res(ζLa ,− jD)+O(t1+(J+1)D)

as t → 0+, one can show (much as in the proof of Theorem 2.3.18) that for every
integer k ≥ 0, the tube zeta function ζ̃A(a,k) (and hence, in particular, ζ̃A(a), by letting
k = 0) has a (unique) meromorphic continuation to all of C, with simple poles lo-
cated at k+D (and at subset of) k−D, k−2D, k−3D, · · · . In light of Remark 2.2.18
and since dimB A = k+D < k+ 1, the exact same statement holds for the distance
zeta function ζA(a,k),A(a,k)δ for any fixed δ > 0.

Assume that A ⊂ R
N is a bounded and Minkowski measurable set, with its

D-dimensional Minkowski content denoted by M = M (A), where D := dimB A.
Then, it is clear that in general, M = MN depends on N. However, it was shown
in the 1950s by Martin Kneser [Kne, Satz 7] that the normalized Minkowski con-
tent, defined (much as was later done in [Fed2]) by MN/ωN−D is independent of
N.59 (Here, given any m ∈ N, ωm := 2πm/2/mΓ(m/2) denotes the m-dimensional
Lebesgue measure of the unit ball in R

m.) An application of this observation is
provided in the following result, which follows from Theorem 2.3.18 and from The-
orem 2.2.3 (Equation (2.2.4)), according to which we have, respectively,

res(ζ̃A,D) = MN and (provided D < N) res(ζA/(N −D),D) = MN .

Corollary 2.3.23. Assume that A is a bounded subset of R
N satisfying the hy-

potheses of Theorem 2.3.18. Then, the residue at D = dimB A of the normalized
tube zeta function ζ̃A/ωN−D (as well as of the normalized distance zeta function
ζA/(N −D)ωN−D, provided D < N) is given by the normalized Minkowski content
MN/ωN−D, and is therefore independent of the embedding dimension N.

We also refer to the related open Problem 6.2.16 in Subsection 6.2.2.

The following theorem (Theorem 2.3.25) deals with an important class of boun-
ded sets in R

N that are not Minkowski measurable. More specifically, we deal with
the sets A such that 0 ≤M D

∗ (A)<M ∗D(A)<∞, where D = dimB A. The case when
M ∗D(A) = +∞ is more difficult, and is treated in Subsection 4.5.1 in the context of
relative fractal drums, using suitable gauge functions.

We note that conjecturally, and in light of the results obtained in [Lap-vFr3,
Chapters 2–3 and Section 8.4], as well as of results of [LapPe2–3, LapPeWi1–2]
(described in part in [Lap-vFr3, Section 13.1]), the class of compact sets to which
Theorem 2.3.25 applies should include (under some mild additional assumptions,
yet to be specifically determined; see footnote 62 on page 158) all lattice self-similar
sets A (satisfying the open set condition, see [Hut, Fal1]). Provided one assumes in

59 Unaware of the reference [Kne], Maja Resman has rediscovered this result in [Res, Theorem 4].
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addition that D<N, this comment also applies to Theorem 2.3.37 (in the Minkowski
nonmeasurable case), the counterpart of Theorem 2.3.18 for distance zeta functions.
We refer to Problem 6.2.36 as well as to Problem 6.2.38 (and the comments follow-
ing it) for a detailed discussion of closely related issues.

Before stating Theorem 2.3.25, we must first introduce some notation. Given a
locally integrable T -periodic function G : R→R, we denote by G0 its truncation to
[0,T ], while the Fourier transform of G0 is denoted by Ĝ0:

G0(τ) =

{
G(τ), if τ ∈ [0,T ],

0, if τ /∈ [0,T ],
(2.3.28)

and

Ĝ0(t) =
∫ +∞

−∞
e−2πitτG0(τ)dτ =

∫ T

0
e−2πitτG(τ)dτ , (2.3.29)

for all t ∈ R.

Definition 2.3.24. The (additive) T -periodicity of G implies that the function
G1(t) = G(log t−1) is multiplicatively periodic, with multiplicative period P = eT >
1; that is, G1(Pt) = G1(t), for all t ∈ R; see Figure 2.16. In particular, this means
that for any fixed t > 0, the value of G1(Pkt) is independent of k ∈ Z.

Conversely, if a function G1 : R→R is multiplicatively periodic with multiplica-
tive period P > 1, then the function G(τ) := G1(e−τ) is (additively) T -periodic with
T = logP. Note that if P is a multiplicative period of G1, then G1(Pkt) = G1(τ) for
all k ∈ Z. For example, G(P−1t) = G(PP−1t) = G(t), for all t ∈ R.

Theorem 2.3.25 (Minkowski nonmeasurable case). Let A be a bounded subset of
R

N such that there exist D ≥ 0, α > 0, and let G : R→ (0,+∞) be a nonconstant
periodic function with minimal period T > 0, satisfying

|At |= tN−D (
G(log t−1)+O(tα)

)
as t → 0+. (2.3.30)

Then G is continuous, dimB A exists and dimB A = D. Furthermore, A is Minkowski
nondegenerate with upper and lower Minkowski contents respectively given by

M D
∗ (A) = minG, M ∗D(A) = maxG. (2.3.31)

(Hence, the range of G|[0,T ] is equal to the compact interval [M D
∗ (A),M ∗D(A)].)

Moreover, the tube zeta function ζ̃A has for abscissa of convergence D(ζ̃A) = D and
possesses a (necessarily unique) meromorphic extension (still denoted by ζ̃A) to (at
least) the open right half-plane {Res > D−α}; that is,

Dmer(ζ̃A)≤ D−α.



158 2 Distance and Tube Zeta Functions

In addition, the set of all the poles of ζ̃A located in this half-plane (i.e., the set of
visible complex dimensions of A) is given by60

P(ζ̃A) =

{
sk = D+

2π
T

ik : Ĝ0

( k
T

)

= 0, k ∈ Z

}
(2.3.32)

(see (2.3.29)); they are all simple, and the residue at each sk ∈ P(ζ̃A), k ∈ Z, is
given by

res(ζ̃A,sk) =
1
T

Ĝ0

( k
T

)
. (2.3.33)

If sk ∈ P(ζ̃A), then s−k ∈ P(ζ̃A) (reality principle, see Remark 2.3.28), and

| res(ζ̃A,sk)| ≤
1
T

∫ T

0
G(τ)dτ , lim

k→±∞
res(ζ̃A,sk) = 0. (2.3.34)

Moreover, the set of poles P(ζ̃A) (i.e., of complex dimensions of A) contains s0 =D,
and

res(ζ̃A,D) =
1
T

∫ T

0
G(τ)dτ . (2.3.35)

In particular, A is not Minkowski measurable and

M D
∗ (A)< res(ζ̃A,D)< M ∗D(A)< ∞. (2.3.36)

If, in addition, G ∈Cm(R) (i.e., G is m times continuously differentiable on R)61

for some integer m ≥ 1, and G has an extremum t0 such that

G′(t0) = G′′(t0) = · · ·= G(m)(t0) = 0, (2.3.37)

then there exits Cm > 0 such that for all k ∈ Z and sk ∈ P(ζ̃A) we have

| res(ζ̃A,sk)| ≤Cm|k|−m. (2.3.38)

Before proving Theorem 2.3.25, we state and establish a useful corollary. We
note that, conjecturally, the class of compact sets to which this corollary can be
applied includes all lattice self-similar sets (see the geometric part of [Lap3, Con-
jecture 3] and the comment preceding the statement of Theorem 2.3.25).62

60 Note that the set defined by (2.3.32) coincides with the set of principal complex dimensions of
A; that is, with dimPC A := Pc(ζ̃A), in the notation of Definition 2.1.67 and Equation (2.1.99).
61 We do not know examples of periodic sets A such that the corresponding nonconstant periodic
functions G appearing in (2.3.30) are C1-regular; see Remark 2.3.32 and Problem 6.2.5.
62 Actually, in light of the main result of [KomPeWi] proving the geometric part of [Lap3, Conjec-
ture 3] for a nonintegral value of D, it is reasonable to expect that Corollary 2.3.26 can be applied
to a large class of lattice self-similar sets such that D /∈ N0. The remaining issue to be dealt with,
however, is to find appropriate hypotheses on A enabling us to obtain (as is assumed in condition
(2.3.30)) a sufficiently good error term, of the form O(tα ) for some α > 0 rather than merely o(1)
as t → 0+.
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Corollary 2.3.26. Assume that the hypotheses of the first part of Theorem 2.3.25
hold (i.e., assume that A ⊂ R

N is bounded and satisfies (2.3.30)). Then, A is not
Minkowski measurable but is Minkowski nondegenerate (provided G takes its values
in (0,+∞) rather than in [0,+∞)) and possesses an average Minkowski content
(defined as in Equation (2.4.4) in Definition 2.4.1 below) given by

M̃ D(A) = res(ζ̃A,D) =
1
T

∫ T

0
G(τ)dτ . (2.3.39)

In particular,
M D

∗ (A)< M̃ D(A)< M ∗D(A). (2.3.40)

Proof. Clearly, in light of (2.3.31), A is not Minkowski measurable because G is
nonconstant (hence, infG =M D

∗ (A)<M ∗D(A) = supG) and continuous and takes
its values in (0,+∞) (hence, M D

∗ (A) = infG > 0) while M ∗D(A) < ∞ (because G
is periodic and continuous).

Finally, the existence of M̃ D(A) follows much as in the proof of [Lap-vFr3,
Theorem 8.30] and so, we will omit it here. We then obtain that

M̃ D(A) =
1
T

∫ T

0
G(τ)dτ . (2.3.41)

Equation (2.3.39) now follows by combining Equations (2.3.41) and (2.3.35).
We note in closing this proof that the existence and the value of M̃ D(A) (as given

by Equation (2.3.41)) also follows from part (b) of Theorem 2.4.3 in Section 2.4.1
below; see Equation (2.4.7). (See also the special case of Proposition 3.1.2 and of
Corollary 3.1.6 where we have set m = 2 and a = 1/3.) ��

Further postponing the proof of Theorem 2.3.25 for a while, we first provide
several remarks.

Remark 2.3.27. The analog of Remark 2.3.19 also applies to Theorem 2.3.25.

Remark 2.3.28. All of the fractal zeta functions appearing in this monograph satisfy
the so-called reality principle: the nonreal poles of zeta functions (defined on do-
mains which are symmetric under complex conjugation) come in complex conjugate
pairs. This property has been mentioned and discussed in [Lap-vFr3, Remark 1.6]
in the case of the geometric zeta functions of fractal strings. In particular, if in Theo-
rem 2.3.25 we have that sk =D+ 2π

T ki is a pole of the tube zeta function ζ̃A for some
k ∈ Z \ {0} (that is, Ĝ0(

k
T ) 
= 0), then its complex conjugate sk = D− 2π

T ki is also

a pole (since Ĝ0(− k
T ) = Ĝ0(

k
T ) 
= 0). The reality principle for a zeta function (or

more generally, a meromorphic function) f (s) follows from the identity f (s) = f (s),
which is satisfied if f (r) ∈ R for any r ∈ (D( f ),+∞). It follows from the principle
of analytic continuation that this identity, and hence also the ‘reality principle’, con-
tinues to hold in any domain to which f can be meromorphically continued and, in
particular, to Mer( f ), the half-plane of meromorphic continuation of f ; see Defini-
tion 2.1.53. The reality principle is also called the principle of reflection; see [Tit1,
p. 155] and Remark 2.1.12.



160 2 Distance and Tube Zeta Functions

Remark 2.3.29. It would be interesting to find some reasonably general conditions
on A (that is, on the function G) under which the set P(ζ̃A) in Theorem 2.3.25 is
arithmetic (i.e., is a full arithmetic progression, namely, the sequence D+ 2π

T iZ ).
Equivalently, this amounts to asking under what conditions on G is Ĝ0(k/T ) 
= 0 for
all k ∈ Z (or equivalently, for all k ∈N, k 
= 0). See also Problem 6.2.8 on page 556.

In the proof of Theorem 2.3.25, we shall need the following simple lemma.

Lemma 2.3.30. Let F : (0,δ )→ R be continuous, and assume that G : R→ R is a
T -periodic function, for some T > 0. If F(t) = G(log t−1)+o(1) as t → 0+, then G
is continuous.

Proof. In light of the periodicity of G, it suffices to show that G is continuous on
(0,+∞). We reason by contradiction. Hence, we assume that G is not continuous at
some τ0 > 0. Then, by periodicity, for every k ≥ 1, we have that G is not continuous
at τk = kT + τ0. Recall that the oscillation of a function G at a point x ∈ R is given
by

osc
x

G := lim
ε→0+

(
sup

(x−ε ,x+ε)
G− inf

(x−ε ,x+ε)
G
)
.

Defining tk = e−τk , we have osctk G(log t−1) = oscτk G = c > 0, where (in light of
the T -periodicity of G) c does not depend on k. Here and in the sequel, we choose
k sufficiently large so that tk ∈ (0,δ ). Since tk → 0+ as k → ∞, we may take k large
enough and fixed, such that |o(1)| ≤ c/2 for t = tk. Here, o(1) is the function of t
given in the statement of the lemma. In particular, o(1)→ 0 as t → 0+. Therefore,

osc
tk

F = osc
tk
(G(log t−1)+o(1))

≥ osc
tk
(G(log t−1)−osc

tk
|o(1)| ≥ c− 1

2
c =

1
2

c > 0.

On the other hand, since F is continuous on (0,δ ), we must have osctk F = 0, which
is a contradiction. Hence, G must be continuous everywhere. ��

We are now ready to establish Theorem 2.3.25.

Proof of Theorem 2.3.25. To show that G is continuous, it suffices to apply Lemma
2.3.30 to F(t) := |At |tD−N , which is defined and continuous for t > 0. We can write
ζ̃A(s) = ζ1(s)+ζ2(s), where

ζ1(s) =
∫ δ

0
ts−D−1G(log t−1)dt, ζ2(s) =

∫ δ

0
tsO(t−D+α−1)dt, (2.3.42)

for some δ > 0 fixed. As in the proof of Theorem 2.3.18, we have D(ζ2) = D−α .
Therefore, it suffices to prove that ζ1(s) can be meromorphically extended to the
whole complex plane. We will show this by computing ζ1(s) in a closed form. Since
G is T -periodic, we have
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ζ1(s) =
∫ δ

0
ts−D−1G(log t−1 +T )dt.

Introducing a new variable u defined by logu−1 = log t−1 +T , that is, u = e−T t, we
obtain

ζ1(s) = eT (s−D)
∫ δe−T

0
us−D−1G(logu−1)du = eT (s−D)

(∫ δ

0
+

∫ e−T δ

δ

)

= eT (s−D)

(
ζ1(s)+

∫ e−T δ

δ
ts−D−1G(log t−1)dt

)
.

From this, we immediately obtain ζ1(s) in closed form:

ζ1(s) =
eT (s−D)

eT (s−D)−1

∫ δ

e−T δ
ts−D−1G(log t−1)dt

=
eT (s−D)

eT (s−D)−1

∫ logδ−1+T

logδ−1
e−τ(s−D)G(τ)dτ

︸ ︷︷ ︸
I(s)

,
(2.3.43)

where in the last equality we have passed to the new variable τ := log t−1. The last
integral I(s) is obviously an entire function of s, since δ is different from 0 and +∞.
Here, we have used Theorem 2.1.45(c) with ϕ(τ) = eτ . This shows that the function
ζ1(s) is meromorphic on C, and the set of its poles is equal to the set of complex
solutions sk of exp(T (s−D)) = 1 for which I(sk) 
= 0. If I(sk) = 0, it is easy to see
that sk is a removable singularity of ζ1(s):

lim
s→sk

ζ1(s) = lim
s→sk

s− sk

eT (s−D)−1
eT (s−sk)

I(s)
s− sk

=
1
T

I′(sk),

where I′ denotes the derivative of I. Since

I(sk) =
∫ logδ−1+T

logδ−1
e−2πi k

T ·τG(τ)dτ

=
∫ T

0
e−2πi k

T ·τG(τ)dτ = Ĝ0

( k
T

)
,

(2.3.44)

where we have used the fact that both τ �→ e2πi k
T ·τ and τ �→ G(τ) are T -periodic

functions, we conclude that the set of poles of the tube zeta function ζ̃A is described
by (2.3.32). Note that it contains D, since for k = 0 we have

I(D) = I(s0) = Ĝ0(0) =
∫ T

0
G(τ)dτ > 0. (2.3.45)
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Indeed, the range of the function G|[0,T ] is equal to the interval [M∗,M ∗], where
M∗ = M D

∗ (A) and M ∗ = M ∗D(A). Since G is assumed to be nonconstant, we
deduce from (2.3.30) that 0 ≤ M∗ < M ∗ < ∞.

Therefore, we have D(ζ1) = D > D−α = D(ζ2), and by Lemma 2.3.5, since
a1 =−∞ (in the notation of that lemma), we also know that ζ̃A possesses a (neces-
sarily unique) meromorphic extension to the open right half-plane {Res > D−α}.

Next, we compute the residue of ζ̃A at sk = D+ 2π
T ki ∈ P(ζ̃A) for an arbitrary

k ∈ Z, using l’Hospital’s rule and (2.3.44):

res(ζ̃A,sk) = res(ζ1,sk)

= lim
s→sk

s− sk

eT (s−D)−1
eT (sk−D)I(sk) =

1
T

Ĝ0

( k
T

)
.

(2.3.46)

Substituting k = 0, we obtain (2.3.35). The inequalities in (2.3.36) follow from
(2.3.35).

As is well known, since G0 ∈ L1(R), we have |Ĝ0(τ)| ≤ ‖G0‖L1(R) = ‖G‖L1(0,T )

and lim|t|→+∞ Ĝ0(t) = 0 (by the Riemann–Lebesgue lemma; see, e.g., [Ru] or
[MitŽu, p. 101]), so that (2.3.34) follows immediately from (2.3.46).

If the function G is of class Cm, it does not mean that G0 is of the same class.
However, we can define G1 : R→ R by

G1(τ) =

{
G(t)−M∗, if τ ∈ [0,T ],

0, if τ /∈ [0,T ].
(2.3.47)

Since the value of M∗ is in the range of G, we may assume without loss of generality
that t0 = 0 is a minimum of G; namely, G(0) = G(T ) =M∗. Otherwise, we can shift
the graph of G in the horizontal direction in order to achieve this. Furthermore, M∗
is equal to the minimal value of G; hence, G1(0) = G1(T ) = 0. This means that G1

is continuous on R, and moreover, due to (2.3.37), that G1 has the same regularity
as G; that is, G1 ∈Cm(R). A direct computation shows that for each t ∈ R,

Ĝ1(t) = Ĝ0(t)−M∗
1− e−2πit·T

2πit
, (2.3.48)

from which it follows that

res(ζ̃A,sk) =
1
T

Ĝ0

( k
T

)
=

1
T

Ĝ1

( k
T

)
. (2.3.49)

Since G1 ∈Cm(R), by a standard result from Fourier analysis obtained by repeated
integration by parts (see, e.g. [MitŽu, p. 103]), we know that there exists Cm > 0
such that |Ĝ1(t)| ≤ Cmt−m for all t ∈ R. This proves (2.3.38). Of course, the same
conclusion can be achieved by defining G1(τ) = G(τ)−M ∗. ��

Example 2.3.31. (Complex dimensions of the ternary Cantor set, revisited). Let A
be the classic ternary Cantor set in [0,1]. According to [Lap-vFr3, Equation (1.11)]
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(or to Theorem 5.3.13, see Example 5.5.3 in Section 5.5.2 below),63 we have

|At |= t1−D21−D
(

2−{log3(2t)−1}+(3/2){log3(2t)−1}
)

(2.3.50)

for all t ∈ (0,1/2). Here, for x ∈R, {x}= x−�x� ∈ [0,1) denotes the fractional part
of x, where �x� (the integer part or the ‘floor’ of x) is defined as the largest integer
which is less than or equal to x. Then the condition (2.3.30) in Theorem 2.3.25 is
satisfied for N = 1, D = log3 2, α = D, and

G(τ) := 21−D
(

2
−
{
τ−log2

log3

}
+(3/2)

{
τ−log2

log3

})
. (2.3.51)

It is easy to see that the function G is periodic, with minimal period T = log3, and
is continuous. However, it is not of class C1 since it is nondifferentiable at the points
τk = log2+ T k, k ∈ Z; see Figure 2.16 or [Lap-vFr3, Figure 1.5]. It is therefore
convenient to consider the restriction G|I of G to the interval I = [log2, log2+T ],
since the value of M ∗D(A) is achieved at the endpoints of I, and G|I is convex. An
easy geometric analysis shows that

M ∗D(A) = 22−D ≈ 2.583,

while the minimum value of G is

M D
∗ (A) = 21−D DD

(1−D)1−D ≈ 2.495,

achieved at the minimum of G|I , which is easy to compute. (See also [LapPo2,
Theorem 4.6] or [Lap-vFr3, Section 1.1.2]) In particular, the oscillatory period of
the ternary Cantor set is given by

am(A) := M D
∗ (A)−M ∗D(A)≈ 0.08.

According to Theorem 2.3.25, the corresponding tube zeta function ζ̃A has for ab-
scissa of convergence D(ζ̃A)= log3 2; therefore, it can be meromorphically extended
to the open right half-plane {Res > α} for any α > 0, and hence, to the entire com-
plex plane. The set of poles of the tube zeta function is given by

P(ζ̃A) =
{

sk = D+
2π

log3
ki : k ∈ Z

}
= D+piZ,

where p := 2π/ log3 is the oscillatory period of the ternary Cantor set, in agreement
with [Lap-vFr3, Equation (1.30)]. Computing the Fourier transform of G0 directly,

63 In our situation we have At \ [0,1] = (−t,0)∪ (1,1+ t), so that in (2.3.50) we do not have the
term −2t, unlike in [Lap-vFr3, Equation (1.11)]. Equation (2.3.50) can also be recovered from the
general fractal tube formulas obtained in Chapter 5; see the discussion of the Cantor string (viewed
as an RFD) in Subsection 5.5.2 below. (See also Equation (1.1.23) of Example 1.1.5 on page 15.)
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with its support shifted to [log2, log2+T ] (since, on this interval, formula (2.3.51)
holds without curly brackets), we obtain that for each pole sk ∈ P(ζ̃A),

res(ζ̃A,sk) =
1
T

Ĝ0(
k
T
) =

1
T

∫ log6

log2
e−2πi k

T τG(τ)dτ

=
21−D

T

(2D

sk
(2−sk −6−sk)+

(1.5)−D

1− sk
(61−sk −21−sk)

)

=
2−sk

T sk(1− sk)
,

(2.3.52)

where in the last equality we have used the fact that 3sk = 2. Since |2−sk |= 2D, we
conclude that res(ζ̃A,sk)  k−2 as |k| → ∞, which is in agreement with the limit in
(2.3.34). It is interesting to note that inequality (2.3.38) is satisfied for m = 2, even
though G is not of class C2 and not even of class C1.

Fig. 2.16 Oscillatory nature of the function G(log t−1) appearing in the tube function t �→ |At | =
t1−DG(log t−1) near t = 0 for the ternary Cantor set A = C(1/3), where D = dimB A = log3 2; see
Example 2.3.31. Here, G(τ) is log3-periodic, or equivalently, G(log t−1) is multiplicatively peri-
odic, with multiplicative period P = 3; see Remark 2.3.24 on page 157. The ternary Cantor set is
Minkowski nondegenerate, but is not Minkowski measurable; see [LapPo2]. (After [Lap-vFr1–3].)

The residues of the distance zeta function ζA and the zeta function of the Cantor
string ζL are obtained by using (2.2.23) (with N = 1) and (2.1.85), respectively:

res(ζA,sk) = (1− sk) res(ζ̃A,sk) =
2−sk

T sk
,

res(ζL ,sk) = sk2sk−1 res(ζA,sk) =
1

2T
.

For the Cantor string L = (� j) j≥1 corresponding to the set A, we have

�1 =
1
3
, �2 = �3 =

1
9
, �4 = �5 = �6 = �7 =

1
27

, · · · .
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Alternatively, we view L as a decreasing sequence (� j) j≥1, where for each j ≥ 1,
l j = 3− j has multiplicity 2 j−1. Therefore,

ζL (s) =
∞

∑
j=1

2 j−13− js =
3−s

1−2 ·3−s (2.3.53)

(see [Lap-vFr3, Equation (1.29)] or the discussion surrounding Equation (1.1.3)
on page 5 of Chapter 1), where the first equality holds for all s ∈ C such that
Res > log3 2. Hence, ζL has a meromorphic extension to all of C, given by the
last expression in (2.3.53). It now follows from (2.1.85) and (2.2.23) that both the
distance and the tube zeta functions of A possess a meromorphic extension to the
entire complex plane, with one additional simple pole at s = 0.

Remark 2.3.32. It would be of interest to find examples of bounded sets A in R
N

such that (2.3.30) holds with G ∈Cm(R), for a prescribed value of m ∈N (see Prob-
lem 6.2.5). Recall that we use the convention according to which N= {1,2,3, . . .}.
They will typically not be fractal sets since for such sets, one would expect G (when
it exists) not to be differentiable on all of R.

Example 2.3.33. The asymptotics of the tube function t �→ |At | as in (2.3.30) occur
naturally in the study of self-similar lattice strings (in the sense of [Lap-vFr3, Chap-
ter 2]); see [Lap-vFr3, Subsection 8.4.4 and, in particular Equation (8.44)]. If we
consider an arbitrary (nontrivial) lattice self-similar string L (also in the sense of
[Lap-vFr3, Chapter 2 and Section 8.4]), then it follows from [Lap-vFr3, Corollary
8.27] that there exists η ∈ R, η ≤ D, such that for the associated fractal boundary
A = ∂L we have

|At |= t1−D(G(log t−1)+O(tη+δ )
)

(2.3.54)

as t → 0+, for all sufficiently small δ > 0,64 where D = dimB A ∈ (0,1) and G is
a nonconstant periodic function. (See also Remark 2.3.35 below for a more precise
statement of estimate (2.3.54), and [Lap-vFr3, Corollary 8.27] for an even more
refined, but more technical, version of (2.3.54).) Since here α = η , it follows from
Theorem 2.3.25 that the corresponding distance and tube zeta functions of A (as well
as the geometric zeta function ζL of the self-similar string L ) can be meromorphi-
cally extended (at least) to the open right half-plane {Res > D−η}. We note that
in [Lap-vFr3, Chapter 2], ζL is given in a closed form and admits a meromorphic
extension to all of C, not just to the half-plane {Res > D−η}.

Remark 2.3.34. We caution the reader that in Example 2.3.33, the set A stands for
the boundary of the fractal string L (i.e., A = ∂L = ∂Ω , where Ω ⊆ R is the
open bounded set defining the self-similar string L ). This is in contrast with much
of the rest of the present monograph where by the set A = AL associated with a
fractal string L = (� j) j≥1, we mean A :=

{
∑ j≥k � j : k ≥ 1

}
⊂ (0,+∞) ⊂ R; see,

especially, Section 2.1.4 above.

64 In other words, |At |= t1−D
(
G(log t−1)+O(t(η )

)
as t → 0+, where the notation O(t(η ) as t → 0+

is explained by (2.3.8).
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Remark 2.3.35. A much more precise statement of Equation (2.3.54) can be found
in [Lap-vFr3, Theorem 8.25 and Corollary 8.27]. In particular, if Res = Θ is the
rightmost vertical line of complex dimensions to the left of {Res = D}, then it
follows from [Lap-vFr3, Corollary 8.27] that ifΘ < 0, then estimate (2.3.54) holds
with the optimal values η = D and δ = 0, while ifΘ ≥ 0, then (2.3.54) holds with
η = D−Θ and for all δ > 0. Note that if there are no complex dimensions to the
left of {Res = D} (as is the case, for example, for the classic ternary Cantor string
L and the associated ternary Cantor set A = ∂L ), we haveΘ =−∞< 0 and hence,
estimate (2.3.54) then holds with η = D and δ = 0.

Example 2.3.36. (Complex dimensions of the Sierpiński carpet). Let A be the classic
Sierpiński carpet in the plane, as depicted in Figure 2.1 on page 49. Then, using
[HorŽu, p. 537] (see also [Lap3] and [Lap-vFr3]), we obtain that

|At |= t2−D (
G(log t−1)+O(tD−1)

)
(2.3.55)

as t → 0+, where D = log3 8, and G is a nonconstant periodic function with period
T = log3.65 Since here α = D− 1 and T = log3, by using Theorem 2.3.25, we
deduce that the distance and tube zeta functions of the Sierpiński carpet possess a
unique meromorphic extension (at least) to the open right half-plane {Res> 1}, and
that the set of complex dimensions of A (in that half-plane) consists of simple poles
and is given by

dimPC A =
{

D+
2π

log3
ki : k ∈ Z

}
= D+

2π
log3

iZ. (2.3.56)

A direct computation shows that both fractal zeta functions are, in fact, meromor-
phic on all of C.

Theorems 2.3.18 and 2.3.25 are stated for the tube zeta functions of bounded
sets A ⊂R

N . Here, we first formulate the corresponding results for the distance zeta
functions.

Theorem 2.3.37 (Distance zeta functions of bounded sets: Minkowski measur-
able and nonmeasurable cases). Let A be a bounded subset of RN, with N ≥ 1.
In the Minkowski measurable case, we assume that hypothesis (2.3.26) of Theo-
rem 2.3.18 holds, while in the Minkowski nonmeasurable case, we assume that
hypothesis (2.3.30) of Theorem 2.3.25 holds. Furthermore, let D ≥ 0 be the real
number occurring in (2.3.26) or in (2.3.30), respectively. Then, if D < N,66 the
conclusions of Theorem 2.3.18 (respectively, of Theorem 2.3.25), concerning the
tube zeta function (ζ̃A = ζ̃A,Aδ for any fixed δ > 0), also hold for the distance zeta

65 Alternatively, Equation (2.3.55) also follows by a direct application of the general fractal tube
formulas obtained in Chapter 5 below. Conversely, the latter derivation requires the computation
of ζA (or of ζ̃A) which is given in Subsection 3.2.1 below.
66 Recall that the (upper) box dimension of a bounded subset of R

N always lies in the closed
interval [0,N].
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function ζA, except for the values of the residues. In the case of the counterpart of
Theorem 2.3.18, these values are given by

res(ζA,D) = (N −D)M D(A) (2.3.57)

and, more generally, in the case of the counterpart of Theorem 2.3.25, by

res(ζA,sk) =
N − sk

T
Ĝ0

( k
T

)
, (2.3.58)

for each pole sk ∈ P(ζ̃A), with k ∈ Z; see Equation (2.3.32). We also have the
following asymptotics:

| res(ζA,sk)|= o(|k|), (2.3.59)

as k →±∞, and in the case when G ∈Cm(R), for some integer m ≥ 1, we have

| res(ζA,sk)|= O(|k|1−m), (2.3.60)

as k →±∞. Furthermore, in the Minkowski nonmeasurable case and independently
of the smoothness of G, we always have that M̃ D(A) (the average Minkowski con-
tent of A, as given by Equation (2.4.4) in Definition 2.4.1 below) exists and

res(ζA,D) = (N −D)
1
T

∫ T

0
G(τ)dτ = (N −D)M̃ D(A), (2.3.61)

and
(N −D)M D

∗ (A)< res(ζA,D)< (N −D)M ∗D(A). (2.3.62)

Proof. It suffices to use Theorems 2.3.18 and 2.3.25. The claim about the distance
zeta function ζA(s) follows immediately from identity (2.2.23). The asymptotics in
(2.3.59) and (2.3.60) follow from (2.3.58) and (2.3.38), since |2sk |= 2D, |sk| ∼ 2π

T k
and |N − sk| ∼ 2π

T k as |k| → ∞.
The value in (2.3.61) follows from (2.3.58) for k = 0. Finally, the inequality in

(2.3.62) is a consequence of (2.3.35), (2.3.36) and (2.3.61). ��

Note that in Theorem 2.3.37 just above and in agreement with Remark 2.2.18,
the distance and tube zeta functions extend meromorphically to the same open right
half-plane and have exactly the same poles (with the same multiplicities, equal to
1 here): P(ζA) = P(ζ̃A) and, in particular, Pc(ζA) = Pc(ζ̃A) (each of these sets
being independent of δ ). Also, dimB A exists and coincides with D: D = dimB A.

Next, we state the corresponding result for geometric zeta functions associated
with bounded fractal strings. Recall that a fractal string L = (� j) j≥1 is said to be
bounded if ∑∞j=1 � j < ∞.

Theorem 2.3.38 (Geometric zeta functions of fractal strings). Let L = (� j) j≥1

be a bounded fractal string and let A = AL ⊆ (0,+∞) be the correspond-
ing bounded subset of R defined by A = {ak = ∑ j≥k � j : k ∈ N}. Much as in
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Theorem 2.3.37, assume that the tube function of A satisfies hypothesis (2.3.26)
of Theorem 2.3.18 (in the Minkowski measurable case) or hypothesis (2.3.30) of
Theorem 2.3.25 (in the Minkowski nonmeasurable case), respectively. Then, if
D < 1 (since A ⊂ R and hence, N = 1 here), and α < D,67 the conclusions of
Theorem 2.3.18 (respectively, Theorem 2.3.25), concerning the tube zeta function
ζ̃A, hold for the distance zeta function ζA as well as (except for the values of the
residues) for the geometric zeta function ζL of L . For ζL , in the case of the
counterpart of Theorem 2.3.18, these values are given by

res(ζL ,D) = D2D−1(1−D)M D(A), (2.3.63)

and (still for ζL ) in the case of the counterpart of Theorem 2.3.25, by

res(ζL ,sk) = sk2sk−1 1− sk

T
Ĝ0

( k
T

)
, (2.3.64)

for each pole sk ∈ P(ζ̃A), with k ∈ Z; see (2.3.32). We also have the following
asymptotics:

| res(ζL ,sk)|= o(k2), (2.3.65)

as k →±∞, and in the case when G ∈Cm(R), for some integer m ≥ 1, we have

| res(ζL ,sk)|= O(|k|2−m), (2.3.66)

as k →±∞. Furthermore, in the Minkowski nonmeasurable case and independently
of the smoothness of G, we always have that M̃ D(A) (the average Minkowski con-
tent of A) exists and

res(ζL ,D) = D2D−1(1−D)
1
T

∫ T

0
G(τ)dτ = D2D−1(1−D)M̃ D(A), (2.3.67)

and

D2D−1(1−D)M D
∗ (A)< res(ζL ,D)< D2D−1(1−D)M ∗D(A). (2.3.68)

Proof. The claim concerning the distance zeta function ζA follows at once from
Theorem 2.3.37 applied to the bounded set A = AL ⊆ R (and hence, with N =
1). Moreover, the claim concerning the geometric zeta function ζL follows from
Proposition 2.1.59 since Equation (2.1.84) can be read as follows:

ζL (s) = s2s−1(ζA(s)− v(s)),

where v(s) is holomorphic for Res > 0. ��

If L = (� j) j≥1 is a bounded fractal string and A = {ak = ∑ j≥k � j : k ∈ N}, then
it is easy to see that

67 Indeed, in this case, we have D−α > 0; see Proposition 2.1.59 and the condition c > 0 assumed
there.



2.3 Meromorphic Extensions of Fractal Zeta Functions 169

|At |=
∞

∑
j=1

�̃ j(t)+2t, (2.3.69)

where for each j ≥ 1, the function �̃ j : (0,+∞)→ R is defined by

�̃ j(t) =

{
t, for 0 < t < 1

2� j,
1
2� j, for t ≥ 1

2� j.

The formula (2.3.63) appearing in Theorem 2.3.38 is precisely [Lap-vFr3, Equa-
tion (8.65)]; see also [Lap-vFr3, Equation (8.25) in Theorem 8.15]. In a later work,
we plan to study other applications of some of the results obtained in this section.

An interesting question arises concerning the possible optimality of the domains
of the meromorphic extensions appearing in Theorems 2.3.2, 2.3.18, 2.3.25, 2.3.51
and 2.3.52. We illustrate this problem with a result in the context of Theorem 2.3.18,
dealing with the Minkowski measurable case; see Theorem 2.3.41 below. Before
discussing this result, we make two remarks which complement Definition 2.1.53,
the definition of Mer( f ), the half-plane of meromorphic continuation of a given
meromorphic function f , initially defined on some domain U ⊆ C.

Remark 2.3.39. In Definition 2.1.53, much as in the standard theory of (generalized)
Dirichlet series (see, e.g., [Ser, Section V.2.2]), we let Dmer( f ) := −∞ if f admits
a meromorphic extension to all of C (i.e., if Mer( f ) = C), and Dmer( f ) := +∞
if f does not admit a meromorphic extension to any open right half-plane (i.e., if
Mer( f ) = /0). Hence, in every case, Mer( f ) is the union of all the half-planes to
which f admits a meromorphic extension. Note that since in light of the principle
of analytic continuation, a meromorphic continuation to a given domain, if it exists,
is unique (and since the union of an arbitrary family of open right half-planes is
itself an open right half-plane),68 the meromorphic extension of f to Mer( f ) is well
defined.

Remark 2.3.40. If f : U →C is a meromorphic function given initially (for Res suf-
ficiently large) by a (generalized) Dirichlet series or more generally, by a Dirichlet-
type integral [as is the case for the geometric zeta function of a fractal string (see
(2.1.71)) or the distance zeta function of a bounded set A ⊆ R

N (see (2.1.1))], then
its abscissa of (absolute) convergence, D( f ), is well defined. Clearly, since f is
then holomorphic (and therefore, meromorphic) for Res > D( f ), we must have
Dmer( f ) ≤ D( f ). In general, however, we may have Dmer( f ) < D( f ). For exam-
ple, for the Riemann zeta function ζ = ζ (s) (given initially by the Dirichlet series
ζ (s) = ∑∞n=1 n−s, for Res > 1), we have Dmer(ζ ) = −∞ (see Remark 2.3.39) since
ζ has a meromorphic continuation to all of C, but it is well known that D(ζ ) = 1
since ζ has a pole at s = 1 (see Remark 2.3.1).

68 More precisely, if {α j} j∈J is an arbitrary family of (extended) real numbers and α := inf j∈J α j ,
then ∪ j∈J{Res > α j}= {Res > α}.
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Returning to the tube zeta functions ζ̃A, we note that the following result provides
the precise value of Dmer(ζ̃A) for a class of sets A satisfying the asymptotic condition
(2.3.70) below.

Theorem 2.3.41 (Minkowski measurable case). Assume that A is a bounded set
in R

N such that there exist D ≥ 0, M ∈ (0,+∞), t0 ∈ (0,1], such that

|At |= tN−D(M + f (t)), for all t ∈ (0, t0), (2.3.70)

where f : (0, t0) → R has the form f (t) = ∑∞k=1 cktαk , with ck 
= 0 for all k ≥ 1,
∑∞k=1 |ck| < ∞, and the sequence of positive real numbers (αk)k≥1 is strictly de-
creasing and converges to α > 0. Then, the largest open right half-plane to which
ζ̃A can be meromorphically extended is given by Mer(ζ̃A) = {Res > D−α};69 that
is,

Dmer(ζ̃A) = D−α. (2.3.71)

More specifically, the set of all singularities of ζ̃A is equal to

{D}∪{D−αk : k ∈ N}∪{D−α}, (2.3.72)

where D is a simple pole, each D−αk is also a simple pole, and D−α is an accu-
mulation point of poles.

Finally, the box dimension dimB A = D exists and A is Minkowski measurable,
with Minkowski content given by M D(A) = M .

Proof. Since t0 ≤ 1 and by hypothesis, α < αk for all k ≥ 1, we have that

| f (t)| ≤ tα
∞

∑
k=1

|ck|tαk−α ≤ tα
∞

∑
k=1

|ck|.

Therefore, f (t) is well defined for all t ∈ (0,1] and f (t) = O(tα) as t → 0+. By
using Theorem 2.3.18, we deduce that Dmer(ζ̃A) ≤ D−α . It suffices to prove the
reverse inequality. We establish this by proving, in particular, that (D−αk)k≥1 is a
sequence of poles of ζ̃A (and that each of these poles is simple). Since it converges
to D−α , then D−α is a singularity of ζ̃A, but not a pole, which will show that
Dmer(ζ̃A)≥ D−α .

Let us define ζ1 and ζ2 as in the proof of Theorem 2.3.18. In particular, ζ̃A =
ζ1 +ζ2, with ζ̃A initially defined (for Res sufficiently large), by

ζ̃A(s) =
∫ δ

0
ts−N−1|At |dt =

∫ δ

0
ts−N−1tN−D(M + f (t))dt

= M
∫ δ

0
ts−D−1 dt +

∫ δ

0
ts−D−1 f (t)dt

= ζ1(s)+ζ2(s).

69 See Definition 2.1.53.



2.3 Meromorphic Extensions of Fractal Zeta Functions 171

(Here, we can choose any fixed positive δ < t0; in particular, we have δ < 1.) If we
assume that Res > α1, then Res > αk for all k ≥ 1, and in this case we have

ζ2(s) :=
∫ δ

0
ts−D−1 f (t)dt =

∞

∑
k=1

ck

∫ δ

0
ts−D+αk−1dt

=
∞

∑
k=1

ck
δ s−D+αk

s− (D−αk)
=: F(s).

(2.3.73)

The function ζ1(s) := M
∫ δ

0 ts−D−1 dt = M δ s−D

s−D is meromorphic in all of C, with
a single, simple pole, at s = D. Let S be the set of all singularities of F ; that is,
S = {D−αk : k ∈N}∪{D−α}. Since ∑∞k=1 |ck|<∞, and since δ < 1, we have that
for a given s0 ∈ C \ S and for all s in some suitable open disk V centered at s0 and
with sufficiently small radius (so that d(s,S)≥ d(s0,S)/2 > 0 for all s ∈V ),

∞

∑
k=1

∣∣∣∣ck
δ s−D+αk

s− (D−αk)

∣∣∣∣ ≤ δmink≥1 |Res−(D−αk)|

mink≥1 |s− (D−αk)|
∞

∑
k=1

|ck|

=
δ d(Res,S)

d(s,S)

∞

∑
k=1

|ck|

≤ 2
d(s0,S)

∞

∑
k=1

|ck|< ∞.

Note that since S is compact and s0 /∈ S, then clearly d(s0,S) > 0. Therefore, by

the Weierstrass M-test, the last series F(s) = ∑∞k=1 ck
δ s−D+αk

s−(D−αk)
appearing in (2.3.73)

is well defined, and it is holomorphic in the open neighborhood V of s0 and, in
particular, at s0 itself. Since s0 ∈ C \ S is arbitrary, we conclude that ζ2(s) = F(s)
can be meromorphically extended to the open set C \ S and that the largest open
right half-plane to which it can be meromorphically extended is {Res > D−α};
i.e., Dmer(ζ2) = D−α . (As usual, we still denote this extension by ζ2; that is, ζ2 :=
F .) Indeed, for each k ≥ 1, ζ2 = F clearly has a simple pole at each D−αk and
furthermore, D−α = limk→∞(D−αk) must be a singularity of ζ2 which is not a
pole (because the set of poles of a meromorphic function must be discrete).

Since, according to the above discussion, ζ1 has a single, simple pole at s=D and
is meromorphic in all of C, we deduce that ζ̃A = ζ1 + ζ2 can be meromorphically
extended to {Res>D−α}, and the set of all of its singularities is equal to S∪{D}=
{D}∪ {D−αk : k ∈ N}∪ {D−α}. Furthermore, D and each D−αk (k ≥ 1) are
simple poles of ζ̃A. Since (just as in the case of ζ2) D−α is a singularity of ζ̃A

which is not a pole, we also conclude that Dmer(ζ̃A) = D−α .
Finally, the statement concerning the Minkowski dimension and the Minkowski

measurability of A follows immediately from hypothesis (2.3.70) and the standard
definitions. ��

Note that in contrast to Theorem 2.3.18 (where f (t) = tα ), we did not assume in
Theorem 2.3.41 that

|At |= tN−D(M +O( f (t))
)

as t → 0+, (2.3.74)
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a clearly weaker and more flexible hypothesis than (2.3.70). An entirely analogous
comment can be made in the context of Remark 2.3.42 just below.

Remark 2.3.42. Much as in Theorem 2.3.41, it is possible to prove an analogous
result dealing with Minkowski nonmeasurable sets A, such that

|At |= tN−D(G(log t−1)+ f (t)),

for all t ∈ (0, t0), where f is defined exactly as in Theorem 2.3.41, G is a noncon-
stant, periodic function with values in (0,+∞) and with minimal period equal to
T ; see Theorem 2.3.25. The largest open right half-plane to which ζ̃A can be mero-
morphically continued (i.e., the half-plane of meromorphic continuation of ζ̃A, see
Definition 2.1.53) is given by Mer(ζ̃A) = {Res > D−α}, and the corresponding
set of poles is given by

P(ζ̃A) = {D}∪{D−αk : k ∈ N}∪
{

D+
2π
T

ki : Ĝ0

( k
T

)

= 0, k ∈ Z

}
. (2.3.75)

Furthermore, much as in Theorem 2.3.41 above, one can show that ζ̃A has a singu-
larity at D−α , which is not a pole. Moreover, the box dimension of A exists and
is given by dimB A = D. In addition to this, A is not Minkowski measurable since
infG = M D

∗ < M ∗D = supG, but it admits an average Minkowski content, denoted
by M̃ D(A), which will be defined in Definition 2.4.1 of Section 2.4 below, and is
given by M̃ = 1

T

∫ T
0 G(τ)dτ . The proof of this latter statement can be easily adapted

from the proof of [Lap-vFr3, Theorem 8.30]. See also Theorem 2.4.3 below.

In Theorem 4.5.20, we will construct a class of subsets A of the real line such
that, for any prescribed values of D ∈ (0,1) and α ∈ (0,D), we have D(ζA) = D and
Dmer(ζA) = D−α . We do this by using an appropriate sequence of relative fractal
drums (see Section 4.1), generated by a sequence of generalized Cantor sets. See, in
particular, (4.5.56), which parallels condition (2.3.70) in Theorem 2.3.41.

Theorem 2.3.41 and its counterpart discussed in Remark 2.3.42 imply the op-
timality of the results concerning the existence of a meromorphic extension of the
distance zeta function ζA in the statement of Theorem 2.3.37 (both in the Minkowski
measurable and in the Minkowski nonmeasurable cases). It follows that the same op-
timality result holds true for the existence of the meromorphic extension of the tube
zeta function ζ̃A in the statements of Theorems 2.3.18 and 2.3.25. Indeed, in light of
Equation (2.2.23), and since N ≥ D(ζA) = D(ζ̃A), we have that

Mer(ζA) = Mer(ζ̃A) (2.3.76)

for any bounded set A ⊂ R
N .

The following result deals with a class of fractal sets that are Minkowski non-
measurable, but do not satisfy the ‘periodicity’ assumption of Theorem 2.3.25 and
Remark 2.3.42.
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Theorem 2.3.43. Let A and B be two disjoint bounded sets in R
N such that their

Euclidean distance is positive; that is, d(A,B) := inf{d(x,y) : x ∈ A, y ∈ B} > 0.
Assume that there exist D ≥ 0, α > 0, β > 0, such that

|At |= tN−D(G(log t−1)+O(tα)) as t → 0+,

|Bt |= tN−D(H(log t−1)+O(tβ )) as t → 0+,
(2.3.77)

where G and H are nonconstant periodic functions on R with values in [0,+∞) and
minimal periods T and S, respectively, such that the number T/S is irrational, and
t ∈ (0, 1

2 d(A,B)). Then

|(A∪B)t |= tN−D((G+H)(log t−1)+O(tmin{α ,β})
)

as t → 0+, (2.3.78)

where the function G+H is nonperiodic,

inf(G+H)≤ M D
∗ (A∪B)≤ M ∗D(A∪B)≤ sup(G+H),

and ζ̃A∪B has a meromorphic extension to the open right half plane

{Res > D−min{α,β}}; (2.3.79)

so that
Dmer(ζ̃A∪B)≤ D−min{α,β}. (2.3.80)

Furthermore, the corresponding set of poles of ζ̃A∪B is given by

P(ζ̃A∪B) = P(ζ̃A)∪P(ζ̃B), (2.3.81)

where

P(ζ̃A) =

{
D+

2π
T

ki : Ĝ0

( k
T

)

= 0, k ∈ Z

}
, (2.3.82)

P(ζ̃B) =

{
D+

2π
S

li : Ĥ0

( l
S

)

= 0, l ∈ Z

}
, (2.3.83)

and so P(ζ̃A)∩P(ζ̃B) = /0. Moreover, each of these poles is simple and

res
(
ζ̃A∪B,D+

2π
T

ki
)
= res

(
ζ̃A,D+

2π
T

ki
)
=

1
T

Ĝ0

( k
T

)
, (2.3.84)

res
(
ζ̃A∪B,D+

2π
T

li
)
= res

(
ζ̃B,D+

2π
T

li
)
=

1
S

Ĥ0

( l
S

)
, (2.3.85)

for k 
= 0 (k ∈ Z) and l 
= 0 (l ∈ Z), with Ĝ0 defined as in (2.3.28), while

res(ζ̃A∪B,D) =
1
T

∫ T

0
G(τ)dτ+

1
S

∫ S

0
H(τ)dτ . (2.3.86)
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Finally, A, B and A∪B have the same box dimension D:

dimB A = dimB B = dimB(A∪B) = D. (2.3.87)

Furthermore, if, in addition, D < N, we have (with res(ζ̃A∪B,D) given by (2.3.86))

M D
∗ (A)+M D

∗ (B)≤ M D
∗ (A∪B)≤ res(ζ̃A∪B,D)

≤ M ∗D(A∪B)≤ M ∗D(A)+M ∗D(B).
(2.3.88)

Proof. Since t < 1
2 d(A,B), it is easy to see that

|(A∪B)t |= |At ∪Bt |= |At |+ |Bt |, (2.3.89)

which implies that ζ̃A∪B = ζ̃A + ζ̃B and hence that (2.3.78) holds. Much as in the
proof of Theorem 2.3.25, we have ζ̃A = ζA

1 + ζA
2 and ζ̃B = ζB

1 + ζB
2 , from which it

follows that
ζ̃A∪B = (ζA

1 +ζB
1 )+(ζA

2 +ζB
2 ). (2.3.90)

Since ζ1 := ζA
1 +ζB

1 is meromorphic in the entire complex plane, and ζ2 := ζA
2 +ζB

2
has for abscissa of convergence D(ζ2) ≤ max{D−α,D−β} = D−min{α,β}, it
follows from Lemma 2.3.5 that ζ̃A∪B can be meromorphically extended at least to the
open right half-plane {Res > D−min{α,β}}; i.e., Dmer(ζ̃A∪B) ≤ D−min{α,β}.
The remaining claims about the residues follow from Theorem 2.3.25.

More specifically, according to Theorem 2.3.25 applied to both A and B, we
know that the second equality holds in each of Equations (2.3.84) and (2.3.85).
Furthermore, we know that

res(ζ̃A,D) =
1
T

∫ T

0
G(τ)dτ (2.3.91)

and

res(ζ̃B,D) =
1
S

∫ S

0
H(τ)dτ . (2.3.92)

Moreover, since ζ̃A∪B = ζ̃A + ζ̃B, we have

res(ζ̃A∪B,ω) = res(ζ̃A,ω)+ res(ζ̃B,ω), (2.3.93)

for every ω ∈C such that Reω > D−min{α,β}. The first equality in (2.3.84) then
follows because ζ̃B is holomorphic at the poles of ζ̃A (which, by Theorem 2.3.25,
are simple and occur precisely at D+ 2π

T ki, for every k ∈Z, provided Ĝ0(k/T ) 
= 0).
The fact that the first equality in (2.3.85) holds follows by interchanging the roles
of A and B. Moreover, (2.3.86) follows by combining (2.3.93) (applied to ω = D),
(2.3.91) and (2.3.92).

Finally, it also follows from Theorem 2.3.25 applied to both A and B that
dimB A = dimB B = dimB(A∪B). It then easily follows from the definition (see, in
particular, Equations (1.3.4) and (1.3.5)) that dimB(A∪B) exists and is also equal to
D. Furthermore, by taking separately the lower limit and the upper limit in (2.3.89),
we deduce that
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M D
∗ (A)+M D

∗ (B)≤ M D
∗ (A∪B) (2.3.94)

and
M ∗D(A∪B)≤ M ∗D(A)+M ∗D(B). (2.3.95)

Next, according to Theorem 2.2.14 (and when D < N), applied to A∪B, A and B,
we must have that

M D
∗ (A∪B)≤ res(ζ̃A∪B,D)≤ M ∗D(A∪B). (2.3.96)

Equation (2.3.88) now follows by combining the inequalities (2.3.94), (2.3.95) and
(2.3.96). This concludes the proof of Theorem 2.3.43. ��

Corollary 2.3.44. Assume that the hypotheses of Theorem 2.3.43 are satisfied.
(Here, the assumption according to which D < N is not needed for this corollary
to be true.) Then, A∪B is not Minkowski measurable in general, but it possesses
an average Minkowski content (defined as in Equation (2.4.4) of Definition 2.4.1
below) given by

M̃ D(A∪B) = res(ζ̃A∪B,D) =
1
T

∫ T

0
G(τ)dτ+

1
S

∫ S

0
H(τ)dτ . (2.3.97)

Proof. Indeed, Equation (2.3.97) follows by applying Theorem 2.3.25 (or rather,
Corollary 2.3.26) to both A and B, in order to deduce that M̃ D(A) and M̃ D(B) exist
and are given as follows:

M̃ D(A) =
1
T

∫ T

0
G(τ)dτ , M̃ D(B) =

1
S

∫ S

0
H(τ)dτ .

One then uses (2.3.89) combined with Equation (2.4.4) (in Definition 2.4.1 below)
to deduce that M̃ D(A∪B) exists and is equal to the sum of M̃ D(A) and M̃ D(B).
Hence, in light of (2.3.86), (2.3.97) holds, as desired. ��

2.3.4 Landau’s Theorem About Meromorphic Extensions

Let (lj)j≥1 be a strictly decreasing sequence of positive numbers and (b j) j≥1 be a
sequence of positive numbers. For each j, b j can be thought of as being the ‘multi-
plicity’ of lj. As in Section 2.1.3, let us consider the (generalized) Dirichlet series

f (s) =
∞

∑
j=1

b jl
s
j , (2.3.98)

and define the counting function

A(x) = ∑
{ j : l−1

j ≤x}
b j. (2.3.99)
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We can now formulate a result due to Landau [Lan], which generalized previous
results due to Dirichlet and Phragmén.

Theorem 2.3.45 (Landau, [Lan]). Assume that the Dirichlet series (2.3.98) is such
that there exist a positive constant M and γ ∈ (0,1) satisfying the following
condition:

A(x) = M x+O(xγ) as x → ∞. (2.3.100)

Then, the function

f (s)− M

s−1
(2.3.101)

is holomorphic on the half-plane {Res > γ}.

The conclusion of Theorem 2.3.45 can be formulated equivalently as follows:
Then, the function f (s) possesses a meromorphic continuation to the open right half-
plane {Res > γ}, with a unique (and simple) pole located at s = 1, and res( f ,1) =
M . Furthermore, Landau showed by example that the bound γ , appearing in the
open right half-plane {Res > γ}, cannot be improved.

As we see, Landau’s result is of the same nature as parts of Theorems 2.3.2
and 2.3.18 above. A concise introduction to the study of singularities of Dirichlet
series can be found in [BerGay, Section 5.2].

Remark 2.3.46. In this section (Section 2.3), we certainly have not exhausted the
problem of finding the meromorphic continuation of a given fractal zeta function. In
fact, it is far from being the case, as the reader can easily realize. As is well known,
the difficult problem of showing the existence of a meromorphic extension (and then
studying this extension on a suitable domain) of a given zeta function is one of the
fundamental problems in analytic number theory. See, e.g., [Edw, ParsSh1–2, Tit3,
WaMLItz, Lap6, Lap-vFr3, Es1–2, EsLapRRo] and the relevant references therein.

Along similar lines, in the study of dynamical (or Ruelle) zeta functions attached
to hyperbolic dynamical systems (including subshifts of finite type), powerful tech-
niques were developed by Parry and Pollicott in [ParrPol1–2], as well as by Ru-
elle [Rue1–4], his collaborators and many other researchers in a variety of dynam-
ical settings. It would be interesting to investigate whether they could be suitably
adapted to our geometric situation in order to obtain further meromorphic extension
results, applicable to a broader class of bounded sets and later, in Chapter 4, of rel-
ative fractal drums (beyond, for example, the self-similar case). We note that in the
case of ordinary fractal drums in dimension N ≥ 1, we shall obtain new results con-
cerning the existence of meromorphic extensions of the spectral zeta functions of
such fractal drums, as well as the optimality of certain bounds for the corresponding
abscissae of meromorphic continuation of those zeta functions; see Section 4.3, es-
pecially Subsection 4.3.2. Moreover, throughout various parts of this book, we will
obtain further results about the existence or the non-existence of meromorphic con-
tinuations of fractal zeta functions; see, for example, Section 4.5 and Section 4.6,
for the case of relative fractal drums.

Some of these results (along with a variety of examples and results in Chapters
4 and 5, see, e.g., Subsection 5.4.4) point to the importance of not only searching
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for meromorphic extensions (although this is essential in our current theory), but
also determining the location and the nature of the nonremovable singularities (in
suitable domains of C) of fractal zeta functions. This will lead us, in particular,
to extend the definition of fractality proposed in Subsection 4.6.3 (see, especially,
Remark 4.6.24) by replacing “poles” with “nonremovable singularities” (includ-
ing essential singularities) in that definition. The examples of fractal tube formulas
obained in several places in Chapter 5 in connection with nonstandard gauge func-
tions and hence, nonremovable singularities that are not poles of the corresponding
fractal zeta functions (see also Example 4.2.10) show that the notion of “complex
dimensions” itself should be extended accordingly, while still keeping a proper ge-
ometric meaning.

2.4 Average Minkowski Contents and Dimensions

From our point of view, introducing average Minkowski contents of a fractal set A
can be motivated by the need to understand the behavior of the corresponding tube
zeta function near the abscissa of convergence. Its construction leads us in a natural
way to a new type of fractal dimensions, that we call (upper and lower) average
Minkowski dimensions of A.

2.4.1 Average Minkowski Contents of Bounded Sets in R
N

The following definition is an immediate extension (to bounded subsets of RN) of
the corresponding one in [Lap-vFr3, Definition 8.29], introduced for bounded fractal
strings on the real line. See also an analogous expression in Gatzouras’ paper [Gat,
Theorem 2.3(ii)] and in a different (but related) context in the paper by Bedford and
Fisher [BedFi]. This extended definition can be found in the article by Freiberg and
Kombrink [FreKom, Definition 1.4(i)], as well as in [Lap-vFr3, Section 13.1] (based
on the work by Lapidus and Pearse in [LapPe2–3] and by those same authors and
Winter in [LapPeWi1–2]). In order to motivate introducing the average Minkowski
content, note that by Theorem 2.2.3, the tube zeta function ζ̃A(s) of any Minkowski
nondegenerate fractal set A in R

N has a simple pole at s = D := dimB A (provided
there is a meromorphic extension of ζ̃A to a neighborhood of D), and therefore,

ζ̃A(D
+) := lim

s→D+

∫ δ

0
ts−N−1|At |dt =+∞. (2.4.1)

It is interesting to know how fast the expression
∫ δ

1/r tD−N−1dt tends to infinity as
r → +∞. We shall see in Theorem 2.4.3 below that, under some additional condi-
tions, the growth rate is logarithmic, and moreover,



178 2 Distance and Tube Zeta Functions

∫ δ

1/r
tD−N−1|At |dt ∼ res(ζ̃A,D) logr as r →+∞. (2.4.2)

Definition 2.4.1. Assume that A is a bounded subset of RN such that D := dimB A
exists. Let δ > 0 be fixed. Then the average upper D-dimensional Minkowski con-
tent (or, for short, the average upper Minkowski content) of A is defined by

M̃ ∗D(A) := limsup
r→+∞

1
logr

∫ δ

1/r
tD−N−1|At |dt. (2.4.3)

We can analogously define the average lower Minkowski content M̃ D
∗ (A), by taking

the lower (instead of the upper) limit as r →+∞ in the counterpart of (2.4.3). If both
of these values coincide, that is, if the limit

M̃ D(A) := lim
r→+∞

1
logr

∫ δ

1/r
tD−N−1|At |dt (2.4.4)

exists, then the common value of M̃ D
∗ (A) and M̃ ∗D(A) is denoted by M̃ D(A) and

is called the average Minkowski content of A. It is easy to see that the value of the
average Minkowski content does not depend on the choice of δ > 0, and therefore,
we can assume without loss of generality that δ = 1.

Remark 2.4.2. Note that the integral occurring in (2.4.2), (2.4.3) and (2.4.4) can be
rewritten as follows: ∫ δ

1/r
tD−N |At |

dt
t
,

where dt/t is the Haar measure on the multiplicative group (0,+∞), viewed as the
space of scales; see the discussion immediately preceding Equation (2.2.22) on page
118. A similar comment applies to the integral on the right-hand side of (2.4.1), but
now with D replaced by s.

Clearly, the integral appearing in the definition of the average Minkowski content
is analogous to the one occurring in the definition of the tube zeta function. The
following result, Theorem 2.4.3, shows that the average Minkowski content M̃ D(A)
exists; moreover, M̃ D(A) is equal to the residue of the tube zeta function at D =
dimB A, provided the box dimension exists. Part (b) of Theorem 2.4.3 extends part
of [Lap-vFr3, Theorem 8.30] to the N-dimensional case. It is easy to check that the
technical condition assumed about f (t) in Theorem 2.4.3 is satisfied when f (t) =
O(tα) as t → 0+, for some α > 0; see Proposition 2.4.4.

Theorem 2.4.3. Assume that A is a bounded set in R
N such that D := dimB A exists.

Then:

(a) If A is such that M D(A) exists and M D(A) > 0 (and in particular, if A is
Minkowski measurable), then M̃ D(A) = M D(A). Furthermore, if there exist posi-
tive real numbers α and M such that |At |= tN−D(M +O(tα)) as t → 0+, then
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M̃ D(A) = M D(A) = res(ζ̃A,D) = M . (2.4.5)

(b) Let f : (0,1)→ R be a function such that f (t)→ 0 as t → 0+ and | f (t)| ≤
g(log t−1), where the function g : (0,+∞)→ R satisfies the condition

lim
L→+∞

1
L

∫ L

0
g(τ)dτ = 0. (2.4.6)

If |At |= tN−D
(
G(log t−1)+ f (t)

)
for all t ∈ (0,1), where G is a T -periodic function

on R,70 then

M̃ D(A) = res(ζ̃A,D) =
1
T

∫ T

0
G(τ)dτ . (2.4.7)

Furthermore, M D
∗ (A) = infG, M ∗D(A) = supG, and

M D
∗ (A)< M̃ D(A)< M ∗D(A).

Proof. (a) The condition M D(A)> 0 implies that ζA(D) = +∞. Indeed, let s ∈ R,
s > D. Then, for any δ ∈ (0,1], we have

ζ̃A(s) =
∫ δ

0
ts−N−1|At |dt ≤

∫ δ

0
tD−N−1|At |dt = ζ̃A(D).

Letting s → D+ and by using Theorem 2.1.11(c), we obtain that ζ̃A(D) = +∞.
Therefore, since the function t �→ |At | is clearly continuous on (0,+∞), we can
apply l’Hospital’s rule to deduce that M̃ D(A) exists and

M̃ D(A) = lim
r→+∞

∫ δ
1/r tD−N−1|At |dt

logr
= lim

r→+∞
rN−D|A1/r|

= lim
τ→0+

|Aτ |
τN−D = M D(A),

where we have introduced a new variable τ := 1/r. To prove the second equality in
(2.4.5), it suffices to also use Theorem 2.3.18.

(b) We have that

∫ 1

1/r
tD−N−1|At |dt =

∫ 1

1/r
t−1 (G(log t−1)+ f (t)

)
dt

=

∫ logr

0
G(τ)dτ+

∫ 1

1/r
t−1 f (t)dt,

where we have introduced a new variable τ := log t−1.

70 It is clear that G must be nonnegative since infG = M D
∗ (A)≥ 0.



180 2 Distance and Tube Zeta Functions

Step 1: If we write logr = kT +σk for r large enough, where k ∈N and σk ∈ [0,T )
(note that k is uniquely determined by r), it suffices to consider

1
logr

∫ logr

0
G(τ)dτ =

1
kT +σk

(∫ kT

0
+

∫ kT+σk

kT

)
G(τ)dτ .

Since r →+∞ implies that k →+∞,

0 ≤
∫ kT+σk

kT
G(τ)dτ ≤

∫ T

0
G(τ)dτ , and

∫ kT

0
G(τ)dτ = k

∫ T

0
G(τ)dτ ,

we have that

lim
r→+∞

1
logr

∫ logr

0
G(τ)dτ = lim

k→+∞

1
T +σk/k

∫ T

0
G(τ)dτ =

1
T

∫ T

0
G(τ)dτ .

Step 2: Using

I(r) :=

∣∣∣∣ 1
logr

∫ 1

1/r
t−1 f (t)dt

∣∣∣∣≤ 1
logr

∫ 1

1/r
t−1g(log t−1)dt < ∞,

where r > 1, letting L := logr, and then introducing a new variable τ := log t−1, we
deduce that

0 ≤ lim
r→+∞

I(r)≤ lim
L→+∞

1
L

∫ L

0
g(τ)dτ = 0.

Hence, limr→+∞ I(r) = 0.

By combining Steps 1 and 2, we conclude that the average Minkowski content
M̃ D(A) exists and M̃ D(A) = 1

T

∫ T
0 G(τ)dτ . The remaining equality in (2.4.5) fol-

lows from Theorem 2.3.25. ��

Proposition 2.4.4. The technical condition (2.4.6) on the function g(t) appearing
in part (b) of Theorem 2.4.3 is fulfilled if g is nonnegative and satisfies one of the
following properties:

(a)
∫ +∞

0
g(τ)dτ < ∞;

(b)
∫ +∞

0
g(τ)dτ =+∞, g(τ)→ 0 as τ →+∞, and g is continuous.71

Proof. While the sufficiency of (a) is obvious, the sufficiency of (b) follows imme-
diately from l’Hospital’s rule:

lim
L→+∞

1
L

∫ L

0
g(τ)dτ = lim

L→+∞
g(L) = 0.

This concludes the proof. ��

71 It suffices to assume that g is continuous in a neighborhood of +∞.
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Example 2.4.5. Condition (a) in Proposition 2.4.4 is satisfied if f (t) = O(tα) as
t → 0+, where α > 0 is fixed, since | f (t)| ≤ Ctα = C exp(−α log t−1), and then
g(τ) :=Ce−ατ , where C is a positive constant.

On the other hand, condition (b) in Proposition 2.4.4 is satisfied if

f (t) = O
(
(log t−1)−γ

)
as t → 0+,

where γ > 0 is fixed, since then g(τ) :=Cτ−γ → 0 as τ→+∞, and
∫ ∞

0 g(τ)dτ =+∞.
Indeed, note that for γ ∈ (0,1) the function g is not integrable near τ = +∞, while
for γ ≥ 1 it is not integrable near τ = 0+.

This example can be further extended to the case when

f (t) = O
(
(logm t−1)−γ

)
as t → 0+,

where γ > 0, m is an integer ≥ 2, and logm denotes the m-fold composition of log’s.
In this case, g(τ) := C(logm−1 τ)−γ → 0 as τ → +∞. For notational simplicity, we
only check the nonintegrability of G for m = 2:

∫ +∞

e
g(τ)dτ =C

∫ +∞

e
(logτ)−γ dτ =C

∫ +∞

1
u−γeudu =+∞,

since u−γeu →+∞ as u →+∞.

2.4.2 Average Minkowski Dimensions of Bounded Sets in R
N

Much as in the case of Minkowski contents, it is natural to introduce the notion
of upper and lower average Minkowski contents, depending on a nonnegative real
parameter s. These definitions extend, refine and complement [Lap-vFr3, Definition
8.29].

Definition 2.4.6. Let A be a bounded subset of R
N , and s ≥ 0. Then, the upper

s-dimensional average Minkowski content of A is defined by

M̃ ∗s(A) = limsup
r→+∞

1
logr

∫ δ

1/r
ts−N−1|At |dt, (2.4.8)

where δ > 0 is fixed. It is easy to check that the value of M̃ ∗s(A)∈ [0,+∞] does not
depend on the choice of δ , since

lim
r→+∞

1
logr

∫ δ1

δ
ts−N−1|At |dt = 0

for any two positive real numbers δ and δ1.
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The lower s-dimensional average Minkowski content M̃ s
∗ (A) of A is defined ex-

actly as in (2.4.8), except for the fact that the upper limit is now replaced with a
lower limit.

The following lemma shows that the average Minkowski contents have properties
analogous to those of the usual Minkowski contents.

Lemma 2.4.7. Let A be a bounded set in R
N. Then:

(a) If s0 > 0 is such that M̃ ∗s0(A)> 0, then for any positive s < s0 we have that
M̃ ∗s(A) =+∞. An analogous claim holds for the lower average Minkowski content.

(b) If s0 > 0 is such that M̃ ∗s0(A)< ∞, then for any positive s > s0 we have that
M̃ ∗s(A) = 0. An analogous claim holds for the lower average Minkowski content.

(c) There exists a unique nonnegative real number Dav such that

M̃ ∗s(A) =

{
0, for s > Dav,

+∞, for 0 ≤ s < Dav.
(2.4.9)

(d) There exists a unique nonnegative real number Dav ≥ 0 such that

M̃ s
∗ (A) =

{
0, for s > Dav,

+∞, for 0 ≤ s < Dav.
(2.4.10)

Proof. We only provide the proofs for the upper average Minkowski contents. In-
deed, for the lower average Minkowski contents, the proof is entirely analogous.

(a) Assume that M̃ ∗s0(A)> 0, and let s < s0. Then for any r > 0,

∫ δ

1/r
ts−N−1|At |dt =

∫ δ

1/r
ts−s0ts0−N−1|At |dt ≥ δ s−s0

∫ δ

1/r
ts0−N−1|At |dt.

Dividing by logr and then taking the upper limit as r →+∞, we obtain that

M̃ ∗s(A)≥ δ s−s0M̃ ∗s0(A).

Since average Minkowski contents do not depend on the choice of δ > 0, we can
pass to the limit as δ → 0+. This proves that M̃ ∗s(A) = +∞.

(b) Assume that M̃ ∗s0(A) < 0, and let s > s0. Then, reasoning much as in case
(a), we obtain that

M̃ ∗s(A)≤ δ s−s0M̃ ∗s0(A).

Passing to the limit as δ → 0+, we conclude that M̃ ∗s(A) = 0.

(c) follows at once from the first parts of (a) and (b). Analogously, (d) follows
from the second parts of (a) and (b). ��
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An immediate consequence of Lemma 2.4.7 is that the following definition is
meaningful.

Definition 2.4.8. Let A be a bounded set in R
N . We define the upper and lower

average Minkowski dimensions of A as the respective values of Dav and Dav in
Lemma 2.4.7. In other words, the upper and lower average Minkowski dimensions
of A are defined by

dimavA := inf{s > 0 : M̃ ∗s(A) = 0}= sup{s > 0 : M̃ ∗s(A) = +∞},
dimavA := inf{s > 0 : M̃ s

∗ (A) = 0}= sup{s > 0 : M̃ s
∗ (A) = +∞}.

(2.4.11)

We use the convention according to which sup /0 = 0. If dimavA = dimavA, then
this common value is denoted by dimav A, and we call it the average Minkowski
dimension of A.

Proposition 2.4.9. For any bounded set A in R
N, we have

dimBA ≤ dimavA ≤ dimavA ≤ dimBA.

In particular, if dimB A exists (that is, dimBA = dimBA), then dimav A exists as well
and

dimav A = dimB A. (2.4.12)

Proof. We first prove the inequality dimavA ≤ dimBA. Let D := dimBA. In view of
(2.4.11), it suffices to show that for any s > D we have M̃ ∗s(A) = 0.

Let us choose s0 ∈ (D,s). Since M ∗s0(A)= 0, then there exists a positive constant
C =C(δ ) such that |At | ≤CtN−s0 for all t ∈ (0,δ ). Therefore,

∫ δ

1/r
ts−N−1|At |dt ≤C

∫ δ

1/r
ts−s0−1dt =C

δ s−s0 − (1/r)s−s0

s− s0
.

Dividing by logr and letting r →+∞, we obtain M̃ ∗s(A)≤ 0; that is, M̃ ∗s(A) = 0.
To prove the inequality dimBA ≤ dimavA, let us write D := dimBA. In view of

(2.4.11), it suffices to show that for any s < D, we have M̃ ∗s(A) = +∞.
Let us choose s0 ∈ (s,D). Since M s0∗ (A) = +∞, then there exists a positive con-

stant C =C(δ ) such that |At | ≥CtN−s0 for all t ∈ (0,δ ). Therefore, much as above,
we obtain that

∫ δ

1/r
ts−N−1|At |dt ≥C

∫ δ

1/r
ts−s0−1dt =C

δ s−s0 − (1/r)s−s0

s− s0
=C

rs0−s −δ s−s0

s0 − s
.

Dividing by logr and letting r → +∞, we deduce that M̃ ∗s(A) ≥ +∞; i.e.,
M̃ ∗s(A) = +∞. ��

Regarding the relations between average Minkowski dimensions and standard
box dimensions obtained in Proposition 2.4.9, we refer the interested reader to Prob-
lems 6.2.28 and 6.2.30.
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The notion of average Minkowski content can be extended from bounded sets A
in Euclidean spaces to relative fractal drums (A,Ω), which we introduce in Chap-
ter 4. In this way, for any real number s (and not just for any s ≥ 0), we can
define the average Minkowski contents of relative fractal drums, M ∗s(A,Ω) and
M s

∗ (A,Ω), and the associated average Minkowski dimensions of relative fractal
drums, dimav(A,Ω) and dimav(A,Ω), which may assume negative values as well,
including −∞.



Chapter 3
Applications of Distance and Tube Zeta
Functions

Aus dem Paradies, das Cantor uns geschaffen, soll uns niemand
vertreiben können.

[No one shall expel us from the paradise that Cantor has created
for us.]

David Hilbert (1862–1943)

Abstract In this chapter, we show that some fundamental geometric and number-
theoretic properties of fractals can be studied by using their distance and tube zeta
functions. This will motivate us, in particular, to introduce several new classes of
fractals. Especially interesting among them are the transcendentally quasiperiodic
sets, since they can be placed at the crossroad between geometry and number the-
ory. We shall need two deep results from transcendental number theory; namely, the
theorem of Gel’fond–Schneider, and its extension due to Baker. In this context, the
connecting link between the number theory and the geometry of fractals will be their
tube zeta functions. A natural extension of the notion of distance zeta function leads
us to introducing a general class of weighted zeta functions. Here, we introduce
the space L∞)(Ω) := ∩p>1Lp(Ω), called the limit L∞-space, from which the weight
functions are taken. Intuitively, a given weight function w from the space L∞)(Ω)
may only have very mild singularities, say, of logarithmic type. However, the set of
singularities may be large, in the sense that its Hausdorff dimension can be arbitrar-
ily close (and even equal) to N. A typical example is the function w(x) = logd(x,A)
which appears under the integral sign when we differentiate the distance zeta func-
tion. We illustrate the efficiency of the use of distance zeta functions by computing
the upper box dimension of several new classes of geometric objects, including
geometric chirps, fractal nests and string chirps. These sets are closely related to
bounded spirals and chirps in the plane. We also recall the construction of a class of
fractals, called zigzagging fractals, for which the upper and lower box dimensions
do not coincide, and show that the associated fractal zeta functions are alternating,
in a suitable sense.

Key words: fractal zeta functions, meromorphic extensions, generalized Can-
tor set, transcendentally n-quasiperiodic set, Sierpiński carpet, Sierpiński gasket,
weighted zeta function, tensor product of bounded fractal strings, multiple complex
dimensions, essential singularity, fractal nest, geometric chirp, multiple string chirp,
zigzagging fractal set.
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In this chapter, we show that some fundamental geometric and number-theoretic
properties of fractals can be studied by using their distance and tube zeta functions.
This will motivate us, in particular, to introduce several new classes of fractals. Es-
pecially interesting among them are the transcendentally quasiperiodic sets, since
they can be placed at the crossroad between geometry and number theory; see Sec-
tion 3.1. We shall need two deep results from number theory: namely, the theorem
of Gel’fond–Schneider, and its extension due to Baker. In this context, the connect-
ing link between the number theory and the geometry of fractals will be their tube
zeta functions.

A natural extension of the notion of distance zeta function leads us to introducing
a general class of weighted zeta functions; see Section 3.4. Here, we introduce the
space L∞)(Ω) := ∩p>1Lp(Ω), called the limit L∞-space, from which the weight
functions are taken. Intuitively, a given weight function w from the space L∞)(Ω)
may contain only very mild singularities, say, of logarithmic type. However, the
set of singularities may be large, in the sense that its Hausdorff dimension can be
arbitrarily close (and even equal) to N. A typical example is the function w(x) =
logd(x,A) which appears under the integral sign when we differentiate the distance
zeta function; see Equation (3.4.9) in Theorem 3.4.4(a).

We illustrate the efficiency of the use of distance zeta functions by computing
the upper box dimension of several new classes of geometric objects, including
geometric chirps, fractal nests and string chirps; see Sections 3.5 and 3.6. These
sets are closely related to bounded spirals and chirps in the plane. We also recall
the construction of a class of fractals, called zigzagging fractals, introduced by the
third author in [Žu4, Remark 1.7], for which the upper and lower box dimensions
do not coincide, and show that the associated fractal zeta functions are alternating;
see Section 3.7.

3.1 Transcendentally Quasiperiodic Sets and Their Zeta
Functions

The goal of this section is to define generalized Cantor sets by means of two aux-
iliary parameters, and to describe a construction of some of the simplest classes of
quasiperiodic sets, which we introduce in Definition 3.1.11. The main result is stated
in Theorem 3.1.15.

3.1.1 Generalized Cantor Sets Defined by Two Parameters

Here, we introduce a class of generalized Cantor sets C(m,a), depending on two pa-
rameters. As a special case we obtain Cantor sets of the form C(a) :=C(2,a), which
we introduced in Example 2.2.6.
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Definition 3.1.1. The generalized Cantor sets C(m,a) are determined by an integer
m ≥ 2 and a positive real number a such that ma < 1. In the first step of the analog
of Cantor’s construction, we start with m equidistant, closed intervals in [0,1] of
length a, with m− 1 ‘holes’, each of length (1−ma)/(m− 1). In the second step,
we continue by scaling by the factor a each of the m intervals of length a; and so on,
ad infinitum. The (two-parameter) generalized Cantor set C(m,a) is defined as the
intersection of the decreasing sequence of compact sets constructed in this way. It is
easy to check that C(m,a) is a perfect, uncountable compact subset of R. (Recall that
a perfect set is a closed set without any isolated points.) Furthermore, C(m,a) is also
self-similar. For m := 2, the sets C(m,a) reduce to the (one-parameter) generalized
Cantor sets C(a), defined in Example 2.2.6. In order to avoid any possible confu-
sion, we note that the generalized Cantor sets introduced here are different from the
generalized Cantor strings introduced and studied in [Lap-vFr3, Chapter 10]. With
our present notation, the classic Cantor set is obtained as C(2,1/3).

We note that the box dimension of C(m,a), as given by Equation (3.1.1) below,
is equal to its Hausdorff dimension. The proof of this fact in the case of the classic
Cantor set can be found in [Fal1] and is due to Moran [Mora] (in the present case
when N = 1). This also follows from a general higher-dimensional result in [Hut]
(described in [Fal1, Theorem 9.3]) because C(m,a) is a self-similar set satisfying the
open set condition.

It can be shown that the generalized Cantor sets C(m,a) have the following prop-
erties, which extend the ones established for the sets C(a). Apart from the proof of
(3.1.5), which is provided below, the proof of the proposition is similar to that for
the standard Cantor set (see [Lap-vFr3, Equation (1.11)]).

Proposition 3.1.2. If A := C(m,a) ⊂ R is the generalized Cantor set introduced in
Definition 3.1.1, where m is an integer, m ≥ 2, and a ∈ (0,1/m), then

D := dimB C(m,a) = D(ζA) = Dhol(ζA) = log1/a m. (3.1.1)

Furthermore, the tube formula associated with C(m,a) is given by

|C(m,a)
t |= t1−DG(log t−1) (3.1.2)

for all t ∈ (0, 1−ma
2(m−1) ), where G = G(τ) is the following nonconstant periodic func-

tion, with minimal period T = log(1/a), and is defined by

G(τ) := cD−1(ma)g( τ−c
T ) +2cDmg( τ−c

T ). (3.1.3)

Here, c = 1−ma
2(m−1) , and g : R→ [0,+∞) is the 1-periodic function defined by g(x) :=

1− x for x ∈ (0,1].
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Moreover,

M D
∗ (C(m,a)) = minG =

1
D

(
2D

1−D

)1−D

,

M ∗D(C(m,a)) = maxG =

(
1−ma

2(m−1)

)D−1 m(1−a)
m−1

.

(3.1.4)

Finally, if we assume that δ ≥ 1−ma
2(m−1) , then the distance zeta function of A =

C(m,a) is given by

ζA(s) :=
∫ 1+δ

−δ
d(x,A)s−1dx =

(
1−ma

2(m−1)

)s−1 1−ma
s(1−mas)

+
2δ s

s
. (3.1.5)

As a result, ζA(s) admits a meromorphic continuation to all of C, given by the last
expression in (3.1.5). In particular, the set of poles of ζA(s) (in C) and the residue
of ζA(s) at s = D are respectively given by

P(ζA) = (D+piZ)∪{0} and

res(ζA,D) =
1−ma

DT

(
1−ma

2(m−1)

)D−1

,
(3.1.6)

where p = 2π/T is the oscillatory period (in the sense of [Lap-vFr3]), while the
oscillatory amplitude1 of A is equal to

am(A) := M ∗D(A)−M D
∗ (A) =

1
D

(
2D

1−D

)1−D

−
(

1−ma
2(m−1)

)D−1 m(1−a)
m−1

.

Furthermore,

D =
logm
2π

p,

and both p → 0+ and D → 0+ as a → 0+. In particular, P(ζA) converges to the
imaginary axis in the Hausdorff metric, as a → 0+. Finally, each pole in P(ζA) is
simple.

Proof. Part (a): Let us first prove (3.1.5). If we consider an open interval I of length
ρ , then it is easy to see that for any γ < 1,

∫
I
d(x,∂ I)−γdx = 2

∫ δ/2

0
x−γdx =

2
1− γ

(ρ
2

)1−γ
. (3.1.7)

The generalized Cantor set A =C(m,a), as described in Definition 3.1.1, is an inter-
section of a decreasing sequence of compact sets (Cn)n≥0. The largest ‘holes’ are of

1 The general definition of the oscillatory amplitude for a class a fractal sets in R
N can be found

on page 541.
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length ρ0 =
1−ma
m−1 (these ‘holes’ are connected components of [0,1] \A), and there

are m−1 holes of this size. Each Cn has mn(m−1) holes of minimal length, equal
to ρn = an 1−ma

m−1 . Using (3.1.7) and the fact that A is negligeable (i.e., of Lebesgue
measure zero), we see that the integral below can be computed as an infinite series
of integrals over the holes (and hence, bounded open intervals), defined as the con-
nected components of the open subset of R given by (0,1) \A (see Remark 3.1.3
following this proof):

∫ 1

0
d(x,A)−γdx =

∞

∑
n=0

mn(m−1)
2

1− γ
(ρn

2

)1−γ

=
2γ(m−1)γ

1− γ (1−ma)1−γ
∞

∑
n=0

(ma1−γ)n (3.1.8)

=
(ρ0

2

)−γ 1−ma
(1− γ)(1−m ·a1−γ)

.

The series converges provided m ·a1−γ < 1, that is, if γ < 1−D, where D= log1/a m.
Letting s := 1− γ ∈ (D,+∞), and in light of Equation (2.1.1), the above identity
implies that

ζA(s) =
(ρ0

2

)s−1 1−ma
s(1−mas)

+
2δ s

s
. (3.1.9)

If we now view s as a complex variable, both the left and right-hand sides of (3.1.9)
define holomorphic functions on their respective domains. (Note that we know from
Theorem 2.1.11 that ζA is holomorphic for Res > D(ζA) = dimB A, where A :=
C(m,a).) Since they coincide on the real interval (D,+∞), it follows that in (3.1.9),
we have equality for all complex numbers s in the half-plane {Res > D}. The claim
then follows by meromorphically extending ζA(s), using the expression on the right-
hand side of (3.1.9).

The above reasoning clearly shows that {Res > D} is the largest half-plane
on which ζA is holomorphic (as well as absolutely convergent); that is, D(ζA) =
Dhol(ζA) = D and hence, the identity (3.1.1) holds. It is easy to check that dimB A
exists in the present case (moreover, as we shall see in part (b) of the proof, we have
that 0 < M D

∗ (A) < M ∗D(A) < ∞; see also footnote 14 on page 32), and therefore
equals D: D = dimB A = D(ζA) = Dhol(ζA), where D = log1/a m.

Part (b): We next compute the Minkowski contents of the generalized Cantor set
A = C(m,a). Let t > 0 be fixed. We first determine the nonnegative integer n = n(t)
such that ρn(t) ≤ 2t < ρn(t)−1. (Recall from part (a) of the proof that ρn was defined
as the minimal length of the holes of Cn.) Solving the inequality ρn ≤ 2t, we obtain

n ≥ log t−1 + logc
log(1/a)

=: h(t),

and hence,
n(t) = �h(t)�= h(t)+g(h(t)),

where by �x� (the ‘ceiling’ of x) we denote the smallest integer which is not less
than x. Note that g(x) = �x�− x.
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Recall from part (a) that A = ∩n≥0Cn, where (Cn)n≥0 is a decreasing family of
compact sets defined at the beginning of the proof, and each Cn consists of mn+1

disjoint intervals of length an+1. By our choice of n = n(t), since 2t ≥ ρn, we see
that all the (smallest) holes corresponding to Cn are filled in by its t-neighborhood.
Therefore, we have the disjoint union

At = (Cn−1)t =Cn−1 ∪ ((Cn−1)t \Cn−1),

and Cn−1 consists of mn intervals of length an, while (Cn−1))t \Cn−1 consists of 2mn

intervals of length t. We conclude that

|At |= |(Cn−1)t |= mn(an +2t)

= (ma)h(t)(ma)g(h(t)) +2t mh(t)mg(h(t))

= mh(t)(ah(t)(am)g(h(t)) +2tmg(h(t))) = t1−DG(log t−1),

where G = G(τ) is defined by (3.1.3).
Since the function G = G(τ) is periodic, and its maximum is achieved at the

points τ = c+ kT , k ∈ Z, we deduce that

M ∗D(A) = G((logc)−) = cD−1(ma)0 +2cDm0

= cD−1(1+2c) = cD−1 m(1−a)
m−1

,

where we have let G((τ0)
−) := limτ→(τ0)− G(τ) and used the fact that g(0−) = 0.

In order to compute M D
∗ (A), let us define

f (x) = cD−1(ma)x +2cDmx.

Since ma < 1 and m > 1, it is clear that f is a convex function which is bounded
from below and that it has a unique minimum value, achieved at a single point,
denoted by x0. Clearly, M D

∗ (A) = min f = f (x0). Since we must have f ′(x0) = 0,
we conclude that

x0 = D logm

(
(2c)−1 logm(ma)−1) .

After an elementary computation, we obtain that

M D
∗ (A) = f (x0) = cD−1(ma)x0 +2cDmx0 =

1
D

(
2D

1−D

)1−D

. (3.1.10)

This completes the proof of Proposition 3.1.2. ��

The values of the upper and lower Minkowski contents of C(m,a) have been ob-
tained earlier in [Žu2, Equations (3.12) and (3.13)]. It is rather time-consuming to
verify the last equality appearing in Equation (3.1.10) by hand. The reader may
find it easier to verify this last equality by using a symbolic manipulation computer
package.
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In the case of the classic Cantor set, that is, for m := 2 and a := 1/3, we recover
the values first obtained in [LapPo2, Theorem 2.4]. Finally, the tube formula (3.1.2)
extends the one obtained in [Lap-vFr3, Equation (1.11)]. We also refer to [Lap-vFr3,
Chapter 10] where these computations have been significantly extended and refined
(both in the geometric and, crucially, in the spectral case) for a certain one-parameter
family of generalized (and possibly virtual) Cantor sets and strings in order to prove
new results about the distribution and the asymptotic density of the ‘critical zeros’
of the Riemann zeta function, as well as of a large class of arithmetic zeta functions
and generalized Dirichlet series or integrals; see [Lap-vFr3, Chapter 11].

Remark 3.1.3. Note that essentially by definition, in the above proof of Proposi-
tion 3.1.2, the ‘holes’ are deleted (open) intervals in the construction of the two-
parameter Cantor set A =C(m,a). Hence, they form an infinite sequence of pairwise
disjoint bounded open intervals whose union is equal to (0,1)\A, the complement
of A in (0,1). In other words, A ⊂R is viewed as the boundary of an ordinary fractal
string, realized geometrically as the open bounded set Ωm,a := (0,1) \A (with the
holes as associated intervals) and which can be naturally called the generalized two-
parameter Cantor string (by analogy with the classic ternary Cantor string Ω2,1/3;
see [Lap-vFr3, Subsection 1.1.2]).

Definition 3.1.4. According to the terminology introduced in [Lap-vFr3], the value
of p = 2π/T , appearing in Proposition 3.1.2, is called the oscillatory period of the
generalized Cantor set A = C(m,a). As we see from the proof of Proposition 3.1.2,
the set of principal complex dimensions of A is then given by

dimPC A := Pc(ζA) = D+piZ.

Remark 3.1.5. We leave it as an easy exercise for the reader to write down the ex-
act counterpart of Proposition 3.1.2 for the tube zeta function ζ̃A. We only men-
tion here that the poles of ζ̃A are the same as those of ζA (i.e., P(ζ̃A) = P(ζA)),
as given by (3.1.6) and that they are simple (but that the residues of ζ̃A differ
by a multiplicative factor from the corresponding residues of ζA). In particular,
D = D(ζ̃A) = D(ζA), as given by (3.1.1), and D is a simple pole of ζ̃A. Hence,
according to (2.2.24), we have that res(ζ̃A,D) = 1

1−D res(ζA,D), where res(ζA,D) is
given by (3.1.6).

In light of Remark 3.1.5 and part (b) of Theorem 2.4.3 (see, especially, Equa-
tion (2.4.7)), we can now state the following corollary of Proposition 3.1.2.

Corollary 3.1.6. Let A := C(m,a) be the above generalized Cantor set and let D
and G be given, respectively, as in Equation (3.1.1) and Equation (3.1.3). Then the
average Minkowski content of A exists (in (0,+∞)) and is given by

M̃ D(A) = res(ζ̃A,D) =
1
T

∫ T

0
G(τ)dτ =

1
1−D

res(ζA,D), (3.1.11)
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with the value of res(ζA,D) explicitly given by the last line of Equation (3.1.6). In
particular, A is Minkowski nondegenerate and

0 < M D
∗ (A)< M̃ D(A)< M ∗D(A)< ∞.

3.1.2 Construction of Transcendentally 2-Quasiperiodic Sets

The following example, Example 3.1.8, provides the basic ideas for further defini-
tions, results and constructions. The main result of this subsection is contained in
Theorem 3.1.12.

Recall that the field of algebraic numbers (often denoted by Q in the literature)
can be viewed (up to isomorphism) as the algebraic closure of Q (the field of ratio-
nal numbers) and is obtained by adjoining to Q the roots of the monic polynomial
equations with coefficients in Q (or, equivalently, in Z). Note that, as a result, it is a
countable set.

We shall need a classic result due to Gel’fond and Schneider (see [Gel]), proved
independently by these two authors in 1934. We state it in a form that will be con-
venient for our purposes.

Theorem 3.1.7 (Gel’fond–Schneider, [Gel]). Let ρ be a positive algebraic number
different from 1, and let x be an irrational algebraic number. Then ρx is transcen-
dental.

Example 3.1.8. We construct a bounded subset of the real line of a box dimen-
sion D ∈ (0,1), possessing two incommensurable quasiperiods T and S (and more-
over, such that the number T/S is transcendental); this set is transcendentally
quasiperiodic (more precisely, transcendentally 2-quasiperiodic) in the sense of
part (a) of Definition 3.1.11 below. The set will be of the form A ∪ B, where A
and B are two bounded subsets of the real line, satisfying the assumptions of The-
orem 2.3.43 and defined as the generalized Cantor sets A = C(a) := C(2,a) ⊂ [0,1],
where a ∈ (0,1/2), and B =C(3,b) ⊂ [2,3], where b ∈ (0,1/3). We choose b so that
D := log1/a 2 = log1/b 3. See Definition 3.1.1 and Proposition 3.1.2 above.

We may take, for example a := 1/3 and b := 3− log2 3. Note that we then have
3b = 31−log32 < 1. The functions G1 and G2 corresponding to A and B are T and
S-periodic, respectively, with T := log(1/a) = log3 and S := log(1/b). Since

T
S
=

log3
log(1/b)

=
log2
log3

= log3 2

is irrational (and even transcendental), we see that the conditions of Theorem 2.3.43
(on page 173) are satisfied with N = 1 and O(tα)≡ 0 (that is, with no error term).

Since it solves the equation 3x = 2, the positive real number x = T/S is tran-
scendental, in light of the Gel’fond–Schneider theorem which is recalled in Theo-
rem 3.1.7 just above. Indeed, if x were an irrational algebraic number, then according
to this result, the number 3x would be transcendental, which is a contradiction.
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It is easy to see that x cannot be a rational number p/q, with p,q ∈ N, since
otherwise, it would follow from the equality 3p/q = 2 that 3p = 2q, which is also
impossible, according to the fundamental theorem of arithmetic. Therefore, x is
transcendental. Here, we mention that x = logα is transcendental for all algebraic
numbers α 
= 0 not equal to 0 or 1, a result going back to F. von Lindemann and K.
Weierstrass; see [Ba, p. 4].

For our later needs, it will be convenient to introduce the following definition of
quasiperiodic functions.

Definition 3.1.9. We say that a function G = G(τ) : R→ R is n-quasiperiodic (or
quasiperiodic, of order of quasisperiodicity equal to n) if it is of the form

G(τ) := H(τ , . . . ,τ), (3.1.12)

where for some n≥ 2, H :Rn →R is a function which is nonconstant and Tk-periodic
in its k-th component, for each k = 1, . . . ,n, and the corresponding periods T1, . . . ,Tn

are rationally independent (i.e., linearly independent over the field of rational num-
bers). The values of Ti are called the quasiperiods of G.

In addition, we say that a function G = G(τ) is

(a) transcendentally n-quasiperiodic if the periods T1, . . . ,Tn are algebraically in-
dependent. In particular, all of the quotients Ti/Tj, for i 
= j, are then transcendental
(and hence, irrational) numbers;

(b) algebraically n-quasiperiodic if the corresponding periods T1, . . . ,Tn are
rationally independent and algebraically dependent. More precisely, we assume
here that the set of quasiperiods {T1, . . . ,Tn} is algebraically dependent; in other
words, there exist algebraic numbers λ1, . . . ,λn, not all of them zero, such that
λ1T1 + · · ·+λnTn = 0.

In the existing literature on dynamical systems, mathematical physics and har-
monic analysis, there is a wide variety of different definitions of quasiperiodic and
almost periodic functions (and sets). See, for example, [WaMLItz], [Sen], [Boh],
[Kat], [Lap-vFr3], [Lap6, Appendix F], along with the relevant references therein.
Definition 3.1.9 (along with Definition 3.1.11) suits ideally our purposes. Defini-
tions 3.1.9 and 3.1.11 will be further refined and extended to the n = ∞ case in
Definitions 4.6.6 and 4.6.7, respectively.

The notion of quasiperiodic function provided in Definition 3.1.9 above has been
motivated by [Vin]. However, while in [Vin], it is assumed that the reciprocals of the
quasiperiods T1, ...,Tn are rationally independent, we assume in Definition 3.1.9 that
the quasiperiods T1, ...,Tn themselves are rationally independent. The distinction be-
tween algebraically n-quasiperiodic and transcendentally n-quasiperiodic functions
seems to be new. Furthermore, in Definition 4.6.6 on page 374 below, we shall intro-
duce∞-quasiperiodic functions, that is, quasiperiodic functions with infinitely many
rationally independent quasiperiods.

It is clear from Definition 3.1.9 that each quasiperiodic function is either tran-
scendentally quasiperiodic or algebraically quasiperiodic. In other words, the set
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Fqp of quasiperiodic functions is equal to the disjoint union of the set Ftqp of tran-
scendentally quasiperiodic functions and the set Faqp of algebraically quasiperiodic
functions:

Fqp = Ftqp ∪Faqp.

Example 3.1.10. If G(τ) = G1(τ)+G2(τ), where the functions Gi are nonconstant
and Ti-periodic, i = 1,2, such that T1/T2 is an irrational algebraic number, then G is
algebraically 2-quasiperiodic. In this case and in the notation of Definition 3.1.9, we
have H(τ1,τ2) := G1(τ1)+G2(τ2). If T1/T2 is transcendental, then G is transcen-
dentally 2-quasiperiodic (in the sense of Definition 3.1.9).

Definition 3.1.11. Assume that a bounded set A ⊂ R
N has the following tube for-

mula:
|At |= tN−D(G(log(1/t))+o(1)) as t → 0+, (3.1.13)

such that G is nonnegative, 0 < liminfτ→+∞G(τ) ≤ limsupτ→+∞G(τ) < +∞ and
D∈ [0,N] is a given constant. Note that it then follows that dimB A exists and is equal
to D. Moreover, M D

∗ (A) = liminfτ→+∞G(τ) and M ∗D(A) = limsupτ→+∞G(τ).
We say that A is an n-quasiperiodic set (of order of quasiperiodicity equal to n).

if the corresponding function G = G(τ) is n-quasiperiodic.
In addition, the set A is said to be

(a) transcendentally n-quasiperiodic if the corresponding function G is transcen-
dentally n-quasiperiodic;

(b) algebraically n-quasiperiodic if the corresponding function G is algebraically
n-quasiperiodic.

In light of Definition 3.1.11 and the comment following Definition 3.1.9, we
see that each n-quasiperiodic set is either transcendentally n-quasiperiodic or n-
algebraically quasiperiodic. In other words, the family Sqp(n) of n-quasiperiodic
sets is equal to the disjoint union of the family Stqp(n) of transcendentally n-
quasiperiodic sets and the family Saqp(n) of algebraically n-quasiperiodic sets:

Sqp(n) = Stqp(n)∪Saqp(n).

Note that the family (Sqp(n))n≥2 is disjoint, as well as the family (Stqp(n))n≥2 and
the family (Saqp(n))n≥2. Letting

Sqp :=
⋃
n≥2

Sqp(n), Stqp :=
⋃
n≥2

Stqp(n), Saqp :=
⋃
n≥2

Saqp(n),

we have
Sqp = Stqp ∪Saqp.

Example 3.1.8 shows that the family Stqp(2) is nonempty. In Theorem 3.1.12 we
shall see that the family Stqp(2) is infinite. Moreover, the family Stqp(n) is infinite
for any n ≥ 2; see Theorem 3.1.15. We do not know if the family Saqp is nonempty.
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A more general definition of quasiperiodic sets can be found on page 542 of Sub-
section 6.1.1.1. This will lead us to consider the family Sqp(∞) of ∞-quasiperiodic
sets, i.e., the family of quasiperiodic sets with infinitely many quasiperiods; see
Definition 4.6.7 on pages 375 and 376.

Generalizing the idea of the above example, we obtain the following result. It
is noteworthy that Theorem 3.1.12 involves a simple geometric condition (of linear
independence over the rationals) on exponent vectors associated with two positive
integers. A similar comment can be made about Theorem 3.1.15 in Subsection 3.1.3
below.

Theorem 3.1.12. Let A1 = C(m1,a1) ⊂ [0,1] and A2 = C(m2,a2) ⊂ [2,3] be two gen-
eralized Cantor sets (see Definition 3.1.1 and Proposition 3.1.2) such that their
box dimensions coincide;2 call D this common value of dimB Ai for i = 1,2. Let
{p1, p2, . . . , pk} be the set of all distinct prime factors of m1 and m2, and write

m1 = pα1
1 pα2

2 . . . pαk
k , m2 = pβ1

1 pβ2
2 . . . pβk

k , (3.1.14)

where αi,βi ∈ N∪{0} for i = 1, . . . ,k. If the exponent vectors

(α1,α2, . . . ,αk) and (β1,β2, . . . ,βk), (3.1.15)

corresponding to m1 and m2, are linearly independent over the rationals (in other
words, there is no q ∈ Q such that (α1,α2, . . . ,αk) = q(β1,β2, . . . ,βk)), then the
function G = G1 +G2, associated with A = A1 ∪A2, is transcendentally 2-quasi-
periodic; that is, the quotient T1/T2 of the quasiperiods of G (i.e., of the periods of
G1 and G2) is transcendental. In other words, the set A itself is transcendentally
2-quasiperiodic.

Moreover, ζA can be meromorphically extended to all of C and we have that

ζA(s)∼
1

1−m1as
1
+

1
1−m2as

2
, D(ζA) = dimB A = D and Dmer(ζA) =−∞.

(The exact expression of ζA is given in Equation (3.1.18) below.) Hence, the set
dimPC A =Pc(ζA) of principal complex dimensions of A consists of simple poles of
ζA and coincides with the following nonarithmetic set (see Remark 3.1.13 below):

dimPC A =
(

D+
2π
T1

iZ
)
∪
(

D+
2π
T2

iZ
)
. (3.1.16)

Besides (dimPC A)∪{0}, there are no other poles of the distance zeta function ζA

in C. Furthermore, all of the complex dimensions of A are simple.
Finally, exactly the same results hold for the tube zeta function ζ̃A of A (in place

of the distance zeta function ζA).

2 More generally, it suffices to assume that the Cantor sets A1 and A2 are contained in two compact
unit intervals with disjoint interiors, respectively.
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Proof. First of all, using (3.1.2), applied to both A1 and A2, we see that for all
t ∈ (0,1/2),

|(A1 ∪A2)t |= |(A1)t |+ |(A2)t |= t1−D (
G1(log t−1)+G2(log t−1)

)
.

It suffices to show that the quotient T1/T2 of the quasiperiods T1 and T2 of G(τ) :=
G1(τ)+G2(τ) is transcendental.

From the fact that D = log1/a1
m1 = log1/a2

m2 and Ti = log1/ai
for i = 1,2, we

deduce that x := T1/T2 satisfies the equation (m2)
x = m1. The exponent x cannot be

an irrational algebraic number, since otherwise, by the Gel’fond–Schneider theorem
(Theorem 3.1.7), (m2)

x would be transcendental. If x were rational, say, x = b/a,
with a,b ∈ N (note that x > 0, since m1 ≥ 2), this would then imply that (m1)

a =
(m2)

b; that is,

paα1
1 paα2

2 . . . paαk
k = pbβ1

1 pbβ2
2 . . . pbβk

k .

Therefore, using the fundamental theorem of arithmetic, we would have

a(α1,α2, . . . ,αk) = b(β1,β2, . . . ,βk).

However, this is impossible due to the assumption of linear independence over the
rationals of the above exponent vectors. Therefore, x is transcendental.

The claims about the zeta function ζA1∪A2 follow from Proposition 3.1.2 applied
both to A1 and A2. Indeed, since A1 and A2 are subsets of two disjoint compact
intervals [0,1] and [2,3], we can choose without loss of generality δ = 1/2 (see
Proposition 2.1.76), so that Aδ = [−1/2,3+1/2] and therefore,

ζA(s) =
∫ 1

0
d(x,A1)

s−1dx+
∫ 3

2
d(x,A1)

s−1dx+4
∫ 1/2

0
xs−1dx. (3.1.17)

Note that the last term on the right-hand side of (3.1.17) corresponds to the union
of the following four intervals: (−1/2,0), (1,3/2), (3/2,2) and (3,7/2). By using
Equation (3.1.5) in Proposition 3.1.2, applied separately to A1 and A2, we obtain
that for all s ∈ C such that Res > D,

ζA(s) =

(
1−m1a1

2(m1 −1)

)s−1 1−m1a1

s(1−m1as
1)

+

(
1−m2a2

2(m2 −1)

)s−1 1−m2a2

s(1−m2as
2)

+
4δ s

s
.

(3.1.18)

Equation (3.1.18) shows that ζA(s) can be meromophically extended to the whole
complex plane, and that besides (dimPC A)∪{0} there are no other poles of ζA in C.
The same equation shows that ζA(s)∼ (1−m1as

1)
−1 +(1−m2as

2)
−1.

Finally, since D = dimB A < 1, the fact that ζ̃A satisfies the same properties as
those of ζA stated in Theorem 3.1.12 follows from Remark 2.2.18 on page 126 and
from Proposition 2.2.19. ��
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Remark 3.1.13. Note that in Equation (3.1.16) of Theorem 3.1.12, we can write that

dimPC A = D+
(2π

T1
Z∪ 2π

T2
Z

)
i, (3.1.19)

and (since T1/T2 is irrational) the set 2π
T1
Z∪ 2π

T2
Z is not of the form cZ, for any c > 0.

This is precisely what we mean here by stating in Theorem 3.1.12 that dimPC A is a
nonarithmetic set.

Theorem 3.1.12 provides a construction of the set A = A1 ∪A2 such that the set
dimPC A of principal complex dimensions of A is equal to the union of two (dis-
crete) sets of complex dimensions, each of which is composed of poles in infinite
vertical arithmetic progressions, but with algebraically incommensurable oscillatory
quasiperiods p1 = 2π/T1 and p2 = 2π/T2 of A1 and A2, respectively; that is, p1/p2

is transcendental. These oscillatory quasiperiods of A are equal to the oscillatory pe-
riods of A1 and A2. In Theorem 3.1.15, we will construct a class of bounded sets on
the real line possessing an arbitrary prescribed finite number of algebraically incom-
mensurable quasiperiods. This result will be further extended in Section 4.6.1 (see
Theorems 4.6.9, 4.6.13, and Corollary 4.6.17), where we will construct a bounded
set A0 on the real line such that all points on the critical line of the corresponding
distance zeta function are nonisolated singularities.

The function G = G1 +G2 appearing in Theorem 3.1.12 is transcendentally 2-
quasiperiodic; that is, for the periods Tj of G j, j = 1,2, we have that k1T1+k2Tj 
= 0
for any nonzero pair of algebraic numbers (k1,k2), or equivalently, T1 and T2 are
algebraically independent. We say that a finite set of real numbers is algebraically
independent if it is linearly independent over the field of algebraic numbers.

Under the conditions of Theorem 3.1.12, by using Proposition 2.1.26, we see that

ζA1∪A2(s)∼ ζA1(s)+ζA2(s),

in the sense of Definition 2.1.69. Furthermore, we have that

P(ζA1∪A2) = P(ζA1)∪P(ζA2).

3.1.3 Transcendentally n-Quasiperiodic Sets and Baker’s Theorem

It is possible to further extend Theorem 3.1.12. The main result of this subsection is
contained in Theorem 3.1.15 below.

In the sequel, we shall need the following important theorem from transcendental
number theory, due to Baker [Ba, Theorem 2.1]. It represents a nontrivial extension
of Theorem 3.1.7, due to Gel’fond and Schneider [Gel].
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Theorem 3.1.14 (Baker, [Ba, Theorem 2.1]). Let n ∈ N with n ≥ 2. If m1, . . . ,mn

are positive algebraic numbers such that logm1, . . . , logmn are linearly independent
over the rationals, then

1, logm1, . . . , logmn

are linearly independent over the field of all algebraic numbers (or algebraically
independent, in short). In particular, the numbers logm1, . . . , logmn are transcen-
dental, as well as all of their (nontrivial) pairwise quotients.

We now state the main result of this section, which can be considered as a fractal
set-theoretic interpretation of Baker’s theorem. It extends Theorem 3.1.12 even in
the case when n = 2.

Theorem 3.1.15. Let n ∈N with n ≥ 2. Assume that A j =C(m j ,a j) ⊂ I j, j = 1, . . . ,n,
are generalized Cantor sets (in the sense of Definition 3.1.1) such that their box
dimensions are equal to a fixed number D ∈ (0,1),3 and assume that they are
contained in a disjoint family4 of closed unit intervals I j.5 Let Ti := log(1/ai)
be the associated periods, and Gi be the corresponding Ti-periodic functions, for
i = 1, . . . ,n. Furthermore, let {p j : j = 1, . . . ,k} be the union of all distinct prime
factors which appear in the integers mi, for i = 1, . . . ,n; that is, mi = pαi1

1 . . . pαik
k ,

where αi j ∈ N∪{0}. If the exponent vectors of the numbers mi,

ei = (αi1, . . . ,αik), i = 1, . . . ,n, (3.1.20)

are linearly independent over the rationals, then the real numbers

1
D
,T1, . . . ,Tn (3.1.21)

are linearly independent over the field of all algebraic numbers. It follows that the
set A :=A1∪·· ·∪An ⊂R is transcendentally n-quasiperiodic; see Definition 3.1.11.
Furthermore, in the terminology and the notation of Definition 3.1.9 and Defini-
tion 3.1.11, an associated transcendentally n-quasiperiodic function G is given by
G := G1 + · · ·+Gn.

Moreover, ζA can be meromorphically extended to all of C and we have that

ζA(s)∼
n

∑
i=1

1
1−mias

i
, D(ζA) = D and Dmer(ζA) =−∞.

Hence, the set dimPC A = Pc(ζA) of principal complex dimensions of A consists of
simple poles of ζA and coincides with the following nonarithmetic set (see Remark
3.1.13 on page 196 above):

3 According to Proposition 3.1.2, this can be easily arranged.
4 See footnote 57 on page 144.
5 More generally, it suffices to assume that the interiors of the closed unit intervals I j are pairwise
disjoint for j = 1, . . . ,n.
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dimPC A =
n⋃

i=1

(
D+

2π
Ti

iZ
)
= D+

( n⋃
i=1

2π
Ti

Z

)
i. (3.1.22)

Besides (dimPC A)∪{0}, there are no other poles of the distance zeta function ζA

in C. Furthermore, all of the complex dimensions of A are simple.
Finally, exactly the same results hold for the tube zeta function ζ̃A of A (in place

of the distance zeta function ζA).

Proof. As in the proof of Theorem 3.1.12, using (3.1.2), applied to each Ai, for
i = 1, . . . ,n, we see that for all t > 0 small enough,

|At |= t1−D
n

∑
i=1

Gi(log t−1),

and for each i = 1, . . . ,n, Gi = Gi(τ) is nonconstant and Ti-periodic, where Ti :=
log(1/ai). We next proceed in three steps:

Step 1: It is easy to see that the numbers log p j are rationally independent. Indeed,

if we had ∑k
j=1λ j log p j = 0 for some integers λ j, then ∏k

j=1 p
λ j
j = 1. This implies

that λ j = 0 for all j, since otherwise it would contradict the fundamental theorem
of arithmetic. (A moment’s reflection shows that this argument is valid even if the
numbers λ j are not all of the same sign.)

Step 2: Let us show that logm1, . . . , logmn are linearly independent over the ra-
tionals. Indeed, assume that for i = 1, . . . ,n, μi ∈Q are such that ∑n

i=1 μi logmi = 0.
Then

n

∑
i=1
μi

k

∑
j=1
αi j log p j = 0. (3.1.23)

Changing the order of summation, we have

k

∑
j=1

(
n

∑
i=1
μiαi j

)
log p j = 0. (3.1.24)

Since, by Step 1, the numbers log p j are rationally independent, we have that for all
j = 1, . . . ,k,

n

∑
i=1
μiαi j = 0;

that is, ∑n
i=1 μiei = 0, where the ei’s are the exponent vectors given by (3.1.20).

According to the hypotheses of the theorem, the exponent vectors ei are rationally
independent, and we therefore conclude that μi = 0 for all i = 1, . . . ,n, as desired.

Step 3: Using [Ba, Theorem 2.1], that is, Theorem 3.1.14 above, we conclude
that

1, logm1, . . . , logmn
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are linearly independent over the field of algebraic numbers. Since Ti =
1
D logmi,

for i = 1, . . . ,n, it then follows that the numbers listed in (3.1.21) are also linearly
independent over the field of algebraic numbers. The function

G := G1 + · · ·+Gn, G(τ) = G1(τ)+ · · ·+Gn(τ),

associated with A, is transcendentally n-quasiperiodic; that is, the set A is transcen-
dentally n-quasiperiodic, in the sense of Definition 3.1.11. (Note that here, in the
notation of Definition 3.1.9, we have H(τ1, . . . ,τn) := G1(τ1)+ · · ·+Gn(τn).) The
last claim, about the distance zeta function ζA and its complex dimensions, now fol-
lows from Proposition 3.1.2 applied to each of the bounded sets Ai (i = 1, . . . ,n),
much as in the proof of Theorem 3.1.12. We omit the details.

Finally, as was also noted in the proof of Theorem 3.1.12, since D = dimB A < 1,
the fact that ζ̃A satisfies the same properties as those of ζA stated in Theorem 3.1.12
follows from Remark 2.2.18 on page 126. ��

Defining the frequencies fi of A, for i = 0,1, . . . ,n, by

f0 := D, f1 := 1/T1, . . . , fn := 1/Tn

then, under the conditions of Theorem 3.1.15, we conclude that the quotient of any
two frequencies fi/ f j, for i 
= j, is a transcendental number.

We leave it as a simple exercise for the interested reader to state (and prove) the
counterpart for the tube zeta function ζ̃A of Theorem 3.1.12 (in Subsection 3.1.2)
and of Theorem 3.1.15 (in Subsection 3.1.3). Actually, those results hold without
change for ζ̃A (instead of for ζA) since the values of the residues are not given in
Theorems 3.1.12 and 3.1.15.

The following proposition shows that if A is a quasiperiodic subset of RN , then
the subset A× [0,1]d of RN+d is also quasiperiodic.

Proposition 3.1.16. Assume that A is a quasiperiodic subset of RN of a given type,
with associated quasiperiodic function G = G(τ). If d a positive integer and L > 0,
then the subset A × [0,L]d of RN+d is also quasiperiodic of the same type, with
associated quasiperiodic function equal to Ld ·G. In particular, if n ≥ 2 is an integer
and A is one of the n-quasiperiodic subsets of R constructed in Theorem 3.1.15, then
the subset A× [0,L]d of R1+d is also n-quasiperiodic.

Proof. Let us first prove the claim for d = 1. By hypothesis, we have that

|At |N = tN−D(G(log t−1)+o(1)
)

as t → 0+, (3.1.25)

where G = G(τ) is a quasiperiodic function; see Definition 3.1.9. Much as in Equa-
tion (2.2.76), we can write

|(A× [0,L])t |N+1 = |At |N ·L+ |At |N+1

= t(N+1)−(D+1)(L ·G(log t−1)+o(1)
)
+ |At |N+1

(3.1.26)
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as t → 0+. Since, obviously, |At |N+1 ≤ |At |N ·2t, we have that

|At |N+1 ≤ tN+1−D(G(log t−1)+o(1)
)
= t(N+1)−(D+1) · t

(
G(log t−1)+o(1)

)
= t(N+1)−(D+1) ·O(t) as t → 0+.

(3.1.27)
Therefore,

|(A× [0,L])t |N+1 = t(N+1)−(D+1)(L ·G(log t−1)+o(1)+O(t)
)

= t(N+1)−(D+1)(L ·G(log t−1)+o(1)
)

as t → 0+.
(3.1.28)

Hence, according to Definition 3.1.11, the set A× [0,L] is quasiperiodic, with asso-
ciated quasiperiodic function L ·G. This completes the proof of the proposition for
d = 1. The general case is easily obtained by induction on d. ��

3.1.4 Transcendentally n-Quasiperiodic Fractal Strings

In this subsection, we introduce the notion of n-quasiperiodic fractal strings and
describe their construction, based on generalized Cantor strings, that we define be-
low. We first recall the definition of the tube function corresponding to a given
bounded fractal string L := (� j) j≥1. To this end, we shall need to use the set
A = AL = {ak := ∑ j≥k � j : k ∈ N}, already introduced in Figure 2.7 on page 90.

Definition 3.1.17. The tube function corresponding to a given bounded fractal
string L is defined as the function t �→ |At ∩ (0,a1)|, where t > 0, a1 := ∑ j≥1 � j

is the total length of the string, and A = AL .6

Definition 3.1.18. Assume that L is a bounded fractal string such that

|At ∩ (0,a1)|= t1−D(G(log(1/t))+o(1)) as t → 0+, (3.1.29)

where D ∈ [0,1] is a constant, G is nonnegative and 0 < liminfτ→+∞G(τ) ≤
limsupτ→+∞G(τ)< ∞. Then, clearly, D = dimB L , and

M D
∗ (L ) = liminf

τ→+∞
G(τ) and M ∗D(L ) = limsup

τ→+∞
G(τ).

(a) We say that the fractal string L is periodic if the corresponding function G
appearing in (3.1.29) is nonconstant and periodic.

(b) We say that the fractal string L is n-quasiperiodic if the function
G is n-quasiperiodic; see Definition 3.1.9. In particular, if G is transcenden-
tally n-quasiperiodic, we say that the fractal string L is transcendentally n-
quasiperiodic. If G is algebraically n-quasiperiodic, we say that L is algebraically
n-quasiperiodic.

6 Since |At | = |At ∩ (0,a1)|+ 2t, we consider the tube function t �→ |At ∩ (0,a1)| for convenience
only, instead of t �→ |At |.
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As we see, for any fixed integer n ≥ 2, the family Lqp(n) of all n-quasiperiodic
fractal strings is equal to the disjoint union of the family Ltqp(n) of transcenden-
tally quasiperiodic strings of order n and of the family Laqp(n) of algebraically
quasiperiodic strings of order n:

Lqp(n) = Ltqp(n)∪Laqp(n).

It is natural to define

Lqp :=
⋃
n≥2

Lqp(n), Ltqp :=
⋃
n≥2

Ltqp(n), Laqp :=
⋃
n≥2

Laqp(n). (3.1.30)

We then have that
Lqp = Ltqp ∪Laqp.

We shall see below that the family Ltqp(n) is nonempty (and, moreover, it is infinite)
for any n ≥ 2. We do not know if the family Laqp is nonempty.

An example of a fractal string generated by a fractal set is the Cantor string
LC(1/3) , defined as the sequence of lengths of the open intervals deleted during the
construction of the ternary Cantor set C(1/3):

LC(1/3) = (3−1,3−2,3−2,3−3, . . . ,3−3︸ ︷︷ ︸
4 times

,3−4, . . . ,3−4︸ ︷︷ ︸
8 times

, . . .).

In other words, for each k = 1,2, . . . , the element 3−k appears in the fractal string
with multiplicity 2k−1.

We can analogously define the generalized Cantor string LC(m,a) , generated by
the generalized Cantor set C(m,a), where m is a positive integer and 0 < a < 1/m;
see Definition 3.1.1.

Definition 3.1.19. Let L1 and L2 be two bounded fractal strings. We define a new
bounded fractal string L1�L2, called the union of the fractal strings L1 and L2. It
consists of all the elements from the union of these two fractal strings, with the mul-
tiplicity of each common element of L1 and L2 equal to the sum of its respective
multiplicities in L1 and L2.7

For example, if

L1 = (1,1,1/2,1/3,1/4, . . .) and L2 = (2,1/2,1/2,1/3,1/5, . . .),

then
L1 �L2 = (2,1,1,1/2,1/2,1/2,1/3,1/3, . . .).

We now state the analog of Theorems 3.1.12 in the context of fractal strings.

7 The union of a countable family of fractal strings is introduced in Definition 4.5.11.
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Theorem 3.1.20. Let LC(m1,a1) and LC(m2,a2) be two generalized Cantor strings
such that their box dimensions coincide; denote by D this common value. Let
{p1, p2, . . . , pk} be the set of all distinct prime factors of m1 and m2, and write

m1 = pα1
1 pα2

2 . . . pαk
k , m2 = pβ1

1 pβ2
2 . . . pβk

k , (3.1.31)

where αi,βi ∈ N∪{0} for i = 1, . . . ,k. If the exponent vectors

(α1,α2, . . . ,αk) and (β1,β2, . . . ,βk) (3.1.32)

corresponding to m1 and m2, are linearly independent over the rationals, then the
fractal string L =L1�L2 is transcendentally 2-quasiperiodic; that is, the quotient
T1/T2 of the quasiperiods of G (i.e., of the periods of G1 and G2) is transcendental.
In other words, the fractal string L is transcendentally 2-quasiperiodic in the sense
of Definition 3.1.11(a).

Moreover, since ζL = ζL1 +ζL2 , ζL can be meromophically extended to all of
C and we have that

ζL (s)∼ 1
1−m1as

1
+

1
1−m2as

2
, D(ζL ) = D and Dmer(ζL ) =−∞.

Hence, the set dimPC L = Pc(ζL ) of principal complex dimensionsof L consists
of simple poles of ζL and is given by

dimPC A = D+
(2π

T1
Z∪ 2π

T2
Z

)
i.

Besides (dimPC L )∪{0}, there are no other poles of the geometric zeta function
ζL in C.

The relationship between the geometric zeta function ζL of a bounded fractal
string L = (� j) j≥1 and the distance zeta function ζA of the set A = AL := {ak =

∑ j≥k � j : k ∈ N} associated with L can be found in Equation (2.1.85).

For every integer n ≥ 2, the analog of Theorem 3.1.15 can also be formulated
in terms of generalized Cantor strings, and we leave it as an easy exercise for the
interested reader.

3.2 Distance Zeta Functions of the Sierpiński Carpet and Gasket

In this section, we shall study the distance zeta functions of two classic fractal sets in
the plane; namely, the Sierpiński carpet and the Sierpiński gasket. We also compute
the corresponding principal complex dimensions. The method of computation of
distance zeta functions anticipates some of the ideas to be developed in Chapter 4.
More precisely, this computation will serve as a motivation to introduce the notion
of ‘relative fractal drums’, which will be the central object of study in Chapter 4.
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We point out that another point of view (closely related, however, to the one
presented in the present section) concerning the Sierpiński carpet and the Sierpiński
gasket will be taken in Subsection 4.2.3. More specifically, we shall study these
two fractals from the point of view of the so-called ‘relative fractal sprays’; see
Section 4.2.

3.2.1 Distance Zeta Function of the Sierpiński Carpet

The construction of the Sierpiński carpet is indicated in Figure 2.1 on page 49. In
this subsection, we compute its principal complex dimensions. In order to do this,
we must first describe the computation of the distance zeta function of the Sierpiński
carpet. Here is the main result of Subsection 3.2.1.

Proposition 3.2.1 (Distance zeta function of the Sierpiński carpet). Let A be
the Sierpiński carpet in R

2, constructed in the usual way inside the unit square;
see Figure 2.1. Let δ be a fixed positive real number. We assume without loss of
generality that δ > 1/6, so that the set Aδ is connected.8 Then, the distance zeta
function ζA of the Sierpiński carpet is given for all s ∈ C by

ζA(s) =
8

2ss(s−1)(3s −8)
+2π

δ s

s
+4
δ s−1

s−1
, (3.2.1)

which is meromorphic on the whole complex plane and equivalent to (3s −8)−1, in
the sense of Definition 2.1.69. In particular, the set of principal complex dimensions
of the Sierpiński carpet is given by

dimPC A = log3 8+
2π

log3
iZ (3.2.2)

and consists only of simple poles of ζA. The residues of the distance zeta function
ζA computed at the principal poles sk, k ∈ Z, are given by

res(ζA,sk) =
2−sk

(log3)sk(sk −1)
,

where sk := log3 8+ 2π
log3 ki ∈ dimPC A, for any integer k ∈ Z.

As we see from Equation (3.2.1), the set of complex dimensions (i.e., the set of
poles of ζA in all of C) of the Sierpiński carpet is given by

P(ζA) = {0, 1}∪
(

log3 8+
2π

log3
iZ

)
, (3.2.3)

and consists only of simple poles of ζA.

8 More precisely, for this choice of δ , Aδ is equal to the δ -neighborhood of the unit square [0,1]2.
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For the needs of the proof of Proposition 3.2.1, it will be very convenient here
to introduce some auxilliary notation. Let A be a compact subset of R2 and assume
that Ω is a bounded open (or more generally, a bounded and Lebesgue measurable)
subset of R2. Then we define

ζA,Ω (s) :=
∫
Ω

d
(
(x,y),A

)s−2
dxdy, (3.2.4)

for all complex numbers s such that Res is sufficiently large. We shall call it the
distance zeta functions of A with respect to Ω , or else, the relative distance zeta
function of A with respect to Ω . Such distance zeta functions and their generaliza-
tions, associated with a suitable ordered pair (A,Ω) of subsets of RN (called relative
fractal drums in R

N ; see Definition 4.1.2 on page 247), will be studied in detail in
Chapter 4.

Proof of Proposition 3.2.1. In order to evaluate

ζA(s) =
∫

Aδ
d
(
(x,y),A

)s−2
dxdy,

we integrate (i) first over the set Aδ \ [0,1]2, and then (ii) over the unit square [0,1]2.

Step (i): The integration over the set Aδ \ (0,1)2 leads us to the following result:

ζA,Aδ \[0,1]2(s) =
∫ 2π

0
dϕ

∫ δ

0
rs−2r dr+4

∫ 1

0
dx

∫ δ

0
ys−2dy

= 2π
δ s

s
+4
δ s−1

s−1
,

(3.2.5)

for all complex numbers s such that Res > 1. Indeed, it suffices to note that the
(connected) set Aδ \ [0,1]2 can be viewed as the disjoint union of

• four quarters of the corresponding disks of radius δ , with centers at the vertices
of the unit square [0,1]2 (and since all of the corresponding integrals over these four
sets are equal, it suffices to consider the integral of |(x,y)|s−2 = rs−2 over the disk
Bδ ((0,0)) of radius δ , centered at the origin), and

• of the remaining four rectangles, that are all isometrically isomorphic to [0,1]×
(−δ ,δ ).
See also Table C.1 of Appendix C, on pages 613 and 614.

Step (ii): Now, let us consider ζA,[0,1]2(s). Since the boundary of the unit square

[0,1]2 is of 2-dimensional Lebesgue measure zero, it suffices to consider ζA,(0,1)2(s).

Furthermore, since A is of 2-dimensional Lebesgue measure zero as well,9 then it
suffices to consider

9 Indeed, the union of the deleted open squares in [0,1]2, obtained during the construction of the
Sierpiński carpet, is of 2-dimensional Lebesgue measure 1, since
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0 ak

Ωk

I1k

1k

I3k

3k

I4k 4k I2k2k

Fig. 3.1 The square Ωk corresponds to any of the 8k−1 deleted open square in the k-th generation
during the construction of the Sierpiński carpet. It can be viewed as the union of four triangles,
determined by its diagonals. This figure explains a part of Step (ii) in the proof of Proposition 3.2.1.

ζA,[0,1]2(s) = ζA,(0,1)2\A(s) =
∞

∑
k=1

8k−1ζAk,Ωk(s), (3.2.6)

where for any positive integer k, Ωk is a fixed deleted square of sides of length
ak := 3−k in the k-th generation and Ak = ∂Ωk is the boundary of Ωk.10 Recall that
the k-th generation of deleted squares contains precisely 8k−1 deleted squares that
are all isometric to Ωk. Furthermore, due to the stated isometry, it is easy to see that
all of the distance zeta functions corresponding to the deleted open squares Ωk in
the k-th generation coincide. (This is a special case of Lemma 4.2.23 formulated
in terms of general relative fractal drums, which the reader can find on page 291.)
Now, if we denote the side length of Ωk by ak := 3−k, it is an easy exercise to check
that

ζAk,Ωk(s) =
8 ·2−sas

k

s(s−1)
, (3.2.7)

for all complex numbers s such that Res > 1. By the principle of analytic continu-
ation, this same equation as in (3.2.7) then continues to hold for all s ∈ C. Indeed,
for any of the four sides I1k, I2k, I3k and I4k of the square Ωk, it is natural to consider
the set of points (x,y) ∈Ωk such that

d
(
(x,y),∂Ωk

)
= d

(
(x,y), Iik

)
, for i = 1,2,3,4.

∞

∑
k=1

8k−1(3−k)2 =
1
9

∞

∑
k=1

(8
9

)k−1
=

1
9
· 1

1− 8
9

= 1.

10 The complement (0,1)2 \A of the Sierpiński carpet A in (0,1)2 can be thought of as the ‘dual
Sierpiński carpet’ corresponding to the usual Sierpiński carpet A in the plane.
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It is easy to see that this set is a triangle, and therefore we can decomposeΩk into the
union of four isosceles right triangles #ik, i = 1,2,3,4 (each of them corresponding
to one of the four sides of the square Ωk), as indicated in Figure 3.1. Note that the
triangles are determined by the two diagonals of Ωk. Since obviously,

ζAk,Ωk(s) = 4ζI1k,#1k
(s), (3.2.8)

we can proceed as indicated in Figure 4.9 on page 304, corresponding to the case
when a1 = 1/3, k ≥ 0, and with the corresponding computation analogous to that in
Equation (4.2.97):

ζI1k,#1k
(s)=

∫ ak/2

0
dx

∫ x

0
d
(
(x,y), I1,k

)s−2
dy+

∫ ak

ak/2
dx

∫ ak−x

0
d
(
(x,y), I1,k

)s−2
dy

= 2
∫ ak/2

0
dx

∫ x

0
ys−2dy =

2
s−1

∫ ak/2

0
xs−1dx

=
2(ak/2)s

s(s−1)
,

for all complex numbers s such that Res > 1. See also Table C.1 on pages 613
and 614. Therefore, using Equation (3.2.8) we obtain (3.2.7). Substituting Equation
(3.2.7) into (3.2.6), we conclude that

ζA,[0,1]2(s) =
2−s

s(s−1)

∞

∑
k=1

8k3−ks =
8

2ss(s−1)(3s −8)
,

for all complex numbers s such that Res > log2 8. Naturally, by analytic continua-
tion, this same equation continues to hold for all s ∈ C.

Step (iii): The resulting expression for the distance zeta function ζA stated in
Equation (3.2.1) follows from Steps (i) and (ii). By the principle of analytic con-
tinuation, ζA can be meromorphically extended to the whole complex plane and is
given by the same formula. Clearly, the principal complex dimensions sk ∈ dimPC A,
k ∈ Z, coincide with the zeros of 3s −8. Finally, the computation of the correspond-
ing residues res(ζA,sk) is left as an easy exercise for the interested reader.

This concludes the proof of Proposition 3.2.1. ��

Concerning part (i) of the proof of Proposition 3.2.1, it is worth noticing that the
relative distance zeta function of the set A0 := ∂ ([0,1]2) (that is, of the boundary of
the unit square) with respect to the open connected set Ω0 := Aδ \ [0,1]2 is equal

• to the sum of the relative distance zeta functions of the point {(0,0)} in R
2

with respect to the open disk Bδ ((0,0)) and of the relative distance zeta function of
the open interval I = (0,2)×{0} of length 2 with respect to the open set (0,2)×
(−δ ,δ ); or

• to the sum of the relative distance zeta function of the interval (0,1)×{0} with
respect to its open δ -neighborhood Iδ in the plane and of the relative distance zeta
function of the interval (0,1)×{0} with respect to (0,1)× (−δ ,δ ).
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We leave it as a simple exercise for the interested reader to check the above
statements. See Table C.1 of Appendix C, on pages 613 and 614.

Remark 3.2.2. Consistent with the conjecture formulated in the geometric part of
[Lap3, Conjecture 3, p. 163], according to which a lattice self-similar set is not
Minkowski measurable, the Sierpiński carpet A is not Minkowski measurable. Ac-
cording to [HorŽu, Theorem 4(a)], the precise values of the lower and upper
Minkowski contents of A are respectively given by

M D
∗ (A) =

(D−)D−2

D

(4D−
5

+2
)

(3.2.9)

and

M ∗D(A) =
(D+)

D−2

D

(4D+

5
+2

)
, (3.2.10)

where D := log3 8 and

D± :=
7

2D

(
D−1

5
±

√
(D−1)2

25
+

D(D−2)
7

)
.

It is interesting to note that the lower and upper Minkowski contents of the
Sierpiński carpet are rather close to each other, and coincide up to the second deci-
mal. More precisely, M D

∗ (A)≈ 1.350670 and M ∗D(A)≈ 1.355617.

3.2.2 Distance Zeta Function of the Sierpiński Gasket

In order to compute the distance zeta function of the Sierpiński gasket, we can pro-
ceed much as in the proof of Proposition 3.2.1. Therefore, we limit ourselves to
stating the corresponding result. We leave the details of the proof to the interested
reader; see an analogous computation given in Example 4.2.24 of Subsection 4.2.3
below, on pages 292–294, for the case of the corresponding relative Sierpiński gas-
ket.

Proposition 3.2.3 (Distance zeta function of the Sierpiński gasket). Let A be the
Sierpiński gasket in R

2, constructed in the usual way inside the unit equilateral
triangle; see Figure 4.5 on page 275. Let δ be a fixed positive real number. We
assume without loss of generality that δ >

√
3/12, so that the set Aδ is connected.11

Then, for all s ∈C, the distance zeta function ζA of the Sierpiński gasket is given by

ζA(s) =
6(
√

3)1−s2−s

s(s−1)(2s −3)
+2π

δ s

s
+3
δ s−1

s−1
, (3.2.11)

11 More precisely, for this choice of δ , Aδ is equal to the δ -neighborhood of the unit triangle �.
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which is meromorphic on the whole complex plane and equivalent to (2s −3)−1. In
particular, the set of principal complex dimensions of the Sierpiński gasket is given
by

dimPC A = log2 3+
2π

log2
iZ (3.2.12)

and consists only of simple poles of ζA. In particular,

res(ζA,sk) =
6(
√

3)1−sk

4sk(log2)sk(sk −1)
,

where sk := log2 3+ 2π
log2 ki ∈ dimPC A, for every integer k ∈ Z.

We deduce from Equation (3.2.12) that the set of complex dimensions (i.e., the
set of poles of ζA in all of C) of the Sierpiński gasket is given by

P(ζA) = {0, 1}∪
(

log2 3+
2π

log3
iZ

)
, (3.2.13)

and consists only of simple poles of ζA.

3.3 Tensor Products of Bounded Fractal Strings and Multiple
Complex Dimensions of Arbitrary Orders

In this section, we construct a class of bounded fractal strings L with principal
complex dimensions of any prescribed order (i.e., multiplicity); see Theorem 3.3.6
below. Furthermore, the same theorem provides a construction of a class of fractal
strings with principal complex dimensions of infinite order; that is, with essential
singularities on the corresponding critical line. The idea of the construction is to use
iterated tensor products of suitably chosen bounded fractal strings.

Let us first recall the definition of a self-similar fractal string (see [Lap3],
[LapPe2], [Lap-vFr1–2], [LapPeWi1], [Lap-vFr3, Section 2.1]). In fact, we intro-
duce a more general notion.

Definition 3.3.1. Let L0 be a bounded fractal string and {r1, . . . ,rJ} a multiset of
positive numbers (“ratio list”) such that

r1 + · · ·+ rJ < 1. (3.3.1)

An extended self-similar fractal string L =L (L0;r1, . . . ,rJ), generated by L0 and
{r1,r2, . . . ,rJ}, is the bounded fractal string defined by

L :=
⊔

α∈(N0)J

(rα1
1 . . .rαJ

J )L0, (3.3.2)
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where α := (α1, . . . ,αJ) and the notation � is described towards the end of Sec-
tion 1.3. Therefore, L can be written as the following tensor product of fractal
strings:

L = L0 ⊗L (r1, . . . ,rJ), (3.3.3)

where the tensor product is defined at the end of Section 1.3 and the fractal string
L (r1, . . . ,rJ) is defined by

L (r1, . . . ,rJ) := {rα1
1 . . .rαJ

J : α ∈ (N0)
J}, (3.3.4)

viewed as a multiset.

The following lemma provides some basic properties of the geometric zeta func-
tion of tensor products of fractal strings.

Lemma 3.3.2. Let L1 and L2 be two bounded fractal strings. Then, their tensor
product is also a bounded fractal string and the corresponding geometric zeta func-
tion is given by

ζL1⊗L2(s) = ζL1(s) ·ζL2(s) (3.3.5)

for all s ∈ C such that Res > max{dimBL1,dimBL2}. Furthermore,

dimB(L1 ⊗L2) = max{dimBL1,dimBL2}, (3.3.6)

where dimBL j denotes the upper box (or Minkowski) dimension of L j. Equiva-
lently,

D(L1 ⊗L2) = max{D(L1),D(L2)}. (3.3.7)

Proof. If s ∈C is such that Res > max{dimBL1,dimBL2}, then (3.3.5) holds since
the series defining ζL1⊗L2(s) on the left and ζL1(s) and ζL2(s) on the right are
absolutely convergent, which allows us to use the corresponding special case of
Fubini’s theorem.

For any fractal string L and α > 0, we let L α := (λα)λ∈L and |L |1 :=
∑λ∈L λ . Since |L α

1 |1 and |L α
2 |1 are series with positive entries, we then have that

|(L1 ⊗L2)
α |1 = |L α

1 |1 · |L α
2 |1. (3.3.8)

If α < max{dimBL1,dimBL2}, then either |L α
1 |1 = +∞ or |L α

2 |1 = +∞, and by
(3.3.8), we thus deduce that |(L1 ⊗L2)

α |1 = +∞. On the other hand, if α ∈ R is
such that α > max{dimBL1,dimBL2}, then both |L α

1 |1 < ∞ and |L α
2 |1 < ∞, and

by (3.3.8), we must have that |(L1 ⊗L2)
α |1 < ∞. This proves Equation (3.3.6).

Finally, Equation (3.3.7) follows from Theorem 2.1.55. This completes the proof of
the lemma. ��

Part (b) of the following theorem extends [Lap-vFr3, Theorem 2.3] to the present
more general context of extended self-similar strings, while part (a) corresponds to
the special case of the just mentioned theorem when the geometric self-similar string
under consideration has a single gap (see Remark 3.3.4 below).
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Theorem 3.3.3. Let the assumptions of Definition 3.3.1 be satisfied and let D ∈
(0,1) be the (necessarily unique) real solution of the Moran equation ∑J

j=1 rD
j = 1.

Then:

(a) The fractal string L (r1, . . . ,rJ) generated by the scaling ratios r1, . . . ,r j is
bounded and has total length given by

|L (r1, . . . ,rJ)|1 =
1

1−∑J
j=1 r j

. (3.3.9)

Furthermore, its geometric zeta function has a meromorphic continuation to the
entire complex plane and is given by

ζL (r1,...,rJ)(s) =
1

1−∑J
j=1 rs

j

(3.3.10)

for all s ∈ C. Moreover, its abscissa of convergence is given by

D(ζL (r1,...,rJ)) = D. (3.3.11)

(b) The extended self-similar fractal string L :=L0 ⊗L (r1, . . . ,rJ) is bounded
and has total length given by

|L |1 =
|L0|1

1−∑J
j=1 r j

. (3.3.12)

Furthermore, its geometric zeta function has for abscissa of meromorphic continu-
ation Dmer(ζL ) = Dmer(ζL0) and its meromorphic extension is given by

ζL (s) =
ζL0(s)

1−∑J
j=1 rs

j

, (3.3.13)

for all s ∈ C such that Res > Dmer(ζL0). Moreover, its abscissa of convergence is
given by

D(ζL ) = max{D(ζL0),D}. (3.3.14)

Finally, for a given window W of ζL0 , the visible complex dimensions in W of
L satisfy

P(ζL ,W )⊆D∪P(ζL0 ,W ), (3.3.15)

where D is the set of complex solutions in W of the Moran equation ∑J
j=1 rs

j = 1.
Furthermore, if there are no zero-pole cancellations in (3.3.13), then we have an
equality in (3.3.15).

Proof. (a) It is clear that Equation (3.3.2) defines a fractal string, since r j ∈ (0,1) for

all j = 1, . . . ,J, while each element rα1
1 . . .rαJ

J has finite multiplicity (α1+···+αJ)!
α1!...αJ ! , and

rα1
1 . . .rαJ

J → 0 as |α|1 := α1 + · · ·+αJ → ∞. The multiset {rα1
1 . . .rαJ

J : α ∈ (N0)
J}
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is itself a bounded fractal string L (r1, . . . ,rJ), since of all of its members are listed
as monomials in the expansion of the sum ∑∞k=0(r1 + · · ·+ rJ)

k and therefore, we
have

|L (r1, . . . ,rJ)|1 =
∞

∑
k=0

( J

∑
j=1

r j

)k
=

1

1−∑J
j=1 r j

, (3.3.16)

due to condition (3.3.1).
Exactly as in the proof of [Lap-vFr3, Theorem 2.3], Equation (3.3.10) follows by

direct computation:

ζL (r1,...,rJ)(s) = ∑
α∈(N0)J

(rα1
1 . . .rαJ

J )s

=
∞

∑
k=0

( J

∑
j=1

rs
j

)k
=

1

1−∑J
j=1 rs

j

.

(3.3.17)

Note that, a priori, the above computation is valid for Res > D (since then,
|∑J

j=1 rs
j| ≤ ∑J

j=1 rRes
j < 1), but in fact, the endresult (i.e., Equation (3.3.10) above)

remains valid for all s ∈ C, upon meromorphic continuation.

(b) In light of Equation (3.3.2), the extended self-similar fractal string L can be
written as follows:

L =
⊔

λ∈L (r1,...,rJ)

λL0. (3.3.18)

We then have

|L |1 = ∑
λ∈L (r1,...,rJ)

|λL0|1 = |L0|1 ∑
λ∈L (r1,...,rJ)

λ

= |L0|1 · |L (r1, . . . ,rJ)|1 =
|L0|1

1−∑J
j=1 r j

< ∞,
(3.3.19)

where in the last equality we have used Equation (3.3.16). This completes the proof
of Equation (3.3.12). Equations (3.3.13) and (3.3.14) are a consequence of part (a)
and of Lemma 3.3.2.

Finally, the remaining part of the theorem (i.e., the inclusion (3.3.15)) now easily
follows from Equation (3.3.13). ��

Note that in order to deduce (3.3.10) from (3.3.13), it suffices to let L0 := {1},
so that ζL0(s) = 1, for all s ∈ C.

The following comment provides a direct and alternative proof of Equa-
tion (3.3.13) and, in fact, of all of Theorem 3.3.3, based on a useful scaling ar-
gument.

Remark 3.3.4. The above Definition 3.3.1 coincides with the usual definition of self-
similar strings of total length equal to 1 given in [Lap-vFr3, Section 2.1] when L0

is taken to be a finite string with lengths g1, . . . ,gK (corresponding to the gaps) such
that
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J

∑
j=1

r j +
K

∑
k=1

gk = 1. (3.3.20)

This situation corresponds to the geometric construction of a self-similar string. For
this reason, the resulting fractal string L is then referred to as a geometric self-
similar string.

Remark 3.3.5 (Alternative proof of Theorem 3.3.3). Let us consider the extended
self-similar fractal string L introduced in Definition 3.3.1 and studied in part (b) of
Theorem 3.3.3. Then,

L = L0 �
J⊔

j=1

r jL . (3.3.21)

It follows that the geometric zeta function of L satisfies the following functional
equation:

ζL (s) = ζL0(s)+
J

∑
j=1
ζr jL

(s). (3.3.22)

Furthermore, by using the scaling property of the geometric zeta function, the above
equation becomes ζL (s) = ζL0(s)+∑

J
j=1 rs

jζL (s); that is,

ζL (s) = ζL0(s)+ζL (s)
J

∑
j=1

rs
j. (3.3.23)

Since the series defining the geometric zeta function ζL (s) of the bounded fractal
string L introduced in Equation (3.3.2) is (absolutely) convergent for all s ∈C such
that Res > 1 (see Equation (3.3.9) in Theorem 3.3.3(a)), this functional equation
yields Equation (3.3.13) directly for all s ∈ C such that Res > Dmer(ζL0). Indeed,
upon meromorphic continuation, each of the meromophic functions involved in the
above scaling argument can be interpreted as the meromorphic continuation of the
corresponding zeta functions. This completes the proof of part (b) of Theorem 3.3.3.

Note that the special case when L0 = {1} and hence ζL0 = 1, also yields part (a)
of Theorem 3.3.3. In particular, Equation (3.3.10) holds for all s ∈ C and Equation
(3.3.9) holds since |L |1 = ζL (1), where L := L (r1, . . . ,rJ).

The next theorem gives a general construction of complex dimensions of higher
order generated by means of extended self-similar strings.

Theorem 3.3.6. Let L := L0 ⊗L (r1, . . . ,rJ) be an extended self-similar fractal
string in R generated by a bounded fractal string L0 and the set of scaling ratios
{r1,r2, . . . ,rJ} with 0 < r j < 1, such that ∑J

j=1 r j < 1. Furthermore, assume that
ζL0 is meromorphic on C and that there are no zero-pole cancellations in (3.3.13).
Let D be the set of complex solutions of the Moran equation ∑J

j=1 rs
j = 1 and let

m be an arbitrary positive integer. Then, one can explicitly construct an extended
self-similar fractal string L m which has exactly the same complex dimensions as
L but with the orders (i.e., the multiplicities) of the complex dimensions located in
D multiplied by m.
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Moreover, if we let D+ :=D∩{Res > 0}, then one can explicitly construct an
extended self-similar fractal string L ∞ such that all of its complex dimensions con-
tained in D+ are of infinite order; that is, they are essential singularities of its
geometric zeta function ζL ∞

. In particular, we have that Dmer(ζL ∞
) = D(ζL ∞

).

Proof. Let L0 be the generator and let {r1,r2, . . . ,rJ} with 0 < r j < 1 be the associ-
ated scaling ratios. Furthermore, we define L := L0 ⊗L (r1, . . . ,rJ) as in part (b)
of Theorem 3.3.3, and we now let this be our new generator; that is, we define a new
extended self-similar fractal string L 2 := L ⊗L (r1, . . . ,rJ) as the disjoint union
of scaled copies of L by scaling factors built by all possible words of multiples of
the ratios r j. This construction implies that

L 2 = L �
J⊔

j=1

r jL 2 (3.3.24)

and, similarly as before, by the scaling property of the geometric zeta function (see
Remark 3.3.5 above) and, in light of part (b) of Theorem 3.3.3, we then have

ζL 2
(s) =

ζL (s)

1−∑J
j=1 rs

j

=
ζL0(s)(

1−∑J
j=1 rs

j

)2 . (3.3.25)

As is apparent in Equation (3.3.25), the fractal string L 2 has exactly the same com-
plex dimensions as L , except for the fact that the orders of the ones contained in D

are multiplied by 2.
We can next proceed inductively by using L 2 as our new base fractal string and,

for each n ∈ N, we thus obtain a fractal string L n such that

ζL n
(s) =

ζL0(s)(
1−∑J

j=1 rs
j

)n ; (3.3.26)

L n has exactly the same complex dimensions as L , except for the fact that the ones
contained in D have their orders multiplied by n.

In order to generate essential singularities, we take a disjoint union of the fractal
strings L n scaled by (n!)−1. More specifically, we define L ∞ as

L ∞ :=
∞⊔

n=1

(n!)−1L n. (3.3.27)

The construction of L ∞ (see Definition 4.5.7 and Lemma 4.5.10 in Subsection 4.5.2
below) and the scaling property of the geometric zeta function (see Remark 3.3.5)
then imply that

ζL ∞
(s) = ζL0(s)

∞

∑
n=1

1

(n!)s
(
1−∑J

j=1 rs
j

)n . (3.3.28)
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By the Weierstrass M-test, the above sum defines a holomorphic function on {Res>
0} \D+ and D+ is the set of essential singularities of the function defined by this
sum. ��
Example 3.3.7. (The n-th order Cantor string). In this example we introduce the no-
tion of an n-th order Cantor string, where n ∈N is arbitrary. Namely, in the notation
of Theorem 3.3.6 define L1 to be the Cantor string of total length 1 (see Example
2.3.31). Furthermore, define now the 2nd order Cantor string as the extended self-
similar string L2 := L = L1 ⊗L (3−1,3−1). By using Theorem 3.3.6 and since
ζL1 is given by Equation (2.3.53), one now concludes that

ζL2(s) =
ζL1(s)

1−2 ·3−s =
3s

(3s −2)2 , (3.3.29)

that is, ζL2 is meromorphic on all of C. Moreover,

P(ζL2) = log3 2+
2π

log3
iZ (3.3.30)

and all of the above (principal) complex dimensions are of second order.
To define the n-th order Cantor string for n ≥ 2, we proceed inductively by defin-

ing Ln := Ln−1 ⊗L (3−1,3−1). The associated geometric zeta function is then
given by

ζLn(s) =
3s(n−1)

(3s −2)n , (3.3.31)

is meromorphic on all of C and the set of its poles coincides with (3.3.30) but all of
them are of n-th order.

Finally, we define L∞, the Cantor string of infinite order, as the union of the
resulting fractal strings (viewed as multisets; that is, taking the multiplicities into
account):

L∞ :=
∞⊔

n=1

(n!)−1Ln. (3.3.32)

Its geometric zeta function is then given by

ζL∞(s) =
∞

∑
n=1

3s(n−1)

(n!)s(3s −2)n , (3.3.33)

and, by the Weierstrass M-test, is holomorphic on the open set

{Res > 0}\ (log3 2+
2π

log3
iZ).

The line {Res = 0} is a (meromorphic) partial natural boundary for ζL∞ (in the
sense of part (i) of Definition 1.3.8 of Subsection 1.3.2, and strengthened as in Re-
mark 1.3.9) and the set log3 2+ 2π

log3 iZ consists of essential singularities of ζL∞ .
Anticipating on the future developments to be discussed in Chapter 4, we point out
that the fractal string L∞ is strongly hyperfractal, in the sense of part (ii) of Defini-
tion 4.6.23 of Subsection 4.6.3.
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We note that this example will be revisited in Example 4.2.10 of Subsection 4.2.2
below in the more general context of relative fractal drums.

Remark 3.3.8. Taking any bounded fractal string L0 in R as a base fractal string, we
can spray it using two (or more) sets of scaling ratios {r1, . . . ,rJ} and {ρ1, . . . ,ρK}
in (0,1). More specifically, we first generate L as the extended fractal string ob-
tained in Definition 3.3.1. Next, taking L as a new base fractal string, we define the
corresponding extended fractal string L2 by using {ρ1, . . . ,ρK} as the set of scaling
ratios. Then, having used twice part (b) of Theorem 3.3.13, we conclude that the
geometric zeta function of L2 is given by

ζL2(s) =
ζL0(s)(

1−∑J
j=1 rs

j

)
·
(

1−∑K
j=1ρs

j

) . (3.3.34)

Finally, if ζL0 can be meromorphically extended to a window W such that it has no
common zeros in W with the functions 1−∑J

j=1 rs
j and 1−∑K

j=1ρs
j , then (taking

into account the multiplicities), we have

P(L2,W ) =
{

s ∈W :
J

∑
j=1

rs
j = 1

}
∪
{

s ∈W :
K

∑
j=1
ρs

j = 1
}

∪P(L0,W ).

(3.3.35)

In closing, we mention that the results of this section can be generalized from the
case of bounded fractal strings to that of ‘relative fractal drums’, which also include
bounded fractal subsets of Euclidean spaces as a special case, as well as bounded
fractal strings; see Subsection 4.2.2 of Chapter 4 below.

3.4 Weighted Zeta Functions

The notion of weighted distance zeta function, associated with a fractal A, is an
inevitable consequence of the definition of the usual distance zeta function ζA.
Namely, upon repeated differentiation of ζA, the logarithmic weights emerge im-
mediately. This section can be considered as providing a natural path towards an
even more general situation, in which we may consider a fractal A jointly with a
Borel measure μ defined on a fixed δ -neighborhood of A, for some (small) δ > 0.
This yields the notion of a distance zeta function with measure:

ζA(s,μ) =
∫

Aδ
d(x,A)sdμ(x), (3.4.1)

for all s ∈ C with Res sufficiently large.
All of the fractal zeta functions appearing in this section (i.e., Section 3.4) belong

to this class.
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3.4.1 Definition and Properties of Weighted Zeta Functions

We can also consider the weighted distance zeta functionζA( · ,w) of a bounded set
A in R

N , associated with a given complex-valued weight function w defined on Aδ ,
for a fixed δ > 0:

ζA(s,w) :=
∫

Aδ
w(x)d(x,A)s−Ndx, (3.4.2)

for all s ∈ C with Res sufficiently large.
Here, we shall need the notion of a limit L∞-space, or the space of (at most)

weakly singular functions, defined as the intersection of Lp-spaces (with respect to
the Lebesgue measure on R

N) of complex-valued functions, for 1 < p < ∞,

L∞)(Aδ ) =
⋂

1<p<∞
Lp(Aδ ). (3.4.3)

Example 3.4.1. Note that since Aδ is bounded, then L∞(Aδ )⊂ L∞)(Aδ ), and the in-
clusion is strict. Indeed, the function f (x) = logd(x,A) is in the space L∞)(Aδ ) for
any positive δ , provided dimBA < N; see [Žu1, proof of Theorem 1(d)]. It suffices
to fix p > 1 and to note that | logd(x,A)|p ≤ Cd(x,A)−γ for all x ∈ Aδ \A, where
C is a positive constant. Taking 0 < γ < N −dimBA, we deduce that f ∈ Lp(Aδ ) in
light of Lemma 2.1.3.

Naturally, the standard distance zeta function ζA = ζA,Aδ , introduced in Defini-
tion 2.1.1 (see Equation (2.1.1)), corresponds to the case when the weight function
is constant: w ≡ 1.

Proposition 3.4.2. LetΩ be an open set in R
N. Then, the following properties hold:

(a) The vector space L∞)(Ω) is an algebra of functions with respect to pointwise
multiplication.

(b) Assume, in addition, that Ω is bounded. If f ∈ Lp(Ω) and g ∈ L∞)(Ω), then

f g ∈ Lp)(Ω) :=
⋂

1<q<p

Lq(Ω). (3.4.4)

In particular, the product of Lp) and L∞)-functions is an Lp)-function.

Proof. (a) If we take f ,g ∈ L∞)(Ω) and a fixed p > 1, then we have f g ∈
Lp(Ω) since for any r > 1, we have by Hölder’s inequality, ‖| f g|p‖L1 ≤
‖| f |p‖Lr‖|g|p‖Lr′ = (‖ f‖Lpr‖g‖Lpr′ )

p (here, r′ := r/(r − 1) is the conjugate ex-
ponent of r); that is,

‖ f g‖Lp ≤ ‖ f‖Lpr‖g‖Lpr′ < ∞, (3.4.5)

and therefore f g ∈ L∞)(Aδ ).
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(b) Let q ∈ (1, p) be fixed. Much as in (a), we have ‖ f g‖Lq ≤ ‖ f‖Lqr‖g‖Lqr′

< ∞, since f ∈ Lp(Ω) and Lp(Ω) ⊂ Lqr(Ω) (due to the boundedness of Ω ) for
r > 1 sufficiently close to 1, or more precisely, for qr < p. To prove the second part
of (b), let f ∈ Lp)(Ω). Then f ∈ Lq(Ω) for any q∈ (1, p), and by the first part of (b),
we have that f g ∈ Lq)(Ω). Hence, f g ∈ ∩1<q<pLq)(Ω) = Lp)(Ω). ��

Remark 3.4.3. We point out that the notion of limit Lp-space (denoted here by
Lp)(Ω), see case (b) of Proposition 3.4.2 above) is close to the already existing

notion of grand Lp-space, which we denote by Lp)
ϕ (Ω). The latter notion has been

introduced in 1992 by T. Iwaniec and C. Sbordone in [IwSb], and the corresponding

space Lp)
ϕ (Ω) is defined as the set of measurable functions f :Ω → C satisfying

sup
q∈(1,p)

ϕ(q)
(∫

Ω
|ϕ(x)|q dx

)1/q

< ∞, (3.4.6)

where ϕ(q) :=
( p−q
|Ω |N

)1/q
. The grand Lp-space is always contained in the limit Lp-

space. More precisely, for any given bounded Lebesgue measurable subset Ω such
that |Ω |N > 0 and for each p ∈ (1,+∞), we have that

Lp(Ω)⊂ Lp)
ϕ (Ω)⊂ Lp)(Ω) :=

⋂
1<q<p

Lq(Ω). (3.4.7)

Also, we caution the reader that the grand Lebesgue space Lp)
ϕ (Ω) is often denoted

by Lp)(Ω) in the literature.

The following result extends Theorem 2.1.11 to weighted distance zeta functions
of fractal sets. It shows, in particular, that the derivative of a weighted distance zeta
function of A is again a weighted distance zeta function of A but, of course, for a
different weight function.

Theorem 3.4.4. Let A be a bounded set in R
N, δ > 0, and assume that 1 < p < ∞.

Then:

(a) If w ∈ Lp(Aδ ), then the weighted distance zeta function ζA(s,w) of A (see
(3.4.2)) is holomorphic in the open half-plane

Res >
1
p′

dimBA+
N
p
, (3.4.8)

where p′ := p/(p− 1) is the conjugate exponent of p, defined by 1/p+ 1/p′ = 1.
Furthermore, in that same half-plane, we have

ζ ′A(s,w) =
∫

Aδ
w(x)d(x,A)s−N logd(x,A)dx; (3.4.9)
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that is, the derivative of the weighted distance zeta function is again a weighted
distance zeta function:

ζ ′A(s,w) = ζA(s,w1),

where w1(x) := w(x) logd(x,A) ∈ Lp)(Aδ ). Moreover, if w ∈ L∞)(Aδ ), then w1 ∈
L∞)(Aδ ).

(b) Assume, as in part (a), that w ∈ Lp(Aδ ). If dimB A =: D exists and M D
∗ (A)>

0, then the lower bound on the right-hand side of (3.4.8) is optimal for the collection
of all weight functions w ∈ Lp(Aδ ).

(c) If w ∈ L∞)(Aδ ), then ζA(s,w) is holomorphic in the half-plane Res > dimBA.
If, in addition, dimB A =: D exists and M D

∗ (A)> 0, then the lower bound for dimBA
on the right hand side of (3.4.8) is optimal for the collection of all weight functions
w ∈ L∞)(Aδ ).

Proof. (a) Let s ∈ C with real part satisfying the inequality (3.4.8). Repeating the
proof of Theorem 2.1.1 in this more general situation, we obtain the following ana-
log of (2.1.21):

|R(h)| ≤C|h|
∫

Aδ
|w(x)|d(x,A)Res−N−2εdx. (3.4.10)

By using Hölder’s inequality, we deduce that

|R(h)| ≤C|h|‖w‖Lp‖g‖Lp′ , (3.4.11)

where g(x) := d(x,A)Res−N−2ε . Letting γ := 2ε +N −Res, with ε > 0 sufficiently
small, and by using Lemma 2.1.3, we see that g ∈ Lp′(Aδ ) provided p′γ < N −
dimBA. This inequality follows from (3.4.8) (which is assumed here) provided ε
is small enough. This shows that ζA( · ,w) is holomorphic in the open half-plane
defined by (3.4.8), and that ζ ′A( · ,w) exists and is given by (3.4.9) in that same half-
plane. (See the corresponding part of Theorem 2.1.11; see also Theorem 2.1.45,
in the statement of which the weight function w can be can be absorbed into the
measure: dμ(t) = w(t)dt, in the notation of that theorem.) The Lp) and L∞) claims
(more precisely, the fact that for q = p,∞, with 1 < p < ∞, w1(x) = w(x) logd(x,A)
belongs to Lq)(Aδ ) if w(x) does) follow from Proposition 3.4.2.

(b) If dimB A = N, then the right-hand side of (3.4.8) is equal to N, and the
optimality of the bound follows from Theorem 2.1.11(c), as we now explain. Here,
we assume that w∈ Lp(Aδ ) with 1< p<∞. If A is such that dimBA<N, let us define
w by w(x) = d(x,A)−γ for some γ satisfying 0 < γ < 1

p (N − dimBA). Therefore,
w ∈ Lp(Aδ ); see Lemma 2.1.3. We have

ζA(s,w) =
∫

Aδ
d(x,A)−γ+s−Ndx = ζA(s− γ); (3.4.12)
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so that, by Theorem 2.1.11, the function ζA(s,w) is holomorphic for Re(s− γ) >
dimBA, that is, for Res> γ+dimBA. We have γ+dimBA< 1

p′ dimBA+ N
p =: r. Using

Theorem 2.1.11(c), we see that ζA(s,w) → +∞ as R � s → γ +D from the right.
Since γ+D can be made arbitrarily close to r for γ sufficiently close to 1

p (N −D),
we deduce that the estimate (3.4.8) cannot be improved.

(c) If w ∈ L∞)(Aδ ), then the weighted zeta function ζA(s,w) is holomorphic in
the union of the half-planes defined by (3.4.8), corresponding to all p > 1; note
that the right-hand side of (3.4.8) is decreasing as p grows and so the half-planes
are increasing. The claim now follows from (3.4.8) by letting p → +∞, since then
p′ → 1. ��

Note that the number r defined by the right-hand side of (3.4.8) is a convex com-
bination of dimBA and N, and therefore, r ∈ [dimBA,N]. Furthermore, if p → +∞,
then r → dimBA, while if p→ 1, then r →N. It is also worth noticing that the deriva-
tive of the standard distance zeta function of A defined by (2.1.1) in Theorem 2.1.11
is equal to the weighted zeta function of A with weight w(x) = logd(x,A), see
(2.1.13):

ζ ′A(s) = ζA(s,w). (3.4.13)

Remark 3.4.5. Motivated by the notion of generalized fractal string discussed in
[Lap-vFr3, Chapter 4] (and introduced in [Lap-vFr1]), one can generalize the
weighted zeta functions (3.4.2) to distance zeta functions associated with positive
or complex Borel measures μ on R

N (or more generally, on Aδ , for some small
positive δ ):

ζA(s,μ) =
∫

Aδ
d(x,A)s−Ndμ(x), (3.4.14)

for all s ∈ C with Res large enough.
If μ is such that |dμ(x)| ≤ |w(x)|dx, with w as in Theorem 3.4.4, then the coun-

terpart of (3.4.9) in Theorem 3.4.4 reads as follows (see Theorem 2.1.45):

ζ ′A(s,μ) =
∫

Aδ
d(x,A)s−N logd(x,A)dμ(x),

for all s ∈ C such that Res > dimBA.

Remark 3.4.6. The singular dimension of L∞)(Ω) is equal to 0, while its upper sin-
gular dimension is equal to N (see [Žu1, Theorem 1(d)]):

s-dimL∞)(Ω) = 0, s-dimL∞)(Ω) = N. (3.4.15)

The singular dimension (respectively, the essential singular dimension) of a vector
space X (or just a set) of measurable complex-valued functions f :Ω →C is defined
by

s-dimX = sup{dimH(Sing f ) : f ∈ X},
s-dimX = sup{dimH(e-Sing f ) : f ∈ X}.
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Here, dimH E denotes the Hausdorff dimension of E ⊆R
N , Sing f is the singular set

of f consisting of all a∈Ω for which there exists γ > 0 such that | f (x)| ≥C|x−a|−γ
Lebesgue a.e. in a neighborhood of a, while e-Sing f is the extended singular set of
f defined by

e-Sing f =
{

a ∈Ω : limsup
r→0+

1
rN

∫
Br(a)

| f (x)|dx =+∞
}
.

The extended singular set of f contains, for example, all points a∈Ω of logarithmic
and iterated logarithmic growth of f . For any f ∈ L∞)(Ω), we have Sing f = /0, while
e-Sing f may be nontrivial; see Example 3.4.1. A detailed analysis of pointwise
regularity and local oscillations of functions can be found in the memoir [JaffMey]
by Jaffard and Meyer.

The space L∞)(Ω) appears naturally in the theory of Sobolev spaces, that is cen-
tral to the study of partial differential equations. If Ω is a bounded open set in R

N

and kp = N, where k is a positive integer and 1 ≤ p < ∞, then by the Sobolev em-
bedding theorem (see, e.g., [Bre]),

W k,p(Ω)⊂ L∞)(Ω).

If Ω is not necessarily bounded, then under the same conditions on k, p and N, we
have a more general result:

W k,p(Ω)⊂ L[p,∞)(Ω) :=
⋂

p≤q<∞
Lq(Ω).

3.4.2 Harmonic Functions Generated by Fractal Sets

Let A be a bounded subset of RN . Writing s = ξ +ηi ∈ C, where ξ ,η ∈ R, and
separating the real and imaginary parts u and v of the distance zeta function ζA(s) =
u(ξ ,η)+ v(ξ ,η)i defined by (2.1.1), we obtain the following functions, defined by
means of singular integrals (see also Proposition 2.1.22) for ξ = Res sufficiently
large,

u(ξ ,η) =
∫

Aδ \A
d(x,A)ξ−N cos(η logd(x,A))dx,

v(ξ ,η) =
∫

Aδ \A
d(x,A)ξ−N sin(η logd(x,A))dx.

(3.4.16)

Note that in the integrands, the singularities appear on the set A both in the function
x �→ d(x,A)ξ−N , provided ξ <N, and in the function x �→ logd(x,A). The oscillatory
nature of the corresponding chirp-like function (0,δ ) � t �→ tξ−N cos(η log t) has
been discussed in Subsection 2.1.7.
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Since ζA is holomorphic for Res > dimBA, we can immediately deduce the fol-
lowing consequence, in which we obtain a new class of harmonic functions gen-
erated by fractal sets in R

N . It is noteworthy that the natural common domain of
definition of these harmonic functions depends on the upper box dimension of A.

Corollary 3.4.7. Let A be a bounded set in R
N, and δ be a fixed positive number.

Define G = (dimBA,+∞)×R⊂ R
2. Then the functions u and v defined by (3.4.16)

are of class C∞ and harmonic on G, that is, Δu = 0 and Δv = 0 on G. Furthermore,
if D = dimB A exists and M D

∗ (A)> 0, then u(ξ ,0)→+∞ as ξ → D+, with ξ real.

More general harmonic functions than those obtained in Corollary 3.4.7 can be
easily generated by using distance zeta functions with weights, or even measures;
see Theorem 3.4.4 and Remark 3.4.5.

Example 3.4.8. Extremely complicated harmonic functions are those generated by
the boundary A of the Mandelbrot set; see (3.4.16). Thanks to Shishikura’s well-
known theorem [Shi], we have that dimB A = dimH A = 2, where dimH A denotes
the Hausdorff dimension of A;12 so that the associated distance zeta function ζA(s)
is holomorphic for Res > 2, H (ζA) = {Res > 2} and D(ζA) = 2. We do not know
if M 2

∗ (A)> 0; if this is true, then it follows from Corollary 3.4.7 that ζA(s)→+∞
as R � s → 2+.

In closing this example, we note that the question of whether or not ζA or ζ̃A

(the distance or the tube zeta function of the Mandelbrot set, respectively) admits
the critical line {Res = 2} as a (meromorphic) partial natural boundary, or even as a
(meromorphic) natural boundary (in the sense of Definition 1.3.8 and possibly when
ζA and ζ̃A are defined via an appropriate gauge function, see footnote 12 on page
222), will be addressed in Problem 6.2.21 of Subsection 6.2.2.

3.5 Zeta Functions of Fractal Nests

In this section, we provide several examples of fractal sets illustrating the use of zeta
functions for the computation of their box dimensions. Note that the sets appearing
in Example 3.5.1 below are not the boundary of any fractal spray; see [LapPo3],
[Lap-vFr3, Section 1.4] for the definition of fractal sprays. In short, a fractal spray
(as introduced in [LapPo3]) is a disjoint union of countably many scaled copies of
a single bounded and open subset of RN (called the ‘basic shape’ in [Lap-vFr3] or
the ‘generator’ of the spray in [LapPe2–3, LapPeWi1–2]). The scaling is done via a

12 However, it does not seem to be known whether A is either Hausdorff or Minkowski nonde-
generate, and in case it is degenerate, what is a corresponding gauge function h with respect to
which it is h-Minkowski (or h-Hausdorff) nondegenerate. See Definition 6.1.4 and the discussion
following it.
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fractal string L = (� j) j≥1, as in Example 3.5.1. As a variant, one can also allow (as
in [LapPe2–3, LapPeWi1–2]) finitely many generators for the fractal spray. At first
glance, the notion of a fractal nest may seem to be close to that of a fractal spray,
but it is in fact essentially different; see Remark 3.5.2 following Example 3.5.1.

Example 3.5.1. (Fractal nests of concentric circles and spheres). Let L = (� j) j≥1

be a bounded fractal string, i.e., a nonincreasing sequence of positive numbers tend-
ing to 0, such that ∑ j≥1 � j < ∞. Let A = AL = {ak : k ∈ N} be the corresponding
bounded subset of R, defined by ak := ∑ j≥k � j for each k ≥ 1. Clearly, A ⊂ [0,a1].

We stress that whereas up to this point in this monograph, A = AL was viewed
as a subset of the real line R, we will view A in this example as being embedded in
a higher-dimensional Euclidean space; namely, we will consider it as a subset of R2

(in parts (a) and (b)) and as a subset of RN (in parts (c) and (d)), where N ≥ 2 is
arbitrary.

(a) We view A as a subset of the x1-axis in R
2. Let A1 be a planar set obtained

by rotation of A around the origin, that is, as the union of the sequence of con-
centric circles of radii ak; see Figure 3.2. By a method similar to the one used in
Example 2.1.58, we obtain that A1 has the following zeta function:

ζA1(s) =
2πδ s

s
+

2πa1δ s−1

s−1
+

22−sπ
s−1

∞

∑
k=1

�s−1
k (ak +ak+1), (3.5.1)

where we assume that δ ≥ l1/2. This assumption is inessential due to Proposi-
tion 2.1.76. The first two terms on the right-hand side of (3.5.1) correspond to the
annulus a1 < r < a1 +δ in R

2, and they are also inessential since it is clear that the
box dimension of A is at least 1. Since ak+1 = ak − lk, we deduce from (3.5.1) that

f (s) :=
∞

∑
k=1

�s−1
k (ak +ak+1) =

∞

∑
k=1

�s−1
k (2ak − �k) = ζ1(s)+ζ2(s) (3.5.2)

where ζ1(s) := 2∑∞k=1 �
s−1
k ak and ζ2(s) :=−∑∞k=1 �

s
k. Assuming that D(ζ1)>D(ζ2),

from Lemma 2.3.5 we conclude that f (s) ∼ ζ1(s). Therefore, in light of Lemma
2.1.81, we have

dimBA1 = max{1,D(ζ1)}. (3.5.3)

Moreover, this value is equal to dimPC A1.
Note that if D( f ) = 1, then ζA(s)∼ 1

s−1 + f (s) and if D( f )< 1, then ζA(s)∼ 1
s−1 ;

see Equation (3.5.1).

(b) As a special case of (a), let us consider a standard example of a fractal string,
namely, the α-string, where ak = k−α for each k ≥ 1, and α > 0. (See [Lap1, Ex-
ample 5.1] and [Lap-vFr3, Subsection 6.5.1]. Recall, however, that A = {ak : k ≥ 1}
is now viewed as a subset of R2.) Let us check the condition D(ζ1)> D(ζ2) in this
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Fig. 3.2 The fractal nest of center type in the plane R2 generated by the fractal string L = (� j) j≥1.
Note that for every k ≥ 1 we have �k = ak − ak+1, where ak := ∑ j≥k � j . Furthermore, we have
AL := {ak : k ≥ 1}. Compare with Figure 2.7.

situation. Since the case when α ≥ 1 is easy to deal with,13 we only consider the
case when α ∈ (0,1).

It is easy to see that D(ζ1) = 2/(1+α) > 1. Indeed, assuming that s ∈ R, and
since by the Lagrange mean value theorem, �k = k−α−(k+1)−α  k−α−1 as k →∞,
we conclude that

ζ1(s) = 2
∞

∑
k=1

�s−1
k ak 

∞

∑
k=1

k−(α+1)(s−1)−α =
∞

∑
k=1

k−((α+1)s−1).

(The notation  is explained in Subsection 1.3.3, on page 41.) The last Dirichlet
series converges if and only if (α + 1)s − 1 > 1. Hence, D(ζ1) > 2/(1 +α). In
particular, D(ζ1)> 1 since α ∈ (0,1).

Similarly, we have D(ζ2) = 1/(1+α) since for any s ∈ R,

−ζ2(s) =
∞

∑
k=1

�s
k 

∞

∑
k=1

k−(α+1)s,

and the last Dirichlet series converges if and only if (α+1)s > 1. Since D(ζ1)> 1,
we deduce from (3.5.1) that

ζA1(s)∼ ζ1(s)+ζ2(s).

13 For α > 1, the set A1 is rectifiable (in other words, the sum of circumferences of all circles
contained in A1 is finite). We note that in the case when α = 1 we have dimB A1 = 1, but the set
is Minkowski degenerate. More precisely, its 1-dimensional Minkowski content exists and is equal
to +∞. However, it can be shown that h(t) = log(1/t), for 0 < t < 1, is the corresponding gauge
function of A1, in the sense of Definition 6.1.4.
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Furthermore, since D(ζ1)> D(ζ2), Lemma 2.3.5 implies that

ζ1(s)+ζ2(s)∼ ζ1(s).

Therefore, ζA1(s) ∼ ζ1(s), and by using Theorem 2.1.11, we obtain that for any
α ∈ (0,1),

dimB A1 =
2

1+α
. (3.5.4)

We can summarize the above discussion by stating that for any α > 0,

dimB A1 = max

{
1,

2
1+α

}
. (3.5.5)

This result was obtained earlier in [ŽuŽup1, Remarks 2 and 8], where it was also
noted that the set A1 is Minkowski measurable if and only if α 
= 1. For α ∈ (0,1)
the Minkowski content of A1 can be explicitly computed directly by analyzing the
function δ �→ |(A1)δ | and is given by

M D(A1) = π(2/α)2α/(1+α) 1+α
1−α , (3.5.6)

where D := 2/(1+α), while for α > 1 we have that D = 1 and the corresponding
value of M 1(A1) is finite and equal to the length of the curve. (Compare with
[Lap1, Example 5.1 and Appendix C] and [Lap-vFr3, Subsections 6.5.1 and 8.1.2];
note also that M 1(A1) = ∞ for α = 1.) Furthermore, the value in (3.5.5) is equal
to dimPC A1. Finally, as a consequence of Equation (2.2.4) from Theorem 2.2.3
and Equation (3.5.6), still assuming that α < 1, we deduce that the residue of the
distance zeta function of A1 computed at s = D is given by

res(ζA1 ,d) = (2−D)M D(A1) = π(2/α)2α/(1+α) 2α
1−α . (3.5.7)

See also Example 5.5.16 where the results of Chapter 5 were used to obtain the value
(3.5.6) of the Minkowski content of A1 directly from its distance zeta function. More
generally, the results of Chapter 5 give an asymptotic formula for the tube function
t �→ |(A1)t ∩B1(0)| as t → 0+ in terms of the complex dimensions of the set A1.

(c) Next, we view the set A = {ak}k≥1 from (a), generated by a fractal string
L = (� j) j≥1, as a subset of RN placed on the x1-axis, where N ≥ 2. Let AN−1 be
the subset of RN defined as the union of the concentric (N−1)-dimensional spheres
of radii ak and with common center at the origin. It is well known that the (N −1)-
dimensional Hausdorff measure of the unit sphere of RN is equal to NωN , where
ωN is the N-dimensional Lebesgue measure of the unit ball in R

N (with explicit
values recalled on page 40 in Section 1.3). Passing to spherical coordinates (and
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by dropping the part depending on δ , corresponding to the shell a1 < r < a1 + δ ,
because it is inessential), we deduce that

ζAN−1(s)∼ NωN

∫ a1

0
d(r,A)s−Nrn−1dr = NωN

∞

∑
k=1

Jk, (3.5.8)

where

Jk =
∫ ak

ak+1

∣∣∣∣r− ak +ak+1

2

∣∣∣∣
s−N

rN−1dr

= 2
∫ lk/2

0
ρs−N [(ρ+ak+1)

N−1 +(ak −ρ)N−1]dρ . (3.5.9)

It is clear that only the constant terms in square brackets yield (under suitable re-
strictions, see below) the largest real pole, namely, the box dimension, because the
other terms yield the singularities s = 0,1, . . . ,N − 1 after integration. Therefore,
dimBAN−1 ≥ N −1, that is, D(ζAN−1)≥ N −1, which is intuitively clear since AN−1

consists of (N − 1)-dimensional spheres. Let us therefore assume that D(ζAN−1) >
N−1. Dropping all the unnecessary terms from (3.5.9) except for the one involving

aN−1
k , we obtain that Jk ∼ aN−1

k

∫ �k/2
0 ρs−Ndρ ∼ �s−N+1

k aN−1
k , and therefore

ζAN−1(s)∼
∞

∑
k=1

�s−N+1
k aN−1

k =: f (s). (3.5.10)

We thus deduce from Corollary 2.1.63 that

dimBAN−1 = max{N −1,D( f )}. (3.5.11)

If we consider the special case of the α-string and of the associated fractal set
AN−1 in R

N , where ak = k−α and lk = ak −ak+1, then using (3.5.10) we obtain the
following result generalizing the one obtained in case (a) above:

ζAN−1(s)∼
∞

∑
k=1

1

k(α+1)(s−N+1)+α(N−1)
=

∞

∑
k=1

1

k(α+1)s−N+1
(3.5.12)

and hence,

dimBAN−1 =
N
α+1

, (3.5.13)

provided 0 < α < 1/(N −1). Indeed, for α > 1/(N −1) we have N
α+1 < N −1, so

that the half-plane {Res > N
α+1} contains the singularity s = N −1, which we have

dropped (since in this case, ζAN−1(s) ∼ 1/(N − 1)). Therefore, if α is any positive
number, we have

dimBAN−1 = max

{
N −1,

N
α+1

}
. (3.5.14)
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Fig. 3.3 The fractal nest B1 of outer type in the plane R
2 generated by the fractal string L =

(� j) j≥1. Note that � j = a j −a j+1 for all j ≥ 1.

It can be shown that dimB AN−1 exists in this case. Formula (3.5.14) can be viewed
as a generalization to the N-dimensional case of Tricot’s formula (3.5.5) (see [Tri3,
p. 121] or [DupMenTri]).

(d) Let us now define the subset BN−1 of R
N exactly in the same manner as

the set AN−1 ⊆ R in (c), but with center at a1 (instead of at the origin). In other
words, BN−1 ⊆ R

N is the union of the concentric (N − 1)-dimensional spheres of
radii bk = ∑ j≤k �k and with center at the point a1 on the x1-axis; see Figure 3.3 for
N = 2. Then, using much the same methods as in (c), we obtain that

ζBN−1(s)∼
1

s−N +1

∞

∑
k=1

�s−N+1
k . (3.5.15)

Taking again ak = k−α with positive α , we have that

ζBN−1(s)∼
∞

∑
k=1

1

k(α+1)(s−N+1)
, (3.5.16)

which converges for Res > N − 1+(α + 1)−1. Therefore, using Corollary 2.1.63,
we deduce that

dimBBN−1 = N −1+
1

α+1
. (3.5.17)

This dimension result is intuitively clear since the set BN−1 looks locally like a
Cartesian product (0,1)N−1×{bk : k ≥ 1} (see [ŽuŽup1, Remark 6]) and dimB({bk :
k ≥ 1}) = 1/(α+1) (see [Lap1, Examples 5.1 and 5.1’]). For N = 2, we obtain that
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d := dimB B1 =
2+α
1+α

,

which is precisely the box dimension of the spiral r = 1− θ−α of the limit cycle
type, where θ > θ0 > 0; see [ŽuŽup1, Theorems 2 and 5, Remarks 2 and 8]. Of
course, the set B1 can also be described as the graph of a discrete spiral r = f (θ),
much as in part (c). It is Minkowski measurable for any α > 0 and the value of the
Minkowski content of B1 ⊂ R

2 can be computed directly by analyzing the function
δ �→ |(B1)δ | and is given by

M d(B1) = 2π(1+α)(2/α)α/(1+α). (3.5.18)

Hence, in view of Equation (2.2.4) from Theorem 2.2.3, we obtain the following
value of the residue of the distance zeta function ζB1 at s = d:

res(ζB1 ,d) = (2−d)M d(B1) = 2πα(2/α)α/(1+α). (3.5.19)

Remark 3.5.2. In Example 3.5.1 just above, it may seem at first glance that the frac-
tal nest is a ‘fractal spray’ generated by the unit circle as the ‘basic shape’ (note that
its interior is empty), using the sequence (a j) j≥1 as the corresponding fractal string.
This is not the case, however. Indeed, in the case of fractal sprays, only the ‘inner
geometry’ of scaled copies is important, whereas for fractal nests, their ‘outer ge-
ometry’ is also essential. More specifically, a fractal spray is any disjoint collection
of scaled copies of the basic shape; see for, example, Figure 4.5 illustrating the case
of the Sierpiński gasket. The corresponding inner box dimension of the boundary of
the union Ω of scaled copies (more precisely, dimB(∂Ω ,Ω); see Chapter 4 and, in
particular, Section 4.2.1) does not depend on the ‘arrangement’ of the scaled copies
in R

N . In contrast, in the case of fractal nests, the arrangement of the scaled copies
of the basic shape is essential.

It is convenient to introduce the notion of fractal nest, which generalizes the
construction of the fractal sets considered in Example 3.5.1. We use the notion of a
basic shape introduced in the context of fractal sprays in [Lap-vFr3, p. 28] (see also
[LapPo3]) for a set which generates the nest.14

Definition 3.5.3. Let Ω0 be a given basic shape in R
N , which we assume here to

be a bounded open subset of RN that is starshaped with respect to the origin. Recall
that Ω0 is said to be starshaped if for any x ∈ Ω , the open interval {tx : t ∈ (0,1)}
joining x and the origin is contained in Ω0. In particular, the origin belongs to Ω 0.
Note that for such a set Ω0, the condition a1 > a2 > 0 implies that a1Ω0 ⊇ a2Ω0.

14 Note that in [LapPo3, Lap-vFr3], the ‘basic shape’ (of a fractal spray) is allowed to be an arbi-
trary bounded open subset of RN . Recall that the ‘basic shape’ is also referred to as a ‘generator’
in [LapPe2–3, LapPeWi1–2, Pe, PeWi].
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(a) Let (ak)k≥1 be a nonincreasing sequence of positive real numbers, converging
to zero. Then define the open set Ω = a1Ω0 \

⋃∞
k=1 ∂ (akΩ0), viewed as a subset of

R
N . Its boundary

∂Ω = {0}∪
∞⋃

k=1

∂ (akΩ0). (3.5.20)

is called a fractal nest of center type. Note that if Ω0 is the unit ball, then the corre-
sponding fractal nest coincides with the set AN−1 in Example 3.5.1(c).

(b) Let (bk)k≥1 be a nondecreasing sequence of positive real numbers, converg-
ing to b0. Then define the open set Ω = b0Ω0 \

⋃∞
k=1 ∂ (bkΩ0), viewed as a subset

of RN . Its boundary

∂Ω =
∞⋃

k=0

∂ (bkΩ0) (3.5.21)

is called a fractal nest of outer type. Observe that if Ω0 is the unit ball, then the
corresponding fractal nest is congruent to the set BN−1 in Example 3.5.1(d).

If we take as a basic shape an open pyramid Ω0 in R
N with vertex at the ori-

gin, and let ak = k−α for each k ≥ 1 and some α > 0, then the corresponding set
∂Ω has box dimension equal to max{N −1,N/(α+1)}. This can be easily proved
using Example 3.5.1(c) and the property of finite stability of the upper box dimen-
sion (namely, for any finite family of bounded subsets C1, . . . ,Cn of RN , we have
dimB(

⋃n
k=1 Ck) = max{dimBCk : k = 1, . . . ,n}; see, e.g., Equation (6.1.8) in Subsec-

tion 6.1.2 of Chapter 6, [Fal1], [Mat] and [Tri3]).

3.6 Zeta Functions of Geometric Chirps and Multiple String
Chirps

In the present section, we introduce geometric chirps and study their fractal zeta
functions (modulo equivalence); see Section 3.6.1. We also investigate (still mod-
ulo equivalence) the fractal zeta functions of so-called string chirps and multiple
strings (in Section 3.6.2) as well as of the Cartesian products of fractal strings (in
Section 3.6.3).

3.6.1 Geometric Chirps

By a geometric (α,β )-chirp, defined by the positive parameters α and β , we mean
the planar set A defined by

A =
⋃
k≥1

Ak, Ak = {k−1/β}× (0,k−α/β ). (3.6.1)
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Here, Ak is the Cartesian product of the one-point set {k−1/β} and the open inter-
val (0,k−α/β ). The set A is a simplified geometric imitation of the standard chirp
defined as the graph of the function y = xα sinx−β for x ∈ (0,1]. See Figures 3.4
and 3.5. Note that the zero points xk of y(x) have the asymptotics xk  ak := k−1/β

as k → ∞, and that bk := y(ak)  k−α/β . Let �k := ak − ak+1  k−1−1/β as k → ∞.
Then

ζA(s) =
∞

∑
k=1

ζk(s)+R(s), (3.6.2)

where ζk(s) := ζAk,Ωk(s), and Ωk is the rectangle containing Ak defined by Ωk =

(ak − �k
2 ,ak +

�k−1
2 ) for each k ≥ 1, and R(s) is the remainder term equal to the zeta

function of A corresponding to Aδ \ (∪k≥1Ωk). The critical line of the function R(s)
is located to the left of the critical line corresponding to the sum ∑k≥1 Jk in (3.6.2),
since R(s) corresponds to the boundary of A (a discrete set); we omit the details. As
usual, we take δ large enough, so that Aδ contains ∪k≥1Ωk; see Proposition 2.1.76.
The corresponding zeta function of the ‘needle’ Ak with respect to Ωk is equivalent
to 1

s−1 bk�
s−1
k , uniformly with respect to k, since

ζAk,Ωk(s) =
∫ �k/2

0
xs−2dx

∫ bk

0
dy+

∫ �k−1/2

0
xs−2dx

∫ bk

0
dy

=
21−sbk

s−1
(�s−1

k + �s−1
k−1)∼

bk

s−1
�s−1

k .

Note that we placed the origin of the local coordinate system at (ak,0), oriented to
the left on the part of the rectangleΩk left of Ak, and to the right on the part ofΩk to
the right of Ak. Therefore, the zeta function of the geometric (α,β )-chirp satisfies

ζA(s) ∼
∞

∑
k=1

ζAk,Ωk(s)

∼ 1
s−1

∞

∑
k=1

bk�
s−1
k ∼ 1

s−1

∞

∑
k=1

k−
α
β −(1+ 1

β )(s−1)
.

The latter series converges if and only if αβ +(1+ 1
β )(Res− 1) > 1, and from this

we see that D(ζA) = 1+ β−α
1+β = 2− 1+α

1+β , provided D(ζA) > 1. Therefore, using
Corollary 2.1.63, we deduce that the upper box dimension of the geometric (α,β )-
chirp is given by

dimBA = max

{
1,2− 1+α

1+β

}
. (3.6.3)

Remark 3.6.1. This result can be used to prove Tricot’s formula for the box dimen-
sion of the graph of the chirp y = xα sinx−β near the origin (see [Tri3, p. 121]):

dimB Gr(y) = max

{
1,2− 1+α

1+β

}
. (3.6.4)
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Fig. 3.4 The bounded (1/2,1)-chirp defined by f (x) = x1/2 sin(πx−1), 0 < x < 1; its graph has
box-dimension equal to 5/4.

Fig. 3.5 The geometric (1/2,1)-chirp; its box-dimension is the same as the box-dimension of the
graph of the function in Figure 3.4, and hence is equal to 5/4.

Observe that the box dimension is nontrivial (i.e., larger than 1) if and only if α < β .
Furthermore, we note that in Section 3.6.2, the notion of a geometric chirp will be
generalized to 2-strings.

Let R3(A) be the subset of R3 obtained by rotating the geometric (α,β )-chirp A
with respect to the vertical axis. We have

R3(A) = {(x,z) ∈ R
2 ×R : (|x|,z) ∈ A},

where |x| denotes the Euclidean norm of x ∈ R
2. This set is a simplified geometric

imitation of the (α,β )-chirp wave in R
3 defined as the graph of the spherically

symmetric function z(r,θ) = rα sinr−1/β , where we have used polar coordinates
(r,θ) in the plane. Using a procedure similar to the above one, we obtain the value
of the box dimension of the geometric (α,β )-chirp-like surface in R

3:
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dimB R3(A) = max

{
2,3− 2+α

1+β

}
. (3.6.5)

This box dimension of the surface is nontrivial (i.e., larger than 2) if and only if
β −α > 1.

More generally, if we view R
N+1 as R

N ×R, let us define RN+1(A) as the N-
dimensional surface (where N is the topological dimension), obtained by rotating A
around the vertical axis:

RN+1(A) = {(x,z) ∈ R
N+1 : (|x|,z) ∈ A}, (3.6.6)

where |x| is the Euclidean norm of x ∈ R
N . Note that this surface has countably

many connected components. The following result extends Tricot’s formula (3.6.4)
to N-dimensional chirp-like spherically symmetric surfaces.

Proposition 3.6.2. The spherically symmetric geometric (α,β )-chirp surface in
R

N+1 defined by (3.6.6) and (3.6.1) has box dimension

dimBRN+1(A) = max

{
N,N +1− N +α

1+β

}
. (3.6.7)

Proof. Note that RN+1(A) = ∪k≥1RN+1(Ak). We introduce the spherical coordinate
system of RN , i.e., (r,θ1, . . . ,θN−1), with respect to the origin. Let

Ωk := RN+1

((
ak −

�k

2
,ak +

�k−1

2

)
× (0,bk)

)
.

Passing to the variable ρ = ak − r in the inner part of Ωk with respect to RN+1(Ak),
and to ρ = r− ak in the outer part, the zeta function of the surface RN+1(Ak) with
respect to Ωk satisfies

ζRN+1(Ak),Ωk
(s) ∼

∫ bk

0
dz

∫ �k/2

0
ρs−(N+1)NωN(ak −ρ)N−1dρ

+
∫ bk

0
dz

∫ �k−1/2

0
ρs−(N+1)NωN(ρ−ak)

N−1dρ (3.6.8)

∼ 1
s−N

aN−1
k bk�

s−N
k ,

where rN−1 = |ak −ρ |N−1 is the Jacobian, ωN is the N-dimensional Lebesgue mea-
sure of the unit ball in R

N , and so NωN is the (N −1)-dimensional Lebesgue mea-
sure of the unit sphere in R

N . In order to justify the last equivalence in (3.6.8), we
first note that aN−1

k corresponds to the obvious term in the Jacobian. Upon integra-

tion, every other term aN−1− j
k r j, for fixed j ≥ 1, generates the series

ζ j(s)∼
1

s−N + j

∞

∑
k=1

�s−N+ j
k aN−1

k bk ∼
1

s−N + j∑k
k−[ 1+β

β (s−N+ j)+ N−1
β + αβ ].
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We have D(ζ j) = max{N − j,N +1− j− N− j+α
1+β } < N, and this number is clearly

smaller than D(ζ0) = max{N,N + 1− N+α
1+β } ≥ N. We reason analogously for the

term in (3.6.8) containing �k−1 instead of �k. Therefore, the zeta function of the
whole surface satisfies

ζRN+1(A)(s)∼ ζ0(s)∼
1

s−N

∞

∑
k=1

aN−1
k bk�

s−N
k . (3.6.9)

Using the fact that

ζRN+1(A)(s)∼
1

s−N

∞

∑
k=1

k−
N−1+α+(1+β )(s−N)

β , (3.6.10)

we deduce that D(ζRN+1(A)) = max{N,N +1− N+α
1+β }. The claim now follows from

Corollary 2.1.63. ��

It can be shown that in Proposition 3.6.2, the box dimension dimB RN+1(A) exists.

Remark 3.6.3. Let the spherically symmetric function z : RN → R be defined by
z(x) = |x|α sin |x|−1/β , 0 < |x| ≤ 1. We expect that the box dimension of its graph in
R

N+1 is also given by the right-hand side of (3.6.7):

dimB Gr(z) = max
{

N,N +1− N +α
1+β

}
, (3.6.11)

which would extend Tricot’s formula (3.6.4). This will be the subject of a further
investigation. Note that the box dimension of the surface is nontrivial (i.e., larger
than N) if and only if β −α > N −1.

We can modify the set A in (3.6.1) as follows:

A =
⋃
k≥1

Ak, Ak = {1− k−1/β}× (0,k−α/β ). (3.6.12)

The box dimension of A is clearly the same as in (3.6.3) since the set A is obtained
by reflection of an (α,β )-chirp with respect to the vertical line x = 1/2. Let us
consider the corresponding set RN+1(A), defined by (3.6.6). Using the method of
zeta functions, as in the proof of Proposition 3.6.2, we obtain that

dimBRN+1(A) = max

{
N,N +1− 1+α

1+β

}
. (3.6.13)

It can be shown that the graph Gr(z) of the function

z(x) = (1−|x|)α sin(1−|x|)−1/β , x ∈ R
N , 0 < |x|< 1,
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has the same box dimension:

dimB Gr(z) = max

{
N,N +1− 1+α

1+β

}
. (3.6.14)

We note that this formula was also proved by Naito, Pašić, Tanaka and the third
author in [NaPaTaŽu, Proposition 1.1 and Example 1.1], by using different methods.

3.6.2 Multiple Strings and String Chirps

In the present section, we first show that the geometric chirp in the plane can be
generated by two (fractal) strings, that is, by a so-called 2-string. Assume that two
bounded fractal strings L = (� j) j≥1 and M = (m j) j≥1 are given; that is, L and
M are two nonincreasing sequences of positive numbers (� j) and (m j) with finite
sums. For each k ≥ 1, let ak := ∑ j≥k � j and bk := ∑ j≥k m j. Here, instead, it is more
natural to think of two monotone sequences of positive numbers (ak) and (bk) given
in advance, both converging to zero, so that the sequences �k = ak −ak+1 and mk =
bk −bk+1 are monotone.

(a) Given an arbitrary set L ⊂ R
N , we let ∂0L := ∂L ∩ IntL and call it the

inner boundary of L . We define a 2-string L2 = L2(L ,M ) as the union of the
interiors of the convex hulls of Ak ∪Ak+1, for all k ≥ 1:

L =
∞⋃

k=1

Int(conv(Ak ∪Ak+1)), (3.6.15)

where for each k ≥ 1, Ak is the vertical interval in R
2 defined by Ak = {ak}×(0,bk).

Each set Int(conv(Ak ∪Ak+1)) is a connected component of L , which we call the
k-th slice of L . It is clear that the set

A =
∞⋃

k=1

Ak (3.6.16)

is the inner boundary of the 2-string L2, which we can view as the geometric chirp
associated with the 2-string. We call it the 2-string chirp. Similarly as above, we can
show that its zeta function satisfies

ζA(s)∼
1

s−1

∞

∑
k=1

�s−1
k bk, (3.6.17)

and the corresponding upper box dimension is dimBA = max{1,D(ζA)}. Special
cases of this situation are the (α,β )-geometric chirps from the beginning of Sub-
section 3.6.1, where ak = k−1/β and bk = k−α/β .
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(b) Analogously, if we have three given strings L = (� j), M = (m j) and
N = (n j) which generate monotone sequences (ak)k, (bk)k and (ck)k converging
to zero as k → ∞, where �k = ak − ak+1, mk = bk − bk+1 and nk = ck − ck+1, then
we can define the sequence of rectangles Ak = {ak}× (0,bk)× (0,ck) in R

3, and the
corresponding 3-string (3.6.15), with the set A defined by (3.6.16). Then

ζA(s)∼
1

s−2

∞

∑
k=1

�s−2
k bkck. (3.6.18)

We can think of the 3-string L3 =L3(L ,M ,N ) as a loaf of bread cut into thinner
and thinner slices.

(c) Let N be any integer ≥ 2. Assume that N strings (�(1)j ) j, . . . , (�(1)j ) j are given.

They generate the sequences (a(1)k )k, . . . , (a(N)
k )k, where a(i)k :=∑ j≥k �

(i)
j for each k ≥

1. Then, we can define the sequence of (N−1)-dimensional slices as quadrilaterals:

Ak = {ak}× (0,a(2)k )×·· ·× (0,a(N)
k ),

contained in the hyperplane {ak}×R
N−1 of RN , and the corresponding N-string L

defined by (3.6.15). Then, for the associated N-string chirp A defined by (3.6.16),
we have:

ζA(s)∼
1

s−N +1

∞

∑
k=1

(�
(1)
k )s−N+1a(2)k . . .a(N)

k . (3.6.19)

In light of Corollary 2.1.63, the corresponding box dimension is given by

dimB A = max{N −1,D(ζA)}. (3.6.20)

Example 3.6.4. If we take αi-strings Li = (�
(i)
k ), with �

(i)
k = a(i)k − a(i)k+1 for each

k ≥ 1, generated by a(i)k = k−αi , i = 1, . . . ,N, where αi are positive numbers, then
for the associated N-string chirp defined by (3.6.16), we deduce from (3.6.19) that

ζA(s)∼
1

s−N +1

∞

∑
k=1

k−[(s−N+1)(α1+1)+α2+···+αN ].

The series converges for Res > D, where (D−N +1)(α1 +1)+α2 + · · ·+αN = 1.
Using (3.6.20), we obtain that

dimBA = max

{
N −1,N −1+

1−α2 −·· ·−αN

1+α1

}

= max

{
N −1,N − α1 +α2 + · · ·+αN

1+α1

}
. (3.6.21)

The value of the upper box dimension lies in the interval (N − 1,N) if and only if
α2 + · · ·+αN < 1. Note that it can be shown that the box dimension dimB A exists.
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3.6.3 Zeta Functions and Cartesian Products of Fractal Strings

Let L = (� j) j≥1 and M = (mk)k≥1 be two bounded fractal strings such that both
sequences are nonincreasing, � j > 0, mk > 0, and a1 = ∑∞j=1 � j < ∞ and b1 =

∑∞k=1 mk <∞. We identify the sequence L = (� j) j≥1 with the family L = (I j) j≥1 of
subsets of [0,a1] consisting of bounded open intervals I j of length � j, written in non-
increasing order starting from the right endpoint a1 and ending at the left endpoint 0
of the interval [0,a1]. We proceed analogously for M = (Jk)k≥1. Let a j := ∑i≥ j �i,
bk := ∑i≥k mi, and A := (a j) j≥1, B := (bk)k≥1. We define dimBL = dimBA and
dimBM = dimBB.

The Cartesian product of the fractal strings L and M , defined by

L ×M = {I j × Jk} j,k≥1, (3.6.22)

consists of the countable disjoint family of rectangles R jk = I j × Ik densely covering
the rectangle [0,a1]× [0,b1]. Now, denote by ∂ (L ×M ) the boundary of the union
of all these rectangles: ∂ (L ×M ) = ∂ (∪ j,kR jk). It is clear that

∂ (L ×M ) = (A× [0,b1])∪ ([0,a1]×B), (3.6.23)

and A=A∪{0}, B=B∪{0}. See Figure 3.6. In the following theorem, we compute
the zeta function of ∂ (L ×M ).

Theorem 3.6.5. Let L = (I j) j≥1 and M = (Jk)k≥1 be two fractal strings, |I j|= � j,
|Jk| = mk, where (� j) j≥1 and (mk)k≥1 are nonincreasing sequences of positive real
numbers. Then, for E := ∂ (L ×M ), we have

ζE(s)∼
∞

∑
j,k=1

[
|� j −mk|min{� j,mk}s−1 +

2
s

min{� j,mk}s
]
. (3.6.24)

Fig. 3.6 The boundary ∂ (L ×M ) of the Cartesian product L ×M of two fractal strings L =
(� j) j≥1 and M = (mk)k≥1.
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Furthermore,
dimBE = 1+max{dimBL ,dimBM }, (3.6.25)

and this value is equal to the abscissa of convergence of the zeta function ζE.

Proof. Let us consider a typical rectangle translated at the origin, R = (0, �)×(0,m)
with m > �. If we choose a point T ∈ R, then we consider the distance function
d(T,∂R). We split R into the union of eight right-angle triangles with sides �/2 and
m/2, and two smaller rectangles with sides �/2 and m− �, placed in the middle of
R. Denoting a typical triangle by #, and placing it in an (x,y)-coordinate system so
that #= {(x,y) : 0 ≤ x ≤ �/2; 0 ≤ y ≤ x}, we find that the zeta function of its side
S = [0, �/2]×{0} relative to # (more information about relative zeta functions can
be found in Section 4.1 below) is given by

ζS,#(s) =
∫∫

#
ys−2dxdy =

1
s(s−1)

(
�

2

)s

. (3.6.26)

Similarly, the zeta function of the vertical side V = {0}× [0,m− �] with respect to
the rectangle R′ = [0, �/2]× [0,m− �] is given by

ζV,R′(s) =
∫∫

R′
xs−2dxdy =

m− �

s−1

(
�

2

)s−1

. (3.6.27)

Therefore, we can compute

ζ∂R,R(s) = 2ζV,R′(s)+8ζS,#(s)

=
|m− �|

(s−1)2s−2 min{�,m}s−1 +
1

s(s−1)2s−3 min{�,m}s. (3.6.28)

Using the definition of the distance zeta function in (2.1.1), we can then write

ζE(s) =
∞

∑
j,k=1

ζ∂R jk,R jk
(s)+g(s)

=
∞

∑
j,k=1

[ |� j −mk|
(s−1)2s−2 min{� j,mk}s−1 (3.6.29)

+
1

s(s−1)2s−3 min{� j,mk}s
]
+g(s).

Here, the term g(s) is unimportant, and for δ ≥ 1
2 max{�1,m1}, its value is given by

g(s) =
∫∫

Eδ \([0,a1]×[0,b1])
d((x,y),∂ ([0,a1]× [0,b1]))

s−2dxdy

=
2δ s−1

s−1
(a1 +b1 +π).
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This follows easily by splitting the domain of integration into four rectangles and
four right-angle triangles. Since g(s) is holomorphic, this proves (3.6.24); see Propo-
sition 2.1.76. The second claim follows easily using (3.6.23) and the property of
finite stability of the upper box dimension:

dimB∂ (L ×M ) = dimB((A× [0,b1])∪ ([0,a1]×B))

= max{dimB(A× [0,b1]),dimB([0,a1]×B)}
= max{1+dimBA,1+dimBB}.

This concludes the proof of Theorem 3.6.5. ��

Remark 3.6.6. Any fractal string L = (� j) j≥1 (viewed here as a sequence of
‘lengths’ or ‘scales’) can be identified with the measure η = ∑ j≥1 δ�−1

j
, and its nat-

ural generalization is the weighted string η = ∑ j≥1 w jδl−1
j

, where (w j) j≥1 is a se-

quence of positive real numbers and (l j) j≥1 is a decreasing sequence of positive real
numbers (corresponding, when the numbers w j are integers, to the distinct values of
the lengths � j); see [Lap-vFr3, Section 4.1, page 121, and Assumption (P) on page
307], along with Remark 4.1.4. Using the Dirichlet integral ζη(s) =

∫ +∞
0 x−sη(dx)

(see [Lap-vFr3, Equation (4.4)]) and viewing η as a positive local measure (as in
[Lap-vFr3, Chapter 4] and Definition A.1.1 of Appendix A below), we obtain the
following weighted (generalized) Dirichlet series:15

ζη(s) =
∞

∑
j=1

w jl
s
j.

The distance zeta function of E = ∂ (L ×M ) in Theorem 3.6.5 is equivalent to a
weighted zeta function of the string (� j) j≥1 ∪ (mk)k≥1. Indeed, it follows at once
from (3.6.24) that, up to equivalence (in the sense of Definition 2.1.69), ζE(s) can
be written as the following weighted Dirichlet series:16

ζE(s)∼∑
j

w(l)
j �s

j + ∑
{k:mk 
=� j ,∀ j}

w(m)
k ms

k,

where the weights are respectively given by

w(l)
j := �−1

j ∑
{k:mk>l j}

(mk − � j)+
2
s
(#{k : mk ≥ � j})

15 In light of Example 2.1.44 above, ζη is a tamed DTI, in the sense of Subsection 2.1.3.2 or of
Definitions A.1.2 and A.1.3 of Appendix A.
16 Through the end of this discussion, (mk)

∞
k=1 is viewed as a decreasing sequence of positive real

numbers with an associated sequence of generalized multiplicities denoted by
(
w(m)

k

)∞
k=1.
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and

w(m)
k := m−1

k ∑
{ j:� j>mk}

(� j −mk)+
2
s
(#{ j : � j > mk}),

with #D denoting the cardinality of the finite set D.

Corollary 3.6.7. Assume that a and b are positive real numbers. Let L = (I j) j≥1

and M = (Jk)k≥1 be a and b-strings, respectively, so that |I j| ∼ a j−a−1, |Jk| ∼
bk−b−1, where the sequences of lengths (|I j|) j≥1 and (|Jk|)k≥1 are nonincreasing.
Then, for E = ∂ (L ×M ), we have

ζE(s) ∼
∞

∑
j,k=1

[
a j−a−1 −bk−b−1|min{a j−a−1,bk−b−1}s−1

+
2
s

min{a j−a−1,bk−b−1}s
]
, (3.6.30)

and the abscissa of convergence of the zeta function ζE is given by

dimB E = 1+
1

1+min{a,b} . (3.6.31)

(Note that dimB E exists in this case.) Furthermore, the set E is Minkowski nonde-
generate, and ζE(s)→+∞ as R � s → dimB E from the right.

Proof. The claim follows from Theorem 3.6.5 and the fact that dimB({k−a :
k ≥ 1}) = 1/(1+ a); see [Lap2, Example 5.1 and Appendix C], [Lap-vFr3, Sub-
section 6.5.1], [Tri3, p. 25] or [LapPo2, Theorem 2.4] for a more general statement.
Minkowski nondegeneracy of E follows from the fact that this property is preserved
under Cartesian products; see [KraPa, Theorem 3.3.6] or [Žu4, Proposition 4.3] for
a more general statement involving gauge functions. For the remaining part, see
Theorem 2.1.11(c). ��

At this stage, we do not have any information about the possible complex dimen-
sions of ∂ (L ×M ) in Theorem 3.6.5.

Remark 3.6.8. Assume that given bounded sets A and B in (possibly different) Eu-
clidean spaces, we know the corresponding distance zeta functions ζA and ζB. We do
not know how the zeta function of the Cartesian product ζA×B is related to them. We
do not know this even in the case of the a-string for which A = B = {k−a : k ≥ 1},
where a> 0. What does ζA×A look like in this case? This zeta function converges for
Res > 2/(1+a) and ζA×A(s)→+∞ as R� s → 2/(1+a) from the right (see Theo-
rem 2.1.11), since A×A is Minkowski nondegenerate and dimB(A×A) = 2/(1+a)
(see [KraPa, Theorem 3.3.6]). For a related open problem, see Problem 6.2.7 on
page 556 below.
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3.7 Zigzagging Fractal Sets and Alternating Zeta Functions

In this section, we construct a class of sets A in [0,1] with different upper and lower
box dimensions, and we compute their distance zeta functions. Such sets have a
nonuniform oscillating nature; we call them zigzagging fractals. It is a result of
intermittent spraying and swarming during their construction; see below. We stress
that this kind of oscillations of fractals is different from the type of oscillations
discussed and analyzed, for example, in [Lap-vFr1-3]. For an even more general
definition of zigzagging fractals, see [Žu4, Remark 1.7].

Definition 3.7.1. Let (n j) j≥1 be a given sequence of positive integers. We construct
a family of disjoint open intervals I j in [0,1], and define the corresponding set A to
be the boundary of the union. All the intervals will have endpoints on the binary
grid, that is, the intervals will be of the form (k2− j,(k + 1)2− j), where k ∈ N0,
j ∈ N. Starting from x = 0 to the right, we take the first n1 consecutive intervals
I j, j = 1, . . . ,n1, of lengths 2− j. We then say that we have sprayed n1 intervals in
[0,1]. In the next n2 steps, we consecutively halve the remaining portion of the unit
interval of length 2−n1 , so that in the last step, we obtain 2n2 new subintervals (we
call this n2-swarming). In each of these subintervals of length 2−(n1+n2), we then
spray n3 new open intervals having lengths 2−(n1+n2+1),. . . , 2−(n1+n2+n3). In the
remaining parts of each of the subintervals, we do the n4-swarming, and so on, by
intermittently spraying and swarming. The family of open intervals L obtained in
this way is a fractal string contained in [0,1], and the boundary of the union is the
zigzagging set A.

If we let |I j| = � j and use (2.1.82) and (2.1.83), we can compute the distance
zeta function of A as follows (we drop two inessential terms corresponding to x = 0
and 1):

ζA(s) ∼
∞

∑
j=1

∫
I j

d(x,∂ I j)
s−1dx = s−121−s

∞

∑
j=1

�s
j

=
21−s

s

(
n1

∑
k=1

2−ks +2n2

n3

∑
k=1

2−(k+n1+n2)s + (3.7.1)

2n2+n4

n3

∑
k=1

2−(k+n1+n2+n3+n4+n5)s + · · ·
)

;

that is,

ζA(s) ∼
21−s

s(2s −1)

(
1−2−sn1 +2−s(n1+n2)+n2 −2−s(n1+n2+n3)+n2

+2−s(n1+n2+n3+n4)+n2+n4 −2−s(n1+n2+n3+n4+n5)+n2+n4 + · · ·
)
.
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Substituting

mk = n1 +n2 + · · ·+nk, ek = n2 +n4 + · · ·+n2k,

we deduce that the distance zeta function of A can be represented as the following
alternating series of complex numbers, which we call an alternating zeta function:

ζA(s) ∼ 1−2−sm1 +2−sm2+e1 −2−sm3+e1 +

+2−sm4+e2 −2−sm5+e2 + · · ·+2−sm2k+ek −2−sm2k+1+ek + · · · . (3.7.2)

More precisely, this is an alternating zeta function generated by the fractal string
L ′ = (2−mk)k≥0 (we define m0 = 0) with weights (or multiplicities) (wk)k≥0, since
(3.7.2) can be written as

ζA(s)∼
∞

∑
k=0

(−1)kwk2−smk , (3.7.3)

where wk := 2e�k/2� and the index �k/2� is the integer part of k/2.
Let θk = θk(A) be the number of intervals of the 2−k-grid in [0,1] which have

nonempty intersection with A. It is well known that for sk := log2 θk (the swarming
sequence associated to A, according to the terminology of [Žu4, Section 1]), we
have

dimBA = liminf
k→∞

sk

k
, dimBA = limsup

k→∞

sk

k
; (3.7.4)

see [Fal1, p. 41] or [Tri3, 24]. Now we compute the sequence θk. It is easy to see
that during the first spraying, we have θ1 = 2, θ2 = 4, θ3 = 6,. . . , θn1 = 2n1. Further-
more, during the ensuing swarming, we have θn1+1 = 2n1+2, θn1+2 = 2n1+22,. . . ,
θn1+n2 = 2n1 + 2n2 . The second spraying yields θn1+n2+n3 = 2n1 + 2n2(2n3) =
2(n1 + 2n2 n3). The second swarming results in θn1+n2+n3+n4 = 2(n1 + 2n2 n3) +
2n2+n4 , etc. We can now recognize the general pattern: for each k ≥ 0, we have

θm2k = 2(n1 +2e1n3 + · · ·+2ek n2k−1)+2ek , (3.7.5)

θm2k+1 = 2(n1 +2e1n3 + · · ·+2ek n2k−1 +2ek n2k+1). (3.7.6)

We note that the mapping j �→ θ j has intermittent exponential and linear growth
rate. More precisely, it is of exponential growth rate for j ∈ {m2k−1, . . . ,m2k} and of
linear growth for j ∈ {m2k, . . . ,m2k+1}. In other words, odd indices in m j correspond
to switching from linear to exponential growth of the sequence (θ j) j≥1, while even
indices correspond to switching from exponential to linear growth.

We are now ready to state and prove the main result of this section.

Theorem 3.7.2. Let (n j) j≥1 be an increasing sequence of positive integers. Let A be
the corresponding zigzagging set, as given in Definition 3.7.1. Then

dimBA = limsup
k→∞

n2 +n4 + · · ·+n2k

n1 +n2 + · · ·+n2k
(3.7.7)
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and
dimBA = liminf

k→∞

n2 +n4 + · · ·+n2k

n1 +n2 + · · ·+n2k +n2k+1
. (3.7.8)

Furthermore, the corresponding distance zeta function ζA is equivalent to the ex-
pression given by (3.7.2). Moreover, we have that ζA(s)→+∞ as s → dimBA from
the right, with s ∈ R.

Proof. Since the sequence nk is nondecreasing, then using (3.7.5) and (3.7.6) we
have

2ek ≤ θm2k ≤ 2(k+1)2ek n2k−1,

2ek ≤ θm2k+1 ≤ 2(k+1)2ek n2k+1.

From this we easily deduce that

sm2k ∼ ek, sm2k+1 ∼ ek (3.7.9)

as k → ∞, since

ek ≤ sm2k ≤ ek + logn2k−1 + log2(k+1),

ek ≤ sm2k+1 ≤ ek + logn2k+1 + log2(k+1),

and (assuming that k ≥ 2),

0 <
logn2k−1

m2k
≤ logm2k

m2k
→ 0, 0 <

log(k+1)
m2k

≤ log(k+1)
2k

→ 0,

0 <
logn2k+1

m2k+1
≤ logm2k+1

m2k+1
→ 0, 0 <

log(k+1)
m2k+1

≤ log(k+1)
2k+1

→ 0

as k → ∞, due to the lower bound m j ≥ j. Let C and D be the right-hand sides in
(3.7.8) and (3.7.7), respectively; that is,

C = liminf
k→∞

ek

m2k+1
, D = limsup

k→∞

ek

m2k
. (3.7.10)

In order to prove the theorem, we have to show that for any sequence ( jk) of positive
integers such that jk →+∞,

C ≤ liminf
k→∞

s jk

jk
≤ limsup

s jk

jk
≤ D. (3.7.11)

It suffices to consider the following two cases:

(a) The case when jk ∈ [m2k,m2k+1] for all k. Then s jk ∈ [sm2k ,sm2k+1 ], and there-
fore,

sm2k

m2k+1
≤ s jk

jk
≤

sm2k+1

m2k
.

Using the right-hand side inequality and (3.7.9), we see that
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limsup
k→∞

s jk

jk
≤ limsup

k→∞

sm2k+1

m2k
= limsup

k→∞

ek

m2k
= D,

and similarly, we show that liminfk→∞
s jk
jk

≥C.

(b) The case when jk ∈ [m2k−1,m2k] for all k. We have s jk ∈ [sm2k−1 ,sm2k ], there-
fore,

sm2k−1

m2k
≤ s jk

jk
≤ sm2k

m2k−1
.

Using the right most inequality and (3.7.9), we obtain that

limsup
k→∞

s jk

jk
≤ limsup

k→+∞

sm2k

m2k−1
≤ limsup

k→∞

ek

m2k
= D,

and similarly, liminfk→∞
s jk
jk

≥ D. The claim follows from (a), (b) and (3.7.4).
The last claim of the theorem follows from the fact that the zeta function in

(3.7.1) has nonnegative coefficients; see [Ser, Proposition 7, p. 67]. ��

We do not have any information about the possible complex dimensions of A in
Theorem 3.7.2. It is easy to see that for real s, the absolute values of members of
the alternating series ζA(s) in (3.7.2) are nonincreasing if and only if s ≥ 1. Indeed,
since the exponents must be nonincreasing starting from some k0, we must have
−sm2k+1+ek ≥−sm2k+2+ek+1 for all k ≥ k0, which is satisfied if and only if s≥ 1.
Furthermore, for s≥ 1, we have −sm2k+ek ≤−m2k+ek =−n1−n3−·· ·−n2k+1 →
−∞, so that 2−sm2k+ek → 0 as k →∞. Therefore, still for real s, the Leibniz criterion
of convergence for the alternating series defining ζA(s) is applicable only for s ≥ 1.

In the following corollary, as before, we denote by �x� the integer part of a real
number x. We obtain a class of fractal sets with unequal values for the upper and
lower box dimensions and with explicit expressions for the associated zeta func-
tions.

Corollary 3.7.3. Let a > 1 be a fixed real number. Let (nk)k≥1 be a sequence of
positive integers such that nk ∼ ak as k →∞ (for example, nk = �ak�,17 for all k ≥ 1).
Then, for the corresponding zigzagging set A in [0,1] (as given in Definition 3.7.1),
we have

dimBA =
a

a+1
, dimBA =

1
a+1

, (3.7.12)

and the associated distance zeta function ζA(s) is equivalent to the expression given
by the alternating series (3.7.2), at least for Res > dimBA. (Note that, in light of
(3.7.12), dimBA < dimBA if and only if a > 1.)

Proof. Since nk ∼ ak as k →∞, there exist two monotone sequences, (ck) increasing
and (dk) decreasing, both converging to 1, such that

ckak ≤ nk ≤ dkak, (3.7.13)

17 Here, for x ∈ R, we have �x�= [x] (the integer part of x, also called the ‘floor’ of x).
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for all k ≥ 1. Let j be a fixed even positive integer. Then for k > j, writing mk :=
m j−1 +n j + · · ·+nk and using (3.7.13), we obtain that

m2k ≤ m j−1 +d ja
j(1+a+ · · ·+a2k− j) = m j−1 +d ja

j a2k− j+1 −1
a−1

, (3.7.14)

and similarly,

m2k ≥ m j−1 + c ja
j a2k− j+1 −1

a−1
. (3.7.15)

Analogously, writing ek := e j−2 +n j +n j+2 + · · ·+n2k, we show that

e j−2 + c ja
j a2k− j+2 −1

a2 −1
≤ ek ≤ e j−2 +d ja

j a2k− j+2 −1
a2 −1

. (3.7.16)

Using (3.7.14), (3.7.15) and (3.7.16), we obtain the inequality

c ja

d j(1+a)
≤ liminf

k→∞

ek

m2k
≤ limsup

k→∞

ek

m2k
≤ d ja

c j(1+a)
, (3.7.17)

for all k > j. Letting j → ∞, we deduce that

lim
k→∞

ek

m2k
=

a
1+a

. (3.7.18)

The first equality in (3.7.12) then follows by using Theorem 3.7.2; see (3.7.7).
The second equality in (3.7.12) follows from the first one since m2k+1 ∼ am2k; see
also (3.7.10). ��

Assume that the hypotheses of Corollary 3.7.3 are satisfied. It is noteworthy that
if a → +∞, then dimBA → 0+ while dimBA → 1−. Furthermore, it is possible to
construct a set A ⊂ [0,1] such that we even have dimBA = 0 and dimBA = 1; see
[Žu4, Theorem 1.2], as well as [Fra1] and [RoSha].



Chapter 4
Relative Fractal Drums and Their Complex
Dimensions

Only yesterday the practical things of today were decried as
impractical, and the theories which will be practical tomorrow
will always be branded as valueless games by the practical man
of today.

William Feller (1906–1970)

Abstract In this chapter, we introduce the notion of relative fractal drums (or RFDs,
in short). They represent a simple and natural extension of two fundamental objects
of fractal analysis, simultaneously: that of bounded sets in R

N (i.e., of fractals) and
that of bounded fractal strings (introduced by the first author and Carl Pomerance
in the early 1990s). Furthermore, there is a natural way to define their associated
Minkowski contents and relative distance as well as tube zeta functions. We stress a
new phenomenon exhibited by relative fractal drums: namely, their box dimensions
can be negative as well (and even equal to −∞). This can be viewed as a property
of their ‘flatness’, since it is related to the loss of the cone property. In short, a
relative fractal drum (RFD) consists of an ordered pair (A,Ω), where A is an arbi-
trary (possibly unbounded) subset of RN and Ω is an open subset of RN of finite
volume and such that Ω ⊆ Aδ , for some δ > 0. The corresponding zeta function,
either a distance or tube zeta function, is denoted by ζA,Ω or ζ̃A,Ω , respectively. We
show that ζA,Ω and ζ̃A,Ω are connected via a key functional equation, which implies
that their poles (i.e., the complex dimensions of the RFD (A,Ω)) are the same. We
also extend to this general setting the main results of Chapters 2 and 3 concerning
the holomorphicity and meromorphicity of the fractal zeta functions. We introduce
the notion of transcendentally quasiperiodic relative fractal drums, using their tube
functions. One way of constructing such drums is based on a carefully chosen se-
quence of generalized Cantor sets, as well as on the use of a classic result by Alan
Baker from transcendental number theory. This construction and result extend the
corresponding ones obtained in Chapter 3, in which we studied transcendentally
quasiperiodic fractal sets. Furthermore, some explicit constructions of RFDs lead
us naturally to introduce a new class of fractals, which we call hyperfractals. Partic-
ulary noteworthy among them are the maximal hyperfractals, for which the critical
line {Res = dimB(A,Ω)}, where dimB(A,Ω) is the relative upper box dimension
of (A,Ω) and coincides with the abscissa of convergence of ζA,Ω or ζ̃A,Ω , consists
solely of nonisolated singularities of the corresponding fractal zeta function (i.e., of
the relative distance or tube zeta function), ζA,Ω or ζ̃A,Ω .
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Key words: relative fractal drum (RFD), relative Minkowski dimension, relative
Minkowski content, relative distance and tube zeta functions, relative fractal zeta
functions, scaling, relative fractal spray, flatness of RFDs, compact sets of positive
reach, spectral zeta function, modified Weyl–Berry conjecture, meromorphic exten-
sion, abscissae of meromorphic and absolute convergence, residue, inhomogeneous
Sierpiński N-gasket, relative Sierpiński N-carpet, spectral zeta functions of fractal
drums, transcendentally ∞-quasiperiodic RFD, hyperfractals, embeddings of RFDs
into higher-dimensional spaces.

In this chapter, we introduce the notion of relative fractal drums. They represent a
simple and natural extension of two fundamental objects of fractal analysis, simul-
taneously: that of bounded sets in R

N (i.e., of fractals) and that of bounded fractal
strings (introduced by the first author and Carl Pomerance in the early 1990s). Fur-
thermore, there is a natural way to define their associated Minkowski contents and
relative distance zeta functions. We stress a new phenomenon exhibited by relative
fractal drums: namely, their box dimensions can be negative as well (and even equal
to −∞). This can be viewed as a property of their ‘flatness’, since it is related to the
loss of the cone property; see Proposition 4.1.33.

In short, a relative fractal drum (RFD) consists of an ordered pair (A,Ω), where
A is an arbitrary (possibly unbounded) subset of RN and Ω is an open subset of RN

of finite volume and such that Ω ⊆ Aδ for some δ > 0; see Definition 4.1.2.
In Section 4.6, we introduce the notion of transcendentally quasiperiodic rela-

tive fractal drums, using their tube functions. One way of constructing such drums,
described in Theorem 4.6.9, is based on a carefully chosen sequence of generalized
Cantor sets, as well as on a classic result by Alan Baker from transcendental number
theory; see Theorem 3.1.14. This construction and result extend the corresponding
ones obtained in Section 3.1, in which we studied transcendentally quasiperiodic
fractal sets.

Furthermore, some explicit constructions of RFDs lead us naturally to introduce
a new class of fractals, which we call hyperfractals; see Definition 4.6.23. Particu-
lary noteworthy among them are the maximal hyperfractals, for which the critical
line {Res = dimB(A,Ω)}, where dimB(A,Ω) is the relative upper box dimension
of (A,Ω) and coincides with the abscissa of convergence of the corresponding zeta
function, consists solely of nonisolated singularities; see Corollary 4.6.17. There-
fore, for such a (relative) maximally hyperfractal drum, the critical line is a (mero-
morphic) natural boundary (in the sense of part (ii) of Definition 1.3.8) for each of
the associated fractal zeta functions ζA,Ω and ζ̃A,Ω .

4.1 Zeta Functions of Relative Fractal Drums

We discuss here several natural generalizations of various notions which are central
to this and related works, including notably relative distance zeta functions (in which
the region of integration need not be bounded but is of finite volume), the associated
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relative box (and complex) dimensions, and RFDs. As is illustrated in a number of
examples, this additional flexibility enables us to account for a broad range of situ-
ations and phenomena, including the case of fractal strings (Example 4.1.3) and of
unbounded geometric chirps (Example 4.4.1). We also provide sufficient conditions
ensuring the existence of a (necessarily unique) meromorphic continuation of the
relative distance zeta function.

4.1.1 Relative Minkowski Content, Relative Box Dimension,
and Relative Zeta Functions

In this subsection, we introduce the notion of a relative zeta function, associated
to an appropriate ordered pair (A,Ω) of two suitable subsets of RN , which may be
unbounded. The relative distance zeta function (see (4.1.1)), is a natural general-
ization of the standard distance zeta function defined by (2.1.1). We have already
briefly encountered it in Section 2.1.5 in a less general context (see especially, Def-
inition 2.1.75, Proposition 2.1.76 and Theorem 2.1.78, where Ω was assumed to be
bounded), but we will now significantly relax our earlier assumptions.

Definition 4.1.1. Let Ω be an open subset of R
N , not necessarily bounded, but

of finite N-dimensional Lebesgue measure. Let A ⊆ R
N , also possibly unbounded,

such that Ω is contained in Aδ for some δ > 0.1 The distance zeta function ζA,Ω of
A relative to Ω (or the relative distance zeta function) is defined by

ζA,Ω (s) :=
∫
Ω

d(x,A)s−Ndx, (4.1.1)

for all s ∈ C with Res sufficiently large.

Unlike in (2.1.102), the closure of A is allowed here to intersect the boundary
of Ω . (The closures of A and Ω may even be disjoint; see Example 4.1.22.) For this
reason, the abscissa of convergence of this new zeta function will depend not only
on the set A, but on Ω as well; see Theorem 4.1.7 and Example 4.1.25 below.

Definition 4.1.2. We propose to call the ordered pair (A,Ω), appearing in Defini-
tion 4.1.1, a relative fractal drum (RFD). Therefore, we shall also use the phrase
zeta functions of relative fractal drums instead of relative zeta functions.

Example 4.1.3. Any bounded fractal string L = (� j) j≥1 (initially defined, as
usual, as an infinite nonincreasing sequence of positive numbers (� j)

∞
j=1 such

that ∑∞j=1 � j < ∞) can also be viewed as a relative fractal drum (AL ,ΩL ). Indeed,
the associated sets AL and ΩL are

AL =
{

ak =
∞

∑
j=k

� j : k ∈ N

}
, ΩL =

∞⋃
k=1

(ak+1,ak); (4.1.2)

1 We need this technical condition on A and Ω in order to ensure that the integral defined by
Equation (4.1.1) is well defined for all s ∈ C with Res large enough.
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see Subsection 2.1.4. Therefore, the notion of relative fractal drum (A,Ω) is a nat-
ural extension of the notion of bounded fractal string L = (� j) j≥1. Here, we point
out that the notion of “generalized fractal string” already exists, and has a different
meaning; see [Lap-vFr3, Chapter 4]. See also Remark 4.1.4 just below.

Remark 4.1.4. In short, a generalized fractal string (in the sense of [Lap-vFr3]) is
a local positive or complex measure on (0,+∞) which does not have mass near 0.
A local positive measure is simply a locally bounded positive Borel measure on
(0,+∞), while a local complex measure is a locally bounded set-function on (the
Borel σ -algebra of) (0,+∞) whose restriction to every compact subinterval J of
(0,+∞) is a (necessarily bounded) Borel complex measure on J. (See Definition
A.1.1 in Appendix A.) For example, an ordinary fractal string is represented by the
positive measure ηL := ∑∞j=1 δ�−1

j
, where for x > 0, δx denotes the unit Dirac mass

(or measure) concentrated at x. Note that clearly, since � j ↓ 0 as j → ∞, ηL is a
generalized fractal string because it does not have any mass near 0. More generally,
one could consider generalized fractal strings which are discrete but with noninteger
multiplicities, say, η = ηL := ∑l∈L blδl−1 , where L = {l} is an ordinary fractal
string (now consisting of distinct lengths l) and ‘multiplicities’ or ‘weights’ bl (with
bl ≥ 0 or bl ∈ C for each l ∈ L ); so that its ‘geometric zeta function’

ζη(s) :=
∫ +∞

0
x−sη(dx)

is the Mellin transform of the generalized Dirichlet series ∑l∈L blls. Of course,
one can also consider continuous analogs, say, η(dx) = ϕ(x)dx, with ϕ a suitable
real-valued function on (0,+∞). See, especially, [Lap-vFr3, Chapters 4, 5, 9, 10]
and [Lap-vFr3, Section 6.3 and 11.1] for a variety of examples and applications of
the theory of generalized fractal strings.

Remark 4.1.5. For results and conjectures concerning the spectra and the vibrations
of (ordinary) fractal drums (or ‘drums with fractal boundary’), we refer, e.g., to
[Berr1, Berr2], [BroCar], [SapGoMar], [Lap1–3], [Ger], [GerSc], [FlVa], [Cae],
[LapNeuReGr], [LapPa], [MolVai], [HeLap], [vBGilk], [Lap-vFr1–2], [HamLap],
as well as [Lap-vFr3, Section 12.5] and the relevant references therein. We note that
in the present monograph, however, we study mainly the geometry (rather than the
eigenvalue spectrum) of (relative) fractal drums. A short discussion of the spectral
zeta functions of a simple class of RFDs in R

N can be found in Section 4.3.1.

We can define the relative complex dimensions of A with respect to Ω (and with
respect to a given window W ) as the set of poles (in W ) of the meromorphic ex-
tension of the relative distance zeta function ζA,Ω .

In particular, when ζA,Ω has a meromorphic continuation to an open (con-
nected) neighborhood of {Res = dimB(A,Ω)}, one can define (much as in Defi-
nition 2.1.67) the set of relative principal complex dimensions of (A,Ω), which is
denoted by P(ζA,Ω ) or by dimPC(A,Ω), and consists of the poles of ζA,Ω which
lie on the critical line {Res = dimB(A,Ω)}. (We will see in Theorem 4.1.7 and
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Remark 4.1.8 that the abscissa of convergence of ζA,Ω coincides with dimB(A,Ω)
and hence, ζA,Ω is holomorphic in the open half plane {Res > dimB(A,Ω)}.) See
Definition 4.1.13.

In the previous paragraph and in the sequel, we are using the relative upper box
dimension dimB(A,Ω) (introduced in [Žu4] and generalizing that of [BroCar] and
[Lap1–3], where A := ∂Ω ), instead of dimB(A). Its definition is analogous to that of
the usual upper box dimension.

First, for any r ∈ R, we define the upper r-dimensional2 Minkowski content of
A relative to Ω (or the upper relative Minkowski content, or the upper Minkowski
content of the RFD (A,Ω)) by

M ∗r(A,Ω) = limsup
t→0+

|At ∩Ω |
tN−r , (4.1.3)

and then proceed exactly as in (1.3.4) or in (1.3.5) in order to define dimB(A,Ω):

dimB(A,Ω) = inf{r ∈ R : M ∗r(A,Ω) = 0}
= inf{r ∈ R : M ∗r(A,Ω)< ∞}
= sup{r ∈ R : M ∗r(A,Ω) = +∞}.

(4.1.4)

We call it the relative upper box dimension (or relative upper Minkowski dimension)
of A with respect to Ω (or else the relative upper box dimension of (A,Ω)). Note
that

dimB(A,Ω) ∈ [−∞,N], (4.1.5)

and the values can indeed be negative, and even equal to −∞; see Proposition 4.1.35
and Corollary 4.1.38.

Naturally, M r
∗ (A,Ω), the lower r-dimensional Minkowski content of (A,Ω), is

defined as in (4.1.3), except for a lower instead of an upper limit.
We define analogously the relative lower box (or Minkowski) dimension of

(A,Ω):
dimB(A,Ω) = inf{r ∈ R : M r

∗ (A,Ω) = 0}
= inf{r ∈ R : M r

∗ (A,Ω)< ∞}
= sup{r ∈ R : M r

∗ (A,Ω) = +∞}.
(4.1.6)

Furthermore, when dimB(A,Ω) = dimB(A,Ω), we denote by dimB(A,Ω) this com-
mon value and then say that the relative box (or Minkowski) dimension dimB(A,Ω)
exists. See Remark 4.1.6 below.

If 0<M D
∗ (A,Ω)≤M ∗D(A,Ω)<∞, we say that the relative fractal drum (A,Ω)

is Minkowski nondegenerate. It then follows that dimB(A,Ω) exists and is equal
to D.

If M D
∗ (A,Ω) = M ∗D(A,Ω), this common value is denoted by M D(A,Ω)

and called the relative Minkowski content of (A,Ω). If M D(A,Ω) exists and is

2 An important novelty here is that we allow negative values of r as well.
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different from 0 and +∞ (in which case dimB(A,Ω) exists and we necessarily have
D = dimB(A,Ω)), we say that the relative fractal drum (A,Ω) is Minkowski measur-
able. For relative box (or rather, Minkowski) dimensions and their properties, see
[Lap1], [HeLap] and more generally, [Žu4].

For example, if we assume that A = ∂Ω , then dimB(∂Ω ,Ω) is also called the
one-sided box dimension of the boundary (i.e., with respect to Ω , see [HeLap]) or
the inner Minkowski dimension of ∂Ω (see, e.g., [BroCar], [Lap1–3], [LapPo1–3],
[LapMa1–2], [FlVa] and [Lap-vFr1–3]). It may be different from dimB∂Ω .

Remark 4.1.6. Here and in the sequel, we use interchangeably the terms “relative
box dimension” and “relative Minkowski dimension”. However, strictly speaking,
only the latter term is correct in this general context because we do not have a proper
independent (and geometric) definition of relative box dimension. See Problem 6.2.6
on page 556.

If A is a bounded subset of R
N and Ω is an open subset of R

N of finite N-
dimensional Lebesgue measure, it is clear that

dimB(A,Ω) ∈ [−∞,dimBA], (4.1.7)

and similarly for the lower box dimension. The inequality dimB(A,Ω)≤ dimBA may
be strict; see Examples 4.1.23 and 4.1.25. An obvious example is when the distance
between A to Ω is positive, in which case dimB(A,Ω) = dimB(A,Ω) = −∞, no
matter what value is taken by dimBA. Furthermore, there are simple examples of
disjoint sets A and Ω for which dimB(A,Ω) is nonzero; see Example 4.1.22. It is
interesting that the value of dimB(A,Ω) may be negative, whereas dimBA (as well as
dimBA) is always nonnegative. See, especially, Proposition 4.1.35, Corollary 4.1.38
and Remark 4.1.39.

The following result extends Theorem 2.1.11 to the present, more general, set-
ting. To see this, it suffices to take Ω = Aδ for any fixed δ > 0.

Theorem 4.1.7. Let Ω be an open subset of RN of finite N-dimensional Lebesgue
measure, and let A ⊆ R

N be such that Ω ⊆ Aδ for some δ > 0. Then the following
properties hold:

(a) The relative distance zeta function ζA,Ω (s) is holomorphic in the half-plane
{Res > dimB(A,Ω)}, and for those same values of s, we have

ζ ′A,Ω (s) =
∫
Ω

d(x,A)s−N logd(x,A)dx.

(b) The lower bound in the open right half-plane {Re(s) > dimB(A,Ω)} is op-
timal, from the point of view of the (absolute) convergence of the Dirichlet-type
integral initially defining ζA,Ω in (4.1.1). In other words,

D(ζA,Ω ) = dimB(A,Ω), (4.1.8)
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where D(ζA,Ω ) is the abscissa of convergence of ζA,Ω . (See also Remark 4.1.8 and
part (i) of Corollary 4.1.10 below.)

(c) If D = dimB(A,Ω) exists, D < N, and M D
∗ (A,Ω) > 0, then ζA,Ω (s)→ +∞

as s ∈R converges to D from the right. See also part (ii) of Corollary 4.1.10 below.

Proof. The proof is similar to that of Theorem 2.1.11. Instead of Lemma 2.1.3, we
have to use a more general result (see [Žu4, Theorem 3.3]):

If γ < N −dimB(A,Ω), then
∫

Aδ∩Ω
d(x,A)−γdx < ∞, (4.1.9)

where δ is any fixed positive number. Lemma 2.1.6 can be easily adapted to the case
of the relative box dimension; see [Žu2]. We omit the details. We simply note that
in [Žu4, Theorem 3.3], the result is proven under the assumption that we deal with
relative Minkowski contents for r ≥ 0. Here, we allow r < 0 as well and it is easy to
see that, nevertheless, this result still holds in this more general context. ��

Remark 4.1.8. The claim in Theorem 4.1.7(b) follows easily from (a) and the fact
that if s ∈ R and s < dimB(A,Ω), then the defining integral in (4.1.1) is equal to in-
finity. Note that it follows from Theorem 4.1.7(b) that the relative upper box dimen-
sion, dimB(A,Ω), coincides with the abscissa of convergence of the Dirichlet-type
integral defining ζA,Ω in (4.1.1). Equivalently, as was stated in Theorem 4.1.7(b),
we have

dimB(A,Ω) = D(ζA,Ω ), (4.1.10)

where the latter notation is defined in Equation (2.1.92).

Remark 4.1.9. The continuity property stated in Theorem 2.1.78 also holds in the
more general case of the relative zeta functions studied in the present subsection
(that is, under the general assumptions of Definition 4.1.1). The proof of this fact is
completely analogous to that of Theorem 2.1.78.

Since, as we have noted in Example 2.1.41, the relative distance zeta function
ζA,Ω is a Dirichlet-type integral satisfying condition (2.1.54) specified in Subsection
2.1.3.2 (i.e., it is a tamed DTI, in the sense of Definition A.1.3 of Appendix A), its
abscissa of convergence D(ζA,Ω ) is well defined. (For more details, see also the
proof of part (1) of Proposition A.2.4 in Appendix A.) Exactly the same comment
can be made about the relative tube zeta function ζ̃A,Ω , to be introduced later in
Subsection 4.5.1, Equation (4.5.1).

The following result is the exact analog for RFDs of Corollary 2.1.20 and Corol-
lary 2.2.10 combined with Remark 4.1.11 and Remark 4.1.8. Note, however, that
we no longer conclude that D(ζA,Ω ) ≥ 0, as will be further discussed in Subsec-
tion 4.1.2. Moreover, the analog of this result holds for the relative tube zeta func-
tion ζ̃A,Ω .
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Corollary 4.1.10. (i) Let (A,Ω) be a relative fractal drum of RN. Then:

Dmer(ζA,Ω )≤ Dhol(ζA,Ω )≤ D(ζA,Ω ) = dimB(A,Ω), (4.1.11)

and each of these inequalities is sharp, in general.

(ii) If, in addition, we assume that the hypotheses of part (c) of Theorem 4.1.7
are satisfied, we then have the following equalities:

Dhol(ζA,Ω ) = D(ζA,Ω ) = dimB(A,Ω), (4.1.12)

and hence, Π(ζA,Ω ) = H (ζA,Ω ), whereas under the assumptions of part (i) just
above, we only have Π(ζA,Ω )⊆ H (ζA,Ω ).

Remark 4.1.11. Much as was noted in part (a) of Remark 2.1.21, we do not know
whether there exist RFDs (A,Ω) for which the second inequality in (4.1.11) is strict;
namely, Dhol(ζA,Ω ) < D(ζA,Ω ). Such RFDs could not be ordinary fractal strings
since we always have an equality in the latter case.

It is easy to find a relative fractal drum (A,Ω) for which Dmer(ζA,Ω ) <
Dhol(ζA,Ω ). In fact, for every (nontrivial) fractal string, the equalities in Equa-
tion (4.1.12) always hold (without assuming the hypotheses of part (c) of Theorem
4.1.7), and with dimB(A,Ω) ≥ 0, but, for example, for the Cantor string, we have
Dmer(ζA,Ω ) =−∞.

It is easy to see that, given any subset A and an open set Ω in R
N with finite

N-dimensional Lebesgue measure, the relative zeta function of (A,Ω) can also be
defined in the following way:

ζA,Ω (s;δ ) :=
∫
Ω∩Aδ

d(x,A)s−Ndx, (4.1.13)

where δ is a fixed positive number. Namely, for Ω ′ := Ω ∩Aδ , the condition in
Theorem 4.1.7 according to which Ω ′ ⊆ Aδ is clearly satisfied.

In our definition of RFDs (A,Ω), we assume that Ω is an open subset of RN .
Actually, Theorem 4.1.7 holds even in the case whenΩ is a Borel set in R

N . For ex-
ample, Ω may have an empty interior and a positive Lebesgue measure. Therefore,
it is natural to consider more general fractal drums (A,Ω), for which Ω is just an
arbitrary Borel subset of RN . This issue is pursued in Appendix B, where the notion
of ‘local zeta function’ is discussed.

In the following result, we obtain a simple sufficient condition for two RFDs to
be equivalent. Its proof is similar to the proof of Proposition 2.1.76, and therefore
we omit it.

Proposition 4.1.12. Assume that (A,Ω1) and (A,Ω2) are RFDs in R
N such that

f j(s) :=
∫
Ω j\(Ω1∩Ω2)

d(x,A)s−Ndx are entire functions, for j = 1,2. Then the corre-
sponding distance zeta functions are equivalent, that is,
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ζA,Ω1 ∼ ζA,Ω2 .

Definition 4.1.13. Assume that (A,Ω) is a relative fractal drum in R
N such that its

distance zeta function possesses a meromorphic extension to a domain which con-
tains the critical line {Res=D(ζA,Ω )} in its interior. The set of poles of ζA,Ω located
on the critical line is called the set of principal complex dimensions of the relative
fractal drum (A,Ω), or the set of relative principal complex dimensions of (A,Ω),
and is denoted by dimPC(A,Ω) or equivalently, Pc(ζA,Ω ). (This extends the defi-
nition of dimPC A = Pc(ζA) given in Definition 2.1.67.) We can analogously define
the set dimPC L of principal complex dimensions of any bounded (or unbounded)
fractal string L = (� j) j≥1, as the set of poles of ζL contained on the critical line
{Res = D(ζL )}.

In light of Theorem 2.2.3, we have the following result.

Theorem 4.1.14. Assume that (A,Ω) is a Minkowski nondegenerate RFD in R
N,

that is, 0 < M D
∗ (A,Ω) ≤ M ∗D(A,Ω) < ∞ (in particular, dimB(A,Ω) = D), and

D < N. If ζA,Ω (s) can be extended meromorphically to a connected open neighbor-
hood of s = D, then D is necessarily a simple pole of ζA,Ω , the residue res(ζA,Ω ,D)
is independent of δ and

(N −D)M D
∗ (A,Ω)≤ res(ζA,Ω ,D)≤ (N −D)M ∗D(A,Ω). (4.1.14)

Furthermore, if (A,Ω) is Minkowski measurable, then

res(ζA,Ω ,D) = (N −D)M D(A,Ω). (4.1.15)

The next lemma follows immediately from the definition of the relative upper
and lower box dimensions.

Lemma 4.1.15. Assume that we have two RFDs (A j,Ω j) in R
N ( j = 1,2),

where each Ω j is of finite Lebesgue measure. If A1 ⊆ A2 and Ω1 ⊆ Ω2, then
dimB(A1,Ω1) ≤ dimB(A2,Ω2). This is also true for the lower relative box dimen-
sions.

An immediate consequence is the following simple and useful result.

Lemma 4.1.16. Assume thatΩ1 ⊆Ω ⊆Ω2 are open sets of finite Lebesgue measure
in R

N. If
dimB(A,Ω1) = dimB(A,Ω2),

then this common value is equal to dimB(A,Ω).

The following countable additivity property of zeta functions is a simple conse-
quence of the σ -additivity property of the Lebesgue integral.

Proposition 4.1.17. Assume that Ω = ∪∞j=1B j is an open subset of RN of finite N-
dimensional Lebesgue measure, where (B j)

∞
j=1 is a sequence of pairwise disjoint
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open subsets of RN. Furthermore, assume that A ⊆ R
N and there exists δ > 0 such

that Ω ⊆ Aδ . Then, for all s ∈ C such that Res > dimB(A,Ω), we have

ζA,Ω (s) =
∞

∑
j=1
ζA,B j(s). (4.1.16)

Example 4.1.18. Let Ω ⊂ R be a disjoint union of open intervals Ik in the real line,
of lengths 1/k2 for each k ≥ 1. Here, Ω may be unbounded. Let A = ∂Ω . Then

ζA,Ω (s) =
∞

∑
k=1

ζA,Ik(s) =
21−2s

s

∞

∑
k=1

k−2s ∼
∞

∑
k=1

k−2s = ζ (2s), (4.1.17)

where ζ (s) = ∑ j≥1 k−s is the classical Riemann zeta function (or its meromorphic
continuation). The abscissa of convergence of ζA,Ω (s) is therefore equal to s = 1/2,
and by using Theorem 4.1.7(b) we conclude that dimB(A,Ω) = 1/2. Note that
by analytic continuation, ζA,Ω has a meromorphic extension to all of C, and that

ζA,Ω (s) =
21−2s

s ζ (2s) for all s ∈ C.

The following example is a relative analog of Example 2.2.21.

Example 4.1.19. Let Ω = BR(0) be the open ball in R
N of radius R and let A =

∂Ω be the boundary of Ω , i.e, the N − 1-dimensional sphere of radius R. Then,
introducing the new variable ρ = R− r, we have

ζA,Ω (s) = NωN

∫ R

0
(R− r)s−NrN−1dr = NωN

∫ R

0
ρs−N(R−ρ)N−1dρ

= NωN

∫ R

0
ρs−N

N−1

∑
k=0

(−1)k
(

N −1
k

)
RN−1−kρkdρ

= NωNRs
N−1

∑
k=0

(
N −1

k

)
(−1)k

s− (N − k−1)

= NωNRs
N−1

∑
j=0

(
N −1

j

)
(−1)N− j−1

s− j

for all s ∈ C with Res > N −1, where ωN is the N-dimensional Lebesgue measure
of the unit ball in R

N ; see Equation (1.3.22) on page 40. (Note that we have also
used the well-known symmetry of the binomial coefficients,

( N−1
N−1− j

)
=

(N−1
j

)
.) In

particular, ζA,Ω can be meromorphically extended to the whole complex plane and
is given by

ζA,Ω (s) = NωNRs
N−1

∑
j=0

(
N −1

j

)
(−1)N− j−1

s− j
, (4.1.18)

for all s ∈ C.
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Therefore, we have

dimB(A,Ω) = D(ζA,Ω ) = N −1

P(ζA,Ω ) = {0,1, . . . ,N −1} and dimPC(A,Ω) = {N −1}.
(4.1.19)

Furthermore,

res(ζA,Ω , j) = (−1)N− j−1NωN

(
N −1

j

)
R j (4.1.20)

for j = 0,1, . . . ,N−1. It is noteworthy that the set P(ζA,Ω ) of complex dimensions
of (A,Ω) is not the same as the set P(ζA) of complex dimensions of A; compare
Equation (4.1.19) with Equation (2.2.58) of Example 2.2.21 on page 128. As a spe-
cial case of (4.1.20), for j = D := N −1 we obtain that

res(ζA,Ω ,D) = NωNRN−1 = M D(A,Ω). (4.1.21)

The last equality follows from a direct computation:

M D(A,Ω) = lim
t→0+

|At ∩Ω |
tN−D = lim

t→0+

ωNRN −ωN(R− t)N

t
= NωNRN−1. (4.1.22)

Furthermore, recall that HD(A) = HN−1(∂BR(0)) = NωNRN−1, where HN−1 is the
(N − 1)-dimensional Hausdorff measure. In particular, the relative fractal drum
(A,Ω) is Minkowski measurable and

M D(A,Ω) = HD(A). (4.1.23)

Equation (4.1.21) is a special case of Equation (4.5.13) in the case when m := 0 in
Theorem 4.5.1 on page 353; see also Equation (4.5.1).

Proposition 4.1.20. (a) For any relative fractal drum (A,Ω), with |Ω | < ∞, we
have

dimB(A,Ω) = dimB(A,Ω),

and similarly for the relative lower box dimension.

(b) The Cartesian product (A1 ×A2,Ω1 ×Ω2) of two Minkowski nondegenerate
RFDs (A1,Ω1) and (A2,Ω2), is also Minkowski nondegenerate. Furthermore,

dimB(A1 ×A2,Ω1 ×Ω2) = dimB(A1,Ω1)+dimB(A2,Ω2).

Proof. Part (a) follows easily from the fact that At = (A)t for all t > 0, where A
denotes the closure of A in R

N . Part (b) follows from [Žu2, Proposition 4.3]. ��

Some basic open questions about the relative upper box dimension can be found
in Problem 6.2.31 of Section 6.2.2.
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Fig. 4.1 A relative fractal drum (A,Ω) in the plane with relative box dimension dimB(A,Ω) =
1+α ∈ (1,2), for α ∈ (0,1); see Example 4.1.21.

Example 4.1.21. Here, we deal with a situation where both of the sets A and Ω are
unbounded. This example is based on [Žu2, Example 2.1]. Let A = {0}×(1,+∞)⊆
R

2 and Ω = {(x,y) ∈ R
2 : x ∈ (0,1), 1 < y < x−α}, for some fixed α ∈ (0,1); see

Figure 4.1. Note that Ω is unbounded, but has finite two-dimensional Lebesgue
measure. The relative distance zeta function is then given by

ζA,Ω (s) =
∫∫
Ω

d((x,y),A)s−2dxdy

=
∫ 1

0
xs−2dx

∫ x−α

1
dy =

∫ 1

0
(xs−2−α − xs−2)dx

=
1

s−1−α − 1
s−1

∼ 1
s−1−α ,

(4.1.24)

where in the computation of the double integral, we have assumed that Res > 1+α .
It follows that σ = 1+α is the abscissa of convergence of the relative zeta function
ζA,Ω : D(ζA,Ω ) = 1+α . Therefore (see (4.1.10)), the half-line A has a nontrivial
relative box-dimension with respect to Ω , given by

dimB(A,Ω) = D(ζA,Ω ) = 1+α.

It is not difficult to show that a stronger result holds; namely, dimB(A,Ω) exists,
dimB(A,Ω) = 1+α , and the relative fractal drum (A,Ω) is Minkowski measurable.

It follows from the above discussion that the set Pc(ζA,Ω ) of relative principal
complex dimensions of the half-line A (with respect to the open unit square Ω ) is
given by

Pc(ζA,Ω ) = {1+α}.
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α ,

Fig. 4.2 A relative fractal drum (Aα ,Ω) such that dimB(Aα ,Ω) = 1−α < 1 (here, 0 < α < 1),
whereas dimB Aα = 1; see Example 4.1.23. This illustrates the drop of dimension phenomenon for
relative Minkowski dimensions.

Actually, a more precise result holds. Indeed, note that according to the last equality
of (4.1.24), ζA,Ω has a meromorphic continuation to all of C (given by the right-
hand side of the last equality of (4.1.24)), and furthermore, the set P(ζA,Ω ) of all
relative complex dimensions of (A,Ω) is given by

P(ζA,Ω ) = {1,1+α}= {1+α}∪{1},

the union of {1 + α}, the set of scaling complex dimensions, and {1}, the set
of positive integer dimensions (in the sense of [LapPe2–3] and [LapPeWi1], see
also [Lap-vFr3, Section 13.1]). We point out, however, that the theory of [LapPe2,
LapPeWi1] cannot be applied to the present example in order to also yield this result.
Hence, the relative ‘fractal drum’ (A,Ω) is not fractal (in the sense of [Lap-vFr1–3])
since it does not have any nonreal principal complex dimensions, which is, of
course, natural since both A and Ω are standard Euclidean geometric shapes.

Example 4.1.22. Let Ω be the same as in the preceding example, and define A =
{(x,y) ∈ (−1,0)×R : y = |x|−α}, where α ∈ (0,1) is fixed. Here, we also have that
dimB(A,Ω) exists and

dimB(A,Ω) = D(ζA,Ω ) = 1+α.

Note that now, the sets A and Ω are disjoint.

It is clear that in the case of a bounded set A, we have dimB(A,Ω)≤ dimBA, and
analogously for the lower box dimension. The following example shows that the
inequality may be strict.

Example 4.1.23. We provide here an example showing that a smooth rectifiable
curve (see part (a) of Remark 4.1.24 below) may have a relative box dimension
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strictly less than one, whereas its (ordinary) box dimension is equal to one. This ex-
ample illustrates what we propose to refer to as the drop of dimension phenomenon,
which is frequently encountered in the context of RFDs. For an even more dramatic
example of this important and surprising phenomenon, see Corollary 4.1.38 and
Remark 4.1.39 on pages 265–266.

LetΩ = (−1,0)× (0,1) and let Aα be the graph of a Hölder continuous function
y = xα , 0 < x < 1, for a fixed α ∈ (0,1); see Figure 4.2. Then, the relative box
dimension of the curve Aα (with respect to Ω ) exists and is given by

dimB(Aα ,Ω) = 1−α.

Note that, in contrast, dimB Aα = 1, independently of the value of α ∈ (0,1), since
Aα is clearly rectifiable, i.e., of finite length. (See part (b) of Remark 4.1.24 be-
low.) Also, it is worth noting that Aα and Ω are disjoint. The relative zeta function
ζAα ,Ω (s) is holomorphic on the half-plane Res > 1−α , and the bound is optimal:

D(ζAα ,Ω ) = dimB(Aα ,Ω) = 1−α.

Remark 4.1.24. (a) Note that Aα is a C∞-curve, since it does not contain the origin.
Furthermore, the curve Aα is at least of class C1 (more precisely, of class Ck with
k = �1/α�), since it can be viewed as the graph of the function x= y1/α for y∈ [0,1],
where the exponent 1/α is larger than 1 (and in particular, the function is Lipschitz
continuous).

(b) The length of Aα is bounded by the sum of its projections onto the vertical
and horizontal axes, that is, by 2. If a curve is rectifiable (i.e. of finite length), then
its graph has box (i.e., Minkowski) dimension equal to 1; see, e.g., Federer [Fed2,
Theorem 3.2.39] for a more general statement concerning k-rectifiable sets. Namely,
the Minkowski (or box) dimension of a closed and k-rectifiable set (i.e., of the image
in R

N under a Lipschitz map of a bounded set in R
k) exists and does not exceed k,

and, moreover, its k-dimensional Minkowski content exists and is finite. Here, we
have k = 1, N = 2 and, clearly, the Minkowski dimension of a smooth curve is not
smaller than 1.

Example 4.1.25. Slightly modifying the above example, let us set A′ = {0}× (0,1)
and consider the family of open sets Ω ′

α = {(x,y) ∈ (0,1)2 : y < xα}, where α ∈
(0,1). Then

D(ζA′,Ω ′
α
) = dimB(A

′,Ω ′
α) = 1−α.

This shows that the relative box dimension depends on the domain Ω ′
α .

In the following proposition, we extend the well-known property of finite sta-
bility of the usual upper box dimension dimBA (see, e.g., [Fal1]) to the more gen-
eral case of the relative upper box dimension dimB(A,Ω); see Equation (4.1.25) in
Proposition 4.1.26 below. The claim is not true for the relative lower box dimension
dimB(A,Ω); see the discussion immediately following Equation (6.1.8) in Subsec-
tion 6.1.2 of Chapter 6 below.
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Proposition 4.1.26 (Finite stability of the relative upper box dimension). Let
(A,Ω) and (B,Ω) be two relative fractal drums in R

N. Then (A∪B,Ω) is an RFD
as well, and the following property of finite stability of the relative upper box di-
mension holds:

dimB(A∪B,Ω) = max{dimB(A,Ω),dimB(B,Ω)}. (4.1.25)

Moreover, for any real number s ∈ R, we have that

max{M ∗s(A,Ω),M ∗s(B,Ω)} ≤ M ∗s(A∪B,Ω)≤ M ∗s(A,Ω)+M ∗s(B,Ω).
(4.1.26)

Proof. Since (A,Ω) and (B,Ω) are RFDs, thenΩ ⊆Aδ andΩ ⊆Bδ for some δ > 0;
hence, Ω ⊆ Aδ ∪Bδ = (A∪B)δ . Therefore, (A∪B,Ω) is an RFD as well.

Let us first prove the two inequalities appearing in (4.1.26). The first one follows
immediately from the two inclusions A ⊆ A∪B and B ⊆ A∪B, while the second one
is an easy consequence of the fact that (A∪B)t = At ∪Bt , for all t > 0:

M ∗s(A∪B,Ω) = limsup
t→0+

|(A∪B)t ∩Ω |
tN−s = limsup

t→0+

|(At ∪Bt)∩Ω |
tN−s

≤ limsup
t→0+

( |At ∩Ω |
tN−s +

|Bt ∩Ω |
tN−s

)

≤ limsup
t→0+

|At ∩Ω |
tN−s + limsup

t→0+

|Bt ∩Ω |
tN−s

= M ∗s(A,Ω)+M ∗s(B,Ω).

(4.1.27)

Now, Equation (4.1.25), which we write as L = R, follows easily from Equation
(4.1.26). Indeed, assume that (4.1.25) does not hold, i.e., that L 
= R. Let us consider
the following two cases:

(a) If L < R in (4.1.25), then by taking any real number s ∈ (L,R), we have that
M ∗s(A∪B,Ω) = 0 and either M ∗s(A,Ω) = +∞ or M ∗s(B,Ω) = +∞. However,
this is impossible, due to the first inequality in (4.1.26).

(b) If L > R, then by taking any real number s ∈ (R,L), we obtain that M ∗s(A∪
B,Ω) = +∞ and M ∗s(A,Ω) = M ∗s(A,Ω) = 0. This is also impossible, due to the
second inequality in (4.1.26).

This completes the proof of Equation (4.1.25), as well as of the proposition. ��

Remark 4.1.27. If (A,Ω1) and (B,Ω2) are two relative fractal drums in R
N such that

for some ε > 0, Aε ∩Ω2 = /0 and Bε ∩Ω1 = /0, then the property of finite stability
holds in the following sense:

dimB(A∪B,Ω1 ∪Ω2) = max{dimB(A,Ω1),dimB(B,Ω2)}. (4.1.28)
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Moreover, for any real number s ∈ R, we have that

max{M ∗s(A,Ω1),M
∗s(B,Ω2)} ≤ M ∗s(A∪B,Ω1 ∪Ω2)

M ∗s(A∪B,Ω1 ∪Ω2)≤ M ∗s(A,Ω1)+M ∗s(B,Ω2).
(4.1.29)

Note, however, that Equations (4.1.28) and (4.1.29), jointly with the indicated as-
sumptions, do not contain Proposition 4.1.25 as a special case.

In order to prove (4.1.29), it suffices to observe that for any t ∈ (0,ε), we have
that (A∪B)t ∩ (Ω1 ∩Ω2) = (At ∩Ω1)∪ (Bt ∩Ω2), and then to proceed analogously
as in the first part of the proof of Proposition 4.1.26. Equation (4.1.28) follows from
(4.1.29) and the arguments from the second part of the proof of the proposition.

4.1.2 Cone Property and Flatness of Relative Fractal Drums

We introduce the cone property of a relative fractal drum (A,Ω) at a point, in or-
der to ensure that the abscissa of convergence of the associated relative zeta func-
tion ζA,Ω be nonnegative. The main result of this subsection is stated in Proposi-
tion 4.1.33. We also construct a simple class of RFDs for which the relative box
dimension is negative; see Proposition 4.1.35.

Definition 4.1.28. Let Br(a) be a given ball in R
N of radius r. Let ∂B be the bound-

ary of the ball, which is an (N − 1)-dimensional sphere, and assume that G is a
closed connected subset contained in a hemisphere of ∂B. [Intuitively, G is a disk-
like subset (‘calotte’) of a hemisphere contained in the sphere ∂B.] We assume that
G is open with respect to the relative topology of ∂B. The cone K = Kr(a,G) with
vertex at a, and of radius r, is defined as the interior of the convex hull of the union
of {a} and G.

Definition 4.1.29. Let (A,Ω) be a relative fractal drum in R
N . We say that a relative

fractal drum (A,Ω) has the cone property at a point a ∈ A∩Ω if there exists r > 0
such that Ω contains a cone Kr(a,G) with vertex at a (and of radius r).

Remark 4.1.30. If a∈A∩Ω (hence, a is an inner point ofΩ ), then the cone property
of the relative fractal drum (A,Ω) is obviously satisfied at this point. So, the cone
property is actually interesting only on the boundary of Ω , that is, at a ∈ A∩∂Ω .

Example 4.1.31. Given α > 0, let (A,Ωα) be the relative fractal drum in R
2 defined

by A = {(0,0)} and Ωα = {(x,y) ∈ R
2 : 0 < y < xα , x ∈ (0,1)}. If 0 < α ≤ 1,

then the cone property of (A,Ω) is fulfilled at a = (0,0), while it is not satisfied
(at a = (0,0)), for α > 1. Using these domains, we can construct a one-parameter
family of RFDs with negative relative box dimension; see Proposition 4.1.35 below.

Proposition 4.1.33 below is an extension of Lemma 2.1.52, which states that
D(ζA)≥ 0 for any bounded set A. We first need an auxiliary result.
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Lemma 4.1.32. Assume that K = Kr(a,G) is an open cone in R
N with vertex at a

(and of radius r > 0), and f ∈ L1(0,r) is a nonnegative function. Then there exists a
positive integer m, depending only on N and on the opening angle of the cone, such
that ∫

Br(a)
f (|x−a|)dx ≤ m

∫
K

f (|x−a|)dx. (4.1.30)

Proof. Since the sphere ∂B is compact, there exist finitely many calottes G1, . . . ,Gm

contained in the sphere, that are all congruent to G (that is, each Gi can be obtained
from G by a rigid motion), and which cover ∂B. Let Ki = Kr(a,Gi), i = 1, . . . ,m, be
the corresponding cones with vertex at a. It is clear that the value of

∫
Ki

f (|x−a|)dx (4.1.31)

does not depend on i. Since Br(a) = ∪m
i=1Ki, we have

∫
Br(a)

f (|x−a|)dx ≤
m

∑
i=1

∫
Ki

f (|x−a|)dx = m
∫

K
f (|x−a|)dx. (4.1.32)

��

Proposition 4.1.33. Let (A,Ω) be a relative fractal drum in R
N. Then:

(a) If the sets A and Ω are a positive distance apart (i.e., if d(A,Ω) > 0), then
D(ζA,Ω ) =−∞; that is, ζA,Ω is an entire function. Furthermore, dimB(A,Ω) =−∞.

(b) Assume that there exists at least one point a ∈ A∩Ω at which the relative
fractal drum (A,Ω) satisfies the cone property. Then D(ζA,Ω )≥ 0.

Proof. (a) For r > 0 small enough such that r < d(A,Ω), where d(A,Ω) is the
distance between A and Ω , we have Ar ∩Ω = /0; so that ζA,Ar∩Ω (s) ≡ 0 for all
s ∈ C. Therefore, D(ζA,Ar∩Ω ) = −∞. Since ζA,Ω (s)− ζA,Ar∩Ω (s) is an entire func-
tion, we conclude that we also have that D(ζA,Ω ) = −∞. Since |Aε ∩Ω | = 0 for
all sufficiently small ε > 0, we have M r(A,Ω) = 0 for all r ∈ R, and therefore,
dimB(A,Ω) =−∞.

(b) Assume, by reasoning by contradiction, that D(ζA,Ω ) < 0. In particular,
ζA,Ω (s) is continuous at s = 0 (because it must then be holomorphic at s = 0). By
hypothesis, there exists an open cone K = Kr(a,G), such that K ⊂ Ω . Using the
inequality d(x,A) ≤ |x− a| (valid for all x ∈ R

N since a ∈ Ω ) and Lemma 4.1.32,
we deduce that for any real number s ∈ (0,N),

ζA,Ω (s)≥ ζA,K(s) =
∫

K
d(x,A)s−Ndx ≥

∫
K
|x−a|s−Ndx

≥ 1
m

∫
Br(a)

|x−a|s−Ndx =
NωN

m
rss−1,
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where m is the positive constant appearing in Equation (4.1.30) of Lemma 4.1.32.
This implies that ζA,Ω (s)→ +∞ as s → 0+, s ∈ R, which contradicts the holomor-
phicity (or simply, the continuity) of ζA,Ω (s) at s = 0. ��

The cone condition can be replaced by a much weaker condition, as we will now
explain in the following proposition.

Proposition 4.1.34. Let (rk)k≥0 be a decreasing sequence of positive real numbers,
converging to zero. We define a subset of the cone Kr(a,G) as follows:

Kr(a,G,(rk)k≥0) =
{

x ∈ Kr(a,G) : |x−a| ∈
∞⋃

k=0

(r2k,r2k+1)
}
. (4.1.33)

If we assume that the sequence (rk)k≥1 is such that

∞

∑
k=0

(−1)krs
k → L > 0 as s → 0+, s ∈ R, (4.1.34)

then the conclusion of Proposition 4.1.33(b) still holds, with the cone condition
involving K := K(a,G) replaced by the above modified cone condition, involving
the set K′ := Kr(a,G,(rk)k≥0) contained in K.

Proof. In order to establish this claim, it suffices to use a procedure analogous to
the one used in the proof of Proposition 4.1.33:

ζA,Ω (s)≥
∫

K′
|x−a|s−Ndx ≥ 1

m

∞

∑
k=0

∫
Br2k (a)\Br2k+1 (s)

|x−a|s−Ndx

=
NωN

m
s−1

∞

∑
k=0

(rs
2k − rs

2k+1) =
NωN

m
s−1

∞

∑
k=0

(−1)krs
k.

For example, if rk = 2−k, then condition (4.1.34) is fulfilled since

∞

∑
k=0

(−1)krs
k =

∞

∑
k=0

(−1)k2−ks =
1

1+2−s → 1
2

as s → 0+, s ∈ R.

This concludes the proof of the proposition. ��

The following proposition (building on Example 4.1.31 above) shows that the
box dimension of a relative fractal drum can be negative. It also shows that the
analog of Lemma 2.1.52 does not hold for arbitrary RFDs.

Proposition 4.1.35. Let A = {(0,0)} and

Ω = {(x,y) ∈ R
2 : 0 < y < xα , x ∈ (0,1)}, (4.1.35)

where α > 1; see Figure 4.3. Then the relative fractal drum (A,Ω) has a nega-
tive box dimension. More specifically, dimB(A,Ω) exists, the relative fractal drum
(A,Ω) is Minkowski measurable and
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Fig. 4.3 A relative fractal drum (A,Ω) with negative box dimension dimB(A,Ω) = 1−α < 0 (here
α > 1), due to the ‘flatness’ of the open set Ω at A; see Proposition 4.1.35. This provides a further
illustration of the drop in dimension phenomenon (for relative box dimensions).

dimB(A,Ω) = D(ζA,Ω ) = 1−α < 0,

M 1−α(A,Ω) =
1

1+α
,

Dmer(ζA,Ω )≤ 3(1−α).

(4.1.36)

Furthermore, s = 1−α is a simple pole of ζA,Ω .

Proof. First note that Aε = Bε((0,0)). Therefore, for every ε > 0, we have

|Aε ∩Ω | ≤
∫ ε

0
xαdx =

εα+1

α+1
.

If we choose a point (x(ε),y(ε)) such that

(x(ε),y(ε)) ∈ ∂ (Aε)∩{(x,y) : y = xα , x ∈ (0,1)},

then the following equation holds:

x(ε)2 + x(ε)2α = ε2. (4.1.37)

It is clear that

|Aε ∩Ω | ≥
∫ x(ε)

0
xαdx =

x(ε)α+1

α+1
.

Letting D := 1−α , we conclude that

1
α+1

(x(ε)
ε

)α+1
≤ |Aε ∩Ω |

ε2−D ≤ 1
α+1

, for all ε > 0. (4.1.38)
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We deduce from (4.1.37) that x(ε)∼ ε as ε → 0+, since

x(ε)
ε

= (1+ x(ε)2(α−1))−1/2 → 1 as ε → 0+, (4.1.39)

and therefore, (4.1.38) implies that dimB(A,Ω) = D and M D(A,Ω) = 1/(α+1).
Using (4.1.38) again, we have that

0 ≤ f (ε) :=
1

α+1
− |Aε ∩Ω |

ε2−D ≤ 1
α+1

(
1−

(x(ε)
ε

)α+1)
. (4.1.40)

Using (4.1.39) and the binomial expansion, we conclude that

(x(ε)
ε

)α+1
= 1− α+1

2
x(ε)2α−2 +o(x(ε)2α−2) as ε → 0+.

Therefore, we deduce from (4.1.40) that

f (ε) = O(x(ε2α−2)) = O(ε2α−2) as ε → 0+.

Since |Aε ∩Ω | = ε2−D((α + 1)−1 + f (ε)), by using Theorem 2.3.18 (adjusted to
the case of RFDs, see Theorem 4.5.1), we then conclude that

Dmer(ζA,Ω )≤ D− (2α−2) = 3(1−α).

Furthermore, s = D is a simple pole.
Finally, we note that the equality D(ζA,Ω ) = D follows from (4.1.10). ��

Example 4.1.36. Let (A,Ω) be the relative fractal drum in R
2 defined by A =

{(0,0)} and Ω = {(x,y) ∈ R
2 : 0 < y < x2, x ∈ (0,1)}; see Figure 4.2, for α = 2.

This relative fractal drum does not satisfy the cone property (at any point). (Note
that since A∩∂Ω = {(0,0)}, it suffices to check that (A,Ω) does not have the cone
property at a = (0,0), which is the case since 2 > 1; see Remark 4.1.30 and Exam-
ple 4.1.31.) According to Proposition 4.1.35, its relative box dimension is equal to
−1. We will show directly that the relative distance zeta function ζA,Ω (s) is well de-
fined at s = 0, and equal to Catalan’s constant. First, using polar coordinates (r,θ),
we obtain that for every s > 0,

ζA,Ω (s) =
∫
Ω

d((x,y),A)s−2 dxdy =
∫ 1

0
dx

∫ x2

0
(
√

x2 + y2)s−2 dy

=
∫ π/4

0
dθ

∫ 1/cosθ

tanθ/cosθ
rs−1 dr =

1
s

∫ π/4

0

1− tans θ
coss θ

dθ .

The function under the integral sign is dominated by a constant (independent of s),
so we conclude from the Lebesgue dominated convergence theorem that the integral
in the last expression above converges to zero. We can now apply l’Hospital’s rule
and differentiate under the integral sign in order to compute the limit at s = 0:
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lim
s→0+

ζA,Ω (s) = lim
s→0+

∫ π/4

0

∂
∂ s

(1− tans θ
coss θ

)
dθ

= lim
s→0+

∫ π/4

0

[(
tanθ
cosθ

)s

log(cotθ)+
log(cosθ)

coss θ
(tans θ −1)

]
dθ

=

∫ π/4

0
log(cotθ)dθ =

∞

∑
n=0

(−1)n

(2n+1)2 .

The next-to-last equality again follows from an application of Lebesgue’s dominated
convergence theorem, while the last sum is Catalan’s constant, which is approxi-
mately equal to 0.915.

In the following lemma, we show that for any δ > 0, the respective sets of prin-
cipal complex dimensions corresponding to RFDs (A,Ω) and (A,Aδ ∩Ω) coincide.

Lemma 4.1.37. Assume that (A,Ω) is a relative fractal drum in R
N. Then for any

δ > 0 we have
ζA,Ω (s)∼ ζA,Aδ∩Ω (s). (4.1.41)

In particular,
dimPC(A,Ω) = dimPC(A,Aδ ∩Ω) (4.1.42)

and therefore,
dimB(A,Ω) = dimB(A,Aδ ∩Ω). (4.1.43)

Here, the δ -neighborhood of A can be taken with respect to any norm on R
N.3

Proof. Recall that according to the definition of a relative fractal drum (A,Ω), there
exists δ1 > 0 such that d(x,A) < δ1 for all x ∈ Ω ; see Definition 4.1.2. On the
other hand, we have that d(x,A) > δ for all x ∈ Ω \Aδ . Therefore, by using The-
orem 2.1.45 with ϕ(x) := d(x,A) and dμ(x) := d(x,A)−Ndx, we conclude that the
difference

ζA,Ω (s)−ζA,Aδ∩Ω (s) =
∫
Ω\Aδ

d(x,A)s−Ndx

defines an entire function. This proves the desired equivalence in (4.1.41). The re-
maining claims of the lemma follow immediately from this equivalence. Finally, the
fact that any norm on R

N can be chosen to define Aδ follows from the equivalence
of all the norms on R

N . ��

The following result provides an example of a nontrivial relative fractal drum
(A,Ω) such that dimB(A,Ω) =−∞. It suffices to construct a domainΩ in R

2 which
is flat in a connected open neighborhood of one of its boundary points.

Corollary 4.1.38 (A maximally flat RFD). Let A = {(0,0)} and4

Ω ′ = {(x,y) ∈ R
2 : 0 < y < e−1/x, 0 < x < 1}. (4.1.44)

3 This fact will be used in an essential manner in the proof of Corollary 4.1.38.
4 The corresponding RFD (A,Ω ′) is very similar to the RFD (A,Ω) exhibited in Figure 4.2, but
now with an extremely sharp spike at the origin.
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Then dimB(A,Ω ′) exists and

dimB(A,Ω ′) = D(ζA,Ω ′) =−∞. (4.1.45)

Proof. Let us fix α > 1. Then, by l’Hospital’s rule,

lim
x→0+

e−1/x

xα
= lim

t→+∞

tα

et = 0.

Hence, there exists δ = δ (α)> 0 such that 0 < e−1/x < xα for all x ∈ (0,δ ); that is,

Ω ′
δ (α) ⊂Ωδ (α),

where
Ω ′
δ (α) := {(x,y) ∈ R

2 : 0 < y < e−1/x, 0 < x < δ (α)}
and

Ωδ (α) := {(x,y) ∈ R
2 : 0 < y < xα , 0 < x < δ (α)}.

Using Lemma 4.1.37 (with Ω ′ instead of Ω and with the ∞-norm on R
2 instead of

the usual Euclidean norm)5 and Proposition 4.1.35, we see that

dimB(A,Ω ′) = dimB(A,Ω ′
δ (α))≤ dimB(A,Ωδ (α)) = 1−α.

The claim follows by letting α →+∞, since then, we have that

−∞≤ dimB(A,Ω
′)≤ dimB(A,Ω ′) =−∞.

We conclude, as desired, that dimB(A,Ω) exists and is equal to −∞. ��

Remark 4.1.39. (Flatness and ‘infinitely sharp blade’). It is easy to see that Corol-
lary 4.1.38 can be significantly generalized. For example, it suffices to assume that
A is a point on the boundary of Ω such that Ω has the flatness property of A relative
toΩ . This can even be formulated in terms of subsets A. We can imagine a bounded
open set Ω ⊂R

3 with a Lipschitz boundary ∂Ω , except on a subset A ⊂ ∂Ω , which
may be a line segment, near which Ω is flat. A simple construction of such a set is
Ω =Ω ′ ×(0,1), whereΩ ′ is given as in Corollary 4.1.38, and A = {(0,0)}×(0,1);
see Equation (4.1.44). Note that this domain is not Lipschitz near the points of A,
and not even Hölderian; see Figure 4.4. The flatness of a relative fractal drum (A,Ω)
can be defined by

fl(A,Ω) =
(
dimB(A,Ω)

)−
,

where (r)− := max{0,−r} is the negative part of a real number r. We say that the
flatness of (A,Ω) is nontrivial if fl(A,Ω) > 0, that is, if dimB(A,Ω) < 0. In the
example just mentioned above, we have a relative fractal drum (A,Ω) with infinite

5 Note that Ω ′
δ (α) = Ω

′ ∩Bδ (α)(0), where Bδ (0) := {(x,y) ∈ R
2 : |(x,y)|∞ < δ} and |(x,y)|∞ :=

max{|x|, |y|}.
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Fig. 4.4 A relative fractal drum (A,Ω) with infinite flatness, as described in Remark 4.1.39. In
other words, Ω has infinite flatness near A; equivalently, dimB(A,Ω) = −∞, which provides an
even more dramatic illustration of the drop in dimension phenomenon (for relative box dimen-
sions).

flatness, i.e., with fl(A,Ω) = +∞. Intuitively, it can be viewed as an ‘ax’ with an
‘infinitely sharp’ blade.

4.1.3 Scaling Property of Relative Zeta Functions

We start with the following result, which shows that if (A,Ω) is a given relative
fractal drum, then for any λ > 0, the zeta function ζλA,λΩ (s) of the scaled relative
fractal drum (λA,λΩ) is equal to the zeta function ζA,Ω (s) of (A,Ω) multiplied
by λ s. This result extends Proposition 2.1.77.

Theorem 4.1.40 (Scaling property of relative distance zeta functions). Let
ζA,Ω (s) be the relative distance zeta function. Then, for any positive real number λ ,
we have that D(ζλA,λΩ ) = D(ζA,Ω ) = dimB(A,Ω) and

ζλA,λΩ (s) = λ sζA,Ω (s), (4.1.46)

for Res > dimB(A,Ω) and any λ > 0. (See also Corollary 4.1.42 below for a more
general statement.)

Proof. The claim is established by introducing a new variable y = x/λ , and by
noting that d(λy,λA) = λ d(y,A), for any y ∈ R

N (which is an easy consequence
of the homogeneity of the Euclidean norm). Indeed, in light of Remark 4.1.8 or
part (b) of Theorem 4.1.7, for s ∈ C with Res > dimB(A,Ω) = D(ζA,Ω ), we have
successively:
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ζλA,λΩ (s) =
∫
λΩ

d(x,λA)s−Ndx

=
∫
Ω

d(λy,λA)s−NλNdy

= λ s
∫
Ω

d(y,A)s−Ndy = λ sζA,Ω (s).

It follows that (4.1.46) holds and ζλA,λΩ (s) is holomorphic for Res > dimB(A,Ω).
Since D(ζA,Ω ) = dimB(A,Ω) (by part (b) of Theorem 4.1.7 and by Remark 4.1.8,
as was recalled above), we deduce that D(ζλA,λΩ )≤ D(ζA,Ω ), for every λ > 0. But
then, replacing λ with its reciprocal λ−1 in this last inequality, we obtain the reverse
inequality,6 and hence, we conclude that

dimB(A,Ω) = D(ζA,Ω ) = D(ζλA,λΩ ),

for all λ > 0, as desired. ��

If L = (� j) j≥1 is a fractal string and λ is a positive constant, then for the
scaled string λL := (λ� j) j≥1, the corresponding claim in Theorem 4.1.40 is triv-
ial: ζλL (s) = λ sζL (s), for every λ > 0. Indeed, by definition of the geometric zeta
function of a fractal string (see Equation (2.1.71) in Section 2.1.4), we have

ζλL (s) =
∞

∑
j=1

(λ� j)
s = λ s

∞

∑
j=1

�s
j = λ sζL (s),

for Res > D(ζL ). (The exact same argument as above then shows that D(ζL ) =
D(ζλL ).) Then, by analytic (i.e., meromorphic) continuation, the same identity con-
tinues to hold in any domain to which ζL can be meromorphically extended to the
left of the critical line {Res = D(ζL )}.

Remark 4.1.41. Let L := (A,Ω) be a relative fractal drum in R
N and let λL :=

(λA,λΩ), where λ > 0. If we define ζL (s) := ζA,Ω (s) =
∫
Ω d(x,A)s−Ndx, then we

can reformulate Theorem 4.1.40 as follows: D(ζλL ) = D(ζL ) = dimBL and

ζλL (s) = λ sζL (s), for Res > dimBL and λ > 0. (4.1.47)

More explicitly,

ζλA,λΩ (s) = λ sζA,Ω (s), for Res > dimB(A,Ω) and λ > 0. (4.1.48)

Clearly, in light of the principle of analytic continuation, the identities (4.1.47) and
(4.1.48) continue to hold for all s ∈ U , where U is any domain of C to which ζL
can be meromorphically continued.

6 More specifically, we replace (A,Ω) with (λ−1A,λ−1Ω) to deduce that for every λ > 0,
D(ζA,Ω ) ≤ D(ζλ−1A,λ−1Ω ). We then substitute λ−1 for λ in this last inequality in order to obtain
the desired reversed inequality: for every λ > 0, D(ζA,Ω )≤ D(ζλA,λΩ ).
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The following result supplements Theorem 4.1.40 in several different and signif-
icant ways.

Corollary 4.1.42. Fix λ > 0. Assume that ζA,Ω admits a meromorphic continu-
ation to some open connected neighborhood U of the open half-plane {Res >
dimB(A,Ω)}. Then, so is the case for ζλA,λΩ and the identity (4.1.46) continues
to hold for every s ∈U which is not a pole of ζA,Ω (and hence, of ζλA,λΩ as well).

Moreover, if we assume, for simplicity,7 that ω is a simple pole of ζA,Ω (and
hence also, of ζλA,λΩ ), then the following identity holds:8

res(ζλA,λΩ ,ω) = λω res(ζA,Ω ,ω). (4.1.49)

Proof. The fact that ζλA,λΩ is holomorphic at a given point s ∈U if and only if ζA,Ω
is holomorphic at s (i.e., if and only if Res> dimB(A,Ω)), follows from (4.1.46) and
the equality D(ζλA,λΩ ) = D(ζA,Ω ) = dimB(A,Ω). An analogous statement is true
if “holomorphic” is replaced with “meromorphic”. More specifically, by analytic
continuation of (4.1.46), ζλA,λΩ is meromorphic in the domain U (containing the
critical line {Res = dimB(A,Ω)}) if and only if ζA,Ω is meromorphic in U , and
then, clearly, identity (4.1.46) continues to hold for every s ∈U which is not a pole
of ζA,Ω (and hence also, of ζλA,λΩ ). Therefore, the first part of the corollary is
established.

Next, assume that ω is a simple pole of ζA,Ω . Then, in light of (4.1.46) and the
discussion in the previous paragraph, we have that for all s in a punctured neighbor-
hood of ω (contained in U but not containing any other pole of ζA,Ω ),

(s−ω)ζλA,λΩ (s) = λ s ((s−ω)ζA,Ω (s)
)
. (4.1.50)

The fact that (4.1.49) holds now follows by letting s →ω , s 
=ω in (4.1.50). Indeed,
we then have

res(ζA,Ω ,ω) = lim
s→ω

(s−ω)ζA,Ω (s),

and similarly for res(ζλA,λΩ ,ω). ��

This important scaling property of distance zeta functions of RFDs, established
in Theorem 4.1.40 and Corollary 4.1.42, is analogous to the well-known scaling
property of Hausdorff measure in Euclidean space (see, e.g., [Fal2]), but note that
in the spirit of the theory of complex fractal dimensions, it now holds for all com-
plex values of s (rather than just for the Hausdorff fractal dimension in the case of
Hausdorff measure). See, in addition, identity (4.1.49) of Corollary 4.1.42 where a
corresponding scaling property also holds for the complex fractal dimensions them-
selves, at the level of the residues.

7 If s is a multiple pole, then an analogous scaling property holds for the principal parts (instead of
the residues) of the zeta functions involved, as the reader can easily verify.
8 If we use the notation L := (A,Ω) and λL := (λA,λΩ) from Remark 4.1.41, Equation (4.1.49)
can be written more compactly as res(ζλL ,ω) = λω res(ζL ,ω).
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The scaling property of relative zeta functions (established in Theorem 4.1.40
and Corollary 4.1.42) motivates us to introduce the notion of relative fractal spray
(Definition 4.2.1), which is very close to (but also subtly different from) the
usual notion of fractal spray introduced by the first author and Carl Pomerance in
[LapPo3] (see [Lap-vFr3] and the references therein). First, we define the operation
of union of (disjoint) families of RFDs (Definition 4.1.43).

Definition 4.1.43. (Union of relative fractal drums). Let (A j,Ω j) j≥1 be a countable
family of relative fractal drums in R

N , such that the corresponding family of open
sets (Ω j) j≥1 is disjoint (i.e., Ω j ∩Ωk = /0 for j 
= k), and the set Ω := ∪∞j=1Ω j is of
finite N-dimensional Lebesgue measure (but may be unbounded). Then, the union
of the (finite or countable) family of relative fractal drums (A j,Ω j) ( j ≥ 1) is the
relative fractal drum (A,Ω), where A := ∪∞j=1A j and Ω := ∪∞j=1Ω j. We write

(A,Ω) =
∞⋃

j=1

(A j,Ω j). (4.1.51)

It is easy to derive the following countable additivity property of the distance
zeta functions.

Theorem 4.1.44. Assume that (A j,Ω j) j≥1 is a finite or countable family of RFDs
satisfying the conditions of Definition 4.1.43, and let (A,Ω) be its union (in the sense
of Definition 4.1.43). Furthermore, assume that the following condition is fulfilled:

For any j ∈ N and x ∈Ω j, we have that d(x,A) = d(x,A j). (4.1.52)

Then, for all s ∈ C such that Res > dimB(A,Ω), we have

ζA,Ω (s) =
∞

∑
j=1
ζA j ,Ω j(s). (4.1.53)

Condition (4.1.52) is satisfied, for example, if for every j ∈ N, A j is equal to the
boundary of Ω j in R

N; that is, A j = ∂Ω j .

Proof. The claim follows from the following computation, which is valid for Res >
dimB(A,Ω):

ζA,Ω (s) =
∫
Ω

d(x,A)s−Ndx =
∞

∑
j=1

∫
Ω j

d(x,A)s−Ndx

=
∞

∑
j=1

∫
Ω j

d(x,A j)
s−Ndx =

∞

∑
j=1
ζA j ,Ω j(s).

(4.1.54)

More specifically, clearly, (4.1.54) holds for s real such that s > dimB(A,Ω) ≥
D(ζA,Ω ). Therefore, for such a value of s,

ζA,Ω j(s) =
∫
Ω j

d(x,A)s−Ndx ≤
∫
Ω

d(x,A)s−Ndx = ζA,Ω (s)< ∞,
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for every j ≥ 1. Hence,

sup
j≥1

{D(ζA,Ω j)} ≤ D(ζA,Ω )≤ dimB(A,Ω), (4.1.55)

from which (4.1.54) now follows for all s∈C with Res> dimB(A,Ω), in light of the
countable additivity of the complex Borel measure (and hence, bounded measure)
on Ω , given by dγ(x) := d(x,A)s−Ndx. Note that according to the hypothesis of
Definition 4.1.43, we have |Ω |< ∞, so that dγ is indeed a complex Borel measure;
see, e.g., [Foll] or [Ru]. ��

Remark 4.1.45. In the statement of Theorem 4.1.44, the numerical series on the
right-hand side of (4.1.53) converges absolutely (and hence, converges also in C)
for Res > dimB(A,Ω). In particular, for s real such that s > dimB(A,Ω), it is a con-
vergent series of positive terms (i.e., it has a finite sum). It remains to be investigated
whether (and under which hypotheses) Equation (4.1.53) continues to hold for all
s ∈C in a common domain of meromorphicity of the zeta functions ζA,Ω and ζA j ,Ω j

for j ≥ 1 (away from the poles). At the poles, an analogous question could be raised
for the corresponding residues (assuming, for simplicity, that the poles are simple).
We will encounter a similar issue when discussing ‘local distance zeta functions’ in
Appendix B.

Since, among other things, Theorem 4.1.44 gives a way to compute the distance
zeta function of a given relative fractal drum if it can be appropriately subdivided
into a disjoint union of relative fractal ‘subdrums’, we introduce the following im-
portant definition.

Definition 4.1.46. (Disjoint union of relative fractal drums). Let the conditions of
Definition 4.1.43 be satisfied and also assume that condition (4.1.52) is satisfied
(so that the conclusion of Theorem 4.1.44 holds). Then, we call the union given in
(4.1.51) a disjoint union of relative fractal drums and write

(A,Ω) =
∞⊔

j=1

(A j,Ω j). (4.1.56)

Furthermore, in the special case when for every j ∈ N, we have that (A j,Ω j) =
λ j(A0,Ω0) for some sequence of positive numbers (λ j) j≥1 and some given relative
fractal drum (A0,Ω0), we will slightly abuse the notation and write

(A,Ω) =
∞⊔

j=1

λ j(A0,Ω0), (4.1.57)

in the sense that the scaled RFDs appearing in (4.1.57) are actually isometric images
of λ j(A0,Ω0) arranged in such a way that the union (4.1.57) is indeed a disjoint
union of relative fractal drums.
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4.1.4 Stalactites, Stalagmites and Caves Associated With Relative
Fractal Drums

In this subsection, we extend the notions of stalactites, stalagmites and caves, intro-
duced in Subsection 2.1.6, associated with fractal sets. Let (A,Ω) be a given relative
fractal drum in R

N . Assume that

Ω \A =
⋃
k∈J

Uk,

where {Uk}k∈J is the disjoint family of connected components of the open setΩ \A.
It is clear that the index set is at most countable. Let r be a given nonzero real
number, and let us define the following function:

f :Ω → [0,+∞], f (x) := d(x,A)r.

(If r < 0, we let 0r =+∞.) For each k ∈ J, we also introduce the function fk := f |Uk .

Definition 4.1.47. For each k ∈ J, the graph of the function fk is called the k-th
stalactite corresponding to the relative fractal drum (A,Ω) (and to r). The set
cave(A,Ω) = cave(A,Ω ,r) defined by

cave(A,Ω) := {(x,u) ∈Ω × (0,+∞) : 0 < u < f (x)}

and contained in R
N+1, is called the (A,Ω)-cave associated with the relative fractal

drum (A,Ω) (and corresponding to r).

Note that a connected component Uk of an unbounded open set Ω \A may be
unbounded. However, when r > 0, the corresponding function fk is bounded, due
to the assumption according to which there exists δ > 0 such that Ω ⊂ Aδ ; see
Definitions 4.1.1 and 4.1.2.

We could now proceed with further discussion and illustrative examples, in the
spirit of Subsection 2.1.6. Instead, we will limit ourselves to stating the analog of
Proposition 2.1.84.

Proposition 4.1.48. If s is a real number and s > dimB(A,Ω), then the volume of
the (A,Ω)-cave, corresponding to the parameter r = s−N, is finite.

Proof. This follows at once from Theorem 4.1.7. ��

4.2 Relative Fractal Sprays With Principal Complex Dimensions
of Arbitrary Orders

In this section, we consider a special type of RFDs, called relative fractal sprays,
and consider their distance zeta functions. We then illustrate the results obtained by
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computing the complex dimensions of relative Sierpiński sprays. More specifically,
we determine the complex dimensions of the relative Sierpiński gasket and of the
relative Sierpiński carpet; we also calculate the associated residues.

4.2.1 Relative Fractal Sprays in R
N

We now introduce the definition of relative fractal spray, which is very similar to
(but more general than) the notion of fractal spray (see [LapPo3], [Lap-vFr3, Def-
inition 13.2], [LapPe2–3] and [LapPeWi1–2]), itself a generalization of the notion
of (ordinary) fractal string [LapPo1–2, Lap1–3, Lap-vFr3].

Definition 4.2.1. Let (∂Ω0,Ω0) be a fixed relative fractal drum in R
N (which we

call the base relative fractal drum, or generating relative fractal drum or else, sim-
ply, the generator), (λ j) j≥0 a decreasing sequence of positive numbers (scaling fac-
tors), converging to zero, and (b j) j≥0 a given sequence of positive integers (mul-
tiplicities). The associated relative fractal spray is a relative fractal drum (A,Ω)
obtained as the disjoint union of a sequence of RFDs F := {(∂Ωi,Ωi) : i ∈ N0},
where N0 := N∪{0}, such that each Ωi can be obtained from λ jΩ0 by a rigid mo-
tion in R

N , and for each j ∈ N0 there are precisely b j RFDs in the family F that
can be obtained from λ jΩ0 by a rigid motion. Any relative fractal spray (A,Ω),
generated by the base relative fractal drum (or ‘basic shape’) Ω0 and the sequences
of ‘scales’ (λ j) j≥0 with associated ‘multiplicities’ (b j)≥0, is denoted by

(A,Ω) := Spray(Ω0,(λ j) j≥0,(b j) j≥0). (4.2.1)

The family F is called the skeleton of the spray. The distance zeta function ζA,Ω of
the relative fractal spray is computed in Theorem 4.2.5 below.

If there exist λ ∈ (0,1) and an integer b ≥ 2 such that λ j = λ j and b j = b j, for
all j ∈ N0, then we simply write

(A,Ω) = Spray(Ω0,λ ,b).

Here, it should be noted that there exist nonsprayable RFDs (∂Ω0,Ω0) in R
N ;

see Example 4.2.13 below.

Definition 4.2.2. The relative fractal spray (A,Ω)= Spray(Ω0,(λ j) j≥0, (b j)≥0) can
be viewed as a relative fractal drum generated by (∂Ω0,Ω0) and a fractal string L =
(� j) j≥1, consisting of the decreasing sequence (λ j) j≥0 of positive real numbers, in
which each λ j has multiplicity b j. Thus, we can write (A,Ω) = Spray(Ω0,L ). It is
also convenient to view the construction of (A,Ω) in Definition 4.2.1 as the tensor
product of the base relative fractal drum (A0,Ω0) and the fractal string L :

(A,Ω) = (∂Ω0,Ω0)⊗L . (4.2.2)
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We can also define the tensor product of two (possibly unbounded) fractal strings
L1 = (�1 j) j≥1 and L2 = (�2k)k≥1 as the following fractal string (note that here, L1

and L2 are viewed as nonincreasing sequences of positive numbers tending to zero,
but that we may have ∑∞j=1 �1 j =+∞ or ∑∞k=1 �2k =+∞):

L1 ⊗L2 := (�1 j�2k) j,k≥1. (4.2.3)

The multiplicity of any l ∈ L1 ⊗L2 is equal to the number of ordered pairs of
(�1 j, �2k) in the Cartesian product L1 ×L2 of multisets such that l = �1 j�2k.

We can easily modify the notion of relative fractal spray in Definition 4.2.1
in order to deal with a finite collection of K basic RFDs (or generating RFDs)
(∂Ω01,Ω01),. . . ,(∂Ω0K ,Ω0K), similarly as in [LapPo3], [Lap-vFr3, Definition 13.2]
(and [LapPe2–3, LapPeWi1–2]). A slightly more general notion would consist in re-
placing (∂Ω0,Ω0) with any relative fractal drum (A0,Ω0); see Definition 4.2.9.

It is important to stress that, from our point of view, the sets Ωi in the definition
of a relative fractal spray (Definition 4.2.1) do not have to be ‘densely packed’. In
fact, in general, they cannot be ‘densely packed’, as indicated by Example 4.2.4(c)
below. They can just be viewed as a union of the disjoint family {(∂Ωi,Ωi)}i≥0 of
RFDs in R

N , where the corresponding family of open sets {Ωi}i≥1 is disjoint. Its
union, ∪∞i=0Ωi, can even be unbounded in R

N , although it has to be of finite N-
dimensional Lebesgue measure. As an example, we can consider the family of balls
{Ωi := Bri(ai)}i≥0 in R

N , such that |ai| →+∞ as i → ∞ and ∑∞i=0 rN
i < ∞.

The following simple lemma provides necessary and sufficient conditions for a
relative fractal spray (A,Ω) to be such that |Ω |< ∞.

Lemma 4.2.3. Assume that (A,Ω) := Spray(Ω0,(λ j) j≥0,(b j)≥0) in R
N is a relative

fractal spray. Then |Ω |< ∞ if and only if |Ω0|< ∞ and

∞

∑
j=0

b jλN
j < ∞. (4.2.4)

In that case, we have

|Ω |= |Ω0|
∞

∑
j=0

b jλN
j . (4.2.5)

In particular, the relative fractal drum (A,Ω) is well defined and dimB(A,Ω)≤ N.

Proof. Let us prove the sufficiency part. For Ω j = λ jΩ0 we have |Ω j| = |λ jΩ0| =
λN

j |Ω0|, and therefore,

|Ω |=
∞

∑
j=0

|Ω j|=
∞

∑
j=0

b j|λ jΩ0|= |Ω0|
∞

∑
j=0

b jλN
j .

The proof of the necessity part is also easy and is therefore omitted. ��
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Fig. 4.5 Left: The Sierpiński gasket A, viewed as a relative fractal drum (A,Ω), with Ω being the
countable disjoint union of open triangles contained in the unit triangle Ω0. Right: An equivalent
interpretation of the Sierpiński gasket drum (A,Ω). Here, Ω is a countable disjoint union of open
equilateral triangles, and A = ∂Ω . (There are 3 j−1 triangles with sides 2− j in the union, with
j ∈ N.) Both pictures depict the first three iterations of the construction. We can also view the
standard Sierpiński gasket A as a relative fractal drum (A,Ω), in which Ω is just the open unit
triangle in the left picture.

Example 4.2.4. Here, we provide a few simple examples of relative fractal sprays:

(a) The ternary Cantor set can be viewed as a relative fractal drum

(A,Ω) = Spray(Ω0,1/3,2)

(or the Cantor relative fractal drum, or the relative Cantor fractal spray), gener-
ated by

(∂Ω0,Ω0) = ({1/3,2/3} , (1/3,2/3))

as the base relative fractal drum, λ = 1/3 and b = 2. Its relative box dimension is
given by D = log3 2. Of course, this is just an example of ordinary fractal string,
namely, the well-known Cantor string.

(b) The Sierpiński gasket can be viewed as a relative fractal drum (or the
Sierpiński relative fractal drum, or Sierpiński relative fractal spray), generated by
(∂Ω0,Ω0) as the basic relative fractal drum, where Ω0 is an open equilateral trian-
gle of sides of length 1/2, λ = 1/2 and b = 3. Its relative box dimension is given by
D = log2 3.

(c) IfΩ0 is any bounded open set in R
2 (say, an open disk), λ = 1/2 and b= 3, we

obtain a fractal spray (A,Ω) = Spray(Ω0,1/2,3), in the sense of Definition 4.2.1. In
Theorem 4.2.5, we shall see that ifΩ0 has a Lipschitz boundary, then the set of poles
of the relative zeta function of this fractal spray (which is a relative fractal drum),
as well as the multiplicities of the poles, do not depend on the choice of Ω0. In this
sense, examples (b) and (c) are equivalent. In particular, the box dimension of the
generalized Sierpiński relative fractal drum is constant, and equal to D = log2 3.

In other words, the Sierpiński gasket (A,Ω) = Spray(Ω0,1/2,3), appearing in
Example 4.2.4(b), can be viewed as any countable disjoint collection of open trian-
gles in the plane (which can be even an unbounded collection) and their bounding
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triangles, of sizes λ j = 2− j and multiplicities b j = 3 j, j ∈ N0, and not just as the
standard disjoint collection of open triangles, densely packed inside the unit open
triangle. See Figure 4.5.

Using the scaling property stated in Theorem 4.1.40, it is easy to explicitly com-
pute the distance zeta function of relative fractal sprays. Note that the zeta function
involves the Dirichlet series f (s) := ∑∞j=0 b jλ s

j . Theorem 4.2.5 just below can be
considered as an extension of Theorem 4.1.40.

Theorem 4.2.5 (Distance zeta function of relative fractal sprays). Let

(A,Ω) = Spray(Ω0,(λ j) j≥0,(b j) j≥0)

be a relative fractal spray in R
N, in the sense of Definition 4.2.1, and such that

|Ω0| < ∞. Assume that condition (4.2.4) of Lemma 4.2.3 is satisfied; that is, |Ω | <
∞. Let Ω be the (countable, disjoint) union of all the open sets appearing in the
skeleton, corresponding to the fractal spray. In other words, Ω is the disjoint union
of the open sets Ω j, each repeated with the multiplicity b j for j ∈ N0. Let f (s) :=
∑∞j=0 b jλ s

j .
9 Then, for Res > max{dimB(A,Ω),D( f )}, the distance zeta function of

the relative fractal spray (A,Ω) is given by the factorization formula

ζA,Ω (s) = ζ∂Ω0,Ω0
(s) · f (s), (4.2.6)

and

dimB(A,Ω) = max{dimB(∂Ω0,Ω0),D( f )}. (4.2.7)

Proof. Clearly, it follows from (4.2.4) that f (N) < ∞. Hence, D( f ) ≤ N; so that
dimB(A,Ω) ≤ N. Each open set of the skeleton of the relative fractal spray is ob-
tained by a rigid motion of sets of the form λ jΩ0, and for any fixed j ∈ N0 , there
are precisely b j such sets. Identity (4.2.6) then follows immediately from Theo-
rems 4.1.40 and 4.1.44. The remaining claims are easily derived by using this iden-
tity. ��

Note that it follows from Definition 4.2.2 and relation (4.2.6) that the distance
zeta function of the tensor product is equal to the product of the zeta functions of its
components:

ζ(∂Ω0,Ω0)⊗L (s) = ζ∂Ω0,Ω0
(s) ·ζL (s). (4.2.8)

Equation (4.2.7) can therefore be written as follows:

dimB((∂Ω0,Ω0)⊗L ) = max{dim(∂Ω0,Ω0),dimBL }. (4.2.9)

Theorem 4.2.6. Assume that a relative fractal spray (A,Ω) = Spray(Ω0,λ ,b), in-
troduced at the end of Definition 4.2.1, is such that |Ω0|<∞, λ ∈ (0,1), b ≥ 2 is an
integer, and bλN < 1. Then, for Res > max{dimB(∂Ω0,Ω0), log1/λ b}), we have

9 Note that according to (4.2.4), this Dirichlet series converges absolutely for Res ≥ N; hence,
D( f )≤ N.



4.2 Relative Fractal Sprays With Principal Complex Dimensions of Arbitrary Orders 277

ζA,Ω (s) =
ζ∂Ω0,Ω0

(s)

1−bλ s , (4.2.10)

and the lower bound for Res is optimal. In particular, it is equal to D(ζA,Ω ), and

dimB(A,Ω) = D(ζA,Ω ) = max{dimB(∂Ω0,Ω0), log1/λ b}.

If, in addition, Ω0 is bounded and has a Lipschitz boundary ∂Ω0 which can be
described by finitely many Lipschitz charts, then dimB(A,Ω) exists and

dimB(A,Ω) = max{N −1, log1/λ b}. (4.2.11)

If we assume that log1/λ b ∈ (N − 1,N), then the set dimPC(A,Ω) = Pc(ζA,Ω ) of
principal complex dimensions of the relative fractal spray (A,Ω) is given by

dimPC(A,Ω) = log1/λ b+
2π

log(1/λ )
iZ. (4.2.12)

Proof. If λ j = λ and b j = b j for all j ∈ N, with bλN < 1, then ∑∞j=0 b jλ jN =
1

1−bλN < ∞; so that |Ω |< ∞. Identity (4.2.10) follows immediately from (4.2.6), by
using the fact that for Ω0 with a Lipschitz boundary satisfying the stated assump-
tion, we have dimB(∂Ω0,Ω0) = dimB ∂Ω0 = N−1 (this follows, for example, from
[ŽuŽup2, Lemma 3]; see also [Lap1]), together with the property of finite stability
of the upper box dimension; see, e.g., [Fal1, p. 44]. ��
Example 4.2.7. Here, we construct a relative fractal spray

(A,Ω) = Spray(Ω0,(λ j) j≥1,(b j)≥1)

in R
2 such that |Ω0| < ∞, b j ≡ 1, ∑∞j=1λ 2

j < ∞ (hence, |Ω | < ∞ by Lemma 4.2.4),
and such that the base set Ω0 is unbounded, as well as its boundary ∂Ω0. Let Ω0 be
any unbounded Borel set of finite 2-dimensional Lebesgue measure, such that both
Ω0 and ∂Ω0 are unbounded, and Ω0 is contained in a horizontal strip

V1 := {(x,y) ∈ R
2 : 0 < y < 1}.

We can construct such a set explicitly as

Ω0 = {(x,y) ∈ R
2 : 0 < y < x−α , x > 1},

where α > 1, so that |Ω0|< ∞.
Let (Vj) j≥1 be a countable, disjoint sequence of horizontal strips in the plane,

defined by Vj =V1+(0, j) for each j ∈N. Let (λ j) j≥1 be a sequence of real numbers
in (0,1) such that ∑∞j=1λ 2

j < ∞. It is clear that for any λ j, j ≥ 2, the set λ jΩ0 is
congruent (up to a rigid motion) to the subset Ω j := λ jΩ0 +(0, j) of Vj. Then, the
fractal spray

(A,Ω) =
∞⋃

j=1

(∂Ω j,Ω j)

has the desired properties.
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It is clear that the tensor product introduced in Definition 4.2.2 is associative, in
the following sense:10

((A0,Ω0)⊗L1)⊗L2 = (A0,Ω0)⊗ (L1 ⊗L2). (4.2.13)

This equation shows that the tensor product defines the action of bounded fractal
strings L on the set of relative fractal drums. [Here, we consider the set of bounded
fractal strings (with the trivial strings included and equipped with the tensor prod-
uct ⊗) as a monoid, where the identity element is the trivial fractal string consisting
of only one length �= 1.] We can therefore extend Theorem 4.2.5 as follows.

Theorem 4.2.8. Assume that (A0,Ω0) is a base relative fractal drum in R
N, and

let (Lk)k≥0 be a sequence of fractal strings. Let (Ak,Ωk), k ≥ 1, be a sequence of
relative fractal sprays defined by

(Ak,Ωk) = (Ak−1,Ωk−1)⊗Lk−1. (4.2.14)

Then

(Ak,Ωk) = (A0,Ω0)⊗
(

k−1⊗
j=0

L j

)
. (4.2.15)

Furthermore, for each k ≥ 1, we have

ζAk,Ωk(s) = ζA0,Ω0(s) ·
k−1

∏
j=0
ζL j(s), (4.2.16)

for all s ∈ C with Res > max{dimB(A0,Ω0),dimBL0, . . . ,dimBLk−1}, and

dimB(Ak,Ωk) = max{dimB(A0,Ω0),dimBL0, . . . ,dimBLk−1}. (4.2.17)

Proof. Relation (4.2.15) follows easily by induction, using the associativity of the
tensor product. The remaining claims then follow much as in the proof of Theo-
rem 4.2.5. ��

We close this subsection by providing the following generalization of the notion
of fractal spray, which is quite natural in our context.

Definition 4.2.9. A relative fractal spray is defined exactly as a fractal spray in
Definition 4.2.1, except that the generator of the spray is now allowed to be an
arbitrary relative fractal drum (A0,Ω0), where A0 ⊆ R

N is arbitrary and Ω0 ⊆ R
N

is open, but not necessarily bounded; see Definition 4.1.2. (We assume that Ω0 ⊆
(A0)δ , for some δ > 0. In addition, we may also require that the total volume of the
spray be finite: |Ω |<∞.) The corresponding relative fractal spray (A,Ω) is denoted
by

(A,Ω) := Spray((A0,Ω0),(λ j) j≥0,(b j)≥0). (4.2.18)

10 This equality should be understood modulo isometric displacements of scaled copies of (A0,Ω0).
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In the special case when λ j = λ j and b j = b j, j ≥ 0, where λ ∈ (0,1) and an integer
b ≥ 2 are fixed, the corresponding relative fractal spray is denoted by (A,Ω) :=
Spray((A0,Ω0),λ ,b).

For example, ‘spraying’ a given relative fractal spray Spray((A0,Ω0),λ0,b0) is
also possible:

(A1,Ω1) = Spray(Spray((A0,Ω0),λ0,b0),λ1,b1). (4.2.19)

By continuing to spray as in Equation (4.2.19), we can define iterated relative fractal
sprays (An,Ωn) inductively by

(An,Ωn) = Spray((An−1,Ωn−1),λn,bn), for each n ≥ 1. (4.2.20)

The notion of a relative fractal spray will be used in several places in the remain-
der of this chapter as well as in Chapters 5–6, most often without explicit mention.
We leave it to the reader (or to future work) to further explore some of the addi-
tional properties of relative fractal sprays and their relative (distance or tube) zeta
functions, defined as in Definition 4.1.1 and by using Theorem 4.1.40.

4.2.2 Principal Complex Dimensions of Arbitrary Multiplicities

The goal of this subsection is to show how one can effectively construct fractal
sets (as well as fractal strings and even RFDs) which have poles along the criti-
cal line (i.e., principal complex dimensions) of any given order (i.e., multiplicity),
and even infinitely many essential singularities (see Theorem 4.2.19 and Remark
4.2.21 below). Such fractal strings and more general RFDs are interesting exam-
ples of strongly hyperfractal RFDs, in the sense of part (ii) of Definition 4.6.23 in
Subsection 4.6.3 below. The corresponding method for constructing these RFDs is
explained and illustrated in the following example.

Example 4.2.10. (Cantor sets of higher order). We will provide here an example of
a relative fractal drum of R such that, for any given m ∈N, its distance zeta function
has an infinite set of poles of order m in arithmetic progression and located on the
critical line. The construction is based on an ‘iterated Cantor set’, as we now explain.

Let C be the standard middle-third Cantor set contained in [0,1] and let Ω :=
(0,1). Then, let (C,Ω) be our base relative fractal drum and let L := LCS be the
Cantor string with total length 3; that is,

L = (1,3−1,3−1,3−2, . . . ,3−2︸ ︷︷ ︸
4 times

,3−3, . . . ,3−3︸ ︷︷ ︸
8 times

, . . .).

We now define the relative fractal drum (C2,Ω2) as the tensor product (C,Ω)⊗L ;
see Definitions 4.2.1, 4.2.2 and Figure 4.6. Furthermore, one can see clearly that
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(C2,Ω2) = (C,Ω)�3−1(C2,Ω2)�3−1(C2,Ω2), (4.2.21)

where � denotes a disjoint union of isometric images of scaled copies of (C2,Ω2);
see Definition 4.1.46. Then, by the scaling property of the relative distance zeta
function (see Theorem 4.1.40), we have

ζC2,Ω2(s) = ζC,Ω (s)+2ζ3−1C2,3−1Ω2
(s) = ζC,Ω (s)+2 ·3−s ζC2,Ω2(s),

for all s ∈ C such that Res is sufficiently large, or, in other words,

ζC2,Ω2(s) =
3s

3s −2
ζC,Ω (s) =

2 ·3s

2ss(3s −2)2 , (4.2.22)

where, in the second equality, we have used the expression for ζC = ζC,Ω obtained
in Example 2.1.82. In light of the principle of analytic continuation, it is clear that
Equation (4.2.22) continues to hold for all s ∈ C, and hence, ζC2,Ω2 is meromorphic
on all of C and

P(ζC2,Ω2) = {0}∪
(

log3 2+
2π

log3
iZ

)
. (4.2.23)

Furthermore, the poles ωk := log3 2+ 2πik
log3 for k ∈ Z are all of second order (i.e.,

of multiplicity two). We conclude that dimB(C2,Ω2) = log3 2. More specifically, by
Theorem 5.3.16 in Chapter 5 below, and in light of expression (4.2.22) for ζC2,Ω2 ,
we obtain the following exact tube formula for the second order Cantor set, valid
pointwise for all t ∈ (0,1):

|(C2)t ∩Ω2|= t1−log3 2
(

log t−1G(log t−1)+H(log t−1)
)
+2t, (4.2.24)

where G,H : R→ R are nonconstant, bounded periodic functions with minimal pe-
riod T := log3. These functions can be computed explicitly in terms of their Fourier
series but the algebraic expressions for their Fourier coefficients are too complicated
to be given here in a concise manner. Furthermore, we conclude from the tube for-
mula (4.2.24) that dimB(C2,Ω2) exists and dimB(C2,Ω2) = log3 2, and moreover,
that M D(C2,Ω2) = +∞.

We can now repeat the above process inductively; that is, for each integer n ≥ 2,
we define the relative fractal drum (Cn,Ωn) as a relative fractal spray generated by
(Cn−1,Ωn−1) and L ; that is, (Cn,Ωn) := (Cn−1,Ωn−1)⊗L , for each integer n ≥ 2.
Much as before, we obtain that

ζCn,Ωn(s) =
2 ·3(n−1)s

2ss(3s −2)n , for all s ∈ C. (4.2.25)

The set of complex dimensions of the RFD (Cn,Ωn) is the same as in the case when
n = 2 (see Equation (4.2.23) above), but except at s := 0 (which is simple), the
corresponding multiplicities are not the same and depend on n. (Hence, the multisets
P(ζCn,Ωn) are different for each n ∈ N.) More specifically, the poles of ζCn,Ωn at
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Fig. 4.6 The second order Cantor set from Example 4.2.10. Only the first four iterations are shown
here. More precisely, from left to right, we have the middle-third Cantor set C in [0,1], then two
copies of C scaled by 1/3, and then four copies of C scaled by 1/9; and so on, ad infinitum.

s :=ωk = log3 2+ 2πik
log3 for each k ∈Z are of order n and D := dimB(C2,Ω2) = log3 2.

Furthermore, again by Theorem 5.3.16, we have the following exact tube formula,
valid pointwise for all t ∈ (0,1):

|(Cn)t ∩Ωn|= t1−log3 2
n

∑
i=1

(log t−1)i−1Gi(log t−1)+2t, (4.2.26)

where for i = 1, . . . ,n, Gi : R→R is a nonconstant, bounded periodic function with
minimal period T := log3. As in the case of the second order Cantor set, each of
these functions can be computed explicitly in terms of its Fourier series.

Finally, we can now use the sequence of relative fractal drums (Cn,Ωn), for n∈N,
in order to construct an RFD (A,Ω) which will have an infinite set of essential
singularities on the critical line {Res = dimB(A,Ω)}. The construction is analogous
to the one in the proof of Theorem 3.3.6 and in Example 3.3.7 in Section 3.3 above,
dealing with Cantor strings of higher order. We let (C1,Ω1) := (C,Ω), scale down
every RFD (Cn,Ωn) by the factor 3−n/n! and define (A,Ω) as the disjoint union of
copies of the resulting RFDs; that is,

(A,Ω) :=
∞⊔

n=1

3−n

n!
(Cn,Ωn). (4.2.27)

(Here, we have used Definition 4.5.7 and Lemma 4.5.10 in Subsection 4.5.2 below.)
We then have

ζA,Ω (s) =
∞

∑
n=1
ζ3−n(n!)−1(Cn,Ωn)

(s) =
∞

∑
n=1

3−ns

(n!)s ζCn,Ωn(s)

=
2

6ss

∞

∑
n=1

1
(n!)s(3s −2)n .

(4.2.28)
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By the Weierstrass M-test, ζA,Ω (s) is holomorphic on {Res> 0}\
(

log3 2+ 2π
log3 iZ

)
.

More precisely, it has essential singularities at each point of the set log3 2+ 2π
log3 iZ.

Note that the critical line {Res = log3 2} is clearly not a natural boundary for ζA,Ω
since ζA,Ω given by Equation (4.2.28) can be holomorphically continued to the con-
nected open set {Res > 0}\dimPC(A,Ω).

In light of Theorem 5.3.16 of Chapter 5 below, we deduce that the tube formula
of (A,Ω) has the following asymptotic expansion:

|At ∩Ω |= t1−log3 2
∞

∑
i=1

(log t−1)i−1Gi(log t−1)+O(t1−α) as t → 0+, (4.2.29)

for any α > 0, and where, similarly as before, the functions Gi for i ∈ N are non-
constant, bounded periodic functions with minimal period T := log3. Although in
Chapter 5, we always assume that the corresponding fractal zeta function has a
meromorphic extension to a suitable connected open neighborhood of the critical
line, the results of Chapter 5 actually extend to functions having only isolated sin-
gularities in a suitable neighborhood of the critical line; that is, the correspond-
ing fractal zeta functions may also have essential singularities. It is now easy to
check that ζA,Ω given by (4.2.28) satisfies the conditions of Theorem 5.3.16, with
κd := −1; (see Definitions 5.1.3 and 5.3.9), and with the screen S taken as the
vertical line {Res = α}. The tube formula (4.2.29) now follows by calculating the
residues res(t1−s(1− s)−1ζA,Ω (s),ωk), where ωk ∈ log3 2+ 2π

log3 iZ.
We close this discussion by observing that, as was alluded to earlier, the RFD

(A,Ω) is a strongly hyperfractal RFD (in the sense of part (ii) of Definition 4.6.23
in Subsection 4.6.3 below and as strengthened in both parts of Remark 1.3.9), which
is not maximally hyprefractal (in the sense of part (iii) of that same definition).

The above construction can be generalized verbatim for any (nontrivial) bounded
fractal string L instead of the Cantor string LCS. This suggests that the definition
of complex dimensions should be extended to also include potential essential sin-
gularities (as well as algebraic and transcendental singularities) of the fractal zeta
functions, in the spirit of [Lap-vFr3, Subsection 13.4.3].

Let us now recall the definition of a self-similar spray or tiling (see [LapPe2–3],
[LapPeWi1–2], [Lap-vFr3, Section 13.1]). More precisely, let us state this definition
slightly more generally and in the context of relative fractal drums.

Definition 4.2.11. (Self-similar spray or tiling). Let G be a given open subset
(base set or generator) of R

N of finite N-dimensional Lebesgue measure and let
{r1,r2, . . . ,rJ} be a finite multiset (also called a ratio list) of positive real numbers
(in (0,1)) such that J ∈ N, J ≥ 2 and

J

∑
j=1

rN
j < 1. (4.2.30)

Furthermore, letΛ be the multiset consisting of all the possible ‘words’ of multiples
of the scaling factors r1, . . . ,rJ ; that is, let
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Λ := {1,r1, . . . ,rJ ,r1r1, . . . ,r1rJ ,r2r1, . . . ,r2rJ , . . . ,rJr1, . . . ,rJrJ ,

r1r1r1, . . . ,r1r1rJ , . . .}
(4.2.31)

and arrange all of the elements of the multiset Λ into a scaling sequence (λi)i≥0,
where λ0 := 1. Note that 0 < λi < 1, for every i ≥ 1.

A self-similar spray (or tiling), generated by the base set G and the ratio list
{r1,r2, . . . ,rJ} is an RFD (∂Ω ,Ω) in R

N , where Ω is a disjoint union of open sets
Gi; i.e.,

Ω :=
∞⊔

i=0

Gi, (4.2.32)

such that each Gi is congruent to λiG, for each i ≥ 0. Here, the disjoint union �
can be understood as the disjoint union of RFDs given in Definition 4.1.46, with
(Ai,Ωi) := (∂Gi,Gi) for every i ≥ 0, in the notation of that definition.

Remark 4.2.12. Note that in the above definition, the scaling sequence (λi)i≥0 con-
sists of all the products of ratios r1, . . . ,rJ appearing in the infinite sum

∞

∑
n=0

( J

∑
j=1

r j

)n

, (4.2.33)

after expanding the powers and counted with their multiplicities. More precisely,
we have that for every multi-index α = (α1, . . . ,αJ) ∈ N

J
0, the multiplicity of

rα1
1 rα2

2 . . .rαJ
J in the multiset Λ is equal to the multinomial coefficient

(
|α|

α1,α2, . . . ,αJ

)
=

|α|!
α1!α2! · · ·αJ!

, (4.2.34)

where |α| := ∑J
j=1α j. Of course, depending on the specific values of the ratios

r1, . . . ,rJ , some of the numbers rα1
1 rα2

2 . . .rαJ
J may be equal for different multi-

indices α ∈ N
J
0.

Furthermore, the condition (4.2.30) ensures that the set Ω = �i≥0Gi has finite
N-dimensional Lebesgue measure. Indeed, we have

|Ω |=
∞

∑
i=0

|Gi|=
∞

∑
i=0

|λiG|= |G|
∞

∑
i=0
λN

i

= |G|
∞

∑
n=0

( J

∑
j=1

rN
j

)n

=
|G|

1−∑J
j=1 rN

j

< ∞,
(4.2.35)

since (4.2.30) is satisfied. Note that the second to last equality above follows from
the construction of the scaling sequence (λi)i≥0.

In Definition 4.2.11, it is implicitly assumed that the generator G is such that
it is indeed possible to construct the disjoint union appearing in (4.2.32), as given
in Definition 4.1.46. This can always be achieved when G is bounded, which is
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the usual assumption made when dealing with self-similar sprays as, for instance,
in [LapPe2–3], [LapPeWi1–2] and [Lap-vFr3, Section 13.1]. However, contrary to
intuition, this does not have to be the case for a general open set G of finite N-
dimensional Lebsgue measure, as is shown by the following example.

Example 4.2.13. Here, we construct an open set G in R
N of finite N-dimensional

Lebesgue measure, and which is dense in R
N . Therefore, any isometric image of

a scaled copy of G has an intersection with G of positive N-dimensional Lebesgue
measure. Let A= {ak ∈R

N : k ∈N} be a countable dense subset of RN (for example,
the set of points in R

N with rational coordinates). Let (ρk)k≥1 be a sequence of
positive real numbers such that ∑∞k=1ρN

k < ∞, and consider the open set G defined
as the (not necessarily disjoint) union of the open balls Bρk(ak) of radius ρk and with
centers at ak, for k ≥ 1:

G :=
∞⋃

k=1

Bρk(ak). (4.2.36)

Then, its N-dimensional volume is positive and finite since

0 < |G|N ≤
∞

∑
k=1

|Bρk(ak)|N = ωN

∞

∑
k=1

ρN
k < ∞, (4.2.37)

where ωN is the volume of the unit ball of R
N . Since A = R

N , it follows that A
(and hence, G as well) has a nonempty intersection with any nonempty open subset
of RN .

We proceed by discussing some interesting properties of the RFD (A,G). Since
A = R

N and since d(x,A) = d(x,A) = 0 for any x ∈ R
N , we have that At = R

N for
any t > 0; so that At ∩G = G, and therefore, |At ∩G|= |G| for all t > 0. Hence, for
any fixed real number s, we have

|At ∩G|
tN−s = |G| ts−N ∼ ts−N as t → 0+; (4.2.38)

it follows that
dimB(A,G) = N. (4.2.39)

Let us now compute the tube zeta function ζ̃A,G of the RFD (A,G):

ζ̃A,G(s) :=
∫ δ

0
ts−N−1|At ∩G|dt = |G|

∫ δ

0
ts−N−1dt = |G| δ

s−N

s−N
, (4.2.40)

for all s ∈C such that Res > N. Therefore, ζ̃A,G can be (uniquely) meromorphically

extended to the whole complex plane by letting ζ̃A,G(s) := |G| δ s−N

s−N for all s ∈ C.
In order to compute the distance zeta function of the RFD (A,G), note (much as

before) that for any x ∈ R
N , we have

d(x,A) = d(x,A) = d(x,RN) = 0. (4.2.41)
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Therefore, the distance zeta function ζA,G satisfies ζA,G(s) :=
∫

G d(x,A)s−Ndx = 0
for all s ∈ C such that Res > N. This function can be holomorphically extended to
the whole complex plane by letting ζA,G ≡ 0 on all of C. We have thus constructed
an RFD (A,G) in R

N such that

D(ζA,G) = N, Dhol(ζA,G) = Dmer(ζA,G) =−∞,
D(ζ̃A,G) = Dhol(ζ̃A,G) = N, Dmer(ζ̃A,G) =−∞.

(4.2.42)

Note that in the case of the relative distance zeta function ζA,G, we have achieved
the maximal possible gap between its abscissa of (absolute) convergence and its
abscissa of holomorphic continuation, since for any RFD (A,G) in R

N , we have
D(ζA,G),Dhol(ζA,G) ∈ [−∞,N].

It is also worth noting that the open set G has finite N-dimensional Lebesgue
measure, while the N-dimensional Lebesgue measure of its boundary ∂G is infinite.
Indeed, we have that

|∂G|N = |G\Ω |N = |RN \G|N = |RN |N −|G|N =+∞−|G|N =+∞. (4.2.43)

In light of the above example, it is natural to introduce the following definition.

Definition 4.2.14. We let RFDΛ (RN) be the family of all relative fractal drums
(A,Ω) in R

N such that for a given multiset Λ = Λ(r1, . . . ,rJ) of scaling factors
λ ∈ (0,1) defined by (4.2.31), one can construct the disjoint union �λ∈Λλ (A,Ω),
in the sense of Definition 4.1.46. We then say that (A,Ω) isΛ -sprayable in R

N . Fur-
thermore, we say that (A,Ω) is universally sprayable if it is sprayable with respect
to any finite multiset of scaling factors Λ .

Example 4.2.15. We can provide two simple classes of RFDs (∂G,G) which are
universally sprayable:

(a) Any (∂G,G), where G is a bounded subset of RN .

(b) Any (∂G,G), where G is a strip-like subset of RN ; i.e., such that the set G is
contained between two parallel hyperplanes in R

N (more precisely, there exists two
real constants a and b and a nonzero vector c ∈ R

N such that a ≤ c · x ≤ b for all
x ∈ G, where · denotes the inner product in R

N).

Note that, according to this definition, each bounded set G is a strip-like set.

Consider now a self-similar spray as a relative fractal drum (A,Ω), which we
refer to in the sequel as a self-similar RFD or as the self-similar RFD associated
with the self-similar spray (A,Ω) (see Definition 4.2.20 on page 290 below, along
with the corresponding footnote 13); that is, let A := ∂Ω and Ω := �i≥0Gi (see
Definition 4.2.11). The ‘self-similarity’ of (A,Ω) is nicely exhibited by the scaling
relation (4.2.44) given in the following lemma.

Lemma 4.2.16. Let (A,Ω) be a self-similar spray in R
N, as in Definition 4.2.11.

Then, the relative fractal drum (A,Ω) satisfies the following ‘self-similar identity’:
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(A,Ω) = (∂G,G)� (r1A,r1Ω)�·· ·� (rJA,rJΩ), (4.2.44)

where (with the exception of the first term on the right-hand side of (4.2.44)) the
symbol � indicates that this represents a disjoint union of copies of (A,Ω) scaled
by factors r1, . . . ,rJ and displaced by isometries of RN (see Definition 4.1.46).

Proof. Let us reindex the scaling sequence (λi)i≥0 in a way that keeps track of
the actual construction of the numbers λi out of the scaling ratios r1, . . . ,rJ ; see
Equation (4.2.31) above. We let

I := { /0}∪
∞⋃

m=1

{1, . . . ,J}m (4.2.45)

be the set of all finite sequences consisting of numbers 1, . . . ,J (or, equivalently,
of all finite words based on the alphabet {1, . . . ,J}). Furthermore, for every α ∈ I,
define

λα :=

{
1, α = /0,

rα1 rα2 · · ·rαm , α 
= /0.
(4.2.46)

We then deduce from the construction of (A,Ω) that

(A,Ω) =
∞⊔

i=0

(∂Gi,Gi) =
∞⊔

i=0

λi(∂G,G)

=
⊔
α∈I

λα(∂G,G) = (∂G,G)�
⊔

α∈I\{ /0}
λα(∂G,G).

Observe now that in the last disjoint union above, every α ∈ {1, . . . ,J}m can be writ-
ten as { j}×{1, . . . ,J}m−1, for some j ∈ {1, . . . ,J}, provided we identify { j} with
{ j}× { /0} when m = 1. Note that this identification is consistent with the defini-
tion of λα , in the sense that λ{ j}×β = r jλβ for all j ∈ {1. . . . ,J} and β ∈ I. In light
of this, we can next partition the last union above with respect to which number
j ∈ {1, . . . ,J} the sequence α begins with:

(A,Ω) = (∂G,G)�
J⊔

j=1

⊔
α∈{ j}×I

λα(∂G,G) = (∂G,G)�
J⊔

j=1

⊔
β∈I

r jλβ (∂G,G)

= (∂G,G)�
J⊔

j=1

r j

( ⊔
β∈I

λβ (∂G,G)

)
= (∂G,G)�

J⊔
j=1

r j(A,Ω).

This completes the proof of the lemma. ��

In light of (4.2.44) and the additivity of the distance zeta function, it is now clear
that the distance zeta function of (A,Ω) satisfies the following functional equation:

ζA,Ω (s) = ζ∂G,G(s)+ζr1A,r1Ω (s)+ · · ·+ζrJA,rJΩ (s), (4.2.47)
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for all s ∈ C with Res sufficiently large.11 Furthermore, for such s, by using the
scaling property of the relative distance zeta function (Theorem 4.1.40), we deduce
that the above equation then becomes

ζA,Ω (s) = ζ∂G,G(s)+ rs
1ζA,Ω (s)+ · · ·+ rs

JζA,Ω (s). (4.2.48)

Finally, this last identity together with an application of the principle of analytic
continuation now yields the following theorem. We note that the second equality in
Equation (4.2.50) of Theorem 4.2.17 follows from Equation (4.2.17).

Theorem 4.2.17. Let G be the generator of a self-similar spray in R
N, and let

{r1,r2, . . . ,rJ}, with r j > 0 (for j = 1, . . . ,J, J ≥ 2) and such that ∑J
j=1 rN

j < 1,
be its scaling ratios counted according to their multiplicities. Furthermore, let
(A,Ω) := (∂Ω ,Ω) be the self-similar spray generated by G, as in Definition 4.2.11.
Then, the distance zeta function of (A,Ω) is given by

ζA,Ω (s) =
ζ∂G,G(s)

1−∑J
j=1 rs

j

, (4.2.49)

for all s ∈ C with Res sufficiently large. Furthermore,

D(ζA,Ω ) = dimB(A,Ω) = max{dimB(∂G,G),σ0}, (4.2.50)

where σ0 > 0 is the unique real solution s of the Moran equation ∑J
j=1 rs

j = 1 (i.e.,

σ0 is the similarity dimension of the self-similar spray (A,Ω)).12

More specifically, given a connected open neighborhood U of the critical line
{Res = D}, where D := dimB(A,Ω), ζA,Ω has a meromorphic continuation to U if
and only if ζ∂G,G does, and in that case, ζA,Ω (s) is given by (4.2.49) for all s ∈ U.
Consequently, the visible complex dimensions of (A,Ω) satisfy

P(ζA,Ω ,U)⊆ (D∩U)∪P(ζ∂G,G,U), (4.2.51)

where D is the set of all the complex solutions s of the Moran equation ∑J
j=1 rs

j = 1.
Finally, if there are no zero-pole cancellations in (4.2.49), then we have an equality
in (4.2.51).

We refer to [Lap-vFr3, Chapter 3, esp. Theorem 3.6] for detailed information
about the structure of D; see also the brief discussion given before Corollary 5.4.23
and Problem 6.2.36 below.

Remark 4.2.18. There are two particularly interesting situations in which Theorem
4.2.17 can be applied:

11 For instance, it suffices to assume that Res >N since, by Theorem 4.1.7, all of the zeta functions
appearing in (4.2.47) are holomorphic on the right half-plane {Res > N}.
12 Clearly, σ0 > 0 since J ≥ 2 > 1; furthermore, σ0 < N since ∑J

j=1 rN
j < 1.
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(i) The case when U := {Res > Dmer(ζ∂G,G)}, the largest open right half-plane
to which ζ∂G,G can be meromorphically extended.

(ii) The case when U := W̊ , where W is an arbitrary window for ζ∂G,G and
hence also for ζA,Ω , either in the sense of Chapter 2 (see Subsection 2.1.5, page
95) or in the sense of Chapter 5 (see Definition 5.1.1 in Subsection 5.1.1). In that
case, since the screen S = ∂W associated with the window W does not contain
any poles, the inclusion (4.2.51) can be equivalently written as follows:

P(ζA,Ω ,W )⊆ (D∩W )∪P(ζ∂G,G,W ). (4.2.52)

Furthermore, if there are no zero-pole cancellations for any s ∈W in the right-hand
side of (4.2.49), then we have an equality in (4.2.52).

The next theorem gives a general construction of complex dimensions of higher
order generated by self-similar sprays. It is stated for RFDs in R

N . For notational
simplicity, in that theorem, we assume that ζ∂G,G admits a meromorphic continua-
tion to all of C (which is very often the case, in practice), but the reader will easily
be able to extend it to a more general situation, in the spirit of Theorem 4.2.17 and
Remark 4.2.18 above.

Theorem 4.2.19. Let (A,Ω) := (∂Ω ,Ω) be a self-similar spray in R
N (with N ≥ 1)

generated by an open set G and the set of scaling ratios {r1,r2, . . . ,rJ}, with r j > 0
(for j = 1, . . . ,J, J ≥ 2) and such that ∑J

j=1 rN
j < 1; see Definition 4.2.11 above.

Furthermore, assume that ζ∂G,G has a meromorphic continuation to all of C and
that there are no zero-pole cancellations in (4.2.49); i.e., that D∩P(ζ∂G,G) = /0,
where D is the set of all the complex solutions s of the Moran equation ∑J

j=1 rs
j = 1

(also called the scaling complex dimensions of the self-similar spray (A,Ω) in the
sequel); see, e.g., Subsection 5.5.6 or Section 6.2.

Then, given an arbitrary integer n∈N, there is an explicitly constructible relative
fractal drum (An,Ωn) (in fact, a fractal spray also generated by G or, more precisely,
with base RFD (∂G,G)) which has exactly the same complex dimensions as (A,Ω),
provided the corresponding multiplicities are not taken into account, but with the
orders (i.e., multiplicities) of the complex dimensions belonging to D now being
multiplied by n.

Moreover, if we let U := {Res > 0} and D+ :=D∩U, then there is an explicitly
constructible RFD (A∞,Ω∞) such that its complex dimensions visible through U
are the same as the complex dimensions of (A,Ω) visible through U, provided the
multiplicities are not taken into account, but with the complex dimensions belonging
to D+ now being of infinite order, that is, being essential singularities of its distance
zeta function ζA∞,Ω∞ . In particular, we have that

Dmer(A∞,Ω∞) = D(ζA∞,Ω∞) = dimB(A∞,Ω∞). (4.2.53)

Proof. We use the RFD (A,Ω) as our new ‘generator’; that is, we define a new rel-
ative fractal drum (A2,Ω2) as a disjoint union of scaled copies of (A,Ω) by scaling
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factors λi, where (λi)i≥0 is the scaling sequence of the self-similar spray (A,Ω).
Much as in the proof of Lemma 4.2.16, this construction then implies that

(A2,Ω2) = (A,Ω)�
J⊔

j=1

(r jA2,r jΩ2). (4.2.54)

Furthermore, much as before, by the scaling property of the relative distance zeta
function (see Theorem 4.1.40) and in light of Theorem 4.2.17, we then obtain (after
an application of the principle of analytic continuation) that

ζA2,Ω2(s) =
ζA,Ω (s)

1−∑J
j=1 rs

j

=
ζ∂G,G(s)(

1−∑J
j=1 rs

j

)2 , (4.2.55)

for all s ∈ C, since, by hypothesis, ζ∂G,G admits a meromorphic continuation to all
of C. From the above identity (4.2.55), we now conclude that the relative fractal
drum (A2,Ω2) has the same complex dimensions as (A,Ω), but with the orders of
those belonging to D being multiplied by two.

We can now proceed inductively by using (A2,Ω2) as a new ‘generator’. There-
fore, for each n ∈ N, we obtain a relative fractal drum (An,Ωn) (in fact, a fractal
spray also generated by G or, more precisely, with base RFD (∂G,G)) such that

ζAn,Ωn(s) =
ζ∂G,G(s)(

1−∑J
j=1 rs

j

)n , (4.2.56)

for all s ∈ C; that is, (An,Ωn) has the same complex dimensions as (A,Ω), but
the complex dimensions belonging to D (i.e., the scaling complex dimensions of
the fractal spray (An,Ωn)) have their orders multiplied by n. By convention, we let
(A1,Ω1) := (∂G,G).

In order to generate essential singularities, we take a disjoint union of copies of
the relative fractal drums (An,Ωn) scaled by (n!)−1. More specifically, we define
(A∞,Ω∞) as follows:

(A∞,Ω∞) := (A,Ω)�
∞⊔

n=2

(n!)−1(An,Ωn). (4.2.57)

The construction of (A∞,Ω∞) and the scaling property of the relative distance zeta
function (see Theorem 4.1.40) then imply that

ζA∞,Ω∞(s) = ζ∂G,G(s)
∞

∑
n=1

1

(n!)s
(

1−∑J
j=1 rs

j

)n , (4.2.58)

for all s ∈ C with Res sufficiently large. By the Weierstrass M-test, the sum in the
above equation (4.2.58) defines a holomorphic function on {Res > 0} \D+ and,
furthermore, it is easy to show that D+ is the set of essential singularities of the
function defined by this sum. This completes the proof of the theorem. ��
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Clearly, the relative fractal drums constructed in the proof of Theorem 4.2.19 also
exhibit some kind of self-similarity. Indeed, we can introduce the notion of a self-
similar RFD, which generalizes the notion of a self-similar spray used, in particular,
in [Lap2–3], [LapPo3], [Lap-vFr1–3], [LapPe2–3] and [LapPeWi1–2]. Namely, we
can give the following formal definition.

Definition 4.2.20. Take (A0,Ω0) to be a base or generating relative fractal drum
and define the self-similar relative fractal drum (A,Ω) analogously as in Definition
4.2.11; that is, let

(A,Ω) :=
∞⊔

i=0

λi(A0,Ω0), (4.2.59)

where (λi)i≥0 is the scaling sequence corresponding to the multiset Λ defined by
(4.2.31). Of course, in this case, we implicitly assume that the base relative fractal
drum (A0,Ω0) is such that the above disjoint union can be constructed (see Exam-
ples 4.2.13 and 4.2.15).

When this is the case (for example, when Ω0 is bounded), (A,Ω) is called a self-
similar RFD. More specifically, (A,Ω) is called “the” self-similar RFD with base
RFD (or generated by the RFD) (A0,Ω0) and with the scaling ratios r1, . . . ,rJ .13

Its self-similarity dimension σ0 is the unique real number s such that ∑J
j=1 rs

j = 1.
Necessarily, we have that 0 < σ0 < N.

Note that in the terminology introduced in Definition 4.2.20, the self-similar
spray (∂G,G) of Theorem 4.2.17 is also a self-similar RFD with base RFD (or
generated by the RFD) (∂G,G).

Remark 4.2.21. The iterative construction given in the proof of Theorem 4.2.19 can
also be applied in the more general situation where the relative fractal drum (A,Ω)
is actually a relative fractal spray. Namely, we fix a fractal string L and define the
sequence of fractal strings (Lk)k≥0 from Theorem 4.2.8 by Lk := L for every k ≥
0. Then, under the assumption that the base relative fractal drum (A0,Ω0) is ‘nice
enough’, for each given k ∈N0, the set of complex dimensions of the relative fractal
drum (Ak,Ωk) from Theorem 4.2.19 will contain the set of complex dimensions of
L , but with their orders (i.e., multiplicities) now multiplied by k.

4.2.3 Relative Sierpiński Sprays and Their Complex Dimensions

In this subsection, we provide two examples (Example 4.2.24 and 4.2.29) of relative
fractal sprays, dealing with the inhomogeneous relative Sierpiński gasket RFD and
the relative Sierpiński carpet, respectively, viewed as RFDs. We also discuss higher-
dimensional analogs of these classic examples of self-similar fractals, namely, the
inhomogeneous Sierpiński N-gasket RFD, also called the inhomogeneous N-gasket

13 Clearly, such an RFD is unique only up to multiple choices of isometries (or displacements) of
R

N , corresponding to the countably many copies of the base RFD (A0,Ω0) it is composed of.
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RFD (Example 4.2.26) and associated with the so-called inhomogeneous N-gasket,
along with the (relative) Sierpiński N-carpet, (Example 4.2.31), with N ≥ 3. (In this
notation, the N = 2 case corresponds to the above standard Sierpiński gasket and
carpet RFDs, respectively.) In fact, far from being trivial generalizations to higher-
dimensions, these families of examples reveal several interesting new phenomena,
which will be discussed especially in Example 4.2.26 (the inhomogeneous N-gasket
RFD, with N ≥ 3) and whose consequences will be considered in several parts of
Chapter 5, including Subsection 5.5.6 (particularly, part (c) of Remark 5.5.26), as
well as in some of the open problems of Chapter 6 (especially, Problems 6.2.32,
6.2.35 and 6.2.36).

In order to avoid any possible confusion, we stress from the outset that for N ≥ 3,
the inhomogeneous Sierpiński N-gasket can be viewed as a ‘self-similar RFD’ (or
a self-similar spray, called a relative Sierpiński spray in the title of this subsection)
but is not associated with a self-similar set, in the usual sense of the term; see, e.g.,
[Hut] or [Fal1, Chapter 9]. Indeed it is not associatd with a ‘homogeneous self-
similar set’, as in the aforementioned references and the classic literature on fractal
geometry, but (still for N ≥ 3) it is instead associated with (in a sense to be speci-
fied in Example 4.2.26 below) an ‘inhomogeneous self-similar set’, in the sense of
Barnsley and Demko [BarDemk], a notion already briefly described in a specific ex-
ample in Remark 2.1.87 above. (See also [Fra2], along with the relevant references
therein, for more detailed information about this topic.) The same comment also ap-
plies to Examples 4.2.33, 4.2.34 and 4.2.35, except for the fact that the self-similar
fractal nest from Example 4.2.35 is a self-similar set in an even more general sense,
which will be described below.

We note that aspects of this subsection are closely related to Section 3.2. In the
sequel, it will be useful to use the following definition.

Definition 4.2.22. We say that two given relative fractal drums (A1,Ω1) and
(A2,Ω2) in R

N are congruent if there exists an isometry14 f : RN → R
N such that

A2 = f (A1) and Ω2 = f (Ω1).

It is easy to see that the congruence of RFDs is an equivalence relation.
The following lemma states, in particular, that any two congruent RFDs have

the same distance zeta functions. We leave its proof as a simple exercise for the
interested reader.

Lemma 4.2.23. Let (A1,Ω1) and (A2,Ω2) be two congruent RFDs in R
N. Then, for

any r ∈ R, we have

M r
∗ (A1,Ω1) = M r

∗ (A2,Ω2), M ∗r(A1,Ω1) = M ∗r(A2,Ω2) (4.2.60)

and

dimB(A1,Ω1) = dimB(A2,Ω2), dimB(A1,Ω1) = dimB(A2,Ω2) =: D. (4.2.61)

14 Recall that, up to a translation, an isometry (or displacement) of RN is necessarily linear, with
determinant ±1.
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As a result, dimB(A1,Ω1) exists if and only if dimB(A2,Ω2) exists and in that case,
we have

dimB(A1,Ω1) = dimB(A2,Ω2). (4.2.62)

Furthermore,
ζA1,Ω1(s) = ζA2,Ω2(s), (4.2.63)

for any s ∈ C with Res > dimB(A1,Ω1).
More generally, the identity (4.2.63) holds for all s∈U, where U is any connected

open neighborhood of the common critical line {Res = dimB(A1,Ω1)} to which
ζA1,Ω1 (or, equivalently, ζA1,Ω1) can be meromorphically continued.

It follows from (4.2.63) that under the hypotheses of Lemma 4.2.23 and given
a connected open set U ⊆ C chosen as in the last part of the theorem (containing
the common critical line {Res = D} of the RFDs (A1,Ω1) and (A2,Ω2); see Equa-
tion (4.2.61)), ζA1,Ω1 and ζA2,Ω2 have the exact same mermomorphic continuation
to U , and therefore the same poles in U and associated residues (or more generally,
principal parts in the case of multiple poles). In particular, two congruent RFDs have
the same (visible) complex dimensions.

Example 4.2.24. (Relative Sierpiński gasket). Let A be the Sierpiński gasket in R
2,

the outer boundary of which is an equilateral triangle with unit sides. Consider the
countable family of all open triangles in the standard construction of the gasket.
Namely, these are the open triangles which are deleted at each stage of the construc-
tion. If Ω is the largest open triangle (with unit sides), then the relative Sierpiński
gasket is defined as the ordered pair (A,Ω). The distance zeta function ζA,Ω of the
relative Sierpiński gasket (A,Ω) can be computed as the distance zeta function of
the following relative fractal spray (see Definition 4.2.1):

Spray(Ω0,λ = 1/2,b = 3),

where Ω0 is the first deleted open triangle with sides 1/2. It suffices to apply Equa-
tion (4.2.10) from Theorem 4.2.6. Decomposing Ω0 into the union of six congruent
right triangles (determined by the heights of the triangle Ω0, see Figure 4.7) with
disjoint interiors, we have that

ζ∂Ω0,Ω0
(s) = 6ζA′,Ω ′(s) = 6

∫
Ω ′

d((x,y),A′)s−2dxdy

= 6
∫ 1/4

0
dx

∫ x/
√

3

0
ys−2dy = 6

(
√

3)1−s2−s

s(s−1)
,

(4.2.64)

for all s ∈C with Res > 1. Using Equation (4.2.10) and appealing to Lemma 4.2.23,
we deduce that the distance zeta function of the relative Sierpiński gasket (A,Ω)
satisfies

ζA,Ω (s) =
6(
√

3)1−s2−s

s(s−1)(1−3 ·2−s)
∼ 1

1−3 ·2−s , (4.2.65)

where the equality holds for all s∈C with Res> log2 3 and as usual, the equivalence
∼ holds in the sense of Definition 2.1.69. Therefore, by the principle of analytic
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Fig. 4.7 On the left is depicted the base relative fractal drum (∂Ω0,Ω0) of the relative Sierpiński
gasket, where Ω0 is the associated (open) equilateral triangle with sides 1/2. It can be viewed as
the (disjoint) union of six RFDs, all of which are congruent to the relative fractal drum (A′,Ω ′) on
the right. This figure explains Equation (4.2.64) appearing in Example 4.2.24; see Lemma 4.2.23.

continuation, it follows that ζA,Ω has a meromorphic extension to the entire complex
plane, given by the same closed form as in Equation (4.2.65). More specifically,

ζA,Ω (s) =
6(
√

3)1−s2−s

s(s−1)(1−3 ·2−s)
, for all s ∈ C. (4.2.66)

Hence, the set of all of the complex dimensions (in C) of the relative Sierpiński
gasket is given by

P(ζA,Ω ) =
(

log2 3+
2π

log2
iZ

)
∪{0,1}. (4.2.67)

Each of these complex dimensions is simple (i.e., is a simple pole of ζA,Ω ). Note
that here, {0,1} can be interpreted as the set of integer dimensions of A, in the sense
of [LapPe2–3] and [LapPeWi1] (see also [Lap-vFr3, Section 13.1]). In particular,
we deduce from (4.2.67) that D(ζA,Ω ) = log2 3, and we thus recover a well-known
result. Namely, the set dimPC(A,Ω) := Pc(ζA,Ω ) of principal complex dimensions
of the relative Sierpiński gasket (A,Ω) is given by

dimPC(A,Ω) = log2 3+piZ,

where p = 2π/log2 is the oscillatory period of the Sierpiński gasket; see [Lap-vFr3,
Subsection 6.6.1].

Note, however, that in [Lap-vFr1–3], the complex dimensions are obtained in a
completely different manner (via an associated spectral zeta function corresponding
to the Dirichlet Laplacian on the bounded open set Ω ) and not geometrically. In
addition, all of the complex dimensions of the Sierpiński gasket A are shown to
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be principal (that is, to be located on the vertical line Res = log2 3 = dimB A), a
conclusion which is different from (4.2.67) above. We also refer to [ChrIvLap] and
[LapSar], as well as to [LapPe2–3] and [LapPeWi1–2], for different approaches (via
a spectral zeta function associated to a suitable geometric Dirac operator and via a
self-similar tiling associated with A, respectively) leading to the same conclusion.

In light of (4.2.66), the residue of the distance zeta function ζA,Ω of the rela-
tive Sierpiński gasket computed at any principal pole sk := log2 3+pki, k ∈ Z, is
given by

res(ζA,Ω ,sk) =
6(
√

3)1−sk

2sk(log2)sk(sk −1)
.

In particular,

| res(ζA,Ω ,sk)| ∼
6(
√

3)1−D

D2D log2
k−2 as k →±∞,

where D := log2 3.

The following proposition shows that the relative Sierpiński gasket can be viewed
as the relative fractal spray generated by the relative fractal drum (A′,Ω ′) appearing
in Figure 4.7 on the right.

Proposition 4.2.25 (Relative Sierpiński gasket). Let (A′,Ω ′) be the relative fractal
drum defined in Figure 4.7 on the right. Let (A,Ω) be the relative fractal spray
generated by the base relative fractal drum (A′,Ω ′), with scaling ratio λ = 1/2 and
with multiplicities mk = 6 ·3k−1, for any positive integer k:

(A,Ω) = Spray((A′,Ω ′),λ = 1/2, mk = 6 ·3k−1 for k ∈ N), (4.2.68)

in the notation of Definition 4.2.1. (Observe that we assume here that the base rela-
tive fractal drum (A′,Ω ′) has a multiplicity equal to 8.) Then, the relative distance
zeta function of the relative fractal spray (A,Ω) coincides with the relative distance
zeta function of the relative Sierpiński gasket; see Equation (4.2.66).

Example 4.2.26. (Inhomogeneous Sierpiński N-gasket RFD). The usual Sierpiński
gasket is contained in the unit triangle in the plane. Its (inhomogeneous) analog in
R

3, which we call the inhomogeneous Sierpiński 3-gasket or inhomogeneous tetra-
hedral gasket, is obtained by deleting the middle open octahedron (from the initial
compact, convex unit tetrahedron), defined as the interior of the convex hull of the
midpoints of each of the six edges of the initial tetrahedron (thus, four sub-tetrahedra
are left after the first step), and so on.

More generally, for N ≥ 2, the inhomogeneous Sierpiński N-gasket AN , contained
in R

N , can be defined as follows. (More briefly, AN is also referred to as the inho-
mogeneous N-gasket.) Let VN := {P1,P2, . . . ,PN+1} be a set of N points in R

N such
that the mutual distance of any two points from the set is equal to 1.

The set VN , where N ≥ 2, with the indicated property, can be constructed induc-
tively as follows. For N = 2, we take V2 to be the set of vertices of any unit triangle in
R

2. We then reason by induction. Given N ≥ 2, we assume that the set VN of N +1
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Fig. 4.8 The open octahedronΩ3,0 inscribed into the largest (compact) tetrahedronΩ3, surrounded
with 4 smaller (compact) tetrahedra scaled by the factor 1/2. Each of them contains analogous
scaled open octahedra, etc. The countable family of all open octahedra (viewed jointly with their
boundaries) constitutes the tetrahedral gasket RFD or the Sierpiński 3-gasket RFD (A3,Ω3). The
complement of the union of all open octahedra, with respect to the initial tetrahedron Ω3, is called
the inhomogeneous Sierpiński 3-gasket RFD (or the relative Sierpiński 3-gasket).

Unlike the classic Sierpiński 3-gasket (also known as the Sierpiński pyramid or tetrahedron)
S := S3, which is a (homogeneous or standard) self-similar set in R

3 and satisfies the usual fixed
point equation, S = ∪4

j=1Φ j(S), where {Φ j}4
j=1 are suitable contractive similitudes of R3 with re-

spective fixed points {Pj}4
j=1 and scaling ratios {r j}4

j=1 of common value 1/2, the inhomogeneous
Sierpiński 3-gasket RFD A3 is not a self-similar set. Instead, it is an inhomogeneous self-similar set
(in the sense of [BarDemk], see also [Fra2] and Remark 2.1.87 above). More specifically, A := A3
satisfies the following inhomogeneous fixed point equation (of which it is the unique solution in the
class of all nonempty compact subsets of R3), A =

⋃4
j=1Φ j(A)∪B, where B is the boundary ∂Ω3,0

of the first octahedron Ω3,0. In fact, B can simply be taken as the union of four middle triangles on
the boundary of the outer tetrahedron Ω3.

points in RN has been constructed. Note that the set VN is contained in a sphere,
whose center is denoted by O. Let us consider the line of RN+1 = R

N ×R through
the point O and perpendicular to the hyperplane R

N = R
N ×{0} in R

N+1. There
exists a unique point PN+2 in the half-plane {xN+1 > 0} of RN+1, which is a unit dis-
tance from all of the N vertices of VN . (Here, we identify VN with VN ×{0}⊂R

N+1.)
We then define VN+1 by VN+1 :=VN ∪{PN+2}.

Let us define ΩN as the convex hull of the set VN . As usual, we call it the N-
simplex. Let ΩN,0, called the N-plex, be the open set defined as the interior of the
convex hull of the set of midpoints of all of the

(N+1
2

)
edges of the N-simplexΩN .15

The setΩN \ΩN,0 is equal to the union of N+1 congruent N-simplices with disjoint
interiors, having all of their side lengths equal to 1/2. This is the first step of the

15 For example, for N = 2, the set Ω2,0 (that is, the 2-plex) is an open equilateral triangle in R
2 of

side lengths equal to 1/2, while for N = 3, the set Ω3,0 (that is, the 3-plex) is an open octahedron
in R

3 of side lengths equal to 1/2.
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construction. We proceed analogously with each of the N +1 compact N-simplices.
The compact set AN obtained in this way is called the inhomogeneous Sierpiński N-
gasket (or, more briefly, the inhomogeneous N-gasket). The corresponding relative
fractal spray in R

N , defined by

(AN ,ΩN) = Spray((∂ΩN,0,ΩN,0),λ = 1/2,b = N +1), (4.2.69)

is called the inhomogeneous Sierpiński N-gasket RFD (or, more briefly, the inho-
mogeneous N-gasket RFD). It is a self-similar spray RFD; see the end of Defini-
tion 4.2.1 or of Definition 4.2.20. According to Theorem 4.2.6, we have the follow-
ing factorization formula:

ζAN ,ΩN (s) = f (s) ·ζ∂ΩN,0,ΩN,0
(s), (4.2.70)

where

f (s) =
∞

∑
k=0

(N +1)k(2−k)s =
1

1− (N +1)2−s .

Upon analytic continuation, we deduce that f (s) has a meromorphic continuation to
all of C given by

f (s) :=
1

1− (N +1)2−s , for all s ∈ C. (4.2.71)

Hence, the set of poles of the function f (which can be uniquely meromorphically
extended to the whole complex plane), is given by

P( f ) = log2(N +1)+
2π

log2
iZ. (4.2.72)

Furthermore, the set of poles of the distance zeta function of the relative N-plex
(∂ΩN,0,ΩN,0) is given by

P(ζ∂ΩN,0,ΩN,0
) = {0,1, . . . ,N −1}, (4.2.73)

while ζ∂ΩN,0,ΩN,0
(s) 
= 0 for all s∈C\P(ζ∂ΩN,0,ΩN,0

). Both in (4.2.72) and (4.2.73),
all of the poles are simple. Consequently, in light of (4.2.70), we conclude that
the set of poles of ζ∂ΩN ,ΩN

, i.e., the complex dimensions of the inhomogeneous
Sierpiński N-gasket (AN ,ΩN), is given by

P(ζAN ,ΩN ) = {0,1, . . . ,N −1}∪
{

log2(N +1)+
2π

log2
iZ

}
, (4.2.74)
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with each nonreal complex dimension ωk := log2(N+1)+ 2π
log2 ik (with k ∈Z\{0})

being simple.16 In particular, the set of principal complex dimensions of (AN ,ΩN)
is given by17

dimPC(AN ,ΩN) =

⎧⎪⎨
⎪⎩

log2 3+ 2π
log2 iZ, for N = 2,

2+ 2π
log2 iZ, for N = 3,

{N −1}, for N ≥ 4,

(4.2.75)

while the (upper) box dimension of (AN ,ΩN) is given by

dimB(AN ,ΩN) = max
{

log2(N +1),N −1
}

(4.2.76)

and so

dimB(AN ,ΩN) =

{
log2 3, for N = 2,

N −1, for N ≥ 3,
(4.2.77)

which extends the well-known results for N = 2 and 3, corresponding to the usual
Sierpiński gasket in R

2 and the tetrahedral gasket in R
3, respectively. Namely, their

respective relative box dimensions are equal to log2 3 and 2.
It can be readily shown that in this case, dimB(AN ,ΩN) and dimB AN exist and

dimB(AN ,ΩN) = dimB(AN ,ΩN) = dimB AN = dimH AN , (4.2.78)

where as before, dimH( ·) denotes the Hausdorff dimension. More generally, it is
easy to see that dimPC(AN ,ΩN) = dimPC AN , where the equality holds between mul-
tisets, that is, counting multiplicities. See also Remark 4.2.27 below.

Moreover, it can also be easily checked (and is essentially known, at least for
N = 2) that (AN ,ΩN) is Minkowski nondegenerate if N 
= 3:18

0 < M∗(AN ,ΩN)≤ M ∗(AN ,ΩN)< ∞. (4.2.79)

In the special case when N = 3, due to the factorization formula (4.2.70), ζA3,Ω3 has
a double pole at s = 2 and it can be shown by some of the methods of Chapter 5
(see, especially, Theorem 5.3.21) that in this case, (A3,Ω3) is Minkowski degenerate
with M (A3,Ω3) =+∞, but that it is also h-Minkowski measurable where the gauge
function h is given by h(t) := log t−1 for all t ∈ (0,1). (For an introduction to gauge
functions and gauge Minkowski contents, see the beginning of Subsection 4.5.1
and also Definition 6.1.4 below.) In particular, since D = dimB(AN ,ΩN) exists and

16 Note that it could happen that ω0 = log2(N + 1) is equal to an integer m ∈ {0,1, . . . ,N − 1},
which occurs if and only if N = 2m −1 with m ∈ N\{1} and N ≥ 3 or if N = 1 (the trivial case of
the unit interval discussed in Example 5.5.1 below). In that situation (when N ≥ 3), ω0 = σ0 (the
similarity dimension of AN and (AN ,ΩN), to be discussed further on) is a double pole of ζAN ,ΩN .
17 Recall that, by definition, dimPC(AN ,ΩN) := Pc(ζAN ,ΩN ), the set of principal complex dimen-
sions of the RFD (AN ,ΩN).
18 The truth of this statement can also be deduced from the methods and results of Chapter 5 below,
especially, in Sections 5.3–5.5, including Example 5.5.12 and Subsection 5.5.6.
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M∗(AN ,ΩN) > 0, the hypothesis of part (c) of Theorem 4.1.7 (and hence, also of
part (ii) of Corollary 4.1.10) are satisfied and so, in light of the factorization formula
(4.2.70), a moment’s reflection shows that

D := dimB(AN ,ΩN) = max
{

log2(N +1),N −1
}

= D(ζAN ,ΩN ) = Dhol(ζAN ,ΩN ),
(4.2.80)

as was claimed in Equation (4.2.76) above.
Note that in (4.2.76) and (4.2.80), log2(N + 1) stands for the similarity dimen-

sion σ0 of the self-similar RFD or spray (AN ,ΩN) (or, equivalently, of the inho-
mogeneous self-similar set AN), while N − 1 refers to the (inner) dimension of the
boundary ∂ΩN,0 of the generator (the N-plex ΩN,0), i.e., of the RFD (AN,0,ΩN,0).

In the sequel, the function f appearing in Equations (4.2.70)–(4.2.72) will often
be called the scaling zeta function of the RFD (A,Ω) and denoted by ζS; see, e.g.,
Subsection 5.5.6 or Section 6.2. Therefore, for example, Equation (4.2.70) can be
rewritten as follows (using the abbreviated notation ζAN ,ΩN and ζAN,0,ΩN,0 ):

ζAN ,ΩN (s) = ζS(s) ·ζAN,0,ΩN,0(s). (4.2.81)

Also, in Equation (4.2.74), and in agreement with the terminology of [LapPe2–3]
and [LapPeWi1–2] (see also [Lap-vFr3, Section 13.1]), {0,1, . . . ,N − 1} and
P(ζS) =

{
log2(N+1)+ 2π

log2 iZ
}

are called, respectively, the set of integer dimen-
sions and the set of scaling complex dimensions of the self-similar RFD (AN ,ΩN).
Note that some points could be common to those two sets, for instance, when
N = 3, the point s = 2, which is therefore a double pole of ζAN ,ΩN or, equivalently,
a complex dimension of (A3,Ω3) of multiplicity two.

Recall that the classic Sierpiński N-gasket SN (used, for example, in [KiLap1],
[Ki1], and the relevant references therein),19 is a standard (or homogeneous) self-
similar set. Hence, S := SN satisfies the fixed point equation S = ∪N+1

j=1 Φ j(S), where

{Φ j}N+1
j=1 are contractive similitudes of RN with corresponding fixed points {Vj}N+1

j=1

and scaling ratios {r j}N+1
j=1 , of common value 1/2: r1 = · · ·= rN+1 = 1/2. In partic-

ular, S is the unique nonempty compact subset of RN which is the solution of that
equation. See, e.g., [Hut] or [Fal1, Chapter 9].

By contrast, the inhomogeneous Sierpiński N-gasket RFD (AN ,ΩN) is a self-
similar spray or RFD, but (for N ≥ 3) AN is not a (classic or homogeneous) self-
similar set. Interestingly, however, AN is an inhomogeneous self similar set (in the
sense of [BarDemk], see also [Fra1] and Remark 2.1.87 above), as is explained in
more detail when N = 3 in the second part of the caption of Figure 4.8 above. In
particular, when N ≥ 3, A := AN satisfies the following inhomogeneous fixed point
equation:

A =
N+1⋃
j=1

Φ j(A)∪B, (4.2.82)

19 The classic Sierpiński N-gasket SN has been used, for example, in [KiLap1], in a work dealing
with the spectral analysis of Laplacians on self-similar fractals.
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where B is a suitable (nonempty) compact subset of RN (described in the caption
of Figure 4.8 in the prototypical special case when N = 3); for example, B can be
chosen to be the boundary ofΩN,0: we can let B = ∂ΩN,0 = AN,0. More specifically,
AN is the unique nonempty compact subset A of RN satisfying the identity (4.2.82).

Nevertheless, since in the terminology of Definition 4.2.11, (AN ,ΩN) is a self-
similar spray with generator the N-plexΩN,0 and ratio list {r1 = · · ·= rN+1 = 1/2},
the self-similar set SN (the classic Sierpiński N-gasket), the inhomogeneous self-
similar set AN (the inhomogeneous N-gasket) and the self-similar spray (or RFD)
(AN ,ΩN) have the same similarity dimension, σ0, which is the unique real solu-
tion of the Moran equation ∑N+1

j=1 rs
j = 1; that is, (N + 1) · 2−s = 1, with s ∈ R, or,

equivalently,
σ0 = log2(N +1). (4.2.83)

Finally, we point out that Equations (4.2.78) and (4.2.80) imply that

dimB(AN ,ΩN) = max
{
σ0,dimB(AN,0,ΩN,0)

}
. (4.2.84)

(See also Equation (4.2.50) in Theorem 4.2.17.) Therefore, dimB(AN ,ΩN) is equal
to σ0 = dimB AN when N ≤ 3 and is strictly greater than σ0 when N ≥ 4. (See also
Remark 4.2.27 just below.) We will obtain a natural generalization and application
of these results towards the end of Section 5.5.6; see, especially, part (c) of Remark
5.5.26.

It is noteworthy that when N = 2, we not only have that A2 = S2, the classic
Sierpiński gasket, but it is also the case that A2 = S2 is both a (homogeneous or
standard) self-similar set and an inhomogeneous self-similar set, with respect to the
same iterated functions system (or IFS) {Φ}3

j=1, comprised of similarity transfor-

mations of R
2. Indeed, in the inhomogeneous fixed point equation (4.2.82), with

A := A2 and N = 2, we can not only choose B := /0 (the empty set), but we can also
choose B := ∂A2,0, the boundary of the unit triangle.

Remark 4.2.27. It is well known (see, e.g., [Hut], [Fal1, Theorem 9.3]), that if a
higher-dimensional self-similar set satisfies the open set condition, as is the case
(for every N ≥ 2) of the standard Sierpiński N-gasket SN but not (for any N ≥ 3) of
the inhomogeneous Sierpiński N-gasket AN (see the discussion following Equation
(4.2.80), along with the caption of Figure 4.8), then its Minkowski and Hausdorff
dimensions coincide with its similarity dimension; moreover, dimB SN exists. Hence,
this means that

dimB SN = dimH SN = σ0 = log2(N +1), (4.2.85)

where σ0 is the common similarity dimension of the self-similar set SN , the inho-
mogeneous N-gasket AN , and the self-similar RFD (AN ,ΩN). Hence, when N ≥ 4,
it follows that dimB AN > σ0 = dimB SN . There is no contradiction, however, in light
of Equations (4.2.76) and (4.2.77), along with the fact that AN is not a self-similar
set (only a nonhomogeneous self-similar set) for such values of N.20

20 It is possible to construct simpler examples in R
2 which also illustrate this situation; see Exam-

ples 4.2.33, 4.2.34 and 4.2.35 below.
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What is true, in general, under the above hypotheses (see Theorem 4.2.17 and
Definition 4.2.20 above) is that the Minkowski dimension of the self-similar RFD
is equal to the maximum of the similarity dimension σ0 and the (inner) Minkowski
dimension DG of the boundary of the generator G, which is assumed to be suf-
ficiently nice (see Subsection 5.5.6 below);21 here, G := ΩN,0 and hence, DG =
dimB(AN,0,ΩN,0) = N − 1. We will further discuss this issue in Remark 5.5.26 of
Subsection 5.5.6, where we will see that the proper counterpart of this situation is
case (iii) of part (c) of Remark 5.5.26, namely, when DG := dimB(∂G,G) > σ0.
This latter possibility cannot occur in the case of a (standard) self-similar set; see
[Fal1, Theorem 9.3]. More specifically, as does not seem to have been observed be-
fore, this impossibility is a somewhat surprising consequence of the aforementioned
result of Hutchinson in [Hut], as described in [Fal1, Theorem 9.3] and extending
to any dimension N ≥ 1 a corresponding one-dimensional result due to Moran in
[Mora].

In closing this remark, we mention that such a problem does not occur when
N = 1, which is the situation considered in the theory of the complex dimensions of
geometric self-similar strings developed, in particular, in [Lap-vFr3, Chapters 2, 3
and Section 8.4]. Indeed, we then have that DG < σ0 since DG = 0 (when N = 1)
and σ0 > 0 (always).

We next explain in more detail how to calculate the complex dimensions (and
hence also the principal complex dimensions) of the relative inhomogeneous
Sierpiński N-gasket (AN ,ΩN) in the prototypical case when N = 3.

The relative distance zeta function ζ∂ΩN,0,ΩN,0
of the N-plex RFD (∂ΩN,0,ΩN,0)

= (AN,0,ΩN,0) can be explicitly computed as follows, in the case when N = 3. It
is easy to see that the octahedral RFD (∂Ω3,0,Ω3,0) can be identified with sixteen
copies of disjoint RFDs, each of which is congruent to the pyramidal RFD (T,Ω ′) in
R

3, whereΩ ′ is the open (irregular) pyramid with vertices at O(0,0,0), A(1/4,0,0),
B(1/4,1/4,0) and C(0,0,1/(2

√
2)), while the triangle T = conv(A,B,C) is a face

of the pyramid. Since for any (x,y,z) ∈Ω ′, we have

d((x,y,z),T ) =
1√
3

(
1

2
√

2
−
√

2x− z

)
, (4.2.86)

we deduce that (recall that A3,0 := ∂Ω3,0)

ζA3,0,Ω3,0(s) = 16ζT,Ω ′(s)

= 16
∫∫∫

Ω ′
d((x,y,z),T )s−3dxdydz

= 16
∫ 1/4

0
dx

∫ x

0
dy

∫ 1
2
√

2
−
√

2x

0

( 1
2
√

2
−
√

2x− z
√

3

)s−3

dz.

(4.2.87)

21 If we allow the boundary of G to be fractal, then new interesting phenomena may occur, as was
illustrated in Subsection 4.2.2 above.
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Evaluating the last integral in (4.2.87), we obtain via a direct computation that

ζA3,0,Ω3,0(s) = 16
(
√

3)3−s

s−2

∫ 1/4

0

( 1

2
√

2
−
√

2x
)s−2

xdx

= 8
(
√

3)3−s

s−2

∫ 1/(2
√

2)

0
us−2

( 1

2
√

2
−u

)
du

=
8(
√

3)3−s(2
√

2)−s

s(s−1)(s−2)
,

(4.2.88)

for any complex number s such that Res > 2. Therefore, we deduce from (4.2.70)
that the distance zeta function of the thetrahedral RFD in R

3 can be meromorphi-
cally extended to the whole complex plane and is given for all s ∈ C by

ζA3,Ω3(s) =
8(
√

3)3−s(2
√

2)−s

s(s−1)(s−2)(1−4 ·2−s)
. (4.2.89)

It is worth noting that s = 2 is the only pole of ζA3,Ω3 of order 2, since s = 2 is a
simple pole of both (s−2)−1 and (2s −4)−1. More specifically, since the derivative
of 1− 4 · 2−s computed at s = 2 is nonzero (and, in fact, is equal to 4 log2), then
s = 2 is a simple zero of 1−4 ·2−s; that is, it is a simple pole of 1/(1−4 ·2−s).

Moreover, it immediately follows from Equation (4.2.89) that

ζA3,Ω3(s)∼
1

(s−2)(1−4 ·2−s)
. (4.2.90)

In particular, as we have already seen in Equation (4.2.75) and recalling that N := 3
here, we have

dimPC(A3,Ω3) = 2+
2π

log2
iZ. (4.2.91)

Since D := dimB(A3,Ω3) = dimB(A3,Ω3) = 2 is a simple pole of both 1/(s− 2)
and 1/(2s − 4), we conclude that D = 2 is the only complex dimension of order
two of the RFD (A3,Ω3). Consequently, the case of the relative Sierpiński 3-gasket
(A3,Ω3) reveals a new phenomenon: its relative box dimension D = 2 is a complex
dimension of order (i.e., multiplicity) two, while all the other complex dimensions of
the relative Sierpiński 3-gasket (including the double sequence of nonreal complex
dimensions on the critical line of convergence {Res = 2}) are simple. Since, as we
have already observed earlier, we have that dimPC(AN ,ΩN) = dimPC AN for every
N ≥ 2, we deduce from (4.2.91) and the discussion following it that

dimPC A3 = 2+
2π

log2
iZ, (4.2.92)

with s = dimB A3 = 2 being the only principal complex dimension of A3 of order
two, all the other complex dimensions being simple.



302 4 Relative Fractal Drums and Their Complex Dimensions

We challenge the interested reader to use similar arguments as in the case when
N = 3 in order to infer that for any N ≥ 3, the distance zeta function of the relative
N-plex (∂ΩN,0,ΩN,0) is of the form

ζ∂ΩN,0,ΩN,0
(s) =

g(s)
s(s−1) · · ·(s− (N −1))

, (4.2.93)

where g(s) is a nonvanishing entire function. (Note that, when N = 3, this is in
agreement with Equation (4.2.88) above.) Therefore, we conclude from Equations
(4.2.70) and (4.2.71) above that

ζAN ,ΩN (s) =
g(s)

s(s−1) · · ·(s− (N −1))(1− (N +1)2−s)
. (4.2.94)

This extends Equation (4.2.89) to any N ≥ 3 (really, of the base RFD (A3,0,Ω3,0)
generating the self-similar RFD (A3,Ω3)).

In the case when N ≥ 4, D = N − 1 is the only principal complex dimension
of the inhomogeneous Sierpiński N-gasket RFD. [Indeed, for N ≥ 4, we have that
log2(N +1)< N −1 (i.e., N +1 < 2N−1), which can be easily proved, for example,
by using mathematical induction on N.] Furthermore, we immediately deduce from
Equation (4.2.94) that

ζAN ,ΩN (s)∼
1

s− (N −1)
. (4.2.95)

Moreover, if N ≥ 4 is of the form N = 2q − 1 for some integer q ≥ 3, then q =
log2(N +1) (note that it is smaller than D = N −1) is the only complex dimension
of order two (since it is a simple pole of both (s− q)−1 and (1− (N + 1)2−s)−1),
while all of the other complex dimensions of (AN ,ΩN) are simple.

On the other hand, if N ≥ 4 is not of the form N = 2q −1 for any integer q ≥ 3,
then all of the complex dimensions of the inhomogeneous Sierpiński N-gasket RFD
are simple.

Roughly speaking, in the case when when N = 3, the fact that s = 2 has mul-
tiplicity two can be explained geometrically as follows: firstly, s = 2 is a simple
pole of the scaling zeta function ζS(s) = 1/(1− (N + 1)2−s) = 1/(1− 4 · 2−s) of
the RFD (A3,Ω3),22 while at the same time, s = 2 is the simple pole arising from
the boundary of the first (deleted) octahedron, which is also 2-dimensional; more
specifically, s = 2 is also a simple pole of ζA3,0,Ω3,0 . Therefore, the double pole of
ζAN ,ΩN arises both from the (inhomogeneous) self-similarity of the RFD (AN ,ΩN)
(or, equivalently, of the set AN) and from the special geometry of the boundary of
the generator (really, of the base RFD (AN,0,ΩN,0) generating the self-similar RFD
(AN ,ΩN)) when N = 3.

Remark 4.2.28. Since as was noted earlier, dimPC AN = dimPC(AN ,ΩN), where the
equality holds between multisets, exactly the same comment as above holds about
the principal complex dimensions of the inhomogeneous N-gasket AN (instead of

22 Indeed, the similarity dimension of the 3-gasket A3 is equal to 2.
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the complex dimensions of the inhomogeneous N-gasket RFD (AN ,ΩN)). For ex-
ample, if N ≥ 4 is not of the form 2q − 1 for any integer q ≥ 3, then all of the
complex dimensions of AN are simple, while otherwise (i.e., if N = 2q−1, for some
q ≥ 3), then s = q is the only complex dimension of multiplicity 2 and all the other
complex dimensions (including D = dimB AN = dimB(AN ,Ω) = N −1) are simple.
The multiplicity of s = q arises both from the (inhomogeneous) self-similar struc-
ture of AN and of the geometric structure of the boundary of the generator ΩN,0,
AN,0 := ∂ΩN,0, exactly as in the case when N = 3.

In the case of the relative inhomogeneous Sierpiński 2-gasket (A2,Ω2), the
value of s = log2 3 (which is the simple pole arising from the self-similarity of
(A2,Ω2)) is strictly larger than the dimension s = 1 of the boundary of the deleted
triangle (i.e., of the 2-plex Ω2,0). Moreover, the relative 2-Sierpiński gasket is
Minkowski nondegenerate and Minkowski nonmeasurable, while the relative in-
homogeneous 3-Sierpiński gasket (A3,Ω3) is Minkowski degenerate, with its 2-
dimensional Minkowski content being equal to +∞. Its gauge function (a notion
introduced in Subsection 6.1.4 of Chapter 6.1.1) can be determined by methods in-
volving the fractal tube formulas developed in Chapter 5.

More specifically, in Chapter 5, we will show that it is possible to find a gauge
function (namely, h(t) := log t−1 for all t ∈ (0,1)) relative to which the relative in-
homogeneous 3-gasket RFD (A3,Ω3) is Minkowski nondegenerate and moreover,
Minkowski measurable; see Theorem 5.4.27. (The same is true for the inhomoge-
neous 3-gasket A3.) This should be contrasted with the case of the ordinary (clas-
sical) Sierpiński N-gasket SN , which is Minkowski nondegenerate and Minkowski
nonmeasurable (in the usual sense, i.e., with respect to the trivial gauge function
h(t)≡ 1 correspoding to a standard power law).

On the other hand, when N ≥ 4, the dimension DG =N−1 of the boundary of the
N-plex ΩN,0 is larger than the similarity dimension σ0 = log2(N + 1) arising from
“fractality”. Hence, DG = N − 1. Since D = N − 1 is the only complex dimension
on the critical line (and it is simple), we conclude that for N ≥ 4, the RFD (AN ,ΩN)
is Minkowski measurable (see Theorem 5.4.20 in Chapter 5). Thus, the case when
N = 3 is indeed very special among all of the inhomogeneous Sierpiński N-gasket
RFDs. These issues will be clarified and revisited, as well as placed in a much
broader framework, towards the end of Chapters 5 and 6; see, especially, part (c) of
Remark 5.5.26 in Subsection 5.5.6, along with Problems 6.2.32, 6.2.35 and 6.2.36.

Example 4.2.29. (Relative Sierpiński carpet). Let A be the Sierpiński carpet con-
tained in the unit square Ω . Let (A,Ω) be the corresponding relative Sierpiński
carpet (or Sierpiński carpet RFD), with Ω being the unit square. (See Figure 2.1 on
page 49 for a picture of the standard Sierpiński carpet.) Its distance zeta function
ζA,Ω coincides with the distance zeta function of the following relative fractal spray
(see the end of Definition 4.2.1):

Spray(Ω0,λ = 1/3,b = 8),



304 4 Relative Fractal Drums and Their Complex Dimensions

Fig. 4.9 On the left is the base relative fractal drum (∂Ω0,Ω0) of the relative Sierpiński carpet
(A,Ω) described in Example 4.2.29, where Ω0 is the associated (open) square with sides 1/3. The
base relative fractal drum (∂Ω0,Ω0) can be viewed as the (disjoint) union of eight RFDs, all of
which are congruent to the relative fractal drum (A′,Ω ′) depicted on the right. This figure explains
Equation (4.2.97); see Lemma 4.2.23.

where Ω0 is the first deleted open square with sides 1/3. Similarly as in Example
4.2.24, by using Theorem 4.2.6 and Lemma 4.2.23, we obtain that ζA,Ω , the rela-
tive distance zeta functions of (A,Ω), has a meromorphic continuation to the entire
complex plane given for all s ∈ C by

ζA,Ω (s) =
8 ·6−s

s(s−1)(1−8 ·3−s)
. (4.2.96)

Indeed, clearly, the base relative fractal drum (∂Ω0,Ω0) is the (disjoint) union
of eight relative fractal drums, each of which is congruent to a relative fractal drum
(A′,Ω ′), whereΩ ′ is an appropriate isosceles right triangle; see Figure 4.9. We then
deduce from Lemma 4.2.23 that

ζ∂Ω0,Ω0
(s) = 8ζA′,Ω ′(s) = 8

∫
Ω ′

d((x,y),A′)s−2dxdy

= 8
∫ 1/6

0
dx

∫ x

0
ys−2dy =

8 ·6−s

s(s−1)
,

(4.2.97)

for all s ∈ C with Res > 1, and hence, in light of Theorem 4.2.6, that ζA,Ω (s) is
given by (4.2.96). Note that, after analytic continuation, we also have

ζ∂Ω0,Ω0
(s) =

8 ·6−s

s(s−1)
, for all s ∈ C. (4.2.98)
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Since by (4.2.96),

ζA,Ω (s)∼
1

1−8 ·3−s ,

one deduces from this equivalence that the abscissa of convergence of ζA,Ω is given
by D = log3 8 = dimB(A,Ω), where the equality follows from Theorem 4.1.7(b) and
Remark 4.1.8.

Here, the relative box dimension of A coincides with its usual box dimension,
namely, log3 8. Moreover, the set dimPC(A,Ω) :=Pc(ζA,Ω ) of the relative principal
complex dimensions of the Sierpiński carpet A with respect to the unit square Ω is
given by

dimPC(A,Ω) = log3 8+piZ, (4.2.99)

where log3 8 =: D is the Minkowski dimension and p := 2π/ log3 is the oscillatory
period of the Sierpiński carpet RFD (A,Ω) (as well as of the ordinary Sierpiński
carpet). Each principal complex dimension is simple (i.e., is a simple pole of ζA,Ω ).

Observe that it follows immediately from (4.2.96) that the set P(ζA,Ω ) of all
relative complex dimensions of the Sierpiński carpet A (with respect to the unit
square Ω ) is given by

P(ζA,Ω ) = dimPC(A,Ω)∪{0,1}= (log3 8+piZ)∪{0,1}, (4.2.100)

where dimPC(A,Ω) = log3 8+ piZ can be viewed as the set of ‘scaling complex
dimensions’ of the self-similar RFD (A,Ω) and {0,1} can be viewed as the set of
‘integer dimensions’ of (A,Ω) (in the sense of [LapPe2–3] and [LapPeWi1], see
also [Lap-vFr3, Section 13.1]). Furthermore, each of these relative complex dimen-
sions is simple (i.e., is a simple pole of ζA,Ω ). Interestingly, these are exactly the
complex dimensions which one would expect to be associated with A, according to
the theory developed in [LapPe2–3] and [LapPeWi1–2] (as described in [Lap-vFr3,
Section 13.1]) via self-similar tilings (or sprays) and associated tubular zeta func-
tions.

Exactly the same results concerning the principal complex dimensions and
the complex dimensions hold for the ordinary Sierpiński carpet A instead of the
Sierpiński carpet RFD (A,Ω); in particular, the exact counterparts of (4.2.99) and
(4.2.100) hold, with (A,Ω) replaced by A. See Proposition 3.2.1 in Subsection 3.2.1
above.

In light of (4.2.96), the residue of the distance zeta function of the relative
Sierpiński carpet (A,Ω) computed at any principal pole sk := log3 8+pik, k ∈ Z, is
given by

res(ζA,Ω ,sk) =
2−sk

(log3)sk(sk −1)
.

In particular,

| res(ζA,Ω ,sk)| ∼
2−D

D log3
k−2 as k →±∞,

where D := log3 8.
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Similarly as in the case of the relative Sierpiński gasket (see Proposition 4.2.25),
the relative Sierpiński carpet can be viewed as a fractal spray generated by the base
RFD appearing in Figure 4.9 on the right.

Proposition 4.2.30 (Relative Sierpiński carpet). Let (A′,Ω ′) be the RFD defined
in Figure 4.9 on the right. Let (A,Ω) be the relative fractal spray generated by the
base relative fractal drum (A′,Ω ′), with scaling ratio λ = 1/3 and with multiplici-
ties mk = 8k for any positive integer k:

(A,Ω) = Spray((A′,Ω ′), λ = 1/3, mk = 8k for k ∈ N). (4.2.101)

(Note that here we assume that the base relative fractal drum (A′,Ω ′) has a mul-
tiplicity equal to 8.) Then, the relative distance zeta function of the relative frac-
tal spray (A,Ω) coincides with the relative distance zeta function of the relative
Sierpiński carpet. (See Equation (4.2.96).)

Example 4.2.31. (Sierpiński N-carpet). It is easy to generalize the notion of a stan-
dard Sierpiński carpet (which is a compact subset of the unit square [0,1]2 ⊂ R

2),
to the Sierpiński N-carpet (or N-carpet, for short), defined analogously as a com-
pact subset A of the unit N-dimensional cube [0,1]N ⊂ R

N . More specifically, we
divide [0,1]N into the union of 3N congruent N-dimensional subcubes of length 1/3
and with disjoint interiors and then remove the middle open subcube. The remain-
ing compact set is denoted by F1. We then remove the middle open N-dimensional
cubes of length 1/32 from the remaining 3N − 1 subcubes. The resulting compact
subset is denoted by F2. Proceeding analogously ad infinitum, we obtain a decreas-
ing sequence of compact subsets Fk of [0,1]N , k ≥ 1. The Sierpiński N-carpet A is
then defined by

A :=
∞⋂

k=1

Fk. (4.2.102)

Note that the Sierpiński 1-carpet coincides with the usual ternary Cantor set, while
the 2-carpet coincides with the classic Sierpiński carpet; furthermore, the Sierpiński
3-carpet is discussed in [LapRaŽu5, Example 6.10].

It is clear that the Sierpiński N-carpet RFD (A,Ω), where A is the standard
Sierpiński N-carpet and Ω := (0,1)N is the open unit cube of RN , can be viewed as
the following relative fractal spray; see the end of Definition 4.2.1:

(A,Ω) = Spray((∂Ω0,Ω0),λ = 1/3,b = 3N −1). (4.2.103)

Here, the cube Ω0 = (0,1/3)N is obtained by a suitable translation of the middle
open subcube from the first step of the construction of the set A. According to The-
orem 4.2.6, we then have that

ζA,Ω (s) = f (s) ·ζ∂Ω0,Ω0
(s)

=
ζ∂Ω0,Ω0

(s)

1− (3N −1)3−s ∼ 1
1− (3N −1)3−s ,

(4.2.104)
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where f (s) = ζS(s) = 1/(1−(3N −1)3−s), for all s∈C, is the scaling zeta function
of the self-similar RFD (A,Ω). Since Ω0 has a Lipschitz boundary and log1/λ b =

log3(3
N −1) ∈ (N −1,N), we deduce from (4.2.104) and from (4.2.12) in Theorem

4.2.6 that the set of principal complex dimensions of the relative Sierpiński N-carpet
spray is given by

dimPC(A,Ω) = log3(3
N −1)+

2π
log3

iZ (4.2.105)

and hence,

dimPC(A,Ω)⊂ {Res = log3(3
N −1)} ⊂ {N −1 < Res < N}.

In particular, according to Theorem 4.1.7(b), we have that

dimB(A,Ω) = log3(3
N −1). (4.2.106)

Furthermore, it can be shown that in the present case of the Sierpiński N-carpet
RFD, dimB(A,Ω) and dimB A exist and

dimB(A,Ω) = dimB A = log3(3
N −1). (4.2.107)

It is easy to see that the set of principal complex dimensions dimPC A of the
Sierpiński N-carpet A in R

N coincides with the set dimPC(A,Ω) appearing in Equa-
tion (4.2.105) and that the multiplicities of the complex dimensions are the same
(hence, all of the complex dimensions are simple). As simple special cases, for
N = 1 we obtain the set of principal complex dimensions of the ternary Cantor set
appearing in Equation (2.1.114) on page 105, or of the usual Sierpiński carpet ap-
pearing in Equation (4.2.99), for N = 1 or N = 2, respectively.

Since the set of all complex dimensions of the RFD (∂Ω0,Ω0) is equal to
{0,1, . . . ,N−1},23 and hence, dimB(∂Ω0,Ω0)= dimB(∂Ω0,Ω0)=N−1, it follows
from Equation (4.2.104) that the set of all complex dimensions of the Sierpiński N-
carpet relative fractal spray (A,Ω) is given by

P(ζA,Ω ) = dimPC(A,Ω)∪{0,1, . . . ,N −1}

=
(

log3(3
N −1)+

2π
log3

iZ
)
∪{0,1, . . . ,N −1}.

(4.2.108)

This concludes for now our study of the relative fractal drum (A,Ω) naturally
associated with the N-dimensional Sierpiński carpet.

We will return to this subject in Chapter 5 (Example 5.5.13) when obtaining a
corresponding fractal tube formula in the case when N = 3.

23 Note that the relative zeta function ζA,Ω appearing in Equation (4.2.104) can be meromophically
extended in a unique way to the whole complex plane C since the same can be done with ζ∂Ω0,Ω0

.
See, for example, Equation (4.2.97) dealing with the case when N = 2.
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Remark 4.2.32. It is natural to wonder why the same new phenomena as for the rel-
ative inhomogeneous Sierpiński N-gasket (Example 4.2.26) do not occur in the case
of the relative Sierpiński N-carpet (A,Ω). In particular, the Minkowski dimension
D := dimB(A,Ω) and the similarity dimension σ0 of the Sierpiński N-carpet RFD
(A,Ω) coincide (in fact, D = σ0 = log3(3

N − 1), see Equation (4.2.107)). Further-
more, again in light of Equation (4.2.107), D also coincides with the Minkowski
dimension of the classic Sierpiński N-carpet A. [Since A is a (homogeneous) self-
similar set satisfying the open set condition, we must have that dimB A exists and
dimB A = σ0, the common similarity dimension of A and of (A,Ω).] Moreover,
dimPC A :=Pc(ζA) and dimPC(A,Ω) :=Pc(ζA,Ω ) coincide, as multisets. Finally, it
is always the case that dimB(A,Ω) = max{σ0,dimB(∂Ω0,Ω0)}= σ0, in agreement
with (4.2.106).

All of these statements hold for every N ≥ 1. The reason, of course, for all these
simplifications (compared to the case of the N-gasket RFD in Example 4.2.26, when
N ≥ 3 and, especially, when N ≥ 4) is that the first component, A, of the self-similar
RFD (A,Ω) is precisely the classic Sierpiński N-carpet. Therefore, for every N ≥ 1,
AN is a self-similar set, in the usual sense, and not just an inhomogeneous self-
similar set (as was the case for every N ≥ 3 of the first component, AN , of the
inhomogeneous self-similar RFD (AN ,ΩN) in Example 4.2.26).

Example 4.2.33. (The 1/2-square fractal). In this planar example, we will further
investigate and illustrate the new interesting phenomenon which occurs in the case
of the Sierpiński 3-gasket RFD discussed in Example 4.2.26. Namely, we start with
the closed unit square I = [0,1]2 in R

2 and subdivide it into 4 smaller squares by
taking the centerlines of its sides. We then remove the two diagonal open smaller
squares, denoted by G1 and G2 in Figure 4.10; so that G := G1∪G2 is our generator
in the sense of Definition 4.2.11. Next, we repeat this step with the remaining two
closed smaller squares and continue this process, ad infinitum. The 1/2-square frac-
tal is then defined as the set A which remains at the end of the process; see Figure
4.10, where the first 6 iterations are shown. More precisely, the set A is the union of
all of the boundaries of the disjoint family of open squares appearing in Figure 4.10
and packed in the unit square I. If we now let Ω := (0,1)2, we have that (A,Ω) is
an example of a self-similar spray (or tiling), in the sense of Definition 4.2.11, with
generator G = G1∪G2 and scaling ratios r1 = r2 = 1/2. Note, however, that A is not
a (homogeneous) self-similar set in the usual sense (see, e.g., [Fal1, Hut]), defined
via iterated function systems (IFSs), but is instead an inhomogeneous self-similar
set.

More specifically, the set A is the unique nonempty compact subset K of R
2

which is the solution of the inhomogeneous equation

K =
2⋃

j=1

Φ j(K)∪B, (4.2.109)

whereΦ1 andΦ2 are suitable contractive similitudes of R2 with fixed points located
at the lower left vertex and the upper right vertex of the unit square, respectively, and
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with a common scaling ratio equal to 1/2 (i.e., r1 = r2 = 1/2, where {r j}2
j=1 are the

scaling ratios of the self-similar RFD (A,Ω)). Furthermore, the nonempty compact
set B in Equation (4.2.109) is the union of the left and upper sides of the square
G1 and the right and lower sides of the square G2; see Figure 4.10. We note that
here, the corresponding (classic or homogeneous) self-similar set (i.e., the unique
nonempty compact subset of R

2 which is the solution of the homogeneous fixed
point equation, C = ∪2

j=1Φ j(C)), is the diagonal C of the unit square connecting the
lower left and the upper right vertices of the unit square.

Let us now compute the distance zeta function ζA of the 1/2-square fractal. With-
out loss of generality, we may assume that δ > 1/4; so that we have

ζA(s) = ζA,Ω (s)+ζI(s), (4.2.110)

where, intuitively, ζI denotes the distance zeta function corresponding to the ‘outer’
δ -neighborhood of A. Clearly, ζI is equal to the distance zeta function of the unit
square I := [0,1]2; it is straightforward to compute it and show that it has a mero-
morphic extension to all of C given by24

ζI(s) =
4δ s−1

s−1
+

2πδ s

s
, (4.2.111)

for all s ∈ C.

Fig. 4.10 The 1/2-square fractal A from Example 4.2.33. The first 6 iterations are depicted. Here,
G := G1 ∪G2 is the single generator of the corresponding self-similar spray or RFD (A,Ω), in the
sense of Definition 4.2.11. The set A is equal to the complement of the union of the disjoint family
of all open squares, with respect to Ω = (0,1)2. Equivalently, the set A coincides with the closure
of the union of the boundaries of all the open squares.

24 See also the proof of Proposition 3.2.1 where this computation was performed.
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Furthermore, by using Theorem 4.2.17, we obtain that

ζA,Ω (s) =
ζ∂G,G(s)

1−2 ·2−s =
2sζ∂G,G(s)

2s −2
, (4.2.112)

for all s∈C with Res sufficiently large. Next, we compute the distance zeta function
of (∂G,G) by subdividing G = G1 ∪G2 into 16 congruent triangles (see Figures 4.9
and 4.10) and by using local Cartesian coordinates (x,y) ∈ R

2 to deduce that

ζ∂G,G(s) = 16
∫ 1/4

0
dx

∫ x

0
ys−2 dy =

4−s

s(s−1)
,

for all s ∈ C with Res > 1. Hence,

ζ∂G,G(s) =
4−s

s(s−1)
, (4.2.113)

an identity valid initially for all s∈C such that Res> 1, and then, after meromorphic
continuation, for all s ∈C. Finally, by combining Equations (4.2.110)–(4.2.113), we
conclude that the distance zeta function ζA is meromorphic on all of C and is given
by

ζA(s) =
2−s

s(s−1)(2s −2)
+

4δ s−1

s−1
+

2πδ s

s
, (4.2.114)

for all s ∈ C.
Consequently (see just below), we have that dimB A exists and

D(ζA) = dimB A = 1,

P(ζA) := P(ζA,C) = {0}∪ (1+piZ)

(4.2.115)

and thus
dimPC A := Pc(ζA) = 1+piZ, (4.2.116)

where the oscillatory period p of A is given by p := 2π
log2 . All of the complex dimen-

sions in P(ζA) are simple except for ω = 1, which is a double pole of ζA.
We will revisit this example in Chapter 5 where we will use the distance zeta

function of A given by (4.2.114) in order to derive a corresponding fractal tube
formula (see Example 5.5.22 in Subsection 5.5.6). For now, we simply mention
that it will follow from the results of Chapter 5 (see, especially, Theorem 5.4.30)
that dimB A exists, dimB A = D(ζA) = 1 and that A is not Minkowski measurable
because of the presence of the double pole of ζA at ω = 1. On the other hand, we
will show that A is h-Minkowski measurable, where the gauge function h is given
by h(t) := log t−1 for all t ∈ (0,1), and by Theorem 5.4.32, the corresponding h-
Minkowski content is given by

M 1(A,h) = ζA[1]−2 =
1

4log2
, (4.2.117)
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where ζA[1]−2 is the (−2)-nd coefficient in the Laurent series expansion of ζA

around s = 1. Finally, we note that in light of Equation (4.2.115) (and hence, in
light of the presence of nonreal complex dimensions), the set A is indeed fractal,
according to our proposed definition of fractality given in Remark 4.6.24.

Example 4.2.34. (The 1/3-square fractal). In the present planar example, we illus-
trate a situation which is similar to that of the inhomogeneous Sierpiński N-gasket
RFD discussed in Example 4.2.26 for N ≥ 4. Again, we start with the closed unit
square I = [0,1]2 in R

2 and subdivide it into 9 smaller congruent squares (similarly
as in the case of the Sierpiński carpet). Next, we remove 7 of those smaller squares;
that is, we only leave the lower left and the upper right squares (see Figure 4.11). In
other words, our generator G (in the sense of Definition 4.2.11) is the (nonconvex)
open polygon depicted in Figure 4.11.

As usual, we proceed by iterating this procedure with the two remaining closed
squares and then continue this process ad infinitum. The first 4 iterations are de-
picted in Figure 4.11. The 1/3-square fractal is then defined as the set A which
remains at the end of the process. We now let Ω := (0,1)2, which makes the RFD
(A,Ω) a self-similar spray (or tiling), in the sense of Definition 4.2.11, with gener-
ator G and scaling ratios {r j}2

j=1 such that r1 = r2 = 1/3. Again, the set A is not a
homogeneous self-similar set, but is an inhomogeneous self-similar set.

More specifically, the set A is the unique nonempty compact subset K of R
2

which is the solution of the inhomogeneous fixed point equation

K =
2⋃

j=1

Φ j(K)∪B, (4.2.118)

where Φ1 and Φ2 are contractive similitudes of R2 with fixed points located at the
lower left vertex and the upper right vertex of the unit square, respectively, and
with a common scaling ratio equal to 1/3 (i.e., r1 = r2 = 1/3). Furthermore, the
nonempty compact set B in Equation (4.2.118) is equal to the boundary of G without
the part belonging to the boundary of the two smaller squares which are left behind
in the first iteration; see Figure 4.11. We also observe that here, the corresponding
(classic or homogeneous) self-similar set generated by the IFS consisting of Φ1 and
Φ2, is the ternary Cantor set located along the diagonal of the unit square.

We now proceed by computing the distance zeta function ζA of the 1/3-square
fractal. Without loss of generality, we may assume that δ > 1/4; so that we have

ζA(s) = ζA,Ω (s)+ζI(s), (4.2.119)

where, as before in Example 4.2.33, ζI denotes the distance zeta function corre-
sponding to the ‘outer’ δ -neighborhood of A and coincides with the distance zeta
function of the unit square I := [0,1]2. Recall that ζI was computed in Example
4.2.33 and is given by Equation (4.2.111) for all s ∈ C.
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Fig. 4.11 The 1/3-square fractal A from Example 4.2.34. The first 4 iterations are depicted. Here,
G is the single generator of the corresponding self-similar spray or RFD (A,Ω), in the sense of
Definition 4.2.11 or Definition 4.2.20. The set A is equal to the complement of the union of the
disjoint family of all the open 8-gons, with respect to the open square Ω = (0,1)2. The largest
8-gon is equal to the union of two open squares indicated by dashed sides of length 2/3, while
each of the next two smaller 8-gons is obtained by scaling the first one by the factor 1/3. Any of
the 2k 8-gons of the k-th generation is obtained by scaling the first one by the factor 1/3k−1, for any
k ∈ N. Equivalently, A coincides with the closure of the union of the boundaries of all the 8-gons.

Furthermore, by using Theorem 4.2.17, we obtain that

ζA,Ω (s) =
ζ∂G,G(s)

1−2 ·3−s =
3sζ∂G,G(s)

3s −2
, (4.2.120)

for all s ∈ C with Res sufficiently large.
Next, we compute the distance zeta function of (∂G,G) by subdividing G into

14 congruent triangles denoted by Gi, for i = 1, . . . ,14 (see Figure 4.11). Therefore,
by symmetry, we obtain the following functional equation:

ζ∂G,G(s) = 12ζ∂G,G1
(s)+2ζ∂G,G13

, (4.2.121)

valid initially for all s ∈ C such that Res is sufficiently large.
We use local Cartesian coordinates (x,y) ∈ R

2 to compute ζ∂G,G1
and obtain

ζ∂G,G1
(s) =

∫ 1/3

0
dx

∫ x

0
ys−2 dy =

3−s

s(s−1)
.

Hence,

ζ∂G,G1
(s) =

3−s

s(s−1)
, (4.2.122)

an identity valid initially for all s ∈ C such that Res > 1, and then, after meromor-
phic continuation, for all s ∈ C. In order to compute ζ∂G,G13

, we use local polar
coordinates (r,θ) and deduce that
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ζ∂G,G13
(s) =

∫ π/2

0
dθ

∫ 3−1(sinθ+cosθ)−1

0
rs−1 dr

=
3−s

s

∫ π/2

0
(cosθ + sinθ)−s dθ ,

(4.2.123)

valid initially for all s ∈ C such that Res > 0 and after meromorphic continuation,
for all s ∈C. Note that by using Theorem 2.1.45 with ϕ(θ) := (cosθ + sinθ)−1 for
θ ∈ (0,2π), it is easy to check that

Z(s) :=
∫ π/2

0
(cosθ + sinθ)−s dθ (4.2.124)

is an entire function, since it is of the form of the generalized DTI f (s) :=∫
E ϕ(θ)sdμ(θ), where E = [0,π/2], ϕ(θ) := (cosθ + sinθ)−1 for all θ ∈ E is uni-

formly bounded by positive constants both from above and below, and dμ(θ) := dθ .
Finally, by combining Equation (4.2.111) and Equations (4.2.119)–(4.2.124), we

obtain that ζA is given by

ζA(s) =
2

s(3s −2)

(
6

s−1
+Z(s)

)
+

4δ s−1

s−1
+

2πδ s

s
, (4.2.125)

an identity valid initially for all s ∈ C with Res > 1 and then, after meromorphic
continuation, for all s ∈ C.

Consequently, we deduce that

D(ζA) = 1,

P(ζA) := P(ζA,C)⊆ {0}∪ (log3 2+piZ)∪{1}
(4.2.126)

and
dimPC A := Pc(ζA) = {1}, (4.2.127)

where the oscillatory period p of A is given by p := 2π
log3 . In Equation (4.2.126),

we only have an inclusion since, in principle, some of the complex dimensions with
real part log3 2 may be canceled by the zeros of 6/(s−1)+Z(s). However, it can be
checked numerically that log3 2 ∈ P(ζA) and that there also exist nonreal complex
dimensions with real part log3 2 in P(ζA). All of the complex dimensions in P(ζA)
are simple.

We will revisit this example in Subsection 5.5.6 (see Example 5.5.23) where we
will obtain a fractal tube formula for the set A from Equation (4.2.125). For now,
we simply mention that, dimB A = 1 and that, by Theorem 5.4.2, A is Minkowski
measurable with Minkowski content given by

M 1(A) = res(ζA,1) = 16. (4.2.128)
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We also note that A is indeed fractal, according to our proposed definition of fractal-
ity (see Remark 4.6.24). More precisely, in light of Equation (4.2.126), it is strictly
subcritically fractal and fractal in dimension d := log3 2, in the sense of case (ii) of
Remark 5.5.15 below. In closing, we also mention that the set A is rectifiable and
that its ‘length’ (i.e., its 1-dimensional Hausdorff measure) is given by

H1(A) =
M 1(A)
ω1

= 8, (4.2.129)

which can, of course, be easily checked directly. Here, ω1 = 2 is the volume of the
1-dimensional ball of radius 1.

Example 4.2.35. (A self-similar fractal nest). In the final planar example of this sub-
section, we investigate the case of a ‘self-similar fractal nest’.25 The set A which we
now define is an inhomogeneous self-similar set. Similarly as in Example 4.2.34,
the set A will be fractal in the sense of our proposed definition of fractality given
in Remark 4.6.24 and, moreover, will be strictly subcritically fractal in the sense of
Remark 5.5.15.

Let a ∈ (0,1) be a real parameter. We define the set A as the union of concentric
circles with center at the origin and of radius ak for k ∈ N0 (see Figure 4.12). Fur-
thermore, let G be the open annulus such that ∂G consists of the circles of radius 1
and a, as depicted in Figure 4.12, and letΩ := B1(0). We can now consider the RFD
(A,Ω) as a self-similar spray with generator G, in the sense of Definition 4.2.11.

Fig. 4.12 The self-similar fractal nest from Example 4.2.35.

25 As we shall see, throughout this example, the use of the adjective “self-similar” is somewhat
abusive since only one similarity transformation is involved in order to define A.
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We note that even though (A,Ω) is a fractal spray, with a single generator G,
it is not (strictly speaking) self-similar in the traditional sense because it only has
one scaling ratio r = a (associated with a single contractive similitude). However,
we will continue using this abuse of language throughout this example. Also, a
moment’s reflection reveals that this fact does not affect any of the conclusions
relevant to the distance zeta function of such an RFD. Namely, we obviously have
that

(A,Ω) = (∂G,G)� (aA,aΩ); (4.2.130)

so that
ζA,Ω (s) = ζ∂G,G(s)+ζaA,aΩ (s), (4.2.131)

for all s ∈ C such that Res is sufficiently large. Furthermore, by using the scaling
property of the relative distance zeta function (see Theorem 4.1.40), we conclude
that

ζA,Ω (s) =
ζ∂G,G(s)

1−as , (4.2.132)

again for all s ∈ C such that Res is sufficiently large.
Next, we compute the distance zeta function of the generator by using polar

coordinates (r,θ):

ζ∂G,G(s) =
∫ 2π

0
dθ

∫ (1+a)/2

a
(r−a)s−2r dr

+
∫ 2π

0
dθ

∫ 1

(1+a)/2
(1− r)s−2r dr

=
22−sπ(1+a)(1−a)s−1

s−1
,

(4.2.133)

an identity valid, after meromorphic continuation, for all s ∈ C.
Equation (4.2.133) combined with Equation (4.2.132) now yields that ζA,Ω is

meromorphic on all of C and is given for all s ∈ C by

ζA,Ω (s) =
22−sπ(1+a)(1−a)s−1

(s−1)(1−as)
. (4.2.134)

Finally, we fix an arbitrary δ > (1− a)/2 and observe that for the distance zeta
function of A, we have

ζA(s) = ζA,Ω (s)+ζA,B1+δ (0)\Ω (s), (4.2.135)

for all s ∈ C with Res sufficiently large. Furthermore, we have that

ζA,B1+δ (0)\Ω (s) =
∫ 2π

0
dθ

∫ 1+δ

1
(r−1)s−2r dr =

2πδ s−1

s−1
+

2πδ s

s
, (4.2.136)

where the last equality is valid, initially, for all s ∈ C such that Res > 1, and then,
after meromorphic continuation, for all s ∈ C.
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Combining now the above equation with (4.2.135), we finally obtain that ζA is
meromorphic on all of C and is given by

ζA(s) =
22−sπ(1+a)(1−a)s−1

(s−1)(1−as)
+

2πδ s−1

s−1
+

2πδ s

s
, (4.2.137)

for all s ∈ C.
Consequently (see also Theorem 5.4.30 below), we have that dimB A exists and

D(ζA) = dimB A = 1,

P(ζA) := P(ζA,C) = piZ∪{1}
(4.2.138)

and
dimPC A := Pc(ζA) = {1}, (4.2.139)

where the oscillatory period p of A is given by p := 2π
loga−1 and all of the complex di-

mensions in P(ζA) are simple. We will also revisit this example in Subsection 5.5.6
(see Example 5.5.24 below) where its fractal tube formula will be derived directly
from Equation (4.2.137) and the results of Chapter 5. Here, we simply mention that
dimB A exists (which is also easy to check directly), dimB A = 1 and that, according
to Theorem 5.4.2, A is Minkowski measurable, with Minkowski content given by

M 1(A) = res(ζA,1) =
4π

1−a
. (4.2.140)

We also note that the set A is rectifiable and that its ‘length’ (really, its 1-dimensional
Hausdorff measure) is given by

H1(A) =
M 1(A)
ω1

=
2π

1−a
, (4.2.141)

where, as before, ω1 = 2 is the volume of the 1-dimensional ball of radius 1. Of
course, formula (4.2.141) can also be easily recovered via a direct computation.

In closing, we mention that A is indeed fractal according to our proposed def-
inition of fractality (see Remark 4.6.24). More specifically, in light of Equation
(4.2.138), A is strictly subcritically fractal and fractal in dimension d := 0, in the
sense of Remark 5.5.15 below.

The following example can be viewed as an analog of Example 4.2.35 (the self-
similar fractal nest) in the one-dimensional Euclidean space R.

Example 4.2.36. (The geometric progression fractal string). Fix a ∈ (0,1), which
will play the role of a parameter. Let L = (�k)k≥0 be defined as the geometric
sequence with progression a; i.e.,

�k := ak, for all k ≥ 0. (4.2.142)
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The geometric zeta function of this fractal string is given by

ζL (s) =
∞

∑
k=0

(ak)s =
1

1−as , (4.2.143)

valid for all s ∈ C with Res > 0. Upon meromorphic continuation, we see at once
that ζL is meromorphic on all of C and is given by

ζL (s) =
1

1−as , (4.2.144)

for all s ∈ C.
Let AL be the bounded subset of the real line generated by L ; i.e.,

AL :=

{
ak := ∑

j≥k

� j : k ≥ 0

}
. (4.2.145)

Then, by means of Proposition 5.5.4 of Chapter 5 below (see also Example 2.1.58
and Equation (5.5.15)), we deduce that for any fixed δ > 1/2, its distance zeta func-
tion ζAL

is meromorphic on all of C and given by

ζAL
(s) =

21−s

s(1−as)
+

2δ s

s
, (4.2.146)

for all s ∈ C. Here, the term 2δ s/s corresponds to the ‘outer’ δ -neighborhood of
AL , i.e., the left δ -neighborhood of the point 0 and the right δ -neighborhood of the
point a0 = 1/(1−a).

We now see that the set of complex dimensions of AL (or, equivalently, of L )
coincides with the set of principal complex dimensions of AL (i.e., of L ); that is,

P(ζAL
) = dimPC AL = piZ, (4.2.147)

where p := 2π/ loga−1. Furthermore, all of the complex dimensions are simple,
except for

D := D(ζAL
) = dimB AL = 0, (4.2.148)

which has multiplicity two. See Remark 4.2.37 below for a justification of this claim.
In Example 5.5.25 of Chapter 5, we will use Equation (4.2.146) in order to obtain

an exact fractal tube formula for the set AL ⊂R. For now, we mention that the pres-
ence of the double pole of ζAL

(s) at s = 0 implies that the set AL is not Minkowski
measurable, since M 0(AL ) = +∞, but that AL is h-Minkowski measurable with
respect to the gauge function h defined by h(t) := log t−1 for all t ∈ (0,1), and that
its h-Minkowski content is given by

M 0(AL ,h) =
2

loga−1 . (4.2.149)
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In closing this example, we point out that the geometric progression string L (or,
equivalently, its canonical geometric realization AL , as well as any of its geometric
realizations Ω ⊂ R as bounded open sets of R) is indeed an example of a fractal
set, according to our proposed definition of fractality (see Remark 4.6.24), due to
the presence of nonreal complex dimensions. More specifically, in light of Equation
(4.2.147), AL (or, equivalently, L ) is critically fractal; i.e., it is fractal in dimension
d := D = 0, in the sense of Remark 5.5.15. Finally, we note that although AL is h-
Minkowski measurable, its intrinsic geometry still possesses geometric oscillations
of order O(t) in the fractal tube formula of AL , as will be shown in Example 5.5.25.

Remark 4.2.37. The fact that the complex dimension 0 of AL has multiplicity two
(and not one, as might naively be expected) follows from the following relation
between ζL and ζAL

(see Equation (5.5.15) or, more generally, Equation (5.5.16)
in Subsection 5.5.2 below):

ζAL
(s) =

21−s

s
ζL (s), (4.2.150)

valid (in the present case of Example 4.2.36) for all s ∈ C. Since 0 is a simple pole
of ζL (in light of Equation (4.2.144)), it is now apparent that 0 is a double pole
of ζAL

, as claimed. For the same reason, the nonzero poles of ζL and ζAL
are the

same, and have the same multiplicity.

Remark 4.2.38. When a := p−1, where p is a prime number, Example 4.2.36 (the
geometric progression string) reduces to the p-th Euler string Lp, studied in
[Lap-vFr3, esp., Subsection 4.2.1] (see also [HerLap1–5] and, in the p-adic setting,
[LapLu2–3, LapLu-vFr1–2]) and whose geometric zeta function ζLp(s) coincides
with the p-th local Euler factor (1− p−s)−1, in agreement with (4.2.144) where we
have set a := p−1.

4.3 Spectral Zeta Functions of Fractal Drums and Their
Meromorphic Extensions

We review here some of the known results concerning the spectral asymptotics of
(relative) fractal drums, with emphasis on the leading asymptotic behavior of the
spectral counting function (or, equivalently, of the eigenvalues), along with a cor-
responding sharp remainder estimate (obtained in [Lap1] and expressed in terms of
the upper box dimension of the boundary).

We then apply these results, along with some results obtained in Section 2.3 of
this monograph, in order to show that the spectral zeta functions of these fractal
drums have a (nontrivial) meromorphic extension. This fact was already observed
in [Lap2–3] by other means, but also by using the error estimates of [Lap1].

Moreover, we show the optimality (or sharpness) of the corresponding upper
bound for the abscissa of meromorphic continuation of the spectral zeta function of
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the fractal drum. This latter result is new and makes use in an essential way of our
results obtained later on in this chapter, especially in Sections 4.5 and 4.6.

4.3.1 Spectral Zeta Functions of Fractal Drums in R
N

Let (A,Ω) be a given RFD in R
N . In particular, this means that |Ω | < ∞. We

consider the corresponding Dirichlet eigenvalue problem, defined on the (possi-
bly disconnected) open set ΩA := Ω \A.26 It consists in finding all ordered pairs
(μ ,u) ∈ C×H1

0 (ΩA) such that u 
= 0 and

{
−Δu = μu, in ΩA,

u = 0, on ∂ (ΩA),
(4.3.1)

in the variational sense (see, e.g., [LioMag], [Bre], along with [Lap1] and the rele-
vant references therein). Here, H1

0 (ΩA) :=W 1,2
0 (ΩA) is the standard Sobolev space

(see, e.g., [Bre], [GilTru] or [MitŽu]), and Δu = ∑N
k=1

∂ 2u
∂x2

k
, where Δ is the Laplace

operator. Recall that the Hilbert space H1
0 (ΩA) is defined as the completion of

C∞0 (ΩA) (the space of infinitely differentiable complex-valued functions with com-
pact support in ΩA) under the Sobolev norm

‖u‖=
(∫

ΩA

|u(x)|2 dx+
∫
ΩA

|∇u(x)|2 dx

)1/2

(4.3.2)

and the associated inner product.
Equation (4.3.1) is, by definition, interpreted as follows: the scalar μ is an eigen-

value of −Δ if there exists u 
= 0, u ∈ H1
0 (ΩA), such that

∫
ΩA

∇u(x) ·∇ϕ(x)dx = μ
∫
ΩA

u(x)ϕ(x)dx,

for all ϕ ∈C∞0 (ΩA) (or, equivalently, for all ϕ ∈ H1
0 (ΩA)).27 This is the usual vari-

ational formulation of the Dirichlet eigenvalue problem on a bounded open set ΩA

with possibly nonsmooth (or even fractal) boundary. As it turns out, in order for
(4.3.1) to be satisfied, μ must be real and even positive.

Throughout Section 4.3, we could assume equivalently that the relative fractal
drum (A,Ω) is of the form of a standard fractal drum (∂Ω0,Ω0). Indeed, it suffices

26 For example, if Ω is the unit equilateral triangle and A is the Sierpiński gasket, then ΩA is the
union of a disjoint countable family of open triangles; see Figure 4.5 on page 275.
27 In the case of Neumann boundary conditions, both H1

0 (ΩA) and C∞0 (ΩA) will be replaced by
the Sobolev space H1(ΩA), as will be discussed further on. Also, we must then assume that Ω is a
suitable bounded open subset of RN ; see the discussion at the end of this section on pages 343–344.
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to apply the quoted results (from [Lap1], for example), to the ordinary fractal drum
(∂Ω0,Ω0), which is precisely what we will do, implicitly.

The following lemma describes the boundary of ΩA := Ω \A. As we see, the
subset A \Ω of A does not have any influence on ΩA. In particular, if A and Ω are
disjoint, then ΩA = Ω . For example, Ω∂Ω = Ω . Here and in the sequel of Section
4.3, in order to avoid trivial statements, we assume implicitly that all of the open
sets Ω ⊂ R

N are nonempty.

Lemma 4.3.1. Let (A,Ω) be a relative fractal drum in R
N. If the closure of A does

not possess any interior points,28 then ∂ (ΩA) = ∂Ω ∪ (A ∩Ω). In particular, if
A ⊆Ω , then ∂ (ΩA) = ∂Ω ∪A.

It is well known that the (eigenvalue) spectrum of the Dirichlet eigenvalue prob-
lem (4.3.1) is discrete and consists of an infinite and divergent sequence (μk)k≥1 of
positive numbers (called eigenvalues), without accumulation point (except +∞) and
which can be written in nondecreasing order according to multiplicity as follows:

0 < μ1 ≤ μ2 ≤ ·· · ≤ μk ≤ . . . , lim
k→∞

μk =+∞.

Furthermore, each of the eigenvalues μk is of finite multiplicity. Moreover, if ΩA is
connected, then the first (or ‘principal’) eigenvalue μ1 is of multiplicity one (i.e.,
μ1 < μ2); see [GilTru]. Because the Laplace operator is symmetric, the algebraic
and geometric multiplicities of each of its eigenvalues coincide. We say for short
that the sequence of eigenvalues (μk)k≥1 corresponds to the relative fractal drum
(A,Ω).

Remark 4.3.2. (a) For the present Dirichlet problem (4.3.1), the discreteness of the
spectrum, along with the finiteness of the multiplicity of each (necessarily positive)
eigenvalue, follows from the fact that for any open subsetΩ of RN which is bounded
(or, more generally, of finite volume), H1

0 (Ω) is compactly embedded into H1(Ω)
and hence, into the Lebesgue space L2(ΩA). (See, e.g., [EdmEv].) Recall that the
Sobolev space H1(ΩA) := W 1,2(ΩA) (which is used to formulate the variational
Neumann eigenvalue problem) is the space of all functions u ∈ L2(ΩA) with distri-
butional (or ‘weak’) gradient ∇u ∈ [L2(ΩA)]

N . Like H1
0 (ΩA), H1(ΩA) is a complex

Hilbert space for the Sobolev norm ‖ · ‖ defined by (4.3.2) and the associated inner
product.

(b) In contrast, for the Neumann problem, which will be briefly discussed to-
wards the end of Subsection 4.3.2, even the discreteness of the spectrum does not
always hold (for very rough boundaries) and even when it holds, the counterpart
of Weyl’s asymptotic formula (Equation (4.3.13) below) need not be verified. (See
[Mét2–3].) This is why, following [Lap1], appropriate assumptions will be made
on Ω in our discussion of the Neumann eigenvalue problem (or, more generally,
of mixed Dirichlet-Neumann boundary conditions) towards the end of Subsection
4.3.2.

28 It is easy to see that this condition is satisfied if dimBA < N; see page 32.
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Definition 4.3.3. The spectrum of a relative fractal drum (A,Ω) in R
N , denoted

by σ(A,Ω), is defined as the sequence of the square roots of the eigenvalues of the
boundary value problem (4.3.1); that is,

σ(A,Ω) := (μ1/2
k )k≥1. (4.3.3)

Physically, the values of μ1/2
k , k ∈ N, are interpreted as the (normalized)29 frequen-

cies of the relative fractal drum. The eigenvalues are scaled here with the exponent
1/2, for technical (as well as physical) reasons (and because the Laplacian is a sec-
ond order linear partial differential operator). See, for example, Lemma 4.3.6.

Definition 4.3.4. The spectral zeta function ζ ∗A,Ω of a relative fractal drum (A,Ω)

in R
N is given by

ζ ∗A,Ω (s) :=
∞

∑
k=1

μ−s/2
k , (4.3.4)

for all s ∈ C with Res sufficiently large.

Example 4.3.5. The spectral zeta function of a fractal string L = (� j) j≥1, where L
is viewed as a relative fractal drum (AL ,ΩL ), is given by

ζ ∗L (s) =
∞

∑
k, j=1

(k · �−1
j )−s = ζ (s) ·ζL (s),

where ζ = ζR is the Riemann zeta function and ζL is the geometric zeta function
of L ; see [Lap2–3], [LapMa2] and [Lap-vFr3, Section 1.3]. Hence, by analytic
continuation (and since ζ is meromorphic on all of C), we have

ζ ∗L (s) = ζ (s) ·ζL (s), (4.3.5)

in every domain U ⊂ C to which ζL can be meromorphically continued.

The above definition of the spectrum σ(A,Ω) and of the spectral zeta function
ζ ∗A,Ω of a relative fractal drum is in agreement with the definition of the spectrum of
a bounded fractal string L = (� j) j≥1 given in [Lap-vFr3, p. 2] or more generally,
of a fractal drum (see, e.g., [Lap1–3]). (See also [Lap-vFr3, Equation (1.45), p. 29]
and [Lap-vFr3, Appendix B], along with the relevant references therein, including
[Gilk] and [See1].) Note that the sequence

L (A,Ω) := (μ−1/2
k )k≥1, (4.3.6)

which consists of the reciprocal frequencies in σ(A,Ω), is also a fractal string (pos-

sibly unbounded, i.e., ∑∞k=1 μ
−1/2
k =+∞). As we see, the spectral zeta function of a

relative fractal drum (A,Ω) is by definition equal to the geometric zeta function of

29 When N = 1, see [Lap-vFr3, footnote 1 on page 2].
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the fractal string L (A,Ω). It is clear that D(ζ ∗A,Ω ) ≥ 0. Furthermore, since ζ ∗A,Ω is
a Dirichlet series with positive coefficients (and the spectrum of (A,Ω) is infinite),
we also have D(ζ ∗A,Ω ) = Dhol(ζ ∗A,Ω ); see Subsection 2.1.3.

We note that the usual definition of the spectrum involves the sequence of eigen-

values (μk)k≥1 rather than the sequence of their square roots (μ1/2
k )k≥1, as in Equa-

tion (4.3.3). We prefer the definition of the spectrum σ(A,Ω) given in Equation
(4.3.3) and hence, the use of the exponent −s/2 (rather than of −s) in the definition
of the spectral zeta function ζ ∗A,Ω in Equation (4.3.4) since, in this case, Lemma
4.3.6, Proposition 4.3.10 and Theorem 4.3.17 below take a more elegant form. See
[Lap2–3] and [Lap-vFr3, p. 29 and Appendix B], and compare, for example, with
[Gilk] and [See1].

The spectrum of a relative fractal drum has an interesting (but elementary) scal-
ing property, which we now state.

Lemma 4.3.6. Let σ(A,Ω) be the spectrum of a relative fractal drum (A,Ω) in R
N.

If λ is any fixed positive real number, then

σ(λA,λΩ) = λ−1σ(A,Ω); (4.3.7)

that is, σ(λA,λΩ) = (λ−1μ1/2
k )k≥1, where (μk)k≥1 is the sequence of eigenvalues

of problem (4.3.1) on ΩA. Equivalently, L (λA,λΩ) = λL (A,Ω); see Equation
(4.3.6).

Proof. It is easy to see that if μk is an eigenvalue corresponding to −Δ , with re-
spect to the domain ΩA =Ω \A, generated by the relative fractal drum (A,Ω), then
λ−2μk is an eigenvalue corresponding to the operator −Δ with respect to the domain
(λΩ)λA, generated by (λA,λΩ). Indeed, if uk ∈H1

0 (ΩA) is such that −Δuk = μkuk,
uk 
= 0, then for vk(y) := uk(x/λ ), where y ∈ (λΩ)λA, we have

−Δvk(y) =
μk

λ 2 vk(y).

In other words, the sequence of eigenvalues of −Δ on (λΩ)λA is equal to
(μkλ−2)k≥1. (This claim can also be checked directly by using the aforemen-
tioned variational formulation of the eigenvalue problem (4.3.1).) Therefore, by
Definition 4.3.3,

σ(λA,λΩ) = (λ−1μ1/2
k )k≥1 = λ−1σ(A,Ω).

This completes the proof of the lemma. ��

An immediate consequence of Lemma 4.3.6 is the following scaling result for
the spectral zeta functions of RFDs.

Proposition 4.3.7 (Scaling property of spectral zeta functions). Let (A,Ω) be
a relative fractal drum in R

N. Then for any λ > 0, and for all s ∈ C such that
Res > dimB(A,Ω), we have
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ζ ∗λA,λΩ (s) = λ
sζ ∗A,Ω (s).

The following result represents a partial extension in the present context of Ex-
ample 4.3.5 (see also [Lap-vFr3, Theorem 2.1]), in the special case of fractal strings,
or of the corresponding result for fractal sprays in [Lap2–3] and [LapPo3]. Its proof
is similar to that of Theorem 4.2.5.

Theorem 4.3.8. Let (A0,Ω0) be a base RFD in R
N, and let L = (λ j) j≥1 be a non-

increasing sequence of positive numbers tending to zero (and repeated according to
multiplicities), i.e., a (not necessarily bounded) fractal string. Assume that (A j,Ω j),
j ≥ 1, is a disjoint sequence of RFDs, each of which is obtained by a rigid motion
of λ j(A0,Ω0) = (λ jA0,λ jΩ0). Let (A,Ω) =

⋃
j≥1(A j,Ω j) be the corresponding rel-

ative fractal spray, generated by (A0,Ω0) and L ; that is, (A,Ω) = (A0,Ω0)⊗L .
Then, assuming that s ∈ C is such that Res > max{D(ζ ∗A0,Ω0

),dimBL }, we have

ζ ∗A,Ω (s) = ζ
∗
A0,Ω0

(s) ·ζL (s), (4.3.8)

where ζL is the geometric zeta function of L (see Equation (2.1.71) of Subsection
2.1.4). In particular, for all s ∈ C with Res sufficiently large, we have

ζ ∗A,Ω (s) =
∞

∑
k=1

(μ(0)k )−s/2
∞

∑
j=1
λ s

j , (4.3.9)

where (μ(0)k )k≥1 is the sequence of eigenvalues corresponding to the relative frac-
tal drum (A0,Ω0). Furthermore, by the principle of analytic continuation, Equation
(4.3.8) continues to hold on any domain to which ζL and ζ ∗A0,Ω0

can both be mero-
morphically continued. (A similar comment applies to Equation (4.3.11) below.)

Moreover,
D(ζ ∗A,Ω ) = max{D(ζ ∗A0,Ω0

),dimBL }. (4.3.10)

In particular, if λ j = λ j for some fixed λ ∈ (0,1), and each λ j is of multiplicity
b j, where b ∈ N, b ≥ 2, then for Res > D(ζ ∗A0,Ω0

)

ζ ∗A,Ω (s) =
bλ s

1−bλ s

∞

∑
k=1

(μ(0)k )−s/2 =
bλ s

1−bλ s ζ
∗
A0,Ω0

(s), (4.3.11)

and
D(ζ ∗A,Ω ) = max{D(ζ ∗A0,Ω0

), log1/λ b}.

Remark 4.3.9. In the case of fractal sprays (and of fractal strings, in particular), the
factorization formula (4.3.8) was first observed in [Lap2–3]. In the special case of
fractal strings, it has proved to be very useful; see, especially, [Lap2–3, LapPo1–3,
LapMa1–2, HeLap, Lap-vFr1–3, Tep1–2, LalLap1–2, HerLap1–5]. See also, e.g.,
[Lap-vFr3, Sections 1.4 and 1.5] and [Lap-vFr3, Chapters 6, 9, 10 and 11], both for
the case of fractal strings and (possibly generalized or even virtual) fractal sprays.
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4.3.2 Meromorphic Extensions of Spectral Zeta Functions
of Fractal Drums

It is well known that if Ω0 is any (nonempty) bounded open subset of R
N , and

σ(∂Ω0,Ω0) =
(
(μ(0)k )1/2

)
k≥1 (that is, (μ(0)k )k≥1 is the sequence of eigenvalues of

−Δ with zero (or Dirichlet) boundary data on ∂Ω0, counting the multiplicities of the
eigenvalues), then the following classical asymptotic result holds, known as Weyl’s
law [Wey1–2]:

μ(0)k ∼ 4π2

(ωN |Ω0|)2/N
· k2/N as k → ∞, (4.3.12)

where ωN = πN/2/(N/2)! is the volume of the unit ball in R
N .30 We recall that

here, consistent with the notation introduced on page 41, the symbol ∼ means that
the ratio of the left and right sides of (4.3.12) tends to 1 as k → ∞.

The main result of this subsection is stated in Theorem 4.3.17. Its proof is based
on the asymptotic result due to the first author, stated in Theorem 4.3.11, combined
with Proposition 4.3.10.

The asymptotic result stated in Equation (4.3.12) was obtained by Hermann Weyl
in 1912 for piecewise smooth boundaries, in [Wey1–2]. It has since then been ex-
tended to a variety of settings (for example, to smooth, compact Riemannian mani-
folds with or without boundary, various boundary conditions, broader classes of el-
liptic operators, fractal boundaries, etc.). See, for example, the well-known treatises
by Courant and Hilbert [CouHil, Section VI.4] and by Reed and Simon [ReeSim1],
along with [Hö3] and the introduction of [Lap1], as well as [Lap2–3] and [Lap-vFr3,
Section 12.5 and Appendix B]. It has been extended by G. Métivier in [Mét1–3] dur-
ing the 1970s to arbitrary bounded subsets of RN (in the present case of Dirichlet
boundary conditions). Independently and at about the same time, this latter result
was also obtained by M. Sh. Birman and M. Z. Solomyak in [BiSo]. Furthermore,
in this general setting (for example), sharp error estimates, expressed in terms of the
upper Minkowski (or box) dimension of the boundary of Ω0, were obtained by the
first author in the early 1990s in [Lap1]; see Theorem 4.3.11 below, along with
the comments following Theorem 4.3.17 and Remark 4.3.23 for further extensions
about other boundary conditions and higher-order elliptic operators, with possibly
variable coefficients.

In the following result, we consider a class of bounded open subsets Ω0 of RN

such that the corresponding sequence of eigenvalues (μ(0)k )k≥1 satisfies an asymp-
totic condition involving the error term as well:

μ(0)k =
4π2

(ωN |Ω0|)2/N
· k2/N +O(kγ) as k → ∞. (4.3.13)

30 For odd N, we have (N/2)! = N
2 (

N
2 −1) · · · 1

2 , since (N/2)! := Γ(N
2 +1), where Γ is the classic

gamma function.
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Here, we assume that γ ∈ (−∞,2/N). It will also be convenient to use the following
short-hand notation: ζ ∗Ω0

= ζ ∗∂Ω0,Ω0
, and more generally, ζ ∗Ω0

= ζ ∗A0,Ω0
, provided A0

and Ω0 are disjoint. We say for brevity that ζ ∗Ω0
is the spectral zeta function of the

bounded open subset Ω0 of RN .

Proposition 4.3.10. Assume that Ω0 is an arbitrary bounded open subset of RN

such that the corresponding sequence of eigenvalues of −Δ , with zero (or Dirichlet)
boundary data on ∂Ω0, counting the multiplicities of the eigenvalues, satisfies the
asymptotic condition (4.3.13), where γ < 2/N. Then the spectral zeta function

ζ ∗Ω0
(s) =

∞

∑
k=1

(μ(0)k )−s/2 (4.3.14)

possesses a (necessarily unique) meromorphic extension (at least) to the open half-
plane {

Res > N − (2− γN)
}
. (4.3.15)

In other words, Dmer(ζ ∗Ω0
) ≤ N − (2− γN). As we see, the meromorphic extension

vertical strip, to the left of the vertical line {Res = N}, is of width at least 2− γN.
The only pole of ζ ∗Ω0

in this half-plane is s = N, and in particular, D(ζ ∗Ω0
) = N.

Furthermore, it is simple and

res(ζ ∗Ω0
,N) =

NωN

(2π)N |Ω0|. (4.3.16)

Proof. Letting C := 4π2(ωN |Ω0|)−2/N , we have that μ(0)k = C · k2/N + dk, where
dk = O(kγ) as k → ∞, and hence,

ζ ∗Ω0
(s) =

∞

∑
k=1

(C · k2/N +dk)
−s/2.

To prove the proposition, it suffices to apply Theorem 2.3.12 with a = 2/N, γ <
a and s1 = s/2. Indeed, we obtain that ζ ∗Ω0

(s) possesses a unique meromorphic

extension (at least) to the open half-plane {Re s
2 > N

2 − (1− γ
a )}, or, equivalently,

to the open half-plane {Res > N − (2− γN)}, as claimed in (4.3.15). Furthermore,

according to the same theorem, the residue of ζ ∗Ω0
(2s) = ∑∞k=1(μ

(0)
k )−s at s = a =

2/N is equal to (1/a)C−1/a = (N/2)C−N/2. Hence, the residue of ζ ∗Ω0
(s) at s = N

can be obtained as follows:

res(ζ ∗Ω0
,N) = lim

s→N
(s−N)ζ ∗Ω0

(s) = lim
2s→N

(2s−N)ζ ∗Ω0
(2s)

= 2 lim
s→N/2

(
s− N

2

)
ζ ∗Ω0

(2s) = 2
N
2

C−N/2 =
NωN

(2π)N |Ω0|,

where in the next-to-last equality, we have used Equation (2.3.18) from Theorem
2.3.12. This completes the proof of Proposition 4.3.10. ��
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In practice, in light of the remainder estimates of [Lap1] recalled in Theorem
4.3.11 and in Corollary 4.3.14 below, we will apply Proposition 4.3.10 under the
assumption that D̃ := dimB(∂Ω0,Ω0)< N and γ ∈ [(2+ D̃−N)/N,2/N).

In light of Equation (4.3.16), under the hypotheses of Proposition 4.3.10, the
residue of the spectral zeta function ζ ∗Ω0

computed at s = N is proportional to the N-
dimensional Lebesgue measure (volume) of Ω0; see (4.3.16). As we see, this result
is of a similar nature as Equation (2.2.4) in Theorem 2.2.3. Moreover, the volume of
Ω0 can be explicitly computed by using the spectral zeta function:

|Ω0|=
(2π)N

NωN
res(ζ ∗Ω0

,N). (4.3.17)

Theorem 4.3.8, combined with Proposition 4.3.10, generalizes [Lap-vFr3, Theo-
rem 1.19] to the N-dimensional case. See also Theorem 4.3.17 below, which relies
on Theorem 4.3.11 (or, equivalently, on Corollary 4.3.14) and provides explicit con-
ditions under which Equation (4.3.13) holds, and hence Proposition 4.3.10 can be
applied.

It is clear that the claim of Proposition 4.3.10 is true if in (4.3.13) we replace
O(kγ) by O(k(γ) as k → ∞. For example, we may have O(kγ logk) as k → ∞ in
(4.3.13).

Let (μ(0)k )k≥1 be the sequence of eigenvalues of −Δ , where Δ is the Dirichlet
Laplacian, associated with a given bounded open subset Ω0 of RN . In what follows,
we denote by

Nν(μ) := #{k ∈ N : μ(0)k ≤ μ}, for μ > 0, (4.3.18)

the eigenvalue counting function of the fractal drum, taking into account the mul-
tiplicities. It is also called the spectral counting function in the literature; see, e.g.,
[Lap1–5], [Lap-vFr1–3] and the relevant references therein.

In the proof of Theorem 4.3.17 below, we shall need the following significant
result (see [Lap1, Equation (1.8), Theorems 1.1 and 2.3]), which provides a par-
tial resolution of the modified Weyl–Berry conjecture. See [Lap1, Corollary 2.1], as
well as [Lap1, Theorems 2.1 and 2.3], along with the comments following Theo-
rem 4.3.17 and Remark 4.3.23, for a more general statement involving positive uni-
formly elliptic linear differential operators (with variable and possibly nonsmooth
coefficients) and mixed Dirichlet–Neumann boundary conditions.

Theorem 4.3.11 (Lapidus, [Lap1]). Let Ω0 be an arbitrary (nonempty) bounded
open subset of RN. Let D̃ := dimB(∂Ω0,Ω0) denote the upper relative Minkowski
(or box) dimension of Ω0, with respect to ∂Ω0. Then we have the following remain-
der estimates:

(i) If D̃ ∈ (N −1,N], then for any d > D̃,

Nν(μ) = (2π)−NωN |Ω0| ·μN/2 +O(μd/2) as μ →+∞. (4.3.19)
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(ii) If D̃ = N −1, then for any d > D̃,

Nν(μ) = (2π)−NωN |Ω0| ·μN/2 +O(μd/2 logμ) as μ →+∞. (4.3.20)

Moreover, in both cases (i) and (ii), the choice d = D̃ is allowed, provided

M ∗D̃(∂Ω0,Ω0)< ∞;

that is, Ω0 has finite upper Minkowski content, relative to ∂Ω0 (i.e., it has finite
inner Minkowski content).

Remark 4.3.12. (a) For Dirichlet boundary conditions, Theorem 4.3.11 just above
(and hence also, Corollary 4.3.14 below) remains valid without change for an arbi-
trary (and possibly unbounded as well as disconnected) nonempty open set Ω0 with
finite volume: |Ω0|< ∞.

(b) Note that in [Lap1–3], D̃ is referred to as the inner Minkowski dimension of
Ω0. It is known that since Ω0 is a (nonempty) bounded open set, we have N − 1 ≤
D̃≤N; see [Lap1, Section 3]. Also, in [Lap1], the case when D̃=N−1 is referred to
as the ‘nonfractal case’ (or the least fractal case), and the case when D̃ ∈ (N −1,N]
is referred to as the ‘fractal case’. Finally, note that in the most fractal case when
D̃ = N, the error estimate (4.3.19) is still valid, but is uninformative; indeed, even
when d := D̃ = N, the ‘error term’ is then of the same order as the ‘leading term’ in
(4.3.19).

(c) According to the notation introduced in Remark 2.3.4, this condition can be
written more succinctly in the following form:

Nν(μ) = (2π)−NωN |Ω0| ·μN/2 +O(μ(D̃/2) as μ → ∞. (4.3.21)

A similar comment applies to the error estimate (4.3.20).

Various aspects of the study of the (possibly modified) Weyl–Berry conjecture
are discussed in the introduction of [Lap1], in [Lap3] and, more recently, in a brief
survey given in [Lap-vFr3, Section 12.5.1]. See also [Berr1–2], [BroCar], [Lap1–3],
[LapPo1–3], [Cae], [vBGilk], [HamLap], [FlVa], [Ger], [GerSc], [MolVai] and the
references therein. The result stated in case (ii) of Theorem 4.3.11, that is, in
the nonfractal case when D̃ = N − 1, and under the additional assumption that
M ∗(N−1)(∂Ω) is finite, was already obtained in Métivier’s work [Mét3, Theorem
6.1 on page 191]; see also [Mét1–2]. Métivier stated his result without the explicit
use of box (that is, Minkowski) dimension or Minkowski content. See [Lap-vFr3,
Section 12.5] for a more complete list of references. Results concerning the parti-
tion function (the trace of the heat semigroup) of the Dirichlet Laplacian have been
obtained by Brossard and Carmona [BroCar]. The main estimate in [BroCar] is now
a consequence of the results of [Lap1] stated in Theorem 4.3.9, but the converse is
not true. Indeed, as is well known, beyond the leading term, the spectral asymptotics
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for the trace of the heat semigroup do not imply corresponding asymptotics for the
eigenvalue counting function (or, equivalently, for the eigenvalues themselves). In
fact, when they hold, the pointwise estimates for the eigenvalue counting function
are considerably more difficult to prove.

Remark 4.3.13. (a) As was mentioned earlier, the first general result concerning the
leading term of the asymptotic expansion of the eigenvalues is due to Hermann Weyl
in [Wey1–2] towards the beginning of the 20th century, in the case of a sufficiently
smooth boundary. Eventually, this result was extended in the 1970s by Guy Métivier
in [Mét1–3] (see also [BiSo]) for an arbitrary bounded open set (and for the Dirichlet
Laplacian or more general elliptic operators and boundary conditions). The error
estimate (4.3.20) is due to Courant in the case of a piecewise smooth boundary (and
hence, D̃ = N − 1), a very special case of (ii) in Theorem 4.3.11. An elementary
concrete example of that situation can be found in the monograph by Courant and
Hilbert [CouHil, p. 431], where in the case whenΩ0 is a rectangle in the plane, with
sides a and b, it is shown that the counting function of the associated sequence of
eigenvalues of the Dirichlet Laplacian −Δ satisfies

Nν(μ) =
ab
4π

·μ+O(
√
μ) as μ →+∞.

In fact, an equivalent number-theoretic formulation of this result was already known
to Gauss in 1834; see [Gau].

(b) In case (ii) of Theorem 4.3.11, the remainder estimate (4.3.20) is known to
hold without the logarithmic term (i.e., Equation (4.3.19) holds with d = N − 1 as
well as M ∗D̃(∂Ω0,Ω0)<∞) if the boundary ofΩ0 is (sufficiently) smooth, or more
generally, for sufficiently smooth compact Riemannian manifolds with or without
boundary. (By “smooth” here, we mean Cr, that is, r times continuously differ-
entiable, with the positive integer r ≥ 2 large enough.) See [Hö2–3], [Lap-vFr3,
Appendix B] and the introduction of [Lap1] as well as the many references therein,
describing, in particular, the results of Hörmander [Hö1], Seeley [See2–3] and Pham
The Lai [Ph]. See also [Lap-vFr3, Remark B.1 of Appendix B].

From Theorem 4.3.11 it is possible to derive a result, also due to the first author,
regarding the error term for the leading asymptotics of the eigenvalues of the Dirich-
let Laplacian −Δ , associated with bounded open sets in R

N . As is well known by
the experts in spectral theory, the statement of Corollary 4.3.14 is equivalent to that
of Theorem 4.3.11 (by means of a standard Abelian/Tauberian argument, for exam-
ple); furthermore, Corollary 4.3.14 can be deduced from Theorem 4.3.11 by means
of the converse of a Tauberian theorem, called an Abelian theorem in [Sim], for ex-
ample; see [Lap1, Appendix A] and [Sim] for a closely related situation. In order to
keep this part of the exposition essentially self-contained, we provide (at least in a
special case) a different proof, based on the elementary Lemma 4.3.15 below.

Corollary 4.3.14 ([Lap1]). LetΩ0 be an arbitrary (nonempty) bounded open subset

of RN. As before, we let D̃ := dimB(∂Ω0,Ω0), and let (μ(0)k )k≥1 be the sequence of
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eigenvalues of −Δ , where Δ is the Dirichlet Laplacian on Ω0. Then the following
conclusions hold:

(i) If D̃ ∈ (N −1,N], then for any d > D̃,

μ(0)k =
4π2

(ωN |Ω0|)2/N
· k2/N +O(k(2+d−N)/N) as k → ∞. (4.3.22)

(ii) If D̃ = N −1, then for any d > D̃,

μ(0)k =
4π2

(ωN |Ω0|)2/N
· k2/N +O(k(2+d−N)/N logk) as k → ∞. (4.3.23)

Moreover, in each of the cases (i) and (ii), the choice of d = D̃ is allowed, provided
M ∗D̃(∂Ω0,Ω0)< ∞.

More succinctly, according to the notation introduced in Remark 2.3.4, we can
rewrite (4.3.22) in the following equivalent manner:

μ(0)k =
4π2

(ωN |Ω0|)2/N
· k2/N +O

(
k
(

2+D̃−N
N

)
as k → ∞. (4.3.24)

A similar comment applies to the remainder term in (4.3.23).

Postponing the proof of Corollary 4.3.14 for a while, we first state and prove an
auxilliary technical result.

Lemma 4.3.15. Let c > 0, m > 0 and α ∈ (−∞,m) be given real numbers. As-
sume that (μk)k≥1 is a sequence of positive real numbers satisfying the following
condition:31

c ·μm
k +O(μαk ) = k as k → ∞. (4.3.25)

Then
μk = c−1/m · k1/m +O(k

α+1
m −1) as k → ∞. (4.3.26)

Proof. Step 1: Let us first prove the lemma for m = 1. Note that in this case, we
have α < 1. Without loss of generality, we may assume that c = 1; otherwise, we
introduce a new sequence μ ′k = cμk. In this case, by the assumption made in the
lemma, there exists a positive real number C such that |k−μk| ≤Cμαk for all positive
integers k. Since this implies that k ≤ μk +Cμαk for all k ≥ 1, then, clearly,

lim
k→∞

μk =+∞.

Therefore, from ∣∣∣ k
μk

−1
∣∣∣≤Cμα−1

k , (4.3.27)

31 Here, we write μm
k instead of (μk)

m, for example; see also, (4.3.50) below, for instance.
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and using α − 1 < 0, we conclude that limk→∞
k
μk

= 1. In particular, there exists a
positive constant C1 such that μk ≤C1k for all positive integers k. Hence,

|k−μk| ≤Cμαk ≤CCα1 kα ;

that is, μk = k+O(kα) as k → ∞, which proves the lemma for m = 1.

Step 2: We now consider the case when c ·μm
k +O(μαk ) = k as k →∞, with m > 0

and m 
= 1. Letting λk := μm
k for every k ≥ 1, we obtain c · λk +O(λα/m

k ) = k as
k → ∞. By Step 1, we then conclude that

λk =
1
c
· k+O(kα/m) as k → ∞.

Therefore,

μk =
(1

c
· k+O(kα/m)

)1/m
= c−1/mk1/m(1+O(k

α
m−1)

)1/m

= c−1/mk1/m(1+O(k
α
m−1)

)
as k → ∞,

where in the last equality we have used the fact that α <m. This concludes the proof
of the lemma. ��

Remark 4.3.16. Lemma 4.3.15 permits a slight generalization. If instead of condi-
tion (4.3.25), we assume that

c ·μm
k +O(μαk ) = k+O(kβ ) as k → ∞, (4.3.28)

where β < 1, then (retaining the remaining conditions in the lemma) we have that:

μk = c−1/m · k1/m +O(k
1
m+max{ αm ,β}−1) as k → ∞. (4.3.29)

This conclusion is obtained by an easy modification of the proof of Lemma 4.3.15.

We are now ready to prove Corollary 4.3.14 (in a special case).

Proof of Corollary 4.3.14. Let us first assume that D̃ ∈ (N − 1,N]; that is, let us
assume that we are in case (i) of the corollary.

For simplicity, we assume that D̃ ∈ (N − 1,N) and that the eigenvalues all have
multiplicity one. (The case when D̃ = N is of no interest while the case when
D̃ = N − 1 can be dealt with similarly.) For the general case when the eigenvalues
may have multiplicities larger than one, it would be best to work directly with the
eigenvalue counting function (and, hence, to use Theorem 4.3.11 instead of Corol-
lary 4.3.14), as is standard and done in [Lap2–3]. See the comment following the
proof of Theorem 4.3.17 below.
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From the definition of the counting function, we obviously have that Nν(μ
(0)
k ) =

k, for all k ≥ 1. By using Theorem 4.3.11(i), we obtain that

(2π)−NωN |Ω0| ·μN/2
k +O(μd/2

k ) = k as k → ∞.

Now, if we set m = N/2 and α = d/2, Lemma 4.3.15 immediately implies claim (i)
in the corollary. The proof of case (ii) is similar. ��

Combining Corollary 4.3.14 with Proposition 4.3.10, we deduce the main result
of this section, already obtained by the first author in [Lap2–3]. As in [Lap2–3], it
makes an essential use (via Corollary 4.3.14) of the key remainder estimate obtained
in [Lap1]. Furthermore, it is stated a little bit more precisely than in [Lap2–3] and
makes use of the notation introduced in Subsection 2.1.5. It shows that Dmer(ζ ∗Ω0

),
the abscissa of meromorphic continuation of ζ ∗Ω0

, does not exceed the upper box

dimension of the boundary ∂Ω0 relative to Ω0, denoted (as above) dimB(∂Ω0,Ω0)
and called the inner Minkowski dimension of ∂Ω0 in [Lap1].

Theorem 4.3.17 (Lapidus, [Lap2–3]). Let Ω0 be an arbitrary (nonempty) bounded
open subset of RN such that dimB(∂Ω0,Ω0)} < N. Then the spectral zeta function
ζ ∗Ω0

of Ω0 is holomorphic in the open half-plane {Res > N} and Dhol(ζ ∗Ω0
) = N.

Furthermore, ζ ∗Ω0
can be (uniquely) meromorphically extended from {Res > N} to

(at least) {Res > dimB(∂Ω0,Ω0)}. In other words,32

Dmer(ζ ∗Ω0
)≤ dimB(∂Ω0,Ω0). (4.3.30)

Moreover, s = N is the only pole of ζ ∗Ω0
in the half-plane {Res > dimB(∂Ω0,Ω0)};

it is a simple pole and

res(ζ ∗Ω0
,N) =

NωN

(2π)N |Ω0|. (4.3.31)

Proof. Let us prove the statement regarding the meromorphicity of ζ ∗Ω0
. [The proof

of the statement regarding the holomorphicity of ζ ∗Ω0
in {Res > N} is left as an

easy exercise for the interested reader. (Actually, as will be explained further below,
it follows from the known properties of generalized Dirichlet series with positive
coefficients recalled in Subsection 2.1.3.)] Let us set γ = 2+d−N

N . Since we then

have N − (2− γN) = d, using Proposition 4.3.10 applied to the sequence (μ(0)k )k≥1

in Corollary 4.3.14, we conclude that ζ ∗Ω0
can be meromorphically extended in a

unique way to the half-plane {Res > d}. This property holds for any d > D̃ :=
dimB(∂Ω0,Ω0); hence, the function ζ ∗Ω0

can be meromophically extended to the
half-plane {Res > D̃}.

Finally, assume that D̃ ∈ (N − 1,N), for simplicity. Then, since D̃ < N, we see
that the meromorphic continuation of ζ ∗Ω0

must have a (simple) pole at s = N. In-
deed, since ζ ∗Ω0

is initially given by a (generalized) Dirichlet series with positive

32 Recall that, by definition, {Res > Dmer(ζ ∗Ω0
)} is the largest open right half-plane to which ζ ∗Ω0

can be meromorphically extended.
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coefficients, ζ ∗Ω0
must have a singularity at s = N; but since ζ ∗Ω0

can be meromor-
phically continued to a connected open neighborhood of s=N (and in light of either
(4.3.19) or (4.3.22)), this singularity must be a simple pole of ζ ∗Ω0

. The value of the
residue given in (4.3.31) follows from (4.3.16) in Proposition 4.3.10. This concludes
the proof of the theorem. ��

Alternatively, Theorem 4.3.17 follows easily from Theorem 4.3.11 (via standard
arguments, well known to the experts in spectral theory) by proceeeding as follows,
which is the method used in [Lap2–3]. First, observe that, as is well known, the
spectral zeta function (essentially) coincides with the Mellin transform of the spec-
tral counting function, at least for Res > D̃, where D̃ := dimB(∂Ω0,Ω0). Then, use
the remainder estimate for the eigenvalue counting function (see Theorem 4.3.11
above, from [Lap1]), along with a suitable (and standard) Abelian theorem33 (the
converse of a Tauberian theorem, in the terminology of [Sim]) or simply, a direct
analysis of the corresponding integral (essentially, the Mellin transform of the spec-
tral counting function Nν ) in order to deduce that ζ ∗Ω0

admits a meromorphic ex-
tension to the open half-plane {Res > D̃}, as desired. More specifically, one can
use Theorem 2.1.47 about the holomorphicity of integrals depending analytically
on a parameter, along with Theorem 4.3.11, to deduce that the spectral zeta function
ζ ∗Ω0

admits a meromorphic continuation to {Res > D̃}, with a single, simple pole
located at s = N (thus, the meromorphic continuation is holomorphic for Res > D̃
except at s = N).

The proof of Theorem 4.3.17 provided above, just after the statement of Theo-
rem 4.3.17, presents the advantage of being elementary (assuming, of course, the
results of Theorem 4.3.11, which are not at all elementary). However, at least for
now, it is only valid under special assumptions on the multiplicities of the eigen-
values (see Lemma 4.3.15 and Remark 4.3.16 on pages 329 and 330), whereas the
aforementioned proof (from [Lap3]) is valid in full generality since it directly relies
on Theorem 4.3.11 rather than on Corollary 4.3.14.

We next state an easy but useful consequence of Theorem 4.3.17. At this stage,
the reader may wish to review some of the relevant notation introduced in Sec-
tion 2.1.

Corollary 4.3.18. Under the same hypotheses as in Theorem 4.3.17, we have (with
the notation introduced in Section 2.1)

D(ζ ∗Ω0
) = Dhol(ζ ∗Ω0

) = N (4.3.32)

and so
Π(ζ ∗Ω0

) = H (ζ ∗Ω0
) = {Res > N}, 34 (4.3.33)

33 See, e.g., [Sim] or [Lap1, Theorem A in Appendix A] for the case of the Laplace transform
instead of the Mellin transform. Of course, a simple change of variable of the form x = et then
converts the (additive) Laplace transform to the (multiplicative) Mellin transform.
34 That is, Π(ζ ∗Ω0

), the half-plane of (absolute) convergence of ζ ∗Ω0
, coincides with H (ζ ∗Ω0

), the
half-plane of holomorphic continuation of ζ ∗Ω0

.
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whereas
Dmer(ζ ∗Ω0

)< Dhol(ζ ∗Ω0
). (4.3.34)

Proof. The second equality in (4.3.32), Dhol(ζ ∗Ω0
) = N, holds because (by the sec-

ond part of Theorem 4.3.17 and since dimB(∂Ω0,Ω0) < N) the meromorphic con-
tinuation of ζ ∗Ω0

has a pole at s = N, so that {Res > N} is the largest open right
half-plane on which ζ ∗Ω0

is holomorphic: H (ζ ∗Ω0
) = {Res > N}. Furthermore, the

first equality in (4.3.32), D(ζ ∗Ω0
) = Dhol(ζ ∗Ω0

), holds because ζ ∗Ω0
is initially given

by a (generalized) Dirichlet series with positive coefficients; see Equation (4.3.4) of
Definition 4.3.4 above, along with Subsection 2.1.3.1. This proves Equation (4.3.32)
and hence also Equation (4.3.33).

Finally, we note that clearly, in light of the second equality in (4.3.32) and of the
inequality (4.3.30) in Theorem 4.3.17, the claimed strict inequality (4.3.34) holds
since, by hypothesis, we have that dimB(∂Ω0,Ω0)< N. This concludes the proof of
the corollary. ��

For the sake of brevity, let D̃ := dimB(∂Ω0,Ω0), in the sequel. It is notewor-
thy that the estimates obtained in [Lap1] (and recalled, in particular, in Equa-
tions (4.3.19) and (4.3.22)) are best possible (i.e., sharp), in general, in the most
important case of a fractal drum for which N > D̃ > N − 1 and d = D̃, with
M ∗D̃(∂Ω0,Ω0) < ∞;35 that is, in case (i) of Theorem 4.3.11 and of Corollary
4.3.14 (as well as for an open set Ω0 satisfying M ∗D̃(∂Ω0,Ω0)< ∞), respectively,
the estimates (4.3.19) and (4.3.22) are sharp. See [Lap1, Examples 5.1 and 5.1’]
for a one-parameter family of examples {Ω0,α}α>0 (based on the α-string, often
used in the present book) for which D̃ takes all possible values (as α varies in
(0,+∞)) in the allowed open interval (N − 1,N) and the error estimates (4.3.19)
and (4.3.22) are sharp, with d := D̃; furthermore, each open set Ω0,α is Minkowski
measurable and, in particular, is Minkowski nondegenerate (hence, the condition
M ∗D̃(∂Ω0,Ω0)< ∞ is satisfied).

More specifically, for α > 0, let Vα :=
⋃∞

j=1(( j+1)−α , j−α) denote the α-string.
Then, given N ≥ 2, let Ω0,α := Vα × (0,1)N−1; so that the bounded open set Ω0,α
is the ‘fractal comb’ obtained as the disjoint union of the ‘teeth’ (( j+1)−α , j−α)×
(0,1)N−1. According to the results of [Lap1, Examples 5.1 and 5.1’] along with
[Lap1, Appendix C], for each α > 0,

D̃ := dimB(∂Ω0,α ,Ω0,α) = (N −1)+(α+1)−1 (4.3.35)

exists, and the relative fractal drum (∂Ω0,α ,Ω0,α) is Minkowski measurable with
Minkowski content

M D̃(∂Ω0,α ,Ω0,α) =
21−D̃α D̃

1− D̃
.

35 Recall from [Lap1, Corollary 3.2] that (since Ω0 is a nonempty, bounded and open subset of
R

N ) D̃ = dimB(∂Ω0,Ω0) always satisfies the following inequality: N −1 ≤ D̃ ≤ N.
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Clearly, in light of (4.3.35), D̃ ranges through all of (N −1,N) as α ranges through
(0,+∞). Furthermore, it can be shown by a direct computation (see [Lap1], loc.
cit.) that the error estimates (4.3.19) and (4.3.22) hold with d = D̃ and cannot
be improved. Actually, much more is true in this case, although it is not neces-
sary to know about it for the present argument. Indeed, in light of later results
obtained in [LapPo1–2] about the spectral asymptotics of Minkowski measurable
fractal strings, one can even show that the error term in (4.3.19) can be replaced
by an explicitly computable monotonic (asymptotic) second term, proportional to
M D̃(∂Ω0,Ω0)μ D̃/2 and with the implied constant of proportionality involving the
positive number −ζ (d̃), where d̃ := 1/(α+1) ∈ (0,1) and ζ denotes the Riemann
zeta function; and analogously for (4.3.22). (See [LapPo2–3] and [Lap-vFr3, Sub-
sections 6.5.1 and 8.1.2].)

We note that the open sets Ω0,α constructed in [Lap1] are not connected. How-
ever, much as in [BroCar] and [FlVa], one can open appropriately small gates in
each of the ‘teeth’ of the ‘fractal combs’ Ω0,α in order to obtain a one-parameter
family {Ω ′

0,α}α>0 of connected (and even simply connected) open subsets of RN

(with N ≥ 2 arbitrary) having the same properties as the family {Ω0,α}α>0. More
specifically, each domain Ω ′

0,α is Minkowski measurable, with

dimBΩ ′
0,α = dimBΩ0,α = (N −1)+(α+1)−1 (4.3.36)

taking all possible values in (N − 1,N), as α varies in the interval (0,+∞), and
for the Dirichlet Laplacian on Ω ′

0,α , both of the remainder estimates (4.3.19) and
(4.3.22) are best possible (with d := D̃ and Ω0 =Ω0,α or Ω ′

0 =Ω ′
0,α , respectively).

We leave it to the interested reader to verify that the exact same conclusion
as above can be reached (for the same two families of examples) in the case of
Neumann (instead of the Dirichlet) Laplacian. In this case, we must replace D̃ by
D := dimB(∂Ω0) (as was done in [Lap1] when dealing with Neumann boundary
conditions), and, of course, exclude the zero eigenvalue in the original definition
(4.3.14) of the corresponding spectral zeta function (which we continue to denote
by ζ ∗Ω0

, for simplicity). Observe that for these examples, it is easy to check that
dimB(∂Ω0) exists and D̃ = D = dimB(∂Ω0).

We could naturally be tempted to use the same one-parameter families
{Ω0,α}α>0 and {Ω ′

0,α}α>0 of open sets and simply connected domains, respec-
tively, along with some of the results of [LapPo2] concerning the modified Weyl–
Berry conjecture (in dimension one) to solve the following open problem (Problem
4.3.20), to which we will provide a partial answer in Theorem 4.3.21 below. How-
ever, this is not possible, as will be explained in the next remark in the case of this
first family.

Remark 4.3.19. To see why the one-parameter family {Ω0,α}α>0 cannot be used
to resolve part (i) of Problem 4.3.20 below, one can reason as follows (in the case
of the Dirichlet Laplacian). First of all, since Ω0,α = Vα × (0,1)N−1, where Vα =
∪∞j=1(( j+ 1)−α , j−α) is the α-string, we have that the eigenvalues of Ω0,α are the

sums of the eigenvalues of Vα and of those of (0,1)N−1; therefore, similarly, the
poles of ζ ∗Ω0

are the sums of the poles of ζ ∗Vα and those of ζ ∗
(0,1)N−1 .
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Also, the spectral zeta function of a cube ((0,1)N−1, in this case) can be expressed
as a linear combination of Epstein zeta functions; it therefore admits a meromorphic
extension to all of C, with poles which are all simple and located on the real axis at
{1,2, . . . ,N −1}. Furthermore, according to the classic formula for the spectal zeta
function of a fractal string ([Lap2–3], [Lap-vFr3, Theorem 1.10]), we have

ζ ∗Vα (s) = ζ (s) ·ζVα (s), (4.3.37)

where ζ = ζR is the Riemann zeta function and ζVα is the geometric zeta function of
the α-string. Now, by [Lap-vFr3, Theorem 6.21], ζVα has a meromorphic extension
to all of C (with simple poles located at d̃ and in (a subset of) {−d̃,−2d̃,−3d̃, . . .}),
where d̃ := dimB(∂Vα ,Vα) = 1/(α + 1). Hence, in light of (4.3.37), ζ ∗Vα is mero-
morphic in all of C (with one more pole than ζVα , namely, the simple pole of ζVα
at 1). Therefore, ζ ∗0,α can also be meromorphically extended to all of C (with poles
which are all simple, with the exception of s = 1, which is double, and located
on the real axis). We conclude that Dmer(ζ ∗0,α) = −∞ for every α > 0, whereas
D̃ := dimB(∂Ω0,α ,Ω0,α) = N −1+(α+1)−1 sweeps out the interval (N −1,N) as
α ranges through (0,+∞). Therefore, inequality (4.3.30) is strict, in this case, and
is in fact, as far as possible from being an equality.

We expect that the following open problem has a positive answer in every dimen-
sion N ≥ 1. (We will show in Theorem 4.3.21 and the ensuing comment, Remark
4.3.23, that this is so both for the Dirichlet and Neumann Laplacians.) In the sequel,
we assume implicitly that D̃ := dimB(∂Ω0,Ω0)< N.

Problem 4.3.20. (i) Determine whether the inequality (4.3.30) in Theorem 4.3.17 is
sharp; that is, find a bounded open set Ω0 ⊂ R

N for which

Dmer(ζ ∗Ω0
) = dimB(∂Ω0,Ω0)

for the Dirichlet Laplacian on Ω0.

(ii) More generally, address the exact counterpart of this problem for higher
order elliptic operators (see inequality (4.3.56) below) and/or for Neumann (or,
more generally, for mixed Dirichlet–Neumann) boundary conditions instead of
for Dirichlet boundary conditions (see the comment following the statement of
this problem); that is, find a bounded open set Ω0 ⊂ R

N for which Dmer(ζ ∗Ω0
) =

dimB(∂Ω0,Ω0).

(iii) Either in the setting of (i), or, more generally, in the setting of (ii), find a
one-parameter family of bounded open sets solving (i) (or, more generally, (ii))
in the affirmative and for which the dimension D̃ := dimB(∂Ω0,Ω0) takes all the
possible values in (N − 1,N), as the parameter of the family varies. Furthermore,
when N ≥ 2, find such a family consisting of connected (or even simply connected)
open sets.

As before, in the case of Neumann (or, more generally, mixed Dirichlet–
Neumann) boundary conditions, we must assume that Ω is a suitable bounded
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open subset of RN (see pages 343–344 at the very end of this section) and replace
D̃ := dimB(∂Ω0,Ω0) by D := dimB(∂Ω0). (We have D̃ ≤ D and so N−1 ≤ D ≤ N.)
Furthermore, we then let N(μ) denote the number of (strictly) positive eigenvalues
which do not exceed μ (since 0 is always an eigenvalue of the Neumann problem)
and similarly exclude the eigenvalue 0 in the original definition of ζ ∗Ω0

, given in
Equation (4.3.14), for example (or, more generally, when m ≥ 1, by (4.3.50) below).

The next theorem is new and provides a partial solution to Problem 4.3.20. It
actually answers part (i) of the problem in the affirmative. We expect (but do not
want to claim) that a suitable modification and/or extension of the construction can
be used to solve part (iii) as well, at least for the Dirichlet and Neumann Laplacians.
It is noteworthy that our construction makes an essential use of aspects of classic
fractal string theory and of the theory developed in this book (especially in Sections
4.4–4.6 of the present chapter).

Theorem 4.3.21. There is an explicitly constructible bounded open subset of RN

solving part (i) of Problem 4.3.20 in the affirmative (and for which N − 1 < D̃ <
N). Actually, this open set has a maximally hyperfractal (and transcendentally
∞-quasiperiodic) boundary, in the sense of Section 4.6 (specifically, of Defini-
tion 4.6.23(iii) and Definition 4.6.7(a)) below. Equivalently, the associated rela-
tive fractal drum (∂Ω0,Ω0) is maximally hyperfractal (and transcendentally ∞-
quasiperiodic).

Proof. The proof parallels in part the reasoning outlined in Remark 4.3.19 above.
It relies, however, in an essential way on the concepts introduced and the results
obtained in Section 4.6 below.

More specifically, assume for now that N = 1 and let L be the (effectively con-
structible) bounded fractal string obtained in Corollary 4.6.17 of Section 4.6 below.
Here, L is viewed as a relative fractal drum (∂V0,V0), with V0 a bounded open sub-
set of R. By construction, we have that (∂V0,V0) is transcendentally∞-quasiperiodic
(see Definition 4.6.7(a)) and maximally hyperfractal (see Definition 4.6.23(iii)); so
that (with d̃ := dim(∂V0,V0)) all of the points of the critical line {Res = d̃ } are
nonisolated singularities of the geometric zeta function ζL of L . Furthermore, we
have

d̃ := dim(∂V0,V0) = D(ζL ) = Dmer(ζL ). (4.3.38)

(See part (a) of Corollary 4.6.17 below.) Then, in light of the (the counterpart for
V0) of the factorization formula (4.3.37) above, the spectral zeta function ζ ∗V0

also
satisfies

Dmer(ζ ∗V0
) = d̃ = dimB(∂V0,V0). (4.3.39)

Indeed, the critical line {Res = d̃} consists entirely of nonisolated singularities of
ζ ∗V0

. (Also, ζ ∗V0
has a single, simple pole at s = 1.) This takes care of the N = 1 case.

Next, given a fixed integer N ≥ 2, let Ω0 :=V0 × (0,1)N−1, viewed as a bounded
open subset of RN (or rather, as the relative fractal drum (∂Ω0,Ω0) of RN). Then,
just as in Remark 4.3.19, note that the principal poles / singularities of ζ ∗Ω0

are the
sums of the principal poles / singularities of ζ ∗V0

and the principal pole of ζ(0,1)N−1 ,
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which is equal to N−1. (Note that the poles of ζ(0,1)N−1 are all simple and located on
the real axis, at {1, . . . ,N−1}.) Therefore, we deduce that ζ ∗Ω0

has a single (simple)
pole at s = N (= (N −1)+1) and that the critical line {Res = D̃} consists entirely
of singularities of ζ ∗Ω0

. Here,

D̃ = (N −1)+ d̃ = dimB(∂Ω0,Ω0). (4.3.40)

It follows that (much as in the N = 1 case above) we must have

D̃ = Dmer(ζ ∗Ω0
), (4.3.41)

as desired. In light of Equations (4.3.40) and (4.3.41), this completes the proof of
the theorem. ��

We deduce from the above discussion and known properties of the quantities
involved that for the bounded open set Ω0 of Theorem 4.3.21, the abscissa of mero-
morphic continuation of the spectral zeta function ζ ∗Ω0

does not only coincide with

D̃ := dimB(∂Ω0,Ω0) (as is stated in Theorem 4.3.21 above), but also coincides with
the abscissae of meromorphic, holomorphic and (absolute) convergence of the frac-
tal (i.e., distance and tube) zeta functions of Ω0, as is stated in the next result. Note
that it follows from Theorem 4.3.21 that Dhol(ζ ∗Ω0

) = D(ζ ∗Ω0
) = N > D̃.

Corollary 4.3.22. For the example discussed in Theorem 4.3.21, we have

Dmer(ζ ∗Ω0
) = dimB(∂Ω0,Ω0) =: D̃

= Dmer( f ) = Dhol( f ) = D( f ),
(4.3.42)

for all f ∈ {ζ∂Ω0,Ω0
, ζ̃∂Ω0,Ω0

}.

Proof. In light of Theorem 4.3.21, all we have to prove are the last three equalities
of (4.3.42) and the equality D( f ) = D̃. Now, these inequalities follow by combining
the relevant result of Subsections 2.1.2, 2.1.3 and 4.1.1 (see part (b) of Theorem
2.1.11, Proposition 2.2.19 and part (b) of Theorem 4.1.7). ��

Remark 4.3.23. The use of the same geometric example as before in the proof of
Theorem 4.3.21, Ω0 =V0 × (0,1)N−1, and an entirely similar (but slightly simpler)
argument, show that the exact counterpart of Theorem 4.3.21 and Corollary 4.3.22
holds for the Neumann (instead of the Dirichlet) Laplacian. Recall that in that case,
we must exclude the eigenvalue 0 in the original definition (4.3.14) of the spectral
zeta function. We leave the easy verification as an exercise for the interested reader.

Thus far, in connection with the remainder estimates for the leading spectral
asymptotics (see Theorems 4.3.11 and 4.3.17 along with Corollaries 4.3.14 and
4.3.18), we have restricted ourselves to discussing the Dirichlet Laplacian −Δ ,
although the Neumann Laplacian can also be discussed, as well as general posi-
tive uniformly elliptic linear differential operators (with variable and possibly non-
smooth coefficients) of order 2m (with m ≥ 1) and of the form
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A = ∑
|α |≤m, |β |≤m

(−1)|α |Dα(aαβ (x)D
β ), (4.3.43)

described in [Lap1, Section 2.2]. We use here the standard multi-index notation: for
example, α := (α1, . . . ,αN) ∈ (N∪{0})N , |α| := α1 + · · ·+αN and

Dα :=
∂α1

∂xα1
1

· · · ∂
αN

∂xαN
N

.

All of these extensions are obtained in [Lap1]; see Theorem 2.1 and its corollaries
in [Lap1]. In the latter case, the assumed assymptotic expansion of the eigenvalues
of A in the corresponding version of Proposition 4.3.10, and implied (or, actually,
equivalent to) by [Lap1, Theorem 2.1], should be replaced by

μ(0)k = (μ ′A (Ω0))
−2m/N · k2m/N +O(kγ), as k → ∞, (4.3.44)

where μ ′A (Ω0) is the “Browder–Gårding measure” of Ω0 defined, for example, in
[Hö3] or in [Lap1, Equation (2.18a) in Section 2.2] in terms of the (positive definite,
unbounded) quadratic form associated with A and

γ :=
2m+d −N

N
, (4.3.45)

with d > D̃ arbitrary and (as before) D̃ := dimB(∂Ω0,Ω0), the upper Minkowski
dimension of the relative fractal drum (∂Ω0,Ω0). Furthermore, we may also take
d = D̃ provided M ∗D̃(∂Ω0,Ω0)< ∞. We note that the remainder estimate (4.3.44)
actually holds in the above form in the ‘fractal case’ when D̃ > N − 1 (or, equiv-
alently, when D̃ ∈ (N − 1,N], since we always have D̃ ∈ [N − 1,N]). Furthermore,
in the nonfractal case when D̃ = N − 1, we must replace O(kγ) by O(kγ logk) on
the right-hand side of (4.3.44). Here and in the sequel, and as was mentioned ear-
lier, we should replace D̃ by D, where D := dimB(∂Ω0), the upper Minkowski di-
mension of the boundary ∂Ω0, in the case of Neumann (or, more generally, mixed
Dirichlet–Neumann) boundary conditions. We should also assume that Ω is a suit-
able bounded open subset of RN ; see the discussion on pages 343–344 at the very
end of this section.

Remark 4.3.24. For Neumann boundary conditions, and for example, for the Neu-
mann Laplacian, one must also use the weak (or variational) formulation of the clas-
sic eigenvalue problem −Δu = μu in Ω0, with ∂u/∂n = 0 on ∂Ω0, where ∂u/∂n
stands for the normal derivative of u along ∂Ω0. However, since ∂Ω0 is irregular
(and hence, ∂u/∂n is not defined, in general), one must now use the Sobolev space
H1(Ω0) := W 1,2(Ω0) instead of H1

0 (Ω0) := W 1,2
0 (Ω0), which was used to formu-

late the Dirichlet eigenvalue problem; see the discussion following Equation (4.3.1)
in Subsection 4.3.1, along with references [LioMag], [Bre] and [Lap1]. (Neumann
boundary conditions are sometimes referred to as natural boundary conditions in
the physics and applied mathematics literature, because they are automatically sat-
isfied once the problem has been written in variational form.) An entirely analogous
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comment applies to general, uniformly elliptic, positive self-adjoint operators of the
form (4.3.43); see, e.g., the aforementioned references.

Recall that the Browder–Gårding measure μ ′A (dx) := μ ′A (x)dx is the absolutely
continuous measure on R

N (with respect to the Lebesgue measure on R
N), with

density μ ′A (x) given (for a.e. x ∈ Ω0) as follows (with | · | = | · |N denoting the
N-dimensional volume or measure, as usual):

μ ′A (x) := (2π)−N |{ξ ∈ R
N : a′(x,ξ )< 1}|, (4.3.46)

where a′(x,ξ ) denotes the leading symbol of the quadratic form a associated with
the opeator A given by (4.3.43):

a′(x,ξ ) := ∑
|α |=m, |β |=m

aαβ (x)ξα+β , (4.3.47)

with ξκ := ξκ1
1 · · ·ξκN

N for κ = (κ1, . . . ,κN)∈ (N∪{0})N and ξ = (ξ1, . . . ,ξN)∈R
N

(as well as with x ∈Ω0). So that

μ ′A (Ω0) =
∫
Ω0

μ ′A (x)dx, (4.3.48)

with μ ′A (x) given by (4.3.46) and (4.3.47) just above.
Physically, and in light of (4.3.46)–(4.3.48), μ ′A (Ω0) can be interpreted as an

integral in the phase space R
2N . In fact, it is well known that in the special case

when A is a Schrödinger-type operator, the corresponding Weyl term (namely, the
leading term in Equation (4.3.49) below) can be viewed as a volume in phase space
(with the eigenvalue parameter μ being thought of as an energy), in agreement with
the semiclassical limit of quantum mechanics (see, e.g., [ReeSim1] and [Sim], along
with the relevant references therein).

We have just stated, in the remainder estimate (4.3.44), the analog (obtained in
[Lap1]) of case (i) of Corollary 4.3.14 above. (Observe that when m = 1 and in light
of (4.3.45), estimate (4.3.44) does reduce to estimate (4.3.22) of Corollary 4.3.14.)
Now, in the nonfractal case (or ‘least fractal case’, still following the terminology of
[Lap1]) where D̃=N−1, the exact analog of part (ii) of Corollary 4.3.14 also holds.
More specifically, still according to [Lap1, Theorem 2.1 and its corollaries], the
precise counterpart of estimate (4.3.44) holds, with O(kγ) replaced by O(kγ logk),
exactly as in estimate (4.3.23) of part (ii) of Corollary 4.3.14 (which corresponds to
the case when m = 1).

Observe that if N(μ) denotes the eigenvalue counting function of the operator A ,
the asymptotic remainder estimate (4.3.44) can be written equivalently as follows:

N(μ) = μ ′A (Ω0)μN/2m +R(μ), (4.3.49)

where the error term R(μ) is given by R(μ) := O(μd/2m) in the fractal case when
D̃ > N − 1 and R(μ) := O(μd/2m logμ) in the nonfractal case when D̃ = N − 1.
Here, d ∈ (D̃,N] is arbitrary and if M ∗D̃(∂Ω0,Ω0) < ∞, we may choose d = D̃ as
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well. [And, similarly, with D = dimB(∂Ω0) instead of D̃ = dimB(∂Ω0,Ω0) and with
M ∗D̃(∂Ω0) instead of M ∗D̃(∂Ω0,Ω0), for Neumann or, more generally, for mixed
Dirichlet–Neumann (instead of Dirichlet) boundary conditions.] As was observed
before, when D̃ = N − 1, then O(kγ) must be replaced by O(kγ logk) on the right-
hand side of (4.3.44).

Note that the value (4.3.45) of the exponent γ , appearing in (4.3.44), corresponds
to letting m′ := N/2m and α ′ := d/2m (instead of m and α , respectively) in (4.3.25)
of Lemma 4.3.15. See Equation (4.3.49) (which we cited from [Lap1, Theorem 2.1])

and recall that N(μ(0)k ) = k for all k ≥ 1.

Next, we consider the consequences of the above error estimates ((4.3.44) or,
equivalently, (4.3.49)) for the spectral zeta function ζ ∗Ω0

:= ζ ∗A ,Ω0
of the uniformly

elliptic operator A of order 2m, defined (for s ∈ C with Res sufficiently large) by

ζ ∗Ω0
(s) :=

∞

∑
k=1

(μ(0)k )−s/2m. (4.3.50)

Observe that since A is of order 2m, the (normalized) ‘frequencies’ of the corre-

sponding drum are given by νk := (μ(0)k )−1/2m, so that ζ ∗Ω0
(s) := ∑∞k=1(νk)

−s, ex-
actly as was done in Definition 4.3.4 when m = 1; see Equations (4.3.3) and (4.3.4).
Indeed, note that for m = 1, Equation (4.3.50) reduces to (4.3.14).

The following result generalizes Theorem 4.3.17 to the present context. We point
out that thanks to our definition of ζ ∗Ω0

in Equation (4.3.50) just above, Theorem
4.3.25 and its consequences (stated, in particular, in Equation (4.3.57) below) take
a form which is essentially identical to their counterpart in Theorem 4.3.21 (and in
Corollary 4.3.22), for which m = 1 and A is the Laplace operator.

Theorem 4.3.25. Assume that Ω0 is a bounded open subset of RN such that

dimB(∂Ω0,Ω0)< N.

Let A be a positive uniformly elliptic self-adjoint operator of order 2m, as described
in [Lap1, Section 2.2]. Then the corresponding spectral zeta function ζ ∗Ω0

:= ζ ∗A ,Ω0
,

defined by (4.3.50), possesses a (necessarily unique) meromorphic extension (at
least) to the open half-plane

{Res > dimB(∂Ω0,Ω0)}.

In other words,
Dmer(ζ ∗Ω0

)≤ dimB(∂Ω0,Ω0). (4.3.51)

The only pole of ζ ∗Ω0
in the above half-plane is s = N, and hence, in particular,

D(ζ ∗Ω0
) = N. Furthermore, it is a simple pole and

res(ζ ∗Ω0
,N) = N μ ′A (Ω0). (4.3.52)
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In other words, the residue of the spectral zeta function of the operator A , computed
at s = N, is proportional to the Browder–Gårding measure of Ω0.

Proof. Let D̃ := dimB(∂Ω0,Ω0) < N. According to [Lap1, Theorem 2.1, case (i)],
assuming D̃ > N −1 the sequence of eigenvalues corresponding to the operator A
satisfies (4.3.49), or, equivalently, condition (4.3.44) with γ defined by (4.3.45) for
any d > D̃. Let us fix an arbitrary number d ∈ (D̃,N).

First of all, applying Theorem 2.3.12, with a = 2m/N, to the sequence of eigen-
values of A satisfying (4.3.44), we immediately obtain (much as in the proof of
Proposition 4.3.10) that s = N is a simple pole. (Note that, since d < N, then γ < a,
as required in Theorem 2.3.12.) Furthermore, using (2.3.17) from Theorem 2.3.12,
we see that ζ ∗Ω0

can be meromophically extended at least to the open set of all com-
plex numbers s such that

Re
s

2m
>

N
2m

−
(

1− γN
2m

)
=

d
2m

,

that is, to the open half-plane {Res > d}. Since d > D̃ can be chosen arbitrarily
close to D̃, we deduce that Dmer(ζ ∗Ω0

)≤ D̃.
Finally, the residue of the spectral zeta function ζ ∗Ω0

at s = N can then be com-
puted as follows (much in the same way as in the proof of Proposition 4.3.10):

res(ζ ∗Ω0
,N) = lim

s→N
(s−N)ζ ∗Ω0

(s) = lim
2ms→N

(2ms−N)ζ ∗Ω0
(2ms)

= 2m lim
s→N/2m

(s− N
2m

)ζ ∗Ω0
(2ms) = 2m

N
2m

·C−N/2m

= N μ ′A (Ω0),

(4.3.53)

where in the next-to-last equality, we have used Equation (2.3.18) from Theorem
2.3.12 with C := μ ′A (Ω0)

−2m/N and a := 2m/N.
In the case when D̃ = N−1, we use [Lap1, Theorem 2.1, case (ii)], which can be

stated equivalently as follows (using, for example, Lemma 4.3.15):

μ(0)k = (μ ′A (Ω0))
−2m/N · k2m/N +O(kγ logk), as k → ∞.

Now, we can proceed analogously as in the above case when D̃ > N −1. This com-
pletes the proof of the theorem. ��

As we see, assuming that the hypotheses of Theorem 4.3.25 are satisfied, the
Browder–Gårding measure of Ω0 can be recovered by using the spectral zeta func-
tion ζ ∗Ω0

in the following manner:

μ ′A (Ω0) :=
1
N

res(ζ ∗Ω0
,N). (4.3.54)

Let us now assume that D̃ < N in order for the analog of Weyl’s asymptotic esti-
mate to hold (in light of (4.3.44), or, equivalently, (4.3.49)); that is, in order for the
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error term to be negligible compared to the leading term in (4.3.44) and (4.3.49). It
then follows from the above discussion (that is, from estimate (4.3.44) or (4.3.49)
when D̃ > N−1 or from its counterpart when D̃ = N−1) that ζ ∗Ω0

is holomorphic in
the open half-plane {Res > N} and can be (uniquely) meromorphically extended to
the (strictly) larger open half-plane {Res > D̃}, with a single (simple) pole at s = N
in that half-plane. (This statement is true for any value of D̃ in [N − 1,N), whether
or not M ∗D̃(∂Ω0,Ω0) is finite.) Consequently, we deduce that the abscissa of (ab-
solute) convergence of ζ ∗Ω0

, defined by (4.3.50), satisfies the following identity:

Dhol(ζ ∗Ω0
) = D(ζ ∗Ω0

) = N, (4.3.55)

whereas the abscissa of meromorphic continuation of ζ ∗Ω0
satisfies the inequality

Dmer(ζ ∗Ω0
)≤ D̃. (4.3.56)

(Observe that when m = 1, inequality (4.3.56) formally looks exactly like inequality
(4.3.30) of Theorem 4.3.17.) In particular, (since D̃ < N, by assumption) we have
that

Dmer(ζ ∗Ω0
)< Dhol(ζ ∗Ω0

).

As is noted in [Lap2–3], this latter result (in inequality (4.3.56)) follows from
the analog of Theorem 4.3.11 (and Corollary 4.3.14) corresponding to uniformly
elliptic differential operators A of order 2m, which is obtained in [Lap1, Theorem
2.1 and Corollary 2.2]. See the precise definition of the spectrum and the domain of
the operator A given in [Lap1, Section 2.2]; see also [LioMag] or [Mét1].

In addition, much as in Corollary 4.3.22 (where m = 1), we have the follow-
ing identity (concerning not only the spectral zeta function but also the fractal zeta
functions of (∂Ω0,Ω0)):

Dmer(ζ ∗Ω0
) = dimB(∂Ω0,Ω0) =: D̃

= Dmer( f ) = Dhol( f ) = D( f ),
(4.3.57)

for all f ∈ {ζ∂Ω0,Ω0
, ζ̃∂Ω0,Ω0

}. And analogously for Neumann or, more generally,
mixed Dirichlet–Neumann boundary conditions, except with D := dimB(∂Ω0) in-
stead of D̃ := dimB(∂Ω0,Ω0) and with ∂Ω0 instead of the relative fractal drum
(∂Ω0,Ω0).

Recall that the sharpness of inequality (4.3.56) is addressed in Problem 4.3.20,
and that for the Dirichlet Laplacian and in the most important case when D̃ ∈ (N −
1,N), it is established in Theorem 4.3.21 and Corollary 4.3.22 above (which relies in
an essential way on the results of Sections 4.5–4.6 below). In light of Remark 4.3.23,
the counterpart of the latter statement is also true for the Neumann Laplacian (with
D̃ replaced by D, as usual).
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In the case of Neumann, or more generally, of mixed Dirichlet–Neumann bound-
ary conditions, it follows from the results of [Lap1] (and [Lap2–3]) that Theorem
4.3.11, Corollary 4.3.14, and hence also Theorem 4.3.17 still hold (along with their
more general counterparts for positive uniformly elliptic operators of order 2m) pro-
vided that Ω0 is assumed to be a bounded open set of RN satisfying the extension
property (explicited in the next paragraph) and D̃ = dimB(∂Ω0,Ω0) (the upper,
inner Minkowski dimension of ∂Ω0) is replaced by D = dimB(∂Ω0), the upper
Minkowski (or box) dimension of ∂Ω0 in the statement of Theorem 4.3.11, Corol-
lary 4.3.14 and Theorem 4.3.17, as well as Theorem 4.3.21 and Corollary 4.3.22
(which rely on results of Section 4.6 below and Theorem 4.3.25 along with Equa-
tion (4.3.56)).36 See, in particular, [Lap1, Theorem 2.3 and Corollary 2.2].

Recall that the open setΩ0 ⊆R
N is said to satisfy the extension property if every

function in the Sobolev space H1(Ω0) := W 1,2(Ω0) can be extended to a function
in H1(RN) := W 1,2(RN), and the resulting extension operator is a bounded linear
operator. For example, a bounded domain Ω0 in R

N satisfies the extension property
if its boundary ∂Ω0 is of class C1; see, e.g., [Bre, Théorème IX.7]. Note that, in this
latter case, dimB(∂Ω0,Ω0) = N −1 and M ∗D(∂Ω0,Ω0)< ∞.

Alternatively, the aforementioned results of [Lap1] imply that (still for Neumann
or mixed Dirichlet–Neumann boundary conditions) instead of satisfying the exten-
sion property,Ω0 can be assumed to satisfy the so-called (C′)-condition [Lap1, Def-
inition 2.2] (which is satisfied, for example, if Ω0 is locally Lipschitz, or satisfies
either a ‘segment condition’, a ‘cone condition’, or else is an open set with cusp;
see [Mét2–3] or [Lap1, Examples 2.1 and 2.2]), in which case we are necessarily in
case (ii) of the counterparts of Theorem 4.3.11 and Corollary 4.3.14 (see, especially,
Equation (4.3.49) and the text following it), with D (:= dimB(∂Ω0,Ω0)) = N − 1
and M ∗D(∂Ω0,Ω0)< ∞.

Recall that (as is proved by Jones in [Jon] and discussed in [Lap1, Example 4.2];
see also [Maz]) in two dimensions (i.e., when N = 2), a simply connected domain
Ω0 satisfies the extension property (or is an extension domain) if and only if it is a
quasidisk (i.e., a Jordan curve which is the quasiconformal image of the unit disk
in R

2). The boundary ∂Ω0 of a quasidisk is called a quasicircle, and the property
of being a quasicircle can be characterized geometrically by a chord-arc condition.
Furthermore, a quasicircle can have any Hausdorff dimension between 1 and 2. See
[Maz] and [Pom], along with the relevant references therein, for a detailed discus-
sion of quasidiscs, quasicircles and extension domains. The class of quasicircles
includes the classic Koch snowflake curve and its natural generalizations, as well as
the Julia sets associated with the quadratic maps z �→ z2 + c (z ∈ C), provided the
parameter c ∈ C is sufficiently small. Therefore, the Koch snowflake domain (and

36 It is clear from the definitions that D̃ ≤ D, and it can also be shown (since Ω0 is open and
bounded) that N − 1 ≤ D̃ ≤ D ≤ N; see [Lap1, Corollary 3.2]. Furthermore, there are natural ex-
amples of planar domains for which D̃ < D; see [Lap1, Note added in proof, p. 525] and the
relevant reference therein, [Tri2].



344 4 Relative Fractal Drums and Their Complex Dimensions

its generalizations) and the bounded simply connected domains having for bound-
ary the aforementioned Julia sets, are natural examples of quasidisks and hence, of
extension domains.

In higher dimensions, extension domains (i.e., domains of R
N satisfying the

(Sobolev) extension property) are more difficult to characterize. However, it has
been shown by Hajlasz, Koskela and Tuominen in [HajKosTu1–2] that a bounded
domainΩ0 ⊂R

N is an extension domain if and only if it satisfies a certain functional
analytic condition and the following measure density condition; see [HajKosTu1,
Theorem 5]. The set Ω0 ⊆R

N is said to satisfy the measure density condition (or to
be a lower Ahlfors regular N-set) if there exists a positive constant M such that

|Ω0 ∩Br(x)| ≥ MrN ,

for all x ∈ Ω0 and all 0 < r ≤ 1, where Br(x) denotes the open ball of center x and
radius r in R

N ; see [HajKosTu1].
Finally, we note that for Neumann boundary conditions, the above results con-

cerning spectral asymptotics and spectral zeta functions also extend to higher order
uniformly elliptic self-adjoint operators (with variable coefficients), under the anal-
ogous hypotheses and with the same changes as those indicated above; see [Lap1].

Remark 4.3.26. It is noteworthy that when the extension property (or else the (C′)-
condition) is not satisfied, the continuous embedding of H1(Ω0) into L2(Ω0) need
not be compact and, hence, the spectrum of the Neumann Laplacian may not be
discrete. Actually, even when this spectrum is discrete, there are explicit exam-
ples of bounded open sets for which the leading spectral asymptotics of the Neu-
mann Laplacian does not satisfy Weyl’s classic law (4.3.12), and hence, let alone
the corresponding remainder estimate (4.3.22) (or, equivalently, (4.3.19)). See, e.g.,
[Mét1–3], [Lap1] and the relevant references therein.

A similar comment can be made about more general uniformly elliptic opera-
tors of order 2m, with Neumann (or, more generally, Dirichlet-Neumann) boundary
conditions and with Hm(Ω0) instead of H1(Ω0).

4.4 Further Examples of Relative Distance Zeta Functions

The aim of this section is to introduce several classes of RFDs and to study their
associated fractal zeta functions. We will focus here on the distance zeta functions,
although the corresponding tube zeta functions could be studied as well, either di-
rectly or by using the functional equation (4.5.2) below. Of special interest are the
unbounded geometric chirps, associated with the standard geometric chirps occur-
ring, for example, in the oscillation theory of differential equations. We also com-
pute the relative distance function of the Cartesian product of fractal strings.
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4.4.1 Relative Distance Zeta Functions of Unbounded Geometric
Chirps

The following example and result (namely, Example 4.4.1 and Proposition 4.4.3)
deal with unbounded geometric chirps; see Figures 4.13, 4.14 and 4.15. Also, refer
to Section 3.6 for the case of bounded geometric chirps.

Example 4.4.1. Let A be an (α,β )-geometric chirp, for α ∈ (−1,0) and β > 0; i.e.,
A is a union of vertical segments at x = k−1/β of length k−α/β for k ∈N; see (3.6.1).
For Ω we take the union of open rectangles Rk for k ∈ N, where Rk has a base
of length k−1/β − (k + 1)−1/β and height k−α/β ; see Figure 4.15. The associated
unbounded geometric chirp RFD (A,Ω) approximates the graph of the function

x �→ xα sin(πx−β ), for all x ∈ (0,1).

The relative distance zeta function of (A,Ω) is then given by

ζA,Ω (s) =
1

2s−2(s−1)

∞

∑
k=1

k−α/β
(

k−1/β − (k+1)−1/β
)s−1

. (4.4.1)

Fig. 4.13 The unbounded (−1/2,1)-chirp; the graph of f (x) = x−1/2 sin(πx−1), 0 < x < 1, is
fractal near x = 0. We expect that dimB(A,Ω) = 7/4, as for the related geometric chirp in Propo-
sition 4.4.3(a) and depicted in Figure 4.15 on page 347.

It can be shown that it has a singularity at s= 2− 1+α
1+β and is holomorphic in the open

right half-plane
{

Res > 2− 1+α
1+β

}
. (See Remark 4.4.2 just below for a justification

of this claim.) We conclude from Theorem 4.1.7 that dimB(A,Ω) = 2− 1+α
1+β , which
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is Tricot’s formula in the case when α is negative and β positive. We note that
the original Tricot formula was obtained for 0 < α < β and can be found in [Tri3,
p. 122].

Remark 4.4.2. We provide here a short heuristic proof of the above claim (compare
with the proof of Equation (3.6.3) in Subsection 3.6.1 above). Using the Lagrange
mean value theorem, we approximate the difference k−1/β − (k + 1)−1/β (where

k ∈ N) by k−
1
β −1. The Dirichlet series on the right-hand side of Equation (4.4.1)

then becomes

∞

∑
k=1

k−α/β
(
k−

1
β −1)s−1

=
∞

∑
k=1

k−
(
α
β +( 1

β +1)(s−1)
)
.

It converges absolutely if and only if αβ +( 1
β +1)(Res−1)> 1; that is, when Res >

2− 1+α
1+β . This heuristic proof can be easily made precise using Cahen’s classical

result stated in Theorem 2.1.27. We leave the details as a simple exercise for the

Fig. 4.14 The unbounded (−2,−3)-chirp; the graph of f (x) = x−2 sin(πx3), x > 1, is fractal near
x=∞. We expect that dimB(A,Ω) = 3/2, as for the related geometric chirp in Proposition 4.4.3(b).

interested reader. (A different proof of the claim as well as additional information
can be found in Example 5.5.19 in Subsection 5.5.5 below.)

Proposition 4.4.3. Let A be an (α,β )-geometric chirp defined by (3.6.1), and as-
sume that one of the following conditions holds:

(a) −1 < α < 0 < β and Ω = {(x,y) ∈ R
2 : x ∈ (0,1), 0 < xα < y},

(b) β < α <−1 and Ω = {(x,y) ∈ R
2 : x ∈ (1,+∞), 0 < xα < y}.
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Then

dimB(A,Ω) = 2− 1+α
1+β

,

and moreover, this value coincides with dimPC(A,Ω).

Proof. Computing the relative distance zeta function of the (α,β )-geometric chirp
from Example 4.4.1 with respect to the ‘outer’ rectangles and using Lemma 4.1.15,
we obtain the result in case (a). We can use the same technique in case (b), due to
the fact that β <−1. ��

We note that in Example 4.4.1 and Proposition 4.4.3, we can replace dimB(A,Ω)
by d = dimB(A,Ω). This can be seen by direct computation: indeed, there exist
positive constants c1 and c2 such that c1δ 2−d ≤ |Aδ ∩Ω | ≤ c2δ 2−d . Therefore, c1 ≤
M d

∗ (A,Ω)≤ M ∗d(A,Ω)≤ c2.

Fig. 4.15 Approximation of the unbounded chirp in Figure 4.13 on page 345, using rectangles.
Here, α = −1/2 and β = 1; hence, dimBA = 7/4. In the corresponding RFD (A,Ω), the set A is
defined as the union of the vertical segments while the open set Ω is defined as the union of the
open rectangles.

In the case when −1 < α < 0 and β < 0, we have dimB(A,Ω) = 1, which com-
plements Proposition 4.4.3(a). Analogously, in the case when α < −1 and α ≤ β ,
β 
= 0, we have dimB(A,Ω) = 1, which complements Proposition 4.4.3(b).

In the work of the second and third authors with V. Županović [RaŽuŽup], a
different approach to the study of the fractal properties of unbounded sets at infin-
ity in R

N has been undertaken, instead of using the relative box dimensions. If A
is an unbounded set which does not possess the origin as its accumulation point,
then it is natural to define the box dimension of A at infinity as the usual box dimen-
sion of A−1 = {x/|x|2 : x ∈ A}. Here, A−1 is the geometric inversion of A, which
under the stated condition is clearly a bounded set. This tool has been applied to
the study of the Hopf bifurcation of several polynomial dynamical systems at infin-
ity. In his thesis [Ra1] and in [Ra2], the second author has significantly expanded
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these ideas. In particular, in [Ra1–2], the notions of Minkowski contents and box
dimensions of unbounded open sets with respect to infinity have been introduced
and studied, as well as the associated classes of fractal zeta functions, thereby ex-
tending to (suitable) unbounded sets A ⊆ R

N the theory developed in this book and
in [LapRaŽu1–8].

4.4.2 Relative Zeta Functions of Cartesian Products of Fractal
Strings

In Theorem 3.6.5, we have computed a representative of the zeta function of E
relative to Eδ , where E is the boundary of the Cartesian product of two fractal strings
L = (� j) j≥1 and M = (mk)k≥1. If we consider the zeta function of E relative to the
rectangle Ω = (0,a1)× (0,b1), then we deduce from the proof of Theorem 3.6.5
that D(s)≡ 0 in (3.6.29), which yields the following explicit result.

Theorem 4.4.4. Assume that the hypotheses of Theorem 3.6.5 are satisfied. Then,
for E given as in Theorem 3.6.5 and for Ω = (0,a1)× (0,b1), we have

ζE,Ω (s) =
22−s

s−1

∞

∑
j,k=1

[
|� j −mk|min{� j,mk}s−1 +

2
s

min{� j,mk}s
]
.

Furthermore,

dimB(E,Ω) = dimBE = 1+max{dimBL ,dimBM } (4.4.2)

is the abscissa of convergence of ζE,Ω (s), and ζE,Ω (s) → +∞ as R � s → dimBE
from the right.

Let us consider the product of three fractal strings. Assume that L = (� j) j≥1,
M = (mk)k≥1, and N = (nr)r≥1, with a1 := ∑ j � j, b1 := ∑k mk and c1 := ∑r nr.
We identify the strings with three standard families of open intervals, L = (I j) j≥1,
M = (Jk)k≥1 and N = (Kr)r≥1. Furthermore, for any ordered triple L = (� j,m j,nr)
in L ×M ×N , we define its nondecreasing permutation (M1(L),M2(L),M3(L))
by {� j,m j,nr} = {M1(L),M2(L),M3(L)} and M1(L) ≤ M2(L) ≤ M3(L). Note that
then, M1(L) = minL and M3(L) = maxL. (Further, observe that we are really work-
ing here with a Cartesian product of multisets, rather than of ordinary sets. Recall
that a multiset is simply a set with multiplicities. For example, L , M and N are
multisets since, for instance, scales � j in the sequence L may have finite multiplic-
ities.) In this context, we obtain the following result.

Theorem 4.4.5. Let L = (I j) j≥1, M = (Jk)k≥1 and N = (nr)r≥1 be three fractal
strings, and define the set E = ∂ (L ×M ×N ). Let Ω = (0,a1)× (0,b1)× (0,c1).
Then, with the notation introduced just above, we have
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ζE,Ω (s) =
23−s

s−2∑L

[
(M3(L)−M1(L))(M2(L)−M1(L))(M1(L))

s−2

+
2

s−1
(M3(L)+M2(L)−2M1(L))(M1(L))

s−1 (4.4.3)

+
4

s(s−1)
(M1(L))

s
]
,

where the summation runs over all ordered triples L = (� j,m j,nr) from
L × M × N . Furthermore, the abscissa of convergence D(ζE,Ω ) of ζE,Ω is
given by

dimB(E,Ω) = dimBE = 2+max{dimBL ,dimBM ,dimBN }, (4.4.4)

and ζE,Ω (s)→+∞ as R � s → dimBE from the right.

Proof. The set Ω is a countable disjoint union of open parallelepipeds. Let R be a
typical parallelepiped with sides n ≤ m ≤ �. We split R into 16 prisms (8 of them
being pairwise isometric and having width m− n, and the rest with side �− n), 32
isometric tetrahedra, and two isometric parallelepipeds with sides n/2, m−n, �−n,
placed at the center of R. We have to integrate the function d(x,∂R)s−3 over these
sets. The integral over each prism of width m−n is equal to

21−s

(s−1)(s−2)
(m−n)ns−1,

(and analogously for the prism of width �− n). The integral over each tetrahedron
is equal to

2−s

s(s−1)(s−2)
ns,

while the integral over each parallelepiped is equal to

22−s

s−2
(m−n)(�−n)ns−2.

From this, the claim follows easily. We omit the details. The dimension result is an
immediate consequence of the finite stability of the upper box dimension and the
fact that

E = (A× [0,b1]× [0,c1])∪ ([0,a1]×B× [0,c1])∪ ([0,a1]× [0,b1]×C),

where A = (a j) j≥1 with a j := ∑k≥ j �k, and analogously for B = (bk)k≥1 and C =
(cr)r≥1. ��

Note that the relative distance zeta function of the set E = ∂ (L ×M ) generated
by two fractal strings is represented by a double sum (see Theorem 4.4.4), while the
relative distance zeta function of E = ∂ (L ×M ×N ) is equal to a triple sum (see
Theorem 4.4.5) taken over the indices ( j,k,r), since L = (� j,mk,nr). Analogously,
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the relative distance zeta function of the set E = ∂ (L1 ×·· ·×LN) generated by N
fractal strings Li, i = 1, . . . ,N, can then be computed, and it is equal to an N-tuple
sum. Furthermore, we then have

dimB(E,Ω) = dimBE = N −1+max{dimBLi : i = 1, . . . ,N}.

4.5 Meromorphic Extensions of Relative Zeta Functions
and Applications

If we consider a class of RFDs with a prescribed value D for the abscissa of conver-
gence of the associated distance relative zeta functions, it is of interest to know the
corresponding values of the abscissa of meromorphic continuation Dmer = D−α .
Clearly, we have α ≥ 0. Intuitively, the smaller α , the more complex the (fractal)
nature of the relative fractal drum. This can be considered even as a definition for
comparing the complexity of different RFDs in the class. The most complex, then, is
the subclass of relative fractal drums for which the abscissa of meromorphic contin-
uation is equal to D; that is, α = 0. And among these, the most complex are the rela-
tive fractal drums for which the set of nonisolated singularities is equal to the whole
critical line {Res = D}. Indeed, there cannot be more complexity than that, at least
from the present point of view of the higher-dimensional theory of complex fractal
dimensions. We call them maximally hyperfractal drums; see Definition 4.6.23.

This section is organized as follows. We first study the problem of determining
an upper bound for the abscissa of meromorphic extension of the distance (or tube)
zeta function for a class of RFDs; see Theorems 4.5.1 and 4.5.2. Furthermore, we
construct a class of RFDs for which the abscissa of meromorphic continuation can
be explicitly computed. We also construct an explicit class of maximally hyper-
fractal drums (A,Ω); see Theorem 4.5.8. As a consequence, we then construct (in
Section 4.6) a class of maximally hyperfractal strings L , which in turn generate
maximally hyperfractal sets A = AL on the real line; see Corollary 4.6.17.

4.5.1 Meromorphic Extensions of Zeta Functions of Relative
Fractal Drums

By analogy with (2.2.8), we introduce the relative tube zeta function associated with
the relative fractal drum (A,Ω) in R

N . It is defined by

ζ̃A,Ω (s) =
∫ δ

0
ts−N−1|At ∩Ω |dt, (4.5.1)

for all s ∈ C with Res sufficiently large, where δ > 0 is fixed. As we see, it in-
volves the relative tube function t �→ |At ∩Ω |. Its abscissa of convergence is given
by D(ζ̃A,Ω ) = dimB(A,Ω). This follows from the following fundamental identity
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or functional equation, which connects the relative tube zeta function ζ̃A,Ω and the
relative distance zeta function ζA,Ω , defined by (4.1.1):

ζA,Aδ∩Ω (s) = δ
s−N |Aδ ∩Ω |+(N − s)ζ̃A,Ω (s). (4.5.2)

This identity is analogous to (2.2.1) and (2.2.23). Its proof is analogous to that of
Theorem 2.2.1, using the known identity

∫
Aδ∩Ω

d(x,A)−γ dx = δ−γ |Aδ ∩Ω |+ γ
∫ δ

0
t−γ−1|At ∩Ω |dt, (4.5.3)

where γ > 0; see Lemma 2.1.4, [Žu2, Theorem 2.9(a)], or a more general form
provided in [Žu4, Lemma 3.1].

It follows from the identity (4.5.2) that the analog of Proposition 2.2.19 and of
Equation (2.2.50) holds in the present more general context. More specifically, pro-
vided that dimB(A,Ω) < N, the relative tube zeta function ζ̃A,Ω and the relative
distance zeta function ζA,Aδ∩Ω can be (uniquely) meromorphically extended to ex-
actly the same domain U ⊆ C (chosen to be a connected open neighborhood of a
given window W , say), when it is possible. Furthermore, the relative fractal drum
(A,Ω) has exactly the same visible complex dimensions (and with the same mul-
tiplicities), as measured from the point of view of either of these two fractal zeta
functions:

P(ζ̃A,Ω ,W ) = P(ζA,Aδ∩Ω ,W ). (4.5.4)

In particular, we have

dimB(A,Ω) = D(ζ̃A,Ω ) = D(ζA,Aδ∩Ω ), (4.5.5)

ζ̃A,Ω ∼ ζA,Aδ∩Ω , (4.5.6)

and so
dimPC(A,Ω) = Pc(ζ̃A,Ω ) = Pc(ζA,Aδ∩Ω ). (4.5.7)

Finally, if ω ∈U is a simple pole of ζ̃A,Ω , then it is also a simple pole of ζA,Aδ∩Ω
and we have

res(ζ̃A,Ω ,ω) =
1

N −ω res(ζA,Aδ∩Ω ,ω); (4.5.8)

that is, the counterpart of Equation (2.2.50) holds in this context. Note that as was
the case for ordinary fractal sets A, these residues are independent of the choice
of δ > 0.

We next consider a class of RFDs (A,Ω) such that both D = dimB(A,Ω) and
M D(A,Ω) exist, but the relative Minkowski content is degenerate in the sense that
M D(A,Ω) =+∞. In general, we may also have M D(A,Ω) = 0, but we do not treat
this case here.

We shall treat these two cases by using the following assumption on the asymp-
totics of the relative tube function t �→ |At ∩Ω |:
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|At ∩Ω |= tN−Dh(t)(M +O(tα)) as t → 0+, (4.5.9)

where M > 0, α > 0 and D ≤ N are given in advance. Here, we assume that the
function h(t) has a sufficiently slow growth near the origin, in the sense that for
any c > 0, h(t) = O(tc) as t → 0+. Typical examples of such functions are h(t) =
(log t−1)m, m ≥ 1, or more generally,

h(t) =
(

log . . . log︸ ︷︷ ︸
n

(t−1)
)m

(the m-th power of the n-th iterated logarithm of t−1, n ≥ 1), and in these cases
we obviously have M D(A,Ω) = +∞. For this and other examples, see [HeLap].
The function t �→ tDh(t)−1 is usually called the gauge function, but for the sake of
simplicity, we shall rather use this name for the function h(t) only.

Assuming that a relative fractal drum (A,Ω) in R
N is such that D = dimB(A,Ω)

exists, and M D
∗ (A,Ω) = 0 or +∞ (or M ∗D(A,Ω) = 0 or +∞), it is natural to define

as follows a new class of relative lower and upper Minkowski contents of (A,Ω),
associated with a suitably chosen gauge function h(t):

M D
∗ (A,Ω ,h) = liminf

t→0+

|At ∩Ω |
tN−Dh(t)

,

M ∗D(A,Ω ,h) = limsup
t→0+

|At ∩Ω |
tN−Dh(t)

.

(4.5.10)

The aim is to find an explicit gauge function so that these two contents are in
(0,+∞), and the functions r �→ M r

∗ (A,Ω ,h) and r �→ M ∗r(A,Ω ,h), r ∈ R, de-
fined exactly as in (4.5.10), except for D replaced with r, have a jump from +∞ to 0
when r crosses the value of D. In this generality, the above gauge relative Minkowski
contents have been introduced in [Žu4], motivated by [HeLap].

In Equation (4.5.10) above, M D
∗ (A,Ω ,h) (resp., M ∗D(A,Ω ,h)) is called the

lower (resp., upper) h-Minkowski content of (A,Ω). Furthermore, much as in the
usual case when h ≡ 1, the RFD (A,Ω) is said to be h-Minkowski nondegenerate if

0 < M D
∗ (A,Ω ,h)≤ M ∗D(A,Ω ,h)< ∞.

If for some gauge function h, say, we have that M D(A,Ω ,h) ∈ (0,+∞) (which
means, as usual, that M D

∗ (A,Ω ,h) = M ∗D(A,Ω ,h) and that this common value,
denoted by M D(A,Ω ,h), lies in (0,+∞)), we say (as in [HeLap]) that the fractal
drum (A,Ω) is h-Minkowski measurable, with h-Minkowski content M D(A,Ω ,h).

It is easy to see that the counterparts of Theorems 2.3.18 and 2.3.25 also hold in
the present context of relative fractal drums. It suffices to replace |At | by |At ∩Ω |,
ζ̃A(s) by ζ̃A,Ω (s), and dimB A by dimB(A,Ω). Below, we state and prove two results
dealing with RFDs with associated gauge functions; see Theorems 4.5.1 and 4.5.2.
In both of these theorems, we have M D(A,Ω) =+∞. As we shall see, certain gauge
functions generate higher-order poles of fractal zeta functions. The presence of a
nonstandard gauge function may also force the tube (or distance) zeta function to
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have a partial natural boundary along the critical line {Res = D} (i.e., not to have a
meromorphic continuation beyond the open half-plane {Res > D} of holomorphic-
ity). One could then try to view the fractal zeta function as an analytic function on
an appropriate Riemann surface. However, we will not investigate this interesting
topic here.

In what follows, we denote the Laurent expansion of a meromorphic extension
(assumed to exist) of the relative tube zeta function ζ̃A,Ω to a connected open neigh-
borhood of s = D (more specifically, an open punctured disk centered at s = D) by

ζ̃A,Ω (s) =
∞

∑
j=−∞

c j(s−D) j, (4.5.11)

where, of course, c j = 0 for all j % 0 (that is, there exists j0 ∈ Z such that c j = 0
for all j < j0).

The following theorem shows that, in order to obtain a meromorphic extension
of the zeta function to the left of the abscissa of convergence, it is important to
have some information about the second term in the asymptotic expansion of the
relative tube function t �→ |At ∩Ω | near t = 0. We will provide two proofs of this
result, because they each highlight different aspects of the issues involved. See The-
orem 5.4.29 in Chapter 5 below (as well as Theorem 5.4.30) for a partial converse
of Theorem 4.5.1.

Theorem 4.5.1 (Minkowski measurable RFDs). Let (A,Ω) be a relative frac-
tal drum in R

N, such that (4.5.9) holds for some D ≤ N, M > 0, α > 0 and
with h(t) := (log t−1)m for all t ∈ (0,1), where m is a nonnegative integer. Then
the relative fractal drum (A,Ω) is h-Minkowski measurable, dimB(A,Ω) = D, and
M D(A,Ω ,h) =M . Furthermore, the relative tube zeta function ζ̃A,Ω (s) has for ab-
scissa of convergence D(ζ̃A,Ω ) = D, and it possesses a (necessarily unique) mero-
morphic extension (at least) to the half-plane {Res > D−α}; that is,

Dmer(ζ̃A,Ω )≤ D−a. (4.5.12)

Moreover, s = D is the unique pole in this half-plane, and it is of order m+ 1. In
addition, the coefficients of the Laurent series expansion (4.5.11) corresponding to
the principal part of ζ̃A,Ω (s) at s = D are given by

c−m−1 = m!M ,

c−m = · · ·= c−1 = 0 (provided m ≥ 1.)
(4.5.13)

If m = 0, then D is a simple pole of ζ̃A,Ω and we have that

res(ζ̃A,Ω ,D) = M . (4.5.14)
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Proof. (First proof of Theorem 4.5.1.) Let us set

ζ1(s) = M zm(s), zm(s) =
∫ δ

0
ts−D−1(log t−1)mdt,

ζ2(s) =
∫ δ

0
ts−N−1(log t−1)m O(tN−D+α)dt.

(4.5.15)

Since ζ̃A,Ω (s) = ζ1(s)+ ζ2(s), we can proceed as follows. It is easy to see that for
each ε > 0, we have (log t−1)m = O(t−ε) as t → 0+; hence,

|ζ2(s)| ≤
∫ δ

0
O(tRes−1−D+(α−ε))dt.

Then, since the integral is well defined for all s ∈ C with Res > D− (α− ε), in the
same way as in the proof of Theorem 2.3.18, we deduce that D(ζ2)≤ D− (α− ε).
Letting ε → 0+, we obtain the following desired inequality: D(ζ2)≤ D−α .

By means of the change of variable τ := log t−1 (for 0 < t ≤ δ ), it is easy to see
that

zm(s) =
∫ +∞

logδ−1
e−τ(s−D)τmdτ . (4.5.16)

Integration by parts yields the following recursion equation, where we have to as-
sume (at first) that Res > D:

zm(s) =
1

s−D

(
(logδ−1)mδ s−D +mzm−1(s)

)
, m ≥ 1, (4.5.17)

and z0(s) := (s−D)−1δ s−D. Since D(ζ2) ≤ D−α , it is clear that the coefficients
c j, j < 0, of the Laurent series expansion (4.5.11) of ζ̃A,Ω (s) = ζ1(s) + ζ2(s) in
a neighborhood of s = D do not depend on δ > 0. Indeed, changing the value of
δ > 0 to δ1 > 0 in (4.5.1) amounts to adding

∫ δ1
δ ts−N−1|At ∩Ω |dt, which is an

entire function of s. Therefore, without loss of generality, we may take δ = 1 in
(4.5.17):

zm(s) =
m

s−D
zm−1(s) = · · ·= m!

(s−D)m z0(s) =
m!

(s−D)m+1 . (4.5.18)

In this way, we obtain that

ζ1(s) =
m!

(s−D)m+1 M , (4.5.19)

and we can meromorphically extend the definition of ζ1 from the half-plane {Res >
D} to the entire complex plane. The claim then follows from Lemma 2.3.5. ��
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Proof. (Second proof of Theorem 4.5.1.) Let us define z0 by

z0(s) =
∫ δ

0
ts−N−1 |At ∩Ω |

(log t−1)m dt, (4.5.20)

where Res > N − D. As we see, z0(s) = ζ1(s), where ζ1(s) is defined as in the
proof of Theorem 2.3.25, except with |At | replaced by |At ∩Ω |, and ζ0(s) has all the
properties stated in this theorem for ζA(s). It is easy to see that

z′0(s) =−
∫ δ

0
ts−N−1 |At ∩Ω |

(log t−1)m−1 dt.

Therefore, proceeding inductively, we obtain that (still for Res > N −D)

z(m)
0 (s) = (−1)m

∫ δ

0
ts−N−1|At ∩Ω |dt = (−1)mζA,Ω (s). (4.5.21)

We conclude that ζA,Ω (s) and z0(s) possess the same meromorphic extensions. By
using Theorem 2.3.18, we see that z0(s) = ζ1(s) can be meromorphically extended
to {Res > D−α}, and therefore the same holds for ζ̃A,Ω (s). The remaining claims

follow from the fact that ζ̃A,Ω (s) = (−1)mz(m)
0 (s). ��

Next, we consider a class of Minkowski nonmeasurable RFDs with associated
gauge functions. The following result is a partial generalization of Theorem 2.3.25,
which corresponds to the case when m = 0.

Theorem 4.5.2 (Minkowski nonmeasurable RFDs). Let (A,Ω) be a relative frac-
tal drum in R

N, such that there exist D ≤ N, a nonconstant periodic function
G : R→ R with minimal period T > 0, and a nonnegative integer m, satisfying

|At ∩Ω |= tN−D(log t−1)m (
G(log t−1)+O(tα)

)
as t → 0+. (4.5.22)

Then dimB(A,Ω) exists and dimB(A,Ω) = D, G is continuous, and

M D
∗ (A,Ω ,h) = minG, M ∗D(A,Ω ,h) = maxG,

where h(t) := (log t−1)m for all t ∈ (0,1). Furthermore, the tube zeta function
ζ̃A,Ω has for abscissa of convergence D(ζ̃A,Ω ) = D, and it possesses a (necessarily
unique) meromorphic extension (at least) to the half-plane {Res > D−α}; that is,

Dmer(ζ̃A,Ω )≤ D−α. (4.5.23)

Moreover, all of its poles located in this half-plane are of order m+1, and the set of
poles P(ζ̃A,Ω ) is contained in the vertical line {Res = D}. More precisely,

P(ζ̃A,Ω ) = Pc(ζ̃A,Ω )

=

{
sk = D+

2π
T

ki ∈ C : Ĝ0

(
k
T

)

= 0, k ∈ Z

}
,

(4.5.24)
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where s0 = D ∈ P(ζ̃A,Ω ) and Ĝ0 is the Fourier transform of G0 (as given by
(2.3.29)). The poles come in complex conjugate pairs; that is, if sk is a pole, then
s−k is a pole as well (reality principle, see Remark 2.3.28).

In addition, if ζ̃A,Ω (s) = ∑∞j=−∞ c(k)j (s− sk)
j is the Laurent expansion of the tube

zeta function in a neighborhood of s = sk, for a given k ∈ Z, then

c(k)j = 0 for j < 0 and j 
=−m−1

c(k)−m−1 =
m!
T

Ĝ0

(
k
T

)
,

(4.5.25)

where G0 is the restriction of G to the interval [0,T ], and Ĝ0 is given by (2.3.29), as
above. Also,

|c(k)−m−1| ≤
m!
T

∫ T

0
G(τ)dτ , lim

k→∞
c(k)−m−1 = 0. (4.5.26)

In particular, for k = 0, that is, for s0 = D, we have

c(0)−m−1 =
m!
T

∫ T

0
G(τ)dτ

m!M D
∗ (A,Ω ,h)< c(0)−m−1 < m!M ∗D(A,Ω ,h).

(4.5.27)

If m = 0 (i.e., h(t) = 1 for all t ∈ (0,1)), then D is a simple pole of ζ̃A,Ω and we
have that

res(ζ̃A,Ω ,D) =
1
T

∫ T

0
G(τ)dτ = M̃ (4.5.28)

and
M D

∗ (A,Ω)< res(ζ̃A,Ω ,D)< M ∗D(A,Ω), (4.5.29)

where M̃ = M̃ D(A,Ω) denotes the average Minkowski content of (A,Ω). (See
Remark 4.5.3 below.)

Proof. For m ∈ N0, let us define zm by

zm(s) =
∫ δ

0
ts−D−1(log t−1)mG(log t−1)dt.

The function z0(s) is the exact counterpart of ζ1(s) from the proof of Theo-
rem 2.3.25, with |At | replaced by |At ∩Ω | and where, much as in that proof, ζ̃A,Ω =

ζ1+ζ2 and ζ2 is an entire function. It is easy to see that zm(s) = (−1)mz(m)
0 (s), there-

fore, the functions zm(s) and z0(s) have the same meromorphic extension, and the
same sets of poles. This proves that ζ̃A,Ω (s) can be meromorphically extended from
{Res > D} to the half-plane {Res > D−α}. The set of poles (complex dimensions
of (A,Ω)) of the relative zeta function of (A,Ω), contained in this half-plane, is
given by
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P(ζ̃A,Ω ) = P(zm) = P(z0)

=

{
sk = D+

2π
T

ki ∈ C : Ĝ0

(
k
T

)

= 0, k ∈ Z

}
.

Each of these poles is simple. Furthermore, if

z0(s) =
∞

∑
j=−1

a(k)j (s− sk)
j

is the Laurent series of z0(s) in a neighborhood of s = sk, then

z(m)
0 (s) = (−1)mm!a(k)−1(s− sk)

−m−1 +
∞

∑
j=0

(m+ j)!
j!

a(k)m+ j(s− sk)
j.

Hence,

c(k)−m−1 = m!a(k)−1 = m!
1
T

Ĝ0

(
k
T

)
,

where, in the last equality, we have used (2.3.33). The remaining claims are easily
deduced from the corresponding ones in Theorem 2.3.25. ��

Remark 4.5.3. In Equation (4.5.28), M̃ = M̃ D(A,Ω), the average Minkowski con-
tent of (A,Ω), is defined as the multiplicative Cesàro average of t−(N−D)|At ∩Ω |:

M̃ D(A,Ω) := lim
τ→+∞

1
logτ

∫ 1

1/τ

|At ∩Ω |
tN−D

dt
t
, (4.5.30)

provided the limit exists in [0,+∞]. See Section 2.4, Equation (4.5.9) and compare
with [Lap-vFr3, Definition 8.29, Equation (8.55)].

Remark 2.3.19 also applies to Theorems 4.5.1 and 4.5.2. This means that in
the statements of these theorems, we may have more general functions, which are
O(tα)) (instead of O(tα)) as t → 0+, like tα log(1/t).

Remark 4.5.4. In light of the functional equation (4.5.2) connecting ζA,Ω and ζ̃A,Ω ,
Theorems 4.5.1 and 4.5.2 also hold for relative distance zeta functions (instead of
relative tube zeta functions), provided D < N, and in that case, all of the expressions
for the residues and the Laurent coefficients are multiplied by N −D.

Example 4.5.5. (Torus relative fractal drum). Let Ω be an open torus in R
3 defined

by two radii r and R, where 0 < r < R < ∞, and let A := ∂Ω be its topological
boundary. In order to compute the tube zeta function of the torus RFD (A,Ω), we
first compute its tube function. Let δ ∈ (0,r) be fixed. Using Cavalieri’s principle,
we obtain that

|At ∩Ω |3 = 2πR
(
r2 − (r− t)2)= 2πR(2rt − t2), (4.5.31)
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where t ∈ (0,δ ), from which it follows that

ζ̃A,Ω (s) :=
∫ δ

0
ts−4|At ∩Ω |3 dt = 2πR

(
2r
δ s−2

s−2
− δ

s−1

s−1

)
(4.5.32)

for all s ∈C such that Res > 2. The right-hand side defines a meromorphic function
on the entire complex plane; so that, by the principle of analytic continuation, ζ̃A,Ω
can be (uniquely) meromorphically extended to the whole of C. In particular, we
see that the multiset of complex dimensions of the torus RFD (A,Ω) is given by
P(A,Ω) = {1,2}. Each of the complex dimensions 1 and 2 is simple. In particular,
we have that

dimPC(A,Ω) = {2} and res(ζ̃A,Ω ,2) = 4πRr. (4.5.33)

Also, dimB(A,Ω) =D(ζ̃A) = 2. From Equation (4.5.14) appearing in Theorem 4.5.1
below, we conclude that the 2-dimensional Minkowski content of the torus RFD
(A,Ω) is given by

M 2(A,Ω) = 4πRr. (4.5.34)

Since |At |3 = 2πR
(
(r+ t)2 − (r− t)2

)
, we can also easily compute the ‘ordinary’

tube zeta function ζ̃A of the torus surface A in R
3:

ζ̃A(s) = 8πRr
δ s−2

s−2
(4.5.35)

for all s ∈ C. In particular, res(ζ̃A,2) = 8πRr. Using Equations (4.5.2) and (2.2.1),
from (4.5.35) we obtain the corresponding distance zeta functions for all s ∈ C:

ζA,Ω (s) = 2πR
(

2r
δ s−2

s−2
− 2δ s−1

s−1

)
, ζA(s) = 8πRr

δ s−2

s−2
. (4.5.36)

Also,
P(ζA,Ω ) = P(ζ̃A,Ω ) = {1,2}

and
Pc(ζA,Ω ) = Pc(ζ̃A,Ω ) = {2}

(with each pole 1 and 2 being simple) and

dimB(A,Ω) = D(ζA,Ω ) = D(ζ̃A,Ω ) = 2.

Furthermore, we see that res(ζA,Ω ,2) = 4πRr and res(ζA,2) = 8πRr, in agreement
with Equation (4.5.8), while

P(ζA) = P(ζ̃A) = Pc(ζA) = Pc(ζ̃A) = {2}.

One can easily extend the example of the 2-torus to any (smooth) closed, com-
pact submanifold of RN (and, in particular, of course, to the n-torus, with n ≥ 2).
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This can be done by using Federer’s tube formula [Fed1] for sets of positive reach,
which extends and unifies Weyl’s tube formula [Wey3] for smooth compact subman-
ifolds of RN and Steiner’s formula (obtained by Steiner and his successors [Stein])
for compact convex subsets of RN . The global form of Federer’s tube formula ex-
presses the volume of t-neighborhoods of a (compact) set of positive reach A ⊂ R

N

as a polynomial of degree at most N in t, whose coefficients are (essentially) the
so-called Federer’s curvatures and which generalize Weyl’s curvatures in [Wey3]
(see [BergGos] for an exposition) and Steiner’s curvatures in [Stein] (see [Schn2,
Chapter 4] for a detailed exposition) in the case of compact submanifolds of RN and
compact convex sets, respectively.

Recall from [Fed1] that a closed subset A of RN is said to be of positive reach if
there exists δ0 > 0 such that every point x∈R

N within a distance less than δ0 from A
has a unique metric projection onto A; see [Fed1] and, e.g., [Schn2]. The reach of A,
denoted by reach(A), is then defined as the supremum of all such positive numbers
δ0. Clearly, every closed convex subset of R

N is of infinite (and hence, positive)
reach. Furthermore, if A ⊂ R

2 is an arc of a circle of radius r, then the reach of A is
equal to r.

In the present context, for a compact set of positive reach A ⊂ R
N , it is easy to

deduce from the tube formula in [Fed1] an explicit expression for ζ̃A.37

Theorem 4.5.6. Let A be a (nonempty) compact set of positive reach in R
N. Then,

for any δ such that 0 < δ < reach(A), we have that

ζ̃A(s) := ζ̃A(s;δ ) =
N

∑
k=0

ck
δ s−k

s− k
, (4.5.37)

where |At | = ∑N
k=0 cktN−k for all t ∈ (0,δ ) and the coefficients ck are the

(normalized) Federer curvatures. (From the functional equation (4.5.2) above,
one then deduces at once a corresponding explicit expression for ζA(s) := ζA(s;δ ).)

Hence, dimB A exists and

D := D(ζ̃A) = D(ζA) = dimB A = max{k ∈ {0,1, . . . ,N} : ck 
= 0} (4.5.38)

and38

P := P(ζ̃A) = P(ζA)⊆ {0,1, . . . ,N}. (4.5.39)

In fact,
P =

{
k ∈ {0,1, . . . ,N} : ck 
= 0

}
⊆ {k0, . . . ,D}, (4.5.40)

where k0 := min
{

k ∈ {0,1, . . . ,D} : ck 
= 0
}

. Furthermore, each of the complex
dimensions of A is simple.

37 Relative versions of Theorem 4.5.6 are also possible, but we will not consider them here.
38 More precisely, the second equality in Equation (4.5.39) holds only if D < N.
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Finally, if A is such that its affine hull is all of RN (which is the case when the
interior of A is nonempty and, in particular, if A is a convex body), then D = N,
while if A is a (smooth) compact d-dimensional submanifold (with 0 ≤ d ≤ N), then
D = d.

For the 2-torus A ⊂ R
3, we have N = 3, D = 2 (since the Euler characteristic of

A is equal to zero), c2 
= 0,39 c1 = 0, and hence, c0 = 0, k0 = 2 and P = {2}, as was
also found in the last displayed equation of Example 4.5.5 via a direct computation.

We note that much more general tube formulas, called (as in [Lap-vFr2–3] and
[LapPeWi1–2]) “fractal tube formulas”, are obtained in [LapRaŽu5] (as announced
in [LapRaŽu4]), as well as in Chapter 5 below, for arbitrary bounded sets (and even
more generally, RFDs) in R

N , under mild growth assumptions on the associated
fractal zeta functions.

4.5.2 Precise Meromorphic Extensions of Zeta Functions
of Countable Unions of Relative Fractal Drums

In Theorem 4.5.8, we construct a class of RFDs in R, with prescribed values of
the abscissa of meromorphic continuation of the corresponding zeta functions. This
will enable us to construct a class of bounded sets A, with prescribed values of the
abscissa of meromorphic continuation of the associated distance or tube zeta func-
tions; see Theorem 4.5.20. The construction makes use of the generalized Cantor
sets C(a) introduced in Example 2.2.6.

Definition 4.5.7. Let (A j,Ω j), j ≥ 1, be a given sequence of RFDs in R
N , where

(Ω j) j≥1 is a disjoint sequence of open subsets of RN . We define the union of the
relative fractal drums

(A,Ω) =
∞⋃

j=1

(A j,Ω j),

by A := ∪∞j=1A j and Ω := ∪∞j=1Ω j, assuming that there exists δ > 0 such that Ω ⊂
Aδ and |Ω |< ∞.

Theorem 4.5.8. Let D ∈ (0,1) and α ∈ (0,D) be prescribed. Let (A,Ω) be a rela-
tive fractal drum, defined by (A,Ω) = ∪ j≥1(A j,Ω j), where (Ω j) j≥1 is a family of
disjoint open intervals in R, |Ω j|= 2− j, A( j) = 2− jC(a j)+ infΩ j, and C(a j) are gen-
eralized Cantor sets described in Example 2.2.6, with a j ∈ (0,1/2), j ≥ 1. Assume
that a1 = 2−1/D, and let (a j) j≥2 be an increasing sequence of positive numbers
converging to 2−1/(D−α) as j → ∞.

39 Note that c2 is just proportional to the area of the 2-torus, with the proportionality constant being
a standard positive constant.
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Then, for the relative tube zeta function ζ̃A,Ω of (A,Ω), we have:

D(ζ̃A,Ω ) = D, Dmer(ζ̃A,Ω ) = D−α. (4.5.41)

(See Definition 2.1.53.) Analogous result holds for the distance zeta function:

D(ζA,Ω ) = D, Dmer(ζA,Ω ) = D−α. (4.5.42)

The set of poles of these zeta functions, contained in {Res > D−α}, coincides with
the set dimPC(A,Ω) = Pc(ζA,Ω ) of principal complex dimensions of the relative
fractal drum (A,Ω):

dimPC(A,Ω) = D+
2π

log(1/a1)
iZ. (4.5.43)

In particular, the oscillatory period of the RFD (A,Ω) is given by p = 2πD/ log2.40

In order to prove Theorem 4.5.8, we shall need the following technical lemma.

Lemma 4.5.9. Let (A j,Ω j) j≥1 be a sequence of RFDs in R
N such that the family

of open sets (Ω j) j≥1 is disjoint. Consider their union (A,Ω) = ∪∞j=1(A j,Ω j), as
introduced in Definition 4.5.7, and assume that |Ω |< ∞. If

∂Ω j ⊆ A j for all j ∈ N, (4.5.44)

then

|At ∩Ω |=
∞

∑
j=1

|(A j)t ∩Ω j|. (4.5.45)

In particular,

ζ̃A,Ω (s) =
∞

∑
j=1
ζ̃A j ,Ω j(s) (4.5.46)

for all s ∈ C such that Res > dimB(A,Ω).

Proof. For any j 
= k and a ∈ A j, since a /∈ Ω j, we obviously have Bt(a)∩Ωk ⊂
(∂Ak)t ∩Ωk. Taking the union over all a ∈ A j, we obtain

(A j)t ∩Ωk ⊆ (∂Ωk)t ∩Ωk.

Using (4.5.44), we see that (A j)t ∩Ωk ⊆ (Ak)t ∩Ωk, and hence,

At ∩Ω =
( ∞⋃

j=1

(A j)t

)
∩
( ∞⋃

k=1

Ωk

)

=
∞⋃

j,k=1

((A j)t)∩Ωk) =
∞⋃

k=1

(
Ak)t ∩ (Ωk)

)
.

40 Compare with Equation (2.2.17) on page 117. It is interesting to note that p → 0+ as D → 0+;
see Figure 4.16.
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Since the family (Ωk)k≥1 is disjoint, this implies (4.5.45). From this we conclude
that for any positive real number s such that s > dimB(A,Ω),

ζ̃A,Ω (s) =
∫ δ

0
ts−N−1|At ∩Ω |dt =

∫ δ

0
ts−N−1

( ∞

∑
k=1

|(Ak)t ∩Ωk|
)

dt

=
∞

∑
k=1

∫ δ

0
ts−N−1|(Ak)t ∩Ωk|dt =

∞

∑
k=1

ζ̃Ak,Ωk(s).

Hence, (4.5.46) holds for s real such that s > dimB(A,Ω). But now, using the prin-
ciple of analytic continuation, we can extend this identity to the open half-plane
{Res > dimB(A,Ω)}, as desired. ��

We shall also need the following technical lemma.

Lemma 4.5.10. Let D ∈ (0,1) and α ∈ (0,D) be given. Assume that (Tj) j≥1 is a
decreasing sequence of positive real numbers, converging to a limit which is less
than π/(D−α). Let (D j) j≥1 be a bounded sequence of positive real numbers, and
(G j) j≥1 a bounded sequence of periodic functions (with G j being Tj-periodic, for
each j ≥ 1).

Then, the sequence of functions (z j) j≥1, defined by (see (2.3.42) and (2.3.43))

z j(s) =
eTj(s−D j)

eTj(s−D j)−1

∫ logδ−1+Tj

logδ−1
e−τ(s−D j)G j(τ)dτ for j ≥ 1, (4.5.47)

is locally uniformly bounded on {0 < Res < D−α+ ε}\S , where

S :=
∞⋃

j=1

(
D j +

2π
Tj

iZ
)

(4.5.48)

and ε is a sufficiently small positive real number; that is, for each s0 in the connected
open set {0 < Res < D−α+ ε}\S , there exists M > 0 and a neighborhood N =
N(s0) of s0 such that |z j(s)| ≤ M for all j ∈ N and s ∈ N(s0).41

Proof. There exists k0 ∈ N such that Tj < π/(D−α) for all j ≥ k0. Therefore, we
can assume without loss of generality that k0 = 1; that is, Tj < π/(D−α) for all
j ≥ 1. The sequences of real numbers (Tj) j≥1 and (D j) j≥1 are bounded, as well as
the sequence of functions (G j) j≥1. In light of (4.5.47), it suffices to prove that for
any fixed complex number s0 there exist a neighborhood N(s0) of s0, and a positive
number c, such that

|eTj(s−D j)−1| ≥ c, for all j ∈ N and s ∈ N(s0). (4.5.49)

Let us first fix s0 ∈ {0 < Res < D−α + ε} \S . Furthermore, let us choose s jk =
s jk(s0) ∈ P j which is closest to s0. Let R := d(s0,S) = d(s0,s jk). Then

41 See also Figure 4.16 and the discussion surrounding Equations (4.5.58)–(4.5.60) below.
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|eTj(s0−D j)−1| = |eTj(s0−D j)− eTj(s jk−D j)|
= |eTj(s jk−D j)| |eTj(s0−s jk)−1|
= |eTj(s0−s jk)−1|.

Let us write s0 − s jk = Reiϕ , and

w j := eTj(s0−s jk) = exp(TjReiϕ)

= eTjRcosϕeiTjRsinϕ =: r j eiψ j ,

where we have set
r j = eTjRcosϕ ψ j = TjRsinϕ.

We assume without loss of generality that R<D−α+ε , since it suffices to consider
0 < Res0 < D−α+ ε . We would like to estimate the value of |w j −1| from below.
Let us fix ϕ0 ∈ (0,π/2), and consider the following two cases:

Case 1: Assume that

ϕ ∈ (−π,π]\{(π
2
−ϕ0,

π
2
+ϕ0)∪ (−π

2
−ϕ0,−

π
2
+ϕ0)}.

We consider the following two subcases:

(a) Assume that ϕ ∈ [−π
2 +ϕ0,

π
2 −ϕ0]. Then

r j = eTjRcosϕ ≥ eTjRcos( π2 −ϕ0) = eTjRsinϕ0 > 1.

Hence,

|w j −1| ≥ |w j|−1 = r j −1 = eTjRsinϕ0 −1 ≥ eT0Rsinϕ0 −1 > 0. (4.5.50)

(b) Assume that ϕ ∈ (−π,−π
2 +ϕ0]∪ [π2 +ϕ0,π]. Then

r j = eTjRcosϕ ≤ eTjRcos( π2 +ϕ0) = e−TjRsinϕ0 ≤ e−T0Rsinϕ0 < 1.

Hence,
|w j −1| ≥ 1−|w j|= 1− r j ≥ 1− e−T0Rsinϕ0 > 0. (4.5.51)

Case 2: Assume that ϕ ∈ (π2 −ϕ0,
π
2 +ϕ0)∪ (−π

2 −ϕ0,−π
2 +ϕ0). Then we have

ψ j = TjRsinϕ ≥ TjRsin(
π
2
−ϕ0) = TjRcosϕ0 ≥ T0Rcosϕ0 > 0.

Since T0(D−α + ε) < π for ε > 0 small enough, then for any j large enough we
have

0 < ψ j = TjRsinϕ ≤ TjR ≤ T0(D−α+ ε)< π;
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that is,
ψ j ∈ [T0Rcosϕ0,T0(D−α+ ε)]⊂ (0,π),

and therefore,

sinψ j ≥ min{sin(T0Rcosϕ0),sin(T0(D−α+ ε))}= sin(T0Rcosϕ0)> 0,

since R < D−α+ ε , for ε > 0 small enough.
If we consider a triangle with vertices at the points 0, 1 and w j with respect to

the (r j,ψ j)-polar system (the origin 0 of which is the point s jk), it is clear that the
length of the side of the triangle joining 1 with w j is not smaller than the length of
the height of the triangle drawn from 1 to the opposite side connecting 0 and w j;
that is,

|w j −1| ≥ sinψ j > 0.

Therefore,
|w j −1| ≥ sin(T0Rcosϕ0)> 0. (4.5.52)

Making use of (4.5.50), (4.5.51) and (4.5.52), we obtain that

|eTj(s0−D j)−1| ≥ g(s0),

where

g(s0) = min{eT0d(s0,S)sinϕ0 −1,1− e−T0d(s0,S)sinϕ0 ,sin(T0d(s0,S)cosϕ0)}.

If we take s in a sufficiently small neighborhood N(s0) of s0, such that d(s,S) ≥
d0 > 0 for some positive constant d0, then the same type of inequality holds for all
s ∈ N(s0):

|eTj(s−D j)−1| ≥ g(s),

where ϕ0 ∈ (0,π/2) is a fixed angle. The desired constant c is obtained as the infi-
mum of the right-hand side over s ∈ N(s0):

|eTj(s−D j)−1| ≥ c := inf
s∈N(s0)

g(s) for all j ∈ N and s ∈ N(s0). (4.5.53)

More explicitly, if we let d0 := d(N(s0),S) = infs∈N(s0) d(s,S) > 0, then we may
take

c := min{eT0d0 sinϕ0 −1,1− e−T0d0 sinϕ0 ,sin(T0d0 cosϕ0)}. (4.5.54)

This concludes the proof of Lemma 4.5.10. ��

Proof of Theorem 4.5.8. Note that |Ω | = ∑∞j=1 2− j < ∞, and Ω ⊂ Aδ for any δ >
1/2. The first equality in (4.5.41) follows from Theorem 4.1.7.

In order to prove the second equality in (4.5.41), we first find a periodic function
G(τ) and f (t) = O(tα) as t → 0+, such that
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|At ∩Ω |= t1−D
(

G
(

log
1
t

)
+ f (t)

)
.

Since (A j)t ⊂Ω j, where (A j)t denotes the t-neighborhood of A j, we have

|(A j)t ∩Ω j|= 2− jt1−D j

(
G j

(
log

1
t

)
−2tD j

)
. (4.5.55)

We note that this identity (called a fractal tube formula in [Lap-vFr3, Chapter 8]) is
obtained in the same manner as in [Lap-vFr3, Equation (1.11)]; therefore, we will
not repeat its proof. Here, D j = dimB(A j,Ω j) = log1/a j

2, each function G j is Tj-

periodic, where Tj := log(1/a j), and G j(τ) ∈ [M
D j
∗ (A j),M

∗D j(A j)] for every τ ∈
[0,Tj] (or equivalently, for all τ ∈ R), and the values of the Minkowski contents are
given in (2.2.12). Let D1 := D, and note that the sequence (D j) j≥2 is monotonically
increasing in (0,D−α), and converging to D−α .

Using Lemma 4.5.9 and (4.5.55), we obtain

|At ∩Ω |=
∞

∑
j=1

2− jt1−D j

(
G j

(
log

1
t

)
−2tD j

)

= t1−D
(

2−1G1

(
log

1
t

)
+ f (t)

)
,

(4.5.56)

where

f (t) :=−tD +
∞

∑
j=2

2− jtD−D j

(
G j

(
log

1
t

)
−2tD j

)
.

Since D−D j > α and t < 1, we have

| f (t)| ≤ tD +∑
j≥2

2− jtα(M+2) = (tD−α +M+2)tα ≤ (M+3)tα ,

where for every τ ∈ [0,Tj] (i.e., for every τ ∈ R),

0 < G j(τ)≤ M := sup
j≥2

M ∗D j(A( j)) = sup
j≥2

2(1−a j)

(
1
2
−a j

)D j−1

< 2(1−a2)

(
1
2
−2−1/(D−α)

)D2−1

,

since both (a j) j≥2 and (D j) j≥2 are increasing sequences; see (2.2.12). Therefore,
f (t) = O(tα) as t → 0+, and we conclude from Theorem 4.5.2 that Dmer(ζ̃A,Ω ) ≤
D−α .

To show the equality, it suffices to prove that s = D−α is a singularity which
is not a pole of a meromorphic extension of ζ̃A,Ω . More precisely, we show that
D−α is a nonisolated singularity of a meromorphic extension of ζ̃A,Ω , to which a
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sequence of distinct poles (D j) j≥2 converges from the left. Using the first equality
in (4.5.56), we obtain the following identity valid on {Res > D}:

ζ̃A,Ω (s) =
∫ δ

0
ts−2|At ∩Ω |dt

= ∑
j≥1

2− j
∫ δ

0
ts−D j−1G j

(
log t−1)dt −2∑

j≥1
2− j δ s

s
(4.5.57)

= ∑
j≥1

2−sz j(s)−2
δ s

s
.

The functions z j(s) have meromorphic extensions to the entire complex plane; see
the proof of Theorem 4.5.2. Furthermore, since

T0 := lim
j→∞

Tj = lim
j→∞

log(1/a j) =
log2

D−α <
π

D−α ,

Lemma 4.5.10 shows us that the last series appearing in (4.5.57) converges to a
function which is holomorphic on the connected open set

{0 < Res < D−α+ ε}\S1,

for arbitrarily small ε > 0, where S1 is the set of singularities of ζ̃A,Ω (s) contained
in the open right half-plane {Res > 0}. More specifically, S1 = S (the closure of
S in C) is the closed subset of C given by

S1 = S ∪A , (4.5.58)

where

S :=
∞⋃

j=2

(
D j +

2π
Tj

iZ
)

(4.5.59)

and
A := D−α+piZ. (4.5.60)

Here, S is the set of poles of ζ̃A,Ω (s) in {0 < Res < D−α+ ε},42 A is the set of
nonisolated singular points (the accumulation points of S ) and p := 2π/T0. There-
fore, the function ζ̃A,Ω (s), defined by the last expression in (4.5.57), possesses a
holomorphic extension to G = {0 < Res < D−α+ε}\S1 (note that, as was stated
earlier, G is a domain, that is, an open and connected subset of C). In particular,
D−α is a singularity of ζ̃A,Ω (s) which is not a pole. This proves that

Dmer(ζ̃A,Ω ) = D−α.

The analogous claims (made in the statement of the theorem) for relative distance
zeta functions follow from (4.5.2). ��

42 The set S := ∪ j≥2(D j +
2π
Tj
iZ) in Equation (4.5.59) corresponds to the set S in Equation

(4.5.48) of Lemma 4.5.10.
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In connection with Equations (4.5.58)–(4.5.60), we point out that in (4.5.58), if
we let P j :=D j+

2π
Tj
iZ for each j ≥ 1, then we have that P j →A in the Hausdorff

metric, as j → ∞; see Figure 4.16. Note that the sequence (Tj) j≥2 is decreasing,
since a j is increasing, and hence, the sequence p j := 2π

Tj
of oscillatory quasiperiods

of (A,Ω) is increasing. Also,

p j → p =
2π
T0

as j → ∞,

where T0 := log2
D−α . It is also interesting to note that, although Mer(ζ̃A,Ω ) = {Res >

D−α}, the tube zeta function ζ̃A,Ω is meromorphic on {Res > 0} \A . Here, the
set Mer ζ̃A,Ω is the half-plane of meromorphic continuation introduced in Defini-
tion 2.1.53.

Fig. 4.16 An interesting set of complex dimensions: a sketch of the set S := ∪ j≥2(D j +
2π
Tj
iZ) of

the poles of the tube zeta function (or “complex dimensions”) of the relative fractal drum (A,Ω)
from Theorem 4.5.8, with parameters D = 4/5, α = 3/10 and the sequence (a j) j≥2 defined as
a j = j/(4( j+ 1)) for j ≥ 2. Here, D(ζ̃A,Ω ) = 4/5, Dmer(ζ̃A,Ω ) = D−α = 1/2 and A = 2−1 +

4π(log2)iZ is the set of nonisolated singularities of ζ̃A,Ω . (See Equations (4.5.58)–(4.5.60) and the
discussion surrounding it.) It is easy to check that the set S appearing in Equations (4.5.58) and
(4.5.59) of the proof of Theorem 4.5.8 is contained in a union of countably many rays emanating
from the origin. The dotted vertical line is the critical line {Res = D} of ζ̃A,Ω , and to the left of it,
the solid vertical line {Res = D−α} is the meromorphy critical line of ζ̃A,Ω . It is worth pointing
out that in the light of some of the results obtained in Chapters 4 and 5, we will suggest to extend
the notion of “complex dimensions” from poles to nonremovable singularities of the associated
fractal zeta function (here, ζ̃A,Ω ).
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4.5.3 Precise Meromorphic Extensions of Zeta Functions
of Countable Unions of Fractal Strings

In the sequel, an important role is played by the notion of countable union of a
sequence of fractal strings, which we now introduce. It extends Definition 3.1.19, in
which we have defined the union of two fractal strings.

Definition 4.5.11. Let L j = (� jk)k≥1, j ≥ 1, be a sequence of fractal strings in R.
The (disjoint) union of fractal strings, denoted by

L =
∞⊔

j=1

L j, (4.5.61)

is a new fractal string, defined as the multiset consisting of all l ∈ ∪∞j=1L j, with
the multiplicity of l equal to the sum of its multiplicities in all L j, j ∈ N. Here, we
assume that each l ∈L belongs to at most finitely many fractal strings L j, and that
L is a sequence of positive numbers converging to zero. Without these assumptions,
the union of fractal strings is not well defined. Furthermore, we say that the union of
fractal strings is disjoint, if for any two indices j, j′ ∈ N, the assumption that j < j′

implies that L j ∩L j′ = /0, where L j and L j′ are viewed as ordinary sets.

The following lemma provides a simple construction of well defined countable
unions of fractal strings.

Lemma 4.5.12. Let L j = (� jk)k≥1, j ≥ 1, be a sequence of bounded fractal strings.
If the sequence of the first elements of the fractal strings converges to zero (that is,
if � j1 → 0+ as j → ∞), then L := �∞j=1L j is a well-defined fractal string.

Proof. To show that any given element � = � jk ∈ L is of finite multiplicity, it suf-
fices to take j0 ∈ N large enough, j0 = j0( j,k), such that � jk > � j01 (this is possible
since � j01 → 0+ as j0 → ∞). Then we have

� jk ∈ L1 �·· ·�L j0−1, � jk /∈
∞⊔

n= j0

Ln, (4.5.62)

and hence, the multiplicity of � jk in L is equal to the sum of the multiplicities of
this element in finitely many fractal strings, namely, L1,. . . ,L j0−1.

We now show that L can be ordered as a nonincreasing sequence of positive real
numbers (�m)m≥1, converging to zero. To see this, consider the following sequence
of sets

#L j := {� j′k′ : � j+1,1 ≤ � j′k′ < � j1}. (4.5.63)

Here, we assume without loss of generality that the sequence (� j1) j≥1 is nonincreas-
ing. Therefore, the sets #L j are finite and pairwise disjoint. Furthermore, since � j

converges to zero as j → ∞, we have that
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L =
∞⊔

j=1

#L j. (4.5.64)

Here, the union of finite multisets is defined similarly to the union of fractal strings
in Definition 4.5.11. Also note that min#L j = � j+1,1 > max#L j+1. The desired
sequence L = (�m)m≥1 is then obtained so that we first order #L1 as a nonincreas-
ing finite sequence, then continue with #L2, and so on. ��

Lemma 4.5.13. Let L j, j ≥ 1, be a sequence of fractal drums associated with
(generalized) Cantor RFDs (A j,Ω j) in R, where (Ω j)≥1 is a disjoint family of unit
intervals in R, |Ω j|= 2− j , A j = 2− jC(a j) + infΩ j, and a j ∈ (0,1/2) for each j ≥ 1.
Then L := �∞j=1L j is a well-defined fractal string.

Proof. Recall that L j = (� jk)k≥1 is defined by � jk = |I jk|, where (I jk)k≥1 is the
family of connected components (open intervals) of Ω j \A j = ∪k≥1I jk. We have

� j1 = 2− j(1−2a j)< 2− j, (4.5.65)

and hence, � j1 → 0+ as j → ∞. The claim now follows from Lemma 4.5.12. ��

In the following lemma, we construct a disjoint union of fractal strings, in the
sense of Definition 4.5.11. It admits many variations, which we do not discuss here.
By (p j) j≥1 we denote the usual sequence of prime numbers: (2,3,5,7,11, . . .). We
construct a disjoint sequence of fractal drums L j = (� jk)k≥1, j ∈N, associated with
generalized Cantor sets C(a j) (see Example 2.2.6), with a suitable choice of the
numbers a j ∈ (0,1/2).

Lemma 4.5.14. Let L j = (� jk)k≥1, j ≥ 2, be a sequence of (scaled) Cantor strings,
generated by relative fractal drums (A j,Ω j), j ≥ 2, where (Ω j) j≥1 is a disjoint
family of intervals in R, A j = 2− jC(a j) + infΩ j, and Ω j is an open interval such
that |Ω j|= 2− j for each j ≥ 2. Assume that

a j =
n j

p j
for j ≥ 2, (4.5.66)

where p j is the j-th prime number,43 and n j ∈N is such that n j <
1
2 p j. Then the frac-

tal string L := �∞j=2L j is well defined, and moreover, the union of fractal strings
is disjoint. In other words, for every j,k ≥ 1, each value � jk ∈ L occurs with the
multiplicity 2k−1 in L , the same multiplicity as in L j.

Proof. From the construction of the Cantor string L j, we know that

� jk = 2− jak−1
j (1−2a j). (4.5.67)

43 Here, the sequence of prime numbers is written in increasinig order: p1 < p2 < · · ·< p j < .. . ,
with p j → ∞ as j → ∞.
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Assume, contrary to the claim, that there exists a pair of indices j < j′, such that
L j ∩L j′ 
= /0. In other words, � jk = � j′k′ for some k,k′ ∈ N; that is,

2− jak−1
j (1−2a j) = 2− j′ak′−1

j′ (1−2a j′).

Using a j = n j/p j and a j′ = n j′/p j′ , we obtain

2 j′− jnk−1
j (p j −2n j)pk′

j′ = nk′−1
j′ (p j′ −2n j′)pk

j.

However, this is impossible since the prime number p j′ divides the left-hand side,
but not the right-hand side. Indeed, p j′ divides neither n j′ , nor p j′ −2n j′ , nor p j. ��

Lemma 4.5.15. Assume that the union L =�∞j=1L j of a sequence of fractal strings
(L j) j≥1 is well defined, and that it is bounded. Then

ζL (s) =
∞

∑
j=1
ζL j(s) (4.5.68)

for all s ∈ C such that Res > D(ζL ). Furthermore, D(ζL )≥ sup j≥1 D(ζL j).

Proof. If L j = (� jk)k≥1, then clearly, L = (� jk) j,k≥1. We have

ζL (s) = ∑
j,k≥1

�s
jk on {Res > D(ζL )},

ζL j(s) =
∞

∑
k=1

�s
jk on {Res > D(ζL j)},

(4.5.69)

for all j ∈N. The identity (4.5.68) now follows, as we now explain. Indeed, the two
series appearing in (4.5.69) are absolutely convergent, and D(ζL j)≤ D(ζL ), for all
j ≥ 1, since (A j,Ω j)⊆ (A,Ω) implies that

D(ζL j) = dimB(A j,Ω j)≤ dimB(A,Ω) = D(ζL ).

��

Definition 4.5.16. Assume thatΩ is a bounded interval in R, and A⊆Ω is such that
A is closed (in R), |A|= 0 and ∂Ω ⊆ A. We say that a fractal string L is associated
with a given relative fractal drum (A,Ω) in R if L = (�k)k≥1, where �k := |Jk| for
each k ≥ 1, and (Jk)k≥1 is the disjoint family of all the connected components (i.e.,
open intervals) of the open set Ω \A ⊆ R.

Proposition 4.5.17. Let (A j,Ω j) be a sequence of RFDs in R such that (Ω j) j≥1 is
a family of disjoint open intervals, and ∂Ω j ⊂ A j ⊂ Ω j, A j is closed (in R) and
|A j| = 0 for each j ∈ N. Let (A,Ω) = ∪∞j=1(A j,Ω j), |Ω | < ∞, and let L j be the
fractal strings associated with the RFDs (A j,Ω j), j ∈ N. Assume that the sequence
L j = (� jk)k≥1 is nonincreasing for each j ≥ 1, and is such that the union L :=
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�∞j=1L j of fractal strings is well defined (see Definition 4.5.11). If δ > 1
2 sup j≥1 � j1,

then
ζL (s) = s(2δ )s−1|Ω |+ s(1− s)2s−1ζ̃A,Ω (s), (4.5.70)

for every complex number s in the open half-plane {Res > D(ζA,Ω )}.

Proof. It suffices to prove (4.5.70) on {Res > D(ζA,Ω )}. For any such s, we have
that

ζA j ,Ω j(s) =
21−s

s
ζL j(s). (4.5.71)

This follows from (2.1.84), dropping the second term on the right-hand side, since
we deal here with relative zeta functions. Furthermore, using (4.5.2) with N = 1, we
have

ζA j ,Ω j(s) = δ
s−1|(A j)δ ∩Ω j|+(1− s)ζ̃A j,Ω j(s). (4.5.72)

Note that since δ > 1
2� j1 for all j ∈ N, we have (A j)δ ∩Ω j = Ω j. Therefore, we

conclude from (4.5.71) and (4.5.72) that for each j ≥ 1,

ζL j(s) = s(2δ )s−1|Ω j|+ s(1− s)2s−1ζ̃A j ,Ω j(s).

The claim now follows by summing up over j ≥ 1, and using Lemma 4.5.15. ��

From previous considerations, it is easy to deduce the following result.

Corollary 4.5.18. Let (A j,Ω j) be a sequence of RFDs in R, such that (Ω j) j≥1 is
a disjoint family of open intervals, and |Ω j|= 2− j , A j = 2− jC(a j) + infΩ j. Let L j,
j ≥ 1, be a sequence of fractal strings associated with RFDs (A j,Ω j). Then the
fractal string L := �∞j=1L j is well defined, and

(a) for every complex number s in {Res > D(ζL )},

ζL (s) =
∞

∑
j=1

2− js (1−2a j)
s

1−2as
j

; (4.5.73)

(b) the distance zeta function of the relative fractal drum (A,Ω) = ∪∞j=1(A j,Ω j)
is given by

ζA,Ω (s) =
21−s

s

∞

∑
j=1

2− js (1−2a j)
s

1−2as
j
, (4.5.74)

on {Res > D(ζA,Ω )}.

Proof. The fractal string L is well defined due to Lemma 4.5.12. The claim in part
(a) follows from

ζL j(s) =
∞

∑
k=1

2k−1(2− jak−1
j (1−2a)) js = 2− js (1−2a j)

s

1−2as
j
,
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by using Lemma 4.5.15. In order to prove part (b), it suffices to use part (a), along
with (4.5.71). ��

We next state the main result of this section, in which we construct a set A with a
given specified value of the abscissa of meromorphic continuation of A. In order to
do so, it will be convenient to use the following definition.

Definition 4.5.19. Let L = (� jk) j,k≥1 be a fractal string; that is, L is representable
in the form L = (mi)i≥1, where the sequence (mi)i≥1 is a nonincreasing reordering
of (� jk) j,k≥1. Then, the sequence A = (a j) j≥1 of positive real numbers is said to be
associated with the fractal string L if a j := ∑i≥ j mi for each j ≥ 1.

Theorem 4.5.20. Let D ∈ (0,1) and α ∈ (0,D) be given. Let L = (� jk)
∞
j,k=1 be a

bounded fractal string defined as follows. For j = 1, we let �1k := ak−1
1 (1− 2a1),

k ≥ 1, where a1 := 2−1/D. For j ≥ 2 and k ≥ 1, we let

� jk := 2− jak−1
j (1−2a j). (4.5.75)

Assume that the sequence (a j) j≥1 is increasing and converges to 2−1/(D−α) as j →
∞. Then

D(ζL ) = D, Dmer(ζL ) = D−α. (4.5.76)

Furthermore, if A = AL := {a j : j ≥ 1} ⊆ (0,+∞) is the bounded subset of R as-
sociated with the fractal string L , then the same conclusion holds for the distance
and tube zeta functions of A:

D(ζA) = D(ζ̃A) = D,

Dmer(ζA) = Dmer(ζ̃A) = D−α.
(4.5.77)

Moreover, dimPC A = D+ 2π
T1
iZ.

Proof. For j = 1, the associated fractal string L1 = (�1k)k≥1 is the Cantor string
generated by A1 =C(a1). We have a1 = 2−1/D < 1/2, so that the Cantor set C(a1) is
well defined. Furthermore, the box dimension of C(a1) is given by log1/a1

2 = D.

For j ≥ 2, we have a j < 2−1/(D−α) < 2−1/(1−α) < 1/2, so that the (scaled) Cantor
sets A j = 2− jC(a j) + infΩ j, where (Ω j) j≥1 is a family of disjoint open intervals in
R, |Ω j| = 2− j, are also well defined. Lemma 4.5.13 then implies that the union of
fractal strings L :=�∞j=1L j is well defined, where L j are fractal strings associated
with (A j,Ω j).

We have that

T0 := lim
j

log(1/a j) = log21/(D−α) =
log2

D−α <
π

D−α ,

so that Lemma 4.5.10 applies. The claim (4.5.76) follows from Theorem 4.5.8. The
claims in (4.5.77) follow from Proposition 4.5.17 and (4.1.1), connecting the zeta
function of a fractal string L , the distance zeta function of the associated set A =
AL , and the tube zeta function of A. ��
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The set A in Theorem 4.5.20 can be effectively constructed as a set associated
with the fractal string L = �∞j=1L j, where each L j is associated with a relative
Cantor drum (A j,Ω j), described in the proof.

Theorem 4.5.20 shows, in particular, that our main results on the meromorphic
extension of distance and tube zeta functions, obtained in Section 2.3, are in general
optimal. We plan to study other applications and examples of relative zeta functions
in a later work.

4.6 Transcendentally ∞-Quasiperiodic Relative Fractal Drums

One of the new notions explored and used in a key manner in this section is that of
‘transcendentally quasiperiodic relative fractal drums’, for which the correspond-
ing quasiperiods are algebraically independent; see Section 4.6.1. It enables us, in
particular, to construct bounded sets, fractal strings and RFDs that are ‘maximally
hyperfractal’ (in the sense of the new Definition 4.6.23 below); that is, for which
the corresponding fractal zeta function has nonisolated singularities at every point
of the critical line {Res = D} —and hence, for which the critical line is a (mero-
morphic) natural boundary (in the sense of part (ii) of Definition 1.3.8 in Subsection
1.3.2). The complexity or ‘fractality’ of the resulting geometric objects is therefore
most extreme.

4.6.1 Quasiperiodic Relative Fractal Drums With Infinitely Many
Algebraically Independent Quasiperiods

Here, we describe a general construction of quasiperiodic fractal drums possessing
infinitely many algebraically incommensurable periods. It is based on properties of
generalized Cantor sets, and on Baker’s Theorem 3.1.14 from transcendental num-
ber theory; see [Ba, Theorem 2.1].

Let m ≥ 2 be a given integer and D ∈ (0,1) a given real number. Then for a > 0
defined by a=m−1/D, we have am=m1−1/D < 1, and hence, the generalized Cantor
set A =C(m,a) is well defined (see Definition 3.1.1), and dimB A = log1/a m = D.

Definition 4.6.1. A finite set of real numbers is said to be rationally (resp., algebra-
ically) linearly independent or simply, rationally (resp., algebraically) independent,
if it is linearly independent over the field of rational (resp., algebraic) real numbers.

Definition 4.6.2. A sequence (Ti)i≥1 of real numbers is said to be rationally (resp.,
algebraically) linearly independent, if any of its finite subsets is rationally (resp.,
algebraically) independent.

Definition 4.6.3. Let m ≥ 2 be a positive integer. Let p = (pi)i≥1 be the sequence
of all prime numbers, arranged in increasing order; that is,
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p = (2,3,5,7,11, . . .).

We then define the exponent sequence e = e(m) := (αi)i≥1 associated with m, where
αi ≥ 0 is the multiplicity of pi in the factorization of m. We also let

pe := ∏
{i≥1:αi>0}

pαi
i . (4.6.1)

The set of all sequences e with components in N0 := N∪{0}, such that all but at
most finitely many components are equal to zero, is denoted by (N0)

∞
c .

With this definition, for any integer m ≥ 2, we obviously have m = pe(m). Con-
versely, any e ∈ (N0)

∞
c defines a unique integer m ≥ 2 such that m = pe.

Definition 4.6.4. Given an exponent vector e = (αi)i≥1 ∈ (N0)
∞
c , we define the

support of e as the set of all indices i ∈ N for which αi > 0, and we write

S(e) = supp(e) = {i ≥ 1 : αi > 0}. (4.6.2)

The support of an integer m ≥ 2 is denoted by supp m and defined by supp m :=
supp e(m).

The following definition is motivated by Theorem 3.1.15.

Definition 4.6.5. We say that a set {ei : i ≥ 1} of exponent vectors is rationally
linearly independent if any of its finite subsets is linearly independent over Q. We
then say for short that the exponent vectors are rationally independent.

The following two definitions, Definition 4.6.6 and Definition 4.6.7, refine and
extend the definition of n-quasiperiodic function and set (Definition 3.1.9 and Defi-
nition 3.1.11, respectively).

Definition 4.6.6. We say that a function G : R → R is ∞-quasiperiodic, if it is of
the form

G(τ) = H(τ ,τ , . . .),

where H : �∞(R)→ R,44 H = H(τ1,τ2, . . .) is a function which is Tj-periodic in its
j-th component, for each j ∈ N, with Tj > 0 as minimal periods, and such that the
set of periods

{Tj : j ≥ 1} (4.6.3)

is rationally independent. We say that the order of quasiperiodicity of the function
G is equal to infinity (or that the function G is ∞-quasiperiodic).

In addition, we say that G is

(a) transcendentally quasiperiodic of infinite order (or transcendentally∞-quasi-
periodic) if the periods in (4.6.3) are algebraically independent;

44 Here, �∞(R) stands for the usual Banach space of bounded sequences (τ j) j≥1 of real numbers,
endowed with the norm ‖(τ j) j≥1‖∞ := sup j≥1 |τ j|.
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(b) algebraically quasiperiodic of infinite order (or algebraically ∞-quasiperio-
dic) of infinite order if the periods in (4.6.3) are rationally independent and alge-
braically dependent.

We say that a sequence (Ti)i≥1 of real numbers is algebraically dependent of
infinite order if there exists a finite subset J of N such that (Ti)i∈J is algebraically
dependent (that is, linearly dependent over the field of algebraic numbers). Recall
that a finite set of real numbers {T1, . . . ,Tk} is said to be algebraically dependent if
there exist k algebraic real numbers λ1, . . . ,λk, not all of them equal to zero, such
that λ1T1 + · · ·+λkTk = 0.

Definition 4.6.7. Let (A,Ω) be a relative fractal drum in R
N having the following

tube formula:

|At ∩Ω |= tN−D(G(log t−1)+o(1)) as t → 0+, (4.6.4)

where D ≤ N,45 and G is a nonnegative function such that

0 < liminf
τ→+∞

G(τ)≤ limsup
τ→+∞

G(τ)< ∞.

(Note that it then follows that dimB(A,Ω) exists and is equal to D. Moreover,
M D

∗ (A,Ω) = liminfτ→+∞G(τ) and M ∗D(A,Ω) = limsupτ→+∞G(τ).)
We then say that the relative fractal drum (A,Ω) in R

N is quasiperiodic and
of infinite order of quasiperiodicity (or, in short, ∞-quasiperiodic) if the function
G = G(τ) is ∞-quasiperiodic; see Definition 4.6.6.

In addition, (A,Ω) is said to be

(a) a transcendentally ∞-quasiperiodic relative fractal drum if the corresponding
function G is transcendentally ∞-quasiperiodic;

(b) an algebraically ∞-quasiperiodic relative fractal drum if the corresponding
function G is algebraically ∞-quasiperiodic.

Definition 4.6.8. We say that a relative fractal drum (A,Ω) is n-quasiperiodic,
where n ≥ 2, if the function G appearing in Definition 4.6.7 is n-quasiperiodic; see
Definition 3.1.9. Likewise, one can define transcendentally n-quasiperiodic relative
fractal drums and algebraically n-quasiperiodic relative fractal drums.

In light of Definitions 4.6.7 and 4.6.8, we see that each n-quasiperiodic rel-
ative fractal drum, where n ∈ (N \ {1}) ∪ {∞}, is either transcendentally n-
quasiperiodic or algebraically n-quasiperiodic. In other words, the family Dqp(n)
of n-quasiperiodic RFDs is equal to the disjoint union of the family Dtqp(n) of
transcendentally n-quasiperiodic RFDs and the family Daqp(n) of algebraically
n-quasiperiodic RFDs:

Dqp(n) = Dtqp(n)∪Daqp(n), for n ∈ (N\{1})∪{∞}.

45 Here, D may be negative as well; see Proposition 4.1.35.
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Letting

Dqp :=
⋃
n≥2

Dqp(n), Dtqp :=
⋃
n≥2

Dtqp(n), Daqp :=
⋃
n≥2

Daqp(n)

and

Dqp := Dqp ∪Dqp(∞), D tqp := Dtqp ∪Dtqp(∞), Daqp := Daqp ∪Daqp(∞),

we have that
Dqp = D tqp ∪Daqp.

Theorem 4.6.9 below shows that the family Dtqp(∞) is nonempty. Moreover, the
family Daqp(n) of algebraically n-quasiperiodic RFDs is nonempty for any n ≥ 2,
as well as for n = ∞, as shown by Radunović in [Ra1].

As we know, the family of bounded fractal strings can be naturally embedded
into the family of bounded subsets of R, while the family of bounded subsets of
R

N can be naturally embedded into the family of RFDs. Therefore, we have the
following natural embeddings

Lqp(n)⊂ Sqp(n)⊂ Dqp(n). (4.6.5)

It is clear that we can define the families Lqp(∞) and Sqp(∞), much as we have
defined Dqp(∞) above. In light of the embedding (4.6.5), we then have

Lqp(∞)⊂ Sqp(∞)⊂ Dqp(∞),

and analogously
Ltqp(∞)⊂ Stqp(∞)⊂ Dtqp(∞),

Laqp(∞)⊂ Saqp(∞)⊂ Dat p(∞).

Theorem 4.6.9 below shows that the family Ltqp(∞) is nonempty. Therefore, the
families Stqp(∞) and Dtqp(∞) are nonempyt as well.

The following result can be considered as a fractal set-theoretic interpretation
of Baker’s theorem [Ba, Theorem 2.1], i.e., of Theorem 2.11, from transcendental
number theory. It provides a construction of a transcendentally ∞-quasiperiodic rel-
ative fractal drum. In particular, this drum possesses infinitely many algebraically
incommensurable quasiperiods Ti. In our construction, we use the two-parameter
family of generalized Cantor sets C(m,a) described in Definition 3.1.1 and whose
basic properties are described in Proposition 3.1.2.

Theorem 4.6.9. Let D∈ (0,1) be a given real number, and let (mi)i≥1 be a sequence

of integers, mi ≥ 2. For each i ≥ 1, define ai = m−1/D
i , and let C(mi,ai) be the cor-

responding generalized Cantor set (see Definition 3.1.1). Assume that (Ωi)i≥1 is a

family of disjoint open intervals on the real line such that |Ωi| ≤C1m1−1/D
i c1/D

i for
each i ≥ 1, where the sequence (ci)i≥1 of positive real numbers is summable, and
C1 > 0. Let
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(A,Ω) :=
⋃
i≥1

(Ai,Ωi), where Ai := |Ωi|C(mi,ai) + infΩi, for all i ≥ 1.46

Assume that the sequence of real numbers

(logm1, . . . , logmn, . . .) is rationally independent. (4.6.6)

Then the sequence of real numbers

( 1
D
,T1,T2, . . .

)
(4.6.7)

is algebraically independent (that is, lineary independent over the field of alge-
braic numbers). In other words, the relative fractal drum (A,Ω) is transcendentally
quasiperiodic with infinite order of quasiperiodicity. More specifically, its sequence
(Ti)i≥1 of quasiperiods is given by Ti := log(1/ai) = (logmi)/D, for every i ≥ 1.
Furthermore,

D(ζA,Ω ) = Dmer(ζA,Ω ), (4.6.8)

and moreover, all of the points on the critical line {Res = D} are nonisolated singu-
larities of ζA,Ω ; in other words, the relative fractal drum (A,Ω) is also maximally
hyperfractal (in the sense of Definition 4.6.23(iii) below and the comment following
it).

Finally, the relative fractal drum (A,Ω) is Minkowski nondegenerate, in the sense
that

0 < M D
∗ (A,Ω)≤ M ∗D(A,Ω)< ∞.

Theorem 4.6.9 admits a partial extension. If instead of condition (4.6.6) we as-
sume that mi → ∞ as i → ∞, then (4.6.8) still holds, and, moreover, all the points
of the critical line are nonisolated singularities of ζA. Furthermore, the fractal drum
(A,Ω) is Minkowski nondegenerate.

We shall need the following lemma, which states a simple scaling property of the
tube functions and Minkowski contents of RFDs. We note that the identity (4.6.10)
below yields a partial extension of [Žu4, Proposition 4.4.]. Compare also with the
scaling property of the corresponding distance zeta function ζA,Ω , obtained in The-
orem 4.1.40.

Lemma 4.6.10. (a) Let (A,Ω) be a relative fractal drum in R
N. Then for any fixed

λ > 0, and for all t > 0, we have that

(λA)t ∩λΩ = λ (At/λ ∩ Ω), |(λA)t ∩ λΩ |= λN |At/λ ∩ Ω |. (4.6.9)

Furthermore, for any real parameter r ∈ R, we have the following scaling (or
homogeneity) properties of relative Minkowski contents:

M ∗r(λA,λΩ) = λ rM ∗r(A,Ω), M r
∗ (λA,λΩ) = λ rM r

∗ (A,Ω). (4.6.10)

46 Note that here, |Ωi| plays the role of the scaling factor of the generalized Cantor set C(mi,ai).
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(b) If A is a generalized Cantor set C(m,a) (see Proposition 3.1.2), then

|(λC(m,a))t ∩ (0,λ )|= t1−D(Gλ (log t−1)−2tD),

where
Gλ (τ) := λDG(τ+ logλ )

and G is the T -periodic function defined in Equation (3.1.3) of Proposition 3.1.2.

Proof. We shall establish parts (a) and (b) separately.

(a) Scaling the set At ∩Ω by the factor λ , we obtain λ (At ∩Ω). On the other
hand, the same result is then obtained as the intersection of the scaled sets (λA)λ t
and λΩ ; that is,

λ (At ∩Ω) = (λA)λ t ∩λΩ .

The first equality in (4.6.9) now follows by replacing t with t/λ . The second one is
an immediate consequence of the first one. We also have

M ∗r(λA,λΩ) = limsup
t→0+

|(λA)t ∩λΩ |
tN−r = λN limsup

t→0+

|(A)t/λ ∩Ω |
tN−r

= λN limsup
τ→0+

|(A)τ ∩Ω |
(λτ)N−r = λ rM ∗r(A,Ω).

The second equality in (4.6.10) is proved in the same way, but by now using the
lower limit instead of the upper limit.

(b) In the case of the generalized Cantor set, we use (4.6.9) with N := 1 along
with Proposition 3.1.2:

|(λC(m,a))t ∩ (0,λ ) = λ |C(m,a)
t/λ ∩ (0,1)|= λ

( t
λ

)1−D(
G
(

log
1

t/λ

)
−2(t/λ )D

)

= t1−D
(
λDG(logλ + log t−1)−2tD

)
.

This completes the proof of the lemma. ��

Relative tube zeta functions have a scaling property which is analogous to that
obtained in Proposition 2.2.22 for the tube zeta functions of bounded sets. We leave
the proof to the interested reader. It suffices to use Lemma 4.6.10(a).

Proposition 4.6.11 (Scaling property of relative tube zeta functions). Let (A,Ω)
be a relative fractal drum and let δ > 0. Let us denote by ζ̃A,Ω (s;δ ) the associated
relative fractal zeta function defined by Equation (4.5.1). Then, for any λ > 0, we
have D(ζ̃λA,λΩ ) = D(ζ̃A,Ω ;δ ) = dimB(A,Ω) and

ζ̃λA,λΩ (s;λδ ) = λ sζ̃A,Ω (s;δ ), (4.6.11)
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for all s ∈C such that Res > dimB(A,Ω). Furthermore, if ω ∈C is a simple pole of
ζ̃A,Ω (s;δ ), meromophically extended to a connected open neighborhood of the crit-
ical line {Res = dimB(A,Ω)} (as usual, we keep the same notation for the extended
function), then

res(ζ̃λA,λΩ ,ω) = λω res ζ̃A,Ω ( · ;δ ),ω). (4.6.12)

One proof of Proposition 4.6.11 would rely on the functional equation (4.5.2)
combined with Theorem 4.1.40, the scaling property of the distance zeta function.

In the proof of Theorem 4.6.9, we shall use the following simple fact. If a function
G(τ) = H(τ ,τ , . . .) is transcendentally quasiperiodic with respect to a sequence of
quasiperiods (Ti)i≥1, it is clear that for any fixed sequence of real numbers d :=
(di)i≥1, the corresponding function

Gd(τ) = H(d1 + τ ,d2 + τ , . . .)

is quasiperiodic with respect to the same sequence of quasiperiods.

Proof of Theorem 4.6.9. The proof is divided into three steps.

Step 1: First of all, note that the generalized Cantor sets C(mi,ai) are well defined,

since miai = m1−1/D
i < 1 for each i ≥ 1; see Definition 3.1.1. Furthermore,

|Ω |=
∞

∑
i=1

|Ωi| ≤C1

∞

∑
i=1

m1−1/D
i c1/D

i ≤C1

∞

∑
i=1

c1/D
i ≤C1

∞

∑
i=1

ci < ∞,

where we have assumed without loss of generality that ci ≤ 1 for all i ≥ 1. Using
Lemma 4.6.10, we have

|At ∩Ω |=
∞

∑
i=1

|(Ai)t ∩Ωi|= t1−D
∞

∑
i=1

|Ωi|D
(

Gi

(
log |Ωi|+ log

1
t

)
−2tD

)

= t1−D
(

G
(

log
1
t

)
−2|Ω | tD

)
,

where

G(τ) :=
∞

∑
i=1

|Ωi|DGi(log |Ωi|+ τ)

and the functions Gi = Gi(τ) are Ti-periodic, with Ti := log(1/ai), for all i ≥ 1. This
shows that G(τ) = H(τ ,τ , . . .), where

H((τi)i≥1) :=
∞

∑
i=1

|Ωi|D Gi(log |Ωi|+ τi).

Note that the last series is well defined, and that so is the series defining G(τ).
Indeed, letting Mi = M ∗D(C(mi,ai)) and using Proposition 3.1.2, we see that

0 < Gi(τ)≤ Mi =

(
2(mi −1)
1−miai

)1−D mi

mi −1
(1−ai)≤C m1−D

i , (4.6.13)
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where C is a positive constant independent of i, since mi →∞ and miai → 0 as i→∞.
Therefore,

∞

∑
i=1

|Ωi|DGi(τi)≤
∞

∑
i=1

(CD
1 mD−1

i ci)(Cm1−D
i ) =CCD

1

∞

∑
i=1

ci < ∞.

In particular,

M ∗D(A,Ω)≤CCD
1

∞

∑
i=1

ci < ∞.

On the other hand, since (A1,Ω1) ⊃ (A,Ω), we can use Lemma 4.6.10(a) (with
r := D) and Proposition 3.1.2 to obtain that

M D
∗ (A,Ω)≥ M D

∗ (A1,Ω1) = |Ω1|DM D
∗ (C(m1,a1)) = |Ω1|D

1
D

(
2D

1−D

)1−D

> 0.

Step 2: Let n be any fixed positive integer. Since the set of real numbers

{logm1, . . . , logmn}

is rationally independent, we conclude from Baker’s theorem (see Theorem 3.1.14
above or [Ba, Theorem 2.1]) that the set of real numbers {1, logm1, . . . , logmn}
is algebraically independent. Dividing all of these numbers by D, and using D =
(logmi)/Ti, where Ti = log(1/ai) for all i (see Proposition 3.1.2), we deduce that

{ 1
D
,

logm1

D
, . . . ,

logmn

D

}
=

{ 1
D
,T1, . . . ,Tn

}

is algebraically independent as well. Since n is arbitrary, this proves that the rela-
tive fractal drum (A,Ω) is transcendentally ∞-quasiperiodic, in the sense of Defini-
tion 4.6.7.

Step 3: To prove the last claim, note that the critical line {Res = D} contains the
union of the set of poles Pi := P(ζ̃Ai,Ωi ,C) = D+piiZ of the tube zeta functions
ζ̃Ai,Ωi , i≥ 1. Since the integers mi are all distinct, we have that mi →∞ as i→∞, and
therefore, pi = 2π/Ti = 2πD/ logmi → 0. This proves that the union ∪i≥1Pi, as a
set of nonisolated singularities of ζ̃A,Ω = ∑i≥1 ζ̃Ai,Ωi (see Lemma 4.5.9), is dense in
the critical line {Res = D}. Since we have a dense set of nonisolated singularities of
ζA,Ω along the critical line, then in fact, each point on the line is a nonisolated sin-
gularity. Indeed, reasoning by contradiction, if any point (say, s0) on the critical line
is a removable singularity, then there is a punctured connected open neighborhood
of s0 in which the fractal zeta function ζA,Ω is holomorphic, and hence, the same is
true along the corresponding punctured open interval (along the critical line) con-
taining the singularity s0, which is impossible. (For more details, see the proof of
Lemma 4.6.12 just below.) It follows, in particular, that (4.6.8) holds, as desired.
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We note that the above argument can be summarized as follows: The set of non-
isolated singularities along L := {Res = D} is closed in the critical line L. Since the
latter set is already known to be dense in L, it follows that it must be all of L. This
argument is the content of Lemma 4.6.12 just below. ��

At the end of the proof of Step 3 of Theorem 4.6.9, we have used the following
lemma.47

Lemma 4.6.12. In Step 3 of the proof of Theorem 4.6.9 above, the set of nonisolated
singularities of ζA,Ω along the critical line L := {Res=D} is both closed and dense
in, and therefore coincides with, L.

Proof. We already know from the first part of Step 3 of the proof of Theorem 4.6.9
that the set of nonisolated singularities of ζA,Ω along L is dense in L. Therefore, all
we need to show is that it is also closed in L. Equivalently, we must show that the
set of removable singularities of ζA,Ω along L is open in L.

For this purpose, assume that there exists s0 ∈ L which is a removable singularity
of ζA,Ω . By definition, this means that there exists an open disk U := Bρ(s0) in C

centered at s0 and such that ζA,Ω is holomorphic in the punctured disk U \ {s0}.
(Upon resolution of the singularity at s0, we could take all of U instead and hence,
all of I just below.) Therefore, if I :=U ∩L is the corresponding open interval along
the critical line L := {Res = D}, then ζA,Ω cannot have any nonremovable singu-
larity in the punctured interval I \{s0}, and therefore consists entirely of removable
singularities.

This establishes the fact that the set of removable singularities along L is open in
L, and thereby concludes the proof of the lemma. In particular, we have shown that
every point of the line L is a nonisolated nonremovable singularity of ζA,Ω ; i.e, L is
a natural barrier for ζA,Ω . More specifically, L is a (meromorphic) natural boundary
for ζA,Ω , in the sense of part (ii) of Definition 1.3.8 in Subsection 1.3.2. ��

It is noteworthy that the sequence M ∗D(C(mi,ai),(0,1)) appearing in Theo-
rem 4.6.9 is divergent. More precisely, it is easy to deduce from the equality in
(4.6.13) that

M ∗D(C(mi,ai),(0,1))∼ (2mi)
1−D as i → ∞.

The conditions of Theorem 4.6.9 are satisfied if, for example, mi := pi for every
i ≥ 1 (that is, (mi)i≥1 is the sequence of prime numbers (pi)i≥1, written in increas-
ing order), and if C1 := 1 and ci := 2−i for all i ≥ 1. More general choices of the
sequence (mi)≥1 can be found in Theorem 4.6.13 below; see also Remark 4.6.15.

Theorem 4.6.9 shows that a result about the meromorphic extensions of distance
relative zeta functions, obtained in Theorem 4.5.2 for a class of Minkowski nonmea-
surable RFDs satisfying a periodicity condition, cannot be extended to transcenden-
tally quasiperiodic RFDs with infinitely many quasiperiods. For quasiperiodic sets
and RFDs with finitely many quasiperiods, such extensions are also possible. See,
for example, Theorem 2.3.43 and its obvious extension to the context of RFDs.

47 It will be apparent to the reader that, in the statement of Lemma 4.6.12, the closedness statement
is of a general nature.
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4.6.2 Hyperfractals and Transcendentally ∞-Quasiperiodic Fractal
Strings and Sets

The following result provides some sufficient conditions on the sequence (mi)i≥1,
for the rational independence to hold in condition (4.6.6). It complements Theo-
rem 3.1.15.

Theorem 4.6.13. Let mi ≥ 2 be given integers, i ≥ 1, and let Si := supp(mi) be their
corresponding supports (see Definition 4.6.4). Assume that

i �→ maxSi is increasing. (4.6.14)

Let D ∈ (0,1), and define the relative fractal drum (A,Ω) = ∪∞i=1(Ai,Ωi), where

Ai := 2−iC(mi,ai) + infΩi, ai := m−1/D
i , and the family of open intervals (Ωi)i≥1 is

disjoint, with |Ωi| := 2−i for all i ≥ 1. Then the relative fractal drum (A,Ω) is tran-
scendentally quasiperiodic and with infinite order of quasiperiodicity. Furthermore,

D(ζA,Ω ) = Dmer(ζA,Ω ) = Dhol(ζA,Ω ), (4.6.15)

and moreover, all of the points on the critical line {Res = D} are nonisolated sin-
gularities of ζA,Ω .

In order to prove this result, we shall use the following auxiliary lemma.

Lemma 4.6.14. Let (mi)i≥1 be a sequence of integers, mi ≥ 2, such that the se-
quence of the associated exponent vectors (e(mi))i≥1 is rationally linearly indepen-
dent. Then the sequence (logmi)i≥1 is rationally linearly independent as well.

Proof. Let n be a fixed positive integer. Since the vectors e(m1), . . . ,e(mn) are ratio-
nally linearly independent, then using Steps 1 and 2 of the proof of Theorem 3.1.15,
we conclude that the numbers logm1, . . . , logmn are rationally linearly independent
as well. ��

Proof of Theorem 4.6.13. Condition (4.6.14) ensures that any pair of numbers mi

and m j, i 
= j, has different corresponding sets of prime factors. From this we can
easily conclude that the exponent vectors e(mi), i ≥ 1, are rationally linearly inde-
pendent. Indeed, assume that

k1e(m1)+ · · ·+ kne(mn) = 0, (4.6.16)

for some n∈N, where the coefficients ki are integers. Let si :=maxSi. By looking at
the sn-th component of (4.6.16), we immediately obtain that kn = 0. We then apply
the same reasoning to the sn−1-th component in order to obtain kn−1 = 0, and so on.

Using Lemma 4.6.14, we conclude that the sequence of integers (logmi)i≥1 is
rationally linearly independent. The claim then follows from Theorem 4.6.9. ��
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Remark 4.6.15. It is easy to see that condition (4.6.14) in Theorem 4.6.13 can be
relaxed. More specifically, it suffices to assume that i �→ maxSi be injective. Indeed,
if the map is injective, then each member of the set {maxSi : i ∈N} has multiplicity
1, and after a suitable permutation, we can obtain (4.6.14).48

In Theorems 4.6.9 and 4.6.13, we have constructed a transcendentally quasiperi-
odic relative fractal drum (A,Ω) with infinite order of quasiperiodicity. In par-
ticular, (A,Ω) has infinitely many algebraically incommensurable quasiperiods
Ti =

1
D logmi, i ≥ 1.

The following corollary (Corollary 4.6.17) shows that there exist bounded fractal
strings L = (� j) j≥1 with infinitely many algebraically incommensurable quasiperi-
ods (i.e., with infinitely many incommensurable quasifrequencies). We see from the
proof of this result that L can be effectively constructed.

Definition 4.6.16. As we know, any bounded fractal string L = (� j) j≥1 can be
naturally identified with a relative fractal drum (AL ,ΩL ) in R, where

AL :=
{

ak := ∑
j≥k

� j : k ≥ 1
}
, ΩL :=

∞⋃
k=1

(ak+1,ak),

with |ΩL |= ∑∞j=1 � j < ∞. Let n ∈ N∪{∞} be fixed. We say that a bounded fractal
string L = (� j) j≥1 is n-quasiperiodic if the corresponding relative fractal drum
(AL ,ΩL ) is n-quasiperiodic. The order of quasiperiodicity of a bounded fractal
string L is defined as the order of quasiperiodicity of the corresponding relative
fractal drum (AL ,ΩL ); see Definitions 4.6.7 and 4.6.8.

In addition, we say that a bounded fractal string L = (� j) j≥1 is transcendentally
(resp., algebraically) ∞-quasiperiodic if the corresponding relative fractal drum
(AL ,ΩL ) is transcendentally (resp., algebraically) ∞-quasiperiodic.

The family Lqp of all ∞-quasiperiodic fractal strings is the disjoint union of the
family Laqp of algebraically ∞-quasiperiodic fractal strings and the family Ltqp of
transcendentally ∞-quasiperiodic fractal strings:

Lqp(∞) = Laqp(∞)∪Ltqp(∞).

If we let

L qp := Lqp ∪Lqp(∞), L tqp := Ltqp ∪Ltqp(∞), L aqp := Laqp ∪Laqp(∞),

where Lqp, Ltqp and Laqp are defined by (3.1.30) on page 202, then

L qp = L tqp ∪L aqp.

We expect that the family L aqp is nonempty.

48 We wish to thank Tomislav Šikić for this remark.
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Corollary 4.6.17. (a) There exists an effectively constructible bounded fractal
string L = (� j) j≥1 in R which is transcendentally ∞-quasiperiodic (see Definition
4.6.7), such that

D(ζL ) = Dhol(ζL ) = Dmer(ζL ) (4.6.17)

and all of the points on the critical line {Res = D} are nonisolated singularities of
the geometric zeta function ζL ; in other words, the fractal string L is also max-
imally hyperfractal (in the sense of Definition 4.6.23(iii) below and the comment
following it).

(b) In particular, there exists an effectively constructible bounded subset A0 of
R, which is transcendentally ∞-quasiperiodic, such that

D(ζA0) = Dhol(ζL ) = Dmer(ζA0) (4.6.18)

and all of the points on the critical line {Res = D} are nonisolated singularities
of the distance zeta function ζA0 (as well as of the tube zeta function ζ̃A0); in other
words, the bounded set A0 is also maximally hyperfractal (in the sense of Definition
4.6.23(iii) below and the comment following it).

Proof. (a) It suffices to note that each relative subdrum (Ai,Ωi) of (A,Ω), defined
in Theorem 4.6.13, can be viewed as a fractal string Li (i.e., Cantor’s string) associ-
ated with a generalized Cantor set Ai =C(mi,ai). Therefore, the relative fractal drum
(A,Ω) = ∪i≥1(Ai,Ωi) can be viewed as a bounded fractal string L = �i≥1Li.

(b) To prove this, it suffices to associate a new RFD (A0,Ω0) to the fractal string
L from (a). Its construction can be found in Definition 4.6.16. ��

Remark 4.6.18. Note that the set A0 in Corollary 4.6.17(b) does not coincide with
the set A from the relative fractal drum (A,Ω), associated with the fractal string L .
Indeed, A is a union of a countable family of Cantor sets (therefore, an uncountable
set), whereas A0 is a decreasing sequence of positive real numbers converging to
zero. Here, A0 is generated by the union of a sequence of generalized Cantor strings
Li, i ≥ 1, and each Li is generated by a generalized relative Cantor drum.

Remark 4.6.19. For N ≥ 2, one can readily extend Corollary 4.6.17 to obtain an ex-
plicitly constructible maximally hyperfractal and transcendentally ∞-quasiperiodic
fractal spray in R

N , and correspondingly, a bounded subset A of RN having those
same exact properties. Indeed, it suffices to proceed exactly as in the passage from
Example 5.1 to Example 5.1’ in [Lap1]. Namely, for example, if A0 ⊂ R is the
bounded set obtained in part (b) of Corollary 4.6.17, simply let A := A0 × [0,1]N−1,
now viewed as a bounded subset of RN . (See also Subsection 4.6.4.)

Remark 4.6.20. There is a classic example of a function which is holomorphic on
the open unit disk in C and is such that each of its points on the boundary is a
nonisolated singularity. See Problem 6.2.18 on page 558.
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Example 4.6.21. Concerning Lemma 4.6.14, there are many other ways to ensure
the rational independence of logmi, i≥ 1. For example, if m1, . . . ,mn are the positive
integers defined by

m1 = pk
j1 p j2 . . . p jn

m2 = p j1 pk
j2 . . . p jn

...

mn = p j1 p j2 . . . pk
jn ,

where k ≥ 2 is a fixed integer, then these integers have identical supports, and their
exponent vectors are given by

e(m1) = (k,1,1, . . . ,1),

e(m2) = (1,k,1, . . . ,1),
...

e(mn) = (1,1, . . . ,1,k),

where we have truncated the exponent vectors outside of their supports. It is easy
to see that these vectors are rationally linearly independent. Indeed, we have a :=

1
k+n−1 (e(m1)+ · · ·+ e(mn)) = (1,1, . . . ,1), and therefore, the vectors

1
k−1

(e(m1)−a), . . . ,
1

k−1
(e(mn)−a)

form the standard basis of Qn.

Example 4.6.22. Let (Pj) j≥1 be a partition of the set of all prime numbers, such
that each set Pj is finite. Applying the construction from Example 4.6.21 on each
Pj, with k = k j ≥ 2, we obtain an infinite sequence of integers (mi)i≥1 such that
the associated sequence (e(mi))i≥1 of their exponent vectors is rationally linearly
independent.

Alternatively, we can also use the constructions from Remark 4.6.21 and from
(4.6.14) intermittently, applied on the elements of the sequence of sets (Pj) j≥1.

In Subsection 4.6.4, we will extend the construction carried out in the present
subsection to obtain maximally hyperfractal sets in R

N of arbitrarily prescribed di-
mension D ∈ (N −1,N), for any N ≥ 1.

4.6.3 Fractality, Hyperfractality and Complex Dimensions

The following definition is closely related to the the notion of fractality (given in
[Lap-vFr3], Sections 12.1.1 and 12.1.2, including Figures 12.1–12.3), as will be
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explained in Remark 4.6.24 below. At this point, the reader may wish to review the
definition of a (meromorphic) partial natural boundary and that of a (meromorphic)
natural boundary (and correspondingly, of a partial domain of meromorphy and of
a domain of meromorphy) given, respectively, in part (i) and in part (ii) of Definition
1.3.8 of Subsection 1.3.2 on page 39 (and as strengthened in Remark 1.3.9).

Definition 4.6.23. (Hyperfractality). Let A be a bounded subset of RN and let D :=
dimBA. Then:

(i) The set A is a hyperfractal (or is hyperfractal) if there is a screen S (see
page 95 above or Definition 5.1.1 on page 411 below) which is a (meromorphic)
partial natural boundary for the associated tube (or equivalently, if D < N, distance)
zeta function of A. This means, in particular, that the fractal zeta function cannot be
meromorphically continued to any connected open neighborhood of S (or, equiva-
lently, of the associated window W ); see Definition 1.3.8(i) for the precise defini-
tion of a (meromorphic) partial natural boundary. (See also both parts of Remark
1.3.9.) Equivalently, the interior W̊ of the window is a partial domain of meromor-
phy for the fractal zeta function of A.

(ii) The set A is a strong hyperfractal (or is strongly hyperfractal) if the critical
line {Res=D} is a (meromorphic) partial natural boundary of the associated fractal
zeta function; that is, if we can choose S = {Res = D} in (i).49 Equivalently, the
open right half-plane {Res > D} is a partial domain of meromorphy for ζ̃A (or
equivalently, if D < N, for ζA), also in the sense of Definition 1.3.8(i).

(iii) Finally, the set A is maximally hyperfractal if it is strongly hyperfractal and
every point of the critical line {Res = D} is a nonisolated singularity of the fractal
zeta function of A. In that case, the critical line {Res = D} is a meromorphic natural
boundary of the fractal zeta function; see Definition 1.3.8(ii) for the precise defini-
tion of a partial natural boundary. In short, the fractal zeta function of A cannot be
extended meromorphically (and, a fortiori, holomorphically) to any punctured (and
connected) open neighborhood of s, given any point s of the critical line. Equiva-
lently, the open right half-plane {Res > D} is a domain of meromorphy for ζ̃A (or
equivalently, if D < N, for ζA), also in the sense of Definition 1.3.8(ii)

An analogous definition can be provided (in the obvious manner) where instead
of A, we have a fractal string L = (� j) j≥1 in R or, more generally, a relative fractal
drum (A,Ω) in R

N .

Remark 4.6.24. (Complex dimensions and the definition of fractality). In
[Lap-vFr1–3], a geometric object is said to be “fractal” if the associated zeta
function has at least one nonreal complex pole (with positive real part); i.e., the
object has at least one nonreal complex dimension.50 (See [Lap-vFr3, Sections 12.1

49 Recall from Theorem 2.1.11(a) that since D= dimBA, the fractal zeta function ζA is holomorphic
(and hence, meromorphic) in the window W = {Res > D}, in that case.
50 Then, clearly, it has at least two nonreal complex conjugate complex dimensions.
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and 12.2] for a detailed discussion.) In [Lap-vFr2, Lap-vFr3], in order, in partic-
ular, to take into account some possible situations pertaining to random fractals
(see [HamLap], partly described in [Lap-vFr3, Section 13.4]), the definition of
fractality (within the context of the theory of complex dimensions) was extended
so as to allow for the case described in part (i) of Definition 4.6.23 just above,
namely, the existence of a partial natural boundary along a screen. See [Lap-vFr3,
Subsection 13.4.3].

We note that in [Lap-vFr3] (and the other aforementioned references), the term
“hyperfractal” was not used to refer to case (i) (or to any other situation). More im-
portant, except for fractal strings and in very special higher-dimensional situations
(such as suitable fractal sprays), one did not have to our disposal (as we now do,
thanks to the general theory developed in this book and in [LapRaŽu1–8]) a general
definition of “fractal zeta function” associated with an arbitrary bounded subset of
R

N , for every N ≥ 1. Therefore, we can now define the “fractality” of any bounded
subset of RN (including Julia sets and the Mandelbrot set) and, more generally, of
any relative fractal drum, by the presence of a nonreal complex dimension or else by
the “hyperfractality” (in the sense of part (i) of Definition 4.6.23) of the geometric
object under consideration. Here, “complex dimension” is understood as a (visible)
pole of the associated fractal zeta function (the distance or tube zeta function of a
bounded subset or a relative fractal drum of RN , or else, as was the case in most of
[Lap-vFr3], the geometric zeta function of a fractal string).

Much as in [Lap-vFr1–3] and [Lap3–8], this terminology (concerning fractality,
hyperfractality, and complex dimensions), can be extended to ‘virtual geometries’,
as well as to (absolute or) relative fractal drums, noncommutative geometries, dy-
namical systems, and arithmetic geometries, via suitably associated ‘fractal zeta
functions’, be they absolute or relative distance or tube zeta functions, spectral zeta
functions, dynamical zeta functions, or arithmetic zeta functions (or their logarith-
mic derivatives thereof).

As we have seen in Theorem 4.6.9 and Corollary 4.6.17, there exist bounded sets
A0, fractal strings L and RFDs (A,Ω), that are maximally hyperfractal. In other
words, all the points on the critical line {Res = D} are nonisolated singularities
of the corresponding zeta functions. (See Problem 6.2.20.) Furthermore, the con-
struction provided in Subsection 4.6.4 below will show that for any integer n ≥ 1
there exists a maximally hyperfractal bounded subset of RN , of arbitrary prescribed
dimension D ∈ (N − 1,N); see Corollary 4.6.28. In addition, we recall that in Ex-
ample 3.3.7, we have constructed a fractal string L∞ whose associated fractal zeta
function has a countable set of essential singularities on the critical line; see Equa-
tion (3.3.32). Such a fractal string is therefore strongly hyperfractal, in the sense of
part (ii) of Definition 4.6.23 (and as strengthened in part (b) of Remark 1.3.9). It is
worth pointing out that this construction was generalized to a whole class of strongly
hyperfractal RFDs which are not maximally hyperfractal; see Example 4.2.10 of
Subsection 4.2.2 above.
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Corollary 4.6.17 provides a partial answer to a part of [Lap-vFr3, Problem
13.146, p. 473] (building on open problems proposed toward the end of [HamLap]).
Note that in Corollary 4.6.17(b) we have constructed a (deterministic) hyperfractal
A0 on the real line, which is just a bounded countable set on the real line (more pre-
cisely, a bounded decreasing sequence converging to zero; see Remark 4.6.18). In
this sense, A0 may be viewed as being fairly simple. Recall, however, that it has been
(effectively) constructed by means of a countable family of generalized Cantor sets,
and in this sense, this sequence (as well as the corresponding hyperfractal string)
is extremely complex. Also, we stress that in this construction, we do not use any
random fractal sets. Random fractal strings, along with the associated random zeta
functions and complex dimensions, are the object of the work of Ben Hambly and
the first author in [HamLap], which is surveyed in [Lap-vFr3, Section 13.4] where
the aforementioned open problem can be found.

In short, the latter problem asks whether almost surely, and within a suitably de-
fined class of random fractals, the associated (pointwise) random fractal zeta func-
tions have a (meromorphic) partial natural boundary. Our present work now enables
us to give a proper meaning to the notion of ‘fractal zeta functions’ in higher dimen-
sions, and hence to adapt it to random fractals (by naturally extending the notions
introduced for random fractal strings in [HamLap]). Moreover, in the deterministic
setting, the examples constructed here indicate that in some cases, one can obtain a
much stronger conclusion; namely, the partial natural boundary can consist solely
of nonisolated singularities. In turn, in the random setting, one may complete the
above open problem (from [HamLap] and [Lap-vFr3]) by asking whether, almost
surely, the random fractals within a suitable class are maximally hyperfractal, and
hence, admit the critical line as a (meromorphic) natural boundary (for the associ-
ated fractal zeta function).

Given d ∈ R such that d ≤ D, Definition 4.6.23 (or its obvious conterpart for a
fractal string L or a relative fractal drum (A,Ω)) can be extended as follows. In the
analog of case (i), A is said to be hyperfractal (respectively, strictly hyperfractal)
in dimension d if the screen S can be chosen so that supS = d (respectively, maxS
exists and maxS = d).51 In the analog of case (ii), A is said to be strongly hyperfrac-
tal in dimension d if the vertical line {Res = d} is a (meromorphic) partial natural
boundary of the associated zeta function (that is, if we can choose S = {Res = d} in
the counterpart of (i)). Finally, A is said to be maximally hyperfractal in dimension
d if it is strongly hyperfractal in dimension d and every point of the vertical line
{Res = d}52 is a nonisolated singularity of the zeta function. Therefore, {Res = D}
is a (meromorphic) natural boundary (for the associated fractal zeta function).

It would be interesting to consider the following open problem, which comple-
ments in a different direction the problem about random fractals stated above in the
discussion following Remark 4.6.24. Namely, one may ask whether given a (deter-
ministic or random) relative fractal drum which is hyperfractal or even, maximally

51 As in [Lap-vFr2], we adopt the following notation: supS := supt∈R S(t), and similarly for maxS
(when it exists). See the definition of a screen on page 95.
52 Except possibly for some points in a small neighborhood of d in that line.
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hyperfractal (with respect to the standard power law gauge function, h ≡ 1), one can
sometime find another (non power law) gauge function h (in the sense of Definition
6.1.4 of Section 6.1 below) for which the associated zeta function no longer has a
partial natural boundary. We note that in order to address this problem, one should be
ready to work with analytic functions on suitable Riemann surfaces rather than just
on C or on the Riemann sphere C̃ :=C∪{∞}. See [EsLapRRo] and [ElLapMacRo]
where a related open problem is raised in connection with the ‘multifractal zeta
functions’ of [LapRo1, LapLéRo, LéMen, ElLapMacRo]. We plan to develop this
point of view in a later work, especially in connection with the results of Chapter 5
below, on fractal tube formulas and Minkowski measurability criteria.

We will pursue the discussion of fractality in Subsection 5.5.4, in connection with
the devil’s staircase (the graph of the Cantor function) and a suitable version thereof
studied in Example 5.5.14. See, especially, Remark 5.5.15 and the comments sur-
rounding it. We will also revisit this issue (the notion of fractality and the related
notions of critical fractality, subcritical fractality, and more general fractality in di-
mension d ∈ R, all introduced in Subsection 5.5.4) in various places, including in
Subsection 5.5.6, when discussing Example 5.5.22 (the 1/2-square fractal), Exam-
ple 5.5.23 (the 1/3-square fractal), and Example 5.5.25 (the geometric progression
fractal string).

4.6.4 Maximal Hyperfractals in Euclidean Spaces

The aim of this subsection is to show that, given a maximal hyperfractal set A in R
N ,

the sets of the form A× [0,1]m will also be maximally hyperfractal for any positive
integer m. The main result is stated in Theorem 4.6.27 below. It will enable us, in
particular, to obtain an N-dimensional analog of part (b) of Corollary 4.6.17 above;
see Corollary 4.6.28 below.

Lemma 4.6.25. Assume that f = f (s) is a Dirichlet-type integral (DTI) such
that Dhol( f ) ∈ R and the corresponding critical line of holomorphic continuation
{Res = Dhol( f )} consists entirely of nonisolated singularities. Assume that a (C-
valued) function g = g(s) is holomorphic on the open right half-plane {Res > α},
where α ∈ R∪{−∞} and α < Dhol( f ). Then Dhol( f +g) = Dhol( f ) and hence, the
critical line {Res = Dhol( f +g)} of holomorphic continuation corresponding to the
function f +g also consists entirely of nonisolated singularities.

Proof. Since f is holomorphic on {Res > Dhol( f )}, and by definition, the holomor-
phicity lower bound Dhol( f ) is optimal (i.e., it is the infimum of all β ∈R such that
f is holomorphic on {Res > β}), it then follows that Dhol( f ) = Dhol( f +g); indeed,
by hypothesis, g is holomorphic on the open right half-plane {Res > α} containing
{Res > Dhol( f )}.

In order to prove the second claim, we argue by contradiction and assume that
some complex number s0 with Res0 = Dhol( f + g) is a removable singularity of
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f + g. Then, since g is holomorphic at s0 (because α < Dhol(g)), it would follow
that s0 is a removable singularity of the function f = ( f +g)−g as well. However,
this would contradict the assumption according to which the holomorphy critical
line {Res = Dhol( f )} consists of nonisolated singularities. ��
Remark 4.6.26. Actually, a slightly more general result holds. Indeed, it suffices to
assume that the function g = g(s) appearing in Lemma 4.6.25 is holomorphic on an
open subset of C containing the closed right half-plane {Res ≥ Dhol( f )}.

Theorem 4.6.27. Assume that A is a maximally hyperfractal subset of RN and let d
be a positive integer. Then the set A× [0,1]d is also maximally hyperfractal.

Proof. By part (a) of Theorem 2.2.32, we can write

ζA×[0,1]d (s) = ζA(s−d)+g(s) (4.6.19)

for all s ∈ C with Res > dimBA+d, where

g(s) :=
d

∑
k=1

(
d
k

)
ζA(s−d + k)

is holomorphic on {Res > dimBA + d − 1}. By hypothesis, the critical line of
holomorphic continuation of the function f (s) := ζA(s − d) is the vertical line
{Res = dimBA+d} and consists entirely of nonisolated singularities. On the other
hand, the function g(s) is holomorphic on {Res > α := dimBA+d −1}, since this
is the case of the functions ζA(s−d+k) for k = 1,2, . . . ,d. (Here, we have also used
the easily verified fact that dimBA does not depend on N, the embedding dimension;
see also Proposition 4.7.6 below for a more general context.) Since α < dimBA+d,
the claim now follows from Lemma 4.6.25. ��

The identity (4.6.19) implies that

ζA×[0,1]d (s)∼ ζA(s−d), (4.6.20)

which we call the shift property of the distance zeta function with respect to the
Cartesian product of A with the d-dimensional cube [0,1]d . Furthermore, the set
A× [0,1]d is called the fractal grill generated by A.

Corollary 4.6.28. Let N be any positive integer. Then, for any D ∈ (N − 1,N),
there is an explicitly constructible maximally hyperfractal subset A of RN such that
dimB A = D.

Proof. Let AL be a maximally hyperfractal set in R of the sort constructed in part
(b) of Corollary 4.6.17 above. It then suffices to let A :=AL × [0,1]N−1 and to apply
Theorem 4.6.27 to the set AL ⊂ R instead of A and with d = N −1. ��

Actually, by considering AL × [0,1]d , the Cartesian product of AL by [0,1]d ,
with 1 ≤ d ≤ N−1, the same proof as the one just above shows that in the statement
of Corollary 4.6.28, we may assume that dimBA ∈ (d,N), for any d = 1, . . . ,N −1.
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4.7 Complex Dimensions and Embeddings Into
Higher-Dimensional Spaces

In this section, we obtain useful results concerning relative fractal drums and
bounded subsets of RN embedded into higher-dimensional spaces. In particular, we
show that the complex dimensions (and their multiplicities) of a bounded set (or,
more generally, of a relative fractal drum) are independent of the dimension of the
ambient space. (See Theorem 4.7.3 and Theorem 4.7.10, respectively.) In addition,
we apply some of these results in order to calculate the complex dimensions of the
Cantor dust.

4.7.1 Embeddings Into Higher Dimensions in the Case of Bounded
Sets

We begin this subsection by stating a result which (along with the subsequent result,
Theorem 4.7.2) will be key to the developments in this section. We first work with
bounded sets, in Subsection 4.7.1, and then with general RFDs, in Subsection 4.7.2.

Proposition 4.7.1. Let A ⊆ R
N be a bounded set and let D := dimBA. Then, for the

tube zeta functions of A and A×{0} ⊆ R
N+1, the following equality holds:

ζ̃A×{0}(s;δ ) = 2
∫ π/2

0

ζ̃A(s;δ sinτ)
sins−N−1 τ

dτ , (4.7.1)

for all s ∈ C such that Res > D.

Proof. First of all, it is well known and easy to check directly from the definitions
(see Equations (1.3.1) and (1.3.4)) that dimB(A×{0}) = dimBA, from which we
conclude that the tube zeta functions of A and A×{0} are both holomorphic in the
right half-plane {Res > D}. Furthermore, we use the fact (see [Res, Proposition 6])
that for every t > 0, we have

|(A×{0})t |N+1 = 2
∫ t

0
|A√

t2−u2 |N du, (4.7.2)

where as before, | · |N denotes the N-dimensional Lebesgue measure. After having
made the change of variable u := t cosv, this yields

|(A×{0})t |N+1 = 2t
∫ π/2

0
|At sinv|N sinvdv. (4.7.3)
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Finally, for the tube zeta function of A×{0}, we can write successively:

ζ̃A×{0}(s;δ ) =
∫ δ

0
ts−N−2|(A×{0})t |N+1 dt

= 2
∫ δ

0
ts−N−1 dt

∫ π/2

0
|At sinv|N sinvdv

= 2
∫ π/2

0
sinvdv

∫ δ

0
ts−N−1|At sinv|N dt

= 2
∫ π/2

0
sinN+1−s vdv

∫ δ sinv

0
τs−N−1|Aτ |N dτ

= 2
∫ π/2

0

ζ̃A(s;δ sinv)

sins−N−1 v
dv,

where we have used the Fubini–Tonelli theorem in order to justify the interchange
of integrals (in the third equality), as well as made another change of variable (in
the fourth equality), namely, τ := t sinv. This completes the proof of the proposition.

��

Theorem 4.7.2. Let A ⊆ R
N be a bounded set and let D := dimBA. Then, we have

the following equality between ζ̃A, the tube zeta function of A, and ζ̃AM , the tube zeta
function of AM := A×{0}· · ·×{0} ⊆ R

N+M, with M ∈ N arbitrary:

ζ̃AM (s;δ ) =
(√
π
)M Γ

(
N−s

2 +1
)

Γ
(

N+M−s
2 +1

) ζ̃A(s;δ )+E(s;δ ), (4.7.4)

initially valid for all s ∈ C such that Res > D. Here, the error function E(s) :=
E(s;δ ) (initially defined in the case when M = 1 by the integral on the right-hand
side of Equation (4.7.7) below) admits a meromorphic extension to all of C. The
possible poles (in C) of E(s;δ ) are located at sk := N + 2+ 2k for every k ∈ N0,
and all of them are simple. (It follows that ζ̃A is well defined at each sk.) Moreover,
we have that for each k ∈ N0,53

res(E( · ;δ ),sk) =
(−1)k+1

(√
π
)M

k!Γ
(

M
2 − k

) ζ̃A(sk;δ ). (4.7.5)

More specifically, if M is even, then all of the poles sk of E(s;δ ) for k ≥ M/2 are
canceled; i.e., the corresponding residues in (4.7.5) are equal to zero. On the other
hand, if M is odd, there are no such cancellations and all of the residues in (4.7.5)
are nonzero; so that all the sk’s are simple poles of E(s;δ ) in that case.

53 We refer to Theorem 4.7.3 for more precise information about the domain of validity of the ap-
proximate functional equation (4.7.4), and to Corollary 4.7.4 for information about the relationship
between the (visible) poles of ζ̃A and ζ̃AM .
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Proof. We will prove the theorem in the case when M = 1. The general case when
M ∈N then follows immediately by induction. From Proposition 4.7.1 we have that
for Res > dimBA, formula (4.7.1) holds. In turn, this latter identity can be written as

ζ̃A×{0}(s;δ ) = 2ζ̃A(s;δ )
∫ π/2

0

dτ
sins−N−1 τ

−2
∫ π/2

0

dv

sins−N−1 v

∫ δ

δ sinv
τs−N−1|Aτ |N dτ

= ζ̃A(s;δ ) ·B
(

N − s
2

+1,
1
2

)
+E(s;δ ),

(4.7.6)

where B(u,v) denotes the Euler beta function and

E(s;δ ) :=−2
∫ π/2

0

dv

sins−N−1 v

∫ δ

δ sinv
τs−N−1|Aτ |N dτ . (4.7.7)

By using the functional equation which links the beta function with the gamma func-
tion (namely, B(x,y) =Γ(x)Γ(y)/Γ(x+ y) for all x,y> 0 and hence, upon meromor-
phic continuation, for all x,y ∈ C), we obtain that (4.7.4) holds (with M = 1) for all
s ∈ C such that Res > dimBA.

By looking at the expression for E(s;δ ) in (4.7.7), we see that the integrand is
holomorphic for every v ∈ (0,π/2) since the integral

∫ δ
δ sinv τs−N−1|Aτ |N dτ is equal

to ζ̃A(s;δ )− ζ̃A(s;δ sinv), which is an entire function. Furthermore, if we assume
that Res < N + 1, then since τ �→ τRes−N−1 is decreasing, we have the following
estimate:

|E(s;δ )| ≤ 2
∫ π/2

0
sinN+1−Res vdv

∫ δ

δ sinv
τRes−N−1|Aτ |N dτ

≤ 2|Aδ |N
∫ π/2

0
sinN+1−Res vdv

∫ δ

δ sinv
τRes−N−1 dτ

≤ 2δRes−N−1|Aδ |N
∫ π/2

0
sinN+1−Res v sinRes−N−1 v

∫ δ

δ sinv
dτ

= 2δRes−N |Aδ |N
∫ π/2

0
(1− sinv)dv

= 2δRes−N |Aδ |N
(π

2
−1

)
.

(4.7.8)

Hence,

|E(s;δ )| ≤ 2δRes−N |Aδ |
(π

2
−1

)
. (4.7.9)

We conclude from this inequality that for s0 ∈ {Res < N +1}, the condition (3′) of
Remark 2.1.48 is satisfied, which implies, in light of Theorem 2.1.47, that E(s;δ )
is holomorphic on the open half-plane {Res < N +1}.

On the other hand, we know that both of the tube zeta functions ζ̃A and ζ̃AM are
holomorphic on {Res> dimBA}⊇{Res>N}. The fact that E(s;δ ) is meromorphic
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on C, as well as the statement about its poles, now follows from Equation (4.7.4)
(with M = 1) and the fact that the gamma function is nowhere vanishing in C. (In
fact, 1/Γ(s) is an entire function with zeros at the nonpositive integers.) More specif-
ically, the locations of the poles of E(s;δ ) must coincide with the locations of the
poles sk = N + 2 + 2k, for k ∈ N0, of Γ((N − s)/2 + 1) since the left-hand side
of (4.7.4) is holomorphic on {Res > dimBA} and because ζ̃A(sk)> 0 (since it is de-
fined as the integral of a positive function). Note that since N ≥ D, we have sk > D,
and hence, ζ̃A is well defined at sk, for each k ∈ N0.

Finally, by multiplying (4.7.4) by (s− sk), taking the limit as s → sk and then
using the fact that the residue of the gamma function at −k is equal to (−1)k/k!, we
deduce that (4.7.5) holds, as desired.

Furthermore, if M is odd, there are no cancellations between the poles of the
numerator and of the denominator in (4.7.4) since an integer cannot be both even and
odd; i.e., the residues are nonzero for each k ∈ N0. On the other hand, if M is even,
then it is clear that all of the residues at sk for k ≥ M/2 are equal to zero; i.e., the
corresponding poles at sk cancel out with the poles of the denominator in (4.7.4). ��

Theorem 4.7.2 has as an important consequence, namely, the fact that the notion
of complex dimensions does not depend on the dimension of the ambient space.

Theorem 4.7.3. Let A ⊆R
N be a bounded set and AM be its embedding into R

N+M,
with M ∈ N arbitrary. Then, the tube zeta function ζ̃A of A has a meromorphic
extension to a given connected open neighborhood U of the critical line {Res =
dimBA} if and only if the analogous statement is true for the tube zeta function
ζ̃AM of AM. Furthermore, in that case, the approximate functional equation (4.7.4)
remains valid for all s ∈ U. In addition, the multisets54 of the poles of ζ̃A and ζ̃AM

located in U coincide; i.e., P(ζ̃A,U) = P(ζ̃AM ,U).55 Consequently, neither the
values nor the multiplicities of the complex dimensions of A depend on the dimension
of the ambient space.

Proof. This is a direct consequence of Theorem 4.7.2 and the principle of analytic
continuation. More precisely, identity (4.7.4) is valid for all s ∈ C such that Res >
dimBA and the function E(s;δ ) is meromorphic on all of C. Furthermore, according
to Theorem 4.7.2, the poles of E(s;δ ) belong to {Res ≥ N +2}, which implies that
the function s �→ E(s;δ ) is holomorphic on {Res < N + 2}. Identity (4.7.4) then
remains valid if any of the two zeta functions involved (namely, ζ̃A or ζ̃AM ) has a
meromorphic continuation to some connected open neighborhood of the critical line
{Res = dimBA}. This completes the proof of the theorem. ��

Corollary 4.7.4. Let A ⊆R
N be a bounded set (with D := dimBA) such that its tube

zeta function ζ̃A has a meromorphic continuation to a connected open neighborhood
U of the critical line {Res = dimBA}. Furthermore, suppose that s = D is a simple

54 In these multisets, each pole is counted according to its multiplicity.
55 Recall that the bounded sets A and AM have the same upper Minkowski dimension, dimBA =
dimBAM , and hence, the same critical line {Res = dimBA}.
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pole of ζ̃A. Let AM ⊆R
N+M be the canonical embedding of A into R

N+M, with M ∈N

arbitrary, as in Theorem 4.7.2. Then

res(ζ̃AM ,D) =

(√
π
)M Γ

(
N−D

2 +1
)

Γ
(

N+M−D
2 +1

) res(ζ̃A,D). (4.7.10)

We point out here that the above corollary is compatible with the dimensional
invariance of the normalized Minkowski content, obtained in [Kne] (see also [Res]).
More specifically, if in the above corollary, we assume, in addition, that D is the only
pole of the tube zeta function of A on the critical line {Res = D} (i.e., D is the only
complex dimension of A with real part D), then, according to Theorem 5.4.2 of
Chapter 5 below (the “sufficient condition for Minkowski measurability”), A and
A×{0} are Minkowski measurable with Minkowski dimension D := D and have
respective Minkowski contents satisfying the following identity:

M D(A)

π D−N
2 Γ

(
N−D

2 +1
) =

M D(A×{0})
π D−N−1

2 Γ
(

N+1−D
2 +1

) . (4.7.11)

4.7.2 Embeddings Into Higher Dimensions in the Case of Relative
Fractal Drums

The observations made in the previous subsection in the context of bounded subsets
of RN can also be extended to the more general context of relative fractal drums
(RFDs) in R

N . More specifically, let (A,Ω) be a relative fractal drum in R
N and let

(A×{0},Ω × (−1,1))

be its natural embedding into R
N+1. We want to connect the relative tube zeta func-

tions of these two RFDs; the following lemma will be needed for this purpose.

Lemma 4.7.5. Let (A,Ω) be a relative fractal drum in R
N and fix δ ∈ (0,1). Then

we have

∣∣(A×{0})δ ∩ (Ω × (−1,1))
∣∣
N+1 = 2

∫ δ

0
|A√

δ 2−u2 ∩Ω |N du. (4.7.12)

Proof. We proceed much as in the proof of [Res, Proposition 6]. Namely, if we let
(x,y) ∈ R

N ×R≡ R
N+1 and define

V := {(x,y) : dN+1((x,y),A×{0})≤ δ}∩{(x,y) : x ∈Ω , |y| ≤ 1} , (4.7.13)
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where (x,y) ∈R
N ×R�R

N+1 and for any k ∈N, dk denotes the Euclidean distance
in R

k. It is clear that the following equality holds:

dN+1((x,y),A×{0}) =
√

dN(x,A)2 + y2.

This implies that for a fixed y ∈ [−δ ,δ ]⊂ R, we have

Vy : =
{

x ∈ R
N : dN+1((x,y),A×{0})≤ δ

}
=

{
x ∈ R

N : dN(x,A)≤
√
δ 2 − y2

}
.

(4.7.14)

(Note that if |y|> δ , then Vy is empty.) Finally, Fubini’s theorem implies that

∣∣(A×{0})δ ∩ (Ω × (−1,1))
∣∣
N+1 =

∫
V

dxdy

=

∫ δ

−δ
dy

∫
Vy∩{x∈RN :x∈Ω}

dx

= 2
∫ δ

0
|A√δ 2−y2 ∩Ω |N dy,

which completes the proof of the lemma. ��

The above lemma will eventually yield (in Theorem 4.7.10 below) an RFD ana-
log of Proposition 4.7.1 from Subsection 4.7.1 above. First, however, we will show
that the upper and lower relative box dimensions of an RFD are independent of the
ambient space dimension.

Proposition 4.7.6. Let (A,Ω) be an RFD in R
N and let

(A,Ω)M := (AM,Ω × (−1,1)M) (4.7.15)

be its embedding into R
N+M, for some M ∈ N. Then we have that

dimB(A,Ω) = dimB(A,Ω)M (4.7.16)

and
dimB(A,Ω) = dimB(A,Ω)M. (4.7.17)

Proof. We only prove the proposition in the case when M = 1, from which the
general result then easily follows by induction. It is clear that for 0 < δ < 1, we
have

(A×{0})δ ∩ (Ω × (−1,1))⊆ (A×{0})δ ∩ (Ω × (−δ ,δ ))
⊆ (Aδ ∩Ω)× (−δ ,δ );

so that
|(A×{0})δ ∩ (Ω × (−1,1))|N+1 ≤ 2δ |Aδ ∩Ω |N . (4.7.18)
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This observation, in turn, implies that for every r ∈ R, we have

|(A×{0})δ ∩ (Ω × (−1,1))|N+1

δN+1−r ≤ 2|Aδ ∩Ω |N
δN−r . (4.7.19)

Furthermore, by successively taking the upper and lower limits as δ → 0+ in
Equation (4.7.19) just above, we obtain the following inequalities involving the r-
dimensional upper and lower relative Minkowski contents, respectively:

M ∗r(A,Ω)1 ≤ 2M ∗r(A,Ω) and M r
∗ (A,Ω)1 ≤ 2M r

∗ (A,Ω). (4.7.20)

In light of the definition of the relative upper and lower box (or Minkowski) dimen-
sions (see Equation (4.1.4) and Equation (4.1.6), along with the text surrounding
them), we deduce that

dimB(A,Ω)1 ≤ dimB(A,Ω) and dimB(A,Ω)1 ≤ dimB(A,Ω). (4.7.21)

On the other hand, for geometric reasons, we have that

(Aδ/2 ∩Ω)×
(
−δ

√
3

2
,
δ
√

3
2

)
⊆ (A×{0})δ ∩ (Ω × (−1,1));

so that

δ
√

3|Aδ/2 ∩Ω |N ≤ |(A×{0})δ ∩ (Ω × (−1,1))|N+1 . (4.7.22)

Much as before, this inequality implies that for every r ∈ R, we have
√

3|Aδ/2 ∩Ω |N
2N−r(δ/2)N−r ≤

|(A×{0})δ ∩ (Ω × (−1,1))|N+1

δN+1−r (4.7.23)

and by successively taking the upper and lower limits as δ → 0+, we obtain that
√

3M ∗r(A,Ω)

2N−r ≤ M ∗r(A,Ω)1 and

√
3M r

∗ (A,Ω)

2N−r ≤ M r
∗ (A,Ω)1. (4.7.24)

Finally, this completes the proof because (again in light of Equation (4.1.4) and
Equation (4.1.6), along with the text surrounding them), (4.7.24) implies the reverse
inequalities for the upper and lower relative box dimensions in (4.7.21). ��

Remark 4.7.7. Observe that it follows from Proposition 4.7.6 (combined with
part (b) of Theorem 4.1.7) that the RFDs (A,Ω) and (A,Ω)M have the same
upper Minkowski dimension, dimB(A,Ω) = dimB(A,Ω)M , and hence, the same
critical line {Res = dimB(A,Ω)}. This fact will be used implicitly in the statement
of Proposition 4.7.8 as well as in the statements of Theorems 4.7.9 and 4.7.10 just
below.
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We can now state the desired results for embedded RFDs and their relative fractal
zeta functions. In light of Lemma 4.7.5 and Proposition 4.7.6, the proofs follow
the same steps as in the corresponding results established in Subsection 4.7.1 about
bounded subsets of RN (namely, Proposition 4.7.1 and Theorem 4.7.2, respectively),
and for this reason, we will omit them.

Proposition 4.7.8. Fix δ ∈ (0,1) and let (A,Ω) be an RFD in R
N, with D :=

dimB(A,Ω). Then, for the relative tube zeta functions of (A,Ω) and (A,Ω)1 :=
(A×{0},Ω × (−1,1)), the following equality holds:

ζ̃A×{0},Ω×(−1,1)(s;δ ) = 2
∫ π/2

0

ζ̃A,Ω (s;δ sinτ)
sins−N−1 τ

dτ , (4.7.25)

for all s ∈ C such that Res > D.

Theorem 4.7.9. Fix δ ∈ (0,1) and let (A,Ω) be an RFD in R
N, with D :=

dimB(A,Ω). Then, we have the following equality between ζ̃A,Ω , the tube zeta
function of (A,Ω), and ζ̃AM ,Ω×(−1,1)M , the tube zeta function of the relative fractal

drum (A,Ω)M := (AM,Ω × (−1,1)M) in R
N+M, where M ∈ N is arbitrary:

ζ̃AM ,Ω×(−1,1)M (s;δ ) =
(√
π
)M Γ

(
N−s

2 +1
)

Γ
(

N+M−s
2 +1

) ζ̃A,Ω (s;δ )+E(s;δ ), (4.7.26)

initially valid for all s ∈ C such that Res > D.56 Here, the error function E(s) :=
E(s;δ ) is meromorphic on all of C. Furthermore, the possible poles (in C) of
E(s;δ ) are located at sk := N + 2+ 2k for every k ∈ N0, and all of them are sim-
ple. (It follows that ζ̃A is well defined at each sk.) Moreover, we have that for each
k ∈ N0,

res(E( · ;δ ),sk) =
(−1)k+1

(√
π
)M

k!Γ
(

M
2 − k

) ζ̃A,Ω (sk;δ ). (4.7.27)

More specifically, if M is even, then all of the poles sk of E(s;δ ) for k ≥ M/2 are
canceled; i.e., the corresponding residues in (4.7.27) are equal to zero. On the other
hand, if M is odd, there are no such cancellations and all of the residues in (4.7.27)
are nonzero; so that all of the sk’s are simple poles of E(s;δ ) in that case.

We deduce at once from Theorem 4.7.9 the following key result about the invari-
ance of the complex dimensions of a relative fractal drum with respect the dimension
of the ambient space. This result extends Theorem 4.7.3 to general RFDs.

Theorem 4.7.10. Let (A,Ω) be an RFD in R
N and let the RFD (A,Ω)M :=

(AM,Ω × (−1,1)M) be its embedding into R
N+M, for some arbitrary M ∈ N. Then,

the tube zeta function ζ̃A,Ω of (A,Ω) has a meromorphic extension to a given con-
nected open neighborhood U of the critical line {Res = dimB(A,Ω)} if and only if

56 See Theorem 4.7.10 for more precise information about the domain of validity of the approxi-
mate functional equation (4.7.26).
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the analogous statement is true for the tube zeta function ζ̃(A,Ω)M
:= ζ̃AM ,Ω×(−1,1)M

of (A,Ω)M. (See Remark 4.7.7 just above.) Furthermore, in that case, the approx-
imate functional equation (4.7.26) remains valid for all s ∈ U. In addition, the
multisets of the poles of ζ̃A,Ω and ζ̃(A,Ω)M

belonging to U coincide; i.e.,

P(ζ̃A,Ω ,U) = P(ζ̃(A,Ω)M
,U). (4.7.28)

Consequently, neither the values nor the multiplicities of the complex dimensions of
the RFD (A,Ω) depend on the dimension of the ambient space.

Remark 4.7.11. In the above discussion about embedding RFDs into higher-
dimensional spaces, we can also make similar observations if we embed (A,Ω)
as a ‘one-sided’ RFD, for example of the form (A×{0},Ω × (0,1)), a fact which
can be more useful when decomposing a relative fractal drum into a union of rela-
tive fractal subdrums in order to compute its distance (or tube) zeta function.57 This
observation follows immediately from the above results for ‘two-sided’ embeddings
of RFDs since, by symmetry, we have

ζ̃A×{0},Ω×(−1,1)(s) = 2 ζ̃A×{0},Ω×(0,1)(s). (4.7.29)

We note that when using the above formulas, one only has to be careful to take into
account the factor 2. Furthermore, we can also embed (A,Ω) as

(A×{0},Ω × (−α,α)) or (A×{0},Ω × (0,α)), (4.7.30)

for some α > 0, but in that case, the corresponding formulas will only be valid for
all δ ∈ (0,α).

We could now use the functional equation (2.2.23) connecting the tube and dis-
tance zeta functions, in order to translate the above results in terms of ζA,Ω :=
ζA,Ω ( · ;δ ), the (relative) distance zeta function of the RFD (A,Ω). However, we will
instead use another approach because it gives some additional information about the
resulting error function. More specifically, consider the Mellin zeta function of a rel-
ative fractal drum, to be introduced and studied in Section 5.4 below (see Definition
5.4.6). Here, we state some of its properties (see Theorems 5.4.7, 5.4.9 and 5.4.10)
which will be needed in the following discussion.

The Mellin zeta function of an RFD (A,Ω) with dimB(A,Ω) < N is initially
defined by

ζMA,Ω (s) =
∫ +∞

0
ts−N−1|At ∩Ω |dt, (4.7.31)

for all s ∈ C located in a suitable vertical strip. In fact, in light of Theorem 5.4.7,
the above Lebesgue integral is absolutely convergent (and hence, convergent) for all
s ∈ C such that Res ∈ (dimB(A,Ω),N). Moreover, the relative distance and Mellin
zeta functions of (A,Ω) are connected by the functional equation

57 See Subsection 4.2.3 for examples of such decompositions in the case of the relative Sierpiński
gasket and carpet, as well as of their higher-dimensional analogs.
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ζA,Ω (s) = (N − s)ζMA,Ω (s), (4.7.32)

on every open connected set U ⊆ C to which any of the two zeta functions has a
meromorphic continuation. Observe that in (4.7.32), the parameter δ is absent. In-
deed, this means implicitly that the functional equation (4.7.32) is valid only for
the parameters δ > 0 for which Ω ⊆ Aδ is satisfied; that is, when the equality
ζA,Ω (s;δ ) =

∫
Ω d(x,A)s−N dx is satisfied.

We will now embed the relative fractal drum (A,Ω) of RN into R
N+1 as

(A×{0},Ω ×R).

Strictly speaking, this is not a relative fractal drum in R
N+1 since there does not

exist δ > 0 such that Ω ×R⊆ (A×{0})δ . On the other hand, observe that Lemma
4.7.5 is now valid for every δ > 0; that is,

∣∣(A×{0})δ ∩ (Ω ×R)
∣∣
N+1 = 2

∫ δ

0
|A√

δ 2−u2 ∩Ω |N du. (4.7.33)

Proposition 4.7.12. Let (A,Ω) be an RFD in R
N such that dimB(A,Ω) < N. Then

the function F = F(s), defined by the integral

F(s) :=
∫ +∞

0
ts−N−2

∣∣(A×{0})t ∩ (Ω ×R)
∣∣
N+1 dt, (4.7.34)

is holomorphic inside the vertical strip {dimB(A,Ω)< Res < N}.

Proof. We split the integral into two integrals: F(s) =
∫ 1

0 +
∫+∞

1 . According to
Proposition 4.7.6, the first integral,

∫ 1

0
ts−N−2

∣∣(A×{0})t ∩ (Ω ×R)
∣∣
N+1 dt

=
∫ 1

0
ts−N−2

∣∣(A×{0})t ∩ (Ω × (−1,1))
∣∣
N+1 dt,

defines a holomorphic function on the right half-plane {Res > dimB(A,Ω)}.
In order to deal with the second integral, we observe that

∣∣(A×{0})t ∩ (Ω ×R)
∣∣
N+1 ≤ 2t|Ω |N ,

and consequently, deduce that
∣∣∣∣
∫ +∞

1
ts−N−2

∣∣(A×{0})t ∩ (Ω ×R)
∣∣
N+1 dt

∣∣∣∣≤ 2|Ω |N
∫ +∞

1
tRes−N−1 dt =

2|Ω |N
N −Res

,

for all s ∈ C such that Res < N. In light of Theorem 2.1.47 and Remark 2.1.48,
the latter inequality implies that the integral over (1,+∞) defines a holomorphic



4.7 Complex Dimensions and Embeddings Into Higher-Dimensional Spaces 401

function on the left half-plane {Res < N}. Therefore, it follows that F(s) is holo-
morphic in the vertical strip {dimB(A,Ω) < Res < N} and the proof of the propo-
sition is complete. ��

In light of the above proposition, we continue to use the convenient notation
ζMA×{0},Ω×R

for the integral appearing on the right-hand side of (4.7.34) although,
as was noted earlier, (A×{0},Ω ×R) is not technically a relative fractal drum in
R

N+1; see Remark 4.7.11 above. The following result is the counterpart of Theorem
4.7.2 in the present, more general context.

Theorem 4.7.13. Let (A,Ω) be a relative fractal drum in R
N such that D :=

dimB(A,Ω)< N. Then, for every a > 0, the following approximate functional equa-
tion holds:

ζA×{0},Ω×(−a,a)(s) =

√
πΓ

(
N−s

2

)
Γ
(

N+1−s
2

) ζA,Ω (s)+E(s;a), (4.7.35)

initially valid for all s ∈ C such that Res > D. Here, the error function E(s) :=
E(s;a) is initially given (for all s ∈ C such that Res < N) by

E(s;a) := (s−N−1)
∫ +∞

a
ts−N−2|(A×{0})t ∩Ω × (R\ (−a,a))|N+1 dt, (4.7.36)

and admits a meromorphic extension to all of C, with a set of simple poles equal to
{N +2k : k ∈ N0}.

Moreover, Equation (4.7.35) remains valid on any connected open neighborhood
of the critical line {Res = D} to which ζA,Ω (or, equivalently, ζA×{0},Ω×(−a,a)) can
be meromorphically continued.

Proof. In a completely analogous way as in the proof of Theorem 4.7.2, we obtain
that

ζ̃A×{0},Ω×R(s;δ ) =
√
πΓ

(
N−s

2 +1
)

Γ
(

N+1−s
2 +1

) ζ̃A,Ω (s;δ )+ Ẽ(s;δ ), (4.7.37)

now valid for all δ > 0 (see Equation (4.7.33) above and the discussion preceding it).
Furthermore, the error function Ẽ(s) := Ẽ(s;δ ) is holomorphic on {Res < N + 1}
and

|Ẽ(s,δ )| ≤ 2δRes−N |Aδ ∩Ω |N
(π

2
−1

)
(4.7.38)

for all s ∈ C such that Res < N + 1. See the proof of Theorem 4.7.2 and Equation
(4.7.8) in order to derive the above estimate. The estimate (4.7.38) now implies that
the sequence of holomorphic functions Ẽ( · ;n) tends to 0 as n → ∞, uniformly on
every compact subset of {Res<N}, since |An∩Ω |= |Ω | for all n sufficiently large.
Furthermore, we also have that ζ̃A,Ω ( · ;n)→ ζMA,Ω and

ζ̃A×{0},Ω×R(s;n)→ ζMA×{0},Ω×R
as n → ∞, (4.7.39)
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uniformly on every compact subset of {D < Res < N}. This implies that by taking
the limit in (4.7.37) as δ→+∞, we obtain the following functional equality between
holomorphic functions:

ζMA×{0},Ω×R
(s) =

√
πΓ

(
N−s

2 +1
)

Γ
(

N+1−s
2 +1

) ζMA,Ω (s), (4.7.40)

valid in the vertical strip {D < Res < N}. We can obtain this equality even more
directly by applying Lebesgue’s dominated convergence theorem to a counterpart
of (4.7.25).

Moreover, according to (4.7.32) and (4.7.40), we have the functional equation

ζMA×{0},Ω×R
(s) =

2
√
πΓ

(
N−s

2

)
Γ
(

N+1−s
2 +1

)ζA,Ω (s), (4.7.41)

from which we deduce that the right-hand side admits a meromorphic extension to
the right half-plane {Res > D}, with simple poles located at the simple poles of
Γ((N − s)/2); that is, at sk := N +2k for all k ∈N0. (Observe that in the above ratio
of gamma functions, there are no cancellations between the poles of the numerator
and of the denominator; indeed, an integer cannot be both even and odd.) From this
we conclude that by the principle of analytic continuation, the same property also
holds for the left-hand side of (4.7.41) and, furthermore, the left-hand side has a
meromorphic extension to any domain U ⊆ C to which the right-hand side can be
meromorphically extended.

In order to complete the proof of the theorem, we now observe that for any a > 0,
since

∣∣(A×{0})t ∩ (Ω ×R)
∣∣= ∣∣(A×{0})t ∩ (Ω × (−a,a))

∣∣
+

∣∣(A×{0})t ∩ (Ω × (R\ (−a,a)))
∣∣,

the left-hand side of (4.7.41) can be split into two parts, as follows:

ζMA×{0},Ω×R
(s) = ζMA×{0},Ω×(−a,a)(s)

+
∫ +∞

a
ts−N−2

∣∣(A×{0})t ∩ (Ω × (R\ (−a,a)))
∣∣dt

=
ζA×{0},Ω×(−a,a)(s)

N +1− s
− E(s;a)

N +1− s
.

We then combine this observation with (4.7.41) to obtain (4.7.35). From the theory
developed in this chapter (see Theorem 4.1.7), we know that ζA×{0},Ω×(−a,a)(s) is
holomorphic on the open right half-plane {Res > D}. Furthermore, much as in the
proof of Proposition 4.7.12, we can show that E(s) := E(s;a) defines a holomorphic
function on the open left half-plane {Res < N}. This fact, along with the functional
equation (4.7.35), now ensures that E(s;a) admits a meromorphic continuation to
all of C, with a set of simple poles equal to {N+2k : k ∈N0}. (Note that ζA,Ω (s)> 0
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for all s ∈ [N,+∞), which implies that there are no zero-pole cancellations on the
right-hand side of (4.7.35).) This completes the proof of Theorem 4.7.13. ��

We note that in Example 4.7.15 below, we actually want to embed (A,Ω) into
R

N+1, as (A×{0},Ω × (0,a)) for some a > 0. By looking at the proof of the above
theorem and using a suitable symmetry argument, we can obtain the following re-
sult, which deals with this type of embedding.

Theorem 4.7.14. Let (A,Ω) be a relative fractal drum in R
N such that D :=

dimB(A,Ω)< N. Then, the following approximate functional equation holds:

ζA×{0},Ω×(0,a)(s) =

√
πΓ

(
N−s

2

)
2Γ

(
N+1−s

2

)ζA,Ω (s)+E(s;a), (4.7.42)

initially valid for all s ∈ C such that Res > D. Here, the error function E(s) :=
E(s;a) is initially given (for all s ∈ C such that Res < N) by

E(s;a) := (s−N−1)
∫ +∞

a
ts−N−2|(A×{0})t ∩Ω × (R\ (0,a))|N+1 dt, (4.7.43)

and admits a meromorphic continuation to all of C, with a set of simple poles equal
to {N +2k : k ∈ N0}.

Moreover, Equation (4.7.42) remains valid on any connected open neighborhood
of the critical line {Res = D} to which ζA,Ω (or, equivalently, ζA×{0},Ω×(0,a)) can
be meromorphically continued.

Example 4.7.15. (Complex dimensions of the Cantor dust RFD). In this example,
we will consider the relative fractal drum consisting of the Cantor dust contained in
[0,1]2 and compute its distance zeta function. More precisely, let A :=C(1/3)×C(1/3)

be the Cantor dust (i.e., the Cartesian product of the ternary Cantor set C :=C1/3 by
itself; see Figure 1.2 of Subsection 1.1) and let Ω := (0,1)2. We will not obtain an
explicit formula in a closed form but we will instead use Theorem 4.7.14 in order
to deduce that the distance zeta function of the Cantor dust has a meromorphic
continuation to all of C.

More interestingly, we will also show that the set of complex dimensions of the
Cantor dust is a subset of the union of a periodic set contained in the critical line
{Res = log3 4} and the set of complex dimensions of the Cantor set (which is a
periodic set contained in the critical line {Res = log3 2}). This fact is significant
because it shows that in this case, the distance (or tube) zeta function also detects
the ‘lower-dimensional’ fractal nature of the Cantor dust.

Note that, as is well known, the Minkowski dimension of the RFD (or Can-
tor string) (C,(0,1)) is given by dimB(C,(0,1)) = log3 2 (see [Lap-vFr1, Subsec-
tion 1.2.2] or Equation (2.2.17) in Example 2.2.6 above). Furthermore, it will follow
from the discussion below that, as might be expected since (A,Ω) = (C,(0,1))×
(C,(0,1)),

dimB(A,Ω) = 2dimB(C,(0,1)) = log3 4. (4.7.44)
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Consequently, it follows that the critical line of the RFD in R (‘Cantor string’)
(C,(0,1)) is the vertical line {Res = log3 2}, while the critical line of the RFD
in R

2 (‘Cantor dust’) (A,Ω) is the vertical line {Res = log3 4}, as was stated in the
previous paragraph.

The construction of the RFD (A,Ω) can be carried out by beginning with the unit
square and removing the open middle-third ‘cross’, and then iterating this procedure
ad infinitum. (See Figure 1.2 on page 10.) This procedure implies that we can subdi-
vide the Cantor dust into a countable union of RFDs which are scaled down versions
of two base (or generating) RFDs, denoted by (A1,Ω1) and (A2,Ω2). The first one
of these base RFDs, (A1,Ω1), is defined by Ω1 := (0,1/3)2 and by A1 being the
union of the four vertices of the closure of Ω1 (namely, of the square [0,1/3]2). Fur-
thermore, the second base RFD, (A2,Ω2), is defined by Ω2 := (0,1/3)× (0,1/6)
and by A2 being the ternary Cantor set contained in [0,1/3]×{0}.

At the n-th step of the iteration, we have exactly 4n−1 RFDs of the type
(anA1,anΩ1) and 8 · 4n−1 RFDs of the type (anA2,anΩ2), where an := 3−n for
each n ∈ N. This observation, together with the scaling property of the relative
distance zeta function (see Theorem 4.1.40), yields successively (for all s ∈ C with
Res sufficiently large):

ζA,Ω (s) =
∞

∑
n=1

4n−1ζanA1,anΩ1(s)+8
∞

∑
n=1

4n−1ζanA2,anΩ2(s)

=
(
ζA1,Ω1(s)+8ζA2,Ω2(s)

) ∞

∑
n=1

4n−1 ·3−ns

=
1

3s −4

(
ζA1,Ω1(s)+8ζA2,Ω2(s)

)
.

(4.7.45)

Moreover, for the relative distance zeta function of (A1,Ω1), we have

ζA1,Ω1(s) = 8
∫ 1/6

0
dx

∫ x

0

(√
x2 + y2

)s−2
dy

= 8
∫ π/4

0
dθ

∫ 1/6cosθ

0
rs−1 dr

=
8

6ss

∫ π/4

0
cos−s θ dϕ =

8I(s)
6ss

,

(4.7.46)

where I(s) :=
∫ π/4

0 cos−s θ dθ is easily seen to be an entire function (by means of
Theorem 2.1.45 with ϕ(θ) := cos−1 θ for θ ∈ (0,π/4)).58 Consequently, ζA,Ω ad-
mits a meromorphic continuation to all of C and we have

ζA,Ω (s) =
8

3s −4

(
I(s)
6ss

+ζA2,Ω2(s)

)
, (4.7.47)

58 In fact, I(s) = 2−1B1/2 (1/2,(1− s)/2), where Bx(a,b) :=
∫ x

0 ta−1(1− t)b−1 dt is the incomplete
beta function.
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for all s ∈ C. Furthermore, let ζC,(0,1) be the relative distance zeta function of the
Cantor middle-third set constructed inside [0,1]; see Example 5.5.3 in Chapter 5
below. From Theorem 4.7.14 and the scaling property of the relative distance zeta
function (Theorem 4.1.40), we now deduce that

ζA2,Ω2(s) =

√
πΓ

(
1−s

2

)
2Γ

(
2−s

2

) ζ3−1C,3−1(0,1)(s)+E(s;6−1)

=
Γ
(

1−s
2

)
Γ
(

2−s
2

)
√
π

6ss(3s −2)
+E(s;6−1),

(4.7.48)

where E(s;6−1) is meromorphic on all of C with a set of simple poles equal to
{2k+1 : k ∈ N0}; so that for all s ∈ C, we have

ζA,Ω (s) =
8

s(3s −4)

(
I(s)
6s +

Γ
(

1−s
2

)
Γ
(

2−s
2

)
√
π

6ss(3s −2)
+E(s;6−1)

)
. (4.7.49)

Formula (4.7.49) implies that P(ζA,Ω ), the set of all complex dimensions (in C) of
the ‘relative’ Cantor dust, is a subset of

(
log3 4+

2π
log3

iZ

)
∪
(

log3 2+
2π

log3
iZ

)
∪{0} (4.7.50)

and consists of simple poles of ζA,Ω . Of course, we know that log3 4 ∈P(ζA,Ω ), but
we can only conjecture that the other poles on the critical line {Res = log3 4} are
in P(ζA,Ω ) since it may happen that there are zero-pole cancellations in (4.7.49).
On the other hand, since it is known that the Cantor dust is not Minkowski mea-
surable (see [FaZe]), we can deduce from the sufficient condition for Minkowski
measurability obtained in Theorem 5.4.2 of Chapter 5 below that there must ex-
ist at least two other (necessarily nonreal) poles s±k0 = log3 4± 2k0πi

log3 of ζA,Ω , for

some k0 ∈ N.59 From (4.7.49) we cannot even claim that 0 ∈ P(ζA,Ω ) for sure, but
we can see that all of the principal complex dimensions of the Cantor set are ele-
ments of P(ζA,Ω ); i.e., log3 2+ 2π

log3 iZ⊆P(ζA,Ω ). We conjecture that we also have

log3 4+ 2π
log3 iZ⊆P(ζA,Ω ); that is, we conjecture that Pc(ζA,Ω ) = log3 4+ 2π

log3 iZ.

The above example can be easily generalized to Cartesian products of any fi-
nite number of generalized Cantor sets, in which case we conjecture that the set
of complex dimensions of the product is contained in the union of sets of complex
dimensions of each of the factors, modulo any zero-pole cancellations which may
occur. In light of this and other similar examples, it would be interesting to obtain
some results about zero-free regions for fractal zeta functions. We leave this problem
as a possible subject for future investigations.

59 Indeed, according to Theorem 5.4.2, D := log3 4 cannot be the only complex dimension of (A,Ω)
on the critical line {Res = D} since otherwise, the Cantor dust would be Minkowski measurable,
which is a contradiction.



Chapter 5
Fractal Tube Formulas and Complex
Dimensions

There exist a limited number of very simple fundamental
relationships that together constitute the schema by means of
which the remaining theorems can be developed logically and
without difficulty.

Jakob Steiner (1796–1863)

Abstract In this chapter, we reconstruct information about the geometry of relative
fractal drums (and, consequently, compact sets) in R

N from their associated fractal
zeta functions. Roughly speaking, given a relative fractal drum (A,Ω) in R

N (with
N ≥ 1 arbitrary), we derive an asymptotic formula for its relative tube function
t �→ |At ∩Ω | as t → 0+, expressed as a sum taken over its complex dimensions of
the residues of its (suitably modified and meromorphically extended) fractal zeta
function. The resulting asymptotic formulas are called fractal tube formulas and are
valid either pointwise or distributionally, as well as with or without an error term,
depending on the growth properties of the associated fractal zeta functions. We note
that these fractal tube formulas are expressed either in terms of the tube zeta function
ζ̃A,Ω or, more interestingly, in terms of the distance zeta function ζA,Ω . The results
of this chapter generalize to higher dimensions and arbitrary relative fractal drums
the corresponding ones obtained previously for fractal strings by the first author
and M. van Frankenhuijsen. We illustrate these results by obtaining fractal tube
formulas for a number of well-known fractal sets, including the Sierpiński gasket
and 3-carpet along with higher-dimensional analogs, a version of the graph of the
Cantor function (i.e., of the devil’s staircase), fractal strings, fractal sprays, self-
similar sprays and tilings, as well as certain non self-similar fractals, such as fractal
nests and unbounded geometric chirps. We also apply these results in an essential
way in order to obtain and establish a Minkowski measurability criterion for a large
class of relative fractal drums (and, in particular, of bounded sets) in R

N , with N ≥ 1
arbitrary. More specifically, under appropriate hypotheses, a relative fractal drum
(and, in particular, a bounded set) in R

N of (upper) Minkowski dimension D is
shown to be Minkowski measurable if and only if its only complex dimension with
real part equal to D is D itself, and D is simple. We also discuss the notion of
fractality defined in our context as the presence of at least one nonreal complex
dimension. We show, in particular, that as is expected and intuitive, (a variant of)
the Cantor graph (or devil’s staircase) is “fractal” in our sense, whereas as is well
known, it is not “fractal” in Mandelbrots’s sense.
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Key words: Mellin transform, fractal set, fractal string, relative fractal drum
(RFD), complex dimensions of an RFD, box dimension, fractal zeta functions, dis-
tance zeta function, tube zeta function, Minkowski content, Minkowski measurable
set, Minkowski measurability criterion, fractal tube formulas, residue, meromorphic
extension, gauge-Minkowski measurability, singularities of fractal zeta functions.

In this chapter, we reconstruct information about the geometry of relative fractal
drums (and, consequently, compact sets) in R

N from their associated fractal zeta
functions. Roughly speaking, given a relative fractal drum (A,Ω) in R

N (with N ≥ 1
arbitrary), we derive an asymptotic formula for its relative tube function t �→ |At ∩Ω |
as t → 0+, expressed as a sum taken over its complex dimensions of the residues
of its (suitably modified and meromorphically extended) fractal zeta function. The
resulting asymptotic formulas are called fractal tube formulas and are valid either
pointwise or distributionally, as well as with or without an error term, depending
on the growth properties of the associated fractal zeta functions. We note that these
fractal tube formulas are expressed either in terms of the tube zeta function (see
Sections 5.1 and 5.2) or, more interestingly, in terms of the distance zeta function
(see Section 5.3).

The results of this chapter generalize to higher dimensions the corresponding
ones obtained previously for fractal strings by the first author and M. van Franken-
huijsen (see [Lap-vFr3, Chapters 5 and 8]). We illustrate these results by obtain-
ing fractal tube formulas for a number of well-known fractal sets, including the
Sierpiński gasket and 3-carpet along with higher-dimensional analogs, a version of
the graph of the Cantor function (i.e., of the devil’s staircase), fractal strings, fractal
sprays, self-similar sprays and tilings, as well as certain non self-similar fractals,
such as fractal nests and unbounded geometric chirps. We also apply our fractal
tube formulas in an essential way in order to obtain and establish a Minkowski mea-
surability criterion for a large class of relative fractal drums (and, in particular, of
bounded sets) in R

N , with N ≥ 1 arbitrary; see Section 5.4. More specifically, under
appropriate hypotheses, a relative fractal drum (and, in particular, a bounded set) in
R

N of Minkowski dimension D is shown to be Minkowski measurable if and only
if its only complex dimension with real part equal to D is D itself, and D is simple.
Again, this criterion generalizes to higher dimensions the corresponding one already
obtained for fractal strings (see [Lap-vFr3, Theorem 8.15]).

In closing this introduction to Chapter 5, it may be helpful to the readers to point
out the relationship between aspects of our present work on fractal tube formulas
and the classic Steiner tube formula [Stein], as generalized in various ways by many
authors (including Minkowski [Mink], Weyl [Wey3] and later, Federer [Fed1–2])
and as stated in the case of compact convex sets in [Schn2, Theorem 4.2.1].1

Let A be a compact convex subset of RN (with N ≥ 1) and let Bk denote the k-
dimensional unit ball of Rk (for any integer k ≥ 1) with k-dimensional volume (or
Lebesgue measure) denoted by |Bk|k. We also let |B0|0 := 1. Note that for t ≥ 0, the

1 Our exposition of this material closely follows part of [Lap-vFr3, Subsection 13.1.3]; see also
[LapPe2–3] and [LapPeWi1].
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t-neighborhood (or t-parallel body) of A can be written as At = A+ tBN . Then its
volume VA(t) := |At |N can be expressed as a polynomial of degree ≤ N (exactly N
if |A|N > 0; e.g., if A has nonempty interior) in the variable t:

VA(t) =
N

∑
k=0

μk(A)|BN−k|N−ktN−k, (5.0.1)

where for k = 0,1, . . . ,N, μk(A) denotes the k-th intrinsic volume of A.
Up to some suitable normalizing and multiplicative constant (depending on k,

for each k ∈ {0,1, . . . ,N}, the k-th intrinsic volume μk(A)) coincides with the k-th
total curvature of A or the so-called (N − k)-th Quermassintegral of A. Moreover,
still for k ∈ {0,1, . . . ,N}, μk(A) can be interpreted either combinatorially and al-
gebraically in terms of appropriate valuations (see [KlRot]) or (in a closely related
context) within the framework of integral geometry, as the average measure of or-
thogonal projections to (N−k)-dimensional subspaces of Euclidean space RN . See,
e.g., [Schn2] and [KlRot, Chapter 7]. (This latter geometric interpretation was al-
ready implicit in Steiner’s original work [Stein] and that of his immediate succes-
sors, where N = 2 or N = 3.)

To make a long and beautiful story short, let us simply mention here that (up
to a suitable normalizing multiplicative constant) μ0(A) corresponds to the Euler
characteristic,2 μ1(A) to the so-called mean width, μN−1(A) is the surface area and
μN(A) the (N-dimensional) volume of A (i.e., μN(A) = |A|N = |A|, in our notation).

Finally, let us point out that the intrinsic volumes μk have the following algebraic
and geometric properties:

(i) Each μk is homogeneous of degree k; i.e., for all λ > 0,

μk(λA) = λ kμk(A), (5.0.2)

and

(ii) each μk is rigid motion invariant; more specifically, for any affine isometry
(i.e., displacement) R of RN , we have that

μk
(
R(A)

)
= μk(A). (5.0.3)

Remarkably, for any (visible) complex dimension ω of a bounded subset A of
R

N (or, more generally, of an RFD (A,Ω) of RN), the corresponding coefficient of
our fractal tube formula (assuming that we are in the case of simple poles), that is,
essentially, the residue of the fractal zeta function at s = ω (see Equation (1.1.2)
in the introduction or Equation (5.1.46) in Theorem 5.1.16 below), satisfies entirely
analogous homogeneous and geometric invariance properties (with k replaced by

2 In the present case of compact convex sets, μ0 is always equal to 1. However, in the more general
setting of sets of positive reach or of finite unions of such sets, it is Z-valued; see, e.g., [Schn2,
Section 3.4] and [Fed1, Zä2].
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ω in the counterparts of Equations (5.0.2) and (5.0.3)).3 Furthermore, of course,
the resulting tube formula is no longer a polynomial of degree at most N in the
variable t but involves a typically infinite sum over all of the underlying visible
complex dimensions of A (or of the RFD (A,Ω)). Moreover, as we shall see in many
examples, the coefficients of the fractal tube formula that correspond to the set of
(visible) complex dimensions can frequently be naturally decomposed as a set of
integer dimensions (say, ω = k ∈ {0,1, . . . ,N}) and of scaling complex dimensions
(say, ω ∈ DS). See, especially, the discussion of the Sierpiński gasket and of the
3-dimensional carpet in Subsection 5.5.3, along with that of self-similar sprays in
Subsection 5.5.6. Such a situation already arose in the very special but important
case of fractal sprays studied in [LapPe2–3] and [LapPeWi1–2]. Of course, if DS

happens to be empty (which is certainly the case if A is a compact convex set), then
VA(t) reduces to a polynomial expression of degree ≤ N in t and the corresponding
tube formula is Steiner-like, much as in Equation (5.0.1) above.

We leave to a later work a further and much more detailed exploration of the pos-
sible geometric, algebraic and combinatorial interpretations of our fractal tube for-
mulas (as well as of local versions thereof), in the spirit of the above discussion and
particularly, the work of Stein [Stein], Minkowski [Mink] (see also [Schn2]), Weyl
[Wey3] (see also [BergGos] and [Gra]), Federer ([Fed2] and especially, his work in
[Fed1] on local tube formulas and curvature measures), Klain and Rota [KlRot]
and many other authors; see, e.g., the books [BergGos], [Bla], [Schn2], [Gra],
[Lap-vFr1–3], along with the articles [Fu1–2], [HugLasWeil], [KeKom], [Kom],
[Kow], [LapPe1–3], [LapPeWi1], [LlWi], [Mil], [Ol1–2], [RatWi1–2], [Schn1],
[Sta], [Wi], [WiZä], [Zä1–5] and the many relevant references therein.

5.1 Pointwise Tube Formulas

In this section, given a relative fractal drum (A,Ω) in R
N , with N ≥ 1 arbitrary, we

obtain and derive a corresponding pointwise fractal tube formula, expressed in terms
of its complex dimensions. The proof of our pointwise (and later, in Section 5.2,
distributional) fractal tube formulas follows many of the same steps as in [Lap-vFr3,
Chapters 5 and 8] in the case of the geometric zeta functions of fractal strings, but
now in the new and significantly more general context of relative fractal drums (and,
in particular, of bounded sets) in R

N , with N ≥ 1 arbitrary. There are, however,
a number of technical differences, related, in particular, to the use of the Mellin
transform inversion formula, as well as in later sections (Sections 5.3 and 5.4), of
various intermediate zeta functions, called the shell and Mellin zeta functions, in
addition to the tube and distance zeta functions.

3 In light of the definitions, the analog of Equation (5.0.3) obviously holds in our context. For the
counterpart of Equation (5.0.2), see Equation (2.1.106) in Proposition 2.1.77, which follows from
the scaling property of ζA stated in Equation (2.1.105).
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For a number of results concerning tube formulas and their generalizations
in a variety of settings (including convex bodies, smooth compact submanifolds
of Euclidean spaces, compact Riemannian and Lipschitz manifolds, sets of pos-
itive reach, semi-algebraic sets, fractal strings and sprays), as well as related
topics, we mention, in particular [BergGos, Bla, CheeMüSchr1–2, DemDenKoÜ,
DemKoÖÜ, DenKoÖÜ, Fed1, Fu1–2, Gra, HugLasWeil, KeKom, KlRot, Kow,
LapLu3, LapLu-vFr1–2, LapPe1–3, LapPeWi1–2, LapRaŽu4–5, Mil, Mink, MitŽu,
Ol1–2, RatWi1–2, Schn1–2, Sta, Stein, Wey3, Wi, WiZä, Zä1–5], along with the
many relevant references therein. See also the second part of the introduction to this
chapter for a brief overview.

5.1.1 Definitions and Preliminaries

We begin by stating several definitions which are already introduced in [Lap-vFr3]
in the setting of generalized fractal strings, and adapt them to the setting of relative
fractal drums in R

N , for any N ≥ 1.

Definition 5.1.1. The screen S is the graph of a bounded, real-valued Lipschitz
continuous function S(τ), with the horizontal and vertical axes interchanged:

S := {S(τ)+ iτ : τ ∈ R}. (5.1.1)

The Lipschitz constant of S is denoted by ‖S‖Lip; so that

|S(x)−S(y)| ≤ ‖S‖Lip|x− y|, for all x,y ∈ R.

Furthermore, the following quantities are associated to the screen:

infS := inf
τ∈R

S(τ) and supS := sup
τ∈R

S(τ).

As before, given an RFD (A,Ω) in R
N , we denote its upper relative box dimen-

sion by D := dimB(A,Ω); recall that D ≤ N. We always assume, additionally, that
D > −∞ and the screen S lies to the left of the critical line {Res = D}, i.e., that
supS ≤ D. Also, in the sequel, we assume that infS > −∞ (see, however, Remark
5.1.2 below); hence, we have that

−∞< infS ≤ supS ≤ D. (5.1.2)

Moreover, the window W is defined as the part of the complex plane to the right
of S; that is,

W := {s ∈ C : Res ≥ S(Ims)}. (5.1.3)

(Note that W is a closed subset of C and that S = ∂W , the boundary of W .)
We say that the relative fractal drum (A,Ω) is admissible if its relative tube (or
distance) zeta function can be meromorphically extended (necessarily uniquely) to
an open connected neighborhood of some window W , defined as above.
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Remark 5.1.2. Occasionally, in the strongly languid case, in the sense of Definition
5.1.4 or Definition 5.3.9 below (and hence, in particular, when the fractal zeta func-
tion involved is meromorphic on all of C), it is convenient to implicitly move the
screen S to −infinity (i.e., to let S ≡−∞) and thus to choose W := C.

The next definition adapts [Lap-vFr3, Definition 5.2] to the case of relative fractal
drums in R

N (and, in particular, to the case of bounded subsets of RN).

Definition 5.1.3. (Languidity, adapted from [Lap-vFr3]). An admissible relative
fractal drum (A,Ω) in R

N is said to be languid if for some fixed δ > 0, its tube zeta
function ζ̃A,Ω ( · ;δ ) satisfies the following growth conditions:

There exists a real constant κ and a two-sided sequence (Tn)n∈Z of real numbers
such that T−n < 0 < Tn for all n ≥ 1 and

lim
n→∞

Tn =+∞, lim
n→∞

T−n =−∞ (5.1.4)

satisfying the following two hypotheses, L1 and L2:4

L1 For a fixed real constant c > dimB(A,Ω), there exists a positive constant
C > 0 such that for all n ∈ Z and all σ ∈ (S(Tn),c),5

|ζ̃A,Ω (σ + iTn;δ )| ≤C(|Tn|+1)κ . (5.1.5)

L2 For all τ ∈ R, |τ | ≥ 1,

|ζ̃A,Ω (S(τ)+ iτ;δ )| ≤C|τ |κ , (5.1.6)

where C is a positive constant which (without loss of generality) can be chosen to
be the same one as in condition L1.

Note that hypothesis L1 is a polynomial growth condition along horizontal seg-
ments (necessarily not passing through any singularities of ζ̃A,Ω ( · ;δ )), while hy-
pothesis L2 is a polynomial growth condition along the vertical direction of the
screen. These hypotheses will be needed in order to establish the pointwise and
distributional tube formulas with error term.

It is noteworthy that there exist RFDs not satisfying condition L2 (and hence,
which are not languid) for some choices of the screen S. For a specific example, see
[Lap-vFr3, Example 5.32] which is a nonlattice self-similar fractal string, viewed
naturally as an RFD (A,Ω), and is such that there is no screen S passing between
the critical line {Res = D} (where D := dimB(A,Ω)) and the complex dimensions
to the left of this line along which the fractal string is languid.

4 Here, unlike in the definition given in [Lap-vFr3], we do not need to assume that
limn→+∞ Tn/|T−n|= 1.
5 This is a slight modification of the original definition of languidity from [Lap-vFr3], where c was
replaced by +∞; compare with [Lap-vFr3, Definition 5.2, pp. 146–147]. Furthermore, it is clear
that if condition L1 is satisfied for some c > dimB(A,Ω), then it is also satisfied for any c1 such
that dimB(A,Ω)< c1 < c.
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In order to obtain the pointwise and distributional tube formulas without error
terms (that is, exact tube formulas), we will need a stronger notion of languidity.
Accordingly, we introduce the following definition, which adapts to our current
more general situation the definition of strong laguidity given in [Lap-vFr3, Def-
inition 5.3].

Definition 5.1.4. (Strong languidity, adapted from [Lap-vFr3]). We say that an
admissible relative fractal drum (A,Ω) in R

N is strongly languid if for some δ > 0,
its tube zeta function satisfies condition L1 with S(Tn) ≡ −∞ (that is, with S(Tn)
replaced by −∞) in (5.1.5); i.e., for every σ < c and, additionally, there exists a
sequence of screens Sm : τ �→ Sm(τ)+ iτ for m ≥ 1, τ ∈ R with supSm → −∞ as
m → ∞ and with a uniform Lipschitz bound, supm≥1 ‖Sm‖Lip < ∞, such that the
following condition holds:

L2’ There exist constants B,C > 0 such that for all τ ∈ R and m ≥ 1,

|ζ̃A,Ω (Sm(τ)+ iτ;δ )| ≤CB|Sm(τ)|(|τ |+1)κ . (5.1.7)

It is clear that hypothesis L2’ implies hypothesis L2; so that a strongly languid
relative fractal drum is languid. We also note that if a relative fractal drum is languid
for some κ , then it is also languid for any κ1 > κ . (Observe that for ζ̃A,Ω or, equiv-
alently, the RFD (A,Ω), to be strongly languid, ζ̃A,Ω must admit a meromorphic
continuation to all of C; see also Remark 5.1.2 above.)

We will also use the notion of languid (or else, strongly languid) relative tube
zeta function, in the obvious sense.

As we shall see throughout this chapter, most of the geometrically interesting
examples of RFDs (and, in particular, of bounded sets) in R

N considered in this
monograph are either languid (relative to a suitable screen), in the sense of Defini-
tion 5.1.3 above (or of its counterpart for the distance zeta function, in Definition
5.3.9 below) or else, strongly languid, in the sense of Definition 5.1.4 just above (or,
again, in the sense of Definition 5.3.9).

Although, as was already explained, the dependence of the tube zeta function
ζ̃A,Ω = ζ̃A,Ω ( · ;δ ) on δ > 0 is inessential, it is not clear whether the counterpart of
this statement is also true for the languidity conditions. More precisely, we show that
changing the parameter δ > 0 will preserve languidity, but possibly with a different
languidity exponent κδ . This is the content of the next proposition.

Proposition 5.1.5. Let (A,Ω) be a relative fractal drum in R
N. If the relative tube

zeta function ζ̃A,Ω ( · ;δ ) satisfies the languidity conditions L1 and L2 for some δ > 0
and with languidity exponent κ ∈R, then so does ζ̃A,Ω ( · ;δ1) for any δ1 > 0 and with
κδ1

:= max{κ ,0}.
Furthermore, an entirely analogous statement is also true in the case when

ζ̃A,Ω ( · ;δ ) is strongly languid, under the additional assumption that δ ≥ 1 and
δ1 ≥ 1.

Proof. Without loss of generality, we may assume that δ < δ1. Then, the conclusion
follows from the fact that ζ̃A,Ω ( · ;δ1) = ζ̃A,Ω ( · ;δ )+ f (s), where f is entire and
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| f (s)| ≤
∫ δ1

δ
tRes−N−1|At ∩Ω |dt ≤

{
|Ω | δ

Res−N
1 −δRes−N

Res−N , Res 
= N,

|Ω |(logδ1 − logδ ), Res = N.
(5.1.8)

Since, clearly, the upper bound on | f (s)| does not depend on Ims, we conclude that
f satisfies the languidity conditions L1 and L2 with the languidity exponent κ f := 0
and for any given window W . This observation implies that then, ζ̃A,Ω ( · ;δ1) is
languid for the languidity exponent κδ1

:= max{κ ,0} and with the same window as

for ζ̃A,Ω ( · ;δ ).
The additional assumption for the case of strong languidity is needed since L1

must then be satisfied for all σ ∈ (−∞,c), in the notation of Definition 5.1.3, and
for this to be achieved we need that δ1 > δ ≥ 1 in (5.1.8); indeed, otherwise, we do
not have an upper bound on | f (s)| when Res →−∞. ��

Given a fixed open window W and a double sequence (Tn)n∈Z, as in Definition
5.1.3, and a real constant c > 0, we consider the set

Flan = Flan(W ,(Tn)n∈Z,c) (5.1.9)

of all meromorphic functions f : U → C which we call languid functions, defined
on a domain U = U( f ) ⊆ C containing W , and satisfying all of the conditions
of Definition 5.1.3, in which the constants appearing there also depend on f (for
example, κ = κ( f ), with the condition c > N appearing in L1 replaced by c >
supS). It is clear that some of the functions f ∈ Flan(W ,(Tn)n∈Z) are of the form
f = ζA,Ω , for some RFD (A,Ω). In the following discussion, we will no longer
indicate explicitly the dependence of the languidity exponent κ on δ > 0 but when
necessary, we will instead denote κ by κ( f ) in order to highlight the dependence on
the underlying meromorphic function f .

It is easy to check that the set Flan = Flan(W ,(Tn)n∈Z) of languid functions
is a vector space and that it is even an algebra with respect to the pointwise mul-
tiplication of functions. Furthermore, for any f , g ∈ Flan and λ ,μ ∈ C, we have
that

κ(λ f +μg)≤ max{κ( f ),κ(g)} and κ( f ·g)≤ κ( f )+κ(g).

Any function f ∈ Flan(W ,(Tn)n∈Z,c) is said to be languid in the set W ∩
{Res < c} (with respect to the double sequence (Tn)n∈Z). All of the examples of
languid fractal zeta functions provided in this book belong to the above family
Flan(W ,(Tn)n∈Z,c), for a suitable choice of window W , sequence (Tn)n∈Z and
of the constant c > supS. The preceding comment justifies to call the vector space
Flan(W ,(Tn)n∈Z,c) the algebra of languid functions.

In several of the applications (for example, when dealing with the languidity of
Cantor strings of higher order, i.e., obtained as consecutive tensor products of the
Cantor string by itself; see Example 4.2.10 along with Subsection 5.4.4), we shall
need the following property. (Observe that bounded fractal strings L can be viewed
as relative fractal drums (∂Ω ,Ω), whereΩ ⊂R is an open set which is a geometric
realization of L .)
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Let L1 and L2 be two bounded fractal strings such that

ζL j ∈ Flan(W ,(Tn)n∈Z,c), for j = 1,2 and some c > 1.

Then ζL1⊗L2 ∈ Flan(W ,(Tn)n∈Z,c), where L1 ⊗L2 denotes the tensor product
of L1 and L2. Furthermore, κ12 ≤ κ1 +κ2, where κ12 := κ(L1 ⊗L2) and κ j :=
κ(L j), for j = 1,2.

The above statement follows from the fact that ζL1⊗L2(s) = ζL1(s) ·ζL2(s), for
all s ∈ C with Res sufficiently large. Then, upon meromorphic continuation of ζL1

and ζL2 to a domain U ⊆C containing the common window W , we take c>N := 1
as in condition L1 of Definition 5.1.3 above.

We now return to the main course of our discussion, with the goal of establishing
a pointwise tube formula expressed in terms of the tube zeta function ζ̃A,Ω .

In order to obtain the relative tube formula expressed in terms of the complex
dimensions of the relative fractal drum (A,Ω), we will need to work (for each k ∈N)
with the k-th primitive (or k-th anti-derivative) function, V [k] =V [k](t), of the relative
tube function V = V (t) vanishing along with its first (k − 1) derivatives at t = 0.
Therefore, we let

V (t) =VA,Ω (t) =V [0](t) := |At ∩Ω | (5.1.10)

and

V [k](t) =V [k]
A,Ω (t) :=

∫ t

0
V [k−1](τ)dτ , for each k ∈ N. (5.1.11)

(Recall that N := {1,2,3, . . .} and N0 := N∪{0}.) In the special case of a bounded
subset A ⊂ R

N (corresponding to the choice of an RFD of the form (A,Aδ ), for

some δ > 0), we use the analogous notation V [k](t) = V [k]
A (t) for the k-th primitive

function of the tube function V (t) =VA(t) := |At |, where k ∈ N0.
Furthermore, we recall that for any s ∈C, the Pochhammer symbol is defined by

(s)0 := 1, (s)k := s(s+1) · · ·(s+ k−1) (5.1.12)

for any nonnegative integer k and, more generally, for the purpose of Section 5.2,
for every k ∈ Z by

(s)k :=
Γ(s+ k)
Γ(s)

, (5.1.13)

where Γ denotes the classic gamma function.

It is natural to wonder why we do not simply work with the tube function V =

V [0] = V [0]
A,Ω instead of all of its primitives V [k] = V [k]

A,Ω (for any integer k ≥ 0). For
an answer to this question, we refer the curious reader to Remark 5.1.19 at the
end of Subsection 5.1.3 below, as well as to the comment preceding it. We also
mention that in the distributional setting, we will allow k to be any integer in Z

(rather than in N∪{0}) in the definition of the corresponding k-th ‘tube distribution’

V [k] = V
[k]

A,Ω ; see Definition 5.2.1 at the beginning of Section 5.2. In that setting,
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the case when k = −1 yields the most fundamental fractal tube formula (for the

distribution V [−1] = V
[−1]

A,Ω , which can also be viewed as a measure).

Before stating the main relationship connecting V [k] = V [k]
A,Ω and the tube zeta

function ζ̃A,Ω of the RFD (A,Ω), valid for any integer k ≥ 0, we begin by consid-
ering the key special case when k = 0 (so that V [0] = V = VA,Ω ). It turns out that
V (t) = |At ∩Ω | is essentially equal to the inverse Mellin transform of ζ̃A,Ω , as will
be seen in Theorem 5.1.7 below. Before stating and proving the latter result, we
need to briefly provide some basic information about the Mellin transform and its
inverse transform.

First, as an initial motivation for the approach used in this chapter, we note that
the tube zeta function coincides with the Mellin transform of a modification of the
tube function t �→ |At ∩Ω |, where as before, |At ∩Ω | = |At ∩Ω |N denotes the N-
dimensional volume of At ∩Ω ⊆ R

N . More specifically, one has that for all s ∈ C

such that Res > dimB(A,Ω),

ζ̃A,Ω (s;δ ) =
∫ +∞

0
ts−1 (χ(0,δ )(t)t−N |At ∩Ω |

)
dt, (5.1.14)

where χ(0,δ ) denotes the characteristic function of the set (0,δ ). Recall that the
Mellin transform of a function f : R→ R is defined by

{M f}(s) :=
∫ +∞

0
ts−1 f (t)dt, (5.1.15)

where s is a complex number with large enough real part. Furthermore, the Mellin
inversion theorem, which we recall here for the sake of completeness, together with
Equation (5.1.14), yields an integral expression for the tube function of a given
relative fractal drum.

Theorem 5.1.6 (Mellin’s inversion theorem, cited from [Tit2, Theorem 28]). Let
f : (0,+∞) → R be such that for a given y > 0, f (t) is of bounded variation in
a connected open neighborhood of the point t = y. Furthermore, assume that the
function t �→ tc−1 f (t) belongs to L1(0,+∞), where c is a real number, and define

{M f}(s) :=
∫ +∞

0
ts−1 f (t)dt (5.1.16)

for all s ∈ C such that Res = c. Then, for the above value of y, the following inver-
sion formula holds:

1
2

(
f (y+0)+ f (y−0)

)
=

1
2πi

∫ c+i∞

c−i∞
y−s{M f}(s)ds, (5.1.17)

where f (y+ 0) and f (y− 0) denote, respectively, the right and left limits of f at
y. Here, on the right-hand side of (5.1.17), the contour integral is taken over the
vertical line {Res = c}.
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We can now state the announced integral formula connecting the relative tube
function of the RFD (A,Ω) and the tube zeta function ζ̃A,Ω ( · ;δ ).

Theorem 5.1.7. Let (A,Ω) be a relative fractal drum in R
N and fix δ > 0. Then, for

any fixed c > dimB(A,Ω) and for every t ∈ (0,δ ), we have

|At ∩Ω |= 1
2πi

∫ c+i∞

c−i∞
tN−sζ̃A,Ω (s;δ )ds. (5.1.18)

Proof. Let f (t) := χ(0,δ )(t)t−N |At ∩Ω | and observe that t �→ |At ∩Ω | is nonde-
creasing, and hence, is locally of bounded variation on (0,+∞). Since the product
of two functions of locally bounded variation is also a function of locally bounded
variation, we conclude that f is also locally of bounded variation on (0,+∞). Fur-
thermore, we deduce from Theorem 4.1.7 and from the functional equality (4.5.2)
that the integral defining the tube zeta function ζ̃A,Ω in Equation (5.1.14) is abso-
lutely convergent (and hence, convergent) for all s ∈C such that Res > dimB(A,Ω)
or, in other words, t �→ tRes−1 f (t) belongs to L1(0,+∞) for such s. Consequently,
the Mellin transform {M f}(s) of f is well defined by Equation (5.1.16) and co-
incides with ζ̃A,Ω (s;δ ) for c = Res > dimB(A,Ω); that is, Equation (5.1.14) holds
for all s ∈ C such that Res > dimB(A,Ω), as was claimed above. Therefore, by
Theorem 5.1.6, we can recover the relative tube function from the relative tube zeta
function and for positive y 
= δ , we have

χ(0,δ )(y)y−N |Ay ∩Ω |= 1
2πi

∫ c+i∞

c−i∞
y−sζ̃A,Ω (s;δ )ds, (5.1.19)

where c > dimB(A,Ω) is arbitrary; that is, (5.1.18) is valid for all t ∈ (0,δ ), as
desired. ��

One of the main goals in this chapter will be to express formula (5.1.18) in a more
useful and applicable way. More specifically, we will express the right-hand side of
(5.1.18) in terms of the relative distance zeta function and as a sum (interpreted
in a suitable way) of residues over the complex dimensions of the given relative
fractal drum. The resulting identity will be called a “fractal tube formula” (as in
[Lap-vFr3]) or simply, a tube formula.

A priori, one would naively expect that Equation (5.1.16) and hence also, Equa-
tion (5.1.17), only holds for c ≥ N. (Indeed, since f (t) = 0 for all t ≥ δ and
|At ∩Ω | ≤ |Ω |, we easily see that t �→ tc−1 f (t) belongs to L1(0,+∞) for c ≥ N.)
The stronger conclusion obtained in Theorem 5.1.7 requires the aforementioned re-
sults obtained in Chapter 4 (and whose detailed proofs where given in Chapter 2 in
the important special case of bounded subsets of RN).

The following result is really a corollary of Theorem 5.1.7 but given its impor-
tance for the rest of this section, we state it as a separate proposition.

Proposition 5.1.8. Let (A,Ω) be a relative fractal drum in R
N and let δ > 0 be

fixed. Then for every t ∈ (0,δ ) and k ∈ N0, we have
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V [k]
A,Ω (t) =

1
2πi

∫ c+i∞

c−i∞

tN−s+k

(N−s+1)k
ζ̃A,Ω (s;δ )ds, (5.1.20)

where c ∈ (dimB(A,Ω),N +1) is arbitrary.

Proof. By Theorem 5.1.7, we have the following equalities, valid (pointwise) for all
t ∈ (0,δ ):

V [1]
A,Ω (t) =

∫ t

0
VA,Ω (τ)dτ =

1
2πi

∫ t

0

∫ c+i∞

c−i∞
τN−sζ̃A,Ω (s;δ )dsdτ

=
1

2πi

∫ c+i∞

c−i∞

∫ t

0
τN−sζ̃A,Ω (s;δ )dτ ds

=
1

2πi

∫ c+i∞

c−i∞

tN−s+1

N−s+1
ζ̃A,Ω (s;δ )ds,

since N − c+1 > 0. The interchange of the order of integration is justified by com-
bining Lebesgue’s dominated convergence theorem and the Fubini–Tonelli theorem.
Iterating this calculation k− 1 more times, we prove the statement of the proposi-
tion. ��

We adapt the following definition of the truncated screen and window from Sec-
tion 5.3 of [Lap-vFr3], where it was stated for languid generalized fractal strings, so
that it can be used in the same form in the case of relative fractal drums in R

N .

Definition 5.1.9. (The truncated screen and window). Given an integer n ≥ 1 and a
languid relative fractal drum in R

N , the truncated screen S|n is the part of the screen
S restricted to the interval [T−n,Tn], and the truncated window W|n is the window
W intersected with the horizontal strip between T−n and Tn; i.e.,

W|n :=W ∩{s ∈ C : T−n ≤ Ims ≤ Tn}. (5.1.21)

We then call P(ζ̃A,Ω ,W|n) the set of truncated visible complex dimensions; i.e.,
it is the set of visible complex dimensions of (A,Ω) relative to the window W and
with imaginary parts between T−n and Tn. Note that since by assumption, there are
no poles of ζ̃A,Ω along the screen S, we could replace W|n by its interior W̊|n, in
the aforementioned notation:

P
(
ζ̃A,Ω ,W|n

)
= P

(
ζ̃A,Ω ,W̊|n

)
. (5.1.22)

5.1.2 Pointwise Tube Formula with Error Term

We stress that from now on, the phrase “let (A,Ω) be a languid (or strongly lan-
guid) relative fractal drum”, will implicitly mean that (A,Ω) is admissible for
some window W and for some δ > 0, the relative tube zeta function ζ̃A,Ω (s;δ )
of (A,Ω) satisfies the languidity conditions of Definition 5.1.3 (or Definition 5.1.4,
respectively).
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Let us now derive a ‘truncated pointwise tube formula’ (Lemma 5.1.10), from
which the general pointwise tube formula (Theorem 5.1.11 below) will follow. Note
that Lemma 5.1.10 is the counterpart, valid for any N ≥ 1, of [Lap-vFr3, Lemma
5.9]. Furthermore, recall from the end of Subsection 5.1.1 that for each integer n≥ 1,
the truncated screen S|n and the associated truncated window W|n were defined in
Definition 5.1.9.

Lemma 5.1.10 (Truncated pointwise tube formula). Let k ≥ 0 be an integer and
(A,Ω) a languid relative fractal drum in R

N for a fixed δ > 0 and for some fixed
languidity exponent κ ∈ R. Furthermore, fix a constant c ∈ (dimB(A,Ω),N + 1).
Then, for all t ∈ (0,δ ) and all n ≥ 1, we have

In :=
1

2πi

∫ c+iTn

c+iT−n

tN−s+k

(N−s+1)k
ζ̃A,Ω (s;δ )ds

= ∑
ω∈P(ζ̃A,Ω ,W|n)

res

(
tN−s+k

(N−s+1)k
ζ̃A,Ω (s;δ ),ω

)

+
1

2πi

∫
S|n

tN−s+k

(N−s+1)k
ζ̃A,Ω (s;δ )ds+En(t).

(5.1.23)

Moreover, assuming that hypothesis L1 is fulfilled, we have the following pointwise
remainder estimate, valid for all t ∈ (0,δ ):

|En(t)| ≤ tN+kKκ max
{

T κ−k
n , |T−n|κ−k}(c− infS)max

{
t−c, t− infS}, (5.1.24)

where Kκ is a positive constant depending only on the languidity exponent κ .6

Finally, for each point s = S(τ)+ iτ , where τ ∈R is such that |τ |> 1, and for all
t ∈ (0,δ ), the integrand over the truncated screen appearing in (5.1.23) is bounded
in absolute value by

CtN+k max
{

t−supS, t− infS}|τ |κ−k, (5.1.25)

when hypothesis L2 holds, and by

Cκ tN+k max
{

B| infS|,B|supS|}max
{

t−supS, t− infS}|τ |κ−k, (5.1.26)

when hypothesis L2’ holds, with the constant Cκ depending only on κ .7

Proof. Let D := dimB(A,Ω); for the sake of brevity, we will write ζ̃A,Ω (s) instead
of ζ̃A,Ω (s;δ ) throughout the proof. Now, we replace the integral over the segment
[c+ iT−n,c+ iTn] with the integral over the contour Γ consisting of this segment,
the truncated screen S|n and the two horizontal segments joining S(T±n)+ iT±n and
c+ iT±n (see Figure 5.1). In other words, we have

6 More precisely, Kκ depends only on κ and the constant C occurring in hypothesis L1.
7 Here, the constant Cκ actually depends only on κ and on the constant C appearing in hypothe-
sis L1.
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Fig. 5.1 The truncated window W|n and the contour Γ which we use to estimate the integral In in
Lemma 5.1.10.

In =
1

2πi

∫ c+iTn

c+iT−n

tN−s+k

(N−s+1)k
ζ̃A,Ω (s)ds

=
1

2πi

∮
Γ

tN−s+k

(N−s+1)k
ζ̃A,Ω (s)ds

+
1

2πi

∫
S|n

tN−s+k

(N−s+1)k
ζ̃A,Ω (s)ds+En(t),

where

En(t) :=
1

2πi

∫
ΓL∪ΓU

tN−s+k

(N−s+1)k
ζ̃A,Ω (s)ds.

Furthermore, the integrand appearing above is meromorphic on the bounded do-
main having Γ as its boundary and its poles are exactly the poles of the relative
tube zeta function since c ∈ (dimB(A,Ω),N + 1) ensures that there are no zeros of
(N−s+1)k inside of Γ . Consequently, we deduce from the residue theorem that

In = ∑
ω∈P(ζ̃A,Ω ,W|n)

res

(
tN−s+k

(N−s+1)k
ζ̃A,Ω (s),ω

)

+
1

2πi

∫
S|n

tN−s+k

(N−s+1)k
ζ̃A,Ω (s)ds+En(t).

To obtain the upper bound on |En(t)|, we first observe that for s = σ + iTn we have
|(N− s+1)k| ≥ T k

n and we estimate the integrals over the upper segment ΓU and the
lower segment ΓL under hypothesis L1:
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∣∣∣∣
∫
ΓU

tN−s+k

(N−s+1)k
ζ̃A,Ω (s)ds

∣∣∣∣=
∣∣∣∣
∫ c

S(Tn)

tN+k−σ−iTn

(N+1−(σ+iTn))k
ζ̃A,Ω (σ + iTn)dσ

∣∣∣∣
≤ tN+kC(Tn +1)κT−k

n

∫ c

S(Tn)
t−σ dσ

≤ tN+kKκT κ−k
n

(
c−S(Tn)

)
max

{
t−c, t−S(Tn)

}
,

where Kκ is a positive constant such that C(|Tn|+ 1)κ ≤ Kκ |Tn|κ for all n ∈ Z.
Furthermore, since infS ≤ S(τ) for all τ ∈ R, we have

∣∣∣∣∣
∫
ΓU

tN−s+kζ̃A,Ω (s)ds

(N−s+1)k

∣∣∣∣∣≤ tN+kKκT κ−k
n (c− infS)max

{
t−c, t− infS}. (5.1.27)

A similar calculation for the integral over the lower line segment yields
∣∣∣∣∣
∫
ΓL

tN−s+kζ̃A,Ω (s)ds

(N−s+1)k

∣∣∣∣∣≤ tN+kKκ |T−n|κ−k(c− infS)max
{

t−c, t− infS}. (5.1.28)

Therefore, putting (5.1.27) and (5.1.28) together, we obtain the upper bound
(5.1.24).8

In order to estimate the integrand over the truncated screen S|n, we observe that
for s = S(τ)+ iτ with |τ |> 1, we have

∣∣∣∣ tN−s+k

(N−s+1)k
ζ̃A,Ω (s)

∣∣∣∣≤CtN−S(τ)+k|τ |κ−k

≤CtN+k max
{

t−supS, t− infS}|τ |κ−k,

(5.1.29)

under hypothesis L2 and similarly, under hypothesis L2’. (Then, Cκ is a constant
chosen so that C(|τ |+1)κ ≤Cκ |τ |κ holds for all τ such that |τ |> 1.) This completes
the proof of the lemma. ��

We can now state and prove the announced result.

Theorem 5.1.11 (Pointwise fractal tube formula with error term, via ζ̃A,Ω ). Let
(A,Ω) be a relative fractal drum in R

N which is languid for some fixed δ > 0 and
some fixed languidity exponent κ ∈ R. Furthermore, let k > κ + 1 be a nonneg-
ative integer. Then, the following pointwise fractal tube formula with error term,
expressed in terms of the tube zeta function ζ̃A,Ω := ζ̃A,Ω ( · ;δ ), is valid for every
t ∈ (0,δ ):

V [k]
A,Ω (t) = ∑

ω∈P(ζ̃A,Ω ,W )

res

(
tN−s+k

(N−s+1)k
ζ̃A,Ω (s),ω

)
+ R̃[k]

A,Ω (t). (5.1.30)

8 The constant Kκ in (5.1.24) is actually equal to the present constant Kκ divided by π .
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Here, for every t ∈ (0,δ ), the (pointwise) error term R̃[k]
A,Ω is given by the absolutely

convergent (and hence, convergent) integral

R̃[k]
A,Ω (t) =

1
2πi

∫
S

tN−s+k

(N−s+1)k
ζ̃A,Ω (s)ds. (5.1.31)

Furthermore, we have the following pointwise error estimate, valid for all t ∈ (0,δ ):

∣∣R̃[k]
A,Ω (t)

∣∣≤ tN+k max{t−supS, t− infS}
(

C
(
1+‖S‖Lip

)
2π(k−κ−1)

+C′
)
, (5.1.32)

where C is the positive constant appearing in L1 and L2 and C′ is some suitable
positive constant. These constants depend only on the relative fractal drum (A,Ω)
and the screen, but not on the value of the nonnegative integer k.

In particular, we have the following pointwise error estimate:

R̃[k]
A,Ω (t) = O(tN−supS+k) as t → 0+. (5.1.33)

Moreover, if S(τ) < supS for all τ ∈ R (i.e., if the screen S lies strictly to the left
of the vertical line {Res = supS}), then we have the following stronger pointwise
estimate:

R̃[k]
A,Ω (t) = o(tN−supS+k) as t → 0+. (5.1.34)

Before establishing Theorem 5.1.11, we must make the following two comments
(in parts (a) and (b) of Remark 5.1.12), which will help to understand the state-
ment of the theorem. We stress that comments similar to those in Remark 5.1.12
also apply to all other theorems stated below (in this chapter), in which a (typi-
cally infinite) sum over the (visible) complex dimensions appears, either in refer-
ence to a pointwise or distributional fractal tube formula. (See, in particular, Theo-
rems 5.1.13, 5.1.14, 5.1.16, 5.2.2, 5.2.4, 5.2.6, 5.3.11, 5.3.13, 5.3.16, 5.3.17, 5.3.19,
5.3.20, 5.3.21, 5.4.14, along with Corollaries 5.2.12 and 5.3.14.) More specifically,
part (b) of Remark 5.1.12 remains valid without change, and likewise for the coun-
terpart of part (a) of Remark 5.1.12 in reference to a (potentially infinite) sum
over the (visible) complex dimensions occurring in a pointwise fractal tube formula
(such as in Theorem 5.1.13, 5.1.14 and 5.1.16 of Subsection 5.1.2 and in Theorems
5.3.11, 5.3.13, 5.3.16, 5.3.17, along with Corollary 5.3.14 of Subsection 5.3.2 be-
low). Moreover, in the counterpart of part (a) of Remark 5.1.12, when referring
to a distributional (rather than a pointwise) fractal tube formula (such as in Theo-
rems 5.2.2, 5.2.4, 5.2.6, and Corollary 5.2.12 of Section 5.2 below or in Theorems
5.3.19, 5.3.20, 5.3.21 of Subsection 5.3.3), the (potentially infinite) sum has to be
interpreted as a distributional (rather than pointwise) limit of the partial sums.
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Remark 5.1.12. (a) The (potentially infinite) sum appearing in (5.1.30) in the above
theorem (Theorem 5.1.11) is to be understood as the limit

lim
n→∞ ∑

ω∈P(ζ̃A,Ω ,W|n)

res

(
tN−s+k

(N−s+1)k
ζ̃A,Ω (s),ω

)
, (5.1.35)

where W|n is the truncated window given by Definition 5.1.9 or, in other words,
as the pointwise limit of the partial sums over the complex dimensions contained
in W|n. Furthermore, the existence of this limit follows from the proof of the the-
orem; that is, the series in (5.1.30) converges pointwise and conditionally. On the
other hand, Theorem 5.1.11 does not give any information about the possible abso-
lute convergence of the series in (5.1.30). A similar situation occurs in [Lap-vFr3,
Chapters 5 and 8] and, in fact, also in Riemann’s original explicit formula for the
counting function of the prime numbers (see, e.g., [Edw] or [In]).

(b) Moreover, the sum over the set P(ζ̃A,Ω ,W ) in Equation (5.1.30) of Theo-
rem 5.1.11 does not depend on δ since changing the parameter δ has no effect on
the residues appearing in (5.1.30). This follows easily from the fact that the princi-
pal parts of the meromorphic extension of the relative tube zeta function around any
of its poles do not depend on δ (see Subsection 4.5.1). In other words, when apply-
ing Theorem 5.1.11, one has to determine that (A,Ω) is languid for some δ > 0,
but when calculating the sum, one can take any δ > 0; that is, in practice, the most
convenient one in the particular example one is interested in.

Proof of Theorem 5.1.11. Without loss of generality, let c ∈ (dimB(A,Ω),N+1) be
the constant from the languidity condition L1 of Definition 5.1.3. We will prove
the theorem by using Lemma 5.1.10 in order to obtain (5.1.23) and then, by letting
n →∞. We note that En(t) tends to zero for k > κ at the rate of some negative power
of min{Tn, |T−n|}. Furthermore, for k > κ+1, the error term R̃[k](t)A,Ω is absolutely
convergent (and hence, pointwise convergent). Indeed, note that, since τ �→ S(τ)
is Lipschitz continuous, it is differentiable almost everywhere and, consequently,
the derivative of τ �→ S(τ)+ iτ is bounded by (1+ ‖S‖Lip) for almost all τ ∈ R.
Moreover, since ∫ +∞

1
τκ−k dτ =

1
k−κ−1

for k > κ + 1, the upper bound (5.1.32) on the error term R̃[k]
A,Ω (t) now follows

from (5.1.25). The positive constant C′ in (5.1.32) is the constant which corresponds
to the integral over the part of the screen for which |τ |< 1; i.e.,

C′ :=
1

2π

∫
S∩{| ImS|<1}

|ζ̃A,Ω (s)|
|(N−s+1)k|

|ds|.

In the case when the screen stays strictly to the left of the line {Res = supS}, we
can obtain the better estimate (5.1.34) by using a well-known method; see, e.g., [In,
pp. 33–34]. Namely, for any given ε > 0, we have to show that (5.1.31) is bounded
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by εtN−supS+k. For a given T > 0, we can split the integral appearing on the right-
hand side of (5.1.31) into the following two parts. The first one is the integral over
the part of the screen for which | ImS| > T , and the second one is the integral over
the part of the screen for which | ImS| ≤ T . Since the first integral is absolutely
convergent, we can choose T sufficiently large so that it is bounded by 1

2εt
N−supS+k.

For the second integral, we observe that the maximum of S(τ) for all τ ∈ [−T,T ]
is strictly less than supS; i.e., we can choose α > 0 such that S(τ) < supS −α
for τ ∈ [−T,T ]. This implies that the integral over the part of the screen for which
| ImS| ≤ T is of order O(tN−supS+k+α) as t → 0+.9 Hence, for all sufficiently small

t > 0 it is bounded by 1
2εt

N−supS+k. This proves that R̃[k]
A,Ω (t) = o(tN−supS+k) as

t → 0+, as desired, and therefore completes the proof of the theorem. ��

5.1.3 Exact Pointwise Tube Formula

In the case of a strongly languid relative fractal drum, we are able to obtain a point-
wise formula without an error term. Such an explicit formula is said to be exact.

Theorem 5.1.13 (Exact pointwise fractal tube formula via ζ̃A,Ω ). Let (A,Ω) be a
relative fractal drum in R

N which is strongly languid for some fixed δ > 0 and some
fixed languidity exponent κ ∈ R. Furthermore, let k > κ be a nonnegative integer.
Then, the following exact pointwise fractal tube formula, expressed in terms of the
tube zeta function ζ̃A,Ω := ζ̃A,Ω ( · ;δ ), holds for all t ∈ (0,min{1,δ ,B−1}):

V [k]
A,Ω (t) = ∑

ω∈P(ζ̃A,Ω ,C)

res

(
tN−s+k

(N−s+1)k
ζ̃A,Ω (s),ω

)
. (5.1.36)

Here, B is the positive constant appearing in hypothesis L2’.

Proof. For a fixed integer n ≥ 1, we apply Lemma 5.1.10 with the screen Sm given
by hypothesis L2’. We first let m → ∞ while keeping n fixed. Since the screens Sm

have a uniform Lipschitz bound, if we take t < min{1,B−1}, then the sequence of
integrals over the truncated screens Sm|n converges to 0 as m → ∞.10 Indeed, let us
take m0 large enough so that supSm < 0 for every m ≥ m0. This is possible since
supSm →−∞ as m → ∞; see hypothesis L2’ in Definition 5.1.4.

Furthermore, for every m ≥ 1 and n ≥ 1, the integral over the truncated screen
Sm|n is given by

In,m :=
1

2πi

∫
Sm|n

tN−s+k

(N−s+1)k
ζ̃A,Ω (s)ds (5.1.37)

9 Note that since the screen S avoids the poles of the relative tube zeta function, we have that
ζ̃A,Ω (s) is bounded for all s ∈ C in the part of the screen S for which | ImS| ≤ T .
10 Here and throughout this proof, Sm|n denotes the n-th truncated screen associated with the screen
Sm, in the sense of Lemma 5.1.10 and Figure 5.1 above.



5.1 Pointwise Tube Formulas 425

and, similarly as in the proof of Lemma 5.1.10, we have that the integrand is
bounded in absolute value by

Cκ max
{

B| infSm|n|,B|supSm|n|
}

tN+|supSm|n|+k, (5.1.38)

where Cκ is a suitable constant depending only on κ . Here, we use the notation

infSm|n := inf
τ∈[T−n,Tn]

Sm(τ) and supSm|n := sup
τ∈[T−n,Tn]

Sm(τ). (5.1.39)

We now let L := supm≥1 ‖Sm‖ be the uniform Lipschitz bound for the sequence of
screens Sm. Then, the derivative of τ �→ Sm(τ) + iτ is bounded for almost every
τ ∈ [T−n,Tn] by (1+L).

We must next consider the following two cases: firstly, if B < 1, we then have
that

|In,m| ≤
Cκ(1+L)B|supSm|n|

2π
(Tn −T−n)t

N+|supSm|n|+k,

and, since t < 1, we have that In,m → 0 as m → ∞. Secondly, if B ≥ 1, we deduce
from the Lipschitz condition on Sm that we have

supSm|n − infSm|n ≤ L(Tn −T−n);

i.e.,
| infSm|n| ≤ |supSm|n|+L(Tn −T−n),

from which we deduce the estimate

|In,m| ≤
Cκ(1+L)BL(Tn−T−n)

2π
(Tn −T−n)(Bt)|supSm|n|tN+k.

Therefore, In,m → 0 as m → ∞ since Bt < 1.
We now let En,m(t) be the error function appearing in (5.1.23) for the truncated

screen Sm|n and we will complete the proof by showing that its iterated limit con-
verges to zero pointwise. For c ∈ (dimB(A,Ω),N+1) and since 0 < t < 1, we have,
much as in the proof of Lemma 5.1.10, that

∣∣∣∣∣
∫
ΓUm

tN−s+kζ̃A,Ω (s)ds

(N−s+1)k

∣∣∣∣∣≤ tN+kC(Tn +1)κT−k
n

∫ c

−∞
t−σ dσ

≤ tN+kKκT κ−k
n

t−c

log(1/t)
.

(5.1.40)

Here, ΓUm is the segment connecting Sm(Tn)+ iTn and c+ iTn. A similar reasoning
for the corresponding integral over the lower segment gives us the following upper
bound on |En,m(t)|, independent of m:

|En,m(t)| ≤
tN−c+k

π log(1/t)
Kκ max{T κ−k

n , |T−n|κ−k}.
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Finally, this inequality, which is valid for all m ≥ 1 and all n ≥ 1, implies that for a
fixed k > κ , the iterated limit of En,m(t) tends to 0 when m → ∞ and then n → ∞;
i.e., we have

lim
n→∞

(
lim

m→∞
En,m(t)

)
= 0.

This concludes the proof of the theorem. ��

Theorems 5.1.11 and 5.1.13 are of most interest in the case when k = 0, i.e.,
when we obtain a pointwise formula for the volume of the relative t-neighborhood
|At ∩Ω | in terms of the complex dimensions of (A,Ω). We state this case as a
separate theorem.

Theorem 5.1.14 (Pointwise fractal tube formula via ζ̃A,Ω ; level k = 0). Under
the same hypotheses as in Theorem 5.1.11, with languidity exponent κ <−1 (resp.,
under the same hypotheses as in Theorem 5.1.13, with languidity exponent κ < 0)
and with k := 0, we have the following pointwise formula for the tube function of
the relative fractal drum (A,Ω) in R

N :

|At ∩Ω |= ∑
ω∈P(ζ̃A,Ω ,W )

res
(

tN−sζ̃A,Ω (s),ω
)
+ R̃[0]

A,Ω (t), (5.1.41)

valid pointwise for all t ∈ (0,δ ) and where R̃[0]
A,Ω (t) is the error term given by

formula (5.1.31) with k := 0. Furthermore, we have the following pointwise error
estimate:

R̃[0]
A,Ω (t) = O(tN−supS) as t → 0+. (5.1.42)

Moreover, if S(τ)< supS for every τ ∈R (i.e., if the screen S lies strictly to the left
of the vertical line {Res = supS}), we then have

R̃[0]
A,Ω (t) = o(tN−supS) as t → 0+. (5.1.43)

Finally, in the special case of Theorem 5.1.13 where (A,Ω) is assumed to be

strongly languid, then R̃[0]
A,Ω (t) ≡ 0 and W := C in (5.1.41); so that the pointwise

fractal tube formula (5.1.41) becomes exact.

Remark 5.1.15. In the applications, we often have to consider the case when all of
the visible complex dimensions are simple. More specifically, if we assume that all
of the poles of ζ̃A,Ω visible through the window W (i.e., lying in W ) are simple,
then in the statement of Theorem 5.1.14, the sum over the visible complex dimen-
sions appearing in Equation (5.1.41) can be replaced by the following expression:

∑
ω∈P(ζ̃A,Ω ,W )

c̃ω tN−ω , (5.1.44)

where for each ω ∈ P(ζ̃A,Ω ,W ), we have

c̃ω := res(ζ̃A,Ω ,ω). (5.1.45)
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In light of Remark 5.1.15, we obtain the following result, which (even though it is
an immediate corollary of Theorem 5.1.14) we state as a separate theorem because
of its importance in the applications. (See, especially, Sections 5.4 and 5.5 below.)

Theorem 5.1.16 (Pointwise fractal tube formula via ζ̃A,Ω ; level k = 0 and simple
poles). Assume that the hypotheses of Theorem 5.1.14 hold. Suppose, in addition,
that all of the visible complex dimensions of the RFD (A,Ω) are simple (i.e., all
of the poles of ζ̃A,Ω belonging to the window W are simple). Then, the pointwise
fractal tube formula, expressed in terms of the tube zeta function ζ̃A,Ω , takes the
following simpler form:

|At ∩Ω |= ∑
ω∈P(ζ̃A,Ω ,W )

res
(
ζ̃A,Ω (s),ω

)
tN−ω + R̃[0]

A,Ω (t), (5.1.46)

where the error term R̃[0]
A,Ω is the same as in Theorem 5.1.14 and hence, satisfies the

same estimates [(5.1.42) or (5.1.43), depending on the hypotheses] as in Theorem
5.1.14.

In particular, in the strongly languid case, we have R̃[0](t)≡ 0 and W :=C; con-
sequently, (5.1.46) becomes the following exact fractal tube formula, valid pointwise
for all t ∈ (0,min{1,δ ,B−1}):

|At ∩Ω |= ∑
ω∈P(ζ̃A,Ω ,C)

res
(
ζ̃A,Ω (s),ω

)
tN−ω , (5.1.47)

where B is the constant appearing in hypothesis L2’ of Definition 5.1.4.

Remark 5.1.17. Naturally, in light of Theorem 5.1.11 and Theorem 5.1.13, the coun-
terpart of Remark 5.1.15 and Theorem 5.1.16 holds for any level k (satisfying the
assumptions of the relevant result). For example, provided that all of the complex
dimensions visible through W are simple, the exact pointwise fractal tube formula
(5.1.36) of Theorem 5.1.13 becomes (for all t ∈ (0,min{1,δ ,B−1}))

V [k]
A,,Ω (t) = ∑

ω∈P(ζ̃A,Ω ,C)

res
(
ζ̃A,Ω (s),ω

) tN−ω+k

(N −ω+1)k
, (5.1.48)

and similarly for the pointwise fractal tube formula with error term given in (5.1.30)
of Theorem 5.1.11.

Note that in light of (5.1.12) and for each k ∈ N0, we have (with the obvious
convention if k = 0)

(N − s+1)k = (N − s+1)(N − s+2) · · ·(N − s+ k) (5.1.49)

and hence, the zeros of s �→ (N − s+1)k are simple and occur precisely at

s = N +1,N +2, . . . ,N + k. (5.1.50)



428 5 Fractal Tube Formulas and Complex Dimensions

(Clearly, since (N − s+1)0 = 1, (5.1.49) does not have any zeros if k = 0.) Conse-
quently, since dimB(A,Ω)≤ N and k is nonnegative (i.e., k ∈N0) in the present case
of pointwise tube formulas, the complex number (N−ω+1)k is never equal to zero
for ω ∈ P(ζ̃A,Ω ) := P(ζ̃A,Ω ,C) (or else for ω ∈ P(ζ̃A,Ω ,W ), in the case of a
pointwise tube formula with error term). Moreover, if we work with a distributional
tube formula (as will be case in Section 5.2 and part of Section 5.3, for example),
the level k is allowed to be negative (i.e.,k ∈ Z). However, in the case of a negative
integer k, the function s �→ (N − s+ 1)k does not have any zeros, but only simple
poles located precisely at

s = N +1+ k,N +2+ k, . . . ,N; (5.1.51)

so that its reciprocal has simple zeros precisely at those same points. Indeed, note
that if k < 0, then

(N − s+1)k =
Γ(N − s+1+ k)
Γ(N − s+1)

(5.1.52)

and observe that (on the right-hand side of (5.1.52)) the numerator has simple poles
located precisely at s = N + 1+ k,N + 2+ k,N + 3+ k, . . ., while the denominator
has simple zeros located precisely at s = N + 1,N + 2,N + 3, . . ., which cancel out
all of the poles of the numerator except for the ones stated in (5.1.51).

In light of this discussion, for the distributional tube formulas obtained in Section
5.2 and in part of Section 5.3 below, the same comment (concerning the complex
dimensions of (A,Ω)) applies as for the pointwise tube formulas; i.e., the complex
dimensions of (A,Ω) are never zeros of s �→ (N − s+ 1)k. But we also note that in
the distributional case, it may happen that ω is a zero of s �→ (N − s+1)−1

k , which
then cancels out the term corresponding to tN−ω in Equation (5.1.48).

Remark 5.1.18. The obvious counterpart of Remark 5.1.15, Theorem 5.1.16 and Re-
mark 5.1.17 holds for all of the fractal tube formulas considered in this chapter,
whether they are pointwise or distributional formulas, with or without error term, as
well as expressed in terms of either ζA,Ω or ζ̃A,Ω or (with the notation of Subsection
5.3.1 or 5.4.2, respectively) ζ̆A,Ω or ζMA,Ω . In the case of ζA,Ω , ζ̆A,Ω and ζMA,Ω , one

must assume, in addition, that D := dimB(A,Ω) < N. (See also the second part of
Remark 5.1.17 just above, along with Remark 5.3.18 below.)

The following comment will help explain, in part, why we work with (pointwise)

fractal tube formulas at level k (i.e., for the k-th primitive V [k]
A,Ω of VA,Ω = V [0]

A,Ω ),
rather than simply at level 0 (i.e., for the tube function V := VA,Ω itself). Observe,
in addition, that the larger k is, the weaker the assumptions on the growth of the
corresponding fractal zeta function (here, in Subsections 5.1.2 and 5.1.3, the tube
zeta function ζ̃A,Ω ) in the statement of the corresponding pointwise fractal tube
formula; see, e.g., the hypotheses of Theorem 5.1.11 and of Theorem 5.1.13, in
Subsections 5.1.2 and Subsection 5.1.3, respectively. (A similar comment could be
made about all of the fractal tube formulas established in this chapter).
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Remark 5.1.19. Recall from [Schw, Section VII, I, esp., p. 226], that given a pe-
riodic distribution T on R, in order to establish (under suitable, but rather weak,
hypotheses) the convergence of its Fourier series, in the sense of distributions, one
first integrates the given distribution sufficiently many times (say, k times, with k
large enough); so that at the k-th level (i.e., for the k-th antiderivative of T , now
viewed as a “nice” pointwise function), one can apply the usual theorems concern-
ing the pointwise (and uniform) convergence of Fourier series. One then views the
k-th primitive as a distribution and differentiates it k times, along with its convergent
Fourier series, in the distributional sense. One therefore concludes that the periodic
distribution T is equal (in the sense of distributions) to its (distributionally conver-
gent) Fourier series. An entirely analogous procedure will be used here, in a different
but related context, in order to establish the distributional fractal tube formulas from
Subsection 5.2 just below, by essentially deducing them from the corresponding
pointwise fractal tube formulas obtained in the present subsections (i.e., Subsection
5.1.2 and Subsection 5.1.3). Hence, the importance of having established the point-
wise fractal tube formulas in Subsections 5.1.2 and 5.1.3, not only at level k = 1
(when possible) but (under significantly weaker hypotheses) also at any sufficiently
large level k ≥ 1. The exact same procedure was used in [Lap-vFr1–3] in order to
deduce the main distributional explicit formulas from the corresponding pointwise
explicit formulas; see, especially, the first proof of Theorem 5.18 along with Remark
5.20 on page 160 of [Lap-vFr3].11

5.2 Distributional Tube Formulas

In this section, our goal is to obtain the distributional analogs of Theorems 5.1.11

and 5.1.13 in order to derive a distributional fractal tube formula for V [k]
A,Ω (t), valid

for any integer k ∈ Z and still expressed in terms of the (visible) poles of the tube
zeta function ζ̃A,Ω . This will provide us with information (in the sense of Schwartz
distributions or generalized functions) about the tube function of a relative fractal
drum (A,Ω), no matter for which exponent κ ∈R the relative fractal drum (A,Ω) is
languid. (See Definition 5.1.3.) More precisely, let δ > 0 and D(0,δ ) :=C∞c (0,δ ) be
the space of infinitely differentiable (complex-valued) test functions with compact
support contained in (0,δ ). In fact, we will start with a larger space of test functions
for which the formulas obtained here will be valid. Namely, let K (0,δ ) be the set
of test functions ϕ in the class C∞(0,δ ), such that for all m ∈ Z and q ∈ N, we have
tmϕ(q)(t)→ 0, as t → 0+ and also that (t −δ )mϕ(q)(t)→ 0 as t → δ−, where ϕ(q)

denotes the q-th derivative of ϕ .
Note that D(0,δ ) ⊆ K (0,δ ), with a continuous embedding. Hence, we have

the following (reverse) inclusion, also with a continuous embedding, between the
corresponding spaces of distributions (i.e., the dual spaces):

11 There will be some significant technical differences in the execution of the method in the present
book, but they will not necessarily be pointed out.
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K ′(0,δ )⊆ D ′(0,δ ). (5.2.1)

General information about the theory of distributions (or generalized functions)
can be found in [Schw, Bre, Foll, Hö2, JohLap, JohLapNi, ReeSim1].

Definition 5.2.1. Let (A,Ω) be a relative fractal drum in R
N and let k ∈ Z be an

arbitrary integer. We define the distribution V [k] = V
[k]

A,Ω on K (0,δ ) to be the |k|-th
distributional derivative of V (t) = |At ∩Ω | in case k < 0 and the k-th primitive (or
k-th anti-derivative) function (considered as a regular distribution in K ′(0,δ )) of
V (t) if k > 0. For k = 0, this is the (regular) distribution generated by the locally
integrable function V (t). (Observe that V = V (t) is locally integrable on (0,+∞)
because it is continuous.) More specifically, for any test function ϕ ∈ K (0,δ ), we
have

〈V [k],ϕ〉 :=
∫ +∞

0
V [k](t)ϕ(t)dt, for k ≥ 0, (5.2.2)

and

〈V [k],ϕ〉 := (−1)|k|
∫ +∞

0
V (t)ϕ(|k|)(t)dt, for k < 0. (5.2.3)

Here, and from now on, for convenience, we always extend the test function ϕ ∈
K (0,δ ) to the interval [δ ,+∞) by letting ϕ|[δ ,+∞) ≡ 0.

Note that it follows from Definition 5.2.1 that for all k1,k2 ∈ Z such that k1 < k2,
V [k1] is the (k2 − k1)-th distributional derivative of V [k2].

Also recall that the extended definition to an arbitrary k ∈ Z of the Pochhammer
symbol (s)k initially defined by (5.1.12) for the case when k ∈ N0 is given by:

(s)k :=
Γ(s+ k)
Γ(s)

. (5.2.4)

Suppose now that ϕ ∈K (0,δ ) is a test function. The decay conditions on ϕ im-
ply that tsϕ(t) is Lebesgue integrable on (0,δ ) for every s ∈ C and that {Mϕ}(s),
the Mellin transform of ϕ , is an entire function of s ∈ C, as can be directly ver-
ified by using Theorem 2.1.47 about the holomorphicity of an integral depending
analytically on a parameter (see also [Tit2, Theorem 31]).

Furthermore, let g(s) be a meromorphic function. Then, the residue res(g(s),ω)
vanishes unless ω is a pole of g. Moreover, for all k ∈ Z, N ∈ N and by choosing a
suitable contour Γ around ω , we have

∫ +∞

0
ϕ(t) res(tN−s+kg(s),ω)dt =

∫ +∞

0
ϕ(t)

1
2πi

∮
Γ

tN−s+kg(s)dsdt

=
1

2πi

∮
Γ

g(s)
∫ +∞

0
tN−s+kϕ(t)dt ds

= res
(
{Mϕ}(N−s+k+1)g(s),ω

)
.
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The change of the order of integration is justified by the Fubini–Tonelli theo-
rem since the last integral above is absolutely convergent. In short, for every
ϕ ∈ K (0,δ ), we have

〈
res(tN−s+kg(s),ω),ϕ

〉
= res

(
{Mϕ}(N−s+1+k)g(s),ω

)
, (5.2.5)

where g(s) is a meromorphic function on a connected open neighborhood of ω ∈C

and where k ∈ Z and N ∈ N.

Note that for k =−1, the distribution V [−1] = V
[−1]

A,Ω can be viewed as a positive
measure on (0,+∞); indeed, it is the distributional derivative of the nondecreasing
and locally integrable function t �→ V (t) = VA,Ω (t) on (0,+∞). By analogy with
the special case of fractal strings (discussed in [Lap-vFr3, Subsection 6.3.1]), as
well as with the mathematical and theoretical physics literature on spectral theory,
semiclassical approximation and quantum mechanics, we call it the geometric den-
sity of (volume) states of the RFD (A,Ω). (Compare with the relevant references in

[Lap-vFr3], ibid.) From a fundamental point of view, this measure V [−1] = V
[−1]

A,Ω
is the most important ‘distributional tube function’ and the corresponding fractal
tube formulas are the most useful distributional fractal tube formulas. (See also the
comment concluding Subsection 5.2.2 on page 437 below.)

5.2.1 Distributional Tube Formula with Error Term

We are now able to state the distributional analog of Theorem 5.1.11; that is, the
distributional tube formula with an error term.

Theorem 5.2.2 (Distributional fractal tube formula with error term, via ζ̃A,Ω ).
Let (A,Ω) be a relative fractal drum in R

N which is languid for some languidity

exponent κ ∈ R and some δ > 0. Then, for every k ∈ Z, the distribution V
[k]

A,Ω in
K ′(0,δ ) (and hence, also in D ′(0,δ )) is given by the following distributional frac-
tal tube formula, with error term and expressed in terms of the tube zeta function
ζ̃A,Ω := ζ̃A,Ω ( · ;δ ):

V
[k]

A,Ω (t) = ∑
ω∈P(ζ̃A,Ω ,W )

res

(
tN−s+k

(N−s+1)k
ζ̃A,Ω (s),ω

)
+ R̃

[k]
A,Ω (t). (5.2.6)

That is, the action of V
[k]

A,Ω on an arbitrary test function ϕ ∈ K (0,δ ) is given by

〈
V

[k]
A,Ω ,ϕ

〉
= ∑
ω∈P(ζ̃A,Ω ,W )

res

(
{Mϕ}(N−s+1+k) ζ̃A,Ω (s)

(N−s+1)k
,ω

)

+
〈
R̃

[k]
A,Ω ,ϕ

〉
.

(5.2.7)
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Here, the (distributional) error term R̃
[k]
A,Ω is given by the distribution in K ′(0,δ )

defined for all test functions ϕ ∈ K (0,δ ) by

〈
R̃

[k]
A,Ω ,ϕ

〉
=

1
2πi

∫
S

{Mϕ}(N−s+1+k) ζ̃A,Ω (s)

(N−s+1)k
ds. (5.2.8)

(The corresponding distributional error estimate for R̃
[k]
A,Ω will be given in Theorem

5.2.11 of Subsection 5.2.3 below.)

Proof. We begin the proof by fixing k ∈ N0 such that k > κ + 1 and a constant
c ∈ (dimB(A,Ω),N + 1). (Note that by fixing c ∈ (dimB(A,Ω),N + 1), we have
ensured that none of the poles of (N−s+1)−1

k are located in the window W . Indeed,
since

(N−s+1)−1
k =

Γ(N−s+1)
Γ(N−s+1+k)

, (5.2.9)

we can see that the set of its poles is a subset of {N + n : n ∈ N}; see also the
discussion provided in Remark 5.1.17 above.) Then, for every test function ϕ ∈
K (0,δ ), we have successively:

〈
V [k]

A,Ω ,ϕ
〉
=

∫ +∞

0
V [k]

A,Ω (t)ϕ(t)dt

=
1

2πi

∫ c+i∞

c−i∞

∫ +∞

0
ϕ(t)

tN−s+k

(N−s+1)k
ζ̃A,Ω (s)dt ds

=
1

2πi

∫ c+i∞

c−i∞

{Mϕ}(N−s+1+k) ζ̃A,Ω (s)

(N−s+1)k
ds.

(5.2.10)

Here, the interchange of the order of integration in the second equality is justified by
the Fubini–Tonelli theorem since the first integral above is absolutely convergent.
(It is easy to see that |V [k](t)| ≤ |At |tk, for all t ∈ (0,+∞) and k ≥ 0.) One can now
approximate the last integral above in the same way as in Lemma 5.1.10; that is, we
approximate it by the following expression:

∑
ω∈P(ζ̃A,Ω ,W|n)

res

(
{Mϕ}(N−s+1+k) ζ̃A,Ω (s)

(N−s+1)k

)

+
1

2πi

∫
S|n

{Mϕ}(N−s+1+k) ζ̃A,Ω (s)

(N−s+1)k
ds

+
1

2πi

∫
ΓL∪ΓU

{Mϕ}(N−s+1+k) ζ̃A,Ω (s)

(N−s+1)k
ds.

(5.2.11)
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Furthermore, in light of (5.2.5), the latter expression is equal to

∑
ω∈P(ζ̃A,Ω ,W|n)

〈
res

(
tN−s+k

(N−s+1)k
ζ̃A,Ω (s),ω

)
,ϕ

〉

+
1

2πi

∫
S|n

{Mϕ}(N−s+1+k) ζ̃A,Ω (s)

(N−s+1)k
ds

+
∫ +∞

0
En(t)ϕ(t)dt,

(5.2.12)

where the error term En(t) is given as in Lemma 5.1.10 and its proof.
Next, by letting n → ∞, we deduce by the same argument as in Theorem 5.1.11

that the integral of the error function En(t)ϕ(t) tends to zero and, similarly, we show
that the integral over the truncated screen S|n converges absolutely. Thus, we deduce
that

〈
V [k]

A,Ω ,ϕ
〉
= ∑
ω∈P(ζ̃A,Ω ,W )

res

(
{Mϕ}(N−s+1+k) ζ̃A,Ω (s)

(N−s+1)k
,ω

)

+ 〈R̃ [k]
A,Ω ,ϕ〉,

(5.2.13)

where R̃
[k]
A,Ω is given by its action on test functions as shown in Equation (5.2.8).

Moreover, observe that the expression on the right-hand side of (5.2.13) defines a

distribution in K ′(0,δ ) (since V [k]
A,Ω is locally integrable). This concludes the proof

of the theorem in the case when k > max{−1,κ+1}. (Note that it follows from this
first part of the proof that (5.2.13) continues to hold if k is replaced by any k′ ∈ N0

such that k′ ≥ k.)
In the case when k ≤ κ+1 and k ∈ Z, we choose an integer q such that k+q >

max{κ + 1,−1} and note that by the definition of the distributional derivative (or

alternatively, in light of Equations (5.2.2) and (5.2.3) defining V
[k]

A,Ω ), we have that

〈
V

[k]
A,Ω ,ϕ

〉
= (−1)q〈V [k+q]

A,Ω ,ϕ(q)〉; (5.2.14)

see the comment following Definition 5.2.1 above. Finally, in order to complete the
proof, we use identity (5.2.14) together with (5.2.13) applied at level k+q,12 along
with the following well-known (and easy to verify) fact about the Mellin transform
(see Equation (5.1.16) defining {M f}(s)):

{Mϕ}(s) = (−1)q

(s)q

{
Mϕ(q)}(s+q), (5.2.15)

for all s ∈ C and q ∈ Z. We therefore deduce that (5.2.7) holds, with
〈
R̃

[k]
A,Ω ,ϕ

〉
given by (5.2.8), as required. This concludes the proof of the theorem. ��

12 See the parenthetical comment appearing shortly after Equation (5.2.13).
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Remark 5.2.3. Note that in the above proof of Theorem 5.2.2, we have established
the fact that the sum over the (visible) complex dimensions appearing in (5.2.6) de-
fines a distribution in K ′(0,δ ) and hence, according to the inclusion (5.2.1), also in
D ′(0,δ ). In turn, this fact implies that both terms on the right-hand side of (5.2.6)
are, on their own, distributions in K ′(0,δ ). Namely, this is a consequence of the
following well-known fact about the convergence of distributions, which itself fol-
lows from a suitable generalization of the Hahn–Banach theorem to locally convex
topological spaces (see, for example, [Hö2, Theorem 2.1.8, p. 39]):

Let (Tn)n≥1 be a sequence of distributions in D ′(0,δ ) such that

〈T ,ϕ〉 := lim
n→∞

〈Tn,ϕ〉

exists for every test function ϕ ∈ D(0,δ ). Then, T is a distribution in D ′(0,δ ) and
therefore, Tn → T in D ′(0,δ ).

This result, applied to the appropriate sequence of partial sums over the set
P(ζ̃A,Ω ,W ), implies that the sum over the visible complex dimensions in (5.2.6)
is indeed a distribution in D ′(0,δ ) and hence, that each term taken separately on the
right-hand side of (5.2.6) defines a distribution in D ′(0,δ ).

An entirely analogous comment applies to Theorem 5.2.4 below, with the space
of test functions coinciding with D(0,δ0) and thus with the associated space of
distributions being equal to D ′(0,δ0).

5.2.2 Exact Distributional Tube Formula

In the next theorem, we obtain a distributional analog of the pointwise tube for-
mula without error term stated in Theorem 5.1.13 of Subsection 5.1.3. The resulting
formula will be an asymptotic distributional formula; i.e., it will be valid for test
functions in K (0,δ ) that are supported on the left of B−1, where B > 0 is the con-
stant appearing in hypothesis L2’.

Theorem 5.2.4 (Exact distributional tube formula via ζ̃A,Ω ). Let (A,Ω) be a rel-
ative fractal drum in R

N which is strongly languid for some languidity exponent
κ ∈R and some δ > 0. Furthermore, let δ0 :=min{1,δ ,B−1}. Then, for every k ∈Z,

the distribution V
[k]

A,Ω in D ′(0,δ0) is given by the following exact distributional tube

formula in D ′(0,δ0), expressed in terms of the tube zeta function ζ̃A,Ω := ζ̃A,Ω ( · ;δ ):

V
[k]

A,Ω (t) = ∑
ω∈P(ζ̃A,Ω ,C)

res

(
tN−s+k

(N−s+1)k
ζ̃A,Ω (s),ω

)
. (5.2.16)
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That is, the action of V
[k]

A,Ω on an arbitrary test function ϕ ∈ D(0,δ0) is given by

〈
V

[k]
A,Ω ,ϕ

〉
= ∑
ω∈P(ζ̃A,Ω ,C)

res

(
{Mϕ}(N−s+1+k) ζ̃A,Ω (s)

(N−s+1)k
,ω

)
. (5.2.17)

Proof. We will prove the theorem by applying Theorem 5.2.2 to the sequence of
screens Sm and showing that the corresponding error term tends to zero as m → ∞.
By choosing q ∈ N such that k + q > κ + 1 and m ∈ N such that supSm < 0, we
deduce from (5.2.6) the following distributional identity, viewed as an equality in
D ′(0,δ0):

V
[k+q]

A,Ω (t) = ∑
ω∈P(ζ̃A,Ω ,Wm)

res

(
tN−s+k+q

(N−s+1)k+q
ζ̃A,Ω (s),ω

)
+ R̃

[k+q]
m (t). (5.2.18)

We now fix a test function ϕ ∈D(0,δ0); since by definition, ϕ has compact support,
there exists ν ∈ (0,1) such that the support of ϕ is contained in (0,νB−1]. Using this
fact, we can estimate the Mellin transform of ϕ in the following way, for all s ∈ C

such that Res < 0:

∣∣{Mϕ}(N−s+1+k+q)
∣∣≤ (νB−1)−Res

∫ +∞

0
tN+k+q|ϕ(t)|dt. (5.2.19)

Using this estimate, hypothesis L2’, along with the fact that

|(N−Sm(τ)−iτ+1)k+q| ≥
(√

1+ τ2
)k+q

,

we estimate the distributional error R̃
[k+q]
m as follows (we let |ds| := |s′(τ)|dτ):

∣∣〈R̃ [k+q]
m ,ϕ

〉∣∣≤
∫
Sm

∣∣{Mϕ}(N−s+1+k+q)
∣∣ |ζ̃A(s)|
|(N−s+1)k+q|

|ds|

≤ K̃(1+‖Sm‖Lip)
∫ +∞

−∞
(BνB−1)|Sm(τ)| (1+ |τ |)κ(√

1+ τ2
)k+q dτ

≤ Kν |supSm|
∫ +∞

−∞

(1+ |τ |)κ(√
1+ τ2

)k+q dτ ,

(5.2.20)

with K being a suitable positive constant. The last inequality follows since, accord-
ing to hypothesis L2’, the sequence of screens (Sm)m≥1 has a uniform Lipschitz
bound; see the definition of strong languidity given in Definition 5.1.4. Furthermore,
the last integral in the above calculation is convergent since k+q > κ+1.

Next, by letting m → ∞, we deduce that 〈R̃ [k+q]
m ,ϕ〉 → 0 since |supSm| → ∞,

and thus we conclude that R̃
[k+q]
m → 0 as m → ∞, in D ′(0,δ0). Finally, in light

of (5.2.18), we obtain the statement of the theorem for the distribution V
[k+q]

A,Ω in

D ′(0,δ0); in order to obtain the statement for V
[k]

A,Ω itself, we use the exact same
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argument as in the proof of Theorem 5.2.2. In particular, in order to obtain (5.2.16)

for the distribution V
[k]

A,Ω in D ′(0,δ0), we simply differentiate q times the resulting

identity for V
[k+q]

A,Ω , in the distributional sense. ��

Remark 5.2.5. One can see from the proof of Theorem 5.2.4 that the distributional
formula (5.2.17) is actually valid for a larger class of test functions. More specif-
ically, it is valid for all ϕ ∈ K (0,δ0) which have support in (0,νB−1], for some
ν ∈ (0,1), possibly depending on ϕ .

We next state as a separate theorem the most interesting special case (beside the
case when k = −1, see the comments just before Subsection 5.2.1 above and at
the end of the present subsection below) of the distributional fractal tube formula

(with and without an error term); namely, the case when k = 0 and hence, V [0]
A,Ω (t) =

|At ∩Ω | for all t > 0 (and as a regular distribution in D ′(0,δ0)).

Theorem 5.2.6 (Distributional fractal tube formula via ζ̃A,Ω ; level k = 0). Let
(A,Ω) be a relative fractal drum in R

N. Under the same hypotheses as in Theo-
rem 5.2.2 (that is, if the relative fractal drum (A,Ω) is languid for some languidity
exponent κ ∈ R and some δ > 0), and with k := 0, we have the following distribu-
tional equality for the tube function t �→ |At ∩Ω | of (A,Ω), expressed in terms of
ζ̃A,Ω := ζ̃A,Ω ( · ;δ ) and valid in K ′(0,δ ) (and hence, also in D ′(0,δ )):

|At ∩Ω |= ∑
ω∈P(ζ̃A,Ω ,W )

res
(

tN−sζ̃A,Ω (s),ω
)
+ R̃

[0]
A,Ω (t), (5.2.21)

where R̃
[0]
A,Ω is the distribution in K ′(0,δ ) given for all ϕ ∈ K (0,δ ) (and, in par-

ticular, for all ϕ ∈ D(0,δ )) by formula (5.2.8) with k = 0. (See Remark 5.2.8 and
Corollary 5.2.12 below.)

Moreover, under the same hypotheses as in Theorem 5.2.4 (that is, if (A,Ω) is
strongly languid for some κ ∈ R and some δ > 0), then (5.2.21) holds as a distri-

butional equality in D ′(0,δ0), where δ0 := min{1,δ ,B−1} and with R̃
[0]
A,Ω ≡ 0 and

W := C; so that (5.2.21) is an exact fractal tube formula in this case.

Remark 5.2.7. Note that when the expression on the left-hand side of the distribu-
tional equality (5.2.21) (namely, t �→ |At ∩Ω |) defines a locally integrable function
of the variable t (which may not be the case since this expression is a distribu-
tion acting on test functions ϕ ∈ K (0,δ ) defined by (5.2.2), or equivalently, by
(5.2.7), with k := 0), we also have an equality, valid pointwise almost everywhere,
between the tube function t �→ |At ∩Ω | and the expression on the right-hand side
of (5.2.21).13 (It is easy to check that the tube function t �→ |At ∩Ω | is locally in-
tegrable, and hence defines a regular distribution, if, for example, either A or Ω is
bounded or, more generally, has finite volume in R

N .)

13 Here, we use the well-known fact according to which a locally integrable function uniquely
defines a (regular) distribution, see, e.g., [Schw, JohLap, Hö2, Bre].
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Remark 5.2.8. A suitable distributional error estimate for R̃
[0]
A,Ω will be provided in

Corollary 5.2.12 below.

Let η :=V [−1] = dV [0]

dt (in the distributional sense) be the positive measure which
we called the geometric density of (volume) states of the RFD (A,Ω) on page 431,
just before the beginning of Subsection 5.2.1. Then, by applying Theorem 5.2.2
(from Subsection 5.2.1) or Theorem 5.2.4 (from Subsection 5.2.2) at level k = −1
(rather than at level k = 0), we would obtain the most important form of the distri-
butional fractal tube formula with or withouth error term, respectively. (An entirely
ananlogous comment could be made about all of the distributional fractal tube for-
mulas obtained in this chapter.) We leave it as a simple exercise for the reader to
write down explicitly the corresponding fractal distributional tube formulas and to
express them in terms of the Mellin transform of the test functions ϕ to which they
can be applied. (Compare with the corresponding results of [Lap-vFr3, Subsection
6.3.1] obtained for the geometric and spectral densities of states of fractal strings.)

5.2.3 Estimate for the Distributional Error Term

We would now like to give a distributional estimate for the error term appearing in
Theorem 5.2.2, interpreted in the same sense as was done in [Lap-vFr3, Subsec-
tion 5.2.4], in the case of the distributional explicit formula for generalized fractal
strings. Therefore, let us next introduce the notion of a distributional order of growth
(see [EstKa, JaffMey, PiStVi] and also, independently, [Lap-vFr1–2] and [Lap-vFr3,
Definition 5.29]).

For a test function ϕ ∈ D(0,+∞) and a > 0, we let

ϕa(t) :=
1
a
ϕ
( t

a

)
. (5.2.22)

Note that
∫ +∞

0 ϕa(t)dt =
∫ +∞

0 ϕ(t) dt, for every a > 0. Furthermore, when a → 0+,
the support of ϕa becomes ‘narrower’ and gets ‘closer’ to zero, while the amplitude
of ϕa tends to infinity in absolute value. On the other hand, when a →+∞, then the
support of ϕa becomes ‘wider’ and ‘escapes’ to infinity, while the amplitude of ϕa

tends to zero in absolute value.

Definition 5.2.9. Let R be a distribution in D ′(0,δ ) and let α ∈ R. We say that
R is of asymptotic order at most tα (resp., less than tα ) as t → 0+ if applied to an
arbitrary test function ϕa in D(0,δ ), we have that14

〈R,ϕa〉= O(aα) (resp., 〈R,ϕa〉= o(aα)), as a → 0+. (5.2.23)

We then write that R(t) = O(tα) (resp., R(t) = o(tα)), as a → 0+.

14 In formula (5.2.23), the implicit constant may depend on the test function ϕ .
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Remark 5.2.10. We point out that if f is a continuous function such that pointwise,
f (t) = O(tα) or f (t) = o(tα) as t → 0+, for some α ∈ R, then f also satisfies the
same asymptotic estimate, in the distributional sense of Definition 5.2.9. Namely,
by taking ϕ ∈ D(0,δ ), we have

〈 f ,ϕa〉=
∫ +∞

0
f (t)ϕa(t)dt =

∫ +∞

0
f (aτ)ϕ(τ)dτ . (5.2.24)

If f = O(tα), then, since ϕ has compact support, we can take a sufficiently small so
that in the above integral, we have | f (aτ)| ≤Caατα , for some positive constant C.
In other words, for all positive a sufficiently small, we have

|〈 f ,ϕa〉| ≤Caα
∫ +∞

0
ταϕ(τ)dτ = Kϕ aα , (5.2.25)

where the constant Kϕ depends only on the test function ϕ . One reasons analogously
in the case when f (t) = o(tα) as t → 0+. The same comment can also be made about
the asymptotics as t →+∞. On the other hand, we note that clearly, a distributional
asymptotic estimate in the case of regular distributions, does not in general imply
the usual pointwise one; see, for example, [PiStVi].

Finally, also observe that for a test function ϕ ∈ D(0,δ ) and a > 0, the Mellin
transform of ϕa satisfies the following scaling identity (see Equation (5.1.16) defin-
ing {M f}(s)):

{Mϕa}(s) = as−1{Mϕ}(s), (5.2.26)

for all s ∈ C.

We can now state the following result about the order of growth of the distribu-
tional error term appearing in Theorem 5.2.2. It is the analog in our present context
of [Lap-vFr3, Theorem 5.30].

Theorem 5.2.11 (Estimate for the distributional error term). Assume that the
hypotheses of Theorem 5.2.2 are satisfied, for a fixed k ∈ Z. Then, the distribution

R̃
[k]
A,Ω (t) given by (5.2.8) is of asymptotic order at most tN−supS+k as t → 0+; i.e,

R̃
[k]
A,Ω (t) = O(tN−supS+k) as t → 0+, (5.2.27)

in the sense of Definition 5.2.9.
Moreover, if S(τ)< supS for all τ ∈ R (that is, if the screen S lies strictly to the

left of the vertical line {Res = supS}), then R̃
[k]
A,Ω (t) is of asymptotic order less than

tN−supS+k; i.e.,
R̃

[k]
A,Ω (t) = o(tN−supS+k) as t → 0+, (5.2.28)

also in the sense of Definition 5.2.9.



5.2 Distributional Tube Formulas 439

Proof. Let ϕ be a test function. Then, the integral defining 〈R̃ [k]
A,Ω ,ϕ〉 in Equation

(5.2.8) converges absolutely. Furthermore, for any a ∈ (0,1), and by using (5.2.26),
we obtain the following estimate:

∣∣〈R̃ [k]
A,Ω ,ϕa

〉∣∣≤ 1
2π

∫
S

∣∣{Mϕa}(N−s+1+k)
∣∣

|(N−s+1)k|
|ζ̃A,Ω (s)| |ds|

=
1

2π

∫
S

aN−Res+k

∣∣{Mϕ}(N−s+1+k)
∣∣

|(N−s+1)k|
|ζ̃A,Ω (s)| |ds|

≤ const ·aN−supS+k;

this proves the first part of the theorem.
In order to establish the second part of the theorem, we use an argument similar

to the one used in the proof of estimate (5.1.34) of Theorem 5.1.11. ��

In the next corollary of either Theorem 5.2.2 or of Theorem 5.2.6, we consider
the important situation when k = 0, and as a special case, when all of the (visible)
complex dimensions are simple (in the spirit of Remark 5.1.15 and Theorem 5.1.16).
(We leave it as an exercise for the interested reader to state the corresponding corol-
lary in the key case when k =−1.)

Corollary 5.2.12 (Estimate for the distributional error term; level k = 0). Under
the hypotheses of Theorem 5.2.2, with k = 0 (or equivalently, under the hypotheses
of Theorem 5.2.6 in the languid case), the distributional error term in (5.2.6) (or
equivalently, in (5.2.21)) given by (5.2.8) with k = 0 satisfies the following error
estimate:

R̃
[0]
A,Ω (t) = O(tN−supS) as t → 0+ (5.2.29)

(resp., R̃
[0]
A,Ω (t) = o(tN−supS) as t → 0+, in the special case when the screen S lies

strictly to the left of the line {Res = supS}).
Consequently, we have that

|At ∩Ω |= ∑
ω∈P(ζ̃A,Ω ,W )

res
(

tN−sζ̃A,Ω (s),ω
)
+O(tN−supS) (5.2.30)

(resp., Equation (5.2.30) holds with o(tN−supS) instead of O(tN−supS)) as t → 0+, in
the distributional sense. Moreover, on the right-hand side of (5.2.30), the sum over
the visible complex dimensions of (A,Ω) becomes

∑
ω∈P(ζ̃A,Ω ,W )

tN−ω res
(
ζ̃A,Ω ,ω

)
(5.2.31)

in the important special case when all the visible complex dimensions (i.e., all of
the poles of ζ̃A,Ω = ζ̃A,Ω ( · ;δ ) lying in W ) are simple.



440 5 Fractal Tube Formulas and Complex Dimensions

5.3 Tube Formulas in Terms of the Relative Distance Zeta
Function

In this section, we translate the results from the previous sections in terms of the
relative distance zeta functions ζA,Ω := ζA,Ω ( · ;δ ) (instead of the tube zeta func-
tion ζ̃A,Ω , as in Sections 5.1 and 5.2). This is extremely useful in the applications
since the relative distance zeta function ζA,Ω of an RFD (A,Ω), can be calculated
without knowing its relative tube function t �→ |At ∩Ω |. Of course, the results will
follow, in particular, from the functional equation (4.5.2) which connects these two
fractal zeta functions, ζA,Ω and ζ̃A,Ω . More precisely, in order to derive the analo-
gous results in terms of the distance zeta function, we will introduce a new fractal
zeta function, called the relative shell zeta function, which satisfies a more direct
functional equation, compared to (4.5.2). For A ⊆ R

N and t,δ > 0 with t ≤ δ , let

At,δ := Aδ \At . (5.3.1)

The subset At,δ so defined can be thought of as the (t,δ )-shell of A.
Stachó has proved in [Sta] that for any bounded set A ⊂ R

N and every t > 0, we
have that |∂At | = 0, where ∂At denotes the boundary of At in R

N and (as usual)
|∂At | denotes its N-dimensional volume. Since any unbounded set in R

N may be
partitioned into a countable union of bounded subsets, the exact same statement is
also true for any unbounded subset of R

N . Consequently, for any relative fractal
drum (A,Ω) in R

N , we have (for 0 < t ≤ δ )

|At,δ ∩Ω |= |Aδ ∩Ω |− |At ∩Ω |= |Aδ ∩Ω |− |At ∩Ω |. (5.3.2)

5.3.1 The Relative Shell Zeta Function

Let ζ̃A,Ω ( · ;δ ) be the tube zeta function of the relative fractal drum (A,Ω) in R
N

and assume that Res > N, then we have

ζ̃A,Ω (s;δ ) =
∫ δ

0
ts−N−1|At ∩Ω |dt

=
∫ δ

0
ts−N−1(|Aδ ∩Ω |− |At,δ ∩Ω |)dt

=
δ s−N |Aδ ∩Ω |

s−N
−

∫ δ

0
ts−N−1|At,δ ∩Ω |dt.

(5.3.3)

Definition 5.3.1. Let (A,Ω) be an RFD in R
N and fix δ > 0. We define the shell zeta

function ζ̆A,Ω := ζ̆A,Ω ( · ;δ ) of A relative toΩ (or the relative shell zeta function) by

ζ̆A,Ω (s;δ ) :=−
∫ δ

0
ts−N−1|At,δ ∩Ω |dt, (5.3.4)
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for all s ∈ C with Res sufficiently large. Here, the integral is taken in the Lebesgue
sense.

In light of (5.3.3), we can now easily obtain the following theorem.

Theorem 5.3.2. Let (A,Ω) be an RFD in R
N and fix δ > 0. Then, the shell zeta

function ζ̆A,Ω ( · ;δ ) of (A,Ω) is holomorphic on the open right half-plane {Res >
N} and

d
ds
ζ̆A,Ω (s;δ ) =−

∫ δ

0
ts−N−1|At,δ ∩Ω | log t dt, (5.3.5)

for all s ∈ C such that Res > N.
Furthermore, for all s ∈ C such that Res > N, ζ̆A,Ω ( · ;δ ) satisfies the following

functional equations, connecting it to the tube and distance zeta functions of (A,Ω),
respectively:

ζ̃A,Ω (s;δ ) =
δ s−N |Aδ ∩Ω |

s−N
+ ζ̆A,Ω (s;δ ) (5.3.6)

and
ζA,Ω (s;δ ) = (N − s)ζ̆A,Ω (s;δ ). (5.3.7)

Proof. To prove the holomorphicity of ζ̆A,Ω ( · ;δ ), one observes that for every real
number σ > N, we have

|ζ̆A,Ω (σ ;δ )| ≤ |Aδ ∩Ω |
∫ δ

0
tσ−N−1 dt < ∞,

and one then uses Theorem 2.1.45 which also yields the formula (5.3.5) for the
derivative. Formula (5.3.6) is a rewriting of (5.3.3) and by combining it with the
functional equation (2.2.23), which connects the relative distance and tube zeta
functions, we obtain (5.3.7). ��

In light of Theorem 4.1.7, the principle of analytic continuation combined with
Equation (5.3.6) (or (5.3.7)) now immediately yields the following properties of the
relative shell zeta function.

Theorem 5.3.3. Let (A,Ω) be a relative fractal drum in R
N such that dimB(A,Ω)<

N and fix δ > 0. Then the following properties hold:

(a) The relative shell zeta function ζ̆A,Ω (s;δ ) is meromorphic in the half-plane
{Res > dimB(A,Ω)}, with a single simple pole at s = N. Furthermore,

res(ζ̆A,Ω ( · ;δ ),N) =−|Aδ ∩Ω |. (5.3.8)

(b) If the relative box (or Minkowski) dimension D := dimB(A,Ω) exists, D < N,
and M D

∗ (A,Ω)> 0, then ζ̆A,Ω (s)→+∞ as s ∈ R converges to D from the right.
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Proof. We conclude from the principle of analytic continuation that the func-
tional equalities (5.3.6) and (5.3.7) continue to hold on any open connected set
U ⊇ {Res > N} to which any of the three relative zeta functions, ζ̆A,Ω , ζ̃A,Ω or
ζA,Ω , has a holomorphic continuation. In light of this, part (a) follows from the
counterpart of Theorem 4.1.7 for the relative tube zeta function and from (5.3.6),
while part (b) follows from Theorem 4.1.7 and (5.3.7). ��

The following corollary is an immediate consequence of the above theorem, or
more precisely, of the functional equation (5.3.6) and the fact that for a given RFD
(A,Ω) in R

N and any fixed δ1,δ2 > 0, the difference ζ̃A,Ω (s;δ1)− ζ̃A,Ω (s;δ2) is
an entire function. (See Proposition 2.2.13, which has an obvious counterpart of
RFDs.)

Corollary 5.3.4. Let (A,Ω) be an RFD in R
N such that dimB(A,Ω) < N and fix

δ1,δ2 > 0 such that δ1 < δ2. Then, the difference ζ̆A,Ω (s;δ1)− ζ̆A,Ω (s;δ2) is mero-
morphic on all of C, with a single simple pole at s = N of residue |Aδ1,δ2

∩Ω |.

The next corollary follows at once from the first part of the proof of Theo-
rem 5.3.3. (Similarly as before, in the sequel, for simplicity, we will often use the
short-hand notation ζ̆A,Ω , ζ̃A,Ω and ζA,Ω , respectively, for the shell, tube and dis-
tance zeta function of the RFD (A,Ω).)

Corollary 5.3.5. Let (A,Ω) be an RFD in R
N. Then, the functional equations (5.3.6)

and (5.3.7) continue to hold on any connected open neighborhood U ⊆ C of the
critical line {Res = dimB(A,Ω)} to which any of the three relative zeta functions
ζ̆A,Ω , ζ̃A,Ω or ζA,Ω can be meromorphically continued. More specifically, if either

ζ̆A,Ω , ζ̃A,Ω or ζA,Ω has a (necessarily unique) meromorphic continuation on the
domain U ⊆ C, then so do the other two fractal zeta functions and the functional
equations (5.3.6) and (5.3.7) continue to hold for all s ∈ U between the resulting
meromorphic extensions of ζ̆A,Ω , ζ̃A,Ω and ζA,Ω .

Moreover, in light of the obvious counterpart for RFDs of Theorem 2.2.14 and
the functional equation (5.3.6), we have the following result.

Theorem 5.3.6. Assume that (A,Ω) is a Minkowski nondegenerate RFD in R
N, that

is, 0 < M D
∗ (A,Ω) ≤ M ∗D(A,Ω) < ∞ (in particular, dimB(A,Ω) = D), and D <

N. If ζ̆A,Ω (s) can be extended meromorphically to a connected neighborhood of

s = D, then D is necessarily a simple pole of ζ̆A,Ω (s), the residue res(ζ̆A,Ω ,D) is
independent of δ and

M D
∗ (A,Ω)≤ res(ζ̆A,Ω ,D)≤ M ∗D(A,Ω). (5.3.9)

Furthermore, if (A,Ω) is Minkowski measurable, then

res(ζ̆A,Ω ,D) = M D(A,Ω). (5.3.10)
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The most useful fact about the relative shell zeta function is that the residues of
its meromorphic extension at any of its (simple) poles belonging to the open left
half-plane {Res < N} have a simple connection to the residues of the relative tube
or distance zeta functions. (See also Corollary 5.3.5 just above.)

Lemma 5.3.7. Assume that (A,Ω) is an RFD in R
N such that its tube or distance or

shell zeta function is meromorphic on some connected open neighborhood U ⊆C of
the critical line {Res= dimB(A,Ω)}. Then, the multisets of poles located in U \{N}
of each of the three zeta functions, ζ̆A,Ω , ζ̃A,Ω and ζA,Ω , coincide:

P
(
ζ̆A,Ω ,U \{N}

)
= P

(
ζ̃A,Ω ,U \{N}

)
= P

(
ζA,Ω ,U \{N}

)
. (5.3.11)

Moreover, ifω ∈U \{N} is a simple pole of one of the three fractal zeta functions
ζ̆A,Ω , ζ̃A,Ω or ζA,Ω , then it is also a simple pole of the other two fractal zeta functions
and we have

res(ζ̆A,Ω ,ω) = res(ζ̃A,Ω ,ω) =
res(ζA,Ω ,ω)

N −ω . (5.3.12)

Although the shell zeta function, ζ̆A,Ω , may seem rather artificial in the present
context of relative fractal drums, it will prove to be quite useful as a “translation
tool” for deriving the tube formulas (originally obtained via the tube zeta function,
ζ̃A,Ω , in Sections 5.1 and 5.2) in terms of the much more practical geometric distance
zeta function, ζA,Ω . We note that the shell zeta function originally arose naturally
in [Ra1–2], where it was used, in particular, to generalize the present theory of
complex dimensions developed in this book and in [LapRaŽu1–8] to the special
case of unbounded sets at infinity having infinite Lebesgue measure.

5.3.2 Pointwise Tube Formulas in Terms of the Distance Zeta
Function

Similarly as in the case of the relative tube zeta function of (A,Ω), we observe that
ζ̆A,Ω (s) = {M f}(s), where f (s) :=−t−Nχ(0,δ )(t)|At,δ ∩Ω |. Note that f is continu-
ous and of bounded variation on (0,+∞); so that we can apply the Mellin inversion
theorem (Theorem 5.1.6), much as in the proof of Theorem 5.1.7, and conclude that

|At,δ ∩Ω |=− 1
2πi

∫ c+i∞

c−i∞
tN−sζ̆A,Ω (s;δ )ds, (5.3.13)

where c > N is arbitrary and t ∈ (0,δ ). In light of (5.3.2), the following theorem is
an immediate consequence of the identity (5.3.13).

Theorem 5.3.8. Let (A,Ω) be a relative fractal drum in R
N and fix δ > 0. Then, for

every t ∈ (0,δ ) and any real number c > N, we have

|At ∩Ω |= |Aδ ∩Ω |+ 1
2πi

∫ c+i∞

c−i∞
tN−sζ̆A,Ω (s;δ )ds. (5.3.14)
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It is now clear that if the shell zeta function of (A,Ω) satisfies the languidity
conditions of Definition 5.1.3, with the constant c > N in the condition L1, or the
strong languidity conditions of Definition 5.1.4, we can rewrite the results of Sec-
tions 5.1 and 5.2 verbatim in terms of the shell zeta function. Note that for this
to work, it was crucial that in the truncated pointwise formula of Lemma 5.1.10,
we had the freedom to choose any c ∈ (dimB(A,Ω),N + 1). Furthermore, observe
that the additional pole of the shell zeta function at s = N will cancel out the term
|Aδ ∩Ω | in (5.3.14) above. More specifically, in the analog of the pointwise formula
stated in Theorem 5.1.11 for the relative shell zeta function, we obtain the following
pointwise fractal tube formula with error term, expressed in terms of the shell zeta
function ζ̆A,Ω := ζ̆A,Ω ( · ;δ ):

V [k]
A,Ω (t) = ∑

ω∈P(ζ̆A,Ω ,W )

res

(
tN−s+k

(N−s+1)k
ζ̆A,Ω (s;δ ),ω

)

+ |Aδ ∩Ω | tk

(1)k
+ R̆[k]

A,Ω (t),

(5.3.15)

valid pointwise for all t ∈ (0,δ ). Here, just as in the statement of Theorem 5.1.11,
the shell zeta function ζ̆A,Ω) of the RFD (A,Ω) is assumed to be languid for some
fixed δ > 0 and some fixed constant κ ∈R, as well as with the constant c satisfying
c > N. Furthermore, the nonnegative integer k is assumed to be such that k > κ+1

and for every t ∈ (0,δ ), the error term R̆[k]
A,Ω is given (much as in (5.1.31)) by the

absolutely convergent (and hence, convergent) integral

R̆[k]
A,Ω (t) =

1
2πi

∫
S

tN−s+k

(N−s+1)k
ζ̆A,Ω (s;δ )ds. (5.3.16)

Moreover, it satisfies the exact analog of the pointwise error estimate (5.1.32), valid
pointwise for all t ∈ (0,δ ). Hence, it satisfies (for ζ̆A,Ω instead of for ζ̃A,Ω ) the error
estimate (5.1.33) and, in the special case when the screen S lies strictly to the left of
the vertical line {Res = supS}, it satisfies the exact analog (for ζ̆A,Ω ) of the stronger
error estimate (5.1.34).

In addition, by singling out the residue at s = N from the above sum and using
Lemma 5.3.7 and Theorem 5.3.3(a), along with the functional equation (5.3.7), we
can rewrite the above equation in (5.3.15) as

V [k]
A,Ω (t) = ∑

ω∈P(ζA,Ω ,W )

res

(
tN−s+k

(N−s)k+1
ζA,Ω (s;δ ),ω

)
+R[k]

A,Ω (t), (5.3.17)

where the pointwise error term R[k]
A,Ω is now given by the absolutely convergent (and

hence, convergent) integral

R[k]
A,Ω (t) =

1
2πi

∫
S

tN−s+k

(N−s)k+1
ζA(s,Ω ;δ )ds. (5.3.18)



5.3 Tube Formulas in Terms of the Relative Distance Zeta Function 445

Let us now define the analogs of the languidity conditions of a relative fractal
drum in terms of its relative distance zeta function.

Definition 5.3.9. (d-languidity and strong d-languidity). We say that a relative
fractal drum (A,Ω) in R

N is d-languid (resp., strongly d-languid) if it is lan-
guid in the sense of Definition 5.1.3 (resp., Definition 5.1.4), but with the relative
tube zeta function ζ̃A,Ω = ζ̃A,Ω ( · ;δ ) replaced by the relative distance zeta function
ζA,Ω = ζA,Ω ( · ;δ ) and with the constant c appearing in L1 satisfying c > N.

The following lemma is an immediate consequence of the functional equation
(5.3.7).

Lemma 5.3.10. Let (A,Ω) be a relative fractal drum in R
N such that dimB(A,Ω)<

N and which is d-languid for some value δ > 0 and with some d-languidity exponent
κd ∈R. Then the shell zeta function ζ̆A,Ω of (A,Ω) satisfies the languidity conditions
of Definition 5.1.3 for the same value of δ and with the languidity exponent κ :=
κd −1.

Furthermore, if (A,Ω) is strongly d-languid with the corresponding constant
B > 0 and for some d-languidity exponent κd ∈ R and some δ > 0, then the shell
zeta function ζ̆A,Ω of (A,Ω) satisfies the strong languidity conditions of Definition
5.1.4 with the languidity exponent κ := κd −1 and with the same constant B as well
as the same value of δ .

We are now able to state and prove the main theorem of this section, which is the
analog for ζA,Ω of Theorem 5.1.11 stated in Section 5.1 in terms of ζ̃A,Ω .

Theorem 5.3.11 (Pointwise fractal tube formula with error term, via ζA,Ω ). Let
(A,Ω) be a relative fractal drum in R

N which is d-languid for some δ > 0 and with
d-languidity exponent κd ∈ R. Furthermore, assume that dimB(A,Ω) < N and let
k > κd be a nonnegative integer. Then, the following pointwise fractal tube formula,
expressed in terms of the distance zeta function ζA,Ω := ζA,Ω ( · ;δ ), is valid for every
t ∈ (0,δ ):

V [k]
A,Ω (t) = ∑

ω∈P(ζA,Ω),W )

res

(
tN−s+k

(N−s)k+1
ζA,Ω (s),ω

)
+R[k]

A,Ω (t). (5.3.19)

Here, for every t ∈ (0,δ ), the error term R[k]
A,Ω is given by the absolutely convergent

(and hence, convergent) integral

R[k]
A,Ω (t) =

1
2πi

∫
S

tN−s+k

(N−s)k+1
ζA,Ω (s)ds. (5.3.20)

Furthermore, for every t ∈ (0,δ ), we have

|R[k]
A,Ω (t)| ≤ tN+k max{t−supS, t− infS}

(
C
(
1+‖S‖Lip

)
2π(k−κd)

+C′
)
, (5.3.21)
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where C is the constant appearing in L1 and L2 and C′ is some suitable positive
constant. These constants depend only on the relative fractal drum (A,Ω) and the
screen, but not on k.

In particular, we have the following pointwise error estimate:

R[k]
A,Ω (t) = O(tN−supS+k) as t → 0+. (5.3.22)

Moreover, if S(τ)< supS (i.e., if the screen S lies strictly left of the vertical line
{Res = supS}), then we have the following stronger pointwise error estimate:

R[k]
A,Ω (t) = o(tN−supS+k) as t → 0+. (5.3.23)

Proof. In light of Lemma 5.3.10, we have that ζ̆A,Ω , the shell zeta function of
(A,Ω), also satisfies the appropriate languidity conditions with languidity exponent
κ := κd − 1 and for the same value of δ . The theorem now follows much as in the
case of the relative tube zeta function ζ̃A,Ω ; see the proof of Theorem 5.1.11 and the
discussion following Theorem 5.3.8. ��

Remark 5.3.12. In Theorem 5.3.11, the additional assumption according to which
dimB(A,Ω)<N is made in order to avoid the situation where s=N is a pole of ζ̃A,Ω .
We will also assume that this additional hypothesis is satisfied in the statements of
all the other theorems involving the relative distance zeta function in the present
section.

Theorem 5.3.13 (Exact pointwise fractal tube formula via ζA,Ω ). Let (A,Ω) be
a relative fractal drum in R

N which is strongly d-languid for some δ > 0 and with
d-languidity exponent κd ∈R. Furthermore, let k > κd −1 be a nonnegative integer
and assume that dimB(A,Ω) < N. Then, the following exact pointwise fractal tube
formula, expressed in terms of the distance zeta function ζA,Ω := ζA,Ω ( · ;δ ), holds
for every t ∈ (0,min{1,δ ,B−1}):

V [k]
A,Ω (t) = ∑

ω∈P(ζA,Ω ,C)

res

(
tN−s+k

(N−s)k+1
ζA,Ω (s),ω

)
. (5.3.24)

Here, B is the constant appearing in L2’ and κd is the exponent occurring in the
statement of hypotheses L1 and L2’.

Proof. In light of Lemma 5.3.10 and the functional equation (5.3.7), the proof of
the theorem parallels that of Theorem 5.3.11, except for the tube zeta function
ζ̃A,Ω ( · ;δ ) now replaced by the shell zeta function ζ̆A,Ω ( · ;δ ). ��

In some cases, we will have a relative fractal drum (A,Ω) that is ‘almost’ strongly
d-languid, but not exactly. More precisely, (A,Ω) will satisfy all of the conditions
of strong d-languidity except for the condition that L1 is satisfied for all σ < c. For
example, let A be the middle-third Cantor set constructed in [0,1] and letΩ = (0,1).
Then, the relative distance zeta function ζA,Ω is meromorphic on all of C and given
for all s ∈ C by (see (2.1.113) from Example 2.1.82):
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ζA,Ω (s) =
21−s

s(3s −2)
. (5.3.25)

As one can easily check, it almost satisfies the strong languidity conditions with
κd :=−1, where the sequence of screens Sm can be taken as the sequence of vertical
lines {Res =−m} for m ∈N. The problem here is due to the factor 2−s which tends
exponentially fast to +∞ as Res →−∞, so that condition L1 cannot be fulfilled for
all σ < c. In order to obtain a pointwise formula in this and similar cases, we can
multiply ζA,Ω (s) by 2s and then, the resulting function will be strongly d-languid.
On the other hand, by the scaling property of the relative distance zeta function
(see Theorem 4.1.40), we have that 2s ζA,Ω (s) = ζ2A,2Ω (s). Hence, we can state the
following corollary dealing with this situation and which will be used repeatedly
(most often implicitly) in Sections 5.4 and 5.5.

Corollary 5.3.14 (Exact pointwise fractal tube formula via ζA,Ω ; scaled ver-
sion). Let (A,Ω) be a relative fractal drum in R

N such that dimB(A,Ω) < N. Fur-
thermore, assume that there exists a scaling factor λ > 0 such that (λA,λΩ) is
a strongly d-languid RFD in R

N, for some δ > 0 and with d-languidity exponent
κd ∈ R. Moreover, let k > κd − 1 be a nonnegative integer. Then, the following ex-
act pointwise fractal tube formula, expressed in terms of the distance zeta function
ζA,Ω , holds for every t ∈ (0,λ−1 min{1,δ ,B−1}):

V [k]
A,Ω (t) = ∑

ω∈P(ζA,Ω ,C)

res

(
tN−s+k

(N−s)k+1
ζA,Ω (s),ω

)
. (5.3.26)

Here, B is the constant appearing in L2’ (for the function s �→ ζλA,λΩ (s;δ ) =
λ sζA,Ω (s;δλ−1)) and κd is the exponent occurring in the statement of hypotheses
L1 and L2’.

Proof. Let us denote by V [k]
λ (τ) the k-th primitive of the function

τ �→ |(λA)τ ∩λΩ |.

Since we know from Lemma 4.6.10 that V [0]
λ (τ) = λNV [0](τ/λ ), we deduce that

V [1]
λ (τ) =

∫ τ

0
V [0]
λ (t)dt = λN

∫ τ

0
V [0]

A,Ω (t/λ )dt = λN+1
∫ τ/λ

0
V [0]

A,Ω (ξ )dξ , (5.3.27)

or, in other words, V [1]
λ (τ) = λN+1V [1]

A,Ω (τ/λ ) and hence, by induction,

V [k]
λ (τ) = λN+kV [k]

A,Ω (τ/λ ), (5.3.28)

for all nonnegative integers k. We now apply Theorem 5.3.13 to the relative fractal
drum (λA,λΩ) and obtain the following fractal tube formula, valid pointwise for
all τ ∈ (0,min{1,δ ,B−1}):
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V [k]
λ (τ) = ∑

ω∈P(ζλA,λΩ ,C)

res

(
τN−s+k

(N−s)k+1
ζλA,λΩ (s;δ ),ω

)
. (5.3.29)

Now combining (5.3.28) with (5.3.29) and the scaling property of the relative dis-
tance zeta function (Theorem 4.1.40), we deduce that

λN+kV [k]
A,Ω (τ/λ ) = ∑

ω∈P(ζA,Ω ,C)

res

(
τN−s+kλ s

(N−s)k+1
ζA,Ω (s;δλ−1),ω

)
. (5.3.30)

Finally, we complete the proof of the corollary by multiplying the above identity by
λ−N−k and introducing a new variable t := τ/λ . ��

Remark 5.3.15. We point out that an analogous corollary can be stated in terms
of the relative tube zeta function and the exact pointwise tube formula of Theo-
rem 5.1.13.

The most interesting situation is, of course, the case when we can apply Theo-
rems 5.3.11 and 5.3.13 at the level k = 0. We now state the corresponding corollaries
of these two theorems as a separate (and single) theorem.

Theorem 5.3.16 (Pointwise fractal tube formula via ζA,Ω ; level k = 0).

(i) Under the same hypotheses as in Theorem 5.3.11, with k := 0, and using the
same notation as in that theorem, with κd < 0, the following pointwise fractal tube
formula with error term, expressed in terms of the distance zeta function ζA,Ω :=
ζA,Ω ( · ;δ ), holds for all t ∈ (0,δ ):

|At ∩Ω |= ∑
ω∈P(ζA,Ω ,W )

res

(
tN−s

N−s
ζA,Ω (s),ω

)
+R[0]

A,Ω (t), (5.3.31)

where R[0]
A,Ω (t) is the error term given by formula (5.3.20) with k := 0. Furthermore,

we have the following pointwise error estimate:

R[0]
A,Ω (t) = O(tN−supS) as t → 0+. (5.3.32)

Moreover, if S(τ)< supS for every τ ∈R (i.e., if the screen S lies strictly to the left
of the vertical line {Res = supS}), we then have the following stronger pointwise
error estimate:

R[0]
A,Ω (t) = o(tN−supS) as t → 0+. (5.3.33)

(ii) Finally, under the same hypotheses as in Theorem 5.3.13 or Corollary 5.3.14,
with k := 0 and κd < 1, and if, in addition (λA,λΩ) is strongly d-languid for
some λ > 0, then the fractal tube formula (5.3.31) holds pointwise for all t ∈
(0,λ−1 min{1,δ ,B−1}), with R[0]

A,Ω (t) ≡ 0 and W := C; so that (5.3.31) becomes
an exact fractal tube formula in this case.
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The exact analog of Remark 5.1.15, Theorem 5.1.16 and Remark 5.1.17 holds in
the present situation, except for the relative tube zeta function ζ̃A,Ω replaced by the
relative distance zeta function ζA,Ω of the RFD (A,Ω). In order to avoid too many
repetitions, we only state the counterpart of Theorem 5.1.16 in the present context.
It is, of course, the corollary of Theorem 5.3.16 corresponding to the level k = 0.

Theorem 5.3.17 (Pointwise fractal tube formula via ζA,Ω ; level k = 0 and the
case of simple poles). Assume that the hypotheses of Theorem 5.3.16 hold. Suppose,
in addition, that all of the visible complex dimensions of the RFD (A,Ω) are simple
(i.e., all of the poles of ζA,Ω or, equivalently, since D := dimB(A,Ω) < N here, of
ζ̃A,Ω , belonging to the window W are simple). Then, the pointwise fractal tube
formula (5.3.31), expressed in terms of ζA,Ω , takes the following simpler form, valid
for all t ∈ (0,δ ):

|At ∩Ω |= ∑
ω∈P(ζA,Ω ,W )

tN−ω

N −ω res
(
ζA,Ω (s),ω

)
+R[0]

A,Ω (t), (5.3.34)

where the (pointwise) error term R[0]
A,Ω is the same as in Theorem 5.3.11 at level

k = 0 and hence, satisfies the same (pointwise) error estimates [(5.3.32) or (5.3.33),
depending on the hypotheses] as in Theorem 5.3.16. In particular, in the strongly
languid case (i.e., if (λA,λΩ) is strongly languid for some λ > 0), we have

R[0]
A,Ω ≡ 0 and W := C, so that (5.3.34) then becomes an exact pointwise fractal

tube formula, valid for all t ∈ (0,λ−1 min{1,δ ,B−1}).

Remark 5.3.18. Note that the hypothesis according to which D := dimB(A,Ω)< N
(see Theorems 5.3.11 and 5.3.13, Corollary 5.3.14, along with Theorems 5.3.16 and
5.3.17) imply that s = N is not a pole of ζA,Ω , a fact which is explicitly needed in
deducing (5.3.34) from (5.3.31). Indeed, since (by part (a) of Theorem 4.1.7) ζA,Ω
is holomorphic in the open right half-plane {Res > D}, we then have the following
inclusions:

P(ζA,Ω ,W )⊆ {Res ≤ D} ⊆ {Res ≤ N}. (5.3.35)

5.3.3 Distributional Tube Formulas in Terms of the Distance Zeta
Function

Let us now state the distributional analogs of the above results in terms of the rel-
ative distance zeta function. The proofs are completely analogous to the ones from
Section 5.2 for the case of the relative tube zeta function. Again, we use the rela-
tive shell zeta function and the same scaling technique as in the proof of Corollary
5.3.14 (and Theorem 5.3.13) above to obtain the desired results under the hypothe-
ses of d-languidity (Theorem 5.3.19) or of strong d-languidity (Theorem 5.3.20),
respectively.
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Theorem 5.3.19 (Distributional fractal tube formula with error term, via ζA,Ω ).
Let (A,Ω) be a d-languid relative fractal drum in R

N for some δ > 0 and d-
languidity exponent κd ∈ R. Furthermore, assume that dimB(A,Ω) < N. Then, for

every k ∈Z, the distribution V
[k]

A,Ω in K ′(0,δ ) (and hence, also in D ′(0,δ )) is given
by the following distributional fractal tube formula, with error term and expressed
in terms of the distance zeta function ζA,Ω := ζA,Ω ( · ;δ ):

V
[k]

A,Ω (t) = ∑
ω∈P(ζA,Ω ,W )

res

(
tN−s+k

(N−s)k+1
ζA,Ω (s),ω

)
+R

[k]
A,Ω (t). (5.3.36)

That is, the action of V
[k]

A,Ω (t) on an arbitrary test function ϕ ∈ K (0,δ ) is given by

〈
V

[k]
A,Ω ,ϕ

〉
= ∑
ω∈P(ζA,Ω ,W )

res

({Mϕ}(N−s+1+ k)ζA,Ω (s)

(N−s)k+1
,ω

)

+
〈
R

[k]
A,Ω ,ϕ

〉
.

(5.3.37)

Here, the distribution R
[k]
A,Ω in K ′(0,δ ) is the distributional error term given for all

ϕ ∈ K (0,δ ) by

〈
R

[k]
A,Ω ,ϕ

〉
=

1
2πi

∫
S

{Mϕ}(N−s+1+k)ζA,Ω (s)

(N−s)k+1
ds. (5.3.38)

Furthermore, the distribution R
[k]
A,Ω (t) is of asymptotic order at most tN−supS+k as

t → 0+; i.e,
R

[k]
A,Ω (t) = O(tN−supS+k) as t → 0+, (5.3.39)

in the sense of Definition 5.2.9.
If, in addition, S(τ) < supS for all τ ∈ R (that is, if the screen S lies strictly to

the left of the vertical line {Res = supS}), then R
[k]
A,Ω (t) is of asymptotic order less

than tN−supS+k; i.e., still in the sense of Definition 5.2.9, we have that

R
[k]
A,Ω (t) = o(tN−supS+k) as t → 0+. (5.3.40)

In the case of a (possibly scaled) strongly d-languid relative fractal drum, as
before, we obtain a distributional formula without an error term, as stated in the
next theorem.

Theorem 5.3.20 (Exact distributional fractal tube formula via ζA,Ω ). Let (A,Ω)
be a relative fractal drum in R

N and assume also that dimB(A,Ω) < N. Further-
more, assume that there exists λ > 0 such that (λA,λΩ) is strongly d-languid for
some δ > 0, κd ∈ R, and let δ0 := λ−1 min{1,δ ,B−1}.15 Then, for every k ∈ Z, the

distribution V
[k]

A,Ω in D ′(0,δ0) is given in terms of ζA,Ω := ζA,Ω ( · ;δ ) by

15 Here, B is the constant appearing in condition L2’ for the function ζλA,λΩ (s;δ ).
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V
[k]

A,Ω (t) = ∑
ω∈P(ζA,Ω ,C)

res

(
tN−s+k

(N−s)k+1
ζA,Ω (s),ω

)
. (5.3.41)

That is, the action of V
[k]

A,Ω on an arbitrary test function ϕ ∈ D(0,δ0) is given by

〈
V

[k]
A,Ω (t),ϕ

〉
= ∑
ω∈P(ζA,Ω ,C)

res

({Mϕ}(N−s+1+k)ζA,Ω (s)

(N−s)k+1
,ω

)
. (5.3.42)

We conclude this section by stating as a separate (and single) theorem the most
interesting special case of Theorems 5.3.19 and 5.3.20, when k = 0.

Theorem 5.3.21 (Distributional fractal tube formula via ζA,Ω ; level k = 0). Un-
der the same hypotheses as in Theorem 5.3.19, with k := 0, we have the following
distributional equality in K ′(0,δ ) for the relative tube function t �→ |At ∩Ω | of the
relative fractal drum (A,Ω) in R

N :

|At ∩Ω |= ∑
ω∈P(ζA,Ω ,W )

res

(
tN−s

N−s
ζA,Ω (s),ω

)
+R

[0]
A,Ω (t), (5.3.43)

where R
[0]
A,Ω (t) is given by (5.3.38) for k = 0 and R

[0]
A,Ω (t) = O(tN−supS) as t → 0+

or, if S(τ)< supS for all τ ∈ R, then R
[0]
A,Ω (t) = o(tN−supS) as t → 0+.

Moreover, under the same hypotheses as in Theorem 5.3.20, with k := 0, and if
(λA,λΩ) is strongly d-languid for some λ > 0, then the analog of (5.3.43) holds

in D ′(0,δ0), where δ0 := λ−1 min{1,δ ,B−1} and with R
[0]
A,Ω (t) ≡ 0 and W := C;

so that we obtain an exact distributional fractal tube formula in this case.
Finally, if, in addition, each visible complex dimension of (A,Ω) is simple (i.e.,

if each pole of ζA,Ω or, equivalently, of ζ̃A,Ω , located in W is simple), then the sum
over the complex dimensions in (5.3.43) (or in its analog with W :=C, for the exact
tube formula) becomes

∑
ω∈P(ζA,Ω ,W )

tN−ω

N−ω res
(
ζA,Ω (s),ω

)
. (5.3.44)

5.4 A Criterion for Minkowski Measurability

In this section, we obtain, in particular, a necessary and sufficient condition for the
Minkowski measurability of a large class of RFDs (A,Ω) in R

N , expressed in terms
of the principal poles of their fractal zeta functions. More specifically, under suitable
hypotheses, an RFD with Minkowski dimension D is Minkowski measurable if and
only if its only complex dimension with real part D is equal to D itself, and D is sim-
ple. (See Theorems 5.4.20 and 5.4.25, along with Remark 5.4.21.) We also obtain
a sufficient condition (with weaker hypotheses imposed on the RFD in comparison
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to the Minkowski measurability criterion of Theorem 5.4.20) for the Minkowski
measurability of a relative fractal drum; see Theorem 5.4.2. Furthermore, we estab-
lish an upper bound for the upper Minkowski content of an RFD in terms of the
residue at s = D of its fractal zeta function, where D denotes the upper Minkowski
dimension of the RFD; see Theorem 5.4.4. Naturally, all of theses results apply, in
particular, to bounded subsets A of RN , with N ≥ 1 arbitrary, by simply consider-
ing the associated RFD (A,Aδ ), for any δ > 0 or, even more conveniently, the RFD
(A,Ω), where Ω is any open neighborhood of the set A.

5.4.1 A Sufficient Condition for Minkowski Measurability

In this subsection, we show that a sufficient condition for the Minkowski measura-
bility of a relative fractal drum (A,Ω) can be given in terms of its relative tube (or
distance) zeta function. This will be a consequence of a well-known Tauberian theo-
rem due to Wiener and Pitt (see [PitWie]) and which generalizes the famous Ikehara
Tauberian theorem. The proof of the Wiener–Pitt Tauberian theorem can also be
found in [Kor, Chapter III, Lemma 9.1 and Proposition 4.3] or in [Pit, Section 6.1]
and in [Dia], where a different proof using a technique due to Bochner is given. We
next state this theorem, for the sake of completeness. (Clearly, in either the state-
ment of Theorem 5.4.1 or in the proofs of Theorems 5.4.2 and 5.4.4, the symbol h
does not refer to a gauge function, unlike in Subsection 5.4.4, for example.)

Theorem 5.4.1 (The Wiener–Pitt Tauberian theorem, cited from [Kor]). Let
σ : R → R be such that σ(t) vanishes for all t < 0, is nonnegative for all t ≥ 0,
and such that its Laplace transform

F(s) := {Lσ}(s) :=
∫ +∞

0
e−stσ(t)dt (5.4.1)

exists for all s ∈C such that Res > 0. Furthermore, suppose that for some constants
A > 0 and λ > 0, the function

H(s) := F(s)− A
s
, s := x+ iy (x > 0, y ∈ R), (5.4.2)

converges in L1(−λ ,λ ) to a boundary function H(iy) as x → 0+. Then, for every
fixed real number h ≥ 2π/λ , we have that

σh(u) :=
1
h

∫ u+h

u
σ(t)dt ≤CA+o(1) as u →+∞, (5.4.3)

for some positive constant C < 3.
Moreover, if the above constant λ can be taken to be arbitrarily large, then for

every fixed h > 0,
σh(u)→ A as u →+∞. (5.4.4)
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Let us now state the aforementioned result and then prove it by using the above
Tauberian theorem.

Theorem 5.4.2 (Sufficient condition for Minkowski measurability). Let (A,Ω)
be a relative fractal drum in R

N and let D := dimB(A,Ω). Furthermore, suppose
that the relative tube zeta function ζ̃A,Ω of (A,Ω) can be meromorphically extended
to a connected open neighborhood U ⊆ C of the critical line {Res = D}, with a
single pole D, which is assumed to be simple. Then D := dimB(A,Ω) exists, D = D
and (A,Ω) is Minkowski measurable with Minkowski content given by

M D(A,Ω) = res(ζ̃A,Ω ,D). (5.4.5)

Moreover, if we assume, in addition, that D < N, then the theorem is also valid if
we replace the relative tube zeta function ζ̃A,Ω by the relative distance zeta function
ζA,Ω of (A,Ω), and in that case, we have

M D(A,Ω) =
res(ζA,Ω ,D)

N −D
. (5.4.6)

Proof. Without loss of generality, for the tube zeta function ζ̃A,Ω ( · ;δ ) we may
choose δ = 1 and change the variable of integration by letting u := 1/t:

ζ̃A,Ω (s+D) =
∫ 1

0
ts+D−1−N |At ∩Ω |dt

=
∫ +∞

1
u−s−1−D+N |A1/u ∩Ω |du

=
∫ +∞

0
e−svev(N−D)|Ae−v ∩Ω |dv = {Lσ}(s),

(5.4.7)

where we have made another change of variable in the second to last equality,
namely, v := logu, and we have let σ(v) := ev(N−D)|Ae−v ∩Ω |. Clearly, the defi-
nition of the relative tube zeta function of (A,Ω) implies that the residue of ζ̃A,Ω (s)
at s = D must be real and positive. (Note that, a priori, it should be nonnegative, but
since by hypothesis, D is a pole of the meromorphic continuation of ζ̃A,Ω to U , the
residue at D must be different from zero.) Furthermore, since s = D is the only pole
of ζ̃A,Ω in U , we conclude that

H(s) := ζ̃A,Ω (s+D)− res(ζ̃A,Ω ,D)

s
(5.4.8)

is holomorphic in the connected open neighborhood UD := {s ∈ C : s+D ∈ U}
of the vertical line {Res = 0}. In other words, we can apply Theorem 5.4.1 (for
arbitrarily large λ > 0, in the notation of that theorem) and conclude that

σh(u) =
1
h

∫ u+h

u
σ(v)dv → res(ζ̃A,Ω ,D) as u →+∞, (5.4.9)
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for every h > 0.16 In particular, since v �→ |Ae−v ∩Ω | is nonincreasing, we next
consider the following two cases:

Case (a): We assume that D < N. Hence, we have

1
h

∫ u+h

u
ev(N−D)|Ae−v ∩Ω |dv ≤ |Ae−u ∩Ω |

h

∫ u+h

u
ev(N−D) dv

=
|Ae−u ∩Ω |
e−u(N−D)

eh(N−D)−1

(N −D)h
.

By taking the lower limit of both sides as u →+∞, we obtain that

res(ζ̃A,Ω ,D)≤ M D
∗ (A,Ω)

eh(N−D)−1

(N −D)h
. (5.4.10)

Since this is true for every h > 0, we can deduce by letting h → 0+ that

res(ζ̃A,Ω ,D)≤ M D
∗ (A,Ω). (5.4.11)

On the other hand, we have

1
h

∫ u+h

u
ev(N−D)|Ae−v ∩Ω |dv ≥

|Ae−(u+h) ∩Ω |
h

∫ u+h

u
ev(N−D) dv

=
|Ae−(u+h) ∩Ω |
e−(u+h)(N−D)

1− e−h(N−D)

(N −D)h

(5.4.12)

and, similarly as before, by taking the upper limit of both sides as u → +∞, we
obtain that

res(ζ̃A,Ω ,D)≥ M ∗D(A,Ω)
1− e−h(N−D)

(N −D)h
. (5.4.13)

Since this is true for every h > 0, we let h → 0+ and conclude that

res(ζ̃A,Ω ,D)≥ M ∗D(A,Ω). (5.4.14)

This latter inequality, combined with (5.4.11), implies that (A,Ω) is D-Minkowski
measurable which, a fortiori, implies that D = dimB(A,Ω) = D. Furthermore, we
also conclude that res(ζ̃A,Ω ,D) = M D(A,Ω), the Minkowski content of (A,Ω).

Case (b): We will now assume that D = N. Therefore, in this case we have

|Ae−(u+h) ∩Ω |=
|Ae−(u+h) ∩Ω |
e−(u+h)(N−N)

≤ 1
h

∫ u+h

u
|Ae−v ∩Ω |dv ≤ |Ae−u ∩Ω |

e−u(N−N)
= |Ae−u ∩Ω |.

16 The convergence of H(s) in L1(−λ ,λ ) as Res → 0+, which is required by Theorem 5.4.1,
follows easily since the contour integral of H over the rectangle with vertices at −λ i, Res −
λ i, Res+λ i, and λ i is equal to zero.
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Then, by taking, respectively, the lower and upper limits as u →+∞, we obtain that

M ∗N(A,Ω)≤ res(ζ̃A,Ω ,N)≤ M N
∗ (A,Ω). (5.4.15)

Finally, if D < N, then the part of the theorem dealing with the distance (instead
of the tube) zeta function of (A,Ω) follows at once from case (a) of the proof for
ζ̃A,Ω . This is so in light of the functional equation (4.5.2) connecting ζA,Ω and ζ̃A,Ω ,
or more precisely, of the relation between the residues at the simple pole s = D of
the two zeta functions which follows from it (namely, we have that res(ζA,Ω ,D) =

(N −D) res(ζ̃A,Ω ,D)). This concludes the proof of the theorem. ��

Remark 5.4.3. In light of Theorem 5.4.1, the assumptions of Theorem 5.4.2 can be
weakened. More precisely, it suffices to assume that for every fixed λ > 0, the func-
tion

ζ̃A,Ω (s)−
res(ζ̃A,Ω ,D)

s−D
(5.4.16)

(restricted to the vertical line segment (−iλ ,iλ ) and viewed as a function of τ :=
Ims∈ (−λ ,λ )), converges in L1(−λ ,λ ) to a boundary function H(i Ims) as Res→
D
+

. Consequently, H(iτ) must then satisfy

∫ λ

−λ
|H(iτ)|dτ < ∞, (5.4.17)

for every λ > 0.

In the case when, besides D, there are other singularities on the critical line
{Res = D} of the relative fractal drum (A,Ω), we can use Theorem 5.4.1 to de-
rive an upper bound for the upper D-dimensional Minkowski content of (A,Ω),
expressed in terms of the residue of its relative tube (or distance) zeta function at
s = D, as we now explain in the next result.

Theorem 5.4.4 (Upper bound for the upper Minkowski content). Let (A,Ω) be
a relative fractal drum in R

N and let D := dimB(A,Ω). Furthermore, assume that
the relative tube zeta function ζ̃A,Ω of (A,Ω) can be meromorphically extended to
a connected open neighborhood U of the critical line {Res = D} and that D is a
simple pole of its meromorphic continuation to U. Also assume that the critical line
{Res = D} contains another pole of ζ̃A,Ω , different from D. Furthermore, let

λA,Ω := inf
{
|D−ω| : ω ∈ dimPC(A,Ω)\

{
D
}}

. (5.4.18)

Then, if D < N, we have the following upper bound for the upper D-dimensional
Minkowski content of (A,Ω), expressed in terms of the residue at s := D of the
relative tube zeta function of (A,Ω):

M ∗D(A,Ω)≤ CλA,Ω (N −D)

2π
(

1− e−2π(N−D)/λA,Ω
) res(ζ̃A,Ω ,D); (5.4.19)
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moreover, in the case when D = N, we have

M ∗N(A,Ω)≤C res(ζ̃A,Ω ,N), (5.4.20)

where (both in (5.4.19), (5.4.20) just above and in (5.4.21) just below)C is a positive
constant such that C < 3.

Finally, if D < N, we have the following upper bound for the upper D-
dimensional Minkowski content of (A,Ω), expressed in terms of the residue at
s := D of the relative distance zeta function of (A,Ω):

M ∗D(A,Ω)≤ CλA,Ω

2π
(

1− e−2π(N−D)/λA,Ω
) res(ζA,Ω ,D). (5.4.21)

Proof. We use the same reasoning as in the proof of Theorem 5.4.2, with the only
difference residing in the fact that we can now only use the weaker statement (5.4.3)
of Theorem 5.4.1 since by hypothesis, there is another pole on the critical line
{Res = D}, besides D itself. More specifically, if D < N and λ < λA,Ω , then by
using (5.4.12) and (5.4.3), we show that for every h ≥ 2π/λ , we have

C res(ζ̃A,Ω ,D)≥ M ∗D(A,Ω)
1− e−h(N−D)

(N −D)h
. (5.4.22)

Since the right-hand side of (5.4.22) just above is a decreasing function of h, we
obtain the best estimate for h = 2π/λ . Furthermore, since this is true for every
λ < λA,Ω , we obtain (5.4.19) by letting λ → λ−

A,Ω . Moreover, (5.4.22) is also valid

if D = N, but without the factor that depends on h, by a similar argument as in
case (b) of the proof of Theorem 5.4.2. Finally, if D < N, the statement about the
relative distance zeta function ζA,Ω follows by the same argument as in case (a) of
the proof of Theorem 5.4.2, by also using the functional equation (4.5.2) connecting
ζA,Ω and ζ̃A,Ω . ��

Remark 5.4.5. Much as in the case of Theorem 5.4.2 (see Remark 5.4.3), the hy-
potheses of Theorem 5.4.4 can be weakened. However, we have stated Theorem
5.4.4 in the above form because this is the most common situation which is encoun-
tered in our examples of RFDs. For instance, in order to obtain an upper bound for
the upper D-dimensional Minkowski content of (A,Ω), it suffices to assume that
the relative tube zeta function ζ̃A,Ω can be holomorphically continued to a punc-
tured disk Br(D) \ {D}, centered at D and with radius r > 0. In that case, (5.4.19)
is valid with λA,Ω replaced by the radius r. Of course, the larger the radius of the
disk, the better the upper bound. All one actually needs is the L1-convergence as
Res → D

+
of the relative tube or distance zeta function of (A,Ω) to a boundary

function defined on a symmetric vertical interval (D− ri,D+ ri), similarly as in
Remark 5.4.3.
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5.4.2 The Relative Mellin Zeta Function

In order to obtain a criterion for Minkowski measurability, we will need to extend
to a larger space of test functions the distributional tube formulas derived in the
previous sections. It will suffice to extend them to the space K (0,+∞).17 We now
observe that in Definition 4.1.2, we have assumed that an RFD (A,Ω) has the prop-
erty that there exists δ > 0 such that Ω ⊆ Aδ . If this condition is not fulfilled, we
can always replace Ω by Ω̃ := Aδ ∩Ω and work instead with the new RFD (A,Ω̃)
because the fractal properties of this new RFD will be identical to those of (A,Ω).
This last statement follows directly from the definition of the relative Minkowski di-
mension (see page 249). Furthermore, in light of the above discussion, for an RFD
(A,Ω) we have that Aδ ∩Ω =Ω for all δ sufficiently large; consequently, for such
values of δ , we have that |Aδ ∩Ω |= |Ω |, which implies that we can actually redefine
the tube zeta function in a way which will be more suitable. More precisely, assume
that D := dimB(A,Ω)< N and recall the functional equation (2.2.23), written in the
following integral form:

∫
Aδ∩Ω

d(x,A)s−N dx = δ s−N |Aδ ∩Ω |+(N − s)
∫ δ

0
ts−N−1|At ∩Ω |dt, (5.4.23)

initially valid for all s ∈ C such that Res > D. Furthermore, by taking the complex
number s in the vertical strip {Res > D} ∩ {Res < N} and letting δ → +∞, we
obtain the following equality:

∫
Ω

d(x,A)s−N dx = (N − s)
∫ +∞

0
ts−N−1|At ∩Ω |dt. (5.4.24)

As we can see, on the right-hand side of (5.4.24), we have the Mellin transform of
the function t−N |At ∩Ω | and this integral is absolutely convergent inside the vertical
strip {Res > D}∩{Res < N}. Indeed, we have that

∫ +∞

0
ts−N−1|At ∩Ω |dt =

∫ 1

0
ts−N−1|At ∩Ω |dt +

∫ +∞

1
ts−N−1|At ∩Ω |dt, (5.4.25)

and the integral over (0,1) is equal to ζ̃A,Ω (s;1) and hence, is absolutely convergent
on {Res > D}, while for the integral over (1,+∞), we have

∣∣∣∣
∫ +∞

1
ts−N−1|At ∩Ω |dt

∣∣∣∣≤
∫ +∞

1
tRes−N−1|At ∩Ω |dt

≤ |Ω |
∫ +∞

1
tRes−N−1 dt =

|Ω |
N −Res

.

(5.4.26)

17 Here, K (0,+∞) is defined exactly as K (0,δ ) just before Definition 5.2.1, except for δ replaced
by +∞, and in this case, we require that for every ϕ ∈K (0,+∞), tmϕ(q)(t)→ 0 as t →+∞, where
ϕ(q) denotes the q-th derivative of ϕ .
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We then conclude from Theorem 2.1.45 (about the holomorphicity of an integral
depending analytically on a complex parameter) that the integral on the right-hand
side of (5.4.24) defines a holomorphic function on the vertical strip {D < Res < N}
and upon analytic continuation, that the entire right-hand side of (5.4.24) coincides
(within that strip) with the relative distance zeta function ζA,Ω (s); i.e., the identity
(5.4.24) holds as an equality between holomorphic functions defined on the open
vertical strip {D < Res < N}.

Moreover, upon further meromorphic continuation (and since, by Theorem 4.1.7,
ζA,Ω is holomorphic in the open right half-plane {Res > D}), we also deduce that if
ζA,Ω can be meromorphically continued to a given connected open neighborhood U
of the critical line {Res=D} (or, equivalently, of the closed half-plane {Res≥D}),
then with the terminology and notation of Definition 5.4.6 just below, so can the
Mellin zeta function ζMA,Ω . Hence, we deduce that the following functional equation
(between meromorphic functions) holds:

ζA,Ω (s) = (N − s)ζMA,Ω (s), (5.4.27)

for all s ∈U .

Definition 5.4.6. Let (A,Ω) be an RFD in R
N such that dimB(A,Ω)<N. We define

the Mellin zeta function ζMA,Ω of (A,Ω) by

ζMA,Ω (s) :=
∫ +∞

0
ts−N−1|At ∩Ω |dt, (5.4.28)

for all s ∈C with Res ∈ (dimB(A,Ω),N). Here, the integral is taken in the Lebesgue
sense.

In the discussion preceding Definition 5.4.6, we have proved a part of the follow-
ing theorem.

Theorem 5.4.7. Let (A,Ω) be an RFD in R
N such that dimB(A,Ω)< N. Then, the

Mellin zeta function ζMA,Ω , as given by Equation (5.4.28), is holomorphic on the open

vertical strip {dimB(A,Ω)< Res < N} and

d
ds
ζMA,Ω (s) =

∫ +∞

0
ts−N−1|At ∩Ω | log t dt, (5.4.29)

for all s in {dimB(A,Ω) < Res < N}. Furthermore, {dimB(A,Ω) < Res < N} is
the largest vertical strip (of the form {α < Res < β}, with −∞≤ α < β ≤+∞) on
which the integral on the right-hand side of (5.4.28) is absolutely convergent (i.e.,
is a convergent Lebesgue integral).

Moreover, for all s ∈C such that dimB(A,Ω)< Res < N and for any fixed δ > 0
such that Ω ⊆ Aδ , ζMA,Ω satisfies the following functional equations connecting it to

ζ̃A,Ω and ζA,Ω , respectively:

ζMA,Ω (s) = ζ̃A,Ω (s;δ )+
δ s−N |Ω |

N − s
(5.4.30)
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and

ζMA,Ω (s) =
ζA,Ω (s;δ )

N − s
. (5.4.31)

Remark 5.4.8. We point out that functional equations similar to (5.4.30) and (5.4.31)
are also satisfied for every δ > 0 such thatΩ �Aδ , but one then also has to add to the
right-hand side of each of the corresponding functional equations a suitable function
f which is meromorphic on C and has a single, simple pole at s = N.

Proof of Theorem 5.4.7. We have already proved the first part of the theorem. The
optimality of the vertical strip follows directly from (5.4.25) (or, more precisely,
from (5.4.27)). Namely, the lower bound dimB(A,Ω) is a consequence of the pres-
ence of the first integral on the right-hand side of (5.4.25) since the latter integral is
equal to ζ̃A,Ω (s;1). Furthermore, the upper bound N is a consequence of the pres-
ence of the second integral on the right-hand side of (5.4.25), since that integral is
divergent for any real number s such that s > N. To see this, let δ ≥ 1 be such that
Ω ⊆ Aδ and make the following observation:

∫ +∞

1
ts−N−1|At ∩Ω |dt ≥

∫ +∞

δ
ts−N−1|At ∩Ω |dt

= |Ω |
∫ +∞

δ
ts−N−1 dt =+∞.

(5.4.32)

The functional equation (5.4.31) is already proven, while (5.4.30) can be proven
directly by splitting the integral defining ζMA,Ω over the intervals (0,δ ) and (δ ,+∞)
or by using the functional equation (4.5.2) connecting the tube and distance zeta
functions. ��

As a consequence of the functional equations (5.4.31), (5.4.30) and the principle
of analytic continuation, we obtain the following two theorems, which follow from
the obvious extensions to RFDs of the corresponding ones for the relative distance
and tube zeta functions (see Theorems 2.1.11, 2.2.3, 2.2.11 and 2.2.14).

Theorem 5.4.9. Let (A,Ω) be a relative fractal drum in R
N such that dimB(A,Ω)<

N. Then the following properties hold:

(a) The Mellin zeta function ζMA,Ω is meromorphic in the half-plane {Res >

dimB(A,Ω)} with a single, simple pole at s = N. Furthermore,

res(ζMA,Ω ,N) =−|Ω |. (5.4.33)

(b) If the relative box (or Minkowski) dimension D := dimB(A,Ω) exists, and
M D

∗ (A,Ω)> 0, then ζMA,Ω (s)→+∞ as s ∈ R converges to D from the right.

Proof. By means of the principle of analytic continuation, and since dimB(A,Ω)<
N, we conclude that the functional equalities (5.4.30) and (5.4.31) continue to hold
on any connected open neighborhood U ⊆ C of the vertical strip {dimB(A,Ω) <
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Res < N} to which any (and hence, all) of the three relative zeta functions has a
holomorphic continuation. (See also the text surrounding Equation (5.4.27).) As a
result, part (a) follows from the counterpart of Theorem 4.1.7 for the relative tube
zeta function (see also Theorem 2.2.11) and (5.4.30), while part (b) follows from
Theorem 4.1.7 and (5.4.31). ��

Furthermore, in light of Theorem 2.2.14 and (5.4.30), one obtains the following
result.

Theorem 5.4.10. Assume that (A,Ω) is a Minkowski nondegenerate RFD in R
N,

that is, 0 < M D
∗ (A,Ω)≤ M ∗D(A,Ω)< ∞ (in particular, D := dimB(A,Ω) exists),

and D<N. If ζMA,Ω can be extended meromorphically to a connected open neighbor-

hood of s = D, then D is necessarily a simple pole of ζMA,Ω , the residue res(ζMA,Ω ,D)
is independependent of δ and

M D
∗ (A,Ω)≤ res(ζMA,Ω ,D)≤ M ∗D(A,Ω). (5.4.34)

Furthermore, if (A,Ω) is Minkowski measurable, then

res(ζMA,Ω ,D) = M D(A,Ω). (5.4.35)

Lemma 5.4.11. Assume that (A,Ω) is an RFD in R
N with dimB(A,Ω)<N and such

that its tube or distance or Mellin zeta function is meromorphic on some connected
open neighborhood U of the vertical strip {dimB(A,Ω) < Res < N}.18 Then, the
multisets of poles located in U \{N} of each of these three zeta functions, ζ̃A,Ω , ζA,Ω
and ζMA,Ω , coincide:

P
(
ζ̃A,Ω ,U \{N}

)
= P

(
ζA,Ω ,U \{N}

)
= P

(
ζMA,Ω ,U \{N}

)
. (5.4.36)

Moreover, if ω ∈ U \ {N} is a simple pole of any (and hence, of all) of these three
zeta functions, then19

res
(
ζMA,Ω ,ω

)
= res

(
ζ̃A,Ω ,ω

)
=

res
(
ζA,Ω ,ω

)
N −ω . (5.4.37)

We can now use the Mellin inversion theorem (Theorem 5.1.6) in order to derive
the following inversion formula for the Mellin zeta function.

Theorem 5.4.12. Let (A,Ω) be an RFD in R
N such that dimB(A,Ω)< N. Then, for

any c ∈ (dimB(A,Ω),N) and t > 0, the following formula is valid pointwise:

18 Recall from Theorem 4.1.7 and its counterpart for the relative tube zeta function that ζA,Ω and
ζ̃A,Ω are holomorphic on the open right-half plane {Res > dimB(A,Ω)}.
19 Clearly, in the case when ω ∈ U \{N} is a multiple pole, an analogous relation holds between
the principal parts at ω of ζ̃A,Ω (s), ζMA,Ω (s) and the meromorphic function ζA,Ω (s)/(N − s); fur-
thermore, in that case, ω has the same multiplicity for either of these zeta functions.
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|At ∩Ω |= 1
2πi

∫ c+i∞

c−i∞
tN−sζMA,Ω (s)ds. (5.4.38)

Proof. The conclusion follows directly from Theorem 5.1.6, along with the fact
that the function t �→ t−N |At ∩Ω | is continuous and of locally bounded variation on
(0,+∞) and t �→ tc−N−1|At ∩Ω | is in L1(0,+∞) for every c ∈ (dimB(A,Ω),N). See
also the proof of Theorem 5.1.7 since the reasoning here is along the same lines. ��

Note that in the above theorem, it is crucial to choose c ∈ (dimB(A,Ω),N) for
the hypothesis of the Mellin inversion theorem to be satisfied. In other words,
the inversion theorem (Theorem 5.1.6) is no longer applicable in the case when
dimB(A,Ω) = N since then, we cannot define the Mellin zeta function. Note that
this is in contrast with the situation from Sections 5.1 and 5.2 where we have worked
with the relative tube zeta function. One can now impose languidity conditions on
the Mellin zeta function ζMA,Ω and rewrite Sections 5.1 and 5.2 in terms of ζMA,Ω since

the fact that we have to choose c ∈ (dimB(A,Ω),N) is not a hindrance. Indeed, orig-
inally we had the freedom to choose any c ∈ (dimB(A,Ω),N + 1) in Proposition
5.1.8. Furthermore, this will ensure that although s = N is always a pole of the
Mellin zeta function, it will never be a part of the sum over the residues of ζMA,Ω
since it is always located strictly to the right of the vertical line {Res = c} over
which we integrate in (5.4.38).

Moreover, one can also derive the corresponding results about the distance zeta
function ζA,Ω directly from the Mellin zeta function ζMA,Ω and without the use of

the shell zeta function ζ̆A,Ω . However, one has to be careful and always choose δ
sufficiently large so that Ω ⊆ Aδ in order for the functional equation (5.4.31) to be
satisfied. One other issue that is not clear in this context is whether the restriction
of having to choose δ large enough for the inclusion Ω ⊆ Aδ to hold could increase
the ‘languidity exponent’ κd of ζA,Ω (s). This is not the case in all of the examples
we will consider, but a general result along these lines has yet to be obtained.

Proposition 5.4.13. Let (A,Ω) be a relative fractal drum in R
N. If the relative dis-

tance zeta function ζA,Ω ( · ;δ ) satisfies the languidity conditions L1 and L2 of Def-
inition 5.1.3 for some δ > 0 and with d-languidity exponent κd ∈ R, then so does
ζA,Ω ( · ;δ1) for any δ1 > 0 and with (κd)δ1

:= max{κd ,0}.
Furthermore, the analogous statement is also true in the case when ζA,Ω ( · ;δ ) is

strongly d-languid, under the additional assumption that δ ≥ 1 and δ1 ≥ 1.

Proof. Without loss of generality, we may assume that δ < δ1. Then, the conclu-
sion follows from the fact that for a given a window W we have ζA,Ω (s;δ1) =
ζA,Ω (s;δ )+g(s) for all s ∈W , where g is defined for all s ∈C and is an entire func-
tion. (This fact follows directly from Lemma 2.1.15.) Furthermore, for all s ∈C, we
have the following upper bound on |g(s)|:

|g(s)| ≤
∫
(Aδ1\Aδ )∩Ω

d(x,A)Res−N dx ≤ |Ω |max{δRes−N ,δRes−N
1 }. (5.4.39)
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As we can see, the upper bound on |g(s)| does not depend on Ims and there-
fore, we conclude that g satisfies the languidity conditions L1 and L2 of Defi-
nition 5.1.3 with the languidity exponent κg = 0 and for any given window W .
This observation implies that then, ζA,Ω ( · ;δ1) is languid with d-languidity expo-
nent (κd)δ1

:= max{κd ,0} and for the same window as for ζA,Ω ( · ;δ ).
The additional assumption for strong d-languidity is needed since L1 must then

be satisfied for all σ ∈ (−∞,c), in the notation of Definition 5.1.3. Furthermore, for
this condition to be achieved, we need that δ1 > δ ≥ 1 in (5.4.39) since otherwise,
we cannot obtain an upper bound on |g(s)| when Res →−∞. ��

In order to avoid unnecessary repetitions, we will not restate all of the theorems
of Sections 5.1 and 5.2 in terms of the Mellin zeta function, but we will do so only
for the distributional fractal tube formula with error term because the correspond-
ing result will be needed for establishing the Minkowski measurability criterion of
Subsection 5.4.3 below; see Theorem 5.4.20 along with Theorem 5.4.15.

Recall that the original motivation for introducing the Mellin zeta function was to
obtain a distributional fractal tube formula valid on a larger space of test functions,
more precisely, on the space K (0,+∞); that is, the space of test functions ϕ in the
class C∞(0,+∞), such that for all m ∈ Z and q ∈ N, we have tmϕ(q)(t)→ 0, both as
t → 0+ and as t →+∞. Also note that D(0,+∞)⊆ K (0,+∞), and hence, we have
the following (reverse) relation between the corresponding spaces of distributions
(or dual spaces):

K ′(0,+∞)⊆ D ′(0,+∞). (5.4.40)

Theorem 5.4.14 (Distributional fractal tube formula with error term, via ζMA,Ω ;
level k = 0). Let (A,Ω) be a relative fractal drum in R

N such that dimB(A,Ω)< N.
Furthermore, assume that ζMA,Ω satisfies the languidity conditions L1 and L2 of

Definition 5.1.3, for some κ ∈R. Then, the distribution V
[0]

A,Ω in K ′(0,+∞) is given
by the following distributional identity in K ′(0,+∞):

V
[0]

A,Ω (t) = ∑
ω∈P(ζMA,Ω ,W )

res
(

tN−sζMA,Ω (s),ω
)
+R

M[0]
A,Ω (t). (5.4.41)

That is, the action of V
[0]

A,Ω on an arbitrary test function ϕ ∈ K (0,+∞) is given by

〈
V

[0]
A,Ω ,ϕ

〉
= ∑
ω∈P(ζMA,Ω ,W )

res
(
{Mϕ}(N−s+1)ζMA,Ω (s),ω

)

+
〈
R

M[0]
A,Ω ,ϕ

〉
.

(5.4.42)

Here, the distributional error term R
M[0]
A,Ω is the distribution in K ′(0,+∞) given for

all ϕ ∈ K (0,+∞) by

〈
R

M[0]
A,Ω ,ϕ

〉
=

1
2πi

∫
S
{Mϕ}(N−s+1)ζMA,Ω (s)ds. (5.4.43)
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Furthermore, the distribution R
M[0]
A,Ω (t) is of asymptotic order at most tN−supS as

t → 0+; i.e.,
R

M[0]
A,Ω (t) = O(tN−supS) as t → 0+, (5.4.44)

in the sense of Definition 5.2.9.
Moreover, if S(τ)< supS for all τ ∈ R (that is, if the screen S lies strictly to the

left of the vertical line {Res = supS}), then R
M[0]
A,Ω (t) is of asymptotic order less

than tN−supS; i.e.,
R

M[0]
A,Ω (t) = o(tN−supS) as t → 0+, (5.4.45)

still in the sense of Definition 5.2.9.

5.4.3 Characterization of Minkowski Measurability

Having expanded (in Theorem 5.4.14 of Subsection 5.4.2) the space of test func-
tions for which the distributional tube formula is valid, we can now obtain a neces-
sary condition for the Minkowski measurability of a languid relative fractal drum.
We stress that in the statement of the following theorem, the phrase according to
which the Mellin zeta function is languid means that ζMA,Ω satisfies the languidity
conditions of Definition 5.1.3 for some languidity exponent κ ∈ R, with the caveat
that in condition L1 we now assume that c ∈ (dimB(A,Ω),N).

Theorem 5.4.15 (Necessary condition for Minkowski measurability). Let (A,Ω)
be a relative fractal drum in R

N such that D := dimB(A,Ω) exists, D<N and (A,Ω)
is Minkowski measurable. Furthermore, assume that its Mellin zeta function ζMA,Ω is
languid for some screen S passing strictly to the left of the critical line {Res = D}
and strictly to the right of all the complex dimensions of (A,Ω) with real part strictly
less than D.

Then, D is the only pole of ζMA,Ω located on the critical line {Res = D} and it is
simple.

Proof. Since (A,Ω) is languid, the hypotheses of Theorem 5.4.10 are satisfied and,
therefore, s = D is a simple pole of ζMA,Ω . Furthermore, also by Theorem 5.4.10, we

have that M := M D(A,Ω) = res(ζMA,Ω ,D). It remains to show that D is the only
pole located on the critical line. First, we deduce at once from the definition of the
Mellin zeta function given in Equation (5.4.28) that |ζMA,Ω (s)| ≤ ζMA,Ω (Res), for all
s ∈ {D < Res < N}. We conclude from this inequality that if ξ is another pole of
ζMA,Ω with Reξ = D, then it must also be simple.

Now, let us denote by ξn :=D+iγn, with γn ∈R and n∈ J, the potentially infinite
sequence of poles of ζMA,Ω with real part D (i.e., of principal poles of ζMA,Ω ).20 Here,

20 As is well known, a meromorphic function on a domain of C can only have an at most countable
number of poles. This follows from the fact that any compact subset K ⊆ C may contain only
finitely many poles (since otherwise, there would be a limit point of poles in K) and any domain of
C is contained in a countable union of compact sets.
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J ⊆N0 is a finite or infinite subset of N0, 0∈ J, and we use the convention according
to which γ0 := 0 and hence, ξ0 := D. Since D is simple (i.e., a simple pole of ζMA,Ω ),
we must have γn 
= 0 for all n ∈ J \{0}.

Observe that in light of the argument given in the first part of the proof, each
principal pole ξn is then also simple, for every n ∈ J \{0}; so that we can let an :=
res(ζMA,Ω ,ξn), for every n∈ J. Furthermore, as was established at the beginning of the

proof, we have a0 = res(ζMA,Ω ,D) = M , the Minkowski content of (A,Ω). (Recall
that the RFD (A,Ω) is assumed to be Minkowski measurable.)

Next, we will show that J\{0} is empty and therefore, that D is the only principal
pole of ζMA,Ω (and is simple), as desired. For this purpose, we reason by contradiction
and assume that J \ {0} is nonempty. Then, in light of Theorem 5.4.14 (the distri-
butional fractal tube formula at level k = 0 via ζMA,Ω ) applied with the stronger error
estimate given by (5.4.45) and for the same choice of screen S as assumed to exist
in the statement of that theorem (and which also exists, by the hypotheses of the
present theorem), we have that

|At ∩Ω |= ∑
n∈J

antN−ξn +o(tN−D)

= M tN−D + tN−D ∑
n∈J\{0}

ant−iγn +o(tN−D) as t → 0+,
(5.4.46)

in the distributional sense since, by assumption, the screen S lies strictly to the left
of the critical line {Res = D}.

On the other hand, since (A,Ω) is Minkowski measurable, we know that its rel-
ative tube function satisfies

|At ∩Ω |= M tN−D +o(tN−D) as t → 0+, (5.4.47)

in the usual pointwise sense and hence also, in the distributional sense. Combin-
ing (5.4.46) with (5.4.47) yields that

∑
n∈J\{0}

ant−iγn = o(1) as t → 0+, (5.4.48)

in the distributional sense. After a (distributional) change of variable τ := log t (note
that τ ∈ C∞(0,+∞)), the uniqueness theorem for almost periodic distributions (see
[Schw, Section VI.9.6, p. 208]) can be applied and now implies that (5.4.48) can
only be true if an = 0 for all n ∈ J \ {0}; that is, only if J \ {0} is empty (which
contradicts our assumption) or, equivalently, only if there are no other poles on the
critical line, except for s = D, as we needed to show. ��
Remark 5.4.16. The above theorem can also be stated in terms of the relative tube
and distance zeta functions of (A,Ω). This claim follows from the fact that the func-
tional equations (5.4.30) and (5.4.31) which connect the relative tube zeta function,
the relative distance zeta function and the Mellin zeta function of (A,Ω), along with
Propositions 5.1.5 and 5.4.13, imply that if the languidity conditions L1 and L2 of
Definition 5.1.3 are satisfied by the tube or distance zeta function, then they are also
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satisfied by the Mellin zeta function, with a possibly different languidity exponent.
We can still, however, apply Theorem 5.4.14.

Remark 5.4.17. We point out that Theorem 5.4.15 (more precisely, its counterpart
for the relative tube zeta function) is at the same time more and less general than
Theorem 2.3.18 (more precisely, than its counterpart for RFDs). Indeed, in the coun-
terpart of Theorem 2.3.18, we would assume that for some α > 0, the tube function
of (A,Ω) satisfies

|At ∩Ω |= tN−D (M +O(tα)) as t → 0+, (5.4.49)

pointwise, which is a stronger assumption than the mere hypothesis of Minkowski
measurability of (A,Ω). Then, the conclusion that D is the only complex dimen-
sion of (A,Ω) with real part D and that it is simple follows without the additional
assumptions of Theorem 5.4.15.

On the other hand, in (the counterpart of) Theorem 5.4.15, we make a weaker
hypothesis about the tube function t �→ |At ∩Ω | of (A,Ω); that is, we only assume
that (A,Ω) is Minkowski measurable (with Minkowski dimension dimB(A,Ω)<N)
but we must make a stronger assumption on the fractal zeta function in order to
draw the same conclusion about the complex dimensions of (A,Ω). This tradeoff is
desirable since, in general, we want to draw as much information as possible about
the geometry of RFDs directly from their fractal zeta functions, more precisely, from
their distance zeta functions. In light of this, it would be of great interest to find out
whether the languidity hypothesis or the conditions on the screen in Theorem 5.4.15
can be weakened.

Remark 5.4.18. It clearly follows from the proof of Theorem 5.4.15 that it would
suffice to assume in the statement of that theorem that the RFD (A,Ω) is Minkowski
measurable in the distributional sense (which specifically means in the present con-
text that Equation (5.4.47) holds as a distributional identity in K ′(0,+∞), with
M ∈ (0,+∞)).

The previous remark motivates us to introduce the following definition.

Definition 5.4.19. (Weak vs. strong Minkowski measurability).

(i) A relative fractal drum (A,Ω) such that D := dimB(A,Ω) exists is said to
be Minkowski measurable, in the distributional sense (or weakly Minkowski mea-
surable, in short) if there exist a constant M ∈ (0,+∞) such that, in the sense of
distributions,

lim
t→0+

t−(N−D)|At ∩Ω |= M , in K ′(0,+∞); (5.4.50)

i.e., for every ϕ ∈ K (0,+∞),21

21 For the definition of the spaces K ′(0,+∞) and K ′(0,+∞), see the discussion preceding Equa-
tion (5.4.40).
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lim
a→0+

∫ +∞

0
t−(N−D)|At ∩Ω |ϕa(t)dt = M lim

a→0+

∫ +∞

0
ϕa(t)dt

= M
∫ +∞

0
ϕ(t)dt.

(5.4.51)

Here, as before, ϕa is the scaled version of ϕ defined by (5.2.22).22 Then, M is
called the weak Minkowski content of the RFD (A,Ω).

(ii) Much as in part (i) of this definition, we can say that a relative fractal drum
(A,Ω) is strongly Minkowski measurable (with strong Minkowski content M ) if it
is Minkowski measurable in the usual (pointwise) sense of Subsection 4.1.1; i.e., if
there exists a constant M ∈ (0,+∞) such that

lim
t→0+

t−(N−D)|At ∩Ω |= M , in R. (5.4.52)

Clearly, if (A,Ω) is strongly Minkowski measurable, it is also weakly Minkowski
measurable and then, the strong and weak Minkowski contents of (A,Ω) coincide.23

We note that we could similarly distinguish between weak and strong (or ordinary)
Minkowski nondegeneracy, for example, although this definition will not be needed
in the sequel.

We stress that the notion of Minkowski measurability being characterized in all
of the criteria stated below in the remainder of this subsection (namely, Theo-
rem 5.4.20, Theorem 5.4.25 and Corollary 5.4.26) is always the notion of strong
(or ordinary) Minkowski measurability, in the sense of part (ii) of Definition
5.4.19 above (as opposed to that of weak Minkowski measurability, introduced
in part (i) of Definition 5.4.19 and which, according to Remark 5.4.18 could be
used in the statement of Theorem 5.4.15, the necessary condition for Minkowski
measurability).

Finally, we can now state the announced Minkowski measurability criterion, the
proof of which follows directly from Theorems 5.4.2 and 5.4.15.

Theorem 5.4.20 (Minkowski measurability criterion in terms of ζA,Ω ). Let
(A,Ω) be a relative fractal drum in R

N such that D := dimB(A,Ω) exists and
D<N. Furthermore, assume that (A,Ω) is d-languid for a screen S passing strictly
between the critical line {Res = D} and all the complex dimensions of (A,Ω) with
real part strictly less than D. Then the following statements are equivalent:

(a) The RFD (A,Ω) is (strongly) Minkowski measurable.

(b) D is the only pole of the relative distance zeta function ζA,Ω located on the
critical line {Res = D} and it is simple.

22 The second equality in (5.4.51) follows directly from the definition of ϕa since an elementary
change of variable shows that the first integral on the right-hand side of (5.4.51) does not depend
on a.
23 More specifically, the weak Minkowski content is the regular distribution defined by (5.4.51) and
associated with the constant function M , the strong (or ordinary) Minkowski content of (A,Ω).
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Remark 5.4.21. The above criterion is also valid if in part (b) of Theorem 5.4.20,
we replace ζA,Ω with the relative tube zeta function ζ̃A,Ω , the Mellin zeta function
ζMA,Ω or the relative shell zeta function ζ̆A,Ω . In this case, it suffices to assume that
the chosen fractal zeta function satisfies the usual languidity conditions of Defini-
tion 5.1.3 (along with the condition from Theorem 5.4.20 about the existence of a
suitable screen). In fact, if we state the theorem in terms of the relative tube zeta
function ζ̃A,Ω , we may omit the condition that dimB(A,Ω) < N, as we shall see in
Theorem 5.4.25 below.

Remark 5.4.22. Theorem 5.4.20 extends to RFDs in R
N , with N ≥ 1 arbitrary, the

Minkowski measurability criterion for fractal strings obtained in [Lap-vFr3, Theo-
rem 8.15 of Section 8.3]. More specifically, the latter criterion corresponds to the
N = 1 case of Theorem 5.4.20. We note that in [Lap-vFr3], the criterion was formu-
lated in terms of the principal complex dimensions of the underlying fractal string
(interpreted as the poles of the associated geometric zeta function with real part
equal to D, the Minkowski dimension of the string). However, in light of the re-
sults of Subsection 2.1.4 (see, especially, Proposition 2.1.59 and Corollary 2.1.61),
they can now be restated equivalently in terms of the principal poles of the dis-
tance zeta function of the corresponding relative fractal drum (∂Ω ,Ω), where Ω is
any geometric realization of the fractal string. We mention that in the statement of
[Lap-vFr3, Theorem 8.15 of Section 8.3], the fact that the fractal string was weakly
(rather than strongly) Minkowski measurable should have been stressed more ex-
plicitly. In this regard, we note that Theorem 5.4.20 shows that in [Lap-vFr3] (ibid),
we can now replace weak by strong (or ordinary) Minkowski measurability, which
is the best possible result.

On the other hand, in [Lap-vFr3, Theorems 8.23 and 8.36 of Section 8.4], the
characterization of Minkowski measurability obtained for self-similar strings was
stated in terms of the strong (i.e., ordinary) Minkowski measurability of the frac-
tal strings.24 We do not consider the N-dimensional counterpart of such a situation
here, although this would certainly be of interest. (See, however, Subsection 5.5.6
below, where we obtain an appropriate analog for self-similar sprays of this charac-
terization and discuss its potential N-dimensional counterpart for self-similar sets;
see also Problems 6.2.35 and 6.2.36, along with the text surrounding them.)

Beside the obvious difficulty of computing the distance (or another fractal) zeta
function of a (suitable) ‘self-similar RFD’ in R

N (and, in particular, of a compact
self-similar set in R

N satisfying the open set condition, say), an important remaining
issue is to remove (as was done in [Lap-vFr3, Section 8.4] when N = 1) the condition
concerning the existence of an appropriate screen S (as is assumed in Theorem
5.4.20, as well as in Theorem 5.4.25 and Corollary 5.4.26 below). Indeed, in the
lattice case, this condition is clearly always satisfied as long as the ‘base RFD’

24 Namely, a self-similar string (of Minkowski dimension D ∈ (0,1)) is (strongly) Minkowski
measurable if and only if it is a nonlattice string (i.e., the multiplicative group generated by its
distinct scaling ratios is not of rank 1) or, equivalently, if its Minkowski dimension D is the only
complex dimension of real part D. (It is known from [Lap-vFr3, Theorems 2.16 and 3.6]) that for
a self-similar string, D is always simple.)
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is ‘nice enough’ (see Theorem 4.2.17 where the distance zeta function for ‘self-
similar RFDs’ was computed). On the other hand, it is shown in [Lap-vFr3] that in
the nonlattice case, there are examples of nonlattice self-similar strings (and hence,
of ‘self-similar RFDs’ and sets in R

N) for which it is not fulfilled. (See [Lap-vFr3,
Example 5.32] showing that for a given self-similar string, it is not always possible
to choose a screen S passing strictly between the critical line {Res = D} and the
complex dimensions to the left of this line and along which the RFD is languid.)

However, we also stress that this issue regarding the nonlattice case is, a priori,
occurring only in one direction of the desired (Minkowski measurability) character-
ization theorem; that is, in the direction which aims at proving that, under suitable
hypotheses, a Minkowski measurable ‘self-similar RFD’ (with a ‘nice enough’ base
RFD or generator) is always nonlattice.25 Indeed, for the other direction, we do not
need the restrictive assumption about the existence of a suitable screen along which
the RFD is languid since the desired Minkowski measurability conclusion should
follow from the sufficient condition provided in Theorem 5.4.2. More specifically,
in light of Theorem 4.2.17, and under appropriate hypotheses,26 we expect to draw
the conclusion that a nonlattice self-similar RFD is always Minkowski measurable
since the only pole on the critical line is its Minkowski dimension (which is equal to
the maximum of the inner Minkowski dimension of the boundary of the generator
and the unique real solution of their associated complexified Moran equation, see
Equation (5.5.186) below), and it is simple. Of course, the above potential “theo-
rem” should be more precisely stated, with the expressions of ‘self-similar RFD’,
‘nice enough’ and ‘base RFD’ (or ‘generator’) being unambiguously specified. We
leave this task for a future work. (See also the end of Subsection 5.5.6 below where
these issues are addressed and essentially resolved in the important special case of
self-similar sprays, under mild assumptions.)

In the next result (Corollary 5.4.23), which follows from a combination of The-
orem 5.4.2 and Theorem 5.4.20, we recover the aforementioned characterization of
the Minkowski measurability of self-similar fractal strings (with possibly multiple
gaps,27 in the sense of [Lap-vFr3, Chapters 2 and 3]), obtained in [Lap-vFr3, Sec-

25 Actually, this is only a problem at first glance. In fact, a moment’s reflection shows that it
suffices to reason by contradiction in order to resolve this problem. Indeed, in the lattice case,
we can always find a suitable screen satisfying the required hypotheses of Theorem 5.4.20 and,
consequently, conclude that a lattice RFD is not Minkowski measurable and reach a contradiction
after an application of Theorem 5.4.20. We will proceed exactly in this manner in the proof of
Corollary 5.4.23 (where N = 1), as well as in Subsection 5.5.6, Remark 5.5.26(c), when dealing in
a similar manner with (higher-dimensional) self-similar sprays.
26 In particular, we assume that the generators of the associated self-similar tilings (or sprays) are
pluriphase (in the sense of [LapPe3] and [LapPeWi1], along with [Lap-vFr3, Section13.1]) and
(as will be done in Subsection 5.5.6 for self-similar sprays in case (i) of part (c) and part (a)
of Remark 5.5.26) that the Minkowski dimension of their boundary is strictly smaller than their
similarity dimension (or, equivalently, than the similarity dimension of the associated self-similar
tiling or spray).
27 We note that the general case of multiple gaps precisely corresponds to the general case of
multiple generators for self-similar sprays; see, especially, part (b) of Remark 5.5.26 in Subsection
5.5.6.
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tion 8.4, esp., Theorems 8.23, 8.25 and 8.36, along with Corollary 8.27]. In the proof
of the next corollary, we will use the known fact (established in [Lap-vFr3, Theo-
rems 2.16 and 3.6]) that a self-similar string is nonlattice if and only if its only scal-
ing complex dimension (i.e., the only pole of its geometric or scaling zeta function,
introduced in Remark 5.5.20 of Subsection 5.5.6) with real part σ0 (the similarity
dimension of the string) is σ0 itself. Note that this last statement also uses the fact
(established in a part of [Lap-vFr3, Corollary 8.27]) according to which a lattice
self-similar string (with multiple gaps) has infinitely many principal scaling com-
plex dimensions (i.e., potential poles of the geometric or scaling zeta function with
real part σ0 and with nonzero residues) of the form σ0+ikp, where p := 2π/ logr−1,
and r ∈ (0,1) is the single generator of the multiplicative group (of rank one) gen-
erated by the underlying distinct scaling ratios; therefore, it has at least one nonreal
principal complex dimension. (This latter fact is easy to check in the case of a sin-
gle gap; then, the set of principal scaling complex dimensions is all of σ0 +piZ.)
Finally, we recall from [Lap-vFr3, Chapters 2 and 3] that σ0 (and hence, each of the
other principal scaling complex dimensions) is always simple, either in the lattice
case or in the nonlattice case. This latter fact is also easy to check directly from the
definitions.

In the following corollary of Theorem 5.4.20 (combined with the aforementioned
results in [Lap-vFr3, Chapters 2 and 3]), Ω denotes an arbitrary geometric realiza-
tion of a (nontrivial) bounded self-similar fractal string L := (� j)

∞
j=1, as a bounded

open subset of R; see Subsection 2.1.4. Furthermore, ∂Ω denotes its boundary (in
R) and (∂Ω ,Ω) is the associated relative fractal drum (or RFD) in R. We note that
in [Lap-vFr3], the term RFD (or ‘relative fractal drum’) was not used but that an
equivalent notion was used instead in the present situation of fractal strings.

Corollary 5.4.23 (Characterization of the Minkowski measurability of self-
similar strings, [Lap-vFr3, Section 8.4]). Let (∂Ω ,Ω) (or L ) be a (nontrivial,
bounded) self-similar fractal string, with (upper) Minkowski dimension D < 1; so
that D = σ0, its similarity dimension. Then the following statements are equivalent:

(i) The RFD (∂Ω ,Ω) is Minkowski measurable.

(ii) The self-similar string L (or, equivalently, the self-similar RFD (∂Ω ,Ω)) is
nonlattice.

(iii) The only principal scaling complex dimension of (∂Ω ,Ω) is D = σ0.

Proof. We already know from the discussion preceding the statement of the corol-
lary that (ii) and (iii) are equivalent, based on the results of [Lap-vFr3, Chapters 2,
3 and 8]; see, especially, [Lap-vFr3, Theorems 8.23 and 8.36].

Next, we show that (i) and (iii) are equivalent. Note that since D=σ0 and σ0 > 0,
we have that D ∈ (0,1).

First, observe that (since σ0 is always simple) the fact that (iii) implies (i) follows
from Theorem 5.4.2, the sufficient condition for the Minkowski measurability of
an RFD. Observe that in order to verify that the hypotheses of Theorem 5.4.2 are
satisfied by the RFD (∂Ω ,Ω) and its distance zeta function ζ∂Ω ,Ω , we use the fact
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that the scaling (and thus, geometric) zeta function ζS of a self-similar string is
strongly languid with exponent κ := 0 (and hence, also for any κ ≥ 0), as is shown
in [Lap-vFr3, Section 6.4, just above Remark 6.12], combined with the key relation

ζ∂Ω ,Ω (s) =
21−sζL (s)

s
. (5.4.53)

See Equation (5.5.16) in Subsection 5.5.2 below, where it is proved for any fractal
string L ; here, ζL = ζS. Therefore, the distance zeta function ζ∂Ω ,Ω is strongly
d-languid with exponent κd := −1. Consequently (and assuming that (iii) holds),
the hypotheses of Theorem 5.4.2 are satisfied and so, it follows that (∂Ω ,Ω) is
Minkowski measurable; i.e., (i) holds, as desired.

Now, all that remains to show is that (i) implies (iii). More explicitly, we need
to show that the fact that (∂Ω ,Ω) is Minkowski measurable, implies that L (or,
equivalently, (∂Ω ,Ω)) is nonlattice. For this purpose, we reason by contradiction.
Namely, we assume that (i) holds (i.e., (∂Ω ,Ω) is Minkowski measurable) but that
L is a lattice (self-similar) string. Since L is lattice,28 its scaling complex dimen-
sions are located (and periodically distributed) on finitely many vertical lines (pos-
sibly on a single such line), the right most of which is the vertical line {Res = σ0},
the critical line (since σ0 = D). Therefore, we can obviously choose, as is required
by the hypotheses of Theorem 5.4.20 (the Minkowski measurability criterion), a
screen S passing strictly between the vertical line {Res = σ0 = D} and all the com-
plex dimensions (i.e., the poles of ζ∂Ω ,Ω ) with real part strictly less than D = σ0.
In light of Equation (5.4.53), it suffices to let S be any vertical line {Res = Θ},
whereΘ ∈ (max{0,σ1},σ0) and σ1 is the abscissa of the second to last (right most)
vertical line on which the scaling complex dimensions of L (or of (∂Ω ,Ω)) are
located. (If σ1 does not exist, then we can choose anyΘ ∈ (0,σ0).) The fact that the
strong d-languidity assumption is satisfied by (∂Ω ,Ω) is explained in the previous
step of the proof. The corresponding argument is valid for any self-similar string.

We may therefore apply Theorem 5.4.20 and deduce from the fact that the RFD
(∂Ω ,Ω) is Minkowski measurable that D = σ0 must be its only complex dimen-
sion of real part D = σ0.29 This contradicts the fact that L is a lattice string, and
hence has infinitely many (and thus at least two complex conjugate) nonreal prin-
cipal scaling complex dimensions. We deduce from this contradiction that L must
be a nonlattice string (i.e., (ii) holds) and hence (since (ii) and (iii) are equivalent),
that (iii) holds, as desired.

This concludes the proof of the corollary. ��
Remark 5.4.24. In Subsection 5.5.6, by using an analogous method, we will extend
Corollary 5.4.23 to higher dimensions, that is, to a large class of self-similar sprays
in R

N , with N ≥ 1 arbitrary. In the general case (and under some mild assump-
tions), Minkowski measurability will have to be replaced by ‘possibly subcritical

28 In the case of a self-similar string with multiple gaps, this means that the multiplicative group
generated by both the distinct scaling ratios and gaps is of rank 1; see [Lap-vFr3, Chapters 2 and 3].
29 Note that, in light of (5.4.53) and since σ0 > 0, it follows that the principal complex dimensions
of (∂Ω ,Ω) and the principal scaling complex dimensions coincide: Pc(ζ∂Ω ,Ω ) = Pc(ζL ).
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Minkowski measurability’, in a sense to be explained there. (See especially, part (c)
of Remark 5.5.26.)

Next, we give the counterpart of Theorem 5.4.20, but now expressed in terms of
the tube zeta function ζ̃A,Ω (instead of the distance zeta function ζA,Ω ) and with the
restriction dimB(A,Ω)< N removed in this case.

Theorem 5.4.25 (Minkowski measurability criterion in terms of ζ̃A,Ω ). Let
(A,Ω) be a relative fractal drum in R

N such that D := dimB(A,Ω) exists. Further-
more, assume that (A,Ω) is languid for a screen S passing strictly to the left of
the critical line {Res = D} and strictly to the right of all the complex dimensions
of (A,Ω) with real part strictly less than D. Then the following statements are
equivalent:

(a) The RFD (A,Ω) is (strongly) Minkowski measurable.

(b) D is the only pole of the relative tube zeta function ζ̃A,Ω located on the critical
line {Res = D}, and it is simple.

Proof. First of all, if D = dimB(A,Ω)< N, then, again, the conclusion of the theo-
rem follows from Theorems 5.4.2 and 5.4.15 together with Remark 5.4.16.

In the case when D = N, we will embed (A,Ω) into R
N+1, as was done in Sub-

section 4.7.2, and then use Theorem 4.7.9. The fact that (b) implies (a) is a conse-
quence of Theorem 5.4.2 since there are no restrictions of the type dimB(A,Ω)< N
in the hypotheses of that theorem. Actually, it follows directly from the definition of
the relative Minkowski content that dimB(A,Ω) = N implies that M N(A,Ω) exists
and M N(A,Ω) = |A∩Ω |.

In order to prove that (a) implies (b), we embed (A,Ω) into R
N+1 as (A,Ω)1 :=

(A×{0},Ω × (−δ ,δ )), for some suitable δ > 0, and conclude from Theorem 4.7.9
that the relative tube zeta functions of the RFDs (A,Ω) and (A,Ω)1 are connected
by the approximate functional equation (4.7.26) from Theorem 4.7.9 (for M = 1);
that is,

ζ̃A×{0},Ω×(−δ ,δ )(s;δ ) =
√
π Γ

(
N−s

2 +1
)

Γ
(

N+1−s
2 +1

) ζ̃A,Ω (s;δ )+E(s;δ ). (5.4.54)

Here, δ > 0 is chosen such that ζ̃A,Ω ( · ;δ ) satisfies the languidity hypothesis of the
theorem. We will now show that ζ̃A×{0},Ω×(−δ ,δ )( · ;δ ) satisfies the needed languid-
ity conditions of Definition 5.1.3 and use Theorem 5.4.15 to conclude the proof. The
error function E( · ;δ ) is holomorphic on the open left half-plane {Res<N+1} and
bounded by 2δRes−N |Aδ ∩Ω |N

(π
2 −1

)
(see the proof of Theorem 4.7.2 and Equa-

tion (4.7.8)). In other words, E( · ;δ ) is languid (with a languidity exponent equal
to 0). Furthermore, for any a,b ∈ C such that Re(b−a)> 0, we have the following
pointwise asymptotic expansion:

Γ(z+a)
Γ(z+b)

∼ za−b
∞

∑
n=0

(−1)nB(a−b+1)
n (a)
n!

Γ(b−a+n)
Γ(b−a)

1
zn as |z| →+∞, (5.4.55)
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in the sector |argz| < π .30 Substituting z := N−s
2 + 1, a := 0 and b := 1/2 into

Equation (5.4.55), we obtain that

Γ
(

N−s
2 +1

)
Γ
(

N+1−s
2 +1

) ∼ (N − s+2)−
1
2

∞

∑
n=0

(2n)!
√

2(−1)nB(1/2)
n (0)

2n(n!)2(N − s+2)n as |s| →+∞,

(5.4.56)
for all s ∈ C\ [N +2,+∞).31 In particular, we have that

Γ
(

N−s
2 +1

)
Γ
(

N+1−s
2 +1

) = O(|s|−1/2) as |s| →+∞, (5.4.57)

for all s ∈ C \ [N + 2,+∞), from which we conclude that the product of this ra-
tio of gamma functions with the relative tube zeta function ζ̃A,Ω ( · ;δ ) is languid
with a languidity exponent no greater than κ − 1/2, where κ is the languidity ex-
ponent of ζ̃A,Ω ( · ;δ ). This fact, along with Equation (5.4.54) and the languidity of
E( · ;δ ), implies that ζ̃A×{0},Ω×(−δ ,δ )( · ;δ ) is languid with the same choice of a dou-

ble sequence (Tn)n∈Z\{0} and the screen S as for ζ̃A,Ω ( · ;δ ) and with a languidity
exponent no greater than max{κ−1/2,0}.

On the other hand, if (A,Ω) is Minkowski measurable, then this is also true
for the embedded RFD (A×{0},Ω × (−δ ,δ )). In light of Lemma 4.7.5, this fact
follows in a completely analogous way as in the case of bounded subsets of R

N

which was proven in [Kne] (see also [Res]) and extended to RFDs in Subsection
4.7.2 above. We now conclude the proof by invoking Theorem 5.4.15, or rather,
its counterpart expressed in terms of the relative tube zeta function (see Remark
5.4.16). ��

In the next corollary of Theorem 5.4.20 and 5.4.25, and in light of Lemma 5.4.11
and Remark 5.4.16, we can indifferently interpret the (principal) complex dimen-
sions of the RFD (A,Ω) as being the (principal) poles of either the distance, tube,
shell or Mellin zeta function of (A,Ω). This is the reason why we assume that the
hypotheses of both Theorems 5.4.20 and 5.4.25 are satisfied; i.e., we assume that
dimB(A,Ω) < N in order to avoid the situation when N is a pole of the tube zeta
function but is not a pole of the distance zeta function, which may happen.

Corollary 5.4.26 (Characterization of Minkowski measurability in terms of the
complex dimensions). Let (A,Ω) be a relative fractal drum in R

N, with N ≥ 1 arbi-
trary, such that D := dimB(A,Ω) exists and D < N. Assume also that any of its frac-
tal zeta functions (specifically, ζA,Ω or ζ̃A,Ω , respectively) satisfies the hypotheses
of Theorem 5.4.20 (or of Theorem 5.4.25, respectively) concerning the languidity
and the screen. Then, the following statements are equivalent:

30 Here, B(σ)
n (x) is the n-th generalized Bernoulli polynomial (see, e.g., [SriTod] for the exact def-

inition and an explicit expression). See also [Tem, Subsection 3.6.2] for this result on the asymp-
totics of ratios of gamma functions.
31 We have used here the classic identity Γ(1/2) =

√
π and, more generally, Γ(1/2+n) = (2n)!

4nn!

√
π ,

for every n ∈ N0.
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(a) The RFD (A,Ω) is (strongly) Minkowski measurable.

(b) D is the only complex dimension of the RFD (A,Ω) with real part equal to D
(i.e., located on the critical line {Res = D}), and it is simple.

5.4.4 h-Minkowski Measurability and Optimal Tube Function
Asymptotic Expansion

In this subsection, we first obtain a very general result (Theorem 5.4.27) about gen-
erating h-Minkowski measurable RFDs, where h(t) := (log t−1)m−1 for all t ∈ (0,1)
and m is a positive integer, by using only some information about the principal
poles and their multiplicities. Its proof rests on the use of the pointwise tube for-
mula (Theorem 5.1.13). Theorem 5.4.27 is in fact a partial converse of Theorem
4.5.1. Especially important is the asymptotic expansion of the tube function stated
in Equation (5.4.60), from which it is possible to deduce the optimal tube function
asymptotic expansion for a class of h-Minkowski measurable RFDs, as stated in
Theorem 5.4.29.

We invite the reader to review the definition of a gauge function h provided in
Subsection 4.5.1 above (in the text surrounding Equation (4.5.10)) as well as, in par-
ticular, of the corresponding notion of Minkowski h-measurability. (See also Section
6.1 below, with the obvious changes in notation, such as the bounded set A being re-
placed by the RFD (A,Ω).) The notion of Minkowski h-measurability is motivated,
geometrically and physically, by the study of non power law scaling behavior which
arises in many natural examples. See [HeLap] and the relevant references therein.

Theorem 5.4.27 (Generating h-Minkowski measurable RFDs). Let (A,Ω) be a
relative fractal drum in R

N which is languid with languidity exponent κ < −1 or
such that (λA,λΩ) is strongly languid for some λ > 0 with languidity exponent
κ < 0, for a screen S passing strictly between the critical line {Res = dimB(A,Ω)}
and all the complex dimensions of (A,Ω) with real part strictly less than D :=
dimB(A,Ω). Furthermore, suppose that D is the only pole of its relative tube zeta
function ζ̃A,Ω with real part equal to D of order m ≥ 1 and, additionally, that there
exists (at most) finitely many nonreal poles of ζ̃A,Ω with real part D. Moreover,
assume that the multiplicity of each of those nonreal poles is of order strictly less
than m. Then, dimB(A,Ω) exists and is equal to D :=D. Moreover, M D(A,Ω) exists
and is equal to +∞; hence, (A,Ω), is Minkowski degenerate.

Finally, an appropriate gauge function for (A,Ω) is h(t) := (log t−1)m−1, for all
t ∈ (0,1), and we have that, relative to h, the RFD (A,Ω) is not only Minkowski
nondegenerate but is also Minkowski measurable with Minkowski content given by

M := M D(A,Ω ,h) =
ζ̃A,Ω [D]−m

(m−1)!
, (5.4.58)



474 5 Fractal Tube Formulas and Complex Dimensions

where ζ̃A,Ω [D]−m denotes the coefficient corresponding to (s−D)−m in the Laurent
expansion of ζ̃A,Ω around s = D. Moreover, if there is at least one nonreal complex
dimension on the critical line {Re = D}, then the tube function t �→ |At ∩Ω | has the
following pointwise asymptotic estimate:

|At ∩Ω |= tN−Dh(t)
(
M +O((log t−1)−1)

)
as t → 0+, (5.4.59)

while if D is the unique pole of ζ̃A,Ω on the critical line (i.e., the unique principal
complex dimension of (A,Ω)), we have the following sharper asymptotic estimate:

|At ∩Ω |= tN−Dh(t)
(
M +O(tD−supS)

)
as t → 0+. (5.4.60)

Proof. Let ω0 := D := dimB(A,Ω),32 and let ω j := D+ iγ j, where γ j ∈ R\{0} for
j ∈ J and J is a finite and symmetric subset of Z\{0}. That is, {ω j} j∈J is the (finite)
set of all the other poles of ζ̃A,Ω located on the critical line {Res= D}, i.e., with real
part D. We also let γ0 := 0 and m0 := m, in order to be consistent with the notation
introduced just below. Furthermore, for each j ∈ J, let m j be the multiplicity of
ω j and then, by hypothesis of the theorem, we have that m j < m for every j ∈ J.
By Theorem 5.1.13 and since the screen S is strictly to the right of all the other
complex dimensions of (A,Ω) with real part strictly less than D and strictly to the
left of the critical line {Res = D}, we obtain a pointwise tube formula for (A,Ω)
with an error term which is of strictly higher asymptotic order as t → 0+ than the
term corresponding to the residue at s = D; that is, we have the following pointwise
tube formula with error term:

|At ∩Ω |= ∑
j∈J∪{0}

res(tN−sζ̃A,Ω (s),ω j)+O(tN−supS) as t → 0+. (5.4.61)

We next consider the Taylor expansion of tN−s around s =ω j (for each j ∈ J∪{0}):

tN−s = tN−ω j e(s−ω j) log t−1
= tN−ω j

∞

∑
n=0

(log t−1)n

n!
(s−ω j)

n; (5.4.62)

we then multiply it by the Laurent expansion of ζ̃A,Ω (s) around s = ω j and extract
the residue of this product in order to deduce that

res(tN−sζ̃A,Ω (s),ω j) = tN−ω j

m j−1

∑
n=0

(log t−1)n

n!
ζ̃A,Ω [ω j]−n−1. (5.4.63)

In light of this identity and of (5.4.61), we conclude that dimB(A,Ω) exists and is
equal to D. Furthermore, since m j < m0 = m, we conclude that the highest power
of log t−1 appearing in the fractal tube formula (5.4.61) is m−1, and that it appears
only in the sum (5.4.63) when j = 0. Therefore, if we choose h(t) := (log t−1)m−1

32 It will follow from the proof that dimB(A,Ω) exists and that D = dimB(A,Ω) and hence, is equal
to D.
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for all t ∈ (0,1) as our gauge function, the statements about the Minkowski content
and the gauge Minkowski content (in the usual sense as well as with respect to h)
now also follow from the fractal tube formula (5.4.61).

We easily deduce Equations (5.4.59) and (5.4.60) from (5.4.61) by rewriting
(5.4.63) as follows:

res(tN−sζ̃A,Ω (s),ω j) = tN−Dh(t)
m j−1

∑
n=0

tD−ω j
(log t−1)n−m+1

n!
ζ̃A,Ω [ω j]−n−1.

(5.4.64)

Indeed, for j = 0, we have that m0 = m and ω0 = D; so that the term on the right-

hand side of (5.4.64) corresponding to n = m−1 is equal to
ζ̃A,Ω [ω j ]−m

(m−1)! (i.e., to M ,

the h-Minkowski content of (A,Ω); see Equation (5.4.58) above), while for any
n ∈ {0, . . . ,m−2} (if this set is nonempty, i.e., if m ≥ 2), we are left with a function
which is O((log t−1)−1) as t → 0+ (if m = 1, the corresponding function is absent;
i.e., it is equal to zero). Equations (5.4.59) and (5.4.60) then follow because for
j 
= 0 ( j ∈ J), we have that |tD−ω j |= 1 (since D−ω j is a purely imaginary complex
number) and (log t−1)n−m+1 = O((log t−1)−1) as t → 0+.

This concludes the proof of the theorem. ��

Remark 5.4.28. In light of the proof of Theorem 5.4.27, the error term O((log t−1)−1)
in Equation (5.4.59) can be slightly improved to O((log t−1)n−m+1), where n is the
largest positive integer such that n < m− 1 and for which there exists j ∈ J such
that ζ̃A,Ω [ω j]−n−1 
= 0.

The further to the left we can meromophically extend the tube zeta function ζ̃A,Ω
of a given RFD (A,Ω) (meaning, the smaller the value of supS, for a given screen S
relative to which ζ̃A,Ω is admissible), the sharper the estimate (5.4.60) in Theorem
5.4.27. Therefore, if we denote by S (A,Ω) the family of all possible screens S such
that the tube zeta function ζ̃A,Ω admits a meromorphic extension to a connected open
neighborhood of the corresponding window W =W (S), it is natural to define the
following (extended) real number:

or(A,Ω) := inf
S∈S (A,Ω)

sup S ∈ [−∞,dimB(A,Ω)], (5.4.65)

which we call the order of the RFD (A,Ω). It is clear that

or(A,Ω)≤ Dmer(ζ̃A,Ω ), (5.4.66)

where Dmer(ζ̃A,Ω ) is the abscissa of meromorphic continuation of the tube zeta func-
tion ζ̃A,Ω . In light of Equation (5.4.60) in Theorem 5.4.27, we can then deduce the
following significant conclusion.

Theorem 5.4.29 (Optimal tube function asymptotic expansion). Let (A,Ω) be
a relative fractal drum such that the conditions of Theorem 5.4.27 are satisfied,
with D := D(ζ̃A,Ω ) being the unique pole of ζ̃A,Ω in the open right half-plane
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{Res > Dmer(ζ̃A,Ω )}, of order m ≥ 1. Then, (A,Ω) is h-Minkowski measurable with
h-Minkowski content M (A,Ω ,h) = M . Furthermore, for any positive real number
ε , the tube function t �→ |At ∩Ω | has the following pointwise asymptotic expansion,
with error term:

|At ∩Ω |= tN−Dh(t)
(
M +O(tD−Dmer(ζ̃A,Ω )−ε)

)
as t → 0+, (5.4.67)

where h(t) := (log t−1)m−1 for all t ∈ (0,1).
Moreover, the asymptotic formula in Equation (5.4.67) is optimal; that is, the ex-

ponent D−Dmer(ζ̃A,Ω ) appearing in the error term cannot be replaced by a larger
number. In addition, the order of the RFD (A,Ω) is equal to the abscisssa of mero-
morphic continuation of the corresponding tube zeta function ζ̃A,Ω ; i.e.,

or(A,Ω) = Dmer(ζ̃A,Ω ). (5.4.68)

Proof. First of all, by using Theorem 5.4.27 and since for any ε > 0 there exists
S ∈ S such that supS > or(A,Ω)+ ε , we have that

|At ∩Ω |= tN−Dh(t)
(
M +O(tD−or(A,Ω)−ε)

)
as t → 0+. (5.4.69)

Equation (5.4.67) then follows from (5.4.66).
In order to establish the optimality of the asymptotic formula in Equation

(5.4.67), we reason by contradiction. Assume that we have

|At ∩Ω |= tN−Dh(t)
(
M +O(tα)

)
as t → 0+, (5.4.70)

for some real number
α > D−Dmer(ζ̃A,Ω ). (5.4.71)

(Here, in the statement of (5.4.71), we can omit ε since without loss of generality, we
can always choose a smaller real number α satisfying the same strict inequality.) In
light of Theorem 4.5.1 (applied with m−1 instead of m), we conclude that ζ̃A,Ω can
be meromophically extended (at least) to the open right half-plane {Res > D−α}.
It then follows from the definition of the abscissa of meromorphic continuation that
Dmer(ζ̃A,Ω ) ≤ D−α . On the other hand, we deduce from (5.4.71) that D−α <

Dmer(ζ̃A,Ω ), which contradicts the previous inequality.
Finally, in order to prove Equation (5.4.68), it suffices to note that, due to the

optimality proved just above, we must have that D− or(A,Ω) ≤ D−Dmer(ζ̃A,Ω )

(see Equations (5.4.69) and (5.4.67)); i.e., or(A,Ω) ≥ Dmer(ζ̃A,Ω ), which together
with (5.4.66), implies the desired equality (5.4.68). This completes the proof of the
theorem. ��

In other words, assuming that the conditions of Theorem 5.4.29 are satisfied, we
have shown that the larger the difference

α(A,Ω) := D(ζ̃A,Ω )−Dmer(ζ̃A,Ω ) (5.4.72)
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between the abscissa of (absolute) convergence and the abscissa of meromorphic
continuation of the tube zeta function ζ̃A,Ω of a given RFD (A,Ω), the better the
asymptotic estimate (5.4.67) of the tube function t �→ |At ∩Ω | when t → 0+.

Our next result, Theorem 5.4.30, can be viewed as the converse of Theorem
4.5.1, about the existence of meromorphic extensions of the tube (or distance) zeta
functions of suitable Minkowski measurable RFDs. In addition, it shows that, in
some precise sense, these results are optimal.

Theorem 5.4.30. Let (A,Ω) be an RFD such that the conditions of Theorem 5.4.27
are satisfied. Furthermore, assume that there exists a positive real number α such
that the relative tube zeta function ζ̃A,Ω can be meromorphically extended to the
open right half-plane {Res > D−α}, with D := D(ζ̃A,Ω ) being the unique pole of
ζ̃A,Ω in this right half-plane, of order m ≥ 1. Then, the tube function t �→ |At ∩Ω |
has the following pointwise asymptotic expansion, with error term of order α:

|At ∩Ω |= tN−Dh(t)
(
M +O(tα)

)
as t → 0+, (5.4.73)

where the gauge function h is given by h(t) := (log t−1)m−1 for all t ∈ (0,1) and
M = M (A,Ω ,h) is the h-Minkowski content of (A,Ω).

Moreover, if we let

r(A,Ω) := sup{Res : s ∈ P(ζ̃A,Ω )\{D}}, (5.4.74)

then the tube function t �→ |At ∩Ω | has the following poinntwise asymptotic expan-
sion, with error term, for any positive real number ε:

|At ∩Ω |= tN−Dh(t)
(
M +O(tD−r(A,Ω)−ε)

)
as t → 0+, (5.4.75)

Proof. Equation (5.4.73) follows from Equation (5.4.59) of Theorem 5.4.27, by
choosing the screen S to be the vertical line {Res = D−α}; that is, S(x) := D−α
for all x ∈ R. Indeed, in this case, we have D− supS = D− (D−α) = α .

Equation (5.4.75) follows easily from (5.4.73) by letting α := D− r(A,Ω)− ε ,
for ε > 0 small enough. Indeed, for such an ε , s = D is the only pole in the open
right half-plane {Res > r(A,Ω)+ ε = D−α}. ��

In light of the functional equation (4.5.2) connecting the relative distance zeta
function with the relative tube zeta function, it is clear that when dimBA < N,
the value of the order α(A,Ω) can be analogously defined by using the rela-
tive distance zeta function ζA,Ω instead of the relative tube zeta function ζ̃A,Ω in
Equation (5.4.72). Furthermore, D(ζA,Ω ) = D(ζ̃A,Ω ) = dimB(A,Ω), Dmer(ζA,Ω ) =

Dmer(ζ̃A,Ω ), and the analog of Theorem 5.4.29 can be easily stated and proved in
the case of the relative distance zeta function of a given RFD (A,Ω), instead of the
relative tube zeta function.

Remark 5.4.31. It may be that the conclusion of Theorem 5.4.27 (and of Theorem
5.4.32 below, respectively) is also true in the case when there exists an infinite
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sequence of nonreal complex dimensions of (A,Ω) with real part D such that each of
them has multiplicity strictly less than that of D.33 The fractal tube formula (5.4.61)
((5.4.78), respectively) also holds pointwise in this case, but in order to obtain the
conclusion about dimB(A,Ω) and the h-Minkowski measurability of (A,Ω), we
have to be able to justify the interchange of the limit as t → 0+ and the infinite
sum which appears in this case in Equation (5.4.61) (respectively, (5.4.78)). A pri-
ori, we do not have such a justification to our disposal without making additional
assumptions on the nature of the convergence of the sum in (5.4.61) (respectively,
(5.4.78)).

It would be interesting to try to extend the above result and obtain a type of
gauge Minkowski measurability criterion, in the likes of Theorem 5.4.20. (Some
of the results obtained in [HeLap] may be useful for this purpose.)34 See Theorem
4.5.1 for a partial converse of the above theorem in the case when the relative tube
function satisfies the following pointwise asymptotic expansion, with error term:

|At ∩Ω |= tN−D(log t−1)m−1(M +O(tα)) as t → 0+, (5.4.76)

where m ∈ N and α > 0.

As always, we can reformulate the above theorems in terms of the distance
(instead of the tube) zeta function. As an example, we state the counterpart for ζA,Ω
of Theorem 5.4.27.

Theorem 5.4.32. Let (A,Ω) be a relative fractal drum in R
N such that

dimB(A,Ω) < N. Also assume that (A,Ω) is d-languid with κd < 0 or is such
that (λA,λΩ) is strongly d-languid for some λ > 0 with κd < 1, for a screen S
passing strictly between the critical line {Res = dimB(A,Ω)} and all the complex
dimensions of (A,Ω) with real part strictly less than D := dimB(A,Ω). Further-
more, suppose that D is the only pole of the relative distance zeta function ζA,Ω
with real part equal to D of order m ≥ 1 and, additionally, that there exists (at
most) finitely many nonreal poles of ζA,Ω with real part D. Moreover, assume that
the multiplicity of each of those nonreal poles is of order strictly less than m. Then,
dimB(A,Ω) exists and is equal to D := D. Also, M D(A,Ω) exists and is equal to
+∞; hence, (A,Ω), is Minkowski degenerate.

In addition, an appropriate gauge function for (A,Ω) is h(t) := (log t−1)m−1 for
all t ∈ (0,1) and we have that, relative to h, and in the terminology of Definition
6.1.4 of Section 6.1 below, the RFD (A,Ω) is not only h-Minkowski nondegenerate
but is also h-Minkowski measurable, with h-Minkowski content given by

33 See Example 5.5.22 where we are in such a situation and the conclusion of Theorem 5.4.32
holds.
34 Recall, in particular, that in [HeLap], a gauge Minkowski measurability criterion was obtained
for fractal strings, extending to the case of non power laws the one obtained (when h ≡ 1) in
[LapPo1–2]. This criterion does not involve the notion of complex dimensions and is stated only in
terms of the underlying gauge function h and the asymptotic behavior of the lengths of the string.
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M D(A,Ω ,h) =
ζA,Ω [D]−m

(N −D)(m−1)!
, (5.4.77)

where ζA,Ω [D]−m denotes the coefficient corresponding to (s−D)−m in the Laurent
expansion of ζA,Ω around s = D.

Finally, the exact same conclusions as in Theorem 5.4.27 hold concerning the
asymptotic expansion of |At ∩Ω | in either (5.4.59) or (5.4.60), but with ζA,Ω in
place of ζ̃A,Ω in the respective hypotheses.

Proof. We will prove the theorem in the special case when D is the only pole with
real part equal to D. The general case then follows analogously as in the proof of
Theorem 5.4.27. Let D := dimB(A,Ω). By Theorem 5.3.16, we have the following
pointwise asymptotic tube formula, with error term:

|At ∩Ω |= res

(
tN−s

N − s
ζA,Ω (s),D

)
+O(tN−supS) as t → 0+. (5.4.78)

Furthermore, we expand (N − s)−1 into a Taylor series around s = D:

1
N − s

=
∞

∑
n=0

(−1)n(s−D)n

n!(N −D)n+1
; (5.4.79)

we then multiply the resulting Taylor series by (5.4.62) in order to obtain the fol-
lowing Taylor expansion of tN−s/(N − s) around s = D:

tN−s

N − s
=

∞

∑
n=0

(s−D)n
n

∑
k=0

(−1)n−k(log t−1)k

k!(n− k)!(N −D)n−k+1
. (5.4.80)

We next multiply the above Taylor series (in (5.4.80)) by the Laurent expansion of
ζA,Ω (s) around s = D and extract the residue of the resulting product to deduce that

res

(
tN−s

N − s
ζA,Ω (s),D

)
= tN−D

m−1

∑
n=0

n

∑
k=0

(−1)n−k(log t−1)kζA,Ω [D ]−n−1

k!(n− k)!(N −D)n−k+1
.

We then complete the proof of the theorem by reasoning analogously as in the proof
of Theorem 5.4.27. ��

5.5 Examples and Applications

In this section, we illustrate the theory of fractal tube formulas developed in Sec-
tions 5.1–5.3 (along with the associated Minkowski measurability criterion obtained
in Section 5.4) by means of several examples of bounded (fractal) sets and rel-
ative fractal drums. These examples include the line segment and the (N − 1)-
dimensional sphere (Subsection 5.5.1), the recovery of the known tube formu-
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las (from [Lap-vFr3]) for fractal strings (Subsection 5.5.2), the Sierpiński gasket
and the 3-dimensional Sierpiński carpet, along with the inhomogeneous higher-
dimensional N-gasket RFDs, with N ≥ 3 (Subsection 5.5.3), a suitable version of
the Cantor graph (the ‘devil’s staircase’) and an associated discussion of ‘fractal-
ity’ expressed in terms of the presence of nonreal complex dimensions (Subsection
5.5.4), two families of examples which are not self-similar, namely, fractal nests
and unbounded geometric chirps (Subsection 5.5.5), as well as, finally, the recov-
ery and significant extensions of the known fractal tube formulas (from [LapPe2–3,
LapPeWi1–2]) for self-similar sprays (Subsection 5.5.6).

5.5.1 The Line Segment and the Sphere

We begin by considering the trivial example of the unit interval in R, which illus-
trates the case when we cannot use the distance zeta function in order to recover the
tube formula, since D = N = 1.

Example 5.5.1. Let I = [0,1] be the unit interval in R. Then the meromorphic con-
tinuations to C of its distance and tube zeta functions are respectively given by

ζI(s) =
2δ s

s
and ζ̃I(s) =

2δ s

s
+
δ s−1

s−1
, for all s ∈ C. (5.5.1)

As we can see, the distance zeta function fails to provide information about the
Minkowski content in this case, because the pole at s = 1 is canceled by means of
the functional equation (2.2.23). On the other hand, it is clear that ζ̃I is strongly
languid if we choose δ > 1 for κ :=−1 and a sequence of screens consisting of the
vertical lines {Res =−m}, where m ∈N. We then recover from Theorem 5.1.14 the
following exact pointwise tube formula:

|It |= tN−0 res(ζ̃I ,0)+ tN−1 res(ζ̃I ,1) = 2t +1, (5.5.2)

initially valid for all t ∈ (0,δ ). Actually, since δ > 1 may be taken arbitrary large, the
exact tube formula (5.5.2) is valid for all t > 0. Note that, of course, it is immediate
to check directly that the tube formula (5.5.2) holds for all t > 0.

Next, let us look at the example of the (N − 1)-dimensional sphere in R
N , for

which the tube zeta function has been explicitly calculated in Example 2.2.21.

Example 5.5.2. Let BR(0) be the ball of RN centered at the origin and with radius
R > 1; furthermore, let A := ∂BR(0) be its boundary, i.e., the (N − 1)-dimensional
sphere of radius R. Then, for a fixed δ ∈ (0,R), the tube zeta function of A is mero-
morphic on C and given by

ζ̃A(s) = ωN

N

∑
k=0

(1− (−1)k)RN−k
(

N
k

)
δ s−N+k

s− (N − k)
, for all s ∈ C. (5.5.3)
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Moreover, we have shown in Example 2.2.21 that dimB A = D(ζ̃A) = N−1 and that,
in addition, the set of complex dimensions of A is given by

P(ζ̃A) := P(ζ̃A,C) =
{

N − (2 j+1) : j = 0,1,2, . . . ,
⌊N −1

2

⌋}

=
{

N −1,N −3, . . . ,N −
(

2
⌊N −1

2

⌋
+1

)}
.

(5.5.4)

Also, P(ζ̃A) = P(ζA).
The residue of the tube zeta function ζ̃A at any of its poles m ∈ P(ζ̃A) is given

by

res(ζ̃A,m) = 2ωN

(
N
m

)
Rm. (5.5.5)

Observe that, by choosing δ = 1, we have that ζ̃A is strongly languid with
κ =−1. More specifically, we may take the sequence of screens Sm as the sequence
of vertical lines {Res = −m}, with m ∈ N. Then, in light of Theorem 5.1.14 (the
strongly languid case), we recover the following well-known tube formula of A; i.e.,
for all t ∈ (0,1), we have successively:

|At |= ∑
ω∈P(ζ̃A)

tN−ω res(ζ̃A,ω)

= 2ωN

�N−1
2 �
∑
j=0

(
N

2 j+1

)
t2 j+1RN−(2 j+1)

= ωN

N

∑
k=0

(
N
k

)
(1− (−1)k)tkRN−k

= ωN
(
(R+ t)N − (R− t)N) .

(5.5.6)

We refer to Theorem 4.5.6 on page 359 and the discussion surrounding it for a
large class of additional examples of exact (pointwise) tube formulas for bounded
sets and relative fractal drums in R

N associated with compact sets of positive reach,
including compact convex sets in R

N and compact smooth submanifolds of R
N .

Recall that Theorem 4.5.6 relied in a key manner on the tube formula obtained by
H. Federer in [Fed1].

5.5.2 Tube Formulas for Fractal Strings

In the present subsection, we apply our general theory of fractal tube formulas
for relative fractal drums (and, in particular, for bounded sets) in R

N to the one-
dimensional case (i.e., N = 1) in order to recover the known (pointwise and dis-
tributional) fractal tube formulas for fractal strings obtained in [Lap-vFr3]. [Com-
pletely analogously, we could obtain fractal tube formulas for bounded closed (or,
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equivalently, compact) subsets of the real line.] We begin by discussing the proto-
typical example of the Cantor string (viewed as an RFD), in Example 5.5.3, and
further illustrate our results by means of two well-known examples, namely, the Fi-
bonacci string (in Example 5.5.9) and the a-string (in Example 5.5.10). Along the
way, we discuss the case of general fractal strings as well as the associated fractal
tube formulas.

Example 5.5.3. (The standard ternary Cantor set and string). Let C be the stan-
dard ternary Cantor set in [0,1] and fix δ ≥ 1/6. Then, it is easy to deduce from
the discussion in Example 2.1.82 that the ‘absolute’ distance zeta function of C is
meromorphic in all of C and given by

ζC,Cδ (s) =
21−s

s(3s −2)
+

2δ s

s
, for all s ∈ C, (5.5.7)

where the term 2δ s/s corresponds to the integral over the ‘outer’ neighborhood
of the two endpoints 0 and 1. Consequently, the relative distance zeta function of
(C,(0,1)) is also meromorphic on all of C and given by

ζC,(0,1)(s) =
21−s

s(3s −2)
, for all s ∈ C. (5.5.8)

Hence, in light of (5.5.7) and (5.5.8), the sets of complex dimensions of the Cantor
set C and of the Cantor string (C,(0,1)), viewed as an RFD, coincide:

P(ζC) = P(ζC,(0,1)) = {0}∪
(

log3 2+
2π

log3
iZ

)
. (5.5.9)

In (5.5.9), each of the complex dimensions is simple. Furthermore, the Minkowski
dimension D := dimB(C,(0,1)) of the Cantor string exists and D = log3 2, the
Minkowski dimension of the Cantor set, which also exists. Furthermore, p := 2π

log3
is the oscillatory period of the Cantor set (or string), viewed as a lattice self-similar
set (or string); see [Lap-vFr3, Chapter 2, esp., Subsection 2.3.1 and Section 2.4].

It is clear that (λC,λ (0,1)) is strongly d-languid for κd := −1, any λ ≥ 2
and a sequence of screens consisting of the vertical lines {Res = −m} for m ∈
N, along with the constant Bλ := 2/λ in the strong languidity condition L2’.35

Theorem 5.3.16 (or, really, Theorem 5.3.17 since all of the complex dimensions
of the RFD are simple) then enables us to recover the following exact point-
wise fractal formula for the inner t-neighborhood of C, whch is valid for all
t ∈ (0,min{1/λ ,1/2}) = (0,1/2):

35 Without loss of generality, we can fix δ ≥ 1, here.
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|Ct ∩ (0,1)|= ∑
ω∈P(ζC,(0,1))

res

(
t1−s

1− s
ζC,(0,1)(s),ω

)

= ∑
ω∈P(ζC,(0,1))

t1−ω

1−ω res
(
ζC,(0,1),ω

)

=
1

2log3

+∞

∑
k=−∞

(2t)1−ωk

(1−ωk)ωk
−2t

=
(2t)1−D

2log3

+∞

∑
k=−∞

(2t)−ikp

(1−ωk)ωk
−2t

= t1−DG
(
log3(2t)−1)−2t,

(5.5.10)

where ωk := D+ ikp for each k ∈ Z, D := dimB(C,(0,1)) = log3 2 (as above), and
p := 2π

log3 denote, respectively, the relative Minkowski dimension and the ‘oscillatory
period’ of the Cantor string RFD (C,(0,1)) in R (or, equivalently, of the Cantor
string LCS). Furthermore, G is the positive, nonconstant 1-periodic function, which
is bounded away from zero and infinity and given by the following Fourier series
expansion:

G(x) :=
2−D

log3 ∑k∈Z
e2πikx

ωk(1−ωk)
. (5.5.11)

In (5.5.10), the second equality follows from the fact that all of the complex di-
mensions of (C,(0,1)) are simple (see also Theorem 5.3.17 above), while the third
equality is obtained by computing the residues of ζC,(0,1) at each s := ωk (for k ∈ Z)
and at s = 0; in particular, we have that

res
(
ζC,(0,1),ωk

)
=

2−ωk

ωk log3
, for all k ∈ Z. (5.5.12)

Of course, the above exact pointwise fractal tube formula (5.5.10) coincides with
the one obtained by a direct computation for the Cantor string (see [Lap-vFr3,
Subsection 1.1.2]) or from the general theory of fractal tube formulas for fractal
strings (see [Lap-vFr3, Chapter 8, esp., Sections 8.1 and 8.2]) and, in particular, for
self-similar strings (see, especially, [Lap-vFr3, Subsection 8.4.1, Example 8.2.2]).36

Note that the ‘absolute’ tube function |Ct | has the same expression as in (5.5.10)
above but now without the term −2t, which is in accordance with (5.5.7).

Finally, observe that, in agreement with the lattice case of the general theory of
self-similar strings developed in [Lap-vFr3, Chapters 2–3, and Section 8.4], we can
rewrite the pointwise fractal tube formula (5.5.10) as follows (with D := dimB C =
log2 3):

t−(1−D)VC,(0,1)(t) = t−(1−D)|Ct ∩ (0,1)|= G
(
log3(2t)−1)+o(1), (5.5.13)

36 Caution: in [Lap-vFr1, Subsection 8.4], the Cantor string is defined slightly differently, and
hence, C is replaced by 3−1C.
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where G is given by (5.5.11). Therefore, since G is periodic and nonconstant, it is
clear that t−(1−D)VC,(0,1)(t) cannot have a limit as t → 0+. It follows that the Cantor
string RFD (C,(0,1)) (or, equivalently, the Cantor string LCS) is not Minkowski
measurable but (since G is also bounded away from zero and infinity) is Minkowski
nondegenerate. (This was first proved in [LapPo1–2] via a direct computation,
leading to the precise values of M∗ and M ∗, and reproved in [Lap-vFr3, Sub-
section 8.4.2] by using either the pointwise fractal tube formulas or a self-similar
fractal string analog of the Minkowski measurability criterion; i.e., of the N = 1
case of Theorem 5.4.20; see Remark 5.4.22 and, especially, Corollary 5.4.23.) Note
that, of course, as was alluded to just above, we can also deduce the Minkowski
nonmeasurability of (C,(0,1)) from the N = 1 case of Theorem 5.4.20. Indeed,
D := dimB(C,(0,1)) = log3 2 < 1, although it is simple, is not the only complex
dimension of the RFD (C,(0,1)) (or, equivalently, of the Cantor string) with real
part equal to D, since G is nonconstant. In addition, the remaining hypotheses of
Theorem 5.4.20 are clearly satisfied.

The above example demonstrates how the theory developed in this chapter gen-
eralizes (to arbitrary dimensions N ≥ 1) the corresponding one for fractal strings
developed in [Lap-vFr3, Chapter 8].37 More generally, the following result provides
a general connection between the geometric zeta function of a nontrivial fractal
string L = (� j) j≥1 and the (relative) distance zeta function of the bounded subset
of R given by

AL :=

{
ak := ∑

j≥k

� j : k ≥ 1

}
(5.5.14)

or, more specifically, of the RFD (AL ,(0, �)). See also Remark 5.5.5 and Equation
(5.5.16) below.

Proposition 5.5.4. Let L = (� j) j≥1 be a nontrivial bounded fractal string and let
� := ζL (1) = ∑∞j=1 � j denote its total length. Then, for every δ ≥ �1/2, we have the
following functional equation for the distance zeta function of the relative fractal
drum (AL ,(0, �)):

ζAL ,(0,�)(s;δ ) =
21−s

s
ζL (s), (5.5.15)

valid on any connected open neighborhood U ⊆ C of the critical line {Res =
dimB(AL ,(0, �))} to which any (and hence, each) of the two fractal zeta functions
ζAL ,(0,�) and ζL possesses a meromorphic continuation.38

37 One should somewhat qualify this statement, however, because the higher-dimensional coun-
terpart of the theory of fractal tube formulas for self-similar strings developed in [Lap-vFr3, Sec-
tion 8.4] is not developed in this book in the general case of self-similar RFDs (and, for example, of
self-similar sets satisfying the open set condition), except in the special case of self-similar sprays
discussed in Subsection 5.5.6 below.
38 If we do not require that δ ≥ �1/2, then we have that ζAL

(s;δ ) = 21−ss−1ζL (s)+ v(s), where
v is holomorphic on {Res > 0}. On the other hand, in order to apply the theory, we may restrict
ourselves to the case when δ ≥ �1/2.
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Furthermore, if ζL is languid for some languidity exponent κL ∈ R, then
ζAL ,(0,�)( · ;δ ) is d-languid for the d-languidity exponent κd := κL − 1, with any
δ ≥ �1/2.

Moreover, if ζL is strongly languid, then so is ζλAL ,(0,λ�)( · ;δλ ) for any λ ≥ 2
and any δ ≥ �1/2.

Proof. The functional equation (5.5.15) is already derived in Example 2.1.58. More
precisely, it follows from Equation (2.1.84) and the principle of analytic contin-
uation. Furthermore, the statements about the languidity follow directly from the
definition. ��

Remark 5.5.5. There is nothing special about the bounded set AL ⊂ R associated
with L , as was already pointed out in Corollary 2.1.61 and the comments sur-
rounding it (see also Remark 5.5.6 below). In fact, in the statement of Proposition
5.5.4, we could replace AL with ∂Ω , where the bounded open set Ω ⊂ R is an
arbitrary geometric realization of the fractal string L . Similarly, in recovering the
fractal tube formulas for fractal strings obtained in [Lap-vFr3, Chapter 8], one can
use ζ∂Ω ,Ω := ζ∂Ω ,Ω ( · ;δ ) instead of ζAL ,(0,�) := ζAL ,(0,�)( · ;δ ). This is precisely
what we will do in the subsequent discussion.

Let ∂Ω be the boundary ofΩ , where the bounded open setΩ ⊂R is any geomet-
ric realization of the bounded (nontrivial) fractal string L such that dimB(∂Ω ,Ω)<
1. Then, under suitable hypotheses (namely, we assume that either ζ∂Ω ,Ω or ζL has
a meromorphic continuation to a connected open neighborhood U of the critical
line {Res = dimB(∂Ω ,Ω)}), we have (much as in (5.5.15) above) the following
key functional equation connecting the distance zeta function ζ∂Ω ,Ω of the RFD
(∂Ω ,Ω) and the geometric zeta function ζL of the fractal string L := (� j)

∞
j=1 (see

also part (ii) of Corollary 2.1.61 on page 92 for more detailed information):39

ζ∂Ω ,Ω (s) =
21−sζL (s)

s
, (5.5.16)

valid for all s ∈U . Of course, it then follows that each of the two fractal zeta func-
tions ζ∂Ω ,Ω and ζL has a unique meromorphic continuation to all of U .

Consequently, by choosing U := W̊ to be the interior of a suitable window W
(with an associated screen S), we deduce from the results of Section 5.3 that the
tube function

VL (t) := |{x ∈Ω : d(x,∂Ω)< t}|1 =V∂Ω ,Ω (t) (5.5.17)

39 We note that the functional equation (5.5.16) is valid, without any hypothesis on the bounded
fractal string L (or on its distance and geometric zeta functions), for all s ∈ C with Res suffi-
ciently large (namely, for Res > D, where D := dimB(∂Ω ,Ω) = D(ζ∂Ω ,Ω ) = D(ζL )). Its proof is
provided in the proof of part (ii) of Corollary 2.1.61 on page 92.
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can be expressed via the following fractal tube formula (with or without error term
and pointwise or distributionally, depending on the assumptions), for every δ ≥
�1/2:40

VL (t) =V∂Ω ,Ω (t)

= ∑
ω∈P(ζ∂Ω ,Ω ,W )

res

(
t1−s

1− s
ζ∂Ω ,Ω (s),ω

)
+R[0]

∂Ω ,Ω (t)

= ∑
ω∈P(ζ∂Ω ,Ω ,W )

res

(
(2t)1−s

s(1− s)
ζL (s),ω

)
+R[0]

∂Ω ,Ω (t),

(5.5.18)

where, in the languid case, we have the error estimate R[0]
∂Ω ,Ω (t) = O(t1−supS) as

t → 0+ or R[0]
∂Ω ,Ω (t) = o(t1−supS) as t → 0+ (also depending on the hypotheses;

more specifically, in order to obtain the better error estimate, we also have to as-
sume that the screen S is strictly to the left of the vertical line {Res = supS}), or

else, R[0]
∂Ω ,Ω (t)≡ 0 and W := C in the strongly languid case. Here, P(ζ∂Ω ,Ω ,W )

denotes the set of visible complex dimensions of (∂Ω ,Ω), visible through a given
window W (with an associated screen S), and in light of the counterpart for the
RFD (∂Ω ,Ω) of Equation (5.5.15) along with Remark 5.5.5, we have that

P(ζ∂Ω ,Ω ,W \{0}) = P(ζL ,W \{0}), (5.5.19)

where the equality holds between multisets. Furthermore, if 0 ∈W and if ζL (0) is
defined and not equal to zero (i.e., if ζL (0) 
= 0), then, 0 ∈P(ζ∂Ω ,Ω ,W ) and it has
multiplicity one. On the other hand, if 0 ∈ P(ζL ,W ) and is a pole of multiplicity
m for some m ∈ N, then, 0 ∈ P(ζ∂Ω ,Ω ,W ) and it has multiplicity m+ 1. In other
words, we have the following equality between multisets:

P(ζ∂Ω ,Ω ,W ) = P(ζL ,W )∪{0}0∈W , ζL (0) 
=0, (5.5.20)

where {0}0∈W , ζL (0) 
=0 is equal to {0} if 0 ∈W and ζL (0) 
= 0, and to the empty
set otherwise.

If, in addition, each of the visible complex dimensions of (∂Ω ,Ω) (i.e., each
pole of ζ∂Ω ,Ω in W ) is simple, then (in light of (5.5.18)) the fractal tube formula
(5.5.18) takes the following simpler form:

VL (t) =V∂Ω ,Ω (t)

= ∑
ω∈P(ζL ,W )

(2t)1−ω

ω(1−ω) res(ζL (s),ω)+{2tζL (0)}0∈W

+R[0]
∂Ω ,Ω (t),

(5.5.21)

40 Namely, we are assuming here either the hypotheses of Theorem 5.3.16 (i.e., of Theorem 5.3.11
at level k = 0), for the pointwise tube formula, or else, the hypotheses of Theorem 5.3.21 (i.e., of
Theorem 5.3.19 at level k = 0), for the distributional tube formula.
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where the (pointwise or distributional) error term R[0]
∂Ω ,Ω (t) is estimated as above

(in the languid case) or else, R[0]
∂Ω ,Ω (t) ≡ 0 and W := C (in the strongly languid

case). Here, the term {2tζL (0)}0∈W is equal to zero if 0 /∈ W and to 2tζL (0)
if 0 ∈ W . If, however, 0 is a simple, visible pole of ζL , then we should replace
{2tζL (0)}0∈W on the right-hand side of (5.5.21) by the term

2t(1− log(2t)) res(ζL ,0)+2tζL [0]0, (5.5.22)

where ζL [0]0 stands for the constant term in the Laurent series expansion of ζL
around s = 0. This is in agreement with [Lap-vFr3, Corollary 8.3] (resp., [Lap-vFr3,
Corollary 8.10]) in the case of a distributional (resp., pointwise) fractal tube formula.

Note that in light of (5.5.19), formula (5.5.18) can be rewritten as follows, in
terms of the set P(ζL ,W ) of all visible poles of ζL (see also Remark 5.5.7 below):

VL (t) =V∂Ω ,Ω (t)

= ∑
ω∈P(ζL ,W )

res

(
(2t)1−s

s(1− s)
ζL (s),ω

)

+{2tζL (0)}0∈W \P(ζL ,W ) +R[0]
∂Ω ,Ω (t),

(5.5.23)

which is in agreement with [Lap-vFr3, Theorem 8.1] (resp., [Lap-vFr3, Theo-
rem 8.7]) in the case of a distributional (resp., pointwise) fractal tube formula.

Naturally, P(ζL ,W ) is viewed as a multiset; that is, on the right-hand side
of (5.5.19) or (5.5.20), each visible ‘scaling complex dimension’ ω ∈ P(ζL ,W )
(i.e., each visible pole of the geometric zeta function ζL ) occurs according to
its multiplicity. An entirely analogous comment can be made about the multiset
P(ζ∂Ω ,Ω ,W ) and the associated visible complex dimensions ω ∈ P(ζ∂Ω ,Ω ,W ).

Remark 5.5.6. As was first observed in [LapPo1–2] and as can be easily checked via
a direct computation, V∂Ω ,Ω depends only on the fractal string L = (� j)

∞
j=1 and not

on the chosen geometric representation of L via a bounded open set Ω ⊂ R. (See
also [Lap-vFr3, Equation (8.1), p. 238].) Hence, we may use the notation V∂Ω ,Ω =
VL . More specifically, a moment’s reflection reveals that for every t > 0, we have
that

V∂Ω ,Ω (t) = ∑
� j≥2t

2t + ∑
� j<2t

� j, (5.5.24)

which clearly depends only on the fractal string L = (� j)
∞
j=1.

Remark 5.5.7. In [Lap-vFr3], the elements of P(ζL ,W ) are called the (visible)
complex dimensions of L . In the present book, the relationship with the actual
(visible) complex dimension of the RFD (∂Ω ,Ω) (i.e., the visible poles of ζ∂Ω ,Ω )
is given by Equations (5.5.19) and (5.5.20), along with the text surrounding them.
Much as in [LaPe2–3, LapPeWi1–2] and [Lap-vFr3, Section 13.1], we propose to
refer to the elements of P(ζL ,W ) (i.e., to the visible poles of the geometric zeta
function ζL ) as the visible scaling complex dimensions of the fractal string L .
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Similarly, ζL will also be occasionally referred to as the scaling zeta function of
L (or rather, of the associated RFD (∂Ω ,Ω)) and denoted by ζS; see, especially,
Subsection 5.5.6 and the text surrounding Problems 6.2.35, 6.2.36 and 6.2.38.

Remark 5.5.8. We leave it as an easy exercise for the interested reader to use the
counterpart for the RFD (∂Ω ,Ω) of the functional equation (5.5.15) in Proposition
5.5.4 in order to express the languidity, as well as the strong languidity conditions,
in terms of the geometric zeta function ζL instead of the distance zeta function
ζ∂Ω ,Ω . Furthermore, the reader can easily check that the results of Example 5.5.3
concerning the Cantor string

L :=
(1

3
,

1
9
,

1
9
,

1
27

,
1
27

,
1

27
,

1
27

, . . .
)

(5.5.25)

(see, especially, Equation (5.5.10)) are compatible with both (5.5.21) and (5.5.23).
Indeed, in light of (5.5.8) and (5.5.15), we have (for all s ∈ C)

ζCS(s) =
1

3s −2
, (5.5.26)

from which it follows that ζCS(0)=−1 and (with W :=C) the term {2tζL (0)}0∈W
in both (5.5.21) and (5.5.23) becomes −2t, in agreement with (5.5.10).

Let us now apply Proposition 5.5.4 (along with Remark 5.5.5) and the above
discussion in order to recover the formula of the tubular volume of the boundary of
a well-known fractal string studied in [Lap-vFr3, Subsection 2.3.2].

Example 5.5.9. (The Fibonacci string). Let Fib be the Fibonacci string (with total
length 4) where the sequence of distinct lengths is given by � j := 2− j, for j ∈ N0,
and each length � j has multiplicity Fj+1. Here, for each n ∈ N0, Fn denotes the n-th
Fibonacci number defined by the following recursion formula:

Fn+1 = Fn +Fn−1 for all n ≥ 1, and F0 := 0, F1 := 1. (5.5.27)

Then, for the geometric zeta function of the Fibonacci string, we have (see
[Lap-vFr3, Equation (2.20)])

ζFib(s) =
1

1−2−s −4−s for all s ∈ C, (5.5.28)

and we deduce from Proposition 5.5.4 that

ζAFib,(0,4)(s;1) =
21−s

s(1−2−s −4−s)
=

2s+1

s(4s −2s −1)
, (5.5.29)

also for all s ∈ C. Therefore, one can easily check that the set of complex di-
mensions of the RFD (AFib,(0,4)) consists solely of simple poles of ζAFib,(0,4) :=
ζAFib,(0,4)( · ;1) and is given by
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P(ζAFib) := P(ζAFib,(0,4)) =
(
−D+

pi
2
+piZ

)
∪{0}∪ (D+piZ) , (5.5.30)

where D := dimB(AFib,(0,4)) = log2 φ , with φ = (1 +
√

5)/2 being the golden
mean, and with oscillatory period p := 2π/ log2. (Here, Fib is viewed as a lattice
self-similar string; see [Lap-vFr3, Chapter 2, esp., Subsection 2.3.2].) Similarly as
in Example 5.5.3, one checks that we can apply Theorem 5.3.16 with any λ ≥ 1/2
and a corresponding Bλ := 1/(2λ ) in order to recover the following exact pointwise
fractal tube formula, valid for all t ∈ (0,1):

VFib(t) :=VAFib,(0,4)(t) = |(AFib)t ∩ (0,4)|

= ∑
ω∈P(ζAFib

)

res

(
t1−s

1− s
ζAFib,(0,4)(s),ω

)

= ∑
ω∈P(ζAFib

)

t1−ω

1−ω res
(
ζAFib,(0,4),ω

)

=
(2t)1−Dφ√

5log2

+∞

∑
k=−∞

(2t)−ikp

(1−D− ikp)(D+ ikp)
−2t

+
(2t)1+D(φ −1)√

5log2

+∞

∑
k=−∞

(2t)−ip/2−ikp

(1+D− ip/2− ikp)(−D+ ip/2+ ikp)
.

(5.5.31)

Of course, the above formula coincides with the formula derived in [Lap-vFr3,
Subsection 2.3.2]. It is also consistent with the discussion (of fractal tube formu-
las for fractal strings) following Proposition 5.5.4 above, in the strongly languid

case (hence, with W := C and R[0]
AFib,(0,4)

(t)≡ 0) and in the pointwise case. (See, in

particular, Equation (5.5.21), where we have set R[0]
AFib,(0,4)

(t)≡ 0.)
Much as we did for the Cantor string in Equations (5.5.10) and (5.5.11), it is

now immediate to rewrite (5.5.31) in the following form, which is consistent with
the general theory of (exact pointwise) fractal tube formulas for lattice self-similar
strings developed in [Lap-vFr3, Subsection 8.4.2, esp., Theorem 8.4.2]:

VFib(t) = (2t)1−DG1
(

log2(2t)−1)−2t +(2t)1+DG2
(

log2(2t)−1), (5.5.32)

where G1 and G2 are explicitly known nonconstant 1-periodic functions on R; fur-
thermore, G1 and |G2| are bounded away from zero and infinity.

Example 5.5.10. (The a-string). For a given a > 0, the a-string La can be realized as
the bounded open set Ωa ⊂ R obtained by removing the points j−a for j ∈ N from
the interval (0,1); that is,

Ωa =
∞⋃

j=1

(
( j+1)−a, j−a), (5.5.33)
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so that the sequence of lengths of La is defined by

� j = j−a − ( j+1)−a, for j = 1,2, . . . , (5.5.34)

and ∂Ωa = { j−a : j ≥ 1}∪{0}= ALa ∪{0}. Hence, its geometric zeta function is
given (for all s ∈ C such that Res > dimB La) by

ζLa(s) =
∞

∑
j=1

�s
j =

∞

∑
j=1

(
j−a − ( j+1)−a)s

.

It then follows from Proposition 5.5.4 that for δ > (1− 2−a)/2, its distance zeta
function is given by (see Remark 5.5.11 at the end of this subsection)

ζALa ,(0,1)
(s;δ ) =

ζLa(s)
2s−1s

=
1

2s−1s

∞

∑
j=1

(
j−a − ( j+1)−a)s

, (5.5.35)

where the second equality holds for all s ∈ C such that Res > dimB La while the
first equality holds for all s ∈C (since, as will be recalled just below, ζLa and hence
also ζALa ,(0,1)

, admits a meromorphic extension to all of C).
Furthermore, the properties of the geometric zeta function ζLa of the a-string

are well-known (see [Lap-vFr3, Theorem 6.21]). Namely, ζLa has a meromorphic
continuation to the whole of C and its poles in C are located at

D := dimB La = dimB ALa =
1

a+1
(5.5.36)

and at (a subset of) {− m
a+1 : m ∈ N}. Moreover, all of its poles are simple and

res(ζLa ,D) = DaD.41 In addition, for any screen S not passing through a pole,
the function ζLa satisfies L1 and L2 with κ := 1

2 − (a+ 1) infS, if infS ≤ 0 and
κ := 1

2 if infS ≥ 0. From these facts and Equation (5.5.35), we conclude that the
set ALa is d-languid with κd :=− 1

2 − (a+1) infS if infS ≤ 0 and with κd :=− 1
2 if

infS ≥ 0. For each M ∈ N0, where (as before) N0 := N∪{0}, we can now choose
the screen SM to be some vertical line between −M+1

1+a and −M+2
1+a and let WM be

the corresponding window. Applying Theorem 5.3.21, we now obtain the following
asymptotic distributional formula for the tube function t �→ |(ALa)t ∩ (0,1)| when
t → 0+:

|(ALa)t ∩ (0,1)|= ∑
ω∈P(ζALa

,WM)

res

(
t1−s

1− s
ζALa,(0,1)

(s;δ ),ω
)

+O(t1−supSM ).

(5.5.37)

41 In [Lap-vFr3, Theorem 6.21], it is stated that res(ζLa ,D) = aD, which is a misprint. More
specifically, in the proof of that theorem, the source of the misprint is the fact that the residue of
ζ ((a+1)s) at s= 1/(a+1) is equal to 1/(a+1) and not to 1. Here, ζ is the Riemann zeta function.
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More specifically, since we know that all the poles are simple and ζLa(0) = −1/2
(see [Lap-vFr3, p. 205]), we have that

res(ζALa
,D) = 21−DD−1 res(ζLa ,D) = 21−DaD,

res(ζALa
,0) = 2ζLa(0) =−1.

(5.5.38)

Consequently, and in agreement with the discussion following Proposition 5.5.4 in
the special case of simple complex dimensions (see, especially, Equation (5.5.21)
above), we have that

|(ALa)t ∩ (0,1)|= 21−DaD

1−D
t1−D − t −

M

∑
m=1

res(ζLa ,−mD)(2t)1+mD

(1+mD)mD

+O
(
t1+(M+1)D), as t → 0+,

(5.5.39)

where the sum is interpreted as being equal to 0 if M = 0. In particular, dimB ALa =
D (as was stated above), and, according to Theorem 5.4.20 (the Minkowski mea-
surability criterion), the a-string is Minkowski measurable with Minkowski content
given by

M D(ALa) =
21−DaD

1−D
, (5.5.40)

as was first established in [Lap1, Example 5.1] and later reproved in [LapPo1–2] via
a general Minkowski measurability criterion for fractal strings (expressed in terms
of the asymptotic behavior of (� j)

∞
j=1, here, � j ∼ a j−1/D as j → ∞) and then, in

[Lap-vFr1–3] (via the theory of complex dimensions of fractal strings, specifically,
via the special case of Theorem 5.4.20 when N = 1). We point out that (5.5.39)
coincides with the ‘inner’ tube formula of the a-string (see [Lap-vFr3, Subsec-
tion 8.1.2]).42 Furthermore, by choosing a screen to the right of −D/2, we conclude
that (5.5.39) is actually valid pointwise since then, κd < 0 (see Theorem 5.3.16).

Remark 5.5.11. Throughout the discussion provided in Example 5.5.10, and without
affecting any of the results, we could have replaced the RFD (ALa ,(0,1)) by the
equivalent RFD (∂Ωa,Ωa), whereΩa is defined by (5.5.33) and, more generally, by
the RFD (∂Ω ,Ω), whereΩ is an arbitrary geometric realization of the fractal string
La. Indeed, as we know from Subsection 5.5.2 (see, especially, Remark 5.5.5), all of
the results obtained here are independent of the choice of the geometric realization
of the fractal string La.

42 More precisely, the two expressions coincide after we have taken into account the misprint
mentioned in footnote 41 on page 490 and added the term 2ζL (0) which seems to have been
forgotten in [Lap-vFr3].
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5.5.3 The Sierpiński Gasket and 3-Carpet

In this subsection, we provide an exact, pointwise fractal tube formula for the
Sierpiński gasket (Example 5.5.12) and for a three-dimensional analog of the
Sierpiński carpet (Example 5.5.13). Naturally, although the required computation
is somewhat more complicated, one could similarly derive from our general re-
sults in Section 5.3 exact, pointwise fractal tube formulas for the N-dimensional
analogs of the Sierpiński gasket and carpet, with N ≥ 2 arbitrary. We leave it to
the interested reader to carry out the corresponding detailed computations and to
imagine other (two- or higher-dimensional) examples of self-similar fractal sets or
self-similar RFDs which can be dealt with explicitly within the present general the-
ory of (higher-dimensional) fractal tube formulas.43 The example of the Sierpiński
3-carpet discussed in detail in Example 5.5.13 below should give a good idea as
to how to proceed in other, related situations, including especially for the higher-
dimensional inhomogeneous N-gasket RFDs (with N ≥ 4) discussed in Example
4.2.26 and for other self-similar RFDs which can also be dealt with within the gen-
eral theory of fractal tube formulas and their applications developed in this chapter.

Example 5.5.12. (The Sierpiński gasket). Let A be the Sierpiński gasket in R
2, con-

structed in the usual way inside the unit triangle. Furthermore, we assume without
loss of generality that δ > 1/4

√
3, so that Aδ be simply connected. Then, the dis-

tance zeta function ζA of the Sierpiński gasket is meromorphic on the whole com-
plex plane and is given by

ζA(s;δ ) =
6(
√

3)1−s2−s

s(s−1)(2s −3)
+2π

δ s

s
+3
δ s−1

s−1
, (5.5.41)

for all s ∈ C (see Proposition 3.2.3 in Subsection 3.2.1). In particular, the set of
complex dimensions of the Sierpiński gasket is given by

P(ζA) := P(ζA,C) = {0,1}∪
(

log2 3+
2π

log2
iZ

)
, (5.5.42)

with each complex dimension being simple.
By letting ωk := log2 3+ ikp (for each k ∈ Z) and p := 2π/ log2, we have that

res(ζA,ωk) =
6(
√

3)1−ωk

4ωk(log2)ωk(ωk −1)
for all k ∈ Z, (5.5.43)

res(ζA,0) = 3
√

3+2π, and res(ζA,1) = 0. (5.5.44)

43 The authors have recently obtained an explicit fractal tube formula for the Koch drum (or the
Koch snowflake RFD), by using the general theory developed in this chapter. This important ex-
ample should be discussed in a later work and its conclusions compared with those of [LapPe1]
(as discussed in [Lap-vFr3, Subsection 12.2.1]).
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Similarly as in Examples 5.5.3 and 5.5.9, one can check that ζλA( · ;δλ ) is strongly
languid with κd := −1 for every δ ≥ 1/2

√
3 and any λ ≥ 2

√
3; so that we can

apply Theorem 5.3.16 (or, more specifically, its corollary given in Theorem 5.3.17
at level k = 0 and in the case of simple poles) in order to obtain the following exact
pointwise fractal tube formula:

|At |= ∑
ω∈P(ζA)

res

(
t2−s

2− s
ζA(s;δ ),ω

)

= t2−log2 3 6
√

3
log2

+∞

∑
k=−∞

(4
√

3)−ωk t−ikp

(2−ωk)(ωk −1)ωk
+

(3
√

3
2

+π
)

t2

= t2−DG(log2 t−1)+
(3

√
3

2
+π

)
t2,

valid for all t ∈ (0,1/2
√

3). (Here, G is a positive, nonconstant 1-periodic func-
tion, which is bounded away from zero and infinity and is given explicitly by the

convergent Fourier series G(x) := 6
√

3
log2 ∑

+∞
k=−∞

(4
√

3)−ωk exp(2πikx)
(2−ωk)(ωk−1)ωk

, for all x ∈ R.)
Note that this fractal tube formula coincides with the one obtained in [LapPe3]
and [LapPeWi1] and, more recently, via a different (but related) technique
in [DenKoÖÜ].

Fig. 5.2 The pairwise congruent pyramids into which we subdivide the cube A1 from Example
5.5.13. Eight of them, corresponding to one face of A1, are shown here.

Example 5.5.13. (The 3-carpet). Let A be the three-dimensional analog of the Sier-
piński carpet. More specifically, we construct A by dividing the closed unit cube of
R

3 into 27 pairwise congruent cubes and remove the open middle cube. Then, we
iterate this step with each of the 26 remaining smaller closed cubes; and so on, ad
infinitum. By choosing δ > 1/6, we have that Aδ is simply connected. Let us now
calculate the distance zeta function ζA of the three-dimensional carpet A. Note that

ζA(s;δ ) = ζA,I(s)+ζA,Aδ \I(s),
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where I denotes the closed unit cube in R
3. Let us denote by B1 the open unit cube of

side 1/3 removed in the first step of the construction; so that we have the following
equalities:

ζA,I(s) = ζA,B1(s)+ζA,I\B1
(s) = ζ∂B1,B1

(s)+26ζ3−1A,3−1I(s), (5.5.45)

for all s ∈ C with Res sufficiently large. The first equality is obvious, while the
second equality in (5.5.45) follows from the self-similarity of A. More precisely,
this equality follows since the relative fractal drum (A, I \B1) consists of 26 copies
of (A, I) scaled down by 3−1. Hence, by the scaling property of the relative distance
zeta function (see Theorem 4.1.40), we have that

ζA,I(s) = ζ∂B1,B1
(s)+26 ·3−sζA,I(s),

which yields

ζA,I(s) =
ζ∂B1,B1

(s)

1−26 ·3−s , (5.5.46)

for all s ∈ C with Res sufficiently large. The distance zeta function ζ∂B1,B1
can be

easily calculated by dividing the cube B1 into 48 pairwise congruent pyramids (see
Figure 5.2) and then integrating in local Cartesian coordinates (x,y) ∈R

2 over each
resulting pyramid:

ζ∂B1,B1
(s) = 48

∫ 1/6

0
dx

∫ x

0
dy

∫ y

0
zs−3 dz =

48 ·6−s

s(s−1)(s−2)
, (5.5.47)

valid for all s ∈ C such that Res > 2. On the other hand, the distance zeta function
ζA,Aδ \I(s) corresponding to the ‘outside’ of the unit cube I is easy to calculate once
we have subdivided the parts that correspond to the faces, edges and vertices of
the unit cube and used local Cartesian, cylindrical and spherical coordinates in R

3,
respectively:

ζA,Aδ \I(s) = 6
∫ 1

0
dx

∫ 1

0
dy

∫ δ

0
zs−3 dz+12

∫ π/2

0
dϕ

∫ δ

0
rs−2 dr

∫ 1

0
dz

+8
∫ π/2

0
sinθ dθ

∫ π/2

0
dϕ

∫ δ

0
rs−1 dr

=
6δ s−2

s−2
+

6πδ s−1

s−1
+

4πδ s

s
,

(5.5.48)

again valid for all s ∈ C such that Res > 2. From the above calculation and from
(5.5.46) together with (5.5.47), we deduce that ζA can be meromorphically contin-
ued to all of C and is then given by

ζA(s) := ζA(s,δ ) =
48 ·2−s

s(s−1)(s−2)(3s −26)
+

4πδ s

s
+

6πδ s−1

s−1
+

6δ s−2

s−2
, (5.5.49)

for every s ∈ C.
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It follows that the set of complex dimensions of the 3-carpet A is given by

P(ζA) := P(ζA,C) = {0,1,2}∪
(

log3 26+piZ
)
, (5.5.50)

where D := log3 26 (= D(ζA)) is the Minkowski (or box) dimension of the 3-carpet
A and p := 2π/ log3 is the oscillatory period of A (viewed as a lattice self-similar
set). In (5.5.50), each of the complex dimensions is simple. Furthermore, a routine
computation shows that

res(ζA,0) = 4π− 24
25

, res(ζA,1) = 6π+
24
23

, res(ζA,2) =
96
17

(5.5.51)

and, by letting ωk := log3 26+ ikp (for all k ∈ Z),

res(ζA,ωk) =
24

13 ·2ωkωk(ωk −1)(ωk −2) log3
. (5.5.52)

One also easily checks that the hypotheses of Theorem 5.3.16 (or, really, of The-
orem 5.3.17 since all of the complex dimensions in (5.5.50) are simple) are satisfied
for every δ ≥ 1/2 and any scaling factor λ ≥ 2, and thus we obtain the following
exact pointwise tube formula, valid for all t ∈ (0,1/2):

|At |=
24 t3−log3 26

13log3

+∞

∑
k=−∞

2−ωk t−ikp

(3−ωk)(ωk −1)(ωk −2)ωk

+

(
6− 6

17

)
t +

(
3π+

12
23

)
t2 +

(
4π
3

− 8
25

)
t3.

(5.5.53)

In particular, we conclude that D := dimB A = log3 26 (as was noted before) and,
by Theorem 5.4.20, that the three-dimensional Sierpiński carpet is not Minkowski
measurable, which is expected (see [Lap3]). We also point out that the part 6t +
3πt2 +4πt3/3 from the above Equation (5.5.53) is exactly equal to |It |− |I|, where
I is the closed unit cube of R3.

Finally, we note that clearly, the first term on the right-hand side of (5.5.53) can
be rewritten in the following form (still with D := dimB A = log3 26):

t3−DG(log3 t−1), (5.5.54)

where G is a positive, nonconstant 1-periodic function which is bounded away from
zero and infinity and is given explicitly by the convergent Fourier series G(x) :=

24
13log3 ∑

+∞
k=−∞

2−ωk exp(2πikx)
(3−ωk)(ωk−1)(ωk−2)ωk

, for all x ∈ R. Therefore, also as expected (see

[Lap3]), the 3-carpet is Minkowski nondegenerate: 0 < M∗(A)< M ∗(A)< ∞.

Of course, exactly the same comment as above about the Minkowski nonmea-
surability and the Minkowski nondegeneracy could have been made about the
Sierpiński gasket discussed in Example 5.5.12.
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5.5.4 A Relative Fractal Drum Generated by the Cantor Function

The example dicussed in this subsection, namely, a version of the Cantor graph (or
“devil’s staircase”, in the terminology of [Man1]) plays an important role in showing

Fig. 5.3 The third step in the construction of the Cantor graph relative fractal drum (A,Ω) from
Example 5.5.14. One can see, in particular, the sets Bk, #k and #̃k for k = 1,2,3.

why the notion of complex dimensions gives a lot more information than the mere
(Minkowski or Hausdorff) fractal dimension, as will be explained below in relation
to the elusive notion of “fractality”.

We invite the interested reader to review the discussion of the classic Cantor
graph provided in the introduction to this book in Remark 1.2.1 of Section 1.2,
along with Figures 1.5, 1.6 and 1.7 on pages 25–28.

Example 5.5.14. (The Cantor graph RFD). In this example, we compute the distance
zeta function of the RFD (A,Ω) in R

2, where A is the graph of the Cantor function
(i.e., the Cantor graph) and Ω is the union of triangles #k that lie above and the
triangles #̃k that lie below each of the horizontal parts of the graph denoted by Bk.
(At each step of the construction there are 2k−1 pairwise congruent triangles #k and
#̃k.) Each of these triangles is isosceles, has for one of its sides a horizontal part of
the Cantor graph, and has a right angle at the left end of Bk, in the case of #k, or at
the right end of Bk, in the case of #̃k. See Figure 5.3.

For obvious geometric reasons and by using the scaling property (see Theo-
rem 4.1.40) of the relative distance zeta function of the resulting RFD (A,Ω), called
the Cantor graph RFD, we then have the following identity:
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ζA,Ω (s) =
∞

∑
k=1

2kζBk,#k
(s)

=
∞

∑
k=1

2kζ3−kB1,3−k#1
(s)

= ζB1,#1(s)
∞

∑
k=1

2k

3ks =
2ζB1,#1(s)

3s −2
,

(5.5.55)

valid for all s ∈ C with Res sufficiently large. Here, (B1,#1) is the relative frac-
tal drum described above with two perpendicular sides of length equal to 1. It is
straightforward to compute its relative distance zeta function:

ζB1,#1(s) =
∫ 1

0
dx

∫ x

0
ys−2 dy =

1
s(s−1)

, (5.5.56)

valid, initially, for all s ∈ C such that Res > 1 and then, upon meromorphic contin-
uation, for all s ∈C. This fact, combined with the last equality of Equation (5.5.55),
gives us the distance zeta function of (A,Ω), which is clearly meromorphic on all
of C:

ζA,Ω (s) =
2

s(3s −2)(s−1)
, for all s ∈ C. (5.5.57)

We therefore deduce that the set of complex dimensions of the RFD (A,Ω) is given
by

P(ζA,Ω ) := P(ζA,Ω ,C) = {0,1}∪
(

log3 2+
2π

log3
iZ

)
, (5.5.58)

with each complex dimension being simple.
We conclude from Theorem 5.4.2 that dimB(A,Ω) = 1 and that the RFD (A,Ω)

is Minkowski measurable. Moreover, one also deduces from Theorem 5.4.2 that the
(one-dimensional) Minkowski content of (A,Ω) is given by

M 1(A,Ω) =
res(ζA,Ω ,1)

2−1
= 2, (5.5.59)

which coincides with the length of the Cantor graph (i.e., the graph of the Cantor
function, also called the devil’s staircase in [Man1]).

In the sequel, we associate the RFD (A,A1/3) in R
2 to the classic Cantor graph.44

We do not know if (5.5.58) coincides with the set of complex dimensions of the ‘full’
graph of the Cantor function (i.e., the original devil’s staircase), or equivalently, the
RFD (A,A1/3), but we expect that this is indeed the case since (A,Ω) is a ‘relative
fractal subdrum’ of (A,A1/3). Moreover, it clearly follows from the construction of
(A,Ω) that for the distance zeta function of the RFD (A,A1/3) associated with the
graph of the Cantor function, we have

44 Recall that the classic Cantor graph (or ‘full Cantor graph’) was discussed at some length in the
introduction (Chapter 1), on pages 25–28; see, especially, Remark 1.2.1 along with Figures 1.5,
1.6 and 1.7.
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ζA,A1/3
(s) = ζA,Ω (s)+ζA,A1/3\Ω (s). (5.5.60)

In order to prove that P(ζA,Ω ), given by (5.5.58), is a subset of the complex dimen-
sions of the ‘full’ Cantor graph, it would therefore remain to show that ζA,A1/3\Ω (s)
has a meromorphic continuation to some connected open neigborhood U of the crit-
ical line {Res = 1} such that U contains the set of complex dimensions of (A,Ω),
as given by (5.5.58), and that there are no pole-pole cancellations in the right-hand
side of (5.5.60).

One easily checks that λ sζA,Ω (s;1/3) is strongly d-languid for any λ ≥ 1, with
κd := −2, and thus we can apply Theorem 5.3.16 in order to obtain the following
exact pointwise fractal tube formula for the RFD (A,Ω), valid for all t ∈ (0,1):

VA,Ω (t) := |At ∩Ω |= ∑
ω∈P(ζA,Ω )

res

(
t2−s

2− s
ζA,Ω (s),ω

)

= ∑
ω∈P(ζA,Ω )

t2−ω

2−ω res
(
ζA,Ω (s),ω

)

= 2t +
t2−log3 2

log3

+∞

∑
k=−∞

t−ikp

(2−ωk)(ωk −1)ωk
+ t2

= 2t2−DCF + t2−DCS GCF
(
log3 t−1)+ t2,

(5.5.61)

where ωk := log3 2+ ikp (for each k ∈ Z), DCF = dimB(A,Ω) = 1, DCS = log3 2
and p := 2π/ log3.

In the last line of (5.5.61), GCF is a nonconstant 1-periodic function on R, which
is bounded away from zero and infinity. It is given by the following convergent (and
even, absolutely convergent) Fourier series:

GCF(x) :=
1

log3

+∞

∑
k=−∞

e2πikx

(2−ωk)(ωk −1)ωk
, for all x ∈ R. (5.5.62)

Note that in order to obtain the third equality in (5.5.61), and hence also the above
expression for GCF given in (5.5.62), we have used the fact that (in light of (5.5.57)
and (5.5.58))

res
(
ζA,Ω (s),ωk

)
=

1
log3(ωk −1)ωk

, (5.5.63)

for all k ∈ Z.
It follows from (5.5.61) and (5.5.62) that even though this version of the Can-

tor graph, described by the RFD (A,Ω), is Minkowski measurable and hence does
not have any oscillations of leading order, it has oscillations of lower order, cor-
responding to the complex dimensions of the Cantor set (or string) of the form
DCS + ikp, with k ∈ Z (see Example 5.5.3, especially, Equation (5.5.9)); that is, it
has subcritical oscillations, of order 2−DCS ≈ 1.3691, where DCS := log3 2 is the
Minkowski dimension of the Cantor set (or string). In fact, in light of the point-
wise fractal tube formula (5.5.61) and since the RFD (A,Ω) has Minkowski content
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MCF :=M (A,Ω) = 2 (see Equation (5.5.59) above), as well as Minkowski dimen-
sion DCF := dimB(A,Ω) = 1, we have that

0 < liminf
t→0+

t−(2−DCS)
∣∣MCFt2−DCF −VA,Ω (t)

∣∣
< limsup

t→0+
t−(2−DCS)

∣∣MCFt2−DCF −VA,Ω (t)
∣∣< ∞. (5.5.64)

Hence, we see that even though the leading term (as t → 0+) in the fractal tube
formula (5.5.61) is of order 2−DCF = 1 (i.e., of order t2−DCF = t), determined by the
Minkowski dimension DCF = 1 of (A,Ω), as should be case, and is monotonic (and
therefore, nonoscillatory), the asymptotic second term, h(t) := t2−DCS G(log3 t−1),
is of order 2−DCS, determined by the Minkowski dimension DCS = log3 2 of the
Cantor set (or string), and is oscillatory (in fact, multiplicatively periodic, or “log-
periodic”, to use the physicists’ terminology).

Remark 5.5.15. (Critical vs subcritical fractals). Recall from Remark 4.6.24 that a
geometric object is said to be “fractal” if it has at least one nonreal complex di-
mension (or if its fractal zeta function has a (meromorphic) partial natural boundary
along a suitable screen, in which case it is said to be “hyperfractal”). (See [Lap-vFr3,
Sections 12.1 and 12.2], along with [Lap-vFr3, Subsection 13.4.3], as adapted and
extended to our general higher-dimensional theory of complex dimensions in Sub-
section 4.6.3 above, especially, in Definition 4.6.23, Remark 4.6.24 and the com-
ments following it.) Accordingly, the present version of the Cantor graph (i.e., the
RFD (A,Ω) from Example 5.5.14 just above) is “fractal” in this sense.

In addition, following [Lap-vFr1–3] (see, especially, [Lap-vFr3, Section 3.7]),
given d ∈ R (with d ≤ N), we say that a geometric object is fractal in dimension
d if it has at least one nonreal (visible) complex dimension of real part d.45 (Au-
tomatically, it will then have at least one pair of nonreal complex conjugate com-
plex dimensions of real part d.) If the object in question is an RFD (A,Ω) (and,
in particular, a bounded set A) in R

N , with upper (relative) Minkowski dimension
dimB(A,Ω) (or, in particular dimBA) denoted by D, then we can distinguish between
the following two different and interesting cases:46

(i) (Critical case). The RFD (A,Ω) is fractal in dimension d := D, in which
case (A,Ω) is said to be critically fractal. Indeed, under suitable hypotheses, it then
follows from the fractal tube formulas of Sections 5.1–5.3 that it has at least one
nonreal complex dimension on the critical line {Res = D}, thereby giving rise to
geometric oscillations of leading order.

(ii) (Subcritical case). The RFD (A,Ω) is not fractal in dimension D (i.e., it does
not have any nonreal principal complex dimension), but it is fractal in some dimen-

45 We allow here the number d to be nonpositive, since it enables us to deal with a broader class of
potential fractals.
46 We assume here implicitly that the fractal zeta function of (A,Ω) under consideration has a
meromorphic extension to a connected open neighborhood of the critical line {Res= dimB(A,Ω)},
say, to the interior of a window W with associated screen S such that supS < D := dimB(A,Ω).
We also assume that D ∈ R; i.e. (since D ≤ N), D 
=−∞.
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sion d < D. The RFD (A,Ω) is then said to be subcritically fractal. (Sometimes,
we will also say that (A,Ω) is “strictly subcritically fractal” in order to emphasize
the fact that d < D, and we will say that (A,Ω) is “possibly subcritically fractal” in
order to indicate that d ≤ D instead of d < D.)

[Other cases are possible, such as (A,Ω) being hyperfractal, even in case (i)
or (ii), or else (A,Ω) being nonfractal; that is, neither having a nonreal (visible)
complex dimension nor being hyperfractal. However, we are not concerned with
these situations in the present context.]

Given an RFD (A,Ω), we define α ∈ R ∪ {−∞}, the subcriticality index of
(A,Ω), via the following formula:

α = αA,Ω := sup{d ∈ R : (A,Ω) is fractal in dimension d} . (5.5.65)

By convention, we let αA,Ω = −∞ if (A,Ω) is not fractal in dimension d, for any
d ∈ R. Clearly, we always have αA,Ω ≤ D ≤ N.

We note that even if (A,Ω) is subcritically fractal, it could happen that αA,Ω =
D := dimB(A,Ω). This is the case, for instance, if (A,Ω) := (∂Ω ,Ω) is a generic,
nonlattice self-similar string, in the sense of [Lap-vFr3, Subsection 3.2.1].47 Then,
as was conjectured in [Lap-vFr3, Subsection 3.7.1] (as well as, more specifically,
in reference [Lap–vF6] of [Lap-vFr3]) and later proved in [MorSepVi1], the set of
dimensions of fractality of (A,Ω) (i.e., the set of real numbers d such that (A,Ω) is
fractal in dimension d) is dense in some compact interval of the form [D∗,D], with
D∗ ∈R and D∗ < D. As a result, in light of (5.5.65), it follows that αA,Ω = D. How-
ever, (A,Ω) is not critically fractal (because according to [Lap-vFr3, Theorem 2.16],
a (generic) nonlattice string does not have any nonreal complex dimensions of real
part D), even though it is subcritically fractal in dimension d < D for a dense (and
countable) set of real numbers d in [D∗,D].

We now return to the RFD considered in Example 5.5.14 (that is, the version
of the Cantor graph denoted by (A,Ω)), and we refer to Remark 5.5.15 just above
for the appropriate terminology and definitions. As we have seen, (A,Ω) is fractal.
More specifically, it is not critically fractal (because its only complex dimension
of real part DCF (= D = dimB(A,Ω)) = 1 is 1 itself, the Minkowski dimension of
the Cantor graph, and it is simple) but it is strictly subcritically fractal. In fact, it is
subcritically fractal in a single dimension, namely, in dimension d = DCS = log3 2,
the Minkowski dimension of the Cantor set. Consequently, in light of (5.5.65), the
subcriticality index of (A,Ω) is given by

αA,Ω = DCS = log3 2, (5.5.66)

and it is attained.

47 Recall from [Lap-vFr3, Chapters 2–3] that a self-similar string with distinct scaling ratios
ρ1, . . . ,ρn in (0,1) is said to be lattice (resp., nonlattice) if the rank of the group generated by
ρ1, . . . ,ρn (viewed as a multiplicative subgroup of (0,+∞)) is equal to 1 (resp., > 1), and generic
nonlattice if the rank is equal to n, the maximal possible rank, and n > 1.
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We expect the same result to hold for the devil’s staircase itself (i.e., the ‘full’
graph of the Cantor function), represented by the RFD (A,A1/3) and of which (A,Ω)
is a ‘relative fractal subdrum’, as was explained above. Clearly, in light of (5.5.60)
and (5.5.58), we have the following inclusions (between multisets):

P(ζA,A1/3
)⊆ P(ζA,Ω )∪P(ζA,A1/3\Ω )

⊆ {0,1}∪
{

DCS +
2π

log3
iZ

}
.

(5.5.67)

Also, we know for a fact that dimB(A,A1/3) exists and

D(ζA,A1/3
) = dimB(A,A1/3) = 1; (5.5.68)

so that
dimPC(A,A1/3) := Pc(ζA,A1/3

) = {1}. (5.5.69)

(Thus, we also have that {1} ⊆ P(ζA,A1/3
) in (5.5.67).) Note that (5.5.68) (and

hence, (5.5.69)) follows from the rectifiability of the devil’s staircase, combined
with a well-known result in [Fed2] and with part (b) of Theorem 4.1.7.

As was mentioned earlier in the discussion of Example 5.5.14 (and was pre-
dicted in [Lap-vFr3, Subsections 12.1.2 and 12.3.2], based on an ‘approximate tube
formula’), we expect that P(ζA,A1/3

) = P(ζA,Ω ), as given by (5.5.58), and hence,
that we actually have equalities instead of inclusions in (5.5.67), even equalities be-
tween multisets. If so, then the ‘full’ Cantor graph (A,A1/3) is fractal, not critically
fractal, but (strictly) subcritically fractal in the single dimension d := DCS = log3 2.

Clearly, both (A,Ω) and (A,A1/3) should be fractal for any proper definition of
fractality. This would completely resolve the following apparent paradox: the RFD
(A,A1/3) is not “fractal” according to Mandelbrot’s original definition of fractality
given in [Man1],48 even though everyone feels and expects it to be “fractal” simply
after having glanced at the ‘full’ Cantor graph (A,A1/3) (the ‘devil’s staircase’ in the
sense of [Man1]). The same is true for the ‘partial’ Cantor graph (A,Ω), for which
we can now rigorously prove that it is “fractal” (in the sense of the present theory
of complex dimensions) even though it is only (strictly) subcritically fractal, which
may explain, in hindsight, why some practitioners refer to it as a “borderline fractal”
(see, e.g., [PeitJüSa]).

We conclude this discussion by quoting (as in [Lap-vFr3, p. 335]) Mandelbrot
[Man1, p. 82] writing about the devil’s staircase (the ‘full’ Cantor graph, depicted
in [Man1, Plate 83, p. 83]):

48 Indeed, Mandelbrot’s definition, given in [Man1, p. 15], can be stated as follows: A geomet-
ric object is “fractal” if its Hausdorff dimension is strictly greater than (i.e., is not equal to) its
topological dimension. However, note that the Hausdorff, Minkowski and topological dimensions
coincide and are equal to 1 in the case of (either the ‘full’ or the ‘partial’) Cantor graph. If, in
addition, we replaced “Hausdorf dimension” by (relative, upper) “Minkowski dimension” in the
above definition and we interpreted the topological dimension in the obvious way, we would also
reach the analogous conclusion for both (A,A1/3) and (A,Ω), which therefore would still not be
fractal according to this modified Mandelbrot definition.
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One would love to call the present curve a fractal, but to achieve
this goal we would have to define fractals less stringently, on the
basis of notions other than D [the Hausdorff dimension] alone.

Thanks to the higher-dimensional theory of complex dimensions of fractals and
the associated fractal tube formulas developed in this book and in [LapRaŽu1–8],
building on the corresponding theory for fractal strings developed in [Lap-vFr1–3],
we are now tentatively close to having resolved this apparent paradox, which has
long puzzled the first author and was one of the key motivations for the develop-
ment of the mathematical theory of complex dimensions. Furthermore, if we use
the ‘partial’ Cantor graph (A,Ω) as a suitable substitute for the ‘full’ Cantor graph,
viewed as the RFD (A,A1/3), the corresponding paradox is indeed completely re-
solved here. We invite the interested reader to extend the conclusions of the present
example (i.e., Example 5.5.14) from (A,Ω) to (A,A1/3), and thereby, to fully prove
the conjectures and statements made in [Lap-vFr3, Subsection 12.1.2], as well as
here, about the devil’s staircase itself.

5.5.5 Fractal Nests and Unbounded Geometric Chirps

In this subsection, we apply our general fractal tube formulas to several families
of fractal nests (Example 5.5.16) and of (unbounded) geometric chirps (Example
5.5.19). Both of these families are examples of fractal sets which are not self-similar
or, more generally, ‘self-alike’ in any sense. We also draw some useful conclusions
about the interesting new situation when the fractal zeta function of the RFD (A,Ω)
has a pole of order m (with m ∈ N, m ≥ 2) located at D := dimB(A,Ω) and all
the other poles with real part D are of order strictly less than m. More specifi-
cally, under suitable additional hypotheses, we show that the RFD (A,Ω) is then
Minkowski degenerate, with Minkowski content M (A,Ω) = +∞, but is neverthe-
less gauge Minkowski measurable with respect to the gauge function h given by
h(t) := (log t−1)m−1, for all t ∈ (0,1). (See Theorems 5.4.27 and 5.4.32 for this re-
sult; also, for an introduction to gauge functions, see the beginning of Subsection
4.5.1, along with Definition 6.1.4.)

Example 5.5.16. (Fractal nests). We let L = (� j) j≥1 be a bounded fractal string
and, as before, let AL = {ak : k ∈ N} ⊂ R, with ak := ∑ j≥k � j for each k ≥ 1. Fur-
thermore, consider now AL as a subset of the x1-axis in R

2 and let A be the planar
set obtained by rotating AL around the origin; i.e., A is a union of concentric circles
of radii ak and center at the origin (see Figure 3.2). For δ > �1/2, the distance zeta
function of A is given (for Res sufficiently large) by

ζA(s) =
22−sπ
s−1

∞

∑
j=1

�s−1
j (a j +a j+1)+

2πδ s

s
+

2πa1δ s−1

s−1
; (5.5.70)
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see Equation (3.5.1) from Example 3.5.1. The last two terms in the above formula
correspond to the annulus a1 < r < a1+δ and we will neglect them; that is, without
affecting the final outcome, we will only consider the relative distance zeta function
ζA,Ω , withΩ := Ba1(0).

49 Furthermore, since a j+1 = a j−� j for each j ≥ 1, we have

ζA,Ω (s) =
22−sπ
s−1

∞

∑
k=1

�s−1
j (2a j − � j)

=
23−sπ
s−1

∞

∑
j=1

a j�
s−1
j − 22−sπ

s−1

∞

∑
j=1

�s
j

=
23−sπ
s−1

ζ1(s)−
22−sπ
s−1

ζL (s),

(5.5.71)

where we have denoted by ζ1 = ζ1(s) the first of the two sums appearing after the
second equality and where ζL = ζL (s) is the geometric zeta function of the fractal
string L .

Let us next consider an interesting special case of the fractal nest above; that is,
the relative fractal drum (Aa,Ω) corresponding to the a-string L :=La, with a> 0;
so that � j := j−a − ( j+ 1)−a for all j ≥ 1 and hence, a j = j−a for every j ≥ 1. In
this case, we have that (for Res large enough)

ζAa,Ω (s) =
23−sπ
s−1

∞

∑
j=1

j−a�s−1
j − 22−sπ

s−1
ζL (s). (5.5.72)

Since the geometric zeta function ζL = ζLa has already been analyzed in Example
5.5.10 (based on the results of [Lap-vFr3, Subsection 6.5.1]), we will now do the
same for the zeta function ζ1 by means of a technique analogous to the one used
in the proof of [Lap-vFr3, Theorem 6.21]. Here, ζ1(s) is initially defined by the
following Dirichlet series (still with � j := j−a − ( j+1)−a, for all j ≥ 1):

ζ1(s) =
∞

∑
j=1

j−a�s−1
j , (5.5.73)

for all s∈C with Res sufficiently large. Hence, we have ζ1(s) = ζL ,−a(s−1), in the
notation of the next theorem, and ζ1(s) = ζL ,−a,1(s), in the notation of Corollary
5.5.18 following it.

Theorem 5.5.17. Let a > 0, b ∈ R, and let L = La be the a-string with lengths � j

given by (5.5.34); i.e., � j = j−a − ( j+1)−a for all j ≥ 1. Then, the Dirichlet series
ζL ,b(s) := ∑∞j=1 jb�s

j (defined initially for all s ∈ C with Res sufficiently large) has
a meromorphic continuation to all of C. The poles of ζL ,b are located at

C := D(ζL ,b) =
b+1
a+1

(5.5.74)

49 Here, for r > 0, Br(x) denotes the open ball of radius r and with center at x.
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and in (a subset of)
{

b−m
a+1 : m ∈ N0

}
\{0}, and they are all simple.50 In particular,

we have the following inclusions:51

{
b+1
a+1

}
⊆ P(ζL ,b) := P(ζL ,b,C)

⊆
{

b+1
a+1

}
∪
({

b−m
a+1

: m ∈ N0

}
\{0}

)
.

(5.5.75)

Furthermore, the residue of ζL ,b at C = b+1
a+1 is equal to aC

a+1 ; so that b+1
a+1 is always

a (necessarily simple) pole of ζL ,b.
Moreover, for any screen Sσ chosen to be a vertical line {Res=σ}, with σ ∈R\

P(ζL ,b), the zeta function ζL ,b satisfies the languidity conditions L1 and L2, with
κ := 1

2 +b− (a+1)σ if σ ≤ b
a+1 and κ := 1

2 (1+b− (a+1)σ) if σ ∈
[

b
a+1 ,

b+1
a+1

]
.

Finally, we have that ζL ,b(0) = ζ (−b) for all b ∈ R \ {−1}, where ζ is the
Riemann zeta function.

Proof. We begin by computing the first term of an asymptotic expansion of � j:

� j = j−a − ( j+1)−a = a
∫ j+1

j
x−a−1 dx = a j−a−1 +H( j), (5.5.76)

where j ≥ 1 and H( j) := a
∫ j+1

j (x−a−1 − j−a−1)dx. We next introduce a new vari-
able t := x/ j−1 and let

h j := a−1 ja+1H( j) = j
∫ 1/ j

0

(
(1+ t)−a−1 −1

)
dt. (5.5.77)

Note that h j = O(1/ j) as j → ∞. By now choosing an integer M ≥ 0, we have

jb�s
j = jb(a j−a−1(1+h j)

)s

= as jb−s(a+1)

(
M

∑
n=0

(
s
n

)
hn

j +O

(
(|s|+1)M+1

jM+1

))
as j → ∞,

(5.5.78)

where we have let
(

s
n

)
:=

(s−n+1)n

n!
, for all s ∈ C and n ∈ N0. (5.5.79)

50 Here, as usual, we let N0 := N∪{0}.
51 For ‘generic’ values of a and b, the second inclusion in (5.5.75) should be an equality while for
‘most’ values of those parameters, P(ζL ,b) should at least contain an infinite subset of { b−m

a+1 :
m ∈ N0}. However, this informal comment will not be needed in the sequel and the corresponding
conjecture has not been proved or even precisely formulated.
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(Clearly,
(s

n

)
is a natural generalization of the usual binomial coefficient to an arbi-

trary value of the parameter s ∈ C.) We thus obtain the following identity:

ζL ,b(s) =
M

∑
n=0

as
(

s
n

) ∞

∑
j=0

hn
j jb−s(a+1) + f (s), (5.5.80)

where f (s) is defined and holomorphic on the open half-plane {Res > b−M
a+1 }. Fur-

thermore, the first term (i.e., the term corresponding to n = 0 in the above sum) is
equal to asζ ((a+ 1)s− b), where ζ is the Riemann zeta function, and thus has a
single, simple pole at s =C := D(ζL ,b) =

b+1
a+1 .52 In order to compute the residue of

asζ ((a+1)s−b) at s = b+1
a+1 , we use the fact that the principal part of the Riemann

zeta function at s = 1 is equal to 1/(s−1) and consequently,

lim
s→C

(s−C)asζ ((a+1)s−b) = lim
s→C

as s−C
(a+1)s−b−1

=
a

b+1
a+1

a+1
. (5.5.81)

A well-known result (due to Lindelöf) about the growth of the Riemann zeta
function along vertical lines (see, e.g., [Edw, Section 9.2]) implies that the first
term in (5.5.80) grows along the vertical lines {Res = σ}, for some σ ∈ R, as

(|t|+ 1)
1
2+b−σ(a+1) if σ < b

a+1 , as (|t|+ 1)
1
2 (b+1−(a+1)σ) if σ ∈

[
b

a+1 ,
b+1
a+1

]
, and is

bounded from above by a constant (possibly depending on σ ) if σ > b+1
a+1 .

It now remains to analyze the functions

∞

∑
j=1

hn
j jb−(a+1)s, (5.5.82)

for each n ≥ 1.
Let us fix M ∈ N0, for now. Then, the asymptotic expansion (1 + t)−a−1 =

∑M
m=0

(−a−1
m

)
tm +O(tM+1) as t → 0+, together with (5.5.77), yields

h j = j
∫ 1/ j

0

M

∑
m=1

(
−a−1

m

)
tm dt +O( j−M−1)

=−1
a

M

∑
m=1

(
−a

m+1

)
j−m +O( j−M−1) as j → ∞.

(5.5.83)

We proceed by taking the n-th power of the above expansion to obtain an asymptotic
expansion for hn

j and substitute this into (5.5.82). It enables us to express each of
the functions in (5.5.82) as a sum of constant multiples of ζ (m+(a+1)s−b), for
n ≤ m ≤ M, and of a remainder term of order O( j−M−1). Since ζ (m+(a+1)s−b)
has a simple pole at s = b+1−m

a+1 and in view of (5.5.80), we conclude that ζL ,b(s)

52 See, e.g., [Tit3] or [Edw] for the relevant properties of the Riemann zeta function. Recall, in
particular, that ζ has a meromorphic continuation to all of C with a single, simple pole at s = 1
(with residue 1) and that it is initially defined by the Dirichlet series ζ (s) = ∑∞j=1 j−s for all s ∈ C

with Res > 1.
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has a meromorphic continuation to the open right half-plane {Res > b+1−M
1+a }, with

simple poles at s = b+1−m
1+a for m = 0,1,2, . . . ,M. To be more specific, some of these

potential poles of ζL ,b may not actually be poles (due to cancellations), depending
on the choice of the parameters a and b. (See, however, the unproven assertion in
footnote 51 in this subsection.) Furthermore, 0 is never a pole of ζL ,b, since we can
see from (5.5.80) that it is canceled by the factor

( s
m

)
for m ≥ 1. Moreover, since M

is arbitrary, we conclude that ζL ,b has a meromorphic continuation to all of C. Next,
note that for each integer m ≥ 1, the growth of ζ (m+(a+1)s−b) is dominated by
the growth of the first term asζ ((a+ 1)s− b) and therefore, we have proved the
statement about the languidity of ζL ,b.

Finally, the last statement of the theorem follows from an application of the prin-
ciple of analytic continuation since we deduce directly from the definition of ζL ,b

that ζL ,b(0) = ζ (−b) for all b ∈ {Res <−1}. ��

In order to complete the present discussion of the example of the fractal nests, as
well as in preparation for the example of the unbounded geometric chirps (Example
5.5.19 below), we will need the following simple consequence of the above theorem.

Corollary 5.5.18. Let a > 0, b ∈ R, τ ∈ R and let L := La be the a-string with
lengths � j given by (5.5.34). Then, the Dirichlet series ζL ,b,τ(s) := ∑∞j=1 jb�s−τ

j
(initially defined for all s ∈ C with Res sufficiently large) has a meromorphic con-
tinuation to all of C. The poles of ζL ,b,τ are located at

D(ζL ,b,τ) =
b+1
a+1

+ τ (5.5.84)

and in (a subset of)
{

b−m
a+1 +τ : m ∈N0

}
\{τ}, and they are all simple. In particular,

we have the following inclusions:53

{
b+1
a+1

+ τ
}
⊆ P(ζL ,b,τ) := P(ζL ,b,τ ,C)

⊆
{

b+1
a+1

+ τ
}
∪
({

b−m
a+1

+ τ : m ∈ N0

}
\{τ}

)
.

(5.5.85)

Furthermore, the residue of ζL ,b,τ at b+1
a+1 + τ is equal to a(b+1)/(a+1)

a+1 ; so that

D(ζL ,b,τ) =
b+1
a+1 + τ is always a (necessarily simple) pole of ζL ,b,τ .

Moreover, for any screen Sσ chosen to be a vertical line {Res = σ}, with σ ∈
R \P(ζL ,b,τ), the zeta function ζL ,b,τ satisfies the languidity conditions L1 and
L2, with κ := 1

2 + b− (a+ 1)σ if σ ≤ b
a+1 + τ and κ := 1

2 (1+ b− (a+ 1)σ) if

σ ∈
[

b
a+1 + τ ,

b+1
a+1 + τ

]
.

Finally, we have that ζL ,b,τ(τ) = ζ (−b) for all b ∈ R\{−1}.

53 A comment entirely analogous to the one made in footnote 51 on page 504 holds relative to
‘generic’ (or else ‘most’) values of the parameters a, b and τ . (Recall that L = La, so that ζL ,b,τ
depends on a, b and τ .)
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Proof. Since ζL ,b,τ(s) = ζL ,b(s− τ), this an immediate consequence of Theorem
5.5.17. ��

Let us now return to Example 5.5.16, where the distance zeta function of (Aa,Ω)
is given by (5.5.72); see also (5.5.73) and the brief discussion following it. We there-
fore deduce from Corollary 5.5.18 and the discussion of ζL = ζLa in Example
5.5.16, combined with an application of the principle of analytic continuation, that
ζAa,Ω is meromorphic on all of C and is given for all s ∈ C by

ζAa,Ω (s) =
23−sπ
s−1

ζL ,−a,1(s)−
22−sπ
s−1

ζL (s). (5.5.86)

Moreover, the set of complex dimensions of (Aa,Ω) satisfies the inclusion

P(ζAa,Ω ) := P(ζAa,Ω ,C)

⊆
{

1,
2

a+1
,

1
a+1

}
∪
{
− m

a+1
: m ∈ N

}
.

(5.5.87)

We do not have an equality here, due to the possibility of zero-pole cancellations.
Furthermore, if a 
= 1, all of the above (potential) complex dimensions are simple.
Moreover, we are certain that 2

a+1 is always a complex dimension of (Aa,Ω) since
it is never canceled, as a pole. In fact, by letting D := 2

a+1 , we have for all positive
a 
= 1 that

res
(
ζAa,Ω ,D

)
=

22−DDπ
D−1

aD−1. (5.5.88)

We now conclude from Theorem 5.4.2 (and part (b) of Theorem 4.1.7) that if a ∈
(0,1), dimB(Aa,Ω) = D(ζAa,Ω ) = D and (Aa,Ω) is Minkowski measurable with
Minkowski content given by

M D(Aa,Ω) =
22−DDπ

(2−D)(D−1)
aD−1. (5.5.89)

Furthermore, it also follows from Theorem 5.4.2 that if a > 1, we have that
dimB(Aa,Ω) = 1 and the corresponding residue is given by

res(ζAa,Ω ,1) = 4πζL ,−a,1(1)−2πζL (1) = 4πζ (a)−2π. (5.5.90)

Therefore, still for a > 1, the RFD (Aa,Ω) is Minkowski measurable with
Minkowski content given by

M 1(Aa,Ω) = 4πζ (a)−2π; (5.5.91)

note that M 1(Aa,Ω) is positive since ζ (a)> 1 for a > 1; so that

2π < M 1(Aa,Ω)< ∞.
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In the critical case when a = 1, we have that s = 1 is a pole of second order (i.e.,
of multiplicity two) of ζA1,Ω and since it is a simple pole of ζL ,−1,1, we deduce
from (5.5.86) that

res(ζA1,Ω ,1) = 4πζL ,−1,1[1]0 −2π, (5.5.92)

where for each m ∈ Z, ζL ,−1,1[ω]m stands for the m-th coefficient in the Laurent
series expansion of ζL ,−1,1 around s = ω . We conclude that in this case (i.e., when
a = 1), by Theorem 2.2.3 (and part (b) of Theorem 4.1.7), the RFD (A1,Ω) must be
Minkowski degenerate with dimB(A1,Ω) = D(ζA1,Ω ) = 1.54 We can also compute
the coefficient corresponding to (s−1)−2 in the Laurent expansion of ζA1,Ω around
s = 1, by using Corollary 5.5.18:

ζA1,Ω [1]−2 = 4π res(ζL ,−1,1,1) = 2π. (5.5.93)

Assume now that a 
= 1. For M ∈N∪{0}, as before, we choose the screen SM to
be some vertical line between −M+1

1+a and −M+2
1+a , and let WM be the corresponding

window. After having applied Theorem 5.3.21, we then obtain the following asymp-
totic distributional formula for the tube function V (t) := |(Aa)t ∩Ω |, as t → 0+:

V (t) =
22−DDπ

(2−D)(D−1)
aD−1t2−D +

(
4πζ (a)−2π

)
t

+
res

(
ζAa,Ω ,

1
a+1

)
t2− 1

a+1

2− 1
a+1

+
M

∑
m=1

res
(
ζAa,Ω ,− m

a+1

)
t2+ m

a+1

2+ m
a+1

+O
(
t2+M+1

a+1
)

as t → 0+,

(5.5.94)

where the sum is interpreted as being equal to 0 if M = 1. By choosing as a screen
a vertical line {Res = σ}, with σ > − 1

2(a+1) , we obtain a pointwise fractal tube

formula with a pointwise error term of order O(t2−σ ); indeed, in light of Corollary
5.5.18, we have that κd < 0 and hence, we can apply part (i) of Theorem 5.3.16. This
pointwise formula is still given by (5.5.94) but now interpreted pointwise and valid
for all t > 0. It is actually initially valid for all t ∈ (0,δ ) but since δ > �1/2 may be
taken arbitrary large, we conclude that it is valid for all t > 0. Of course, we actually
do not know much about the above error term when t is not close to zero, but that
does not matter because we are not interested in the values of V (t) = |(Aa)t ∩Ω | for
large t. (Note also that clearly, |(Aa)t ∩Ω |= |Ω |= |B1(0)|= π , for all t sufficiently
large.)

54 Actually, it can also be shown directly that M 1(A1,Ω) exists in this case and is equal to +∞;
see Example 3.5.1.
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Let us next consider the critical case when a = 1. Choose a screen given by
the vertical line {Res = σ}, with σ ∈ (−3/4,−1/2); we then obtain the following
pointwise fractal tube formula with error term:

V (t) = res

(
t2−s

2− s
ζA1,Ω (s),1

)
+

2
3

res

(
ζA1,Ω ,

1
2

)
t

3
2

+
2
5

res

(
ζA1,Ω ,−

1
2

)
t

5
2 +O(t2−σ ) as t → 0+.

(5.5.95)

We expand the function t2−s/(2− s) into a Taylor series around s = 1, as follows:

t2−s

2− s
= t

∞

∑
n=0

(s−1)n
n

∑
k=0

(−1)n−k(log t−1)k

k!(n− k)!
. (5.5.96)

We then deduce from (5.5.92) and (5.5.93) that

res

(
t2−s

2− s
ζA1,Ω (s),1

)
= 2πt log t−1 +4πt(ζL ,−1,1[1]0 −1); (5.5.97)

so that (still pointwise)

V (t) = 2πt log t−1 +4πt(ζL ,−1,1[1]0 −1)+o(t) as t → 0+. (5.5.98)

The above tube formula is in agreement with the fact that (A1,Ω) is Minkowski
degenerate but it is also clear that one can choose the function h(t) := log t−1, for all
t ∈ (0,1), as an appropriate gauge function (see the beginning of Subsection 4.5.1
for an introduction to gauge functions, along with Definition 6.1.4 below). More
precisely, one then has that M 1(A1,Ω ,h), the gauge relative Minkowski content of
(A1,Ω), is well defined and

M 1(A1,Ω ,h) = lim
t→0+

|(A1)t ∩Ω |
t h(t)

= 2π. (5.5.99)

In particular, the RFD (A,Ω) is h-Minkowski measurable, in the sense of Defini-
tion 6.1.6 (extended to RFDs in the obvious way). The choice of the above gauge
function h is connected with the fact that when a = 1, ζA,Ω possesses a (unique)
pole of order two on the critical line, located at s = 1. (See Subsection 5.4.4 above.)
Alternatively, one may also view this situation as a kind of “merging” of two sim-
ple complex dimensions of the RFD (Aa,Ω), namely, 1 and 2/(a+1), into a single
complex dimension of order two (located at s = 1) as a → 1.

Example 5.5.19. (Unbounded geometric chirps). In this example, we consider and
study a type of unbounded geometric chirp. A standard geometric (α,β )-chirp, with
positive parameters α and β , is a simple geometric approximation of the graph of the
function f (x) := xα sin(πx−β ), for all x∈ (0,1). (See Example 4.4.1 and Proposition
4.4.3, along with Figures 4.13, 4.14 and 4.15 on pages 345–347.)
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If the parameters α and β satisfy the inequalities −1<α < 0< β , as we shall as-
sume from now on, we obtain an example of an unbounded chirp function f which
we approximate by the unbounded geometric (α,β )-chirp. More specifically, let
Aα ,β be the union of vertical segments with abscissae x := j−1/β and of lengths
j−α/β , for every j ∈ N. Furthermore, define Ω as a union of the rectangles R j for
j ∈N, where R j has a base of length j−1/β −( j+1)−1/β and height j−α/β ; see Fig-
ure 4.15. The relative distance zeta function of (A,Ω) is computed in Example 4.4.1
and is given by

ζAα,β ,Ω (s) =
22−s

(s−1)

∞

∑
j=1

j−α/β
(

j−1/β − ( j+1)−1/β
)s−1

=
22−s

(s−1)
ζL ,−α/β ,1(s),

(5.5.100)

where L is the β−1-string. In light of Corollary 5.5.18, we conclude that ζAα,β ,Ω
has a meromorphic continuation to all of C and

P(ζAα,β ,Ω )⊆
{

1,2− 1+α
1+β

}
∪{Dm : m ∈ N} , (5.5.101)

where Dm := 2− 1+α+mβ
1+β . Let D := 2− 1+α

1+β . Also, by the same corollary and from
(5.5.100), we have that both 1 and D are simple poles of ζAα,β . Furthermore, we
have that D > 1 and, consequently, dimB(Aα ,β ,Ω) = D and the RFD (Aα ,β ,Ω) is
Minkowski measurable with Minkowski content given by

M D(Aα ,β ,Ω) =
res(ζAα,β ,Ω ,D)

2−D
=

22−D

(2−D)(D−1)
β

1+α
1+β

1+β

=
(2β )2−D

(2−D)(D−1)(1+β )
.

(5.5.102)

Moreover, the residue at s = 1 is given by

res(ζAα,β ,Ω ,1) = 2ζL ,−α/β ,1(1) = 2ζ
(α
β

)
. (5.5.103)

It follows that s = 1 is indeed a simple pole of ζAα,β ,Ω .
Similarly as in previous examples, for M ∈ N∪{0}, we choose the screen SM

to be a vertical line {Res = σ}, for some real number σ lying strictly between

2− 1+α+(M+1)β
1+β and 2− 1+α+(M+2)β

1+β (so that ζAα,β ,Ω is d-languid in the associated
window), and let WM be the corresponding window. From Theorem 5.3.21, we
then obtain the following asymptotic distributional formula for the tube function
V (t) := |(Aα ,β )t ∩Ω |:
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V (t) =
(2β t)2−D

(2−D)(D−1)(1+β )
+

t2−D1 res(ζAα,β ,Ω ,D1)

2−D1

+2t ζ
(α
β

)
+

M

∑
m=2

t2−Dm res(ζAα,β ,Ω ,Dm)

2−Dm

+O(t2−DM+1) as t → 0+.

(5.5.104)

Note that the second noninteger complex dimension, namely, D1 = 1− α
1+β , is also

greater than 1. Finally, by choosing as a screen a vertical line to the right of − 2α+β
1+β ,

we actually obtain a pointwise formula still given by (5.5.104) above; indeed, we
then have κd < 0, so that we can apply part (i) of Theorem 5.3.16.

5.5.6 Tube Formulas and Minkowski Measurability Criteria for
Self-Similar Sprays

We conclude this section by explaining how the results of this chapter may also
be applied to recover and significantly extend, as well as place within a general
conceptual framework, the tube formulas for self-similar sprays generated by an
arbitrary open set G ⊂ R

N of finite N-dimensional Lebesgue measure. (See, espe-
cially, [LapPe2–3] extended to a significantly more general setting in [LapPeWi1],
along with the exposition of those results given in [Lap-vFr3, Section 13.1]; see also
[DenKoÖÜ] for another, but related, proof of some of those results.)

Recall from Definition 4.2.11 that a self-similar spray (with a single generator
G, assumed to be bounded and open) is defined as a collection (Gk)k∈N of pairwise
disjoint (bounded) open sets Gk ⊂ R

N , with G0 := G and such that for each k ∈ N,
Gk is a scaled copy of G by some factor λk > 0. (We let λ0 := 1.) The associated
scaling sequence (λk)k∈N is obtained from a ratio list {r1,r2, . . . ,rJ}, with 0< r j < 1
for each j = 1, . . . ,J and such that ∑J

j=1 rN
j < 1, by considering all possible words

built out of the scaling ratios r j; see Equation (4.2.31). Here, as in Definition 4.2.11,
J ≥ 2 and the scaling ratios r1, . . . ,rJ are repeated according to their multiplicities.

Let us next assume that (A,Ω) is the self-similar spray considered as a relative
fractal drum and defined as A := ∂ (�∞k=0Gk) andΩ :=�∞k=0Gk, with dimB(∂G,G)<
N. Then, by Theorem 4.2.17, we have the following key formula, called a factoriza-
tion formula, for its associated distance zeta function ζA,Ω , expressed as follows in
terms of the distance zeta function of the boundary of the generator (relative to the
generator), ζ∂G,G, and the scaling ratios {r j}J

j=1:

ζA,Ω (s) =
ζ∂G(s,G)

1−∑J
j=1 rs

j

. (5.5.105)
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(See also part (a) of Remark 5.5.26 below.)55 It now suffices to assume that the
relative distance zeta function ζ∂G,G of the generating relative fractal drum (∂G,G)
satisfies suitable languidity conditions in order to apply (at level k = 0) the fractal
tube formulas of Sections 5.1–5.3 and to obtain a pointwise or distributional for-
mula, with or without error term, for the ‘inner’ volume of �∞k=0Gk:56

VA,Ω (t) := |At ∩Ω |

= ∑
ω∈(D∩W )∪P(ζ∂G,G,W )

res

⎛
⎝ tN−sζ∂G,G(s)

(N − s)
(

1−∑J
j=1 rs

j

) ,ω
⎞
⎠

+RA,Ω (t),

(5.5.106)

where D denotes the set of solutions in C of ∑J
j=1 rs

j = 1, the complexified Moran

equation, and RA,Ω := R[0]
A,Ω is a pointwise or distributional error term (or else

RA,Ω (t) ≡ 0 and W := C, in the case of an exact tube formula, provided ζ∂G,G
is strongly d-languid), depending on the d-languidity growth conditions satisfied by
ζ∂G,G.

In the d-languid (but not necessarily strongly d-languid) case, RA,Ω = R[0]
A,Ω sat-

isfies the following (pointwise or distributional) error estimate (at level k = 0):

RA,Ω (t) = O(tN−supS) as t → 0+, (5.5.107)

where S is the screen associated to the window W .

Remark 5.5.20. Observe that in the notation also used in part (b) of Remark 5.5.26
below (and towards the end of Chapter 6), we can rewrite Equation (5.5.105) as
follows:

ζA,Ω (s) = ζS(s) ·ζ∂G,G(s), (5.5.108)

where the geometric zeta function ζS of the associated self-similar string (with
scaling ratios {r j}J

j=1 and a single gap length, equal to one, in the terminology of
[Lap-vFr3, Chapters 2 and 3]) is meromorphic in all of C and given for all s ∈C by

ζS(s) =
1

1−∑J
j=1 rs

j

. (5.5.109)

In general, given a connected open set U ⊆ C containing the vertical line {Res =
dimB(A,Ω)}, ζA,Ω is meromorphic in U if and only if ζ∂G,G is; furthermore, in that
case, the factorization formula (5.5.108) then holds for all s ∈U . We note that in the

55 For the case of multiple generators, see Equation (5.5.172) in part (b) of Remark 5.5.26.
56 Here and throughout the rest of this subsection, we use the notation VA,Ω , consistent with the
statement of a pointwise tube formula. In the case of the distributional tube formulas, we should
use instead the notation VA,Ω . (And analogously for the error term RA,Ω (t) in (5.5.106), which
should then be denoted by RA,Ω (t), in the distributional case.) For notational simplicity, however,
we will not do so in this discussion.



5.5 Examples and Applications 513

sequel (see Remark 5.5.26 below) and following [LapPe2–3] and [LapPeWi1–2],
we will often refer to ζS as the scaling zeta function of the self-similar spray (A,Ω)
and to its poles in C (composing the multiset D) as the scaling complex dimensions
of (A,Ω). In the present case, they are the solutions (counting multiplicities) of
the complexified Moran equation ∑J

j=1 rs
j = 1. We will also sometimes write DS

instead of D, so that DS := D; hence, similarly, DS ∩W = D∩W , the set of
visible scaling complex dimensions of (A,Ω), denotes the set of poles of ζS visible
through the window W . See Equations (5.5.106) above and (5.5.175) below.

Typically, we will work with generators such that ζ∂G,G is strongly d-languid and
consequently, since ζS (as given by (5.5.109)) is strongly d-languid (after a possible
scaling by an appropriate scaling factor λS > 0; see Corollary 5.3.14 and the dis-
cussion preceding it), ζA,Ω will be strongly d-languid (also after a possible scaling
by the same scaling factor λS) and given by the factorization formula (5.5.108) (or
(5.5.105)), for all s ∈ C. As a result, unless we need to work with a ‘truncated tube
formula’ (corresponding to a fractal tube formula with error term associated with a
suitable screen S), we will be able to obtain an exact fractal tube formula, as we
will now see.

Assume next that the generator G is monophase (in the sense of [LapPe2–3]
and [LapPeWi1–2]); that is, the volume of its ‘inner’ t-neighborhood is given by a
polynomial ∑N−1

i=0 κitN−i for all t ∈ R such that 0 < t < g. Here, g is the inradius of
G, i.e., the supremum of the radii of all the balls which are contained in G. Since
then,

V∂G,G(t) := |(∂G)t ∩G|=
N−1

∑
i=0
κit

N−i, (5.5.110)

for 0 < t < g, we can explicitly calculate the relative tube zeta function of G, as
follows (initially, for all s ∈ C with Res sufficiently large):

ζ̃∂G,G(s;g) =
∫ g

0
ts−N−1

N−1

∑
i=0
κit

N−i dt =
N−1

∑
i=0

κigs−i

s− i
. (5.5.111)

It is obviously meromorphic on all of C and still given by (5.5.111) for all s ∈ C.
Using the functional equation which connects the relative tube and distance zeta

functions (see Equation (4.5.2)), we now obtain the following explicit expression
for the relative distance zeta function of the generator G:

ζ∂G,G(s) := ζ∂G,G(s;g) = gs−N |(∂G)g ∩G|+(N − s)ζ̃∂G,G(s;g)

= gs−N |G|+(N − s)
N−1

∑
i=0

κigs−i

s− i

= (N − s)
N

∑
i=0

κigs−i

s− i
,

(5.5.112)

where we have let κN :=−|G|.
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Consequently, by substituting (5.5.112) into (5.5.106), we recover (and signifi-
cantly extend as well as place within the broader framework of the theory of fractal
tube formulas via fractal zeta functions) a well-known result obtained in [LapPe3]
and more generally in [LapPeWi1], as well as more recently, via a different (but
related) technique in [DenKoÖÜ]:

VA,Ω (t) := |At ∩Ω |= ∑
ω∈D∪{0,1,...,N−1}

res

⎛
⎝tN−s ∑N

i=0κi
gs−i

s−i(
1−∑J

j=1 rs
j

) ,ω
⎞
⎠ . (5.5.113)

This is an exact pointwise fractal tube formula. Indeed, after an appropriate scaling
by a factor λG > 0, ζ∂G,G is shown to be strongly d-languid with (κd)G := 0 for
a suitable infinite sequence of vertical lines {Res = αm}, m ≥ 1 with αm ∈ R and
αm → −∞ as m → ∞. Also, it is easy to check (after an appropriate scaling by a
factor λS > 0) that ζS(s) = (1−∑J

j=1 rs
j)
−1 is strongly d-languid, with (κd)S := 0

(see [Lap-vFr3, Equation (6.36), p. 195]). Hence (after a suitable scaling by λ :=
λA,Ω , depending on both λG and λS), we deduce from the factorization formula
(5.5.105) (or, equivalently, (5.5.108)) that ζA,Ω is strongly d-languid, with exponent
(κd)A,Ω := 0 for this same sequence of vertical lines {Res = αm}, m ≥ 1. We can
therefore conclude from Theorem 5.3.16 that the tube formula (5.5.113) is valid
pointwise and without an error term in this case, for all positive t sufficiently small.57

If needed, one can also obtain a corresponding ‘truncated’ pointwise fractal tube
formula (with error term), relative to a suitable screen, in the spirit of [Lap-vFr3,
Corollary 8.27 and Subsection 8.4.4].

A completely analogous reasoning can be used for the case of pluriphase genera-
tors G for which the ‘inner’ tubular volume is given as a piecewise polynomial. In a
future work, we plan to investigate for which classes of generators the tube formula
(5.5.106) can be applied pointwise or distributionally. It is clearly a very large class,
corresponding to essentially all of the self-similar sprays (and hence, also all of the
self-similar tilings, in the sense of [Pe, LapPe2–3, LapPeWi1–2, PeWi]) of interest,
including (in light of the results of [KoRati], proving a conjecture of [LapPe2–3])
those with generators that are convex polyhedra (or polytopes), under mild assump-
tions.

Remark 5.5.21. We point out that in [LapPeWi1], which (prior to the present work
and that in [LapRaŽu5]) was the paper containing the most elaborate results con-
cerning the fractal tube formulas for self-similar sprays (and other fractal sprays),
a considerable amount of effort was required to obtain analogous (but less gen-
eral) fractal tube formulas, with or without error term. Furthermore, the ‘tubular
zeta functions’ used in [LapPe2–3] and, in the more general context of [LapPeWi1],
were introduced in an ad hoc manner. Here, by contrast, both the fractal tube formu-
las and the fractal zeta functions (in the present situation, the distance zeta functions)

57 For an exact interval within which the fractal tube formula is valid, one has to explicitly calculate
the scaling factors λG and λS, which we leave as an exercise for the interested reader.
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occurring in the corresponding tube formulas follow naturally from the general the-
ory developed in this book, and in particular, in the present chapter.

We close this comment by mentioning that the interested reader can find in
[LapPe2–3], [LapPeWi1–2], as well as in the exposition given in [Lap-vFr3, Subsec-
tion 13.1.4], a number of concrete examples illustrating the fractal tube formulas for
self-similar sprays (or tilings). These examples include the Cantor tiling, the Koch
tiling, the Sierpiński gasket and carpet tilings, along with the pentagasket tiling (see,
e.g., [Lap-vFr3, Example 13.33]), which is an interesting and natural example of a
self-similar spray with multiple generators; see part (b) of Remark 5.5.26 below for
the relevance of this latter example. In all of these examples, the underlying gener-
ators of the fractal sprays (or tilings) are convex polygons and therefore, satisfy the
required assumptions.

The next four examples respectively complement Examples 4.2.33, 4.2.34, 4.2.35
and 4.2.36 from Subsection 4.2.3. We obtain here their corresponding fractal tube
formulas and illustrate the interesting situations which may arise, in particular, for
self-similar sprays (or tilings), or more generally, for self-similar RFDs. These ex-
amples enable us, in particular, to further illustrate our proposed definition of (criti-
cal and subcritical) fractality (see Remark 4.6.24). Accordingly, the sets and RFDs
considered in these examples are indeed fractal, in that sense, and their fractality re-
flects their intrinsic geometric oscillations, as is made evident by the corresponding
fractal tube formulas.

Example 5.5.22. (Fractal tube formula for the 1/2-square fractal). Let us consider
the 1/2-square fractal A from Example 4.2.33 and depicted in Figure 4.10. Its dis-
tance zeta function was obtained in Example 4.2.33 (see Equation (4.2.114)), where
it was shown to be meromorphic on all of C and given by

ζA(s) =
2−s

s(s−1)(2s −2)
+

4
s−1

+
2π
s
, (5.5.114)

for every s ∈ C. In (5.5.114), without loss of generality, we have chosen δ := 1.
Furthermore, as was discussed in Example 4.2.33, it follows at once from (5.5.114)
that

D(ζA) = 1,

P(ζA) := P(ζA,C) = {0}∪ (1+piZ)
(5.5.115)

and
dimPC A := Pc(ζA) = {1}, (5.5.116)

where the oscillatory period p of A is given by p := 2π
log2 and all of the complex

dimensions in P(ζA) are simple, except for ω0 := 1 which is a double pole of ζA.
One easily sees that λA is strongly d-languid for κd := −1, for any λ ≥ 2 and

for a sequence of screens consisting of the vertical lines {Res =−m}, m ∈N, along
with the choice of the constant Bλ := 2/λ in the strong languidity condition L2’.
Therefore, we can use Theorem 5.3.16 in order to obtain the following exact point-
wise fractal tube formula, valid for all t ∈ (0,min{1/λ ,1/2}) = (0,1/2):
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VA(t) := |At |= ∑
ω∈P(ζA)

res

(
t2−s

2− s
ζA(s),ω

)

= res

(
t2−s

2− s
ζA(s),1

)
+ ∑
ω∈P(ζA)\{1}

t2−ω

2−ω res(ζA,ω) .
(5.5.117)

We now let ωk := 1+ ipk for each k ∈ Z and note that, in light of (5.5.114),

res(ζA,0) = 1+2π and res(ζA,ωk) =
4−ipk

4ωk(ωk −1)
, (5.5.118)

for every k ∈ Z\{0}.
In order to compute the residue at ω0 = 1 in (5.5.117), we reason analogously as

in the proof of Theorem 5.4.32 (see Equation (5.4.80) and the comment following
it) to conclude that

res

(
t2−s

2− s
ζA(s),1

)
= t

1

∑
n=0

n

∑
k=0

(−1)n−k(log t−1)kζA[1]−n−1

k!(n− k)!

= t
(
ζA[1]−1 −ζA[1]−2 +ζA[1]−2 log t−1) .

(5.5.119)

The Laurent series expansion of ζA around s = 1 is given by

ζA(s) =
1

4log2(s−1)2 +
29log2−2

8log2(s−1)
+O(1), (5.5.120)

so that

ζA[1]−2 =
1

4log2
and ζA[1]−1 =

29log2−2
8log2

, (5.5.121)

which, combined with (5.5.119), yields

res

(
t2−s

2− s
ζA(s),1

)
=

1
4log2

t log t−1 +
29log2−4

8log2
t. (5.5.122)

Finally, we obtain the following exact fractal tube formula for the 1/2-square fractal
A, valid for all t ∈ (0,1/2):

VA(t) := |At |=
1

4log2
t log t−1 +

29log2−4
8log2

t

+ t ∑
k∈Z\{0}

(4t)−ipk

4ωk(ωk −1)(2−ωk)
+

1+2π
2

t2

=
1

4log2
t log t−1 + t G

(
log2(4t)−1)+ 1+2π

2
t2,

(5.5.123)
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where G is a nonconstant 1-periodic function on R, which is bounded away from
zero and infinity. It is given by the following absolutely convergent (and hence,
convergent) Fourier series:

G(x) :=
29log2−4

8log2
+

1
4 ∑

k∈Z\{0}

e2πikx

(2−ωk)(ωk −1)ωk
, for all x ∈ R. (5.5.124)

To conclude our discussion of this example, we note that it is now clear from the
fractal tube formula (5.5.123) for the 1/2-square fractal that dimB A = 1 and that A
is Minkowski degenerate with (ordinary) Minkowski content M 1(A) =+∞. On the
other hand, we deduce from a direct computation that A is h-Minkowski measurable
with h(t) := log t−1 (for all t ∈ (0,1)) and with h-Minkowski content given by

M 1(A,h) =
1

4log2
. (5.5.125)

Finally, although D := dimB A = 1 (which is also the topological dimension of A)
and hence, A would not be considered fractal in the classical sense, we also see
from (5.5.123) that the nonreal complex dimensions of A with real part equal to
D give rise to (intrinsic) geometric oscillations of order t2−D (or simply, 2 − D)
in its fractal tube formula. More specifically, according to our proposed definition
of fractality given in Remark 4.6.24 and further refined in Remark 5.5.15 (case
(i)) above, A is critically fractal in dimension d := D = dimB A = 1. (See also the
concluding comments concerning the example of the Cantor graph in Subsection
5.5.4, especially on pages 499–502.)

Example 5.5.23. (Fractal tube formula for the 1/3-square fractal). Let us now con-
sider the 1/3-square fractal A from Example 4.2.34 and depicted in Figure 4.11.
Its distance zeta function was obtained in Example 4.2.34 (see Equation (4.2.125)),
where it was shown to be meromorphic on all of C and given by

ζA(s) =
2

s(3s −2)

(
6

s−1
+Z(s)

)
+

4
s−1

+
2π
s
, (5.5.126)

for all s ∈ C. Here, the entire function Z is given by

Z(s) :=
∫ π/2

0
(cosϕ+ sinϕ)−s dϕ (5.5.127)

and, without loss of generality, we have chosen δ := 1. Furthermore, as was dis-
cussed in Example 4.2.34, it follows at once from (5.5.126) that

D(ζA) = 1 (5.5.128)

and
P(ζA) := P(ζA,C)⊆ {0}∪ (log3 2+piZ)∪{1}, (5.5.129)
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where the oscillatory period p of A is given by p := 2π
log3 and all of the complex

dimensions in P(ζA) are simple. In Equation (5.5.129), we only have an inclusion
since, at least in principle, some of the complex dimensions with real part log3 2 may
be canceled by the zeros of 6/(s− 1)+Z(s). However, it can be checked numeri-
cally that there exist nonreal complex dimensions with real part log3 2 in P(ζA).
Moreover, observe that we have

|Z(s)| ≤
{

2−Res/2−1π if Res < 0,

π/2 if Res ≥ 0,
(5.5.130)

from which we conclude that that λA is strongly d-languid for κd := −1, any
λ ≥

√
2 and a sequence of screens consisting of the vertical lines {Res = −m},

m ∈ N, along with the constant Bλ :=
√

2/λ in the strong languidity condition L2’.
Therefore, we can use Theorem 5.3.16 to obtain the following exact pointwise frac-
tal tube formula, valid for all t ∈ (0,min{1/λ ,1/

√
2}) = (0,1/

√
2):

VA(t) := |At |= ∑
ω∈P(ζA)

res

(
t2−s

2− s
ζA(s),ω

)

= ∑
ω∈P(ζA)

t2−s

2− s
res(ζA(s),ω)

= 16t +
t2−log3 2

log3

+∞

∑
k=−∞

(3t)−ipk

ωk(2−ωk)

(
6

ωk −1
+Z(ωk)

)

+
12+π

2
t2

= 16t + t2−log3 2G
(
log3(3t)−1)+ 12+π

2
t2.

(5.5.131)

Here, we have used the fact that

res(ζA,1) = 16, res(ζA,0) = 12+π (5.5.132)

and

res(ζA,ωk) =
3−ipk

(log3)ωk

(
6

ωk −1
+Z(ωk)

)
, (5.5.133)

where we have let ωk := log3 2+ ipk for each k ∈ Z. It can be checked numerically
that res(ζA,ωk) 
= 0 (at least) for k =−1,0,1 and we conjecture that this is also true
for all k ∈ Z.58 However, the fact that res(ζA,ωk) 
= 0 for k = −1,0,1 suffices to
deduce that the function G in the last line of (5.5.131) is a nonconstant 1-periodic
function on R, which is bounded away from zero and infinity and is given by the
following absolutely convergent (and hence, convergent) Fourier series:

58 We caution the reader that we do not have a rigorous proof of this last statement.
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G(x) :=
1

log3

+∞

∑
k=−∞

e2πikx

(2−ωk)ωk

(
6

ωk −1
+Z(ωk)

)
, for all x ∈ R. (5.5.134)

In conclusion, we observe that it is clear from the fractal tube formula (5.5.131)
that dimB A = 1 and A is Minkowski measurable, with Minkowski content given by

M 1(A) = 16. (5.5.135)

Moreover, since the set A is rectifiable, we have that H1(A) =M 1(A)/2 = 8, which
can, of course, also be computed directly.59 (Here, as before, H1(A) denotes the 1-
dimensional Hausdorff measure of A.) On the other hand, although D := dimB A = 1
(which also coincides with the topological dimension of A) and thus A would not be
considered fractal in the classical sense, we also see from (5.5.131) that the nonreal
complex dimensions of A with real part equal to log3 2 give rise to (intrinsic) geo-
metric oscillations of order t2−log3 2 (or simply, 2− log3 2) in its fractal tube formula.
Therefore, according to our proposed definition of fractality given in Remark 4.6.24
and further refined in Remark 5.5.15 (case (i)) above, the 1/3-square fractal A is
fractal; more precisely, it is strictly subcritically fractal in dimension d := log3 2.
(See also the discussion at the end of Subsection 5.5.4, especially on pages 499–
502.)

Example 5.5.24. (Fractal tube formula for the self-similar fractal nest). Let us now
consider the self-similar fractal nest A from Example 4.2.35 and depicted in Fig-
ure 4.12. Its distance zeta function was obtained in Example 4.2.35 (see Equation
(4.2.137)), where it was shown to be meromorphic on all of C and given by

ζA(s) =
22−sπ(1+a)(1−a)s−1

(s−1)(1−as)
+

2π
s−1

+
2π
s
, (5.5.136)

for all s ∈ C; here, without loss of generality, we have chosen δ := 1. Recall that
a ∈ (0,1) is a real parameter. Also recall that

D(ζA) = 1 (5.5.137)

and
P(ζA) := P(ζA,C) = piZ∪{1}, (5.5.138)

where the oscillatory period p of A is given by p := 2π
loga−1 and all of the complex

dimensions in P(ζA) are simple.
It is now easy to check that λA is strongly d-languid with κd := −1, for any

λ ≥ 2 if a ∈ (0,1/2] or for any λ ≥ 2(1−a)/a if a ∈ (1/2,1) and (in both cases) for
a sequence of screens consisting of vertical lines {Res =−m}, m ∈N, in the strong
languidity condition L2’. Furthermore, once again, we can use Theorem 5.3.16 in

59 In order to obtain the length H1(A) of A, we divide its Minkowski content by the volume of the
unit ball of RN−1 = R (since here N = 2), which is equal to 2.
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order to obtain the following exact pointwise fractal tube formula, which is valid for
all t ∈ (0,min{1/2,a/2(1−a)}):

VA(t) := |At |= ∑
ω∈P(ζA)

res

(
t2−s

2− s
ζA(s),ω

)

= ∑
ω∈P(ζA)

t2−s

2− s
res(ζA(s),ω)

=
4π

1−a
t +

(
π+

4π(1+a)
(loga−1)(1−a)

+∞

∑
k=−∞

(
2t

1−a

)−ipk

(ωk −1)(2−ωk)

)
t2

=
4π

(1−a)
t + t2 G

(
loga−1

(
2t

1−a

))
.

(5.5.139)
Here, we have used the fact that

res(ζA,1) =
4π

1−a
, res(ζA,0) = 2π+

4π(1+a)
(loga)(1−a)

(5.5.140)

and

res(ζA,ωk) =
4π(1+a)

(loga−1)(ωk −1)

(
2

1−a

)−ipk

, (5.5.141)

where we have let ωk := ipk for each k ∈ Z. Furthermore, the function G appear-
ing in the last line of (5.5.139) is a nonconstant 1-periodic function on R, which
is bounded away from zero and infinity and is given by the following absolutely
convergent (and hence, convergent) Fourier series:

G(x) := π+
4π(1+a)

(loga−1)(1−a)

+∞

∑
k=−∞

e2πikx

(2−ωk)(ωk −1)
, for all x ∈ R. (5.5.142)

It clearly follows from the fractal tube formula (5.5.139) that dimB A = 1 and A
is Minkowski measurable with Minkowski content given by

M 1(A) =
4π

1−a
. (5.5.143)

Furthermore, since the set A is rectifiable, we have that H1(A) = M 1(A)/2 =
2π/(1−a), which, of course, can also be easily checked via a direct computation.

Finally, we conclude this example by observing that although D := dimB A = 1
(which is also the topological dimension of A) and thus A would not be considered
fractal in the classical sense, we also see from (5.5.139) that the nonreal complex
dimensions of A with real part equal to 0 give rise to (intrinsic) geometric oscilla-
tions of order t2 (or simply, 2) in its fractal tube formula. Consequently, according
to our proposed definition of fractality given in Remark 4.6.24 and further refined
in Remark 5.5.15 (case (i)) above, the self-similar fractal nest A is indeed fractal;
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more precisely, it is strictly subcritically fractal in dimension d := 0. (See also the
discussion closing Subsection 5.5.4 above.)

Example 5.5.25. (Fractal tube formula for the geometric progression string). We
now consider the geometric progression fractal string L from Example 4.2.36;
more specifically, we consider its geometric realization AL in R. Its distance zeta
function was obtained in Example 4.2.36 (see Equation (4.2.146)), where it was
shown to be meromorphic on all of C and given by

ζAL
(s) =

21−s

s(1−as)
+

2
s
, (5.5.144)

for all s ∈ C.60 Recall that a ∈ (0,1) is a real parameter. Also recall that (as is
obvious in light of Equation (5.5.144))

D(ζAL
) = 0 (5.5.145)

and
P(ζAL

) = piZ, (5.5.146)

where the oscillatory period p of AL is given by p := 2π
loga−1 and all of the complex

dimensions in P(ζA) are simple, except for ω0 := 0, which has multiplicity two. It
is now easy to check that λAL is strongly d-languid for κd :=−1, any λ ≥ 2a and
a sequence of screens consisting of the vertical lines {Res = −m}, m ∈ N, in the
strong languidity condition L2’. Therefore, once more, we can use Theorem 5.3.16
in order to obtain the following exact pointwise fractal tube formula, valid for all
t ∈ (0,1/(2a)):

VAL
(t) := |(AL )t |= ∑

ω∈P(ζA)

res

(
t1−s

1− s
ζAL

(s),ω
)

= res

(
t1−s

1− s
ζAL

(s),0

)

+ ∑
ω∈P(ζAL

)\{0}

t1−ω

1−ω res
(
ζAL

,ω
)
.

(5.5.147)

We now let ωk := ipk for each k ∈ Z and note that:

res
(
ζAL

,ωk
)
=

21−ωk

(loga−1)ωk
, (5.5.148)

for every k ∈ Z\{0}.
In order to calculate the residue of ζAL

at ω0 = 0 in (5.5.147), we reason anal-
ogously as in the proof of Theorem 5.4.32 (see Equation (5.4.80) and the comment
following it) in order to deduce that

60 Here, without loss of generality, we have fixed δ := 1.
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res

(
t1−s

1− s
ζAL

(s),0

)
= t

1

∑
n=0

n

∑
k=0

(−1)n−k(log t−1)kζAL
[0]−n−1

k!(n− k)!

= t
(
ζAL

[0]−1 −ζAL
[0]−2 +ζAL

[0]−2 log t−1) .
(5.5.149)

The Laurent series expansion of ζA around s = 0 is given by

ζAL
(s) =

2
(loga−1)s2 +

3− loga−1 4
s

+O(1). (5.5.150)

Hence,

ζAL
[0]−2 =

2
loga−1 and ζAL

[0]−1 = 3− loga−1 4, (5.5.151)

which combined with Equation (5.5.149) yields

res

(
t1−s

1− s
ζAL

(s),0

)
=

2
loga−1 t log t−1 +

(
3− log4−2

loga−1

)
t. (5.5.152)

Finally, we obtain the following exact pointwise fractal tube formula for AL ,
valid for all t ∈ (0,1/(2a)):

VAL
(t) := |(AL )t |=

2
loga−1 t log t−1 +

(
3− log4−2

loga−1

)
t

+
2t

loga−1 ∑
k∈Z\{0}

(2t)−ipk

ωk(1−ωk)

=
2

loga−1 t log t−1 + t G
(
loga−1(2t)−1) ,

(5.5.153)

where G is a nonconstant 1-periodic function on R, which is bounded away from
zero and infinity and given by the following absolutely convergent (and hence, con-
vergent) Fourier series:

G(x) :=

(
3− log4−2

loga−1

)
+

2
loga−1 ∑

k∈Z\{0}

e2πikx

ωk(1−ωk)
, for all x ∈R. (5.5.154)

It is now clear from the fractal tube formula (5.5.153) for AL that, as was al-
ready stated, dimB AL = 0 (which is also the topological dimension of A) and AL is
Minkowski degenerate with (ordinary) Minkowski content M 0(AL ) = +∞. On the
other hand, AL is h-Minkowski measurable, with h(t) := log t−1 for all t ∈ (0,1),
and its h-Minkowski content is given by

M 0(AL ,h) =
2

loga−1 . (5.5.155)
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We conclude this example by pointing out that, although D := dimB AL = 0
(which is also the topological dimension of A) and hence, much as in Examples
5.5.22, 5.5.23 and 5.5.24, AL would not be considered fractal in the classical sense,
we also see from (5.5.153) that the nonreal complex dimensions of AL with real part
equal to D give rise to (intrinsic) geometric oscillations of order t (or simply, 1) in
its fractal tube formula (even though AL is h-Minkowski measurable). More specif-
ically, according to our proposed definition of fractality given in Remark 4.6.24 and
further refined in Remark 5.5.15 (case (i)) above, AL (or, equivalently, L ) is crit-
ically fractal in dimension d := D = dimB AL = 0. (See the concluding comments
of Subsection 5.5.4, on pages 499–502 for a closely related situation.)

The next remark (Remark 5.5.26) is extensive and is composed of three parts, la-
beled (a), (b) and (c). It addresses various aspects and generalizations of the above
discussion. Part (a) discusses the potential generalizations of the above fractal tube
formulas to self-similar sets, rather than to self-similar sprays (or tilings). Moreover,
part (b) provides explicitly the easy extension of the above fractal tube formulas to
self-similar sprays with multiple generators. Finally, part (c) discusses the charac-
terization of the Minkowski measurability (or, more generally, the possibly subcriti-
cal Minkowski measurability) of a large class of self-similar sprays and self-similar
sets. (We could analogously discuss the general applications of fractal tube formulas
and Minkowski measurability criteria to not necessarily self-similar fractal sprays.
However, for the sake of clarity and brevity, we will not do so here and simply
mention that, under appropriate assumptions, the corresponding discussion would
parallel the one provided in the relevant portions of parts (a) and (b) of Remark
5.5.26 just below.)

Remark 5.5.26. (a) (Towards fractal tube formulas for self-similar sets). We also
expect that under suitable hypotheses (see below), and by using (or appropriately
extending) the corresponding results of the present subsection about self-similar
sprays, we can obtain (pointwise or distributional) fractal tube formulas, with or
without error term, for a large class of self-similar sets (satisfying the open set con-
dition). A key step for deriving such results should consist in obtaining an approx-
imate functional equation connecting the distance zeta functions of the given self-
similar set F and of the associated self-similar tiling (or spray) (A,Ω), viewed as a
self-similar RFD.

More specifically, we expect that, under suitable assumptions, we have

ζF(s) = ζA,Ω (s)+ζO,out(s)+ f (s), (5.5.156)

where f is a function which is holomorphic on some open right half-plane {Res >
η}, with −∞ ≤ η < min{DG,σ0}. Here, DG and σ0 stand, respectively, for the
(upper) Minkowski dimension of the generator G of the self-similar spray (or tiling),
and for the similarity dimension of F (or, equivalently, of (A,Ω)); that is, σ0 ∈ (0,N)
is the unique real solution of the Moran equation ∑J

j=1 rs
j = 1.

Furthermore, ζO,out := ζK,Kc is the distance zeta function of a relatively “simple”
RFD (denoted in an interesting special case by (K,Kc) below, with K := O and
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Kc := R
N \O) taking into account the contributions of the outer neighborhoods of

K = O, where O is an admissible open set, in a sense to be explained below. For the
purpose of the present discussion, we assume that O, the closure of O in R

N , is the
convex hull of F , but significantly more general situations will be considered below.

Moreover, (A,Ω) is the canonical self-similar tiling associated with the self-
similar set F , in the sense of [Pe] to be briefly described below (and as used in
[LapPe2–3], [LapPeWi1–2], as well as described in [Lap-vFr3, Section 13.1]) and
viewed as a self-similar RFD. It is a special case of a self-similar spray (in the sense
of [Lap3, LapPo3]) having a natural geometric meaning. In particular, the bounded
open set Ω is the complement of F in the (necessarily closed) convex hull of F
(or, more generally, in the closure O of the admissible open set O, see below) of
countably many scaled copies (the ‘tiles’) of the generator G of the fractal spray (or
tiling).61 In most situations of interest, the tiles are simple polyhedra (equivalently,
the generator is a simple polyhedron).

We assume that the self-similar tiling is nontrivial, which is known to imply
that the self-similar set F satisfies the open set condition (in the sense of [Hut];
see also, e.g., [Fal1]) and that dimB(A,Ω) < N (which will be implied by our
other hypotheses). We also assume that the generator G is sufficiently ‘nice’, for
instance, monophase or, more generally, pluriphase (in the sense of [LapPe2–3],
[LapPeWi1–2]), as discussed earlier in the present subsection. For example, un-
der mild nondegeneracy hypotheses, G can be a convex polytope of R

N ; see the
main result in [KoRati], which resolved and specified a conjecture in [LapPe2] and
[LapPe3]. (More information about self-similar tilings, their generators, the open set
condition, and the nontriviality condition, is provided towards the end of the present
discussion, i.e., of part (a) of this remark.)

Note that it is well known in the literature on fractal geometry (see, e.g., [Hut]
and Theorem 9.3, page 140 of the third edition of [Fal1]) that since the self-similar
set F satisfies the open set condition and letting DF := dimB F , we have that the
box (i.e., Minkowski) dimension DF of F exists and σ0 = dimH F = DF (= D(ζF),
by Theorem 2.1.11 and Corollary 2.1.20 above). We caution the reader, however,
that the same statement does not hold, in general, for a self-similar RFD (which is
not, necessarily, a self-similar set), as the example of the inhomogeneous Sierpiński
N-gasket RFD (and similar examples; see Examples 4.2.33, 4.2.34 and 4.2.35 from
Subsection 4.2.3, revisited from the point of view of the fractal tube formulas in
Examples 5.5.22, 5.5.23 and 5.5.24, respectively) shows. More specifically, for the
inhomogeneous Sierpiński N-gasket RFD (AN ,ΩN), when N ≥ 4, the open set con-
dition is satisfied by the corresponding self-similar set F but we have

DAN ,ΩN = DG = N −1 > σ0 = DF = log2(N +1), (5.5.157)

where G is the single generator of the inhomogeneous N-gasket RFD. Here, the
corresponding self-similar set F := S3 is the well-known Sierpiński tetrahedron (or

61 For notational simplicity, we assume here that there is a single generator. Entirely analogous
results are expected in the case of finitely many generators, as is explained at the end of part (c) of
this remark, based on part (b) below.
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pyramid) S3, in the case when N = 3 and a higher-dimensional analogue F := SN

when N ≥ 4.62 (See Example 4.2.26, along with the discussion surrounding Equa-
tion (5.5.185).) We caution the reader, however, that we can have simultaneously
DF = σ0 and DAN ,ΩN = DAN = max{DG,σ0} > σ0. Indeed, as was discussed in
Example 4.2.26 and will be further discussed below, AN is an inhomogeneous self-
similar set, not an ordinary (or homogeneous) self-similar set. This may be a some-
what confusing point worth being highlighted. The first author (Michel Lapidus)
wishes to thank Michael Barnsley and Martina Zähle for their helpful queries about
this issue.

What should be true, in general, is that for a self-similar set F satisfying the open
set condition (and under some other mild conditions on the generator G), we have
that DG ≤ σ0 and therefore (in light of Corollary 2.1.20, in particular),

DF := dimB F = D(ζF) = DA,Ω = D(ζA,Ω )

= dimB(A,Ω) = max{DG,σ0}= σ0.
(5.5.158)

In the present discussion, we do not need to know that (or when) Equation
(5.5.158) holds, but we need to be aware of the following fact, which is a conse-
quence of the factorization formula (5.5.105) (or, equivalently, (5.5.108)) combined
with parts (b) and (c) of Theorem 4.1.7:63

DA,Ω := dimB(A,Ω) = D(ζA,Ω ) = Dhol(ζA,Ω ) = max{DG,σ0}, (5.5.159)

with (again by these same results) DG = D(ζ∂G,G). (Clearly, we have that σ0 < N
since, by hypothesis, ∑J

j=1 rN
j < 1; also, we have that σ0 > 0 since J ≥ 2.)

The hypotheses under which we expect these results to hold, include, for exam-
ple, that the generator G is pluriphase (for instance, a polytope, under mild assump-
tion, by [KoRati]).

We mention that other, more general, choices of self-similar tilings associated
with a self-similar set F and a corresponding open set O satisfying the open set con-
dition (OSC, in short) can be made, as in [PeWi] (and as used in [LapPeWi1–2] or
described in [Lap-vFr3, Section 13.1]); they give rise to different, although related,
self-similar RFDs but the corresponding results are expected to be analogous. In
fact, this extra flexibility is likely to be essential for making the present ideas more
specific and to correctly implement them.

These more general self-similar tilings are associated with ‘feasible’ (bounded,
nonempty) open sets O; i.e., the OSC is satisfied in the following sense: O is a
nonempty open subset such that

Φ j(O)⊆ O for j = 1, . . . ,J (5.5.160)

62 More precisely, the self-similar set F := SN is the unique fixed point of the IFS consisting of
(N+1) contractive similitudes of RN of scaling factor equal to 1/2, as described in Example 4.2.26.
63 We assume here implicitly that when DG 
=σ0, the generator G (and hence also, the RFD (A,Ω))
has positive lower Minkowski content, which is the case in most situations of interest.
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and

Φ j(O)∩Φ j′(O) = /0 for j 
= j′, with j, j′ ∈ {1, . . . ,J}, (5.5.161)

where {Φ j}J
j=1 are J contractive similitudes of RN with scaling ratios {r j}J

j=1 defin-
ing the self-similar set in the usual way:

F =
J⋃

j=1

Φ j(F) =:Φ(F). (5.5.162)

Furthermore, O is ‘acceptable’, in the sense that the associated self-similar tiling is
nontrivial:

O �Φ(O), (5.5.163)

where O denotes the closure of O in R
N . The associated self-similar tiling t := t(O)

is then given by
t= t(O) := {Φw(G) : w ∈W} , (5.5.164)

where W := ∪∞k=0{1, . . . ,J}k is the set of all finite words based on the alphabet
{1, . . . ,J} and for each w = (w1, . . . ,wk)∈W,Φw :=Φw1 ◦· · ·◦Φwk is the appropri-
ate composition of the maps Φw1 , . . . ,Φwk . Here, the generator G of the self-similar
tiling t (or, equivalently, of the associated self-similar RFD (A,Ω)) is the (bounded)
connected open set of RN defined by G := O \Φ(O), the elements of O which are
not inΦ(O). Note that according to the nontriviality condition, G is nonempty. Also,
for notational simplicity, we assume in the present discussion that there is a single
generator. (In general, the open set O\Φ(O) need not be connected. Then, the gen-
erators {G(q)}Q

q=1 of t, where Q is assumed to be a finite number, for simplicity, are
the bounded open sets which are defined as the connected components of the open
set O\Φ(O).)

It is shown in [PeWi] (extending [Pe] to this more general situation) that the tiles
Φw(G) (for w ∈W) in t = t(O) are pairwise disjoint (bounded) open sets, and that
the closure of their union coincides with O, the closure of O:64

O =
⊔

w∈W
Φw(G), (5.5.165)

thereby, justifying the use of the term “self-similar tiling” in this context.
Let us close this discussion by giving one class of examples for which a rela-

tion of the type (5.5.156) is satisfied, in a strong sense (since the counterpart of
f is then identically equal to zero) and for the tube (instead of the distance) zeta

64 We follow here the discussion of self-similar tilings provided in [LapPeWi2]. If, as in part (b)
of this remark on page 528, we have multiple generators, {G(q)}Q

q=1, rather than a single generator

G, then (5.5.165) should be replaced by the following equality: O =
⊔Q

q=1
⊔

w∈WΦw(G(q)), where

B denotes the closure in R
N of B ⊆ R

N . We note that the N = 1 case precisely corresponds to the
self-similar strings with multiple gaps discussed in [Lap-vFr3, Chapter 2, esp., Section 12.1].
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functions. (As a consequence of the functional equations (2.2.23) and (4.5.2), it will
then follow that (5.5.156) actually holds for the distance zeta functions, with f be-
ing an explicitly computable entire function.) This is directly connected to a result
in [PeWi] and to the hypotheses made in [LapPeWi2, Section 5] in order to transfer
results (such as Minkowski measurability results) from self-similar tilings to certain
self-similar sets. The main geometric condition about the self-similar tiling t= t(O)
required here is the following compatibility condition. Namely, the bounded open
set O (in addition to being ‘admissible’, i.e., feasible and acceptable) is such that
∂O ⊂ F , where ∂O denotes the boundary of O in R

N . This condition is satisfied,
for example, by the Sierpiński gasket and the Sierpiński carpet tilings, but not by
the Koch tiling (see, e.g., [LapPeWi2, Figure 2.1, p. 189]). Then, if we consider the
compact subset of RN defined by K :=O, it follows from the compatibility condition
that for every t > 0, we have that

|Ft |=V (t, t)+ |Kt \K|, (5.5.166)

where V (t, t) is the volume of the inner t-neighborhood of t = t(O) (the disjoint
union of the inner t-neighborhoods of the tiles of t), just as in the general theory of
fractal sprays [Lap2–3, LapPo3, Lap-vFr1–3]), and

|Kt \K|= |Kt |− |K|= |Kt ∩Kc|, (5.5.167)

with Kc := R
N \K (the complement of K in R

N). Here, Kt \K is the ‘outer’ (or
‘excised’) t-neighborhood of K. Note that therefore, in light of (5.5.167),

|Kt \K|= |Kt ∩Kc|=VK,Kc (5.5.168)

is the tube function of the RFD (K,Kc).
It follows at once from (5.5.166) and (5.5.168) that

|Ft |=V (t, t)+VK,Kc(t) =VA,Ω (t)+VK,Kc(t), (5.5.169)

where we have identified the self-similar tiling with the RFD (A,Ω) given by the
self-similar spray defined by t and hence, generated by G. (For notational simplic-
ity, we write | · | instead of | · |N in Equations (5.5.166)–(5.5.169).) Observe that in
light of (5.5.169), |Ft | is the sum of an inner contribution (corresponding to the RFD
(A,Ω), associated with the tiles of t= t(O)) and an outer contribution (correspond-
ing to the RFD (K,Kc), where K := O).

In light of the definition of the tube zeta function of an RFD (A,Ω) and since, by
construction, VA,Ω = |At ∩Ω | and VK,Kc = |Kt ∩Kc|, we deduce the following key
identity between the corresponding tube zeta functions:

ζ̃F(s) = ζ̃A,Ω (s)+ ζ̃K,Kc(s), (5.5.170)

for all s ∈ C with Res sufficiently large, and then, as usual, after meromorphic con-
tinuation, for all s ∈U , where U ⊆ C is a domain to which both ζ̃A,Ω and ζ̃K,Kc can
be meromorphically continued. Since, according to our results about self-similar
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tilings (sprays) obtained in the first part of this subsection, ζA,Ω and hence also,
ζ̃A,Ω , can be meromorphically continued to all of C (and is explicitly known in
terms of ζ∂G,G and the scaling ratios {r j}J

j=1, see Equation (5.5.105) along with the
functional Equation (4.5.2)), the identity (5.5.170) is valid for all s ∈U , where U is
any connected open subset of C to which ζ̃K,Kc can be meromorphically continued.

We leave it as an exercise for the interested reader to deduce from (5.5.170)
and a repeated application of the functional equation (4.5.2) (connecting the rela-
tive distance and tube zeta functions) a corresponding identity for the distance zeta
functions ζF , ζA,Ω and ζO,out := ζK,Kc . In fact, as desired, one obtains an expres-
sion which is exactly of the form (5.5.156), where the ‘error function’ f = f (s) is
an entire function (which is explicitly computable and depends on the unimportant
choice of δ > 0 occurring in the functional equation (4.5.2)).

In the more general situation when the compatibility condition ∂O ⊂ F is not
necessarily satisfied, we expect that, under suitable hypotheses, we have a relation
of the form

ζ̃F(s) = ζ̃A,Ω + ζ̃K,Kc +g(s), (5.5.171)

where g is a holomorphic function of the above type; namely, g is holomorphic on
some open right half-plane {Res > α}, with α ∈ R∪ {−∞} small enough (say,
α < min{DA,Ω ,DK,Kc}). Then, exactly as above, by repeatedly using the functional
equation (4.5.2), one would obtain an expression of the desired form (5.5.156), for
the distance zeta function ζF itself.

This last discussion clearly suggests that, in general, the situation is somewhat
complicated but that it might be best apprehended by first working with (absolute
and relative) tube (instead of distance) zeta functions, then deducing the correspond-
ing identity (5.5.156) between the distance zeta functions (via a repeated use of the
functional equation (4.5.2)) and finally applying one of the appropriate tube formu-
las (expressed in terms of the distance zeta functions) from Section 5.3 in order to
obtain the tube formula for VO,out :=VK,Kc .

Alternatively, one may wish to directly apply the tube formulas obtained in Sec-
tions 5.1 and 5.2 (rather than in Section 5.3). Finally, we note that in light of the
functional equation connecting ζA,Ω and ζ̃A,Ω (see Equation (4.5.2)) and in light
of Equation (5.5.105) (or, equivalently, (5.5.108)) giving the explicit expression of
ζA,Ω (namely, ζA,Ω (s) = ζ∂G,G(s)/(1−∑J

j=1 rs
j)), we have in our possession an ex-

plicit expression for ζ̃A,Ω (s). We expect that in many cases, ζ̃K,Kc(s) can also be
computed or, at least, appropriately approximated (modulo a suitable holomorphic
function, of the above type).

(b) (Fractal tube formulas for self-similar sprays with multiple generators).
Moreover, we mention that all the results of the present subsection easily extend
to self-similar sprays (and tilings) with finitely many (rather than a single) genera-
tors. For example, if G(1), . . . ,G(Q) denote these Q generators, with Q ∈N, Equation
(5.5.105) simply becomes
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ζA,Ω (s) =
Q

∑
q=1
ζA(q),Ω (q) (s) =

∑Q
q=1 ζ∂G(q),G(q) (s)

1−∑J
j=1 rs

j

= ζS(s)
Q

∑
q=1
ζ∂G(q),G(q) (s),

(5.5.172)

where (A,Ω) denotes the self-similar spray (viewed as an RFD) with Q genera-
tors G(1), . . . ,G(Q) and scaling ratios {r j}J

j=1, and for each q = 1, . . . ,Q, (A(q),Ω (q))

stands for the self-similar spray with the single generator G(q) and the same scaling
ratios (or ratio list) {r j}J

j=1. Furthermore, in the last equality of (5.5.172), ζS is the
scaling zeta function of the self-similar spray (A,Ω) given by (5.5.109). Moreover,
with σ0 (= D(ζS) = Dhol(ζS), by Theorem 4.1.7) still denoting the similarity di-
mension, (5.5.159) becomes (due to possible cancellations between the zeros of the
numerator and the denominator, in the last two terms of (5.5.172))65

DA,Ω := dimB(A,Ω) = D(ζA,Ω ) = Dhol(ζA,Ω )

≤ max

{
max

q=1,...,Q
{DG(q)},σ0

}
.

(5.5.173)

Similarly, exactly as in [LapPe2–3] and [LapPeWi1–2], the fractal tube formula
(of a given type) associated with the RFD (or self-similar spray) (A,Ω) is simply
obtained by adding the corresponding fractal tube formulas (of the same type) asso-
ciated with the RFDs (or self-similar sprays) (A(q),Ω (q)), for each q = 1, . . . ,Q, and
likewise for the corresponding error terms and error estimates (when applicable).
[Naturally, this observation can also be applied to the case of self-similar sets dis-
cussed in the previous comment (see part (a) of this remark), when the correspond-
ing self-similar tilings have multiple generators (rather than a single generator).]

More specifically, the counterpart of (5.5.113) would become

VA,Ω (t) =
Q

∑
q=1

VA(q),Ω (q) (t), (5.5.174)

where, for each q = 1, . . . ,Q, VA(q),Ω (q) (t) is given by the fractal tube formula

(5.5.106), but with (A,Ω) replaced by (A(q),Ω (q)) and likewise, with (∂G,G) re-
placed by (∂G(q),G(q)). Therefore, we have the following (pointwise or distribu-
tional) formula (with or without error term):

VA,Ω (t) := |At ∩Ω |

=
Q

∑
q=1

∑
ω∈(D∩W )∪P(ζ

∂G(q),G(q) ,W )

res

⎛
⎝ tN−sζ∂G(q),G(q) (s)

(N − s)
(

1−∑J
j=1 rs

j

) ,ω
⎞
⎠

+RA,Ω (t),

(5.5.175)

65 For the third equality in (5.5.173) to hold, we must implicitly assume a mild condition on (A,Ω);
namely, that its lower Minkowski content M∗(A,Ω) is positive.
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where, as before, D = DS is the set of complex solutions of ∑J
j=1 rs

j = 1 and

RA,Ω (t) :=∑Q
q=1 RA(q),Ω (q) (t) is the sum of the error terms associated with each self-

similar RFD (A(q),Ω (q)), for q ∈ {1, . . . ,Q}.
In the case when each of the generators G(q) (q = 1, . . . ,Q) is monophase, then

each VA(q),Ω (q) is given by the exact tube formula (5.5.113), except for (A,Ω) re-

placed by (A(q),Ω (q)), g replaced by g(q), the inner radius of G(q), and κi replaced

by κ(q)i for each i = 0, . . . ,N:

VA,Ω (t) := |At ∩Ω |

=
Q

∑
q=1

∑
ω∈D∪{0,1,...,N−1}

res

⎛
⎝tN−s∑

N
i=0κ

(q)
i

(g(q))s−i

s−i(
1−∑J

j=1 rs
j

) ,ω

⎞
⎠ .

(5.5.176)

Furthermore, in the important special case when D = DS (the set of ‘scaling
complex dimensions’ of the self-similar spray, in the terminology of [LapPe2–3],
[LapPeWi1–2] or of [Lap-vFr3, Section 13.1]) consists only of simple zeros of the
Dirichlet polynomial 1−∑J

j=1 rs
j (or, equivalently, of simple poles of the ‘scaling

zeta function’ ζS(s) := (1−∑J
j=1 rs

j)
−1), and the unique real zero σ0 of 1−∑J

j=1 rs
j

is not an integer,66 the fractal tube formula (5.5.176) takes the following simpler
form:

VA,Ω (t) := |At ∩Ω |= ∑
ω∈D∪{0,1,...,N−1}

dω tN−ω , (5.5.177)

where

dω := res
(
ζS,ω

) Q

∑
q=1

N

∑
i=0

κ(q)i (g(q))ω−i

ω− i
, if ω ∈D, (5.5.178)

or

dω := ζS(ω)
Q

∑
q=1
κ(q)ω , if ω ∈ {0,1, . . . ,N −1}, (5.5.179)

and (as above, and in the terminology of [LapPe2–3], [LapPeWi1–2]) ζS denotes
the ‘scaling zeta function’ of the spray; namely,

ζS(s) :=
1

1−∑J
j=1 rs

j

, for all s ∈ C. (5.5.180)

Consequently, we obtain the following more explicit form of the fractal tube for-
mula, which shows the respective contributions of the ‘scaling complex dimensions’
(i.e., the poles of ζS, or, equivalently, the elements of D =: DS) and the ‘integer
complex dimensions’ (i.e., the elements of {0, . . . ,N −1} that are poles of ζ∂G,G):

66 See the example of the Sierpiński 3-gasket discussed in Example 4.2.26 where this situation
occurs.
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VA,Ω (t) := |At ∩Ω |

= ∑
ω∈DS

res
(
ζS,ω

)( Q

∑
q=1

N

∑
i=0

κ(q)i (g(q))ω−i

ω− i

)
tN−ω

+
N−1

∑
i=0
ζS(i)

( Q

∑
q=1
κ(q)i

)
tN−i.

(5.5.181)

(Compare with [LapPe3, LapPeWi1] and [Lap-vFr3, Corollary 13.16].)
In closing this comment, we note that the fractal tube formula (5.5.176) (or,

equivalently, (5.5.181)) can be immediately extended from the case of monophase
to that of pluriphase generators, as a consequence of the general fractal tube for-
mula (5.5.175). Therefore, we can recover and considerably extend all of the results
obtained in [LapPe2–3] and [LapPeWi1–2] (see also [DemKoÖÜ] and, especially,
[DenKoÖÜ], based on those references), as well as the corresponding results dis-
cussed in the exposition provided in [Lap-vFr3, Section 13.1].

Also, we note that, naturally, the discussion of part (a) of this remark can be
combined with the present one to extend from single to multiple (sufficiently nice)
generators the conjectures regarding the fractal zeta functions of self-similar sets
(satisfying the open set condition) and corresponding fractal tube formulas. In par-
ticular, we expect that (with the notation of part (a)) Equation (5.5.156) remains
true, with ζA,Ω given by the following identity:

ζF(s) = ζA,Ω (s)+ζO,out(s)+ f (s), (5.5.182)

where the complex-valued function f is holomorphic in a suitable open right half-
plane {Res > α}, with α ∈ R∪{−∞} sufficiently small, and where (A,Ω) is the
canonical self-similar tiling associated with the given self-similar set F . We then
conjecture that the corresponding fractal tube formula is given by

VF(t) =VA,Ω (t)+VO,out(t)+RF(t), (5.5.183)

where VA,Ω is still given by Equation (5.5.175), the fractal tube formula for the
canonical self-similar tiling (A,Ω) (or an appropriate more general self-similar
tiling) associated with the self-similar set F , and the error term RF can (roughly)
be split into three parts,

RF = RA,Ω +RO,out +R f , (5.5.184)

the error term RA,Ω appearing in (5.5.175), RO,out, the error term appearing in the
fractal tube formula for the RFD (O,out) := (K,Kc) described towards the end of
part (a) (or a suitable analog thereof), expressed in terms of the distance zeta func-
tion ζO,out := ζK,Kc (by using the results of Section 5.3), as well as the error term
R f corresponding to the contribution of the holomorphic function f appearing in
(5.5.182) (the counterpart of (5.5.156) in the present context).
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(c) (Minkowski measurability criteria for self-similar sprays and sets). Let
(A,Ω) be a self similar spray with scaling ratios {r j}J

j=1 and (for notational simplic-
ity) a single generator G assumed to be pluriphase (for example, a suitable polytope,
by [KoRati]).67 Then, under mild assumptions, D = dimB(A,Ω) exists, D < N and
(A,Ω) is Minkowski nondegenerate. In particular M∗(A,Ω) > 0. Now, let σ0 de-
note the similarity dimension of (A,Ω); namely, σ0 is the unique real solution of the
Moran equation ∑J

j=1 rs
j = 1. Then, in light of the factorization formula (5.5.105),

(namely, since ζ∂G,G is then meromorphic in all of C, ζA,Ω (s) = ζS(s) ·ζ∂G,G(s), for
all s ∈ C, where ζS(s) := (1−∑J

j=1 rs
j)
−1) and by Theorem 4.1.7(c) (or Corollary

4.1.10(ii)), we have that

D = dimB(A,Ω) = D(ζA,Ω ) = Dhol(ζA,Ω )

= max
{
σ0,dimB(∂G,G)

}
.

(5.5.185)

Actually, in the second equality above, initially, we have dimB(A,Ω) = D(ζA,Ω ),
which is a general result for any RFD (A,Ω), by Theorem 4.1.7. The stronger result
in our case follows from the sufficiency condition given by Theorem 5.4.2 in the
nonlattice case, and by the pointwise fractal tube formula of case (ii) of Theorem
5.3.16 in the lattice case (since the generator is assumed to be pluriphase, it is not
difficult to check that the strong d-languidity is satisfied with d-languidity exponent
κd := 0; see also the discussion following Equation (5.5.113) in the monophase
case).68 In particular, we obtain the following natural generalization of the identity
(4.2.80), initially established in the case of the inhomogeneous N-gasket RFD in
Example 4.2.26 of Subsection 4.2.3 (in the notation of Example 4.2.26, we have
G :=ΩN,0):

D = dimB(A,Ω) = D(ζA,Ω ) = max
{
σ0,dimB(∂G,G)

}
. (5.5.186)

Note that, under the present assumptions, we have that dimB(∂G,G) belongs to
{0,1, . . . ,N − 1} and hence, is an integer. Also, if G is a polytope, for example,
DG := dimB(∂G,G) exists and therefore can be substituted for DG := dimB(∂G,G)
in (5.5.185) and (5.5.186). For notational simplicity, we will assume in the sequel
that DG = dimB(∂G,G) exists.

Next, we distinguish the following three cases: (i) DG < σ0; (ii) DG = σ0; and
(iii) DG > σ0.

Case (i): DG < σ0. Then, by (5.5.186), D = σ0 and all of the poles of ζ∂G,G
(which are all simple and form a subset of {0,1, . . . ,N − 1}) are located strictly
to the left of D. Therefore, in light of the factorization formula (5.5.105) recalled

67 The assumptions on G could be significantly weakened but we will refrain from doing so here,
in order not to complicate the statements unnecessarily.
68 Actually, the following issue arises in the critical case when D = σ0 = dimB(∂G,G) since then,
by the factorization formula (5.5.105), D is a double pole of ζA,Ω . Therefore, in the lattice case, we
can apply Theorem 5.4.32, but in the nonlattice case, we do not have a rigorous justification of the
second equality in (5.5.185), although we conjecture that it is also true.
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above, it follows that the principal complex dimensions of (A,Ω) coincide with the
complex solutions of the complexified Moran equation ∑J

j=1 rs
j = 1 (i.e., with the

scaling complex dimensions of (A,Ω)). Recall from [Lap-vFr3, Theorem 3.6] that
σ0 is always a simple pole of ζS and that, in the nonlattice case, it is the only pole
of ζS located on the vertical line {Res = σ0}, while in the lattice case, the poles of
ζS form an infinite subset of σ0 +piZ, where p := 2π/ log(r−1) is the oscillatory
period, with r ∈ (0,1) being the single generator of the multiplicative group (of rank
1) generated by the scaling ratios r1, . . . ,rJ . (See also the comments preceding the
statements of Corollary 5.4.23 above.)

We deduce, in particular, that since D is simple, the RFD (A,Ω) has a nonreal
complex dimension with real part D (= σ0) if and only if we are in the lattice case,
and hence, in light of Theorems 5.4.2 and 5.4.20, if and only if (A,Ω) is Minkowski
measurable. More specifically, we reason exactly as in the proof of Corollary 5.4.23
(which corresponds to the case when N = 1). Namely, if (A,Ω) is lattice, then it
satisfies the hypotheses of Theorem 5.4.15 concerning the languidity and the screen
and hence, since in the lattice case, in addition to D there are other poles with real
part D, we conclude that (A,Ω) cannot be Minkowski measurable. On the other
hand, if (A,Ω) is nonlattice, then the only pole with real part D is D itself and it is
simple. Consequently, (A,Ω) satisfies the hypotheses of Theorem 5.4.2 and hence,
(A,Ω) is Minkowski measurable.69

Therefore, in case (i), (A,Ω) is Minkowski measurable if and only if D is its only
principal complex dimension and also, if and only if the self-similar spray (A,Ω) is
nonlattice.

This proves (for the case of self-similar sprays) the geometric part of a conjecture
of the first author in [Lap3, Conjecture 3, pp. 163–164], in case (i) (and, in particu-
lar, in case D is not an integer). Note that for a self-similar string (i.e., when N = 1),
we are always in case (i) and therefore, we have reproved the characterization of the
Minkowski measurability for self-similar strings obtained in [Lap-vFr3, Section 8.4,
esp., Theorems 8.23 and 8.36] and recovered (via a different method) in Corollary
5.4.23 above.

We note that [Lap3, Conjecture 3] was stated both for the geometry and spectra
of self-similar fractal drums, satisfying the open set condition. More specifically, it
was stated in terms of the leading geometric and spectral oscillations of such drums
but not explicitly in terms of complex dimensions. Therefore, from this point of
view, our results go beyond the scope of the geometric part of that conjecture.

69 See [Lap-vFr3], Chapters 2 and 3, especially, Theorem 2.16 and Theorem 3.6, for a detailed anal-
ysis of the structure of the scaling complex dimensions, in the lattice and nonlattice cases. In partic-
ular, in the lattice case, the scaling complex dimensions are periodically distributed along finitely
many vertical lines (the right-most of which is {Res = σ0}), while in the nonlattice case, they
are ‘quasiperiodically distributed’ and can be approximated by the scaling complex dimensions of
an infinite sequence of self-similar strings, with oscillatory periods pn increasing to infinity expo-
nentially fast as n → ∞. Observe that in [Lap-vFr3, Chapter 3], no assumption is made about the
underlying scaling ratios (and gaps), so that the corresponding results (and hence also, [Lap-vFr3,
Theorems 2.16 and 3.6]) can be applied to self-similar sprays in R

N , for an arbitrary N ≥ 1.
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Case (ii): DG = σ0 and hence, D is an integer. Since DG and σ0 are simple poles
of ζ∂G,G and ζS, respectively, it follows from the factorization formula (5.5.108),
ζA,Ω = ζS ·ζ∂G,G, that D is a double (and hence, a multiple) pole of ζA,Ω . Therefore,
according to Theorem 5.4.10 (and by using Lemma 5.4.11), the self-similar spray
(i.e., the RFD) (A,Ω) is not Minkowski measurable, independently of whether or
not the self-similar spray is lattice or nonlattice. Under the additional assumptions70

of Theorem 5.4.32 (the case when m = 2 in the notation of that theorem) on the
RFD (A,Ω), we conclude in this case that it is h-Minkowski measurable, where the
gauge function h is given by h(t) := log t−1 for every t ∈ (0,1).

Case (iii): DG > σ0. Then, in light of (5.5.186), we have D = DG (hence, D is an
integer). Furthermore, according to [Lap-vFr3, Equation (3.9)] (see also Subsection
2.1.4 above), all of the poles of ζS have real part ≤ σ0 and thus, have real part < D.
In light of the factorization formula (5.5.105), it then follows that the only principal
complex dimension of (A,Ω) is D = DG itself, and it is simple (since DG is a simple
pole of ζ∂G,G); i.e., dimPC(A,Ω) = {DG}. (Note that in most cases of interest, we
have DG = N−1.) Consequently, by Theorem 5.4.20 (the Minkowski measurability
criterion), the RFD (A,Ω) is Minkowski measurable.

Therefore, in case (iii), (A,Ω) is always Minkowski measurable, whether or not
the self-similar spray (A,Ω) is lattice or nonlattice.

In summary, if D is not an integer, then we must be in case (i). In that situation,
(A,Ω) is Minkowski measurable if and only if it is nonlattice (the same conclusion
holds in case (i) even if D is an integer, which can happen). In particular, the ge-
ometric part of Conjecture 3 of [Lap3, p. 163–164] is true in this case (and, more
generally, in case (i), which is the one most often encountered in practice). (See also
the comments below about the later results of [KomPeWi].)

If we are not in case (i), then D is an integer and either σ0 = DG (= D) and
hence, (A,Ω) is not Minkowski measurable or else σ0 < DG (= D), and hence
(A,Ω) is Minkowski measurable. Then, clearly, the conclusion of the geometric
part of [Lap3, Conjecture 3] fails when we are not in case (i). Note, however, that
in case (iii), this fact does not contradict [Lap3, Conjecture 3] because case (iii)
cannot occur for self-similar sets satisfying the open set condition, which was the
only situation considered in that conjecture. Indeed, in that situation, we have (for
any δ > 0)

dimB(A,Ω)≤ dimB(A,Aδ ) = dimB A = σ0,

where the last equality is well known and was discussed earlier. (See, e.g., [Fal1,
Theorem 9.3].)

Recall from the discussion of the inhomogeneous relative N-gasket (AN ,ΩN)
in Example 4.2.26 of Subsection 4.2.3 that case (i) occurs when N = 2 (the usual
Sierpiński gasket), case (ii) when N = 3, and case (iii) when N ≥ 4. Therefore, each

70 These assumptions are always satisfied in the lattice case, whereas in the nonlattice case it may
not be possible to choose a suitable screen. Note also that for now, we do not have an analog of
Theorem 5.4.2 for h-Minkowski measurability sufficiency; we leave the problem of proving such a
sufficiency theorem for a future work. In spite of these two cautionary comments, we believe that
the stated h-Minkowski measurability result is true quite generally, in case (ii).
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of the cases (i)–(iii) is naturally realized for general self-similar sprays (or RFDs),
even though for self similar sets F (satisfying the open set condition), only case (i)
or case (ii) can occur because we always have that DF = σ0 for such sets.

We point out that the geometric part of [Lap3, Conjecture 3] has been proved for
self-similar sets (rather than for general self-similar sprays or RFDs) satisfying the
open set condition, first when N = 1 in [Lap-vFr1–3] (see [Lap-vFr3, Section 8.4]
and the earlier books [Lap-vFr1–2]), by using the fractal tube formulas for fractal
strings, and then, in parallel with the present work, when N ≥ 1 in [KomPeWi], by
using the renewal theorem, in particular. The aforementioned works extend a variety
of results previously obtained in [Lap3] (when N = 1 and by using the renewal theo-
rem), in [Fal2] (also when N = 1, and by using this same theorem as well) and then,
in [Gat] (when N ≥ 2, and also by using the renewal theorem) and in [Lap-vFr1–3]
(as mentioned above), as well as later, under some relatively restrictive hypotheses,
for self-similar sprays in [LapPeWi2] (when N ≥ 1 and by using the fractal tube for-
mulas for self-similar sprays of [LapPeWi1], along with techniques from [Lap-vFr3,
Section 8.4]).

What was missing in the results of [Lap3, Fal2, Gat] (but not of [Lap-vFr1–3]
and of [LapPeWi2]) was to show that lattice self-similar sets are not Minkowski
measurable (as was the content of part of the aforementioned conjecture of [Lap3]),
which is now known to be true when D is not an integer. We note that case (ii) was
also considered in [KomPeWi], with the same conclusion as above. In our setting,
however, by using the results and methods of Subsection 5.4.4, we could also (under
appropriate hypotheses) obtain definite conclusions about the h-Minkowski measur-
ability of (A,Ω) for some suitable gauge function h (namely, h(t) := log t−1, for all
t ∈ (0,1)). In the inhomogeneous (rather than homogeneous or strictly) self-similar
case, explicit examples of such situations and conclusions are provided in Examples
5.5.22, 5.5.25, as well as in Example 4.2.26 when N = 3 (the relative Sierpiński
3-gasket); see Theorem 5.4.27 (along with Theorem 4.5.1).

Finally, we close this discussion with four comments:

First, we expect that the above results about self-similar sprays cases (i), (ii) and
(iii) can also be proved by analogous methods for self-similar sets in R

N (satisfying
the open set condition), via a suitable functional equation connecting the fractal
zeta functions of the self-similar set and the associated self-similar tiling (or spray),
as was suggested earlier in this subsection, or else by some other method based
on symmetry considerations and the key scaling properties of fractal zeta functions
established in this book.

Second, whether for self-similar sprays or for self-similar sets (and, more gen-
erally, for self-similar RFDs), the geometric part of the original conjecture [Lap3,
Conjecture 3] can be naturally extended as follows (both in case (i) for which it is
now a theorem, and in case (iii)):
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Assume that σ0 
= DG. Then, the self-similar spray (or set) is (possibly subcriti-
cally) Minkowski measurable in dimension d := σ0 if and only if the only complex
dimension with real part d is d itself.71 Note that here, d is simple when d 
= DG.

In the case of self-similar sprays, this conjecture should follow from the results of
this chapter, much as in case (i) above, by an appropriate adaptation (to the strictly
subcritical case when DG > d) and extension of the statements and proofs of The-
orems 5.4.2 and 5.4.20. (Of course, case (i) corresponds to the case when DG < d
and is already proved above.)

We note that there may be one exception to the above conjecture; namely, it could
happen that DG > d and ζ∂G,G(d) = 0,72 thereby giving rise to cancellations.73 Of
course, this could only happen for a general self-similar RFD (or spray), but not for
a self-similar set.

Recall once again that for self-similar sets (satisfying the open set condition), we
have that DF = d and hence, we can replace “possibly subcritically” by “critically”
in the above conjecture, in agreement with the original conjecture made in [Lap3]
(and now proved in that case in [KomPeWi], as discussed above). We point out that
case (ii) (when DG = d) will be discussed in more detail towards the end of Chapter
6 (see, especially, Problem 6.2.36 and the much more precise conjecture to be stated
there), is not yet proved for self-similar sets, but is expected to be true and provable
by means of some of the results of the present chapter.

Our third comment is that many of the results and conjectures of this subsection
extend naturally to the setting of (not necessarily self-similar) fractal sprays, under
appropriate assumptions on the generators of the sprays and on the (generalized)
fractal strings by which they are scaled. Then, Minkowski measurability (respec-
tively, Minkowski measurability in dimension d) should be equivalent to the fact
that the only complex dimension of real part D (respectively, d) is D (respectively,
d) itself and D (respectively, d) is simple. This follows exactly along the same lines
as above by using, in particular, the factorization formula, ζA,Ω = ζS ·ζ∂G,G, where
(A,Ω) is a fractal spray with a single generator G and ζS is the geometric zeta
function of the fractal string by which G is scaled; in other words, ζS is the scal-
ing zeta function of the fractal spray. Using our previously introduced terminology,

71 Roughly speaking, “Minkowski measurability in dimension d” means that if W (t) is the part of
the fractal tube formula corresponding to the complex dimensions with real part ≤ d, then the limit
of t−(N−d)W (t) (as t → 0+) exists in R. Note that, according to this definition, the ‘d-Minkowski
content’ may be negative, which cannot happen for the classical Minkowski content; alternatively,
one may prefer to replace W (t) by |W (t)| in the above definition, so that the corresponding con-
tent be always nonnegative. (One can similarly define the notion of Minkowski nondegeneracy in
dimension d.) When DG < d, we have d = D and hence, the notion of Minkowski measurability in
dimension d coincides with the usual notion of Minkowski measurability.
72 Note that this cannot occur when DG < d because then, we must have that ζ∂G,G(d) > 0 by
definition of ζ∂G,G(s) for all s ∈ C such that Res > DG; that is, ζ∂G,G(d) is then given by the
(convergent) Lebesgue integral of a positive function (see Equation (4.1.1)).
73 Theoretically, it could happen that ζ∂G,G also cancels some of the other or even all of the complex
dimensions with real part equal to σ0, but we do not have examples of such self-similar RFDs. We
do not even have an example for which the cancellation of σ0 occurs.
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this would mean that the corresponding RFD is not fractal in dimension D (respec-
tively, d) and hence, is not critically fractal (respectively, is not subcritically fractal
in dimension d). Similarly, under appropriate hypotheses, critical Minkowski non-
measurability (respectively, subcritical Minkowski nonmeasurability in dimension
d < D) would be equivalent to critical fractality (respectively, to strict subcritical
fractality in dimension d < D).

We close this section by a fourth and final comment. Namely, we mention that
one could provide many further examples illustrating our fractal tube formulas, as
applied to self-similar sprays or, more generally, fractal sprays. These examples
would include the Koch curve tiling, the Sierpiński gasket tiling, the pentagasket
tiling and the Menger sponge tiling depicted, respectively, in Figures 6.1–6.5 of
[LapPeWi1]. We refer to [LapPe2–3] for the corresponding tube formulas. We point
out that the pentagasket tiling is of special interest because it is a natural example of
a self-similar spray with multiple generators. Recall from Remark 5.5.26(b) that in
the case of fractal sprays with multiple (say, Q) generators, it suffices to apply the
results of the present subsection to each of the corresponding Q fractal sprays with
a single generator, and then to add-up the resulting Q fractal tube formulas.

Other interesting examples include the Cantor carpet, the U-shaped modifica-
tion of the Sierpiński carpet tiling (which has a generator that is itself “fractal”, in
our sense), the binary trees, and the Apollonian packings depicted, respectively, in
Figures 6.6, 6.9, 6.11 and 6.12 of [LapPeWi1] and whose associated fractal tube
formulas are provided and discussed in Subsections 6.1–6.4 of [LapPeWi1].

Moreover, recall from footnote 43 on page 492 that we can now use the results
and methods of this chapter (including of this subsection) to also obtain a frac-
tal tube formula for the Koch curve and for the Koch snowflake RFDs, which are
important geometric examples that are definitely not fractal sprays.74 This result re-
mains to be fully explicited and compared with the tube formula obtained for these
same examples in [LapPe1] via a direct computation (and without the use of fractal
zeta functions and their associated complex dimensions); see [Lap-vFr3, Subsection
12.21] for an exposition of the main result of [LapPe1].

Finally, we recall that our methods apply naturally to fractal sprays which are
not necessarily self-similar (such as the last three examples mentioned in the next-
to-last paragraph just above). Moreover, as was alluded to in the introduction (i.e.,
Chapter 1), our general pointwise and distributional fractal tube formulas can be ex-
tended (under suitable hypotheses) to include the case where the associated fractal
zeta functions have nonremovable singularities which are not poles. Several exam-
ples of such situations have been provided earlier in various contexts, but we plan
to develop the corresponding systematic theory in a later work.

74 The Koch curve is, of course, self-similar, but it is clearly not a self-similar spray or tiling. Fur-
thermore, the Koch snowflake (on which the corresponding snowflake RFD is based) is obtained
by putting together three isometric and abutting copies of the Koch curve. See, e.g., [Lap-vFr3,
Figures 12.7 and 12.6], along with [Fal1] and [Man1].
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Remark 5.5.27. We note that it follows from the results in [Lap-vFr3, Chapters 2
and 3] discussed elsewhere in this book that, under mild assumptions on their gen-
erators,75 self-similar fractal sprays are fractal in dimension d for only a finite (but
nonempty) set of values of d in the lattice case, whereas they are fractal in dimension
d for an infinite countable and dense set of values of d in the nonlattice case. More
specifically, the set of d’s for which nonlattice (resp., generic nonlattice) self-similar
sprays are fractal in dimension d is dense in finitely many nonempty compact inter-
vals (resp., in a single interval of the form [Dl ,D], where Dl ∈R and Dl < D). (This
follows from the main result of [MorSepVi1] proving and extending a conjecture
in [Lap-vFr2, Section 3.7], as well as more specifically, in reference [Lap-vF7] of
[Lap-vFr2] or of [Lap-vFr3].)

More generally, we conjecture that under appropriate hypotheses, self-similar
RFDs and sets satisfying the open set condition enjoy the same properties.

75 For example, it suffices to assume that the generators are convex polytopes or, more generally,
that they are “nonfractal” in our sense, so that they do not have any nonreal complex dimensions.



Chapter 6
Classification of Fractal Sets and Concluding
Comments

If I were to awaken after having slept for a thousand years, my
first question would be: Has the Riemann hypothesis been
proven?

David Hilbert (1862–1943)

Abstract In this last chapter, we first introduce a refinement of the classification
of bounded sets in R

N which had begun with the well-known distinction between
Minkowski nondegenerate and Minkowski degenerate sets. Further distinction will
be made by classifying fractals according to the properties of their tube functions
and allowing, in particular, more general scaling laws than the standard power
laws. We then provide a short historical survey concerning notions pertaining to
Minkowski measurability and related topics which play an important role in this
work. We conclude the book with a few remarks, a long list of open problems,
and propose several directions for future research. The research problems and di-
rections proposed here connect many different aspects of fractal geometry, number
theory, complex analysis, functional analysis, harmonic analyis, complex dynam-
ics and conformal dynamics, partial differential equations, mathematical physics,
spectral theory and spectral geometry, as well as nonsmooth analysis and geometry.

Key words: classification of fractal sets, tube function, Minkowski degenerate set,
Minkowski nondegenerate set, Minkowski measurability, gauge functions, historical
survey, open problems, research directions.

In this last chapter, we introduce (in Section 6.1) a refinement of the classification
of bounded sets in R

N which had begun with the well-known distinction between
Minkowski nondegenerate and Minkowski degenerate sets. Further distinction will
be made by classifying them according to the properties of their tube functions. See
Subsection 6.1.1.

Towards the end of Section 6.1, we provide a short historical survey concern-
ing notions pertaining to Minkowski measurability and related topics which play
an important role in this work; see Subsection 6.1.2. We conclude the book with
a few remarks (Subsection 6.2.1), a relatively long list of open problems (Subsec-
tion 6.2.2), and propose several directions for future research (Subsection 6.2.3).

The research problems and directions proposed here connect many different as-
pects of fractal geometry, complex analysis, functional analysis, harmonic analyis,
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complex dynamics and conformal dynamics, partial differential equations, mathe-
matical physics, spectral theory and spectral geometry, as well as nonsmooth analy-
sis and geometry.

6.1 Classification of Bounded Sets in Euclidean Spaces

We propose the following general classification of bounded sets A in R
N . The rough-

est classification into Minkowski degenerate and Minkowski nondegenerate cate-
gories has already been introduced on page 32 in Section 1.3.

(a) A is Minkowski nondegenerate (or simply nondegenerate), if there exists D ≥
0 such that 0 < M D

∗ (A)≤ M ∗D(A)< ∞. In particular, we then have D = dimB A.

(b) A is a Minkowski degenerate set (or simply degenerate) if

• either D = dimB A exists and at least one of the corresponding D-dimensional
Minkowski contents is degenerate (i.e., M D

∗ (A) = 0 or M ∗D(A) = +∞)

• or else dimBA < dimBA.

Remark 6.1.1. Recall from Remark 1.3.4 that since the t-neighborhood of A is equal
to that of its closure A, the same is true of the tube function t �→ |At | of A, as well as
of the (upper, lower) Minkowski dimension and Minkowski content of A. Therefore,
in what follows, we may as well asume that instead of being bounded, A is a compact
subset of RN .

6.1.1 Classification of Compact Sets Based On the Properties
of Their Tube Functions

We now introduce a finer classification of bounded sets in R
N , based on the asymp-

totic behavior of their tube functions. Since, in light of Remark 6.1.1 just above, the
tube function of a bounded subset of RN coincides with that of its closure, which is
a compact set, this classification amounts to a classification of the compact subsets
of the N-dimensional Euclidean space R

N .
First, we consider the case of Minkowski nondegenerate sets A. This is equivalent

to saying that the tube function t �→ |At | has the following form:

|At |= tN−D(F(t)+o(1)) as t → 0+, (6.1.1)

where the function F : (0,δ )→ R is bounded away from zero and infinity, that is,
0 < infF ≤ supF < ∞. Clearly,

liminf
t→0+

F(t) = M D
∗ (A), limsup

t→0+
F(t) = M ∗D(A).
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The idea of this classification is to introduce function-theoretic notions for sets.
More precisely, various properties of A will be expressed in terms of properties of
an associated function F in the corresponding tube formula (6.1.1).

We shall need an auxiliary function ρ = ρ(t), defined for t > 0 small enough,
such that

ρ = ρ(t) is decreasing, positive, continuous, and limt→0+ ρ(t) = +∞. (6.1.2)

6.1.1.1 Classification of Minkowski Nondegenerate Sets

Let A be a Minkowski nondegenerate bounded (or, equivalently, compact)1 set in
R

N . We say that

• A is a constant set, or a Minkowski measurable set, if there exists a finite and
positive constant M such that (6.1.1) is satisfied with F(t) ≡ M . It then follows
that A is Minkowski measurable with Minkowski content M .

• A is a nonconstant set if there is no positive constant function F satisfying
(6.1.1).

We now classify Minkowski nondegenerate sets that are not constant, i.e., sets that
are not Minkowski measurable. Let A be a nonconstant (i.e., Minkowski nonmea-
surable) set in R

N .

• A is a periodic set if (6.1.1) holds with F of the form F(t) = G(ρ(t)) for all
t small enough, where G is a periodic function and ρ satisfies conditions (6.1.2).
In the applications, we often have ρ(t) = log t−1, like in the case of the Cantor set
or of the Sierpiński carpet. See Examples 2.3.31 and 2.3.36, Proposition 3.1.2, and
also Example 2.3.33, dealing with general self-similar fractal strings. The value of
the minimal period of G is called the oscillatory period of the set A, and is denoted
by p. At least in spirit, it is closely related to the definition of the oscillatory period
of lattice self-similar sets studied in [Lap-vFr3]. We also introduce the notion of the
oscillatory amplitude of A, denoted by am = am(A), defined as the oscillation of
the function G, am(A) = oscG = supG− infG; that is,2

am(A) := M ∗D(A)−M D
∗ (A). (6.1.3)

• A is a nonperiodic set if any function F(t) appearing in (6.1.1) cannot be written
in the form F(t) =G(ρ(t)) for all t small enough, where G is periodic and ρ satisfies
conditions (6.1.2).

Nonperiodic sets can be further classified as follows. Let A be a nonperiodic set
in R

N .

1 See Remark 6.1.1.
2 The oscillatory amplitude of a set A, defined here, should not be mistaken for the ‘amplitude’ of
the set A, introduced in [Žu4, Remark 2.4]. These two notions are different, though related. For ex-
ample, the larger the amplitude of A, the larger its oscillatory amplitude; see [Žu4, Equation (23)].
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• Let n be an integer ≥ 2 or else n = ∞. Then, A is a transcendentally (resp.,
algebraically) n-quasiperiodic set if F(t) = G(ρ(t)), where the function G = G(τ)
is transcendentally (resp., algebraically) n-quasiperiodic (in the sense of Defini-
tion 3.1.9, for n < ∞, or of Definition 4.6.6, for n = ∞) and ρ satisfies condi-
tion (6.1.2). We say that A is an n-quasiperiodic set if it is either algebraically
or transcendentally n-quasiperiodic. Several examples of such transcendentally n-
quasiperiodic sets (along with associated RFDs and fractal strings) have been stud-
ied in Subsection 3.1.2 (for n < ∞), as well as in Subsections 4.6.1 and 4.6.2 (for
n = ∞). Alternatively, one says that A is a quasiperiodic set of finite (n < ∞) or
infinite (n = ∞) order. When no ambiguity may arise, we simply say that A is a
quasiperiodic set.

• A is a nonquasiperiodic set if it is not a quasiperiodic set; that is, if any func-
tion F(t) appearing in (6.1.1) cannot be written in the form F(t) = G(ρ(t)), with
G = G(τ) being quasiperiodic (in the sense of Definition 3.1.9) and ρ satisfying
condition (6.1.2).

Remark 6.1.2. The functions G and ρ in the decomposition F = G ◦ ρ are not
uniquely determined. For example, let us fix any positive real number c. If we let
F1(τ) := F(cτ) and ρ1(t) := c−1ρ(t), then we have G◦ρ = G1 ◦ρ1.

The value of the oscillatory period of A depends not only on A, but also on
the choice of the function ρ; that is, p = p(A,ρ). For example, since G(ρ(t)) =
G(c · c−1ρ(t)) for any fixed positive real number c, then the oscillatory period of A
with respect to the function ρ1 defined by ρ1(t) = c−1ρ(t) is equal to p(A,ρ1) =
p(A,ρ)/c. Indeed, this is precisely the value of the minimal period of the periodic
function G1 defined by G1(τ) = G(cτ).

Assuming that A is a bounded subset in R
N such that D := dimB A exists and

M ∗D(A) < ∞, then the oscillatory amplitude of A is D-homogeneous; that is,
am(λA) = λDa(A) for any positive λ . This is a consequence of the D-homogeneity
of the D-dimensional upper and lower Minkowski contents:

M ∗D(λA) = λDM ∗D(A), M D
∗ (λA) = λDM D

∗ (A);

see [Žu4, Proposition 4.4], along with the discussion surrounding Equations
(1.3.17)–(1.3.19).

Remark 6.1.3. The ‘oscillatory amplitude’ of A, am(A), as defined by Equation
(6.1.3), is called by Mandelbrot in [Man2] the lacunarity of A. (See also [BedFi] for
a related, but probably better, definition.) We refer to [Lap-vFr1–2] and [Lap-vFr3,
Subsection 12.1.3] for a discussion of the possible connections between the heuris-
tic notion and the definition of ‘lacunarity’ proposed in [Man1, esp., Chapter 35],
[Man2] (as well as in [BedFi]) and the theory of complex dimensions developed
in [Lap-vFr1–3]. In the abovementioned discussion from [Lap-vFr3, Subsection
12.1.3], not only the complex dimensions themselves (i.e., the poles of the given
fractal zeta function, assumed to be simple), but also the values and the asymptotic
behavior of the associated residues play a key role.
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We summarize the above classification of bounded sets in R
N , based on the prop-

erties of the associated tube function t �→ |At |, in Figure 6.1 on page 543.3

Minkowski degenerae sets

Bounded sets in RN

Minkowski nondegenerate sets

Minkowski nondegenerate sets in RN

Constant (or Minkowski measurable) sets Nonconstant (or Minkowski nonmeasurable) sets

Nonconstant (or Minkowski nonmeasurable) sets in RN

Periodic sets Nonperiodic sets

Nonperiodic sets in RN

Non-quasiperiodic setsQuasiperiodic sets

Quasiperiodic sets in RN

Algebraically quasiperiodic sets Transcendentally quasiperiodic sets

Minkowski degenerate sets in RN

Weakly degenerate setsStrongly degenerate sets

Fig. 6.1 Classification of bounded sets A in R
N , depending on the asymptotic properties of the

associated tube functions t �→ |At | as t → 0+.

3 Given an integer n ≥ 2, we say that A is algebraically n-quasiperiodic if the periods T1, . . . ,Tn

appearing in Definition 3.1.11 (see also Definition 3.1.9) are rationally independent, but not alge-
braically independent. For example, if we only have two periods T1 and T2, it suffices to assume
that T1/T2 is an irrational algebraic number. (This definition can be extended without change to the
case when n = ∞.)
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6.1.1.2 Classification of Minkowski Degenerate Sets

If A is (Minkowski) degenerate and such that D := dimB A exists, we assume that

|At |= tN−D(F(t)+o(1)) as t → 0+, (6.1.4)

where F : (0,ε0)→ (0,+∞), for some sufficiently small ε0 > 0.

Let A be a degenerate set in R
N . Then:

• A is weakly degenerate if D = dimB A exists and either M D
∗ (A) = 0 (i.e.,

liminft→0+ F(t) = 0) or M ∗D(A) = +∞ (i.e., limsupt→0+ F(t) = +∞). See Equa-
tion (6.1.4).

• A is strongly degenerate if dimBA< dimBA. Note that here, (6.1.4) is impossible
for any D ≥ 0 (otherwise, D would be equal to the box dimension of A).

Weakly degenerate sets can be classified by their gauge functions h, if they
exist (see Definition 6.1.4). We assume that the function F(t) appearing in Equa-
tion (6.1.1) is of the form

F(t) = h(t) or F(t) = 1
h(t) , (6.1.5)

where h : (0,ε0)→ (0,+∞), for some small ε0 > 0, h(t)→+∞ as t → 0+ and

h(t) = O(t0)) as t → 0+, with O(t0)) :=
⋂
β<0

O(tβ ). (6.1.6)

Note that we need to assume that h(t) = O(t0)) as t → 0+ in order to fix the value
D = dimB A; see Equation (6.1.4).

Definition 6.1.4. If a function h : (0,ε0)→ (0,+∞) is of class O(t0)) and converges
to infinity as t → 0+, we then say that h is of slow growth to infinity as t → 0+.
Analogously, a function g : (0,ε0)→ (0,+∞) is said to be of slow decay to zero as
t → 0+ if it is of the form g(t) = 1/h(t), for some function h which is of slow growth
to infinity as t → 0+. Such functions h and g are called gauge functions.

It is easy to see that a function g : (0,ε0)→ (0,+∞) is of slow decay to zero as
t → 0+ if and only if for every β > 0, tβ = O(g(t)) as t → 0+.

Example 6.1.5. If we define h1(t) = log t−1, h2(t) = log log t−1, and more generally,
h3(t) = (log t−1)a, h4(t) = (logk t−1)a, for all t ∈ (0,1) (here, a > 0, k ∈ N, and
logk denotes the k-fold composition of logarithms), then all of these functions are
of slow growth to infinity as t → 0+. Furthermore, their reciprocals are functions of
slow decay to 0 as t → 0+.

Since for a weakly degenerate set A we have M ∗D(A) = +∞ or M D
∗ (A) = 0,

it will be convenient to define (as in [HeLap]) the upper and lower D-dimensional
Minkowski contents of A with respect to a given gauge function h, as follows:
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M ∗D(A,h) = limsup
t→0+

|At |
tN−Dh(t)

,

M D
∗ (A,h) = liminf

t→0+

|At |
tN−Dg(t)

.

(6.1.7)

The aim is to find gauge functions h and g so that the upper and lower Minkowski
contents of A with respect to h are nondegenerate, that is, belong to (0,+∞).

Definition 6.1.6. If M D
∗ (A,h) = M ∗D(A,h) ∈ (0,+∞), this common value is de-

noted by M D(A,h) and called the h-Minkowski content of A. We then say that A is
h-Minkowski measurable.

Definition 6.1.7. Assume that A is a bounded subset of RN such that (6.1.4) holds
under one of the conditions stated in (6.1.5) and that, in addition, (6.1.6) is satisfied.
We then say that h = h(t) or g = 1/h(t) is a gauge function of A.4 We also say that
the set A is weakly degenerate, of type h or 1/h, respectively.

Note that in the first case of (6.1.5), we have

M ∗D(A) = +∞, M ∗D(A,h) ∈ (0,+∞),

while in the second case of (6.1.5), we have

M D
∗ (A) = 0, M D

∗ (A,1/h) ∈ (0,+∞).

Let A be a weakly degenerate set in R
N of type h, in the sense of Definition 6.1.7.

We say that

• A is a constant weakly degenerate set of type h (or an h-Minkowski measurable
set), if M D(A,h) exists and belongs to (0,+∞). Then, M D(A,h) is called the h-
Minkowski content of A.

• A is a nonconstant weakly degenerate set of type h (or an h-Minkowski nonde-
generate set) if

0 < M D
∗ (A,h)< M ∗D(A,h)< ∞.

We adopt a similar terminology in the case of the gauge function 1/h instead of h;
see Definition 6.1.7.

At this stage, it would be of interest to develop general methods for finding
gauge functions associated with various classes of weakly degenerate sets; see Prob-
lem 6.2.4. Some basic results in this direction can be found in [HeLap].

Concerning a function-theoretic terminology for bounded (or equivalently, com-
pact) sets in R

N , we can also, for example, propose the following notions.

4 In the case when F(t) = g(t), we also assume that the implied function o(1) appearing in (6.1.4)
satisfies o(1)/g(t)→ 0 as t → 0+.
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Definition 6.1.8. We say that a bounded set A has a pole at s1 ∈ C if Res1 >
Dmer(ζA) and its distance zeta function ζA admits a meromorphic extension which
has a pole at s1. The poles of A are also called complex dimensions of A, according
to the terminology introduced by the first author and M. van Frankenhuijsen; see
[Lap-vFr3].

In closing this subsection, we note that a classification entirely similar to the
above one and all of the above definitions can be introduced for general RFDs (A,Ω)
instead of merely for bounded (or compact) subsets A of RN ; see, in particular, the
discussion surrounding Equation (4.5.10) in Section 4.5 above.

6.1.2 A Short Historical Survey

From our perspective, the notions of lower and upper Minkowski contents are
among some of the central objects in the study of the properties of fractal sets in
Euclidean spaces, and their associated zeta functions. These important notions have
been introduced and/or used (with different degrees of generality and precision) by
various authors, including Bouligand [Bou], Hadwiger [Had], Kneser [Kne], Fed-
erer [Fed2] and Stachó [Sta], to only mention references ranging from the 1920s
through the mid-1970s. The expression “Minkowski measurability” was perhaps
used for the first time in [Sta] (and in a slightly weaker meaning in [Had, Definition
2], permitting the values 0 and +∞) but the corresponding notion of “Minkowski
content” was already used explicitly in [Had], [Kne], and [Fed2], and at least im-
plicitly in [Bou].

Finally, we note that to our knowledge, the notion of ‘Minkowski dimension’
(now often called ‘box dimension’ in the literature on fractal geometry) was first
used by Minkowski for integer values and then introduced and studied by Bouli-
gand in the late 1920s in [Bou], in the general case of possibly noninteger values
(but without making a clear distinction between the lower and upper limits). More
recently, Tricot has used and studied various aspects of the Minkowski (or box)
dimension; see, for example, [Tri1–3] and the relevant references therein. Further-
more, the notions of Minkowski dimension and Minkowski measurability have also
played a key role in the first author and his collaborators’ work on fractal drums
[Lap1–3, HeLap, Lap7–8] and (as will be discussed next) fractal strings and sprays
[LapPo2–3, LapMa1–2, Lap-vFr3, Lap6, HeLap, LapPeWi1–2].5

The notion of complex dimensions (poles) of sets, introduced in Definition 6.1.8,
as well as much earlier in the book (for instance, in Chapters 2 and 4), is a continu-
ation of the program of study of the complex dimensions of fractal strings and their
generalizations, undertaken by the first author (M. L. Lapidus) and his collabora-
tors in the early 1990s; see, for example, an extensive joint monograph by the first
author and van Frankenhuijsen [Lap-vFr3], the earlier monographs [Lap-vFr1–2,

5 See also, e.g., Section 4.3 and Remark 4.1.5 (resp., page 18 of Section 1.1) above for further
relevant references about fractal drums (resp., about fractal strings and sprays).
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Lap6] and the many references therein. The notions of nondegenerate and degener-
ate sets have been introduced by the third author (D. Žubrinić) in [Žu4]. A geomet-
ric and spectral characterization of nondegenerate fractal strings (or equivalently,
of nondegenerate compact subsets of R) appeared for the first time in a paper of
the first author and Pomerance [LapPo2] (announced in [LapPo1]). Moreover, a ge-
ometric characterization of Minkowski measurable fractal strings (or, equivalently,
of Minkowski measurable or ‘constant’ compact subsets of R) was obtained by these
same authors in [LapPo1–2]. (For more details, see Remark 6.1.10 at the end of this
subsection.) Assuming some of the results of those same papers, the geometric char-
acterization of Minkowski measurability obtained in [LapPo1–2] was then given a
different proof in [Fal2] (by Falconer) and most concisely, in [RatWi2] (by Rataj
and Winter).6 In terms of complex dimensions (and under suitable assumptions on
the associated geometric zeta function ζL ), this characterization was further ex-
tended by the first author and van Frankenhuijsen in [Lap-vFr1–3] by showing that
a fractal string L is Minkowski measurable if and only if the only complex dimen-
sion on the critical line {Res = D} is D itself, and D is a simple pole of ζL . For
self-similar strings (or equivalently, for self-similar sets in R), this is equivalent to
stating that the self-similar string (or equivalently, the self-similar set) is nonlattice
(i.e., that the logarithms of its distinct scaling ratios are rationally independent), as
was first shown in [Lap-vFr1] (thereby settling in the affirmative the geometric part
of a conjecture formulated in [Lap3, §4.4.1a]). (See [Lap-vFr3, Chapter 8].)

The aforementioned characterization of (or criterion for) Minkowski measurabil-
ity obtained in [LapPo2] was a key step in the proof of the (one-dimensional) Weyl–
Berry conjecture for fractal drums (as formulated in [Lap1]) and also obtained in
[LapPo1–2]. Accordingly, it was shown in [LapPo2] that if a fractal string L (or,
equivalently, its boundary) is Minkowski measurable, then its spectral (or frequency)
counting function Nν ,L (μ) admits a monotonic (i.e., nonoscillatory) asymptotic
second term, of the form −cDM μD/2, where D ∈ (0,1) is the Minkowski (or box)
dimension of L , M is the Minkowski content of L , and (for the present case of
Dirichlet boundary conditions) cD > 0. Moreover, the constant cD depends only on
D and is directly proportional to −ζ (D), where ζ = ζ (s) (= ζR(s)) denotes the clas-
sic Riemann zeta function.7 The results of [LapPo1–2] have thereby established a
direct connection between Minkowski measurability, the direct spectral problem for
fractal strings and the Riemann zeta function.

Shortly afterwards, the first author and Maier obtained in [LapMa2] (announced
in [LapMa1]) a natural geometric and spectral reformulation of the Riemann hy-
pothesis stated in terms of the corresponding inverse spectral problem for fractal
strings:

6 The proof in [Fal2] is more of a dynamical systems nature while that in [RatWi2] is of a geometric
measure-theoretic nature. Both proofs rely on a part of the original proof in [LapPo2], which is of
a purely analytical nature.
7 Since D ∈ (0,1), we have that ζ (D)< 0. Furthermore, recall that for a bounded fractal string, we
always have 0 ≤ D ≤ 1 (since N = 1); the cases where D ∈ {0,1} are dealt with in [Lap-vFr1–3].
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(ISP)D Given that L is a fractal string for which the spectral counting function
Nν ,L (μ) admits a monotonic asymptotic second term proportional to μD/2 (as μ→
+∞), does it follow that L is Minkowski measurable?8

It was shown in [LapMa1–2] that the above inverse spectral problem (ISP)D is
intimately connected with the location of the critical zeros of ζ (s). More specifi-
cally, it was shown in [LapMa1–2] that for a given D ∈ (0,1), the inverse spectral
problem (ISP)D is true if and only if ζ (s) does not have any zeros on the vertical
line {Res = D}. Consequently, (ISP)1/2 is false (since ζ (s) is known to have zeros
on the critical line {Res = 1/2}). Moreover, the inverse spectral problem (ISP)D
has an affirmative answer for all D ∈ (0,1), with D 
= 1/2 (that is, except in the
midfractal case when D = 1/2) if and only if the Riemann hypothesis is true.

Again, the above characterization of Minkowski measurability of fractal strings
(obtained in [LapPo2]) played a significant role in one important step in the proof of
the above results of [LapMa1–2]. Furthermore, the results of [LapPo1–2] (combined
with the earlier works in [Lap1–3] and [HeLap], in particular) have provided an
important motivation for the mathematical theory of complex dimensions (of fractal
strings) developed by the first author and van Frankenhuijsen (see [Lap-vFr1–3]).

They have also been significantly extended in [Lap-vFr1–3], in order to obtain, in
particular, a reformulation of the ‘generalized Riemann hypothesis’ by means of the
generalized ‘explicit formulas’ (also obtained in the above books; see [Lap-vFr3,
Chapter 5]). See, in particular, [Lap-vFr3, Sections 6.2, 6.3, as well as Chapters 8
and 9]; see also [Lap-vFr3, Chapter 11] where inverse spectral problems extending
the ones considered in [LapMa1–2] are used to prove that the Riemann zeta func-
tion, along with many other Dirichlet series and integrals (including most arithmetic
or number-theoretic zeta functions, with the exception of those associated with vari-
eties over finite fields for which it is clearly not true), does not have infinitely many
zeros in vertical arithmetic progression.

We refer the interested reader to [Lap8] for a survey of some of the main results
obtained in [LapPo2] and [LapMa2], as well as for some of the later developments
of fractal string theory and of the corresponding theory of complex dimensions.

Finally, we note that motivated in part by semi-heuristic suggestions made in
[Lap-vFr2, Subsection 6.3.2] (and [Lap-vFr3, Subsection 6.3.2]) about a possible
definition of the spectral operator on fractal strings (which sends the geometry onto
the spectrum of fractal strings), a rigorous functional analytic definition of the spec-
tral operator a (acting on the weighted Hilbert space Hc := L2(R,e−2ctdt), for any
given c ∈R) was obtained by the first author and Herichi in [HerLap1–5]. In partic-
ular, the authors of [HerLap1–5] have shown in [HerLap1–3] that for a given c ∈R,
the spectral operator ac is invertible (in a suitable sense)9 if and only if ζ (s) does

8 It then follows automatically that L has Minkowski (or box) dimension D and that (by the results
of [LapPo2], see Remark 6.1.10) its Minkowski content can be explicitly computed.
9 Specifically, the appropriate notion of invertibility used in [HerLap1–5] is the so called ‘quasi-
invertibility’ of ac, that is, the invertibility (in the usual sense, with the set-theoretic inverse being
a bounded linear operator on Hc) of each of the (suitably defined) truncated spectral operators

{a(T )c }T>0 of ac.
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not have any zero on the vertical line {Res = c}.10 Consequently, a1/2 is not invert-
ible and the spectral operator ac is invertible (in the above sense) for all c ∈ (0,1),
c 
= 1/2 (or, equivalently, for all c ∈ (0,1/2)) if and only if the Riemann hypothesis
is true. Accordingly, via an appropriate ‘quantization’ of the Riemann zeta function
ζ = ζ (s) (since ac = ζ (∂c), where ∂c =

d
dt is the suitably defined differentiation

operator on Hc := L2(R,e−2ctdt), also called the infinitesimal shift (of the real line),
an operator-theoretic reformulation of the results of [LapMa1–2] on the Riemann
hypothesis and inverse spectral problems for fractal strings has been obtained in
[HerLap1–3]. Many other results concerning various aspects of ‘quantized number
theory’ are obtained in [HerLap1–5], but they fall outside the scope of the present
discussion.

An asymmetric reformulation of the Riemann hypothesis (expressed in terms of
the standard notion of invertibility of the spectral operator ac for all c ∈ (0,1/2))
was obtained by the first author in [Lap7]; see also [Lap8].

We also refer to [Lap9] and [Lap10] for a later, related reformulation, as well
as for further extensions, of these results (and beyond), expressed in terms of a
different ‘quantization’ of ζ (s) via infinitesimal shifts and spectral operators acting
on a suitable family of weighted Bergman spaces ([HedKoreZh]) of entire functions.

Among numerous contributions dealing with periodic and related sets, we men-
tion a fundamental work by Hutchinson [Hut] on the definition and properties of
self-similar sets, following the earlier seminal work of Moran [Mora] in the case
when N = 1, then the papers by Lalley [Lall1–3] and Gatzouras [Gat], the papers
[LapPo1–2, Lap3], an article by Falconer [Fal2], the detailed investigation of the ge-
ometry of self-similar fractal strings (and particularly, of lattice strings) conducted
in [Lap-vFr1–3] (see, especially, [Lap-vFr3, Chapter 8]), a joint work by Pearse,
the first author and Winter in [LapPeWi1] (building on the earlier work by the first
author and Pearse in [LapPe2–3], as described in [Lap-vFr3, Section 13.1]), the
work by Kesseböhmer and Kombrink [KeKom] on self-conformal sets (see also
the survey article [Kom]), as well as the work of Kombrink, Pearse and Winter in
[KomPeWi] providing a proof (for noninteger D and for any N ≥ 1) of the geo-
metric part of [Lap3, Conjecture 3] according to which (nontrivial) self-similar sets
are Minkowski measurable if and only if they are nonlattice. The special case when
N = 1 (i.e., the case of self-similar fractal strings) had been establlished earlier in
[Lap-vFr1–3], by using the theory of complex dimensions and the associated ex-
plicit formulas; see [Lap-vFr3, Section 8.4].

The first attempt at carrying out a systematic study of weakly degenerate sets
(in the Minkowski sense, as defined on page 544), and their respective gauge func-
tions, has been undertaken by He and the first author in [HeLap], where, in partic-
ular, the main results of [Lap1] have been extended to nonstandard scaling laws.
The notions of relative box dimensions and relative Minkowski contents, consid-

10 The parameter c is closely related to the box (or Minkowski) dimensions D of the fractal strings
heuristically represented by Hc. Indeed, intuivitely, we have D≤ c (modulo an infinitesimal). More
precisely, c is the supremum of the Minkowski dimensions of all the possible (generalized) fractal
strings with counting functions belonging to Hc.
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ered in Section 4.1.1, have been introduced by the third author in [Žu4]. Some gen-
eral results about constant (i.e., Minkowski measurable) sets have been obtained
by Stachó in [Sta], as well as by the first author and Pomerance in [LapPo2]. Fur-
thermore, a class of constant weakly degenerate sets has been studied by Rataj and
Winter in [RatWi2]. In particular, in [LapPo2], is obtained a useful characterization
of Minkowski nondegenerate compact sets in R (or, equivalently, of fractal strings);
see Remark 6.1.10 below for more details. Still when N = 1, the characterization
of Minkowski nondegenerate sets, along with the aforementioned characterization
of Minkowski measurable compact sets (or, equivalently, fractal strings) obtained in
[LapPo2], was extended in [HeLap] to a broad class of gauge functions (obeying a
non power scaling law).

Some classes of strongly degenerate sets have been constructed by the third au-
thor in [Žu4, Theorem 1.2], where one can find a class of maximally degenerate sets
A in R

N , in the sense that dimBA = 0 and dimBA = N. (See also [Tri1] for related
examples.) A family of strongly degenerate sets within the class of inhomogeneous
self-similar sets has been studied by Fraser in [Fra1]. While the upper box dimen-
sion is known to be finitely stable with respect to the union of any two bounded sets
in R

N , that is,
dimB(A∪B) = max{dimBA,dimBB}, (6.1.8)

this property does not hold for lower box dimensions; see [Fal1]. For example, it is
even possible to construct two sets A and B in R

N , such that dimBA = dimBB = 0,
whereas dimB(A∪B) = N; 11 see [Žu4, Theorem 1.4]. A generalization of finite
stability property (6.1.8) to the upper box dimensions of RFDs can be found in
Proposition 4.1.26 in Subsection (4.1.1) of Chapter 4 above.

Remark 6.1.9. Both the lower and upper box dimensions are, in general, unstable
with respect to Cartesian products of Minkowski degenerate sets. For example, there
exist two bounded sets A and B in R

N such that dimBA = dimBB = 0, whereas
dimB(A×B) = N and dimBA = dimBB = N, dimB(A×B) = N; see [Žu4, Theorem
1.4]. Besides the known (and elementary) inequalities,

dimBA+dimBB ≤ dimB(A×B), dimB(A×B)≤ dimBA+dimBB,

which hold for any two bounded sets A and B in R
N , Robinson and Sharples obtained

in [RoSha] a new pair of inequalities

dimB(A×B)≤ dimBA+dimBB ≤ dimB(A×B).

Since dimB(A×B) = dimB(B×A) and similarly for the upper box dimension, it
then follows that

dimB(A×B)≤ min{C,D} ≤ max{C,D} ≤ dimB(A×B),

11 Since we always have dimB(A∪B)≤ dimB(A∪B)≤ N, we conclude that dimB(A∪B) exists in
this case and, moreover, dimB(A∪B) = N.
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where C := dimBA+dimBB and D := dimBA+dimBB. These inequalities are sharp;
see [RoSha] for more details.

A lot of additional information about the past and ongoing work, related to var-
ious aspects of the theory of fractal strings, can be found in a joint monograph of
the first author and van Frankenhuijsen [Lap-vFr3], and in a monograph of the first
author [Lap6], dedicated to the search for the Riemann zeros and a deeper under-
standing of why the Riemann hypothesis should be true.

We refer, in particular, the interested reader to [Lap-vFr3, Chapter 13] which con-
tains a survey of some of the recent developments of the theory of complex dimen-
sions (since the publication of the monographs [Lap-vFr1] and [Lap-vFr2]) in the
higher-dimensional case [Lap-vFr3, Section 13.1] (based on [LapPe3, LapPeWi1,
Pe, PeWi], which focuses on fractal tube formulas for self-similar tilings and frac-
tal sprays), the p-adic case [Lap-vFr3, Section 13.2] (based on [LapLu1–3] and
[LapLu-vFr1–2], which focuses on nonarchimedean fractal strings), the multifractal
case [Lap-vFr3, Section 13.3] (based on [LapRo1, LapLéRo, ElLapMacRo], which
focuses on various multifractal zeta functions and self-similar measures) and the
random case [Lap-vFr3, Section 13.4] (based on [HamLap], which focuses on ran-
dom fractal strings and the associated random zeta functions). See also [Lap-vFr3,
Section 13.5], which briefly discusses a few aspects of the book [Lap6] (and of the
paper [LapNes].)

Remark 6.1.10. More specifically, the geometric characterization of Minkowski
nondegeneracy (resp., of Minkowski measurability) obtained in [LapPo2] can be
stated as follows: A fractal string L = (� j)

∞
j=1 is Minkowski nondegenerate (with

Minkowski dimension D ∈ (0,1)) if and only if ρ∗ > 0 and ρ∗ <∞, where ρ∗ and ρ∗
denote, respectively, the lower and upper limit of � j j1/D. (Clearly, we always have
0 ≤ ρ∗ ≤ ρ∗ ≤∞.)12 Furthermore, it is Minkowski measurable (with Minkowski di-
mension D ∈ (0,1)) if and only if, in addition, ρ∗ = ρ∗ (i.e., � j ∼ ρ j−1/D as j → ∞,
for some ρ ∈ (0,+∞)). (Clearly, we then have ρ = ρ∗ = ρ∗.) Moreover, it is shown
in [LapPo2] that in that case, the Minkowski content of L is given by

M = ρD 21−D

1−D
. (6.1.9)

Note that the term ρD on the right-hand side of Equation (6.1.9) is due to the scaling
property of the Minkowski content; see page 35.

Here, (� j) j≥1 denotes the sequence of lengths (arranged in nonincreasing order)
of the connected components (bounded open intervals) of the fractal string (viewed
as a bounded open subset of R) or equivalently, the lengths of the connected compo-
nents of the complement of a bounded set A (contained in the real line) with respect
to its closed convex hull J (i.e., the lengths of the fractal string J \A).

We mention in closing this remark that, under mild assumptions on h, both of
these characterizations have been extended (by He and the first author) to a gen-

12 It is easy to see that the condition 0 < ρ∗ ≤ ρ∗ <∞ is equivalent to the existence of two positive
constants a and b such that a ≤ � j j1/D ≤ b for all j ≥ 1; that is, with � j  j−1/D as j → ∞.
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eral class of gauge functions in [HeLap]. Furthermore, we mention that in the same
memoir, [HeLap], the direct and inverse spectral problems for fractal strings (as well
as their connections with the Riemann zeta function and the Riemann hypothesis, re-
spectively) considered in [LapPo1–2] and [LapMa1–2], respectively (and discussed
earlier in the present subsection), were extended and studied in the context of fractal
strings with a general class of gauge functions.

6.2 Open Problems and Future Research Directions

We close this chapter by proposing a number of open problems (of varying difficulty
and importance) along with several directions for future research closely connected
with (or motivated by) the theory developed in this book.

6.2.1 Concluding Comments

We first make a few elementary remarks which could be further developed in more
algebraic terms.

Assume that a sequence of RFDs (∂Ω j,Ω j) in R
N is given, such that (Ω j) j≥1 is

a disjoint family of open connected sets. We define the corresponding relative fractal
drum

(A,Ω) :=
⋃
j≥1

(∂Ω j,Ω j). (6.2.1)

Let (Ω ′
j) j≥1 be a disjoint family of open sets such that for each j ≥ 1, Ω ′

j is ob-
tained from Ω j by a rigid motion of R

N . We can analogously define (A′,Ω ′) =
∪ j≥1(∂Ω ′

j,Ω ′
j). Then the distance zeta functions of the RFDs (A,Ω) and (A′,Ω ′)

coincide; that is,
ζA,Ω (s) = ζA′,Ω ′(s).

More precisely, dimB(A,Ω) = dimB(A′,Ω ′) and ζA,Ω (s) = ζA′,Ω ′(s) for Res >

dimB(A,Ω) or, more generally, for all s in any given domain to which either of these
zeta functions has a meromorphic extension. This remark follows immediately from
Lemma 4.5.9; see, in particular, condition (4.5.44).

In light of this comment, we can generate a new subclass of RFDs, defined as
above. Furthermore, it is natural to introduce a geometric equivalence of relative
fractal drums,

(A,Ω)∼g (A
′,Ω ′), (6.2.2)

in order to identify the indicated RFDs of the form (6.2.1). As we have just ex-
plained, their distance relative zeta functions coincide, so that we can speak of the
relative distance zeta function ζ[(A,Ω)] of the equivalence class [(A,Ω)] correspond-
ing to (A,Ω):
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ζ[(A,Ω)](s) := ζA,Ω (s). (6.2.3)

Each bounded fractal string L = (� j) j≥1 can be naturally identified with a rela-
tive fractal drum (AL ,ΩL ) in R, where AL = {ak = ∑ j≥k � j : k ∈ N} and ΩL =
∪ j≥1Ω j, Ω j = (a j+1,a j). In view of the definition of geometric equivalence in
(6.2.2), if a relative fractal drum (A′,Ω ′) is geometrically equivalent to (AL ,ΩL ),
then (A′,Ω ′) can also be viewed as a ‘realization’ of a given bounded fractal string
L . Note that Ω ′ can even be unbounded, but clearly, |Ω ′|= |Ω |= ∑ j≥1 � j < ∞. In
this way, the class of all bounded fractal strings is embedded into the class of all
RFDs. This can be described more formally in terms of category theory, which may
be the object of a later investigation.

Let us very briefly summarize a symbolic discussion of some of the basic objects
encountered in this book. Starting with any bounded fractal string L = (� j) j≥1, we
have the associated geometric zeta function ζL (s) := ∑ j≥1 �

s
j, which in turn gener-

ates the corresponding set of principal (geometric) complex dimensions dimPC L ;
i.e., the set of poles of (the meromorphic extension of) ζL , located on the critical
line. We have a similar sequence of constructions for bounded fractal subsets A of
Euclidean spaces and for RFDs (A,Ω) (but this time, with the distance zeta function
ζA and the relative zeta function ζA,Ω , respectively, instead of ζL ):13

L −→ ζL −→ dimPC L ,

A −→ ζA −→ dimPC A,

(A,Ω)−→ ζA,Ω −→ dimPC(A,Ω).

Using the mapping L −→AL , where AL := {ak :=∑ j≥k � j : k∈N}, we see that the
family of bounded fractal strings is naturally embedded into the family of bounded
fractal subsets of R. Also, we have the natural correspondence ζL −→ ζAL

and
dimPC L = dimPC AL . Therefore, for each bounded fractal string, we obtain the
following commutative diagram:

L −−−−→ ζL −−−−→ dimPC L⏐⏐;
⏐⏐;

∥∥∥
AL −−−−→ ζAL

−−−−→ dimPC AL

(6.2.4)

Starting with a bounded subset A of RN , we can assign to it a relative fractal drum
(A,Aδ ), where δ is a fixed positive number. In this way, we obtain the following
commutative diagram:

13 Instead of ζA, we could use the tube zeta functions ζ̃A or ζ̃A,Ω , respectively. Assuming that
dimBA < N or dimB(A,Ω) < N, respectively, the resulting sets of principal complex dimensions
dimPC A or dimPC(A,Ω), respectively, would remain unchanged and an entirely parallel discusion
could be provided.
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A −−−−→ ζA −−−−→ dimPC A⏐⏐;
∥∥∥

∥∥∥
(A,Aδ ) −−−−→ ζA,Aδ −−−−→ dimPC(A,Aδ )

(6.2.5)

Note that here ζA = ζA,Aδ and dimPC A = dimPC(A,Aδ ).
We can also consider the following self-explanatory sequences of constructions,

dealing with spectral zeta functions, corresponding to bounded fractal strings L ,
bounded open sets Ω in Euclidean spaces and RFDs (A,Ω), respectively:

L −→ ζ ∗L −→ dim∗
PC L ,

Ω −→ ζ ∗Ω −→ dim∗
PCΩ ,

(A,Ω)−→ ζ ∗A,Ω −→ dim∗
PC(A,Ω).

The set of principal spectral complex dimensions of L , dim∗
PC L , is defined as

the set of principal complex dimensions of the corresponding spectral zeta function
ζ ∗L (also denoted by ζν ,L ; see [Lap-vFr3, Section 1.3]), meromorphically extended
to a neighborhood of the critical line {Res = 1}, and similarly for dim∗

PC A and
dim∗

PC(A,Ω) (see Definition 4.3.4). Much as in the case of geometric zeta func-
tions and the corresponding sets of principal complex dimensions, we can sketch
the following commutative diagram associated to spectral zeta functions:

L −−−−→ ζ ∗L −−−−→ dim∗
PC L⏐⏐;

∥∥∥
∥∥∥

ΩL −−−−→ ζ ∗ΩL
−−−−→ dim∗

PCΩL

Here, to any bounded fractal string L := (l j) j≥1 we have assigned an open subset
ΩL := ∪k≥1(ak+1,ak) contained in the real line, where ak := ∑ j≥k l j. Finally, to
any bounded open subset Ω of RN (or, more generally, to any open set Ω of finite
N-dimensional Lebesgue measure, such that Ω ⊂ (∂Ω)δ for some δ > 0) we can
assign a relative fractal drum (∂Ω ,Ω). Therefore, we obtain the following commu-
tative diagram:

Ω −−−−→ ζ ∗Ω −−−−→ dim∗
PCΩ⏐⏐;

∥∥∥
∥∥∥

(∂Ω ,Ω) −−−−→ ζ ∗∂Ω ,Ω −−−−→ dim∗
PC(∂Ω ,Ω)
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6.2.2 Open Problems

Besides several open problems already mentioned in the text, one can formulate
numerous open problems related to the classification of bounded sets in Euclidean
spaces. We propose a few of them here to the attention of the reader.

Problem 6.2.1. Find a bounded set A in R
N (or a relative fractal drum (A,Ω) in R

N)
such that the corresponding distance zeta function ζA (relative distance zeta func-
tion ζA,Ω ) possesses an analytic continuation which generates a nontrivial Riemann
surface.

Problem 6.2.2. Describe explicitly as large as possible a set of

(a) periodic functions G(τ)

and

(b) functions ρ(t)

that are associated with the family Sp of all possible periodic subsets A of Euclidean
spaces. Periodic sets are defined in Section 6.1 on page 541. Furthermore, find nec-
essary and sufficient conditions for a pair of functions (G,ρ) to be associated with
the family Sp.

Problem 6.2.3. A similar question can be asked for (algebraically or transcenden-
tally) quasiperiodic sets. Describe explicitly as large as possible a set of

(a) n-quasiperiodic functions G(τ)

and

(b) functions ρ(t)

associated with the family Sqp(n) of all possible n-quasiperiodic sets A in Euclidean
spaces, where n ≥ 2 or n =∞. (Quasiperiodic sets are defined in Subsection 6.1.1.1,
on page 542.) Furthermore, find necessary and sufficient conditions for a pair of
functions (G,ρ) to be associated with the family Sqp(n).

Since the family of quasiperiodic sets in Euclidean spaces is the union of the
family of algebraically n-quasiperiodic sets and the family of n-transcendentally
quasiperiodic sets, that is,

Sqp(n) = Saqp(n)∪Stqp(n),

one can ask the analogous questions for Saqp(n) and Stqp(n). Finally, show that the
family Saqp(n) is nonempty, as we expect to be the case.
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Problem 6.2.4. Let Swd be the family of all weakly degenerate sets in Euclidean
spaces (see page 544). Describe as large as possible a set of gauge functions h (and
1/h) that are associated with the members of the family Swd .

Problem 6.2.5. Let A be a periodic set in R
N . Let (G,ρ) be an associated ordered

pair of functions (see page 541), where G is periodic, and ρ(t) → +∞ as t → 0+.
Study the regularity of the functions G and h in terms of the regularity of A (and
conversely). For example, characterize all of the periodic sets such that an associated
periodic function G is of class Cm, and more generally, of class Cm,θ (for some m∈N

and θ ∈ [0,1]).14 See Remark 2.3.32.

Problem 6.2.6. Find a geometric definition of the “relative box dimension” (“rela-
tive Minkowski dimension”) of a relative fractal drum (A,Ω), as defined in Section
4.1 (see Remark 4.1.6 on page 250). The sought for geometric definition should
involve suitable coverings of A and Ω by cubes (or balls).

Problem 6.2.7. Can we determine ζA×B, up to zeta function equivalence, in terms of
ζA and ζB? What if ζA and ζB are only known up to equivalence? See also a related
open problem stated in Remark 3.6.8.

Problem 6.2.8. Is there a set A satisfying the conditions of Theorem 2.3.25 and
such that the corresponding set of principal complex dimensions dimPC A = {sk =
D+ 2π

T ik : Ĝ0(
k
T ) 
= 0, k ∈ Z} is nonarithmetic (i.e., does not consist of an infinite

arithmetic progression)? (According to the results of [Lap-vFr3, Subsection 8.4.2]
and to Proposition 2.1.72, one would expect this to be the case if A is a (nontrivial)
lattice self-similar subset of R.) Furthermore, can one find rational conditions un-
der which such a set A is arithmetic (i.e., consists of a full arithmetic progression)
or more generally, consists of an infinite (but not necessarily full) arithmetic pro-
gression (i.e., for which Ĝ0(

k
T ) 
= 0 for infinitely many k ∈ Z)? The answer to this

question is probably “yes” and could possibly be found in the examples of lattice
self-similar fractals studied in [Lap-vFr3].

Problem 6.2.9. Construct a subset A of [0,1] such that dimB A = D exists for some
D ∈ [0,1], while M D

∗ (A) = 0 and M ∗D(A) = +∞.

Problem 6.2.10. Prove or disprove that the bound β in (2.3.7), appearing in Theo-
rem 2.3.2, is optimal.

Problem 6.2.11. Assume that A is a bounded set in R
N which is strongly degenerate,

that is, such that dimBA < dimBA. Does the abscissa of meromorphic continuation
Dmer(ζA) of the distance zeta function ζA depend only on the difference dimBA−
dimBA?

Problem 6.2.12. Assume that ζA,Aδ (s) = ζB,Bδ (s) for all s such that Res > σ , where
σ ∈ R∪{−∞} and δ > 0 are fixed (with σ ≥ max(dimBA,dimBB)). From this, we

14 Here, given m ∈N0 and θ ∈ [0,1], Cm,θ denotes the space of m-times continuosly differentiable
functions on R whose m-th derivative is Hölder continuous of order θ .
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cannot infer that the fractal sets A and B are interrelated in any way. This can be
seen in the special case where A and B are n-point sets in the plane, provided δ is
sufficiently small, so that Aδ and Bδ are both equal to the disjoint union of n disks.
However, the pairs (A,Aδ ) and (B,Bδ ) might be related somehow. For example, Bδ
can be obtained from Aδ by the rigid motion of the connected components (in this
case, the disks of radius δ ) of Aδ . Compare with Problem 6.2.17 below. Recall that
any bounded fractal string L is uniquely determined by its geometric zeta function;
see Theorem 2.1.39.

In fact, from the results of Chapter 5, one can deduce that, under suitable hy-
potheses, the tube functions t �→ |At | and t �→ |Bt | will be asymptotically equivalent
as t → 0+, up to an order of growth depending on the growth properties of the dis-
tance zeta function ζA,Aδ (s) = ζB,Bδ (s).

15

Problem 6.2.13. Here, we state a problem formulated in [LapRoŽu, Remark 2.21].
Let A and B be two constant (i.e., Minkowski measurable) sets on the real line. It is
clear that if A and B are disjoint, then A∪B is constant as well. Prove or disprove
that this property holds if A∩B 
= /0.

The following problem has also been stated in [LapRoŽu, Open Problem 2.20].

Problem 6.2.14. If A and B are two constant (i.e., Minkowski measurable) sets in
R

N , prove or disprove that A×B is constant.

Recall from the discussion immediately preceding Corollary 2.3.23 that if a
bounded set A⊂R

N is constant (i.e., Minkowski measurable), then it is also constant
in R

N+1; that is, it is Minkowski measurable when viewed as a subset of RN+1; see
[Kne, Satz 7] and [Res, Theorem 4]. In the next problem we will explore a closely
related problem for periodic instead of constant sets.

Problem 6.2.15. Let A be a bounded periodic set in R
N .16 Does it follow that A ⊂

R
N+1 is periodic in R

N+1? Furthermore, does the converse hold? Namely, if A ⊂R
N

is periodic in R
N+1, is it also periodic in R

N? Again, this open problem can be
(partially) answered by finding appropriate hypotheses on the set A and by using
Theorem 4.7.3 about the invariance of complex dimensions on the dimension of the
ambient space as well as the approximate functional equation (4.7.4) of Theorem
4.7.2. Of course, on should also use the results of Chapter 5 on fractal tube formulas.

The next problem complements Problem 6.2.15.

15 Note that, by the principle of analytic continuation, this equality continues to hold on any con-
nected open set U ⊆ C which contains the open half-plane {Res > σ} and to which any (and
hence, both) of the two distance zeta functions can be meromorphically continued.
16 Recall that in the definition of a periodic set, the underlying periodic function G = GN appearing
in Equation (2.3.30) (or, more generally, in its counterpart in Subsection 6.1.1.1) is associated with
the asymptotic behavior as t → 0+ of the tube function |At |N , the N-dimensional volume of At

in R
N .
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Problem 6.2.16. Let A ⊂ R
N be a bounded periodic set satisfying the stronger as-

sumptions of Theorem 2.3.25. Namely,

|At |N = tN−D(GN(log t−1)+O(tα)) as t → 0+,

for some α > 0, where G = GN is periodic (and necessarily continuous, by Lemma
2.3.30).17 Does it then follow that the normalized lower and upper Minkowski con-
tents of A, defined respectively by

minGN

ωN−D
and

maxGN

ωN−D

(where A is viewed as a subset of RN) are independent of N?

Problem 6.2.17. Assume that we have two domains (i.e., open connected sets) Ω1

and Ω2 in R
N such that ζ∂Ω1,Ω1

(s) = ζ∂Ω2,Ω2
(s) on a set S of complex numbers

which has an accumulation point; that is, in light of the principle of analytic con-
tinuation, we know that the zeta functions of the RFDs (∂Ω1,Ω1) and (∂Ω2,Ω2)
coincide on {Res > ρ}, where

ρ := max
{

Dmer(ζ∂Ω1,Ω1
),Dmer(ζ∂Ω2,Ω2

)
}
.

Prove or disprove that the sets Ω1 and Ω2 are then congruent, that is, Ω2 can be
obtained from Ω1 by a rigid motion. This problem is related to Proposition 2.1.39,
which states that any fractal string L = (� j)k≥1 is uniquely determined by its geo-
metric zeta function ζL (s) = ∑ j≥1 �

s
j. Compare with Problem 6.2.12 above.

Problem 6.2.18. It is well known that the function f : B1 = {|s|< 1}→ C, f (s) :=

∑∞k=0 s2k
, is holomorphic on B1, and that the bounding circle S1 = {|s|= 1} is equal

to the set of its nonisolated singularities (see, e.g., [Tit1, p. 163]). More precisely,
S1 is a (holomorphic) natural boundary of f , in the sense of Definition 1.3.6 of
Subsection 1.3.2; equivalently, {|s| < 1} is a domain of holomorphy for f . Using
the Möbius transformation T : {Res > 0} → B1 defined by T (s) = (1− s)/(1+ s),
we can introduce the function

g : {Res > D}→ C, g(s) = f (T (s−D)) =
∞

∑
k=0

(
1− (s−D)

1+(s−D)

)2k

,

where D is any given real number. This is a holomorphic function on {Res > D},
and the entire vertical line {Res = D} is the set of nonisolated singularities of g.
More precisely, {Res = D} is a (holomorphic) natural boundary of g; equivalently,
the half-plane {Res > D} is a domain of holomorphy for g. Is g representable as

17 Recall from Theorem 2.3.25, Equation (2.3.31), that it then follows that the lower and upper
Minkowski contents of A in R

N are given respectively by

M∗ = M D
∗N(A) = minGN and M ∗ = M ∗D

N (A) = maxGN .



6.2 Open Problems and Future Research Directions 559

a Dirichlet series, or, more generally, as a (generalized) Dirichlet integral, and with
abscissa of (absolute) convergence equal to D? Is there a relative fractal drum (A,Ω)
in R

N , for some N ≥ D, such that ζA,Ω (s) = g(s) for Res > D and dimB(A,Ω) =
D? Of course, as was shown in Section 4.6, there are RFDs (A,Ω) such that the
whole critical line {Res = D} of the corresponding zeta function ζA,Ω consists of
nonisolated singularities of ζA,Ω ; see Theorem 4.6.9.

Problem 6.2.19. Prove or disprove that there is a maximally degenerate rela-
tive fractal drum (A,Ω) in R

N , that is, such that dimB(A,Ω) = −∞, whereas
dimB(A,Ω) = N. (See Corollary 4.1.38.) Recall that there exists a bounded set A in
R

N which is maximally degenerate, that is, such that dimBA = 0 and dimBA = N;
see [Žu4, Theorem 1.2].

In the next problem, at least for Julia sets and the Mandelbrot set, one should
possibly use an appropriate gauge function (in the sense of [HeLap] and Definition
6.1.4 above) before addressing the question.

Problem 6.2.20. Find Dmer(ζA), the abscissa of meromorphic continuation of ζA, in
the case where A is the von Koch curve,18 the Menger sponge and its generalizations,
Julia sets, the Mandelbrot set (see, e.g., [Man1], [Man2], [TanL]),19 the limit set
of a Fuchsian group or of a Kleinian group (see, e.g., [BedKS]), etc. Moreover,
determine the complex dimensions of the meromorphic extension of ζA in {Res >
Dmer(ζA)}. For each of these sets, find all the singularities on the critical lines of
the corresponding distance zeta function ζA. For the case of the von Koch curve,
compare with [LapPe1]; compare also with [LapPe3] and [LapPeWi1] (as described,
for example, in [Lap-vFr3, Section 13.1]).

The following two problems complement Problem 6.2.20. (Again, one may wish
to first find a suitable gauge function in order to address the questions.)

We refer, for example, to [Bea, Man1, Man3, TanL] for a discussion of the classic
fractals arising in complex dynamics, such as Julia sets and the Mandelbrot set.

Problem 6.2.21. Is the Mandelbrot set maximally hyperfractal? Are there Julia sets
with that same property? Is there an appropriate Riemann surface naturally associ-
ated with the fractal zeta functions (ζA or ζ̃A, say) of the Mandelbrot set or of those
Julia sets?

18 Recall from footnote 43 on page 492 that, at least in principle, this problem has now been re-
solved by the authors, although the corresponding result still needs to be fully explicited and com-
pared with the earlier results of [LapPe1], as described in [Lap-vFr3, Subsection 12.2.1]. However,
one can also ask these questions for a variety of (lattice and nonlattice) Koch-type curves as well
as for other fractal (or multifractal) curves, such as the Weierstrass curve, the Riemann curve and
the Takagi curve.
19 Since, according to Shishikura’s well known result [Shi], the boundary A of Mandelbrot’s set
satisfies dimH A = dimBA = dimBA = 2, it follows from Theorem 2.1.11 and Corollary 2.1.20(i)
that D(ζA) = 2.
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Problem 6.2.22. Which Julia sets are hyperfractal, or even strongly hyperfractal,
but not maximally hyperfractal? (See Definition 4.6.23.) Which ones are not hyper-
fractal but have infinitely many complex dimensions? If it is not maximally hyper-
fractal, is the Mandelbrot set a hyperfractal, or even a strong hyperfractal? What are
its (visible) complex fractal dimensions?

Problem 6.2.23. Address questions similar to those raised in Problems 6.2.21 and
6.2.22, but now with the types of fractals naturally arising in conformal dynamics
rather than in complex dynamics, such as the limit sets of Fuchsian groups or of
Kleinan groups (see, e.g., [BedKS]).

Problem 6.2.24. Is the graph of the Weierstrass function hyperfractal? More gen-
erally, are the graphs of the Weierstrass–Mandelbrot functions and any of the other
classic families of nowhere differentiable functions hyperfractal or even, strongly
or maximally fractal? What are their (visible) complex dimensions? A simpler, but
still interesting question, is to determine the complex dimensions of the graph of the
Cantor function (i.e., of the devil’s staircase), or of any natural relative fractal drum
naturally associated to it, and, in particular, the half-plane of meromorphic contin-
uation (possibly, the entire complex plane) of its distance and tube zeta functions.
(See Example 5.5.14 for an answer to this question in the special case of a particular
relative fractal drum generated by the Cantor graph.) This is of particular interest in
view of the discussion of the notion of fractality given in [Lap-vFr3, Subsections
12.1.1 and 12.1.2, including Figures 12.1–12.3].

The next problem is motivated in part by the work of Ben Hambly and the first
author in [HamLap], where a theory of random fractals, geometric zeta functions
and of the associated complex dimensions was first developed (for random fractal
strings, that is, in the one-dimensional case). (See also [Lap-vFr3, Section13.4] for
an exposition of some of the main results of [HamLap].) Fully addressing it will
require to extend to the random case the definitions of fractal zeta functions consid-
ered in this book, as well as possibly, choosing appropriate gauge functions, such as
the iterated logarithm h(x) = log logx−1, where x ∈ (0,1/e).

Problem 6.2.25. Is a typical Brownian motion path in R
N hyperfractal, strongly

hyperfractal or maximally hyperfractal?20 When applicable, determine its (visible)
random complex dimensions (i.e., the poles of an appropriate meromorphic continu-
ation of the associated pointwise random zeta function). Ask and answer analogous
questions about the sample paths and the zero sets of other stochastic processes
(such as Lévy and α-stable processes; see [HamLap] and the suitable references
therein), as well as about other classes of random fractals, including stochastically
self-similar fractals.

20 By “typical” here, we mean that the corresponding property holds almost surely with respect to
the underlying Wiener (probability) measure; see, e.g., [Sim] or [JohLap, Chapters 2–4] and the
many relevant references therein.
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Problem 6.2.26. Prove or disprove that the union of two (strong, maximal) hyper-
fractals is a (strong, maximal) hyperfractal. Similarly for Cartesian products of hy-
perfractals.

Problem 6.2.27. Prove or disprove that there is a hyperfractal set A in R
N which is

constant (i.e., Minkowski measurable).

In [Lap-vFr1–3], it is shown, that under suitable hypotheses on the meromorphic
continuation of ζL to a connected open neighborhood of the critical line {Res =
D}, a fractal string L is Minkowski measurable if and only if it does not have
any nonreal complex dimension on {Res = D} (and D is a simple pole of ζL );
see [Lap-vFr3, Theorem 8.15].21 This result (which has been extended to higher
dimensions in Chapter 5 above and in [LapRaŽu4, 6]) would tend to suggest that the
answer to Problem 6.2.27 should be that there does not exist a hyperfractal subset A
of RN which is Minkowski measurable. Caution is required, however, since clearly,
the hypotheses of the above theorem are far from being satisfied in the case of a
hyperfractal set A ⊂ R

N (even when N = 1). This fact makes Problem 6.2.27 all the
more interesting.

Problem 6.2.28. Prove or disprove the following statement: for any bounded set A
in R

N , we have

dimavA = dimBA and dimavA = dimBA,

where the upper and lower average Minkowski dimensions are defined in Subsec-
tion 2.4.2. See, in particular, Definition 2.4.11 and Proposition 2.4.9.

Problem 6.2.29. Prove or disprove the following statement: there is a bounded set
A in R

N such that there exists D := dimav A and M̃ D
∗ (A) < M̃ ∗D(A). Recall that

for the Cantor ternary set A we have that M̃ D
∗ (A) = M̃ ∗D(A); see Corollary 3.1.6.

Average Minkowski contents are defined in Definition 2.4.1.

Problem 6.2.30. Construct a bounded set A in R
N such that dimavA < dimavA.

Moreover, is it possible to find an example for which dimavA = 0 and dimavA = N?
Study the properties of the lower and upper average Minkowski dimensions, intro-
duced in Subsection 2.4.2, with respect to finite unions and Cartesian products of
bounded subsets of Euclidean spaces.

Problem 6.2.31. Is the upper box dimension additive with respect to Cartesian prod-
ucts of RFDs? This is true in the case of Minkowski nondegenerate fractal drums;
see Proposition 4.1.20(b). It is well known that the lower box dimension is not addi-
tive with respect to the Cartesian product of compact sets; see, e.g., [Fal1]; see also
Remark 6.1.9 on page 550.

21 Recall from [Lap-vFr3, Section 1.2] and from Subsection 2.1.4 above that provided L is non-
trivial, the abscissa of convergence D(ζL ) of ζL necessarily coincides with the upper box di-
mension of (the boundary of) L as well as of AL : D = dimB∂ΩL = dimBAL . (See Corollary
2.1.57.)
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Problem 6.2.32. Let (A,Ω) be a relative fractal drum and, in particular, let (∂Ω ,Ω)
be an ordinary fractal drum in R

N . Assume, for simplicity, that we choose Dirich-
let boundary conditions (in the variational sense) and that |Ω | < ∞. For various
concrete examples (e.g., the Koch snowflake drum or, more generally, self-similar
drums, Julia sets, the Mandelbrot set, as, for instance, in [Lap1–3]), compare the
set of geometric and spectral complex dimensions of the drum (that is, the complex
dimensions of the distance or tube zeta function, on the one hand, and those of the
normalized spectral zeta function of the Dirichlet Laplacian, on the other hand). Can
one compare these two sets of complex dimensions (when they exist) for a general
class of (relative) fractal drums? (Compare with related questions asked in [Lap3]
and towards the end of [Lap5]. See also Problem 6.2.36 below for the case of the
geometric complex dimensions of self-similar sets.)

In order to understand some of the statements, hypotheses and notation of parts
of our last two problems (namely, Problem 6.2.35 and 6.2.36), the reader might first
want to read (or review) Subsection 5.5.6, including Remark 5.5.26. In the sequel,
we let (as in Subsection 5.5.6) σ0 denote the similarity dimension of a self-similar
set (or, equivalently, of the associated self-similar tiling or spray); that is, σ0 is the
unique real solution of the Moran equation ∑J

j=1 rs
j = 1, where J ≥ 2, ∑J

j=1 rN
j < 1

and {r j}J
j=1 is the list of scaling ratios (counted according to their multiplicities) of

the self-similar set (or, equivalently, of the associated self-similar tiling). The self-
similar set is also assumed implicitly to satisfy the open set condition (in the sense
of [Hut, Fal1]).22 We have that 0 < σ0 ≤ D < N, where D denotes the (upper) box
dimension of the self-similar tiling (or spray), viewed as an RFD. (We exclude here
the extreme case when D = N; see footnote 22 on page 562.) We have (see part (c)
of Remark 5.5.26 in Subsection 5.5.6)

D := dimB(A,Ω) = max
{
σ0,DG

}
, (6.2.6)

where G is the generator of the tiling and DG denotes the (inner) box (or Minkowski)
dimension of its boundary: DG := dimB(∂G,G). Here, for simplicity, we assume
that there is a single generator and that it is pluriphase, in the sense of [LapPe2–3,
LapPeWi1–2] (as is the case, for example, of most polytopes, in light of [KoRati]);
see Subsection 5.5.6 above. See also Remark 6.2.33 just below for the case of mul-
tiple generators.

Remark 6.2.33. In the case of multiple generators {G(q)}Q
q=1 and in light of the re-

sults of [Lap-vFr3, Chapter 3 and Section 8.4], we expect that analogous results
should hold (see also part (b) of Remark 5.5.26), modulo suitable modifications. For
example, DG should be replaced by max{DG(q)}Q

q=1 and (when Q ≥ 2) the equal-
ity should be replaced by the inequality D ≤ max{σ0,DG} since there might be
some cancellations between the zeros of ζ∂G,G := ∑Q

q=1 ζ∂G(q),G(q) and the zeros of

22 In fact, a little more is assumed since we assume that the associated self-similar tiling is nontriv-
ial, which implies the open set condition of [Hut] and the strict inequality D := dimB(A,Ω) < N;
see [LapPe2–3, LapPeWi1–2, Pe, PeWi], along with [Lap-vFr3, Section 13.1].
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1−∑J
j=1 rs

j.
23 Furthermore, in Problem 6.2.35, some of the potential scaling com-

plex dimensions of the self-similar set (i.e., the poles of the geometric zeta func-
tion ζS of the fractal string associated with its self-similar tiling, in the sense of
[Lap-vFr3, Chapter 3 and Section 13.1]) might be canceled by some of the zeros of
the numerator of ζS. However, according to the results of [Lap-vFr3, Section 8.4],
at least infinitely many of these scaling complex dimensions should not be canceled
on the vertical line {Res = σ0}.) Moreover, under the above assumptions, and since
(according to the results of Subsection 5.5.6; see, especially, Equations (5.5.105)
and (5.5.172)), we have that

ζA,Ω (s) = ζS(s) ·ζ∂G,G(s), (6.2.7)

where
P(ζ∂G,G) := P(ζ∂G,G,C)⊆ {0,1, . . . ,N −1}; (6.2.8)

more specifically, DG = dimB(∂G,G)∈N0 and the set P(ζ∂G,G) of ‘integer dimen-
sions’ is given by

P(ζ∂G,G) = {0,1, . . . ,DG}, (6.2.9)

or (due to the potential cancellations), a subset of {0,1, . . . ,DG}, but with DG ∈
P(ζ∂G,G). All of these integer dimensions are simple poles of ζ∂G,G. Furthermore,

ζS(s) =
(
1−∑J

j=1 rs
j

)−1
for all s ∈ C and the multiset P(ζS) of ‘scaling complex

dimensions’ is given (when Q = 1) by

P(ζS) := P(ζS,C) =

{
s ∈ C :

J

∑
j=1

rs
j = 1

}
; (6.2.10)

this multiset is described in [Lap-vFr3, Theorem 3.6], as well as throughout Chapter
3 of [Lap-vFr3].

Remark 6.2.34. In the case of truly multiple generators (i.e., Q ≥ 2), due to the pos-
sible cancellations, the second equality of Equation (6.2.10) should be replaced by
a containment, ⊆. (Generally, however, it remains an equality.) Furthermore, we al-
ways have that σ0 ∈ P(ζS). More specifically, according to the aforementioned
results of [Lap-vFr3, Chapter 3 and Section 8.4], in the nonlattice case, σ0 is the
only principal pole (i.e., the only pole with real part σ0) of ζS, whereas in the lat-
tice case, P(ζS) contains not only σ0 but also an infinite arithmetic progression of
principal poles of ζS. Moreover, all of the principal poles of ζS (including σ0) are
simple. See [Lap-vFr3, Theorem 8.2.5 and Corollary 8.27].24

23 Generally, however, such cancellations do not occur and hence, the exact counterpart of the
identity (6.2.6) holds.
24 The setting of [Lap-vFr3, Section 8.4] is that of general self-similar strings (for which we then
have that∑J

j=1 r j < 1) but, in light, in particular, of the general framework considered in [Lap-vFr3,
Chapter 3], where this condition is not assumed about the r j’s, the proofs and the statements
of all of the results in that section can be immediately adjusted to our present situation (where
∑J

j=1 rN
j <1). This fact is also used in [LapPe2–3, LapPeWi1–2] and [Lap-vFr3, Section 13.1].
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The content of Problem 6.2.36 will be in part to connect the complex dimen-
sions of the (suitable) self-similar set F (or, more generally, self-similar RFD)
and the complex dimensions of the associated self-similar tiling (or spray) (A,Ω),
as described in Subsection 5.5.6, and taking into account the aforementioned re-
sults about the complex dimensions of (generalized) self-similar strings obtained in
[Lap-vFr3, Chapter 3 and Section 8.4]. (See, in particular, footnote 24 on the previ-
ous page.) First, we consider Problem 6.2.35, which revisits some of the issues dealt
with in Subsection 5.5.6, especially in parts (b) and (c) of Remark 5.5.26. In clos-
ing these introductory comments, we point out that, as will be clear to the reader,
Problem 6.2.35 is closely related to Problem 6.2.36.

Problem 6.2.35. Prove that every (nontrivial) lattice self-similar subset F or, more
generally, self-similar RFD (F,Ω0) of RN (satisfying the open set condition) and
such that DG 
= σ0 is either periodic or strictly subcritically periodic; that is,
more specifically, it is Minkowski nonmeasurable, when DG < σ0 (and hence,
D := dimB(F,Ω0) = σ0) or else (strictly subcritically) Minkowski measurable in
dimension σ0 (in the sense explained at the end of Subsection 5.5.6), when σ0 < DG

(and hence, D := dimB(F,Ω0) = DG ∈ {0,1, . . . ,N −1}). It would be natural to as-
sume that the affine subspace of R

N generated by G is all of R
N , in which case

DG = N −1.
More generally, show that provided DG 
= σ0, the self-similar set F (or, in the

broader setting of self-similar RFDs, the self-similar RFD (F,Ω0)) is Minkowski
measurable in dimension σ0 (in the sense of footnote 71 at the end of Chapter
5) if and only if it is nonlattice. [Equivalently, the self-similar set F (or, more
generally the self-similar RFD (F,Ω0)) is Minkowski nonmeasurable in dimen-
sion σ0 if and only if it is lattice.] Exactly the same statement holds with the
self-similar set F replaced by its associated self-similar tiling (or spray) (A,Ω).
Also, under mild assumptions, we have that D := dimB(A,Ω) = dimB F , whereas
dimB(F,Ω0) = max{dimB F,dimB(∂G,G)} = max{σ0,DG}, since dimB F = σ0,
and G is the generator of the self-similar RFD (F,Ω0), viewed as an inhomoge-
neous self-similar set here (or as a suitable generalization thereof, in the spirit of
Examples 4.2.33, 4.2.34 and 4.2.35). In the case of multiple generators {G(q)}Q

q=1,
with Q ≥ 2, we instead have the inequality dimB(F,Ω0)≤ maxq=1,...,Q{σ0,DG(q)}.

Finally, when DG = σ0, F (or, more generally, (F,Ω0)) is not Minkowski mea-
surable.25 Show, however that, if we consider the gauge function h(t) := log t−1, for
all t ∈ (0,1), then the self-similar set F (or, more generally, the self-similar RFD
(F,Ω0)) is always h-Minkowski measurable, whether it is lattice or nonlattice (or,
equivalently, whether the associated self-similar spray or tiling (A,Ω) is lattice or
nonlattice).26

25 Indeed, its distance zeta function ζF (s) should then have a multiple pole (of second order)
at s = D (= DG = σ0) and hence, according to Theorem 5.4.10 and Lemma 5.4.11, F cannot
be Minkowski measurable. On the other hand, as is stated here, it should follow from results of
Chapter 5, that when DG = σ0, F is h-Minkowski measurable whether it is lattice or nonlattice,
where h(t) = log t−1 for all t ∈ (0,1).
26 The intuitive reasoning behind this part of the conjecture (or open problem) is as follows. In
both cases (i.e., the lattice and the nonlattice cases), we have that the only double pole is σ0; so it
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We note that the results of [Lap-vFr1–3] (see, especially, [Lap-vFr3, Section 8.4])
imply that the answer to Problem 6.2.35 is affirmative when N = 1 (except, of
course, in the trivial case of an interval); see [Lap-vFr3, Theorem 8.25 and Corol-
lary 8.27, along with Theorems 8.23 and 8.36], thereby proving the geometric part of
[Lap3, Conjecture 3, pp. 163–164] in the special case of self-similar fractal strings.
Part of these results have been extended in [LapPe2–3] and in [LapPeWi1–2] to cer-
tain lattice self-similar sprays (or tilings), as well as to a more restricted class of
lattice self-similar sets in R

N (N ≥ 1); see, in particular, [LapPeWi2].
Furthermore, for general self-similar sprays (or tilings) in R

N (with N ≥ 1), we
have essentially answered Problem 6.2.35 in the affirmative, in Subsection 5.5.6
(see, especially part (c) of Remark 5.5.26), by using the fractal tube formulas and
Minkowski measurability criteria of Chapter 5. More specifically, when DG < σ0,
as was discussed in case (i) of Remark 5.5.26(c), a combination of Theorem 5.4.2
and Theorem 5.4.20 enables us to obtain the required result, exactly as in the proof
of Corollary 5.4.23 (which corresponds to the N = 1 case). Furthermore, when
DG > σ0, as in case (iii) of Remark 5.5.26(c), a suitable adjustment (to the strictly
subcritical case) of the statements and proofs of these two theorems should yield
the discussed result. Moreover, for general self-similar sets in R

N (with N ≥ 1) in
the case when DG < σ0 (i.e., DG 
= σ0, although it is not formulated in this manner
in that paper), the problem is essentially answered in the affirmative in [KomPeWi],
thereby proving the geometric part of [Lap3, Conjecture 3] when D is not an integer,
by using the renewal theorem and the main results of [Gat].

Recall from Subsection 5.5.6 that the case when DG > σ0 cannot occur for self-
similar sets (satisfying the open set condition) since then, we have

σ0 = DF = D(A,Ω) =: D = max{DG,σ0} (6.2.11)

and hence, DG ≤ σ0; see part (a) of Remark 5.5.26. (In the case of multiple
generators, we have that D ≤ maxq=1,...,Q{DG(q) ,σ0}, also implying that DG :=
maxq=1,...,Q{DG(q)} ≤ σ0; see part (b) of Remark 5.5.26.) However, for a general
self-similar RFD (or spray) we no longer have that DG = D(A,Ω) = σ0, allowing
for DG to exceed σ0. (See, e.g., the case of the inhomogeneous Sierpiński N-gasket
RFD discussed in Example 4.2.26, along with Examples 4.2.34 and 4.2.35.)

Strictly speaking, the case when DG > σ0 remains open for general self-similar
RFDs (or sprays), although we expect the results and methods of Chapter 5 (com-
bined with some of the results about the complex dimensions suggested in Problem
6.2.36 just below) should enable us to resolve it in the affirmative, as well as to

is clear that in the nonlattice case, F should be h-Minkowski measurable. But in the lattice case,
all the other nonreal principal poles are simple; therefore, they generate powers of tN−σ0 times
an oscillatory term in the tube formula, but this contribution is dominated by tN−σ0 log t−1 when
t → 0+. Hence, in the lattice case F should be also h-Minkowski measurable. On the other hand,
the h-Minkowski nonmeasurable but h-Minkowski nondegenerate situation arises, for instance, for
the second-order Cantor set discussed in Example 4.2.10, where we have an infinite sequence of
double principal poles occurring in arithmetic progression along the critical line.
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obtain a modified proof for all of the possible cases considered in Problem 6.2.36;
namely, DG < σ0, σ0 < DG, and DG = σ0.

In the next problem, we propose to study the fractal zeta functions and the cor-
responding complex dimensions, as well as the Minkowski measurability, of self-
similar sets in R

N , much as is done when N = 1 for self-similar strings in [Lap-vFr3,
Chapters 2, 3 and 8], and when N ≥ 1 but for self-similar tilings (or for more gen-
eral fractal sprays) and for special kinds of self-similar sets, in [LapPe2–3] and
[LapPeWi1–2] (as is discussed in [Lap-vFr3, Section 13.1]).

Before stating this problem, we recall some terminology associated with self-
similar sets (or, more generally, with self-similar RFDs or sprays) and the cor-
responding lattice/nonlattice dichotomy. Let F be a self-similar subset of R

N or,
more generally, a self-similar RFD (with a single generator G for the associated
self-similar tiling or spray), and consider the multiplicative group G = ∏n

i=1(ρi)
Z

generated by its distinct scaling ratios ρ1, . . . ,ρn and viewed as a subgroup of
R
+
∗ := (0,+∞). Then, recall that F is said to be lattice if G is of rank 1 (i.e., G = ρZ,

for some ρ such that 0 < ρ < 1), and nonlattice otherwise. Moreover, F is a generic
nonlattice self-similar set if G has rank n ≥ 2, where (as above) n is the number
of distinct scaling ratios of F . See [Lap-vFr3, Chapters 2 and 3] and the relevant
references therein.

In the lattice case, the oscillatory period (i.e., the common difference of the arith-
metic progression of the imaginary parts of any two consecutive complex dimen-
sions along the vertical lines {Res = wu}q

u=1), but ignoring the i :=
√
−1 factor, is

given by p := 2π/ logρ−1, where (as above) ρ ∈ (0,1) is the positive generator of
the (discrete) multiplicative group G generated by the distinct scaling ratios.

In the sequel, we will denote by F the self-similar set or, more generally, RFD un-
der consideration and by (A,Ω) the associated self-similar tiling (or spray), viewed
as an RFD. (See the discussion preceding Problem 6.2.35.) Implicit in the statement
of Problem 6.2.36 is the fact that under suitable hypotheses, we can show (as was
conjectured in part (a) of Remark 5.5.26 of Subsection 5.5.6) that

ζF(s) = ζA,Ω (s)+ζO,out(s)+ f (s), (6.2.12)

where (as was explained towards the end of part (a) of Remark 5.5.26) ζO,out

represents the contributions of the outer neighborhoods of a feasible and admis-
sible open set O relative to which F satisfies the open set condition. Further-
more, f is a holomorphic function in some open right half-plane {Res > α}, with
−∞ ≤ α < dimB(A,Ω) =: D (< N). If α > −∞ (that is, if f is not entire), then
clearly, the conclusion of Problem 6.2.36 concerning the structure of the complex
dimensions of F should be suitably adjusted. Namely, the corresponding statements
should be limited to the visible complex dimensions (i.e., the poles of ζF or of ζ̃F

with real part > α).
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Finally, recall that since D := dimB(A,Ω) < N,27 the complex dimensions of F
can be interpreted indifferently as the poles of the distance zeta function ζF or of
the tube zeta function ζ̃F , and analogously, for the complex dimensions of the RFD
(A,Ω), with ζF and ζ̃F replaced by ζA,Ω and ζ̃A,Ω , respectively. This statement
follows from Proposition 2.2.19 and its obvious counterpart for relative fractal zeta
functions of RFDs.

Finally, we note that in light of the results of Subsection 5.5.6 and Section 5.4
(combined with those of [Lap-vFr3, Chapters 2–3 and Section 8.4]), most of the
results expected to hold in Problem 6.2.36 have already been established in this
book in the special case of a self-similar spray (with a single generator or, more
generally, with finitely many generators).

Problem 6.2.36. (Geometric complex dimensions of self-similar sets). Calculate the
distance and tube zeta functions of self-similar fractals F in R

N , and, more gener-
ally, of self-similar RFDs (F,Ω0) (or of self-similar sprays). Let (F,Ω0) be such a
self-similar RFD, with associated self-similar tiling (or spray) (A,Ω). If F is a self-
similar set, we assume, in particular, that it satisfies the open set condition of [Hut]
(see also [Fal1]). Can one show that these fractal zeta functions have a meromor-
phic continuation to all of C?28 Determine the poles of these zeta functions, that is,
the complex dimensions of a self-similar set F or, more generally, of a self-similar
RFD (F,Ω0). Finally, compare the results with those obtained by means of the well-
developed theory of complex dimensions of fractal strings. (See [Lap-vFr3, Chap-
ters 2–3 and Section 8.4].) and, in the higher-dimensional case, with the results from
[Lap-vFr3, Section 13.1] describing some of the work in [LapPe3] and [LapPeWi1]
on tubular zeta functions and the complex dimensions of self-similar tilings and
sets.) Compare also with the results of Subsection 5.5.6 above on self-similar sprays.

In particular, show that, under suitable hypotheses, we have the following inclu-
sion between multisets (in the case of a single generator G), which would follow at
once from Equation (6.2.12) above, combined with the results of Subsection 5.5.6
(see also Remark 6.2.33):29

P(ζF)⊆ P(ζA,Ω )∪P(ζO,out)

⊆ P(ζS)∪P(ζ∂G,G)∪P(ζO,out),
(6.2.13)

27 Recall, that in the case of multiple generators {G(q)}Q
q=1, we have, in general, D :=

dimB(A,Ω) ≤ max{DG(q) ,σ0 : q = 1, . . . ,Q}; so that D < N because σ0 and each DG(q) (q =
1, . . . ,Q) is strictly less than N. Note that the fact that DG ≤ N −1 and the hypothesis according to
which ∑J

j=1 rN
j < 1, which guarantees that Ω has finite N-dimensional volume, imply that σ0 < N.

28 If not, determine Dmer(ζF ) = Dmer(ζ̃F ), the commmon abscissa of meromorphic continuation
of ζF and ζ̃F .
29 Equation (6.2.13) should still remain valid in the more general case when (A,Ω) has multiple
generators. (See Subsection 5.5.6, including parts (a) and (b) of Remark 5.5.26.) Often, unless
there are obvious cancellations (see, for example, Remark 6.2.33 for one of the sources of these
possible cancellations, in the case of multiple generators), the inclusion signs can be raplaced by
equalities in Equation (6.2.13).
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where P(ζS) is the set of ‘scaling complex dimensions’ of the associated self-
similar tiling (A,Ω) (as given by Equation (6.2.10)) and P(ζ∂G,G)⊆{0,1, . . . ,DG}
⊆ {0,1, . . . ,N − 1} is the ‘set of integer dimensions’ of (A,Ω), as given by Equa-
tion (6.2.8). Accordingly, the elements of P(ζS) (respectively, P(ζ∂G,G)) are also
called the scaling (respectively, integer) complex dimensions of the self-similar set
F . (Naturally, some integers in {0,1, . . . ,DG} might be common to P(ζS) and
P(ζ∂G,G).)

Consequently, it follows from the results of [Lap-vFr3, Chapter 3] (see espe-
cially [Lap-vFr3, Chapter 3]) that if D := dimB(A,Ω) and σ0 ∈ (0,N) denotes the
similarity dimension of F (or, equivalently, of (A,Ω)), as defined before Equation
(6.2.6), that the scaling complex dimensions of nonlattice self-similar sets F have
real parts strictly less than σ0 (except for σ0 itself, which is also a scaling complex
dimension), but that there exists an infinite (and explicitly computable) sequence
of such scaling dimensions approaching from the left the vertical line {Res = σ0},
whereas the scaling complex dimensions of lattice self-similar sets F are distributed
periodically along finitely many vertical lines {Res = wu}, for u = 1, . . . ,q, with
wq ≤ ·· · ≤ w2 < w1 = σ0. In all cases, the only scaling complex dimension which is
real is σ0 itself, and it is simple. (In the lattice case, all the scaling complex dimen-
sions with real part σ0 are simple as well.) Moreover, the scaling complex dimen-
sions of a nonlattice string have a quasiperiodic structure, as shown and described in
detail throughout [Lap-vFr3, Chapter 3]. Finally, according to [MorSepVi1] (prov-
ing and extending a conjecture in [Lap-vFr2–3]), the set of real parts of the scal-
ing complex dimensions of a generic nonlattice (respectively, and more generally,
of a suitable nonlattice) self-similar set is dense in a single compact interval, of
the form [D∗,D] (with −∞ < D∗ < D), or in the union of finitely many disjoint
compact intervals (see [Lap-vFr2, Subsection 3.7.1], [Lap-vFr3, Section 3.7], along
with [MorSepVi1], [MorSep] and [DubSep]). Therefore, generic nonlattice (respec-
tively, under mild assumptions, more general nonlattice) self-similar sets are fractal
in dimension d, for d in an infinite countable and dense subset of a compact interval
[D∗,D], with D∗ < D (respectively, of a finite union of compact disjoint intervals).

Furthermore, assume for now that DG < σ0 (so that D = σ0). Then, in the lat-
tice case, F is Minkowski nondegenerate but is not Minkowski measurable. (See
Problem 6.2.35 and the comments surrounding it; see also [KomPeWi], proving a
conjecture of [Lap3] in this case.) In the nonlattice case, F is Minkowski measurable
(see Problem 6.2.35, along with [Gat]).30 Also, in the nonlattice case, the residue of
the tube zeta function ζ̃F at s = D = σ0 is equal to M , the Minkowski content of F ,
whereas in the lattice case, it is equal to M̃ , the average Minkowski content (which
exists and belongs to (0,+∞)). See Remark 6.2.37 below.

30 Recall from Example 4.2.26 and Subsection 5.5.6 that for the inhomogeneous Sierpiński N-
gasket (which is not a self-similar set unless N = 2), DG < σ0 for N = 2, DG = σ0 for N = 3, and
DG >σ0 for every N ≥ 4. See also the illustrative planar Examples 4.2.33, 4.2.34 and 4.2.35 (which
too are not self-similar sets, but are self-similar RFDs and, in fact, are inhomogeneous self-similar
sets, in a suitably generalized sense).
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Moreover, for a general self-similar RFD (F,Ω0) (but not for a self-similar set
F , for which this case cannot arise),31 if we assume instead that DG > σ0 (so that
D = DG),32 then (F,Ω0) is always Minkowski measurable. More interestingly, the
self-similar RFD (F,Ω0) is (strictly subcritically) Minkowski measurable in dimen-
sion σ0, in the sense of footnote 71 at the end of Chapter 5, if and only if it is
nonlattice, and in that case, its (strictly subcritical) σ0-Minkowski content is equal
to the residue of ζ̃F,Ω0 at s = σ0. Also, in the lattice case, (F,Ω0) is (strictly sub-
critically) σ0-Minkowski nonmeasurable (and σ0-Minkowski nondegenerate), with
average (strictly subcritical) σ0-Minkowski content equal to the residue of ζ̃F,Ω0 at
s = σ0.

In the case when DG = σ0 = D, then the self-similar set F is always Minkowski
degenerate with Minkowski content equal to +∞, due to the double pole of ζ̃F at
s=D, but it is also h-Minkowski measurable, where the gauge function h is given by
h(t) := log t−1 for all t ∈ (0,1). Furthermore, its h-Minkowski content is then equal
to ζ̃F [D]−2, the (−2)-nd coefficient in the Laurent series expansion of ζ̃F around
s = D. Still when DG = σ0 (= D), but now for a general self-similar RFD (F,Ω0)
instead of a self-similar set F , exactly the same results are expected to hold, with F
and ζ̃F replaced by (F,Ω0) and ζ̃F,Ω0 , respectively.

Finally, completely analogous statements hold for the distance zeta function ζF

(instead of the tube zeta function ζ̃F ). More specifically, since D < N (as was as-
sumed throughout), its poles (i.e., the associated complex dimensions), are exactly
the same as for the tube zeta function ζ̃F , whereas (when DG < σ0) its residue at
s = D is equal to (N −D)M and (N −D)M̃ , in the nonlattice and lattice case, re-
spectively. (See Theorem 2.2.3, Equation (2.2.4).) And analogously, when DG > σ0

and when DG = σ0.33

Remark 6.2.37. Implicit in the statement of the latter part of Problem 6.2.36 con-
cerning the (ordinary) Minkowski measurability statements is the fact that one could
show that when DG < σ0, the hypotheses of Theorem 2.3.18 and Theorem 2.3.25
are satisfied in the nonlattice and lattice case, respectively. In particular, for a lattice
self-similar set (or, more generally, RFD) F , it would then follow from Theorem
2.3.25 and Corollary 2.3.26 that M∗ = minG and M ∗ = maxG are the values of
the lower and upper Minkowski contents of F , respectively, where G is the periodic
function occurring in the counterpart of Equation (2.3.30). Just as in [Lap-vFr1–3]
(and then in [LapPe3] and [LapPeWi1–2]), this periodic function is determined by
the sequence of (simple) complex dimensions, with maximal real part w1 = D, dis-
tributed in arithmetic progression (along with the associated residues).

31 See the discussion following Problem 6.2.35 and preceding the present one, along with parts (a)
and (b) of Remark 5.5.26.
32 We assume here implicitly that in the case of multiple generators, there are no cancellations.
33 Naturally, in the case of a general self-similar RFD (F,Ω0) instead of a self-similar set F , one
should replace ζF and ζ̃F by ζF,Ω0 and ζ̃F,Ω0 .
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We note in closing this discussion that the results obtained about the principal
complex dimensions of the Sierpiński gasket and the Sierpiński carpet in Subsec-
tion 4.2.3 (on pages 290-305) are consistent with the results conjectured to hold in
Problem 6.2.36.

6.2.3 Future Research Directions

Since the definition of the upper relative box dimension dimB(A,Ω) involves the
function t �→ |At ∩Ω | (see Section 4.1), it is natural to study the problem of find-
ing a tube formula for this function, which we call the relative tube formula of A
with respect to Ω , that is, of the tube At intersected by Ω ; see Chapter 5. It will
be the subject of further investigation by the authors. (See Problem 6.2.38 below,
along with the comments following it, for several concrete research directions in this
area.) The tube formula for t �→ |At | has been extensively studied in [Lap-vFr1–3],
partly motivated by the present theory as well as, in particular, by the earlier work
in [BesTay, Tri3, Lap1–3, LapPo1–3, LapMa1–2, HeLap], and in [LapPe1–3] and
in [LapPeWi1–2] for various classes of fractal sets A.

We plan to apply the methods developed in Section 2.3 to study the meromor-
phic extensions of box-counting zeta functions, recently introduced in a paper of
John Rock with the first and third authors [LapRoŽu], and partly motivated by the
present higher-dimensional theory of complex dimensions and some of its predeces-
sors (including [BesTay, Tri3, Lap1–3, LapPo1–3, LapMa1–2, HeLap, Lap-vFr1–3,
LapPe1–3, LapPeWi1–2]). We expect that many of the results in this book will have
a suitable counterpart in the context of box-counting zeta functions. For example,
we expect that our results about meromorphic extension of geometric zeta func-
tions, obtained in Section 2.3, could be applied to this new class of zeta functions.
The residues of these zeta functions could also be closely related to an appropriate
(but perhaps less geometric) notion of Minkowski content, as in the case of distance
and tube zeta functions. Further related work of John Rock, joint with the first and
third authors, is in preparation on this subject.

We also plan to study the behavior of relative box dimensions and relative zeta
functions with respect to Lipschitz functions between pairs of RFDs.

As we have already mentioned in Subsection 6.2.1 on pages 553–554, it is pos-
sible to consider some parts of our monograph from the point of view of category
theory. It is easy to recognize several related categories, like, for example, the cate-
gory of RFDs, or its subcategory, the category of bounded fractal strings. Some of
the results obtained here can be formulated in the language of category theory. This
and other related questions will be the subject of a future work.

Given a relative fractal drum (A,Ω) in R
N and a suitable weight function

w : Ω → C, one can define the associated weighted relative distance relative zeta
function ζA,Ω ,w, much as in Section 3.4:
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ζA,Ω ,w(s) :=
∫
Ω

d(x,A)s−Nw(x)dx, (6.2.14)

for all s ∈ C with Res sufficiently large. For example, the derivative of a given
relative distance zeta function ζA,Ω , as given by Definition 4.1.1, coincides with the
following weighted relative distance zeta function (see Theorem 4.1.7(a)):

ζA,Ω (s,w) :=
∫
Ω

d(x,A)s−N logd(x,A)dx,

with the weight function defined by w(x) := logd(x,A). In our future work, we plan
to study general properties of weighted relative distance zeta functions as well.

It should also be interesting and useful for the applications to extend the present
theory of distance and tube zeta functions (and their complex dimensions) to met-
ric measure spaces, in which the underlying measure is assumed to be a “doubling
measure” or, better, to satisfy the Ahlfors condition. (Metric measure spaces and
their applications are studied, for example, in [DaMcCS] and the many relevant
references therein.) Working on general metric measure spaces (locally compact
metric spaces equipped with a positive Borel measure satisfying a “doubling con-
dition”) rather than on Euclidean spaces would enable us, in particular, to extend
aspects of the present theory (under appropriate hypotheses) and to establish con-
tact with aspects of geometric analysis on “nonsmooth manifolds” (as, for example,
in [DavSem], [Chee] and the survey article [Hei]), as well as with aspects of anal-
ysis on self-similar (or not necessarily self-similar) fractals (as, for example, in the
monograph by Kigami [Ki1] and in [Lap3–5, KiLap1–2, Ki2–3, ChrIvLap, LapSar]
and the relevant references therein). Some preliminary work in this direction is be-
ing carried out in [Wat, LapWat], where it is shown, in particular, that many of the
general results obtained in this book (including the fractal tube formulas obtained
in Chapter 5) extend to the setting of Ahlfors spaces and where several examples of
nonsmooth metric measures are studied.

Metric measure spaces are also called spaces of homogeneous type, d-sets, or
Ahlfors regular spaces in the literature. We caution the reader that the definitions
of these various notions are not quite equivalent and that the terminology or the
definitions themselves are not always used consistently in the literature. Part of the
problem discussed here will consist in finding the proper definitions and conditions
which will best fit the situation under consideration.

The following open problem (Problem 6.2.38) is motivated by [Lap-vFr3, Chap-
ters 5 and 8], along with [LapPe2–3] and [LapPeWi1–2], as well as, of course, by
the general higher-dimensional fractal tube formulas obtained in Chapter 5 (espe-
cially in Sections 5.1–5.3 and in Subsection 5.5.6). More precisely, recall that in
[Lap-vFr1–2] and [Lap-vFr3, Chapter 8] are obtained (under suitable assumptions)
and used distributional and pointwise fractal tube formulas (with or without error
term) for fractal strings, and, in particular, (pointwise) exact fractal tube formu-
las for self-similar strings (both in the lattice and nonlattice cases). These fractal
tube formulas are expressed in terms of the residues of the underlying geometric
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zeta functions. Moreover, in [LapPe2–3] and [LapPeWi1–2] (partially discussed in
[Lap-vFr3, Section 13.1]), which build on and extend the aforementioned work in
[Lap-vFr1–3], are obtained (under suitable assumptions) and used distributional and
pointwise tube formulas (with or without error terms) for fractal sprays, and, in
particular, (pointwise) exact tube formulas for self-similar sprays or ‘self-similar
tilings’ (both in the lattice and nonlattice cases), where the embedding dimension
N ≥ 1 is arbitrary. (The results in [LapPeWi1–2] also yield fractal tube formulas for
a restricted class of self-similar sets in R

N ; see [LapPeWi2].) These fractal tube for-
mulas are expressed in terms of suitably defined ‘tubular zeta functions’ associated
with the fractal sprays (or the self-similar tilings).34 They involve, in particular, the
residues of ‘scaling zeta functions’ which play, in this more general context, the
role played by the geometric zeta functions of fractal strings. In addition to these
scaling data, the tubular zeta functions, however, involve other geometric data about
the corresponding fractal sprays, such as the ‘curvatures’ of the generators of the
sprays.

The aforementioned results of [LapPe2–3] and [LapPeWi1–2] about fractal tube
formulas for self-similar sprays (discussed in part in [Lap-vFr3, Section 13.1])
have ben significantly extended in Subsection 5.5.6 and [LapRaŽu5], where they
have also been placed within the much more general framework of the (higher-
dimensional) theory of fractal zeta functions and fractal tube formulas developed in
this book. The corresponding general theory of complex dimensions and of (global)
fractal tube formulas should serve as a key guide for addressing the corresponding
problem.

We will state the announced open problem (Problem 6.2.38) in words and hence,
mostly qualitatively (since only future research will tell us what is the precise form
of the sought for local fractal tube formulas). The main point is that we can now
hope to obtain local fractal tube formulas valid (under suitable assumptions) for
a very large class of relative fractal drums in R

N and, in particular, of compact
subsets of RN (where the embedding dimension N ≥ 1 is arbitrary), including self-
similar sets in R

N . Furthermore, in light of the results of Chapter 5 (especially, of
Sections 5.1–5.3), it is natural to expect that they would now be expressed in terms
of the residues of local analogs of the fractal zeta functions introduced in this book,
namely, the distance and tube zeta functions associated with arbitrary RFDs and, in
particular, with bounded subsets of RN .35 At first, because in the present context, it
is the most interesting case, geometrically, the reader may wish to focus on obtaining
and interpreting local fractal tube formulas expressed in terms of suitably defined
local distance zeta functions (in the spirit of Appendix B to the present book). It

34 The ‘tubular zeta functions’ of [LapPe2–3] and [LapPeWi1–2] are not to be mistaken with the
tube zeta functions introduced in this book.
35 For simplicity, we assume here implicitly that the (visible) complex dimensions are simple. In
the general case of possible multiple complex dimensions, the local fractal tube formula should
be expressed as a sum over the (visible) complex dimensions of the residues of suitable expres-
sions involving the corresponding local fractal zeta functions, much as is the case for their global
counterparts obtained in Sections 5.1–5.3.
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should be easy to obtain corresponding fractal tube formulas expressed in terms of
the other fractal zeta functions.36

Finally, we mention that in the process, we expect to establish contact with earlier
tube formulas and their interpretation in terms of curvatures or curvature measures
(in the sense of Federer [Fed1]) associated with integer dimensions. See, especially,
in addition to the original and key reference [Fed1], which has unified into a sin-
gle framework (that of ‘sets of positive reach’) the work of Steiner [Stein] and its
successors (for compact convex sets in R

N) and of Weyl [Wey3] (for smooth com-
pact submanifolds of Euclidean spaces, as described in [BergGos], and in the more
general context of Riemannian manifolds, in [Gra]), the informative book [Schn2]
and the articles [Schn1, Zä1–3], along with [HugLasWeil] (for the case of compact
sets in R

N) and [Wi, WiZä, Zä4–5, KeKom] (for the case of certain self-similar sets
and their self-conformal and random generalizations). Further relevant references
are provided in the introduction of Chapter 5.

Problem 6.2.38. (Local fractal tube formulas and curvatures).

(i) Obtain local forms (in a sense akin to [Fed1]) of the fractal tube formulas
established in Chapter 5 (especially, in Sections 5.1–5.3) for relative fractal drums
(and, in particular, for bounded sets) in R

N . Much as in Chapter 5, these local fractal
tube formulas should be pointwise or distributional, as well as with error term or else
exact (i.e., without error term), depending on the growth assumptions made on the
underlying fractal zeta functions and (when applicable) on the screens used to for-
mulate the results. Also by analogy with Chapter 5 (Sections 5.1–5.3), they should
be expressed in terms of the residues (evaluated at the underlying visible complex
dimensions) of expressions explicitly involving suitably defined local fractal zeta
functions (for instance, local distance, tube or shell zeta functions).37

(ii) In the important special case of simple (visible) poles (for example),38 in-
terpret the coefficients of the (global) fractal tube formulas of Chapter 5 (Sections
5.1–5.3) as ‘fractal curvatures’ associated with each of the complex dimensions of
the relative fractal drum (or bounded set) in R

N . (See problem (iii) just below.)

(iii) Furthermore, under the same assumptions as in part (ii), interpret the coeffi-
cients of the local fractal tube formulas sought for in part (i) of this problem as the
corresponding action (on Borel subsets of RN or on a class of appropriately local-
ized test functions) of suitably defined ‘curvature measures (or distributions)’, again

36 It is likely, however, that exactly as in Chapter 5, it would be easier to first obtain local tube
formulas expressed in terms of the local tube zeta functions (much as in Sections 5.1 and 5.2),
and only then deduce their counterparts expressed in terms of local distance zeta functions (as in
Section 5.3).
37 The ‘local zeta function’ proposed in Appendix B may be helpful in this context, provided
its definition is appropriately modified, for geometric reasons (and by analogy for example, with
[Fed1, Schn2, HugLasWeil, Wi]).
38 This hypothesis is not really necessary but assuming it makes more transparent the analogy with
the classic literature on tube formulas (see, e.g., [Fed1, Schn2]).
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in the spirit of [Fed1].39 Consequently, interpret the ‘fractal curvatures’ of part (ii)
as the total masses (or their smeared analogs) of the above curvature measures (or
distributions).

(iv) Finally, whenever possible, obtain concrete realizations of the various frac-
tal tube formulas obtained in Chapter 5 (especially, in Sections 5.1–5.3), as well as
of the ‘local fractal tube formulas’ [and hence, of the associated fractal curvature
measures (or distributions) and, in particular, of the fractal curvatures] sought for
in part (i) (as well as in parts (ii) and (iii) just above). Do so, for example, in the
case of self-similar sets (see Problem 6.2.36 and part (a) of Remark 5.5.26) and,
in particular, of self-similar sprays or tilings (see, especially, Subsection 5.5.6) as
well as in the case of Julia sets (see also, for instance, the geometric part of Prob-
lem 6.2.32, Problem 6.2.21 and 6.2.22), the Mandelbrot set, limit sets of Fuchsian
and Kleinian groups, conformal fractals, nonlinear and ‘approximately self-similar’
fractals, along with random (or stochastically self-similar) fractals and other random
fractals naturally occurring in mathematics and physics (see also Problem 6.2.25 and
the brief discussion preceding it), without forgetting (for the question concerning
fractal curvatures) the various classes of examples discussed in Section 5.5 from the
point of view of the fractal tube formulas and the associated (geometric) complex
dimensions.

We should caution the reader that Problem 6.2.38 is difficult, especially in the
most interesting case of distance zeta functions. Its investigation and eventual reso-
lution, however, should open new venues in a number of directions:

(a) The further development (and justification) of a theory of complex dimensions
and of the corresponding geometric oscillations, valid (both globally and locally) for
‘arbitrary’ compact sets (or, more generally, RFDs) in R

N , for any N ≥ 1.

(b) The possible interpretation (sought for in parts (ii) and (iii) of Problem
6.2.38) of the coefficients of the (global or local) fractal tube formulas in terms
of (global or local) ‘fractal curvatures’, along the lines suggested in a related con-
text in [Lap-vFr3, Sections 8.2, 12.4, 12.5 and 13.1] as well as in [LapPe3] and
[LapPeWi1], should eventually be connected with the notion of ‘fractal cohomol-
ogy’ conjectured to exist in [Lap-vFr1–3] (see, especially, [Lap-vFr3, Sections 12.4
and 12.5]) and in [Lap6]. In the latter fractal (or complex) cohomology theory, a
suitable finite-dimensional complex Hilbert space is associated with each (visible)
complex dimension (and of dimension equal to the multiplicity of the complex di-
mension). Alternatively, or rather, in addition, to each d ∈R for which the geometric
object under consideration is ‘fractal’ (see the latter part of (c) just below), is associ-
ated a possibly infinite dimensional complex Hilbert space (equal to the direct sum
of the finite-dimensional Hilbert spaces associated to each of the (visible) complex
dimensions with real part d). (See also [Lap6] and the relevant references therein;
see, especially, [Lap9, Lap10, CobLap]40 for the construction of a possible fractal

39 Naturally, the curvature measure associated with a given visible complex dimension should be
a complex measure (or else, a complex-valued distribution).
40 The papers [Lap9, Lap10] may become joint with Tim Cobbler.
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cohomology theory fulfilling these criteria in the context of a suitable class of mero-
morphic functions, including essentially all arithmetic zeta functions, as well as the
scaling zeta functions of all self-similar strings and sprays.)

(c) A general definition of fractality, and especially its justification. More ex-
plicitly, as was discussed in various places in this book (see, e.g., Remark 4.6.24), a
geometric object is said to be fractal if its associated fractal zeta function has at least
one nonreal complex dimension. Furthermore, recall from the discussion in Remark
5.5.15 that given d ∈ R, a geometric object is said to be fractal in dimension d if
it has at least one nonreal complex dimension with real part d. These definitions
could be extended to the local complex dimensions (i.e., the poles of the relevant
local fractal zeta functions) and thereby justified in part by the general local fractal
tube formulas sought for in part (i) of Problem 6.2.38, as well as by their concrete
realizations sought for in a variety of situations in part (iv) of Problem 6.2.38; see
also Problems 6.2.21, 6.2.22 and 6.2.32.

The concrete forms of the global (and local) fractal tube formulas sought for in
part (iv) of Problem 6.2.38 would then further demonstrate the fact that the presence
of geometric oscillations is intimately connected with the notion of fractality. Hence,
for example, according to the answers conjectured in Problem 6.2.36, self-similar
geometries are always fractal (except in the trivial case of N-dimensional cubes,
say). (Compare with the discussion in [Lap-vFr3, Section 12.2].) More specifically,
in the lattice case, they would be fractal for finitely many values of d (no less than
one, but possibly just one), whereas in the nonlattice case, they would be fractal in
dimension d for infinitely many countable values of d, dense in a single interval
or in a finite union of intervals. Similarly, one would expect that Julia sets (except
in the trivial case of circles, for example), the Mandelbrot set, the Cantor curve
(i.e., the ‘devil’s staircase’; see [Lap-vFr3, Subsection 12.1.2]), the Weierstrass–
Mandelbrot curve, the limit sets of Fuchsian and Kleinian groups, chaotic attractors
(in the theory of dynamical systems), approximately self-similar attractors and their
various nonlinear generalizations, stochastically self-similar sets, . . . , to be fractal
in the above sense.41 A difficult challenge consists in actually calculating the visible
poles of the associated fractal zeta functions (that is, the visible complex dimensions
of the fractals under consideration). This is, in part, the object of several of the
open problems stated in Subsection 6.2.2 above within the present significantly more
general context of the theory of fractal zeta functions; see, especially, Problems
6.2.21–6.2.25 along with Problem 6.2.36.

We should add that, just as in [Lap-vFr3, Section 13.4.3], as well as in Sub-
sections 4.6.2 and 4.6.3 above within the significantly more general context of the
theory of fractal zeta functions, we must extend the definition of fractality as fol-
lows: A geometric object (say, an arbitrary bounded subset A of RN) is said to be
fractal if its associated fractal zeta function (ζA or ζ̃A) has a (meromorphic) partial
natural boundary along a screen or else has at least one nonreal (visible) complex

41 We allow here the use of general gauge functions when trying to determine the complex dimen-
sions and the nature of the corresponding oscillations.
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dimension. We point out that according to this refined definition, even a maximal hy-
perfractal would be fractal (see Subsection 4.6.2, including Definition 4.6.23(iii)),
and in a certain way, would be ‘maximally fractal’, since every point of the critical
line {Res = D} is a (nonisolated) singularity of the fractal zeta function.

We plan to further study the spectrum σ(A,Ω) of RFDs (A,Ω) in Euclidean
spaces RN , as well as the associated spectral zeta functions ζ ∗A,Ω , introduced in Sec-
tion 4.3.1. This theory is well understood for N = 1, that is, in the case of fractal
strings; see [Lap1–3], [LapPo1–3], [LapMa1–2], and [Lap-vFr3, esp., Chapters 1, 6
and 9–11]. When N ≥ 2, partial mathematical results are known in the cases where
A = R

N or A = ∂Ω (corresponding to ordinary fractal drums with Neumann or
Dirichlet boundary conditions, respectively). See, for example, [Lap1–3], [LapPo3],
[HeLap], [Lap-vFr3, Section 12.5] and the many relevant references therein, includ-
ing [BroCar, Cae, FlVa, Ger, GerSc, MolVai, vBGilk]. (See Section 4.3 above.)

A challenging problem in this context consists in determining the (visible) spec-
tral complex dimensions (i.e., the visible poles of a nontrivial meromophic contin-
uation, when it exists, of the spectral zeta function ζ ∗A,Ω ) of a variety of interesting
(relative) fractal drums (A,Ω) and to obtain spectral analogues of the (geometric)
fractal tube formulas, sought for in Problem 6.2.38 above. The resulting spectral ‘ex-
plicit formulas’ would express the spectral counting function Nν(μ) as a (typically
countably infinite) sum involving the residues of the spectral zeta function ζ ∗A,Ω . For
practical or physical reasons (and because it is easier, mathematically), one may also
wish to work with other spectral functions, such as the partition function (or trace
of the heat semigroup), instead of the spectral counting function Nν(μ).

In the process of attempting to address this problem, one should naturally be led
to investigate in depth the connections between the spectral zeta function ζ ∗A,Ω of a
relative fractal drum (A,Ω) and the corresponding (relative) fractal zeta functions
(namely, the relative distance and tube zeta functions, ζA,Ω and ζ̃A,Ω ) introduced in
this book.



Appendix A
Tamed Dirichlet-Type Integrals

Abstract The goal of this appendix is to provide several properties and examples
of Dirichlet-type integrals (DTIs) and their natural generalizations (extended DTIs)
in our context, as well as to modify accordingly the relation ∼ (introduced and
used in the book) so that it remains a true equivalence relation on the resulting
space of extended DTIs. At the end of the appendix, we also introduce a notion of
“asymptotic equivalence”, which is no longer a true equivalence relation but allows
more flexibility and, as a result, may potentially be more useful in certain practical
situations. All of the fractal zeta functions studied in this book, along with the classic
arithmetic zeta functions and Dirichlet series and integrals, are shown to be very
special cases of the general DTIs introduced and studied in this appendix.

Key words: Dirichlet type integral (DTI), tamed DTI, extended DTIs, asymptotic
equivalence.

The goal of this appendix is to provide several properties and examples of Dirichlet-
type integrals (DTIs) and their natural generalizations (extended DTIs) in our con-
text, as well as to modify accordingly the relation ∼ so that it remains a true equiv-
alence relation on the resulting space of extended DTIs.

At the end of the appendix (see, especially, Definition A.6.6, along with the com-
ment preceding it and Remark A.6.7), we will also introduce a notion of “asymptotic
equivalence”, which is no longer a true equivalence relation but allows more flexi-
bility and, as a result, may potentially be more useful in certain practical situations.

This appendix shoud be read in conjunction with Subsection 2.1.3.2, which it
complements in a variety of ways. Recall that in that subsection, the notion of DTI
was introduced (albeit not as precisely as here).

All the fractal zeta functions studied in this book, along with the classic arith-
metic zeta functions and Dirichlet series and integrals, are shown to be very special
cases of the general DTIs introduced and studied in this appendix.
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A.1 Local Measures and DTIs

We begin by recalling the notion of local (positive or complex) measure on a given
Hausdorff locally compact space, equipped with its Borel σ -algebra.1 (See [DolFr],
[JohLap], [JohLapNi], [HerLap1–4] and [Lap-vFr3, Chapter 4] for the important
special case where E is an interval of R.) In all of our applications to the various
fractal zeta functions encountered in this book as well as to the modified equivalence
relation to be discussed towards the end of this appendix, E is a subset of some
Euclidean space. For example, in the applications of the theory, we can have E =
[0,+∞), [1,+∞), [0,δ ] for some δ > 0 or else E = Aδ (or even E = Aδ \A), where
Aδ is the δ -neighborhood of a given bounded subset A of RN .

Definition A.1.1. A (positive or complex) local measure μ on E (or a locally
bounded positive or complex Borel measure on E) is a set-function μ : B(E) →
[0,+∞] or μ : B(E) → C whose restriction to B(K), the Borel σ -algebra of an
arbitrary compact subset K of E, is either a bounded positive measure on K (case
of a local positive measure) or is a complex (and hence, bounded) measure on K
(case of a local complex measure). Thus, |μ |(K)<∞ for every compact subset K of
E, where |μ | denotes the total variation measure of μ (see, e.g., [Coh], [Foll] and
[Ru]) defined for each B ∈ B(E) by

|μ |(B) = sup

{
m

∑
k=1

|μ(Bk)|
}
, (A.1.1)

where m ≥ 1 and {Bk}m
k=1 ranges over all finite partitions of B into disjoint measur-

able subsets of E.

The total variation measure |μ | is a local positive measure. Furthermore, if μ
itself is a (local) positive measure, then |μ |= μ . In addition, a positive local measure
on E is nothing but a locally bounded (Borel) measure on E. Moreover, the reason
why (in the case of complex local measures) we have to work with a set-function
that is not a complex measure (in the usual sense) on E but only on its compact
subsets is that, as is well known, an ordinary complex measure is always bounded
(see, e.g., [Coh], [Foll] or [Ru]). We refer to [Coh, Foll, Ru] for the basic results
on measure theory and, in particular, for the theory of standard positive or complex
measures.

We next recall the definition of a Dirichlet-type integral associated with a given
triple (E,ϕ,μ), where μ is a (positive or complex) measure on E and the Borel mea-
surable function ϕ : E →R satisfies ϕ ≥ 0 |μ |-a.e. on E (i.e., |μ |-almost everywhere
on E).2

1 For our own purposes it would be sufficient to assume that E is also separable and metrizable, so
that it has a countable basis of relatively compact open sets.
2 In all but one of the applications of DTIs (or extended DTIs), we have ϕ > 0 |μ|-a.e. an E
(i.e., |μ|({ϕ = 0}) = 0). The one exception is the case of the distance or tube zeta function of a
bounded set A ⊂ R

N , for which we have explained what to do in the main text of the book. (An
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Definition A.1.2. The Dirichlet-type integral (in short, DTI) f = ζE,ϕ,μ associated
with the triple (E,ϕ,μ) as above is given by

f (x) :=
∫

E
ϕ(x)sdμ(x), (A.1.2)

for all s ∈ C with Res sufficiently large, provided f is tamed in the sense of Defini-
tion A.1.3 below.

When f = ζE,ϕ,μ can be meromorphically continued to some connected domain
U ⊆C, we still denote its (unique) meromorphic extension to U in the same way, as
usual. In the sequel, we will write, indifferently, dμ(x) or μ(dx). We will also write
interchangeably ζE,ϕ,η or ζ(E,ϕ,η).

The notion of Dirichlet-type integral is only truly useful for us when the DTI in
question is tamed, in the following sense.

Definition A.1.3. A DTI f = ζ(E,ϕ,μ) (as in Definition A.1.2) is said to be tamed
if there exists a positive and finite constant C = C( f ) such that |μ |({ϕ > C}) = 0;
i.e., if

ϕ ≤C |μ |-a.e. on E. (A.1.3)

We wish to stress the fact that a DTI f = ζE,ϕ,μ is precisely defined only once
the associated triple (E,ϕ,μ) has been specified. Hence, the choice of our notation,
ζE,ϕ,μ .

We next recall from Definition 2.1.8 in Section 2.1 the definition of the abscissa
of convergence D( f ) of a tamed DTI f = ζE,ϕ,μ given by (A.1.2)3:

D( f ) : = inf

{
α ∈ R :

∫
E
ϕ(x)α |μ |(dx)< ∞

}

= inf
{
α ∈ R : ϕ(x)α is μ-integrable

}
.

(A.1.4)

Occasionally, D( f ) = D(ζE,ϕ,μ) is also referred to as the abscissa of absolute
convergence of f = ζE,ϕ,μ , since a measurable function is Lebesgue μ-integrable if
and only if it is absolutely |μ |-integrable, where as before, |μ | is the total variation
measure of μ (defined by (A.1.1) above).

Also as in Section 2.1, the half-plane of convergence of a tamed DTI f = ζE,ϕ,μ ,
denoted by Π( f ), is defined by

Π( f ) := {Res > D( f )}, (A.1.5)

where D( f ) is the abscissa of convergence of f given by (A.1.4) above. Sometimes,
Π( f ) is called the half-plane of absolute convergence of f .

alternative would be to integrate ϕ(x)s on the complement in E of {ϕ = 0} in Equation (A.1.2) of
Definition A.1.2.)
3 The second equality in (A.1.4) holds if (as will always be assumed) the DTI is tamed, in the sense
of Definition A.1.3.
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Using a classic theorem concerning the analyticity of the integrals depending on
a parameter (see Theorem 2.1.47 in Subsection 2.1.3.2, along with the associated
Remark 2.1.49 on page 83), it is easy to show that the tamed DTI f = ζE,ϕ,μ is
holomorphic on Π( f ) = {Res > D( f )}. Hence, Dhol( f )≤ D( f ).

The point of the tameness condition introduced in Definition A.1.3 above is
that under this condition, D( f ) and Π( f ) are always well defined, in the sense
that Π( f ) is the largest open right half-plane {Res > α}, with α ∈ R∪ {±∞},
on which the Lebesgue integral

∫
E ϕ(x)sdμ(x) is convergent (i.e., ζE,ϕ,|μ |(Res) =∫

E ϕ(x)Resd|μ |(x) < ∞) and hence, f (s) = ζE,ϕ,μ(s) is well defined by Equation
(A.1.2) and furthermore, the second equality of Equation (A.1.4) holds.

Theorem A.1.4. If the DTI f = ζE,ϕ,μ is tamed, then D( f ) and Π( f ) are well de-
fined (in the above sense). In particular, f (s) = ζE,ϕ,μ(s) is given by (A.1.2) for
Res > D( f ) and cannot be defined (by a Lebesgue integral) in this manner on any
strictly larger open right half-plane.

Proof. See the proof of Theorem 2.1.45(a) on page 83 in Subsection 2.1.3.2, which
can easily be adapted to the present, more general, situation. ��

A.2 Basic Properties of DTIs

In this section, we show that a (pointwise) product of tamed DTIs is still a tamed
DTI, and examine when the tameness condition is preserved. We also show that a
linear combination of tamed DTIs based on the same underlying pair (E,ϕ) is again
a tamed DTI. In Section A.3, we will use the results of this section regarding prod-
ucts of tamed DTIs, while in the later sections, we will use the results concerning
linear combinations of DTIs.

Theorem A.2.1. The (pointwise) product h = f · g of two tamed DTIs f and g is
again a tamed DTI. (See Corollary A.2.2 below for a more specific statement.)

Proof. Assume that f = ζE,ϕ,μ and g = ζF,ψ,η are the tamed DTIs. We claim that
h = ζE×F,ϕ⊗ψ,μ⊗η , where ϕ⊗ψ : E ×F → C is the tensor product of the functions
ϕ and ψ , defined by (ϕ⊗ψ)(x,y) = ϕ(x)ψ(y) for (x,y) ∈ E ×F , and μ⊗η is the
usual tensor product of the measures μ and η (also called the product measure and
denoted by μ ×η ; see, e.g., [Coh, Foll, Ru] for the latter notion as well as for the
Fubini theorem used below). It can be easily checked that if (as in the case here) μ
and η are local measures on E and F , respectively, then μ⊗η is a local measure on
E ×F . (Recall that B(E ×F) = B(E)⊗B(F).)

We leave it as an exercise to the interested reader to verify (by using Equation
(A.1.1), in particular) that

|μ⊗η | ≤ |μ |⊗ |η |; (A.2.1)

i.e., |μ ⊗η |(B) ≤ (|μ | ⊗ |η |)(B) for every B ∈ B(E ×F). Let us simply mention
that since the rectangles generate the Borel σ -algebra B(E ×F) = B(E)⊗B(F),
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it suffices to check the latter equality for B a rectangle of the form B =C×D, where
C ∈ B(E) and D ∈ B(F). Furthermore, for similar reasons, in the counterpart of
(A.1.1) defining |μ ⊗η |(B), it suffices to take partitions of B = C×D of the form
Cj ×D j, with Cj ∈ B(E) and D j ∈ B(F).

The claim follows from a relatively routine use of the Fubini theorem (for the
Lebesgue integral). Nevertheless, let us give some of the steps involved:

Let s ∈C be such that Res > max{D( f ),D(g)}. Then (since |μ⊗η | ≤ |μ |⊗|η |,
in light of Equation (A.2.1)), we can use Definition A.1.2 and the Fubini–Tonelli
theorem (see [Coh, Foll, Ru]) in order to obtain successively:

ζE×F,ϕ⊗ψ,|μ⊗η |(Res) =
∫

E×F
((ϕ⊗ψ)(x,y))Res(|μ⊗η |)(dx,dy)

≤
∫

E×F
((ϕ(x)ψ(y))Res(|μ |⊗ |η |)(dx,dy)

=
∫

E×F
ϕ(x)Resψ(y)Res(|μ |⊗ |η |)(dx,dy)

=

∫
E
ϕ(x)Res|μ |(dx)

∫
F
ψ(y)Res|η |(dy)

= ζE,ϕ,|μ |(Res)ζF,ψ,|η |(Res)< ∞.

(A.2.2)

(The last inequality follows from the fact that the DTI’s f and g are tamed; see
Theorem 2.1.45(a) on page 81.) We may therefore now apply the classic Fubini
theorem to the integral

∫
E×F

((ϕ⊗ψ)(x,y))Res(μ⊗η)(dx,dy)

to deduce the desired claim. More specifically, let s ∈ C be such that Res >
max{D( f ),D(g)}. Then, we have successively (much as in (A.2.2) above, except
with s instead of Res and μ , η and μ ⊗η instead of |μ |, |η | and |μ ⊗η |, respec-
tively):

h(s) = ζE×F,ϕ⊗ψ,μ⊗η(s)

=
∫

E×F
((ϕ⊗ψ)(x,y))s(μ⊗η)(dx,dy)

=
∫

E×F
ϕ(x)sψ(y)s(μ⊗η)(dx,dy)

=
∫

E
ϕ(x)sμ(dx)

∫
F
ψ(y)sη(dy)

= ζE,ϕ,μ(s)ζF,ψ,η(s) = f (s)g(s),

(A.2.3)

as desired. Note that in (A.2.3), we have used Definition A.1.2 in the second and
fifith equalities, while we have used Fubini’s theorem in the fourth equality.

Observe that the application of the Fubini theorem (see, e.g., [Coh, Ru]) is jus-
tified by the computation and the conclusion of Equation (A.2.2) above (namely,
ζE,ϕ,μ(Res)ζE,ϕ,μ(Res)<∞ for Res > max{D( f ),D(g)}). This proves that f ·g is
a DTI. Further, note that (A.1.4) implies that D(h)≤ max{D( f ),D(g)}.
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To show that the DTI f · g is tamed, recall that, since f and g are tamed DTIs,
then there exist two positive contants Cϕ and Cψ such that 0 ≤ ϕ(x) ≤ Cϕ |μ |-a.e.
on E and 0 ≤ ψ(x)≤Cψ |η |-a.e. on F . It follows immediately that

0 ≤ (ϕ⊗ψ)(x,y) := ϕ(x)ψ(y)≤CϕCψ (A.2.4)

(|μ | ⊗ |η |)-a.e. on E × F , and hence, also (|μ ⊗ η |)-a.e. on E × F (because the
inequality (A.2.1), |μ⊗η | ≤ |μ |⊗ |η |, implies that sets of (|μ |⊗ |η |)-measure zero
are also of |μ⊗η |-measure zero).

Finally, in light of (A.2.4), we see that the DTI h = ζE×F,ϕ⊗ψ,μ⊗η is tamed and
that C(h)≤C( f )C(g).

This completes the proof of the theorem. ��

The following result is really a direct consequence of the proof of Theorem A.2.1.

Corollary A.2.2. If f = ζE,ϕ,μ and g = ζF,ψ,η are tamed DTIs, then their
(pointwise) product f ·g coincides with the DTI ζE×F,ϕ⊗ψ,μ⊗η ,

f ·g = ζE×F,ϕ⊗ψ,μ⊗η , (A.2.5)

and it is also tamed, with C( f g)≤C( f )C(g). Moreover,

D( f ·g)≤ max{D( f ),D(g)}. (A.2.6)

Next, we consider the stability of the class of tamed DTIs under linear combina-
tions. The following simple theorem shows that the class of tamed DTIs associated
with the same underlying pair (E,ϕ) is a vector space.

Theorem A.2.3. The class of tamed DTIs attached to the same pair (E,ϕ) is sta-
ble under linear combinations; i.e., it is a complex vector space. More specifi-
cally, if f := ζE,ϕ,μ and g := ζE,ϕ,η and if α,β ∈ C, then h := α f + βg coin-
cides with the following DTI ζE,ϕ,ν , where ν := αμ +βη .4 Furthermore, D(h) ≤
max{D( f ),D(g)} and h is tamed, with C(h)≤ max{C( f ),C(g)}.

Proof. First, note that clearly, since μ and η are local measures on E, then so is
ν = αμ+βη . Next, for s ∈C such that Res > max{D( f ),D(g)}, it is immediate to
verify that h(s) = ζE,ϕ,ν(s), with ν defined as above (so that |ν | ≤ |α| |μ |+ |β | |η |).
Also,

ζE,ϕ,|ν |(Res)≤ |α|ζE,ϕ,|μ |(Res)+ |β |ζE,ϕ,|η |(Res)< ∞.

Hence, D(h)≤ max{D( f ),D(g)}, as claimed.
Let us next prove that the functions h is tamed, in the sense of Definition A.1.3

above. Since f = ζE,ϕ,μ and g = ζE,ϕ,ν are tamed, there exist two nonnegative con-
stants constant C( f ) and C(g) such that

4 If β = 0, but with g arbitrary, then obviously, we have D(α f )=D( f ) for α 
= 0, and D(α f )=−∞
for α = 0. Hence, the inequality D(h) ≤ max{D( f ),D(g)} may be strict (because D(g) can be
arbitrary).
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0 ≤ ϕ ≤C( f ) |μ |-a.e. on E (A.2.7)

and
0 ≤ ϕ ≤C(g) |μ |-a.e. on E. (A.2.8)

Let us show that

0 ≤ ϕ ≤ max{C( f ),C(g)} |ν |-a.e. on E. (A.2.9)

To this aim, let Tf := {x ∈ E : ϕ(x)>C( f )} and Tg := {x ∈ E : ϕ(x)>C(g)}.
Now, in light of (A.2.7) and (A.2.8), we have |μ |(Tf ) = 0 and |η |(Tg) = 0. There-

fore,
(|α| |μ |+ |β | |η |)(Tf ∩Tg) = 0 (A.2.10)

and hence, since |ν | = |αμ + βη | ≤ |α| |μ |+ |β | |η | (in the sense of positive
measures), we also have |ν |(Tf ∩ Tg) = 0. Since Tf ∩ Tg = {x ∈ E : ϕ(x) > Th},
where Th := max{C( f ),C(g)}, this implies the second inequality in (A.2.9); i.e.,
ϕ ≤ max{C( f ),C(g)} |ν |-a.e. on E and hence, C(h)≤ max{C( f ),C(g)}.

We conclude the proof by establishing the first inequality in (A.2.9). It suffices to
let T := {x ∈ E : ϕ(x)< 0}; so that, due to (A.2.7) and (A.2.8), we have |μ |(T ) =
|η |(T ) = 0. Hence, since 0 ≤ |ν | = |αμ + βη | ≤ |α| |μ |+ |β | |η |, we also have
|ν |(T ) = 0. This statement, in turn, precisely means that 0 ≤ ϕ |ν |-a.e. in E, which
is the sought for first inequality in (A.2.9).

This completes the proof of the theorem. ��

In light of Theorem A.2.3 just above, the following result is of interest. Note that
it suplements large parts of Examples 2.1.40, 2.1.41, 2.1.43 and 2.1.44 in Subsection
2.1.3.2, as well as Lemma 2.2.9. (See also Corollary A.2.7 below.)

In view of part (1) just below, recall that, according to Definition 4.1.2, a relative
fractal drum (A,Ω) is defined as an ordered pair of two subsets A andΩ of RN such
that Ω is open, |Ω |N < ∞ and Ω ⊆ Aδ for some δ > 0.

Furthermore, in view of part (2) below, recall from [Lap-vFr3, Section 4.1] that
a generalized fractal string η is a local (positive or complex) measure on (0,+∞),
which is supported on [x0,+∞) for some x0 > 0. Furthermore, by definition, we have
ζη(s) :=

∫ +∞
0 x−sη(dx) for all s ∈ C with Res sufficiently large.

Proposition A.2.4. All of the fractal zeta functions used in this book are tamed
DTIs.

(1) More specifically, the distance zeta function ζA,Ω and the tube zeta function
ζ̃A,Ω of a relative fractal drum (A,Ω) in R

N are tamed. In particular, for any δ > 0,
this is the case of ζA = ζA,Aδ and ζ̃A = ζ̃A,Aδ , the distance and tube zeta functions of
an arbitrary bounded subset A of RN.

(2) Moreover, if ζL is the geometric zeta function of a bounded fractal string
L = (� j)

∞
j=1, with � j ↓ 0+ as j → ∞, then ζL is a tamed DTI. More generally, the

geometric zeta function ζη of a generalized fractal string η is a tamed DTI.
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Proof. (1) Since ζA,Ω (s) :=
∫
Ω d(x,A)s−Ndx =

∫
Ω d(x,A)sd(x,A)−Ndx for all s ∈C

such that Res > dimB(A,Ω), we can write ζA,Ω (s) as a DTI:

ζA,Ω (s) = ζE,ϕ,μ(s),

where E :=Ω , ϕ(x) := d(x,A) and μ(dx) := d(x,A)−Ndx. This DTI is tamed, since
ϕ(x) ≤ δ for all x ∈ E, where the constant δ > 0 is from the definition of the RFD
(A,Ω), that is, such that Ω ⊆ Aδ .

Similarly, the tube zeta function ζ̃A,Ω (s) :=
∫ δ

0 ts−N−1|At ∩Ω |dt can be written
as a DTI:

ζ̃A,Ω (s) = ζE,ϕ,μ(s),

where E := (0,δ ], ϕ(t) := t and μ(dt) := t−N |At ∩Ω |dt/t. Then, obviously, we
have ϕ(t)≤ δ for all t ∈ E and therefore, ζ̃A,Ω (s) is a tamed DTI.

Note that one could also let E := Ω \A, ϕ(x) := d(x,A) for x ∈ E and ϕ(x) = 0
for x ∈ A, with N as above, in order to define ζA,Ω and ζ̃A,Ω .

(2) Since ζL (s) := ∑∞j=1 �
s
j for all s ∈ C with Res > D(ζL ), we can write the

geometric zeta function of the fractal string L as a DTI:

ζL (s) = ζE,ϕ,μ(s),

where E := [x0,+∞) with x0 := 1/�1, ϕ(x) := 1/x for all x ∈ E, and μ(dx) :=
∑∞j=1 δ1/� j

. The DTI is tamed since ϕ(x) ≤ 1/x0 = �1 for all x ∈ E. Finally, note
that D(ζL ) = D(ζE,ϕ,μ).

The reasoning is similar for ζη , the geometric zeta function of a generalized
fractal string η . Indeed, it is a DTI, since

ζη(s) :=
∫ +∞

x0

x−sη(dx) = ζE,ϕ,μ(s),

where E := [x0,+∞), ϕ(x) := 1/x for all x ∈ E and μ := η . The DTI is tamed,
because ϕ(x)≤ 1/x0 for all x ∈ E. Again, note that D(ζη) = D(ζE,ϕ,μ).

This concludes the proof of the proposition. ��
Remark A.2.5. It is useful to note that the zeta function ζA,Ω of an RFD (A,Ω) in
part (1) of Proposition A.2.4 can be related to another DTI ζF,ψ,η as follows:

ζA,Ω (s) :=
∫
Ω

d(x,A)s−Ndx = ζF,ψ,η(s−N), (A.2.11)

where F := Ω , ψ(x) := d(x,A) and η(dx) := dx is the usual Lebesgue measure
on Ω .

Similarly, the tube zeta function ζ̃A,Ω of an RFD (A,Ω) in part (1) of Proposition
A.2.4 can be related to the following DTI ζF,ψ,η :

ζ̃A,Ω (s) :=
∫ δ

0
ts−N−1|At ∩Ω |dt = ζF,ψ,η(s−N −1), (A.2.12)

where F :=Ω , ψ(x) := t and η(dx) := |At ∩Ω |dx.
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We close this section by stating the following result, which is a consequence of
Theorem 2.1.47 (the classic theorem about the analyticity of an integral depending
holomorphically on a parameter).

Theorem A.2.6. Let f = ζE,ϕ,μ be a tamed DTI, so that D( f ) and Π( f ) are well
defined. Furthermore, assume, for simplicity, that ϕ(x)> 0 for |μ |-a.e. x∈E.5 Then,
f is holomorphic on the half-plane of convergence Π( f ) := {Res > D( f )} and for
all s ∈ C with Res > D( f ), its derivative is given by

f ′(s) =
∫

E
ϕ(x)s logϕ(s)μ(dx) = ζE,ϕ,η(s), (A.2.13)

provided ϕ is μ-essentialy locally bounded away from zero (i.e., for every compact
subset K of E there exists a positive constant cK such that cK ≤ ϕ(x) for |μ |-a.e.
x ∈ K),6,7 where η is the (positive, signed or complex) local measure given by
η(dx) := logϕ(x)μ(dx).

Furthermore, under the same assumptions, the DTI f ′ = ζE,ϕ,η is tamed becasue
the DTI f = ζE,ϕ,μ is tamed. It follows that

Dhol( f )≤ D( f ). (A.2.14)

Note that in Theorem A.2.6, η would be a positive measure if μ were assumed
to be positive and ϕ(x)≥ 1 μ-a.e. on E.

The following result is an immediate consequence of Theorem A.2.6, taking into
account the last two footnotes to the statement of the theorem (specifically, footnotes
6 and 7 on this page).

Corollary A.2.7. Let f = ζE,ϕ,μ be a tamed DTI. Then f is holomorphic on its
half-plane of convergence Π( f ) := {Res > D( f )} and in that half-plane, we have

f ′(s) =
∫

E
ϕ(x)s logϕ(s)μ(dx) =: ζE,ϕ,η(s). (A.2.15)

Furthermore,
Dhol( f )≤ D( f ). (A.2.16)

5 We have seen in Chapter 2 that there are situations where this additional assumption does not
have to be made. For example, in the case of the distance (or the tube) zeta function of a bounded
subset of RN . Note that for the case of ζA, we have ϕ(x) := d(x,A), so that ϕ(x) > 0 |μ|-a.e. is
equivalent to |A|= 0.
6 This additional hypothesis on ϕ is only assumed to guarantee that η is a (that is, locally bounded)
local signed measure, and hence, that f ′ = ζE,ϕ ,η is a bona fide DTI (in the sense of Definition
A.1.2). It is not needed to guarantee that f is holomorphic on {Res > D( f )} and that f ′ is given
by the first equality of (A.2.13); likewise, it is not needed to conclude that the inequality (A.2.14)
holds, namely, that Dhol( f )≤ D( f ).
7 This condition on ϕ is satisfied if ϕ is a continuous function on E. Indeed, on a given compact
subset K of E, it suffices to set cK := minK ϕ . Then, clearly, we have cK > 0.
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Moreover, if f is a continuous function on E, then f ′ = ζE,ϕ,η is a local tamed
DTI, associated with the (positive, signed or complex) local measure η(dx) :=
logϕ(x)μ(dx).

Remark A.2.8. We have seen in Chapter 2 that the inequality (A.2.14) of Theorem
A.2.6 is sharp, in general. For example, under the assumptions of part (c) of The-
orem 2.1.11 and when f is the distance zeta function of a suitable bounded sub-
set of RN , we have Dhol( f ) = D( f ). On the other hand, there are many examples
of tamed DTIs for which Dhol( f ) < D( f ). This is also the case if f is a Dirich-
let L-function with a nontrivial primitive character, which is an ordinary Dirich-
let series with complex coefficients and hence, is a tamed DTI, being the Mellin
transform of a Dirac comb (a weighted countable sum of Dirac measures). Thus
f (s) = L(s,χ) := ∑∞n=1 χ(n)n−s for Res > 1, where the “character” χ is a com-
pletely multiplicative function from Z to the unit circle in the complex plane and is
periodic modulo some integer m≥ 1. (Furthermore, χ 
≡ 1 mod m.) Then, D( f ) = 1
and Dhol( f )≤ 0; see, e.g., [HardWr] and [Ser, Sections VI.2 and VI.3]. If, in addi-
tion, the underlying character χ is primitive, then f = L( · ,χ) is an entire function,
so that Dhol( f ) =−∞whereas D( f ) = 1. (For instance, let f (s) :=∑∞n=1(−1)n−1n−s

for Res > 1; see Equation (2.1.39) in Remark 2.1.29 on page 69.)

A.3 New Examples of DTIs

In Subsection 2.1.3.2, especially in Examples 2.1.40, 2.1.41, 2.1.43 and 2.1.44, we
have given many examples of tamed DTIs, including all of the fractal zeta functions
considered in this book. (See also Proposition A.2.4 above.) The goal of the present
section is to provide new examples of DTIs, of a rather different nature but which,
when combined with a suitable change of variable (see the next section, Section
A.4), will play an important role for the modified equivalence relation defined in
Section A.4 below.

The next result will provide the key step in the proof of the main result of this
section, namely, Theorem A.3.2.

Lemma A.3.1. Let a ∈ C. Then f (s) := 1/(s−a) is a tamed DTI.
More specifically, we have f = ζE,ϕ,μ , where E := [1,+∞), ϕ(x) := 1/x for all

x ∈ E, and μ(dx) := xa−1dx = xadx/x (so that |μ |(dx) = xRea−1dx = xReadx/x).
Furthermore, we have Dmer( f ) =−∞ and8

Dhol( f ) = D( f ) = Rea. (A.3.1)

8 More specifically, the DTI ζE,ϕ ,μ can be meromorphically continued to all of C and ζE,ϕ ,μ (s) =
f (s) := 1/(s−a) for all s ∈ C.
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Proof. A simple computation yields that for all s ∈ C with Res > Rea,

f (s) = ζE,ϕ,μ(s) =
∫ +∞

1
x−s+a−1dx =

xa−s

a− s

∣∣∣+∞
x=1

=
1

a− s
(0−1) =

1
s−a

.

(A.3.2)

Similarly,

f (Res) = ζE,ϕ,|μ |(Res) =
1

Res−Rea
for Res > Rea,

whereas
f (Res) = ζE,ϕ,|μ |(Res) = +∞ for Res ≤ Rea;

indeed, for Res = Rea, ζE,ϕ,μ(Rea) =
∫ +∞

1
dx
x = logx |+∞x=1 =+∞, while for Res <

Rea, ζE,ϕ,μ(Res) = xRea−Res

Rea−Res |
+∞
x=1 = +∞. From the definition of D( f ) given in

(A.1.4), it then follows that D( f ) = D(ζE,ϕ,μ) = Rea.
Also, in light of (A.3.2), we see that f (s) = 1/(s− a), first for Res > Rea and

then, upon anlytic continuation, for all s ∈C. It follows that we also have Dhol( f ) =
Rea since clearly, f = f (s) has a pole at s = a. Therefore, (A.3.1) holds.

Finally, we check that the DTI f = ζE,ϕ,μ is tamed, as claimed. But this is obvious
since as we have seen just above, E := [1,+∞) and ϕ(x) := 1/x for all x ∈ E, so that
ϕ(x)≤ 1 on E. ��

We can now state the main result of this section.

Theorem A.3.2. Let P∈C[X ] be an arbitrary polynomial with complex coefficients.
Then f (s) := 1/P(s) is a tamed DTI. (See Corollary A.3.3 below for a more specific
statement.)

Proof. Without loss of generality, we may assume (for notational simplicity) that P
is a monic polynomial (i.e., its leading coefficient is equal to 1). Denote by n the
degree of P.

Case 1: If n = 0, then P(s)≡ 1, f (s)≡ 1 and hence (since 1 =
∫
[1,+∞) 1sdδ1(x)),

we have f = ζE,ϕ,μ , where E = [1,+∞), ϕ(x) ≡ 1 and μ := δ1, the Dirac measure
concentrated at x = 1. Clearly, f is a tamed DTI, since ϕ(x)≡ 1.

Case 2: Let us now assume that n ≥ 1. Then, by the fundamental theorem of
algebra (and since P is monic), we have that

P(s) =
n

∏
m=1

(s−am),

where the complex numbers a1, . . .an are the roots of P, repeated according to their
multiplicities.
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Therefore, in light of Theorem A.2.1 (according to which a product of tamed
DTIs is again a tamed DTI) and its associated Corollary A.2.2, combined with
Lemma A.3.1 just above (applied repeatedly, that is, n times) we deduce that
f (s) = 1/P(s) is a tamed DTI. More specifically, in light of Lemma A.3.1, we have
that for each m = 1, . . . ,n,

fn(s) :=
1

s− sm
= ζE,ϕ,μm ,

where E := [0,+∞), ϕ(x) := x−1 for x ∈ E and μm(dx) := xam−1dx = xamdx/x.
Hence, according to Theorem A.2.1 and Corollary A.2.2 (applied n times), we have

f (s) =
1

P(s)
=

n

∏
m=1

1
s−am

= ζF,Φ ,μ ,

where F := [1,+∞)n, Φ : F → R, Φ(x1, . . . ,xn) = ϕ(x1) · · ·ϕ(xn) = (x1 · · ·xn)
−1,

μ := μ1 ⊗·· ·⊗μn (so that μ(dx1, . . . ,dxn) = xa1−1
1 dx1 . . .xan−1

n dxn).
Since, obviously, Φ(x1, . . . ,xn) = (x1 · · ·xn)

−1 ≤ 1 for all (x1, . . . ,xn) ∈ F =
[0,+∞)n, the DTI f = ζF,Φ ,μ is tamed.

This completes the proof of the theorem. ��

The following result is really a direct consequence of the proof of Theorem A.3.2
combined (for the last part of Corollary A.3.3) with Theorem A.2.6 (as will be
further explained just after the statement of Corollary A.3.3).

Corollary A.3.3. Let P be a polynomial of degree n ≥ 1. Then, for all s ∈ C, we
have9

f (s) :=
1

P(s)
= ζF,Φ ,μ(s), (A.3.3)

where F := [1,+∞)n, Φ : F → R, Φ(x1, . . . ,xn) = ϕ(x1) · · ·ϕ(xn) := (x1 · · ·xn)
−1

for all (x1, . . . ,xn) ∈ F, and

μ(dx1, . . . ,dxn) := c · xa1−1
1 dx1 . . .x

an−1
n dxn.

10 (A.3.4)

Here, P(s) = cΠ n
m=1(s−am), c 
= 0, c = 1

n! P(n)(0) and a1, . . . ,an ∈ C are the roots
of P (repeated according to their multiplicities). Moreover,

Dhol( f ) = D( f ) = max{Rea1, . . . ,Rean}. (A.3.5)

Finally, for all s ∈ C with Res > D( f ), f is holomorphic with derivative given by
the tamed DTI:

f ′(s) = ζE,Φ ,η(s), (A.3.6)

where η(dx) := logΦ(x)μ(dx) with x := (x1, . . . ,xn) ∈ F := [1,+∞)n.

9 More specifically, the DTI ζF,Φ ,μ can be meromorphically continued to all of C and its analytic
extension coincides with f on all of C; namely, Equation (A.3.3) holds for all s ∈ C.
10 It follows that |μ|(dx1, . . . ,dxn) := |c| · xRea1−1

1 dx1 . . .xRean−1
n dxn.
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We note that the last part of Corollary A.3.3 follows from Corollary A.2.7,
including the last part of that corollary (since Φ(x) = (x1 · · ·xn)

−1 for all x :=
(x1, . . . ,xn) ∈ F is a positive and continuous function on F := [1,+∞)n).

Remark A.3.4. We can use the fact that dx/x is the natural Haar measure on the
multiplicative group (0,+∞) in order to rewrite 1/P(s) in many different, but com-
pletely equivalent ways, as a tamed DTI, assuming n ≥ 1 (as in Corollary A.3.3).
For example, if we make the change of variables (y1, . . . ,yn) = (x−1

1 , . . . ,x−1
n ),

(dy1/y1, . . . ,dyn/yn) = (−dx1/x1, . . . ,−dxn/xn), we obtain (using Corollary A.3.3):

f (s) :=
1

P(s)
= ζF∗,Φ∗,μ∗(s), (A.3.7)

where F∗ := (0,1]n, Φ∗(y1, . . . ,yn) := y1 · · ·yn, and

μ∗(dy1, . . . ,dyn) := cy−a1−1
1 dy1 · · ·y−an−1

n dyn

= cy−a1
1

dy1

y1
· · ·y−an

n
dyn

yn
.

(A.3.8)

Since Φ∗(y)≤ 1 for all y ∈ F∗, the DTI ζF∗,Φ∗,μ∗ is tamed as well.
Of course, many other equivalent ways of rewriting f (s) := 1/P(s) as a tamed

DTI are obtained by applying the change of variable y j = x−1
j to some of the vari-

ables x j ( j ∈ {1, . . . ,n}) but not to others (as well as by permuting the variables in
an arbitrary manner).

A.4 Extended Dirichlet-Type Integrals

In this section, we define the notion of an extended DTI (EDTI, in short) which will
be the key to the modification of the equivalence relation ∼ to be defined in the next
section.

Definition A.4.1. Given r ∈ (0,1), an extended DTI of base r is a function g = g(s)
of the form

g(s) := ζE,ϕ,μ(r
−s) (A.4.1)

where f (s) := ζE,ϕ,μ(s) is a standard DTI (in the sense of Definition A.1.2).

An extended DTI g(s) := ζE,ϕ,μ(r−s) of base r is said to be tamed if the asso-
ciated DTI f (s) := ζE,ϕ,μ(s) enjoys the same property (in the sense of Definition
A.1.3). However, contrary to intuition, the function g(s) is not always holomor-
phic on an open right half-plane of the form {Res > α} with α ∈ R∪{±∞}, as
shown by Proposition A.4.2 below. Moreover, there are examples of extended DTIs
of base r ∈ (0,1) which are not holomorphic on any open right half-plane with
α ∈R∪{−∞} (alternatively, we can write D(g) = Dhol(g) =+∞). In particular, the
right open half-plane Π(g) := {Res > D(g)} of (absolute) convergence of g is then
equal to the empty set.
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Proposition A.4.2. Let g = g(s) be an EDTI with base r ∈ (0,1), generated by a
tamed DTI f := ζE,ϕ,μ , as in Definition A.4.1. Then the following properties hold
(see also Figure A.1):

(a) If D( f )> 0, then g converges (absolutely) for all complex numbers s := x+iy
in the open set Π ′(g)⊂ C defined by the following conditions

x >
logD( f )− logcos

(
(logr−1) · y

)
logr−1

y ∈
⋃
k∈Z

{(
− π

2logr−1 ,
π

2logr−1

)
+

2πk
logr−1

}
.

(A.4.2)

The open set Π ′(g) of absolute convergence of g has countably many open con-
nected components (corresponding to each k ∈ Z) and is contained in the open
right half-plane {

Res >
logD( f )
logr−1

}
. (A.4.3)

In particular, D(g) = +∞ and the boundary of the set Π ′(g) is described by the
following equation:

x =
logD( f )− logcos

(
(logr−1) · y

)
logr−1 , (A.4.4)

where y takes the values indicated in (A.4.2).

(b) If D( f ) < 0, then the convergence set Π ′(g) of the function g = g(s) is de-
scribed by

x <
log |D( f )|− logcos

(
(logr−1) · y+ π

2

)
logr−1

y ∈
⋃
k∈Z

{(
− π

logr−1 ,0
)
+

2πk
logr−1

}
.

(A.4.5)

In particular, D(g) = +∞ and Π ′(g) is contained in the open left half-plane

{
Res <

log |D( f )|
logr−1

}
. (A.4.6)

The boundary of Π ′(g) can be described analogously as in case (a).

(c) If D( f ) = 0, then Π ′(g) is defined by

x ∈ R, y ∈
⋃
k∈Z

{(
− π

2logr−1 ,
π

2logr−1

)
+

2πk
logr−1

}
. (A.4.7)

In particular, D(g) = +∞ and Π ′(g) is equal to the disjoint union of countably
many translation invariant equidistant open horizontal strips of the form R× Ik,
with k ∈Z, where Ik is the (translated) open interval defined between curly brackets
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in (A.4.7).11 The boundary of Π ′(g) is equal to the family of equidistant horizon-
tal lines; it contains the line y = π/(2logr−1) and the distance between any two
consecutive lines in the family is π/(logr−1).

The bounds defining the convergence set Π ′(g) in cases (a), (b) and (c) are
optimal for the class of tamed extended DTIs; i.e., they cannot be improved.

Proof. The condition of absolute convergence of g(s) :=
∫

E ϕ(x)r−s μ(dx) is
∫

E
|ϕ(x)r−s | |μ |(dx) =

∫
E
ϕ(x)r−Res cos((logr−1) Ims)|μ |(dx)< ∞, (A.4.8)

and it is equivalent to
r−x cos

(
(logr−1)y

)
> D, (A.4.9)

where we have let D := D( f ) and s := x+ iy, with x := Res and y := Ims. We
consider the following cases:

(a) If D > 0, then rx < 1
D cos

(
(logr−1)y

)
, that is,

x logr < log
( 1

D
cos

(
(logr−1)y

))
,

and the claim follows by dividing by logr < 0.

(b) If D < 0, then multiplying (A.4.9) by −1 we deduce that

rx|D|>−cos
(
(logr−1)y

)
= cos

(
(logr−1) · y+ π

2

)
.

The claim then follows similarly as in case (a).

(c) If D = 0, then (A.4.9) reduces to cos
(
(logr−1)y

)
> 0 and x ∈ R.

The optimality of the bounds obtained in cases (a), (b) and (c) can be verified
by considering an extended DTI g(s) = f (r−s) generated by a DTI f of the form of
the distance zeta function f := ζA, where A is a maximal hyperfractal (in the sense
of Definition 4.6.23(iii)). Recall that for maximal hyperfractal sets A, the associated
critical line {Res = D(ζA)} consists of nonisolated singularities of ζA. In particular,
ζA does not have a meromorphic extension to a connected open set containing any
given compact subinterval of the critical line {Res = D(ζA)}. The existence of such
sets has been proved in Corollary 4.6.17. In the context of the present proposition, if
the extended DTI g had a meromorphic extension containing a compact connected
subset of the boundary of Π ′(g), then this would imply that f could be meromor-
phically extended to a connected open set containing the corresponding compact
interval on the critical line {Res = D( f )}, which is impossible.

This completes the proof of the proposition. ��

11 In particular, the set Π ′(g) is not contained in any left or right open half-plane of the form
{Res < α} or {Res > α}, respectively, for some α ∈ R.
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Fig. A.1 Typical domains of (absolute) convergence of an EDTI g = g(s) of type II appearing in
cases (a), (b) and (c) of Proposition A.4.2.
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Remark A.4.3. It would be of interest to know if the optimality condition for tamed
extended DTIs g appearing in Proposition A.4.2 is in some sense generic, i.e., satis-
fied for some “large” set of tamed extended DTIs g.

Remark A.4.4. As we have seen in Proposition A.4.2, for any EDTIs h of type II, the
corresponding (absolute) convergence set Π ′(h) is never of the form of a nonempty
open right half-plane. This class of EDTIs of type II includes, for example, the
functions of the form

h(s) :=
ρ(s)

a−b · r−s , (A.4.10)

where a and b are positive real numbers, r ∈ (0,1), and ρ is a nowhere vanishing
entire function. On the other hand, note that a function of the form given in (A.4.10)
appears in the expression of the distance zeta functon ζA of a generalized Cantor
set C(m,a); see Equation (3.1.5) on page 188 appearing in Proposition 3.1.1. In this
case we view the function h defined by (A.4.10) as an EDTI of type I (i.e., as a
geometric zeta function generated by the bounded fractal string L corresponding
to C(m,a)) and according to Proposition 3.1.1, the resulting open right half-plane of
convergence is nontrivial and equal to {Res > log1/a m}. This example shows that
the intersection of the class of EDTIs of type I and of the class of EDTIs of type
II is not empty, and that one must always specify how to view a given EDTI in the
intersection of these two classes.

We are now ready to give the general definition of an extended DTI (also abbre-
viated as an EDTI). As will be explained, we will distinguish between EDTI of type
I (e.g., given by (A.4.11) below) or of type II (e.g., given by (A.4.12) below).

Definition A.4.5. An extended Dirichlet-type integral (in short, an extended DTI or
simply, an EDTI) h = h(s) is of the form

h(s) := ρ(s)ζE,ϕ,μ(s) (A.4.11)

or of the form
h(s) := ρ(s)ζE,ϕ,μ(r

−s), (A.4.12)

where ρ = ρ(s) is a nowhere vanishing entire function and f (s) := ζE,ϕ,μ is a DTI.
More generally, ρ can be a holomorphic function which does not have any zeros
in the given domain U ⊆ C under consideration, where U contains the closed half-
plane {Res ≥ D(ζE,ϕ,μ)}.

Moreover, if the extended DTI is of the form (A.4.11), it is said to be of type I,
and if it is of the form (A.4.12), it is said to be of type II (or of type IIr if one wants
to keep track of the underlying base r).

Finally, if the DTI f (s) := ζE,ϕ,μ(s) is tamed, then the extended DTI (or EDTI)
h(s) is said to be tamed.

The following comments supplement Definition A.4.5 just above:
Given any tamed EDTI h = h(s) of type I (i.e., given by (A.4.11), with f (s) :=

ζE,ϕ,μ(s)), its abscissa of convergence, D(h), is defined by D(h) := D( f ). As shown
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by Proposition A.4.2, in the case of a tamed EDTI of type II, the abscissa of conver-
gence D(h) does not exist as a real number.

Similarly, the half-plane of convergence of h is denoted by Π(h) and defined by
Π(h) := Π( f ) if h is of type I. Clearly, since the function ρ is entire and nonzero,
the tamed EDTI h is then holomorphic on Π(h). Hence, Dhol(h)≤ D(h).

The vertical line {Res = D(h)}, where h is a tamed EDTI of type I, is called the
critical line of h. It coincides with the critical line of f .

Finally, still for a tamed EDTI h = h(s) of type I, since D(h) and Π(h) are well
defined, as explained above, we can define Pc(h) and P(h) in much the same way
as in Definition 2.1.68 (where ζA is replaced by h). More specifically, if h = h(s)
admits a (necessarily unique) meromorphic continuation to a connected open subset
U ⊆ C containing the closed half-plane {Res ≥ D(h)} = Π( f ),12 we denote by
Pc(h) the set of principal complex dimensions of h, that is, the set of poles of h
located on the critical line {Res = D(h)}:

Pc(h) := {ω ∈U : ω is a pole of h and Reω = D(h)}. (A.4.13)

Clearly, Pc(h) does not depend on the choice of the domain U satisfying the above
condition.

Under the same assumptions, we define similarly P(h) = P(h,U), the set of
(visible) complex dimensions of h, relative to U :

P(h) := {ω ∈U : ω is a pole of h}. (A.4.14)

Clearly, P(h) =P(h,U) depends on the choice of U , in general. Also, since the
function ρ in Definition A.4.5 does not have any pole or zero, for any tamed EDTI
of type I (i.e., given as in (A.4.11), with the notation of the first part of Definition
A.4.5), we have

Pc(h) = Pc( f ) and P(h) = P( f ), (A.4.15)

where f (s) := ζE,ϕ,μ(s),
Let us assume that h is a tamed EDTI of type II. As we have seen in Proposition

A.4.2, we always have D(h) = +∞. If there exists an analytic continuation of the
function h such that it is holomorphic on an open right half-plane {Res > α}13 for
some α ∈ R, we can define the abscissa of holomorphic continuation of h by

Dhol(h) := inf{α ∈ R : h is holomorphic on {Res > α}}; (A.4.16)

or equivalently, H (h) := {Res > Dhol(h)}, the half-plane of holomorphic contin-
uation of h, is the largest open right half-plane on which h is holomorphic. We can
also define Π(h) := {Res > D(h)} in the usual way, as the half-plane of (absolute)
convergence of h.

12 Since ρ is nowhere vanishing on U , if h is of type I, this is the case if and only if f = f (s) admits
a meromorphic continuation to U .
13 If no such α exists, we set Dhol(h) = +∞ and hence, H (h) = /0, while if all α can be chosen,
then Dhol(h) =−∞ and so, H (h) = C.
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A.5 Modified Equivalence Relation and Tamed EDTIs

Recall from the discussion following Definition A.4.5 that if h is any tamed extended
DTI of type I, then its abscissa of convergence D(h), half-plane of convergence
Π(h) := {Res<D(h)}, critical line {Res=D(h)}, as well as (under the hypotheses
(ii) of Definition A.5.1 just below), its set of complex principal dimensions, Pc(h),
are well defined.14

We can now modify as follows the definition of the equivalence relation ∼ pro-
vided in Definition 2.1.69 of Subsection 2.1.5.15

Definition A.5.1. Let h1 and h2 be two tamed extended DTIs of type I (or briefly,
tamed EDTIs of type I), as in Definition A.4.5 of Section A.4 above. We say that h1

and h2 are equivalent, and write h1 ∼ h2, if the following three conditions (i)–(iii)
are satisfied:

(i) h1 and h2 have the same abscissa of convergence (assumed to be a real num-
ber): D(h1) = D(h2) (∈ R); call D this common value.

(ii) The functions h1 and h2 admit a necessarily unique meromorphic continua-
tion to a connected open neighborhood U of the closed half-plane {Res ≥ D} (the
closure of their common half-plane of convergence Π :=Π(h1) =Π(h2)).

(iii) Finally, the sets of poles of h1 and h2 on their common critical line {Res =
D} coincide (and have the same multiplicities):

Pc(h1) = Pc(h2), (A.5.1)

where the equality holds between multi-sets (i.e., the multiplicities of the principal
poles are taken into account).

If in addition to the above conditions (i), (ii) and (iii), the functions h1 and h2

are the EDTIs of the form h = ζ(E,ϕ,μ1) and h2 = ζ(E,ϕ,μ2), for the same pair (E,ϕ),
then we write

h1
(E,ϕ)∼ h2, (A.5.2)

and we say that h1 and h2 are (E,ϕ)-equivalent.

As was alluded to earlier, in practice, when we apply the (modified) definition of
the equivalence relation (see Definition A.5.1 above)

h1 ∼ h2, (A.5.3)

the meromorphic function h1 is a fractal zeta function (a tamed extended DTI of
type I), while the function h2 (which gives the “leading beahvior” of h1, to mimick

14 So is P(h) = P(h,U), its set of (visible) complex dimensions, but this is not relevant to our
present discussion.
15 See also Definition A.6.6 in Section A.6 below (along with the text surrounding it, including
Remark A.6.7), for a somewhat different, but potentially also useful, definition of ‘asymptotic
eqivalence’, in the case when the function g is merely assumed to be meromorphic.
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the terminology of the theory of asymptotic expansions) is another tamed extended
DTI of type I but of a ‘simpler’ closed form. Hence, the importance of the Corollary
A.5.1 in the theory developped in the present book, as well as in its companion
research and survey articles [LapRaŽu1–8].

Remark A.5.2. The two definitions of the notion of equivalence ∼ provided in Def-
inition 2.1.69 and Definition A.5.1 are clearly compatible. In fact, the first part of
Definition A.5.1 merely extends Definition 2.1.69 (appearing on page 98) to the case
where both f and g are allowed to be tamed extended DTIs (i.e., EDTIs) of type I.

Finally, it is possible, even likely, that in future applications of the theory of
fractal zeta functions developed in this book and in [LapRaŽu1–8], we will need
to deal with functions g which are no longer tamed EDTIs but are meromorphic
functions of a suitable kind. In that case, we will have to suitably modify Definition
2.1.69 and Definition A.5.1 in order to deal with such a situation; see Definition
A.6.6 and Remark A.6.7 below.

Proposition A.5.3. Let us assume that a and b are nonzero complex numbers and
r ∈ (0,1). Then the function f (s) = 1/(a− brs) coincides (in all of C) with (the
meromorphic continuation of) the tamed DTI ζE,ϕ,μ(s), where (for example) E :=
(1/2,+∞), ϕ(x) := rx for all x ∈ E and

μ(dx) := a−1
∞

∑
k=0

bka−kδk, (A.5.4)

with δk denoting the Dirac measure concentrated at k ∈ N∪{0}. Furthermore, the
abscissa of (absolute) convergence D( f ) is given by

D( f ) =
log(|b|/|a|)

logr−1 . (A.5.5)

Equivalently, the open right half-plane of convergence Π( f ) of f is given by

Π( f ) =
{

Res >
log(|b|/|a|)

logr−1

}
. (A.5.6)

Proof. It suffices to represent the function f as a Dirichlet series, as follows:

f (s) =
1
a
· 1

1−ba−1rs = a−1
∞

∑
k=0

bka−krks, (A.5.7)

Then, clearly, f (s)= ζE,ϕ,μ(s). The largest open set of complex numbers s for which
the series is absolutely convergent is defined by {s ∈ C : |ba−1rs| < 1}, that is, by
(A.5.6). Furthermore, the abscissa of convergence D( f ) of the Dirichlet series is
therefore determined by |b| |a|−1rD( f ) = 1, that is, by (A.5.5). ��

Theorem A.5.4. Assume that a j and b j are nonzero complex numbers and r j ∈
(0,1), where j = 1, . . . ,m. Then the function
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f (s) :=
1

(a1 −b1rs
1) . . .(am −bmrs

m)
(A.5.8)

can be represented as a tamed DTI ζF,ϕ,μ(s), for an explicit choice of (F,ϕ,μ)
specified in the proof.16 Furthermore, the abscissa of convergence of the DTI f is
given by

D( f ) = max
{ log(|b j|/|a j|)

logr−1
j

: j = 1, . . . ,m
}
. (A.5.9)

Proof. From Proposition A.5.3, applied to f j(s) := 1/(a j − b jrs
j) for each j =

1, . . . ,m, we deduce that

f (s) = f1(s) · · · fm(s) = ζ(E1,ϕ1,μ1)(s) · · ·ζ(Em,ϕm,μm)(s),

where (with the notation of (A.5.4) above) for j = 1, . . . ,m, we let

μ j(dx) := a−1
j

∞

∑
k=0

bk
ja

−k
j δk,

E j := E := [1/2,+∞) and ϕ j(x) := rx
j for all x ∈ E j. Now, Theorem A.2.1 and

Corollary A.2.2 imply that f (s) = ζ(F,ϕ,μ)(s), where F := E1×·· ·×Em = Em, ϕ :=
ϕ1 ⊗·· ·⊗ϕm and μ := μ1 ⊗·· ·⊗ μm. This completes the proof of Theorem A.5.4
and specifies its statement. ��

We illustrate Definition A.5.1 in the case of the distance zeta function of the
ternary Cantor set.

Corollary A.5.5. Let ζA be the distance zeta function of the ternary Cantor set
A :=C(1/3), contained in [0,1]:

ζA(s) :=
∫

Aδ
d(x,A)s−1dx, (A.5.10)

where δ is a fixed positive real number. Then

ζA(s)
(E,ϕ)∼ 1

1−2 ·3−s , (A.5.11)

in the sense of the second part of Definition A.5.1, with respect to the connected
open set U := {Res > 0}, where E := Aδ and ϕ(x) := d(x,A) for all x ∈ E.

An analogous claim holds for the generalized Cantor sets A :=C(m,a) introduced
in Definition 3.1.1.

Proof. We assume without loss of generality that δ > 1/6, in which case we obvi-
ously have that Aδ = (−δ ,1+δ ). Then, the distance zeta function h1(s) := ζA(s) is
a tamed DTI which is given by

16 More precisely, the DTI ζF,ϕ ,μ can be meromorphically continued to all of C and its analytic
continuation satisfies ζF,ϕ ,μ (s) = f (s), for all s ∈ C.
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h1(s) :=
2 ·6−s

s(1−2 ·3−s)
+2
δ s

s
. (A.5.12)

(See the second line of Equation (2.1.113) on page 105.) It can be meromorphically
extended to the whole complex plane C, so that (A.5.12) continues to hold for all
s ∈ C. (See the second line of Equation (2.1.113) on page 105.) Note that here,
we have E := Aδ = (−δ ,1+ δ ), ϕ(x) := d(x,A) and μ is the standard Lebesgue
measure on E. We next proceed to show that it is (E,ϕ)-equivalent in the sense of
Definition A.5.1 to the function h2(s) := 1/(1−2 ·3−s).

To this end, note that the function p(s) := 2δ s/s is a DTI which is holomorphic
on U , and that we can represent it as a DTI corresponding to the same underlying
pair (E,ϕ) as above, but with a new measure ν defined by ν(dx) := 2χ[0,1](x) · dx,
where χ[0,1] : E → R is the characteristic function of the interval [0,1]. Therefore,
by Theorem A.2.3, we conclude that the function

2 ·6−s

s(1−2 ·3−s)
= ζA(s)− p(s) (A.5.13)

is also a DTI corresponding to the same pair (E,ϕ). Defining the function ρ(s) :=
2−1s6s, and noting that ρ(s) 
= 0 on U , we obtain upon multiplying the left-hand
side of Equation (A.5.13) by ρ(s) (and noting that this product is equal to h1(s)),
that h1 is (E,ϕ)-equivalent to h2(s) in the sense of the second part of Definition
A.5.1, as desired. ��

A.6 Further Generalizations: Stable Tamed DTIs and EDTIs

Recall that, according to Theorem A.2.1 and Corollary A.2.2, the class of tamed
DTIs is stable under product (i.e., pointwise multiplication), while in light of The-
orem A.2.3 the class of tamed DTIs ζE,ϕ,μ , associated with the same pair (E,ϕ)
[but with variable μ], is stable under (finite, complex) linear combinations. Conse-
quently, it is natural to introduce the following definitions, which extend the defini-
tions of DTIs (Definition A.1.2).

Definition A.6.1. Given a fixed pair (E,ϕ), we denote by E(E,ϕ) the class of all
tamed DTIs ζE,ϕ,μ (with variable μ) associated with (E,ϕ).

It follows from the discussion preceding Definition A.6.1 that E(E,ϕ) is a (com-
plex) vector space. More specifically, according to Theorem A.2.3, for any α,β ∈C,

αζ(E,ϕ,μ) +βζ(E,ϕ,η) = ζ(E,ϕ,ν), (A.6.1)

where ν := αμ+βη . Moreover, in light of Theorem A.2.1 and its corollary (Corol-
lary A.2.2), we have that

E(E,ϕ) ·E(F,ψ) ⊆ E(E×F,ϕ⊗ψ). (A.6.2)
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More specifically, for ζ(E,ϕ,μ) ∈ E (E,ϕ) and ζ(F,ψ,η) ∈ E (F,ψ), we have

ζ(E,ϕ,μ) ·ζ(F,ψ,η) = ζ(E×F,ϕ⊗ψ,μ⊗η) ∈ E(E×F,ϕ⊗ψ). (A.6.3)

In light of (A.6.2) or (A.6.3), the vector space E (E,ϕ) is clearly not an algebra
(i.e., is not stable under products). Therefore, we next imitate a well-known con-
struction in order to obtain an associated algebra A (E,ϕ). Specifically, we let17

A(E,ϕ) :=
∞⊕

n=0

E(En,ϕ⊗n), (A.6.4)

where in (A.6.4), the symbol ⊕ stands for the vector space direct sum, En denotes
the Cartesian product of n copies of E, and ϕ⊗n is the n-fold tensor product of ϕ by
itself; so that

ϕ⊗n(x1, . . . ,xn) := ϕ(x1) · · ·ϕ(xn) (A.6.5)

for all (x1, . . . ,xn) ∈ En.
Reading Equation (A.6.2) in reverse order (that is, from right to left), with

(F,ψ) := (E,ϕ), we see that for all n ∈ N∪{0},

E(E,ϕ) = E ·n
(E,ϕ), (A.6.6)

where
E ·n
(E,ϕ) := E(E,ϕ) · · ·E(E,ϕ)︸ ︷︷ ︸

n times

(A.6.7)

stands for the space of products of n elements of E(E,ϕ). The space A(E,ϕ) is some-
what analogous to the classic Fock space (representing the interactions of n different
particles, for every n ≥ 0 and hence, of countable many particles), of broad use in
quantum mechanics and quantum field theory. (See, e.g., [GliJaf, ItzZube, ReeSim1,
Wein1–2]. Furthermore, essentially by construction, A (E,ϕ) is not only a vector
space but also an algebra (over C). In fact, it is a unital, abelian algebra (with unit
1, the constant DTI identically equal to 1).

We can now introduce the class of tamed, stable, extended DTIs (tamed SEDTIs,
in short), as follows. Given a fixed pair (E,ϕ) as above and a fixed nowhere vanish-
ing entire function ρ , we say that h is a stable, extended DTI of type I (associated
with (E,ϕ) and ρ) if

h := ρn · f , (A.6.8)

for some n ∈ N∪{0} and f ∈ A(E,ϕ). We denote by S
(I)
(E,ϕ),ρ the resulting class of

SEDTIs of type I. (Compare with Definition A.4.5 above.)
Similarly, h := ρn ·g is called an SEDTI (a stable EDTI) of type II if g(s)= f (r−s)

for some n ∈ N∪{0}, f ∈ F(E,ϕ) and r ∈ (0,1). In that case, g is said to be a DTI
of type IIr (as in Definition A.4.5 above) and h is called an SEDTI of type IIr for
that value of r ∈ (0,1). (Compare with Definition A.4.5.) We denote by S

(II)
(E,ϕ),ρ the

17 By definition, 1 is the constant DTI equal to 1 and E (E0,ϕ⊗0) := C ·1 � C.
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resulting class of SEDTIs of class II. (Of course, much as in Definition A.4.5, an
SEDTI is either an SEDTI of type I or an SEDTI of type II. It is implicitly assumed
that we are only talking here about SEDTIs associated with a fixed pair (E,ϕ) and
a function ρ .)

Theorem A.6.2. Each of S
(I)
(E,ϕ),ρ and S

(II)
(E,ϕ),ρ , for a given r ∈ (0,1), is a unital

algebra (over C).

Proof. This follows at once from the definitions and the fact that A(E,ϕ), defined by
Equation (A.6.4), is itself a unital algebra (over C). ��

Example A.6.3. As we have seen in Example A.5.5, for the function defined by
h(s) := 1/(1− 2 · 3−s) on the open right half-plane U := {Res > 0}, we have that

h ∈ S
(I)
(E,ϕ),ρ , with E := (−δ ,1+ δ ), where δ > 0 is fixed and ϕ(x) := d(x,A) for

all x ∈ E, and where A is the ternary Cantor set. Note that ϕ(x)≤ max{δ ,1/6} for
all x ∈ E.

We still assume implicitly that the pair (E,ϕ) and the function ρ are fixed. We are
now able to extend the definition of equivalence ∼ so that it becomes an equivalence
relation on SEDTIs of type I. We do not formally state the definition since it suffices
to substitute SEDTI of type I for EDTI of type I, in the statement of Definition A.5.1
(for the equivalence relation ∼ on the set of EDTIs).

This equivalence relation is probably sufficient for all the applications of interest
in the present theory. In practice, when we write h1 ∼ h2, the function h1 (in the
present counterpart of Definition A.5.1) is a (tamed) fractal zeta function. Recall
from Proposition A.2.4 that essentially without loss of generality, all fractal zeta
functions encountered in the theory can be assumed to be tamed.

Furthermore, in many cases, h2 (also in the counterpart of Definition A.5.1) is
an SEDTI of type IIr, for some r ∈ (0,1) (also associated with (E,ϕ) and ρ). More
specifically, it will be an SEDTI of the following form (for a given r ∈ (0,1)):

h2 := ρng, (A.6.9)

for some n ∈ N∪{0}, g(s) := f (r−s) and

f (s) :=
J

∑
j=1

α j

Pj(s)
, 18 (A.6.10)

where Pj is an arbitrary polynomial (i.e., Pj ∈ C[X ]). Here, we let E := [1,+∞),
ϕ(x) := 1/x for all x ∈ E, and use the fact that according to Theorem A.3.2 and
Corollary A.3.3,

F(s) :=
1

P(s)
, where P ∈ C[X ], (A.6.11)

18 Clearly, the coefficients α j can be replaced by 1, since they can be absorbed into the definition
of the polynomials Pj .
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coincides with the following tamed DTI:

F(s) = ζEn,Φ ,μ(s), (A.6.12)

where En := E ×·· ·×E and Φ := ϕ⊗n with n := degP, so that f (s) ∈ E(En,ϕ⊗n).
With the aforementioned choice of E and ϕ , the pair (E,ϕ) is universal for all

polynomials P and furthermore, the integer n depends only on the degree n.
In closing, we note that the space of the SEDTIs h2 of the form (A.6.9), with f

as in (A.6.10), n ∈ N∪{0}, J ∈ N, α j ∈ C and Pj ∈ C[X ] arbitrary (but for a fixed
ρ and with E := [1,+∞) and ϕ(x) := 1/x for all x ∈ E, as above) is a subalgebra of

the algebra S
(IIr)
(E,ϕ),ρ of stable EDTIs of type IIr.

Similary, the space of SEDTIs of the form k2 = ρn f , where f is as in (A.6.10),
n ∈ N∪{0}, J ∈ N, α j ∈ C and Pj ∈ C[X ] arbitrary (but for a fixed ρ and still with

E := [1,+∞) and ϕ(x) := 1/x for all x ∈ E), is a subalgebra of the algebra S
(I)
(E,ϕ),ρ

of stable EDTIs of type I.

Remark A.6.4. Note that for each j ∈ N,

1
Pj

= ζ
(En j ,ϕ⊗n j ,μ j)

, (A.6.13)

where n j := degPj is as above, and the measure μ j depends on j; more precisely, μ j

depends on the zeros of Pj counted according to their multiplicities (that is, viewed
as a multi-set). (See Theorem A.3.2 and, especially, Corollary A.3.3 along with

Equations (A.3.3) and (A.3.4).) It follows that 1/Pj belongs to E
(I)
(En j ,ϕ⊗n)

. Therefore,

f , as given by (A.6.10), belongs to A
(I)
(E,ϕ) and so, g belongs to A

(II)
(E,ϕ). Consequently,

h2 belongs to S
(IIr)
(E,ϕ),ρ , as claimed.

Remark A.6.5. Strictly speaking, when working with the above SEDTIs (i.e., the
element of S IIr

(E,ϕ)ρ ) of type II, one cannot use, in general, the above extension of
Definition A.5.1. (See, however, the end of the second paragraph of this remark for
a way of viewing a subclass of these SEDTIs as SEDTIs of type I.) The same is not
true for the above SEDTIs of type I (i.e., the elements of S I

(E,ϕ),ρ ).
Another class of SEDTIs of type I of interest in this context consists of functions

h2 of the form h2 = ρn f , where n ∈ N∪{0} and f is given by

f (s) =
J

∑
j=1

α j

(a1, j −b1, jrs
1, j) . . .(am, j −bm, jrs

m, j)
, (A.6.14)

with J ∈N, and for j = 1, . . . ,J, α j ∈C, while for k = 1, . . . ,m j, ak, j, bk, j are nonzero
complex numbers, and rk, j ∈ (0,1). (See Theorem A.5.4 above.) The class of all
such SEDTIs of type I constitutes an algebra. If, furthermore, we assume that rk, j ≡
r, where r ∈ (0,1) is a fixed base, then we obtain a subalgbra of this aforementioned
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algebra. If, in addition, we allow some of the coefficients a j,k to be equal to zero
(which can be easily accommodated), one then obtains the exact same algebra as
S IIr

(E,ϕ)ρ (with (E,ϕ) and ρ as in Remark A.6.4 and the text preceding it), which
can therefore also be viewed as an algebra of SEDTIs of type I, but for different
choices of (E,ϕ) (thanks to Proposition A.5.3 and Theorem A.5.4, combined with
Theorem A.2.1 and Corollary A.2.2).

A possible alternative way of dealing with this latter issue and, more generally,
with EDTIs and SEDTIs of type IIr, for a fixed r ∈ (0,1), would be to make the
change of variable z := rs much as in the theory of zeta functions of varieties over
finite fields (see, e.g, [ParsSh1], [Lap-vFr3] or [Lap6, Appendix B] and the many
relevant references therein) or of geometric zeta functions of lattice self-similar frac-
tal strings (see [Lap-vFr3, Chapters 2 and 3]). In many cases of interest, we could
work with power series in this new variable z and consider their radii of convergence
(instead of the abscissae of convergence of the original EDTIs or SEDTIs of type
II). By necessity of concision, however, we will not consider this possibility here.

In closing this appendix, we mention that in certain current and, likely, future
applications of the theory of fractal zeta functions developed in this book (and in
[LapRaŽu1–8]), we will need to deal with situations in which it is no longer the
case that both of the functions f and g are DTIs (as in Definition 2.1.69 of Section
2.1.5), or even, EDTIs (as in Definition A.6.6 of Section A.5). Typically, f will be
a tamed DTI or more generally, a tamed EDTI, with a suitable meromorphic exten-
sion, whereas g will only be a meromorphic function in an appropriate domain. In
that more general situation, we propose to use the following definition (Definition
A.6.6), which is a suitable modification of Definition A.5.1 (and, a fortiori, of Def-
inition 2.1.69). Strictly speaking, it no longer gives rise to an equivalence relation
(since f and g now belong to different classes of functions), but in this new sense,
the statement that f

asym∼ g still captures appropriately the idea according to which
“ f is asymptotic to g”.

The situation is very analogous, in spirit, to the evaluation of the “leading part”
(g = g(s), in the present case) of a function ( f = f (s), here) in the theory of asymp-
totic expansions. In that situation, the “leading part” g belongs to a scale of typical
functions (describing the possible asymptotic behaviors of the function f in the
given asymptotic limit).

Definition A.6.6. (Asymptotic equivalence). Let f be a tamed EDTI of type I and
let g be a meromorphic function, both defined and assumed to be meromorphic on
a connected open subset U of C containing the closed right half-plane Π( f ) :=
{Res > D( f )}. Then, the function f is said to be asymptotically equivalent to g and

we write f
asym∼ g if the following two conditions (i)–(ii) are satisfied:

(i) The abscissa of (absolute) convergence of f and the abscissa of holomor-
phic continutation of g coincide: D( f ) = Dhol(g) (and is a real number); call D this
common value;19

and

19 Note that this implies thatΠ( f ) =H (g) = {Res > D}; so that g is holomorphic on {Res > D}
and therefore, does not have any poles in this open right half-plane.
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(ii) The poles of f and g located on the convergence critical line of f , which
is also the holomorphy critical line of g, coincide and have the same multiplicities.
More succinctly, and with the notation specified in Equation (A.6.16) below (com-
pare with Equation (A.5.1) in Definition A.5.1 above), we have

f
asym∼ g

def.⇐⇒ D( f ) = Dhol(g) (∈ R) and Pc( f ) = Pc,hol(g), (A.6.15)

where the latter equality hold between multisets. Here, we let

Pc,hol(g) := {ω ∈U : ω is a pole of g and Reω = Dhol(g)}. (A.6.16)

Remark A.6.7. Observe that if g is assumed to be a tamed EDTI, Definition A.6.6
may differ, in general, from its counterpart stated in Definition A.5.1 (or in Defini-
tion 2.1.69 in the special case when g is a tamed DTI). (That is, in general f

asym∼ g
does not imply that f ∼ g, and conversely.) Indeed, recall that there are many DTIs
(and, a fortiori, EDTIs) g for which Dhol(g)< D(g).20 Therefore, strictly speaking,
Definition A.6.6 does not extend Definition 2.1.69 or even Definition A.5.1. How-
ever, this should not cause any problem in practice and seems to provide us with
additional flexibility in the actual and potential applications of the theory.

20 There are also many fractal zeta functions g for which Dhol(g) = D(g) (∈ R); see, for exam-
ple, part (c) of Theorems 2.1.11, 2.2.11 and 4.1.7 (also, part (ii) of Corollary 4.1.10), along with
Theorem 2.1.55 and Corollary 2.1.61.



Appendix B
Local Distance Zeta Functions

Abstract In this appendix, we briefly discuss a topic which should be much further
expanded in future work, because of its potential connections with the fractal tube
formulas of Chapter 5 and their yet to be established local versions, in the general
setting of this monograph. More specifically, we propose a notion of local zeta func-
tion (and the associated notion of local complex dimensions) adapted to our work.
We also illustrate these notions by means of a concrete example.

Key words: local distance zeta function.

In this appendix, we briefly discuss a topic which should be much further expanded
in future work, because of its potential connections with the fractal tube formulas
of Chapter 5 and their yet to be established local versions, in the general setting of
this monograph. (The attentive reader will recognize some analogies with our earlier
discussion of relative fractal sprays in Section 4.2.1; see especially, Theorem 4.1.44
and Remark 4.1.45.)

Definition B.0.1. (Local distance zeta function). Let A be an arbitrary bounded
Borel subset of RN , where δ > 0 is fixed. Then, its local distance zeta function ZA

is given by the family of relative distance zeta functions {ζA,Ω : Ω ∈ B}, where
Ω runs through the class B = B(Aδ ) of Borel subsets of Aδ . Note that up to now,
relative distance zeta functions were only considered for open subsets Ω of RN , but
there is no reason not to assume Ω to be an arbitrary Borel subset of Aδ .

Remark B.0.2. Later on (in Definition B.0.5), we will refine and revisit Defini-
tion B.0.1. Indeed, we will then define and view ZA, the local distance zeta func-
tion of A, as a suitable zeta function-valued complex Borel measure. See Defini-
tion B.0.5, along with Corollary B.0.4 which fully justifies it.

Theorem B.0.3. Let A ⊆ R
N be bounded. Let {Ω j}∞j=1 be an arbitrary Borel parti-

tion of Ω ∈B (i.e., Ω j ∈B for all j ≥ 1, Ω j ∩Ωk = /0 for j 
= k and Ω = ∪∞j=1Ω j).

Then, for all s ∈ C with s > dimBA, we have that
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606 B Local Distance Zeta Functions

ζA,Ω (s) =
∞

∑
j=1
ζA,Ω j(s), (B.0.1)

where the series is absolutely convergent (and hence, convergent) in C, and in the
special case where s is real, is a series with nonnegative terms having a finite sum.

Proof. This is an immediate consequence of Theorem 4.1.44 and Remark 4.1.45, in
the special case where A j =A for all j ≥ 1 (in the notation of that theorem).1 The fact
that now, the sets Ω j are Borel (rather than open) subsets of Aδ (or, more precisely,
of some δ -neighborhood Aδ of A) does not affect the proof in any way. Finally, note
that clearly, dimBA ≥ dimB(A,Ω), provided Ω ⊆ Aδ for some δ > 0. ��

Corollary B.0.4. Let A ⊂ R
N be an arbitrary bounded set, and let PA denote the

half-plane {Res > dimBA} of holomorphic convergence of ζA,Ω . Then, the map

Ω ∈ B �→ ζA,Ω ∈ Hol(PA,)

is a Hol(PA)-valued complex Borel measure, where Hol(PA) denotes the space of
holomorphic functions equipped with the topology of local uniform convergence on
PA (i.e., uniform convergence on all the compact subsets of PA).

Proof. It suffices to double-check that in the conclusion of Theorem B.0.3 (i.e., in
Equation (B.0.1)), the convergence holds not only pointwise for Res > dimBA but
also locally uniformly on PA. To easily verify this, it also clearly suffices to show that
the series in (B.0.1) converges uniformly on vertical strips of the form β ≥ Res ≥
α > dimBA, where α,β ∈ R are otherwise arbitrary. If we assume, without loss of
generality, that δ ≤ 1, this last claim follows from the following computation, valid
for all s ∈ C in a strip of the above type (and for p,q ∈ N, with q ≥ p):

q

∑
j=p

∣∣∣ζA,Ω j(s)
∣∣∣=

q

∑
j=p

∣∣∣∣
∫
Ω j

d(x,A)s−N dx

∣∣∣∣

≤
q

∑
j=p

∫
Ω j

d(x,A)Res−N dx

≤
q

∑
j=p

∫
Ω j

d(x,A)α−N dx → 0 as p,q → ∞,

(B.0.2)

since α > dimBA and by Theorem 4.1.44, the numerical series (of nonnegative
terms)

∞

∑
j=1

∫
Ω j

d(x,A)α−N dx =
∞

∑
j=1
ζA,Ω j(α,)

converges (to ζA,Ω (α)) and therefore satisfies the Cauchy criterion. It follows that
the series of holomorphic functions ∑∞j=1 ζA,Ω j satisfies the Cauchy criterion for

1 Note that still in the notation of Theorem 4.1.44, condition (4.1.52) is then automatically satisfied.
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uniform convergence in the strip {α ≤ Res ≤ β}, as desired. Consequently, it is
also convergent in that strip, and hence, locally uniformly convergent on PA. ��

As was suggested in Remark B.0.2, we can now use Corollary B.0.4 to give
a more satisfactory definition of the notion of local distance zeta function in our
context.

Definition B.0.5. (Local distance zeta function, revisited). Let A be a bounded sub-
set of RN . Then the zeta function-valued complex Borel measure on Aδ , for some
fixed δ > 0, obtained in Corollary B.0.4, is called the local distance zeta function of
A and is denoted by ZA.

Let us now assume that Ω is a fixed Borel subset of R
N (not necessarily of

finite volume) and x ∈ Ω . Our aim is to consider the fractal properties of Ω near
x, using relative zeta functions. To this end, we consider the local distance zeta
function of Ω at x, defined as the zeta function of the relative fractal drum (A :=
Br(x),Br+δ (x)∩Ω), where δ > 0 is fixed:

ζx,Ω (s) :=
∫

Br+δ (x)∩Ω
d(y,Br(x))

s−N dy. (B.0.3)

Note that Br+δ (x) is the δ -neighborhood of A := Br(x). Furthermore, we assume
that |Ω |> 0, since otherwise ζx,Ω (s)≡ 0 for all s ∈ C such that Res > N.

The local tube zeta function of the set Ω at x ∈Ω is defined by

ζ̃x,Ω (x) :=
∫ δ

0
ts−N−1|Br+t(x)∩Ω |dt. (B.0.4)

Example B.0.6. Let us consider the case when Ω := R
N . Since R

N is homogeneous
and translation invariant, it is clear that the local complex dimensions of RN (gener-
ated by the local distance zeta function ζx,RN (s)) do not depend on x (as well as on r
and δ ). In light of Equation (B.0.3), the local distance zeta function of RN computed
at x = 0 is then obtained as follows (for any fixed r > 0 and δ > 0):

ζ0,RN (s) =
∫
{r<|y|<r+δ}

(|y|− r)s−Ndy

= NωN

∫ r+δ

r
(ρ− r)s−NρN−1dρ

= NωN

∫ δ

0
ts−N(t + r)N−1dt

= NωN

∫ δ

0
ts−N

N

∑
k=0

(
N −1

k

)
tN−1−krkdt

= NωN

N−1

∑
k=1

(
N −1

k

)
rkδ s−k

s− k
.

(B.0.5)
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By analytic continuation, we deduce that ζ0,RN can be meromorphically continued
to all of C and that, for all s ∈ C,

ζ0,RN (s) = NωN

N−1

∑
k=1

(
N −1

k

)
rkδ s−k

s− k
. (B.0.6)

Therefore, the set of local complex dimensions of RN , generated by the local dis-
tance zeta function, is given by

dimlocR
N = {0,1, . . . ,N −1}. (B.0.7)

Furthermore, we have res(ζ0,RN ,k) = NωN
(N−1

k

)
rk for each k ∈ {0,1, . . . ,N −1}.

Similarly, for A := Br(0)c = R
N \BR(0) and δ ∈ (0,r), we obtain that

ζ0,RN (s) := ζA,RN (s) =
∫
{r−δ<|y|<r}

(r−|y|)s−Ndy

= NωN

∫ r

r−ρ
(ρ− r)s−NρN−1dρ

=
∫ δ

0
ts−N(r− t)N−1dt =

N−1

∑
k=1

(
N −1

k

)
rN−1−k δ s−N+k+1

s−N − k+1
.

(B.0.8)

Upon analytic continuation, we conclude that ζ0,RN (s) can be meromorphically con-
tinued to all of C and that

ζ0,RN (s) =
N−1

∑
k=1

(
N −1

k

)
rN−1−k δ s−N+k+1

s−N − k+1
, (B.0.9)

for all s ∈ C. It then follows, much as above, that the set of complex dimensions
generated by the local distance zeta function (with respect to A := Br(0)c) is again
given by dimlocR

N = {0,1, . . . ,N −1}.

On the other hand, by using Equation (B.0.4), we deduce after a short computa-
tion that

ζ̃x,RN (s) =
∫ δ

0
tN−s−1|Br+t(x)∩Ω |dt =

∫ δ

0
tN−s−1ωN(r+ t)N dt

= ωN

N

∑
k=0

(
N
k

)
rk

∫ δ

0
ts−k−1 dt = ωN

N

∑
k=0

(
N
k

)
rkδ s−k

s− k
,

(B.0.10)

for all s ∈C such that Res > N. In light of the principle of analytic continuation, we
conclude that ζ̃x,RN (s) can be meromorphically continued to all of C and that

ζ̃x,RN (s) = ωN

N

∑
k=0

(
N
k

)
rkδ s−k

s− k
, (B.0.11)
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for all s ∈ C. Therefore, the set of complex dimensions generated by the local tube
zeta function ζ̃x,RN (s) is given by

dimlocR
N = {0,1, . . . ,N}. (B.0.12)

(See also [LapRaŽu7, Exercise 5.22].) Remarkably, this result is, of course, in com-
plete agreement with what one would expect, intuitively. It therefore seems to indi-
cate that the local tube zeta function ζ̃x,RN (s) is a more suitable tool for the compu-
tation of local complex dimensions than the local distance zeta function ζx,RN (s).



Appendix C
Distance Zeta Functions and Principal Complex
Dimensions of RFDs

Abstract In this appendix, we review in a table form some of the basic relative
fractal drums (A,Ω) in R

N appearing in this monograph, as well as the associated
relative distance zeta functions:

ζA,Ω (s) :=
∫
Ω

d(x,A)s−Ndx.

For a given relative fractal drum, we also indicate the corresponding set of principal
complex dimensions dimPC(A,Ω). Recall that this set is defined as the set of poles
of ζA,Ω located on the critical line {Res = dimB(A,Ω)}, provided there exists a
meromophic extension of ζA,Ω to a connected open neighborhood of the critical
line (this assumption is fulfilled for all relative fractal drums in the table):

dimPC(A,Ω) = Pc(A,Ω).

Key words: relative fractal drum (RFD), relative distance zeta function, basic
RFDs, complex dimensions of RFDs.

In this appendix, we review some of the basic relative fractal drums (A,Ω) in R
N

appearing in this monograph (see Table C.1), as well as the associated relative dis-
tance zeta functions:

ζA,Ω (s) :=
∫
Ω

d(x,A)s−Ndx.

For a given relative fractal drum, we also indicate the corresponding set of prin-
cipal complex dimensions dimPC(A,Ω). Recall that this set is defined as the set of
poles of ζA,Ω located on the critical line {Res = dimB(A,Ω)}, provided there exists
a meromophic extension of ζA,Ω to a connected open neighborhood of the critical
line (this assumption is fulfilled for all relative fractal drums in the table):

dimPC(A,Ω) = Pc(A,Ω).
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612 C Distance Zeta Functions and Principal Complex Dimensions of RFDs

For some of the relative fractal drums listed in Table C.1 we have to impose a
number of natural conditions, but we do not mention them explicitly. For example,
in the case of the generalized Cantor set A = C(m,a), viewed as the relative fractal
drum with respect to the unit interval Ω = (0,1), the constant m is assumed to be an
integer larger than 1 and a is a positive real number such that a< 1/m; see Definition
3.1.1 on page 186.

In order to save space, we have used the self-explanatory symbols � for an equi-
lateral triangle, � for the square (both viewed as subsets of R2), and � and � for
their respective boundaries. Furthermore, any angle θ is expressed in radians and is
assumed to be contained in the interval [0,2π].

By Sector(0,θ ,δ ), we mean a planar sector with vertex at the origin 0 ∈ R
2, of

radius δ > 0 and opening angle θ :

Sector(0,θ ,δ ) = {(r,ϕ) ∈ R
2 : 0 ≤ r < δ , 0 ≤ ϕ ≤ θ} ⊂ Bδ (0).

Here, we have denoted by (r,ϕ) the polar coordinates of a point in the plane.

Remark C.0.1. In the case of the Sierpiński 3-gasket appearing in Table C.1 above
(see also Example 4.2.26 on page 294–303), the relative Minkowski dimension D =
2 has multiplicity two (as a pole of ζA,Ω ), whereas all the other complex dimensions
are simple.

Remark C.0.2. The set of complex dimensions generated by the local tube zeta func-
tion ζ̃x,RN (s) is given by dimlocR

N = {0,1, . . . ,N}; see Equation (B.0.12) at the end
of Appendix B and the discussion preceding it.
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R
N A Ω ζA,Ω (s) dimPC(A,Ω)

R {0} (0,δ )
δ s

s
0

R
2 {(0,0)} Bδ ((0,0)) 2π

δ s

s
0

R
2 {(0,0)} Sector(0,θ ,δ ) θ

δ s

s
0

R
N {0} Bδ (0) NωN

δ s

s
0

R
2 vertices of � �= (0,1)2 8

2ss

∫ π/4

0
cos−sϕ dϕ 0

R
N ∂Bδ (0)

p. 128

Bδ (0) NωNδ s
N−1

∑
j=0

(
N −1

j

)
(−1)N− j−1

s− j
N −1

R C(1/3)

the ternary Cantor set, p. 105
(0,1)

2 ·6−s

s(1−2 ·3−s)
log3 2+

2π
log3

iZ

R

C(m,a)

generalized Cantor set, p. 188
m≥2, 0<a<1/m

(0,1)

(
1−ma

2(m−1)

)s−1 1−ma
s(1−mas)

log1/a m+
2π

log(1/a)
iZ

R { j−a : j ≥ 1}
a-string, p. 151

(0,1)
∞

∑
j=1

( j−a − ( j+1)−a)s 1
1+a

R
2 {(0,0)}

p. 256

{(x,y) : x ∈ (0,1), 0 < y < x−α}
α∈(0,1)

1
s−α − 1

s−α−1
1+α

R
2 (0,a)×{0} (0,a)× (0,δ )

aδ s−1

s−1
1

R
2 �= ∂ (�)

p. 292

equilateral triangle
� of side a 6

(
√

3)1−s

s(s−1)

( a
2

)s
1

R
2 �= ∂ (�)

p. 206

�= (0,a)2 8
s(s−1)

( a
2

)s
1
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(The table is continued from the preceding page.)

R
N A Ω ζA,Ω (s) dimPC(A,Ω)

R
2

fractal nest of center type:
{(r,ϕ) : r = k−α , k ∈ N}
α ∈ (0,1), p. 224

B1((0,0)) ∼
∞

∑
k=1

k1−(α+1)s 2
1+α

R
2

fractal nest of outer type:
{(r,ϕ) : r = 1− k−α , k ∈ N}

α > 0, p. 227
B1((0,0)) ∼

∞

∑
k=1

k(α+1)(1−s) 2+α
1+α

R
2

geometric (α ,β )-chirp:
∞⋃

k=1

{k−1/β }× (0,k−α/β )

0 < α < β , p. 229

(0,1)2 ∼
∞

∑
k=1

k
(

1+ 1
β

)
(1−s)− α

β 2− 1+α
1+β

R
2 Sierpiński carpet

p. 204

unit square � ∼ 1
3s −8

log3 8+
2π

log3
iZ

R
2 Sierpiński gasket

p. 208

equilateral triangle

� of side 1

∼ 1
2s −3

log2 3+
2π

log2
iZ

R
3 inhomogeneous 3-gasket

pp. 294–303

tetrahedron (3-simplex) ∼ 1
(s−2)(2s −4)

2+
2π

log2
iZ

R
N inhomogeneous N-gasket

N ≥ 4, pp. 294–303

N-simplex ∼ 1
s− (N −1)

N −1

R
N Sierpiński N-carpet

N ≥ 1, pp. 294–303

N-cube (0,1)N ∼ 1
3s − (3N −1)

log3(3
N −1)+

2π
log3

iZ

R
2 {(0,0)}

p. 262

{(x,y) ∈ (0,1)×R : 0 < y < xα}
α>1

∫
Ω
(
√

x2 + y2)s−2dxdy 1−α < 0

R
2 {(0,0)}

p. 265

{(x,y) ∈ (0,1)×R : 0 < y < e−1/x}
∫
Ω
(
√

x2 + y2)s−2dxdy −∞

Table C.1 Table of relative distance zeta functions of some relative fractal drums. All undeter-
mined constants (for example, a, b, δ , etc.) appearing in the table are asumed to be positive.
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icated to Christophe Soulé on the occasion of his 60th birthday.] (Also: e-print,
arXiv:1305.3933v1 [math-NT], 2013; IHES preprint, IHES/M/13/12,
2013.)

[HerLap5] H. Herichi and M. L. Lapidus, Quantized Riemann zeta functions: Its operator-
valued Dirichlet series, Euler product and analytic continuation, in preparation,
2016.
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Fields, Trends in Mathematics, Birkhäuser/Springer, New York, 2013, pp. 161–
191.

[OlSni] L. Olsen and N. Snigireva, Lq spectra and Rényi dimensions of in-homogeneous
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[Ra1] G. Radunović, Fractal Analysis of Unbounded Sets in Euclidean Spaces and
Lapidus Zeta Functions, Ph. D. Thesis, University of Zagreb, Croatia, 2015.



Bibliography 629
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156, 324, 393, 415, 472
gauge function, 22, 25, 29, 63, 156,

222, 224, 239, 297–303, 310,
317, 352, 352, 355, 389,
473, 475, 478, 502, 509, 534, 544,
545, 544–545, 549, 550, 552,
556, 559, 560, 564, 569, 575

of a bounded subset A of RN , 545
gauge function h, 25
gauge Minkowski measurability, 478,

502
gauge relative Minkowski content

M D(A,Ω ,h), see also
h-Minkowski content, 297, 352,
475, 509, 544, 544, 549

Gel’fond–Schneider theorem, 192,
196, 197

generalized Bernoulli polynomial, 472
generalized Cantor set, 20, 172

lacunarity, 117
with one parameter, C(a), 105,

115, 116, 131, 360, 369
with two parameters, C(m,a),

187, 373, 378, 379, 384, 388
generalized fractal string, 248
generalized function, 429
generalized two-parameter Cantor

string, 191
generator

of a fractal nest, 228
of a fractal spray, 214, 222
of a relative fractal spray, 273
of a self-similar spray or tiling, 282,

525, 526
monophase, 513, 524, 530–532
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pluriphase, 468, 514,
524, 525, 531, 532

generic nonlattice self-similar string,
500

geometric and spectral densities of
states of a fractal string, 437

geometric chirp, 229–234, 346
unbounded, 344, 345, 509

geometric counting function, 69
geometric density of (volume) states of

an RFD (A,Ω), 431, 437
geometric inversion of a subset A of RN ,

347
geometric oscillations, 318, 515,

517, 519, 523, 574, 575
of leading order, 499

geometric realization Ω = ∪∞j=1I j of a
fractal string L , 87, 92, 144, 318,
467, 469, 485, 521

as an RFD, 144, 485, 491
canonical, 88, 92, 93, 144, 318

geometric representation AL of a fractal
string L

canonical, 89
geometric zeta function, see also

Dirichlet series (and integrals),
see also fractal zeta function

of a fractal string, ζL , 22, 45, 87,
94, 99, 105, 116, 145, 151,
153, 159, 165, 167–169, 268,
321, 547, 570–572

connection with the spectral zeta
function, 321

of the a-string, 151
uniqueness, 75

of a generalized fractal string, ζη , 248
golden mean, 489
grand Lebesgue space, 218

H
h-Minkowski content, 297, 310,

317, 475, 478, 517, 522, 545
h-Minkowski measurable set, 297, 310,

317, 318, 352, 353–355,

473, 478, 517, 522, 523, 534, 545,
564, 565, 569

h-Minkowski nondegenerate, 222, 478,
545, 565

Haar measure, 118, 178, 589
Hadamard theorem, 70
half-plane of

(absolute) convergence, Π( f ), 21,
56, 58, 69, 77, 85, 100, 121, 332

of a tamed DTI, 579
holomorphic continuation, H ( f ),

21, 56, 64, 65, 72, 85, 94, 332
meromorphic continuation, Mer( f ),

85, 85, 169, 172, 367, 560
half-plane of convergence, 579
harmonic (or Riemann) string,

L = ( j−1) j≥1, 145
harmonic function, 221–222
Hausdorff

dimension, xiii, 100,
186, 187, 221, 222

measure, 54, 142, 225, 269
metric, 109, 117, 188, 367

Hausdorff metric, 26
heat semigroup, 327
history of fractal dimensions, 3,

546–552
Hölder continuity, 258, 556
Hölder’s inequality, 217, 219
holomorphic natural boundary, see

natural boundary (holomorphic)
holomorphicity, 57, 58, 81, 82,

85, 88–90, 94, 96–98, 100,
103, 104, 113, 119, 121, 142,
146, 169, 171, 174, 176, 189,
218–220, 222, 238, 249, 250,
258, 261, 262, 268, 269, 345,
366, 384, 558

of H(s) =
∫

E f (s, t)dμ(t), 82
of Dirichlet-type integrals
ζϕ(s) =

∫
E ϕ(x)sdμ(x), 81

of fractal zeta functions, ζL , 75
holomorphy critical line, see critical line

of holomorphic continuation, 94
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homogeneity
of Minkowski contents

of a bounded set A, 35, 542
of a relative fractal drum (A,Ω),

377
of the oscillatory amplitude of a set,

542
hyperfractal, 22, 246, 350, 382,

386, 499, 559–561
maximal, 29, 65, 86, 120, 246, 336,

350, 373, 377, 384, 386, 559, 576
in Euclidean space R

N , 389
strong, 65, 386, 560

I
IFS, see iterated function system, 308
incomplete beta function, 404
infinitesimal shift, 549
∞-quasiperiodic, see quasiperiodic (of

infinite order)
inhomogeneous

Sierpiński
N-gasket RFD in R

N , 296
N-gasket in R

N , 294, 296
inhomogeneous (or nonhomogeneous)

set, 109, 298, 550
self-affine, 26, 109
self-similar, 109, 291, 550

inner ε-neighborhood of ∂Ω , i.e.,
(∂Ω)ε ∩Ω , 92

inner boundary of a fractal string, 234
inner Minkowski dimension (of a fractal

drum), 87, 250, 331, 343
inradius of the open set G, 513
integer complex dimensions (or integer

dimensions), 530, 563
intrinsic oscillations of fractals, xiii,

6, 23, 515, 517, 520
intrinsic volumes of A, 409
inverse spectral problem for fractal

strings, 547–549
isolated singularity, 36, 38, 282

essential, 37, 214, 215, 281, 282,
288, 289

pole, 37, 101, 114, 115, 119,
125, 126, 145, 148, 152, 156,
165, 170, 171, 177, 191

removable, 36
isometry of RN , 291
iterated function system or IFS, 308
iterated logarithm, 560
iterated relative fractal spray, 279

J
Jacobian, 232
Julia set, 29, 96, 343, 559, 562, 575

K
Kleinian group, 29, 559, 560, 575
Koch (or von Koch)

curve, 343, 537, 559
drum, 562
snowflake curve, 343, 537, 559

Koch tiling, 515

L
Λ -sprayable relative fractal drum, 285
lacunarity, 117, 542
Landau’s theorem, 176
languid relative fractal drum, see also

d-languid, 412, 413, 414, 423,
429, 431, 436, 439, 444–446,
449, 450, 461–464,
467, 468, 471–473, 478, 485, 486,
506, 512, 533

strongly, 412, 413,
413, 414, 418, 419, 421, 424,
426, 427, 434–436,
444–451, 461, 462, 465, 468, 470,
480–482, 485–490, 493, 498, 504,
513–515, 518, 519, 521, 532

languidity, 96, 412, 413, 414, 418,
423, 444–446, 449, 461, 462,
464, 465, 467, 471, 472, 488,
504, 506, 512, 533

strong, 413, 414, 435, 444–447,
462, 470, 482, 485, 488, 515,
518, 519, 521, 532
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languidity conditions, 96, 412,
413, 414, 418, 444–446, 461, 462,
464, 467, 471, 506, 512, 533

strong, 413, 444–447, 482,
488, 504, 515, 518, 519, 521

languidity exponent, 413, 414, 421,
424, 429, 445–447, 461, 462,
465, 470–472, 514, 532

Laplace operator, 87, 319,
326–328, 337, 562

lattice case, see self-similar
lattice self-similar set, 549, 566,

568, 569, 572
Minkowski nonmeasurable, 547

lattice self-similar string, see
self-similar fractal string

lattice self-similar tiling, see
self-similar tiling

Laurent expansion, 37, 353, 354, 357
leading symbol of the quadratic form,

339
Lebesgue dominated convergence

theorem, 63, 82, 102,
264, 265, 402, 418

Lebesgue nonmeasurable sets, 66
Lebesgue–Stieltjes integral, 54
Lévy process, 560
limit “big oh”

O(t(β ) as t →+∞, 146
O(t0)) as t → 0+, 544
O(tα)) as t → 0+, 155

limit capacity, see box dimension
limit Lebesgue space, L∞)(Aδ ), 217
limit set

of a Fuchsian group, 29,
559, 560, 575

of a Kleinian group, 29
local distance zeta function, ZA, 605
local measure, 578
local tube formulas, 410

M
Mandelbrot set, 29, 96, 222, 559, 560,

562, 575

maximal hyperfractal, see also
hyperfractal, 386, 576

in Euclidean space R
N , 389

Weierstrass–Mandelbrot nowhere
differentiable function, 560

maximally degenerate
relative fractal drum, 559
set, 550

mean width, 409
measure density condition, 344
Mellin inversion, 416
Mellin transform, 72, 248, 332, 416,

437
Mellin zeta function, ζMA,Ω , 24, 399,

458, 464
Menger sponge, 537, 559
meromorphic extension

of relative fractal zeta functions,
253, 254, 293, 353, 355

of spectral zeta functions, 325
of the Cahen function, 146
of the distance zeta function, ζA

Minkowski measurable case, 167
Minkowski nonmeasurable case,

167
of the geometric zeta function, ζL

Minkowski measurable case, 168
Minkowski nonmeasurable case,

168
of the perturbed Dirichlet zeta

function, 149, 150, 153
of the perturbed Riemann zeta

function, 145, 146, 148
of the relative tube zeta function,
ζ̃A,Ω

Minkowski measurable case,
353–355, 357

Minkowski nonmeasurable case,
355

of the tube zeta function, ζ̃A

Minkowski measurable case, 154
Minkowski nonmeasurable case,

157
meromorphic function, 38
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meromorphy critical line, see critical
line of meromorphic continuation,
85

metric measure space, see also spaces
of homogeneous type, 571–572

midfractal case, 548
Minkowski

content, 31
strong, 466
weak, 466

degenerate
relative fractal drum, 351
set, 32, 222, 224, 540,

540, 543–547
dimension, see box dimension
measurable

distributionally, 465
relative fractal drum, 250, 353
set, 33, 53, 114, 123, 154,

166, 170, 178, 541, 545, 547,
549, 557, 566

strongly, 466
weakly, 465

nondegenerate
relative fractal drum, 249, 255, 377
set, 6, 32, 114, 157, 159,

164, 177, 222, 239, 540,
540, 541, 543, 545, 547, 551, 561

strongly, 466
weakly, 466

nonmeasurable
relative fractal drum, 355
set, 157, 166, 168, 355, 541

Minkowski content, M D(A), 30, 32,
44, 112, 115, 123, 130, 131,
152, 153, 156, 170, 519, 520,
536, 542, 546, 547, 551, 568, 569

lower M D
∗ (A), 31

upper M ∗D(A), 30
and residues, 154, 157, 166
average, M̃ D(A), 177–184

lower, M̃ D
∗ (A), 178

upper, M̃ ∗D(A), 178
relative, M D(A,Ω), 247, 249, 253,

258, 303, 327, 333, 351, 352,

358, 377, 397, 452–456, 464,
466, 471, 473, 475, 480,
497, 498, 502, 507, 510, 525,
536, 549, 550

gauge, M D(A,Ω ,h), 297, 352, 509
strong, 466
weak, 466

Minkowski degenerate, 25, 32, 297,
303, 473, 478, 502, 508, 509,
517, 522, 540, 544–546, 550, 569

set, 547
Minkowski dimension, see box

dimension
Minkowski dimension history, 546–552
Minkowski measurability criterion for

fractal strings, 547–548
Minkowski measurability in dimension

d, 536
Minkowski measurable, see

Minkowski / measurable
Minkowski nondegeneracy in

dimension d, 536
Minkowski nondegenerate

RFD, 249, 253, 255, 297, 303,
333, 377, 442, 460, 466, 473,
478, 484, 495, 532, 551, 561, 569

set, 6, 29, 32, 34, 48, 51, 114,
123, 143, 157, 164, 177, 222,
239, 540, 541, 545, 547,
551, 565, 568

in dimension d, 536
Minkowski nonmeasurable, see

Minkowski / nonmeasurable
Minkowski-Bouligand dimension, see

box dimension
Möbius function, 70
Möbius inversion formula, 71
Möbius transformation, 558
monophase generator (of a fractal

spray), 513, 524, 530–532
Moran equation, 211, 213,

287, 288, 299, 523, 532, 562
complexified, 468, 513, 533

multifractal zeta function, 551
multinomial coefficient, 283
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multiple string, 234–235
multiplicatively periodic function, 157
multiset (a set with multiplicities), 41,

69, 98, 103, 209, 210, 274,
280, 282, 283, 285, 290, 302,
348, 368, 394, 399, 443, 460,
486, 487, 501, 513, 563

N
n-quasiperiodic, see quasiperiodic (of

finite order)
natural boundary, 282
natural boundary (holomorphic), 38,

39, 558
natural boundary (meromorphic), 39,

246, 373, 381, 388
partial, 22, 29, 39, 39, 65, 215, 222,

353, 386–389, 499, 575
natural boundary conditions, 338
natural boundary(meromorphic), 246
negative box dimension, 262
Neumann boundary conditions, 319,

334, 335, 338, 342–344, 576
Neumann problem, 320, 336
non-Minkowski measurable set,

541–542
non-quasiperiodic set, 544
nonarithmetic set, 195, 197, 556
nonconstant set, see non-Minkowski

measurable set
nondegenerate set, see also

Minkowski / nondegenerate
nonfractal, 500
nonhomogeneous self-similar (or self

affine) set, see inhomogeneous set
nonisolated singularity, 22, 38, 86,

197, 246, 336, 350, 377, 382,
384, 386–388, 558, 559

nonlattice case, see self-similar
nonlattice self-similar set, 154, 547,

566, 568, 569, 571, 572
nonlattice self-similar string, see

self-similar string
nonperiodic set, 543
nonquasiperiodic set, 542

nonremovable singularity, 125, 381
nonsprayable RFD (∂Ω0,Ω0), 273
normalized Minkowski content,

156, 558

O
open problems, 555–574
open set condition, 523, 524, 525, 562,

564
optimality of an estimate

involving 1
p′ dimBA+ N

p , 219

involving dimB(A,Ω), 250
involving dimBA, 57, 99, 119, 121
involving the tube function, 473, 476

order O(tα)) as t → 0+, 155
order or(A,Ω) of RFD (A,Ω), 475
order of quasiperiodicity

of a bounded fractal string, 383
of a fractal set, 542

equal to 2, 195
finite, 194, 198

of a fractal string
equal to 2, 203

of a function
finite, 193
infinite, 374

of a relative fractal drum
finite, 375
infinite, 375, 377

OSC, see open set condition
oscillation of a function at a point,

osca f , 160
oscillations (and complex dimensions),

xii–xiii, 6–7
oscillatory amplitude, am(A), 541

of a generalized Cantor set
C(m,a), 188

of a generalized Cantor set
C(a), 131

oscillatory period, p(A,ρ), 7, 541
of a generalized Cantor set

C(a), 105
C(m,a), 188, 191

of a lattice self-similar set, 566
of the Cantor set C(1/3), 105
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of the Sierpiński gasket, 293
of the ternary Cantor set C(1/3), 163

oscillatory quasiperiods, 367

P
partial domain of meromorphy, see

domain of meromorphy (partial)
partial natural boundary, see natural

boundary (meromorphic)
pentagasket tiling, 515, 537
perfect set, 187
periodic set, 158, 541, 543, 549,

555–558
Perron’s theorem, 72
perturbed Riemann

fractal string, 145, 148
zeta function, 145

plex, ΩN,0, 295
pluriphase generator (of a fractal spray),

468, 514, 524, 525, 531, 532, 562
Pochhammer symbol, 415
pole (of a function), see also simple

pole, 37, 101, 114, 115, 119,
125, 126, 145, 148, 152, 156,
165, 170, 171, 177, 191, 253,
263, 264, 269, 547

pole of a set, 546
positive reach of a closed set, 359
power law, 25, 63, 389, 473, 478
principal complex dimensions, dimPC A,

95, 96, 158, 191, 195, 198
of a relative fractal drum,

dimPC(A,Ω), 29, 248, 253, 256,
265, 277, 293, 305, 361, 553, 570

principal spectral complex dimensions
of, 554

principle of analytic continuation,
39, 60, 75, 95, 113, 146, 159, 169,
254, 269, 362

principle of reflection, 60, 159

Q
quasicircle, 343
quasidisk, 343
quasifrequencies of a relative fractal

drum, 383

quasiperiodic
fractal string

algebraically (of finite order), 201
algebraically (of infinite order), 383
of infinite order, 383
transcendentally (of finite order),

201
transcendentally (of infinite order),

383, 384
function, 193

algebraically (of finite order), 193
algebraically (of infinite order),

375
infinitely, 374
transcendentally, 193, 374, 379,

542
transcendentally (of finite order),

197
transcendentally (of infinite order),

374
relative fractal drum, 375,

377, 380–384
algebraically, 375
algebraically (of finite order), 375
algebraically (of infinite order), 375
transcendentally, 375,

377, 380–384
transcendentally (of infinite order),

375, 384
set, 544

algebraically, 193, 542, 543, 555
algebraically (of finite order),

193, 542
algebraically (of infinite order), 542
transcendentally, 193,

194, 195, 197, 198, 542,
543, 544, 555

transcendentally (of finite order),
192, 193, 194, 195, 197, 198,
201, 542

transcendentally (of infinite order),
384, 542

∞-quasiperiodic, see quasiperiodic (of
infinite order)

n-quasiperiodic, see quasiperiodic (of
finite order)
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quasiperiods, 193, 196, 197, 367,
373, 379, 381

algebraically incommensurable, 197,
373, 376, 383

infinitely many, 373, 383
Quermassintegrals of A, 409

R
Rademacher’s theorem, 54
random fractal

set, 560
maximally hyperfractal, 388

string, 388, 551, 560
zeta function, 388, 560

random zeta function, 560
ratio list of a self-similar spray, 282
rationally independent

sequence of real numbers, 373
set of real numbers, 373

reach of a closed set, 359
reality principle, 159
rectifiable set, 258
region, see domain
relative N-plex, (∂ΩN,0,ΩN,0), 296
relative distance zeta function, ζA,Ω ,

100, 247
relative fractal drum (RFD), (A,Ω), 8,

247
Cantor graph, 480, 496–502, 560
cone property of, 260
flatness of, 266
fractal spray, 273–279
frequencies of, 321
geometric equivalence, 552
maximally degenerate, 559
Minkowski measurable, 250
Minkowski nondegenerate, 249
quasifrequencies of, 383
self-similar, 290
Sierpiński, 275
spectral zeta function of, ζ ∗A,Ω , 321
spectrum of, σ(A,Ω), 321

relative fractal spray,
Spray(Ω0,(λ j),(b j)), 273–279

relative Mellin zeta function, ζMA,Ω ,
24, 399, 458

relative Minkowski content, M D(A,Ω),
247, 249, 351, 377, 397,
471, 473, 475, 550

relative shell zeta function, ζ̆A,Ω ,
24, 440, 441, 443–446,
449, 461, 467, 573

relative Sierpiński
carpet, 303–308, 399, 408, 480, 492
gasket, 293–303, 306, 319, 399, 408,

410, 480, 492, 495, 534
relative tube function, 408
relative tube zeta function, ζ̃A,Ω , 350
removable singularity, 36, 126, 161,

380, 381, 389
renewal theorem, 535, 565
residues and Minkowski contents, 154,

157, 158, 166–168, 175, 179, 228,
253, 356, 442, 453, 455, 460, 510

RFD, see relative fractal drum
Riemann

curve, 559
hypothesis, 30, 70, 539, 547–549,

552
asymmetric reformulation, 549
geometric and spectral

reformulation, 547
sphere, 38, 38, 389
string, L = ( j−1) j≥1, 145
surface, 559
zeros, 548, 551
zeta function, ζR, 70, 145,

152, 321, 547
and inverse spectral problems,

548–549
Riemann–Lebesgue lemma, 162
Riemannian manifold, 328

S
scaling complex dimensions, 288,

298, 410, 469, 487, 487, 513, 530,
563, 568

visible, 487, 513
scaling properties of
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distance zeta functions
of bounded sets, 101

generalized Cantor sets, C(m,a), 378
Minkowski contents of bounded sets,

35, 542
relative distace zeta functions, 12
relative distance zeta functions, 267,

269
relative fractal drums (A,Ω), 377
relative Minkowski contents, 377
spectra of relative fractal drums, 322
spectral zeta functions, 322
tube zeta functions

of bounded sets, 130
of relative fractal drums, 378

scaling sequence of a self-similar spray,
283

scaling zeta function, ζS, 469,
488, 513, 530

Schwartz distribution, 429
screen, 40, 95, 97, 282, 288,

386–388, 411, 422–426, 435,
438, 439, 444, 446–448, 450,
463–468, 470–475,
477, 478, 480–482,
485, 486, 490, 491, 499, 504, 506,
508–515, 518, 519, 521, 533, 534,
573, 575

truncated, 418, 419, 421,
424, 425, 433

SEDTI (stable, extended DTI), 599
segment condition, 343
self-similar

attractor, 575
drum, 290, 562
fractal, 165
fractal string, 165, 470, 541, 547, 549

Minkowski measurable, 547
Minkowski nonmeasurable, 547

lattice case, 165, 470, 482, 549, 556,
568, 569, 571, 572

nonlattice case, 571, 572
RFD, 290, 523
set, 158, 187, 547, 567

complex dimensions, 567, 568

fractal string, 571
fractal tube formula, 572
inhomogeneous, 109, 291, 550
lattice, 566
Minkowski nondegenerate, 568
nonlattice, 566, 568
stochastically, 575
tubular zeta function, 572

spray, 283, 305, 523
tiling, 283, 294, 305, 523, 551,

566, 567
compatibility condition, 527
complex dimensions, 567
generator of, 526

self-similar identity, 285
self-similarity, ix, 18, 29, 30, 109,

109, 154, 156, 158, 165, 294,
541, 547, 549–551, 556, 560, 562,
564–567, 569, 571, 572, 575

sets
inhomogeneous self-similar,

109, 109, 291, 298, 550
Lebesgue nonmeasurable, 66
Minkowski

degenerate, 32, 222, 224
measurable, 33, 46, 53, 114,

123, 130, 132, 152–154, 156,
159, 166, 168–170, 172, 178, 225,
541, 545, 547–551, 557, 561

nondegenerate, 32, 48, 114, 123,
143, 157, 159, 164, 177, 222,
239, 545

nonmeasurable, 33, 116, 157–159,
164, 166, 168, 172, 175,
541–543, 547

non-quasiperiodic, 544
nonarithmetic, 195, 556
nonperiodic, 541
of positive reach, 359, 411, 481, 573
perfect, 187
quasiperiodic, 542, 544

algebraically, 543, 544
algebraically (of finite order), 194
of finite order, 194
transcendentally, 544
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transcendentally (of finite order),
194

transcendentally, with infinitely
many quasiperiods, 373

rectifiable, 258
self-similar, 547

lattice, 566
nonlattice, 549, 566

surface nondegenerate, 143
sets of positive reach, see sets / of

positive reach
shell At,δ of A, 440
shell zeta function, see relative shell

zeta function
relative, ζ̆A,Ω , 24, 440

shift properties of fractal zeta functions,
140

Sierpiński
carpet, 48, 49, 51, 107, 166, 204, 614

dual, 206
relative, 303–308

cave, 108
gasket, 208, 275, 614

relative, 293–303
N-carpet in R

N , 306, 306–308, 408,
493, 495, 614

N-gasket in R
N , 298, 299

inhomogeneous, 296,
296, 308, 524, 532, 534, 565, 614

relative fractal drum (or relative
fractal spray), 275, 290, 294, 301,
308, 311, 492, 532, 534

similarity dimension, 287, 298,
523, 562

of an RFD (A,Ω), 290
of fractal string, 469

simple pole, 37, 90, 101, 114, 115,
119, 125, 126, 145, 148, 152,
156, 165, 170, 171, 177,
191, 263, 264, 269, 464, 488, 547

residue, 37, 101, 114, 116, 123,
125, 127, 129, 132, 148, 149,
151, 153, 154, 158, 159, 167,
179, 191, 204, 209, 228, 253,
269, 294, 313, 325, 340, 341,

353, 358, 379, 392, 395, 398,
421, 426, 427, 431, 435, 436,
439, 441–443, 447, 449, 451,
453, 455, 459, 462, 480, 481,
483, 486, 490, 498, 507, 510,
520, 521, 530, 531

simplex, ΩN , 295
singular dimension of a space of

functions, s-dimX , 220
singular set of a function, Sing f , 221
singularity, 36

isolated, 36
essential, 37, 214, 215, 281, 282,

288, 289
nonremovable, 125, 381
pole, see also pole (of a function),

see also simple pole, 37
removable, 36

nonisolated, 38, 197, 382
skeleton of a fractal spray, 273
Smale horseshoe map, 140
Sobolev embedding, 221
Sobolev norm, 319
Sobolev space

H1(RN) :=W 1,2(RN), 343
H1(Ω) :=W 1,2(Ω), 338
H1

0 (ΩA) :=W 1,2
0 (ΩA), 319

W k,p(Ω), 221
space of distributions, 434
space of homogeneous type, 571
spectral counting function, see counting

function, 326
spectral operator, 548, 549

invertibility, 548, 549
truncated, 548

spectral problem for fractal strings
direct, 547, 552
inverse, 547–549, 552
(ISP)D, 548

spectral zeta function, 344
of a fractal string, ζ ∗L , 321
of a relative fractal drum, 321
of an open set, ζ ∗Ω0

, 325
spectrum

of a fractal string L , 548
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of a relative fractal drum, σ(A,Ω),
321, 322

scaling property, 322
of the Dirichlet eigenvalue problem,

320
spray, see fractal spray
square-free product of prime numbers,

71
stalactite of A, 48, 106, 107, 110, 272
stalagmite of A, 48, 107, 108, 111
starshaped set, 228
Steiner-like (set), 410
Steiner tube formula, 15, 359,

408, 410, 573
Steiner’s curvatures, 359, 573
stochastically self-similar set, 575
string chirp, 234–235
strip-like set, 285
strong hyperfractal, 386
strong Minkowski content, 466
strongly d-languid relative fractal drum,

445
strongly degenerate set, 544,

544, 550, 556
strongly languid relative fractal drum,

413
subcritical oscillations, 498
subcriticality index of an RFD (A,Ω),

500
subcritically fractal, 314, 389, 499,

500, 501
possibly, 500
strictly, 314, 316, 500, 500, 501, 519,

521
support

of a sequence, supp(e), 374
of an integer, supp m, 374

surface area, 409
surface zeta function, ζA( · ,∂ ), 142
swarming, 240

sequence, 241

T
table of some basic relative fractal

drums, 613–614

Takagi curve, 559
tamed DTI, 76, 579
Tauberian theorem, 24, 328, 332,

452
tensor product of fractal strings,

L1 ⊗L2, 274
tensor product, (∂Ω0,Ω0)⊗L , 273
ternary Cantor set, C(1/3), 104
tetrahedral gasket, 294
the Cantor curve, see devil’s staircase
tiling, see also self-similar / tiling
tilings, 18, 23, 305, 408, 468,

514, 515, 523–528, 565–567, 572,
574

torus relative fractal drum, 357
total curvatures of A, 409
total length of a fractal string, 41
transcendental number, 192–198, 200,

203
transcendentally quasiperiodic

bounded fractal string
of infinite order, 383, 384

function, 379
of finite order, 193, 197, 200
of infinite order, 374

relative fractal drum, 377, 380–383
of finite order, 375
of infinite order, 375

set, 542, 544
of finite order, 194, 197
of infinite order, 384

Tricot’s formula, 227, 230
for unbounded chirps, 346

truncated screen, 418, 419, 421,
424, 425, 433

truncated visible complex dimensions,
418

truncated window, 418, 419, 420, 423
tube formula, 417
tube formula (fractal), see fractal tube

formula
tube function, 33, 119, 154, 164, 165,

168
of a fractal string, 201
relative, 350, 353, 408
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tube zeta function, ζ̃A, see also
(generalized) Dirichlet integral,
118, 159, 161, 163, 166,
168, 172, 178

holomorphicity, 119, 121
meromorphic extension

for Minkowski measurable set A,
154

for Minkowski nonmeasurable set
A, 157

for self-similar set A, 567
of Minkowski measurable sets, 154
of Minkowski nonmeasurable sets,

157
poles of, 154, 158, 560, 567, 569,

575
relative, ζ̃A,Ω , 350

Laurent expansion of, 353, 356
Minkowski measurable case, 353
Minkowski nonmeasurable case,

355
poles of, 353, 355

residues, 123, 154, 156, 158, 162,
178, 568

scaling property
for relative fractal drums, 378
of a bounded set, 130
of a relative fractal drum, 267

tubular zeta function, see tube zeta
function, 514

tubular zeta functions, 572
2-string, 234

U
unbounded chirp, 112
unbounded geometric chirp, 345, 509
unbounded set at infinity, 443
uniformly elliptic self-adjoint operator,

344
union

of fractal strings,
⊔∞

j=1 L j, 368
of relative fractal drums,⋃∞

j=1(A j,Ω j), 360
union of relative fractal drums, 270

disjoint, 271

uniqueness of geometric zeta function
ζL , 75

universal pair (E,ϕ) for all
polynomials, 601

universally sprayable relative fractal
drum, 285

upper box (or Minkowski) dimension,
see box (or Minkowski)
dimension / upper, dimBA

V
visible complex dimensions, 97

truncated, 418

W
weak equivalence of DTFs, f � g,

134
weak Minkowski content, 466
weakly degenerate set, 544,

544, 545, 549, 550, 556
constant, 545
nonconstant, 545

weakly singular functions, f ∈ L∞)(Aδ ),
217

Weierstrass curve, 559
Weierstrass function, 560
Weierstrass–Mandelbrot nowhere

differentiable function, 560, 575
weight function, 217
weighted

distance zeta function, ζA( · ,w),
216–221

relative distance zeta function,
ζA,Ω ,w, 570

string, 238
Weyl’s curvatures, 359
Weyl’s law, 324, 326
Weyl–Berry conjecture (modified), 326,

547
Wiener (probability) measure, 560
Wiener–Pitt Tauberian theorem, 24,

452, 452
window, 40, 95, 95–97, 100, 102,

126, 143, 211, 216, 248, 288,
351, 386, 411, 414, 418, 426, 427,
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432, 449, 461, 462, 475,
485, 486, 490, 499, 508, 510,
512, 513

truncated, 418, 420, 423

Z
zero-pole cancellations, 211, 213,

287, 288, 403, 405, 507
zeta function, see fractal zeta function,

see also arithmetic (or
number-theoretic) zeta function,

see also Dirichlet (integrals or series),
see also distance zeta function, see also
geometric zeta function, see also
Mellin zeta function, see also random
zeta function, see also relative shell
zeta function, see also Riemann zeta
function, see also scaling zeta function,
see also spectral zeta function, see also
tube zeta function, see also tubular zeta
function
zigzagging fractals, 240–244
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