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    Chapter 10   
 Oxidative Stress                     

     Bart     P.     Braeckman     ,     Patricia     Back    , and     Filip     Matthijssens   

    Abstract     The oxidative damage theory has been the dominant paradigm in ageing 
research over the last 50 years. The versatile genetic nematode model  C. elegans  has 
been used by many to put this theory to the test.  C. elegans  is an attractive model as 
it ages fast, it has an elaborate antioxidant system which can be easily manipulated, 
and many long-lived mutants are available. Recently, it became possible to visualize 
reactive oxygen species (ROS) in vivo and in real-time in this transparent animal by 
using genetically encoded biosensors. The data generated in  C. elegans  to test the 
oxidative damage theory is often ambiguous and of mere correlative nature. 
Experimental manipulation of the antioxidant system most often disproves this the-
ory. Over the years, it became clear that ROS, when present at normal physiological 
levels, are important signalling molecules. Interference with this ROS signal may 
elicit a cytoprotective programme that, in many cases, extends lifespan. It is still an 
open question whether the molecular underpinnings of this hormetic response is 
also of importance to the normal ageing process. Alternatives to the oxidative dam-
age theory, such as the hypertrophy hypothesis, are currently gaining wider 
attention.  

  Keywords     Reactive oxygen species   •   Genetically encoded sensors   •   Oxidative 
damage   •   Antioxidants   •   Hormesis   •   ROS signalling  

10.1        Reactive Oxygen Species   (ROS) 

 Oxygen became an important constituent of the Earth’s atmosphere when the pro-
cess of photosynthesis evolved in cyanobacteria about 2.2 billion years ago [ 1 ]. 
Although today O 2  is essential to support energy  metabolism   in the majority of spe-
cies, it is essentially a toxic, mutagenic gas which requires appropriate cellular pro-
tection via  antioxidant   defences. 
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 Molecular oxygen is a free radical – a molecule that can exist freely with one or 
more unpaired electrons – and it can generate various reactive oxygen species 
(ROS) by single electron transfers, usually from transition metals. The group of 
reactive oxygen species contains oxygen radicals as well as non-radicals that are 
oxidizing agents and/or are easily converted into radicals. Besides ROS, also reac-
tive nitrogen, sulphur and halogen species exist [ 2 ]. Molecular oxygen can be 
reduced to water by four single electron transfers, generating the superoxide anion 
(O 2  •− ), hydrogen peroxide (H 2 O 2 ), the hydroxyl radical (OH • ), and fi nally, water 
(H 2 O). ROS may also be generated in other ways, such as homolytic fi ssion of water 
via background ionizing radiation, generating two hydroxyl radicals. The reactivity 
of each of these species towards biological molecules varies widely but these uncon-
trolled reactions result in  oxidative damage   that may impair or alter the function of 
the molecule. 

 Superoxide can be formed at several sites in the cell by reduction of O 2  with one 
electron. The predominant source of superoxide in aerobic animals is the  mitochon-
drial   electron transport chain [ 3 ,  4 ]. The rate at which electrons leak from the elec-
tron transport chain to molecular oxygen is determined by the mitochondrial 
membrane potential, which in turn depends on mitochondrial activity and coupling 
effi ciency. This way, active mitochondria may produce less O 2  •−  than resting  mito-
chondria   [ 5 – 7 ]. Due to its negative charge, the superoxide anion cannot readily 
cross lipid membranes although transport through anion channels has been described 
[ 8 ]. Superoxide does not react with most biological molecules in aqueous solution 
but it can quickly react with other radicals or enzymatic Fe-S clusters. Despite its 
low reactivity, superoxide is an important ROS as it is the primary precursor of 
many other reactive species [ 2 ]. 

 Hydrogen peroxide (H 2 O 2 ) may be generated in the cell by spontaneous or 
enzyme-catalysed dismutation of O 2  •− . Also, some enzyme systems such as oxygen-
ases are known to produce hydrogen peroxide. This ROS is more stable than super-
oxide but it is also poorly reactive. Hydrogen peroxide is a potent but slow oxidizer: 
DNA, lipids and most proteins are not oxidized directly by H 2 O 2 , even at millimolar 
levels. This species can, however, inactivate some enzymes directly by oxidizing 
hyper-reactive thiols necessary for catalysis [ 9 ,  10 ]. The biological importance of 
hydrogen peroxide should not be underestimated as it can act as a signalling mole-
cule and it is the source of hydroxyl  radicals   [ 11 ]. 

 The hydroxyl radical OH •  is one of the most potent oxidizing agents known to 
chemistry. Immediately after its formation it reacts non-selectively with molecules 
such as DNA, lipids or proteins [ 12 ] and therefore is the most damaging ROS in 
biological systems. It is generated by homolytic fi ssion of H 2 O 2  by UV light, by 
reaction of HOCl with O 2  •− , or most often by Fenton reactions. In these reactions, 
hydrogen peroxide oxidizes a reduced metal ion, usually Cu +  or Fe 2+  to produce OH -  
and OH • . The oxidized transition metal can return to its reduced state, possibly by 
aid of intracellular reductants such as ascorbate, quinines or semiquinones, cyste-
ine, fl avins and NAD(P)H [ 13 – 15 ]. The availability of free iron and copper in the 
cell is strictly regulated to minimize OH •  formation by Fenton chemistry. However, 
superoxide may cause the release of iron from Fe-S clusters or ferritin [ 2 ]. 
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 Besides these well-studied forms of ROS, other reactive species, such as carbon-
ate, peroxyl, alkoxyl and sulphur radicals, singlet oxygen and  ozone  , may also be 
involved in  oxidative damage  .  

10.2      Antioxidants   

 In living organisms, intracellular ROS levels are kept low because of reasons rang-
ing from habitat choice to intracellular molecular architecture. Many small organ-
isms avoid oxygen-rich environments (e.g.  C .   elegans    prefers 5–12 % O 2  [ 16 ]) while 
larger animals only expose their epithelia to atmospheric oxygen levels. Another 
way to reduce  ROS   formation is the organization of electron transport chain compo-
nents into an effi cient respirasome [ 17 ], minimizing electron leakage to O 2 . 
However, ROS levels and ROS-induced damage are, above all, restrained by anti-
oxidants; substances that, by defi nition, delay, prevent, or remove  oxidative damage   
to a target molecule [ 2 ]. These include enzymes and other proteins as well as small 
organic molecules. 

 Superoxide dismutases (SODs), fi rst discovered in 1969 [ 18 ], catalytically 
remove superoxide by dismutation. These enzymes have been found in all organ-
isms and are grouped according to their metal cofactor. MnSODs and FeSODs are 
found in prokaryotes and plants while animals possess MnSODs and Cu/ZnSODs. 
A nickel-containing SOD (NiSOD) was found in  Streptomyces  and cyanobacteria 
[ 19 ]. In animals, MnSOD is localized in the mitochondria, in agreement with the 
prokaryotic ancestry of these organelles. Cu/ZnSOD is found in the cytoplasm or 
extracellular. While most eukaryotes only have two SODs, the  C .   elegans    genome 
encodes fi ve  sod  genes [ 20 ]. Two cytosolic Cu/ZnSODs are represented by  sod - 1  
and  sod - 5  and the MnSODs are  sod - 2  and  sod - 3. sod - 4  encodes two Cu/ZnSOD 
isoforms resulting from alternative splicing: SOD-4.1 is a homologue of the mam-
malian extracellular Cu/ZnSOD while SOD-4.2 contains a C-terminal sequence 
resembling a transmembrane domain and hence this unique isoform is probably 
attached to the membrane [ 21 ]. SOD-1 is the most abundant  C. elegans  SOD tran-
script – making up about 75 % of all SOD transcripts – and it contributes most to 
total SOD activity in normal worms [ 22 ]. In mitochondria, SOD-2 is the predomi-
nant isoform [ 22 ] and this MnSOD has, together with SOD-3, been localized to the 
I:III:IV supercomplex of the electron transport chain, where it may stabilize the 
complex and/or reduce local superoxide formation [ 23 ]. Finally, SOD-3, SOD-4 
and SOD-5 are expressed at low levels in normal worms but are strongly induced in 
 dauers     , probably via the Ins/IGF- 1   like signalling pathway [ 20 ,  22 ]. Loss of SOD-1 
activity may lead to compensatory induction of SOD-5 [ 24 ] although this was not 
confi rmed by another study [ 25 ]. 

 SODs convert O 2  •−  into H 2 O 2 , which in turn can be eliminated by catalases and 
peroxidases. Catalases are homotetramers of haem-bearing subunits, each of which 
can catalyse the dismutation reaction of two H 2 O 2  molecules into H 2 O and O 2  [ 26 ]. 
As this reaction requires two hydrogen peroxide molecules at a single active site, 
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catalases are only effi cient at high substrate levels. Catalases are found in prokary-
otes and eukaryotes but have been lost during evolution in a few species [ 27 ,  28 ]. 
Catalase resides in the peroxisomes where it scavenges the hydrogen peroxide that 
is produced during fatty acid β-oxidation, but cytosolic catalases are also known. 
The  C. elegans  genome contains a tandem array of three catalase genes ( ctl - 1 ,  ctl - 2  
and  ctl - 3 ) with very high sequence similarity [ 29 ]. CTL-2 is a peroxisomal catalase 
that contributes up to 80 % of the total catalase activity in the worm. CTL-1 has been 
described as a cytosolic catalase [ 29 ,  30 ]. The details of CTL-3 are less clear but it 
appears to be expressed in the pharyngeal  muscle   and  neurons  . 

 Peroxidases are a class of enzymes that convert H 2 O 2  to water or hydroperoxides 
(ROOH) to the corresponding alcohol (ROH) by oxidizing another substrate (e.g. 
NADPH or GSH). Glutathione peroxidase (GPX) is a Se-bearing enzyme that 
occurs as a monomer or homotetramer, depending on the isoform. The  C. elegans  
GPX family contains at least 8 members although no enzymatic GPX activity could 
be detected when applying a standard assay using  tert -butyl-hydroperoxide as a 
substrate [ 31 ], suggesting narrow substrate specifi city of the  C. elegans  GPXs.  C. 
elegans  GPX-1 is a homologue of the mammalian phospholipid hydroperoxide 
GPX and interacts with dipeptide transport [ 32 ]. Other  C. elegans  GPX family 
members await detailed study. A second class of peroxidases contains the peroxire-
doxins (PRDXs), which are also H 2 O 2  scavenging enzymes that occur as homodi-
mers with cysteines at their active sites. They are very abundant, localized in most 
intracellular and extracellular compartments and can constitute 0.1–0.8 % of the 
total soluble protein content. PRDX reduces H 2 O 2  or ROOH by oxidation of a  cys-
teine   to a sulphenic acid (cys-SOH). The PRDX can be reduced to its original state 
by thioredoxins (TRXs) or glutaredoxins (GLRXs). The  C. elegans  genome encodes 
for two PRDXs:  prdx - 2  and  prdx - 3 . PRDX-2 appears to be expressed in the cytosol 
of the  intestine  , gonads and neurons. Intestinal expression of  prdx - 2  is suffi cient to 
support resistance against hydrogen peroxide treatment. However, loss of PRDX-2 
activates the DAF-16 and  SKN-1  -dependent stress resistance programmes [ 33 ] (see 
also Chap.   9    ). The mitochondrial PRDX-3 does not protect against hydrogen perox-
ide insult [ 34 ]. 

 An overview of reactive species and  antioxidant   systems in  C .   elegans    is given in 
Fig.  10.1 .

10.3         ROS   Quantifi cation 

 ROS are key players in oxidative stress and can be generated by exogenous com-
pounds as well as mitochondrial (dys)function. Their reactivity, ephemeral nature 
and local gradients make it very diffi cult to localize and quantify these molecules 
in vivo. The majority of  C. elegans  studies that analyse ROS make use of reduced 
dyes such as dihydrofl uoresceins, lucigenins, MitoSOX and amplex red [ 35 ]. The 
problem with many dyes is that their uptake in live animals may vary, they often 
lack selectivity, they may need a catalyst to work, they may be metabolized or have 
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poor stability, and some probes can even generate ROS by themselves and may 
disturb cellular physiology [ 36 – 38 ]. Moreover, many dyes react with ROS irrevers-
ibly, precluding dynamic measurements. Disruption of  C. elegans  for ROS quantita-
tion may create oxidation artefacts as delicate cellular redox balances are disturbed. 
Hence, an ideal ROS probe should be selective, sensitive, instantaneous, reversible, 
compartment-specifi c, non-invasive and allow in vivo monitoring [ 39 ]. Some of the 
disadvantages of dyes have been overcome by designing protein-linked chemical 
reporters [ 40 ], or ratiometric mass spectrometry probes [ 41 ], but even these techno-
logically advanced techniques cannot tackle every problem. 

 The introduction of genetically encoded ROS  sensors   has been a big leap for-
ward in the search for reliable in vivo ROS detection. Wild-type GFP has two exci-
tation peaks – 395 nm for the protonated and 475 nm for the deprotonated form of 
Y66 – while only one emission peak exists at 509 nm [ 42 ]. This dual excitation/
single emission property of GFP can be exploited for ratiometric measurements in 
which emission intensity at one excitation wavelength is divided by the emission at 
the other excitation wavelength. This offers the advantage of being independent on 
probe expression levels and photobleaching, greatly simplifying comparison among 
samples. Fluorophore protonation is dependent on interactions with surrounding 
residues and therefore conformational alterations can cause a shift in fl uorescence 
intensity. Based on these properties, several ROS-sensitive probes have been devel-
oped [ 43 ]. 

10.3.1     Superoxide 

 A circularly permutated yellow fl uorescent protein (cpYFP), targeted to the  mito-
chondria  , has been used as a ROS biosensor to specifi cally detect superoxide bursts, 
called mitofl ashes, in cardiomyocyte cell cultures after reoxygenation [ 44 ]. 
However, the specifi city of this probe was heavily debated [ 45 ,  46 ]. Mitofl ashes 
were also observed in  C .   elegans    expressing the same cpYFP biosensor, with peaks 
of high frequency around the third day of adulthood, during active  reproduction  , 
and around adult day 9, at the time that worms started to die off. Interestingly, day-3 
mitofl ash frequency is negatively correlated with  lifespan   of individual animals 
[ 47 ]. This paper also got criticism as it was shown earlier that the cpYFP does react 
to pH differences rather than superoxide [ 48 ], which was in turn refuted [ 49 ]. It is 
clear that cpYFP is a very controversial sensor for the detection of superoxide and 
the research community is still awaiting a reliable alternative that allows specifi c, 
non-invasive, real-time in vivo detection of superoxide, preferably without the need 
of very specialized equipment.  
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10.3.2     Hydrogen Peroxide 

 The hydrogen peroxide-specifi c  biosensor   HyPer was engineered by inserting the 
H 2 O 2 -sensitive regulatory domain of the  Escherichia coli   transcription    factor   OxyR 
into cpYFP [ 50 ]. In the presence of H 2 O 2 , an intramolecular disulphide bridge is 
formed between two cysteins of the OxyR regulatory domain, causing a substantial 
conformational change close to the cYFP chromophore and hence a shift in the fl uo-
rescent properties of this probe. Upon H 2 O 2  exposure, the 420-nm excitation peak 
decreases while the 500-nm excitation peak increases, yielding a maximal ratiomet-
ric shift of 3–4. Because of the use of the  E.coli  regulatory domain, the probe is 
highly selective and reacts within physiologically relevant ranges of H 2 O 2  levels. 
The disulphide bridge in the oxidized HyPer is reduced by endogenous GSH and 
glutaredoxin (GLRX), allowing reversible shifts in HyPer fl uorescence and dynamic 
measurements. By adding a single point mutation, the dynamic range was doubled 
and the modifi ed sensor was called HyPer-2 [ 51 ]. However, the reaction kinetics 
were slowed down compared to the original HyPer probe. This problem was 
resolved with the development of Hyper-3 [ 52 ]. Despite these qualities, the HyPer 
biosensors have one major disadvantage: as it is based on cpYFP, this sensor is 
infl uenced by pH in the range between 6 and 10. Hence, the sensor is not reliable 
when comparing H 2 O 2  levels in compartments that may differ in pH [ 53 ]. In that 
case an additional pH-sensor should be used with an emission wavelength other 
than that of HyPer, e.g. pHRed [ 54 ]. Alternatively, the percentage of HyPer oxida-
tion can be calculated based on completely reduced and oxidized samples [ 55 ]. The 
HyPer biosensor has been expressed in  C .   elegans    to analyse the real-time in vivo 
levels of hydrogen peroxide in developing and  ageing   worms. A gradual increase of 
hydrogen peroxide levels was observed in ageing individuals [ 56 ] although another 
study could also detect high H 2 O 2  levels in larval stages [ 57 ]. This sensor was also 
used for in vivo H 2 O 2  localization in  C. elegans ; high hydrogen peroxide levels were 
detected in the hypodermal cells, which is consistent with their role in  cuticle   bio-
genesis [ 56 ,  58 ]. 

 Another hydrogen peroxide biosensor was built by fusing the yeast peroxidase 
Orp1 to roGFP2 [ 59 ]. roGFP2 is a redox-sensitive, ratiometric  GFP   with stable fl uo-
rescence output in a physiological pH range between 5.8 and 8.0 [ 60 ], making it a 
better alternative to HyPer. Hydrogen peroxide-specifi c oxidation of cysteine resi-
dues in the Orp1 moiety induces the formation of a disulphide bridge in roGFP2. 
This reaction is reversible as roGFP2-Orp1 can be reduced by endogenous thiore-
doxin or glutaredoxin [ 43 ]. The use of this sensor in  C. elegans  is currently limited 
to one study on the mitochondrial effi ciency of axenically cultured worms [ 61 ]. 

 The most recently developed H 2 O 2 -specifi c biosensors are chimeric proteins, 
OxyFRET and PerFRET, combining the yeast Orp1-Yap1 redox relay system with 
a Venus/Cerulean FRET couple [ 62 ]. Though insensitive to alkalinization, the prop-
erties of these sensors do change in acidifying cells. So far, these probes have not 
been applied in  C. elegans . 
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 Besides ROS-specifi c biosensors, some redox-sensing proteins have been devel-
oped as well. rxYFP was developed over a decade ago but, as it is also based on 
YFP, it suffers the same pH sensitivity problem as the HyPer sensors [ 43 ,  63 ]. The 
new generation ratiometric redox sensors are based on roGFP linked to the human 
glutaredoxin (Grx1) and can detect low levels of oxidized glutathione (GSSG) 
within a highly reduced GSH pool [ 64 ]. In  C .   elegans   , the GSSG/GSH ratio is high 
in L1 larvae and tends to decrease during development, reaching a minimum at the 
L4-to-adult transition. During adult life the GSSG/GSH ratio rises again, mirroring 
the increasing hydrogen peroxide levels in  ageing   worms [ 56 ]. While the GSSG/
GSH ratio is fairly constant over the whole body, it is particularly low in the 
 spermatheca [ 56 ] possibly providing a low noise background for ROS  signalling   
events or increased protection of gametes against oxidative stress. Peredox [ 65 ] and 
Frex [ 66 ] are another set of redox  sensors   that quantify the NAD + /NADH ratio, but 
again, these sensors have not been applied in  C. elegans  yet.   

10.4     The  Oxidative Damage   Theory 

 Oxidative stress is the disturbance of the prooxidant- antioxidant   balance towards 
the prooxidant side, potentially leading to oxidative (and other) damage. Oxidative 
stress may result from decreased  antioxidant   capacity or an increase in reactive spe-
cies [ 2 ]. 

 In 1956, Denham Harman postulated the free radical theory of ageing [ 67 ], cur-
rently one of the most infl uential mechanistic theories of ageing. Free radicals, often 
considered to be produced as byproducts of normal oxidative metabolism, would 
cause molecular damage that accumulates over time. This in turn would result in the 
functional  decline   of cells, tissues and eventually the organism; a process which is 
called ageing. The theory was later fi ne-tuned by indicating the  mitochondria   as the 
major free radical source [ 68 ] and, as not all  ROS   are free radicals, it was referred 
to as the oxidative damage theory of  ageing   [ 69 ,  70 ]. The oxidative damage theory 
predicts that (1) the level of oxidative damage increases during ageing, and (2) lifes-
pan extension is associated with a decrease of oxidative damage [ 69 ].  

10.5      Oxidative Damage   and Ageing in  C .   elegans    

 The oxidative damage theory has been tested in a plethora of species of wide phy-
logenetic diversity. In this chapter, we will focus on the work that has been carried 
out specifi cally in  C. elegans , which has become a very prominent model species in 
biogerontology over the last few decades [ 71 – 73 ]. 

 The predicted increase of oxidative damage with age has been supported by sev-
eral  C. elegans  studies. Levels of protein carbonylation, the oxidation of amino acid 
side-chains to carbonyl residues, have been shown to increase over time in adult 
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worms [ 74 ,  75 ], at least in their  mitochondria   [ 76 ,  77 ]. A positive correlation was 
found between adult age and DNA damage such as single-strand DNA breaks and 
5-methylcytosine [ 78 ] although the latter could not be confi rmed in another study 
[ 79 ]. Also, the increased occurrence of mitochondrial DNA breaks in  ageing    C. 
elegans  is ambiguous [ 80 – 82 ]. DNA damage and ageing in  C. elegans  is presented 
in detail in Chap.   11    . 4-hydroxy-2-nonenal (4-HNE), a lipid peroxidation product 
that forms as a consequence of oxidative stress, can be conjugated to proteins by the 
action of glutathione S transferases. It was shown that 4-HNE protein adducts do 
indeed accumulate with age in the worm [ 83 ]. Lipofuscin is a heterogeneous cross- 
linked aggregate of oxidatively damaged lipids and proteins and tends to aggregate 
with age in vertebrates [ 84 ]. These aggregates are also called age pigments and tend 
to show a specifi c fl uorescence spectrum. Autofl uorescence with similar character-
istics has been found to accumulate in gut granules of  C. elegans  populations over 
time and therefore has been referred to as lipofuscin and used as a biomarker of 
ageing [ 85 – 87 ]. However, more recently it was found that gut granule autofl uores-
cence is caused by anthranilic acid glucosyl esters and that, at the individual worm 
level, this autofl uorescence does not increase gradually with age but rather bursts at 
the time of death [ 88 ]. Overall, there are many indications that oxidative damage 
increases with age in  C. elegans , as predicted by the oxidative damage theory, but 
not all studies are consistent. However, this correlation does not imply causation, 
just like greying hair in humans is not causal to ageing. 

 A tighter link between oxidative stress and ageing appeared when researchers 
started to analyse the oxidative damage and  antioxidant   capacity of  C. elegans  
mutants with altered lifespan. Early studies showed that  age - 1 , a long-lived Insulin/
IGF- 1   signalling pathway mutant (see Chap.   4    ), displays enhanced catalase and 
SOD activity compared to controls and antioxidant activity appeared to rise with 
age in the mutant [ 31 ,  89 ,  90 ]. This rise could not be confi rmed in a later study 
although the levels of antioxidant enzymes were clearly increased in the long-lived 
mutants [ 91 ]. Most other long-lived mutants also show increased oxidative stress 
resistance [ 92 – 94 ]. This strong correlation has even been exploited in a screen for 
 longevity   mutants by using oxidative stress resistance as a rapid selection marker 
[ 95 ]. 

 The relationship between oxidative  damage   and lifespan also extends in the 
opposite direction: the complex II mutant  mev - 1  suffers excessive oxidative stress, 
has a higher load of protein carbonyls and lives shorter than the wild-type strain [ 74 , 
 96 ]. However, in these cases, it is more diffi cult to distinguish between accelerated 
ageing or oxidative stress  pathologies   that are not linked to  ageing   [ 97 ].  

10.6     Manipulating  ROS   and Its Effect on Ageing 

 Lifespan extension and oxidative stress resistance are strongly linked suggesting 
that both processes are causally related. However, this correlation does not provide 
suffi cient proof that the theory is correct. Long-lived strains are usually resistant to 
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other types of stress as well, e.g. heat, UV and pathogenic bacteria [ 92 ,  98 ]. Hence, 
these data would equally support theories claiming that heat, UV or bacteria are 
primary causes of ageing. 

 A more direct approach to test the causal relation between ROS and ageing is to 
manipulate the intracellular ROS levels and examine its subsequent effect on lifes-
pan. ROS levels can be changed by interfering with ROS generating  systems   or with 
 antioxidant   defence, either pharmacologically or genetically. 

10.6.1     Genetic Interventions 

 As a prime genetic model,  C .   elegans    provides ample of possibilities to study the 
effect of genetic alterations of the  antioxidant   system on  ageing  . Nearly all relevant 
enzymes of this system have been knocked out or overexpressed and the effect of 
these manipulations on lifespan has been scrutinized. RNAi knockdown of the 
major cytosolic and mitochondrial SOD isoforms ( sod - 1  and  sod - 2 , respectively) 
increases  oxidative damage   levels in  C .   elegans    but does not affect lifespan [ 99 ]. 
Deletion of both mitochondrial SOD isoforms ( sod - 2  and  sod - 3 ) renders worms 
hypersensitive to oxidative stress but, again, does not drastically shorten lifespan 
[ 100 ]. Mitochondrial SOD knockdown does not increase oxidative damage to the 
mitochondrial DNA [ 81 ]. Hence, oxidative stress or damage is not necessarily a 
limiting factor for normal lifespan [ 101 ]. Similar conclusions were drawn in a study 
that included all  SOD   isoforms, although here, inactivation of the most abundant 
superoxide dismutase, SOD-1, caused a small reduction of lifespan, confi rmed by 
[ 24 ], while its overexpression increased lifespan [ 22 ]. However, this lifespan 
increase appeared to be an indirect effect of SOD-1, depending on DAF-16 activa-
tion [ 102 ]. In other studies, the lifespan-shortening effect of  sod - 1  mutation was not 
clearly observed, but instead, deletion of  sod - 2  caused lifespan extension and a Mit 
 mutant   phenotype [ 103 ,  104 ]. This corroborates with the fi nding that SOD-2 is 
associated with the electron transport chain [ 23 ]. Finally, a quintuple deletion 
mutant, defi cient in all sod genes and lacking any SOD activity showed a normal 
lifespan but was hypersensitive to acute stresses. This convincingly demonstrates 
that  sod  genes are necessary for surviving stressors but dispensable for normal lifes-
pan [ 104 ,  105 ]. 

 In  C. elegans , mutation of the peroxisomal catalase  ctl - 2  (but not the cytosolic 
 ctl - 1 ) shortens lifespan, which seems in agreement with the oxidative damage the-
ory. However, counter to prediction, catalase mutation leads to reduced levels of 
protein carbonyls at old age [ 29 ] and catalase overexpression reduces lifespan as 
well [ 22 ]. 

 In summary, these studies make clear that there is no straightforward relation 
between SOD or catalase activity and lifespan and  C. elegans . In many cases, effects 
opposite of what the oxidative damage theory predicts are observed. Genetic inter-
ventions in other  antioxidant   systems are less well studied in  C. elegans . The perox-
iredoxin  prdx - 2  mutants have a reduced lifespan, but the effect of overexpression on 
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lifespan is still elusive [ 34 ]. Suppression of  prdx - 3  during adulthood does not infl u-
ence levels of oxidative damage to proteins, nor does it alter lifespan [ 106 ]. For the 
thioredoxin  trx - 1 , mutation slightly reduces lifespan while overexpression increases 
lifespan to some extent, but the effect on  oxidative damage   accumulation was not 
tested [ 107 ,  108 ]. Finally, the lifespan and oxidative damage phenotypes obtained 
after knock-down and overexpression of the glutathione-S transferase  gst - 10  are 
consistent with the  predictions   of the oxidative damage theory [ 83 ].  

10.6.2     Pharmacological Interventions 

 Many studies have pointed out that addition of pro-oxidants shortens  C. elegans  
lifespan. Although this may seem to agree with the oxidative damage theory, it sup-
ports this theory only very weakly as it may refl ect a toxic effect rather than an 
acceleration of the  ageing   process [ 97 ].  Antioxidant   treatments, which are supposed 
to extend lifespan, have been much more instructive. Numerous studies examined 
the effect of exogenous catalytic and non-catalytic antioxidants on  C. elegans  lifes-
pan [ 109 ]. Many of the non-catalytic antioxidants, such as Vitamin E and C, trolox, 
α-tocopherol, and N-acetylcysteine, affected lifespan differently in distinct studies, 
probably because of differences in dose and method of delivery [ 110 – 116 ]. In some 
cases, the antioxidants increased oxidative stress without affecting lifespan [ 117 ]. 

 According to the  oxidative damage   theory, suffi cient dietary intake of these anti-
oxidants should delay the  ageing   process. A more interesting approach would be the 
intake of catalytically active antioxidants that require much lower doses because of 
their catalytic rather than stoichiometric reaction properties. EUK-8 and EUK-134 
are SOD/catalase mimetics that are readily taken up in  C .   elegans    and tend to accu-
mulate in  mitochondria   [ 118 ]. Initial lifespan analyses showed that both mimetics 
extend lifespan in  C elegans  by an average of 44 % [ 119 ]. However, these results 
could not be replicated in independent studies. On the contrary, the EUK com-
pounds seemed to shorten lifespan with increasing dose [ 118 ,  120 ,  121 ]. However, 
these molecules directly protect against oxidative stress imposed by exogenous 
compounds [ 118 ,  121 ,  122 ]. 

 Together, these studies do not convincingly show that feeding  antioxidants   to 
worms extends lifespan. The fact that various antioxidants can protect against exog-
enous oxidative stress without infl uencing lifespan suggests that oxidative stress has 
no causal relation with normal  ageing     .   

10.7      The Oxidative  Stress Response   and  Hormesis   

 Oxidative stress causes a hormetic effect on lifespan in  C. elegans , i.e. low doses 
result in moderate lifespan extension while higher doses are harmful and shorten 
lifespan. This effect was observed for the oxidants juglone [ 123 ] and paraquat [ 105 , 
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 124 ,  125 ]. The hormetic lifespan increase is caused by activation of a genetic cyto-
protective programme in response to the stressor (for more details, see Chap.   9    ). 
The major  transcription factors   involved in the response to oxidative stress are 
DAF-16 [ 90 ] and  SKN-1   [ 126 ]. DAF-16 is a Fork head transcription factor which is 
part of the Insulin/IGF- 1   like signalling pathway [ 127 ] involved in dauer formation, 
metabolism, innate immunity and stress resistance. SKN-1, the  C. elegans  Nrf2 
homologue, is a transcription factor involved in gut development and oxidative 
stress resistance [ 126 ]. The actions of DAF-16 and SKN-1 are intertwined [ 128 ] and 
these transcription factors may interact with many other factors such as BAR-1, 
SIR-2.1, 14-3-3, SMK-1, and HSF-1, to elicit the expression of overlapping gene 
sets with protective functions [ 25 ]. Typical downstream genes in oxidative stress 
response are glutathione-S-transferases, catalases, and superoxide dismutases [ 126 , 
 128 ,  129 ]. However, other cytoprotective genes, such as small heat shock proteins, 
are also activated by these  transcription factors  . 

 These hormetic effects are often at play in the benefi cial effects of ‘ antioxidant  ’ 
plant extracts on  C. elegans  lifespan. Such studies have become increasingly popu-
lar over the last few years but their innovative power and contribution to the under-
standing of the  ageing   process is usually very limited. In most cases, the studied 
extracts trigger well-known cytoprotective responses, often involving DAF-16 and/
or  SKN-1  , resulting in lifespan extension at low sub-toxic doses [ 130 – 134 ]. In many 
of these studies, authors claim to have found promising anti- ageing   chemicals, but 
essentially a very broad range of molecules may trigger this general hormetic effect. 
A similar effect has been observed with the addition of the  antioxidants   N-acetyl- L - 
cysteine [ 135 ] and S-linolenoyl glutathione [ 136 ]. However, not all plant extracts 
extend lifespan via the same genetic pathways [ 137 ]. 

 Hormesis has also been described in cases of mild mitochondrial dysfunction. 
Incremental reduction of mitochondrial electron transport chain (ETC) activity by 
RNAi dilution showed that lifespan is extended by mild ETC inhibition while more 
severe inhibition reduces lifespan [ 138 ] (see also Chap.   5    ). Interestingly, no direct 
 correlation   could be found between levels of  oxidative damage   and lifespan in this 
study. Some mitochondrial (Mit) mutants show increased  ROS   production [ 124 , 
 125 ] and enhanced expression of antioxidant enzymes [ 99 ,  139 ], but the latter is 
dispensable for longevity [ 29 ,  99 ]. However, ROS generation is required to support 
lifespan extension in  Mit mutants   such as  isp - 1  and  nuo - 6  [ 125 ]. In the Mit mutant 
 clk - 1  the prolongevity effect of excessive ROS production is compartment-specifi c 
[ 140 ]. 

 The hormetic effect of ROS generated in the  mitochondria   is called  mitohorme-
sis   [ 141 ,  142 ]. In the mitohormetic theory, ROS are not only damaging agents, but 
instead can act as signalling molecules that initiate cell-protective programmes of 
which some key players have been identifi ed [ 141 ,  143 ,  144 ]. In the Mit mutants 
 clk - 1  and  isp - 1 , the  hypoxia  -inducible factor HIF-1 is required for longevity. Hence, 
respiratory stress and increased ROS production are linked to a nuclear transcrip-
tional response that promotes longevity [ 124 ]. Inhibition of  mitochondrial respira-
tion   by RNAi triggers the mitochondrial unfolded protein response (UPR mt ), which 
is also required for longevity of these animals. However, this response does not 
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occur in long-lived worms bearing mutations in the ETC genes, suggesting that 
there are at least two classes of Mit mutants – genetic and RNAi - each showing 
lifespan extension by independent molecular mechanisms [ 145 ]. The UPR mt  is a 
cell-non-autonomous response as mitochondrial perturbation in one tissue can elicit 
the UPR mt  in another [ 146 ]. Yet in the frataxin mutant, another Mit mutant, it was 
shown that lifespan extension is mediated by the  C .   elegans    p53 homologue  cep - 1  
and not by   skn - 1    or  daf - 16  [ 147 ]. Although several molecular  mechanisms   of Mit 
longevity have recently been discovered, still many gaps remain on their relative 
importance and  interactions   [ 143 ,  148 ,  149 ].  

10.8     New Horizons 

  C. elegans  may survive a wide variety of stressors in its natural environment by 
activating specifi c cytoprotective programmes. These programmes have an ancient 
evolutionary history (e.g. detoxifi cation, innate immunity,  proteostasis  , oxidative 
 stress response  ) and all of them have been associated with longevity. Moreover, 
these programmes largely overlap and induction by one stressor may protect against 
another [ 150 ,  151 ]. Although activation of a general cytoprotective programme may 
add several days to a worm’s life it may not be very informative about the underly-
ing causes of the normal  ageing   process under unstressed conditions. Alternatively, 
one may assume that ageing is essentially the gradual loss of the ability to respond 
to stress and that therefore this response is a major determinant of longevity [ 152 , 
 153 ]. It is also possible that  ROS   are linked to ageing because they mediate the 
 stress response   to age-dependent damage [ 154 ]. However, it is important to realize 
that lifespan extension is not specifi cally linked to the oxidative  stress response   
only, as was thought in the past [ 155 ]. On the contrary, knockout of specifi c oxida-
tive stress response genes only seems to affect oxidative stress resistance, but not 
lifespan [ 22 ,  100 ,  105 ]. Vice versa, altering oxidative stress resistance does not 
always affect ageing in  C. elegans  [ 156 ]. With this in mind, several interesting alter-
native views on ROS and  ageing   have been formulated over the last few years. 

10.8.1      ROS   Are Signalling Molecules 

 The notion that  ROS   act as signalling molecules rather than being damaging byprod-
ucts of oxidative metabolism is not entirely new [ 157 ]. In  C .   elegans   , several ROS- 
mediated biological processes have been described (for a overview, see [ 39 ]). 
Reduced glycolysis [ 115 ] or mild mitochondrial dysfunction [ 138 ] increase mito-
chondrial superoxide production which acts as a signal triggering a protective 
response that extends lifespan ( mitohormesis     , see Sect.  10.7 ). Intracellular SOD 
may convert the short-lived superoxide into the more stable hydrogen peroxide 
which can oxidize cysteins of PRDX-2 monomers, forming activated homodimers. 
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Subsequently, PRDX-2 can activate  SKN-1   via a MAPK pathway, resulting in the 
expression of a cytoprotective programme [ 158 ]. Interestingly, DAF-16 can be 
directly oxidized by ROS, linking it to the importin IMB-2 with a cysteine disul-
phide bridge [ 159 ], enabling it to enter the nucleus. This mechanism links oxidative 
stress or ROS signals directly to DAF-16 activation. The redox control of DAF-16 
and PRDX-2 may be a response to relatively large cellular redox imbalances that 
require the acute activation of stress programmes to maintain cellular homeostasis 
and avoid cell death. However, ROS signalling also occurs on a much smaller spa-
tial scale to regulate normal household functions such as  reproduction  . The  C. ele-
gans  globin GLB-12 was recently identifi ed as a membrane-bound superoxide 
generator, which, in concert with the intracellular SOD-1 and extracellular SOD-4, 
creates a hydrogen peroxide gradient over the plasma membrane of the somatic 
gonad. This gradient is required for normal gonad function and the control of  germ-
line   apoptosis [ 160 ]. Loss of this redox signal results in complete sterility. This 
indicates that, rather than being omnipresent scavengers of superoxide, SODs are 
part of local signalling cascades, an idea that was already put forward earlier [ 100 ]. 
Despite the general notion that hydrogen peroxide easily crosses lipid bilayers, 
redox signals may act very locally as was shown in mammalian cells by means of 
membrane-anchored ROS biosensors [ 161 ]. These local signals may be propagated 
throughout the cell by GSH, formerly considered as an omnipresent cellular redox 
buffer, but now believed to be a redox signal amplifi er [ 162 ]. 

 As an alternative to the  oxidative damage   theory, the redox stress hypothesis 
states that functional loss during  ageing   is caused by a progressing pro-oxidizing 
shift in the cellular redox state, leading to the disruption of redox-regulated signal-
ling mechanisms [ 163 ]. This would better explain the wide-spread cellular deterio-
ration with age than does the relatively small accrual of structural oxidative damage. 
However, the cause of the pro-oxidizing shift with age is still unexplained. In the 
same vein, analysis of lifespan and hydrogen peroxide level in over 40 long-lived  C. 
elegans  strains led to the conclusion that not the absolute levels but rather the fl uc-
tuation of hydrogen peroxide correlates to lifespan [ 164 ]. This suggests that tight 
control of ROS fl uctuation is more vital than  minimizing   ROS levels, hinting at the 
importance of  redox   signalling in lifespan determination.  

10.8.2     Developmental Programmes Gone Wild 

 Taking together the (lack of) evidence for the  oxidative damage   theory in  C. ele-
gans , it seems that this theory is  ageing   badly and the call for paradigm shifts is 
getting louder. One such radically different view is that of Mikhail V. Blagosklonny, 
who proposed that ageing is a quasi-programme, a continuation of the developmen-
tal programme that is not switched off, becoming hyperfunctional and damaging 
[ 165 ]. A central player in this theory is the  TOR   (target of rapamycin) nutrient and 
mitogen-sensing pathway, a central pathway in development and anabolic growth. 
Inhibiting TOR activity by mutation or caloric restriction indeed increases lifespan 
in  C .   elegans    [ 166 ,  167 ]. TOR-inhibition by rapamycin also increases lifespan 
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although this effect is dependent on the  SKN-1  -mediated  stress response   [ 168 ]. 
Ageing worms show several forms of hypertrophy at advanced age, such as post- 
reproductive yolk accumulation, oocyte stacking and endoreduplication, ectopic 
lipid deposition, excessive neurite outgrowths,  cuticle   hypertrophy, and excessive 
germline apoptosis [ 169 ]. These phenotypes are clearly in favour of the hyperfunc-
tion theory. A very related concept to this theory is developmental drift [ 170 ]. It is 
very likely that these theories will attract more experimental attention in the next 
few years. 

 Besides exploring alternative views on  ageing  , many researchers still attach to 
the oxidative damage theory, refi ning it according to the latest experimental  evidence 
[ 171 ,  172 ]. An updated version of the oxidative stress theory, a number of miscon-
ceptions and rebuttals to criticisms are given in [ 173 ]. Others conclude that there is 
not enough evidence yet to accept or reject the  oxidative damage   theory and call for 
more rigorous testing in a broader range of species [ 174 ].   

10.9     Relevance to Human  Ageing   

 There is no doubt that  C. elegans  research has pushed forward molecular biogeron-
tology over the last three decades. As a prime genetic model that ages fast and that 
is easily subjected to large-scale genetic screens, this species enabled us to track 
down genetic pathways that infl uence lifespan [ 175 ]. In many cases, these pathways 
appeared to be conserved and relate to ageing in other species as well [ 176 ]. Due to 
its complete transparency and the availability of strains expressing genetically 
 encoded   biosensors,  C .   elegans    is currently the most accessible organism to study 
the role of  ROS  , in vivo and in real-time, in the ageing process of a multicellular 
organism. Hence, there are many reasons to continue  C. elegans  ageing research 
and undoubtedly thrilling discoveries about the molecular mechanisms of ageing lie 
ahead of us. Yet, this optimism should go hand in hand with necessary caution. We 
always need to bear in mind that some mechanisms may be private to  C. elegans  (or 
by extension, to nematodes) rather than public (i.e. valid for every animal species). 
Being an euryoxic ectotherm,  C. elegans  can cope well with changing environments 
and has a much more fl exible metabolic network than mammals. For example,  C. 
elegans  has a fully functional glyoxylate cycle (specifi c to nematodes in the animal 
kingdom) and this pathway seems to be important in lifespan extension of  Mit 
mutants   and Insulin/IGF  signalling   mutants [ 47 ,  177 ,  178 ]. Also trehalose, a disac-
charide absent in vertebrates [ 179 ], was shown to support lifespan extension in 
Insulin/IGF mutants [ 180 ]. Besides differences in biochemistry,  C. elegans  also 
lacks several systems such as the cardiovascular and adaptive immune system, that 
have been linked to age- related   diseases in humans. 

 In conclusion, it is clear that  C. elegans  is not just a 1-mm human that ages 1300 
times faster than us. Nevertheless, it is an ideal system for making very fast progress 
in the search for important molecular determinants of the animal ageing process that 
may serve as candidates for follow up studies in other  models   that are closer related 
to humans.     
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