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Abstract

Ferroelectric thin films have potential applications in many devices such as
memories, microwaves, transduction sensors, actuators, photovoltaics, etc. The
mesoscale domain structures and thus properties of ferroelectric thin films
depend crucially on the amount of strain imposed upon by the underlying
substrates. Phase-field method has been extensively applied to understanding
the underlying physics of the experimentally observed domain structures and
predicting their responses to external electrical, mechanical, thermal, and chem-
ical stimuli. In this chapter, the fundamentals of the thin-film phase-field method
and its applications in predicting the effects of strains on the phase transitions,
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domain structures, and the domain switching are reviewed. The prospect of
using phase-field method in microstructure design and property optimization for
ferroelectric thin films is discussed.

1 Introduction

The advances in film-growth methods including the pulsed laser deposition (PLD)
(Ramesh et al. 1990; Hubler 1992; Frey et al. 1994; Koster et al. 1999) and
molecular beam epitaxy (MBE) (Chao and Arthur 1975; Spah et al. 1988; Schlom
et al. 1988; Kwo et al. 1988; Eckstein and Bozovic 1995; Theis et al. 1998) have
allowed the growth of high-quality epitaxial ferroelectric thin films. An in-plane
biaxial strain is typically generated and imposed on the film via the epitaxial lattice
mismatch. Compared with the ferroelectric bulk counterparts which would normally
fracture under moderate strains such as ∼±0.1%, epitaxial thin films can withstand
much larger in-plane biaxial strains up to ∼±3% (Schlom et al. 2007, 2008, 2014;
Martin and Rappe 2017). Owing to the strong coupling between the polarization
and the lattice degrees of freedom in ferroelectrics, novel phases, physics, and
properties may emerge in heavily strained thin films. For example, a stress-free
SrTiO3 crystal is paraelectric down to 0 K. However, when a (001)-oriented SrTiO3
was epitaxially grown on a (110)-oriented DyScO3 substrate which can impose a
tensile biaxial strain of ∼0.8% on SrTiO3 film, a room-temperature ferroelectricity
was observed in the SrTiO3 thin film (Haeni et al. 2004). The similar effect was
observed in strained BaTiO3 thin films which show enhanced room-temperature
remnant polarization and ferroelectricity at temperatures much higher than the
bulk Curie point (Choi et al. 2004). While a stress-free BiFeO3 bulk crystal has
a stable rhombohedral symmetry below the Curie temperature of 830 ◦C (Catalan
and Scott 2009), a BiFeO3 thin film on a LaAlO3 substrate is subjected to a huge
compressive strain (∼−4.5%) and was shown to exhibit a highly distorted tetragonal
symmetry. As thickness of a BiFeO3 film increases, it gradually loses the coherency
strains, leading to the formation of a rhombohedral-tetragonal alternating “stripe-
like” mixed-phase structure (Zeches et al. 2009; Li et al. 2015).

The thermodynamic analysis was normally performed to understand the strain
effect on the phase transition of ferroelectric thin films (Pertsev et al. 1998; Roytburd
1998; Sheng et al. 2008; Shirokov et al. 2009; Qiu et al. 2010). It starts from the
Landau phenomenological theory of a ferroelectric bulk crystal, wherein the Gibbs
energy density is used to describe the total free energy of the bulk system with
temperature, electric field, and the stress as independent variables. For studying the
effect of strain on transition temperatures, it is actually more convenient to use strain
rather than stress as the independent variable. Therefore, a Legendre transformation
can be performed to obtain the Helmholtz free energy density, in which strain is
the independent variable in the mechanical energy term. The stress components can
be solved from the combination of thermodynamic property equations (first-order
derivatives of the Gibbs free energy) and the mechanical boundary conditions of
the epitaxial thin film. More specifically, the first-order derivative of the Gibbs free
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energy with respect to a stress component is equal to the corresponding negative
strain component. The in-plane strain components of the thin film are fixed by the
film/substrate lattice mismatch due to interfacial coherency, and the out-of-plane
stress components of the thin film are zero due to the traction-free film surface.
Eventually, the equilibrium state and the thermodynamic properties of the thin film
can be established by minimizing the total thermodynamic potential of the thin film
with respect to the thermodynamic variables.

The thermodynamic analysis has been extensively employed to predict the strain-
temperature phase diagrams of various ferroelectric thin films including PbTiO3
(Pertsev et al. 1998; Zembilgotov et al. 2005), PbZr1-xTixO3 (Pertsev et al. 2003;
Li et al. 2003a; Qiu et al. 2010), BaTiO3 (Emelyanov et al. 2002; Shirokov
et al. 2007; Sheng et al. 2008), BiFeO3 (Zhang et al. 2007; Ma et al. 2008;
Karpinsky et al. 2017), etc. One advantage of the thermodynamic analysis is the
easy implementation of the thermodynamic potential into MATHEMATICA or
MATLAB programs. Using the “minimization function” built in the software, the
thermodynamic potential can be conveniently minimized to obtain the equilibrium
state and the polarization-related properties such as the polarization, spontaneous
strain, dielectric permittivity, and piezoelectric coefficients. However, when con-
sidering polydomain structures, the thermodynamic analysis becomes much more
complicated (Kouhar et al. 2001; Bratkovsky and Levanyuk 2002; Xu et al. 2015).
Moreover, there is no direct access or even impossible to get the kinetic behavior
of the polarization and properties on the domain walls through the thermodynamic
analysis. In order to achieve this, the interfacial energy or domain wall energy and
the time-evolving behavior of the polarization need to be considered.

2 Phase–Field Method

Phase-field method combines the material thermodynamics and kinetics. It has
become an important tool for studying microstructure evolution (Chen 2002;
Boettinger et al. 2002; Gránásy et al. 2006; Chen 2008; Steinbach 2009). The
phase-field method for ferroelectric epitaxial thin films was firstly developed by Li
et al., and it has been employed to study the strain-temperature phase diagrams,
domain structures, domain switching, and other domain-related properties for
various ferroelectric thin films (Li et al. 2001, 2002a, 2002b, and 2003b, 2006; Li
and Chen 2006; Zhang et al. 2008; Kontsos and Landis 2010; Winchester et al.
2011; Britson et al. 2014; Hong et al. 2014; Chen et al. 2014; Wang et al. 2016). In
the phase-field method of ferroelectric thin films, the polarization vector is selected
as the order parameter. The spatial distribution of the polarization represents the
domain structures of a thin film. The evolution of polarization can be described by
the time-dependent Landau-Ginzburg (TDGL) equations, i.e.:

∂P (x, t)

∂t
= −L

δF

δP (x, t)
, (1)
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where P, x, t, F, and L represent the polarization vector, spatial coordinate, time, the
total free energy of the thin-film system, and the kinetic coefficient that is related to
the domain wall mobility, respectively.

In the phase-field method of ferroelectric thin films (Li et al. 2001; Chen 2008),
only polarization-related energy contributions are considered in the total free energy,
which normally includes the Landau energy (bulk chemical energy), elastic energy,
electric energy, and gradient energy, i.e.:

F =
∫∫∫

V

[
fbulk (P, T ) + fgrad (∇P) + felectric (P, E) + felastic (P, ε)

]
dV,

(2)

where fbulk, fgrad, felectric, felastic, ε, E, and ∇P represent the bulk, gradient, electric,
elastic energy densities, strain tensor, electric field vector, and polarization gradient,
respectively. The bulk energy density can be expressed by a Landau polynomial as
function of polarization, i.e.:
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(3)

where αi, αij, αijk, and αijkl are called Landau coefficients relating to the different-
order dielectric stiffness. They can be fitted to the bulk properties at zero stress
(Haun et al. 1989a; 1989b; 1989c; Li et al. 2005; Wang et al. 2007; Liang et al.
2009; Pohlmann et al. 2017).

The gradient energy density is defined as

fgrad = 1

2
γijklPi,jPk,l, (4)

where γ ijkl are the components of the gradient energy coefficient tensor and
Pi,j=∂Pi/∂xj.

The electric energy density is given by:

felectric = −Pi (x) Ei (x) − 1

2
ε0κ

b
ijEi (x) Ej (x) , (5)

where κb
ij are components of the background dielectric constant tensor (Rupprecht

and Bell 1964; Tagantsev 2008). The electric field distribution can be solved from
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the electrostatic equilibrium equation, which can be dramatically affected by the
electric boundary condition. For example, under open-circuit boundary conditions,
if the bound charges at the film surfaces are not compensated, a depolarization field
will be generated and may significantly suppress the polarization. This effect will be
dominant when the thickness of the thin film is down to several unit cells, leading
to the disappearance of the ferroelectricity, which is also called the size effect of the
ferroelectric thin films (Scott 1988, 1991; Junquera and Ghosez 2003).

The elastic energy density can be calculated according to the Hooke’s law:

felastic = 1

2
cijkleij (x) ekl (x) = 1

2
cijkl

[
εij (x) − ε0

ij (x)
] [

εkl (x) − ε0
kl (x)

]
,

(6)

where cijkl are components of the elastic stiffness tensor and eij(x), εij(x), and
ε0
ij (x) are components of the elastic strain tensor, total strain tensor, and eigenstrain

tensor, respectively. The eigenstrain tensor ε0
ij (x), or the stress-free strain tensor,

arises from the coupling between the polarization and the lattice degrees of freedom
in ferroelectrics. This coupling is also named the electrostrictive effect (Cross et
al. 1980; Cross 1996; Sundar and Newnham 1992). It is a universal effect in
insulators, and in ferroelectrics the quadratic coupling can be especially strong. The
strength of the quadratic coupling between polarization and the lattice degrees of
freedom is described by the electrostrictive coefficient Qijkl, which is a fourth-order
tensor. Its values can be obtained by experimental measurements (Yamada 1972)
or first-principle calculations (Wang et al. 2010). The eigenstrain ε0

ij (x) can be

calculated from ε0
ij (x) = QijklPk(x)Pl(x). The total strain εij(x) can be solved from

the mechanical equilibrium equation using Khachaturyan’s microelasticity theory
(Khachaturyan 1983), in combination with the thin-film mechanical boundary
conditions (Li et al. 2002).

In the phase-field model of ferroelectric thin film, materials parameters needed
include the Landau coefficients, gradient energy coefficients, background dielectric
constant tensor, elastic compliance tensor, and electrostrictive coefficient tensor.
With these materials parameters available, the domain structures under different
temperatures and in-plane biaxial strain conditions can be obtained starting from
a random distribution of polarization or from an existing domain structure.

3 Phase Transitions and Domain Structures

In the phase-field simulation of ferroelectric thin films, the equilibrium domain
structures can be predicted by quenching an annealed paraelectric state with a fixed
substrate constraint to lower temperatures. The main advantage of the phase-field
method is the fact that one does not have to make a priori assumptions on the
possible ferroelectric phases and domain structures that might appear under a given
temperature and an epitaxial strain.



1218 J.-J. Wang and L.-Q. Chen

3.1 Misfit Strain–Temperature Phase Diagrams

The phase-field method has been employed to calculate the strain-temperature
phase diagrams for several ferroelectric thin-film oxides such as PbTiO3 (Li et al.
2001), BaTiO3 (Choi et al. 2004), SrTiO3 (Haeni et al. 2004), and PbZr1-xTixO3
(Choudhury et al. 2005) (Fig. 1a–d). A common feature of these phase diagrams is
the enhanced Curie temperature by the epitaxial strain. This effect can be dramatic
as the Curie temperature can be increased by several hundred degrees by only
1% compressive or tensile strain. This effect originates from the strong coupling
between the polarization and the lattice degrees of freedom. Another common
feature among these phase diagrams is the existence of transition regions along the
ferroelectric/paraelectric phase boundaries. For the stress-free bulk ferroelectrics
including PbTiO3, BaTiO3, SrTiO3, and PbZr1-xTixO3, the phase transition is
normally first-order at which the polarization changes sharply at the transition
temperature. However, under thin-film mechanical boundary conditions with con-

Fig. 1 Misfit strain-temperature phase diagrams of (a) PbTiO3 (adapted from Li et al. 2001), (b)
BaTiO3 (adapted from Choi et al. 2004), (c) SrTiO3 (adapted from Haeni et al. 2004), and (d)
PbZr0.53Ti0.47O3 (adapted from Choudhury et al. 2005) thin films predicted using the phase-field
method. (Copyright 2001, American Institute of Physics, Copyright 2004 American Association
for the Advancement of Science, Copyright 2004, Springer Nature, Copyright 2001, American
Institute of Physics)
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straint strains in-plane and stress-free out-of-plane, the paraelectric to ferroelectric
phase transition may become second-order (Pertsev et al. 1999). This is caused
by the renormalization of the fourth-order Landau coefficients due to the coupling
between the polarization and the strain. On the strain-temperature phase diagram of
PbTiO3 thin film (Fig. 1a), there is a large region wherein the in-plane a domain
and out-of-plane c domain can coexist, which has been verified by numerous
experimental observations (Seifert et al. 1995; Kiguchi et al. 2011; Tang et al. 2014).
For PbZr0.53Ti0.47O3 thin film shown in Fig. 1d, there are also some mixed-phase
regions. For example, under moderate strains and low temperatures, the tetragonal
phase, orthorhombic phase, and distorted rhombohedral phase may coexist. These
mixed-phase regions are normally not predicted from thermodynamic analysis
without considering the multi-domain structures.

3.2 Domain Structures in Single–Layered Thin Films

A common feature of ferroelectric materials is the formation of domain structures
when the material is cooled down from a paraelectric phase to a ferroelectric phase.
A ferroelectric domain is defined by a region with uniform electrical polarization.
The domain size may range from several nanometers to hundreds of nanometers
depending on many factors such as the film thickness, the epitaxial strain, and the
electric boundary conditions. The type of domain structures is determined by the
total free energy, which can be altered by external stimuli including the mechanical,
electric, thermal, and chemical stimuli. One advantage of phase-field modeling
of the domain structures in ferroelectric thin films is the theoretically feasible
incorporation of arbitrary boundary conditions, although only some of the possible
boundary conditions can be realized in experimental configurations.

By incorporating materials parameters and incorporating boundary conditions
of the experimental thin films into the phase-field model, the equilibrium domain
structures can be obtained and compared with available experimental observations.
For example, Fig. 2a shows the a/c domain structures predicted in a (001)-oriented
PbTiO3 thin film under a moderate compressive strain, while Fig. 2b gives the
domain structures observed in a PbTiO3 thin film epitaxially grown on a (001)-
oriented SrTiO3 substrate which can impose a compressive strain on the PbTiO3
thin film. The a domain represents the domains with the polarization along either
the x1 or x2 axis of the pseudocubic lattice, and the c domain represents the domains
with the polarization along the x3 axis of the pseudocubic lattice. The predicted
domain structures (Li et al. 2002) show amazing similarity to the domain structures
observed (Seifert et al. 1995) using the transmission electron microscopy (TEM).
The formation of the a/c domain structures can be understood from the competition
between the elastic energy, the electrostatic energy, and the gradient energy. For the
moderately compressed thin films under short-circuit electric boundary conditions,
a single c domain can minimize the electrostatic energy and the gradient energy.
In this case however the macroscopic deformation along the out-of-plane direction
will be maximized, leading to a high elastic energy. Therefore, some a domains
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Fig. 2 (a) Predicted a/c domain structures in a (001)-oriented PbTiO3 thin film under moderate
compressive strains (adapted from Li et al. 2002), compared with (b) the experimental observation
in a PbTiO3 thin film epitaxially grown on a (001)-oriented SrTiO3 substrate (adapted from Seifert
et al. 1995). (c) Predicted a1/a2 twinning domain structures in a PbZr0.2Ti0.8O3 thin film under
equally biaxial tensile strains (adapted from Wang et al. 2016), compared with (d) the experimental
observation in a PbTiO3 thin film epitaxially grown on a (001)-oriented KTaO3 substrate. (Adapted
from Lee et al. 2001. Copyright 2002, 2016, Elsevier, Copyright 2001, American Institute of
Physics)

are generated to decrease the macroscopic deformation and the elastic energy but
comprise to slightly increase the electrostatic energy and the gradient energy.

3.3 Domain Structures in Bilayer Thin Films

The phase-field method was also employed by Artemev et al. to study the domain
structures in ferroelectric bilayer thin films (Artemev et al. 2008). They found that a
poled state can be achieved by a low electric field in the bilayer film with one layer
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in a single-domain state and the other layer in a polydomain state. In contrast to the
bilayer film with both layers in single-domain states, the presence of a polydomain
layer in the bilayer film is responsible for a higher dielectric constant and lower
coercive field. The increase in the applied electric field can lead to a transition to
single-domain states in both layers of the bilayer film, and the critical field depends
on the thermodynamic potentials of the two layers (Artemev et al. 2008). Using
the thin-film phase-field method, Xue et al. investigated the effect of interfacial
coherency between the two layers in a Pb(Zr0.3Ti0.7)O3/Pb(Zr0.7Ti0.3)O3 bilayer
thin films on the domain structures (Xue et al. 2013). If the lattice parameters of the
two layers end up with the same average lattice parameter, the two layers can be
regarded as coherent. For example, the cubic lattice parameters for Pb(Zr0.3Ti0.7)O3
and Pb(Zr0.7Ti0.3)O3 are 4.0185 Å and 4.1032 Å, respectively, giving rise to
an average lattice parameter of 4.0609 Å when the two layers have the same
thickness. With a coherent interface, the strained bilayer film has a lattice parameter
of 4.0609 Å. Consequently, the Pb(Zr0.3Ti0.7)O3 layer tolerates a tensile strain
of (4.0609−4.0185)/4.0185 = 1.05%, and the Pb(Zr0.7Ti0.3)O3 layer tolerates a
compressive strain of (4.0609−4.1032)/4.1032=−1.03%. For a totally incoherent
bilayer film, each layer can be regarded to have similar lattice parameters to their
bulk counterparts, unless the clamping effect from the substrate is considered.

The interfacial coherency has significant effects on the domain structures in
each layer (Fig. 3a and b). For Pb(Zr0.3Ti0.7)O3/Pb(Zr0.7Ti0.3)O3 bilayer thin films
with coherent interface, tetragonal a1/a2 twinning domain structures (all in-plane
polarizations) are predicted in the Pb(Zr0.3Ti0.7)O3 layer (Fig. 3a), while in its
single-layer thin film, the domain structures are tetragonal a/c types (Fig. 3c, mixed
in-plane and out-of-plane polarizations). The Pb(Zr0.7Ti0.3)O3 layer in the bilayer
film shows tetragonal c domains (all out-of-plane polarizations), compared with
rhombohedral domains in its single-layer thin-film counterpart (Fig. 3d). For the
bilayer film with incoherent interface, the domain structures in each layer are similar
to their single-layer thin-film counterparts, i.e., a/c domains in Pb(Zr0.3Ti0.7)O3
layer and rhombohedral domains in Pb(Zr0.7Ti0.3)O3 layer (Fig. 3b). The interfacial
coherency effects on the domain morphologies can be understood from the strain
configuration in the bilayer film. In Pb(Zr0.3Ti0.7)O3 layer, the tensile strain 1.05%
tends to align all polarizations in-plane, leading to the formation of a1/a2 twinning
domain structures under the synergistic effect from the bulk chemical energy and
elastic energy. In Pb(Zr0.7Ti0.3)O3 layer, the compressive strain −1.03% tends to
switch all polarizations out-of-plane, leading to the formation of c domains (Xue et
al. 2013; Liu et al. 2016).

3.4 Strain Phase Separation

The thin-film phase-field model was also used to understand the formation of mixed
phases and domains in strained thin films from the perspective of strain phase
separation. In a constrained system, domains or phases can form and coexist with
each other to minimize the overall elastic energy, given that each domain or phase
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Fig. 3 Effects of interfacial coherency on the domain structures in a
Pb(Zr0.3Ti0.7)O3/Pb(Zr0.7Ti0.3)O3 bilayer thin film (Xue et al. 2013). Domain structures of
the bilayer film when the interface between the two layers is (a) coherent and (b) incoherent,
compared with the domain structures in single-layer (c) Pb(Zr0.3Ti0.7)O3 thin film and (d)
Pb(Zr0.7Ti0.3)O3 thin film under a moderate strain of 0.2% due to thermal expansion. (Copyright
2013, Elsevier)

has different local strains. This phenomenon is similar to the phase decomposition
process from a chemically homogeneous phase to a two-phase mixture wherein each
phase has a different chemical composition. The volume fraction of each phase
with a specific composition can be obtained from the lever rule. This idea was
used to understand the observed rhombohedral-tetragonal mixed phases in severely
compressed BiFeO3 thin films (Xue et al. 2016, 2017). BiFeO3 has a pseudocubic
lattice parameter of ∼4.0 Å. When it is epitaxially grown on a LaAlO3 substrate
with a lattice parameter of ∼3.79 Å, a large compressive strain up to ∼−5.25% will
be imposed on the thin film, leading to a transition from the rhombohedral phase
to a tetragonal-like monoclinic phase in BiFeO3 thin film (Zeches et al. 2009; Li
et al. 2015; Zhang et al. 2012). With the film thickness increasing to be larger than
100 nm, the large epitaxial strain is partially relaxed, and the rhombohedral phase
emerges, forming a tetragonal-like/rhombohedral mixed domain structure (Fig. 4a
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Fig. 4 Experimentally observed (a) topography and (b) the corresponding in-plane piezoresponse
force microscopy result of a mixed-phase BiFeO3 thin film grown on LaAlO3 substrate, compared
with the simulated (a) three-dimensional domain structures and (b) in-plane domain morphology
from thin-film phase-field method. (Adapted from Xue et al. 2016. Copyright 2016, American
Physics Society)

and b). The phase-field model was employed to predict domain structures (Fig. 4c
and d) which agree well with the experimental observations and give insights to the
underlying physics. With the relaxation of the mismatch strain, the overall strain will
be smaller than the critical strain, under which the transition from rhombohedral
phase to tetragonal-like phase occurs. Therefore, the phase separation happens to
decrease the total elastic energy, analogous to the chemical decomposition process
(Xue et al. 2016, 2017).

3.5 Understanding the Polarization Switching in Ferroelectric
Thin Films

One advantage of the phase-field method over the thermodynamic analysis is the
capability of studying the polarization switching behavior in ferroelectric thin films.
The polarization switching driven by externally applied electric fields was simulated
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by Li et al. for epitaxial BaTiO3 thin films (Li et al. 2008). They found that the
coercive field and saturated polarization in the hysteresis loop strongly depend on
the type and density of the interfacial dislocation. For example, the coercive field can
be decreased by increasing the density of interfacial misfit dislocations on a (100)
slip plane with a Burger vector along [−100] direction. With an optimal combination
of different misfit dislocations, the remnant polarization can be greatly enhanced
and the coercive field can be greatly reduced. The polarization versus electric
field hysteresis loops can be distorted to be asymmetric by threading dislocations.
Wu et al. investigated the effects of background dielectric constant and interfacial
coherency on the hysteresis loops in BaTiO3/SrTiO3 bilayer films (Wu et al. 2012,
2015). It was found that the hysteresis loops can be constricted when the background
dielectric constant is decreased. The decrease in the background dielectric constant
has a similar effect to the decrease in the space charge density. The phase-
field simulation predicted the domain structure evolution during the switching
process in the ferroelectric/paraelectric bilayer film, revealing a dipole-dipole inter-
action similar to the exchange-spring interaction in magnetic multilayer systems
(Wu et al. 2012). The interfacial coherency also has a remarkable impact on the
polarization switching behavior. In the bilayer film with fully coherent interfaces,
the hysteresis loops are square-like, exhibiting a large coercive field and a large
remnant polarization. For the bilayer films with partially relaxed heterointerfaces,
the remnant polarization is relatively high but the coercive field is dramatically
reduced. For the bilayer film with fully relaxed heterointerfaces, the hysteresis loops
are very slim, showing both small remnant polarization and coercive field.

The polarization switching is normally achieved by the externally applied electric
field. However, it can also be achieved by a mechanical loading via the flexoelectric
effects in epitaxial thin films. The flexoelectric effect is defined as the coupling
between the polarization and the strain gradient. This effect is much stronger in
ferroelectric thin films than in their bulk counterparts. It has been implemented
into the thin-film phase-field model by several research groups (Chen et al. 2014;
Ahluwalia et al. 2014; Gu et al. 2014; Chen et al. 2015). In these works, the
flexoelectric effects on the domain structures and switching were studied. For
example, Chen et al. studied the stability and switching patterns of domain structures
in ferroelectric thin films subjected to mechanical loads and related flexoelectric
fields (Chen et al. 2015). As shown in Fig. 5a and b, a mixed a/c domain structure
can be switched to a single-domain structure by cylindrical bending with a large
surface flexoelectric field. For the upward bending case shown in Fig. 5a, the out-
of-plane c− domains are gradually switched to in-plane at first and then are switched
to the out-of-plane c+, while for the downward bending case shown in Fig. 5b, all
in-plane domains are switched to the out-of-plane c− domain. These two switching
patterns can be understood from the different flexoelectric fields due to the different
bending directions. For the film with an upward bending, the induced flexoelectric
field is upward, leading to the switching of polarization to c+. For the film with
a downward bending, the induced flexoelectric field is downward, leading to the
switching of polarization to c−.
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Fig. 5 Switching behavior of the domain structure from a/c mixed structures to (a) single out-of-
plane c+ domain under upward bending and to (b) single out-of-plane c− domain under downward
bending. (Adapted from Chen et al. 2015. Copyright 2015, Elsevier)

4 Toward a Multiscale Simulation

Although the thin-film phase-field method has gained great success in understand-
ing the experimental domain structures and phase transitions, and in predicting
the domain structures and switching in thin films under conditions beyond the
experiment, it has only been applied to limited material systems due to the lack
of the thermodynamic parameters including the Landau coefficients, electrostrictive
coefficients, elastic constants, and gradient energy coefficients. For example, up
to now, there are very limited materials that have available Landau potentials
such as BaTiO3, PbTiO3, PbZr1-xTixO3, BiFeO3, CaTiO3, SrTiO3, KNa1-xNbxO3,
LiNbO3, LiTaO3, SrBi2Nb2O9, and Sr0.8Bi2.2Ta2O9. However, the ferroelectrics
that have been discovered are far more beyond these. In order to obtain the Landau
coefficients, the polarization and dielectric responses including both the first-order
and higher-order dielectric stiffness as function of temperature have to be measured,
which is experimentally challenging especially when the required temperature range
is broad. An alternative approach to obtaining the Landau coefficients is the first-
principle calculation, which has been employed to obtain the Landau coefficients for
BaTiO3 (Íñiguez et al. 2001; Geneste 2009), CaTiO3 (Eklund 2010; Gu et al. 2012),
and BiFeO3 (Marton et al. 2017). In addition to the Landau coefficients, the first-
principle method has also been employed to calculate the phase transitions (Zhong
et al. 1994), elastic constants (Wu et al. 2005), electrostrictive coefficients (Wang
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et al. 2010), and polarization domain wall energies (Wang et al. 2013; Diéguez
et al. 2013; Li et al. 2014). For the domain wall motion speed which is related
to the kinetic coefficient L in the TDGL equation, it can be studied using the
atomistic molecular dynamics and coarse-grained Monte Carlo simulations (Shin
et al. 2007). All these efforts point toward the multiscale simulation-assisted phase-
field modeling for ferroelectric thin films (Völker et al. 2011a, 2011b), which can
provide principal inputs for future high-throughput calculation (Shen et al. 2017)
and optimization of properties and microstructure design for ferroelectric thin films
using machine learning (Li et al. 2017).
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