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Abstract

Soft gels are materials at the core of material technological innovation, and
as such, they are constantly evolving to meet different requirements in terms
of performance, reliability, durability, and environmental impact. Despite many
progresses made in the case of polymer gels, a consistent theoretical framework
for the relationship between the microscopic structure and the mechanical
properties of a wide range of materials ranging from colloidal gels to protein
and biopolymer gels is still lacking. A multitude of different phenomena are
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observed – aging, strain stiffening, creep, banding, and fracture – that are
difficult to control and properly tune to design the material properties. Here we
discuss how numerical simulations of suitably designed microscopic models can
help develop novel insight into the microscopic mechanisms that underlie the
complex dynamics of these versatile materials. We provide an overview of the
computational approach we have recently developed and of the main outcomes
obtained. Finally we discuss outstanding questions and future developments.

1 Introduction

Gels are amorphous materials composed of a liquid phase and an interconnected
network like solid phase, which can be formed at very low solid volume fractions.
They are widespread, both in nature and in industry – from the pharmaceutical
industry (agar gel) to the construction sector (cement hydrate or aluminosilicate gels
in cement) – or in everyday life: the bread gets its rubbery texture from the formation
of an elastic network of gluten protein, and the formation of protein networks is vital
for the successful production of cheese. All soft matter, in fact, from proteins (Lieleg
et al. 2011) to colloids (Lu et al. 2008; Gao et al. 2015) and polymers (Chen et al.
2010), easily self-assembles into such weakly elastic solids (see some examples
in Fig. 1). They generally present a heterogeneous structure which is the result of
the coupling between the kinetics of aggregation, phase separation or demixing,
and arrest of the microscopic dynamics (Trappe et al. 2001; Del Gado et al. 2004;
Coniglio et al. 2006; Del Gado and Kob 2010; Varrato et al. 2012; Zia et al. 2014).

The solidification process typically induces mechanical heterogeneities and
hence internal stresses in the material, which then affect its properties in the long
term (Cipelletti and Ramos 2005; Maccarrone et al. 2010a; Guo et al. 2011; Angelini
et al. 2014; Bandyopadhyay et al. 2004). Weaker regions, for example, may yield
via the sudden and irreversible rupture of bonds between the particles, which can
be triggered by thermal fluctuations, while other regions densify. These “micro-
collapses” or other aging processes can affect the stability of the material and the
reliability of its performance (the mechanical strength of a gelled product can decay,
for example, or batteries composed of colloidal gels may fail due to a progressive
conductivity loss favored by aging (Youssry et al. 2013; Duduta et al. 2011; Helal
et al. 2016; van Doorn et al. 2018)). The mechanical properties of the gel, therefore,
depend on both the solidification protocol and the age of the sample. These problems
are, in most of the cases, treated empirically because of the lack of fundamental
understanding.

Even without the aging, it would be difficult to disentangle the impact of the
structure, the dynamics, and the mechanical response in soft gels, because of the
topological complexity of the solid network and of the microscopic relaxation
mechanisms involved. The microscopic dynamics of gel networks is strongly coop-
erative and nonlocal (Colombo et al. 2013) due to the coupling among processes
occurring over different lengthscales, a fact that has traditionally made theory,
experimental, and computational investigations extremely challenging. Capturing
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Fig. 1 (a) Snapshot of a colloidal particle gel (PMMA). (Reprinted from Tsurusawa et al. 2018).
(b) A biopolymer gel (Fibrin). (Reprinted from de Cagny et al. 2016), (c) bright-field TEM images
of calcium-silicate-hydrates C–S–H. (Reprinted from Del Gado et al. 2014)

the mechanics of soft gels and their intrinsically nonequilibrium and nonlinear
nature requires bridging the lengthscale of the contacts between the particles to
the lengthscale of the particles themselves and to the lengthscales relevant to the
mechanics of the networks, which can include much larger structures. In addition,
the presence of the fluid that can flow between the deformable pores contributes
to the mechanical complexity (de Cagny et al. 2016). Under an imposed load
or deformation, a multitude of different phenomena are observed – aging, strain
stiffening, creep, banding, and fracture – that are difficult to rationalize, control, and
properly tune to design the material properties. A key question to ask, to address
this complexity, is whether or not there can be common microscopic underpinnings
for the relaxation/deformation mechanisms that lead to aging at rest and to the
mechanical response for different types of gel. In the last years, novel technologies
have allowed experimentalists to combine rheology with imaging (Cerbino and
Trappe 2008; Arevalo et al. 2015), ultrasound velocimetry (Gallot et al. 2013),
interferometry (Mao et al. 2017), or spectroscopy (Ruta et al. 2012; Eberle and
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Porcar 2012; Maccarrone et al. 2010b; van der Kooij et al. 2018; Aime et al. 2018b).
Combining such approaches with computational studies and numerical simulations
creates new unique opportunities to fill the gap between the macroscopic rheological
behavior of the materials and their micro- and even nanoscale structure/dynamics
and provides novel significant insights to develop advanced theories and constitutive
models (Nicolas et al. 2018; Fielding 2014; Bouzid et al. 2018a).

In this chapter, we give an overview of new insights that can be gained
through judiciously designed computational studies and models and of how the
progress made can help understand at a more fundamental level the dynamical and
mechanical complexity of soft gels. Building on the results obtained, we discuss
how to tackle outstanding questions and how to bridge the microscopic picture
obtained toward mesoscale or continuum level theories. The chapter is organized
as follows: in Sect. 2, we present the computational approach we have recently
developed for investigating the dynamics and the mechanics in a soft gel model. In
particular this approach has been helpful to unravel the different nature of dynamical
fluctuations in soft gels, depending on the internal stresses and the elasticity of
the material, as discussed in Sect. 3. The mechanical response and its connection
with the microstructure are discussed in detail in Sect. 4. Finally, in Sect. 5, we
draw conclusions of the progress made so far and review some of the outstanding
questions.

2 Computational Approach and Numerical Model

In the need to deepen our understanding of the interplay between the complex
microstructure, the emerging dynamics, and the mechanical response of soft
gels, numerical simulations play an increasingly important role. A key reason is
the unique capability of computational methods to integrate different levels of
complexity in a controlled manner. In condensed matter physics, the theories aimed
at explaining macroscopic experimental observations are very rarely ab initio (Marx
and Hutter 2009). They are based on simplified hypotheses, integrating a conceptual
representation, covering a certain scale in time or space. The numerical simulations
make it possible either to verify the validity of a theory by simulating the materials
within the specific framework of the hypotheses used or to test the validity of the
hypothesis of the theory, and to better understand their emergence, by simulating the
material on a more microscopic scale. Ab initio numerical approaches are mainly
useful when the microscopic details are sufficiently simple, but in most of other
cases, coarse-grained approaches are more versatile and powerful. Being able to
vary, in a continuous and parametrized way, the different microscopic properties is
a big advantage of the numerical methods, because it makes it possible to offer a
field of systematic studies out of reach of the experimental systems and, thus, to
help to reveal new explanatory concepts.

Particle-based and molecular dynamics inspired approaches have proven effec-
tive, in the last few years, to unravel the dynamics and nonlinear mechanics of gel
networks, thanks to large-scale simulations that can help disentangle the dynamical
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processes at the level of the network structure and their contribution to the material’s
linear and nonlinear response (Colombo and Del Gado 2014b; Bouzid and Del Gado
2018; Bouzid et al. 2018a; Landrum et al. 2016; Jamali et al. 2017; Boromand
et al. 2017; Di Michele et al. 2014; Varga and Swan 2018; Padmanabhan and Zia
2018). In these types of approaches, gels are described in terms of their microscopic
discrete building blocks, typically particles, grains, or small aggregates in colloidal
gels or flocculated suspensions. With a suitable model for the effective interactions
between the particles, the time evolution of the system is obtained by integrating
the many-body equations of motion for the whole set of microscopic degrees of
freedom (typically, center of mass positions and velocities of the particles). The
simulations therefore necessarily contain the following ingredients: (i) a model that
describes the interactions between the particles, usually in terms of an interaction
potential U (ri , . . . , rN), where ri represents the particle coordinates, and (ii) a
numerical integrator, i.e., an algorithm that solves efficiently and precisely the
equations of motion with a set of boundary conditions that corresponds to the
specific problem of interest. The equations of motion can have different amount
of details of the microscopic motion of the particles that compose the gel (from
Brownian fluctuations to hydrodynamic interactions). With such an approach, one
can introduce interactions between particles in a simple and controlled way and ask
about the emergence, at various scales, of the constitutive properties of gels.

For the effective interactions, a number of approaches have been used in the
literature to model soft gels, including short-range isotropic interactions typical of
colloidal suspensions, valence-limited and patchy particle models that mimic small
molecule or functionalized nanoparticle gels, and dipolar interactions that can lead
to chaining and branching (Koumakis and Petekidis 2011; De Candia et al. 2006;
Zaccarelli et al. 2006; Coniglio et al. 2004; Del Gado et al. 2004; Rovigatti and
Sciortino 2011; Blaak et al. 2007; Ilg and Del Gado 2011; Eberle et al. 2011; Bianchi
et al. 2015; Zia et al. 2014; Varga et al. 2015; Fierro et al. 2008). While these models
mainly focus on the two-body short-range interactions that create the mechanical
contact between particles at first, the emerging softness of the gel materials is the
result of the sparse nature of the network structure, whose connections, on the other
hand, need to be fairly rigid to support at least the gel own weight and a finite torque
(Del Gado and Kob 2010, 2007; Pantina and Furst 2005, 2006; Ohtsuka et al. 2008;
Colombo and Del Gado 2014a; Hsiao et al. 2012). We have therefore focused on
a model where a short-range attractive well is combined with a three-body term,
which imparts an angular rigidity to the gel branches, as to be expected in such
open structures.

2.1 A Microscopic Model with Directional Interactions

We have developed a minimal model, considering particles (or small aggregates
represented as particles) of diameter d that interact through a potential composed of
two terms:
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U (ri , . . . , rN) = ε
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where rij = rj − ri , with ri denoting the position vector of the i-th particle and ε

the strength of the attraction that sets the energy scale. The first contribution to U is
a two-body potential à la Lennard-Jones, U2, which consists of a repulsive core and
a narrow attractive well that can be expressed in the following dimensionless (and
computationally convenient) form :

U2(r) = A

(
a

r18 − 1

r16

)
(2)

where r is the distance rescaled by the particle diameter d, while a and A are
dimensionless parameters that control, respectively, the width and the depth of the
potential well. The second contribution to U is a three-body term U3 that confers
an angular rigidity to the interparticle bonds, which prevents the formation of dense
clusters (Fig. 2). The idea is that once particles start to aggregate, their mechanical
contacts can be more complex than the simple geometric contact between two
perfect spheres represented by the attractive well U2 and, in particular, that there
may be an energy cost associated to rotation of particles around each other in an
aggregate made by more than two of them, due to inhomogeneity of their surfaces.
For two particles both bonded to a third one and whose relative positions with
respect to it are represented by the vectors r and r′ (also rescaled by the particle
diameter), U3 takes the following form:

U3(r, r′) = BΛ(r)Λ(r′) exp

[
−

(
r · r′

rr ′ − cos θ

)2

u−2

]
(3)

where B, θ , and u are dimensionless parameters. The radial modulation Λ(r) that
controls the strength of the interaction reads:

Λ(r) = r−10
[
1 − (r/2)10

]2
H (2 − r) (4)

where r is the distance rescaled by the particle diameter d. H denotes the Heaviside
function, which ensures that U3 vanishes beyond the diameter of two particles. The
potential energy in our model depends parametrically on the five dimensionless
quantities: A, a, B, θ , and u. Tuning these parameters leads to a variety of
mechanically stable porous microstructures (Colombo and Del Gado 2014a), and
the values chosen in the following (A = 6.27, a = 0.85, B = 67.27, θ = 65◦
and u = 0.3) are such that a disordered and thin percolating network starts to
self-assemble for low particle volume fractions (φ � 0.1) at ε � 20kBT (see the
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Fig. 2 (a) Schematic representation of the interactions: two-body attractive part and the three-
body repulsive one. (b) Snapshot of a gel network from the simulation with number density
ρ = 0.14, which approximately corresponds to a solid volume fraction φ � 7.3% (the sample
size here is N = 5324 particles). Each bond is represented by a segment, when the distance dij

between two particles i and j is dij ≤ 1.3d

snapshot in Fig. 2), with kB the Boltzmann constant and T the room temperature.
Typical values of d and ε for colloidal particles range, respectively, from d � 10 to
100 nm and from ε � 10 to 100 kBT .

With this model, we have performed molecular dynamics simulations, where the
gel is composed of N particles each with a mass m in a cubic simulation box
of size L. The simplicity of the model allows us to run large-scale simulations
with up to N � 106 particles, which is essential for a statistical analysis of the
microscopic dynamics. The initial gel configuration is prepared with the protocol
described in (Colombo and Del Gado 2014b), which consists in starting from a
gaseous configuration at kBT /ε = 0.5 and letting the gel self-assemble upon slow
cooling down to kBT /ε = 0.05 using Newton or Langevin equations of motion. In
this temperature range, the self-assembled structures do not meaningfully depend
on the specific microscopic dynamics used, and the Newtonian dynamics allows for
shorter computational times. Nevertheless, once the gel has formed, the Langevin
dynamics is obviously a much better choice for the dynamics overdamped by the
solvent, which is typical of these materials (Colombo and Del Gado 2014a; Bouzid
et al. 2017).

Once the gel is assembled, the kinetic energy is then completely drawn from the
system (down to 10−24ε) by means of a dissipative microscopic dynamics:

m
d2ri

dt2
= −∇riU − ηf

dri

dt
, (5)
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where ηf is the damping coefficient associated with coupling of the particle motion
to the surrounding fluid. We note that here and in the following, we always solve
equations of motion that contain explicitly an inertial term with the mass m for
computational convenience: integrating the equations with the inertial term allows
us to use effective and precise numerical integrators (Frenkel and Smit 2002).
On the other hand, the limit m → 0 is the one relevant to colloidal gels in
experiments, since in those systems the particle motion is completely overdamped
and inertial effects are negligible. The timescales over which the particle motion
is affected by inertia in our simulations are of the order of 1τ0 − 10τ0 (for the
values of m and ηf chosen). For a spherical colloidal (silica) particle of diameter
d � 100 nm and interaction strengths ε � 10kBT , the inertial timescale τ0 =√

md2/ε � 10−6 s corresponds to timescales (and lengthscales, in terms of particle
displacements) that are not relevant to experiments (Bouzid et al. 2018a). In the
following, we make sure to be in the overdamped regime of the dynamics by
choosing large enough values of ηf (Colombo and Del Gado 2014a; Puosi et al.
2014).

We also note that what is still missing in the equations of motion we discuss (here
and in the following) is a proper treatment of the hydrodynamic interactions that in
principle can have a strong impact on the microscopic dynamics of soft gels. While
a well-established rigorous framework is still under construction, recent works
indicate that the role of (long range) hydrodynamics on the emerging microscopic
dynamics of the gel network at rest and in the linear response regime may be
relatively negligible (Varga et al. 2015; Varga and Swan 2018; Royall et al. 2015).
The main difference detected so far is a slight shift of the gelation threshold
(Varga et al. 2015), which could be also due to the limited size of the numerical
samples, and a tendency to favor the formation of more open and anisotropic
aggregates in the early stages of the aggregation, which may significantly modify
the gel formation but seems to have little consequences for the long-time relaxation
dynamics in the solidified gel (Varga et al. 2015; Royall et al. 2015). The explanation
for such little effect could be in the fact that once the gel is formed, the main
contribution to the stresses is through the gel structure, its elasticity, and the
extended soft modes present. The latter are determined by the disordered network
topology and involve lengthscales of the order of the sample size. Such contributions
seem to dominate the gel response with respect to the hydrodynamics coupling,
which would dominate only after a significant modification/rupture/destabilization
of the gel structure has taken place. Further developments for the treatment of
hydrodynamic interactions in such complex materials will help elucidate this
point.

In all the simulations we discuss here, the timestep δt used for the numerical
integration is δt = 0.005. Distances are expressed in terms of the particle diameter
d, masses in units of m, the energy in terms of the strength of the attraction ε, and
the time in the units of the characteristic timescale τ0 = √

md2/ε. From the particle
number density N/L3, we can compute an approximate solid volume fraction
φ � Nπd3/6L3. All simulations discussed here have been performed using a
version of LAMMPS suitably modified by us (Plimpton 1995).
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2.2 Computing Stresses and Mechanical Response

2.2.1 Stress Calculation
The average state of stress of the gel is given by the virial stresses as σαβ = − 1

L3∑
i si

αβ , where the Greek subscripts stand for the Cartesian components x, y, z, L

represents the size of the system, and si
αβ represents the contribution to the stress

tensor of all the interactions involving the particle i (Irving and Kirkwood 1950;
Thompson et al. 2009). The latter contribution is calculated for each particle, by
splitting the contributions of the two-body and the three-body forces according to
the following equation:

si
αβ = −1

2

N2∑
n=1

(ri
αF i

β + r ′
αF ′

β) + 1

3

N3∑
n=1

(ri
αF i

β + r ′
αF ′

β + r ′′
αF ′′

β ) (6)

The first term denotes the contribution of the two-body interaction, where the sum
runs over all the N2 pairs of interactions that involve the particle i. The couples
(ri, F i) and (r ′, F ′) denote, respectively, the position and the forces on the two
interacting particles. In the same way, the second term indicates the three-body
interactions involving the particle i and two neighbors denoted by the prime and
double prime quantities.
To evaluate the stress tensor at a mesoscale, we consider a coarse-graining volume
vcg centered around the point of interest r and containing around 10 particles on
average and define the local coarse-grained stress based on the per-particle virial
contribution as σ̄αβ(r) = − ∑

i∈vcg

si
αβ/vcg . For a typical starting configuration of the

gel, the local normal stress σ̄n = (σ̄xx +σ̄yy +σ̄zz)/3 reflects the heterogeneity of the
structure and tends to be higher around the nodes, due to the topological frustration
of the network. Note that here and in the following, we have been neglecting the
kinetic contribution −(1/L3)

∑
i miδv

i
αδvi

β to the global stress tensor (from the
fluctuations of the particle velocities with respect to the average), since we are
mainly concerned with ε 
 kBT .

2.2.2 Aging Protocol
We consider that breaking of network connections underlying the aging of the gel is
more prone to happen in the regions where local stresses tend to be higher, as found
also in Colombo et al. (2013) and Colombo and Del Gado (2014b). Hence aging
at rest can be due to sudden ruptures of particle connections in the regions where
the local tensile stresses are higher, as also suggested by experiments on ultraslow
aging (Ramos and Cipelletti 2001). Such events become hardly observable on a
reasonable simulation time window making it extremely challenging to study the
aging regime (Colombo et al. 2013; Bouzid et al. 2017). In order to investigate the
consequences of the ruptures on a timescale computationally affordable, we have
devised the following dynamics: we periodically scan the local stresses in the gel
structure and remove particle bonds where the local stress is the highest, with a fixed
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rate Γ . In between breaking events, the gel evolution follows from the Langevin
equations of motion:

m
d2ri

dt2 = −∇riU − ηf

dri

dt
+ ξi(t), (7)

where i refers to the particle and U is the interaction potential in Eq. (1). ξi(t) is a
random white noise that models the thermal fluctuations and is related to the drag
coefficient ηf through its variance 〈ξi(t)ξj (t

′)〉 = 2ηf kBT δij δ(t − t ′). To be in the
overdamped limit of the dynamics, ηf is set to 10 m/τ0.

Recombinations of the gel branches are possible but just not observed at the
volume fractions and for the time window explored here. The bonds progressively
removed (by turning off the well in U2) are those whose contribution to the local
normal stress si

n = (si
xx + si

yy + si
zz)/3 is the largest (prevalently bonds between

particles belonging to the network nodes) (Bouzid et al. 2017) (see Fig. 3a). As the
simulation proceeds, local internal stresses redistribute in the aging structure of the
gel, and the locations of more probable connection rupture (as well as their number)
change over time. All simulations presented here for the aging have been performed
with a rate Γ = 0.04τ−1

0 , corresponding to removing only ∼5% of the total network
connections over the whole simulation time window.

0.4

0

a

b c

Fig. 3 (a) Illustration representing an irreversible elementary process in the aging simulations:
breaking of a bond highlighted in green. A snapshot of the gel network is visualized using the
bonds between particles, and the colors refer to the displacement field u after the bond breaking, for
a network with thermal fluctuations (b) and for an athermal gel (c). (Reproduced with permission
from Bouzid et al. 2017. Creative Commons license available at https://creativecommons.org/
licenses/by/4.0/. Copyright 2017 Nature Publishing Group)

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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We have identified the range of parameters for which changing the rate (having
kept all other parameters constant) does not modify the outcomes and the emerging
physical picture discussed in the following. In addition to the data shown here,
we have also varied the density of events, keeping fixed the criterion used for
cutting (i.e., we cut the network connections corresponding to the largest tensile
contributions to virial stresses). In fact, the rate of cutting events chosen for the data
shown here has been chosen in a range such that the typical interval between two
cutting events Γ is quite smaller than the relaxation times associated to the stress
redistribution following the bond cutting. Hence many breaking events contribute
to the structural relaxation that we discuss. Since for the aging we are interested to
the case in which all dynamics are extremely slow (i.e., to very low temperatures
in the simulations), the range of values for Γ that satisfy this condition is relatively
wide. Increasing the rate corresponds to breaking a larger fraction of the total bonds
initially present and hence also to increasing the density of events underlying the
network rearrangements and the stress relaxation. Overall, the same results are
recovered as long as the τr = 1/Γ between two rupture events allows for at least
partial stress relaxation, varying Γ over nearly two orders of magnitudes. If the
cutting rate is much higher, the rate may eventually disrupt the elastic strain field in
the material leading to damage accumulation and spreading (Bouzid et al. 2017).

2.2.3 Start-Up Shear
To determine the gel mechanical response to a start-up shear test, each particle
configuration can be submitted to a series of incremental strain steps in simple shear
geometry (Colombo and Del Gado 2014b). In each step, we increase the cumulative
shear strain by an amount δγ by first applying an instantaneous affine deformation
Γδγ , corresponding to simple shear in the xy plane, to all particles:

r′
i = Γδγ ri =

⎛
⎝1 δγ 0

0 1 0
0 0 1

⎞
⎠ ri (8)

The Lees-Edwards boundary conditions (Lees and Edwards 1972) are updated as
well, to comply with the increase in the cumulative strain. The configuration {r′

i}
is no longer a minimum of the potential energy (being the material amorphous)
(Alexander 1998), and the small deformation step induces unbalanced internal
forces. Hence we relax the affinely deformed configuration by letting the system
free to evolve in time while keeping the global strain constant:

r′′
i = Tδtr′

i . (9)

where Tδt is the time evolution operator for a specified time interval δt and given
by the damped dynamics:
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m
d2ri

dt2
= −ηf

dri

dt
− ∇ri

U , (10)

where m is the particle mass and ηf the coefficient of friction. After n steps, the
cumulative strain is γn = n δγ , and the gel configuration is

ri,n = (TδtΓδγ )n ri,0 , (11)

where {ri,0} denotes the configuration of the starting inherent structure.
This procedure is similar to the athermal quasistatic (AQS) approach extensively

used to investigate the deformation behavior of amorphous solids (Tanguy et al.
2002; Maloney and Lemaître 2006; Fiocco et al. 2013), with the main difference
that, instead of using an energy minimization algorithm after each affine deforma-
tion step, we follow the natural dynamics of the system (with a viscous energy
dissipation) for a prescribed time interval δt . We can therefore define a finite shear
rate γ̇ = δγ /δt for the deformation we apply. Disregarding effects due to the
particle inertia, the microscopic dynamics (10) introduce a natural timescale τ =
ηf d2/ε, corresponding to the time it takes a particle subjected to a typical force ε/d

to move a distance equal to its size. Indicatively, if we consider a typical aqueous
solution of colloidal particles with a diameter d ≈ 100 nm and an interaction energy
ε ≈ 10kBT (Koumakis and Petekidis 2011), the characteristic time is τ ≈ 10−4 s;
in such a system, imposing a shear rate of 0.1 s−1 would correspond to a numerical
shear rate of γ̇s = 10−5τ−1.

2.2.4 Small Amplitude Oscillatory Rheology
To determine the gel viscoelastic properties, the particles are submitted to a
continuous shear strain γ (t) in the xy plane according to the following equation:

m
d2ri

dt2 = −∇riU − ηf

(
dri

dt
− γ̇ (t)yiex

)
(12)

In order to measure the frequency and the strain dependence of the first-harmonic
storage G′ and loss modulus G′′, we impose an oscillatory shear strain on the
system, i.e., the shear strain is modulated periodically according as γ (t) =
γ0 sin(ωit), and we use Lees-Edwards boundary conditions while applying the
deformation.

By monitoring the shear stress response of the material σ(t) over time, we can
extract the viscoelastic moduli. The storage and loss moduli can be computed from
the stress response with the following expressions:

G′(ωi) = Re

{
σ̃ (ωi)

γ̃ (ωi)

}

G′′(ωi) = I m

{
σ̃ (ωi)

γ̃ (ωi)

} (13)
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where σ̃ and γ̃ are the Fourier transforms of the stress and strain signals, respec-
tively (Macosko 1994). The whole viscoelastic spectrum is then reconstructed by
performing a discrete series of tests at various frequencies, also known as “frequency
sweep.”

We note that the drag term used in Eq. (12) is chosen for computational
convenience, but a more accurate (Galilean invariant) option would be to have
the drag term depend on the relative velocities of particles within a certain range
from a given one (Salerno et al. 2012; Vasisht et al. 2019), which requires longer
computations. Nevertheless, the correction due to this inaccuracy seems to be
negligible in all cases discussed here, since the stresses, and the related dynamics,
are dominated by the interparticle interactions and the structure topology, and the
correction due to the different drag term does not significantly modify the behaviors
analyzed in the following.

3 Elastically Driven Dynamics upon Aging

After the gelation, the microscopic dynamics of gels slows down considerably. The
nanometric size of their building blocks makes gels sensitive to thermal fluctuations,
resulting in a rich and complex relaxation processes that are associated with
spontaneous and thermally activated processes. The study of how these different
dynamical processes emerge at rest and how the mechanical response depends on
the microstructure is relevant to several applications, since the progressive aging
that such materials undergo over time has a dramatic impact on their functionalities.
In aging soft solids such as gels, the microscopic dynamics is expected to be akin
to slower than exponential (or stretched exponential) dynamics in super-cooled
liquids or glasses, due to its strongly cooperative nature fundamentally controlled
by the structural disorder, as shown in several experimental and simulation studies
(Segre et al. 2001; Manley et al. 2005; Bandyopadhyay et al. 2004; Jabbari-Farouji
et al. 2007; Krall and Weitz 1998; Del Gado et al. 2004; Del Gado and Kob 2007;
Fierro et al. 2008; Abete et al. 2008; Angelini et al. 2014; Chaudhuri et al. 2015).
Nevertheless, over the last few years, time- and space-resolved measurements have
often found evidence of dynamics faster than exponential (so-called compressed
exponential dynamics), intermittency, and abrupt microstructural changes, raising
the question of whether the aging dynamics in gels may be controlled, instead,
by stress relaxation through elastic rebound of parts of the material, after local
breakages occur in its structure (Cipelletti et al. 2000; Ramos and Cipelletti 2001;
Bellour et al. 2003; Angelini et al. 2013; Mansel and Williams 2015; Ruta et al.
2014; Harden et al. 2012; Chung et al. 2006; Bouchaud 2008; Ferrero et al. 2014;
Gao et al. 2015; Godec et al. 2014; Chaudhuri and Berthier 2017).

The difficulty to study the aging and characterize the slow relaxation processes
in gels (both in experiments and in simulations) comes from the required timescales
which are extremely long. The procedure briefly described in Sect. 2.2.2 allowed us
to overcome some of the difficulties: we could scan the gel network and artificially
remove the connections where tensile stresses are higher, to mimic the aging process
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(Fig.3a) (Bouzid et al. 2017). Using that procedure, we could characterize the stress
redistribution in the network during the aging and systematically vary the amount
of thermal fluctuations to elucidate how the coupling between elasticity and thermal
fluctuations may qualitatively change the microscopic dynamics. Figure 3b, c show
the differences in the displacement field caused by breaking connections in the same
gel network in the presence of different amounts of thermal fluctuations, whereas
Fig. 4a–c display the initial stress heterogeneities, the stress redistribution, and the
stress fluctuations during the aging. The microscopic picture that emerged from
our study points to a major role played by the architecture of the network, its
elasticity, and the stress heterogeneities built in upon solidification (Fig. 4a). The
timescales governing stress relaxation, respectively, through thermal fluctuations
and elastic recovery are key: when thermal fluctuations are weak with respect to
enthalpic stress heterogeneities, the stress can still partially relax, after the breaking
of network connections, through elastically driven fluctuations. Such fluctuations
are intermittent, because of strong spatiotemporal correlations that persist well
beyond the timescale of the simulations (Fig. 4b, 4c) or of the experiments. Hence
in these conditions (ε/kBT � 0) the elasticity built into the solid structure controls
the microscopic displacements, and the time correlations of density fluctuations
decay faster than exponential, as reported in experiments and hypothesized by
theories (Cipelletti and Ramos 2005; Bouchaud 2008). Brownian motion driven
by thermal fluctuations, in fact, disrupts the spatial distribution of local stresses
and their persistence in time, therefore favoring a gradual loss of correlations and a
slow evolution of the material properties. The insight gained in this study helped us
rationalize apparently contrasting findings and clarify that in elastic soft materials
the presence of large stress heterogeneities can favor faster than exponential and
intermittent microscopic dynamics. In addition to affecting the time evolution and
the material properties rest, these dynamic processes interact with an imposed
mechanical deformation and can therefore be decisive for the mechanical response
of this class of soft solids.

4 Mechanical Response

A macroscopic constitutive law for soft gels, i.e., the theory capturing how stresses
are related to deformations, velocities, and possibly density in these materials, is still
fundamentally lacking. As an example, we give the constitutive law of a Hookean
homogeneous elastic solid. In this case, the stress tensor takes the form:

σαβ = Kε��δαβ + 2Gεαβ (14)

K represents the bulk modulus and G the shear modulus. εij is the strain tensor
of the material with respect to its reference state (Landau and Lifshitz 1986),
while α and β indicate the Cartesian components. Following the same reasoning,
when describing the flow of the materials in response to a rate of deformation
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Fig. 4 (a) A snapshot of the initial colloidal gel network for kBT /ε = 0 and at low volume
fraction φ = 7%, showing the interparticle bonds represented by a segment. The colors indicate the
local normal stress σ̃n, using red for tension and blue for compression. (b) The corresponding P.d.f
of the time series of the normal stress fluctuations δσ = σxx − 〈σxx〉 : in the regime dominated by
frozen-in stresses (red), the stress fluctuations are elastically driven and intermittent in nature. (c)
Main frame: The stress fluctuation autocorrelation function measured over the whole simulation for
the fully thermal regime kBT /ε = 10−3 (blue), the intermediate kBT /ε = 10−4 (green), and the
for kBT /ε = 0 (red). Inset: Time series of the normal stress fluctuations δσ over all the simulation
for the athermal sample showing the aging of the structure. (Reproduced with permission from
Bouzid et al. 2017. Creative Commons license available at https://creativecommons.org/licenses/
by/4.0/. Copyright 2017 Nature Publishing Group)

(e.g., due to imposed shear Fig. 7), the constitutive relation can be constructed from
the strain rate tensor:

γ̇αβ = 1

2

(
∂uα

∂xβ

+ ∂uβ

∂xα

)
(15)

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
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a b

Fig. 5 Log-log scale: schematic representation of the different macroscopic responses of gels to
an imposed shear deformation rate (a) or shear stress (b)

Where uα and xα are, respectively, the components of the velocity vector and the
position along the α axis. A fluid is characterized by its viscosity η, defined as the
ratio between the stress and the strain rate, and the simplest example is a Newtonian
fluid, for which the stress tensor takes the form:

σαβ = (gγ̇�� − P)δαβ + 2ηγ̇αβ (16)

where δαβ is the Kronecker symbol, P is the normal stress, and g is zero for
an incompressible fluid. For Newtonian fluids, the viscosity is independent of the
shear rate as well as the time. The only stresses created by the flow are the shear
stresses that cancel out immediately when the flow stops. Any deviation from these
properties is a sign of non-Newtonian behavior.

Once a gel has solidified from an initial fluid solution, its mechanical response
is typically visco-elasto-plastic (Alexander 1998; Nicolas et al. 2018), with the
prevalence of one behavior or the other depending on the nature of the deformation
and on the observation time (Fig. 5).

4.1 Linear Response of Soft Gels

For small deformations, the response of gels is viscoelastic (regime I in Fig. 5), often
exhibiting a power law frequency dependence of the elastic (G′) and the viscous
(G′′) moduli over a wide range of frequencies (Fig. 6), reflecting a wide distribution
of time and lengthscales over which the internal structures of the gel can also
relax some of the residual stresses frozen-in upon solidification. These viscoelastic
characteristics have been observed experimentally in a wide range of gel materials
for which the porous nature of the structure can promote contraction or dilation
during shear, suggesting a nontrivial coupling between the transmission of normal
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(circles) from the numerical simulations in Bouzid et al. (2018b)

and tangential forces (Ng and McKinley 2008; Caggioni et al. 2007; Jaishankar and
McKinley 2014). For biopolymers networks such as collagen, G′ decreases (the
system becomes softer) if the system has been previously subjected to compression
and increases if it is subjected to tension (Van Oosten et al. 2016). On the other hand,
it has been shown that agar gels contract upon solidification (Mao et al. 2016) and
that such tendency to contract is usually associated to a tendency of the material to
stiffen under larger strains (Tabatabai et al. 2015; Broedersz and MacKintosh 2014;
Feng et al. 2015). The changes in volume during gelation are typically coupled to
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heterogeneities of internal stresses, whose consequences on the mechanical response
of the material could then be controlled by adjusting the processing or preparation
conditions (e.g., through the rate of confinement or gelation).

Using the model introduced in Sect. 2, recent numerical investigations have
been able to reproduce these linear mechanical features (Fig. 6) and also provide
a constitutive parametric model able to capture the linear response (Bouzid et al.
2018a). Classical constitutive models based on combinations of Hookean springs
and dashpots, such as the Maxwell or Kelvin-Voigt model, are not able to capture the
frequency dependence of the moduli (Macosko 1994). To describe these power laws,
one can add different mechanical elements (Maxwell or Kelvin-Voigt) in series or in
parallel, which will result in creating additional modes of relaxation of the system.
This method is questionable because of the large number of elements necessary
to model all the relaxation modes. A different approach is based on proposing a
fractional model, which uses instead a spring-pot element, originally introduced
by Scott Blair (Blair and Veinoglou 1944; Blair 1944) and recently applied with
success to a broad variety of soft viscoelastic materials (Jaishankar and McKinley
2012; Bouzid et al. 2018a; Aime et al. 2018a).

4.2 Nonlinear Response

Upon increasing the imposed deformation, the rheological response of soft gels has
strongly nonlinear characteristics, corresponding to regimes II and III in Fig. 5: soft
gels can flow as yield stress fluids or fracture as solids (see examples in the cartoons
of Fig. 7). The strongly nonlinear transient regimes preceding yielding or fracture
are poorly understood and constitute an active area of research. In addition, the
yielding or fracturing can be reversible, with the material regaining its elasticity
once brought to rest, or irreversible.

Numerical simulations are a powerful tool to overcome experimental limitations
and challenges, complementing them effectively. For example, imaging the structure
and, at the same time, applying a deformation is not always possible, whereas
simulations can be obviously more effective in connecting the structure to the

(a) (b) (c)

Fig. 7 Illustrations of different non-linear behaviors: (a) Shear band with two distinct shear rates
γ̇1 �= γ̇2. (b) Fracture in the bulk. (c) Loss of adhesion between the gel and the wall: sliding on the
walls



70 Mechanics of Soft Gels: Linear and Nonlinear Response 1737

mechanical response and in addressing specific microscopic mechanisms. Using
the approach described in Sect. 2, for example, we have recently provided novel
insight into how regimes (I–III) in Fig. 5 are sensitive to the complexity of the
architecture of the network and dependent on the rate of deformation. The simula-
tions (Fig. 8) have shown that for tightly connected networks, with smaller and more
homogeneously distributed pores, the stresses can be redistributed more uniformly
under the action of a mechanical load, promoting almost simultaneously rupture
of many connections and favoring crack growth. Conversely, a softer and more
sparsely connected network, in the same type of gel, favors the localization of the
stresses and their redistribution through the abundant low frequency modes, possibly
delaying microstructural damage and cracks growth to much larger deformations

a b

c d

Fig. 8 The differential modulus K normalized by the elastic modulus G0 as a function of the
normalized shear stress σ/σc, for φ = 5% (a) and φ = 15% (b). Snapshots of the gel network
extracted from the simulations at a volume fraction φ � 15% (c) and φ � 5% (d). Each bond
is represented by a segment, when the distance dij between two particles i and j is dij ≤ 1.3d.
The color code shows the value of local tensile or compressive stresses, while the thickness is
proportional to the stress amplitude. (See also Bouzid and Del Gado 2018)
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(Bouzid and Del Gado 2018). Such distinct behaviors could be associated, in regime
(II), to distinct dependencies of the nonlinear modulus K (obtained by deriving
the shear stress σ with respect to the imposed deformation γ in the start-up shear
tests described in Sect. 2) on the shear stress generated in the model materials
under load (see Fig. 8). In sparse networks, extended soft modes can favor softening
followed by a localization of the stresses and a progressive stiffening of the material
(Figs. 8a, c). In our softer gels, the stiffening is characterized by a power law of
the form K ∼ σ 3/2, very similar the behavior of semiflexible polymer networks
(Broedersz and MacKintosh 2014; Feng et al. 2016). For more homogeneously
connected networks, where the gel branches are less flexible, the nonlinear response
features also a progressive hardening (which is strongly rate dependent) and K ∼ σ ,
indicating an exponential increase of the stress σ with increasing the imposed
deformation γ , similar to the one observed in collagen fiber networks (Licup
et al. 2015; Arevalo et al. 2015). Finally, denser networks composed of small
homogeneous pores have a stronger tendency to be brittle (Fig.8b, d). It has also
been shown that the ductility of the mechanical response and the reversibility of the
damage accumulated under deformation can be modified by changing the flexibility
of the gel branches (for a fixed network topology) and by pre-stressing the gel
structures (Feng et al. 2018). Interestingly enough, in all these cases, the amount
of microscopic structural anisotropy that can be induced in the gel network through
deformation (and that can be quantified, for example, via a fabric tensor or a nematic
order parameter suitably defined) seems a promising microscopic indicator of the
nonlinear macroscopic response of different gels preceding yielding or fracture
(Bouzid and Del Gado 2018; Jamali et al. 2017; Feng et al. 2015).

In the last plastic regime (III) of Fig. 5, the mechanical response depends more
dramatically on the nature of the system, the specific mode of deformation (e.g.,
imposed stress vs deformation rate), but also on the nature of the interactions
between the material and the boundaries (walls), as previously sketched in Fig. 7.
Experiments show that the rupture can take place in bulk (casein-type, (bio)-polymer
gels) or at the wall with a loss of adhesion and slip (agar gels, carbopol microgels,
microgels of p-NIPAm, collagen, etc.) (Meeker et al. 2004; Divoux et al. 2015;
Bonn et al. 2017). In spite of such complex diversity, experimental data also provide
several indications that the coupling and the dynamics of localized (and correlated)
plastic events may be the underlying common denominator in the transition from
regime II to III. Indeed, in a variety of colloidal gels, it has been shown that
in the transient regime (II) before flowing or fracturing (III), the dynamics is
very intermittent in time and heterogeneous in space, featuring avalanche patterns
(Kurokawa et al. 2015): in start-up shear experiments, for example, the yielding
may proceed via successive drops during which the flow is spatially and temporally
heterogeneous (Fig. 9a–c).

Recent experiments were able to detect a local acceleration of the microscopic
dynamics before fracture and an enhancement of the plastic activity (Aime et al.
2018b). Start-up shear numerical simulations, using the approach described above,
have indeed shown that the pre-yielding or pre-failure regime is dramatically rate
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Fig. 9 Shear start-up experiment (imposed deformation) on a colloidal gel performed in a polished
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drop (the red part of the full-time evolution shown in the inset), preceding the material fluidization.
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Colombo and Del Gado 2014b). (e) Schematic view of the stress localization before a localized
plastic event occurs inducing a nontrivial stress redistribution (f) across the network
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dependent because of the coupling between the deformation rate and the dynamics
of stress redistribution following localized plastic events (typically irreversible
rupture of the gel connections) in a given gel network (Fig. 9d–f). Because of
such coupling, the evolution at moderate or higher rate can lead to a more
gradual yielding, where the dynamic correlation between the plastic events is
mainly dominated by the imposed rate. Upon deforming the material at slower
rate, instead, the stress redistribution dynamics in the network can itself trigger
localized plastic events which are even more spatially and dynamically correlated
and can enhance density fluctuations or mechanical heterogeneities in the material,
eventually promoting fracture or flow instabilities (Colombo and Del Gado 2014b;
Zhang et al. 2017) (Figs. 9 and 10).

In protein gels like casein, a plastic regime characterized by the clear emergence
of cracks follows the initial linear viscoelastic response (Fig. 9). The resulting
deformation grows as a power law over time, similar to Andrade’s creep law
for hard solids (Andrade 1910), and the dynamics eventually accelerates toward
a catastrophic rupture (Leocmach et al. 2014, Fig. 10). The fracture time also
decreases as a power law with applied stress, reminiscent of the Basquin’s law of
fatigue typical of hard solid as well (Basquin 1910). If the case of crystalline solids
seems well understood in terms of the interaction of defects (dislocations) within
the material (Csikor et al. 2007), the microscopic origin in the case of amorphous
materials, and in particular for soft gels, is far from being clear, but it can be
connected to the existence of localized plastic events, which act as microscopic
precursors of the macroscopic failure (Aime et al. 2018b; van der Kooij et al. 2018).
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5 Conclusions

Computational studies of judiciously designed models can uniquely complement
new experimental approaches to provide insight into the microscopic underpinnings
of the mechanical response of soft gels. Here we have given an overview and
examples of recent progress in this area. The key idea is to use relatively simple
but microscopic models that can include structural disorder and have complex
spatiotemporal fluctuations and correlations naturally emerge from the microscopic
interactions. The use of computational methods allows for solving the many-body
equations of motion of interest and obtains the full spatiotemporally resolved
dynamics that underlies the mechanical response of these complex materials.
This comes at the cost of a few simplifications (from the very limited account
of the chemical details of the specific materials to the very crude description
of the solvent in which the gel matrix is embedded). We have shown that, in
spite of them, one can obtain significant novel insight into the nature of the
stress fluctuations acting upon aging of the material structure, into the nontrivial
microstructural origin of the linear response, and into how the gel connectivity and
network topology can modify dramatically the nonlinear behavior all the way to
the material failure. On the one end, current challenges from the computational and
theoretical side are in developing further models and approaches that can better
and more efficiently capture the hydrodynamics interactions, include factors that
are usually neglected but very important in experiments such as geometry and
boundaries in the mechanical tests, and obtain a more quantitative understanding of
the different effective interactions relevant to different material chemistry, beyond
existing theories. On the other end, the results discussed here already constitute an
interesting starting point to construct mesoscopic constitutive models that naturally
emerge from the spatiotemporal evolution of the microstructure and its interplay
with the external deformation and the deformation rate. The outstanding questions,
for building such models, concern the relevant microstructural variables and the
associated dynamics to be included in a continuum mechanics description of the
constitutive behavior. The analysis of the spatiotemporal fluctuations, non-affine
rearrangements, and local plastic events that we have briefly discussed in this
chapter can help understand what are such microstructural variables and dynamics.
Finally, the insight gained through studies of the type discussed here has the
potential to unravel the interplay and dynamical coupling among microstructural
evolution and stress redistribution in soft gels when crossing over from regime
II to III in Fig. 5, providing important cues into long-standing issues such as
microscopic precursors of failure, origin of creep, and hardening/toughening/self-
healing mechanisms in soft materials.
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