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Abstract

A mesoscale shear transformation zone (STZ) dynamics model is presented to
investigate the deformation behaviors of metallic glasses that span significant
time and length scales. The modeling framework involves coarse-graining STZs,
the fundamental deformation unit in metallic glasses, onto a finite element mesh
and controlling the stochastic activation of these STZs using the kinetic Monte
Carlo algorithm based on the energetics of the glass system. The combination
of these two features allows simulating diverse deformation modes of metallic
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glasses at large time and length scales while providing a microscopic view of
the process that dominates the behaviors. The adaption of the STZ dynamics
framework to treat complex phenomena is discussed, including a detailed
examination of the shear banding process, simulated contact mechanics, and
an examination of the interplay of deformation and structural evolution via the
incorporation of a free volume state variable. The chapter concludes with the
challenges and future development of the STZ dynamics model.

1 Introduction

Metallic glasses exhibit deformation behaviors that are both interesting and chal-
lenging to fully characterize. As a result, a complete understanding of this new class
of materials requires modeling techniques that can capture the relevant phenomena
at the appropriate scales (Rodney et al. 2011; Schuh et al. 2007). The amorphous
structures of metallic glasses appear deceptively homogeneous and isotropic when
investigated with conventional experimental characterization techniques; the mate-
rials don’t exhibit typical defect structures, such as dislocation, present in crystalline
alloys. Despite the lack of experimental means to directly characterize flow defects,
the state of the art in material modeling offers highly accurate methods, from density
functional theory and molecular dynamics at atomistic scales all the way up to
continuum theories for the deformation of metallic glasses and its connection with
amorphous structures.

The deformation of metallic glasses, in particular, the low-temperature shear
banding behavior is a typical multiscale phenomenon (Greer et al. 2013), occurring
over several length and time scales illustrated in Fig. 1. At the atomic scale,
the fundamental units of deformation are atomic rearrangements called shear
transformation zones (STZs) (Argon 1979). The STZs are localized both in space,
involving only a few tens of atoms, and time, spanning a few picoseconds, which
have been captured and extensively studied by atomistic simulations (Falk and
Maloney 2010; Rodney et al. 2011). The structural origin of STZs remains elusive,
and yet it is believed that the inhomogeneous atomic packing configurations in
the amorphous structure lead to a heterogeneous local inelastic response, linking
to STZs (Cheng and Ma 2011; Ma and Ding 2016). Figure 1e displays a recon-
structed atomic configuration of Zr50Cu45Al5 metallic glasses by hybrid reverse
Monte Carlo simulation, revealing a variety of packing clusters including the
ideal icosahedron, distorted icosahedron, and face-centered cubic structure. Using
molecular dynamics simulations, Ding et al. demonstrate that the regions densely
populated with unstable clusters are elastically soft and more susceptible to be STZs
(Fig. 1f). Such nanoscale inelastic heterogeneities have been recorded experimen-
tally using dynamic atomic force microscopy (Fig.1b) and nanoindentation (Fig.1c).
At the mesoscopic scale, the collective behaviors of STZs lead to various unique
deformation phenomena in amorphous materials, such as spontaneous strain local-
ization/shear banding, intermittent dynamics, and power-law distributed avalanches,
which receive considerable attention from mesoscale modeling and experiments
(Dahmen et al. 2009; Rodney et al. 2011). The connection of these deformation
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Fig. 1 Multiscale features of the deformation behaviors and structural heterogeneities in metallic
glasses. (a) The disordered atomic structure imaged by high-resolution transmission elec-
tron microscopy (HRTEM) (Ma and Zhang 2010). (b) The inelastic phase shift image of
Zr55Cu30Ni5Al10 metallic glass with a correlation length ∼5 nm using atomic force microscopy
(AFM) (Liu et al. 2011). (c) The elastic microstructure of Zr58.5Cu15.6Ni12.8Al10.3Nb2.8 metallic
glass with a characteristic length ∼100 nm characterized by dynamic modulus mapping on
nanoindentation platform (Tsai et al. 2017). (d) Intersecting shear bands under the indenter of a Zr-
based MG using scanning electron microscopy (SEM) (Su and Anand 2006). (e) The reconstructed
atomic clusters of Zr50Cu45Al5 MG by hybrid reverse Monte Carlo simulations (Hwang et al.
2012). (f) The atoms experienced shear transformation overlap on the participation ratio of soft
modes in a Cu64Zr36 MG obtained by molecular dynamics (MD) simulations (Ding et al. 2014).
(g) The simulated shear band formation of a Cu64Zr36 MG in the presence of elastic heterogeneity
using a mesoscale shear transformation zone (STZ) dynamics simulations (Wang et al. 2018). (h)
Simulated shear band pattern under indentation using a continuum model (Su and Anand 2006)

behaviors to the amorphous structure is beyond short-range orders; the atomic
heterogeneities coordinate over a larger scale, translating from the nanometer-scale
STZs to their organization into shear bands (Fig. 1g), which usually appear within a
few milliseconds and reach a length on the order of a tenth of a micrometer. Finally,
at the macroscopic scale, depending on the loading condition, either a single shear
band forms as in tension test, or several shear bands form and interact, in case of
confined plasticity as in indentation tests, as shown in Fig. 1d, h. The continuum
modeling of the deformation behavior of metallic glasses has mostly relied on a
flow rule accounting for the evolution of an internal state variable, the free volume,
proposed by Spaepen (1977), relating the plastic strain rate to the state of stress and
the history of deformation of the glass.

On the modeling front, atomistic simulations are critical in resolving the physics
and mechanics associated with individual STZ activations, the nature of STZ-STZ
interactions (Falk and Maloney 2010) as well as the incipient stage of shear band
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nucleation (Şopu et al. 2017). Unfortunately, the atomistic simulations limit in both
time and length scale to simulate the shear banding behaviors at engineering scales.
Continuum approaches, on the other hand, can model deformation at engineering
scales and provide an ideal comparison to experiments (Su and Anand 2006).
However, the presumed constitutive laws can only exhibit phenomena they have
been designed to capture, and often the deformation physics that must be introduced
is not completely understood. As a result, a mesoscale modeling technique is
an important inclusion in modeling the deformation behavior of metallic glasses
across the entire spectrum (Rodney et al. 2011), contributing toward a complete
understanding of structure-mechanical property relationships in metallic glasses
(Hufnagel et al. 2016).

Modeling the amorphous plasticity at the mesoscopic scale, one employs a
coarse-grained description of the STZs and accounts for the dynamics of these
elementary STZ processes; by averaging out atomistic effects, one can access
larger scales in the same way as dislocation dynamics describes crystal plasticity.
Rodney et al. have summarized the key ingredients of mesoscale models for
amorphous materials, which include a local activation/yield criterion of STZs, an
elastic coupling between STZ and amorphous matrix like an Eshelby inclusion,
the evolution rule of activation/yield criterion, and a dynamical rule that associates
a time scale to the STZ activations (Rodney et al. 2011). Based on the different
choices of these rules, the mesoscale models for metallic glasses fall into three
categories. First, a depinning model, developed by Vandembroucq et al. (Baret et al.
2002), employs statistical distributions of yield stresses as well as the transformation
strains for STZs, driving the evolution of STZs via internal stress arising from
the accumulation of Eshelby fields and extremal dynamics. Second, a fluidity
model, developed by Picard et al. (2002), uses a constant yield-stress criterion for
STZs and incorporates the glassy dynamics based on Maxwellian viscosity through
a distribution of characteristic transition rates. Third, an STZ dynamics model
(Bulatov and Argon 1994a; Homer and Schuh 2009; Zhao et al. 2013), which is
the focus of this chapter, uses an energy-based activation criterion for the STZs and
a kinetic Monte Carlo algorithm to evolve the system through Boltzmann statistics.

In this chapter, we discuss the development of the STZ dynamics modeling
framework and its applications in various aspects of metallic glass deformation,
detailing the techniques used to bridge the relevant time and length scales. In
addition, we examine the deformation physics elucidated by this method as well
as the mechanics associated with shear banding behaviors.

2 STZ Dynamics Modeling Framework

The mesoscale STZ dynamics model treats STZs as the elementary deformation
events, and the stochastic activation of the STZs leads to the formation of shear
bands at large time and length scales (Homer et al. 2010; Homer and Schuh 2009).
This initial development of STZ dynamics framework is inspired by the work
of Bulatov and Argon (1994a, b, c). As with Bulatov, the modeling framework
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employs two separate elements, coarse-graining and kinetic Monte Carlo (kMC)
algorithm, which individually bridge the length and the time scales associated with
deformation in metallic glasses. The coarse-graining method centers on the STZ,
which consists of a cluster of atoms that exhibit the transient shearing motion
consistently in the same manner (Maloney and Lemaître 2004, 2006; Rodney and
Schuh 2009; Srolovitz et al. 1983). Then a simulated metallic glass is represented
by a system of potential STZs. The coarse-graining enables more efficient sampling
of larger system sizes. Meanwhile, to simulate longer system times more efficiently,
the transient STZ activation is considered as a transition state between the initial
and final equilibrium configurations. Thus, transition state theory (TST) and the
kMC algorithm can be employed as long as knowledge of the energetic landscape,
including the transition states, is available.

2.1 STZ Coarse-Graining with Finite Element Mesh

The STZ coarse-graining is accomplished by replacing the cluster of atoms that
represents a potential STZ with a feature of finite element mesh, as illustrated in
Fig. 2 (Homer and Schuh 2010, 2009). In this process, three criteria are imposed
for proper representation of an STZ using a finite element mesh. First, the coarse-
grain representation should approximate the shape of an STZ, which is believed
to be roughly spherical. Second, the finite element representation of the potential
STZs should allow them to overlap, since the STZ is a transient event and the atoms
involved would never be restricted to participate in only one potential STZs. In other
words, for a given element, it can participate in multiple STZ activations. Third, the
coarse-grained STZ should accurately capture the analytical solution of an Eshelby
inclusion (Eshelby 1957). This is supported by the original STZ theory paper, in
which Argon modeled the STZ as an Eshelby inclusion (Argon 1979).

Fig. 2 Coarse-graining of an STZ (a) using features of a finite element mesh in (b) 2D or 3D.
(Figure adapted with permission from Homer and Schuh (2009, 2010))
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Fig. 3 2D coarse-graining process. (a) Representation of possible STZ definition on the triangular
mesh. (b) Irregular triangular mesh with 13-element potential STZs highlighted to show how the
individual elements in the mesh can be activated by different STZs. (c) The accuracy of STZ
coarse-graining evaluated by the strain energy difference between finite element method and the
Eshelby solution as a function of the size of the STZ (Figure adapted with permission from Homer
and Schuh (2009))

Following the three criteria, the implementation of coarse-graining STZs onto 2D
and 3D finite element meshes has been achieved (Homer and Schuh 2010, 2009). In
2D, a single STZ is represented by a node and all the surrounding elements or an
element and all the surrounding elements on an irregular triangular mesh, shown in
Fig. 3a. This representation ensures that the shapes of potential STZs are roughly
equiaxed. Furthermore, in this representation, the STZs comprise more than one
single element, so that elements in the mesh will be able to participate in multiple
STZs. As illustrated in Fig. 3b, three potential STZs, each of 13 elements, are
highlighted on an irregular triangular mesh. At any given time step, the elements
in the overlap region (between potential STZs B and C) can participate in either
event. Finally, the accuracy of the representation is evaluated by comparing to the
Eshelby solution for shearing of a long circular fiber in a matrix (plane strain). The
percent error of the calculation relative to the Eshelby solution (based on the total
system strain energy) is plotted in Fig. 3c as a function of the size of the STZ relative
to the mesh. As the results show, convergence is achieved quite rapidly, with STZs
containing 13 or more elements exhibiting about 1.5% error or less (Homer and
Schuh 2009).

In 3D, a collection of 20–30 tetrahedral elements that all share one common
node provides a consistent approximately spherical STZ, as illustrated in Fig. 2b. In
this definition, STZs may overlap. When compared with the Eshelby solution, the
quadratic tetrahedral element-based STZs are found to provide higher accuracy with
the elastic strain energy having 2% error (Homer and Schuh 2010).

The use of a finite element mesh not only enables a coarse-grained description
of STZ as a transient flow defect in metallic glasses but also provides flexibility
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for further development to incorporate emerging characteristics of STZs. First,
one might define an ensemble of STZs with different characteristic volumes. In
principle, this could be achieved based on the local size of the elements included
in each potential STZ. In this chapter, a single value of volume is assigned to all
the STZs in the mesh, but this value could vary with respect to strain rate (Harris
et al. 2016) (see Sect. 3.2). Second, the size of STZ activation volume could be
related to the level of glass relaxation and damage (Albaret et al. 2016; Boioli et al.
2017) and loading states (Fusco et al. 2010). Adaptive meshing could be used to
capture the dynamic evolution of STZ volumes. Third, the elastic response of the
system to the STZ transformation strain requires only the use of a linear elastic finite
element solver. The use of finite element mesh and finite element solver enables just
about any set of boundary conditions regularly used in finite element analysis to be
incorporated into the STZ dynamics framework.

2.2 STZ Activation Rate

To accomplish the dynamics for longer time scale, the STZ dynamics model con-
siders the coarse-grained STZ activation as a transition state between the initial and
final equilibrium configurations, as illustrated in Fig. 4a. The stochastic activation
of the STZs leads to deformation on longer timescales. The STZs are thermally
activated, and the activation rate is proportional to the Boltzmann probability that
the system overcomes the activation barrier between the initial and final equilibrium
configurations, defined as

Fig. 4 (a) Illustration of the potential energy landscape and the associated STZ configurations
at the initial state, saddle point, and final state. (b) Illustration of the traditional approach of
identifying the activated state of an STZ. (c) The energy landscape model proposed by Bulatov
and Argon (1994a). (Figure (b) and (c) reproduced with permission from Homer et al. (2010))
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ṡ = vo exp

(
− �G

kBT

)
(1)

where the prefactor νo is of the order of the Debye frequency, �G is the activation
energy barrier, T is the absolute temperature, and kB is the Boltzmann constant.

In order to calculate the activation energy barrier for a given transition, one
must have knowledge of the transition itself. A traditional approach uses the energy
change to model the activation energy, �G, by adding a barrier of fixed height, �F,
to the average of EI and EF , as illustrated in Fig. 4b. This approach satisfies detailed
balance for the reaction because a forward transition traverses the same activated
state as the reverse transition.

EI + �GI→F = EF + �GF→I (2)

with �GI → F=(EF − EI)/2 + �F and �GF → I = (EI − EF)/2 + �F. Unfortu-
nately, this traditional approach of calculating �G requires calculation of the energy
in the final state, which is computationally expensive for a large number of possible
transitions in metallic glasses.

Bulatov and Argon have provided an alternate formulation for �G by exploiting
the fact that the strain energy associated with shearing an STZ is a quadratic function
of the transformation strain γ 0 (Bulatov and Argon 1994a). This quadratic variation
in energy, shown as the dashed line in Fig. 4c, can predict the energy in the final state
without explicit calculation. Bulatov and Argon simply extrapolate from the initial
state, using the slope at that point, to the midpoint of the transition and then add the
fixed barrier height, �F. The energy difference between the traditional approach
and that of Bulatov and Argon is very small (Bulatov and Argon 1994a; Homer
et al. 2010). For more detailed explanation, including the requirement of detailed
balances, please refer to Homer et al. (2010).

The STZ dynamics framework uses the Bulatov and Argon model and defines
the activation energy barrier as

�G = �F − 1

2
τ · γo · �o (3)

where the intrinsic barrier height for the reaction, �F, is biased by the local shear
stress τ, which is obtained by volume averaging the stress over the elements which
comprise each potential STZ. The activation volume, γ0 �0, of the STZ is comprised
of the transformation strain increment associated with an STZ transformation, γ0,
and the volume of the STZ, �0. Argon developed a model for �F (Argon 1979),
given as

�F =
[

7 − 5v

30 (1 − v)
− 2 (1 + v)

9 (1 − v)
β2 + 1

2γo

· τ̂

μ(T )

]
· μ(T ) · γ 2

o · �o (4)

where the three terms in the brackets define the strain energy associated with
shearing of the STZ, the strain energy associated with a temporary dilatation of
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the STZ to allow the atoms to rearrange, and the frictional energy associated
with the free shearing of the atoms over one another. In the equation of �F, ν is
Poisson’s ratio, β is a ratio of shear to dilatation (usually taken as 1), τ̂ is the peak
interatomic shear resistance between atoms, and μ(T) is the temperature-dependent
shear modulus.

The use of Bulatov’s and Argon’s energy model allows the STZ dynamics model
to explore a large number of transitions without calculating the energy of the final
state, resulting in significant computational saving. However, a fixed activation
energy barrier would be hard to represent the complex non-equilibrium states in
metallic glasses that contain many-body interactions and strong disorder. Methods
such as the nudged-elastic band (NEB) (Boioli et al. 2017; Xu et al. 2017) or
the activation-relaxation technique (ART) (Fan et al. 2014; Malek and Mousseau
2000; Rodney and Schuh 2009) can be used in atomistic simulations to explore
the potential energy landscape and find the exact activation energy barrier from any
given equilibrium state. Widely distributed activation energies, depending largely on
the processing history, are usually obtained (Rodney and Schuh 2009; Rodney et al.
2011). These atomistic energy barrier search methods are computationally intensive
and do not readily translate into mesoscale models. The development of activation
energy functional based on the atomistic energy barriers, or their associated features,
would be beneficial to enrich the STZ dynamics model.

2.2.1 STZ Activation Rate in 2D
The expression for �G given in Eq. 3 defines the energy barrier for an STZ to
shear in one direction. Since we are interested in calculating the range of barriers
associated with shearing an STZ in any direction in space, the shear stress associated
with each unique shear direction must be identified and enumerated.

In 2D, the shear stress for each unique shear direction around a circle can be
evaluated using a Mohr’s circle construct, which gives the shear stress along any
direction of the circle as

τ = τmax sin (θ) (5)

where θ is the angle to the stress state with stress τ and which is measured relative
to the stress state with the highest principal stress. One can then integrate all shear
directions by integrating θ over the interval (0◦, 360◦). By combining Eqs. 1, 3, and
5, the integral STZ activation rate becomes

ṡ = vo

2π
· exp

(
− �F

kBT

)
·

ż 2π

0
exp

(
τmax · sin (θ) · γo · �o

2kBT

)
dθ (6)

which evaluates to a modified Bessel function of the first kind, of order zero

ṡ = vo

2π
· exp

(
− �F

kBT

)
· Io

(
τmax · γo · �o

2kBT

)
(7)
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This particular form of the STZ activation rate is convenient because the
analytical solution gives the rate for shearing an STZ in any direction in two
dimensions with only one function evaluation. One can then use this integral rate
in the kMC implementation to determine which STZs are likely to be activated.

2.2.2 STZ Activation Rate in 3D
The evaluation of the STZ activation rate in 3D is more complex than the 2D case
due to the larger set of possible shear planes and shear directions, as well as the need
to only evaluate unique combinations of shear planes and directions. In a generalized
form, the integral activation rate can be defined as

ṡ = vo · exp

(
− �F

kBT

)
·
ż

g

ż

∈

ż

G

exp

(
τ (σ, g) · γo · �o

2kBT

)
dg (8)

where g is the orientation of any shear plane-shear direction combination belonging
to the set G of all unique combinations of shear planes and shear directions. The
integral is three dimensional because the specific orientation of a shear plane and
shear direction requires three parameters. The shear stress of that orientation g is
defined as τ (σ , g) to denote the fact that the triaxial stress state that exists in a
given STZ must be transformed by g to obtain the shear stress for that given shear
plane and shear direction. No analytical solution to the integral in Eq. 8 could be
found. The integral is numerically evaluated and tabulated for rapid recall during the
modeling process while maintaining an error less than 0.01%. Due to the complexity
of this calculation, the details are not discussed here but are available in (Homer and
Schuh 2010).

2.2.3 STZ Activation Rate with Excess Free Volume as a Local State
Variable

The initial implementation of the STZ dynamics framework used a fixed �F for
all STZ events. Potentially important effects related to the glass state, e.g., level
of glass relaxation and damage, have not been considered. To solve this limitation,
local state variables can be included as part of the energetics that describe STZ
activations. The purpose of the state variables is to (1) incorporate local activation
energy fluctuation that in broad agreement with the widely distributed activation
energies of metallic glass and (2) capture the evolution of the structure beyond the
redistribution of stress and strain when an STZ is activated. One could choose from
a range of state variables, such as atomic stress and strains, topological or chemical
order, free volume, and fictive temperature. In the current STZ dynamics framework,
a state variable of “free volume” has been implemented (Li et al. 2013, 2014).

The implementation of free volume is based on Argon’s original definition of the
STZ, in which he includes free volume as a state variable to capture the structural
evolution of the system. Particularly, in our adaptation of the STZ dynamics
framework, excess free volume, fv, is defined as a normalized quantity where fv = 0
corresponds to no excess free volume above the average polyhedral volume in a
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dense random hard sphere glass, while fv = 1 is an upper bound corresponding to a
state where an STZ can be activated without accumulating any extra free volume.

The excess free volume influences the energy barrier for STZ activation, and the
fixed barrier is modified as

�FST Z (fv) = �Fshear + �Fv0 · gstz (fv) (9)

where �Fshear captures the strain energy associated with shear (not dependent upon
excess free volume) and �Fv0 captures the strain energy associated with dilatation
and friction of the atoms sliding over each other (dependent upon excess free
volume). Equation 9 essentially alters Eq. 4 by recognizing that the first term in
the bracket of Eq. 4 is only dependent on shear but not on the magnitude of excess
free volume, whereas the last two terms in the bracket of Eq. 4 are dependent upon
the magnitude of excess free volume. Furthermore, �FSTZ is smaller when greater
excess free volume exists since the STZ needs to dilate less and the friction will be
lowered. This change in the energy is captured by the function gstz, which lowers
the activation energy barrier as the excess free volume is increased.

Following a given STZ activation, the excess free volume within the activated
STZ is increased since it is believed that the atoms are not able to immediately
return to the original magnitude of excess free volume (Li et al. 2013).

In parallel to the activation of STZs, a competing process is introduced as the
diffusive rearrangement (and destruction) of excess free volume to capture the effect
of structural relaxation in metallic glasses. Following Argon’s original model, the
rate of diffusive rearrangement is given as

ṡD = (1 − fv) vD exp

(
−�GD (fv)

kBT

)
(10)

where �GD(fv) is the activation energy barrier for diffusive rearrangement, which
is dependent upon the current magnitude of excess free volume. Higher excess free
volume has a lower energy barrier given that it is farther from the equilibrium state.
The quantity (1–fv) reflects a decrease of available atomic sites for free volume
diffusion as fv increases. The prefactor vD for the diffusive rearrangements is of the
order of the Debye frequency.

It is noteworthy that the implementation of excess free volume and most other
state variables at mesoscale remains phenomenological (Rodney et al. 2011).
Metallic glasses do not have structural defects found in crystalline materials, such as
dislocations and grain boundaries. The definitions of structural defects in disordered
materials are not unique and would require some phenomenological presumptions
and fitting parameters. A fundamental understanding is still lacking on the dynamics
of inherent glassy structure and its connection with the properties of glasses such as
aging or rejuvenation (Fan et al. 2017). It remains difficult to develop parameter-free
theories based on defects. Atomistic simulations and experimental measurements at
microscopic scale would advance the development of “defect”-level theories and
their implementation into the mesoscale model.
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2.3 Kinetic Monte Carlo Implementation

2.3.1 kMC with STZ Activation
Upon calculation of the STZ activation rate, the kMC algorithm (Voter 2007) is used
to evolve a system consisting of an ensemble of STZs. In the system, each STZ
may experience different local temperature, stress state, and local state when state
variables are incorporated. The kMC algorithm proceeds according to the following
steps, which are repeated for every transition:

1. Calculate and form a list of activation rates, ṡi , for each of the i = 1, . . . , N STZs
in the ensemble, based on the current state of the system.

2. Calculate the normalized rate ηi for each STZ via dividing the individual
activation rate by the cumulative activation rate, ηi = ṡi/ṡT , for all STZs. The
sum over the normalized transition rates is equal to one, i.e.,

∑
i

ηi = 1.

3. Generate two random numbers, ξ1 and ξ2, uniformly distributed on the interval
(0, 1).

4. Update the elapsed system time with the residence time for the current configu-
ration calculated according to �t = − ln ξ1/ṡT .

5. Select a single STZ by first defining the cumulative fraction of STZ rates up

to and including the rate of STZ j by Hj =
j∑

i=1
ηi , and then use the random

number, ξ2, to find the STZ which satisfies Hk − 1 < ξ2 ≤ Hk. When listed in a
successive faction, ξ2 falls on the subinterval in the list of normalized STZ rates,
as illustrated in Fig. 5.

Fig. 5 Schematic of the
kinetic Monte Carlo STZ
selection procedure. (a) How
the random number ξ2 can be
used to select a single STZ
for activation from a list of
normalized individual STZ
rates, η1,η2, η3, . . . ,ηi. (b)
The determination of the
overlap, η′, between ξ2 and
ηj, which selects the angle of
shear of the STZ. (Figure
reproduced with permission
from Homer and Schuh
(2009))
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6. To select the angle at which to shear the STZ, we first define the value
η

′ = ξ2 − Hk − 1, which represents the magnitude by which ξ2 overlaps the
subinterval of the selected STZ, as shown in Fig. 5. The overlap, η′, is then used
to determine the integration limit and further the angle of shear in real space. The
detailed explanation of angle selection can be found in Homer and Schuh (2009)
for 2D and in Homer and Schuh (2010) for 3D.

7. Apply the appropriate transformation strain to the selected STZ.
8. Calculate the stress and strain distributions and state-variable evolution resulting

from the new configuration.

The kMC algorithm can be repeated for an arbitrary number of STZ operations
and is efficient because every iteration guarantees a transition. The stochastic nature
of the processes will produce a realistic outcome as long as the rate law of the
individual event is correct.

2.3.2 kMC Algorithm with Competing Processes
The kMC algorithm can easily be adapted to incorporate another type of processes
competing with STZ activation to evolve the systems. For instance, after incorpo-
rating excess free volume as a state variable, a diffusive rearrangement process is
introduced in competition with STZ activation. Upon implementation, at a given
kMC step, the transition rates of diffusive rearrangement process will be included
in addition to STZ activation to make a list of activation rates in Steps 1 and 2
described in Sect. 2.3.1. In Step 5, either diffusive rearrangement or STZ activation
is selected, depending on the subinterval ξ2 falls on in the list of the normalized
transition rates. And thus, the two possible processes are exclusive; in each kMC
increment, only one of them will be selected. The addition of competing processes
is explained in more detail in (Li et al. 2013).

2.4 Summary of STZ Dynamics Framework

The STZ dynamics model simulates the stochastic activation of coarse-grained
STZs, their elastic interaction leading to organization and accumulation of STZs
forming shear bands at large time and length scales. The application of the modeling
framework requires several steps to be followed. First, a 2D or 3D finite element
mesh is defined to match the geometry of the model material being simulated.
Second, potential STZs are mapped onto the finite element mesh based on the
coarse-graining criteria discussed in Sect. 2.1. Third, a set of state variables can
be assigned on the finite element mesh, influencing the material model and kMC
algorithm, as discussed in Sect. 2.2.3. Fourth, implement the kMC algorithm and
repeat the following steps:

1. Determine which STZ should be selected for activation, and which shearing
angle should be applied, based on the current system state.
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Table 1 Material properties commonly employed by the STZ dynamics framework

Property/variable Value

Temperature-dependent shear modulus, μ(T) −0.004 [GPa K−1] × T + 37 [GPa]
Poisson’s ratio, ν 0.352
Debye temperature, θD 327 K
Fixed activation energy barrier, �F(T) 0.822 × 10−29 [J Pa−1] * μ(T)
STZ activation volume, �o 2.0 nm3

STZ strain, γ o 0.1

2. Impose a characteristic transformation strain to the elements belonging to the
selected STZ according to the selected shearing angle.

3. Use finite element analysis to determine the response of the system to the
imposed transformation strains.

4. Update the current system state, including stress, strain, and any functional
material properties, to reflect the response to STZ activation.

These last four steps involving the kMC algorithm are repeated many times in
succession to determine the evolution of the system.

The key material properties and simulation variables used by many of the
published STZ dynamics papers are listed in Table 1. The attempt frequency νo is
taken as the Debye frequency, which can be calculated from the Debye temperature
θD. The variables μ(T), ν, and θD have values for the commonly studied Vitreloy 1
with composition Zr41.2Ti13.8Cu12.5Ni10Be22.5 and are obtained from Johnson and
Samwer (2005) and Wang et al. (2011b), respectively. Rather than using the complex
form of the fixed barrier height in Eq. 4, we reduce �F to a simple functional
form that is dependent upon the shear modulus. This functional form is also in line
with the cooperative shear model proposed by Johnson and Samwer (Johnson and
Samwer 2005). The STZ volume is in the range commonly reported in the literature
(Zink et al. 2006), and the STZ strain is equal to the commonly accepted value
(Schuh et al. 2007). This list of variables is intentionally kept short to simplify the
model and obtain an intended response.

3 Applications of STZ Dynamics Model

The STZ dynamics modeling framework provides an opportunity to study many
different aspects of metallic glass deformation. Since its original development, the
STZ dynamics framework has been adapted for different implementations, including
contact mechanics (Packard et al. 2010; Wang et al. 2015) and state-variable free
volume evolution (Li et al. 2013; Wang et al. 2015), and for metallic glass matrix
composites (Hardin and Homer 2015). In the following section, three applications
are chosen to demonstrate:
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1. The general behaviors of the STZ dynamics model and the corresponding
spatial and temporal correlation of STZ activity that underlies various modes
of deformation

2. The physics that control the low-temperature shear banding behavior and how
the strain rate influences the shear banding process

3. How nanoindentation can be studied using the STZ dynamics modeling frame-
work to gain insight into nanoscale strengthening in metallic glasses

3.1 General Behaviors and STZ Correlations

Metallic glasses exhibit a great variety of deformation behaviors, depending upon
conditions (Schuh et al. 2007). The STZ dynamics model is able to capture the
general MG behaviors, showing homogeneous deformation at high temperature and
localization deformation into the shear bands at low temperature and high stress.
A representative 2D model response is illustrated in Fig. 6a. The 3D model can
capture the general behaviors as well (for details, please refer to (Homer and Schuh
2010)).

The model response over a range of conditions is well represented by the
deformation map for simulation cells subjected to a range of applied stress at various
temperatures. An example of deformation map for the 2D model is displayed in Fig.
6b. The regions of homogeneous deformation and inhomogeneous deformation are
shaded. In addition, the steady-state strain rate is measured from each simulation,
and contours of constant strain rate are overlaid on the map for rates ranging
from 10−10 to 1 s−1. The shading inside each data point presents the strain rate
sensitivity. At high temperature, as the stress is increased, the strain rate sensitivity
decreases from unity toward zero, reflecting a transition from Newtonian flow
to non-Newtonian flow. These are the rheological behaviors that metallic glasses
exhibit at high temperature. At low temperature, when stress is low, the strain rates
are lower than 10−10 s−1, which we consider to be “elastic” deformation as the
inelastic behaviors would be too slow to be captured in experiments. When the stress
is high at low temperature, the strain rate sensitivity is extremely low; in other words,
the flow stress is nearly the same for various strain rates. This is a consequence
of the formation of shear bands, the details of which will be discussed in Sect.
3.2. The deformation map compares favorably with experimental deformation map,
in that it captures the basic features of metallic glass deformation (Schuh et al.
2007).

Underlying the diverse deformation behaviors is the different spatial and tempo-
ral correlation of STZ activity. Analysis of the 2D simulations of STZ correlations
provides significant insight, represented by the time-dependent radial distribution
functions (TRDFs), given as

g (r, j) = n (r, j)

q(r)
(11)
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Fig. 6 (a) The representative responses of the STZ dynamics model at high and low temperatures
in 2D. (b) Deformation map for Vitreloy 1 constructed from data obtained by 2D STZ dynamics
simulations. The STZ correlation behaviors represented by the TRDFs of STZ activation, where the
three behaviors and their corresponding conditions are (c) nearest-neighbor STZ activation (high
stress and low temperature), (d) independent STZ activation (high stress and high temperature),
and (e) self-STZ activation (low stress and any temperature). (Figures adapted with permission
from Homer et al. (2010); Homer and Schuh (2009))

where n(r, j) is constructed by binning the number of sequential activations as a
function of radius r and time step j and q(r) is a normalization quantity in each bin
with the size dr, defined as

q(r) =
{

1 if r ≤ 1
2πrdrρST Z

2πrdrρST Z if r > 1
2πrdrρST Z

(12)

where ρSTZ represents the overall density of STZ activations, i.e., the total number
of STZ activations per unit area. The TRDFs’ functions indicate the likelihood of
shearing an STZ at nearby position and after a certain number of steps relative to
a given STZ activation; magnitudes less than 1 are less likely to occur at a given
position and time than if it occurs randomly throughout the simulation cell, and
magnitudes greater than 1 are more likely to occur at a given position and time than
if it occurred randomly throughout the simulation cell.
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The TRDF reveals three basic types of behavior that manifest under different
combinations of applied stress and temperature as shown in Fig. 6c–e.

• Nearest-neighbor STZ activation, which is observed for simulations at low
temperature and high stress in Fig. 6c. This behavior is characterized by an
early, broad peak, spanning r = 1–5, centered between 2 and 3, indicating the
preference for nearest-neighbor activation. This correlated behavior is the source
for the shear localization that underlies the macroscopic shear bands observed in
experiments.

• Independent STZ activation, which occurs under conditions of high applied stress
and high temperatures in Fig. 6d. In this behavior, the TRDF shows no preference
for reactivation of STZs atop the first one, since g(r, j) ∼ 0 at r < 1. Furthermore,
the tendency for activation of neighboring STZs is lost; there is no longer a
discernible peak in the TRDF. There is no noticeable correlation between STZ
activations. As expected, the additional thermal energy cancels the effect of stress
concentration that might otherwise cause shear localization. Consequently, the
uncorrelated STZ activation leads to homogeneous deformation.

• Self-STZ activation, which dominates at low applied stress and any temperature.
As illustrated in Fig. 6e, the TRDF exhibits an extremely pronounced and sharp
peak at r = 0 and for early time (j < 4). The spatial extent of the peak is limited
to r ≤ 1, indicating a large preference for a second STZ activation atop the first.
The self-STZ activation is linked to the elastic regime. At low temperatures and
low stresses, there is an insufficient tendency for a single STZ to trigger nearest-
neighbor activations; thus, the most likely response of the system is for each STZ
activation to be instantaneously reversed.

The STZ dynamics model can not only capture the MG deformation behaviors
at the macroscopic level, matching the experimental behaviors, but also provide
insights at a microscopic level on how STZs interact with one another and how
their collective operation leads to the deformation on a macroscopic level. These
types of studies demonstrate the strength of a mesoscale model that successfully
coarse-grains a process and determine the transitions that control the evolution of
the system.

3.2 Shear Banding Process at Low Temperature

Among the diverse deformation modes exhibited by metallic glasses, the low-
temperature shear banding behavior is of the greatest interest. The limited ductility
due to the formation of a catastrophic shear band before failure is the pri-
mary issue that hinders the wide application of metallic glass as a structural
material (Greer et al. 2013; Schuh et al. 2007). The STZ dynamics model can
provide modeling details into the formation of the shear band, which remain
unresolved due to the difficulty in accessing the appropriate time and length scales
experimentally.
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One can study the shear localization process into one shear band in detail (Homer
2014). Snapshots of a 3D simulation cell subject to constant strain rate, uniaxial
tension test are shown in Fig. 7. Examination of the simulation results reveals five
different stages in the microscopic processes:

(I) Purely elastic, with no STZ activity
(II) STZ clustering, where correlated STZ activations lead to the formation of

clusters
(III) Growth following nucleation of a shear band, where all STZ activity transi-

tions from being distributed throughout the simulation cell to being concen-
trated in the shear band

(IV) Relaxation thickening, which is manifest by the continued thickening of the
shear band while the stress is still dropping even after it has propagated across
the simulation cell

(V) Flow thickening, which is indicated by the continued thickening of a single
shear band at a constant flow stress

Most of the plastic strain is accumulated during the sliding process, indicating
that nucleation and initial propagation of a shear band are very brief. Analysis
of a thermodynamic model also suggests a specific yield stress that is required to
nucleate a shear band, after which the shear band is allowed to grow unconstrained.

In addition to the individual shear band, the STZ dynamics model has been
adapted to investigate a collection of shear band events, which leads to the transition
in flow serration in the inhomogeneous deformation regime. An interesting defor-
mation phenomenon associated with metallic glass is that the shear band density
and degree of flow serration are highly strain rate dependent, though the yield
point of these materials is often independent of strain rate for rates up to 102 ∼
103 s−1 (Schuh et al. 2007, 2004). Low strain rates are characterized by strongly
serrated flow, meaning that strain accumulates in the material in temporal bursts
accompanied by relaxation stress drops resulting in a jagged stress-strain curve
(Dalla Torre et al. 2010; Song et al. 2008). Higher strain rates are characterized by
moderately serrated flow, and very high strain rates have little or no flow serration.
The mechanisms that underlie the transition are hypothesized to be the competition
between shear band nucleation and propagation (Schuh et al. 2004).

The STZ dynamics framework exhibits a yield point that is inherently rate
dependent. To correct for this and make the yield point rate independent, the STZ
dynamics model is extended to incorporate a strain-rate-dependent STZ volume and
activation energy, given by the following log-linear forms:

�0 = −0.2log10ε̇ + 1.6
[
nm3

]
�F = −0.12log10ε̇ + 1.07945 [eV]

(13)

This parameterization of STZ volume and STZ energy barrier as a function of
strain rate is not unique but aims to capture physical mechanisms of STZs (Dubach
et al. 2009; Harris et al. 2016). The physical origin of the strain rate dependence
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Fig. 8 (a) Example simulations at various strain rates. Note the clear trend of increased shear
band density with strain rate, and the increased appearance of free STZs at higher strain rates. (b)
Stress-strain curves for the six simulations shown in (a). (c) Box plot of the average stress drop
magnitude in each simulation, arranged by strain rate. (d) The comparison of median values of the
normalized shear band nucleation rate (yellow), shear band propagation rate (blue), and shear band
sliding rate (green). (Figure reproduced with permission from Harris et al. (2016))

remains an open question, possibly contributing to the time-dependent structural
relaxation (Dubach et al. 2009) or a kinetic feature of the atomic motions associated
with an STZ.

A transition of shear band density and morphology is captured by the model
with increasing strain rate from 10−5 s−1 to 1 s−1. Figure 8a shows a group of
six simulations, one from each strain rate studied, with increasing strain rate from
left to right. Each simulation is at the final strain value of 1.9%. In general, low
strain rates result in fewer, more dominant shear bands, with very few free STZs
scattered outside the bands, while high strain rates feature larger numbers of less
dominant shear bands, with many free STZs randomly scattered outside the bands.
The corresponding stress-strain curves for these six simulations are displayed in
Fig. 8b, showing a tightly grouped yield strength around 1.72 GPa. While the yield
strengths are similar, low strain rates tend to relax more quickly after yield and have
a lower flow stress than high strain rates. Examination of the flow serration regarding
stress drop after yielding shows a negative correlation with strain rate (Fig. 8c). This
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is in line with the experimental observations: strongly serrated flow at low strain rate
and moderately serrated flow at higher strain rate.

Further study of shear band nucleation rates, propagation rates, and sliding rates
in each simulation shows a transition from propagation-dominated shear banding
at low strain rates to nucleation-dominated shear banding at high strain rates. A
summary of the different statistics and their strain rate dependence is illustrated
in Fig. 8d, where each rate has been scaled so they can be compared side by
side. The underlying cause for the flow transition is hypothesized to be a strain-
rate-dependent critical shear band nucleus size that increases with increasing strain
rate (Harris et al. 2016). This is best illustrated by examining the stages of shear
banding (ref. to Fig. 7). In the nucleation stage (II), STZs appear and begin to cluster
into shear band nuclei, which grow and proliferate in the absence of a dominant
shear band. If the strain rate is low, then a small critical nucleus size means that
the growth stage (III) is reached quickly, and one shear band rapidly propagates
across the sample and begins to dominate all plasticity in the sample. Then, in
the sliding stage (IV and V), additional plasticity is concentrated in bursts on that
dominant band. If instead the strain rate is high, then a large critical nucleus size
means that the growth stage (III) is delayed, or skipped entirely, and plasticity
continues to be accommodated by nucleation of additional shear band nuclei in
the nucleation stage (II). Then sliding stage (IV and V) occurs more gradually as
shear band nuclei begin to intersect each other, and plasticity remains relatively
diffuse.

In essence, the STZ dynamics model provides insight into the shear banding
process, contributing toward a better picture incorporating both kinetic and ther-
modynamic nucleation criteria of shear band formation. These types of studies
demonstrate the strength of mesoscale models in elucidating the micromechanics
behind the macroscopic process. Some of these features would be difficult to
observe by other techniques.

3.3 Nanoscale Strengthening Subjected to Cyclic
Nanoindentation

Metallic glasses exhibit a broad range of interesting phenomena due to the
inherently complex non-equilibrium states, one of which is that they can exhibit
nanoscale strengthening subjected to cyclic nanoindentation in the elastic regime.
This has been demonstrated in nanoindentation experiment, showing a statistical
increase in strength as a result of cyclic loading at a magnitude before the first
significant plastic event (e.g., shear band), signified by a pop-in on the load-
displacement curve (Packard et al. 2010, 2008). Interestingly, the cyclic strength-
ening can only occur if the cycling is of a sufficient magnitude, if the indenter
is actually cycled (holding a constant load of equal magnitude and time does not
lead to strengthening), and the strengthening saturates after a finite amount of
cycles.
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Fig. 9 Simulated nanoindentation results for various loading conditions. (a) Load-displacement
curves for the monotonic loading, one-cycle and five-cycle loading with the cyclic depth of 0.9 nm.
Vertical arrows indicate the points: (i) at the yield of the monotonic loading; (ii) at the reload after
the first cycle; (iii) at yield after the five-cycle loading; and (iv), (v), and (vi) at a post-yield load
of 0.1 μN for the three loading conditions. The origin of the one-cycle and five-cycle loading
curves are shifted for a clear view. The inset shows an enlarged view of load drops around (i). (b)
The snapshots display the spatial distribution of STZ strain and excess free volume fv at points
(i–vi). Black arrows denote the STZ strain accumulation at (i) and (iii). (Figure reproduced with
permission from Wang et al. (2015))

To elucidate the underlying mechanisms that cause the strengthening, the STZ
dynamics framework is adapted by including contact mechanics in the finite element
analysis solver (Packard et al. 2011, 2010). Furthermore, the model incorporates
excess free volume as a state variable, to study the interplay of glass deformation
and structural evolution under cyclic indentation tests at an experimentally relevant
time scale (Wang et al. 2015).

Results from simulations under various loading conditions are illustrated in
Fig. 9. For a clear view, the origins of the load-displacement curves with cyclic
loading are shifted to the right. In Fig. 9a, from left to right, the three curves
represent the monotonic loading, one-cycle and five-cycle loadings with the cyclic
depth of 0.9 nm, respectively. The yield point of each test is indicated by an
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arrow, identified by an applicable deviation from the elastic response. The yield
load increases with the number of cycles, and after five cycles, it is ∼ 10% higher
than that of the monotonic response, which is consistent with the nanoscale cyclic
strengthening observed experimentally. Additionally, the snapshots of the spatial
distributions of STZ strain and excess free volume at several critical moments
are displayed in Fig. 9b. The accumulation of excess free volume can be clearly
observed at (i) and (iii), indicating extensive STZ activity prior to the yield point.
The cyclic loading can lead to structural change reflected by the annihilation of
excess free volume. In a comparison of excess free volume distribution at (i) with
(iii), the cluster on the top left in (i) almost disappears after five cycles in (iii). This
decrease of excess free volume after cyclic loading gives rise to the mechanical
strengthening as a consequence of removal of mechanically weak sites.

The nanoindentation simulation has further been used to detect the cause of
nanoscale strengthening subject to cyclic loading. For instance, Fig. 10a displays the
cumulative distribution of the yield loads at ten different indentation locations for
monotonic and cyclic loadings after one, three, and five cycles, at the cyclic depths
of 0.9 nm. Notably, there exists a large distribution of yield loads for monotonic
loading, e.g., the minimum yield load is about half of the maximum one. Further,
as the number of cycles increases, the distribution curves become sharper and shift
to the right particularly at the lower tail, indicating that the “weak” samples are
strengthened during cyclic loading. Such effect could be contributed to the removal
of the residual stress (Wang et al. 2011a), structural relaxation (Pan et al. 2009),
and the arrest of the shear band (Yang et al. 2006). With excess free volume as a
state variable, the STZ dynamics simulations demonstrate that the strengthening is
directly related to the decrease of large excess free volume sites. When the loading
cycles increase from 0 (i.e., monotonic) to 5, the excess free volume is reduced
progressively, signified by a left shift of the distribution curves shown in Fig. 10b.

Fig. 10 (a) Cumulative distributions of the yield loads for monotonic loading, and various cyclic
loadings after one, three, and five cycles at the cyclic depth of 0.9 nm. (b) Cumulative distribution
curves of the excess free volume fv in a selected region for monotonic loading and various cyclic
loadings after one, three, and five cycles at the depth of 0.9 nm. (Figure adapted with permission
from Wang et al. (2015))
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The reduction of excess free volume has been ascribed to the observed cyclic
strengthening, since it results in a reduced rate of microplastic events by increasing
STZ activation energy. Additionally, the left shift becomes less pronounced after
one cycle and saturates after five cycles, which is consistent with the saturation of
the strengthening effect. Overall, the STZ dynamics simulations indicate that the
energetics and timescales of STZ activity are plausible as a mechanism to cause
structural evolution that is consistent with nanoscale strengthening.

The application of a mesoscale technique to investigate the nanomechanics of
experiments indicates the strong potential to elucidate phenomena that are difficult
to measure by experimental techniques.

4 Conclusions and Outlooks

The STZ dynamics model, combining a coarse-grained approach and the kMC
algorithm, provides a useful framework to investigate the deformation behaviors of
metallic glasses. On the one hand, the coarse-graining enables collections of atoms,
or STZs, to be tracked; on the other hand, the kMC algorithm allows the stochastic
activation of these STZs based on the energetics of the system. The combination of
these two features enables the simulation of deformation behavior at larger time and
length scales while preserving a microscopic view of the processes that dominate
deformation.

The STZ dynamics model has been used to investigate the deformation behaviors
of metallic glasses in a variety of conditions. The modeling technique captures
the overall deformation behaviors expected of metallic glasses and the underlying
spatial and temporal correlations of STZs that contribute to different deformation
modes. The mesoscale model provides details into the formation of individual shear
band and the collection of shear band events which leads to the transition of flow
serration in the inhomogeneous deformation regime. Insights into nanoindentation
experiments are possible through the contact mechanics adaptions. The interplay
of deformation and structural evolution is accessed via the incorporation of a free
volume state variable.

The STZ dynamics framework will continue to be useful in the investigation of
the mechanical behaviors of metallic glasses. Many challenges remain for further
development, which includes, among others:

• Activation energy functional: The development and implementation of activation
energy functionals that more accurately capture the nature and variability of
disordered glassy structure and the structural dynamics of metallic glasses.

• Failure mechanisms: The failure of metallic glasses involves the strain softening,
adiabatic heating, cavitation, and crack formation in shear bands. One could
incorporate heat and mass transfer constitutive relations that are capture con-
ditions leading up to failure. One could also include an additional stochastic
process for cavitation that precedes crack formation. Finally, once a crack is
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initiated, one could model the crack propagation using standard finite element
techniques.

• Adaptive coarse-graining: Since the scales of STZs and shear bands are different,
one could use adaptive meshing to optimize the simulations. Depending on the
nature of what is happening, one could coarsen or refine a mesh. For example,
after a shear band appears, one could deal with groups of STZs instead of
dealing with individual STZs. Mesh refinement/remeshing may be geometrically
challenging but can be handled in practice with the use of advanced adaptive
meshing algorithms available in finite element packages. Mesh coarsening could
also be handled but would require the knowledge of the dynamic evolution of
STZ activation volume.

• Large-scale simulations: While powerful, current implementations of the STZ
dynamics framework are limited in their ability to simulate large structure. A
parallel, distributed memory implementation of the STZ dynamics modeling
would significantly increase the size of systems that can be examined by the
technique. In particular, a different implementation might allow the use of high-
performance computing systems. Large-scale simulations would help answer
questions about shear banding phenomena beyond the initial stage of shear band
formation, which is essential to directly connect with metallic glass toughness
and failure at the macroscopic scale.
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