
47Atomistic Spin-Lattice Dynamics

Pui-Wai Ma and S. L. Dudarev

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1018
2 The Quantum Origin of Spin Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1019
3 Spin Temperature Monitoring and Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1020
4 Spin-Lattice Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1023
5 The Suzuki-Trotter Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1025
6 Interatomic Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1027
7 Outlook and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1031
8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1033
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1034

Abstract

Finite temperature magnetic fluctuations determine a variety of properties of
magnetic materials, including their phase stability, their thermodynamic prop-
erties, and even the structure of defects formed under irradiation. A fundamental
feature of microscopic magnetic fluctuations is the directional non-collinearity
of fluctuating atomic magnetic moments, which stems from the rotational
invariance of an atomic magnetic Hamiltonian. To model the dynamics of
magnetic moments of atoms that move themselves, a fast and computationally
efficient simulation approach is required. Spin-lattice dynamics simulates atomic
movements as well as rotational and longitudinal fluctuations of atomic mag-
netic moments within a unified framework, generalizing molecular dynamics
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to magnetic materials. Collective magnetic and atomic excitations can now
be investigated on the microscopic scale, similarly to how transformations of
atomic structures can be investigated using molecular dynamics simulations. This
chapter outlines theoretical foundations and numerical algorithms of spin-lattice
dynamics and describes applications of the method.

1 Introduction

Magnetic materials play a pivotal part in modern technology; their applications
include long-term information storage, fast access memory devices, and even
quantum computing. Magnetic and mechanical properties of magnetic materials are
intimately related, in particular this applies to steels and iron alloys. For example,
ferromagnetic iron is the only element in Group 8 of the Periodic Table that
adopts the bcc crystal structure. All the other elements in the same group have hcp
crystal structure, and bcc Fe owes its stability to magnetism (Pettifor 1995). A self-
interstitial atom defect in bcc iron adopts a 〈110〉 dumbbell configuration (Fu et al.
2004), whereas in all the nonmagnetic bcc metals, a single self-interstitial defect
has the 〈111〉 symmetry (Nguyen-Manh et al. 2006; Derlet et al. 2007). At high
temperatures, bcc-fcc-bcc phase transitions in iron occur as a result of competition
between magnetic excitations and atomic vibrations (Lavrentiev et al. 2010; Ma
et al. 2017).

Neither molecular dynamics nor spin dynamics on their own can capture both
magnetic and atomic excitations. A broader mathematical simulation framework is
required to describe the dynamics of spin and lattice subsystems and their coupling.
Omelyan et al. (2001a,b, 2002) and Tsai et al. (2004, 2005) proposed models
unifying spin dynamics and molecular dynamics. We have developed their ideas
further, arriving at an algorithm suitable for simulating real materials.

Spin-lattice dynamics follows the time evolution of coupled spin and lattice
subsystems. Precession of spins and atomic motion are coupled through spin-
dependent forces and coordinate-dependent effective exchange fields. Figure 1
shows snapshots of magnetic order in iron at 0 and 300 K. The figure illustrates
an important aspect of finite temperature magnetic simulations. Magnetic moments
(which sometimes are also called atomic spins) become non-collinear due to thermal
excitation. The fact that interaction between magnetic moments depends on the
position of atoms, generates additional, spin direction dependent, forces acting
between the atoms in the material. This is how magnetic excitations affect the
dynamics and stability of atomic lattice.

In what follows, we first discuss the spin equations of motion and the notion of
spin temperature. Then, we outline theoretical foundations of spin-lattice dynamics.
We also describe a numerical integration algorithm that does not normally receive
much attention in the context of molecular dynamics but proves essential in the
framework of spin-lattice dynamics. Finally, we highlight the still outstanding scien-
tific challenges, particularly those associated with magnetic many-body interatomic
interaction potentials.
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Fig. 1 Snapshots of magnetic configurations generated using spin-lattice dynamics simulations of
iron at 0 and 300 K. Simulations were performed using spin-lattice dynamics simulation program
SPILADY (Ma et al. 2016)

2 The Quantum Origin of Spin Dynamics

The localized nature of d and f electrons justifies the notion of an atomic magnetic
moment M or atomic spin S, where M = −gμBS, g is the electron g-factor, and
μB is the Bohr magneton. Atomic magnetic moments form due to intra-atomic
exchange interaction between the localized electrons. Interaction between magnetic
moments associated with different atoms can be understood as resulting from
the interplay between intra-atomic exchange and interatomic quantum hopping of
electrons. The quantum nature of atomic spins gives rise to their unusual properties,
for example, an atomic spin has no mass and hence has no conjugate variable. The
classical equation of motion for a spin vector is in fact the mean-field analog of the
quantum equation of motion for the spin operator, which can be derived using the
Poisson brackets approach (Ma and Dudarev 2012).

Consider an arbitrary quantum-mechanical spin Hamiltonian Ĥ. It can be
expressed as a Taylor series in the spin vector operator Ŝ as

Ĥ =
∞∑

n=0

anŜn, (1)

where tensor quantities an are the Taylor series expansion coefficients. The nth order
of operator Ŝ can be written as

Ŝn = (ÎS + δŜ)n,

= ÎSn + nSn−1δŜ + · · · , (2)



1020 P.-W. Ma and S. L. Dudarev

where S is the expectation value of Ŝ, Î is the identity operator, and δŜ = Ŝ −
ÎS is what can be called the deviation of the operator from its expectation value.
Substituting Eq. (2) into Eq. (1), we find

Ĥ = Î
∞∑

n=0

anSn +
∞∑

n=1

annSn−1δŜ + · · · ,

= ÎH + ∂H

∂S
· δŜ + · · · . (3)

The first term in (3) is the Hamiltonian function H, which is equivalent to a classical
Hamiltonian, where the spin operator Ŝ is replaced by its expectation value S.
Ignoring higher-order terms in Eq. (3), the equation of motion for a spin operator
can be derived using the Poisson brackets commutator

dŜ
dt

= i

h̄

[
Ĥ, Ŝ

]
= 1

h̄

[
Ŝ ×

(
−∂H

∂S

)]
,

= 1

h̄

[
Ŝ × H

]
, (4)

where H = −∂H/∂S is the effective field acting on spin Ŝ. Since the first term in
Eq. (3) commutes with Ŝ, it gives no contribution to the equation of motion. The
first non-vanishing contribution to the right-hand side of (4) comes from the second
term in Eq. (3).

The above derivation remains valid for any spin Hamiltonian. We note that the
form of Eq. (4) is the same as that of the equation of motion for a classical spin
vector. This can be proven by evaluating expectation values of both sides of the
equation.

3 Spin Temperature Monitoring and Control

If a statistical and dynamically evolving system is in contact with another statistical,
and also dynamically evolving, system, energy flows from the hotter to the cooler
one, until they reach thermal equilibrium. There is an established procedure for
thermalizing an atomic system in a molecular dynamics simulation, which involves
putting the system in contact with a heat reservoir, represented by certain fluctuation
and dissipation terms in the classical equations of motion for the atoms. This
thermalization method is known as Langevin dynamics. The treatment of Brownian
motion is probably one of the best known examples of application of the method
(Chandrasekhar 1943; Kubo 1966). The use of Langevin dynamics for equilibrating
and thermalizing large systems of interacting atoms is a well-established part of the
molecular dynamics simulation toolkit.
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In the preceding section, we derived equations of motion for a closed system of
interacting spins. To thermalize a spin system, one can also use a special form of
Langevin dynamics, the implementation of which requires suitably modified spin
equations of motion. Langevin dynamics approach to spin dynamics was proposed
by Brown (1963). For an arbitrary Hamiltonian H ({Si}) describing N atomic spins,
the Langevin equation of motion for an atomic spin vector i can be written as

dSi

dt
= 1

h̄
[Si × (Hi + hi ) − γ Si × (Si × Hi )] (5)

where Hi = −∂H/∂Si is the effective magnetic field acting on atomic spin i, γ

is a dissipation constant, and hi is a delta-correlated fluctuating vector satisfying
conditions 〈hi (t)〉 = 0 and 〈hiα(t)hjβ(t ′)〉 = μδij δαβδ(t − t ′). Subscripts α and
β refer to the Cartesian components of a vector, and parameter μ characterizes the
magnitude of thermal magnetic fluctuations.

Stochastic and dissipative forces acting together drive a dynamic system to
thermal equilibrium. Fluctuation and dissipation terms are related through the
fluctuation-dissipation theorem (Chandrasekhar 1943; Kubo 1966). The fluctuation-
dissipation relation (FDR) between the fluctuating and dissipative terms can be
obtained by mapping the Langevin equation of motion to a Fokker-Planck equation
(Zwanzig 2001; Van Kampen 2011) and identifying the asymptotic stationary
solution of that equation with the Gibbs distribution (Brown 1963; Ma and Dudarev
2011). The FDR for Eq. (5) reads μ = 2γ h̄kBT , where T is the temperature of
the heat reservoir. Without the fluctuating term, Eq. (5) reduces to the Landau-
Lifshitz equation (Landau and Lifshitz 1935; Gilbert 2004), which contains only the
dissipative term. In the asymptotic limit t → ∞, solutions of the Landau-Lifshitz
equation describe stationary spin configurations, where dSi/dt = 0. Directions
of vectors Si in a stationary spin configuration can be found by solving equations
Si × Hi = 0, where i = 1, 2 . . . N (see Lavrentiev et al. 2011). The latter condition
has a simple meaning, namely, that in the lowest energy configuration every spin
vector Si is collinear with the exchange field Hi acting on it.

A notable feature of Eq. (5) is that the magnitude of the spin vector |Si (t)|, where
Si (t) is a solution of the equation, remains constant. This can be easily proven
by multiplying both sides of the equation by Si and noting that a vector product,
involving an arbitrary vector, is orthogonal to it. As a result, the magnitude of the
spin vector is conserved dS2

i (t)/dt = 0.
Due to the simultaneously localized and itinerant nature of electrons in a solid,

both the magnitude and direction of atomic spins are variable quantities. A revision
of Langevin spin dynamics is required to relax the constraint that the magnitude
of an evolving spin vector is a constant. Bearing in mind the Langevin treatment
of atomic dynamics, we find that longitudinal fluctuations of an atomic magnetic
moment, i.e., fluctuations of the magnitude of a spin vector, can indeed be treated
using some suitably chosen fluctuation and dissipation terms (Ma and Dudarev
2012). We write
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dSi

dt
= 1

h̄

[
Si ×

(
−∂H

∂Si

)]
− γ

∂H

∂Si

+ ξ i , (6)

= 1

h̄
[Si × Hi] + γ Hi + ξ i , (7)

where ξ i is a delta-correlated fluctuating vector satisfying conditions 〈ξ i (t)〉 = 0
and 〈ξiα(t)ξjβ(t ′)〉 = μδij δαβδ(t − t ′). The FDR can now be obtained by mapping
Eq. (6) onto a Fokker-Planck equation (Zwanzig 2001; Van Kampen 2011):

∂W

∂t
= −

∑

iα

∂

∂Siα

(AiαW) + 1

2

∑

ijαβ

∂2

∂Siα∂Sjβ

(BiαjβW). (8)

In the above equation, Aiα = limΔt→0
1
Δt

〈Siα〉 is an effective drift coefficient,
and Biαjβ = limΔt→0

1
Δt

〈SiαSjβ〉 is an effective diffusion coefficient. According
to Eq. (6), the drift and diffusion coefficients have the form (Zwanzig 2001;
Van Kampen 2011):

Ai = 1

h̄

[
Si ×

(
−∂H

∂Si

)]
− γ

∂H

∂Si

, (9)

Biαjβ = μδij δαβ. (10)

In thermal equilibrium, the energy distribution asymptotically approaches the Gibbs
distribution W = W0 exp(−H/kBT ), where W0 is a normalization constant.
Substituting Eqs. (9) and (10), and the Gibbs distribution, into Eq. (8), one finds
that

∂W

∂t
=

(
γ − μ

2kBT

) ⎡

⎣
∑

i,α

(
∂2H

∂S2
iα

− 1

kBT

(
∂H

∂Siα

)2
)⎤

⎦W. (11)

Stationary solutions of this equation corresponding to ∂W/∂t = 0 describe thermal
equilibrium. From Eq. (11) we see that the right-hand side of Eq. (11) vanishes if

μ = 2γ kBT . (12)

Surprisingly, the form of this FDR is exactly the same as that of the lattice Langevin
dynamics. The right-hand side of Eq. (11) also vanishes if

kBT =
∑

i,α

(
∂H

∂Siα

)2
/

∑

i,α

∂2H

∂S2
iα

. (13)

Equation (13) defines the dynamic spin temperature at equilibrium as a function
of microscopic dynamic variables. This resembles the well-known equipartition
principle for atoms where the lattice temperature can be estimated using the relation
3NkBT/2 = ∑

i P2
i /2m, where Pi is the momentum of atom i. Equation (13)
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has similar functionality, and it can also be used for estimating the local spin
temperature of an arbitrary spin configuration, which potentially may be very far
from equilibrium. Applying a similar procedure to Eq. (5), we find an alternative
formula for the spin temperature, which applies if the longitudinal fluctuations of
magnetic moments can be neglected (Ma et al. 2010).

kBT =
∑

i |Si × Hi |2
2
∑

i Si · Hi

. (14)

Here we note an alternative way of deriving Eqs. (13) and (14). If a system is
in thermal equilibrium, there is no net energy exchange with the heat reservoir,
resulting in d〈E〉/dt = 0. Since dE/dt = ∑

i (∂E/∂Si )(dSi/dt), by using
either of the two forms of Langevin equations of motion for the spins, taking the
ensemble average, and applying the FDR, we arrive at the above formulae for the
spin temperature expressed in terms of dynamic spin variables. Condition T = 0
corresponds to the lowest energy spin configuration that, according to Eq. (14),
is defined by a set of algebraic equations noted earlier in this section, namely,
Si × Hi = 0 for i = 1, 2 . . . , N .

4 Spin-Lattice Dynamics

Interaction between atoms in a magnetic material is determined by its spin-
dependent electronic structure. A suitable mathematical framework is required to
describe the many-body phonon and magnon excitations at elevated temperature.
Conventional molecular dynamics provides a convenient starting point for the
incorporation of spin degrees of freedom in an atomistic simulation. It is possible
to reformulate molecular dynamics and spin dynamics and combine them within
a unified simulation framework. This also makes it possible to treat interaction
between the lattice and magnetic subsystems, where interatomic forces and effective
exchange fields acting on magnetic moments are related and dynamically coupled
with each other.

Consider an arbitrary coordinate and spin-dependent Hamiltonian H (R, P, S),
where R = {Ri} are the atomic coordinates, P = {Pi} are the atomic momenta, and
S = {Si} are the atomic spin vectors. The Hamilton equations of motion for a closed
system have the form (Ma et al. 2008, 2016):

dRi

dt
= ∂H

∂Pi

,

dPi

dt
= − ∂H

∂Ri

,

dSi

dt
= 1

h̄

[
Si ×

(
−∂H

∂Si

)]
. (15)
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From their appearance, these equations formally amount to no more than a combina-
tion of molecular dynamics and spin dynamics, and the only quantity that formally
unifies them is the Hamiltonian. However, there is a subtle difference between
spin-lattice dynamics defined by Eqs. (15) above and molecular dynamics or spin
dynamics treated as separate simulation methods. The force Fi = −∂H/∂Ri acting
on atom i and the effective magnetic field Hi = −∂H/∂Si acting on spin vector
i are coordinate and spin-dependent. The direction and magnitude of atomic spin
vectors Si affect the direction and magnitude of forces acting between the atoms in
a magnetic material, whereas the effective exchange field acting on spin Si depends
on atomic positions. The lattice and spin subsystems are now coupled through the
spin-orientation-dependent interatomic forces and coordinate-dependent effective
exchange fields.

Generalizing Eqs. (15) to Langevin dynamics, we write the Langevin equations
of motion for the spins and atomic coordinates and momenta as

dRi

dt
= ∂H

∂Pi

,

dPi

dt
= − ∂H

∂Ri

− γl

∂H

∂Pi

+ fi ,

dSi

dt
= 1

h̄

[
Si ×

(
−∂H

∂Si

)]
− γs

∂H

∂Si

+ ξ i , (16)

where fi and ξ i are the fluctuating components of interatomic forces and exchange
fields, respectively. They satisfy the Langevin equations conditions 〈fi (t)〉 = 0 and
〈fiα(t)fjβ(t ′)〉 = μlδij δαβδ(t − t ′) for the fluctuating components of interatomic
forces and 〈ξ i (t)〉 = 0 and 〈ξiα(t)ξjβ(t ′)〉 = μsδij δαβδ(t − t ′) for the fluctuating
exchange fields. The FDR relations for the lattice and spin subsystems read μl =
2γlkBT and μs = 2γskBT , where T is the temperature of the heat reservoir. The
dissipative constants γl and γs determine the thermalization rates, which can be
derived from experimental observations. An example of thermalization process is
given in Fig. 2. The figure shows how the spin and lattice temperatures vary in an
interacting spin-lattice dynamic system. The simulation involves 16,000 magnetic
atoms of iron. The reservoir temperature is set to 300 K. We used the values of
parameters describing ferromagnetic iron that were derived by Ma and Dudarev
(2012) and Ma et al. (2012). The different thermalization rates characterizing spin
and lattice subsystems are primarily due to the difference between the values of
dissipation constants γl and γs .

The spin-lattice dynamics simulation model can be extended to include the
treatment of conduction electrons, if we assume that there is a significant amount
of heat dissipated to the electrons. This is often the case in metals. For example, in
applications, the heat reservoir is nothing but the time-dependent evolving electron
subsystem. Its dynamic behavior is described by the heat transfer equation

Ce

dTe

dt
= ∇(κe∇Te) + Gel(Tl − Te) + Ges(Ts − Te), (17)



47 Atomistic Spin-Lattice Dynamics 1025

Fig. 2 Spin and lattice
temperatures in magnetic iron
during thermalization,
predicted by spin-lattice
dynamics simulations. The
temperature of the reservoir is
300 K. Initial temperatures of
atoms and spins are T = 0 K.
The simulation follows the
evolution of 16,000 magnetic
iron atoms, initially forming a
perfect bcc lattice
configuration
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where Ce is the electronic specific heat and κe is the coefficient of thermal
conductivity. The coupling constants describing interaction between electron and
lattice subsystems Gel and between electron and spin subsystems Ges are

Gel = 3kBγl

mΩ
(18)

Ges = kBγs

Ω
〈
∑

α

∂2H

∂S2
iα

〉 (19)

where Ω is the atomic volume. Detailed derivations of Gel and Ges are given in
Ma et al. (2012, 2016) and references therein. Equations (16) and (17) constitute
a fully self-consistent atomistic spin-lattice-electron model. In the ultrafast laser
experiments, where over a relatively short period of time only a small amount
of heat is exchanged with the environment, the spin-lattice-electron model can
be successfully applied to modelling transient processes of thermalization and
heat exchange between the three subsystems, as well as to the treatment of fast
demagnetization (Ma et al. 2016).

5 The Suzuki-Trotter Decomposition

In a dynamic simulation of the evolution of a system of atoms, a numerical
algorithm advances the state of the system as a function of time by propagating
a configuration through a sequence of finite time steps. This generates numerical
errors, for example, biased errors and truncation errors, resulting from analytical
or numerical approximations. An integration algorithm based on the Suzuki-Trotter
decomposition (STD) (Hatano and Suzuki 2005) can minimize numerical errors
over a relatively long interval of computation time due to its symplectic nature,
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which means that the algorithm conserves the phase space volume of the system
during evolution. The STD involves breaking up an evolution operator, which
consists of several noncommutative operations, into simpler sub-evolution steps.
The second-order STD has the form

e(Â+B̂)Δt = eÂΔt/2eB̂Δt eÂΔt/2 + O(Δt3) (20)

where Â and B̂ are arbitrary operators and Δt is the time step. The above formula
describes how to decompose an operator that evolves the system over a time step,
into several simpler evolution steps, each involving the evolution of only a subset of
variables describing the microscopic configuration of the system.

Omelyan et al. (2001a,b, 2002) and Tsai et al. (2004, 2005) explored applications
of the STD to spin-lattice dynamics, and in what follows we adopt a similar
approach. Equations of motion for a spin-lattice system can be rewritten as

dx
dt

= (R + P + S)x, (21)

where x = {R, P, S} is a generalized coordinate and R, P, S are the evolution
operators acting on R, P, and S, respectively. The formal solution of Eq. (21) can be
written as

x(t + Δt) = e(R+P+S)Δtx(t). (22)

Using the STD decomposition given by Eq. (20), we write

e(R+P+S)Δt = ePΔt/2eSΔt/2eRΔteSΔt/2ePΔt/2 + O(Δt3). (23)

Reading the right-hand side of this equation from right to left, we see that the STD
decomposition rule requires that we would integrate equations for the momenta of
particles over the time interval Δt/2, then integrate equations for the spins over the
time interval Δt/2, and then integrate equations for atomic coordinates over the time
interval Δt , followed by the integration of equations for the spins over Δt/2 and
equations for the momenta over Δt/2. The order in which we integrate the equations
minimizes the number of times where forces are evaluated and significantly reduces
the time required to do a simulation. The main advantage offered by the STD (23) is
that it circumvents the need to integrate the coupled equations for the coordinates,
momenta, and spins all at the same time.

A particular subtlety associated with the presence of spin equations of motion in
Eqs. (15) is that spin dynamics involve rotations, which, as opposed to translations,
do not commute. Bearing this in mind, the evolution of the spin subsystem can be
split into a series of operations involving evolution of individual spins, namely

eSΔt = eS1Δt/2eS2Δt/2 · · · eSNΔt · · · eS2Δt/2eS1Δt/2 + O(Δt3). (24)
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Each operation of evolution of an individual spin depends on all the previous
operations, because the effective magnetic field Hi acting on spin i depends on
the entire configuration S of all the other spins. In serial programming, one only
needs to integrate the equations of motion for individual spins in a certain order,
determined by the STD decomposition (24), one equation at a time. However,
Eq. (24) prohibits performing multiple spin operations at the same time, in effect
prohibiting the parallelization of the integration algorithm.

Parallel integration of spin equations of motion is still possible if interaction
between the spins has a finite spatial extent (Ma and Woo 2009). In this case
the effective exchange field acting on a spin depends only on a finite number of
neighboring spins. The simulation cell can then be subdivided into separate spatial
regions, where spins belonging to different regions do not interact. Spins can then be
separated into noninteracting groups, and the STD can then be applied to the groups.
The integration algorithm can then be parallelized between the groups, rather than
between individual spins. An intrinsic part of an MD simulation program is the
linked cells algorithm. A linked cell is a local spatial region, ideally suited for
the parallel implementation of the STD of evolving spin operators. The parallel
implementation of spin-lattice dynamics, adopted here, relies on and benefits from
the linked cells decomposition of the simulation cell (Ma and Woo 2009).

6 Interatomic Potentials

In the sections above, we derived equations of motion and integration algorithms
for spin-lattice dynamics simulations. These simulation algorithms have now been
implemented in the form of a computer program SPILADY (Ma et al. 2016). The
outstanding scientific challenge in spin-lattice dynamics is the development of high-
fidelity interatomic potentials, suitable for modelling the microscopic dynamics of
atoms and spins in magnetic materials, composed of various chemical elements.
Similarly to the interatomic potentials used in molecular dynamics (Finnis 2003), an
interatomic potential can have any functional form and can be parameterized in an
arbitrary way, provided that it describes the physical properties that are of interest
to applications. In most cases, potentials are fitted to data derived from ab initio
calculations as well as to the data derived from experimental observations. There is
no universal potential yet available for any material that would be able to predict
energies and forces acting between the atoms in an arbitrary atomic configuration in
good agreement with ab initio calculations.

In our work, we have adopted a relatively simple functional form of the many-
body non-collinear spin-lattice potential. The potential can be derived from the
Hamiltonian of the form

H =
∑

i

P2
i

2m
+ U(R, S). (25)
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In the above Hamiltonian, the potential energy U of a system with N magnetic
atoms is written as a function of atomic coordinates and spin vectors. One can write
the energy in a Taylor series in spin variables S. Retaining only the rotationally
invariant terms, we write (Dudarev and Derlet 2007)

U(R, S) = U(0)(R) +
∑

i

U
(1)
i (R)S2

i +
∑

ij

U
(2)
ij (R)Si · Sj +

∑

i

U
(3)
i (R)S4

i + · · · .

(26)

This makes it possible to map Eq. (25) to a nonmagnetic many-body interatomic
potential complemented with a Heisenberg-Landau Hamiltonian

U = Ul(R) − 1

2

∑

ij

Jij (R)Si · Sj +
∑

i

Ai(R)S2
i +

∑

i

Bi(R)S4
i , (27)

where Jij (R) is a coordinate-dependent exchange coupling function and Ai(R)

and Bi(R) are the coordinate-dependent Landau coefficients. For the nonmagnetic
“lattice” part Ul(R) of the potential, we have adopted the embedded atom method
(EAM) (Daw and Baskes 1984) functional form and assumed that the Landau
coefficients Ai and Bi are functions of the effective electron density. This is by
no means the only way of representing the non-collinear spin-lattice potential. How-
ever, this particular functional form has at least two advantages. Firstly, it has a clear
physical meaning. The Heisenberg term describes spin-spin interactions, whereas
the Landau terms describe longitudinal fluctuations of Si . Exchange coupling and
the Landau coefficients depend on atomic coordinates, which couple the spin and
lattice subsystems through forces and effective magnetic fields. Secondly, the spin
and lattice equations of motion have a relatively simple form, which assists the
numerical implementation of the algorithm.

A remarkable property of Eq. (27) is that in the nonmagnetic limit S = 0,
the spin-lattice interaction potential reduces to a conventional molecular dynamics
many-body potential. This poses a question about the type of data required for
fitting a spin-lattice interatomic interaction potential. The above argument shows
that data on magnetic as well as on nonmagnetic atomic configurations are required,
as in potential (27) one can switch on and off the magnetic spin-dependent part.
Experimental observations do not always provide information about magnetic and
nonmagnetic properties at the same time, making ab initio calculations an invaluable
and irreplaceable source of data required for fitting spin-dependent potentials.
Also, ab initio calculations allow greater freedom for preconditioning, for example,
through the exploration of many non-collinear magnetic configurations in a variety
of atomic environments.

The functional form of the potential given by Eq. (27) does not take into account
spin-orbit coupling. Spin-orbit coupling allows the transfer of angular momentum
and energy from the spin to the lattice subsystem and vice versa. Perera et al.
(2016) proposed a phenomenological model for the magneto-crystalline anisotropy,
which models the effect of spin-orbit coupling. They add an anisotropic term to the
Hamiltonian
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Haniso = −C1

∑

i

Ki · Si − C2

∑

i

ST
i · Λi · Si , (28)

where C1 and C2 are adjustable parameters. Ki (R) = ∂ρi(R)/∂Ri and Λi,αβ(R) =
∂2ρi(R)/∂Riα∂Riβ are the coordinate-dependent functions defining the character of
the on-site magnetic anisotropy, where ρi(R) describes the symmetry of local envi-
ronment. This approach may help treat the effect of magneto-crystalline anisotropy,
although the link between (28) and the microscopic quantum-mechanical spin-orbit
coupling Hamiltonian requires further analysis.

In the study of bcc-fcc-bcc phase transitions in pure iron (Ma et al. 2017), we
have fitted a new spin-lattice potential using ab initio data as input. The functional
form of the spin-dependent potential was assumed to be given by Eq. (27). In
the process of fitting the potential, we have generated large data sets using ab
initio calculations. The data included bcc, fcc, bct, rhombohedral, amorphous, and
various defect structures under the constraint that the system remained entirely
nonmagnetic. Using the data, we have fitted an EAM potential, which is the first
term in (27). Then, we fitted the magnetic terms, separately for bcc and fcc crystal
structures. Applying the umbrella sampling and adiabatic switching thermodynamic
integration to spin-lattice dynamics simulations, we have evaluated the difference
between the free energies of bcc and fcc phases as a function of temperature.
Each free energy difference calculation referred to a particular temperature, hence
avoiding the need to perform integration from 0 K, otherwise required in other
simulation approaches (Lavrentiev et al. 2010).

Figure 3 shows the calculated free energy difference between the fcc and bcc
phases. When the difference is positive, bcc phase is more stable, for example,
at low temperatures. Otherwise, fcc phase is more stable. The curve crosses the
horizontal axis at two points, near 1130 K and then again near 1600 K. These
points correspond to the bcc-fcc α − γ and fcc-bcc γ − δ phase transitions,
respectively. The predicted transition temperatures are close to the experimentally
observed transition temperatures Tα−γ = 1185 K and Tγ−δ = 1667 K. The minimum
free energy difference between the fcc and bcc phases is only −2 meV per atom.
Analysis given in Lavrentiev et al. (2010) and Ma et al. (2017) shows that α-
γ -δ phase transitions in magnetic iron stem from the interplay between magnetic
excitations and lattice vibrations. The free energy contribution from non-collinear
magnetic fluctuations reduces the free energy difference as temperature increases.
When the temperature is higher than the Curie temperature TC , the long-range
magnetic order vanishes although the short-range order remains (see Ma et al.
(2008) and Fig. 4).

At temperatures exceeding the Curie temperature, the contribution to entropy
from magnetic excitations is superseded by the contribution from lattice vibrations,
and it is the balance between entropy contributions to the free energy from spin and
lattice dynamics that is ultimately responsible for the occurrence of the two, α-γ and
γ -δ, rather than one, phase transitions in iron. This also illustrates the significance of
taking into account spin-lattice coupling when modelling magnetic phase transitions
in any real material.
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Fig. 3 Difference between the free energies of fcc and bcc phases of magnetic iron plotted as a
function of temperature. Calculations were performed using a spin-lattice potential, taken as a sum
of a nonmagnetic EAM potential and a Heisenberg-Landau Hamiltonian, as detailed by Eq. (27).
The minimum free energy difference between fcc and bcc phases is −2 meV per atom

Fig. 4 Time average projection of an atomic spin on a magnetization axis and spin-spin short-
range correlation functions evaluated for the first, second, . . ., fifth nearest-neighbor atoms and
plotted as functions of absolute temperature. Long-range magnetic order vanishes at the Curie
temperature TC , whereas the magnetic short-range order does not vanish even at temperatures well
above TC
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7 Outlook and Challenges

Applications of spin-lattice dynamics are still fairly sparse. The main difficulty asso-
ciated with applications of spin-lattice dynamics is that, like molecular dynamics,
spin-lattice dynamics requires a sufficiently accurate many-body spin-dependent
potential. Although spin-lattice dynamics has been applied extensively to simu-
lations of various microscopic dynamic effects in pure iron, including vacancy
migration (Wen et al. 2013), and magnetic excitations in cobalt (Beaujouan et al.
2012), there is still no spin-lattice potential suitable for simulating mechanical
deformations, magnetic fluctuations, and defect properties at the same time. There
are two main reasons why this question remains outstanding.

First, the number of degrees of freedom in spin-lattice dynamics is twice that of
molecular dynamics. In molecular dynamics, one needs to fit an interatomic interac-
tion potential to input data based on atomic configurations in 3N dimensions, where
N is the number of atoms in a simulation cell. In the case of spin-lattice dynamics,
the number of degrees of freedom is 6N because each atom is characterized by its
position as well as by the orientation and magnitude of the atomic magnetic moment.
This poses a major challenge in the context of the fitting procedure as well as data
generation and selection, since a significantly greater amount of data is required to
span the multidimensional coordinate and spin phase space.

On the other hand, pure spin dynamics on a static lattice, which is a subset
of spin-lattice dynamics, can be run as efficiently as MD. If we assume that the
exchange coupling parameters Jij are independent of atomic coordinates, the spin-
dynamics part of the integration algorithm can be used for generating detailed
information about magnetic phase transitions, as illustrated in Figs. 4 and 5.

Fig. 5 Specific heat of bcc iron evaluated using purely rotational spin dynamics with no
longitudinal fluctuations included, and Langevin spin dynamics taking longitudinal fluctuations
of magnetic moments into account (Ma and Dudarev 2012). The peaks correspond to second-order
magnetic phase transitions, where the long-range ferromagnetic order vanishes
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Fig. 6 Magnetic configuration of atoms in the vicinity of a mono-vacancy in ferromagnetic bcc
iron, derived from ab initio calculations. The simulation cell contains 53 atoms. The magnitude
of magnetic moments is greater in the first nearest-neighbor coordination shell of the vacancy,
whereas magnetic moments are suppressed in the second nearest-neighbor coordination shell.
Color refers to the magnitude of magnetic moments given by the scale bar, expressed in the Bohr
magneton units

Second, a suitable functional form of the spin-lattice potential is yet to be firmly
established. For example, if we adopt the form given by Eq. (27), we still do not
know what functional form should be used for Jij (R), Ai(R), and Bi(R). In Figs. 6
and 7, we show a vacancy and a 〈110〉 self-interstitial dumbbell configurations in bcc
ferromagnetic iron. These configurations were derived from ab initio calculations.
We see that the magnitude and direction of magnetic moments depend on the local
environment. Atoms near a defect have significantly different magnetic moments
in comparison with moments of atoms in a perfect crystal. An often used pairwise
form for Jij (R) does not fit the data for defects well, although it does fit reasonably
well the data on magnetic moments in a nearly perfect lattice. A good spin-lattice
potential should help model magnetic configurations associated with extended
defects, such as line dislocations, dislocation loops, vacancy clusters, and voids,
where ab initio calculations are still impossible or too computationally demanding.

In addition to defects, alloys present an even more challenging issue. Figure 8
shows the magnetic configuration of a FeCrNi ternary alloy. The data for the figure
were taken from Wróbel et al. (2015). Even though the alloy adopts a nearly perfect
fcc crystal structure, its magnetic configuration is fairly complex. This implies that a
spin-lattice potential must contain information about the underlying spin-dependent
electronic structure to be able to reproduce magnetic properties at a reasonable level
of accuracy.

The functional form of a spin-lattice potential should reflect the many-body
electron interactions. A recently derived tight-binding Hamiltonian (Coury et al.
2016) for non-collinear magnetic configurations is expected to provide a good
starting point for a comprehensive treatment of this problem.
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Fig. 7 A 〈110〉 self-interstitial dumbbell configuration in ferromagnetic bcc iron, predicted
by ab initio calculations. The supercell contains 129 iron atoms. The magnitude of magnetic
moments of the two atoms forming the center of the dumbbell is significantly smaller than
that of the neighboring atoms. Magnetic moments of atoms in the center of the dumbbell have
antiferromagnetic orientation with respect to the ferromagnetically ordered neighboring atoms.
Color represents the magnitude of an atomic magnetic moment, expressed in the Bohr magneton
units

Fig. 8 Magnetic
configuration of a FeCrNi fcc
alloy containing 108 atoms in
the simulation cell. The alloy
configuration consists of 58
Fe atoms (red), 16 Cr atoms
(green), and 34 Ni atoms
(blue). Color of arrows refers
to the magnitude of atomic
magnetic moments defined by
the scale bar, expressed in the
Bohr magneton units

8 Conclusion

Spin-lattice dynamics is a powerful simulation tool for studying magnetic materials
on the atomic scale. In this chapter, we have outlined the fundamental theory of
spin-lattice dynamics and algorithms suitable for its numerical implementation.
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Although there are still significant challenging issues that remain to be resolved,
the field is open for exploration. Spin-lattice dynamics can be applied to a broad
range of topics from modelling high-frequency electronic and magnetic devices to
mechanical properties of magnetic alloys.
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