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Abstract

Electronic spin excitations are low-energy excitations that influence the prop-
erties of magnetic materials substantially. Two types of spin excitations can be
identified, single-particle Stoner excitations and collective spin-wave excitations.
They can be treated on the same footing within many-body perturbation theory.
In this theory, the collective spin excitations arise from the correlated motion
of electron-hole pairs with opposite spins. We present the theory in detail
and discuss several aspects of an implementation within the full-potential
linearized augmented plane-wave method. The pair propagation is described by
the transverse magnetic susceptibility, which we calculate from first principles
employing the ladder approximation for the T matrix. The four-point T matrix
is represented in a basis of Wannier functions. By using an auxiliary Wannier set
with suitable Bloch character, the magnetic response function can be evaluated
for arbitrary k points, allowing fine details of the spin-wave spectra to be studied.
The energy of the acoustic spin-wave branch should vanish in the limit k → 0,
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which is a manifestation of the Goldstone theorem. However, this condition is
often violated in the calculated acoustic magnon dispersion, which can partly
be traced back to the choice of the Green function. In fact, the numerical gap
error is considerably reduced when a renormalized Green function is used. As
an alternative simple correction scheme, we suggest an adjustment of the Kohn-
Sham exchange splitting. We present spin excitation spectra for the elementary
ferromagnets Fe, Co, and Ni as illustrative examples and compare to model
calculations of the homogeneous electron gas.

1 Introduction

Electronic spin excitations span a large range of energies, from high-energy
single-particle Stoner excitations to low-energy collective spin-wave excitations.
Therefore, they are present at all temperatures and play an important role for
the physical properties of magnetic materials. For example, the specific heat
(Doniach and Engelsberg 1966), the macroscopic magnetization (Bloch 1930),
and the magnetic susceptibility (Moriya 1985) exhibit a characteristic temperature
dependence which can be attributed to the low-energy spin waves (magnons)
with excitation energies ranging from a few meV up to a few hundreds meV. In
low-dimensional magnets, spin-wave excitations can even destroy the long-range
magnetic order completely. This happens in the absence of magnetic anisotropy at
any finite temperature (Mermin and Wagner 1966). As the temperature increases, in
addition to collective magnon modes, single-particle spin-flip processes, so-called
Stoner excitations, become increasingly important. They further contribute to the
temperature variation of the magnetization and give rise to a damping of the magnon
states.

Spin excitations play a role in many fields of fundamental and technological
interest. They can contribute to the scattering of a propagating electron or hole in a
magnetic material, leading to a renormalization of the quasiparticle band dispersion
(Hofmann et al. 2009; Schäfer et al. 2004) and reducing the inelastic mean free path
of hot electrons (Hong and Mills 1999, 2000). In magnetic recording applications,
the creation of spin waves that accompanies each switching process in the storage
medium sets physical limits on data rates and areal recording densities. A strong
damping helps in dissipating the energy contained in the spin waves. The spin wave
bus, on the other hand, utilizes spin waves as a means for information transmission
between distant nanoscale devices (Khitun and Wang 2005). The damping through
the creation of Stoner excitations is an undesirable effect in this case, limiting the
distance over which information can be transmitted. The power consumption of such
a spin wave bus is expected to be considerably lower than in charge-based devices.
Finally, it is believed that the electron-electron interaction can become attractive
through the exchange of magnons, which is a possible mechanism for the creation of
Cooper pairs in high-temperature superconductors (Dagotto 1994; Scalapino 1995).
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In quantum mechanics, the spin excited states are eigenstates of the many-body
Hamiltonian with a net spin flip with respect to the many-body ground state. The
magnetic response function or dynamical spin susceptibility, defined as a two-
particle Green function in many-body perturbation theory, exhibits resonances at
the corresponding eigenenergies. In an infinite system, these resonances – or poles
– are, in general, not discrete but form a continuous distribution when plotted over
the eigenenergy. This spectral function is given mathematically by the imaginary
part of the magnetic response function and can be measured in inelastic neutron
scattering experiments (Lowde et al. 1983) where the circularly polarized magnetic
field of an incoming neutron beam disturbs the local magnetization density of the
sample material. The magnetic response function is thus a central quantity in the
theoretical study of magnetic materials.

For a theoretical description of spin dynamics, various formalisms have been
established. Most theoretical studies to date employ the Heisenberg model, which
relies on a separation of the magnetic degrees of freedom and the fast motion of
the electrons. This model is defined in terms of exchange parameters, which can
be obtained, for example, from constrained density functional theory (Rosengaard
and Johansson 1997; Kübler 2009; Halilov et al. 1997). Spin waves with long
wavelengths can be calculated efficiently. Single-particle Stoner excitations are
neglected, though, and the linewidths of the spin-wave resonances, which are
inversely proportional to the magnon lifetimes, are inaccessible. Furthermore, the
Heisenberg model is strictly justified only for systems with localized moments,
such as systems with rare-earth magnetic ions, but not for materials which are
magnetized by the exchange-driven polarization of the spins of itinerant electrons.
While the Heisenberg model still yields reasonable results for long-wavelength
excitations in itinerant-electron magnets, results for short-wavelength excitations
are unsatisfactory. For example, the multiple branches or gaps in the magnon
dispersion of 3d ferromagnets cannot be captured (Cooke 1976).

Many-body perturbation theory (MBPT) provides a more general theoretical
framework that works for systems with localized moments and for metallic magnets
alike. Single-particle Stoner and collective spin excitations appear simultaneously
as poles in the transverse magnetic susceptibility, which can be interpreted as
describing the correlated motion of an electron-hole pair coupled by an effective
electron-electron interaction. First applications to real systems (Cooke 1973; Cooke
1976) employed a tight-binding description. Reasonable agreement with experiment
throughout the Brillouin zone was obtained for the spin-wave dispersion of 3d

ferromagnets. With a similar approach, Tang et al. (1998) examined the spin
dynamics in ultrathin ferromagnetic films on nonmagnetic substrates.

Around the turn of the millennium, the first calculations based on ab initio
electronic structure methods were carried out: Karlsson and Aryasetiawan (2000)
employed MBPT but used a local model potential with an adjustable param-
eter instead of the nonlocal electron-hole interaction. Savrasov (1998), Buczek
et al. (2009), Lounis et al. (2010), and Rousseau et al. (2012) performed calculations
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within time-dependent density functional theory (TDDFT). Kotani and van Schilf-
gaarde (2008) studied (anti-)ferromagnets based on quasiparticle self-consistent GW
calculations (Faleev et al. 2004), where the effective interaction was determined
from a magnetic sum rule. In 2010, Şaşıoğlu et al. (2010) reported a treatment
within MBPT where the screened Coulomb interaction was explicitly calculated
from the random-phase approximation (RPA) rather than using a model potential or
a parameter fixed by a sum rule. Still an ad hoc scaling of the screened interaction
was required to fulfill the Goldstone condition. Good agreement of the calculated
magnon dispersions in 3d ferromagnets with experiment was achieved in both
approaches, MBPT and TDDFT.

In the present chapter, we give a detailed presentation of the theoretical many-
body treatment of spin excitations within MBPT. We adopt a very general viewpoint
that encompasses excitations with and without a spin transfer, so neutral excita-
tions – e.g., excitons, which play an important role in optical absorption – will
appear as a special case. In Şaşıoğlu et al. (2010), a practical computational scheme
was developed to study excitation spectra of magnetic materials from first principles,
in close relation to the formalism of Aryasetiawan and Karlsson (1999). To study
collective magnon excitations, we include vertex corrections in the form of ladder
diagrams, which describe the coupling of electrons and holes with opposite spins via
the screened Coulomb interaction. In analogy to the many-body T matrix defined by
Strinati (1988) for optical absorption, we use the same term for the corresponding
quantity that appears in the Green-function formalism for the transverse magnetic
response function. In order to reduce the numerical cost for the calculation of the
four-point T matrix, we exploit a transformation to maximally localized Wannier
functions (MLWFs), which provide a more efficient basis to study local correlations
than extended Bloch states (Marzari and Vanderbilt 1997; Souza et al. 2001;
Freimuth et al. 2008). Our implementation is based on the full-potential linearized
augmented plane-wave (FLAPW) method.

Section 2 gives a detailed account of the theoretical framework. The numerical
implementation is described in Sect. 3. In particular, we discuss how the magnetic
response function can be calculated for any Bloch vector, even if this Bloch vector
is not an element of the k-point set. This allows the calculation of smooth dispersion
curves while keeping the k-point set small. Section 4 is devoted to the discussion of
the violation of the Goldstone theorem. This theorem stipulates the existence of an
acoustic magnon branch with vanishing excitation energy in the long-wavelength
limit. In numerical calculations, the excitation energy often remains finite in this
limit. We show – both numerically and mathematically – that this violation is due
to an inconsistency in the choice of the single-particle Green function. In Sect. 5,
we present illustrative magnetic excitation spectra obtained for the elementary
ferromagnets bcc Fe, fcc Co, and fcc Ni. For more practical applications of this
method, we refer the reader to Friedrich et al. (2014) and Şaşıoğlu et al. (2010,
2013). In Sect. 6, we summarize our conclusions. Unless otherwise indicated,
Hartree atomic units are used throughout.
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2 Theory

When a many-electron system is perturbed by a time-dependent external B field,
originating, for example, from a neutron beam impinging on a magnetic sample, the
system reacts by a change of the electronic density. This electronic redistribution
is different for spin-up and spin-down electrons, since the B field couples to the
electrons’ spin, and, to a first approximation, it is the spin density that changes, while
the total density remains the same. Therefore, we consider the magnetic response
function

Rij (r1t1, r2t2) = δσ i(r1t1)

δBj (r2t2)
, (1)

which gives the linear change of the spin density at the position r1 and time t1
with respect to changes in the external B field at r2 and t2. Here, σ i and Bj are
the vector components (i, j = x, y, z) of the spin density σ and the B field. We
additionally allow for i = 0 and j = 0, where σ 0 is the total electronic density and
B0 is an external scalar potential. For example, R00 = δσ 0/δB0 then corresponds
to the density response function. Equation (1) thus defines a 4×4 tensor of response
functions that are all nonzero in general.

The magnetic response function exhibits resonances (analytical poles) at the spin
excitation energies of the unperturbed many-body system, corresponding to the
eigen oscillations of the spin system. These “eigen oscillations” are, in general, not
discrete and show a spectral distribution given by the imaginary part of the magnetic
response function. In order to capture all possible oscillations of the spin system,
Eq. (1) defines a microscopic response function in the sense that the perturbing field
– and also the response of the electronic (spin) density – can have an arbitrary shape
in space. In particular, it can exhibit any wavelength down to interatomic distances.
Its determination requires an ab initio description of the electronic structure and a
high-level quantum mechanical treatment of the correlated motion of the electrons.

We employ a method based on MBPT similar to the one of Aryasetiawan
and Karlsson (1999). However, we do not employ Matsubara frequencies but a
formulation at absolute zero that yields the magnetic excitation spectra directly
for real frequencies. An implementation within an all-electron Wannier-function
formulation was published in Şaşıoğlu et al. (2010) and Friedrich et al. (2014). In
the following, we develop the theory in detail.

To simplify the notation, space and time arguments r1t1, r2t2, . . . are abbreviated
by the corresponding index 1, 2, . . . . The ground-state spin density distribution is
given by the expectation value of the spin density operator

σ i(1) =
∑

α,β

σ i
αβ〈Ψ0|ψ†

α(1)ψβ(1)|Ψ0〉 , (2)
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where ψα(1) [ψ†
α(1)] is an annihilation (creation) field operator of an electron

with spin α and σ i
αβ are the elements of the Pauli spin matrices for i = x, y, z.

The expectation value is taken with respect to the interacting many-body ground
state |Ψ0〉. For example, for the spin density in z direction, the operator is simply
ψ

†
↑(1)ψ↑(1) − ψ

†
↓(1)ψ↓(1), and the spin density is given by the difference of the

spin-up and spin-down number densities. When considering transversal spin-wave
excitations later on, the spin Pauli matrices for i = x and i = y will become
relevant, but until then the derivation is general. The case i = 0 can be taken into
account by defining σ 0

αβ = δαβ . We rewrite Eq. (2) as

σ i(1) = −i
∑

α,β

σ i
βαGαβ(11+) (3)

where 1+ = r1t1 + η with a positive infinitesimal time η and Gαβ(12) =
−i〈Ψ0|T [ψα(1)ψ

†
β(2)]|Ψ0〉 is the interacting single-particle Green function with

the time-ordering operator T (Mahan 2000), which orders the field operators
chronologically from right to left. (A factor −1 has to be multiplied for each
permutation of field operators.)

We are now in the position to prove that Rij can be written as a spin-spin
correlation function. First the Green function is expressed in the interaction picture

Gαβ(12) = −i〈Ψ I
0(∞)|U I(∞, 1)ψ I

α(1)U I(1, 2)ψ
I†
β (2)U I(2,−∞)|Ψ0〉

= −i
〈Ψ0|U I(∞, 1)ψ I

α(1)U I(1, 2)ψ
I†
β (2)U I(2,−∞)|Ψ0〉

〈Ψ0|U(∞,−∞)|Ψ0〉 , (4)

where we have assumed that t1 > t2, that the Heisenberg state |Ψ0〉 is identical to
|Ψ I

0(−∞)〉, and that |Ψ I
0(∞)〉 differs from |Ψ0〉 only by a phase factor. The time

evolution operator depends only on the time arguments and fulfills the Tomonaga-
Schwinger equation

i
∂

∂t
U I(t, t ′) = H I(t)U I(t, t ′) (5)

with the Zeeman term H I(t ′) = ∑
j,α,β σ

j
αβ

ş

Bj (1)ψ I†
α (1)ψ I

β(1)d1. Using the

solution U I(t, t ′) = T exp
[
−i

şt

t ′ H
I
j (t

′′)dt ′′
]
, one can show that

δU I(t, t ′)
δBj (3)

=
{−iU I(t, t3)σ̂

j (3)U I(t3, t
′) if t < t3 < t ′

0 otherwise
(6)

with σ̂ j (3) = ∑
α,β σ

j
αβψ I†

α (3)ψ I
β(3). This expression replaces the corresponding

U I when Eq. (4) is differentiated. Then, transforming back to the Heisenberg picture,
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including the case t1 < t2, and inserting the result into Eqs. (1) and (3) yields the
spin-spin correlation function

Rij (12) = −i〈Ψ0|T[σ̂ i′(1)σ̂ j ′(2)]|Ψ0〉 (7)

with σ̂ i′(1) = σ̂ i (1) − σ i(1).
The reformulation with the Green function makes Eq. (3) amenable to a treatment

within MBPT. The equation of motion of the Green function, the Dyson equation,
in the presence of a B field reads

[
i

∂

∂t1
+ 1

2
∇2

r1
− V ext(r1)

]
Gαβ(12) −

[
∑

i

σ i
αβBi(1)

]
Gαβ(12)

−
∑

γ

ż

Mαγ (13)Gγβ(32)d3 = δ(12)δαβ , (8)

from which we can directly identify the inverse of the Green function

G−1
αβ (12)=

[
i

∂

∂t1
+ 1

2
∇2

r1
− V ext(r1)

]
δ(12)δαβ−

[
∑

i

σ i
αβBi(1)

]
δ(12)−Mαβ(12)

(9)
with the external potential V ext(r) and the delta function δ(12) = δ(r1−r2)δ(t1−t2).
We have assumed the B field to incorporate a factor geμB/2 (ge/4 in atomic units)
with the electron spin g-factor ge and the Bohr magneton μB so that B · σ̂ is the
Zeeman term of the Hamiltonian.

In solids, the orbital magnetic moment is usually strongly quenched, which is
why we neglect the coupling of the B field to the orbital motion. The mass operator

Mαβ(12) = V H(1)δ(12)δαβ + Σαβ(12) (10)

accounts for the electron-electron interaction. It embodies the Hartree potential

V H(1) =
ż

n(2)v(21)d2 = −i
∑

α

ż

Gαα(22+)v(21)d2 (11)

with the bare Coulomb interaction v(12) = δ(t1 − t2)/|r1 − r2| and the self-energy
Σαβ(12), a time-dependent nonlocal potential that incorporates all many-body
exchange and correlation effects of the electronic system. The self-energy is the
most complex quantity in Eq. (9), and its exact form is unknown. We employ the
GW approximation (Hedin 1965)

Σαβ(12) = iGαβ(12)W(1+2) , (12)
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where

W(12) = v(12) +
żż

v(13)P (34)W(42) d3 d4 (13)

is the screened interaction, which is the effective potential at 1 created by a unit
charge at 2 (first term) and the induced charge cloud forming around the unit
charge (second term). The screened interaction is a dynamical (i.e., time-dependent)
quantity, since the screening process requires the electrons to move, and this process
takes time. Equation (13) is formally exact. The approximation consists in the choice
of the polarization function, for which we use the RPA

P(12) = −i
∑

α,β

Gαβ(12)Gβα(21+) . (14)

We note that Eq. (12) is defined with the self-consistently renormalized Green
function, formally corresponding to a fully self-consistent solution of Hedin’s
equations (Hedin 1965) where the vertex function is approximated by Γ (12; 3) =
δ(12)δ(13). This will become important in Sect. 4.

The derivative of G can be related to that of G−1 by differentiating both sides of∑
γ Gαγ (13)G−1

γβ (32)d3 = δ(12)δαβ , yielding

δGαβ(12)

δBj (3)
= −

∑

γ,δ

żż

Gαγ (14)
δG−1

γ δ (45)

δBj (3)
Gδβ(52)d4 d5 . (15)

Through the derivative of Eq. (9)

δG−1
αβ (12)

δBj (3)
= −σ

j
αβδ(13)δ(12) − δMαβ(12)

δBj (3)
(16)

and Eqs. (10), (11), and (12), the right-hand side of Eq. (15) can be expressed in
terms of δG/δB, and successive insertion will lead to an infinite series expansion.
Before we do this step, we have to find a suitable expression for the second term
of δΣ/δB = i(δG/δB)W + iG(δW/δB). Differentiating Eq. (13), solving for the
derivative of W , and using Eq. (14) gives

δW(12)

δBj (3)
= −i

∑

α,β

żż

W(14)

[
δGαβ(45)

δBj (3)
Gβα(54+) + Gαβ(45)

δGβα(54+)

δBj (3)

]
W(52) d4 d5 . (17)
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(b) I = −
1 3

2 4

−1
2 4

3 −
1

2 4

31

2 4

31 3

2 4

(a) =

1

2

3δG
δB +3

2

1

σ

1

2

3

7

6

I

4

5

δG
δB

Fig. 1 Diagrammatic representations of (a) Eq. (18) and (b) Eq. (19). Successive reinsertion in
(a) produces an infinite series of diagrams for δG/δB and, hence, for R. Arrows represent the
renormalized Green function, the dotted line the bare, and the wiggly line the screened interaction.
(We use the convention that each interaction line carries a factor i.) The spin-flip operator,
mathematically described by a Pauli matrix, is shown as σ

Now, we can combine everything and obtain

δGαβ(12)

δBj (3)
=

∑

γ,δ

[
σ

j
γ δGαγ (13)Gδβ(32+) (18)

+
∑

ε,ζ

żżżż

Gαγ (14)Gδβ(52+)Iγ δ,εζ (45, 67)
δGεζ (67)

δBj (3)
d4 d5 d6 d7

⎤

⎦

with the (irreducible) interaction kernel

Iαβ,γ δ(12, 34) = i
[
W(1+2)δ(13)δ(24)δαγ δβδ − v(13)δαβδγ δδ(12)δ(3+4)

]

+ Gαβ(12)
[
W(1+3)Gδγ (43+)W(42)+W(1+4)Gδγ (43+)W(32)

]
.

(19)

Equation (18) defines an infinite series expansion for δG/δB as shown diagrammat-
ically in Fig. 1a. By virtue of the Eqs. (1) and (3), a corresponding series expansion
is obtained for Rij (12).

For i = j = 0, the above formulas lead to the Bethe-Salpeter equation for optical
absorption. The case i = 0 
= j (or vice versa) describes the coupling of electronic
spin and charge. The equations simplify in the absence of spin-orbit coupling. The
Green function is then diagonal in spin space, and the inner spin summations in
Eq. (18) disappear. We now discuss some specific cases:

Nonmagnetic case: We have Gαβ(12) = δαβG(12), i.e., spin-up and spin-down
Green functions are identical. As a result, all degrees of freedom (0, x, y, and z)
decouple and R00 = Rzz and Rxx = Ryy .
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Collinear (anti-)ferromagnetism: The Green function is still diagonal in spin
space, but the two components are different, i.e., Gαβ(12) = δαβGα(12).
Then, the degrees of freedom 0 and z as well as x and y couple. In particular,
we get a coupling of the spin and charge degrees of freedom in R0z (and
Rz0). The diagonal elements R00 and Rzz are the density response function
and the longitudinal spin susceptibility, respectively. They are decoupled from
the functions Rij with i, j ∈ {x, y}, which give rise to the transverse spin
susceptibility. In the latter case, the interaction kernel reduces to the first term
I = iW .

Spin-orbit coupling: In the presence of spin-orbit coupling, the Green function
acquires spin-off-diagonal elements. Then all degrees of freedom couple in
general and all terms in Eq. (19) and all response functions defined in Eq. (1)
must be taken into account.

In the following, we restrict ourselves to the case of spin excitations in a
ferromagnet with a collinear magnetic ground state without spin-orbit coupling. For
a spin polarization along the z axis, these are generated by an oscillating magnetic
field in the xy plane. In particular, in inelastic neutron scattering experiments, the
incoming neutron beam is circularly polarized, creating a magnetic field whose y

component exhibits a phase shift of π/2 with respect to the x component (Lowde
et al. 1983).

It is instructive to discuss the coupling of the electron’s spin to the B field in
terms of semiclassical physics. Without the perturbing field, the electron spin S
precesses around the Weiss (exchange) field B0 according to the equation of motion
Ṡ = μ × B0, where μ = −geμBS/h̄ is the magnetic moment of the electron. (We
write the formulas in SI units in this paragraph.) With the majority spin pointing in
the positive z direction, the Weiss field points in the negative z direction, and ω0 =
geμBB0/h̄ is the Larmor frequency of the precession. The two possible circular
polarizations of the perturbing B field – right- and left-handed with respect to the
B0 field – are given by B±(t) = B± Re[(x̂∓ iŷ)e−iωt ], respectively. The equation of
motion in the presence of the perturbing field is Ṡ = μ×(B0 +B±). If S± is defined
as the spin vector seen in the coordinate system that rotates with the B± field, we
can write Ṡ = Ṡ± − S × ω. Equating the right-hand sides of the last two equations
and inserting the formulas for μ and ω0 gives Ṡ± = μ× B± + S × (ω −ω0), which
reduces to Ṡ± = μ×B± if ω=ω0. This is the equation of motion of a spin precessing
around B±, i.e., around a direction perpendicular to B0, making it possible to flip
the spin of the electron. The frequency of this precession, the Rabi frequency, is
geμBB/h̄. The condition that ω and ω0 = geμBB0/h̄ have the same orientation is
fulfilled for the right-handed circular polarization, for which the relevant component
is B+ = Bx + iBy because Bx x̂ + By ŷ = B+(x̂ − iŷ) + B−(x̂ + iŷ) with
B− = Bx − iBy .

Therefore, we consider the transverse magnetic susceptibility

R+−(12) = δσ+(1)

δB+(2)
(20)
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in the following, where “+” and “−” refer to the Pauli matrices σ̂+ = σ̂ x + iσ̂ y and
σ̂− = σ̂ x − iσ̂ y with the matrix representations

σ+ =
(

0 2
0 0

)
and σ− =

(
0 0
2 0

)
(21)

for the spin creation and annihilation operators. The Zeeman term of Eq. (9) can be
written as

∑

i

σ i
αβBi(1) = 1

2

[
σ+

αβB−(1) + σ−
αβB+(1)

]
+ σz

αβBz(1). (22)

Because of the mixed products of the form σ+B− and σ−B+, the spin-spin
correlation function Eq. (7) becomes

R+−(12) = δσ+(1)

δB+(2)
= −i〈Ψ0|T[σ̂+(1)σ̂−(2)]|Ψ0〉 , (23)

where we have used that 〈Ψ0|σ̂+(1)|Ψ0〉 = 〈Ψ0|σ̂−(1)|Ψ0〉 = 0 in a collinear
magnetic system. This form of the spin-spin correlation function is intuitive: for
a spin in the up channel to be probed, one has to flip its spin with the operator σ̂−
before flipping it back with σ̂+. Equation (23) also explains the notation R+−.

With Eq. (22), a derivation that proceeds in analogy to above leads to

i
δG↓↑(12)

δB+(3)
= K↓↑(12, 33) +

żż

K↓↑(12, 45)W(4+5)i
δG↓↑(45)

δBj (3)
d4 d5 (24)

with the (uncorrelated) two-particle propagator

K↓↑(12, 34) = iG↓(13)G↑(42+) (25)

(G↑ = G↑↑, G↓ = G↓↓). We have used that (a) the mass operator Eq. (10) reduces
to Σ for α 
= β and (b) the second term in Eq. (19) vanishes, (c) as do the last two
terms because the Green function is diagonal in spin space. Note that Eq. (24) can
be obtained from Eq. (18) by setting i = + and j = − except for an additional
factor 1/2 from Eq. (22).

Equation (24) can be written as a matrix equation if we define a generalized four-
point magnetic response function (formally giving the response of the spin density
matrix with respect to changes of a nonlocal B field). To this end, we introduce
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the auxiliary four-point magnetic response function defined by the Bethe-Salpeter
equation

R
(4)
↓↑(12, 34) = K↓↑(12, 34) +

żż

K↓↑(12, 56)W(5+6)R
(4)
↓↑(56, 34)d5 d6 ,

(26)
from which we deduce

R
(4)
↓↑(12, 33) = i

δG↓↑(12)

δB+(3)
(27)

R+−(12) = −2R
(4)
↓↑(11, 22) . (28)

The magnetic response function can, furthermore, be written as the sum of two terms

R+−(12) = −2K↓↑(11, 22) − 2
żżżż

K↓↑(11, 34)T↓↑(34, 56)

K↓↑(56, 22)d3 d4 d5 d6 , (29)

where the T matrix, which can be interpreted as a reducible interaction kernel,
fulfills the equation

T↓↑(12, 34) = W(1+2)δ(13)δ(24) +
żż

W(1+2)K↓↑(12, 56)T↓↑(56, 34)d5 d6 .

(30)
If we approximate the renormalized Green function in Eq. (25) by the Kohn-Sham
Green function, then the first term of Eq. (29) contains single-particle excitations
between Kohn-Sham levels from one spin channel into the other. The second term
describes the correlated motion of an electron-hole pair with opposite spins through
the T matrix Fig. 2; each ladder diagram stands for a series of scattering events. This
correlated motion is responsible for the occurrence of collective spin excitations.
The second term also renormalizes the Stoner excitations.

TDDFT (Runge and Gross 1984) is another method that allows one to calculate
the magnetic response function from first principles. In this theory, Eq. (3) is written
in terms of the Kohn-Sham Green function GKS

αβ (12) instead of Gαβ(12). This

1 3 1 3 1 3↓ 1 35↓ ↓ 1 3 1 35↓

2 4 2 4 42 ↑ 42 6↑ ↑ 442 2 6↑

= + + + ... = +T T

Fig. 2 Diagrammatic representation of the T↓↑(12, 34) matrix consisting of an infinite series of
ladder diagrams, each wiggly line (screened interaction W ) representing a “rung” of the ladder.
The indices 5 and 6 denote integration variables
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is not an approximation since the Kohn-Sham system (Kohn and Sham 1965) is
constructed to yield the exact electronic spin density of the interacting system
(provided that the exact exchange-correlation functional is employed). A derivation,
similar to the one above with Σ in Eq. (10) replaced by the exchange-correlation
potential vxc

αβ(1), then yields an expression for the magnetic response function with
the interaction kernel

IKS
αβ,γ δ(12, 34) = −i

[
v(13)δαβδγ δ + f xc

αβ,γ δ(13)
]
δ(12)δ(3+4) , (31)

where f xc
αβ,γ δ(12) = δvxc

αβ(1)/δσγ δ(2) is the exchange-correlation kernel of TDDFT.
This interaction kernel is effectively just a two-point function. Equation (26), hence,
turns into a two-point matrix equation, which makes the implementation of the
TDDFT approach much simpler and computationally less demanding. However,
there are only few approximations available for f xc

αβ,γ δ(12) to date, which, at that,
cannot be systematically improved in contrast to the electronic self-energy. The
most common approximation, the adiabatic local-density approximation, neglects
time dependence and nonlocality altogether (and also requires the spin indices to
be pairwise identical) so that f xc

αβ,βα(1) becomes a local function. Still, several
publications (Savrasov 1998; Buczek et al. 2009, 2010, 2011; Lounis et al. 2010,
2011) have demonstrated that the spin excitation spectra calculated within TDDFT
are often in good agreement to results from MBPT and to experiment.

3 Implementation

In this section, we present the basics of a numerical implementation in the SPEX

code (Friedrich et al. 2010). For more details, we refer the reader to Friedrich et al.
(2014). The four-point quantities derived in the previous section are represented
in a basis of Wannier functions. In Sect. 4, we will discuss and compare several
mean-field systems as the reference noninteracting system. In the present section,
we assume the Kohn-Sham solution (Kohn and Sham 1965) of density functional
theory (DFT) (Hohenberg and Kohn 1964) be used. The corresponding Kohn-Sham
equations are solved within the all-electron FLAPW method as implemented in the
FLEUR code (http://www.flapw.de), which allows an accurate representation of the
single-particle states ϕα

km
(r), where k is the Bloch vector and m the band index.

For a practical implementation, Eq. (26) is too complex because it contains
quantities that, in general, depend on four points in space and on four time
(or frequency) arguments (three if the Hamiltonian is time independent). A first
simplification uses the fact that the spin-wave excitations are usually of low
frequency, which motivates to replace the screened interaction by its static limit, i.e.,
W(r1, r2;ω) → W(r1, r2; 0) = W(r1, r2), implying an instantaneous interaction
in time, W(r1t1, r2t2) = W(r1, r2)δ(t1 − t2). For example, the two-particle
propagator Eq. (25) then only depends on a single time (or frequency) argument
because the delta function in the previous expression (and the contraction of

http://www.flapw.de
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Eq. (28)) requires the argument pairs 12 and 34 to have the same time argument,
i.e., K↓↑(r1, r2; r3, r4; τ = t1 − t3) with t1 = t2 and t3 = t4. Equation (26) then
simplifies to

R
(4)
↓↑(r1, r2; r3, r4;ω) = K↓↑(r1, r2; r3, r4;ω) +

żż

K↓↑(r1, r2; r5, r6;ω)

W(r5, r6)R
(4)
↓↑(r5, r6; r3, r4;ω) d3r5 d3r6 (32)

in the frequency domain. We employ another approximation in that we allow
electrons (and holes) to interact with each other only when they are located on the
same atomic site, thus making use of the fact that the screened interaction is short
range in metallic systems. This on-site approximation is not strictly necessary, but
it greatly simplifies the implementation and enables fast calculations. Besides, it is
a very good approximation for the systems studied here (Müller et al. 2016).

Wannier functions (Marzari and Vanderbilt 1997) are localized functions defined
by linear combinations of the single-particle wave functions

wα
Rn(r) = 1

N

∑

k

e−ik·R ∑

m

Uα
km,nϕ

α
km(r) , (33)

where n is an index counting the Wannier functions at the atomic site R and N

is the number of k points of an Nx × Ny × Nz Monkhorst-Pack set (Monkhorst
and Pack 1976) including k = 0. The transformation matrix Uα

km,n
is determined

by minimizing the spread of the Wannier functions (Souza et al. 2001; Marzari
and Vanderbilt 1997; Freimuth et al. 2008), under the condition that the Wannier
functions are orthonormal with respect to integrations over the Nx × Ny × Nz

supercell (whereas the ϕα
km

(r) are orthonormalized with respect to the unit cell).
The sum over m runs over a limited number of electronic bands (at least as many as
the number of Wannier functions).

In the frequency domain, Eq. (25) becomes

K↓↑(r1, r2; r3, r4;ω) = i

2π

ż ∞

−∞
G↓(r1, r3;ω′)G↑(r4, r2;ω′ − ω)dω′

= 1

N2

∑

k

∑

k′

occ.∑

m

unocc.∑

m′

{
ϕ

↓
km

(r1)ϕ
↓∗
km

(r3)ϕ
↑∗
k′m′(r2)ϕ

↑
k′m′(r4)

ω + ε
↑
k′m′ − ε

↓
km

− iη

−ϕ
↓
k′m′(r1)ϕ

↓∗
k′m′(r3)ϕ

↑∗
km

(r2)ϕ
↑
km

(r4)

ω + ε
↑
km

− ε
↓
k′m′ + iη

}
(34)

with a positive infinitesimal η, where we have used the Lehmann representation of
the noninteracting Kohn-Sham Green function
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Gα(r, r′;ω) = 1

N

∑

k

∑

m

ϕα
km

(r)ϕα∗
km

(r′)
ω − εα

km
+ iη sgn(εα

km
− εF)

(35)

with the Fermi energy εF.
Each of the four vertices of K↓↑(r1, r2; r3, r4;ω) is now projected onto the

Wannier basis defined by Eq. (33), which gives

K
↓↑
Rn1Rn2,R′n3R′n4

(ω)= 1

N2

occ.∑

km

unocc.∑

k′m′

{
U

↓∗
km,n1

U
↓
km,n3

U
↑
k′m′,n2

U
↑∗
k′m′,n4

ω + ε
↑
k′m′ − ε

↓
km

− iη
e−i(k′−k)(R−R′)

−U
↓∗
k′m′,n1

U
↓
k′m′,n3

U
↑
km,n2

U
↑∗
km,n4

ω + ε
↑
km

− ε
↓
k′m′ + iη

ei(k′−k)(R−R′)

⎫
⎬

⎭, (36)

where the on-site approximation has been used to set R1 = R2 = R and R3 =
R4 = R′. This expression only depends on ΔR = R − R′, and a lattice Fourier
transformation yields

K↓↑
n1n2,n3n4

(q, ω) =
∑

ΔR

K
↓↑
Rn1Rn2,R−ΔRn3R−ΔRn4

(ω)e−iq·ΔR

= 1

N

∑

k

occ.∑

m

unocc.∑

m′

⎧
⎨

⎩
U

↓∗
q+km,n1

U
↓
q+km,n3

U
↑
km′,n2

U
↑∗
km′,n4

ω + ε
↑
km′ − ε

↓
q+km

− iη
(37)

−U
↓∗
q+km′,n1

U
↓
q+km′,n3

U
↑
km,n2

U
↑∗
km,n4

ω + ε
↑
km

− ε
↓
q+km′ + iη

⎫
⎬

⎭ .

We use the tetrahedron method (Rath and Freeman 1975) for the k summation.
From this equation, it is clear that if q and k are elements of the k-point set,

then q + k must be an element of the set, too. The Monkhorst-Pack grid fulfills this
condition. On the other hand, this condition limits the number of q points at which a
spin excitation spectrum can be calculated to the relatively few points of the k-point
set. In order to evaluate K (and R) at an arbitrary Bloch vector q, which would
enable the calculation of smooth spin-wave dispersion curves, we have to introduce
an auxiliary set of Wannier functions with a suitable Bloch character

w̃α
Rn(r) = 1

N

∑

k

e−i(k+q)·R ∑

m

Uα
k+qm,nϕ

α
k+qm(r) , (38)

where the transformation matrices are distinguished from the ones used in Eq. (33)
by the Bloch vectors k + q, which are generally not elements of the original k-point
set. With this definition, Eq. (37) remains valid, but it has to be taken into account
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that the transformation matrices Uα
q+km,n

and Uα
km,n

now belong to two different
sets of Wannier functions.

The second quantity that we need for solving Eq. (26) is the screened interaction.
We define its Wannier representation by

W
↓↑
Rn1Rn2,Rn3Rn4

(ω)=N

N

żż

w
↓∗
Rn1

(r)w↓
Rn3

(r)W(r, r′;ω)w
↑
Rn2

(r′)w↑∗
Rn4

(r′)d3r d3r ′ ,
(39)

where N (N/N ) is the infinite number of unit cells (supercells). The prefactor is
required to avoid double counting because the integrations extend over the whole
infinite space. Inserting Eq. (33) gives

W
↓↑
Rn1Rn2,Rn3Rn4

(ω) = 1

N3

∑

k,k′,k′′

∑

m1,m2,m3,m4

U
↓∗
k+k′′m1,n1

U
↓
km3,n3

U
↑
k′+k′′m2,n2

U
↑∗
k′m4,n4

× 1

N

żż

ϕ
↓∗
k+k′′m1

(r)ϕ↓
km3

(r)W(r, r′;ω)ϕ
↑
k′+k′′m2

(r′)

ϕ
↑∗
k′m4

(r′)d3r d3r ′ , (40)

where it has been used that W(r, r′;ω) is diagonal in k. The evaluation of the
double integral, which, together with the prefactor 1/N, is finite, is discussed
elsewhere (Friedrich et al. 2009). Since Eq. (40) is independent of R, we may write
W

↓↑
n1n2,n3n4(ω).

We are now in the position to formulate the Bethe-Salpeter equation (Eq. (32)) in
the Wannier basis

R
(4)↓↑
Rn1Rn2,R′n3R′n4

(ω) = K
↓↑
Rn1Rn2,R′n3R′n4

(ω) +
∑

R′′

∑

n5,n6,n7,n8

K
↓↑
Rn1Rn2,R′′n5R′′n6

(ω)

×W↓↑
n5n6,n7n8

(0)R
(4)↓↑
R′′n7R′′n8,R′n3R′n4

(ω) . (41)

As K (and hence also R) depends only on the difference ΔR = R − R′, we can
insert the lattice Fourier transformations

K
↓↑
Rn1Rn2,R′n3R′n4

(ω) = 1

N

∑

q

eiq·(R−R′)K↓↑
n1n2,n3n4

(q, ω) , (42)

analogously for R(4), and obtain

R(4)↓↑
n1n2,n3n4

(q, ω) = K↓↑
n1n2,n3n4

(q, ω) +
∑

n5,n6,n7,n8

K↓↑
n1n2,n5n6

(q, ω)

×W↓↑
n5n6,n7n8

(0)R(4)↓↑
n7n8,n3n4

(q, ω) . (43)
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This is a matrix equation in pairs of Wannier indices. Since Wannier functions are
orthonormal, their pairs are orthonormal, too. The summations on the right-hand
side are mere matrix multiplications, and we can formally solve Eq. (43) for R(4)

R(4)↓↑(q, ω) = [1 − K↓↑(q, ω)W↓↑(0)]−1K↓↑(q, ω) . (44)

Using Eq. (28), we obtain the physically relevant magnetic response function
from the matrix elements of R(4)↓↑(q, ω) by

R+−(r, r′;ω) = − 2

N

∑

q

∑

n1,n2,n3,n4

R(4)↓↑
n1n2,n3n4

(q, ω)Ω
↓↑
qn1n2(r)Ω

↓↑∗
qn3n4(r

′) . (45)

where Ω
↓↑
qn1n2(r) are the lattice Fourier transforms of the Wannier products

Ω
αβ

R,n1n2
(r) = wα

Rn1
(r)wβ∗

Rn2
(r), i.e.,

Ω
αβ
qn1n2(r) =

∑

R

Ω
αβ

Rn1n2
(r)eiq·R = 1

N

∑

k

wα
q+kn1

(r)wβ∗
kn2

(r) (46)

with the Wannier Bloch functions wα
kn

(r) = ∑
m Uα

km,n
ϕα

km
(r). If we use the matrix

representation of K↓↑(q, ω) in Eq. (45), we obtain the bare susceptibility, i.e., the
fictitious magnetic response function of the noninteracting reference system:

K+−(r, r′;ω) = −2K↓↑(r, r; r′, r′;ω) (47)

= − 2

N

∑

q

∑

n1,n2,n3,n4

K↓↑
n1n2,n3n4

(q, ω)Ω
↓↑
qn1n2(r)Ω

↓↑∗
qn3n4(r

′) . (48)

Of course, R+−(r, r′;ω) is still a very complex quantity: it is nonlocal in
space, it shows a frequency dependence, and it has a real and an imaginary part.
The spectrum measured in neutron scattering experiments, for example, can be
extracted from R+−(r, r′;ω) by projecting its imaginary part from left and right
to a plane wave eiq·r giving Im R+−(q, ω) (Lowde et al. 1983). Sharp peaks in this
function correspond to collective spin excitations, the spin waves, with wavevector
q and frequency ω. Plotting the respective ω values against q yields the dispersion
relation of the spin-wave mode. We note that another possibility is to perform a
normal mode analysis of the imaginary part of R+−, in matrix notation Im R+− =
(R+− − R+−†

)/(2i).

4 Goldstone Condition

The Goldstone theorem states that the spontaneously broken spin-rotation symmetry
in ferromagnetic materials leads to the appearance of a gapless magnon dispersion
curve, i.e., the excitation energy vanishes in the limit q → 0. This has a very simple
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physical explanation. The generating field is a magnetic field perpendicular to the
ferromagnetic spin alignment, and it is commensurate with the unit cell in the limit
q → 0. If the B field has a suitable shape in real space, it can act to rotate all electron
spins collectively toward the field direction, i.e., the electron spins point in the same
direction at all times. In the absence of spin-orbit coupling, this rigid rotation takes
place without a cost of energy; hence ω = 0. The pole at ω = 0 corresponds to the
long-wavelength limit of the acoustic magnon branch (Moriya 1985), identified as
the Goldstone mode.

A rigid rotation of all spins does not change any relative spin alignment. The total
energy calculated from the Heisenberg model is therefore invariant with respect to
such a rotation, and the Goldstone condition is fulfilled identically. However, in
the advanced methods based on TDDFT or MBPT, where the excitation energies
define the pole structure of a two-particle propagator, the situation is much less
transparent. We already know that the collective excitations arise from the nodes of
the denominator of Eq. (44). (There is a very similar equation in TDDFT (Buczek
et al. 2009; Lounis et al. 2010).) So, to be fulfilled, the Goldstone condition requires
KW to have an eigenvector with eigenvalue 1 in the limits q → 0 and ω → 0.
(We omit the indices in this section for simplicity.) Any numerical inaccuracy will
lead to a slight deviation of the respective eigenvalue from 1 and, as a consequence,
to a violation of the Goldstone condition. Often, this problem is circumvented by
using the Goldstone criterion to fix a free parameter of the numerical scheme, thus,
making a virtue of necessity. This free parameter has been chosen to be the effective
interaction (Kotani and van Schilfgaarde 2008; Karlsson and Aryasetiawan 2000),
the exchange-correlation kernel (Lounis et al. 2010, 2011), the bare susceptibility
(Rousseau et al. 2012), or a scaling factor for the screened Coulomb interaction
(Şaşıoğlu et al. 2010; Friedrich et al. 2014). Another possibility is an a posteriori
correction of the resulting susceptibility (Buczek 2009; Buczek et al. 2009, 2011).
However, in our case, such a pragmatic approach seems inappropriate. There is
no mistaking that W is the RPA screened interaction Eqs. (13) and (14) and K

is the two-particle propagator Eq. (25). So, strictly speaking, there is no room or
justification for introducing a free parameter. Therefore, we analyzed the problem in
more detail in Müller et al. (2016). We argued that there is an inconsistency between
the free propagator G (and, hence, K) and the screened interaction W , and it is this
inconsistency that is responsible for the Goldstone violation. In this chapter, we go
a step further and present a mathematical proof that constructing the single-particle
propagator from a self-consistent Coulomb-hole screened-exchange (COHSEX)
self-energy (Hedin 1965, 1999) should revoke the inconsistency provided that a
complete basis is used for the solution of the Bethe-Salpeter equation (Eq. (32)).
However, the Wannier basis and, in particular, the on-site approximation do not
fulfill the latter criterion so that a finite gap error must still be expected in our
approach. Nevertheless, numerical results for the bulk 3d transition metals iron,
cobalt, and nickel show that the Goldstone violation is substantially reduced if
the propagator is self-consistently renormalized with the COHSEX self-energy. In
practice, the application of the COHSEX self-energy is considerably more time-
consuming than standard LSDA calculations. Therefore, we discuss a correction
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Fig. 3 Spin-wave spectra for Fe, Co, and Ni obtained with the LSDA (blue triangles), corrected
LSDA (black circles), and COHSEX (red crosses) Green functions as starting point. (Müller et al.
(2016) Copyright 2016 American Physical Society)

scheme for the LSDA Green function of ferromagnetic materials, ultimately
introducing a free parameter as a pragmatic and efficient solution. We show that
the corrected LSDA magnon spectra for the 3d transition metals iron, cobalt, and
nickel are close to the results obtained from the much more expensive COHSEX
approach.

In the following, we discuss the spin-wave spectra for the elementary bulk
ferromagnets Fe, Co, and Ni with regard to the starting-point dependence of MBPT.
We refer here to the Green function used in Eqs. (14) and (25). Since a set of single-
particle states is already available from the ground-state calculation, a convenient
choice is the LSDA Green function calculated from the corresponding Kohn-Sham
wave functions and energies. We have used Wannier functions of s, p, and d

character constructed from the 18 lowest Kohn-Sham bands. The resulting spin-
wave dispersions for all three materials are shown as the blue symbols in Fig. 3,
correctly showing a quadratic behavior around the Γ point. However, they also
clearly exhibit a violation of the Goldstone theorem: the spin-wave excitation energy
does not vanish in the center of the BZ as it should.

There are a number of approximations used in our numerical approach, which
might be responsible for this violation, e.g., the on-site approximation, the incom-
pleteness of the Wannier basis, convergence issues (k-point set, basis sets, empty-
state summations), and so on. Apart from these, there is another more fundamental
inconsistency in the chosen approach, which we will investigate in the following.
This inconsistency concerns the choice of the starting point, i.e., the LSDA Green-
function propagator. Equation (44) is derived under the assumption that the Green
function be self-consistently renormalized with the GW self-energy. Only if this
condition is fulfilled do we obtain the infinite series of ladder diagrams shown in
Fig. 1. The two quantities, G and W , are thus related, and one must be chosen in
accordance with the other.

Unfortunately, fully self-consistent GW calculations for transition-metal bulk
systems are nowadays still a major challenge due to the dense k-point sets that
are needed. On a second thought, however, we should also remember the static
approximation that we have applied to W . For this reason, the proper self-energy to
be used in the framework of our theoretical approach would have to be constructed
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with the static screened interaction. An obvious choice would be the Coulomb-
hole screened-exchange (COHSEX) self-energy (Hedin 1965, 1999), in which the
dynamical W is replaced by the static W(r, r′) = W(r, r′;ω = 0). It consists of two
terms, the screened exchange (SEX) and the Coulomb-hole (COH) term. The former
corresponds to Hartree-Fock theory with the bare Coulomb interaction replaced by
W(r, r′)

Σσ
SEX(r, r′) = −nσ (r, r′)W(r, r′) (49)

with the density matrix nσ (r, r′) = ∑BZ
k

∑occ
n ϕσ

kn
(r)ϕσ∗

kn
(r′). The latter is given by

ΣCOH(r, r′) = 1

2
δ(r − r′)[W(r, r′) − v(r, r′)] , (50)

which acts as a local and spin-independent potential. It accounts for the interaction
energy of a quasiparticle with its induced (static) polarization cloud. Therefore, this
term only couples charge degrees of freedom (if spin-orbit coupling is set aside) and
does not affect the linear response of transversal spin fluctuations. Only Eq. (49),
corresponding to Eq. (12) with W(r, r′; τ + η) replaced by W(r, r′), contributes to
the right-hand side of Eq. (16) with δΣ/δG = iW(0). Obviously, this leads to the
same form of the Bethe-Salpeter equation as before.

Up to now, our argumentation was based on “theoretical consistency.” In the
following, we analyze the Goldstone criterion in a mathematical way starting
from Eq. (44) (or the more general Eq. (32)), in which all quantities are four-
point functions, and −2R(4) and −2K must be understood in the general sense
that they give the response of the magnetic density matrix m+(r, r′;ω) with
respect to changes of a nonlocal magnetic field B+(r, r′;ω) in the interacting and
noninteracting system, respectively. Conversely, the expression (−2R(4))−1Δm+
gives the perturbing field ΔB+(r, r′;ω) that would generate the change of the
magnetization Δm+(r, r;ω). For the Goldstone mode in the limit ω → 0, we know
that a rigid rotation of the electron spins, i.e., Δm+ ∝ m, can take place even
without a perturbing field. So, we have (−2R(4))−1m = 0, and with Eq. (44) we can
write KWm = m. The eigenfunction of KW with eigenvalue 1 is, thus, revealed
to be the magnetization density (matrix). We claim that this condition is fulfilled if
COHSEX is taken for the starting point. When separating off the spin-independent
part of Eq. (49), the remaining spin-dependent part can formally be interpreted as a
nonlocal magnetic field

B(r, r′) = −1

2
W(r, r′)[n↑(r, r′) − n↓(r, r′)] = −1

2
W(r, r′)m(r, r′) . (51)

Now we use the simple fact that rigidly rotating the B field that creates the
magnetization in a noninteracting system will rotate the magnetization in the same
way, which can be expressed as
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m(r, r′) = −2
żż

K(r, r′; r′′, r′′′)B(r′′, r′′′)dr′′dr′′′ . (52)

(For the rotation to be rigid, ΔB+ ∝ B, and the corotation of B field and
magnetization requires ΔB+/B = Δm+/m.) The assertion then follows from
inserting Eq. (51) into Eq. (52).

The proof is already complete, but it is helpful to show KWm = m more
explicitly. In the limit ω → 0, the imaginary part of the two-particle propagator
Eq. (34) is zero, and we can write

K(r, r′; r′′, r′′′) = 1

N2

∑

k,k′

∑

m,m′
(f

↓
km

− f
↑
k′m′)

ϕ
↓
km

(r)ϕ↓∗
km

(r′′)ϕ↑∗
k′m′(r′)ϕ↑

k′m′(r′′′)
ε
↑
k′m′ − ε

↓
km

(53)

with the occupation numbers f σ
km

. [We have used
∑occ

m

∑unocc
m′ ... = ∑

m,m′ f σ
km

(1−
f σ

km′)... = ∑
m,m′ f σ

km
... .] Because of Eq. (51) the COHSEX single-particle

Hamiltonian fulfills H↓ − H↑ = Wm, which gives

żż

KWm = 1

N2

∑

k,k′

∑

m,m′
(f

↓
km

− f
↑
k′m′)

ϕ
↓
km(r)〈ϕ↓

km|H↓ − H↑|ϕ↑
k′m′ 〉ϕ↑∗

k′m′(r′)
ε
↑
k′m′ − ε

↓
km

= 1

N

∑

k

∑

m,m′
(f

↑
km′ − f

↓
km

)ϕ
↓
km

(r)〈ϕ↓
km

|ϕ↑
km′ 〉ϕ↑∗

km′(r′) = m(r, r′). (54)

That the last expression is really the spin density matrix is seen by expanding
ϕ

↑
km′(r) and ϕ

↓∗
km

(r) in terms of the functions of the other spin channel

m(r, r′) = 1

N

∑

k

∑

m′
f

↑
km′ϕ

↑
km′(r)ϕ

↑∗
km′(r′) − 1

N

∑

k

∑

m

f
↓
km

ϕ
↓
km

(r)ϕ↓∗
km

(r′)

= 1

N

∑

k

∑

m,m′
(f

↑
km′ − f

↓
km

)ϕ
↓
km

(r)ϕ↑∗
km′(r′)〈ϕ↓

km
|ϕ↑

km′ 〉 . (55)

In Müller et al. (2016), we reported on spin-wave calculations based on the
COHSEX Green function. Technically, we start from the mean-field LSDA solution
and construct the LSDA Green function, the corresponding polarization function
Eq. (14), and the static screened interaction Eq. (13), from which the COHSEX self-
energy Eqs. (49) and (50) is evaluated. The latter is a Hermitian operator defining
a new mean-field system. This allows the respective single-particle equations of
motion to be solved in a similar way as the Kohn-Sham equations of DFT. To be
more precise, the single-particle equations are iteratively solved until the density is
converged. This process updates the density and, consequently, the Hartree potential
in each iteration, while the COHSEX self-energy matrix remains fixed. This
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Fig. 4 DOS spectra for bulk Fe, Co, and Ni. The Fermi level is set to zero. (Müller et al. (2016)
Copyright 2016 American Physical Society)

produces a new set of wave functions and energies that are then used to construct
a new Green function and, ultimately, a new COHSEX self-energy matrix. The
whole procedure is repeated until self-consistency is achieved. We have employed a
14 × 14 × 14 k-point set for these calculations.

The mean-field solution of the 3d ferromagnets bcc iron, fcc cobalt, and fcc
nickel based on the COHSEX self-energy is interesting in its own right. Figure 4
shows their densities of states (DOS) for both LSDA and COHSEX. At a first
glance, the two DOS spectra look very similar for all materials. The COHSEX self-
energy yields thus qualitatively the same correct result as LSDA: all three materials
are ferromagnetic metals. There are however small quantitative differences. The
occupied bandwidth shrinks, in particular for Co and Ni, and the spin-up and spin-
down states show a relative energetic shift toward each other. This observation
is confirmed by the exchange splittings of selected single-particle states listed in
Table 1. The COHSEX values are systematically smaller than the LSDA ones, to
the effect that the slight overestimation of the magnetic moment found in LSDA is
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Table 1 Spin magnetic moments (obtained from a projection onto Wannier orbitals) and exchange
splittings for selected states of Fe, Co, and Ni from LSDA, corrected LSDA, COHSEX, and
experiment. (Müller et al. (2016) Copyright 2016 American Physical Society)

LSDA LSDA corr. COHSEX Experiment

m (μB) Fe 2.20 2.16 2.11 2.08 (Stearns 1986;
Bonnenberg et al. 1986)

Co 1.62 1.49 1.46 1.52 (Stearns 1986;
Bonnenberg et al. 1986)

Ni 0.59 0.51 0.46 0.52 (Stearns 1986;
Bonnenberg et al. 1986)

Eex (eV) Fe Γ ′
25 1.8 1.7 1.5 2.1 (Turner et al. 1984; Kisker

et al. 1985; Sakisaka et al.
1985; Santoni and Himpsel
1991)

H25 2.1 2.0 1.7 1.8 (Santoni and Himpsel
1991)

P4 1.4 1.3 1.1 1.5 (Eastman et al. 1980)

Co Γ ′
12 1.7 1.3 1.1 1.1 (Himpsel and Eastman

1980)

Γ ′
25 1.4 1.0 1.2 1.1 (Himpsel and Eastman

1980)

Ni L3 0.5 0.3 0.4 0.3 (Eastman et al. 1980)

X2 0.6 0.4 0.3 0.2 (Raue et al. 1984)

corrected to smaller values in COHSEX, albeit somewhat too strongly in the case of
Co and Ni. With the exception of iron, the exchange splittings are improved by the
self-consistent COHSEX calculation, most notably for Ni, whose exchange splitting
is known to be overestimated in LSDA.

Figure 3 shows the spin-wave dispersion calculated from the COHSEX Green
function as red symbols. Employing the self-consistent COHSEX mean-field
solution as starting point, in fact, decreases the gap error systematically compared
to the corresponding LSDA values. In case of bcc iron, fcc cobalt, and fcc nickel,
the error is reduced by 85%, 69%, and 79%, respectively.

The ansatz presented so far is computationally very demanding. It requires the
self-consistent calculation of the COHSEX self-energy on a fine k-point set. On the
other hand, aside from the gap error, the magnon dispersions obtained from LSDA
are very similar to the corresponding COHSEX results. This raises the question if
it is possible to correct the LSDA Green function in a simple way that respects the
Goldstone condition. In fact, this is possible.

Our approach is motivated by studying spin-wave solutions (Moriya 1985) of
the one-band Hubbard model. When solved in the Hartree-Fock approximation, we
obtain the magnetic susceptibility as a simple algebraic expression in the same form
as Eq. (44) with the W matrix replaced by the Hubbard interaction parameter U .
In the Goldstone limit, the two-particle propagator simplifies to K = m/Eex
with the site magnetization m and the exchange splitting Eex, and the Goldstone
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condition can be phrased in the form of the simple relation Um/Eex = 1. To
remain consistent, we have to evaluate K in the Hartree-Fock mean-field system,
in which case Eex = Um, and the Goldstone condition is identically fulfilled.
The simple form of the relation invites one to use one of the constituent quantities
as an adjustable parameter. The U parameter plays the role of the screened
interaction W , which is a matrix and thus cannot be corrected easily by a single
parameter. Besides, we obtain W from a many-body treatment of screening, and
it does not seem appropriate to correct it in such an ad hoc way. Second, the
magnetization m results from the self-consistent LSDA calculation and cannot be
varied straightforwardly. At last, Eex can be regarded as the energy difference
between the spin-up and spin-down electron bands, which can easily be varied
once a self-consistent LSDA solution has been found. Moreover, this correction
will specifically modify the LSDA Green function, which was our intention, while
leaving the screened interaction unchanged. The correction can be hoped to mimic
to some extent the missing renormalization in the Green function. Therefore, we
choose Eex as an adjustable parameter. To be more precise, we rigidly shift the
spin-up and spin-down states relative to each other ε

↑/↓
km

→ ε
↑/↓
km

± ΔEex/2 until
the Goldstone condition is fulfilled. The LSDA Green function corrected in this
way is then used to construct the two-particle propagator K . This procedure yields
magnon dispersions, which respect the Goldstone condition and are close to the
COHSEX results for the three materials as shown in Fig. 3. The relative shift in
the band energies is such that the exchange splittings decrease. For Fe, Co, and
Ni, we find ΔEex = 0.10 eV, ΔEex = 0.39 eV, and ΔEex = 0.21 eV. The
Fermi energy is adjusted accordingly so that the correction affects the ground-
state magnetic properties as well. Interestingly, the resulting magnetic moments and
exchange splittings turn out to be close to the corresponding COHSEX values listed
in Table 1. They also compare well with experiment. The proximity of COHSEX
and corrected LSDA values can be regarded as an a posteriori justification of the
correction. Among the three materials, fcc cobalt appears as a problematic case.
The gap error is largest and the COHSEX spin-wave dispersion shows an unusually
flat behavior at the Γ point. In fact, the curvature there is very small, being between
results from LSDA (small positive curvature) and PBE (small negative curvature,
not shown), indicative of a magnetic instability. This is in accordance with previous
DFT results. Janak (1978) found that there are two competing magnetic ground
states with low and high magnetic moment, and Moruzzi et al. (1986) report an
unusually strong dependence of the magnetic properties on the lattice constant.

The findings can be interpreted in a more fundamental way. Formally, the
Hamiltonian which describes the magnetic system is invariant with respect to spin
rotations, while the ferromagnetic ground state is not. This implies the existence of
a gapless excitation due to a homogeneous magnetic perturbation perpendicular to
the magnetization axis. Baym and Kadanoff (1961) and Baym (1962) formulated
a conserving and self-consistent scheme for correlation functions. The scheme was
extended by Brandt et al. (Brandt et al. 1970, 1971; Brandt 1971) to the magnetic
case. They showed that for a spin-conserving formulation of the magnetic sus-
ceptibility, which fulfills the Goldstone theorem automatically, several conditions
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have to be fulfilled. The chosen self-energy approximation is to be calculated self-
consistently with the Green function. This ensures that the single-particle states
which form the basis for the electron-hole propagator are consistent with the
applied self-energy approximation. In addition, the spin-independent interaction
that is responsible for the correlation among the electron-hole pairs with opposite
spins is required to be consistent with the self-energy as these properties are
connected via δΣ/δG = iW . If both conditions are fulfilled, the magnetic response
function will fulfill the Goldstone theorem. Then, the electron-hole pair propagator
and the screened interaction are compatible with the Ward identity ensuring spin
conservation. In particular, the correct limit q → 0 is attained.

5 Spin Excitation Spectra

In this section, we present detailed results of first-principles calculations for the
three bulk transition metals Fe, Co, and Ni. The properties of these materials are
strongly governed by the presence of the localized 3d states. It is the exchange
interaction among the 3d electrons that drives the systems into the ferromagnetic
ground state. On the other hand, the materials are metallic. The 3d states of
neighboring atoms overlap, and there is a partly filled itinerant 4s band which spans
the entire valence region and mixes with the d bands. As a consequence, Fe, Co,
and Ni show signatures of itinerant magnetism. For example, they fulfill the Stoner
criterion of ferromagnetism, and there is no order-disorder phase transition at the
Curie temperature as would be described by the Heisenberg model.

So, one would expect these bulk transition metals to show both localized and
itinerant magnetic behavior. The present formalism using MBPT is capable of
describing both types of magnetism on the same footing. The spectrum of spin
excitations in this theory is given by the imaginary part of the magnetic response
function as calculated from Eqs. (28) and (44). The poles of this function lie
infinitesimally below (above) the positive (negative) real-frequency axis, and they
come from both the two-particle propagator (bare susceptibility) in the numerator
and the roots of the denominator. In the former case, the spin excitations have a
single-particle character. These Stoner excitations can be described as excitations
of single electrons across the Fermi surface with an accompanying spin flip of the
electrons. In the latter case, the excitations are collective in nature, again with a
total spin flip of 1, and arise from superpositions of infinitely many electron-hole
pairs (single-particle excitations) coupled to each other by the exchange interaction.
These electron-hole pairs describe changes in the spin density, in which all electrons
take part collectively and which can, for example, have the form of spin waves. The
two types of excitations are just limiting cases. In general, the spin excitations have
a mixed character of single-particle and collective excitations: spin waves acquire a
finite lifetime through a coupling to Stoner excitations, and Stoner excitations lose
or gain spectral weight by a coupling to spin waves.

It is instructive to consider the model of a homogeneous electron gas with spin
polarization. The spin-up and spin-down bands have the form of free-electron bands,
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but they are shifted with respect to each other by the exchange splitting Eex, i.e.,
εσ

k = k2 − σEex/2. Energies and momenta are in units of the Fermi wavevector
k0 and Fermi energy ε0 = k2

0/2 of the paramagnetic system, respectively. The bare
susceptibility of this system can be calculated from Eqs. (34) and (47) in a pure
plane-wave representation. To simplify the evaluation of K↓↑, we replace −iη in
the first term by +iη, which amounts to using the corresponding retarded quantity.
This enables a straightforward integration over the occupied spin-up and spin-down
band (Moriya 1985) yielding

K+−(q, ω) = −1

4π2q

1∑

σ=−1

σ

[
1

2
(p2

σ − k2
σ )

(
ln

∣∣∣∣
pσ + kσ

pσ − kσ

∣∣∣∣ + iπ sgn(ω)θ(kσ − |pσ |)
)

−pσ kσ

]

(56)

with pσ = (ω − σq2 − Eex)/(2q), the spin-dependent Fermi wavevector kσ =
(1+σζ )1/3, the exchange splitting Eex = (1+ζ )2/3−(1−ζ )2/3, the spin polarization
ζ = M/N = (k3↑ − k3↓)/(k3↑ + k3↓), and the Heaviside function θ(x) = 1 for
x > 0 and 0 for x < 0. The factor sgn(ω) has been introduced to undo the sign
change −iη → +iη, which recovers the time-ordered two-particle propagator. All
quantities can be written in terms of a single parameter, the spin polarization ζ ∈
[0, 1].

The area where the imaginary part of K+−(q, ω) is nonzero defines the Stoner
continuum, which, by using the definition of θ , can be shown to be bounded by
the functions 2qkσ + σq2 + Eex from above and −2qkσ + σq2 + Eex from
below. Figure 5 presents a plot of − Im K+−(q, ω) together with the boundary lines
for a spin-polarized electron gas with ζ = 0.9. The imaginary part diverges for
ω = Eex = 1.32 and q → 0, because the real part of the denominator of Eq. (34)
vanishes in this limit. We also see that the Stoner continuum extends toward negative
energies. This is because, as long as ζ < 1, there can be transitions from occupied
minority to unoccupied majority bands. At ω = 0, the imaginary part of K+− is
zero for all momenta because the phase space of single-particle excitations vanishes
in this limit.

Of course, the homogeneous electron gas is a relatively crude model. The absence
of the crystal field and of atomic wave functions makes one wonder whether this
model could be just too simple. Therefore, it is interesting to compare Fig. 5a
to corresponding plots calculated with realistic wave functions and energies from
a self-consistent Kohn-Sham solution. In particular, we have calculated the bare
susceptibility from Eq. (48) and projected it onto the plane wave eiq·r from both
sides giving K+−(q, ω). A fine 20 × 20 × 20 k-point grid was employed, and the
Wannier basis was the same as in Sect. 4. We have also applied the Eex correction.
The plots for bcc Fe, fcc Co, and fcc Ni are presented in Fig. 6a–c. It is surprising
that they share a number of similarities with the plot for the homogeneous electron
gas. First, the maximum of − Im K+−(q, ω) is seen for ω ≈ Eex and q = 0. In
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Fig. 5 Imaginary part of (a) the bare [− Im K+−(q, ω)] and (b) the renormalized susceptibility
[− Im R+−(q, ω)] for the homogeneous electron gas with spin polarization ζ = 0.9; (c) is a
magnification of (b). The green solid lines show the boundaries of the Stoner continuum. In (b) and
(c), a finite imaginary frequency of, respectively, iη = i10−5 and iη = i10−7 has been employed
in order to make the magnon branch visible, which would have a vanishing (delta-like) width in
this system otherwise

contrast to before, there is no divergence because spin-up and spin-down bands
have different dispersions in a real material, and the majority bands shifted up by
Eex thus cannot coincide exactly with the minority bands, in particular, since Eex is
not a unique quantity but k dependent. Consequently, the maximum at q = 0 has
a certain width in energy. Furthermore, as before, we observe a weak intensity of
Stoner excitations for negative ω. As a qualitative difference to Fig. 5, the spectra
of Co and Ni exhibit a horizontal, nearly dispersion-less band of high intensity that
emanates from the maximum at Γ and stretches toward the X point. This feature can
be directly related to the localized nature of the single-particle states. The densities
of d states of Co and Ni show particularly sharp peaks in the majority valence and
minority conduction regions separated by 1.3 and 0.5 eV, respectively, revealing the
feature to originate from single-particle d → d transitions.

There are no clear boundary lines as for the homogeneous electron gas beyond
which the imaginary part of K+− would vanish. In fact, there can be Stoner excita-
tions for all q and ω (except for ω = 0). However, the form of − Im K+−(q, ω) is
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Fig. 6 Imaginary part of the bare susceptibility [− Im K+−(q, ω) in units of (ΩeV)−1; Ω = unit-
cell volume] for (a) bcc Fe, (b) fcc Co, and (c) fcc Ni as a function of q and ω

definitely similar. In particular, the characteristic V-shaped regions with (nearly)
no excitations above and below the maximum are present, and, instead of the
boundaries, one observes stripes of increased intensity seemingly extending from
the maximum. A pronounced one is seen in the spectrum of Ni. These stripes will
play an important role in the renormalized spectra later on. They can be understood
by realizing that the function − Im K+−(q, ω) can roughly be thought of as giving
the intersection of the valence majority states shifted upward by ω and sideways
by −q with the conduction minority states. This is illustrated in Fig. 7 where the
electronic bands are assumed to show a linear dispersion at finite q. Starting from
the (near) coincidence of the bands at q = 0 and ω = Eex, relatively large
intensities are still expected when the majority band is shifted from there in such
a way that the regions of linear dispersion remain overlapping, giving rise to the
condition of proportionality ω ∝ q and, hence, to the stripes. Here, we have assumed
that the spin-up band is filled, while the spin-down band is empty and that they
exhibit similar dispersions as is often the case in ferromagnets. Even in the case of
the highly symmetric homogeneous electron gas, whose bands exhibit a constant
curvature and no linear dispersions as in Fig. 7, the onset of the Stoner continuum at
the boundaries is quite abrupt. So, it is not surprising that real materials show more
structure there.
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Fig. 7 Illustration of the
“band overlap” leading to the
striped Stoner continuum of
Fig. 6. The red arrow denotes
the proportionality ω ∝ q
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Up to now, we have discussed the spin excitation spectrum of the fictitious
noninteracting reference system. The spectrum changes profoundly when one
introduces a finite interaction among the electrons. In the case of the homogeneous
electron gas, one would have to solve the Bethe-Salpeter equation R+−(q, ω) =
K+−(q, ω)/[1 − WK↓↑(q, ω)] with K↓↑(q, ω) = −K+−(q, ω)/2 (cmp. Eq. (47))
and a so-far unknown effective interaction W . The latter is a single parameter in
this case and can be obtained conveniently from the Goldstone condition, giving
W = 1/K↓↑(0, 0) = −2/K+−(0, 0) = 3π2Eex/ζ . The spin excitation spectrum
is then given by − Im R+−(q, ω) shown in Fig. 5b for the homogeneous electron
gas. Together with the spectrum, we have plotted the boundary lines of the Stoner
continuum as solid green lines. Still, these lines separate the regions of finite
intensity from the regions of no intensity, except for the spin-wave branch, which
starts at the origin q = ω = 0 and disperses quadratically for small q according to
ω ∝ Dq2 with D = [1 − 0.4(k5↑ − k5↓)/(k2↑ − k2↓)]/ζ (Moriya 1985). For larger
q, the magnon branch deviates from the parabolic dispersion and finally enters
the Stoner continuum, where it couples to the Stoner excitations forming a broad
maximum. The magnon energies are much smaller than Eex, even for small Eex
because D ∼ Eex/12 in this limit. Therefore, we show an enlarged picture of the
magnon branch in Fig. 5c. We note that a finite (instead of infinitesimal) parameter
η = 10−5 and η = 10−7 has been employed in (b) and (c), respectively, which
leads to a corresponding finite linewidth of the magnon branch outside the Stoner
continuum.

When comparing with Fig. 5a, we observe a strong redistribution of quasiparticle
weight after solving the Bethe-Salpeter equation. In particular, the region of
maximal intensity around q = 0 now appears very shallow, and a new maximum
is found where the spin-wave branch enters the Stoner continuum. The former is a
feedback effect: the transfer of spin-up electrons into the spin-down channel leads
to a strong change in the exchange field of the interacting system, which acts against
the transfer of electrons, an effect similar to the electronic screening effect. The new
maximum comes from a resonance effect between the collective magnon and the
Stoner excitations. The amplifying effect of the resonance extends into the Stoner
excitations of negative energy (ω < 0), which now appear more intense than in
Fig. 5a. It is interesting to note that the maximum in Fig. 5a transforms continuously
into the one of (b) if one smoothly varies the parameter W from 0 to 3π2Eex/ζ .
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The spin-wave branch starts to appear for W � 0 slightly below the maximum at
ω = Eex, and as W increases, it shifts down, first with a maximum at q = 0,
then developing a minimum, until, for W = 3π2Eex/ζ , it finally has the form of
Fig. 5c. Further increasing W would shift the minimum of the magnon branch to
negative energies. This again demonstrates how sensitive the Goldstone condition is
and explains the difficulty of its fulfillment in first-principles calculations.

In Fig. 8a–c, we show the renormalized susceptibility for Fe, Co, and Ni,
again projected onto eiq·r. We have used the same scales as before to make a
direct comparison possible. Obviously, the regions around the spin-wave branch
have values exceeding the maximum of the color scale (black area). Therefore,
Fig. 8d–f presents a magnified picture with a different color scale. As with the bare
susceptibility, there are a number of similarities to Fig. 5b: a spin-wave branch is
formed by the renormalization; this branch acquires a finite lifetime broadening by
a coupling to Stoner excitations; the former intensity maximum around ω = Eex
and q = 0 has lost much of its intensity; there is a resonant enhancement of the
Stoner intensity for ω < 0. However, there are also some important differences to
the case of the homogeneous electron gas. First, the coupling to Stoner excitations
sets in much earlier, because the Stoner excitations are present at all energies.
Nevertheless, the spin-wave dispersion remains discernible to quite large momenta
and energies compared to the case of the homogeneous electron gas, indicating a
localized nature of magnetism in these materials. Especially in Ni, the magnon
branch seems to couple resonantly with the horizontal Stoner band toward the X
point. While the spin-wave branches still have an overall parabolic shape, they show
a rather irregular behavior, which can be attributed to the coupling to the Stoner
continuum. In particular, in all cases the magnon branch is affected, sometimes
interrupted, by the interaction with the striped Stoner spectrum we have discussed
before. In fact, if we magnify the corresponding region of the spectrum for Ni (see
inset in Fig. 8f), we can observe that the coupling between the magnon branch and
a line of strong Stoner intensity – we could call it a Stoner band – leads to a feature
that looks like an “avoided crossing.” In fact, this feature has a similar origin as an
avoided crossing of single-particle bands, with the difference that the two states that
interact here are not single-particle but many-body states, the collective spin-wave
excited state and a superposition of Stoner excitations, which mix and exchange
character.

Despite the multiple interactions with the Stoner background, we find that the
dispersion of the spin-wave branches is mostly isotropic in q space. The numerical
data for iron are in qualitative and also quantitative agreement with the neutron
scattering experiments of Collins et al. (1969), Mook and Nicklow (1973), and Lynn
(1975), where spin-wave energies up to 70, 118, and 110 meV were reported,
respectively; see Friedrich et al. (2014) for a comparison. In Loong et al. (1984),
spin-wave resonances up to an energy of 160 meV could be measured. However,
the latter experimental results partly disagree with the values of Mook and Nicklow
(1973), especially at the high end of the spectrum. We also find good agreement in
the case of nickel (Minkiewicz et al. 1969; Mook and Tocchetti 1979; Mook and
Paul 1985), while neutron scattering data for cobalt is scarce and limited to small
momentum transfers (Frikkee 1966; Glinka et al. 1977).
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A feature that has been discussed extensively in the literature (Cooke 1976;
Mook and Tocchetti 1979; Cooke et al. 1980, 1985; Callaway et al. 1983; Mook and
Paul 1985; Savrasov 1998; Karlsson and Aryasetiawan 2000; Şaşıoğlu et al. 2010;
Friedrich et al. 2010) is the appearance of an “optical” spin-wave branch, in addition
to the acoustic one, for example, in fcc Ni along Γ −X. The terminology is, however,
a little bit misleading, as the acoustic branch just seems to exhibit a gap at around
130 meV. The lower-energy end flattens and eventually disappears toward larger
momenta (or persists out to the zone boundary (Cooke et al. 1985; Blackman et al.
1985)), and the higher-energy end then continues to form the acoustic magnon
branch. The two ends coexist in a certain region of the reciprocal space giving a
double-peak structure in the spectra there. This indicates the existence of an optical
branch that crosses the acoustic branch and splits it into two pieces. The optical
branch has yet to be observed directly, however. (In some publications, the higher-
energy branch is denoted as the optical branch, although it does not extend to zero
momentum and finite energy as in the case of optical phonon branches.) After its
theoretical prediction (Cooke 1976), the optical branch was detected in the form
of a double peak in constant q scans in neutron scattering experiments (Mook and
Tocchetti 1979; Mook and Paul 1985). However, this feature seems to be an elusive
phenomenon, which is observed in some studies (Cooke et al. 1985; Blackman et al.
1985) but not in others (Callaway et al. 1983).

In Fig. 8f, we clearly see a gap in the acoustic branch at around 30 meV, which
arises from the coupling to Stoner excitations as we have seen before. But this gap
is located at a too low energy and too close to the Γ point to be identified as the
optical branch discussed in the literature. On the other hand, there is no gap to be
seen in Fig. 8f at around 130 meV. However, if we analyze this part of the excitation
spectrum more closely, we are able to identify two peaks, but these peaks do not
appear as separate peaks in our calculation. They form a broad peak, and only a
peak fit with Lorentzian functions reveals the existence of a lower-energy and a
high-energy branch in the respective region of momentum (Şaşıoğlu et al. 2010). In
the direction of increasing momentum, the higher-energy peak grows at the expense
of the lower-energy peak, which eventually disappears, and the higher-energy peak
then forms the magnon branch. It should be noted, however, that the double-peak
structure was observed as two separate peaks in a TDDFT study (Savrasov 1998)
and also in a calculation based on a Green-function formulation (Karlsson and
Aryasetiawan 2000). The latter study also reported a gapped magnon branch along
Γ − L in fcc Ni and a gap around halfway on the line Γ − N in bcc Fe. In fact, there
is a gap in this direction in Fig. 8d, albeit at a smaller momentum and energy than
in Karlsson and Aryasetiawan (2000). This gap can be attributed to the coupling of
the spin-wave branch with a line of increased Stoner intensity. The gapped magnon
branch has already been discussed by Blackman et al. (1985) and was observed
experimentally (Paul et al. 1988). In conclusion, it remains an open question why
the optical branch in fcc Ni appears as a well-defined feature in some calculations,
whereas, in others, it is so close to the acoustic branch that the two branches coalesce
into a broad peak.
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6 Conclusions

We have presented a theoretical method to determine the electronic spin excitations
of an interacting many-electron system from first principles. The scheme is based
on many-body perturbation theory, in which the spin excitations form the pole
structure of the magnetic response function or transverse spin susceptibility. The
poles are close to the real-frequency axis, so the imaginary part of the response
function yields the corresponding spin excitation spectrum, comprising both single-
particle Stoner and collective spin-wave excitations as well as combinations thereof.
The latter gives rise to lifetime effects and a redistribution of spectral weight. We
have described a very general theoretical derivation, in which the density response
function, which is central in describing optical absorption and excitonic effects,
appears as a special case.

With the GW approximation for the electronic self-energy, the magnetic
response function has been shown to fulfill a Bethe-Salpeter equation, which
can be solved in the basis of Wannier product functions. We have sketched a
practical implementation in the SPEX code that relies on the full-potential linearized
augmented plane-wave method. The screened interaction W is calculated within the
RPA. In metallic systems, W falls off very quickly so that we can afford to employ
an on-site approximation, i.e., an electron-hole pair is assumed to be on the same
site when interacting. In addition, we use the static limit of W for all frequencies,
so the screened interaction acts instantaneously. Our implementation allows the
magnetic response function to be calculated for arbitrary momenta, which can be
used to map the magnetic excitation spectra in very fine detail.

We have studied the long-wavelength limit of the spin-wave spectra for the
bulk 3d transition metals Fe, Co, and Ni. The long-wavelength limit is of special
interest as the Goldstone theorem demands the existence of a gapless excitation
in ferromagnetic materials (neglecting spin anisotropy). Often, this Goldstone
condition is numerically violated in practical calculations from first principles.
We can attribute a large part of this gap error to the approximation of the single-
particle Green function. For example, a natural and convenient choice would
be the LSDA Green function, which, however, introduces an inconsistency with
regard to the theoretical derivation of the Bethe-Salpeter equation. We have proved
mathematically that a gapless magnon branch requires the Green function to be
self-consistently renormalized with a suitable self-energy, e.g., the COHSEX self-
energy, the static limit of the GW approximation. It was shown numerically that the
gap error is substantially reduced when using the COHSEX Green function instead
of the LSDA one. Furthermore, the self-consistent COHSEX calculations give rise
to an overall reduction of the exchange splitting compared to LSDA, often leading to
better agreement with experiment. The spin-wave solution of the one-band Hubbard
model employing the Hartree-Fock approximation motivates a correction scheme
for the LSDA Green function, where the exchange splitting of the Kohn-Sham
system is adjusted so as to enforce the Goldstone condition. The resulting spin-
wave dispersions are closer to the corresponding COHSEX than to the original
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LSDA results. The same can be said about the magnetic moments and exchange
splittings obtained from the COHSEX and the corrected LSDA Green function,
which are found to be very similar, while the original LSDA values are a bit off.
As a result, the corrected LSDA Green function mimics that of the self-consistent
COHSEX calculation and is made to fulfill the Goldstone condition exactly, while
the numerical cost is identical to a treatment within LSDA. This opens up the
possibility of efficient first-principles MBPT calculations of spin excitations that
respect the Ward identity of spin conservation.

Spin excitation spectra of the three elementary ferromagnets bcc Fe, fcc Co, and
fcc Ni have been calculated and compared to results of model calculations using
a spin-polarized homogeneous electron gas. By this comparison, we have shown
that the bulk ferromagnets exhibit many features of itinerant-electron magnets that
cannot be described by a simple atomic arrangement of magnetic moments, such
as in the Heisenberg model. High-energy magnons are strongly damped due to
the coupling to single-particle Stoner excitations, and the spin-wave dispersion
possesses gaps along certain directions in the Brillouin zone, which can be attributed
to a coupling of the spin-wave branch with Stoner bands, lines of increased intensity
of Stoner excitations.

This coupling effect can be made responsible for the appearance of an optical
branch, in addition to the acoustic one, in bcc iron. On the other hand, we cannot
unambiguously identify an optical branch in fcc nickel along Γ − X, which has
been much discussed in the literature. While a peak fit of the calculated spin
excitation spectrum does reveal two spin-wave peaks at about the right momentum
and energy, this appears as a very subtle effect compared to the gaps discussed
before. Overall, we find a good agreement of the spin-wave dispersions to neutron
scattering experiments.

The present treatment of spin excitations within many-body perturbation theory
explicitly describes the correlated motion of an electron-hole pair. This formulation
can be straightforwardly extended to yield the dynamical longitudinal spin suscepti-
bility, including its coupling to the charge susceptibility (density response function).
Furthermore, it opens up the way for constructing a diagrammatic electronic self-
energy that describes the scattering of electrons and holes with magnons, in a
similar way as the GW approximation describes the scattering with plasmons.
Such a self-energy can be defined by the product of the Green function with the
T matrix, yielding the GT self-energy (Hertz and Edwards 1973; Edwards and
Hertz 1973). A numerical implementation (Müller 2016; Müller et al. 2019) would
be a formidable task given that the T matrix depends on four points in space.
It may be possible to combine this self-energy with GW yielding GWΓ , a self-
energy with vertex corrections. Such a self-energy could be able to describe the
quasiparticle renormalization (kinks) of electronic bands in magnetic materials due
to the scattering with spin fluctuations. It might even shed light on the coupling
mechanism in high-temperature superconductors, as it is believed that this coupling
arises from the exchange of magnons, through which the effective electron-electron
interaction can become attractive.
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