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Abstract

Van der Waals (vdW) interactions stem from electronic zero-point fluctua-
tions and are often critical for the correct description of structure, stability,
and response properties of molecules and materials, including biomolecules,
nanomaterials, and material interfaces. Here, we give a conceptual as well
as mathematical overview of the current state of modeling vdW interactions,
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focusing in particular on the consequences of different approximations for
practical applications. We present a systematic classification of approximate
first-principles models based on the adiabatic-connection fluctuation-dissipation
theorem, namely the nonlocal density functionals, interatomic methods, and
methods based on the random-phase approximation. The applicability of these
methods to different types of materials and material properties is discussed in
connection with availability of theoretical and experimental benchmarks. We
conclude with a roadmap of the open problems that remain to be solved to
construct a universal, efficient, and accurate vdW model for realistic material
modeling.

1 Introduction

van der Waals (vdW) interactions stem from electronic zero-point (and possibly
thermal) fluctuations in electronic matter (Langbein 1974; Parsegian 2005). There-
fore, vdW interactions scale rapidly with system size and are often critical for
the correct description of structure, stability, and response properties of molecules
and materials, including biomolecules, nanomaterials, and material interfaces. This
makes proper description of vdW interactions a crucial aspect of modern material
modelling. This is especially important in the context of electronic-structure
calculations using approximate density functionals. Such functionals are normally
semilocal (“short sighted”) in the electronic density, meaning that nonlocal vdW
interactions are poorly or not at all described by these functionals.

From a classical electrostatic perspective, electrons repel each other. However,
quantum-mechanical correlation effects typically act to minimize the electric
repulsion between electrons. This correlation in the electronic motion results in
instantaneous effective multipoles that interact via electrostatic forces, attracting
different regions toward each other. When there is no significant overlap between
two interacting regions of electronic matter, we usually speak of the long-range
electron correlation, which is the underlying microscopic cause of vdW interactions.
(As Margenau put it already in 1939, “the term ‘van der Waals force’ is not one of
very precise usage,” which holds to this date. Here, we will use the term exclusively
to refer to the electron correlation part of noncovalent interactions.)

In many approaches to material modelling, ranging from empirical to those
based on first principles, the models that describe the short-range and long-range
parts of the electron correlation are constructed separately, because each requires a
different set of considerations. This chapter discusses currently used approaches to
the calculation of the long-range correlation energy – the vdW energy – with special
focus on the case when the short-range part of the correlation energy (and other
total energy components) is calculated within the density functional theory (DFT).
We begin with a conceptual understanding and importance of vdW interactions in
materials (Sect. 2), which has motivated the recent rapid development of new vdW
models presented in the subsequent sections. This is followed by a brief conceptual
overview of existing and widely used vdW models (Sect. 3), which can serve



13 Van der Waals Interactions in Material Modelling 261

either as a stand-alone short synopsis or as an introduction to the subsequent more
detailed exposition. We then continue with a more theoretical presentation of current
approaches to modelling vdW interactions, first introducing a general framework for
discussing vdW models (Sect. 4), followed by a classification of current approaches
within that framework (Sect. 5). None of the existing vdW models is the best choice
for every system, and a close attention must be paid to their accuracy and areas
of applicability (Sect. 6). We conclude with an outline of outstanding problems in
the topic of modelling vdW interactions from first principles of quantum mechanics
(Sect. 7).

2 Role of van der Waals Interactions in Materials

Functional materials are becoming increasingly smaller in size and more het-
erogeneous in composition. These two aspects of novel nanomaterials lead to
the emergence of nontrivial quantum-mechanical effects that depend on size and
topology and which may ultimately determine the properties of a material of
interest. One important consequence of this evolution beyond traditional materials,
the functionality of which was largely regulated by bulk observables, is that nonco-
valent interactions play an increasingly important role in determining the structure,
stability, and ensuing function of homogeneous and heterogeneous nanostructured
materials. van der Waals interactions, which exhibit nontrivial scaling behavior with
system size (Dobson et al. 2006; Ruzsinszky et al. 2012; Gobre and Tkatchenko
2013), are often the dominant part of such noncovalent interactions. In general,
vdW interactions have already been recognized as playing an instrumental role
in determining the structure, stability, and functionality of biological materials,
supramolecular and sensor chemistry, pharmaceuticals, dye-sensitized solar cells,
and many other systems. More recently, the field of “van der Waals heterostructures”
has moved into the forefront (Geim and Grigorieva 2013) and has already led to
fundamental advances in the study of low-dimensional materials and to a number of
novel technological applications.

In this context, the importance of understanding and accurately modelling vdW
interactions in realistic materials can hardly be overemphasized. However, our
ability to model these ubiquitous quantum mechanical effects has been severely
impeded by the prohibitively high computational cost of explicitly correlated
quantum chemical methods and the lack of efficient approximations to the many-
electron correlation problem for large systems (Szabo and Ostlund 1996). In
fact, most successful approximations employed for modelling vdW interactions in
materials rely on the rather crude lowest-order pairwise additive approximation,
which is only exact in the weak polarization limit and at large interatomic distances.
For condensed-phase systems with a moderate to large polarizability density, such
pairwise approximations can often lead to qualitatively incorrect predictions of
structural, energetic, and response properties.

The structure and binding in organic materials is often driven by vdW inter-
actions, in combination with other contributions such as repulsion, electrostatics,
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and induction. Therefore, accurate modelling of vdW interactions is critical for
understanding the properties of organic materials. In recent years, substantial
progress has been achieved in the theoretical prediction of structures and stabilities
of molecular crystals by using vdW-inclusive DFT approaches. Today, the structures
of (simple) organic molecular crystals can be predicted with an accuracy of
2–3% and cohesive energies to 1–2 kcal/mol. Proper description of vdW correlations
becomes even more relevant when one looks at the relative energetics of molecular
systems, which are essential to predict the polymorphic behavior of molecular
crystals.

While the crucial role of vdW interactions in organic materials is well estab-
lished, our understanding of the relative importance of these ubiquitous interactions
in semiconductors, ionic solids, and metals is still in development. The contribution
of the long-range vdW energy to the cohesive energy of elemental and binary
semiconductors and ionic solids amounts to 0.2–0.3 eV/atom, which is around 8% of
the cohesive energy (Zhang et al. 2011). The contribution of vdW energy to the bulk
modulus is even more pronounced, reaching up to 22% for Ge and GaAs. Notably,
the inclusion of vdW interactions in DFA calculations allows to simultaneously
improve the performance for lattice constants, cohesive energies, and bulk moduli,
when compared to experiment. Similar conclusions have been reached for a wide
variety of hard solids. Because vdW interactions typically have larger contributions
to relative energetics than absolute ones, one expects significant effects for phase
transition pressures and phase diagrams of most solids.

The properties of many materials are substantially affected by the presence of
simple and complex defects. For example, the properties of semiconductors are
largely determined by neutral and charged interstitials and vacancies (Freysoldt et al.
2014). The formation of defects entails a modification of polarization around defect
sites, and this can have a substantial effect on the contribution of vdW energy to
the stability and mobility of defects. For instance, the inclusion of interactions in
DFT improves the description of defect formation energies, significantly changes
the barrier geometries for defect diffusion, and brings migration barrier heights into
close agreement with experimental values (Gao and Tkatchenko 2013). In the case
of Si, the vdW energy substantially decreases the migration barriers of interstitials
and impurities by up to 0.4 eV, qualitatively changing the diffusion mechanism.
Moving beyond point defects, it is to be expected that more complex neutral and
charged multiatom defects and dislocations will lead to even stronger nonlocal
polarization effects and intricate dependence of vdW interactions on the nature of
defects.

Hybrid inorganic/organic systems (HIOS) are relevant for many applications in
catalysis, light-emitting diodes, single-molecule junctions, molecular sensors and
switches, and photovoltaics. The predictive modelling and understanding of the
structure and stability of such hybrid systems are an essential prerequisite for tuning
their electronic properties and functions. The bonding in HIOS is often determined
by a delicate balance between covalent bonds, hydrogen bonds, charge transfer,
Pauli repulsion, and vdW interactions. Yet the latter are at the edge of what is
possible with current vdW approaches, because the inorganic substrate is often a



13 Van der Waals Interactions in Material Modelling 263

metal or a doped semiconductor, which is difficult to model due to the delocalized
nature of metallic single-particle excitations.

3 Overview of Existing van der Waals Models

A common starting point for virtually all existing vdW models is an exact expression
for the electron correlation energy that can be constructed from the ACFD theorem
(Gunnarsson and Lundqvist 1976; Langreth and Perdew 1977). The essential idea
of this expression is an interpolation between a reference noninteracting mean-
field system and the fully interacting many-body system. The starting quantity
from which the correlation energy can be calculated is some form of a response
function (nonlocal polarizability, dielectric function, density response function),
which describes the linear response of the system to external electric field. This
quantity can be calculated either from first principles, using some mean-field
electronic-structure theory such as the Hartree–Fock (HF) method or Kohn–Sham
DFT (KS-DFT), or constructed semiempirically using approximate models. The
former approach is less ambiguous, but the complexity of such ab initio response
functions demands large computational cost and even then requires substantial
approximations to the interelectronic interactions. In contrast, the latter approach
leads to efficient methods, in which much of the complexity of the electronic
structure can be treated effectively by suitable parameterization of the model
response functions. In both cases, either the response functions or the interelectronic
interactions (or both) are treated approximately, leading to deviations from the in-
principle exact ACFD correlation energy.

Essentially all existing methods for modelling vdW interactions can be derived
by following various approximations to the ACFD theorem. Two major classes
of approximations that can be identified in existing vdW models are the coarse-
graining of the response functions and truncation of the many-body expansion. In
their full form, the response functions are two-point spatial functions, specifying a
response of a system at some point to the perturbation in the electric field in another
point. Such a description enables the calculation of the electron correlations across
the whole range of interelectronic distances, including the short-range intra-atomic
as well as long-range intermolecular correlations. This level of detail is largely
unnecessary for the calculation of the vdW energy, which comprises only the long-
range part of the electron correlation energy. Therefore, a common approach is to
coarse-grain the response functions into finite-size fragments – typically atoms –
and to evaluate only the long-range correlations between the fragments, while
the short-range intrafragment interactions are captured in the effective response
properties of the fragments. The second common approximation involves the
truncation of the many-body expansion. The closed-form ACFD expression can
be expanded as an infinite sum of terms that involve repeated couplings of the
noninteracting response functions. Ordering these terms by the number of times
a response function occurs in them, the electron correlation energy starts at second
order (two occurrences) and continues to infinity. The physical interpretation of the
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n-th order is such that n electronic fluctuations interact via the long-range Coulomb
potential to yield a contribution to the correlation energy. The magnitude of the
contribution of the individual orders to the vdW energy decreases with the growing
order, which motivates the common approximation of truncating the infinite sum at
some order, usually second or third. Using only the lowest second order results in
the large class of pairwise methods, which neglect any many-body effects in vdW
interactions.

a b

c d

many-body dispersion random-phase approximation

nonlocal density functionalsinteratomic pairwise methods

Fig. 1 Classification of different approaches to modelling vdW interactions based on their
approximations to the adiabatic-connection fluctuation–dissipation (ACFD) formula. The light
yellow and blue illustrate density fluctuations, and the arrows denote interactions between them.
General formulas for each method class are shown, with colors denoting parts with the same
origin in the ACFD formula: summation of all interactions in the system (green), encoding of
the response properties (red), and the interaction potentials (blue). In random-phase approximation
(RPA), both the noninteracting frequency-dependent density response function, χ0(r, r

′
, u), and

the electronic Coulomb interaction, v(r, r′) = |r − r′|−1, are nonlocal spatial quantities, and their
multiplication should be interpreted as [χ0v](r, r′, u) = ş

dr′′χ0(r, r′′, u)v(r′′, r′). The RPA itself
neglects the exchange–correlation screening of the Coulomb interaction and is not illustrated in this
figure. In many-body dispersion (MBD), the response function and potential are coarse-grained and
expressed as the nonlocal polarizability matrix, αij(u), and dipole matrix, Tij, which are multiplied
as ordinary matrices. Nonlocal functionals truncate the many-body expansion (expressed as the
logarithm in RPA and MBD) at second order, and the response function and interaction potential
are intermingled (violet) in the nonlocal kernel, �(r, r

′
). Interatomic pairwise models, coarse-

grained and truncated at second order, integrate the frequency-dependent polarizability into the
so-called C6 coefficients, while the square of the dipole potential yields the R−6 power law
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Organizing existing vdW models into a 2-by-2 matrix based on whether they
use the coarse-graining and/or the many-body truncation approximations (Fig. 1)
provides a concise classification that allows for an efficient discussion of the general
behavior of these models. The class of methods that do not coarse-grain nor truncate
the many-body expansion are based exclusively on the ab initio noninteracting
response functions obtained from the HF or KS-DFT methods. This requires other
approximations to the interelectronic interactions in the ACFD formula, which make
its evaluation tractable (though still computationally demanding). The most straight-
forward of these approaches is the so-called random-phase approximation (RPA), in
which the complex interaction between electronic fluctuations is replaced with the
bare Coulomb potential. In contrast, the other three vdW model classes use model
noninteracting response functions (usually polarizability), in which the electronic
fluctuations are usually assumed to be localized. In nonlocal density functionals,
the response function is modelled as a semilocal polarizability functional of the
electron density, which is coupled between all pairs of points in space, resulting
in a double spatial integral. The many-body dispersion (MBD) approach models
the response of atomic fragments as that of harmonic oscillators, which enables
efficient evaluation of the ACFD formula without any truncation of the many-body
expansion. Finally, interatomic pairwise models use both the coarse-graining and
the truncation to provide a particularly simple formula for the vdW energy, in which
the response functions are expressed in the form of the so-called dispersion C6 (C8,
C10, . . . ) coefficients.

Within each of the four classes of vdW models, there are multiple instances that
differ in more subtle details. These include the particular parametrization of the
model response functions or the mechanisms that separate the short-range and long-
range parts of the electron correlation. These differences influence the performance
of the individual methods but do not change their general behavior for different
types of molecules and materials, which will be discussed in more detail in Sect. 6.
These individual models together with a more rigorous mathematical formulation
of this overview are presented in the following two sections.

4 Long-Range Electron Correlation

The ACFD theorem yields an in-principle exact expression for the electron correla-
tion energy and serves as a basis for the various approximate vdW models discussed
in this chapter. The present and the following sections give a brief introduction to
the mathematical formulation of this topic, which can be found in greater detail
elsewhere (Hermann et al. 2017). The ACFD formula expresses the vdW energy in
terms of the response of an electronic system to an external electric field, which is
introduced in the remainder of this section, while the formula itself and the various
approximations to it are discussed in the following section.
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4.1 Response Functions and Polarizability

The polarization of electronic matter under the influence of a time-periodic external
electric field, E� = − ∇v�, with a given frequency, u, can be expressed by the
change in the electron density, �n, from the unpolarized state (E� = 0). In the linear
regime, this change is related to the corresponding potential, v�, via the density
response function,

�n (r, u) =
ż

dr′χ
(
r, r′, u

)
v�

(
r′, u

)
(1)

Alternatively, the polarization state can be described by the polarization density,
P, which can be interpreted as a dipole density and which gives the polarized charge
density via divergence,

�n (r, u) = ∇ · P (r, u) (2)

The polarization density is related to the electric field via the (nonlocal) dipole
polarizability, α, (Hunt 1983),

P (r, u) = −
ż

dr′α
(
r, r′, u

)
E�

(
r′, u

)
(3)

In general, the response of the electron density is anisotropic, E� and P are not
aligned, and the polarizability must be a tensor. The relation between the density
response function and dipole polarizability is obtained by taking the divergence of
Eq. 3, integrating by parts, using the definitions of E� and P, and comparing to
Eq. 1,

χ
(
r, r′, u

) = −∇ · ∇′ · α
(
r, r′, u

)

= −∑

ιζ

∂2

∂rι∂r ′
ζ

αιζ

(
r, r′, u

)
(ι, ζ = x, y, z) (4)

Whereas the electron density and the density response functions interact electri-
cally via the Coulomb operator, the polarization density and dipole polarizability
interact via the dipole operator,

T (R) = ∇ ⊗ ∇′v
(∣∣r − r′∣∣)

∣∣∣ r = R
r′ = 0

= −3R ⊗ R + R2I
R5 (5)

For instance, the electrostatic Coulomb self-interaction of �n, with its corre-
sponding P, can be expressed in two equivalent ways,

J [�n] = 1
2

şş

dr1dr�n (r1) v (|r1 − r2|)�n (r2)

= 1
2

şş

dr1dr2P (r1) · T (r1 − r2) P (r2)
(6)
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The description of the response via the density response function and dipole
polarizability is equivalent, and likewise the ACFD formula can be expressed
using both. The density response functions are directly accessible from ab initio
electronic-structure calculations, whereas the dipole polarizability is better suited
for the formulation of approximate models. The reason for this is that the density
response function has a complex nodal structure, as it describes depletion of the
electron density at some points and its accumulation elsewhere. In contrast, the
corresponding polarizability is a smooth rotation-free vector field which encodes
that underlying nodal structure implicitly in terms of its local behavior via the
divergence operators in Eq. 4. This is true even in the case of a delocalized density
response that is characteristic of gapless or near-gapless systems. Therefore, the
strength of the response is translated directly into the magnitude of the polarizability,
whereas it is translated only indirectly into the magnitude of the gradient of the
density response function.

For illustration, consider two one-dimensional (1D) Gaussian charge densities
located at ±1 (as crude model of atoms) and two model density response functions,
local and nonlocal (Fig. 2). In one dimension, the dipole polarizability is a scalar
and uniquely determined by integrating over the density response function,

α1D (x, y) =
ż x

−∞
dx′

ż y

−∞
dy′χ1D (

x′, y′) (7)

Even in these trivial models, the density response function changes sign around
atoms and has a nontrivial nodal structure, whereas the polarizability is positive
everywhere. Furthermore, the delocalized density response translates into a polariz-
ability that is still localized but over a larger region spanning both atoms.

4.2 Harmonic Oscillator Model of Polarizability

When the dipole polarizability is localized, as in the examples in the previous
section, it can be relatively accurately represented as an effective local polarizability,
αeff(r, u), formally obtained by integrating over some neighborhood, M(r), around
each point, r,

αeff (
r, r′, u

) ≈ δ
(|r − r′|)

ż

M(r)
dr′′α

(
r, r′′, u

) ≡ δ
(|r − r′|)αeff (r, u) (8)

A wide variety of approaches to model the spatial dependence of αeff exist, which
will be discussed in the following sections.

The frequency dependence, on the other hand, is very often modelled by
that of a charged harmonic oscillator (HO) – a Drude oscillator. Having been
Fourier-transformed from the time domain, the frequency-dependent polarizability
is a complex-valued function, with the real and imaginary parts encoding the
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χ
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Delocalized response

χ

Localized response

α

x

y

α

x

Fig. 2 Density response function, χ(x, y), compared to nonlocal dipole polarizability, α(x, y).
The figure considers two different model one-dimensional two-particle systems with particle
coordinates x and y. The left and right systems have a delocalized and localized response,
respectively. The columns encode the response of the two systems in two different but equivalent
ways – as a density response function (top), χ(x, y), and as a nonlocal dipole polarizability
(bottom), α(x, y). The red and blue colors correspond to positive and negative values. The red
lines denote the positions of the two responding Gaussian charge densities on the x-axis

nondissipative and dissipative parts of the response, respectively. The frequency
dependence of the imaginary part of the polarizability encodes the full optical
(electromagnetic) absorption spectrum. This is equivalent to knowing the full energy
spectrum of the corresponding Hamiltonian, which is a much harder problem than
calculating the ground-state energy. Accordingly, the ACFD formula for the electron
correlation energy contains the polarizability only under the integral sign over all
frequencies, and it is sufficient to model the spectrum only such that its sum total
is represented accurately, which is conveniently achieved with the so-called Wick
rotation,

ż ∞

0
du Im α(u) =

ż ∞

0
du α (iu) . (9)
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In contrast to the full absorption spectrum, Im α(u), which is a complicated
and highly system-dependent function of the frequency, the imaginary-axis part
of α, α(iu), is a real-valued monotonically decreasing function, which has the
same general shape for all kinds of systems. Together with the localized nature
of the polarizability, this justifies the use of the harmonic oscillator to model the
frequency dependence of the polarizability of more complex electronic systems. The
polarizability of a harmonic oscillator is a simple function with two parameters, the
static polarizability, α0, and the resonance frequency, ω,

αHO (iu) = q2ω2

m
(
ω2 + u2

) ≡ α0ω
2

ω2 + u2
(10)

Consider a system of nonoverlapping bodies of electronic matter interacting via
the usual electronic Coulomb force (described equivalently either by the Coulomb
or dipole potential). Putting aside the internal structure of these bodies for now, their
interaction energy, Eint, consists of the electrostatic part (including induction) and
the (long-range) electron correlation part, Ec – the vdW energy. The ACFD formula
for Ec derives its name from two parts: first, the correlations in the electronic
fluctuations can be expressed in terms of the response of the bodies to an external
field via the so-called fluctuation–dissipation theorem (Landau and Lifschitz 1980,
sec. §124). Second, Eint is the difference in the total energy of the system when
the Coulomb potential between the interacting bodies is switched on (λ = 1) and
switched off (λ = 0). This difference can be alternatively expressed as an integral
over from 0 to 1 while keeping the system at its ground state for all λ, in this way
adiabatically connecting the noninteracting and interacting cases. Putting these two
parts together, the ACFD theorem gives Ec in terms of the total polarizability of the
nonoverlapping subsystems,

− 1

2π

ż ∞

0
du

żż

drdr′
ż 1

0
dλ Tr

[
α

(
r, r′, iu; λ

)
Tint (r, r′)] (11)

where Tint(r, r′) is set to zero for r, r′ from the same subsystem.

4.3 Range Separation in Density Functional Theory

The distinction between the short-range and long-range parts of the electron
correlation energy becomes blurred in realistic systems at equilibrium geometries,
where the overlaps between (or within) the interacting subsystems cannot be
neglected. Some ab initio electronic-structure methods can treat both parts on an
equal basis, but those are often computationally demanding and not applicable to
large systems. It is therefore more common that the short-range and long-range
parts are treated with different models, which must be somehow seamlessly joined,
to avoid both omitting or double counting of some midrange part of the correlation.
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Notably, one of the most successful of such approaches is the combination of the
density functional theory (DFT) in semilocal approximation for the short-range
correlation and explicit vdW models for the long-range correlation.

The ACFD formula can be derived within the density functional for the total
correlation energy of a general electronic system (see Callen and Welton 1951;
Parr and Yang 1989, Sect. 8.6; Kohn et al. 1998), not only for the interaction
energy of nonoverlapping bodies as in the previous section. In this form, it yields
the exchange–correlation (XC) energy, Exc, the exchange part stemming from the
antisymmetry of the electronic wave function,

Exc = − 1
2π

ş∞
0 du

şş

drdr′ş1
0dλχ

(
r, r′, iu; λ

)
v

(
r, r′)

= − 1
2π

ş∞
0 du

şş

drdr′ş1
0dλ Tr

[
α

(
r, r′, iu; λ

)
T

(
r, r′)] (12)

Within time-dependent DFT, the true response functions can be further expressed
in terms of the response functions of the KS noninteracting system, corresponding
to λ = 0, as a Dyson screening equation,

χ (iu; λ) = χ (iu; 0) + χ (iu; 0) (v + fxc (iu; λ) χ (iu; λ) (13)

where fxc is the so-called XC kernel, in general an unknown system-dependent
nonlocal function. In approximate vdW models, the XC effects contained in the
kernel are usually incorporated implicitly into the effective polarizability,

α (iu; λ) ≈ αeff (iu) + αeff (iu) Tα (iu; λ) (14)

The XC energy can be formally divided into a short-range (sr) and long-range
(lr) part by separating the double spatial integral in Eq. 12 into two parts using some
range-separating function, f, which should decay at least exponentially fast for large
distances,

şş

dr1dr2 = şş

dr1dr2 (1 − f (r1, r2)) + şş

dr1dr2f (r1, r2)

≡ şş

srdr1dr2 + şş

lrdr1dr2
(15)

In practice, the short-range part is calculated via some semilocal XC functional,
for which the corresponding f is system-dependent and in general unknown. On the
other hand, most vdW models have f explicitly built in, and the aim is to find explicit
f for the vdW method that matches the implicit f of a given XC functional. This is
in general an unsolved problem, and most current approaches resort to a varying
degree of empiricism.

The most radical difference in the range separation to semilocal DFT and vdW
methods runs along the border between systems with uniform and nonuniform
electron density. The vdW force between atomic bodies held together by covalent,
ionic, or metallic binding is always caused by the long-range electron correlation,
but not all effects of the long-range correlation are considered to be a vdW force.
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In metals, the electrons from the nonconducting bands are localized on atoms, which
form nonuniform islands in the sea of approximately uniform electron density of the
conducting electrons (Tao et al. 2010). Here, the long-range correlation between the
conducting electrons contributes to the metallic binding. In nonmetals, however,
all electrons are nonconducting, the electron density is nowhere uniform, and
long-range correlation is mostly associated with vdW interactions. The electronic
structure within a single uniform subsystem differs qualitatively in many aspects
from that in a nonuniform system. In a uniform system, the exchange effects, the KS
density response function, and the XC kernel decay only algebraically with distance
(they are long-ranged) as a result of the conducting electrons, whereas they decay
exponentially (they are short-ranged) in nonuniform systems (Ge and Lu 2015).
(The true density response function decays algebraically in both cases because
of electron correlation.) Correspondingly, semilocal and hybrid XC functionals
capture both short-range and long-range part of the XC energy in uniform systems
but only the short-range part in the nonuniform systems. The vdW interactions
can be therefore associated with all long-range electron correlation except for
that between conducting electrons within a single uniform subsystem, which is
fortunately covered by semilocal and hybrid density functionals. The nonuniform
situations include interactions between conducting electrons in disjoint metallic
bodies; interactions of conducting electrons with localized electrons, either in the
same metallic body or in other bodies; and all interactions between localized
electrons.

The consequences of the differences between uniform and nonuniform systems
for the range separation can be summarized as follows:

uniform :
Exc

nonuniform :
=

semilocal/hybrid
︷ ︸︸ ︷
Esr

x + Esr
c︸ ︷︷ ︸

semilocal/hybrid

+ Elr
x︸︷︷︸

≈0

+ Elr
c︸︷︷︸

vdW

(16)

With the caveat about the uniform systems, the vdW interactions can then be
associated with the long-range XC energy. In this setup, care must be taken about
the potential double counting of the long-range XC energy in uniform systems from
the semilocal or hybrid functionals and from the long-range ACFD formula. This
double counting does not matter in situations when the result of a calculation is an
energy difference, such as when calculating the adsorption energy of a molecule
on a metal surface. But it may pose a problem in other cases, for instance, when
investigating a lattice expansion of a metal.

5 Classification of van der Waals Functionals

Most existing models of long-range correlation can be described in terms of various
approximations to the range-separated effective-polarizability version of the ACFD
formula (Eqs. 12 and 14) (Hermann et al. 2017). One of them is the already
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discussed local representation of the effective polarizability. Two other general and
common approximations are spatial coarse-graining of the system and truncation of
the many-body expansion of the vdW energy.

5.1 Coarse-Graining of Response Functions

Given a set of functions, wp(r), that partition space into fragments,
∑

pwp(r) ≡ 1,
and respective centers of the fragments, Rp, each spatial function or operator,
such as the dipole polarizability, can be represented as a sum over the partitioned
components, αpq, which can be in turn expanded in the basis of solid harmonics
(multipole expansion), αpq,ll′mm′ , around the centers (Stone 2013),

α
(
r, r′, u

) =
∑

pq

wp (r) wq

(
r′)α

(
r, r′u

) ≡
∑

pq

αpq

(
r, r′, u

) → αpq,ll′mm′

(17)

(Here, l, l′ start from 1, because the expanded quantity is a tensor. The
corresponding expansion of the scalar density response function, χ , would start
from l = l′ = 0.) The dipole potential is expanded correspondingly. Unlike the
Fourier transformation, the multipole expansion is not invertible, but like the Fourier
transformation, it introduces a correspondence between spatial integrals and infinite
sums,

P (r, u) = −
ż

dr′α
(
r, r′, u

)
E

(
r′, u

) ⇐⇒ Pp,lm(u)

= −
∑

q,l′m′
αpq,ll′mm′(u)Eq.l′m′

(18)

The motivation for this multipole reformulation is that because both Teff and Tlr
are long-ranged and their moments decay increasingly faster for higher l’s; all the
matrix multiplications (infinite sums) converge quickly and can be approximated
well by finite sums.

The feasibility of the coarse-graining and multipole expansions is dictated by the
choice of the fragments and the response properties of the system. In a nonuniform
system, the nonlocal effective polarizability is exponentially localized on atoms,
and atom-centered fragments are a natural basis of a quickly converging multipole
expansion. In a uniform system, the effective polarizability is long-ranged, diffused,
and there are no natural centers for the multipole expansion, leading to large
higher moments and slow convergence or even divergence of the expansion. In
principle, this problem is mitigated in combination with the KS-DFT, because the
long-range XC energy within the uniform systems is captured by the semilocal or
hybrid functional, and the multipole convergence of the correlation energy due to
the interaction with a separate uniform or nonuniform system is helped by larger
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separations between the fragments. But such an interplay is not well understood,
and none of the coarse-grained models discussed in this chapter take advantage of
this cancellation.

5.2 Truncation of Many-Body Expansion

After inserting the Dyson screening equation into the ACFD formula, the coupling-
constant integration can be carried out analytically either when using the effective-
polarizability formulation or by approximating the XC kernel with some form
that depends on explicitly. In both cases, the λ-integration results in a logarithm
expression such as

Exc ≈ − 1

2π

ż ∞

0
du

żż

drdr′ Tr
[
ln

(
1 − α

(
r, r′, iu; λ = 0

)
T

(
r, r′))] (19)

The operator logarithm is defined as an infinite series, and writing it out explicitly
in terms of individual orders leads to a many-body decomposition of the XC energy,

Exc = 1

2π

ż ∞

0
du

żż

drdr′ Tr
[
α

(
r, r′, u; 0

)
T

(
r, r′)]

− 1

4π

ż ∞

0
du

żżż ż

drdr′dr′′dr′′′ Tr
[
α

(
r, r′, u; 0

)
T

(
r′, r′′)

α
(
r′′, r′′′, u; 0

)
T

(
r′′′, r

)] + 1

6π
· · · + . . .

(20)

The term “many-body” is best motivated in the coarse-grained models where the
individual terms correspond to interactions between increasing number of fragments
(bodies). (The order does not necessarily correspond to the number of bodies. At
fourth order, for instance, some terms are a back-and-forth interaction between two
bodies.) When constructed from the bare KS polarizability, the first order evaluates
to the exact exchange, and the correlation energy starts at the second order. With any
local approximation for the bare polarizability, the first term evaluates identically to
zero, and the formula gives only the correlation energy. The long-range part of the
second term is the leading term for vdW interactions and the basis of all nonlocal
correlation functionals and coarse-grained pairwise methods discussed below. The
third term corresponds to the Axilrod–Teller–Muto (ATM) three-body potential
(Axilrod and Teller 1943; Mutō 1943) when coarse-grained to atoms.

5.3 Random-Phase Approximation

The approximations to the ACFD formula that are fully many-body and not coarse-
grained can be based on the bare KS density response function. Because the KS
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density response function can be calculated directly from the KS orbitals via the
so-called Adler–Wiser formula, these approximations are usually formulated and
evaluated in the χυ-representation rather than the αT-representation. Furthermore,
because the KS response has a well-defined short-range structure, this construction
allows the evaluation of the total XC energy, not only its long-range part, so the use
of these methods goes beyond long-range correlation energy. Here, we discuss the
methods from the perspective of vdW interactions.

The simplest of these methods is the RPA itself, which amounts to setting the
XC kernel in Eq. 13 to zero (Ren et al. 2012). The omitted XC kernel is short-
ranged in nonuniform systems, but its omission influences both short-range and
long-range correlation energy, because the short-range XC effects still influence the
total polarizability of the system, which is manifested in the long-range correlation
energy via the ACFD formula. As a result, although RPA does not suffer from any
systematic errors in the long-range correlation energies, the overall accuracy is often
worse than that of the many effective models discussed below (Olsen and Thygesen
2013b). This is further amplified in vdW systems in equilibrium geometries, where
the short-range XC energy also contributes to the total interaction energy. Attempts
at improvement go both ways, replacing the short-range correlation energy with a
better model than RPA and improving the effective polarizability.

Kurth and Perdew (1999) suggested to correct the short-range correlation
energy from RPA with that from a semilocal XC functional, in what they called
the RPA+ method. Rather than explicitly range-separating the ACFD expression,
RPA+ removes the RPA short-range part by subtracting correlation energy from a
specially designed semilocal correlation functional, EGGA@RPA

c , and reintroduces it
back with a standard semilocal functional, EGGA

c .

ERPA+
c = ERPA

c − EGGA@RPA
c + EGGA

c (21)

EGGA@RPA
c is constructed in a similar way as standard functionals, but its

uniform part is parameterized to reproduce the RPA energy of the electron gas rather
than the true energy. RPA+ attempts to fix the short-range correlation energy of
RPA, but the long-range part is unchanged, so the vdW force remains the same,
and it is only the interaction due to electron-density overlap, which occurs at
equilibrium, that can be possibly improved. Furthermore, the range separation in
RPA+ is unsystematic in the sense that there is no guarantee that EGGA@RPA

c and
EGGA

c have the same effective range.
Toulouse et al. (2004) formulated a range-separated version of the KS scheme,

in which the XC functional is designed from the beginning to treat only the short-
range part of the electron correlation. This leads to an alternative range separation
of the ACFD formula, in which α(λ) is not the polarizability of the wave function
that minimizes

〈
| T̂ + λV̂ | 〉

but rather of one that minimizes
〈
| T̂ + λV̂lr | 〉

(Toulouse et al. 2009). In this scheme, the RPA of the Dyson-like equation results
in a model in which the effective polarizability is still equal to the bare KS
polarizability, like in normal RPA, but the effective dipole operator is only the
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long-range part of the full operator. The underlying assumption then is that the
dipole operator and the XC kernel partially cancel out at short range, giving a
different estimate of the effective polarizability than normal RPA. This is supported
by numerical evidence on select small systems. A similar scheme, proposed earlier
by Kohn et al. (1998), also uses a range-separated version of the KS scheme, but
instead of obtaining the true polarizability at the RPA level, χ (λ) is obtained for each
λ by explicitly perturbing the corresponding λ-scaled system with electric field.

A straightforward way to improve the RPA is to devise approximate XC kernels,
which improves the short-range behavior of the polarizability and hence both short-
range and long-range correlation energies. Extending the LDA to the time domain,
the adiabatic LDA (ALDA) assumes that the XC kernel has no memory, leading to a
frequency-independent local XC kernel. Unlike LDA, which is exact for the uniform
electron gas (UEG), ALDA does not give the true XC kernel of the UEG (which is
nonlocal in both time and space) and violates several known properties of the true
XC kernel. Despite that, it is a useful approximation in TD-DFT calculations when
one is interested only in a certain range of the frequency spectra. Still, it turns out
not to be a good approximation in the ACFD formula, where it gives worse results
than the absent XC kernel of the RPA (Lein et al. 2000).

Olsen and Thygesen (2012) constructed a correction to ALDA by fixing its large-
q (short-range) behavior in the UEG to better reproduce the known exact behavior.
Taking this renormalized ALDA (rALDA) kernel, transforming back to real space,
and using the mean density in two points as the corresponding uniform density,
this procedure gives a universal XC kernel. This construction is computationally
no more demanding than RPA but improves upon RPA in almost every case tested
(Olsen and Thygesen 2013a, 2014). The rALDA XC kernel gives a more realistic
short-range screening of the bare KS polarizability, resulting in more accurate long-
range correlation energies and better description of vdW systems.

A different path toward improving the accuracy of RPA can be taken using
the many-body perturbation (MBPT) theory. This is possible because, as Gell-
Mann and Brueckner (1957) showed, yet another equivalent definition of RPA is
via a certain subset of Feynman diagrams, the so-called ring diagrams. Summing
different subsets of the diagrams similar to those corresponding to RPA then leads
to different RPA-like models and sometimes confusing terminology, when a certain
modification of the XC kernel in RPA is equivalent to adding additional terms to the
RPA XC energy that do not seem to be related to RPA (Scuseria et al. 2008; Jansen
et al. 2010; Ángyán et al. 2011).

The second-order Møller–Plesset correlation energy (MP2) consists of the
Coulomb direct and exchange terms, of which only the former is long-ranged.
In this context, RPA can be understood as the sum of all MP2-like direct terms
(ring diagrams) in the infinite MBPT expansion. Similarly, the MP2 exchange
can be renormalized by replacing one of the Coulomb interactions with the
RPA sequence of ring diagrams, leading to the second-order screened exchange
(SOSEX). Furthermore, unlike in the Møller–Plesset perturbation theory, where
the first order is guaranteed to be zero, single-electron excitations contribute to
the XC energy in the MBPT based on KS orbitals. Combining RPA, SOSEX,
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and RPA-renormalized single-excitation correction then results in the renormalized
second-order perturbation theory (rPT2) (Ren et al. 2011, 2013). Although the
MP2 exchange term is short-ranged, the renormalization in SOSEX is long-ranged,
and the long-range correlation energy of rPT2 is different from that of RPA. The
combined improvements of the short-range and long-range XC energy in rPT2
compared to RPA lead to improved accuracy in vdW binding energies.

5.4 Nonlocal van der Waals Density Functionals

The models of long-range correlation energy discussed in this section are in the class
of approximations to the ACFD formula that truncate the many-body expansion at
second order, but do not do any spatial coarse-graining. This leads to XC functionals
that are characterized by nonlocal dependence of the XC energy density on the
electron density via some nonlocal kernel, ·,

Enl−df
c = −1

2

ż

drdr′n (r) n
(
r′) � [n]

(
r, r′)

= −
ż

dr n (r)
ż

dr′ 1

2
n

(
r′) � [n]

(
r, r′)

(22)

The effective polarizability is approximated with a local isotropic polarizability,

αeff
(
r, r′, u

) ≈ Iαeff (r, u) δ
(
r − r′) (23)

This results in the first-order term in the many-body expansion being zero,
which means that such a functional cannot capture any exchange energy, which
is intentional, since the nonlocal functionals are designed to capture only the long-
range correlation energy. The locality of the effective polarizabilities reduces two
of the four integrals in the second-order term, and the isotropy allows to take the
polarizabilities out of the trace in Eq. 20.

A general form of the local effective polarizability used in many models is
obtained from the polarizability of a harmonic oscillator by setting the ratio of the
charge and mass to that of an electron, q/m = 1, and substituting the electron density
for the charge,

αHO
tot (iu) = q2/m

ω2 + u2 → αeff [n] (r, iu) = n (r)

ω2
eff [n] (r) + u2

(24)

Besides the obvious reason of modelling electrons, the charge–mass ratio of
one is motivated by the f-sum rule for an electronic system that dictates that
αtot(iu) → N/u2 (N is the number of electrons), which the form above automatically
satisfies. (Strictly speaking, this is not necessary, because the rule does not need to
be satisfied in any local form, and furthermore, the local effective polarizability is
not supposed to integrate to the total polarizability without any long-range coupling.
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However, the local form is a straightforward way to satisfy the global rule.) The local
effective resonance frequency, ω2

eff, can be in general any functional of the electron
density but is often approximated semilocally.

The approximated ACFD formula can then be recast in the form of a nonlocal
density functional, where the nonlocal kernel is a functional of the effective
resonance frequency and some (so far unspecified) range-separating function,

Ec,lr ≈ −1

2

żż

drdr′n (r) n
(
r′) 3

π

ż ∞

0
du

1

ω2
eff [n] (r) + u2

1

ω2
eff [n] (r′) + u2

f
(
r, r′)

|r − r′|6
(25)

The asymptotic behavior of the long-range correlation energy calculated in this
way is fully specified by ωeff.

The first general functional of this form, referred to simply as the vdW density
functional (vdW-DF), was developed by Dion et al. (2004). Although the derivation
of vdW-DF starts from the ACFD formula, it follows quite a different direction than
the framework in this chapter, and most of the approximations along the way are
done in reciprocal space, until everything is transformed back to real space in the
end. However, the final result can still be cast in the form of Eq. 25. The effective
resonance frequency in the vdW-DF is constructed from a GGA-type XC energy
density. The first equality is motivated by using ω2

eff to calculate the XC energy of
a slowly varying electron gas via the ACFD formula. The particular choice of the
semilocal approximation to the XC energy density is rather arbitrary and completely
independent of the semilocal functional potentially used to complete the vdW-DF at
short range.

A serious disadvantage of the vdW-DF in light of other long-range correlation
models is that its range-separating function is fixed by the underlying theory.
Because of the construction in the reciprocal space, the parameter A appears both
in the effective resonance frequency and the range-separating function. Since the
asymptotic behavior of any nonlocal functional depends only on ωeff, not the range-
separating function, the parameter A is essentially fixed, and there is no remaining
freedom in the range-separating function that could be adjusted for a particular
choice of a short-range semilocal functional in a full KS-DFT calculation.

The form of the range-separating function is complex due to the reciprocal-space
formulation, but there are two underlying physical motivations for it. When the two
oscillators given by the resonance frequencies ωeff are close to each other such that
their ground-state wave functions would overlap, the underlying model does not
work anymore, the corresponding part of the XC energy must be covered by the
semilocal functional, and the dipole coupling must be damped. This is effectively
achieved by increasing the resonance frequency as k2 in the reciprocal space. The
second damping mechanism is that the nonlocal functional must evaluate to zero for
the uniform electron gas, whose long-range correlation energy is already covered
by a semilocal or a hybrid functional. This forces the range-separating function to
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negative values at short range, to counterbalance the attractive contribution from the
long range.

The complex form of vdW-DF was simplified in the VV09 functional, which
used a substantially different form of ωeff,

ω2
VV [n] (r) = 4π

3
n (r) + C

|∇n|4
n4 (26)

Here, 4πn is the resonance frequency of the macroscopic (small-q limit) plasmon
fluctuations of the uniform electron gas. The factor of 1/3 comes from the Clausius–
Mossotti relation between the microscopic local polarizability and the macroscopic
dielectric function. The density-gradient term is a local model of a bandgap obtained
from considering the behavior of the electron density in the density tail of a finite
system. The range-separating mechanism of VV09 is still constructed in reciprocal
space. The latest attempt at a simplified formulation of the vdW-DF, named VV10,
was constructed entirely in real space (Vydrov and Van Voorhis 2010). Both the
resonance frequency and range-separating function of Eq. 25 have a simple form
in VV10. The former is the same as in VV09, and the latter is constructed using
the same mechanism of reduced polarizabilities of overlapped oscillators as in the
original vdW-DF but in real space.

5.5 Pairwise Interatomic Models

The oldest approaches to fix the missing long-range electron correlation in HF or
semilocal KS-DFT calculations are of the interatomic pairwise form,

Ec,lr ≈ −1

2

∑

pq

C6,pq

f
(
Rp, Rq

)

∣
∣Rp − Rq

∣
∣6 (27)

Here, f is some range-separating (damping) function, Rq are the atom coordi-
nates, and the so-called dispersion coefficients, C6,pq, determine the asymptotic
interaction between two atoms. This type of interatomic potential has origin in
empirical force fields dating back to the Lennard–Jones potential, even before it
was clear that the correct leading term of the vdW force is 1/R6. In the context of
electronic-structure methods, it was first used by Hepburn et al. (1975) to correct
interaction curves of rare-gas dimers from HF calculations. This approach was
later extended to molecules and KS-DFT calculations, and the C6 coefficients were
extended to a wider range of systems (Halgren 1992; Mooij et al. 1999; Elstner
et al. 2001; Wu and Yang 2002). Grimme (2004) then presented a parametrization
of C6 and f, termed DFT-D (“D” for dispersion), that could in principle be applied
to any molecule or solid, in combination with any XC functional. This marked a
start of routine addition of the long-range correlation energy to semilocal KS-DFT
calculations.
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The pairwise interatomic model of Eq. 27 can be obtained as a coarse-grained
truncated approximation to the ACFD formula. The derivation follows the same
course of second-order truncation and local approximation to the effective polar-
izability as nonlocal vdW density functionals but starting from the coarse-grained
multipole-expanded ACFD formula (see Eq. 18),

Ec,lr ≈ − 1

4π

ż ∞

0
du Trp,lm (αeff (iu) Tlrαeff (iu) Tlr) (28)

Here, the trace is over multipole moments and fragments, which are chosen to be
atoms in most cases. (In this context, the formal definition of an atom in a molecule
is given by some partition function.) Approximating the local effective polarizability
as isotropic, αeff,pll′mm′ = δll′δmm′αeff,pl , the formula is reduced as in the case of
nonlocal vdW XC functionals. The standard pairwise formula of Eq. 27 is recovered
by keeping only the lowest dipole–dipole term (l = l′ = 1, K11 = 6), where the
expression for the corresponding dispersion coefficient is called the Casimir–Polder
integral,

C6,pq = 3

π

ż ∞

0
du αeff,p1 (iu) αeff,q1 (iu) (29)

Some pairwise methods are formulated directly in terms of the dispersion coef-
ficients, not the underlying polarizabilities, in which case approximate combination
rules for calculating unknown heteronuclear coefficients from known homonuclear
coefficients are useful. Such rules can be derived from the Casimir–Polder integral
using some model polarizability. An often used rule is obtained from the harmonic-
oscillator model,
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(30)

Using the single-pole polarizability of the harmonic oscillator in situations where
the true spectrum is more complex, such as in the equation above, is called the
Unsöld (1927) approximation.

The models of Grimme, mentioned above, are different from the rest discussed in
this section in that they are formulated only in terms of the geometry of a molecule,
{Rp}, not the electron density. This makes them straightforwardly useful even for
empirical short-range electronic models that do not produce any electronic density,
but at the same time, it makes it much harder to achieve truly general models,
because the electron density encodes much useful information about the system.

The first version of DFT-D used fixed homonuclear C6 coefficients, the com-
bination of Eq. 30 with all polarizability ratios set to 1 and a range-separating
function constructed from vdW radii that did not go to 1 in infinity (Grimme
2004). The second version was a numerical reparametrization of the first one with
a changed combination rule, which set the polarizability ratios equal to those of
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the C6 coefficients (Grimme 2006). In the first and second version, the atomic
C6 coefficients do not depend on the molecular environment, which is a crude
approximation. The third version was an improvement in several regards (Grimme
et al. 2010). The range separation was modified to obey the correct asymptotic
behavior. An elementary dependence of the C6 coefficients on the environment was
included via geometrical factors estimating the coordination number of an atom. The
dipole–quadrupole term (l = 1, l′ = 2) was included, and a three-atom correction
was suggested, which is the third-order triple-dipole term in the logarithm expansion
of the coarse-grained ACFD formula. The corresponding dispersion coefficients, C8
and C9, are obtained by combination rules similar to those for the C6 coefficient.

Soon after the first version of DFT-D and in stark contrast to it, Becke
and Johnson (2005b) developed a method to calculate C6 coefficients from first
principles, using an approximation to the polarizability based on the dipole moment
of the XC hole of the HF model, the exchange-hole dipole method (XDM). Their
initial derivation was rather heuristic, with a wrong prefactor, but the final result can
be in fact obtained directly from the Casimir–Polder integral using the fluctuation–
dissipation theorem for the density response function and the Unsöld approximation
(Ángyán 2007; Heßelmann 2009; Ayers 2009). A semilocal approximation to the
XC hole by Becke and Roussel (1989) works as well as that from the HF model
and with the additional benefit of reduced computational complexity (Becke and
Johnson 2005a). To formulate a general interatomic pairwise method, the (local)
dipole moment of the XC hole is coarse-grained using the partitioning scheme
devised by Hirshfeld (1977). In this scheme, the atomic partition functions, wp, are
constructed from radially averaged electron densities of isolated atoms, nfree,

wHirsh
p (r) = nfree

p

(|r − Rp|)
∑

q nfree
q

(|r − Rq |) (31)

The corresponding static dipole polarizabilities of the atomic fragments are
calculated from free-atom dipole polarizabilities, assuming that they scale linearly
with the Hirshfeld measure of a volume (Hirshfeld volume),

αp1(0) = αfree
p1 (0)

V Hirsh
p [n]

V Hirsh
p

[
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] (32)

V Hirsh
p [n] =

ż

dr n (r) wHirsh
p (r)

∣∣r − Rp

∣∣3 (33)

The fragment C6 coefficients are then calculated from the fragment polar-
izabilities and coarse-grained XC hole dipole moment. The harmonic-oscillator
combination rule is used to get the rest of the C6 coefficients. The XDM can be
extended to higher multipole dispersion coefficients by calculating higher multipole
moments of the XC hole polarization around each atomic center (Becke and Johnson
2006; Johnson and Becke 2006).
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A simple yet accurate interatomic pairwise method was developed by
Tkatchenko and Scheffler (2009) (TS), who extended the free-atom scaling
approach to all the atomic parameters, including the C6 coefficients and the vdW
radii, and thus formulated the calculation of interatomic pairwise vdW interactions
into a true density functional. Assuming that the excitation energies of the atoms
are independent of the volume, the Unsöld approximation and the Casimir–Polder
integral dictate that the C6 coefficients scale with the second power of the Hirshfeld
volume ratio,

C6,pq = Cfree
6,pq

(
V Hirsh

p [n]

V Hirsh
p

[
nfree

]

)2

(34)

The free-atom reference values may not be the most effective choice in metals
and some solids, whose electron density is often substantially different from the
superposition of free-atom densities. Zhang et al. (2011) and Ruiz et al. (2012)
used an adapted TS method, where the reference values are obtained from bulk
macroscopic dielectric constant.

Sato and Nakai (2009, 2010) developed an atomic pairwise method based on the
local effective polarizability functional from the vdW-DF-09 nonlocal functional.
A system is described by the local effective polarizability given by the harmonic-
oscillator formula with the resonance frequency from Eq. 26. The atomic fragments
are defined using the partitioning functions from the scheme by Becke (1988), which
is most often used to define atomic radial grids in KS-DFT calculations, but here it
is used as an alternative to the Hirshfeld partitioning. The partitioned polarizability
is used to calculate a coarse-grained representation of the system via multipole
expansion and Casimir–Polder integrals up to the C10 coefficient.

Silvestrelli (2008) formulated a pairwise method in which the coarse-grained
fragments are not atoms but Wannier functions (WFs) (Marzari et al. 2012). Wannier
functions are any set of localized one-electron wave functions that in principle
form a complete basis. In finite molecular systems, they are called Boys orbitals.
The Wannier functions of conducting and nonconducting electrons are localized
algebraically and exponentially, respectively. In the vdW-WF method, each WF
is approximated with a single spherically symmetric exponential function that has
the same width (second central moment) as the true WF. The polarizability of the
approximate WF is calculated with the polarizability functional of Andersson et al.
(1996) (ALL). Here, np is the electron density of the WF and k is a nonempirical
constant. The C6 coefficients between the WFs are calculated from the Casimir–
Polder integral, and the range-separating function is the same as in the TS method,
with vdW radii of the WFs defined via an electron density cutoff (Silvestrelli
et al. 2009). The vdW-WF scheme has two theoretical shortcomings: first, the
partitioning of the total electron density is only approximate because of the use of
the approximate WFs, and second, the ALL polarizability functional was designed
for the total electron density, not one-electron densities.

Coarse-grained methods in which the fragment polarizabilities and C6 coeffi-
cients are calculated directly, rather than obtained by explicit partitioning of some
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continuous quantity, may be sensitive to a particular choice of the partitioning
scheme. This motivated a series of modified Hirshfeld partitioning schemes that
should capture better the redistribution of the electron density in a molecule with
respect to free atoms. Steinmann and Corminboeuf (2010, 2011) adapted the
XDM to use the self-consistent Hirshfeld scheme, which gives a more consistent
description of ionic systems (Bultinck et al. 2007). Bučko et al. (2013, 2014) did the
same with the TS method. The self-consistent Hirshfeld partitioning uses the same
stockholder formula in Eq. 31 as the original scheme, but the reference densities
are generalized and depend recursively on the partitioning, leading to equations
that need to be solved iteratively (Verstraelen et al. 2012). A common form of the
generalized reference densities, used in the modified XDM and TS methods, is a
linear combination of free-atom and free-ion densities that maintains the charge
of the Hirshfeld-partitioned atomic density. This scheme is complicated by the
instability of many isolated anions, which requires addition of auxiliary negative
charges, making the partitioning somewhat arbitrary.

5.6 Many-Body Dispersion

The fourth class of approximations to the ACFD formula covers nontruncated
coarse-grained models. A common theme of all such models is to interpret the
Unsöld approximation with its single resonance frequency literally and model a real
molecular system as a collection of coupled charged oscillators. The corresponding
Hamiltonian describes a system of distinguishable particles characterized by a
charge, qi, and a mass, mi, each having its own harmonic potential defined by the
resonance frequency, i, and a center, Ri, interacting via the Coulomb force,

Ĥosc =
∑

i

p̂2
i

2
+

∑

i

1

2
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2
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The centers of the harmonic potentials additionally host a compensating charge
of the opposite sign. If the centers are the same as those of the atoms, this
Hamiltonian can be interpreted as a very crude approximation to the electronic
Hamiltonian, in which all electrons of individual atoms are described by distin-
guishable psuedoelectrons that move in an effective potential which is the combined
result of the nuclear potential and the mean field of the electrons. In particular, any
exchange effects and hence charge transfer and delocalization are not considered.
Expanding the Coulomb operator in a multipole series and keeping only the dipole
term result in dipole-coupled oscillator Hamiltonian,
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∑
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A useful property of this Hamiltonian is that it can be solved exactly by
coordinate transformation into a system of uncoupled quasi-oscillators, which
describe different collective oscillations. The ground-state wave function of such a
system is then a simple product of the single-oscillator ground-state wave functions,
and the ground-state energy is a sum of the single-oscillator ground-state energies,
E0 = ∑

nω̃n/2. Drawing analogy with the RPA, the individual oscillators model
the particle-like quasi-electrons in some coarse-grained way, while the coupled
oscillations model the wavelike electron oscillations. This Hamiltonian has been
used many times to obtain various qualitative properties of long-range electron
correlation (Bade 1957; Bade and Kirkwood 1957; Mahan 1965; Lucas 1967;
Renne and Nijboer 1967; Donchev 2006) but only recently to formulate general
quantitative methods.

The relevance of the dipole-coupled oscillator model to the true electronic system
can be derived directly from the coarse-grained ACFD formula by performing the
frequency integration analytically (Tkatchenko et al. 2013). When truncated at
the dipole term, the approximate long-range correlation energy is then equal to
the difference in the ground-state energy between the dipole-coupled oscillators
and noninteracting oscillators. The exact equivalence between the dipole-coupled
oscillators and the approximated ACFD formula breaks when going beyond the
dipole approximation. The effective Hamiltonian derived from the ACFD formula
is always bilinear in the interaction and contains one oscillator per each fluctuating
moment (dipole, quadrupole, etc.). In contrast, the coupled-oscillator Hamiltonian
has always 3N coordinates, independent of the degree of the multipole expansion of
the Coulomb operator, and the interaction terms above the dipole order are formed
from nonlinear combinations of the coordinates, making the Hamiltonian unsolvable
in closed form.

The use of the coupled-dipole approach to formulate general methods for the
long-range correlation energy was initiated in the many-body dispersion (MBD)
model developed by Tkatchenko et al. (2012). MBD reuses the effective dynamic
polarizability as approximated in the TS pairwise method and combines it with a
physically motivated effective dipole operator. Motivated by the Gaussian shape of
the harmonic-oscillator ground-state wave function, the dipole potential in MBD,
Tgg, is derived from the screened Coulomb interaction between two Gaussian unit-
charge densities (Mayer 2007), with widths derived from the corresponding dipole
polarizabilities. In general, the dipole potential in the Dyson equation should be
different from that in the ACFD formula and independent of the XC functional
used for the short-range part of the correlation energy. To circumvent this obstacle,
Ambrosetti et al. (2014b) separated Tgg into the long-range part and the short-range
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remainder. The long-range correlation energy is then calculated in two steps. First,
the effective polarizability is screened by the short-range dipole potential via the
Dyson equation. Second, the dipole-coupled Hamiltonian is solved with the long-
range dipole potential.

Silvestrelli (2013) developed another method inspired by MBD in which the
oscillators do not model the response of the atoms but of Wannier functions.
This Wannier-based MBD is to the pairwise vdW-WN method as what the range-
separated MBD is to the pairwise TS method. Unlike in vdW-WN, here the
polarizabilities of the Wannier functions are not calculated using a local polariz-
ability functional but directly from the Hirshfeld volumes of the Wannier func-
tions.

6 Applicability in Material Modelling

Most vdW models have been designed following some set of theoretical principles
(as is common in DFT), rather than obtained by a straightforward application of
systematic approximations (as is common in quantum chemistry). As a result, a
careful attention must be paid to the evaluation of the accuracy of the models, to
avoid any systematic bias, both within and between different classes of systems, and
to know the level of uncertainty in predicted quantities that one may expect. In this
regard, the systematic verification of a given DFT+vdW method is usually achieved
through comparison against the results of higher-level (more costly and more
accurate) theoretical methods or experimental results with sufficient resolution.

In the case of organic molecules and materials, several benchmark sets of
binding energies of complexes and lattice energies of molecular crystals have been
established that allow for systematic testing of vdW models. For smaller molecules,
the reference data have been obtained by high-level correlated methods of quantum
chemistry (Jurečka et al. 2006; Řezáč et al. 2011), for larger molecules by diffusion
quantum Monte Carlo (Ambrosetti et al. 2014a) and for molecular crystals by
extrapolating experimental lattice enthalpies to zero temperature (Otero-de-la-Roza
and Johnson 2012; Reilly and Tkatchenko 2013b). Initially, the development of
vdW models was largely driven by their performance for small molecules on the
S22 and S66 benchmark sets, and currently most popular DFT+vdW methods are
able to achieve accuracies of 10–20 meV (better than 10%). The remaining errors
are due to inaccuracy in the asymptotic vdW coefficients, empirical parameters
in damping functions, and errors in the XC functional. Because of such rather
uniform performance of different methods for small molecules, the focus has shifted
to assessing the performance for larger systems. Here, in fact, the differences are
more prominent, because the vdW energy makes a much larger relative contribution
to cohesion. For example, for polarizable supramolecular systems, such as the
“buckyball catcher” complex, pairwise dispersion corrections overestimate the
binding energy by 0.4–0.6 eV, whereas including many-body dispersion effects
reduces this error to 0.1 eV.
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For periodic molecular crystals, some coarse-grained DFT+vdW methods are
able to achieve remarkable accuracy of 40–50 meV per molecule (5%), compared
to experimental results (Reilly and Tkatchenko 2013a, b; Brandenburg and Grimme
2014). Since the difference in lattice energies between various available experiments
is on the same order of magnitude, this highlights the mature state of vdW dispersion
corrections to semilocal DFT. The nonlocal density functionals yield somewhat
larger errors (Otero-de-la-Roza and Johnson 2012). Understanding the performance
of different vdW-inclusive methods for large molecular systems is still a subject of
ongoing research. Accurate description of vdW interactions becomes even more
relevant for the relative energetics of molecular systems, which are essential to
predict the correct polymorphic behavior of molecular crystals (Reilly et al. 2016).

Beyond organic materials, the performance of DFT+vdW methods have started
to be tested only recently. Reference lattice and interlayer binding energies calcu-
lated with RPA exist for a range of bulk solids (Harl et al. 2010; Schimka et al.
2013) and layered materials (Björkman et al. 2012; Björkman 2012, 2014), but the
accuracy of RPA on the organic systems is comparable to that of DFT+vdW meth-
ods. Alternatively, experimental data are available for many of these systems. Of the
different material types, the performance of individual methods for semiconductors
is usually comparable to that of the organic compounds. In contrast, the accuracy
with which ionic solids and metallic materials are described differs greatly between
vdW models. In some cases, this has motivated the development of different flavors
of vdW models, each targeting a specific class of materials.

7 Toward the Ultimate van der Waals Model

Despite the numerous advances in recent years discussed in the previous sections,
a general, accurate, and efficient vdW model is not yet available. Arguably, this is
a result of each of the current vdW models having some theoretical deficiencies,
some of which are shared by all the models. Therefore, and to stimulate the reader
with potential research problems, we conclude this chapter with a list of theoretical
features that are missing from some or all current vdW models. Furthermore, we
discuss which types of materials do we expect to benefit from potential addition of
such features.

• All current vdW models assume a localized noninteracting polarizability, which
is appropriate for gapped electronic systems, but not for gapless ones. At the same
time, it is not clear what is the importance of the delocalized part of the response
to vdW interactions in different circumstances. For instance, one can expect that
the delocalized fluctuations will be manifested more strongly in the case of two
metallic objects and less in the case of a molecule adsorbed on a metallic surface.
Developing a unified model that uses both the localized and delocalized parts
of the electronic response would enable treating the widest possible range of
systems from purely covalent to purely metallic.
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• Most current interatomic approaches assume a single-oscillator frequency depen-
dence of the polarizability. This may be adequate for lighter elements of the
periodic table in which majority of the response comes from the valence
electrons with similar response properties. However, the core shells contribute
nonnegligibly to the polarizability of heavier elements, and in such cases the use
of two oscillators to capture separately the response of inner-shell and valence
electrons could be beneficial to accuracy.

• All current models of effective polarizability assume isotropic local response.
Could the directionality of the density gradient be used to construct an anisotropic
polarizability model? The part of anisotropy resulting from the long-range inter-
actions (for instance, due to specific packing in a molecular crystal) is already
captured in many-body vdW effects. But the part stemming from short-range
interactions between neighboring atoms (such as in planar aromatic compounds)
is currently neglected.

• The VV functional is perhaps the most accurate semilocal functional for the
local polarizability, but it is still lacking in accuracy to some of the interatomic
approaches. Could this be potentially remedied by including dependence on the
kinetic energy density or the second derivative of the electron density? Are there
some exact constraints and limits on the polarizability functional? Improvements
of this type can be expected to improve the accuracy of the vdW models across
the whole spectrum of materials.

• All methods that use vdW models are based on some empirical coupling of the
short-range and long-range parts. The empiricism necessarily hinders generality
and introduces bias toward the system on which the coupling was constructed.
Many theoretical results are available about general properties of XC functionals
yet none so far that would enable a more rigorous coupling between semilocal
DFT and vdW models. This question is especially relevant in systems where
long-range vdW interactions contribute only partially to the total interaction
energy, such as smaller organic complexes or organic/inorganic systems.

• Except for the costly RPA-based methods, there is no general vdW model
that would be simultaneously many-body while treating also higher multipole
moments of the polarizability. Some pairwise interatomic models include higher
multipole moments, and nonlocal vdW functionals do not need to because of
the lack of coarse-graining, but none of them are fully many-body methods.
The MBD methods, on the other hand, have not yet been extended beyond the
dipole approximation. The inclusion of higher multipoles would be beneficial
for two reasons. First, it should improve the accuracy of the vdW model for
strongly polarizable systems at equilibrium geometries. Second, it would enable
to systematically study a whole new class of vdW effects such as the dependence
of vdW interactions on external electric fields, which cannot be done within the
dipole approximation.

Acknowledgments The authors acknowledge partial financial support by the Luxembourg
National Research Fund within the FNR-CORE program (No. FNR-11360857) and the ERC
Consolidator Grant “BeStMo.”



13 Van der Waals Interactions in Material Modelling 287

References

Ambrosetti A, Alfè D, DiStasio RA Jr, Tkatchenko A (2014a) Hard numbers for large molecules:
toward exact energetics for supramolecular systems. J Phys Chem Lett 5(5):849–855. https://
doi.org/10.1021/jz402663k

Ambrosetti A, Reilly AM, DiStasio RA Jr, Tkatchenko A (2014b) Long-range correlation energy
calculated from coupled atomic response functions. J Chem Phys 140:18A508. https://doi.org/
10.1063/1.4865104

Andersson Y, Langreth DC, Lundqvist BI (1996) Van der Waals interactions in density-functional
theory. Phys Rev Lett 76(1):102–105. https://doi.org/10.1103/PhysRevLett.76.102

Ángyán JG (2007) On the exchange-hole model of London dispersion forces. J Chem Phys
127(2):024108. https://doi.org/10.1063/1.2749512

Ángyán JG, Liu RF, Toulouse J, Jansen G (2011) Correlation energy expressions from
the adiabatic-connection fluctuation–dissipation theorem approach. J Chem Theory Comput
7(10):3116–3130. https://doi.org/10.1021/ct200501r

Axilrod BM, Teller E (1943) Interaction of the van der Waals type between three atoms. J Chem
Phys 11(6):299–300. https://doi.org/10.1063/1.1723844

Ayers PW (2009) A perspective on the link between the exchange(-correlation) hole and dispersion
forces. J Math Chem 46(1):86–96. https://doi.org/10.1007/s10910-008-9451-y

Bade WL (1957) Drude-model calculation of dispersion forces. I. General theory. J Chem Phys
27(6):1280–1284. https://doi.org/10.1063/1.1743991

Bade WL, Kirkwood JG (1957) Drude-model calculation of dispersion forces. II. The linear lattice.
J Chem Phys 27(6):1284–1288. https://doi.org/10.1063/1.1743992

Becke AD (1988) A multicenter numerical integration scheme for polyatomic molecules. J Chem
Phys 88(4):2547–2553. https://doi.org/10.1063/1.454033

Becke AD, Johnson ER (2005a) A density-functional model of the dispersion interaction. J Chem
Phys 123(15):154101. https://doi.org/10.1063/1.2065267

Becke AD, Johnson ER (2005b) Exchange-hole dipole moment and the dispersion interaction.
J Chem Phys 122(15):154104. https://doi.org/10.1063/1.1884601

Becke AD, Johnson ER (2006) Exchange-hole dipole moment and the dispersion interaction: high-
order dispersion coefficients. J Chem Phys 124(1):014104. https://doi.org/10.1063/1.2139668

Becke AD, Roussel MR (1989) Exchange holes in inhomogeneous systems: a coordinate-space
model. Phys Rev A 39(8):3761–3767. https://doi.org/10.1103/PhysRevA.39.3761

Björkman T (2012) Van der Waals density functional for solids. Phys Rev B 86(16):165109. https:/
/doi.org/10.1103/PhysRevB.86.165109

Björkman T (2014) Testing several recent van der Waals density functionals for layered structures.
J Chem Phys 141(7):074708. https://doi.org/10.1063/1.4893329

Björkman T, Gulans A, Krasheninnikov AV, Nieminen RM (2012) Are we van der Waals ready?
J Phys Condens Matter 24(42):424218. https://doi.org/10.1088/0953-8984/24/42/424218

Brandenburg JG, Grimme S (2014) Accurate modeling of organic molecular crystals by dispersion-
corrected density functional tight binding (DFTB). J Phys Chem Lett 5(11):1785–1789. https://
doi.org/10.1021/jz500755u
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