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Abstract

Supercooled liquids become increasingly sluggish upon cooling down to the
glass temperature Tg where they can no longer be studied in equilibrium on the
laboratory scale and behave as off-equilibrium amorphous solids, i.e., glasses.
Simple activated dynamics account for the behavior of so-called strong liquids,
but deviations from Arrhenius behavior are observed in fragile ones and have
defied explanation for decades. Technical advances in experiments have steadily
unveiled more facets of the puzzling phenomenology of fragile liquids including
notably two-step relaxation, stretched exponentials, superposition principles, and
dynamical heterogeneities. Theoretical efforts have developed mainly around the
idea that some sort of finite-temperature critical phenomenon is at play, the key
role in the discussion being played by two different critical points. The first one
is thought to occur above Tg , and therefore it is not really a phase transition
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but rather a dynamical crossover. Numerical studies have shed much light on its
nature, and nowadays it is largely believed to be the outcome of the smoothing of
a sharp singularity spuriously predicted by mode-coupling theory. The existence
of a dynamical crossover is largely accepted, and what is disputed is whether that
is the end of the story.

Those who believe this is not the case typically put forward the classic
hypothesis of a true thermodynamic phase transition to an amorphous glass
state at some finite temperature below Tg . Originally suggested by elementary
extrapolations of experimental data, this putative critical point is nowadays
supposed to be a complex and fascinating object, notably the locus of a
configurational entropy crisis accompanied by a divergent static correlation
length. The quest to establish its existence, reinvigorated by the discovery of
the glass/spin-glass analogy, is very much open but has produced nonetheless
significant advances both at the theoretical and numerical level. Opponents of
the thermodynamic transition scenario include notably those who advocate for
dynamic facilitation, as realized in kinetically constrained models, to explain
physics solely in terms of a dynamical crossover. Understanding dynamics
between the crossover temperature and Tg would help assess both the range
of validity of a description in terms of the crossover and whether something
qualitatively different must be invoked close to Tg and below. Here the essential
missing piece of information is the nature and spatial extent of the activated
processes that should rule the dynamics: at the theoretical level, a consistent,
beyond phenomenological, theory of these dynamical processes has still to be
developed; at the experimental level, current techniques do not have enough
spatial resolution; finally numerical simulations have been typically confined to
higher temperatures due to hardware speed limitations but are beginning to access
the crossover region and may provide some guidance in the coming years.

1 Introduction

In spite of decades of experimental, theoretical, and numerical studies, the glass
problem is very much open: the community agrees only on a few statements while
all the rest is strongly debated. In the following an introductory critical discussion
will be given of some of the theoretical and numerical results inspired by the
idea that some sort of critical phenomena determines the puzzling phenomenology
of supercooled liquids. The reader should be aware that this covers only a part,
although significant, of the literature of this field. In the spirit of the handbook,
this contribution is not intended as a general and exhaustive review but rather as
an, hopefully stimulating, introduction to some of the main open questions. The
interested reader will find in the references a number of more technically detailed
review papers and books (Gotze 2009; Cavagna 2009; Wolynes and Lubchenko
2012; Berthier et al. 2011; Berthier and Biroli 2011).
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This line of research has evolved over the years around the existence of two
critical temperatures: the crossover temperature and the Kauzmann temperature.
The first critical temperature occurs upon supercooling the liquid when it still
can be studied in equilibrium, and its existence is largely agreed upon and can
be considered part of the phenomenology. The problem is that it does not mark
a genuine phase transition but rather a dynamical crossover; thus it is difficult
to make sharp and universal statements about it. In this context mode-coupling
theory (MCT) captures the initial steps of the dynamical slowing down but fails
spectacularly because it predicts a sharp transition instead of a crossover, and the
main open problem is to extend it to the crossover region and below. From the
point of view of material modeling and simulations, it is a particularly important
problem, because the resolution of current experiments cannot provide guidance
for its solution. On the other hand, microscopic details are fully under control in
numerical simulation, but hardware constraints limit them to considerably higher
temperatures than those reached by experiments. Nevertheless many believe that
the crossover region is attainable with present or near-future technology and hope
to finally understand this regime in the coming years.

It is fair to say that our shared understanding of the physics of glasses ends
with MCT slightly before the glass crossover. Below it we only know that some
kind of activated dynamic should set in. In this context a fascinating but strongly
debated hypothesis is the occurrence, at very low temperatures, of a genuine
thermodynamic transition from the liquid to an amorphous glass state. This line
of research has inspired a variety of novel analytical and numerical techniques;
the idea is that the information on slow dynamics can be obtained without
performing molecular dynamic simulations but rather by studying the equilibrium
configurations of appropriately constrained systems. From the analytical point of
view, the advantage is that one can perform static computations that are typically
easier than full-fledged dynamical ones. From the numerical point of view, the
advantage is that equilibrium configurations can be obtained through more efficient
algorithms than molecular dynamics. This is a field where numerical work has
been going on in the last 15 years, and significant recent developments include
algorithms to reach temperatures that even experiments cannot. Nevertheless evi-
dences for a genuine phase transition are still not decisive; besides this information
has not shed light into the fundamental question of why dynamics becomes
so slow.

This work is organized as follows. In order to define the problem, the main
dynamical features of realistic supercooled liquids as obtained from experiments
will be summarized in Sect. 2. In Sect. 3 the MCT scenario will be presented, and
it will introduce a discussion of the extent to which the phenomenology can be
explained in terms of an avoided MCT-like transition. Section 4 is devoted to the
existence of a genuine phase transition occurring in the regime that is not accessible
by experiments and to the conceptual, technical, and numerical developments it has
inspired. Conclusions will be drawn in the last section.
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2 Phenomenology of Supercooled Liquids

The main properties of supercooled liquids, as observed in experiments, are
(1) power law to exponential crossover, (2) two-step relaxation, (3) complex
dynamics (stretched exponentials), and (4) dynamical heterogeneities (violation
of the Stokes-Einstein relationship (SER)). These are dynamical properties that a
consistent theory of glasses should necessarily explain. In addition there are the so-
called thermodynamics/dynamics correlations whose significance in relationship to
the experimental dynamical features is more disputed.

The power law to exponential crossover is the oldest property that has been
observed and possibly the most important. Upon slowly cooling a liquid crystallizes
at the melting temperature. If one is able to further lower the temperature avoiding
crystallization, a supercooled liquid is obtained. Upon further cooling, the relaxation
time or equivalently the viscosity of the supercooled liquid increases up to a value
where the viscosity is equal to a (conventional) value of the order of the laboratory
timescale. This point defines the glass transition temperature Tg . It should be clear
that nothing special happens at Tg from the point of view of the system; it is just the
lowest temperature where the system can reach equilibrium in a timescale accept-
able to humans. Obviously there is nothing strange in dynamic slowing down upon
lowering the temperature; for instance, this occurs if dynamics proceeds through
elementary events that require to overcome a constant free energy barrier E. In this
case Arrhenius behavior is observed, with the logarithm of the relaxation time (or
equivalently the inverse of the viscosity) increasing as the inverse of the temperature:

τα ∝ e
− E

kBT (1)

Strong liquids exhibit by definition Arrhenius behavior upon supercooling, while
fragile liquids exhibit a different behavior: when the logarithm of the viscosity
is plotted vs. the inverse temperature in the so-called Angell’s plot (1995), the
data do not follow a straight line (see Fig. 1). In the early stages of supercooling,
the viscosity of fragile liquids increases slowly and can be fitted by the tail of a
power law diverging at some finite temperature. This temperature, however, marks
a dynamical crossover: close to it the viscosity deviates from the power law and does
not diverge; however it begins to increase in a more pronounced way that can only be
fitted with functional forms depending exponentially on the temperature variations.
Overall the data of fragile liquids exhibit a more or less pronounced bending with
respect to the straight line Arrhenius behavior, and the slope at Tg provides a
quantitative definition of kinetic fragility (note that this terminology has nothing
to do with the brittleness properties of the corresponding glass). Experimental data
above Tg have been fitted by many different functions, including some that, upon
extrapolation, predict a divergence of the relaxation time at some finite temperature
below Tg , notably the Vogel-Fulcher-Tammann (VFT) law:

τα = τ0 exp

[
DT0

T − T0

]
(2)
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Fig. 1 Phenomenology of supercooled liquids. (a) Strong liquids like silica (SiO2) follow a
straight line on the Angell’s plot, while fragile liquids like glycerol and ortho-terphenyl (OTP)
exhibit a bending (Ediger et al. 1996). (b) The self-intermediate scattering function Fs(q; t)

for q = 6.1 at various temperatures from a numerical simulation of a binary mixture, from
Flenner and Szamel (2013). The dashed line is a stretched exponential. (c) The susceptibility
spectrum of supercooled CKN (Li et al. 1992) is broader than that of a single exponential (solid
line); correspondingly the relaxation can be only fitted by a stretched exponential. (d) Diffusion
coefficient D versus viscosity η for experimental and numerical simulation data from Rizzo and
Voigtmann (2015). Dashed lines indicate D ∝ η−1 (Stokes-Einstein relation) and a fit with
D ∝ η−0.65 (fractional SE relation). A large circle marks the crossover temperature. Inset: D · τ

with simulation data

This leads to the two following essential questions: what causes the power law to
exponential behavior in fragile liquids? Will the relaxation time eventually diverge
at a finite temperature below Tg?

Models of supercooled liquids are often defined in terms of spherical particles
interacting with pairwise potentials, and the typical dynamical observable is the
intermediate scattering function:

F(q, t) ≡ 1

N

〈
ρq(t)ρ−q(0)

〉
(3)



188 T. Rizzo

where the square brackets mean thermal average, ρq is the Fourier component of
the density,

ρq ≡
N∑

j=1

ei q rj (4)

and rj is the position of particle j . The intermediate scattering function is
equivalent, by means of Fourier transforms, to the dynamic structure factors and
the van Hove function. At t = 0 the intermediate scattering function is equal to
the static structure factor and relaxes to zero at large times. In experiments this
quantity is accessible through a number of techniques (Richert 2012; Lunkenheimer
et al. 2012). Observation of the two-step relaxation requires measurements on a
huge range of timescales. The main relaxation, associated with the viscosity, is
called the α process hence the name τα for the relaxation time. However, there
is an additional timescale τβ over which F(q, t) develops a plateau when plotted
vs. log(t) and the system appears to be essentially frozen. The β scale is orders
of magnitude smaller than τα , but it is considerably larger than the microscopic
timescale. In Fig. 1b the phenomenon is displayed as measured in a numerical
simulation for the relaxation of the self-intermediate scattering function (the Fourier
transform of the single-particle displacement). The origin of the two-step relaxation
is often attributed to the emergence of caging (Gotze 2009). The idea is that
when dynamics is sufficiently slow, the environment of a given particle appears
to be frozen, and therefore the particle itself is caged and will in turn cage its
neighbors.

Caging is observed clearly in numerical simulations of hard-sphere systems (Kob
1999), but its origin is not completely understood. In these systems the temperature
can be always reabsorbed into a rescaling of times, and the only nontrivial external
parameter to be changed is the density. It seems natural that upon increasing the
density at some point dynamics will slow down because of reduced volume effects.
The problem with this interpretation is that caging is observed already at rather low
density, and it appears abruptly in a rather narrow range of densities, meaning that
if one inspects instantaneous configurations it is rather difficult to tell the difference
between a configuration from a system that displays caging and one from a system
that does not. This is an aspect of the so-called structure vs. dynamics problem.
In other words the question is whether slow dynamics can be traced back to some
structural property of the instantaneous equilibrium configurations. We may ask if
there is some observable that can be measured on a given configuration that will
correlate with the fact that relaxation from that configuration will exhibit caging or
not. This is a fundamental question in the field, and the negative answer amounts to
say that glassiness is a completely dynamical problem; this issue will be discussed
again later on.

In simple Arrhenius dynamics relaxation decays exponentially in time. Relax-
ation in fragile liquids instead is complex, meaning that can only be typically
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fitted with a stretched exponential form exp
(−tb

)
. In experiments this result

in the broadening of the susceptibility spectra that are related to the Fourier
transform of the relaxation (see Fig. 1c). Much as the two-step relaxation, this
is not at all trivial. As soon as the relaxation is controlled by independent
microscopic events occurring in a uniform environment, the decay is necessarily
exponential, while in order to have a stretched exponential behavior, one must
either invoke spatial fluctuations in the environment or a moderately large cor-
relation length implying that the relaxation events are not elementary or involve
many particles. Which hypothesis is correct, if any of the two, is at present
unknown. Superposition principles are an additional nontrivial feature of the
relaxation. Strictly speaking they amount to say that the temperature dependence
of the relaxation is only encoded in the timescale τα , meaning that one can
write

F(q, t) = Cq(t/τα) (5)

for some function Cq(t). This property is verified approximately by many super-
cooled liquids in some temperature range; see Gotze (2009) for a more detailed
discussion of experimental data.

In the last 20 years dynamical heterogeneities (Ediger 2000; Berthier et al. 2011)
have emerged as a fundamental property of fragile liquids. In short the idea is
that approaching Tg if one look at the liquid at the microscopic level there will be
regions where dynamics is orders of magnitude faster than in the rest of the system.
The above generic statement can, and often is, misinterpreted if one does not give
it a more quantitative formulation. This is given by the so-called violation of the
Stokes-Einstein relationship (SER) connecting the viscosity with the inverse of the
diffusion constant of a given particle. The SER is verified at high temperatures, but
violations are observed approaching Tg and starting somewhere near the crossover
temperature (see Fig. 1d). The SER can be justified assuming that each particle
perform a kind of Brownian motion in a homogeneous environment. Conversely
violations should occur in a situation in which, even if the SER is satisfied locally,
the environment is not homogeneous and the local viscosity has strong fluctuations
in such a way that the inverse of its average is different from the average of its
inverse. Once again the precise mechanism leading to SER violations is not agreed
on, but they are definitively considered a hallmark of complex dynamics. MCT
helps to clarify that dynamical heterogeneities should not be confused with dynam-
ical fluctuations; indeed MCT has diverging dynamical fluctuations but no SER
violation.

In addition to the above dynamical features, a consistent part of the lit-
erature points toward the so-called thermodynamics/dynamics correlations con-
necting dynamical quantities like the viscosity with thermodynamical quantities
(the entropy) measured by calorimetry. They are often invoked in the context of
theories that advocate for the existence of a genuine phase transition below Tg , and
they will be discussed in more details in Sect. 4.
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3 The Crossover Temperature

3.1 Mode-Coupling Theory

Mode-coupling theory (Gotze 2009) starts from the exact microscopic equations for
the dynamic structure factor of simple monoatomic liquid models and then makes a
certain number of approximations. The outcome is a set of closed equations that
can be solved numerically once the static structure factor is provided as input.
Before discussing MCT predictions, let us stress that there is at present a very
poor understanding of the approximations involved. The only justification comes
a posteriori as the results display a significant agreement with the behavior of actual
systems (again with some caveats), and the problem is complicated by the fact that
some of the approximations involved cannot even be tested directly. Therefore, in
spite of the fact that MCT starts from the exact microscopic dynamics, it is fair to
say that it is essentially a black box whose internal operation is unknown. Efforts to
understand it have been limited in the past, and more work should be devoted to this
essential open problem. Instead research activity has essentially ignored this issue
focusing on the empirical development of a sort of operating manual of the theory
and applying the resulting procedure to a variety of models and systems again with
impressing results.

There is a broad agreement that many supercooled fragile liquids can be modeled
by simple liquids with pairwise interactions, including hard-sphere (HS) systems.
However in two and three dimensions, monoatomic systems tend to crystallize
easily and cannot be supercooled to very low temperature; therefore one must
consider, at least, binary mixtures (Kob 1999). Mode-coupling equations can be
extended to binary systems of hard or soft spheres, and the resulting equations can
be solved to obtain the dynamic structure factor giving as input the static structure
factor typically obtained from numerical simulation.

The theory predicts that at a given value of the control parameter (temperature
or pressure), dynamical arrest occurs meaning that the infinite time limit of the
dynamic structure factor does not decay to zero as it should in the liquid phase
but tends to a constant momentum-dependent value, called the non-ergodicity
parameter. As we said already it is known that this prediction is completely wrong,
and in order to understand why, in spite of this dramatic failure, MCT is still
considered highly valuable; we have to discuss its predictions upon approaching
the transition temperature TMCT .

First of all, MCT predicts that the decay of the dynamic structure factor proceeds
in a two-step fashion as seen in experiments, with both scales τβ and τα diverging as
power law of τ ≡ TMCT −T . More precisely at the critical temperature T = TMCT ,
F(q, t) approaches the nonzero long-time limit Fc(q) in a power-law fashion with
a nontrivial exponent a: F(q, t) ≈ Fc(q) + c/ta . The exponent a controls the
divergence of the β scale through

τβ ∝ |τ | 1
2a . (6)
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For temperatures slightly larger than TMCT , F(q, t) reaches the plateau value Fc(q)

in a finite time that defines the scale τβ . For times of the order of τβ , it remains
close to the plateau value up to deviations of order square root of τ ≡ TMCT − T

before eventually leaving the plateau on the scale τα ∝ |τ |−γ . The decay on the α

scale satisfies both the superposition principle and the stretched exponential form
with exponent exp

[−tb
]
, in striking agreement with experiments. Furthermore the

exponent γ is related to a and b through

γ = 1

2a
+ 1

2b
(7)

and the two exponents a and b can be both expressed as

λ = Γ 2(1 − a)

Γ (1 − 2a)
= Γ 2(1 + b)

Γ (1 + 2b)
(8)

where λ is the so-called parameter exponent for which MCT provides quantitative
predictions.

Data from numerical simulations of a variety of models are consistent with this
scenario in some range of temperatures (Kob 1999; Gotze 2009). In particular, it is
often possible to estimate the critical temperature, the exponents, and the ergodicity-
breaking parameter Fc(q) and compare them with the quantitative predictions of
MCT. One should bear in mind that these estimates from realistic systems data
are intrinsically arbitrary because in principle MCT scalings are only well defined
close to the dynamical arrest transition, but in practice the transition does not
occur. In practice this ambiguity is reflected by the fact that the critical temperature
depends on the observable and also on the nature and range of the fit. In spite
of this intrinsic ambiguity, it turns out that the range of variations of the critical
temperature is often sufficiently small for the whole procedure to make sense. This
happens for most models and experimental systems, and indeed this experimental
MCT critical temperature (or density) is almost always reported in any study of
supercooled liquid. Furthermore the value of the ergodicity-breaking parameter can
be obtained from the data, and it is often in excellent quantitative agreement with
the predictions of MCT. The values of the critical exponents are more ambiguous
but still are in good agreement with the predictions of MCT. In particular it seems
that there is good consistency between the exponents a and b that control the β

regime with the exponent γ that controls the α regime. This is a manifestation of the
nontriviality of the double-step relaxation, in the sense that processes occurring on
large but comparatively very different timescales are related. It is worth mentioning
that MCT predictions appear to be somewhat meaningful even below the critical
temperature TMCT where the theory predicts that F(q, t) have a nonzero long-
time limit increasing as

√
τ for T smaller than TMCT . It turns out that in many

experimental systems and numerical simulations a square root increase of the
plateau value can be actually observed notwithstanding the fact that F(q, t) will
eventually leave the plateau at variance with MCT predictions.
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Overall the comparison between numerical simulations and theory suggests
a scenario in which ideal MCT predictions are accurate except very close to
the critical temperature where the theory needs some substantial modification.
Unfortunately this scenario is too optimistic in the sense that the effective MCT
temperature, the one for which MCT fits do describe actual data, is defini-
tively different from the value of the critical temperature obtained from the
solutions of the MCT equations itself (Kob 1999). This discrepancy is model-
dependent but seems rather universal; typically it is more pronounced in soft
sphere models than in HS, but its origin is unclear. As a result, it is often
said that the MCT critical temperature is wrong, but it should be clear that
there are two essentially different aspects of it being wrong. In a weak sense
it is wrong because its value does not compare well with the value used to
fit numerical data. The theory overestimates this value, and in practice in order
to obtain reasonable fits, one must plug into the MCT equations the structure
factors from higher temperatures. In a strong, more fundamental, sense MCT is
wrong because there is no true critical temperature in experiments and numerical
simulations.

The above discussion on the critical temperature allows to introduce the quan-
titative vs. qualitative MCT scenario. There are some features of MCT that are
more universal and are found also outside the original domain of the theory,
i.e., supercooled simple liquid models in physical dimension. The most striking
instance is the case of spin glasses displaying one step of replica symmetry breaking
(1RSB) in Parisi’s scheme (Mezard et. al. 1988). These systems are utterly different
from a liquid at the microscopic level; notably they are defined on a lattice, and
they have quenched disordered interactions, and yet, as discovered by Kirkpatrick
and Thirumalai (1987), their dynamics shares the very same phenomenology of
MCT, namely, dynamic arrest characterized by two-step relaxation with power-law
divergent timescales. Furthermore in the β regime, where the correlation stays near
the plateau, dynamics obeys the very same critical equation of MCT, i.e., a universal
quadratic dynamical equation that does not depend on the microscopic details of the
model. Thus one should always bear in mind that there are qualitative, much more
general, MCT predictions and quantitative MCT predictions that are only limited to
supercooled liquid models. In MCT literature this distinction is often not very clear.

An important instance of the qualitative/quantitative difference is the case of
simple supercooled liquids in large dimension. This problem has been investigated
extensively over the years under the expectation that in infinite dimension the
crossover should become a true transition and the problem should become solvable.
These studies culminated recently with the exact and complete solution (Charbon-
neau et al. 2016) that confirmed that the qualitative MCT scenario is correct (e.g.,
the relationship between the exponents holds), while the quantitative values of the
critical temperature and of the exponents are wrong.

Another striking instance of the universality of the qualitative MCT scenario is
provided by cooperative kinetically constrained models (KCM) (Ritort and Sollich
2003; Chandler and Garrahan 2010) that will be briefly discussed in the next
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section. Remarkably the Fredrickson-Andersen model, when studied on the (mean-
field) Bethe lattice, displays a dynamical arrest transition in agreement with the
qualitative MCT scenario (Berthier and Biroli 2011). Note that this statement is
only based on numerical observations, and justifying it analytically is a fascinating
open problem.

We are now in position to discuss the failures and successes of MCT in
connection with the phenomenology of real supercooled liquids presented in the
previous section. The two-step relaxation scenario is a significant success together
with the presence of stretched exponentials in the relaxation. The main failure is
the prediction of a true phase transition which in reality is a crossover; however
MCT is at least consistent with the initial power-law behavior. Another significant
failure of MCT is that even close to the critical temperature, it does not display
the SER violations associated with dynamical heterogeneities. By means of the
microscopic MCT equations, one can indeed obtain predictions for the diffusivity.
Remarkably the lack of SER violation is confirmed by the exact solution in infinite
dimension (Charbonneau et al. 2016). The fact that SER holds in MCT does not
mean that dynamical fluctuations are finite within the theory. Actually one can argue
that close to TMCT the theory predicts both diverging dynamical fluctuations and
diverging dynamical correlation length. This can be shown by means of an extension
called inhomogeneous MCT (Berthier and Biroli 2011) although care must be taken
in extracting the critical exponents as simple scaling arguments lead to incorrect
results (Rizzo 2014). Given that the dynamical arrest transition does not occur, these
divergences are also unrealistic and are not often emphasized in the MCT literature.

A few comments on the spurious divergence of the dynamical correlation length
are in order. In the early days of MCT, it was not clear what was the origin of
dynamical arrest, and some authors believed that no diverging correlation length
was involved (see, e.g., Ediger et al. 1996). One can argue on physical ground
that for ergodic statistical mechanics systems, a finite-temperature dynamical
transition must be necessarily associated with a diverging correlation length (these
arguments can be made rigorous in the case of spin-glass models (Berthier and
Biroli 2011)). This observation may appear not so important in the case of the
MCT crossover because in the end no dynamical arrest transition is present, but
it is important when discussing the possibility of a true transition occurring at
some finite temperature below Tg as we will see in the following section. Another
point worth mentioning is that while diverging fluctuations must be necessarily
accompanied by a diverging correlation length, a simple increase of fluctuations
does not imply an increasing correlation length. This is important to assess the rel-
evance of experimental measurements of nonlinear susceptibilities. The increase of
fluctuations reported in these experiments is sometimes interpreted as an indication
of an increase of the correlation length (Albert et al. 2016), overlooking the fact that
the connection between the two quantities requires additional assumptions. Actually
a recent theory of the crossover provides a counterexample in which increasing
dynamical fluctuations are accompanied by a decreasing correlation length (Rizzo
2014).
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3.2 Toward a Theory of the Crossover

The understanding of supercooled liquids ends slightly above the crossover tem-
perature and everything occurring below is disputed. While MCT is definitively
wrong at low temperatures, its success at moderate supercooling suggests that one
should amend it in order to describe the crossover region and then move to even
lower temperatures. Efforts in this direction have been going on for a long time,
but none is considered fully satisfactory and will not be discussed in detail. People
tried often to modify the theory at the microscopic level. In general it turns out to
be rather easy to remove the sharp transition, but this typically leads to a simple
exponential relaxation thus spoiling the stretched exponential which is one of the
great successes of MCT, not to mention that these modifications are always ad
hoc and phenomenological. Note that MCT also starts from the microscopic first-
principle description and then makes some uncontrolled approximations, however
there is no evident logical connection between the approximations made and the
final results, and in this sense MCT approximations are not considered ad hoc.

A different possibility is that in order to describe the physics at the crossover
and go beyond MCT, one should use instead a mesoscopic effective theory that is
accurate on a coarse-grained scale over which the microscopic details of the model
are unimportant. This is the way to proceed in the case of a genuine second-order
phase transition because they are characterized by a divergent correlation length.
Applications of these ideas in the context of the crossover appear counterintuitive,
since in the end the correct theory should tell us that there is no divergence of the
correlation length. Nevertheless one should note that in order for a mesoscopic
effective theory description to be valid, one does not need a diverging correlation
length; it is enough for it to be large compared to the microscopic scale. On the
other hand it is largely agreed that dynamics in the crossover region is cooperative
meaning that the dynamical correlation length, while not diverging, is indeed large
(Berthier and Biroli 2011; Harrowell 2011).

The mesoscopic theory can be shown to be equivalent to a solvable model of
dynamical stochastic equations. Quite interesting the resulting model displays all
the hallmark of supercooled liquid, namely, the power law to exponential crossover,
two-step relaxation, stretched exponential, and dynamical heterogeneities in the
form of SER violations (Rizzo 2014). Most importantly it is not a phenomenological
theory because these features are not the outcome of ad hoc assumptions. On the
other hand, by definition, there is no way to tell from the mesoscopic theory itself
if it is appropriate to describe a specific system. For that one should start from a
first-principle microscopic description and apply coarse-graining in a rigorous way.
This implies that in principle this description could be accurate for one system
but not for another system. It is also important to note that the validity of a
mesoscopic description for a given supercooled liquid model could also be assessed
explicitly by means of a numerical simulation. This requires to accurately measure
dynamical fluctuations and correlation lengths to check if the order parameter
after coarse-graining is sufficiently smooth to be described by an effective theory.



9 Critical Phenomena in Glasses 195

The technology to measure dynamical correlations and fluctuations was developed
some 20 years ago motivated by the experimental observations of dynamical
heterogeneities (Berthier and Biroli 2011), and it is known that extracting these
quantities from numerical simulations is quite demanding.

4 Dynamics vs. Thermodynamics: The Kauzmann
Temperature

The idea of a genuine phase transition occurring below originated with Kauzmann’s
analysis of calorimetric experimental data (Kauzmann 1948). He noticed that
while at the melting temperature the entropy of the crystal is lower than that of
the liquid, it decreases less upon cooling in such a way that, by extrapolation,
they should become equal at a temperature TK < Tg . In order to avoid the
paradox of an amorphous state having lower entropy of the crystal, he considered
various possibilities including that the liquid had a genuine phase transition to a
thermodynamically stable glass state at TK . Nowadays Kauzmann’s observation is
not considered a paradox anymore: in the late 1950s computer simulations showed,
to the surprise of many, that an isolated liquid of hard spheres does crystallize,
and this occurs precisely because the crystal state has a higher entropy than the
disordered state! This is understood in terms of a balance between short-range and
long-range entropies: the crystal has a smaller long-range contribution to the entropy
but has a larger local contribution because the particles have locally more room
than in the amorphous state (Ackerson 1993). As we said already, crystallization is
actually a major problem in numerical simulations of supercooled liquids, and it is
typically avoided using binary mixtures or more polydisperse systems.

In spite of the fact that Kauzmann ’s observation is not really a paradox, the
debate over the existence of a genuine phase transition is still going on to this
day. Interestingly Kauzmann himself was against this hypothesis and believed that
the paradox would be solved by some dynamical mechanism. The main problem
being that it is not possible to study the supercooled liquid below Tg . Another
important aspect of the discussion is the observation of thermodynamics/dynamics
correlations (Adam and Gibbs 1965). Adam and Gibbs pointed out that for many
experimental systems VFT fits of viscosity data yield a critical temperature T0
compatible with the TK extrapolated from calorimetric data. In particular if one plots
the logarithm of the viscosity (a dynamical quantity) as a function of the inverse of
the excess entropy , i.e., the difference between the entropy of the supercooled liquid
and that of the crystal (a thermodynamic quantity), they appear to be correlated.

To complete the picture, Goldstein (1969) started with the observation that
approaching Tg relaxation from a given initial configuration proceeds in a two-
step fashion; first each particle explores its cage and then escapes from it. Then
he argued that the motion inside a cage defines a sort of metastable state and the
final relaxation can be seen as a jump from one metastable to another. If one further
argues that the entropy of the metastable state corresponds to a kind of vibrational
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contribution (essentially analogous to the crystal entropy), it follows that the excess
entropy is a measure of the number of metastable states, called the configurational
entropy. The decrease of the configurational entropy thus explains the slowing down
of dynamics because the system in order to relax has less and less metastable states
to escape to.

It is important to realize that while the excess entropy is a well-defined object
that can be measured experimentally, the configurational entropy is not. Entropy is
a static equilibrium concept and thus cannot be applied to a metastable state that
can only be observed on a finite time window. More practically this is reflected
by the fact that there is no unique definition of it. On the other hand, Kirkpatrick,
Thirumalai, and Wolynes (KTW) pointed out that the previously mentioned mean-
field spin-glass models are indeed characterized by the presence of many metastable
states below a temperature TMCT and the corresponding configurational entropy
vanishes at some lower temperature TK (Kirkpatrick and Thirumalai 1987). At the
mean-field level there is simply no dynamics beyond TMCT , and they put forward
the idea that in physical dimension the mean-field picture should be modified
invoking nucleation arguments as in the classic Becker-Doring theory.

Classical nucleation theory describes the decay of a metastable phase to the stable
phase of lower free energy in terms of the expansion of droplets of the stable phase.
The surface tension tends to shrink the droplet, while the bulk free energy difference
tends to expand it. The two forces depend on the radius of the droplet and balance
at some critical radius rc: droplets larger than rc will expand, while smaller droplets
will shrink and disappear. The time to nucleate a critical droplet naturally increases
with the size of the critical radius which in turn increases and diverges at the
coexistence point where the free energy difference is zero and both phases are stable;
correspondingly the lifetime of the metastable state diverges exponentially. The idea
of KTW is to use nucleation arguments to describe the dynamics of supercooled
liquids using the configurational entropy in place of the free energy difference.
This offers an explanation of the thermodynamics/dynamics correlations and of the
exponential VFT-like divergence of the relaxation time. Furthermore the nucleation
argument implies that there is a diverging correlation length, which was already
advocated by Adam and Gibbs that suggested that dynamics is driven cooperatively
rearranging regions (CRR) of increasing size upon approaching Tg .

The existence of an actual phase transition at TK is an appealing topic because
it is a sharp statement, either true or false. On the other hand the nontrivial
phenomenology we need to explain is observed above Tg , and thus a consistent
part of the community does not consider it particularly relevant. At any rate, even if
a genuine glass transition occurred below Tg , one should still have to prove that the
physics observed above Tg is a consequence of its presence. Instead many believe
that the physics of supercooled liquid can be explained solely in terms of a crossover
temperature that was discussed in the previous section. Note that in the context
of mean-field theories, the existence of a TK requires logically the presence of a
crossover at a higher temperature while the opposite is not true: models exist for
which there is an MCT singularity, but the configurational entropy does not vanish
at any finite temperature.
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The opposite view that dynamics may be completely unrelated to thermody-
namics is supported by the so-called Kinetically constrained models (Ritort and
Sollich 2003; Chandler and Garrahan 2010). They are defined in terms of binary
variables (that can be viewed as spins) on a lattice. The variables do not interact
and thus the thermodynamics is trivial at all temperatures. Dynamics instead must
obey some constraint, for instance, in the well-known Fredrickson-Andersen model,
each spin must have at least k neighbors in the up state in order to flip. It turns
out that dynamically these models display many of the phenomenological features
of supercooled liquids, notably a power law to exponential crossover and two-
step relaxation. Since no thermodynamics transition may occur in these models,
their physics is typically interpreted solely in terms of the existence of a crossover
temperature. Furthermore on the Bethe lattice they seem to display a sharp MCT-
like transition, and the aforementioned dynamical features can clearly be associated
with this transition being avoided on lattices in three and two dimensions (Berthier
et al. 2011). The main open problem is that these models lack a clear microscopic
connection with the original liquid models, and it is not exactly clear how the
constraints on the dynamics should emerge from the (unconstrained) microscopic
Hamiltonian dynamics. In practice this is also reflected by the impossibility of
obtaining some sort of quantitative prediction. Another problem is that it seems
difficult to rationalize the Adam-Gibbs phenomenological correlations between
dynamics and excess entropy using these models, although, as we said before, one
may question their overall relevance.

An additional interesting open problem is inherently associated with facilitation
dynamics. At low temperatures one expects that in a supercooled liquid there are
large regions that are essentially frozen for a large amount of times and eventually
relax. One possible mechanism inducing the relaxation is the expansion/motion of
a mobile region from outside the blocked region into it, but one can also think of
relaxation led by thermally activated rare events. However this second mechanism
is impossible in KCM where relaxation can only propagate from the borders of the
blocked region. Thus knowing what is the mechanism at work in actual supercooled
liquids could help discriminate between competing theories, but at present this is
unclear.

From a practical point of view, the idea of a genuine thermodynamics transition
is appealing because one can study it in a purely static framework. In the context
of numerical simulations, one is no longer bound to use a physical algorithm
to thermalize the system, and more efficient algorithms can be devised. For
instance, particle-swap algorithms have been used in the last 15 years and recently
have produced spectacular results for specially designed polydisperse hard-sphere
mixtures that were thermalized up to densities corresponding to the laboratory
timescale and even below (Berthier et al. 2017).

Underlying any static study in the context of supercooled liquids is the key
question of whether nontrivial information can be extracted solely from the
instantaneous equilibrium configurations. At first one would say that the answer
is no, after all one of the striking features of supercooled liquid models of hard or
soft spheres is precisely the fact that if one looks at the instantaneous configurations
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at various temperatures (or densities) approaching the crossover, one cannot detect
any significant change that could justify the dramatic increase of the relaxation time.
Nevertheless, guided by the supercooled liquid/spin-glass analogy advocated by
KTW, various authors have suggested that nontrivial information can be obtained
solely from the equilibrium configurations by applying appropriate procedures
(Wolynes and Lubchenko 2012).

The general idea is that one has to use an equilibrium configuration of the
original system (the reference configuration) to define a new system and then show
that nontrivial information can indeed be red off the equilibrium configurations of
the new system. The first procedure that was introduced is the so-called Franz-
Parisi potential that counts the equilibrium configurations that are at some fixed
distance from the reference configuration. At the mean-field level, the potential has
a minimum as a function of the distance at the maximal distance but, upon lowering
the temperature, develops a secondary minimum at TMCT . The difference in height
between the primary and the secondary minimum is the configurational entropy
that will eventually vanish at a lower temperature . This mean-field picture must
be modified in finite dimension by applying a Maxwell construction as in ordinary
first-order phase transition: one expects that the potential first develops a constant-
slope segment close to the crossover temperature with the slope eventually going to
zero at TK .

Another interesting procedure is to measure the so-called point-to-set length
(Berthier and Biroli 2011). In this case the particle positions are frozen in the
reference configuration except inside a spherical cavity that it is then thermalized
again. One expects that when the cavity is very large the bulk should be insensitive
to the constraint at the boundaries, while if the cavity is sufficiently small, the
center of the cavity should be stuck in a metastable state (stabilized by the frozen
boundary). The point-to-set length is defined as the length that separates these two
regimes, and mean-field theory predicts that it should diverge at TK . This length
should provide a way to actually measure the size of CCRs thus rephrasing the
KTW idea of a diverging correlation length in a way that is amenable to be tested in
simulations.

Finally we can mention random pinning that amounts to freeze a finite fraction
of the particles of the reference configuration and equilibrate again the remaining
free particles (Berthier and Biroli 2011). In this case the existence of genuine phase
transition can be linked to the presence of a line of first-order transitions in the
temperature-concentration plane. Different geometries, e.g., the freezing/pinning
of an infinite wall of the system, have also been studied. Note that in both the
pinning and cavity procedure, it can be shown that the configuration in which the
free particles have the same positions they had in the reference configuration is
an equilibrium configuration for the constrained system, which is a considerable
advantage because one does not need to equilibrate the system again.

In the last 20 years the above procedures have been applied to various systems,
and the most spectacular results are those obtained recently by the swap algorithms
(Berthier et al. 2017). In these studies both the Franz-Parisi potential and the
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point-to-set length were measured in equilibrium for values of the density even
higher than the glass density ρg . Their behavior was found to be compatible
(through extrapolation) with the presence of an actual phase transition at some ρK .
Unfortunately, as it will be discussed in the following, while being a tremendous
improvement with respect to earlier studies, it seems that these results are not
enough to assess convincingly the validity of the scenario.

One problem is that the degree of extrapolation that one has to make on the
actual data is still significant, and if one thing can be learned from the extensive
literature on glasses is that extrapolations are always debated. Another problem
concerns the point-to-set length itself and emerged from the early numerical studies
of this quantity. Measurements of this quantity indicate a rather small value that
increases slowly; thus, while a divergence at lower temperature cannot be ruled out,
it is not particularly remarkable. Given that the growth and eventual divergence of
this quantity should be the driving mechanism behind the growth of the relaxation
time, we have a problem because this length is small while the relaxation time
is increasing exponentially. Therefore it is further postulated that the relationship
between the static length and the relaxation time is exponential due to some kind of
activation mechanism. To this day however, a solid theoretical foundation of these
statements is lacking.

The connection with dynamic raises an additional problem. As we discussed
in the previous section, the dynamical correlation length should diverge at TMCT .
In the region where it can be measured, it exhibits a significant growth, while
obviously being nondivergent. However in the region where both can be measured,
the dynamical correlation length is definitively larger than the point-to-set length
and appears to be growing more strongly, such that extrapolation suggests that their
difference would be even more pronounced at lower temperatures. In other words
the static length does not seem to be relevant for dynamics in the region where
dynamics is already nontrivial.

In order to complete the discussion on the relevance of static methods, one must
add that unphysical algorithms may allow to assess the validity of supercooled
liquid models. As we said already the problem of crystallization becomes less severe
increasing the dimension, but in three and two dimensions one is necessarily forced
to consider at least binary mixtures. Recent numerical studies suggest that even
if they do not crystallize at the temperatures reached by state-of-the-art molecular
dynamics simulations they will be at lower temperatures accessible at present only
by unphysical algorithms. Furthermore while up to now the knowledge of low-
temperature equilibrium configurations has not shed light into the central problem
of why dynamics slows down, they could be used to study the emergence of various
anomalies in the glassy state observed in experiments. Besides understanding why
swap algorithms are successful may shed light into why physical dynamics is instead
so slow.

Some comments are important on the analogy between spin glasses and super-
cooled liquids suggested almost 30 years ago by KTW. On general ground systems
with a completely different microscopic structure can be expected to share some
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common behavior if they have a sufficiently large correlation length, such that the
relevant physics occurs on a scale insensitive to microscopic details. In this light
the fact that static length measured is typically small is troublesome. Furthermore
many problems concerning these spin-glass models are still open irrespective of
their eventual connection with supercooled liquids. First of all there is no numerical
evidence that any of these spin models actually displays an entropy crisis transition
with a discontinuous order parameter in finite dimension: the fate of the MF
transition in finite dimensional system has still to be firmly established. Various
failures to identify such a model have been rationalized by noticing that short-
length fluctuations, already present on finite-connectivity mean-field lattices, are
responsible for the absence of the transition rather than long-length fluctuations
that would be a more general and harmful mechanism. Thus the quest for a good
candidate is still a fascinating open problem.

Besides the numerics, an additional problem is that there is no precise and
well-established analytical treatment of finite dimensional effects. In particular
the connection between statics and activated dynamics is not well established
even at the mean-field level, i.e., that of nucleation theory for metastability and
phase coexistence. Furthermore, in order to agree with experimental data, the
phenomenological expressions require the use of non-mean-field exponents that
nobody knows at present how to compute. Note that these are all well-defined
problems that should be addressed and solved irrespectively of their relevance to
supercooled liquids.

We have seen that the static approaches offer a considerable advantage at
the algorithmic level, but there are also major advantages at the analytic level,
because dynamics is typically more difficult than statics. The spin-glass/structural
glass analogy suggests that one has to use the replica method (Mezard and
Parisi 2012) that indeed provides a way to compute static objects like the Franz-
Parisi potential and the point-to-set length. In finite dimension the replica method
predicts a MCT-like transition that should be considered a spurious mean-field
modification of what is in reality a crossover. This follows from the fact that,
as in MCT, one must resort to some approximation scheme. As we said before,
MCT provides nevertheless good quantitative estimates for quantities like the
ergodicity-breaking parameter and the (pseudo)critical exponents. On the contrary
current approximation schemes in the replica method studies yield predictions of
considerable lower quality. On the other hand, as we said in the previous section, the
replica method has been used successfully to study supercooled liquids in infinite
dimension. This is an instance, albeit special, of a system where the connection
between dynamics and thermodynamics can be demonstrated starting from first-
principle microscopic methods, to be contrasted with KCM models, where, at
present, there is no explicit microscopic derivation of the assumption that dynamics
is facilitated. Still, the essential problem remains to describe how the ideal MCT
transition becomes a crossover in finite dimension, and it is not even clear if the
mechanism at work in large but finite dimension is the same in dimension two and
three.
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5 Conclusions

The body of work presented in the previous sections may be summarized as follows:
there is an accepted transition which is not really a genuine critical point, and then
there is another transition that is really critical but whose existence is highly debated.

State-of-the-art molecular dynamics simulations can equilibrate a few super-
cooled liquid models down to temperatures close and slightly below the crossover
temperature. While there is no precise way to substantiate these claims as we are
dealing with a crossover and not a sharp critical point, there is, nevertheless, a
widespread belief in the community that the next generation of numerical studies
will be able to probe the crossover region and beyond for a variety or models. This
makes all the more urgent to go beyond MCT and develop a comprehensive theory
of the crossover with qualitative and quantitative predictive power.

Additional motivation to tackle this problem comes from other critical phenom-
ena that have not been discussed here. In particular in the context of MCT, higher-
order glass-glass transitions have been predicted and also detected numerically to
some extent (Gotze 2009). Actually, the ability to predict these singularities prior to
observation has convinced many of the value of MCT and of the fact that one should
try to correct its shortcomings instead of throwing it away altogether. Much as the
MCT transition, these higher-order singularities are expected to become smooth
crossovers in realistic systems, and it seems reasonable that their understanding
would benefit from any development in the former. Similarly, the study of liquids
in high dimension (Charbonneau et al. 2016) has suggested the existence of even
more exotic critical points, notably full replica-symmetry-breaking critical points as
observed in mean-field spin glasses. At present the relevance of these transitions in
realistic models is unclear. Be as it may, they are intrinsically mean field in nature,
and their existence in realistic models poses a number of conceptual problems.
Actually they may be observed only after the MCT crossover has occurred, and
it is likely their fate in finite dimension could be fully understood only once the
crossover problem has been solved.

As for the debate on the existence of a genuine glass transition below Tg , the
bottom line is that the static objects that should manifest critical behavior, e.g., static
length scales, are compatible with a singularity, but their divergence is too mild
and not particularly remarkable in the range where they can be measured in current
numerical simulations. On the other hand their connection with the truly remarkable
dynamical features is still speculative and should be established more rigorously.
Nevertheless this is a field in which progress has been made steadily in the last
decades and more is expected to come.

If we had to single out one fundamental open question from the previous discus-
sion, that would be the nature of the activated process below the crossover tempera-
ture and above Tg . Measurements of increasing dynamical correlation lengths unam-
biguously show that kinetic fragility, i.e., the power-law-to-exponential crossover
is induced by the dynamics becoming cooperative. The problem is what happens
at lower temperatures: do correlation lengths continue to increase? Can dynamics
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be described solely in terms of the crossover, or can we identify some feature that
necessarily requires some other mechanism approaching Tg? Currently, experiments
do not have enough spatial resolution to shed light on these questions while the
timescales involved are too large for numerical simulations, but both problems could
be overcome in the future through some breakthrough.
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