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Abstract

First-principles simulations of materials provide both computational microscopes
and predictive tools, which we aspire to turn into design strategies for materials
with target properties. One requisite to meet this goal is the enablement of
predictions of material properties on a large scale, so as to generate a vast
amount of validated computational data that may eventually be used to solve
inverse problems. However it is challenging to use big data to address the
“why question.” First-principles calculations of specific materials and properties
can instead be extremely effective at answering the “why question,” namely,
at unraveling mechanisms and providing fundamental, physical insights, thus
paving the way to innovative design strategies. In this chapter, we present
first-principles predictions of material properties relevant to energy conversion
processes. We also discuss some open challenges related to automated integration
of theory and computation with experiments and with validated, interpreted data.
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1 Introduction

Science and engineering of materials is a vast field ultimately enabling the develop-
ment of new technologies, with impact in energy, quantum information science,
medicine and health, and national security. Almost 10 years ago, in the United
States, President Obama launched the Materials Genome Initiative (MGI) (Obama
2011), with a speech at Carnegie Mellon (June 2011). MGI has been a game changer
in the way the scientific community thinks of and approaches research in materials.
The ambitious goal set by Obama, “To help businesses discover, develop, and deploy
new materials twice as fast . . . ,” catapulted research on materials at the forefront of
science and engineering on the national scene and pointed out clearly and forcefully
that business as usual was not an option in materials research. The MGI pushed
toward innovation, to developing brand new techniques to make, study, and predict
materials, and recognized theory and computation not only as an integral part of
the innovative process but as a driver seat player. Projects in developing predictive
tools and databases for materials flourished, for example, the Materials Projects
(Jain et al. 2013a) initiated at MIT and then established at LBNL and several related
initiatives (Curtarolo et al. 2012; Jain et al. 2013a, 2016; Saal et al. 2013; Bhat et al.
2015; Kalidindi and De Graef 2015; Rajan 2015; Blaiszik et al. 2016; Thygesen and
Jacobsen 2016; Chard et al. 2018).

In 2015 the US DOE established for the first time computational materials
centers (CMS) to develop methods and software to predict materials properties –
importantly to develop software open to the community – thus further enhanc-
ing the pace of research and innovation. Three centers were established, two
at National Laboratories (BNL: https://www.bnl.gov/comscope/ and ANL: http://
miccom-center.org/) and one on a university campus (USC: https://magics.usc.
edu/). A year later two additional centers were created, at LBNL (http://c2sepem.
lbl.gov/) and ORNL (https://cpsfm.ornl.gov/). These centers were born in the
ecosystems of the energy hubs conceived by Steven Chu (JCESR (www.jcesr.
org) and JCAP (https://solarfuelshub.org/)); the hubs have a clear mission toward
a societal grand challenge, climate change (global warming), and within that
ecosystems, many of the projects of DOE centers and other agencies, notably
NSF (www.nsf.gov/pubs/2019/nsf19516/nsf19516.htm), focused their research on
functional materials for energy.

A question that arises in many instances when discussing the impact of MGI
and the US CMS, as well similar centers established in in Europe and Asia, is
simply what’s new relative to the deployment of software in the semiconductor
and pharmaceutical industry: in these industries codes for materials and molecular
systems have been used for decades. However such codes have traditionally been
used as mostly end of the line engineering tools, e.g., to test molecules that would
not be synthetized first in the laboratory or to help design chips that had already
been planned, based on specific material choices. The theories, codes, and software
developed and pushed by MGI-like ideas are meant to become (and in some cases
are already becoming) beginning of the line multi-scale tools to produce innovative
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ideas on materials that have not yet been made, have not yet been planned, and do
not even come from conventional synthetic and fabrication sources.

These theories and codes are envisioned to be general enough to meet two
upcoming scientific revolutions: artificial intelligence (AI) and big data (De Mauro
et al. 2015) and quantum information science and technology (Bennett and DiVin-
cenzo 2000). It is important to emphasize that general applicability is a key,
distinctive feature relative to the codes used in the semiconductor industry, for
example, which have traditionally been developed for specific tasks, targeting one
specific class of materials and processes. General codes may be used to produce the
data needed for AI technologies for vast classes of materials. Computer generated
data may then be part of design strategies that include innovative feedback loops
with experiments, as well as strategies to make data reproducible and available to
the scientific community worldwide (see, e.g., Govoni et al. 2019).

Contemporary computational methods and database mining techniques have
already made tremendous strides in the prediction of equilibrium properties of
materials that exhibit simple morphologies. However, the functionality of modern
materials depends critically on the integration of dissimilar components and on
the interfaces that arise between them. Hence the atomic- and molecular-scale
manipulation of these components and the heterogeneous structures that emerge
from them are key to materials design. In particular, the controlled and driven
assembly of building blocks into hierarchical systems, as well as the control
of defects and complex morphologies, offers the opportunity to create artificial
materials that do not exist in nature and that exhibit superior physical properties
for, e.g., emerging energy and quantum information technologies.

The simulations of heterogeneous materials and of the assembly process of
artificial materials are much less advanced than the study of equilibrium properties.
In order to accelerate the discovery of innovative functional materials, it will be key
to acquire the ability not only to compute the properties of the end product but also
to simulate and validate the assembly processes that take place during synthesis and
fabrication. In addition, in order to design materials relevant to many technologies,
it is essential to predict functionalities of systems with complex defective structures
and ultimately complex morphologies and to simulate and eventually engineer
the basic mass, charge, and energy transport phenomena, as pictorially illustrated
in Fig. 1. We emphasize that most transport phenomena, e.g., electron transport,
and phenomena involved in the spectroscopic characterization of materials, which
involve interaction with light, are inherently quantum mechanical and thus require
a first-principles, quantum mechanical treatment of interatomic interactions, at the
atomistic scale.

In the following, we focus on two examples (interfaces for energy conversion
processes, in Sect. 2 and materials composed of complex building blocks, in Sect. 3),
and we describe recent progress in describing heterogeneous, defective materials
with complicated morphologies using first-principles methods (Martin 2004, Martin
et al. 2016). We aim at showing the importance of unraveling mechanisms and
providing fundamental, physical insights, in order to pave the way to material design
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Fig. 1 Integrated predictions
of multiple properties are key
to define effective design
strategies for materials with
target characteristics. These
properties encompass the
atomistic structure of the
material, possibly derived
from the assembly of
complex building blocks, the
response to electromagnetic
fields (light) used to probe
and characterize the material
and transport properties,
including mass, charge, and
heat transport

strategies. We close (Sect. 4) by describing open challenges in understanding and
predicting synthetic pathways to obtain materials with target properties.

2 Energy Conversion at Interfaces from First Principles

In Figs. 2 and 3, we show some of the key processes and properties that one
aims at understanding to establish a structure-function relationship and eventually
predict optimal materials for solar-to-fuel and solar energy conversion, respectively.
The figures illustrate the complexity of the predictive endeavor and the multitude
of properties one should be able to compute, validate, and ultimately integrate
with experiments. We concentrate here on materials for photo-electrochemical cells
(PECs; Fig. 2).

The generation of hydrogen from water and sunlight through PECs is one
of the promising approaches investigated by the scientific community in the last
decades for producing sustainable carbon-free energy (Walter et al. 2010; McKone
et al. 2013; Pham et al. 2017). A key aspect to building an efficient PEC is
the availability of Earth-abundant semiconducting photoelectrode materials that
can absorb sunlight and eventually drive water-splitting reactions when interfaced
with the liquid. Despite steady efforts, no single material has yet been found that
simultaneously satisfies the efficiency and stability required for the widespread
commercialization of hydrogen technology, and efforts have been concentrated on
architectures composed of different materials, notably absorber solids interfaced
with catalysts. Hence, understanding the properties of the interfaces between the
various components is key to predict novel systems and eventually to optimize the
device performance.



4 The Long and Winding Road: Predicting Materials Properties Through . . . 41

Fig. 2 Pictorial representation of key processes and systems involved in water-splitting reactions
occurring on a catalytic surface, which starts with harvesting light to form charge carriers and
involves proton-coupled electron transfer (PCET) processes

Fig. 3 Pictorial representation of the key physical processes involved in the prediction and design
of nanostructured semiconducting materials for solar energy conversion, including ensembles of
nanoparticles (NPs), embedded NPs, and inorganic clathrates (icons on right hand side). Electronic
(absorption, photoemission, and band offsets) and transport properties may be obtained from
calculations based on density functional and many-body perturbation theory

In this regard, electronic and structural properties of absorbers/catalysts/water
interfaces play a critical role, as rapid charge transfer between the photoelec-
trode, the catalysts, protective layers, and electrolytes is required for efficient fuel
production. Interfacial structural and electronic properties of PECs are of course
intertwined. For example, band edge positions of photoelectrode absorbers depend
on the surface termination, the reconstruction, and the concentration of impurities
and defects. In addition, the stability of the absorbers against oxidation (reduction) is
determined by the relative energy between their valence band maximum (conduction
band minimum) and intrinsic oxidation (reduction) potential. Such a complex
interplay results in a multi-property optimization problem which, given recent
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advances in high-performance computing and sophisticated electronic structure
theories and codes (Kresse and Hafner 1993; Soler et al. 2002; Gygi 2008; Blum
et al. 2009; Giannozzi et al. 2009; Hutter et al. 2014; VASP, Kresse and Furthmüller
(1996a, b) Kresse and Hafner (1994) www.vasp.at; SIESTA, www.icmab.es/siesta;
Qbox, www.qbox-code.org; FHI-AIMS, http://aims.fhi-berlin.mpg.de/; Quantum
Espresso, www.quantum-espresso.org; CP2K, www.cp2k.org; CPMD, www.cpmd.
org;), is now conceivable to tackle using first-principles simulations.

In recent years, it has been successfully demonstrated that first-principles
calculations can be employed to scan thousands of combinations of elements across
the entire periodic table to suggest new photoelectrode candidates (Greeley et al.
2006; Jain et al. 2013b; Castelli et al. 2015). However, computational screening
schemes available thus far in the literature have mostly focused on bulk properties
of candidate materials, and only recently the structural and chemical properties of
surfaces and interfaces with the electrolyte have attracted the attention that they
deserve to build successful design strategies. To paraphrase what Herbert Kroemer
so elegantly pointed out is his Nobel lecture (Kroemer 2000) on semiconductor
heterojunctions, the interface is still the device! As shown by us and others, the
effective predictions of band offsets for water photocatalysis require the simulations
of the electronic structure of solvated surfaces at finite temperature and in the case
of oxide surface, importantly of defective solvated surfaces (Gerosa et al. 2018).

For example, in a case we have recently studied, WO3 (Gerosa et al. 2018 and
reference therein), we have shown that the average potential energy difference at
the interface of pristine and defective WO3 varies by ∼1 eV and that solvation is
absolutely critical (see Fig. 4). In addition, we have shown the key importance of
using a high level of theory, beyond the widely used density functional theory (DFT)

Fig. 4 Energy levels (valence band maximum, blue; conduction band minimum, red; defect state
due to oxygen vacancies; yellow) of a WO3 surface in vacuo, at T = 0 and at room temperature,
in the presence of water (solvated). The energy levels have been obtained using first-principles
molecular dynamics simulations and calculations at the many-body perturbation theory level
(GW), starting from electronic states computed with hybrid density functionals (From Gerosa et al.
2018). Note the striking difference of the positions of the levels on the right and left hand side,
relative to the redox levels of liquid water

http://www.vasp.at
http://www.icmab.es/siesta
http://www.qbox-code.org
http://aims.fhi-berlin.mpg.de/
http://www.quantum-espresso.org
http://www.cp2k.org
http://www.cpmd.org
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(Hohnberg and Kohn 1964; Kohn and Sham 1965; Martin 2004) and hybrid DFT
(Perdew et al. 1996 ; Heyd et al. 2003, 2006) to carry out predictive calculations.
The latter have allowed us to understand that the excess charge present at defective
WO3 surfaces due to oxygen vacancies forms a large 2D polarons (∼10 A radius) on
the plane of the surface; the predicted charge localization properties hint at possible
formation of stable (OH−) groups at the surface in contact with water and at the fact
that holes transferred to water would then form a highly reactive (OH)*, a possible
precursor of water-splitting reactions. Altogether our calculations have identified
three major factors determining the chemical reactivity of oxide absorbers interfaced
with water: the presence of surface defects, the dynamics of excess charge at the
surface, and finite temperature fluctuations of the surface electronic orbitals. These
general descriptors are essential for the understanding and prediction of optimal
oxides for water oxidation.

This was presented as an example of the importance of gaining fundamental
physical insight into descriptors in order to define material design strategies and
in particular into non-intrinsic properties of materials such as interfaces between
complex components and defects present at finite temperature. We now turn to
a second example of materials made of complex, nanostructured building blocks,
where again interfaces – specifically buried interfaces – dominate the scene.

3 Building Blocks for Electronic Materials and Materials for
Energy Conversion

In this section we consider materials made of nanostructured building blocks,
in particular semiconducting colloidal nanocrystals (NCs) (Scalise et al. 2018;
Greenwood et al. 2018; Talapin et al. 2010). Systems built from the assembly of
these “artificial atoms” are emerging as tunable, earth-abundant, and potentially
nontoxic materials for solar energy conversion, light emission, and electronic
applications (Talapin 2012; Kovalenko 2013; Wippermann et al. 2013, 2014, 2016).
The electronic and transport properties of NC-based solids depend on many factors
that encompass the intrinsic characteristics of the individual NCs, for example,
their shape, size, and composition, as well as their surface chemistry and mutual
interactions. Organic ligands traditionally used in NC synthesis play a central role
in controlling shape and size, as well as in driving self-assembly into superlattices.
However, these ligands are often composed of long hydrocarbon chains, which
create an insulating barrier that leads to low charge carrier mobilities. Significantly
higher mobilities could be achieved by using inorganic ligands, and their use has
enabled significant performance improvements of NC-based solar cells, transistors,
and lasers.

For example, InAs and CdSe NCs capped with molecular metal chalcogenide
complexes (MCC) were shown to exhibit high electron mobilities (Lee et al.
2011; Liu et al. 2013), with III–V-based nanomaterials preferable for commercial
applications due to their lower toxicity. However, the atomistic structure of these
materials is difficult to characterize, in particular that of the NC surfaces and
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Fig. 5 Schematic representation of the integrated experimental and computational strategy
adopted to obtain validated structural models and electronic properties of all inorganic semicon-
ductor materials composed of colloidal nanocrystals, represented in the inset on the bottom right
(see text)

interfaces, whose control is required to engineer systems with the desired properties.
Recently we proposed (Scalise et al. 2018) a strategy to model a broad class
of nanocrystal-in-glass systems that extends significantly beyond semiconductor
quantum dots and MCC ligands.

Our strategy is summarized in Fig. 5. By combining first-principles molecular
dynamics (MD) and ab initio stability diagram calculations (ab initio electronic
structure calculations of surface energies and stability), main structural motifs
were identified; in particular the structure of buried interfaces was determined.
Before proceeding to derive a complete structural model, the motifs obtained
computationally were experimentally validated, by carrying out XPS and Raman
measurements, which both confirmed the results of the calculations. Using these
validated structural motifs as a starting point of additional first-principles MD
simulations, a structural model consistent with experiment was finally derived and
used to analyze the electronic structure of the composite material. The predicted
electronic states were used to interpret and understand the reasons for the measured
negative photoconductivity, thus identifying specific reasons giving rise to proper-
ties that had remained unexplained and controversial for some time.

Overall, by combining electronic structure calculations and first-principles
molecular dynamics (MD) simulations with experiments, we showed that the
ligands are not absorbed as intact units but rather they decompose on contact with
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the NC surface to form an amorphous matrix that encapsulates the nanoparticles
(NPs). The intrinsic electronic properties of the isolated NCs are greatly modified
in the matrix, whose atomistic structure plays a key role in enabling an efficient
electronic transport. The structural model derived in this way permitted an
explanation of the origin of the measured negative photoconductivity of the
nanocomposite. This was presented as an example of novel material properties
emerging when assembling building blocks at the nanoscale and as an example of
the importance of tightly integrating theory, computation, and experiments. The
future challenge will be to achieve such integration automatically and to define
general validation strategies appropriate for broad classes of systems.

4 The Synthetic Challenge

One of the open challenges in computational materials science is the understanding
and prediction of how to synthesize materials with target properties (De Yoreo
et al. 2016). Using experimental data and simulations, the challenge is to establish
correlations between synthesis protocols (SP) and material structure (M) and
between synthesis protocols and material properties (P). This endeavor requires
the solution of both direct and so-called inverse problems (Kaipio and Somersalo
2005). The former include answering first the question: Given a synthesis protocol
(SP), what material (M) does one obtain? This forward problem is a grand challenge
for predictive, computational methods. We still lack well-defined physics models
that can describe synthesis; in addition “realistic” materials encompass complex
descriptors including crystal structure, morphology, defects, and surface coverings.
An even more complex forward problem concerns materials properties and the
following questions: Given a synthesis protocol, which properties (P) does one
get? This forward problem is clearly not unrelated to the first one (SP → M);
however, it poses additional experimental and theoretical challenges. In particular,
on the theory side, the prediction of certain complex properties is still in the making,
e.g., obtaining optoelectronic and vibrational spectroscopic data and transport data,
which require the use of sophisticated, cannot yet be used efficiently to acquire large
amount of data for broad classes of systems.

The ultimate goal of the science of synthesis research is to solve the inverse
problems associated with the forward problems mentioned above: Given a desired
material, what synthesis protocol should be used to obtain it? Given a set of
desired materials properties, what synthesis protocol should be used to obtain them?
Solutions to inverse problems are found by solving many forward problems in a
regression loop, which requires forward problems to be rapidly computable and the
use of data analytic approaches, designed to mine experimental and theoretical data.

Ultimately, by seeking correlations between data and synthesis conditions,
one will enable the discovery of materials and synthesis ontologies, i.e., a set
of descriptors linking materials and synthetic pathways (e.g., crystal phase and
synthesis temperature). Accurate ontologies are not yet known for synthesis, and
their definition may come from the use of machine learning (ML) to search for the
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most relevant descriptors for a given outcome and to relate different descriptors
used by different researchers. We expect that with the increasing population of
experimental and computational databases in the materials science community,
ML workflows (Jain et al. 2015; Pizzi et al. 2016; Meng and Thain 2017; Adorf
et al. 2018; Freire and Chirigati 2018) may be used to train models of materials
synthesizability and properties and hence to predict novel materials.

In closing, we would like to comment on data and data availability. A key guiding
principle for materials research is to make data findable, accessible, interoperable,
and reusable. The reproducibility of experiments and computations and of the
corresponding results is an important and critical part of the overall research process
of all scientific disciplines and in particular of materials predictions heavily relying
on large amount of data. Yet the data presented in most published scientific papers
are not made available to the community, and the procedures followed to obtain
or generate the data are often not articulated step by step or in any detail. Hence
making all data available to the public (Govoni et al. 2019), on a paper-by-paper
basis, so as to increase experimental and computational rigor in reporting results,
together with transparency, should become integral part of the research process. This
endeavor will also greatly contribute to devising improved validation procedures
for computational data as well as establishing experimental and computational
automatic feedback loops.
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