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Abstract

Hydrodynamic interactions determine the individual and collective behavior of
nano- to micrometer size active objects such as swimming bacteria, sperm, algae,
and synthetic colloidal microswimmers. Based on the Navier-Stokes equations
of hydrodynamics, the major contributions to the flow field of a swimmer in a
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Newtonian fluid are presented. The propulsion of beating and rotating filaments
is shown to emerge as consequence of the distinct friction coefficients for parallel
and perpendicular motion of the filament. Hydrodynamic interactions with a wall
lead to a preferred alignment of a swimmer adjacent to a wall. Moreover, the
rotational motion of a flagellar bundle of swimming bacteria combined with the
counterrotation of the cell body leads to circular trajectories on a surface, where
the handedness depends on the wall slip. Even more, the collective behavior of
active matter is determined by hydrodynamic interactions, which is illustrated by
cilia synchronization and the squirmer model for microswimmers.

1 Introduction

Active matter, whose agents consume internal energy or extract energy from the
environment to propel themselves through a fluid, and are thus far from thermal
equilibrium, is omnipresent in nature. Examples on the microscale range from
an uncountable number of bacteria in soil or living in symbiosis with humans,
spermatozoa in their attempt to fertilize an ovum, or algae harvesting sunlight
in ponds and the ocean. Nowadays, synthetic active systems have been designed,
which are powered by phoretic processes, e.g., thermophoresis or diffusiophoresis
(Bechinger et al. 2016). In any case, the microswimmer is embedded in a fluid,
and the fluid plays a decisive role for the propulsion itself as well as the collective
behavior (Lauga and Powers 2009; Yeomans et al. 2014; Elgeti et al. 2015; Zöttl and
Stark 2016; Winkler 2016). The physics ruling swimming on the micrometer scale is
very different from that applying to swimming in the macro-world, although certain
propulsion strategies are reminiscent of those on a macro-scale – bacteria, such
as Escherichia coli, are propelled by rotating flagella, sperm perform a snakelike
motion, and algae, such as Chlamydomonas reinhardtii, apply a breaststroke-type
beating pattern. However, swimming at the micrometer scale is swimming at low-
Reynolds numbers (Purcell 1977), where viscous damping by far dominates over
inertia. Hence, swimming concepts of the high-Reynolds number macro-world are
ineffective on small scales. In the evolutionary process, microorganisms acquired
propulsion strategies, which successfully overcome and even exploit viscous drag.

Bacteria, sperm, or algae use flagella – filamentous structures protruding from
their bodies – for their propulsion (cf. Fig. 1 for an illustration). In fact, eukaryotic
flagella are very different from prokaryotic ones, which is manifested in the differing
propulsion strategies (Elgeti et al. 2015). However, in any case, the thrust force
emerges by the difference in the hydrodynamic friction of a (long) slender body
parallel and perpendicular to the body major axis. Thereby, the flow field far from
the swimmer is usually dominated by a “force dipole” and decays similarly with
distance, independent of the propulsion mechanism, since a microswimmer is force-
and torque-free. At walls, surface hydrodynamic interactions lead to a propulsion-
dependent preferred alignment of a microswimmer (Spagnolie and Lauga 2012) or
circular trajectories (Lauga et al. 2006; Di Leonardo et al. 2011; Hu et al. 2015a).
Under shear flow, the hydrodynamic force-dipole flow field substantially affects
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Fig. 1 Depiction of
microswimmers. (Left)
E. Coli, (Right)
Chlamydomonas with the cell
nucleus, and (Bottom) sperm.
The scale bar indicates the
approximate size of the
swimmers

the overall viscosity (Saintillan 2010), and for suspensions of pushers, e.g., E. coli
bacteria, “superfluidlike” behavior has been observed, where the viscous resistance
to shear vanishes (López et al. 2015).

Active matter exhibits fascinating emergent collective phenomena. In nature,
microswimmers can reach astonishing densities. Sperm cells are released by the
millions to compete in the run for the egg, and biofilms are made up of billions of
bacteria. Coordinated motion is exploited by spermatozoa of some species by self-
assembling into unique train-like aggregates of hundreds or thousands of cells and
thereby significantly increased sperm motility in a viscous environment (Sivinski
1984; Moore and Taggart 1995). Flagellated bacteria exhibit a particular mode of
motion, where they migrate collectively over surfaces and are able to form stable
aggregates, which can become highly motile (Heinrichsen 1978; Copeland and
Weibel 2009; Kearns 2010). Here, cooperativity reaches a new level, and bacteria
exhibit highly organized movements with remarkable large-scale patterns such as
networks, complex vortices, or swarms (Copeland and Weibel 2009; Wensink et al.
2012). These type of patterns are remarkably similar to patterns appearing for other
active matter systems such as schools of fish, flocks of birds, mammalian herds, or
crowds of humans (Vicsek and Zafeiris 2012; Elgeti et al. 2015; Popkin 2016).

The various aspects touched above illustrate the fundamental importance of
hydrodynamics for microscopic active matter ranging from swimming of indi-
viduals to large-scale collective migration. In the following, the low-Reynolds
number aspects relevant for microswimmers will be briefly summarized, and various
hydrodynamic phenomena will be presented.

2 Low-Reynolds Number Hydrodynamics

2.1 Equations of Motion

Typically, the dynamics of the (isothermal) incompressible fluid flow field surround-
ing a microswimmer is described by the Navier-Stokes equations
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ρ

(
∂

∂t
v + (v · ∇) v

)
= −∇p + η∇2v + f , ∇ · v = 0, (1)

where v(r, t), p(r, t), and f (r, t) are the velocity, pressure, and volume-force
density fields, respectively. At small Reynolds numbers Re = ρuL/η � 1,
where ρ is the fluid mass density, u the characteristic velocity, L the size of the
microswimmer, and η the fluid viscosity, the inertia terms on the left-hand side of
Eq. (1) can be neglected, and the equations reduce to the Stokes or creeping flow
equations

∇p(r) − η∇2v(r) = f (r) , ∇ · v = 0. (2)

For illustration, the Reynolds number in water of a swimmer of length L = 10 μm, a
velocity of u = 50μm/s, and the kinematic viscosity ν = η/ρ = 10−6m2/s is Re ≈
10−3. The Stokes equation (2) is linear and time independent. The consequences of
this intrinsic symmetry under time reversal for microswimmers undergoing periodic
shape changes were first expressed by Purcell (1977) and are now known as “scallop
theorem”, which can be stated as: if the shape changes displayed by a swimmer are
identical when viewed in reverse order (time reversal symmetry), it will generate
an oscillatory, but no directed motion (Purcell 1977; Lauga and Powers 2009;
Yeomans et al. 2014; Elgeti et al. 2015). Thus, just by opening and closing its
two shells, a mussel (scallop) cannot move forward at Re � 1. Microswimmers
developed various strategies to beat the scallop theorem. Aside from many (elastic)
degrees of freedom, they use specific propulsion mechanisms which are not time
reversible – bacteria such as E. coli are propelled by rotating helical flagella bundles,
sperm use sinusoidal bending waves propagating from head to tail, and algae, e.g.,
Chlamydomonas, use a nonreciprocal stroke pattern.

2.2 Solution of Stokes Equation

The linear Stokes equations (2) are easily solved analytically for an unbounded fluid.
The respective fluid velocity field is

v(r) =
ż

Q(r − r ′)f (r ′) d3r ′ , Qαα′(r) = 1

8πηr

[
δαα′ + rαrα′

r2

]
, (3)

where Q(r) is the well-known Oseen tensor, with the Cartesian components Qαα′
(α, α′ ∈ {x, y, z}) and r = |r| (Kim and Karrila 1991; Dhont 1996). The Oseen
tensor, also denoted as Stokeslet, shows that hydrodynamic interactions are long
ranged, with a 1/r decay like the Coulomb potential, and are anisotropic due to
the incompressibility of the fluid. The Oseen tensor is the Green’s function of the
Stokes equation (2), which is evident, when the point force f (r) = f0δ(r)e in the
direction e (|e| = 1) is inserted. Then, Eq. (3) yields
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v(r) = f0

8πηr

[
e + (r · e)r

r2

]
. (4)

The magnitude of the flow field is twice larger in the force direction than perpendic-
ular to it.

2.3 Microswimmer Flow Field

Most microswimmers move autonomously, with no external force or torque applied,
and hence the total force/torque of the swimmer on the fluid and vice versa vanishes.
In the simplest case, which actually applies to many microswimmers like bacteria,
spermatozoa, or algae, the far-field hydrodynamics (at distances from the swimmer
much larger than its size) can well be described by a force dipole (Lauga and
Powers 2009; Ishikawa 2009). This has been confirmed experimentally for E. coli
(Drescher et al. 2010, 2011) and in simulations (Hu et al. 2015b). The flow field of
Chlamydomonas is well reproduced by three Stokeslets (Drescher et al. 2010).

Mathematically, the flow field v(r−r0) of a hydrodynamic force dipole located at
r0 follows by a superposition of two Stokeslets (4) with opposite forces f 0 = ±f0e

of equal magnitude at r0 ± l/2, where l = le and l is the distance between the
Stokeslets. Taylor expansion to leading order in |l|/|r − r0| yields

v(r) = P

8πη
vFD(r) , vFD(r) = r

r3

[
−1 + 3

(r · e)2

r2

]
, (5)

where P = ±f0l is the dipole strength. Note that the flow field of a force dipole
decays as 1/r2 from the center of the dipole, faster than the force monopole or
Stokeslet Eq. (3). The flow fields of hydrodynamic dipoles are shown in Fig. 2. In
two dimensions, there are two inflow (left, right) and two outflow (top, bottom)
regions, which are separated by the separatrices z = ±√

2x. In three dimensions,
the outflow region is a cone.

Two classes of dipole swimmers can be distinguished. A swimmer with its
“motor" in the back, and a passive body dragging along the surrounding fluid in
front, creates a “pusher” flow field (cf. Fig. 2 (left)). Similarly, a swimmer with its
“motor” in front, and the passive body dragging along the fluid behind, develops a
“puller” flow field. This field follows by inversion of the arrows in Fig. 2 (left), i.e.,
the flow fields of pushers and pullers look similar but with opposite flow directions.
This has important consequences for the interactions between swimmers and of
swimmers with walls, as will be explained below.

The dipolar flow field and higher-order multipoles follow by a systematic
expansion of the Oseen tensor in Eq. (3) (Kim and Karrila 1991; Pozrikidis 1992;
Spagnolie and Lauga 2012). For a sphere of radius R, the swimmer far field up to
order O(r−4) is dominated by the force dipole (FD) (Eq. (5)), source dipole (SD),
force quadrupole (FQ), source quadrupole (SQ), and rotlet dipol (RD) contributions
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0.01

0.1

1.

10.

Fig. 2 (Left) Flow lines in the far-field of a hydrodynamic force dipole (5) and (Middle) a source
dipole (7) oriented along the vertical direction. (Right) The flow field of the rotlet dipole (10)
is rotational symmetric around the horizontal axis. The white crosses and bullets indicate the
intersections of the flow lines with the plane

v(r) = κFDvFD(r) + κSDvSD(r) + κFQvFQ(r) + κSQvSQ(r)

+ κRDvRD(r) + O(r−4),
(6)

where

vSD(r) = − 1

r3

(
−ez + 3zr

r2

)
, (7)

vFQ(r) = 1

r3

[(
1 − 3z2

r2

)
ez +

(
15z3

r4 − 9
z

r2

)
r

]
, (8)

vSQ(r) = 3

r4

(
5z2r

r3
− 2zez + r

r

)
, (9)

vRD(r) = 3zez × r

r5 , (10)

which decay like r−2, r−3, r−4, and r−3, respectively (Spagnolie and Lauga 2012).
Note that in Eq. (7) the swimming direction e points along the positive z-axis, i.e.,
e ≡ ez. The various factors κ account for the strength of the respective multipole,
where κFD = P/8πη, κSD = −v0R

3/2, and κSQ = 3PR3/8πη.
Aside from the force-dipole term, most relevant for microswimmer are the

source-dipole term (1/r3) due to the volume of the swimmer and the rotlet-dipole
term (1/r3), e.g., for E. coli bacteria by the opposite rotation of the cell body and
the flagella bundle.
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3 Swimming Due to Flagellar Motion

3.1 Friction of Slender Body

Many microorganisms are propelled in a fluid by beating or rotating a flagel-
lum. Thereby, a swimmer exploits the viscous frictional properties of the fluid
environment, specifically, the anisotropic friction of a slender body. The frictional
anisotropy can be demonstrated for a long and thin rod of radius R and length L.
Considering the rod as composed of a sequence of beads with no-slip boundary
conditions, the beat velocity is equal to the fluid velocity of Eq. (3). Under the
influence of an external constant force F = F e, the average velocity of a rod aligned
along the z-axis of the reference system is (Elgeti et al. 2015)

vrod = F
e + (ez · e)ez

4πηL2

ż L

2R

L − s

s
ds (11)

in the limit of a continuous rod. The lower cutoff of the integral excludes a region of
the thickness of the rod. Because (ez · e)ez is 1 and 0 for parallel and perpendicular
orientation of the force with the rod axis, respectively, evaluation of the integral and
the relation F = ζ‖v‖ + ζ⊥v⊥ yields

ζ⊥ = 2ζ‖ , ζ⊥ = 4πηL

ln(L/2R)
(12)

in the asymptotic limit of a long rod. Hence, pulling a rod along its axis is easier
than perpendicular to it. The logarithmic divergence is a result of the long-range
nature of hydrodynamic interactions between different parts of the rod. Thus,
hydrodynamic interactions reduce the friction coefficient compared to that of a rod
of hydrodynamically noninteracting beads, where ζ⊥ = ζ‖ ∼ L. Corrections of
the friction coefficients for a more precise account of hydrodynamics for a cylinder
have been calculated (Tirado et al. 1984).

3.2 Propulsion by Beating Flagella

The time-dependent shape of a sinusoidally beating flagellum with a planer beat
(xz-plane) z(x, t) and its local velocity vz(x, t) at the position x along its contour
are described by

z(x, t) = A sin(kx − wt), vz(x, t) = ∂z

∂t
= −Aω cos(kx − ωt), (13)

where A is the amplitude, ω the frequency, and k the wave number. Decomposing
the velocity v(x, t) = (0, 0, vz(x, t))T into a component parallel v‖ = (v · t)t and
perpendicular v⊥ = v−v‖ to the local tangent vector t ∼ (1, 0, Ak cos(kx − ωt))T

yields
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v‖ = − A2ωk cos2(kx − ωt)

1 + A2k2 cos2(kx − ωt)
t . (14)

The separation F = ζ‖v‖ + ζ⊥v⊥ gives the average force of the flagellum in the
swimming direction

Fz = (ζ‖ − ζ⊥)
1

L

ż

A2ωk cos2(kx − ωt)

1 + A2k2 cos2(kx − ωt)
dx, (15)

while the average force in the perpendicular direction vanishes. For small beating
amplitudes, Eq. (15) can easily be integrated, which yields the average propulsion
force

Fz = 1

2
(ζ‖ − ζ⊥)A2ωk, (16)

and the swimming velocity, vflag ≈ Fz/ζ‖, (Gray and Hancock 1955)

vflag = −1

2

(
ζ⊥
ζ‖

− 1

)
A2ωk . (17)

This simplified calculation shows several important aspects of flagellar propulsion.
First, swimming is only possible due to the frictional anisotropy, i.e., ζ‖ �= ζ⊥.
Second, for a traveling wave in the positive x-direction, the flagellum moves in
the negative x-direction, i.e., movement is opposite to the direction of the traveling
wave. Third, the swimming velocity increases linearly with the beating frequency ω

and the wave vector k but quadratically with the beating amplitude A. And finally,
the swimming velocity is independent of the fluid viscosity for a given beating
amplitude.

3.3 Propulsion by Helical Flagella

Propulsion by rotation of helical flagella can also be illustrated by resistive force
theory. Rotation of a rodlike segment in the direction v′, where v′ = |v′| = RhΩ

(cf. Fig. 3), with Rh the helix radius and Ω its rotation frequency, yields the thrust
force contribution FT and the torque Mz (Lauga and Powers 2009)

FT = (ζ‖ − ζ⊥)v′ cos ϑ sin ϑ ≈ (ζ‖ − ζ⊥)ϑRhΩ, Mz = ζ⊥Rhv
′ = ζ⊥R2

hΩ,

(18)

where ϑ � 1 is assumed. Hence, the relation between force, torque, and
translational and rotational velocity is
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v
v v

FF F

FT

vz

Rh

Fig. 3 Helical segment moving in a viscous fluid. Only half of a helical pitch is shown. The drag-
based thrust force FT appears by the rotation of the red rodlike segment in the direction v′. The
orientation angle ϑ is related with the pitch angle by π/2 − ϑ . (From Elgeti et al. 2015)

(
Fz

Mz

)
=

(
ζ‖ − (ζ⊥ − ζ‖)ϑRh

−(ζ⊥ − ζ‖)ϑRh ζ⊥R2
h

) (
vz

Ω

)
, (19)

with Fz = ζ‖vz in case of no helix rotation. For a spherical cell body of radius Rb

and with the assumption Rb � L, the frictional body force Fb and the body torque
Mb are

Fb = ζbvz, Mb = −ζ b
r ωb, (20)

where ζb = 6πηRb and ζ b
r = 8πηR3

b are the translation and rotational friction
coefficients. The helix is driven by a rotary motor with the frequency Ωm relative
to the body. In response, the helix and body rotate with the frequencies Ω and Ωb.
These frequencies are related by Ω + Ωb = Ωm. Since the whole bacterium is
force- and torque-free, i.e., Fz + Fb = 0 and Mz + Mb = 0, its swimming velocity
is obtained as

vz ≈ ϑ

(
ζ⊥
ζ‖

− 1

)
ζ b
r

ζ⊥Rh

Ωm. (21)

The friction coefficient ζb does not appear, since ζ‖  ζb (L  Rb) is assumed.
Evidently, swimming is again – as in the sperm case – only possible due to frictional
anisotropy. Moreover, vz depends linearly on the body rotational friction coefficient.
Hence, without body, the bacterium could not swim. Due to the approximation
ϑ � 1, vz depends linearly on the orientation angle ϑ . Changing the handedness of
the helix leads to a change of the swimming direction.

Note that a helix driven by an external torque also moves forward; however, it is
not torque-free, and therefore is not an autonomous swimmer.
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3.4 Bacteria Swimming

A wide variety of bacteria exploits the propulsion strategy described in Sect. 3.3.
Different species possess various numbers and differing arrangements of flagella.
According to the arrangement, flagellated bacteria are classified as monotrichous
bacteria with a single flagellum only, lophotrichous bacteria with multiple flagella
located at a particular spot on their surface, amphitrichous bacteria with a single
flagellum on each of the two opposite ends, and peritrichous bacteria which are
covered by multiple flagella pointing in all directions. Prominent examples of
peritrichous bacteria are E. coli, Salmonella typhimurium, Rhizobium lupini, or
Proteus mirabilis, to name just a few. A flagellum is rotated by a motor complex,
which consists of several proteins, and is anchored in the bacterial cell wall
(Berg 2003). Bacteria like E. coli swim in a “run-and- tumble” motion (Berg
2003). In the “run” phase, the helical flagella are left-handed, and they rotate
counterclockwise. The flagella form a bundle, and the bacterium moves forward
in a direction determined by its long axis. At the beginning of the “tumble” phase,
a flagellum rotational direction is reverted to clockwise. The flagellum leaves the
bundle, which implies a random reorientation of the bacterium. The reversal of the
rotational direction is accompanied by a change of the helical handedness from left-
handed to right-handed, and the flagellum undergoes a polymorphic transition, i.e.,
assumes a different pitch and radius (Calladine 1975; Macnab 1977). At the end
of the tumbling phase, all flagella start to rotate again in the same counterclockwise
direction, the bundle reforms, and the bacterium returns to a directional motion. The
flagella of bacteria like Rhizobium meliloti or Rhizobium lupini are only capable of
limited polymorphic transitions, and their motors are unidirectional (Platzer et al.
1997). These bacteria modulate the rotation speed of individual motors to induce
tumbling.

Since bacterial cells are force- and torque-free, the rotational motion of the
flagellum bundle leads to a counterrotation of the cell body, i.e., swimming bacteria
possess a rotlet dipole (cf. Eq. (10)). This has consequences for their hydrodynamic
interactions, specifically with surfaces and interfaces.

The flow field of an E. coli bacterium obtained from experiment and simulations
is presented in Fig. 4. In both cases, the far field is well described by the force-dipole
field of Eq. (5) (Drescher et al. 2011; Hu et al. 2015b).

4 Surface Interaction

4.1 Dipole Swimmer Near a Wall: Swimming with an Image

The swimming behavior of microorganisms is typically altered by the presence of
nearby obstacles or boundaries. In fact, most bacteria in nature live on surfaces,
e.g., in biofilms (Copeland and Weibel 2009; Spagnolie and Lauga 2012). Corre-
spondingly, attraction of such microorganisms to surfaces is of major importance



68 Hydrodynamics in Motile Active Matter 1481

Fig. 4 Flow field of E. coli bacteria from (left) experiment (Drescher et al. 2011) and (right)
simulations (Hu et al. 2015b). In simulations, a system with periodic boundary conditions is
considered, which yields closed flow lines in contrast to the flow lines of the experimental bulk
system. The logarithmic color scheme (right) indicates the magnitude of the flow speed scaled by
the bacterial swimming velocity. (From Drescher et al. 2011 and Hu et al. 2015b)

and determines their microbial activity. Part of the attraction originates from
hydrodynamic interactions of the swimmer with the surface. This is easily illustrated
by a force dipole in front of a (slip) surface. The flow field of such a dipole
can be obtained by the image method known from electrostatics. Considering, for
simplicity, a planar wall with slip boundary conditions (cf. Fig. 5), at z = 0, the
velocity field vFD

w,z perpendicular to the surface vanishes identically, i.e., vFD
w,z (z =

0) ≡ 0. The flow field is then given by

vFD
w (r − r0) = vFD(r − r0; e) + vFD(r − r ′

0; e′), (22)

with r0 = (x0, y0, z0), r ′
0 = (x0, y0,−z0), where z0 > 0 and e′ the mirror image

of e with respect to the z = 0 plane. The dipole experiences a flow field and, hence,
a force near the surface, which is determined by the hydrodynamic interactions
between the dipole and its image. As a consequence, the dipole swimmer is moving
toward the surface with the velocity

vFD
w,z (z0) = − P

32πηz2
0

[
1 − 3(e · ez)

2
]

, (23)

because (e′ · ez)
2 = (e · ez)

2. The result shows that the hydrodynamic force decays
as a dipole flow field quadratic with the distance from the wall. The exact solution
for a no-slip wall (Berke et al. 2008) yields the same functional dependence on the
angle and the wall distance as Eq. (23), only the numerical prefactor in Eq. (23) is
smaller by a factor 2/3.

The direction of the flow field depends on the dipole moment and its orientation.
The hydrodynamic force is attractive to the wall for pusher (P > 0, sperm or
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x
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z0

impenetrable wall

real dipole
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Fig. 5 Schematic representation of a dipole swimmer (pusher) near a wall. An image dipole
ensures the correct boundary conditions at the impenetrable slip wall

bacteria) as long as cos ϑ = (e · ez) < 1/
√

3. Hence, pushers aligned parallel
to the surface experience an attractive force. However, for pullers (P < 0,
Chlamydomonas) hydrodynamic interactions are repulsive when they swim parallel
to the wall, but they are attractive, when their orientation is nearly perpendicular
to the wall. Yet, the average of the wall-induced interaction over a population
of randomly oriented microorganisms is exactly equal to zero in a 3D system,
since

ş

vFD
w,z (z0) sin ϑdϑ = 0. As a consequence, the surface-induced velocity (23)

alone cannot explain surface accumulation for initially randomly oriented incoming
swimming cells.

The surface-induced hydrodynamic flow field is inhomogeneous and, thus, exerts
a torque on the cell, which leads to a preferred alignment. The corresponding
rotation rate is given by (Berke et al. 2008):

Ωr(ϑ, z) = −3P cos ϑ sin ϑ

64πηz3

(
1 + γ 2 − 1

2(γ 2 + 1)
(1 + cos2 ϑ)

)
, (24)

where γ is the aspect ratio of the anisotropic swimmer. Since γ is typically larger
than unity, the sign of Ωr is determined by that of P and the product cos ϑ sin ϑ .
When 0 ≤ ϑ ≤ π/2 or π ≤ ϑ ≤ 3π/2, for a pusher the product is positive,
and the rotation is negative, leading to parallel alignment with the surface. For the
other angles, the rotation is positive, which leads to alignment too. Consequently, all
pushers are oriented parallel to a surface and are attracted by the flow field. Pullers
(P < 0) align normal to the surface. As both pushers and pullers come closer to the
surface, higher orders in the multipole expansion become important (Spagnolie and
Lauga 2012).
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4.2 Bacteria Swimming at Surfaces

As a consequence of the rotlet dipole of bacteria by counterrotation of cell body and
flagella bundle, hydrodynamic interactions lead to circular trajectories of bacteria
at surfaces (Lauga et al. 2006; Di Leonardo et al. 2011; Hu et al. 2015a). Thereby,
clockwise and counterclockwise trajectories appear, governed by the respective no-
slip or slip boundary condition (cf. Fig. 6) (Lauga et al. 2006; Di Leonardo et al.
2011; Hu et al. 2015a; Elgeti et al. 2015; Elgeti and Gompper 2016). Moreover,
the slip length determines the curvature of the circle. In qualitative agreement with
experiments and quantitative agreement with theory and simulations, the trajectory
curvature can well be described by

κ = κ∞ + κ0 − κ∞
1 + b/h

(25)

as function of the slip length b, where κ0 < 0 and κ∞ > 0 are the curvatures for
the slip lengths b = 0 (no-slip) and b = ∞ (perfect slip), respectively, and h is an
effective gap size between of the cell body and the surface (Hu et al. 2015a).

As found experimentally, the radius of the circle depends on the size of the cell
body and increases linearly with body size. This fact can be exploited to separate
cells of different sizes. As suggested by Hu et al. (2015a), a patterned surface
with alternating hydrophobic and hydrophilic stripes leads to a preferred diffusion
parallel to the stripes for radii on the order of the stripe widths, whereas for larger
radii isotropic diffusion is obtained.
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Fig. 6 (Left) Counterclockwise and clockwise circular trajectories from hydrodynamic simula-
tions of an E. coli-type bacterium swimming near homogeneous surfaces with different slip lengths
b as indicated. (Right) Effective curvatures of cells of various lengths, lb, as function of the slip
length. (From Hu et al. 2015a)
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5 Squirmer: A Generic Model of Hydrodynamic
Microswimmers

Generic models, which capture the essential swimming aspects, are crucial in
theoretical studies of microswimmers. On the one hand, they help to unravel the
relevant interaction mechanisms and, on the other hand, allow for the study of
sufficiently large number of swimmers. A prominent example is the squirmer model
(Lighthill 1952; Blake 1971). Originally, it was intended as a model for ciliated
microswimmers, such as Paramecia. Nowadays, it is considered as a generic model
for a broad class of microswimmers, ranging from diffusiophoretic particles to
biological cells and has been applied to study collective effects in bulk, at surfaces,
and in narrow slits (Ishikawa et al. 2006; Llopis and Pagonabarraga 2010; Zöttl and
Stark 2014; Theers et al. 2016).

In its simplest form, a squirmer is represented as a spherical rigid colloid with a
prescribed surface velocity. Restricting the surface velocity to be tangential, the slip
velocity on the sphere surface can be expressed in terms of derivatives of Legendre
polynomials, where the spherical squirmer is typically characterized by two modes
only accounting for its swimming velocity (B1) and its force dipole (B2) (Ishikawa
et al. 2006; Llopis and Pagonabarraga 2010). Explicitly, the leading contributions
yield the slip velocity on the colloid surface (Ishikawa et al. 2006; Llopis and
Pagonabarraga 2010; Theers et al. 2016)

vsq = (B1 sin ϑ + B2 sin ϑ cos ϑ)eϑ = B1(sin ϑ + β sin ϑ cos ϑ)eϑ . (26)

The parameter B1 = 2v0/3 is related to the swimming velocity, v0, and β = B2/B1
accounts for the force dipole. The angle ϑ is measured with respect to the propulsion
direction in a body-fixed reference frame. Higher-order terms can easily be taken
into account (Elgeti et al. 2015; Llopis and Pagonabarraga 2010). The term with
B2 (or β) distinguishes various propulsion patterns, namely, pushers (β < 0),
pullers (β > 0), and neutral squirmers (β = 0), corresponding, e.g., to E. coli,
Chlamydomonas, or Volvox, respectively.

The far field of a squirmer is well described by the flow fields of a force dipole
(FD), a source dipole (SD), and a source quadrupole (SQ)

v(r) = κFDvFD(r) + κSDvSD(r) + κSQvSQ(r) + O(r−5), (27)

where the various terms are given in Eq. (5), (7), and (9).
The assumption of a spherical shape is adequate for swimmers like, e.g.,

Volvox; however, the shapes of other microswimmers (E. coli, Chlamydomonas,
Paramecium) are nonspherical. Here, an extension of the squirmer concept to
spheroidal objects has been proposed (Keller and Wu 1977; Theers et al. 2016).
Figure 7 depicts flow fields of a spheroidal squirmer with the aspect ratio of two
for the various kinds of dipolar terms in the laboratory and body-fixed reference
frame. The near-field modifications by the finite-size swimmer is clearly visible in
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Fig. 7 Flow streamlines of isolated spheroidal squirmers. The top row corresponds to the
laboratory reference frame and the bottom row to the body-fixed reference frame. (Left) Flow
field of a pusher (β = −3), (Middle) a neutral squirmer β = 0, and (Right) a puller (β = 3). The
magnitude of the relative velocity 3v/2v0 is color coded logarithmically. (The puller figures are
from Theers et al. 2016)

comparison with Fig. 2. Moreover, pusher and puller exhibit a stagnation point in
front or back, respectively, in the body-fixed reference frame for |β| > 1.

6 Collective Phenomena

Collective phenomena governed by hydrodynamic interactions appear on the level
of flagella or cilia as well as on the scale of the microswimmers themselves.
Examples on the flagella scale are the synchronization of flagella rotation in the
formation of bacteria bundles (Reichert and Stark 2005; Qian et al. 2009; Reigh
et al. 2012) or the development of metachronal waves in arrays of beating cilia
(Sleigh 1962; Elgeti and Gompper 2013).
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The importance of hydrodynamic interactions on the collective dynamics of
microswimmers is most easily demonstrated for squirmers. On the one hand, the
effect of the force dipole (pusher, puller, neutral squirmer) is captured, and, on the
other hand, both far- and near-field hydrodynamics is taken into account, and their
relative importance can be elucidated. In accordance with bacteria in biofilms, the
collective behavior of squirmers is either studied by strictly two-dimensional motion
with three-dimensional hydrodynamic interactions or by swimmers confined in a
narrow slit with a respective limitation of hydrodynamic interactions by the surfaces.
In the latter case, the boundary interactions play a major role (Theers et al. 2018).

6.1 Cilia Synchronization: Metachronal Waves

Propulsion of unicellular and multicellular organisms by cilia is omnipresent.
Thereby, fluid is pumped across their surface by anchored motile cilia (flagella)
(Sleigh 1962). Moreover, in higher organisms and humans, cilia are involved in
moving mucus in the lungs (Afzelius 1976), the emergence of the embryonic left-
right asymmetry (Cartwright et al. 2004), and intercellular communication (Wang
et al. 2006). Already in the 1960s, Sleigh (1962) observed that arrays of cilia beat
neither randomly nor synchronously but in a wave pattern called a metachronal
wave (MCW). Several theoretical models have been proposed to shed light onto
the metachronal coordination by hydrodynamic interactions. A model of coupled
rotating spheres placed near a no-slip wall proves useful in clarifying the diverse
types of MCWs observed in nature (Brumley et al. 2012).

Deeper insight into coordinated beating is gained by simulations of anchored
semiflexible filaments with a nonreciprocal beat, where a “trigger” mechanism
switches between the power and recovery stroke. Simulations of an array of 60×60
cilia in a 3D explicit fluid yield metachronal waves emerging autonomously, despite
the presence of significant noise (Elgeti and Gompper 2013). The beat pattern of
an individual cilium can react to the surrounding fluid flow, because the model
only imposes time-dependent curvature forces and employs geometric thresholds
for the switch between power and recovery stroke, and vice versa. Figure 8
displays the beating pattern of an individual filament with an asymmetric power and
recovery stroke. The hydrodynamically induced metachronal waves are visible in
Fig. 8 (right).

6.2 Aggregation of Squirmers

The interactions between microswimmers depend on their relative orientation.
Thereby, interactions of pushers and pullers in equivalent positions and orientations
are equal in magnitude but opposite in sign, because of the opposite sign of their
dipole strength P . Since swimmers typically meet at different relative positions and
orientations and due to the stochastic motion of many interacting objects, scattering
of microswimmers occurs, and cooperative swimming is the exception rather than



68 Hydrodynamics in Motile Active Matter 1487

Fig. 8 (Left) Top and side view of the beat pattern of the computational cilia model. Subsequent
conformations are equally spaced in time. The fast, planar power stroke (frames 1−5) continues
until a positive curvature threshold in the lower part of the cilium is reached. The cilium then
switches to a slow, out-of-plane recovery stroke (frames 6−17), which ends when a negative
curvature threshold is exceeded. (Right) Simulation snapshot of an array of 40 × 40 beating cilia.
Cilia are placed on a square lattice. The metachronal wave is easily recognized by the lines of fully
extended cilia during the power stroke. (From Elgeti and Gompper 2013)

the rule in dilute suspensions (Ishikawa et al. 2006; Llopis and Pagonabarraga
2010; Götze and Gompper 2010). This applies to spherical as well as spheroidal
squirmers. However, hydrodynamic interactions with confining surfaces in a slit
geometry stabilize the cooperative swimming of spheroidal pulling squirmers,
which emphasizes the relevance of hydrodynamic interactions in confinement
(Theers et al. 2016).

Self-propelled particles exhibit a strong tendency for clustering and phase sepa-
ration. The origin of this behavior is the blockage of motion when several particles
collide with each other (cf. Fig. 9). The particular (small) cluster would dissolve
after a time corresponding to the reorientation time of a swimmer. Interactions and
collisions with other particles are controlled by the density and propulsion velocity
v0. Hence, if other particles collide before the original cluster dissolved, the cluster
grows. This behavior already occurs for active Brownian particles (Bialké et al.
2012; Buttinoni et al. 2013; Redner et al. 2013; Palacci et al. 2013; Marchetti et al.
2016; Bechinger et al. 2016), i.e., for self-propelled particles with steric but without
hydrodynamic interactions. The separation into a dense solid (2D) (Bialké et al.
2012; Marchetti et al. 2016; Bechinger et al. 2016) or fluid (3D) (Wysocki et al.
2014) phase and a dilute gas phase is denoted as motility-induced phase separation
(MIPS) (Cates and Tailleur 2015). Hydrodynamic interactions strongly modify the
collective behavior.

The collective swimming patterns of spherical squirmers in 2D exhibit a strong
dependence on the sign of the force dipole (far field). Moreover, hydrodynamic
near-field effects play an important role. The phase behavior of neutral squirmers
(β = 0) with only far-field interactions is similar to that of active Brownian particles
without hydrodynamic interactions (Yoshinaga and Liverpool 2017). The additional
contribution due to hydrodynamics is an enhanced reorientation of the squirmers,
which suppresses phase separation. Squirmer ensembles in 2D without thermal
motion exhibit clustering for pullers and pushers due to near-field hydrodynamic
interactions. Neutral squirmers spontaneously develop polar order and collectively
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Fig. 9 (Left) Aggregation and cluster formation of squirmers by blockage. (Middle) Fluid phase
of spherical squirmers and (Right) cluster of spheroidal squirmers confined in a slit at the two-
dimensional packing fraction φ2D = 0.5 and the Péclet number Pe = 12. The Péclet number
is defined as Pe = v0/2bzD

⊥
R , where bz is the longer spheroid semiaxis and D⊥

R the rotational
diffusion coefficient around the minor axis

move in a preferred direction (Kyoya et al. 2015; Yoshinaga and Liverpool 2017).
Yet polar order is destroyed by thermal fluctuations. With fluctuations, all spherical
squirmers exhibit cluster formation, however, with distinct characteristics. Here,
cluster formation is most pronounced for pullers (Alarcón et al. 2017).

The anisotropic shape of a spheroidal squirmer enhances cluster formation
compared to spherical swimmers (cf. Fig. 9) (Ginelli et al. 2010; Abkenar et al.
2013). This applies to ABPs as well as hydrodynamically coupled swimmers.
Thereby, hydrodynamic interactions suppress motility-induced phase separation
for spheres, whereas for spheroids hydrodynamic interactions enhance cluster
formation in a slit geometry (Theers et al. 2018).

7 Conclusions

Hydrodynamic interactions are essential for active matter, specifically biological
microswimmers. They are not only fundamental for the propulsion of microswim-
mers but also determine their behavior next to surfaces as well as the emergent
collective dynamics and structures. Hydrodynamic interactions imply a very rich
dynamics, which depends on the detailed swimming mechanism. For a fundamental
understanding of the fluid-mediated interactions, consideration of the dominant
multipole terms might suffice. However, the detailed collective properties depend
also on the actual near-field flow. Hence, the full flow field has to be taken into
account for a quantitative understanding of the local features of microswimmer
aggregates. As a general conclusion, hydrodynamic interactions have to be taken
into account for a qualitative and quantitative understanding of the emerging
properties of active matter.
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