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Abstract

This chapter reviews the different methodological aspects of the ab initio
modeling of dislocations. Such simulations are now frequently used to study the
dislocation core, i.e., the region in the immediate vicinity of the line defect where
the crystal is so strongly distorted that an atomic description is needed. This core
region controls some dislocation fundamental properties, like their ability to glide
in different crystallographic planes. Ab initio calculations based on the density
functional theory offer a predictive way to model this core region. Because
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dislocations break the periodicity of the crystal and induce long-range elastic
fields, several specific approaches relying on different boundary conditions have
been developed to allow for the atomistic modeling of these defects in simulation
cells having a size compatible with ab initio calculations. We describe these
different approaches which can be used to study dislocations with ab initio
calculations and introduce the different analyses which are currently performed
to characterize the core structure, before discussing how meaningful energy
properties can be extracted from such simulations.

1 Introduction

Dislocations are line defects which control the development of the plastic defor-
mation in crystals. These defects induce a long-range stress field, which is well
described by elasticity, and dislocation elasticity theory offers a powerful framework
to model dislocations and their interaction with their surrounding environment
(Hirth and Lothe 1982; Bacon et al. 1980). But some of their fundamental properties,
like their glide plane and their mobility, highly depend on their core, i.e., the
region in the immediate vicinity of the defect where the perturbation of the crystal
is too important to be described by elasticity. The modeling of this core region
necessitates an atomic description, and atomistic simulations have thus become a
valuable tool to study dislocation properties. Among such simulations, ab initio
calculations based on the density functional theory (DFT), as they rely on an
electronic description of the atomic bonding, appear as the most accurate and
predictive. But as these calculations are still limited in the size of the system they can
handle, typically at most a few hundred atoms, the ab initio modeling of dislocations
need special attention. Specific methodologies have been therefore developed to
study dislocation core properties with ab initio calculations. The purpose of this
chapter is to review the different modeling approaches for the ab initio study of
dislocations, starting from a quick overview of DFT formalism, before describing
more thoroughly boundary conditions specific to dislocation models, then the
analysis of the atomic structure in the dislocation core and finally the extraction
of meaningful energy properties. Beyond the examples illustrated in this chapter,
results which have been obtained from such ab initio studies for the dislocation core
properties in different metals and semiconductors can be found in the recent review
of Rodney et al. (2017).

2 Ab Initio Calculations

Ab initio calculations describe the bonding between atoms, thanks to the resolutions
of the Schrödinger equation for the electrons of the system. These are first-principles
approaches as they do not use any experimental data and allows the modeling of
atomic interaction only from the atomic number and other fundamental quantities.
Compared to empirical interatomic potentials, such approaches are completely
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transferable, without any parameterization depending on the environment under
study, but at the expense of a much higher CPU time. Although ab initio in
nature and usually very accurate, these approaches nevertheless rely on different
approximations, the validity of which needs generally to be assessed.

The most fundamental approximation is the Born-Oppenheimer approximation.
As atom nuclei have a much higher mass than electrons, one can assume that
the electrons are always equilibrated with respect to the positions of the nuclei
which are considered as immobile. The resolution of the Schrödinger equation
for the electrons therefore leads to the energy of the system as a function of the
atomic positions. Knowing this function and also its first derivatives, i.e., the atomic
forces, standard algorithms of atomic simulations can then be used. For the ab initio
modeling of dislocations, this is usually restricted to molecular statics, including
energy barrier calculations, because of the high CPU burden of the energy and force
calculation.

Most ab initio calculations of dislocations are relying on the density functional
theory (DFT). This makes use of the Hohenberg and Kohn (1964) theorem showing
that the ground-state energy is the minimum of a functional depending only on the
electronic density. This dramatically simplifies the problem as the electronic density
depends only on the position, whereas the many-electron wave function entering
Schrödinger equation is a function depending on the 3N electron coordinates, with
N the number of electrons in the system. The Kohn and Sham (1965) approach
allows then a practical implementation, where the Schrödinger equation is solved for
an equivalent system of noninteracting electrons. This necessitates the definition of
an unknown contribution to the Hamiltonian, the exchange and correlation potential.
Most of dislocation calculations are performed with the local density (LDA) or
the generalized gradient (GGA) approximations, assuming that this contribution
depends only locally on the electronic density or also its gradient.

For dislocation calculations, it is enough to consider that only the electrons of
the outer shells participate to the atomic bonding. Electrons of the inner shells
are not sensitive to the atom environment and can be assumed to have the same
ground state as for the isolated atom. Kohn-Sham equations are then solved only
for valence electrons. One can further reduce the CPU overhead by replacing with a
pseudopotential the interaction potential of the valence electrons with the ionic core.
This pseudopotential aims to reduce the strong oscillations of the electronic wave
functions close to the dislocation core, because the description of these oscillations
necessitates a large basis set, while still leading to the correct wave functions outside
this core region. Different pseudoization schemes, norm-conserving or ultrasoft
pseudopotentials as well as the projected augmented wave (PAW) method, are
available.

Ab initio codes used for dislocations are relying on Born-von Karman periodic
boundary conditions to model the solid, whatever the boundary conditions used to
incorporate a dislocation in the simulation cell (Sect. 3). Electronic wave functions
are thus a superposition of Bloch waves with wavevectors spanning the first
Brillouin zone. Integration in the reciprocal space is performed on a regular grid
sampling the first Brillouin zone, using smearing functions to broaden the electronic
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density of states. Different basis sets can be used to describe the Bloch waves, with
plane waves being the most popular choice for dislocations.

Ab initio approaches devoted to the study of dislocations are thus not specific:
they are making use of standard DFT implementations which are now current
modeling tools in solid-state physics. Feature specific to dislocation modeling, as
described in the next section, is the necessity to use a supercell large enough to let
the dislocation core adopt its fully relaxed configuration, with boundary conditions
compatible with the long-range distortion induced by the defect. A high accuracy is
also generally needed for such calculations as the energy variations involved by the
dislocation core are usually small. For instance, the Peierls energy barrier opposing
the glide of 1/2 〈111〉 screw dislocations in BCC transition metals does not exceed
100 meV/b, where b, the norm of the Burgers vector, corresponds to the height of
the simulation cell necessary to model such a dislocation.

3 Boundary Conditions

The ab initio modeling of dislocations needs special care in the way the boundary
conditions are handled. First, a dislocation creates a long-range elastic field which
needs to be taken into account. Second, it is not possible to include a single
dislocation in a simulation box with full periodic boundary conditions which usually
constitute the paradigm in the modeling of bulk materials: the dislocation opens a
displacement discontinuity, and another defect is needed to close the discontinuity
and allow for periodicity. As a result, different boundary conditions compatible with
ab initio calculations have been developed to model dislocations.

All approaches enforce periodicity in the direction of the dislocation line. In pure
metals, one usually uses the shortest periodicity vector to define the dimension of
the simulation cell in this direction, thus modeling an infinite straight dislocation.
But this size needs to be increased if one wants to introduce a solute atom on the
dislocation line, so as to minimize the interaction of the solute atom with its periodic
images and truly study the interaction of the dislocation with a single foreign
atom. A larger size is also needed to model a kinked dislocation. This is usually
possible only in covalent crystals where the atomic bonds are highly directional,
leading to abrupt kinks experiencing a non-negligible energy barrier when migrating
along the dislocation line. In metallic systems with less directional atomic bonding,
kinks are usually spread over a larger distance and are highly mobile, making it
hard to stabilize them in a simulation cell whose size is compatible with ab initio
calculations.

3.1 Cluster Approach

The easiest way to model a dislocation is to use an infinite cylinder whose axis
coincides with the dislocation line. Periodicity is enforced only along the dislocation
line. The dislocation is created by displacing all atoms according to the Volterra
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Fig. 1 Boundary conditions
used to model an isolated
straight dislocation in the
cluster approach. The outer
boundary is either (a) rigid or
(b) flexible and controlled by
lattice Green’s functions or
by coupling with an empirical
potential (2)

a b

(1)

d

(1)
(2)

(3)

solution given by anisotropic elasticity theory for the dislocation displacement field
(Stroh 1958, 1962). Atoms at the cylinder surface (region 2 in Fig. 1a) are kept fixed
in their initial positions, and only atoms inside the cylinder are relaxed. One thus
models an isolated dislocation in an infinite continuum.

But this modeling approach has severe drawbacks. The elastic solution used to
fix the atoms at the boundary is only approximate as it relies on linear elasticity, thus
neglecting crystal anharmonicity which can be strong close to the dislocation line.
Moreover, the Volterra elastic solution, used to fix the atoms at the boundary, only
corresponds to the long-range elastic field of the dislocation. Close to the dislocation
line some additional contributions, the dislocation core field, need to be accounted
for (Eshelby et al. 1953). A spreading of the dislocation core can be the reason
for the existence of such a core field, but even dislocations with a compact core,
like 〈111〉 screw dislocations in BCC metals, possess a non-negligible core field.
Although this core field decays more rapidly than the Volterra elastic field, the
size of the simulation boxes that can be handled by ab initio calculations is never
large enough to neglect it. The rigid boundary conditions do not allow the correct
development of this core field and thus perturb the relaxation of the dislocation core.

The fixed atomic positions imposed at the boundary also prevent use of this
method to determine the lattice friction opposing dislocation motion. If the dislo-
cation moves during the simulation, this boundary condition will not be compatible
anymore with the new dislocation position. This induces indeed a back-stress
opposing the dislocation motion. As a result, any simulation relying on this
boundary condition will overestimate the dislocation Peierls stress, which is the
minimum stress necessary to move the dislocation at 0 K.

3.2 Flexible Boundary Conditions

To remove the artifacts induced by the rigid boundary conditions, dislocation
modeling with flexible boundary conditions has been developed. The proposed
method relies either on the use of the lattice Green’s function (Sinclair et al. 1978;
Woodward 2005) or on the coupling with an empirical potential (Liu et al. 2007;
Chen et al. 2008).
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The lattice Green’s function Gij (r) expresses, in the crystal harmonic approxi-
mation, the displacement u induced on an atom in position r by a force F acting on
an atom at origin (We use the Einstein implicit summation convention on repeated
indexes appearing in all expressions.):

ui(r) = Gij (r)Fj . (1)

This lattice Green’s function can be obtained by inversion of the force-constant
matrices of the perfect crystal (Yasi et al. 2012; Tan and Trinkle 2016) or can be
tabulated from direct calculations in a perfect lattice (Sinclair et al. 1978; Rao et al.
1998). In the long-range limit, Gij (r) converges to the elastic Green’s function given
by anisotropic elasticity theory.

Flexible boundary conditions based on lattice Green’s functions still make use of
a cylinder geometry to model a single dislocation, but three zones are now defined
(Fig. 1b). Atoms in the inner zone (1) are relaxed with the ab initio code until the
forces acting on them are smaller than a fixed threshold, while atoms in zones (2)
and (3) are kept fixed. At the end of this step, atomic forces have appeared in
zone (2), because the dislocation elastic field deviates from the Volterra solution
used as an initial guess. The lattice Green’s function is then used to displace atoms
in all three zones according to Eq. 1 using all atomic forces in zone (2). This leads
to the cancelation of forces in zone (2) but makes new forces appear in zone (1).
The procedure is thus iterated until all forces in zones (1) and (2) are null. This
self-consistent cycle is necessary because the lattice Green’s function of the perfect
crystal only approximates the linear response of the dislocated crystal. Atoms in
zone (3) serve as a buffer to prevent any perturbation by the external boundary of
forces building in zone (2). As shown by Segall et al. (2003), this buffer region
may need to be quite large in metals to obtain negligible perturbations in the inner
regions. This can be minimized by removing the surfaces delineating zone (3)
and using periodic boundary conditions in all directions. Interface defects are then
present at the boundary between two periodic simulations cells. But these defects
lead to a smaller perturbation of the electronic density than the vacuum layer of
the surfaces (Woodward 2005). One thus perfectly models an isolated dislocation
in an infinite crystal taking full account of the dislocation core field. It is possible
to study dislocation cores with a reduced number of atoms in the simulation cell, a
size usually compatible with ab initio calculations.

A similar approach relies on the coupling of the ab initio calculations with
an empirical potential (Liu et al. 2007; Chen et al. 2008). The simulation cell
is still divided in three regions (Fig. 1b). Ab initio calculations are performed
only for a smaller simulation cell corresponding to regions (1) and (2). Atoms in
regions (2) and (3) are relaxed according to the forces calculated with the empirical
potential, whereas atoms in region (1) are relaxed according to ab initio forces plus
a correction to withdraw the perturbation caused by the external boundary of the ab
initio box. The buffer region (2) has been added to the original approach (Choly
et al. 2005) to minimize this correction by protecting atoms from the external
boundary. To operate, this method needs therefore an empirical potential which
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perfectly reproduces the lattice parameters given by ab initio calculations, which
can generally be done by rescaling the distances. Besides, the potential has also
to match as best as possible the ab initio linear response, i.e., at least the elastic
constants and, ideally, the whole phonon spectrum.

As it will be discussed in the last section, the main drawback of this ab
initio dislocation model using flexible boundaries arises from the difficulty of
extracting dislocation energy. The problem may be actually less sensitive with
the second approach relying on a coupling with an empirical potential where an
energy formulation exists. In this case, one can obtain a reasonable estimation
of the dislocation energy provided the potential gives an accurate description of
the boundary energy compared to the ab initio calculations. While these flexible
boundaries truly allow the modeling of an isolated dislocation, thus predicting its
core structure and its evolution under an applied stress without any a priori artifact
induced by the small size of the simulation cell inherent to ab initio calculations,
the approach is still under active development to also provide information on the
dislocation energy.

3.3 Periodic Boundary Conditions

To get rid of the external boundary and to use periodic boundary conditions in
all three directions without the introduction of a defective interface, one needs to
introduce in the simulation cell a dislocation dipole, i.e., two dislocations with
opposite Burgers vectors. One thus models a 2D periodic array of dislocations
(Fig. 2).

Several arrangements of dislocation arrays can be though off, but they are
not all equivalent. Among all of them, the ones which are quadrupolar display
strong advantages. A periodic array is quadrupolar, if the vector d linking the two
dislocations of opposite signs is equal to 1/2 (u1 + u2), where u1 and u2 are the
periodicity vectors of the simulation cell (Fig. 2). This ensures that every dislocation
is a symmetry center of the array: fixing, as a convention, the origin at a dislocation
center, if a dislocation b is located at the position r, there will also be a dislocation
b in −r. The stress created by these two dislocations will cancel to first order at
the origin, thanks to the symmetry property of the Volterra elastic field. (σV(−r) =
−σV(r) with σV the Volterra stress field of a single dislocation.) As a consequence,
this quadrupolar periodic array minimizes the elastic interaction between the
dislocations and hence the Peach-Koehler force acting on each dislocation because
of the image dislocations associated with periodic boundaries. It is the best-suited
periodic array to extract dislocation core properties from ab initio calculations.

Linear elasticity is still used to build the initial configuration, displacing all atoms
according to the superposition of the displacement fields created by each dislocation
composing the periodic array. The summation on periodic images can be either
performed in reciprocal space (Daw 2006) or in direct space after regularization
of the conditionally convergent sums (Cai et al. 2003). The crystal orientation
used in such elastic calculations should be chosen so as to fix the displacement
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U1U1

U2U2

+b+b
−b−b

AA

dd

Fig. 2 Simulation of a dislocation dipole with periodic boundary conditions, using a quadrupolar
arrangement. The dipole is defined by its Burgers vector b, the dipole vector d joining the two
dislocation centers, and the cut vector A, with the corresponding discontinuity surface indicated by
a double black line. u1 and u2 are the periodicity vectors of the simulation cell perpendicular to the
dislocation line. The example on the right corresponds to the simulation cell used for the modeling
of the 1/2 〈111〉 screw dislocation in bcc iron. The dislocation core structures are shown through
their differential displacement maps and their density (cf. Fig. 3a for a details)

discontinuity exactly in between the two dislocations composing the dipole, thus
preventing the propagation of this discontinuity to infinity. The cut vector A defining
this discontinuity (Fig. 2) is therefore given by A = l × d, where l is the line vector
of the dislocations and d the vector joining the centers of the +b dislocation to
the −b one. If the scalar product A.b is non-null, i.e., if the dislocation dipole
has an edge component and the displacement discontinuity does not coincide with
the dislocation glide plane, it is also necessary to insert atoms into or delete them
from the original lattice at the discontinuity location, thus following the Volterra
operation.

A homogeneous strain needs also to be applied to accommodate the plastic strain
created by the dipole (Daw 2006; Cai et al. 2003) and ensure that the average
stress in the simulation cell is null. This can be easily demonstrated by considering
the variation of the elastic energy when a homogeneous strain εij is applied to a
simulation cell containing a dislocation dipole defined by its Burgers vector b and
its cut vector A

ΔE(ε) = 1

2
S Cijkl εij εkl + Cijkl bi Aj εkl,
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where energies are defined per dislocation unit length and have been thus normalized
by the height of the simulation cell in the direction of the dislocation line. S is the
area of the simulation cell perpendicular to this direction and Cijkl are the elastic
constants. The average stress existing in the simulation cell is then given by

σij = 1

S

∂ΔE

∂εij

= Cijkl

(
εkl − ε0

kl

)
, (2)

with the plastic strain defined by

ε0
kl = −biAj + bjAi

2S
. (3)

One thus sees that the stress given by Eq. 2 is null when the applied strain εij is
equal to the plastic strain ε0

ij . When this applied strain is different, a Peach-Koehler
force acting on the dislocations may exist. This allows studying properties of the
dislocation core under an applied stress, to determine its Peierls stress, for instance.
Finally, when a stress variation is observed in ab initio calculations, Eq. 2 allows to
deduce the plastic strain from this stress, and thus the dislocations’ relative positions
via the cut vector A (Eq. 3). For instance, the trajectories of the screw dislocations
gliding between two neighboring Peierls valleys have been determined, thanks to
this method in HCP Zr (Chaari et al. 2014) and in BCC transition metals (Dezerald
et al. 2016).

With these periodic boundary conditions, all the excess energy contained in the
simulation cell is due to the dislocations. As it will be shown in the last section,
elasticity theory can be used to isolate the contribution of a single dislocation. These
periodic boundary conditions offer thus a convenient way to extract dislocation
energy from ab initio calculations. But the dislocation core structure, and hence the
associated excess energy, can be perturbed by the presence of the periodic images. In
practice, one will therefore need to check how sensitive are the obtained dislocation
properties with the size of the simulation cell.

4 Dislocation Core Structures

Different representations can be used to image and analyze the relaxed dislocation
core structure obtained by atomic simulations. This allows, for instance, highlight-
ing a spreading of or a dissociation of the dislocation.

4.1 Differential Displacement Maps

Differential displacement maps were introduced by Vitek et al. (1970). Two
examples are shown in Fig. 3 for a screw dislocation in a body-centered cubic
(bcc) crystal and a hexagonal close-packed (hcp) crystal. In these maps, the crystal
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is projected in the plane perpendicular to the dislocation line, using for atomic
columns the positions in the perfect crystal. The differential displacement caused
by the dislocation is calculated by considering the difference between the vector
connecting two neighbor atoms in the relaxed dislocated crystal and the same
connecting vector in the perfect crystal. One then plots the projection of this
differential displacement along the direction of the Burgers vector with an arrow
pointing from one atomic column to the other, centered in the middle of the two
columns and with an amplitude proportional to the differential displacement. As the
arrows are proportional to the displacement difference, they are a representation of
the discrete derivative of the displacement field, i.e., of the strain created by the
dislocation.

The differential displacement map of the 1/2 〈111〉 screw dislocation in bcc Fe
shown in Fig. 3a highlights the compactness and the threefold symmetry of the
core. Arrows have been normalized so that an arrow linking the centers of two
atomic columns corresponds to a differential displacement of b/3. One can thus
draw Burgers circuits on this map and obtain the norm of the Burgers vector of
the enclosed dislocation by summing arrows. The only non-null Burgers vector
is obtained for circuits containing the dislocation center indicated by a cross, in
particular for the triangle connecting the three central [111] atomic rows, with a
norm equal to b. The dislocation is thus well localized.

z 0 1/3 2/3
bcc

[1
−

1
−

2]

[11
−

0]

[111]

−0.2  0  0.2
a ρb

(a) bcc Fe: b= 1/2〈111〉

z 0 1/2
hcp

fault

[101
−

0]

[0001]

[12
−

10]

−0.2  0  0.2
a ρb

(b) hcp Zr: b= 1/3〈1210〉

Fig. 3 Core structure of a b screw dislocation (a) in bcc iron (Dezerald et al. 2016) and (b) in hcp
zirconium (Clouet et al. 2015). In these projections perpendicular to the dislocation line, atoms are
sketched by symbols with a colour depending on their (a) (111) and (b) (12̄10) plane in the original
perfect crystal. In (b), different symbols are used for atoms depending on their neighbourhood in
the dislocated crystal, i.e. close to the perfect hcp crystal (circles) or to the unrelaxed prismatic
stacking fault (squares). The arrows between atomic columns are proportional to the differential
displacement created by the dislocation in the direction of the Burgers vector. The colour map
show the dislocation density ρb normalized by the lattice parameter (Nye tensor). The center of the
dislocation is indicated by a + cross. The × crosses in (b) correspond to the positions of the partial
dislocations deduced from the disregistry in Fig. 4
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The picture is quite different for the 1/3 〈12̄10〉 screw dislocation in hcp
Zr shown in Fig. 3b. The differential displacement map shows a non-isotropic
distribution with a spreading of the dislocation core in the (101̄0) prismatic plane.
The normalization here ensures that the maximal arrows correspond to a b/2
differential displacement. The presence of a ribbon with arrows having almost
the same length therefore corresponds to a b/2 prismatic stacking fault which is
known to be stable in this transition metal. The differential displacement map thus
clearly evidences the dissociation of the screw dislocation in two 1/6 〈12̄10〉 partial
dislocations separated by a prismatic stacking fault.

4.2 Dislocation Density

Another visualization method proposed by Hartley and Mishin (2005) consists of
extracting the Nye tensor from the relaxed atomic structure, thus giving a measure
of the dislocation density. The component αjk of the Nye tensor corresponds to the
density of dislocations with a line direction along ek and a Burgers vector along ej .
If A is a surface element of normal n, the dislocation content of line defects along n
intersecting A is given by the surface integral

b =
ż

A

α · n dS.

We only give here the salient points of the method to extract the Nye tensor from
atomic simulations, and the reader is referred to the original publication for the
practical implementation.

The first step is to define the elastic distortion, i.e., the gradient of the elastic
displacement, at each atomic position. Note that this differs from the gradient of
the total displacement. One cannot simply compare the atomic positions after and
before the introduction of the dislocation to obtain this elastic distortion, but one
needs to find for each position the closest undistorted environment corresponding
to a zero-stress state. This is performed by comparing, for each atom, the positions
of its nearest neighbors in the dislocated relaxed crystal with the ones in a perfect
crystal. Knowing the two sets of neighbor positions, each bond in the dislocated
crystal, defined by its vector P(γ ), is identified with the corresponding Q(β) bond
in the perfect crystal, which is the perfect bond leading to the smallest angle Φ(γβ)

between the vectors P(γ ) and Q(β). Only the bonds which are not too much distorted
and for which the angle Φ(γβ) is smaller than a chosen threshold are kept. The elastic
distortion F e is then locally defined through the relation P

(γ )

i = F e
ij Q

(β)
j . This

cannot be satisfied for each set of associated bond (γ β) as the system of equations
is overdetermined and the matrix F e is obtained by the pseudo-inverse method, i.e.,
a least-square fitting. The Nye tensor α is then defined through the curl of the inverse
transpose of the distortion, α = −∇ × (+F e)−1, using finite differences between
neighbor atoms for derivation. This defines the Nye tensor on a set of discrete points,
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generally atomic positions, which can be then interpolated with cubic splines or
Fourier series, or smeared with Gaussian-like spreading functions.

The dislocation density obtained for the 1/2 〈111〉 screw dislocation in bcc
Fe (Fig. 3a) illustrates the compactness of the core: the distribution has only one
peak. On the other hand, the dislocation distribution for the 1/3 〈12̄10〉 screw
dislocation in hcp Zr (Fig. 3b) shows two well-separated peaks which correspond
to the two partial dislocations. To obtain the Nye tensor in this latter case, the
neighborhood of each atom in the dislocated crystal is compared not only to the
two different neighborhoods existing in the perfect hcp crystal but also to the ones
of the unrelaxed prismatic stacking fault, to identify the closer reference from which
the elastic distortion is calculated.

4.3 Disregistry

The extraction of the disregistry offers another way to characterize the dislocation
core structure, particularly convenient when the core is planar. The disregistry is
the difference of displacement induced by the dislocation between the plane just
above and the one just below the dislocation glide plane. It is thus obtained from the
relaxed configuration through

D(x) = u+(x) − u−(x),

where u+(x) and u−(x) are the displacements of the atoms belonging, respectively,
to the upper and lower planes and located at the position x in the direction
perpendicular to the dislocation line. This disregistry varies from 0 for x → −∞
to b for x → ∞, thus corresponding to the dislocation glide plane being locally
sheared by one Burgers vector b. The dislocation center xD is defined by D(xD) =
b/2. The disregistry derivative, ρ(x) = ∂D(x)/∂x, corresponds to the dislocation
density in the glide plane. If the cut plane used to introduce the dislocation in the
simulation cell does not correspond to its glide plane, it is necessary to define
the atomic displacement in the 0 to b interval. This can be done as the Burgers
vector b of a perfect dislocation is a periodicity vector of the lattice and adding a
displacement nb (n ∈ Z) to an atom does not change the configuration.

Peierls and Nabarro built a model that leads to a simple analytical expression of
the disregistry (Lu 2005). According to this model, the disregistry is given by

D(x) = b

π

[
arctan

(
x − xD

ζ

)
+ π

2

]
,

where xD is the dislocation position and ζ its spreading in the glide plane. For
simplicity, we consider scalar quantities by projecting the displacement in the
direction of the Burgers vector. Fitting of these two parameters to the data extracted
from the atomistic simulations allows thus defining the dislocation position and
characterizing the spreading of its core.
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For dissociated dislocations, the disregistry is the sum of the contributions of the
two partial dislocations, i.e.,, assuming that each partial dislocation has the same
Burgers vector b/2 and the same spreading ζ :

D(x) = b

2π

[
arctan

(
x − xD − d/2

ζ

)
+ arctan

(
x − xD + d/2

ζ

)
+ π

]
,

where d is the dissociation distance. As shown in Fig. 4 for the 1/3 〈12̄10〉 screw
dislocation in hcp Zr, such an analytical expression generally perfectly describes
the disregistry extracted from the atomic simulations. One can also notice that
the positions in the glide plane of the partial dislocations deduced from the
disregistry agree which what can be inferred from the differential displacement
and the Nye tensor maps (Fig. 3b). Some consequences of the periodic boundary
conditions used to model this dislocation are visible on these disregistry plots. The
dislocation density slightly depends, through the dissociation distance d and the
partial spreading ζ , on the simulation cell, not only its size but also its shape.
One also sees that the density of the periodic dislocation arrays (solid line in
Fig. 4), obtained by summation of the contributions of the periodic images in the
glide plane, slightly differs from the one of the isolated dislocation (dashed line in

 0

 0.1

 0.2

−10 0 10

d

ζζρ /
(x

) 
/ b

x − xD :  position in habit plane  (Å)

Periodic
Isolated

 0

 0.5

 1

D
(x

) 
/ b

6 × 8  (192 atoms)
7 × 7  (196 atoms)
6 × 6  (144 atoms)

Fig. 4 Disregistry D(x) created by a 1/3 〈12̄10〉 screw dislocation in its (101̄0) prismatic glide
plane in hcp Zr, and corresponding dislocation density ρ(x) = ∂D(x)/∂x. Symbols correspond
to ab initio calculations and lines to the fit of the Peierls-Nabarro model, considering periodicity
or not (straight and dashed lines respectively). Results are shown for different n × m periodic
arrangements corresponding to the periodicity vectors u1 = n/2 [101̄0] and u2 = m [0001] (see
Clouet 2012 for details). For clarity, disregistries D(x) have been shifted by 0.2 between different
data sets. The obtained dissociation distance d and spreading ζ of the partial dislocations are
indicated for the 6 × 8 periodic array whose core structure is shown in Fig. 3b
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Fig. 4), especially in the distribution tail. Flexible boundary conditions, as discussed
in Sect. 3.2, have been developed to solve such limitations of periodic boundary
conditions.

5 Dislocation Energy

Ab initio calculations give access to the dislocation core energy and its variations.
This core energy is the part of the dislocation excess energy which arises from
the strong perturbation of the atomic interactions in the immediate vicinity of the
dislocation line and which cannot be described by linear elasticity. Contrary to the
dislocation elastic energy, this is an intrinsic property which only depends on the
dislocation and not on the surrounding environment. When several configurations
exist for the same dislocation, this core energy controls their relative stability. Its
variations with the position of the dislocation in the crystal lattice is at the origin of
the lattice friction opposing dislocation glide.

5.1 Core Energy

Among the different boundary conditions introduced in Sect. 3 to model a disloca-
tion at an atomic scale, only periodic boundary conditions allow for an unambiguous
determination of the dislocation core energy with ab initio calculations. This is a
consequence of the energy formulation inherent to ab initio calculations. Because of
the non-locality of the electronic energy, which contains a contribution which needs
to be evaluated in reciprocal space, one cannot easily partition the excess energy of
the simulation cell between the dislocation and the external boundary contributions
when a defective boundary has been introduced like in cluster approaches using
either fixed (Sect. 3.1) or flexible boundaries (Sect. 3.2). Ab initio methods to project
the energy on atoms have been proposed: they theoretically allow for such a partition
but the application to the calculation of a dislocation core energy still remains
to be done. Even if the absolute value of the core energy appears difficult to
determine with cluster approaches, methods to estimate its variation are nevertheless
possible. One can, for instance, calculate the difference of core energy between
two configurations of the same dislocations by simply considering the difference
of ab initio total energies. But such an approach assumes that the contribution of
the external boundary will cancel in the difference, an assumption which may be
hard to validate. Variation of the dislocation energy with its position in the crystal
lattice can also be estimated by considering the work of the atomic forces during the
motion (Swinburne and Kermode 2017).

On the other hand, with periodic boundary conditions, all the excess energy arises
from the dislocations. This excess energy ΔE is defined as the energy difference per
unit of height between the supercell with and without the dislocation dipole. If atoms
have been removed or inserted during the creation of the dipole, the energy of the
perfect supercell needs to be normalized by the correct number of atoms. It is given



70 Ab Initio Models of Dislocations 1517

by the sum of the core energy Ecore of the two dislocations, of the elastic energy
Eelas

dipole of the dipole contained in the supercell and of its elastic interaction with its
periodic images:

ΔE = 2 Ecore + Eelas
dipole + 1

2

∑
n,m

Eelas
inter(n u1 + m u2). (4)

The factor 1/2 appears in front of this last contribution as only one half of the
interaction is attributed to each interacting dipole. When partitioning the excess
energy into a core and an elastic contribution, it is necessary to introduce a cutoff
distance to isolate the dislocation cores. Close to the dislocation lines, strains
are much too high to be described by linear elasticity. As a consequence, elastic
fields diverge at the origin, and one needs to exclude the core region from the
elastic description. The elastic contribution to the excess energy is thus obtained by
integrating the elastic energy density on the whole supercell except two cylinders of
radius rc which isolate this elastic divergence. The core energy corresponds to the
excess energy contained in these cylinders. The total excess energy ΔE does not
depend on the choice for this core radius, but the partition between a core and an
elastic contribution depends on rc.

The elastic energy of the dipole and its interaction with its periodic images can
be computed by considering the Volterra elastic field created by the dislocations.
This calculation can be performed either in reciprocal space (Daw 2006) or in direct
space using classical results of dislocation elastic theory (Bacon et al. 1980). In this
last case, one uses the decomposition of Eq. (4), with the contribution of the dipole
contained in the supercell and its interaction with the periodic images calculated
separately. The dipole elastic energy is obtained by the volume integral:

Eelas
dipole = 1

2

żżż

V

(
σ

(1)
ij + σ

(2)
ij

) (
ε
(1)
ij + ε

(2)
ij

)
dV ,

where σ (n) and ε(n) are the stress and strain created by the dislocation n. This is
transformed into a surface integral, thanks to Gauss’ theorem:

Eelas
dipole = 1

2

żż

S

(
σ

(1)
ij + σ

(2)
ij

) (
u

(1)
i + u

(2)
i

)
dSj ,

with u(n) the displacement field associated with dislocation n. The integration
surface is composed of the two cylinders S

(1)
c and S

(2)
c of radii rc removing the

elastic divergence at the dislocation cores, and of the two surfaces S0− and S0+
removing the displacement discontinuity along the dislocation cut (Fig. 5). The
integration on both core cylinders leads to the same contribution

Eelas
c (φ) = 1

2

żż

S
(1)
c

σ
(1)
ij u

(1)
i dSj = 1

2

żż

S
(2)
c

σ
(2)
ij u

(2)
i dSj . (5)
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Fig. 5 Definition of the
contour surface used to
calculate the elastic energy of
a dislocation dipole

This contributions of the core tractions to the elastic energy (Clouet 2009) should
not be forgotten as it ensures that the elastic energy is a state variable compatible
with the work of the Peach-Koehler forces. Besides, in ab initio calculations where
the distance d between the two dipole dislocations is small, this can lead to a non-
negligible contribution compared to the one associated with the integral along the
cut surface, even for a screw orientation. The elastic energy of the dislocation dipole
is then

Eelas
dipole = 2Eelas

c (φ) + biK
0
ij bj ln

(
d

rc

)
, (6)

where the tensor K0 defined by Stroh (1958, 1962) only depends on the elastic
constants. The total elastic energy is finally obtained by adding the interaction of
the dipole with its periodic images. But, one should realize that the summation
on periodic images appearing in Eq. (4) is only conditionally convergent: it can be
regularized with the method of Cai et al. (2003).

As shown in Fig. 6 for the 1/2 〈111〉 screw dislocation in bcc iron, once this
elastic energy is subtracted from the dislocation excess energy given by ab initio
calculations, one obtains a constant core energy which does not depend on the size
of the supercell. Some slight variations of the core energy are nevertheless still
observed with the type of periodic arrangement used for the atomic simulations.
These variations arise because only the Volerra elastic field has been considered
in the calculation of the elastic energy. Dislocations also cause a core elastic field,
which decays more rapidly than the Volterra elastic field. Because of the small size
of the supercell used in ab initio calculations, this core field may also lead to an
elastic interaction between the different dislocations composing the periodic array.
This contribution to the elastic energy can be computed to improve the convergence
of core energies (Clouet et al. 2009). A quadrupolar periodic arrangement minimizes
this contribution of the core field. This is why such an arrangement is preferred
when periodic boundary conditions are used. The neglect of anharmonic effects in
the calculation of the elastic energy can also be a reason for the variation of the
core energy with the supercell. Knowing higher-order elastic constants, one can
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Fig. 6 Decomposition of the
excess energy ΔE of a
1/2 〈111〉 screw dislocation
dipole in bcc Fe in an elastic
contribution Eelas and a core
energy Ecore, using a core
radius rc = b/2. Different
symbols correspond to
different periodic
arrangements (see Clouet
et al. 2009 for details)
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use nonlinear elasticity theory in principle to calculate more precisely this elastic
contribution (Teodosiu 1982). But this leads to much cumbersome calculations.
In practice, as anharmonicity is important only close to the dislocation core, the
consideration of the dislocation core field offers a way to incorporate anharmonic
effects while still relying on linear elasticity.

5.2 Peierls Energy Barrier

The Peierls energy is the energy barrier opposing dislocation glide. It corresponds to
a variation of the dislocation core energy as the elastic energy is not dependent upon
the dislocation position in the crystal lattice. It can be calculated by finding the
minimum energy path linking two neighboring stable positions of the dislocation
using either constrained minimization or nudged elastic band (NEB) calculations
(Henkelman et al. 2000).

With periodic boundary conditions, the Peierls energy is directly obtained by
considering a path where both dislocations composing the dipole are displaced
by one Peierls valley in the same direction. If the two dislocations are moved
simultaneously along the path, their separation distance does not vary, and the
elastic energy is constant. This ensures that the energy variation given by the
constrained minimization or the NEB calculations directly corresponds to the Peierls
energy. However, this is possible only if crystal symmetry ensures that the path
is symmetrical as the two dislocations are traversing their Peierls barriers in the
opposite direction. This is the case, for instance, for the 1/2 〈111〉 screw dislocation
in a bcc lattice gliding in a {110} plane (Fig. 7a).

If the path is not symmetrical, either because of the lack of crystal symmetries
or because of an applied stress, it is not possible anymore to move both dislocations
simultaneously in the same direction. One needs either to move them in opposite
directions or to keep one dislocation fixed when the second one is moving. As
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Fig. 7 Peierls barrier of a 1/2 〈111〉 screw dislocation in bcc Mo. (a) The energy variation ΔE is
shown as a function of the reaction coordinate ζ , and (b) the enthalpy variation ΔH as a function
of the dislocation position xD normalized by the distance λP between two Peierls valleys (see
Dezerald et al. 2014, 2016 for details). For the Peierls barriers under stress (b), only one half
of the barrier has been computed, with one dislocation of the dipole being displaced while the
second one remains fixed. The open symbol is the enthalpy variation in the middle of the pathway
(xD/λP = 1/2) before correcting for the variation of the elastic interaction energy for the τ = 0
calculation

a consequence, the separation distance, and thus the elastic interaction energy, is
varying along the path. One can calculate this variation of the elastic energy and
subtract it from the excess energy in order to obtain the Peierls energy. To be able
to perform this elastic calculation, one needs first to determine the exact dislocation
position xD for each reaction coordinate ζ along the path. This can be done using the
dislocation disregistry (cf. Sect. 4.3) if the motion is planar or by fitting the atomic
displacements with the Volterra elastic solution. As the stress is directly linked to
the applied strain and the dislocation positions (Eqs. 2 and 3), one can also use the
stress variation observed along the dislocation path to determine the dislocations
position. The example of Fig. 7b shows that, with this correction for the variation
of the elastic energy, the same Peierls energy is obtained under zero applied stress
when one dislocation is fixed or when both dislocations are moved (Fig. 7a).

5.3 Peierls Stress

The Peierls stress is the applied resolved shear stress necessary to cancel the
Peierls barrier so that the dislocations can glide freely without the need of thermal
activation, i.e., the stress necessary to move the dislocation at 0 K. For an applied
stress τ , the Peierls barrier is given by the enthalpy variation

ΔHP(xD, τ ) = ΔEP(xD) − τbxD,

which corresponds to the Peierls energy barrier plus the work of the applied
stress when the dislocation has glided a distance xD. The Peierls stress is thus
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the maximum applied stress τ for which the function ΔHP(xD, τ ) goes through a
maximum in the range 0≤xD ≤λP. If one assumes that the energy barrier ΔEP(xD)

does not depend on the applied stress τ , it is given by

τP = 1

b
Max

(
∂ΔEP

∂xD

)
. (7)

The Peierls stress can thus be theoretically obtained from the calculation of the
Peierls energy barrier under zero applied stress. But, the evaluation of the derivative
in Eq. 7 requires to know the variation of the energy as a function of the dislocation
position and not only of the reaction coordinate. In practice, the obtained value for
τP will sensitively vary with the method chosen to estimate the dislocation position
along the path.

One can also directly calculate with ab initio calculations the Peierls barrier under
an applied stress so as to estimate at which stress the barrier cancels (Fig. 7). In
such calculations, one does not really apply a stress but a strain corresponding to
the target stress (Eq. 2). With periodic boundary conditions, as the distance between
the two dislocation is varying, the applied stress is also varying along the path.
Equations (2) and (3) show that the stress variation is directly proportional to the
dislocation displacement and to the inverse of the surface S of the simulation cell
perpendicular to the dislocation line. If only one dislocation is moving along the
path, this stress variation therefore does not exceed

δτ = μ
bλP

S
,

where μ is the shear modulus in the dislocation glide plane.
If one is only interested in the calculation of the Peierls stress and not in the

variation of the Peierls barrier with the applied stress, one can simply perform
static relaxation of a dislocation under an applied stress to see at which applied
stress the dislocation glides by at least one Peierls valley. With periodic boundary
conditions one still needs to take into account the variation of the elastic interaction
and of the applied stress when the dislocation is moving to interpret the results.
On the other hand, no such artifact exists with a cluster approach using flexible
boundary conditions which truly models a single isolated dislocation under an
applied stress. Straining homogeneously the simulation cell to obtain the targeted
applied stress, the Peierls stress is defined as the stress for which the dislocation
cannot be stabilized anymore and escapes from the cluster. If one is only interested
in the evolution of the dislocation core structure under an applied stress and on the
determination of the Peierls stress, this cluster approach therefore appears as the
method of choice. Nevertheless, whatever the boundary conditions, determination
of the Peierls stress by such an instability condition of the dislocation core under an
applied stress necessitates a strict threshold criterion on the atomic forces to obtain
a meaningful value.
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6 Conclusions

Dislocation core properties can now be routinely studied with ab initio calculations,
thanks to the different methodological developments summarized in this chapter.
This usually necessitates a coupling between atomistic model and elasticity the-
ory, for which different already available tools can be used: see, for instance,
D. R. Trinkle website (http://dtrinkle.matse.illinois.edu) for an implementation of
the lattice Greens functions or the Babel package (http://emmanuel.clouet.free.fr/
Programs/Babel) for handling dislocations in atomistic simulation cells and elastic
energy calculations. Useful information on the dislocation core structure are thus
obtained. Such calculations can, for instance, characterize possible dissociation or
spreading of the core, or evidence the existence of several stable configurations for
the same dislocation. One gets access to the different energy barriers opposing
the dislocation motion and to their variation with the applied stress. It is also
possible to study how these core properties are altered by the interaction with solute
atoms.

Because of the limited size that can be handled by ab initio calculations, such
studies are usually limited to the study of straight dislocation, and only few
ab initio calculations have considered until now the presence of kinks on the
dislocation lines. Upscaling modeling approaches, relying, for instance, to the line
tension approximation to describe kink nucleation, are therefore needed to go from
these fundamental core properties determined at 0 K with ab initio calculations
to dislocation mobility laws at finite temperature. Larger atomistic simulations
are also possible using empirical potentials to describe atomic interactions. These
simulations allow studying more complex situations and simulating different dis-
location mechanisms, like glide, cross-slip and interaction with other elements of
the microstructure, without assuming a priori the elementary mechanism. In such
a context, ab initio calculations are useful to validate and also help the develop-
ment of empirical potentials which correctly reproduce dislocation fundamental
properties.
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