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Abstract

Precise analysis and meaningful visualization of dislocation structures in molec-
ular dynamics simulations are important steps toward physical insights. This
chapter provides an introduction to the dislocation extraction algorithm (DXA),
which is a computational method for identifying and quantifying dislocations in
atomistic crystal models. It builds a bridge between the atomistic world of crystal
defects and the discrete line picture of classical dislocation theory.

1 Introduction

Dislocations have two sides: On one hand, they are commonly viewed in dislocation
theory as discrete line objects, which possess a characteristic topological charge –
the Burgers vector – and which can glide through a crystal to produce plasticity or
participate in various kinds of reactions. On the other hand, they constitute a partic-
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Fig. 1 In this section a computer algorithm is introduced that can convert an atomistic crystal
model (left) to a discrete line representation of the contained dislocation defects (right)

ular kind of irregularity in the otherwise regular arrangement of atoms in the crystal
lattice. Boundaries of extra planes of atoms are what we call edge dislocations,
and screw dislocations denote helical distortions of atomic planes. Thus, to fully
grasp the phenomenon of crystal dislocations, we must consider – and somehow
unify – two complementary pictures: the explicit one (discrete line objects) and
the implicit one (glitches in the lattice arrangement). Both pictures are extensively
used by different modeling strategies, with discrete dislocation dynamics (DDD)
and molecular dynamics (MD) being the most prominent ones to represent the two
dislocation descriptions. This section will introduce ways to unify these seemingly
disparate pictures of the same physical phenomenon and to accomplish a conversion
between them (Fig. 1). Given the atomic positions in a crystal containing dislo-
cation defects, we want to reconstruct the geometry of the one-dimensional lines
these dislocations can be described as mathematically. The computational method
introduced here to solve this problem has practical relevance for the modelling of
dislocations at multiple length scales as it builds a bridge between the atomistic
world and the mesoscale and, at the same time, provides a powerful analysis tool
for MD simulations that greatly helps to understand dislocation processes.

2 Burgers Circuit Method

As an introductory example for the connection between dislocation line theory and
atomistic crystal defects, we take a look at the classical Burgers circuit construction
(Frank 1951), which is the canonical method (Bulatov and Cai 2006) already
proposed in the 1950s to discriminate dislocations from other crystal defects and to
determine their Burgers vectors. In the formulation employed here, a Burgers circuit
C is a path in the dislocated crystal consisting of a sequence of atom-to-atom steps
(line elements Δx), as shown in Fig. 2a. The circuit is closed, thus

∑
C Δx = 0.

We assume that there exists a mapping Δx → Δx′ that translates each
line element of the path to a corresponding image, Δx′, in a perfect crystal
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Fig. 2 Burgers circuit method to identify a dislocation. A closed circuit around the dislocation is
translated from (a) the dislocated crystal to (b) the perfect reference crystal. The closure failure b
is called the Burgers vector of the dislocation

lattice (Fig. 2b). Summing these transformed line elements algebraically along the
associated path, C′, gives the true Burgers vector of the dislocation enclosed by C:

b = −
∑

C′
Δx′. (1)

The Burgers vector b is the closure failure of the path after transferring it to the
perfect reference crystal.

Note that the Burgers circuit procedure is typically performed by hand to
analyze two-dimensional crystal images obtained from high-resolution microscopy
or atomistic computer simulations. Human intuition and cognitive capabilities are
required to spot irregularities in the crystal lattice that are potential dislocation
defects and to apply the Burgers circuit test to them. Automating these steps poses
a challenge when developing a computational dislocation identification method for
three-dimensional atomistic crystal models.

The Burgers circuit procedure represented by Eq. 1 above is the discrete analogue
of an equation used in continuum mechanics to define the Burgers vector of a
Volterra dislocation:

b = −
ż

C

(Fe)−1dx. (2)

Here, C denotes any contour enclosing the mathematical dislocation line, and
(Fe)−1 denotes the inverse of the elastic deformation gradient. This second-rank
tensor acts on the infinitesimal line element dx and transforms it from the dislocated
crystal configuration to an ideal, elastically unstrained reference configuration. This
mapping is analogous to the explicit translation of atomic steps we did in the discrete
formulation of the Burgers circuit procedure.

Notably, the resulting vector b stays the same if we change the original circuit
C, as long as it still encloses the same dislocation. On the other hand, if b = 0, we
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Fig. 3 Schematic depiction of the dislocation finding approach described in the text. (a) The given
domain contains a set of dislocations with unknown positions. The parameter dmin denotes the
lower bound for the separation distance between dislocations, which is on the order of one atomic
lattice spacing and corresponds to the dislocation core diameter. (b) The domain is tessellated by a
grid of Burgers circuits of diameter dmin. Circuits highlighted in blue exhibit a closure failure and
are marked as containing a dislocation

know that the Burgers circuit did not enclose any defect with dislocation character.
Here, however, we are deliberately ignoring the possibility that the circuit encloses
multiple dislocations whose Burgers vectors cancel. One may thus ask, in the
absence of a priori knowledge of the spatial distribution of dislocations in a given
crystal, how can we – or rather a computer algorithm – construct the circuit C such
that it encloses exactly one of the dislocations?

This general situation is depicted schematically in Fig. 3a: A set of dislocations
with unknown positions which we would like to determine is distributed across a
given continuum domain. It is safe to assume that any distribution of dislocations
is such that one can specify a lower-bound dmin for the separation distance between
any two distinct dislocations. In reality, this lower bound is given by the interatomic
spacing in the crystal lattice, because that is also the minimum distance when the
cores of two nearby dislocations necessarily start to overlap; hence they can no
longer be treated as distinct defects. As shown in Fig. 3b, it is possible to construct a
large number of non-overlapping circuits, each having size dmin, to completely cover
the entire domain. By virtue of our construction, each circuit can contain at most one
dislocation, and we effectively excluded the possibility of “missing” dislocations.
The Burgers circuit test tells us which of the circuits contain a dislocation, and since
their diameters are small, we can pinpoint the dislocations’ positions with great
precision (on the order of dmin) using this method.

3 Simple Algorithm for Finding Dislocations in Atomistic
Crystals

The approach outlined above can be translated into a simple computer algorithm
to detect and find all dislocations in an atomistic crystal (Stukowski 2014). We
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Fig. 4 (a) Input atomic positions. (b) Tessellation of the input domain into triangular circuits using
the Delaunay construction. (c) Burgers circuit test, performed on each Delaunay triangle, reveals
exactly one cell that contains the dislocation

assume that the crystal to be analyzed is specified as a set of atomic coordinates {xi}
as depicted in Fig. 4a. The Delaunay construction is used to tessellate the crystal
domain into a set of triangles (Fig. 4b). The elements of the triangulation are space-
filling and non-overlapping, and we can regard them as small, elementary Burgers
circuits, which will allow us to find and locate all dislocations contained in the
atomistic crystal.

Since every edge of a triangle abc of the Delaunay tessellation represents an
atom-to-atom step, we can apply the discrete version of the Burgers circuit method
to calculate the per-triangle closure failure babc = Δx′

ab + Δx′
bc + Δx′

ca after
mapping each edge vector Δxij = xj − xi connecting two successive atoms i and j

to its corresponding ideal vector Δx′
ij in a perfect reference crystal lattice. Triangle

circuits with closure failure babc �= 0 are marked as containing a dislocation, as
shown in Fig. 4c.

There are different ways to accomplish the mapping of interatomic vectors from
the dislocated crystal to the virtual reference lattice, Δxij → Δx′

ij . In cases where
the orientation of the dislocated crystal in the simulation coordinate system is
known a priori, we can simply pick the vector Δx′

ij from a prescribed set of ideal
lattice vectors taking the one that is closest to the elastically distorted vector Δxij

(Stukowski 2014). In more general situations, a structure identification method such
as common neighbor analysis (CNA) (Honeycutt and Andersen 1987; Faken and
Jonsson 1994) or polyhedral template matching (PTM) (Larsen et al. 2016) must be
used to first determine the local lattice orientation and then map atomic neighbor
vectors to corresponding ideal lattice directions.

So far, we have considered only two-dimensional crystals where dislocations are
point-like object in the plane. How does this approach extend to three-dimensional
crystals containing linear dislocations? Here, the Delaunay tessellation of the
atomistic model consists of tetrahedral cells, each being bordered by four triangular
facets (Fig. 5). In the three-dimensional version of the algorithm, the closure failure
babc must be computed for every triangular facet of the tetrahedral Delaunay cells.
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Fig. 5 (a) A tetrahedral cell of the three-dimensional Delaunay tessellation, which is spanned
by four vertex atoms. A dislocation line enters and exits through the triangular facets of the cell.
The algorithm described in the text identifies such facets using the Burgers circuit test. (b) Linear
defects with dislocation character lead to “chains” of dislocated Delaunay cells, which may form
junctions in three-dimensions as exemplarily shown here

If babc �= 0, a facet is marked as being intersected by a dislocation line. Since
dislocations cannot end within an otherwise perfect crystal, because of the Burgers
vector conservation law, a line entering a Delaunay cell through one of its triangular
facets must exit the cell again through one of its other three facets. Accordingly, the
dislocation can be viewed as a line piercing through a sequence of triangular facets
and tetrahedral cells as illustrated by Fig. 5b.

4 Dislocation Extraction Algorithm (DXA)

So far we have deliberately ignored several important aspects that can play a role
in more general situations. First and foremost, crystal dislocations have a finite
core size (Fig. 6a). That means they are not mathematically thin, one-dimensional
objects but rather tubelike objects spread over a certain space region. The core region
typically extends over more than one interatomic spacing and is thus covering more
than one Delaunay triangle element. In order to capture such dislocations, larger
Burgers circuits are necessary to fully enclose the core (which is represented by a
connected set of Delaunay elements that have been marked as “bad”; see Fig. 6b).

Secondly, dislocations may dissociate into partial dislocations. If we want to
identify partial dislocations individually, e.g., Shockley partials in fcc crystals, using
the Burgers circuit procedure, we have to take special provisions, as the circuit
enclosing the dislocation necessarily passes through the adjacent stacking fault
defect (Fig. 6c). Only if we map the atomic step leading through that stacking fault
plane to the correct fractional lattice vector, we will obtain the right (fractional)
Burgers vector of the partial dislocation.

Finally, crystals often contain other defects in addition to dislocations. A general
dislocation identification algorithm must therefore be able to deal with non-
dislocation irregularities such as free surfaces, point defects, grain boundaries, other
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Fig. 6 (a) Dislocation with an extended core. Atoms that are part of the core (darker color) can
be identified using a structural characterization technique such as common neighbor analysis. (b)
Bad tessellation elements, for which no unambiguous mapping to the perfect reference lattice is
possible, have been marked with a gray color. (c) Schematic depiction of a dissociated dislocation.
Identification of the two partial dislocations requires Burgers circuits passing through the stacking
fault

types of interfaces, and even disclinations in a robust way. And, as mentioned
before, the crystal orientation and crystal structure may not be known in advance
and can vary across space and time. The algorithm needs to adapt to these situations
appropriately.

In order to address these challenges, a computer algorithm named the dislocation
extraction algorithm (DXA) (Stukowski et al. 2012; Stukowski and Albe 2010) has
been devised on the basis of the fundamental ideas described in the preceding
sections. The DXA is capable of building a discretized line representation of all
dislocations contained in a given atomistic crystal model (Fig. 1). The generated
representation of dislocation lines found in the crystal is very similar to those
employed by dislocation dynamics simulation models. The DXA is available as
part of the OVITO (Stukowski 2010) data analysis and visualization software for
atomistic simulations.

The DXA proceeds in several steps, starting with the atomic input coordinates, to
arrive at the final line representation of the dislocations. Here is a synopsis of these
processing steps, which are described in more detail in Stukowski et al. (2012):

1. The three-dimensional Delaunay tessellation is computed.
2. Atoms in the input crystal are identified that form a perfect crystal lattice.

For this, the common neighbor analysis (CNA) method is used, which
allows to identify common lattice types such as fcc, bcc, hcp, and diamond.
The information is also used to determine local lattice orientations and map
atom-to-atom vectors in the Delaunay tessellation to the ad hoc reference lattice.

3. Elements in the Delaunay tessellation are flagged as “bad” crystal regions if
they contain disordered atomic arrangements. This includes the dislocation cores,
where the atomic structure deviates considerably from one of the perfect crystals,
but also other types of defects (Fig. 6b).

4. The separating surface between the “good” and the “bad” crystal regions in the
Delaunay tessellation, the so-called interface mesh, is generated (see Fig. 7).
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Fig. 7 Illustration of the interface mesh constructed by the DXA to enclose all defect atoms of
a dislocation core. The algorithm uses an “elastic” Burgers circuit (red) that is moving on the
interface mesh to sweep the dislocation line. While this circuit is being advanced in a stepwise
fashion, triangle by triangle, a continuous line representation of the dislocation defect is produced
(green)

5. The algorithm then generates a large number of trial circuits on the interface
mesh until it encounters a first circuit that fully encloses a dislocation. This is
detected by computing the Burgers sum (Eq. 1). The maximum size of the trial
circuits is bounded by a user parameter controlling how wide dislocation cores
may be for the algorithm to detect them.

6. The first circuit is subsequently used to discover the rest of the current dislocation
line. This happens by advancing the circuit on the interface mesh and sweeping
along the dislocation line as depicted in Fig. 7.

7. During this sweeping phase, a one-dimensional line representation of the dislo-
cation is generated by computing the new center of mass of the circuit every time
it is advanced along the boundary of the dislocation core. Here, a circuit can be
pictured as a rubber band tightly wrapped around the dislocation’s core. As the
circuit moves along the dislocation segment, it may need to locally expand to
sweep over wider sections of the core, e.g., kinks or jogs. To prevent the circuit
from sweeping past dislocation junctions or interfaces, again a limit is imposed
on the circuit length.

8. As a last step, a post-processing of the discretized dislocation lines is performed
to reduce the number of sampling points.

The sweeping of dislocation lines, performed in steps 6 and 7 of the algorithm, in
fact happens simultaneously on all segments of a dislocation network as depicted in
Fig. 8. The initial seed circuits, constructed at the slimmest spots of the dislocation
segments, split into pairs of circuits, each sweeping along the cores’ surfaces in
opposite directions. During this sweeping process, the upper limit for each circuit’s
maximum length is continuously raised, letting the circuits approach closer and
closer to the dislocation junctions, which typically exhibit a wider cross section than
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Fig. 8 Schematic depiction of the DXA line tracing process for a network of dislocations. All
dislocation arms are simultaneously swept by pairs of Burgers circuits advancing on the core’s
surface in opposite directions (cf. Fig. 7). At junctions, the inbound circuits from different arms
meet, and the algorithm outputs a nodal point to connect all lines traced by these circuits

Fig. 9 Left: Molecular dynamics simulation of dislocation-based single crystal plasticity (Zepeda-
Ruiz et al. 2017). The piece of tantalum crystal (33 million atoms) is being deformed under uniaxial
compression. Common neighbor analysis filtering (Stukowski 2012) of the atomic coordinates
reveals a high density of defects in the bcc lattice (inset). Right: After processing with the DXA,
non-dislocation defects such as vacancies have been filtered out. The resulting line representation
allows measuring dislocation densities and studying dislocation processes in great detail. Green
and magenta lines represent 1

2 〈111〉 and 〈100〉 dislocations, respectively

the dislocation arms. At some point, the converging circuits all meet in a junction,
and the algorithm links up their corresponding line ends at a nodal point.

5 Use Cases of the DXA

The DXA can serve as a measurement tool to quantify the density of dislocations in
molecular dynamics simulations, thanks to the conversion of the identified defects
to a mathematical line representation (Fig. 9). The average dislocation density in a
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Fig. 10 Analysis of a complex dislocation junction in fcc Al that has formed through a reaction of
two 1

2 〈110〉 dislocation loops on intersecting glide planes. Left: Atomic input configuration with
applied CNA filtering to highlight stacking fault atoms (red) and defect core atoms (gray). Center:
Visualization of the interface mesh, the intermediate structure constructed by the DXA to enclose
the defect cores. Right: Output dislocation lines and Burgers vector labeling generated by the DXA

crystal, ρ, is simply computed from the integral line length divided by the simulation
box volume (see, e.g., Zepeda-Ruiz et al. 2017). The generated description of
the dislocation geometry may also be used, for instance, to measure the size of
the plastic zone in nanoindentation simulations (Gao et al. 2015; Voyiadjis and
Yaghoobi 2015; Remington et al. 2014; Yaghoobi and Voyiadjis 2016; Alhafez et al.
2016; Alabd Alhafez et al. 2017) or to obtain local dislocation densities. Since the
DXA does not only yield the shape but also the Burgers vector of each dislocation
segment, the total (or statistical) density as well as the geometrically necessary
density of dislocations (GND) are accessible via the DXA.

Another typical use case of the DXA is detailed analyses of dislocation reactions
in molecular dynamics and statics simulations (e.g., Zhang et al. 2017). These
reactions include the formation and nucleation of new dislocations at other defects,
e.g., free surfaces (Trushin et al. 2016), grain boundaries (Stukowski et al. 2010),
crack tips (Vatne et al. 2013), or pores (Ruestes et al. 2014) in a material. Here,
the DXA can generate a precise labeling of dislocations forming complex network
configurations as demonstrated in Fig. 10.

6 Current Limitations of the DXA

While the DXA represents a great improvement over conventional, atom-based
analysis techniques such as the CNA, it still has certain limitations that one should
be aware of when using this analysis tool. This section provides a roundup of key
issues that need to be taken into account while working with the DXA and its output.
Note, however, that the DXA is the subject of ongoing research seeking to improve
the algorithm and overcome some of the issues mentioned here.

Accuracy and ambiguity of dislocation representations In general, given an
atomistic crystal configuration, the representation of the contained defects in
terms of a set of discrete dislocation lines is not uniquely defined. For instance,
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dislocations in fcc crystals typically dissociate into pairs of partial dislocations
(see upper left corner in Fig. 10). If the separation distance between such two
partials becomes very small (on the order of 1–2 interatomic spacings), it is up
to the algorithm to decide whether this particular atomistic configuration is better
represented by a single dislocation line or two partials. The algorithm’s choice is
based on its particular notion of the dislocation core (in DXA terminology termed
the “bad” crystal region, following Frank 1951). If the two dislocation core regions
overlap, the algorithm is only able to construct a single Burgers circuit enclosing
both defects. As a result, the two dislocations are fused into a single discrete
dislocation line in the DXA’s output representation. On the other hand, if the two
cores are separated by just some “good” crystal region in between, then the DXA
generates Burgers circuits around each of the individual partials, and two separate
lines will be generated in the output. Thus, some “good” crystal atoms are required
in between the two dislocations to separate them, cf. Figs. 6c and 10. A second type
of ambiguity arises for very short dislocation segments and at dislocation junctions.
Figure 11 depicts a detail of a dislocation network where four arms merge into a
junction (a “4-junction”). However, they do not meet exactly in one point, and due
to this slight dissociation of the junction, there is freedom of whether to describe
this configuration as two separate 3-junctions instead, which are connected by an
additional short dislocation segment. Which topology the DXA prefers depends
on minutiae of the core morphology at this junction. As the four inbound Burgers
circuits approach the junction, the upper limit on the circuits’ lengths is continuously
raised, letting the circuits stretch and advance further into the junction step by step.
Simultaneously, the algorithm tries to generate an additional seed circuit around the
core of the dissociated junction, i.e., in the inner area that has not been swept by the
existing circuits yet. If the algorithm succeeds in spawning another Burgers circuit
for the connecting segment before the existing circuits have met in the junction, then
a topology with two 3-junctions results. Otherwise, the algorithm yields a single 4-
junction. Effectively, the outcome is determined by the ratio of the core diameter of
the dissociation segment and its length.

Supported crystal structures The DXA relies on an ad hoc mapping being
established between the dislocated crystal and a corresponding ideal reference
crystal lattice. This mapping is accomplished by means of an atomic structure
identification method (Stukowski 2012), which maps the nearest neighbor vectors
of each identified input atom to corresponding ideal lattice directions. The current
implementation of the DXA uses the common neighbor analysis (CNA) method
(Honeycutt and Andersen 1987) as a subroutine for this step, and it is thus currently
limited to bcc, fcc, and hcp crystals and, thanks to a recent extension of the CNA
method (Maras et al. 2016), also cubic and hexagonal diamond structures. Since the
chemical types of atoms are not relevant to the DXA itself, crystalline compounds
with a sub-lattice matching one of these supported structure types can also be
processed by feeding only atoms from a sub-lattice to the algorithm. It is expected
that future implementations of the DXA will employ new structure identification
techniques other than the CNA in order to support a wider range of crystal structures.
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Fig. 11 At slightly dissociated dislocation junctions like the one shown here, an ambiguity arises
of whether to connect all arms at a single node or instead create two nodes that are connected by a
short extra segment

In principle, any computational method that establishes a local mapping between
atomic neighbor vectors and the ideal reference lattice can serve as foundation for
the dislocation detection part of the DXA.

Glide plane identification The DXA yields the geometric shape of a dislocation
as well as its Burgers vector. This information alone, however, is not sufficient to
identify the glide plane the dislocation is moving on. Thus, the DXA falls short of
answering the question of active slip systems in a deforming crystal. In certain cases,
however, one can use heuristic criteria to guess the glide planes of dislocations. For
Shockley partials in fcc crystals, a dislocation’s Burgers vector uniquely determines
its glide plane, and no other information is needed. In other cases, if a dislocation
has an edge component (is not pure screw), its glide plane can be determined from
the Burgers vector and the line direction. In general, however, it is important to
recognize that the glide plane of a dislocation is a dynamic property and requires
the analysis of the dislocation’s path it takes through the crystal, which is beyond
the DXA’s capabilities (see next item).

Tracking dislocations through time and space It is important to note that the
DXA operates on instantaneous snapshots of an atomistic crystal and builds a line
model of the dislocations at certain simulation times. In other words, it is a static
analysis method, not a kinematic one. Since dislocations are not physical objects
(see our introductory discussion), they do not possess unique identities that would
allow to track them over time. This makes it difficult to automatically correlate
successive snapshots of the evolving dislocation configuration as dislocations can
move arbitrary distances between MD simulation snapshots, undergo reactions,
and appear newly via nucleation and disappear via absorption or annihilation
processes. In particular, the DXA cannot directly deliver dislocation velocity
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information, because tracking of dislocations would require additional heuristics
to link dislocations in successive DXA snapshots.
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