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Abstract

Image-based computational models are essential for predicting microstructure-
property relationships. Crystal plasticity finite element models, or CPFEM, con-
stitute a major part of these computational models. These models generally adopt
conventional finite element analysis tools such as available commercial codes.
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However, they face severe challenges when modeling complex microstructures
undergoing extreme phenomena. This chapter examines a few challenges of
conventional CPFEM and proposes remedies through advanced methods of
computational mechanics. The methods discussed include element stabilization,
multi-time-domain subcycling, and efficiency enhancement through adaptivity.
It demonstrates the need for such numerical advances and the advantages
gained. It provides motivation for looking beyond the available tools and making
fundamental advances in field of computational mechanics that can benefit
predictive modeling.

1 Introduction

Structural materials, like metals and alloys, are often characterized by microstruc-
tural heterogeneities in the form of nonuniform grain distributions, multi-colony
sites, or polyphase aggregates in a polycrystalline ensemble. Morphological and
crystallographic characteristics of microstructures strongly govern their mechanical
behavior and failure response. For example, disparities in grain size, crystallo-
graphic orientations, micro-texture, and slip system resistance cause large stress
concentrations and grain boundary dislocation pileups, leading to localized plastic
flow and crack nucleation in Ti alloys (Sinha et al. 2006). Robust predictive models
of deformation and failure, incorporating microstructural features and physical
mechanisms, are necessary for effective material simulation and design.

The recent years have seen a surge in the use of image-based computational
micro-mechanics models for predicting microstructure-property relationships. For
polycrystalline microstructures undergoing large plastic deformation, image-based
computational modeling entails determining micromechanical solution fields in
statistically equivalent representative volume elements (SERVEs) of the material
microstructure by executing computational methods like the finite element method
(FEM), boundary element method (BEM), or fast Fourier transform (FFT) method.
A SERVE is an optimally small computational domain that is created to capture the
statistics of characteristic morphological and crystallographic variables in experi-
mentally obtained electron backscattered diffraction (EBSD) or scanning electron
microscopy (SEM) images. Methods of generating SERVEs are discussed in a
previous chapter (by Ghosh and Groeber) of this handbook. The SERVE creation
is generally followed by conforming mesh generation through discretization of
the microstructure into simple geometric elements. Figure 1 shows a 3D SERVE
constructed from a 2D EBSD scan of a Ti-7Al specimen and strain evolution in the
image-based crystal plasticity finite element analysis.

A majority of the computational models for polycrystalline microstructures
undergoing large plastic deformation implement crystal plasticity constitutive mod-
els. Crystal plasticity finite element models, e.g., in Pierce et al. (1983), Busso
et al. (2000), Staroselsky and Anand (2003), Matous and Maniatty (2004), Bridier
et al. (2009), Roters et al. (2010a, b), Hasija et al. (2003), Deka et al. (2006),
Venkataramani et al. (2007), Anahid et al. (2011), Meissonnier et al. (2001), Dunne
et al. (2012), and Kalidindi and Schoenfeld (2000), generally incorporate these
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Fig. 1 (a) EBSD scan of the alloy Ti-7Al, (b) 529-grain 3D SERVE of dimension 300 μm showing
< c >-axis misorientation and pole figures comparing SERVE data to EBSD, (c) contour plot of
plastic strain at 20% strain with an applied compressive strain rate of 104 s−1

constitutive models in conventional finite element analysis codes like ABAQUS,
LS-DYNA, etc. for full field analysis of short- and long-range evolution of state
variables. Image-based CPFEM, in which microstructural SERVEs are modeled
for predicting complex deformation mechanisms including crack nucleation, twin
propagation, etc., are discussed in Thomas et al. (2012), Shahba and Ghosh (2016),
Cheng and Ghosh (2015, 2017), and Ozturk et al. (2017).

A number of challenges arise when using CPFEM for modeling deformation
mechanisms in complex microstructures, especially those involving phenomena like
localization, twinning, crack propagation, fatigue, etc. Special methods in advanced
computational mechanics should be developed to overcome these challenges and
render robust predictive tools. This chapter begins with a brief description of
CPFEM formulations, crystal plasticity constitutive relations, and their implemen-
tation. Subsequently, it examines three challenges that commonly persist with
conventional CPFEM and offers remedies for overcoming them.

• Element Stabilization: Plastic incompressibility causes volumetric locking of
commonly used tetrahedral elements in CPFE analyses. Special element tech-
nology should be developed for stabilizing spurious modes in these elements.
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• Time-Domain Subcycling for Disparate Deformation Rates: Modeling local-
ization phenomena, e.g., discrete twin evolution, in CPFEM often has low
computational efficiency due to very fine simulation time steps. This is a
major bottleneck in predicting rapidly evolving twin bands. A multi-time-
domain subcycling algorithm can improve computational efficiency through the
introduction of complementary sub-domains with selective fine and coarse time
stepping.

• Enhanced Efficiency with Adaptive CPFEM: Conventional 3D CPFEM with
high-resolution mesh can be computationally prohibitive, especially with algo-
rithms for solving complex constitutive models. Increased efficiency can com-
promise accuracy due to the use of coarse mesh and simplified computational
domains. Hierarchical adaptive methods in CPFEM are capable of providing a
solution to this shortcoming.

2 Crystal Plasticity FE Formulation and Solution Methods

Finite deformation, crystal plasticity finite element models typically invoke an
incremental solution method, where the time (or equivalent loading) domain is
discretized into finite number of steps. In an updated Lagrangian formulation (Bathe
2006) for a body under quasi-static conditions, the principle of virtual work for an
increment transcending discrete temporal points t and t + �t is written as:

ż

Ωt

δEt+�t
t : St+�t

t dΩ = Rext t+�t

(1)

where Ωt ⊂ R3 is the computational domain at time t and Et+�t
t and St+�t

t

correspond to the Green-Lagrange strain and the second Piola-Kirchhoff (PK) stress
tensors, respectively, with respect to the reference configuration at time t . The weak
form at time t + �t requires the following relations:

Incremental displacement : ut+�t = ut + �u (2a)

Green-Lagrange strain tensor : Et+�t
t =1

2

(
∂�u
∂xt

+
(

∂�u
∂xt

)T

+
(

∂�u
∂xt

)T
∂�u
∂xt

)

(2b)

Second Piola-Kirchhoff stress : St+�t
t = J

t+�t
t

(
Ft+�t

t

)−1
σ t+�t

(
Ft+�t

t

)−T

(2c)

External virtual work : Rext t+�t =
ż

Ωt+�t

δut+�tb dΩ +
ż

Γ
t+�t
σ

δut+�t t̄ dΓσ

(2d)
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In these relations, σ is the Cauchy stress, u is the displacement, b is the body force
per unit volume, δu is a displacement variation, F is the deformation gradient, and
J is its determinant or Jacobian. All quantities in Eqs. (2) are at time t + �t and
referred to the configuration at time t . The second Piola-Kirchhoff (PK) stress and
the Green-Lagrange strain are, respectively, decomposed as:

St+�t
t = σ t + �St and Et+�t

t = �Et = �et (�u) + �ηt (�u) (3)

where �St denotes the increment of second PK stress from time t to t + �t and
the Green-Lagrange strain tensor is decomposed into a linear part �et (�u) =
1
2

[(
∂�u
∂xt

)T + ∂�u
∂xt

]
and a nonlinear part given as �ηt (�u) = 1

2

(
∂�u
∂xt

)T
∂�u
∂xt .

Substituting the strain decomposition, the incremental crystal plasticity constitutive
relation �St = C

t (u) : �Et (u) ≈ C
t (u) : �et (u), and the relation δEt ≈ δet in

Eq. (1), the linearized weak form is written as:

ż

Ωt

δe : Ct (u) · �e(u)dΩ +
ż

Ωt

δη : σ t dΩ = Rext t+�t −
ż

Ωt

δe : σ t dΩ (4)

where C
t is the local material tangent stiffness matrix. The nonlinear weak form

in Eq. (4) is solved by using an iterative scheme such as the Newton-Raphson
method (Bathe 2006). In the i-th Newton-Raphson iteration, the spatially discretized
linearized Eq. (4) is written as:

Ki
tu = bt+�t − Ri

t where �ui+1 = �ui + u = �ui + u (5)

where Ki
t is the global tangent stiffness matrix, �ui+1 = �ui + u is the

displacement update, and bt+�t − Ri
t is the residual force vector for every iteration.

These are, respectively, expressed as:

Ki
t =

ż

Ωt

BT
C

t,iBdΩ +
ż

Ωt

BT
NLσ t,iBNLdΩ , Ri

t =
ż

Ωt

BT σ t,idΩ

bt+�t =
ż

Ωt

NT ft+�t dΩ +
ż

Γ t

NT t t+�t dΓ

where C
t,i is the elastoplastic tangent stiffness matrix in the i-th iteration; B and

BNL are the linear and nonlinear strain-displacement matrices, respectively; and N
is the matrix of shape functions. The Newton-Raphson iterations continue till the
residual bt+�t − Ri

t reaches a predetermined tolerance.
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2.1 Crystal Plasticity Constitutive Models

Crystal plasticity constitutive models account for dislocation glide on crystal-
lographic slip systems. A significant body of work exists on micromechanical
modeling using crystal plasticity models due to glide on slip systems, using,
e.g., power law description (Pierce et al. 1983; Asaro and Needleman 1985), the
thermally activated theory of plastic flow (Kocks et al. 1975), or the dislocation
density-based models (Roters et al. 2010a, b). While computational mechanics
advances are in general independent of the constitutive relations used, a crystal
plasticity constitutive model for hcp materials developed in Cheng and Ghosh (2015,
2017) is summarized here.

2.1.1 Kinematic Relations, Flow Rule, and Slip System Resistances
The deformation gradient at time t admits a multiplicative decomposition into
elastic and plastic components as:

Ft
0 = FeFp where det Fe > 0 and det Fp = 1 (6)

where Fe accounts for elastic stretching and rigid-body rotation of the crystal lattice,
while Fp corresponds to the incompressible plastic flow due to slip. The second
Piola-Kirchoff stress is expressed in terms of the elastic Green-Lagrange strain

tensor Ee
(
= 1

2

(
FeT Fe − I

))
as:

S = C
e : Ee (7)

where C
e is a fourth-order anisotropic elasticity tensor. The evolution of plastic

deformation is expressed in terms of plastic velocity gradient Lp as:

Lp = ḞpFp−1 =
Nslip∑
α=1

γ̇ αsα
0 where sα

0 = mα
0 ⊗ nα

0 (8)

Here γ̇ α is the slip rate on a slip system α, Nslip is the total number of slip systems,
and the Schmid tensor sα

0 associated with α-th slip system is expressed in terms of
the slip direction mα

0 and slip plane normal nα
0 in the reference configuration. The

dislocation glide-based slip rate on the slip system α is described in Pierce et al.
(1983) and Cheng and Ghosh (2015, 2017) using a power law as:

γ̇ α = γ̇ α
0

∣∣∣∣τα − sα
a

sα∗

∣∣∣∣
1
m

sign(τα − sα
a ) (9)

where γ̇ α
0 is a reference slip rate for slip system α and m is the exponent representing

strain-rate sensitivity. The resolved shear stress on slip system α is expressed as
τα = FeT FeS : sα

0 . The athermal shear resistance sα
a is due to the interaction of
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the stress field between parallel dislocation lines and from grain boundaries, and
the thermal shear resistance sα∗ is due to local repelling obstacles, such as forest
dislocations and dislocation jogs.

Two types of dislocations are considered in the evolution of athermal sα
a and

thermal sα∗ shear resistances. These are (i) statistically stored dislocations (SSDs)
associated with the homogeneous components of plastic flow characterized by
vanishing net Burgers vector and (ii) geometrically necessary dislocations (GNDs)
corresponding to stored polarized dislocation densities. GND accumulation is
necessary for accommodating crystal lattice curvatures in single crystal bending
or near-grain boundaries of polycrystalline aggregates. The athermal and thermal
hardening rates due to the evolution of SSDs are given as:

ṡα
a,SSD =

N∑
β=1

hαβ
a |γ̇ βsin(n0

α, t0
β)| and ṡα

∗,SSD =
N∑

β=1

h
αβ∗ |γ̇ βcos(n0

α, t0
β)|

(10)

where t0
β is the dislocation line tangent vector for edge dislocation on the slip plane

β and the coefficient matrices h
αβ
a and h

αβ∗ represent the hardening of athermal and
thermal shear resistances on the slip system α due to activity on slip system β,
respectively. The GND contributions to the slip system hardening are derived from
two sources, viz., (i) dislocation components ρα

GND,P parallel to the slip plane α that
cause hardening due to the athermal shear resistance sα

a and (ii) forest dislocation
components ρα

GND,F , which contribute to hardening due to thermal shear resistance
sα∗ as:

sα
a,GND = c1Gb

√
ρα

P,GND and sα
∗,GND = Qslip

c2c3b2

√
ρα

F,GND (11)

where G is the shear modulus, Qα
slip is the effective activation energy for dislocation

slip, and c1, c2, c3 are constants representing the passing stress, jump-width, and
obstacle-width, respectively. GND accumulation can be measured in terms of the
curl of the plastic deformation gradient per unit area in the reference configuration,
which corresponds to the Nye’s dislocation density tensor Λ = −(∇X × FpT

)T

(Anahid et al. 2011). The Nye’s tensor is related to the GND density components on
each slip system as (Cheng and Ghosh 2017):

Λ =
nslip∑
α=1

ρα
GND,sb0

α ⊗ m0
α + ρα

GND,etb0
α ⊗ t0

α + ρα
GND,enb0

α ⊗ n0
α (12)

where ρGND,s , ρGND,et , and ρGND,en are the GND density components with screw,
in-slip-plane edge, and normal-to-slip-plane edge characteristics, per unit volume
in the reference configuration and bα

0 is the Burgers vector for a slip system α.
For hcp crystals, there are more slip systems than the number of components in
Λ, and hence ρGND,s , ρGND,et , and ρGND,en are obtained by solving a constrained
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minimization problem of minimizing the L2 norm of the GND densities subject
to the constraint Eq. (12) (Anahid et al. 2011). Screw and edge GND components
ρGND,s , ρGND,et , and ρGND,en on each slip system contribute, respectively, to the
parallel (ρα

GND,P ) and forest (ρα
GND,F ) components of GNDs. The total athermal

and thermal resistances are expressed as the sum of a part related to the evolving
dislocation structure and another related to defects such as Peierls resistance,
impurities, and point defects, as:

sα
a = sα

a,0 +
√

(sα
a,SSD)2 + (sα

a,GND)2 and sα∗ = sα
∗,0 +

√
(sα

∗,SSD)2 + (sα
∗,GND)2

(13)

where sα
a,0 and sα

∗,0 are initial resistances, independent of the dislocation structure.

2.1.2 Numerical Implementation of Crystal Plasticity Constitutive
Model

The numerical time integration algorithm integrates the set of coupled differential
equations in the nonlocal constitutive model using the following steps (details
provided in Cheng and Ghosh 2015, 2017):

Step A: Update stresses, plastic strains, and all state variables, keeping the non-
local GND density and twin variables fixed, with known values of deformation
variables at time t , as well as a given deformation gradient F(t + �t);

Step B: Update the GND densities and their rates of hardening by evaluating
∇X × FpT , using values in adjacent elements.

An implicit update algorithm is implemented in step A with update in step B
(Cheng and Ghosh 2015, 2017). For step A, the algorithm assumes that the primary
unknown variable is the second Piola-Kirchhoff stress S and seeks its solution from
a set of six nonlinear equations by a Newton-Raphson iterative solver while updating
other deformation and state variables.

S(t + �t) = Str −
Ntot∑
α=1

�γ α
(
S(t + �t), sα

a (t + �t), sα∗ (t + �t)
)

Bα (14)

where Ntot is the total number of slip systems and Bα is defined as:

Bα = C :
[

1

2

(
A(t + �t)sα

0 + sα
0 A(t + �t)

)]
(15)

with A(t +�t) = Fp−T
(t)FT (t +�t)F(t +�t)Fp−1

(t). The trial stress is expressed
as Str = C : 1

2 (A(t + �t) − I). In the iterative solution of Eq. (14), a residual is
defined for i-th iteration the as:

G(Si (t + �t)) = Si (t + �t) − Str +
∑
α=1

�γ αBα (16)
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the i + 1-th iteration update to S is obtained as:

Si+1(t + �t) = Si (t + �t) − ∂G
∂S

∣∣∣∣
−1

i

G(Si (t + �t)) (17)

In this update procedure for S(t + �t), the slip system resistances are held fixed.
After convergence, the increment of shear resistances from SSDs are updated using
Eqs. (10). The next step B computes the GND densities and associated hardening
increments. A nonlocal, invoking the element gradient operator is implemented to
evaluate Λ. The gradient operator is calculated from nodal values using element
shape functions. A super-convergent patch recovery (SPR) method is implemented
to evaluate the nodal values of Fp from Gauss quadrature points to evaluate
∇X × FpT at quadrature points. Evolution of plastic strain in image-based CPFEM
simulations of a SERVE is shown in Fig. 1c.

3 Stabilization of Four-Noded Tetrahedral Elements for
CPFEM

Polycrystalline microstructures of metals and alloys often have sharp and tortuous
grain boundaries and multiple grain junctions. Discretization, conforming to these
domains in 3D, is conveniently accomplished using four-noded tetrahedral or TET4
elements. However, it has been observed, e.g., in Matous and Maniatty (2004),
Gee et al. (2009), and de Souza Neto et al. (2005), that these elements suffer
from severe volumetric locking when simulating incompressible materials. Crystal
plasticity constitutive models exhibit near isochoric plastic flow (det Fp = 1)
and large volumetric strains in TET4 elements. High stresses induce high spurious
dilatational energy and considerable error due to element locking. This is attributed
to low incompressibility constraint ratio, defined as the ratio of number of degrees
of freedom to the number of incompressibility constraints in the FE mesh.

A number of methods have been proposed for the stabilization of volumetric
locking in TET4 elements (Gee et al. 2009; de Souza Neto et al. 2005; Dohrmann
et al. 2000; Nguyen-Thoi et al. 2009). A key idea in these methods is to associate
nodal points with patches corresponding to an assembly of surrounding sub-
elements and subsequently to selectively integrate the dilatational and deviatoric
parts of the FE weak form over these patches. This process reduces the incom-
pressibility constraint ratio. However, these methods are not effective for anisotropic
CPFE formulations for which the stress or the elastoplastic tangent stiffness tensor
cannot be split into volumetric and deviatoric components. A finite deformation ele-
ment formulation with a F-bar patch method has been introduced in de Souza Neto
et al. (2005), while mixed elements have been proposed in Matous and Maniatty
(2004) with augmentation strain fields in conjunction with a linearly interpolated
pressure field.
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Based on developments in Cheng et al. (2016), this section discusses three
locking-free stabilized finite element formulations for CPFE analysis. They include
a node-based uniform strain (NUS) element, a locally integrated B-bar (LIB)-based
element, and a F-bar patch (FP)-based element.

3.1 Node-Based Uniform Strain and Locally Integrated B-Bar
Elements

The node-based uniform strain (NUS) formulation, introduced in Dohrmann et al.
(2000), assigns a patch of sub-elements Ω̂s = ∑Ns

i=1 αi
s Ωi

s to a node s in the finite
element mesh as shown in Fig. 2a. Here Ns is the number of TET4 elements attached
to a node s, Ωi

s is the volume contribution of the i-th element to the patch Ω̂s , and
αi

s is a scalar weighting factor. Within each patch, the strain increment ês is uniform
and obtained by weighted averaging from surrounding elements as:

Both evol and edev
are constants in sub-
tetrahedron Wi.s

evol  is constant over patch

edev  is constant over TET4 element

Node Edge of triangular element

Patch of elements

a b

c

Fig. 2 (a) 2D nodal patch in the NUS method, (b) nodal patch with strain distributions in the LIB
method, and (c) patch of elements in the F-bar patch method
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ês =
Ns∑
i=1

wiei,s =
Ns∑
i=1

wiBi,t�qt = B̂
s �q̂s (18)

wi is a relative volume-based weight for element i and �q̂s is the nodal dis-

placement vector. B̂
s,t

is a strain-displacement matrix associated with the patch
s, obtained by weighted assembling Bi,t from surrounding elements. The NUS
formulation yields a constant tangent modulus and stress over the patch s, and one-
point numerical integration is sufficient. However, this element can exhibit spurious
zero or low-energy modes, causing large element distortion (Gee et al. 2009).

To overcome shortcomings of the NUS element for CPFE analysis with
anisotropic elastoplastic stiffness matrix, a locally integrated B-bar (LIB) element is
proposed in Cheng et al. (2016). This method alleviates volumetric locking without
introducing spurious zero-energy modes. The strain increment is decomposed into
volumetric and deviatoric parts by splitting the gradient matrix as e = evol + edev =
Bvol�q + Bdev�q. For reduced constraints, only the volumetric part of the strain
increment evol is assumed to be uniform inside the patch for each node s. The
uniform volumetric strain increment ês,vol is obtained as:

ês,vol =
Ns∑
i=1

wiei,vol =
Ns∑
i=1

wiBi,vol�qi = B̄s,vol�q̂s (19)

B̄
s,vol

is the volumetric part of the gradient matrix associated with a patch s. It
is assembled from the Bi,vol matrices of the surrounding elements with weights
wi . The deviatoric part of the strain increment edev is constant in each of the
contributing TET4 elements. This yields separate distributions of the volumetric and
deviatoric strain increments over the domain, as illustrated in Fig. 2b. Each TET4
element is divided into four sub-domains of equal volume. Within each sub-domain,
the volumetric and deviatoric parts of the strain increment are constant. The LIB
element selectively reduces the volumetric strain components over the patch and
keeps the deviatoric strain components unchanged.

3.2 F-Bar Patch-Based (FP) Element

The F-bar patch (FP) formulation (de Souza Neto et al. 2005) has been shown
to alleviate volumetric locking without introducing spurious zero-energy modes.
The F-bar patch method modifies the deformation gradient for weak enforcement
of incompressibility in the element, rather than point-wise enforcement. The
deformation gradient is decomposed into isochoric and volumetric components as:

F = FisoFvol where Fiso = (detF)−
1
3 F and Fvol = (detF)

1
3 I (20)
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Incompressibility in constitutive relations is enforced over a patch of elements,
rather than in each element. This requires that elements in the mesh be assigned
to non-overlapping patches as illustrated in Fig. 2c. For a patch P of a set of
elements, with deformed and undeformed volumes Ω

t+�t
patch and Ω0

patch, respectively,
the deformation gradient in element K ∈ P is modified as:

F̄K =
⎡
⎣ Ω

t+�t
patch

Ω0
patch detFK

⎤
⎦

1
3

FK (21)

3.3 Performance of TET4 Element Stabilization in CPFEM

The performance of the locally integrated B-bar (LIB) element and the F-bar patch
element with a patch size of 8 tetrahedrons (FP8) has been studied in Cheng et al.
(2016) for CPFEM analysis of polycrystalline materials. Simulation results for a
bicrystal compression test and a polycrystalline bending test of the hcp magnesium
alloy AZ31 are compared with those for the standard TET4 element. The reference
solution is for simulations with the B-bar stabilized eight-noded hexahedral element.

• Bicrystal compression test: A bicrystal of dimensions of 10 × 10 × 10 μm
is simulated under uniaxial compression using the standard TET4, LIB, and
FP8 elements in CPFEM. Material constitutive models are given in Cheng
and Ghosh (2015). The grain boundary is characterized by crystal orientations,
which have Euler angles [0◦, 0◦, 0◦] and [0◦, 90◦, 0◦] in the ZXZ convention
for crystals 1 and 2, respectively, as shown in Fig. 3a. Displacement boundary
conditions are applied on the top surface. A reference solution of the loading
direction stress σzz for CPFE analysis with hexahedral elements with B-bar
stabilization is shown in Fig. 3b. Results using the standard, LIB and FP8 TET4
elements are shown in Fig. 3c, e, respectively. Non-smooth distribution of the
local stress with high stress concentration is observed at the grain boundary
using standard TET4 element, compared to other stabilized elements. The stress
error is evaluated as the L2 norm of the difference with the reference solution

as ‖e‖L2 =
[
ş

Ω

(
σij −σ

ref
ij

)(
σij −σ

ref
ij

)
dΩ

] 1
2

(
ş

Ω
σij σij dΩ)

1
2

. The corresponding error plots for

different elements with increasing mesh densities are shown in Fig. 4a. The
average convergence rate for LIB and FP8 elements is 0.75. For CPFE analysis,
these elements exhibit similar results with much smaller errors compared to the
standard TET4 element. The evolution of hydrostatic stress at the grain boundary
with increasing strain is plotted in Fig. 4b. Unrealistically large stresses are
observed with conventional TET4 elements, while the LIB and FP8 elements
produce results that are consistent with the stabilized hexahedral element.

• Micro-twin nucleation in polycrystalline magnesium alloy: CPFE simula-
tions are conducted for twin nucleation using a microstructural model of the
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Fig. 3 (a) Boundary conditions and crystallographic orientations in the bicrystal compression test;
distribution of loading direction stress at 5% strain using simulation results of (b) eight-noded
B-bar hexagonal elements with a mesh of 18,081 nodes, (c) standard TET4 element, (d) LIB
element, and (e) FP8 element, all with a mesh of 11,862 nodes

polycrystalline Mg alloy AZ31 shown in Fig. 5a. The 40×40×40 μm statistically
equivalent virtual microstructure with 103 grains of average size of 10 μm is
developed from electron backscattered diffraction data. The microstructure is
discretized into 113,425 TET4 elements. Displacement boundary conditions
are applied at a rate of 0.004 μm/s on the two surfaces in Y-direction, which
bend the microstructure about the X-axis on Y-Z plane. Details of the twin
nucleation model are given in Sect. 4.1. The GND density contour plots in
Fig. 5b, c show highest GND concentrations close to grain boundaries. The
conventional TET4 element shows a much stiffer response in Fig. 6b compared
to the other elements. The FP8 element shows a slightly lower level of lock-
ing than LIB elements due to a lower constraint ratio. The twin nucleation
predictions in Fig. 6a show a much earlier twin nucleation time (97 s) with
the TET4 elements in comparison with the LIB element (160 s) and FP8
element (180 s).

In summary, both the LIB and FP elements stabilize the local stresses and GND
distributions in CPFE analyses and converge to the reference solution. The FP
element is capable of providing slightly better results than the LIB element for an
optimal patch size. A study on computational efficiency in Cheng et al. (2016) have
shown that the FP element outperforms the LIB element with a considerably lower
simulation time. From accuracy and efficiency considerations, the FP element is
deemed more suitable for stabilized CPFE analysis.
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Fig. 4 (a) Stress error plot with increasing degrees of freedom and (b) evolution of maximum
hydrostatic stress with strain for different element formulations

4 Multi-Time-Domain Subcycling for Discrete Twin
Evolution

Deformation twinning is a critical deformation mechanism that causes change in
lattice orientations with localized deformation inside thin twin bands. Twinning
can induce characteristic features like plastic anisotropy, tension-compression
asymmetry, and local softening in the material response. Many crystal plasticity-
based twinning models adopt a twin volume fraction approach that treats twin
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Fig. 5 Schematic of the polycrystalline AZ31 SERVE showing the applied boundary conditions;
GND densities distribution after 500s using: (b) TET4 and (c) FP8 elements

evolution in the same way as slip (Staroselsky and Anand 2003; Izadbakhsh et al.
2011; Zhang and Joshi 2012). These approaches do not account for deformation
heterogeneity within discrete twins. Explicit twin formation models within the
CPFE framework have been proposed based on phenomenological twin formation
criteria and adaptive mesh generation methods in Abdolvand and Daymond (2013)
and Knezevic et al. (2016). Explicit twinning models hold promise, provided the
physics of twin nucleation, propagation, and interactions are correctly accounted for.
The author has recently implemented an image-based crystal plasticity FE model
with discrete twin evolution in Cheng and Ghosh (2017) and Cheng et al. (2018) to
study deformation and twinning mechanisms in polycrystalline microstructures of
Mg alloys.

A major difficulty with image-based CPFE simulations of polycrystalline
microstructures delineating explicit twin formation is the high demands on
computing time. This is attributed to the discrepant deformation rates between the
domains of rapidly evolving twins and the surrounding crystalline matrix. The high
rates of twin evolution in localized bands lead to numerical instability with the stiff
nonlinear crystal plasticity constitutive equations, requiring very fine simulation
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Fig. 6 (a) Micro-twin dissociation distance as a function of loading time and (b) loading direction
stress at a material point with loading time

time steps. A quantitative study on the critical time step size required for numerical
stability for a CPFE simulation of a Mg alloy with evolving explicit twins has been
conducted in Ghosh and Cheng (2018). The study shows that while 97% of elements
require a minimum time step size of �t = 10 s, only 3% of the elements located in
localized twin bands require a significantly smaller time step of �t = 0.0391 s. The
reduction in time step size corresponds to a factor of ∼255. Requiring all elements
in the computational domain to be integrated with the smaller step size can cause a
huge loss of efficiency and could potentially be computationally intractable. While
single time step methods to accelerate slip-based crystal plasticity models have
been proposed, e.g., in Roters et al. (2010a), they are insufficient for twin evolution
models.
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4.1 Crystal Plasticity Constitutive Models with Twinning

The crystal plasticity constitutive models in Sect. 2.1 are extended in this section to
account for both dislocation glide and twinning on crystallographic slip and twin
systems. Twinning reorients the crystallographic lattice symmetrically by reflection
across a mirror or twin plane in the reference configuration. In the twinned regions,
plastic flow takes place by gliding of twin partial dislocations on twin planes, as
well as by dislocation glide. The plastic velocity gradient in twinned region is
subsequently expressed as:

Lp = ḞpFp−1 =
Ntwin∑
β=1

γ̇
β
twsβ

0,tw+
Nslip∑
α=1

˙̃γ α s̃α
0,slip where sβ

0,tw = mβ
0,tw⊗nβ

0,tw (22)

γ̇
β
tw is the shearing rate on a twin system β, ˙̃γ α is the slip rate in the reorientated slip

system α, Ntwin is the number of twin systems, mβ
0,tw is the twin shearing direction

vector, and nβ
0,tw is the twin plane normal in the reference configuration. Dislocation

slip in the twinned volume occurs on a slip plane ñα
0,slip in the direction m̃α

0,slip,
with mirror symmetry to the directions nα

0,slip and mα
0,slip in the matrix region. Twin

nucleation and propagation models, developed in Cheng and Ghosh (2015, 2017)
for hcp materials, are summarized here.

• Twin nucleation: The twin nucleation model is based on the elastic dislocation
theory of twin nucleation by non-planar dissociation of a sessile pyramidal
〈c + a〉 dislocation. Three simultaneous conditions should be satisfied for the
dissociation process to spontaneously occur and form a stable twin nucleus.
They are (i) dissociation condition, Eini ≥ Etw(d = 0) + Er ; (ii) irreversibility
condition, Eini > EF (d = ds, τtw); and (iii) reliability condition, ds > 2r0.
Here Eini is the initial system energy prior to dissociation, corresponding to the
dislocation line self-energy of sessile pyramidal 〈c + a〉 dislocations, Etw is the
self-energy of the twinning dislocation loop, Er is the self-energy of stair-rod
dislocations, and EF is the post-dissociation total system energy. The distance
d is the separation distance between two partial dislocations and ds is the stable
separation distance. Detailed description of the various energies and other critical
parameters in the twin nucleation model are provided in Cheng and Ghosh (2015,
2017).

• Explicit twin propagation: Twin propagation involves two motions, viz., twin
elongation by rapid gliding of twin partial dislocations on twin planes and twin
thickening by migrating twin boundaries from the current twin planes to every
other

{
101̄2

}
twin plane (Keshavarz and Ghosh 2013, 2015). Gliding of twin

partial dislocations occurs by a mixed shear-shuffle process, for which twin
propagation is deemed as thermal activation process. The velocity of twin partial
dislocation on a twin plane is expressed as:
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vglide = fshuffleλshear

[
exp

(
−�F − τAP btw

KBT

)]
(23)

where fshuffle is the shuffling frequency, λshear is the shear distance, btw repre-
sents the Burgers vector on a twin system, τ is the effective resolved shear stress

on the twin plane, and AP is the shearing area. The term exp
(
−�F−τAP btw

KBT

)
is

the probability of gliding with an internal energy barrier �F . The twin boundary
migrates when the twin partial dislocation glides on the adjacent twin plane.

A stimulated slip model is used to model thickening of twins. It assumes the
existence of immobile lattice dislocations, which penetrate multiple twin planes.
The velocity of twin partial dislocations crossing twin planes has been derived as:

vthick = dtw

�ttw
= dtwPpromoterρtotltwvglide (24)

where dtw denotes the distance between twin planes, �ttw is the average time
required to meet a promoter, Ppromoter is the fraction of dislocations that act as
promoters, ρtot is the total dislocation density, and vglide and ltw are, respectively, the
velocity and length of moving dislocations. The time-averaged, twin system plastic
shear rate in Eq. (22) due to twinning is obtained from the Orowan equation as:

γ̇tw = ρtwbtwvglide = γ̇0,tw exp

(
−�F − τAP btw

KBT

)
(25)

where γ̇0,tw = ρtwbtwfshuffleλshear and ρtw is the density of twin partial disloca-
tions. For

{
101̄2

}
twin in Mg, γ max

tw = 0.1289. In simulations, the shear on a twin
system quickly reaches this upper bound once an integration point is twinned.

The complex interaction between dislocations and twin boundaries is modeled
by the evolution of a slip/twin system resistance in which Eq. (25) is reduced to a
conventional shear resistance-based power law model as:

γ̇tw = γ̇0,tw

∣∣∣∣ τ

stw

∣∣∣∣
�F

KBT

sign (τ ) (26)

For a twin system α, the rate of shear resistance is expressed as ṡα
tw =

Nslip∑
β=1

hαβ | ˙̃γ β |,
where the hardening matrix hαβ quantifies hardening due to dislocation slip in the
twinned regions. Implementation of twin evolution in the CPFEM framework is
discussed in Cheng and Ghosh (2017) and Cheng et al. (2018).
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4.2 Adaptive Subcycling for Accelerated CPFEM

An adaptive multi-time-domain subcycling algorithm is developed in Cheng and
Ghosh (2017) and Ghosh and Cheng (2018) to avert the low efficiency due to
minimum critical time step requirements, by activating a differential temporal
resolution in the computational domain. The algorithm partitions the microstructural
domain into sub-domains that are classified as critical (high strain rate) and
noncritical (low-strain rate). For optimal efficiency, time integration in each sub-
domain is conducted with its own independent time step, as determined from
stability and accuracy criteria. For a twinned microstructure, regions of twin bands
are solved with fine time steps, while the remaining regions use coarse time steps.
A schematic layout of the algorithm is shown in Fig. 7. With a known state at
time t , the integration algorithm for the time increment t to t + �t solves the
noncritical sub-domain problem using the coarsest possible time increment �t

and the critical sub-domain problem using fine time steps �τ � �t . To achieve
global equilibrium for the computational domain, the different sub-domains are
coupled, and residuals at the interfaces of discrepant time steps in the assembled
sub-domains are minimized using a predictor-corrector scheme. The subcycling
algorithm evaluates displacement correctors by equilibrating nodal residual forces
since displacement fields at nodal points of adjacent sub-domains will not satisfy
compatibility in general. Decomposition of the computational domain necessitates
the evaluation of critical time steps for each element. With known state variables at
time t , the critical time increment in each element is estimated from convergence of
time integration of the constitutive model. If the time integration fails to converge,
a scaled reduction of the original time increment is made. The essential steps in a
staggered algorithm for evolving twins are given next and detailed in Cheng and
Ghosh (2017) and Ghosh and Cheng (2018).

Fig. 7 Schematic of the subcycling algorithm showing partitioning and equilibrating domains
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Fig. 8 (a) A pure Mg single crystal computational model subjected to constant strain rate, uniaxial
loading, (b) simulated twins, and (c) Lagrangian strain Eyy at 1% strain, using the subcycling-
induced CPFE model with a time step �t = 10 s

1. At time t compute trial displacements and partition coarse and fine sub-domains;
2. Solve the coarse sub-domains with the larger time increment �t ;
3. Solve the fine sub-domains with scaled time increments �τi ;
4. From the coarse and fine sub-domain residuals, obtain displacement corrector;
5. Check for equilibrium, update twin domains, and nucleate new twins.

Two factors affect the computational speedup with the subcycling method. They
are (i) the ratio of degrees of freedom (DOF) in fine timescale sub-domain to the

DOF of entire domain, i.e., NF

N total , and (ii) the ratio of fine time step �τ to coarse

time step �t , i.e., �τ
�t

. In Ghosh and Cheng (2018) it is shown that �t
�τ

and N total

NF

are the key factors in reducing the number of operations. Higher acceleration rates
can be achieved by the subcycling method if the deformation is localized in smaller
regions and if deformation rates exhibit more heterogeneity. The effectiveness of
the twin evolution algorithm with subcycling is tested for single and polycrystalline
microstructures.

• Deformation-Induced Twin Evolution in Single Crystal Mg: A single crystal
simulation of pure Mg is conducted in Cheng and Ghosh (2017) to validate the
subcycling-accelerated CPFE model for discrete twin evolution. The microstruc-
ture, shown in Fig. 8a, has a dimension of 20 × 10 × 10 μm with an Euler
angle orientation of [0◦, 5◦, 0◦] in the ZXZ convention. It is discretized into
67,418 TET4 (FP8) elements with 13,021 nodes. The calibrated constitutive
parameters for CPFE analysis are provided in Cheng and Ghosh (2017). A
uniaxial, constant strain rate of 1 × 10−4 is applied in a compressive manner



79 Advances in Computational Mechanics to Address Challenges in . . . 1731

on the top surface, which causes the formation of
{
101̄2

}
tension twins. The 5◦

tilt in the crystal orientation makes the Schmid factor of twin variant 1 to be
highest among all 6 twin variants. Thus only twin variant 1 is formed during
simulations.

The evolved discrete twins and Lagrangian strain distribution at 1% strain
are shown in Fig. 8b, c, respectively. The [0◦, 5◦, 0◦] orientation causes the(
1̄102

) [
11̄01

]
twin variant to have the highest Schmid factor. The only exception is

that a
(
101̄2

) [
1̄011

]
twin variant (variant 4 of the extension twin systems) occurs at

the upper left corner of the model due to the local stress state. The localized strain
distribution is caused by easy gliding of twins. Approximately 3.6 times speedup is
achieved with subcycling without any loss of accuracy.

• Twin Evolution in Polycrystalline RVE: An image-based RVE of the Mg
alloy AZ31 containing 620 grains of average grain size of 32 μm in a 300 ×
300 × 300 μm box is shown in Fig. 9a. A uniaxial, compressive strain rate of
1 × 10−3 s−1 is applied normal to transverse direction (TD) surface. The figure
shows texture with the propagation of twin bands, where the lattice in the twinned
region is reorientated by nearly 86◦. The volume-averaged stress-strain response
from CPFE simulations are compared with experimental results from Beyerlein
et al. (2011) in Fig. 9b. The CPFE simulation with subcycling algorithm has
a speedup by a factor of 6. In summary, the multi-time-domain subcycling
enhanced CPFEM is highly effective for predicting nucleation and propagation
of explicit twins in single crystal and polycrystalline microstructures of metals
and alloys.

5 Adaptive Hierarchical CPFEM with Enhanced Wavelet Basis

Image-based CPFE modeling of polycrystalline materials, e.g., in Roters et al.
(2010b), Meissonnier et al. (2001) and Cheng and Ghosh (2017) often requires
very high 3D resolution for accurate representation of realistic microstructures. This
can incur prohibitively high computational costs in simulating deformation leading
to localized phenomena like fatigue failure or deformation twin evolution. A few
alternative computational methods have emerged to efficiency-related shortcomings
of CPFEM. The elastic-viscoplastic self-consistent models in Lebensohn and Tome
(1994) treat grains as embedded inclusions in a homogeneous medium and avoid the
need to represent stress heterogeneity inside each grain. The fast Fourier transfor-
mation (FFT)-based methods in Moulinec and Suquet (1998) and Lebensohn et al.
(2012), and discussed in another chapter of this part, are very efficient, especially for
large regular sampling grid simulations with periodicity. The use of FFT methods for
discontinuous or high gradient fields can however lead to truncation errors due to the
Gibbs phenomenon, propagating from the discontinuity. Regularization methods are
being applied to correct this effect, e.g., in Gottlieb et al. (1992). These approaches
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can also have suboptimal convergence rates due to nonconforming sampling grids
that require a large number of degrees of freedom. The present section however
seeks an adaptive enrichment method for optimally augment the efficiency of
CPFEM while retaining accuracy.

A wavelet-basis enhanced adaptive hierarchical CPFEM has been developed in
Azdoud and Ghosh (2017) and Azdoud et al. (2017) to improve computational
efficiency and accuracy of FE analyses of polycrystalline microstructures. The
method adaptively creates an optimal discretization space conforming to the
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solution profile by projecting the solution onto a set of scaling and multi-resolution
wavelet basis functions. The multi-resolution property is particularly advantageous
for approximating a field using a minimal set of wavelet basis functions. The second
generation family of wavelets (Sweldens 1998) is used to generate hierarchical
shape functions using the so-called lifting scheme. Given the scaling functions
at a coarse and fine scale, the lifting scheme defines a set of wavelet functions
that complement the coarser set of interpolation functions to uniquely project any
function decomposed on a finer set. Complex irregular meshes are easily constructed
for these wavelet bases, which make them ideal candidates for enrichment functions
in the wavelet-enhanced hierarchical FEM. A summary of the methods and results
from Azdoud and Ghosh (2017) and Azdoud et al. (2017) are presented here.

5.1 Wavelets for Optimal Enrichment Basis Functions

Wavelet basis functions span the space of square integrable functions L2(R) through
translation and dilation of the scaling function ϕ(x), which satisfies the refinement
condition ϕ(x) = ∑Nfilt

k=1 hkϕ(x)(2x − k). Parameters hk and Nfilt characterize the
wavelet basis and correspond to the components of a low-pass filter. These functions
can be used for optimal multi-resolution hierarchical enrichment, conforming to
the solution estimate ũ profile. Properties that render them ideal for multi-scale
enrichment (Azdoud and Ghosh 2017; Azdoud et al. 2017) are:

• Compact support: Wavelet functions have compact support. Solutions in wavelet
bases do not exhibit spurious instabilities, such as the Gibbs phenomena.

• Multi-resolution: Wavelet bases have multi-resolution characteristics that repre-
sent the differences between hierarchical scales. Wavelet functions with the Reisz
basis property avoid aliasing by ensuring completeness of each scale.

• Compatibility with FE discretization: Second-generation wavelet functions
(Sweldens 1998) can be constructed from any irregular hierarchical FE mesh.

• Vanishing moments: The integral of wavelet functions over any domain is zero.
Thus a small coefficient has negligible contribution to the solution.

The lifting scheme creates wavelets for the hierarchical FE shape functions. A
lazy wavelet ϕ̃l−1

β is first created from hierarchical shape functions, followed by
transformation through the lifting scheme by adding vanishing moments to yield:

ϕl−1
β (x) = ϕ̃l−1

β (x) −
R∑
λ

aλN
l−1
λ (x) (27)

Here l denotes the scale, Nl−1
λ is a standard FE shape function at scale l − 1

and coefficient aλ is chosen from the condition:
ş

Ω
ϕl−1

β (x)dΩ = 0 ∀β ∈
[1, p(l)]. Each scale of wavelets represents a Reisz basis in Ω . Adding Nl−1

λ
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extends the compact support of the wavelet function ϕl−1
β to the whole domain,

i.e.,
⋃p(l)

β supp(ϕl−1
β ) = Ω . The lifting scheme with R = 2 is sufficient for all the

above properties.

5.2 Adaptive Solution Enhancement with Wavelet Basis
Functions

The hierarchical wavelet-enhancement is based on the finite deformation crystal
plasticity FE formulation summarized in Sect. 2. The solution in the Newton-
Raphson algorithm corresponds to the i-th iterative correction u of the displacement
increment �ui in a time step between t and t + �t . In the proposed algorithm
(Azdoud et al. 2017), an adaptive enhancement is made to the first iterate of the
solution, i.e., �ui=1 = u. It is premised upon finding an optimal discretization
space V h(t)(Ω) for u = �ui=1 that will reduce the discretization error to within a
prescribed tolerance. Assume that the approximate solution uh at time t has been
evaluated on the discretized space V h(t)(Ω) ⊂ V (Ω) as:

uh(x) =
m∑
α

uh
αNα(x) +

menr(t)∑
β

wh
βϕ

(t)
β (x) ∀x ∈ Ω (28)

The standard finite element basis Nα corresponds to the approximation of u in the
original coarse FE discretization space at time t0 with m as the number of nodes in
this mesh. The adaptive method introduces a set of enrichment functions {ϕ}menr in
the hierarchy, which expand the discretization space V h(Ω) to an enriched space
V henr(Ω) ⊃ V h(Ω). menr corresponds to the number of additional enrichment
nodes that are hierarchically added to the initial number m. Assume that the set
{φ}n is an arbitrarily large (n → ∞) and sufficient set of multi-scale hierarchical
enrichment functions for the coarse discretization space {N}m. The functions in the
set {φ}n are the standard C0 hierarchical FEM shape functions obtained by uniform
subdivision of the coarse mesh. For the increment �t ∈ t → t + �t , the adaptive
method finds an optimal set {ϕ}menr (t+�t) ⊂ {φ}n such that:

‖u−uhenr ‖≤ε where uhenr (x)=
m∑
α

uhenr
α Nα(x)+

menr (t+�t)∑
β

whenr

β ϕt+�t
β (x) ∀x∈Ω

(29)
An iterative error estimation-solution enrichment algorithm is implemented with
iteration steps denoted by k. The resulting algorithm for a time step from t → t+�t

has two iterative loops, viz., (i) iterations for the first estimate of u, in which
the enrichment functions {ϕ}menr(t+�t) are sought, and (ii) the Newton-Raphson
iterations for the constitutive update. The adaptive iterative scheme for an iteration
step (k + 1) to determine {ϕ}menr(t+�t) is presented in Azdoud et al. (2017).
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5.3 Results with Adaptive CPFEM for Polycrystals

The effectiveness of the adaptive, wavelet-enhanced hierarchical CPFE model is
examined in this example. A polycrystalline microstructure of the hcp Ti6242
alloy, containing 208 grains in a computational microstructure of dimensions
124×124×124 μm is simulated under uniaxial displacement conditions. The z-axis
misorientation distribution is shown in Fig. 10a. The loading is applied uniformly on
the top surface (z = 124 μm) with a displacement ramp from uz = 0 to uz = 3 μm,
while the surface (z = 0) is constrained with ux = uy = uz = 0. The transversely

Fig. 10 (a) A 208 grain polycrystalline microstructure showing z-axis misorientation distribution,
(b) node enrichment positions, where the black spheres, red cubes, and green octahedra denote the
enrichment scales 1, 2, and 3, respectively, and (c) contour plot of error el(%) for the wavelet
adapted model with 42,000 enrichment DoFs
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Fig. 11 (a) Log-log plot of the L2 norm of displacement error as a function of DoF and (b)
evolution of the number of ũ∗ enrichment functions as a function of the number of iterations

elastic stiffness coefficients and crystal plasticity parameters are given in Azdoud
and Ghosh (2017) and Azdoud et al. (2017).

For the elasticity problem only, the wavelet adaptivity admits three scales of
enrichment. The coarse-scale solution uh is computed on a mesh composed of
Ne = 9485 tetrahedral elements with Nn = 1,778 nodes. The mesh for the fine-
scale reference FE solution uf , as well as the adapted FE model with three scales of
enrichment, both have Ne = 4,856,320 tetrahedral elements and Nn = 821,569
nodes. A total of 14,000 enrichment functions are used, with 5568 functions at
scale 1, 6730 functions at scale 2, and 1702 functions at scale 3. In Fig. 10b, nodal
positions of the 14,000 enriched function {ϕ}menr are predominantly in regions
of large error near highly misoriented grain boundaries. Figure 10c shows the

magnitude of the displacement error el =
√

(uhenr −uf )T (uhenr−uf )

(uf )T (uf )
× 100(%) for

the adapted solution uhenr . The convergence rate of the solution with the adaptive
hierarchical FE method is compared to that of a uniformly enriched FE method
in Fig. 11a. The average convergence rate for the adaptive method is ∼O(N−1.22)

compared to ∼O(N−0.99) for the standard FEM. The evolution of the number of
enrichment functions with the number of iterations is depicted in Fig. 11b for a
tolerance ε = 0.002. Convergence is generally reached in under five iterations. The
CPU time for different simulations show a significant gain in efficiency with reduced
error for the adaptive method in comparison with a uniformly refined mesh.

For crystal plasticity simulations, convergence rates of the wavelet-enriched
adaptive method are compared with that for the uniformly refined hierarchical FEM
solutions in Fig. 12a, b. The convergence rates are calculated from displacement
and stress errors. The adaptive method converges faster than the uniformly refined
hierarchical FEM simulations. For the adaptive method, the convergence rate is
∼O(N−1.509) for the displacement norm and ∼O(N−0.861) for the stress norm,
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Fig. 12 Log-log plot of convergence rates of (a) displacement error euf , (b) stress error eσ f as a
function of degrees of freedom at the end of simulation

while those for the uniformly refined model are ∼O(N−1.179) and ∼O(N−0.733),
respectively. In conclusion, the proposed adaptive wavelet enrichment method is
robust with reduced computational costs while preserving the accuracy of local
fields. It is very efficient when a conforming mesh cannot be obtained, such as for
heterogeneous materials.

6 Conclusions

This chapter emphasizes the need to explore novel methods and algorithms in
computational mechanics to facilitate robust and efficient crystal plasticity FE-
based modeling of deformation and failure in metals and alloys. Image-based
CPFE models incorporate characteristic microstructural features, as well as under-
lying physical mechanisms. The claim for such innovative developments is made
through three challenging problems that are often bottlenecks in crystal plasticity
modeling of extreme mechanisms such as twinning and localization. Remedies to
these challenges are developed through methods of element stabilization, multi-
time-domain subcycling, and efficiency enhancement through wavelet enhanced
hierarchical adaptivity. Many other opportunities exist in the crystal plasticity FE
modeling arena. For example, when modeling fatigue failure, it is necessary to
conduct simulations for a large number of cycles with a high time resolution to
reach local states of crack nucleation and growth. A powerful, multi-resolution
wavelet transformation induced multi-time scaling (WATMUS) algorithm has been
developed in Chakraborty and Ghosh (2013) and Joseph et al. (2010) for accelerated
cyclic simulations. The WATMUS methodology introduces wavelet decomposition
of displacements and all associated variables in the finite element formulation to
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decouple the response into a monotonic cycle-scale behavior and oscillatory fine
timescale behavior. In conclusion, this chapter provides motivation to look beyond
available tools and make fundamental advances for effective predictive capabilities.
Many of these codes will be hosted at the JHU Software Hub cited in Ghosh (2018).

Acknowledgments The author acknowledges the contributions of his postdoctoral researchers
Dr. J. Cheng, Dr. Y. Azdoud, Dr. P. Chakraborty and graduate student A. Shahba for their work
on various aspects in this chapter. He also acknowledges the sponsorship of the National Science
Foundation, Mechanics and Structure of Materials Program, the Air Force Office of Scientific
Research, and the Army Research Office. Computing support by the Homewood High Performance
Compute Cluster (HHPC) and Maryland Advanced Research Computing Center (MARCC) is
gratefully acknowledged.

References

Abdolvand H, Daymond MR (2013) Multi-scale modeling and experimental study of twin
inception and propagation in hexagonal close-packed materials using a crystal plasticity FE
approach; part II: local behavior. J Mech Phys Solids 61(3):803–818

Anahid M, Samal MK, Ghosh S (2011) Dwell fatigue crack nucleation model based on crystal
plasticity FE simulations of polycrystalline Ti alloys. J Mech Phys Solids 59(10):2157–2176

Asaro RJ, Needleman A (1985) Texture development and strain hardening in rate dependent
polycrystals. Acta Mater 33(6):923–953

Azdoud Y, Ghosh S (2017) Adaptive wavelet-enriched hierarchical FE model for polycrystalline
microstructures. Comput Methods Appl Mech Eng 321:337–360

Azdoud Y, Cheng J, Ghosh S (2017) Wavelet-enriched adaptive crystal plasticity FE model for
polycrystalline microstructures. Comput Methods Appl Mech Eng 321:337–360

Bathe K (2006) Finite element procedures. Prentice Hall/Pearson Education Inc, Upper Saddle
River, New Jersey 07458

Beyerlein IJ, McCabe RJ, Tome CN (2011) Effect of microstructure on the nucleation of
deformation twins in polycrystalline high-purity magnesium: a multi-scale modeling study.
J Mech Phys Solids 59:988–1003

Bridier F, McDowell DL, Villechaise P, Mendez J (2009) Crystal plasticity modeling of slip activity
in Ti-6Al-4V under high cycle fatigue loading. Int J Plast 25:1066–1082

Busso EP, Meissonier FT, O’D́owd NP (2000) Gradient-dependent deformation of two-phase
single crystals. J Mech Phys Solids 48(11):2333–2361

Chakraborty P, Ghosh S (2013) Accelerating cyclic plasticity simulations using an adaptive wavelet
transformation based multitime scaling method. Int J Numer Methods Eng 93(13):1425–1454

Cheng J, Ghosh S (2015) A crystal plasticity FE model for deformation with twin nucleation in
magnesium alloys. Int J Plast 67:148–170

Cheng J, Ghosh S (2017) Crystal plasticity FE modeling of discrete twin evolution in polycrys-
talline Magnesium. J Mech Phys Solids 99:512–538

Cheng J, Shahba A, Ghosh S (2016) Stabilized tetrahedral elements for crystal plasticity FE
analysis overcoming volumetric locking. Comput Mech 57(5):733–753

Cheng J, Shen J, Mishra RK, Ghosh S (2018) Discrete twin evolution in Mg alloys using a novel
crystal plasticity finite element model. Acta Mater 149:142–153

de Souza Neto EA, Andrade Pires FM, Owen DRJ (2005) F-bar-based linear triangles and
tetrahedra for finite strain analysis of nearly incompressible solids. Part I: formulation and
benchmarking. Int J Numer Methods Eng 62:353–383

Deka D, Joseph DS, Ghosh S, Mills MJ (2006) Crystal plasticity modeling of deformation and
creep in polycrystalline Ti-6242. Metall Trans A 37(5):1371–1388



79 Advances in Computational Mechanics to Address Challenges in . . . 1739

Dohrmann CR, Heinstein MW, Jung J, Key SW, Witkowski WR (2000) Node-based uniform
strain elements for 3-node triangular and 4-node TET meshes. Int J Numer Methods Eng 47:
1549–1568

Dunne FPE, Kiwanuka R, Wilkinson AJ (2012) Crystal plasticity analysis of micro-deformation,
lattice rotation and geometrically necessary dislocation density. Proc R Soc Lond A 468:
2509–2531

Gee MW, Dohrmann CR, Key SW, Wall WA (2009) A uniform nodal strain tetrahedron with
isochoric stabilization. Int J Numer Methods Eng 78:429–443

Ghosh S (2018) JH-SofHub: Johns Hopkins University Software Hub. https://jhsofthub.wse.jhu.
edu/about-2/

Ghosh S, Cheng J (2018) Adaptive multi-time-domain subcycling for crystal plasticity FE
modeling of discrete twin evolution. Comput Mech 61(1):33–54

Gottlieb D, Shu CW, Solomonoff A, Vandeven H (1992) On the Gibbs phenomenon I: recovering
exponential accuracy from the Fourier partial sum of a nonperiodic analytic function. J Comput
Appl Math 43(1):81–98

Hasija V, Ghosh S, Mills MJ, Joseph DS (2003) Modeling deformation and creep in Ti-6Al alloys
with experimental validation. Acta Mater 51:4533–4549

Izadbakhsh A, Inal K, Mishra RK, Niewczas M (2011) New crystal plasticity constitutive model
for large strain deformation in single crystals of magnesium. Model Simul Mater Sci Eng 50:
2185–2202

Joseph DS, Chakraborty P, Ghosh S (2010) Wavelet transformation based multi-time scaling
method for crystal plasticity FE simulations under cyclic loading. Comput Methods Appl Mech
Eng 199(33):2177–2194

Kalidindi SR, Schoenfeld SE (2000) On the prediction of yield surfaces by the crystal plasticity
models for FCC polycrystals. Mater Sci Eng A 293:120–129

Keshavarz S, Ghosh S (2013) Multi-scale crystal plasticity FEM approach to modeling Nickel
based superalloys. Acta Mater 61:6549–6561

Keshavarz S, Ghosh S (2015) Hierarchical crystal plasticity FE model for Nickel-based superal-
loys: sub-grain microstructures to polycrystalline aggregates. Int J Solids Struct 55:17–31

Knezevic M, Daymond MR, Beyerlein IJ (2016) Modeling discrete twin lamellae in a microstruc-
tural framework. Scripta Mater 121:84–88

Kocks UF, Argon AS, Ashby MF (1975) Thermodynamics and kinetics of slip. Prog Mater Sci
19:141–145

Lebensohn RA, Tome CN (1994) A self-consistent viscoplastic model: prediction of rolling
textures of anisotropic polycrystals. Mater Sci Eng A 175:71–82

Lebensohn RA, Kanjarla AK, Eisenlohr P (2012) An elasto-viscoplastic formulation based on fast
Fourier transforms for the prediction of micromechanical fields in polycrystalline materials. Int
J Plast 32–33:59–69

Matous K, Maniatty AM (2004) FE formulation for modeling large deformations in elasto-
viscoplastic polycrystals. Int J Numer Methods Eng 60:2313–2333

Meissonnier FT, Busso EP, O’Dowd NP (2001) FE implementation of a generalised
non-local rate-dependent crystallographic formulation for finite strains. Int J Plast 17:
601–640

Moulinec H, Suquet P (1998) A numerical method for computing the overall response of nonlinear
composites with complex microstructure. Comput Methods Appl Mech Eng 157(1–2):69–94

Nguyen-Thoi T, Liu GR, Lam KY, Zhang GY (2009) A face-based smoothed FE method (FS-FEM)
for 3D linear and non-linear solid mechanics problems using 4-node tetrahedral elements. Int J
Numer Methods Eng 78:324–353

Ozturk D, Pilchak AL, Ghosh S (2017) Experimentally validated dwell fatigue crack nucleation
model for alphaTi alloys. Scripta Mater 127:15–18

Pierce D, Asaro RJ, Needleman A (1983) Material rate-dependence and localized deformation in
crystalline solids. Acta Metall 31(12):1951–1976

Roters F, Eisenlohr P, Bieler TR (2010a) Crystal plasticity FE methods in materials science and
engineering. Wiley-VCH Verlag GmbH, Weinheim

https://jhsofthub.wse.jhu.edu/about-2/
https://jhsofthub.wse.jhu.edu/about-2/


1740 S. Ghosh

Roters F, Eisenlohr P, Hantcherli L, Tjahjantoa DD, Bieler TR, Raabe D (2010b) Overview of
constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity FE
modeling: theory, experiments, applications. Acta Mater 58(4):1152–1211

Shahba A, Ghosh S (2016) Crystal plasticity FE modeling of Ti alloys for a range of strain-rates.
Part I: a unified constitutive model and flow rule. Int J Plast 87:48–68

Sinha V, Mills MJ, Williams JC, Spowart JE (2006) Observations on the faceted initiation site
in the dwell-fatigue tested Ti-6242 alloy: crystallographic orientation and size effects. Metall
Mater Trans A 37(5):1507–1518

Staroselsky A, Anand L (2003) A constitutive model for hcp materials deforming by slip and
twinning: application to magnesium alloy AZ31B. Int J Plast 19:1843–1864

Sweldens W (1998) The lifting scheme: a construction of second generation wavelets. SIAM J
Math Anal 29(2):511–546

Thomas J, Groeber M, Ghosh S (2012) Image-based crystal plasticity FE framework for
microstructure dependent properties of Ti-6Al-4V alloys. Mater Sci Eng A 553:164–175

Venkataramani G, Ghosh S, Mills MJ (2007) A size dependent crystal plasticity FE model for
creep and load-shedding in polycrystalline Titanium alloys. Acta Mater 55:3971–3986

Zhang J, Joshi SP (2012) Phenomenological crystal plasticity modeling and detailed microme-
chanical investigations of pure magnesium. J Mech Phys Solids 60:945–972


	79 Advances in Computational Mechanics to Address Challenges in Crystal Plasticity FEM
	Contents
	1 Introduction
	2 Crystal Plasticity FE Formulation and Solution Methods
	2.1 Crystal Plasticity Constitutive Models
	2.1.1 Kinematic Relations, Flow Rule, and Slip System Resistances
	2.1.2 Numerical Implementation of Crystal Plasticity Constitutive Model


	3 Stabilization of Four-Noded Tetrahedral Elements for CPFEM
	3.1 Node-Based Uniform Strain and Locally Integrated B-Bar Elements
	3.2 F-Bar Patch-Based (FP) Element
	3.3 Performance of TET4 Element Stabilization in CPFEM

	4 Multi-Time-Domain Subcycling for Discrete Twin Evolution
	4.1 Crystal Plasticity Constitutive Models with Twinning
	4.2 Adaptive Subcycling for Accelerated CPFEM

	5 Adaptive Hierarchical CPFEM with Enhanced Wavelet Basis
	5.1 Wavelets for Optimal Enrichment Basis Functions
	5.2 Adaptive Solution Enhancement with Wavelet Basis Functions
	5.3 Results with Adaptive CPFEM for Polycrystals

	6 Conclusions
	References


