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Abstract

This chapter introduces computational methods for generating virtual material
microstructures of engineering materials with heterogeneities. Microstructures
of polycrystalline materials containing localized features such as annealing
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twins, particulates or precipitates, and subgrain phases are the focus of this
discussion. The methods use data from characterization methods to provide 3D
statistical distribution and correlation functions that serve as inputs to the virtual
microstructure generation process. Computational methods infer 3D statistical
descriptors from 2D surface data and use stereology or other optimization-
based projection techniques for 2D to 3D development. The chapter reviews the
DREAM.3D software package and discusses newly developed methods to incor-
porate twins, particles, and subgrain-scale phases. Finally, the microstructure-
based SERVE is introduced in the realm of establishing microstructure-property
relations.

1 Introduction

The recent years have seen an increasing trend in the use of microstructure-based
mechanistic models for predicting material deformation and extreme behavior like
fracture and fatigue response. A primal need in the development of image-based
micromechanical models is the creation of representative 3D virtual models of
the microstructures. An obvious path is by direct image reconstruction from 3D
experimental data on sample volumes of the microstructure. Such experimental
data may be extracted from electron backscatter diffraction (EBSD) or scanning
electron microscopy (SEM) images of serial-sectioning samples (Groeber et al.
2006) or from various computed tomography techniques (Turner et al. 2017).
Deterministic models of the microstructure, representing the exact data from
experiments (Bhandari et al. 2007), however, are not necessarily best suited for
micromechanical simulations, since the microstructure itself may have significant
spatial variations.

A less direct but effective approach is to represent structure through the use
of tools that generate statistical distribution functions equivalent to desired sets
obtained from experimental observations. These “statistically equivalent” virtual
microstructures must capture the statistics of characteristic variables, such as
grain shape and size, crystallographic orientations, and misorientations and their
correlations (Groeber et al. 2008a,b). The approach generally entails quantifi-
cation of experimental data followed by microstructure generation that statisti-
cally match material measurements to a predetermined degree of accuracy. It is
capable of limiting the need for abundant data collection, as well as supple-
menting information when direct 3D data is unavailable. Furthermore it enables
the incorporation of microstructural statistics in higher length-scale constitutive
relations for microstructure-property relations. Finally, the ability to generate virtual
microstructural instantiations allows for virtual design or sampling of the potential
microstructural space, driving toward tailoring materials structure.

Creating statistically “accurate” material instantiations for many engineering
materials is still in its infancy with many gaps and opportunities. Recent efforts,
centered around integrated computational materials engineering (ICME) and the
materials genome initiative (MGI), assume at their core that both the material
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structure and functionality of materials can be captured in a digital environment.
It is imperative to the success of these initiatives that the materials community
develop methodologies for creating digital analogues to real materials. In practice,
it is common to generate performance models with limited amount of microstruc-
tural information. Typically, simple geometric shapes or tessellations are used to
represent microstructures with consideration of lower moments such as average
values. The use of such lower moments is often inadequate for accurate prediction
of many properties of interest, such as fatigue, fracture, creep, etc. Higher statistical
moments of the microstructural distributions, depicting extreme values, are needed
for these predictions. While 3D data collection plays a critical role, especially
when extreme properties are of interest, 3D experimental methods alone are often
not adequate for this framework. Many microstructural arrangements must be
interrogated for probabilistic understanding of the relation between microstructure
and these properties. To facilitate this, experimental data should be coupled with
characterization methods to provide 3D statistical distribution and correlation
functions that serve as the inputs to the synthetic microstructure generation process.
An additional incentive in this development is to infer 3D statistical descriptors from
2D observations and surface data through the use of stereology or other projection
techniques. This is particularly relevant due to the fact that 3D experimental
techniques remain unavailable or prohibitively expensive to a large portion of the
materials community.

Various methods have been proposed in the literature for generating polycrys-
talline or polyphase microstructures, e.g., in Sundararaghavan and Zabaras (2005),
Kumar et al. (2016), Rollett et al. (2007), Saylor et al. (2004), Guo et al. (2014), Jiao
et al. (2007, 2013) and Hasanabadi et al. (2016). In Sundararaghavan and Zabaras
(2005), reconstruction of 3D microstructures is solved as a pattern recognition
problem, where a microstructure database is used with limited statistical information
available from planar images. Microstructures are represented in the form of
undirected probabilistic graphs or Markov random fields for computing probability
distribution of statistically similar microstructures in Kumar et al. (2016). In Rollett
et al. (2007), a 3D grain-structure generation method is based on statistical data
gathered from sections on different planes with assigned orientations. Statisti-
cally representative polycrystalline microstructures are computationally simulated
in Saylor et al. (2004) from geometric and crystallographic observations from
orthogonal sections. Maps on the orthogonal planes characterize the sizes, shapes,
and orientations of grains, and a voxel-based tessellation technique is subsequently
used to generate the microstructure. A dilation-erosion method is developed in Guo
et al. (2014) for stochastic reconstruction of 3D duplex stainless steel microstructure
containing percolating filamentary ferrite phase from 2D optical micrographs. In
Jiao et al. (2007), the authors have concluded that the two-point correlation function
space of a statistically homogeneous material can be expressed through a map,
constructed on a selected set of bases of the function space. A procedure to model
and predict microstructure evolution of lead-tin alloys has been developed using
the two-point correlation function associated with different phases in Jiao et al.
(2013). A method for 3D microstructure reconstruction from two-point correlation
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functions of 2D cross sections using conditional probability theorems and a phase-
recovery algorithm is developed in Hasanabadi et al. (2016). The n-point correlation
functions have been further used in Tewari et al. (2004) and Niezgoda et al. (2010) to
reconstruct the microstructure and obtain homogenized properties. Recent work by
the author’s group combines optimization tools like Genetic Algorithms (Goldberg
1989) with stereology-based projection techniques to develop 3D microstructures
from 2D data (Pinz et al. 2018; Tu et al. 2019).

Direct numerical simulations (DNS) of large microstructural regions can be com-
putationally prohibitive. To negotiate this, representative computational domains
must be optimally defined for evaluating effective properties without having to solve
large microstructural regions. This has led to the concept of a representative volume
element (RVE), which is foundational to computational estimates of structure-
property relations. Originally introduced in Hill (1963) as a microstructural sub-
domain that is representative of the entire microstructure in an average sense,
the RVE definition has undergone variations (Ostoja-Starzewski 2006; Torquato
2002; Pyrz 2006). For microstructures with nonuniformly dispersed heterogeneities,
the statistically equivalent RVE or SERVE has been defined in Swaminathan
et al. (2006), Swaminathan and Ghosh (2006) and McDowell et al. (2011) as
the smallest microstructural domain, for which statistical distribution functions of
morphological parameters, as well as material properties, converge to those for the
entire microstructure. Based on the convergence property in focus, the SERVE
can be classified into two categories, viz., (i) the microstructure-based SERVE
or M-SERVE, in which morphological and crystallographic characteristics of the
microstructure are the sole determinants of the representative volume, and (ii)
the property-based SERVE or P-SERVE that are determined from convergence of
selected material properties.

This chapter is aimed at discussing methods of generating 3D statistically
equivalent virtual microstructures and M-SERVEs of structural materials that are
characterized by polycrystalline and/or polyphase microstructures. It begins with a
description of the open-source software package DREAM.3D, which is a popular,
user-friendly standardized code for generating synthetic material instantiations.
Subsequently some recent developments in modeling polyphase materials and
polycrystalline materials, containing heterogeneities such as micro-twins and par-
ticulates, are discussed.

2 Creating Statistically Equivalent Virtual Polycrystalline
Microstructures Using DREAM.3D

DREAM.3D is an open-source software package focused on creating a high-level
programming environment to process, segment, quantify, represent, and manipulate
digital microstructure data. A central goal of DREAM.3D is to enable the translation
of microstructure quantification to a digital basis with easy-to-use software tools.
The DREAM.3D environment is constructed to allow independently developed
filters and plug-ins to interface with one another, enabling small research groups,
government laboratories, start-up companies, and major industrial corporations to



76 Developing Virtual Microstructures and Statistically Equivalent . . . 1635

collaborate and leverage each other’s work. While DREAM.3D is a general suite
of microstructure processing tools, one of the most common uses of the software is
generating virtual material volumes for input into simulations of various types. This
can readily be seen by viewing the references to the original publication introducing
DREAM.3D (Groeber and Jackson 2014). The latest release of DREAM.3D can be
downloaded from the website given in Jackson (2018).

Synthetic builders generally consist of two major processes, viz., generating
features and spatial arrangements within a computational volume. Features may
be generated by sampling the size, shape, and morphological and crystallographic
orientation distributions observed by some experimental technique. Next, the
features are placed in the volume with specific focus on the local neighborhoods
of features. The sampling procedure, as well as the constraints used to place the
features in the volume, is briefly described here. More detailed descriptions of the
synthetic generation procedure can be found in Groeber et al. (2008a,b).

2.1 Representative Feature Generation

Idealized geometric objects have distributions of size, shape, and morphological
orientation equivalent to those observed in the experimental volume, representing
grains. In this representation, each feature is modeled as a geometric object (i.e.,
ellipsoid, super-ellipsoid, cube-octahedron, etc.) with a volume (V), a set of aspect
ratios (b/a, c/a), and a morphological orientation (φ1, Φ, φ2) corresponding to the
orientation of the major principal axes (a,b,c) relative to the global axes. First
the experimental feature volume distribution is sampled, which is represented by
the cumulative distribution function (CDF) fit to the experimental data. Many
investigations have shown the feature volume distribution to be well represented
within 1 → 2 standard deviations of the mean, by a log-normal distribution (Zhang
et al. 2004; Groeber et al. 2008b). It has been shown in Donegan et al. (2013)
that grain size distributions tend to deviate from log-normal near the tails of the
distribution. This can be accounted for by sampling from a piecewise distribution
using a different form near the tails. Features are sampled until the total volume of all
features generated is slightly larger than the volume of the synthetic microstructural
model (typically around 10% larger). Additional volume is needed because some
features may lie partially outside the domain or overlap other features. If the volume
being generated is to have periodic boundaries, then additional volume is not needed
because the portion of the features that fall outside of the domain will be placed on
the opposite side. Subsequent to the volume assignment, feature shapes are assigned
in conformity with CDFs of the aspect ratios (b/a, c/a). The corresponding CDFs are
represented in terms of a beta distribution, due to its bounds of [0,1]. Additionally,
the shape distributions are treated as a function of grain size by assigning unique
shape distribution functions to discretely binned volume ranges of grain size. The
morphological orientation of each feature is defined by a set of rotations (φ1, Φ, φ2)
needed to transform the global coordinates (X,Y,Z) onto the principal axes of
the feature (X’, Y’, Z’). The orientation space is discretized into cubic bins, and
the density in each bin represents the fraction of grains with that morphological
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orientation. Ellipsoidal orientations are created and assigned based on sampling this
probability density function (PDF), similar to the size and shape distributions. The
output of this process is a set of geometric objects, representative of the features
having statistically equivalent volume, aspect ratio, and morphological orientations
as the experimental reference data.

2.2 Feature Placement

Spatial arrangement of features in a microstructure and their subsequent interactions
drive local material response that can manifest in macroscopic heterogeneity. After
generating a set of geometric objects, it is important that the placement of the
features captures the local microstructural discontinuities. There are multiple issues
to consider when packing the features. The density of the objects, represented by
the features, is one of the largest factors in developing the packing algorithm.
For example, features representing particles of a low volume fraction phase will
certainly be placed differently than features representing grains in a fully dense
polycrystalline material. In the fully dense grain, for example, care must be taken to
pack the volume as densely as possible, but minimize overlap between features in
order to retain each feature’s prescribed shape. In both cases, the local neighborhood
of the feature (i.e., neighboring features) must also be addressed during placement.
The low volume fraction particles should be spaced equivalently to the experimen-
tal/reference data, and the densely packed grains should neighbor grains of sizes,
shapes, and orientations similar to those seen in the experimental/reference data.

Alternative viable options for feature packing have been discussed in Groeber
et al. (2008a) and Saylor et al. (2004). The approach used in DREAM.3D is a hybrid
of methods in these references. The set of voxelized features are initially randomly
placed in the volume. The features are then moved and swapped while enforcing
constraints such as overlap or gap limits, number of neighboring features, size dis-
tributions of neighboring features etc. This approach generally yields near-optimal
space filling through the overlap/gap limits and produces realistic neighborhoods
by requiring local grain arrangements to match experimentally obtained metrics.
The number of constraints affects the feasibility of finding a globally optimum
arrangement. All clusters of unassigned voxels, corresponding to morphological
incompatibility of features, are filled by a pseudo-grain coarsening process. A
constrained Voronoi tessellation method discussed in Groeber et al. (2008b) is
implemented to replace the voxelized representation of the grain aggregates by a
solid-body surface representation of the grain boundaries.

A final step in the generation procedure is the assignment of crystallographic
orientations to the placed features. The process of assigning crystallographic ori-
entations is similar to the morphological orientation assignment process previously
described, though they do not affect the grain morphology. Rotations transform the
global coordinate axes to the crystal coordinate system, rather than the principal axes
of the grain. Orientations are swapped and replaced while optimizing comparison to
the experimental orientation and misorientation distributions.
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2.3 Generating Statistically Equivalent 3D Virtual
Microstructures

An example, demonstrating the use of the DREAM.3D software for microstructural
characterization and 3D virtual microstructure reconstruction of a titanium alloy
Ti-7Al, is shown in Fig. 1. This material has a predominantly hcp crystallographic
structure (Pilchak 2013). A surface scan of the electron backscattered diffraction
(EBSD) maps of the Ti-7Al alloy is shown in Fig. 1a. The morphological and crys-
tallographic orientation, misorientation, and micro-texture distribution data from
EBSD scans are input into the DREAM.3D software. The simulated statistically
equivalent microstructure of dimensions 300×300×300 μm containing 515 grains
is shown in Fig. 1b with colors representing the < c >-axis misorientation with
neighboring grains. The simulated pole figures are compared with those from EBSD
data in Fig. 1c. Furthermore the probability density functions of misorientation and
grain size are compared with those from EBSD maps in Fig. 1d, e respectively. Good
agreement is generally seen between the simulated and experimental probability
density functions.

3 Beyond DREAM.3D: Creating Statistically Equivalent RVEs
of Polycrystalline and Polyphase Microstructures

While the DREAM.3D software is capable of generating virtual polycrystalline
microstructures and SERVEs for various metals and alloys, incorporation of more
complex microstructural features is still in nascent stages. Such features include
those contained in polyphase and polycrystalline microstructures, e.g., annealing
twins or particles and precipitates inside grains. This section will summarize a
suite of algorithms that have been developed for creating M-SERVEs of complex
polycrystalline and polyphase microstructures belonging to three distinct categories.
These are:

1. Polycrystalline microstructures with localized features like annealing Σ3 twin
boundaries, shown in Fig. 2a;

2. Multiphase microstructures like subgrain γ − γ ′ microstructure of Ni-based
superalloys, shown in Fig. 7a;

3. Polycrystalline microstructures with dispersed precipitates and particles, e.g., for
Al 7075-T6, shown in Fig. 10a.

3.1 Polycrystalline Microstructures with Annealing Twin
Boundaries

Figure 2a shows EBSD images of a set of parallel sections of the superalloy René-
88 DT microstructure, obtained by wire electrical discharge machining (EDM) of
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Fig. 1 (a) EBSD scan of Ti-7AL; (b) statistically equivalent 300 × 300 × 300 μm virtual
microstructure containing 515 grains and showing the color plot of < c >-axis misorientation;
comparison of (c) orientation distribution, (d) misorientation distribution, and (e) grain size
distribution of the simulated microstructure with those from the EBSD data
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Fig. 2 (a) Serial sectioned EBSD images, (b) computer-assembled sections of EBSD images
manifesting polycrystalline microstructure including twins, and (c) polycrystalline microstructure
of parent grains only after removing twins, for the Ni-based superalloy René88-DT

a 10 × 5 × 1 mm sample (Lenthe 2017). The 3D assembly and microstructure
reconstruction are performed in the DREAM.3D software using (i) slice registration
and alignment, (ii) voxel level cleanup, (iii) feature segmentation, and (iv) artifact
removal as detailed in Bagri et al. (2018). Twin-related domains are grouped
with a 5◦ tolerance on both the disorientation axis and the disorientation angle.
The resulting stacked and assembled 3D polycrystalline microstructure containing
annealing twins is shown in Fig. 2b, where the grains are segmented with a 2◦
tolerance. The ensemble contains 440 twins in 300 parent grains for a total of 740
twins and grains. The polycrystalline microstructure is dominated by large aspect
ratio, annealing Σ3 twins that have a 60◦ misorientation angle about the < 111 >

crystal lattice axis. Details on the reconstruction of M-SERVEs are given in Bagri
et al. (2018).

The following steps are executed in sequence to generate statistically equivalent
volumes of twinned polycrystalline microstructures from scanned EBSD images.

1. Process the EBSD section data and construct the digitally assembled polycrys-
talline ensemble including twins;

2. Identify and remove twins from the digitally assembled microstructure to
manifest the parent grains shown in Fig. 2c;

3. Extract the statistics of parent grains from the EBSD data;
4. Create statistically equivalent virtual parent grain microstructures from the 3D

EBSD data;
5. Extract correlation statistics of twins with respect to parent grains from the EBSD

data in the digitally assembled microstructure;
6. Insert twins in the parent microstructure to match statistical correlations.

The DREAM.3D software (Groeber and Jackson 2014) is employed in steps
1–4 to create the digital polycrystalline ensembles from EBSD data in Fig. 2d:
remove twins in Fig. 2c and subsequently extract statistics of the parent grains.
The statistics of characteristic features in the twin-free parent grains in Fig. 2c,
including probability distributions of grain size, orientation, and misorientation
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Fig. 3 (a) Schematic of twins and parent grain and (b) statistics of grain size distribution after
removing twins

angle, are acquired following (Groeber et al. 2008a,b). The probability density
distribution of grain size is shown in Fig. 3b. For instances where only 2D EBSD are
available, methods of estimating 3D grain sizes from 2D surface data, e.g., through
the stereology relation d3D ∼ 4/πd2D (Groeber et al. 2008a), may be used.

In step 5, sample statistics are extracted from the EBSD data to generate
probability distribution and correlation functions of twins with respect to parent
grains. These are subsequently used to insert twins in the parent microstructure.
A schematic representing the relation of a twin with the parent grain is shown
in Fig. 3a. Statistical analysis shows the parent grain size d, number of twins in
parent grain n, minimum distance x of the twin from the parent grain centroid,
and the twin thickness t are strongly correlated. The joint probability distribution
of the correlation between twins and parent grains is expressed through a function
P0(d, n, t, x). The correlation statistics and joint probability distributions are shown
in Fig. 4.

The algorithm to insert twins in the parent grain microstructure consists of the
following steps.
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Fig. 4 Correlation statistics from the EBSD data: (a) joint probability density distribution of the
parent grain size and number of twins and (b) conditional probability density distribution of twin
thickness

1. Use the joint probability distribution of parent grain size and number of twins
P1(d, n) = ş ş

P0(d, n, t, x) dt dx and the conditional probability distributions
of both twin distance from parent centroid P2(x|d = D,n = N) and twin
thickness P3(t |d = D,n = N) for twin insertion.

2. Determine the number of twins, twin thickness, and the twin distance from parent
centroid using a Monte Carlo-based acceptance-rejection scheme.

3. Locate the (111) plane at a distance x from the parent centroid.
4. Identify voxels that are at a distance t

2 from the mid-thickness (111) plane.
5. Calculate the rotation matrix from the rotation matrices of the parent grain and

the twin with respect to parent, i.e., R = RparentRtwin
6. Determine Euler angles of the twin, and reassign them to voxels of the twin.

The four-dimensional probability distribution P0(d, n, t, x) requires a very large
number of grains. Hence, a marginal probability function is used, when a smaller
set of statistical information is available. In step 1, the joint probability density
distribution, e.g., in Fig. 4a, is used for parent grain and number of twins per
parent, while the conditional probability distributions are used for the twin thickness
(Fig. 4b) and twin distance from the parent centroid. With this assumption, the four-
dimensional distribution space is approximated as:

P0(d, n, t, x) ≈ P1(d, n)P2(x|d = D,n = N)P3(t |d = D,n = N) (1)

This approximation is valid for any parent grain size and associated twins, where
the twin size and distance from the parent centroid are uncorrelated. When inserting
the coherent twins, they must be placed with the proper orientation relationship
to the parent. The twin boundary plane orientation in the specimen frame ms is
first determined using the crystallographic orientation vector of the parent grain as
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Fig. 5 (a) Simulated 3D statistically equivalent polycrystalline microstructure (3D-SEVPM) with
twins inserted in the parent grains and (b) comparison of the cumulative distribution function of
twin distance d from parent centroid in the EBSD scan and 3D-SEVPM of size 250 μm

ms = Rparentmp, where Rparent and mp = (111) are the parent grain rotation matrix
and grain boundary plane orientation vector in the crystal coordinates, respectively.
Subsequently, the plane is located at a previously selected distance x from the parent
centroid. The grain boundary plane will pass through the point xp = xc + x ms‖ms‖ .
Here, xp is the position vector of a point in the grain boundary, xc is the position
vector of the parent grain centroid, and ‖ms‖ is the norm of the grain boundary
normal. The rotation matrix of the twin in the specimen frame R is obtained from
the rotation matrix of parent grain Rparent and the rotation matrix of the twin with
respect to parent grain Rtwin as R = RParentRtwin. Using the components of R, the
Euler angles of twins are expressed as:

φ1 = tan−1(−R13

R23
), Φ = cos−1(R33), φ2 = tan−1(

R31

R32
) (2)

Repeating steps 1–6, the set of twins are inserted into the parent grain microstruc-
ture.

3.1.1 An Example of Validated M-SERVE Generation
The algorithm is used with EBSD data in Alam et al. (2016) for validating the virtual
microstructure generation process. The statistics shown, e.g., in Fig. 4 are used to
insert twins in the parent grain microstructure. A 250 × 250 × 250 μm 3D-SEVPM
consisting a total of 1700 parent and twins is shown in Fig. 5a. The cumulative
distribution function of the twin distance d from parent centroid for this 3D-SEVPM
is compared with that from the EBSD scan in Fig. 5b.

Studies in Bagri et al. (2018) have shown that the 3D-SEVPM converges to
the M-SERVE at 150 μm, which corresponds to approximately 400 grains and
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Fig. 6 Probability distribution of (a, b) misorientation angle and (c, d) twin thickness from the
EBSD data and the M-SERVE, respectively

twins. Comparison of the M-SERVE statistics with the EBSD data is made through
a few probability distributions. The distribution of the global misorientation and
twin thickness is compared in Fig. 6. The prominent peak in misorientation angle
distribution at 60◦ indicates the presence of twins in the microstructure. A good
agreement is obtained for all the distribution plots. This is a step in validating the
virtual microstructure generation method. In both the EBSD data and M-SERVE,
about 40% of the parent grains are seen to remain untwinned.

3.2 Two-Phase Microstructures Underlying Polycrystalline
Grains

Polycrystalline nickel-based superalloys like René-88 DT have an underlying
subgrain-scale two-phase microstructure consisting of a dispersion of γ and γ ′
precipitates, as shown in Fig. 7a. Subgrain-scale morphological characteristics like
volume fraction, mean size, and channel-width or spacing of γ ′ precipitates have
a major effect on their mechanical properties (Unocic et al. 2011). Modeling



1644 S. Ghosh and M. A. Groeber

Fig. 7 (a) Scanning electron microscope image of a microstructural section of René-88 DT
acquired by FIB serial sectioning, (b) segmented SEM image after thresholding and despeckling,
and (c) spurious connectivity from serial sectioning after segmentation

their mechanical and physical behavior requires robust representation of these
morphological features in the M-SERVE. Many approaches have been employed
to include precipitate structure in performance simulations, e.g., Pollock and Argon
(1992), Nouailhas and Cailletaud (1996), Busso et al. (2000), Fromm et al. (2012),
Parthasarathy et al. (2004) and Keshavarz and Ghosh (2015).

This section discusses a methodology developed in Pinz et al. (2018) for
generating M-SERVEs of two-phase γ −γ ′ microstructures from 2D microstructural
scans of 3D data, using the following steps.

1. FIB-SEM serial sectioning: Acquisition of high-fidelity 3D γ − γ ′ microstruc-
tural data necessitates a high-throughput automated serial-sectioning process
coupled with high-resolution SEM data extraction.

2. Image processing and data cleanup: Cleanup and subsequent segmentation of γ

and γ ′ phases generate a reference 3D voxelization of the microstructure.
3. Feature extraction and statistical characterization: Parametrization and statis-

tical characterization of the γ ′ precipitate morphology and designation of the
relative precipitate positions are needed for establishing spatial distributions.

4. Statistically equivalent microstructural reconstruction: Optimally minimum
microstructures are generated with morphological and spatial statistics equivalent
to those of the large-imaged microstructures.

3.2.1 Data Extraction with 3D FIB Serial Sectioning and SEM-Based
Imaging

Recent advances in tomographic methods, e.g., in Uchic et al. (2006), and Echlin
et al. (2014) and image processing tools have greatly increased the accessibility of
3D data sets for a variety of materials. Microstructural data used for the generation
of the polyphase M-SERVE is obtained from Lenthe (2017), where a FIB is used to
expose parallel layers of the material that are imaged with a SEM. A sample section
is shown in Fig. 7a. The in-plane resolution is 2.5 nm per pixel with 20 nm between
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the slices. The sections are aligned via a convolution method to reduce the effects of
instrumental drift. The contrast difference between the γ and γ ′ phases is not large
enough to allow for robust automatic segmentation of the SEM images (Pollock and
Tin 2006) and can require extensive cleanup.

3.2.2 Image Segmentation
The FIB-SEM technique in Lenthe (2017) is used to collect 180 gray-scale images,
each with a size of 1996 × 1596 pixels. The resultant image stack yields a 3 × 4 ×
5 μm volume. An automated image segmentation process begins with local noise
reduction followed by image sharpening to enhance the contrast between the phases.
The sharpened image stack is segmented with a minimum entropy threshold (Li and
Lee 1993) as shown in Fig. 7b. Sections are interpolated between extracted images in
all three directions. The interaction volume of the SEM causes spurious connectivity
between the precipitates as shown in Fig. 7c. A watershed segmentation procedure
(Meyer 1994) is used to separate the conjoined precipitates using a gradient field
given as:

G(i, j, k) = Bint(i, j, k)

∑Nx

ī=0

∑Ny

j̄=0

∑Nz

k̄=0
Dint(ī, j̄ , k̄)e

−
[(

(ī−i)2

2σ2

)

+
(

(j̄−j)2

2σ2

)

+
(

(k̄−k)2

2σ2

)]

∑Nx

ī=0

∑Ny

j̄=0

∑Nz

k̄=0
e
−

[(
(ī−i)2

2σ2

)
+

(
(j̄−j)2

2σ2

)
+

(
(k̄−k)2

2σ2

)]

(3)
where ī, j̄ , k̄ are dummy indices, Nx , Ny , and Nz are the number of voxels in
the x, y, z directions, respectively, and Nslice is the total number of slices after
interpolation. Dint is a map from each voxel to the value of its distance to the nearest
boundary in the plane, and Bint is a binarized map relative to Dint. The latter is an
indicator function of whether a voxel (i, j, k) is in a precipitate or not. The standard
deviation σ of the Gaussian blur is set to 1

10 th of the mean particle radius. This
gradient field is chosen to reduce disconnected over-segmentation by the watershed
algorithm. The purpose of the 3D Gaussian blur is to mitigate effects from the
voxelization of the precipitate edges. After application to the initially connected
inclusions, the watershed segmentation algorithm produces a final binary voxelized
map Bfinal that contains approximately 6000 contiguous precipitates.

3.2.3 Mapping Precipitate Domain to a 3D Parametric Function Model
Homogenized constitutive models require the precipitate morphology to be
described by a parametrized function with a finite number of parameters and
coefficients. These parameters may be calibrated from the actual surface profiles by
optimization. The chosen parametric function for surface representation represents
a generalized super-ellipsoid (GSE), delineated as:

(
x̄

a

)N1

+
(

ȳ

b

)N2

+
(

z̄

c

)N3

= 1 (4)



1646 S. Ghosh and M. A. Groeber

The position vector x̄(= x̄, ȳ, z̄) corresponds to the location of a GSE surface point
xp(= xp, yp, zp) relative to its centroid x0(= x0, y0, z0) in its principal coordinate
system represented by the Euler angles (φ1, Φ, φ2). The relative coordinates are
expressed as {x̄} = [R]

{
xp − x0

}
, where [R] is the rotation matrix for the

precipitate coordinate system. In Eq. (4) a, b, c correspond to the principal axis
lengths of the super-ellipsoid, and N1, N2, N3 are exponents representing the
shape. The parametrized function in Eq. (4) entails evaluation of the parameter set
Ypar ∈ {x0, y0, z0, N1, N2, N3, a, b, c, φ1, Φ, φ2}. The parameters are calibrated
by solving an optimization problem that minimizes the orthogonal distance between
m surface points of a precipitate and the parametrized surface as:

Minimize
Ypar

m∑

i=1

D2
i =

m∑

i=1

‖xi − (xp)i‖2 =
m∑

i=1

{
xi − (xp)i

}2

+ {
yi − (yp)i

}2 + {
zi − (zp)i

}2 (5a)

subject to the constraint that each point i belongs to the GSE surface
(

x̄i

a

)N1

+
(

ȳi

b

)N2

+
(

z̄i

c

)N3

= 1 ∀ i ∈ [1,m] (5b)

The variable Di corresponds to the absolute Euclidean distance between a surface
point on the precipitate at coordinates (xi = (xi, yi, zi)) for a point i and its
conjugate surface point (xp)i = (xp)i, (yp)i, (zp)i on the parametrized GSE in
the current iterate.

3.2.4 Validation of Precipitate Mapping and Reconstruction
Distributions of morphological parameters of the precipitates generated are used to
validate the effectiveness of the parametrization.

I. Dice Index: The Dice index (DI) is used as a goodness-of-fit metric to compare
the orthogonal distance minimization (ODM) algorithm with an alternate moment-
based algorithm proposed in MacSleyne et al. (2009). DI is defined as the volume
of overlap between two objects (the actual precipitate and the GSE) divided by the
composite volume of the union of the two objects as: DI = VFIB∩VGSE

VFIB∪VGSE
. It ranges

from 0 corresponding to no overlap to 1 for perfect intersection. In Fig. 8a, the
distribution of DI is compared for GSE’s generated by alternate methods. “FULL”
corresponds to N1 �= N2 �= N3, while “REDUCED” has N = N1 = N2 = N3.

II. Size, Shape, and Orientation Distributions: The distributions of the major,
minor, and intermediate axes a, c, and b, respectively, represent the size and aspect
ratio of the precipitate. Figure 8b compares the distribution of the shape parameter
N obtained in the ODM algorithm to a log-normal distribution representation of the
same by the maximum likelihood estimation (MLE). Orientations of the GSEs by
the ODM algorithm with reduced shape parameters are used to generate equivalent
orientation distribution functions using spherical harmonics for crystallographic
texture.
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Fig. 8 Probability distribution of (a) the DI for equivalent ellipsoids generated by alternative
methods and (b) shape parameters in the ODM algorithm and MLE shifted log-normal distribution

3.2.5 Statistically Equivalent Microstructure by Dispersing
Precipitates

A set of precipitates with representative morphological parameters are generated
to yield a desired volume fraction. A placement algorithm that involves random
allocation with local perturbation to avoid precipitate overlap, as well as microstruc-
tural shuffling through an energy minimization scheme for positional stability, is
implemented. This method is iteratively continued with precipitate size scaling until
the experimental volume fraction is attained.

An optimization schedule is executed to minimize the difference in the two-point
correlation function S2 for the experimental microstructure and the 3D statistically
equivalent virtual microstructures (3D-SEVMs). The two-point correlation function
S2 is a statistically convergent measure of the microstructural heterogeneity in
Tewari et al. (2004) and Jiao et al. (2007). For isotropic distributions, it can be
approximated by a closed-form solution as:

S2(r) = Vf
2 + Vf (1 − Vf )e

−r
r0

sin
(

2πr
a0

)

2πr
a0

(6)

where Vf represents the volume fraction of precipitates and a0 and r0 are calibrated
parameters. A genetic algorithms (GA)-based optimization (Goldberg 1989) is used
to minimize the difference in the S2 function. The fitness function is expressed as:

FFS2 =
(

ao − a
target
o

a
target
o

)2

+
(

ro − r
target
o

r
target
o

)2

(7)
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Fig. 9 (a) Reconstructed 3D-SEVMs with 10, 50, 100, and 200 precipitates; (b) cumulative
distribution function of distance to precipitate surface, generated from experimental data and 3D-
SEVM; and (c) median and 96th percentile expected KS test statistic with 10, 50, 100, and 200
precipitates

Figure 9a shows examples of the reconstructed 3D-SEVMs for Np = 10, 50, 100,
and 200 precipitates. Validation tests of 3D-SEVMs are conducted by comparing
morphological metrics that are not optimized during the reconstruction process.
One relevant metric for plastic deformation is the distance to precipitate surface
(DPS) distribution. Figure 9b shows a cumulative distribution function of DPS for
experimental and 3D-SEVM volumes, exhibiting good agreement. Figure 9c plots
the Kolmogorov-Smirnov (KS) test (Massey 1951) statistic between the 3D-SEVM
with Np= 10, 50, 100, and 200 precipitates and the FIB-SEM microstructural data.
Both the median and an upper bound of the sampling error with frequency of 0.96
are plotted in this figure. The 3D-SEVM with 200 precipitates is sufficient for
convergence, and hence this is the designated M-SERVE as detailed in Pinz et al.
(2018).

3.3 Polycrystalline Microstructures with Dispersed Precipitates

Many engineering alloys have precipitates or particles dispersed in their
polycrystalline microstructure. For example, the 7000-series aluminum alloys,
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Fig. 10 Inverse pole figure maps of EBSD data and SEM images of TD/ND plane of the Al7075-
T651 sample containing particles in polycrystalline microstructure; (b) DREAM.3D reconstructed
392-grain virtual microstructure; comparing statistical distributions of the virtual grain morphology
with EBSD data for (c) grain size, (d) aspect ratio c/b

e.g., Al 7075-T6, contain iron-rich or magnesium-rich precipitates in the aluminum
matrix, as shown in Fig. 10a. Various models have been proposed for microstructure
generation of porous materials and particle-reinforced metals, e.g., in Baniassadi
et al. (2011), Rollett et al. (2006) and Guo et al. (2014). Following developments
in the previous sections, this section discusses a method for constructing 3D virtual
microstructures from 2D micrographs, accounting for grain and particle shape
distributions, spatial arrangements of precipitates, as well as precipitate-grain spatial
correlations. Stereological concepts are numerically implemented into a genetic
algorithm (GA)-based optimization framework as detailed in Tu et al. (2019).

3.3.1 Stereological Reconstruction of the Grain Microstructure
Figure 10a shows a representative EBSD scan of a cross section from an aluminum
alloy (7075-T6). Crystallographic orientation and misorientation distributions, as
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Fig. 11 Comparing crystallographic distributions of the virtual grain with EBSD data for (a)
orientation distribution (pole figures) and (b) misorientation distribution

well as morphological distributions, e.g., grain size, aspect ratio distributions, are
extracted from these scans. Stereological estimations of 3D size and aspect ratio
distributions are made from 2D surface data following (Underwood 1972), and
the 3D microstructure is constructed by DREAM.3D using these distributions.
Figures 10 and 11 compare the morphological and crystallographic statistics of a
392-grain virtual microstructure with those from EBSD data.

3.3.2 Mapping Distributions of Precipitates to Parametrized GSEs
SEM images of precipitates are mapped to distributions of 3D generalized super-
ellipsoids (GSEs), similar to Sect. 3.3. Image processing of the SEM images
includes contrast enhancement (adaptive histogram equalization), binarization (gray
level thresholding), and noise removal (Wiener filtering). The SEM particle contours
on the 2D surface are fitted to generalized super-ellipse using the 2D version of
Eq. (5). The microstructures show precipitate clustering along the rolling direction
(RD) (Rollett et al. 2007). The isotropic two-point correlation function or radial
distribution function in Jiao et al. (2007) and Wang et al. (2016) is unable to charac-
terize this directional clustering. The two-point correlation analysis of precipitates in
the RD/ND plane in Fig. 12a shows a clear trend of directional clustering along the
RD direction. Furthermore, the precipitate-grain spatial correlation is represented by
the conditional probability distribution of the minimum distance to grain boundaries
for a given precipitate size. Fracture toughness of aluminum alloys is sensitive to the
closeness of precipitates to grain boundaries (Cai et al. 2007), which is obtained by
overlaying the EBSD and SEM 2D data sets. Figure 12b manifests the clustering of
precipitates of various sizes near grain boundaries.

3.3.3 GA-Based Stereological Mapping from 2D to 3D Microstructures
A genetic algorithm (GA)-based optimization method (Goldberg 1989) is used
to search for parameters of the 3D precipitate distributions, by minimizing the
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Fig. 12 (a) Anisotropic two-point correlation function for precipitates and (b) conditional
probability distribution of the distance to grain boundaries and precipitate size in the RD/ND plane

difference in cumulative distribution functions (CDFs) of 2D statistics of the virtual
and experimental microstructures, using the equation:

Minimize
Xk

1

Ndescriptor

Ndescriptor∑

k=1

1

N
(k)
bin

N
(k)
bin∑

i=1

∣
∣
∣CDF

experimental
i − CDF virtual

i

∣
∣
∣ (8)

where Ndescriptor corresponds to the number of descriptors, e.g., precipitate size,
aspect ratio, shape parameter, and principal axes orientation. Xk stores the 3D
shape distribution parameters for the k-th descriptor, and N

(k)
bin is the number of bins

allocated to represent the cumulative distribution of descriptor k. Candidate sets of
3D super-ellipsoid semiaxis length (a, b, c), shape parameter (n), and principal axes
orientation (α, β, γ ) distribution parameters are stored in the array X. For every
candidate set, representative 2D orthogonal sections are derived statistically from
3D virtual microstructures and compared with the EBSD surface image data. Sub-
sequently, the parameters of the sectioned super-ellipses are solved with the method
of undetermined coefficients. With known statistics of the virtually sectioned super-
ellipses and experimental surface data, individual fitnesses are calculated from the
minimization problem involving crossover and mutation operations.

3.3.4 Planting Precipitates in the DREAM.3D-Generated Grain
Microstructure

The 3D super-ellipsoidal precipitates are now spatially dispersed in the 3D parent
polycrystalline matrix. The dispersion of precipitate centroids is optimized by
the GA methodology such that the anisotropic S2 function and precipitate-grain
spatial correlations of the sections match the experimental distributions. The fitness
function of the optimization process is written as:
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where C is the centroidal coordinates of precipitates, Ndescriptor is the number of

descriptors, Nsection is the number of sections, and N
(k)
bin and M

(k)
bin are the number of

bins used for the cumulative distribution function of a descriptor k.
The resulting two-phase reconstructed microstructure is shown in Fig. 13b.

Figure 13b shows that the precipitates cluster along the RD (x-axis) in good agree-
ment with the experimentally obtained microstructural distribution. Quantitative
comparison of virtual and experimental microstructures in Fig. 14 shows good
match of the 2D precipitate-precipitate and precipitate-grain boundary correlations.

3.3.5 Convergence of the M-SERVE
The convergence of various microstructural descriptors is studied for assessing
the M-SERVE size. The descriptors include grain morphology, grain crystal-
lography, particle morphology, and particle-grain spatial correlation. The errors
in these distributions are estimated by the Kolmogorov-Smirnov test. From the
M-SERVE convergence characteristics in Fig. 15 for two-point and precipitate-grain
correlations, it is found that the M-SERVE size is controlled by precipitate-grain
correlations. It converges for approximately 450 grains with 4500 precipitates.

Fig. 13 Representation of the of reconstructed two-phase microstructure with (a) precipitates only
and (b) precipitates embedded in Al polycrystalline microstructure with grain boundaries
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Fig. 14 Convergence of 2D statistics of particle descriptors to the experimental data: (a) particle-
particle near neighbor distance with respect to the RDND plane data, (b) particle minimum distance
to GB in (RDND)
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Fig. 15 Convergence of M-SERVE with respect to (a) 3D particle two-point correlation function
and (b) 3D distance to grain boundary-precipitate size joint distribution

4 Conclusions

This chapter discusses the development of computational methods for simulating
statistically equivalent virtual microstructures of materials with complex hetero-
geneities. The methods consider polycrystalline materials containing localized
features such as annealing twins, particulates or precipitates, and subgrain-scale
precipitates in their polycrystalline structure. Data from image analysis and charac-
terization are used to construct 3D statistical distribution and correlation functions.
This serves as input to the virtual microstructure generation process. 3D experimen-
tal data extraction techniques are sometimes unavailable or prohibitively expensive
to generate. Consequently, the methods accommodate computational approaches
that infer 3D statistical descriptors and functions from 2D observations and surface
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data, from stereology and other optimization-based projection techniques. The chap-
ter introduces the open-source software package DREAM.3D that is now widely
used for generating virtual microstructures of polycrystalline materials. It then goes
beyond DREAM.3D into more newly developed methods for incorporating twins,
particles, and subgrain-scale phases in polycrystalline microstructures. Finally the
concept of the microstructure-based SERVE or M-SERVE, in which morphological
and crystallographic characteristics of the microstructure are determinants of the
statistically equivalent representative volume element, is introduced.
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