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We wish to dedicate this book to the memory of Walter Kohn and Aneesur Rahman,
founders of the modern approach to the physics and chemistry of real materials,
both theoretical and computational. While their contributions will forever stand
as milestones in the progress of science, we wish to commemorate their courage
and vision in proposing new methods that would be fully implemented only decades
later. We – and everyone who has known them personally – continue to remember
them also for their tireless enthusiasm for science, their generous sharing of ideas,
their unique kindness, and their charisma. As their articles start to disappear from
citation lists in the same way as those of the founders of quantum mechanics, it
is both humbling and comforting to know that any present and future development
rests on the work of two wonderful people who have truly embodied the values of
science.

Wanda Andreoni and Sidney Yip



Preface to HMM2

The Handbook of Materials Modeling, published in 2005, was the first reference
work of its kind, providing a comprehensive description of an emerging field of
research and helping to grow a community at the intersection of Computational
Science and Materials Science and Technology through the development of the
theory, modeling, and simulation of materials across the disciplines of physics,
chemistry, and engineering. In producing the first edition, the editors were guided
by a simple vision – target students, young researchers, and nonspecialists as the
primary audience, introduce the concept and practice of linking materials research
at different resolution levels (from the atomic to the meso- to the macroscale), and
stimulate exploration and applications. The e-book version became available two
years later.

The Handbook of Materials Modeling Second Edition (HMM2) follows its pre-
decessor in serving the broad community of Computational Science and Materials
Science and Technology. Its goal is to update the current state of the art of materials
modeling and simulation in two complementary ways:

• Strengthen the foundations of materials theory, modeling, and simulation
• Broaden the scope to include challenges and opportunities of interdisciplinary

interest

In both objectives, HMM2 strives to promote open discussion of the capabilities
and limitations of current methodologies and applications. The Second Edition is
composed of two companion sets: Handbook of Materials Modeling – Methods:
Theory and Modeling, and Handbook of Materials Modeling – Applications:
Current and Emerging Materials. These will be abbreviated as MTM and ACE,
respectively. Each set is a stand-alone publication with its own Table of Contents
and individual chapters that are grouped under a number of parts. Both MTM and
ACE are three-volume sets. There are 11 parts in MTM containing, beyond the
Introduction, 10 sections with 88 chapters and 16 parts in ACE containing, beyond
the Introduction, 15 sections with 120 chapters. The chapters which constitute the
primary scientific content of the handbook are organized by the section editors in
each set, working in coordination with the editors in chief. The section editors also
provide an introductory overview of their own section, thus facilitating access to the
following chapters.
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viii Preface to HMM2

Logistical issues aside, we think it is important to emphasize the holistic aspects
of materials modeling and simulation, as an evolving discipline across science and
technology and the complementarity of the two sets. As the community grows in
scope and relevance, learning “in depth” with the aim of mastering the relevant
theoretical and computational algorithms becomes more and more important.
Equally, it becomes important to be able to discern unresolved materials issues
for which information from simulations could “make a difference” and to properly
apply and critically assess the chosen models and methods. Thus all readers should
recognize the beneficial overlap of the two sets. In the respective introductions we
will elaborate further on this point.

An undertaking of this magnitude can only succeed as a collective effort.
The Handbook of Materials Modeling Second Edition would not be a reality
without the dedicated efforts of former Springer Editor Maria Bellantone, to
whom we are especially indebted. She brought us together and provided us with
essential logistical support. We thank Lydia Mueller for her early guidance. Our
deepest gratitude goes to Juby George and Sunaina Dadhwal for their invaluable
editorial assistance, efficient communication with authors and editors, and efficient
management of the Springer platform Meteor. Their assistance made it possible to
complete the project on an admittedly ambitious schedule. That 200 plus chapters
could be commissioned, manuscripts collected, revisions, etc., be undertaken and
published in less than four years is an accomplishment for which the credit properly
should go to the section editors and their authors. We would like to think all
participants will take pride in what we have achieved together. This is a journey
that will continue. We trust the community will be diligent in upholding standards
and maintaining respect and collegiality among all stakeholders.

February 2020 Wanda Andreoni
Sidney Yip

Editors
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Abstract

The current problems facing mankind concerning energy, health, waste, and
pollution have recently begun to have a strong influence on the development
of materials science and start to define its main goals. In particular, the urgent
need for novel materials and for more efficient processes for their synthesis is
currently driving formidable research efforts, in which modeling and computer
experiments play a special role. In many scenarios, multiscale materials modeling
is called for because of its ability to interrelate the descriptions of a system at
various length scales – ranging from the atomic (or molecular) scale (including
the description of the electronic structure) to the microscopic scale and to the
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mesoscopic and the macroscopic scales. This coupling is expected to enable
improved predictions of microstructure evolution and thereby to lead to the
development of improved materials and to improved design. However, currently,
ensuring the reliability of the treatment of the system at each resolution level
is still a major task for computational materials science. The Handbook of
Materials Modeling (HMM) had recorded the state of the art up to 2005.
The present Handbook of Materials Modeling – Methods: Theory and Mod-
eling (MTM) presents a variety of more recent algorithms for the simulation
at multiple scales and also some recent successful examples of multiscale
approaches. Their explanation and critical assessment is the focus of the ten
sections for which we provide here a brief survey. Moreover, we emphasize
three lines of research: modeling at the mesoscale, whose critical importance
has recently been recognized; multiscale simulations of complex physical and
chemical processes for the diagnosis of materials behavior and as part of
the synthesis protocol; and the emergence of data-driven artificial intelligence
strategies.

1 The Attributes of Materials Modeling and Simulation

The principles of materials design are rooted in the correlation of molecular
structure with physical properties. From these correlations, models are formulated
that are capable of predicting microstructural evolutions. Such models allow the
researcher to investigate the mechanisms underlying the critical behaviors of
materials and to systematically arrive at improved design.

Recognition of this principle was evident throughout the emergence and growth
of the materials modeling community as one can follow through a series of reports
from the US government agencies and funding organizations, as well as reference
work publications (PITAC 2005; SBES 2006; NRC 2008; WTEC 2009; MGIGC
2011; DOE-BES 2012; Konings 2012), and a commentary (Yip and Short 2013). It
is worthwhile to note the perceived global societal impact of information technology
in these discussions and the particular challenges of the mesoscale in building
multiscale materials models. The former issue has given rise to the currently
emerging field of artificial intelligence in the materials innovation domain, while
the latter has given awareness to the importance of modeling and simulation at the
mesoscopic level (DOE-BES 2012). This is an outcome of the “tyranny of scales”
manifestation (SBES 2006).

The benefits from materials innovation can be illustrated by the current progress
in nanoscience and nanotechnology, a worldwide enterprise that one may compare
to computational drug design. Linking methods capable of describing a system
at the atomic scale – including the quantum regime – and techniques capable of
describing phenomena at the mesoscale is expected to ensure that the different
phases of materials innovation and development, from design to synthesis to
testing to performance and lifetime evaluations, can all be simulated, analyzed, and
optimized.
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In the broad arena of societal impact, one can expect materials modeling and
simulation to have considerable potential for societal benefits because they sit at the
crossroads of computational science and materials science and technology.

To keep the various communities connected, we declare at the outset that the
terms “materials modeling and simulation” and “computational materials science”
are to be regarded as synonymous unless specifically stated otherwise.

We can briefly recall three attributes of materials modeling and simulation that
will endure throughout the developmental and application phases (SBES 2006).
Together they constitute the essence of the “intellectual glue” joining MTM and
ACE.

Exceptional bandwidth – The conceptual basis of materials modeling and
simulation encompasses all disciplines of physical sciences and even beyond. It
makes no distinction between what belongs to physics, chemistry, engineering,
etc. The universality of the materials modeling enterprise becomes evident when
one considers what is actually involved in formulating models for simulation.
If we define modeling as the “physicalization” of a concept and simulation as
the numerical implementation of this concept, then it is clear that modeling and
simulation lie at the basis of all scientific disciplines that involve formulating a
hypothesis and testing via simulation (or experiment) and then repeating this process
through understanding and subsequent manipulation (design).

Elimination of empiricism – A virtue of multiscale modeling and simulation is
that the results from both are conceptually and operationally quantifiable. “Quan-
tifiability” here means one can interrogate a particular operation and determine its
outcome in a controlled manner, effectively akin to an ability to investigate “cause
and effect.” A complex phenomenon therefore can be probed one detail at a time.
This is significant because of its broad implication that empirical assumptions can
be systematically replaced by physically based, quantifiable descriptions.

Visualization of phenomena – The numerical output of a simulation generally
is in the form of data on the degrees of freedom characterizing the model. The avail-
ability of this kind of data lends itself not only to direct animation and visualization
but also to data analysis and subsequent visualization of the functional properties
of interest. In microscopy, for example, one can obtain structural information but
usually without the energetics. Through simulation one can have both. The same is
true for studies of mechanisms and reaction pathways where it would be desirable
to correlate spatial and energetic information.

2 Complementarity of Methods and Applications andMTM
Sections

The first edition of the Handbook of Materials Modeling (HMM) consisted of
individual contributions (a total of 141 chapters) and of a special section called
Plenary Perspectives containing brief commentaries (39).

In contrast, as specified in the Preface, the present edition consists of two
standalone sets, namely the Handbook of Materials Modeling – Methods: Theory
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and Modeling (MTM) and the Handbook of Materials Modeling: Current and
Emerging Applications (ACE).

This division is not only meant to make it easier to read but also, and especially,
to emphasize the interplay of methodology and “best practice” and to promote
a comprehensive knowledge of materials science. It is true that, currently, the
availability of several powerful and user-friendly computer codes makes it possible
for researchers to undertake applications without concerning themselves with a
profound and detailed understanding of the methods on which such codes are
based and of the several approximations implemented therein. Such an attitude
would, however, obviously be detrimental for any application because its scientific
value strongly depends on the capability of the researcher to master “his/her
instrument,” and in particular to test and clarify the range of validity of the methods
he/she is using. On the other hand, an awareness of the problems that modeling
and simulation are expected to help solve, namely those that experimentalists
and technologists face in diverse areas of materials science, is essential for the
development of useful methods.

The theoretical and computational approaches presented in MTM represent to a
large extent the state of the art for the study of the physics, chemistry, and mechanics
of (hard and soft) materials. Note that they do not include the additional procedures
that are required in any application, namely, the reduction of a specific complicated
real system to a virtual model that can be treated with available computational
means, the choice of the theoretical and computational approaches with assessment
of the level of accuracy and limitations of the calculations, and the analysis of the
results aimed at understanding and providing physical insight and connection to
experiment. Why are these procedures so important? Let us not forget that what we
simulate is the virtual system and what we learn from our calculations is the physics
of that model. Therefore, we have to be cautious when pretending that a model
represents the real system. The same is true for the simulation of the dynamics of
a certain process because, for example, the duration of the virtual experiment may
not allow to detect the relevant mechanisms. See also our discussion in �Chap. 23,
“Atomistic Simulations: An Introduction.”

As seen in the Table of Contents (TOC), MTM is composed of ten sections, with
each section having a number of chapters, nine on average. To give the readers who
are relatively new to the community an appreciation of the scientific themes of MTM
at an introductory level, Table 1 also shows a listing of the keywords characterizing
the particular theme of each of them. These are abstracted from the titles of the
sections as given in the TOC, intended only for a very qualitative comparison with
other similar listings such as that for ACE. In each entry of this Table, it is implicit
that the overall context is methods, theory, and models for materials modeling and
simulation. The keyword abstraction is but one way of characterizing the content
organization of the handbook, and clearly one can consider many other ways to
categorize it. To make use of Table 1, we can look at the list for ACE which has
15 sections, while we need to keep in mind that the overall context for that list is
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Table 1 List of keyword
descriptors of topical themes
for each of the ten sections in
MTM. For full section titles
and the individual chapters in
each section, see the Table of
Contents

Plenary topics
Ab initio methods
Atomistic simulations
Long time scale simulation methods
Magnetism, magnetic materials, and spintronics
Mesoscale simulation science frontier
Coarse-graining methods and models
Soft matter/polymers simulations
Crystal plasticity across scales
Materials informatics

Table 2 List of keywords
describing the scientific focus
of the 16 symposia at the
Multiscale Materials
Modeling Conference, Osaka,
Japan, Oct.28–Nov. 2, 2018.
In the abbreviation, the
context of multiscale
modeling and simulation is
implied throughout

Theory advances
Radiation effects, nuclear materials
Crystal plasticity: from electrons to dislocation microstructure
Data-driven and physics-informed materials discovery and
design
Deformation and fracture mechanisms
From microstructure to properties: mechanisms,
microstructure, manufacturing
Mechanical behavior in harsh environments
Mechanics of polymers, soft matter, and network materials
Grain boundaries: dynamics, growth, plasticity
Heterogeneous layered media
Catastrophic phenomena: fracture, earthquake
Crystal plasticity: structure, statistics, mechanics
Time- and history-dependent materials properties
Towards experimentally relevant time scales
Tribology: Multi-scale, multi-physics, multi-chemistry
Lubrication, wear, adhesion, friction

current and emerging applications of materials modeling and simulation. We refer
the reader to our introductory remarks to ACE (Chap. 1, “Applications of Materials
Modeling and Simulation: An Introduction”).

In Tables 2, 3, and 4, we show lists of conference symposia for three recent
conferences. Table 2 gives the list of 16 symposium topics in a recent international
conference on multiscale materials modeling. Table 3 shows the list of the 28
symposia at the latest (2015) quinquennial Psi-k conference. Table 4 shows the
list of the nine symposia at the most recent (2019) biannual series of workshops
on “Total Energy and Force Methods.” The correspondence between the entries in
Table 1 with Tables 2, 3, and 4 should be quite clear.

https://doi.org/10.1007/978-3-319-44680-6_154
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Table 3 List of the 28
symposia at the Psi-K
Conference, San Sebastian
(Spain), Sept.6–10, 2015

30 years of Car-Parrinello
f-Electrons
Correlated Electrons
Theoretical Spectroscopy
Recent Advances in Diagrammatic Methods for the Total
Energy
Novel Density Functionals
Recent Developments in Density Matrix Functional Theory
Density-Functional Theory for Coupled Matter-Photon
Systems
Applications of Quantum Monte Carlo Methods
Upscaling Electronic Structure: Reduced-Scaling and
Multi-Scale Methods
Spin-Orbit Coupling Effects in First-Principles Quantum
Transport
Magnetic Excitations and Magnetization Dynamics
Chiral Magnetism
First-Principles Calculations for Multiferroics and
Magnetoelectrics
Ab Initio Statistical Mechanics
Topological Insulators
Electrochemical Energy Storage and Conversion: Solid/Liquid
Interfaces
Materials Design
Machine Learning Methods in Materials Modeling
Hybrid Photovoltaic Materials
Electron Phonon Coupling and Thermoelectricity
Ultrafast Charge Transfer at the Nanoscale
Non-Linear Optics of Materials and Nanoplasmonics
Novel 2D Materials and Heterostructures
Modeling of Defect Levels
Transport Properties
Matter Under Extreme Conditions
Electronic Structure Theory for Biophysics

3 Brief Section Overviews

Here we briefly introduce the ten MTM sections and refer the reader to the overviews
by the section editors for a more complete and useful account.

From the list in Table 1, we see that MTM begins with a “Plenary Topics” section
dedicated to wide perspectives as well as to subjects that can be related to several
specific sections of both MTM and ACE.

The first topical section (“Electronic Structure of Materials by Ab Initio
Methods” Editor: Rubio) is dedicated to advanced quantum-mechanical methods
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Table 4 List of the sessions
of the 19th Workshop on
Computational Physics and
Materials Science: Total
Energy and Force Methods,
Trieste (Italy), Jan 9–11, 2019

Topological Materials and Phenomena
Strong Correlations in Quantum Materials
Spins, Correlations and Entanglement and Quantum
Information
Novel Electronic Structure Methods for Ground Excited States
Machine Learning/Advanced Simulation Techniques
Novel Electronic Structure Methods for Ground and Excited
States
Simulating Materials and Processes across Length and Time
Scales
Utilizing Data in Computational Materials Discovery
2d Materials and Many-Electron Substrate Effects

for the calculation of the electronic structure and related properties of extended
systems. Applications of the methods discussed therein permeate this handbook,
both in MTM as components of nonempirical simulation methods (see, e.g., the next
section) and in numerous implementations and practical examples included in ACE.

The text proceeds with the explanation of advanced algorithms for simulations
using atomistic models (“Atomistic Simulations” Editors: Andreoni and Yip). In
particular, emphasis is given to simulations of the dynamics of complex physical and
chemical processes in condensed phases, for which considerable progress has been
made over the last 15 years. Some of the methods in both the sections just mentioned
are rooted in well-established approaches that were explained in HMM. We refer, in
particular, to GW-BSE calculations for the study of electronic excited states (Louie
and Rubio 2005) and DFT-based molecular dynamics (Car et al. 2005). We have
also endeavored to present very recent and promising methods that are opening new
horizons for computational approaches and new opportunities for applications.

The next section (“Computational Methods for Long-Timescale Atomistic Sim-
ulations” Editors: Perez and Uberuaga) emphasizes the importance of long-scale
atomistic simulations and reports on well-known – widely used – direct acceleration
techniques (see also Uberuaga et al. 2005 in HMM) and recent extensions.

The study of magnetism requires approaches on a vast range of length and
time scales. The section “Modeling Tools for Magnetism, Magnetic Materials
and Spintronics” (Editor: Sanvito) is especially instructive in that it comprises
theoretical and computational schemes targeted at diverse scales and models,
ranging from descriptions at the atomic level to the continuum. Moreover, this
section is well connected to the companion section in ACE (Editor: Sanvito).

Multiscale methods coupling different length scales are fundamental for the
study of a large number of physical systems. Many discussions are presented
in MTM and also in ACE (see, in particular, “Hierarchical Materials Modeling:
Mechanical Performance” Editors: Buehler and Martin-Martinez; “Modeling the
Structural Development and the Mechanics of Complex Soft Materials” Editors:
Del Gado and Pellenq; “Multiscale Modeling of Diseases” Editors: Dao and
Karniadakis).
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The “grand challenge” pertains to the “mesoscale,” and the establishment of
methods for a physically sound and mathematically correct connection from the
micro- to the macro-scale regimes. A full section is dedicated to the related issues
(“Modeling of Microstructure Evolution: Mesoscale Challenges” Editors: Sarrao
and Stan). More comments will be given below (see Sect. 4.1).

A coarse-grained representation is often extremely useful especially allowing
for the transfer of information from one domain to the next within multiscale
methods. Coarse-grained models and the inclusion of stochastic approaches are
the focus of the next section (“Stochastic, Coarse-grained Models of Materials
Mechanics” Editors: Homers, Chen, Schuh). Both basic concepts and examples of
implementations and applications are discussed.

The next two sections discuss systems, properties, and processes for which
advanced multiscale algorithms are called for and illustrate state-of-the-art models
for simulations at different length scales.

An outstanding area is that of “soft matter” to which one full section is devoted
(“Soft Matter/Polymers Simulations” Editor: Kremer). An extensive description
from the atomic level to the continuum level appears to be critical in the search
for structure-property and ultimately structure-process-property relations.

On the other side, namely crystalline materials, modeling plastic deformation is
a key topic that has also long stimulated the development of multiscale approaches
(see “Crystal Plasticity: From the Atomic Scale to the Macroscale” Editors: Cai and
Ghosh).

The last section (“Materials Informatics” Editor: Marzari) deals with an area of
increasing interest in the community. The explicit target here is the discovery of
new materials with certain desired properties, and it is based on the data-driven
“knowledge” of structure-property relations. Several chapters discuss machine-
learning strategies (either established or under development) and different protocols
for the creation of the reference data. We remark on an interesting application to the
search for novel magnetic materials in the ACE part of this handbook (Chap. 17,
“Machine Learning and High-Throughput Approaches to Magnetism” by Sanvito
et al.). We take care to indicate also other – more recently published – machine-
learning algorithms with other important applications, e.g., to predict chemical
reactivity of complex organic molecules (Schwaller et al. 2018) and mechanical
stability of metal-organic frameworks (Moghadam et al. 2019). This section is
complemented by a chapter in the “Plenary Topics” section (as mentioned above).
We shall say more below (Sect. 4.3) about artificial intelligence applied to materials
science, namely about its significance and the expectations for the near future.

4 Highlights

In the next paragraphs, we take care to emphasize three lines of research that are
bound to be central to the progress of computational materials science in the next
decade and more.

https://doi.org/10.1007/978-3-319-44680-6_108
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4.1 Modeling and Simulation Challenges at theMesoscale

A question that has been noted repeatedly in assessing the merits of materials
modeling and simulation is how one can exploit the understanding of molecular
mechanisms to predict the functional behavior of materials at the macroscale. In
the spirit of multiscale materials modeling, one can define “mesoscale science” as
the process of linking microscale models and simulations to macroscale behavior.
The scientific challenges of the mesoscale have received particular interest in the
community (DOE-BES 2012). They have been illustrated in attempts to explain
longstanding problems in materials phenomena, such as the temperature variation
of the viscosity of supercooled liquids, the temporal evolution of the shear modulus
in the setting of cement paste, and the effects of loading on crack propagation in
stress corrosion cracking of a glass (Yip and Short 2013). In each case, there exists a
common challenge in dealing with mesoscopic time scales in molecular simulation.
A section has been devoted to exploring the various issues that have been raised
(Editors: Sarrao and Stan).

4.2 BeyondMaterial Properties via Simulations

As mentioned above, the search for structure-property relations is at the heart
of materials science and has been guiding the development of computational
tools for materials design for many years. Today’s great challenge is to exploit
advanced computational methods for the simulation of the physical and chemical
processes that “real” materials undergo: their formation (see growth, nucleation),
their transformations, and eventually their degradation. Indeed, in principle, com-
puter experiments can provide unique information about a given material, because
they can explore its behavior in conditions or at scales that are not accessible by
real experiments. As pointed out by Galli in the “Plenary Topics” section, one of
the most ambitious goals is to render first-principles simulations part of synthesis
protocols. On the other hand, in his section overview, Kremer underlines the need to
establish structure-process-property relations, which is especially critical for soft-
matter/polymer systems whose observed configuration depends on their history,
e.g., on the preparation method.

As demonstrated, e.g., by the accomplishments of density-functional-theory-
based molecular dynamics over the last 30 years, the success will depend on the
synergy of ingenious theoretical and computational algorithms aided by efficient
procedures of computer science and code development.

4.3 Artificial Intelligence: Toward a New Paradigm inMaterials
Modeling

In the last few years, there has been an upsurge of interest in the materials modeling
community to embrace the concepts and tools of artificial intelligence, machine
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learning and deep learning. As mentioned above, this handbook contains several
contributions in this area and many references. A few more comments are probably
necessary to point out the significance of this new way of doing research. We remark
that by now, data-based artificial intelligence strategies are considered to form the
fourth paradigm of computational materials science. Born simultaneously in many
different labs, this new “paradigm” is however still in its infancy and a great effort
is ongoing to establish accurate transparent and shareable data. There is no doubt
that this formidable endeavor will continue to offer unique opportunities in bridging
the communities of computer science and computational materials science to the
benefit of both. On the one hand, the development and impact in materials science
will continue to be bound to the progress of the traditional approaches, theory,
experiment, and computation, and the degree of interaction among them. On the
other hand, the application of artificial intelligence tools is bound to create new and
also unsuspected challenges, e.g., for the synthesis of the virtual materials (certainly
a huge quantity) that will be produced.
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Abstract

The articles of this section cover themes that we expect to usefully complement
the broad collection of topics presented in this part of the Handbook (MTM).
When matching the contents of other MTM sections, they provide additional
information and new perspectives. Also comprehensive reviews are presented
of well-established theories, namely time-dependent density-functional theory
and the modern theories of polarization and orbital magnetization, especially
including recent formulations. Moreover, this Plenary Topic section establishes
further connections (and thus reading support) to the chapters in the companion
Set on Applications (ACE).
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1 Introduction

The scope of the section on “Plenary Topics” is twofold: providing topical overviews
and perspectives of general interest to the readers of the Handbook and presenting
the discussion of themes that were not included in the specific sections.

Some theoretical methods that have been widely applied in the last 15 years (not
reported in the first issue of this Handbook) are explained extensively. For example,
this is the case for time-dependent density-functional theory on which the majority
of calculations of electronic excited states, electron dynamics and electron-nuclear
dynamics are currently based, especially in extended systems. One of the chapters
reports on general guidelines currently followed in data-based artificial intelligence
applications aimed at discovering novel materials. Other chapters elucidate the role
that computational approaches currently play in materials science and are expected
to play in the future.

The brief survey below is meant to guide the reader through the seven chapters.

2 A Brief Chapter Overview

The Section opens (Cohen: �Chap. 3, “Modeling Solids and Its Impact on Science
and Technology”) with an excursion over a century going through the development
of modeling-based approaches to the physics of solids and its extension to nanos-
tructured materials. We also remark that Cohen’s earlier contribution to the first
edition of the Handbook (Cohen 2005) remains on the recommended reading list
for students and researchers coming into the community. Based on the author’s
address on the occasion of the 2018 Franklin Medal award, the review presented
in this section leads the reader from textbook-level to some issues on which
current research is focused. It shows how computational methods have emerged and
progressed from empirical to “ab initio” and emphasizes the role of computational
materials science as companion to experiment.

The following chapter (Galli: �Chap. 4, “The Long and Winding Road: Pre-
dicting Materials Properties Through Theory and Computation”) explains why
and how first-principles calculations are presently used to explore the complex
systems relevant to contemporary technology and what are the main expectations
from further method developments. It is argued that exchange of information to
and from experiment continues to be essential and that the envisaged role of non-
empirical simulations is that of generating unique knowledge for the design of novel
materials and novel synthetic routes. Another issue touched in this article is the
need for accuracy, validation, and reproducibility of the results, so as to ensure the
unique role of first-principles calculations in the application of data-based artificial
intelligence to materials science.

For a discussion of the application of artificial intelligence, machine-learning
procedures, and the use of Big Data in the realm of materials science, we refer
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the reader to the Section “Materials Informatics” (Editor: Marzari). The additional
contribution reported here (Draxl and Scheffler: �Chap. 5, “Big Data-Driven
Materials Science and Its FAIR Data Infrastructure” ) gives a detailed account of
the general guiding (FAIR) principles for the “management” of the data, machine-
learning models currently in use, and several recent results. Moreover, some of the
problems still to be solved are clarified and important targets of future developments
are mentioned.

The so-called first-principles simulations rely on a chosen description of the elec-
tronic structure of the system under investigation. For many years now, several and
diverse approximate schemes of density functional theory (DFT) have been com-
monly used to calculate ground state properties and to drive ab initio (Car-Parrinello
and Born-Oppenheimer) molecular dynamics. On the other hand, excited state
properties and electron dynamics have long been a thorny problem especially for
extended systems. To date, it is fair to say that time-dependent density-functional
theory (TDDFT) – within the same approximations for the exchange-correlation
functional as those used in ground-state DFT calculations – has become the method
of choice. This fact explains why a comprehensive and detailed review is presented
in this section (Agostini, Curchod, Vuilleumier, Tavernelli, and Gross: �Chap.
6, “TDDFT and Quantum-Classical Dynamics: A Universal Tool Describing the
Dynamics of Matter”). In particular, recent extensions of TDDFT to treat non-
adiabatic electron-nuclear dynamics beyond Ehrenfest (mean field) dynamics are
reviewed. For a further discussion of TDDFT, we wish to direct the reader to
�Chap. 40, “Time-Dependent Density Functional Theory for Spin Dynamics” by
Elliott et al. in this Handbook (section “Modeling Tools for Magnetism, Magnetic
Materials and Spintronics” Editor: Sanvito), where the important extension to
include the electron spin degree of freedom (TDSDFT) and its interaction with
a magnetic field is presented in detail. Currently, TDSDFT is the only ab initio
method available for the investigation of ultrafast spin dynamics and – as shown
in the chapter by Elliot et al. – has successfully been applied to complex magnetic
systems.

The development of methods going beyond DFT and also TDDFT and perturba-
tive DFT approaches like GW is presently very active. Several examples are reported
in the section “Electronic Structure of Materials by Ab Initio Methods” (Editor:
Rubio). Here a chapter is included that describes the auxiliary-field quantum Monte
Carlo (AFQMC) (Zhang: �Chap. 7, “Ab Initio Electronic Structure Calculations
by Auxiliary-Field Quantum Monte Carlo”) for correlated many-electron systems.
We recall that the core of the method relies on the utilization of the Hubbard-
Stratonovich transformation to express the quantum evolution operator – of the
correlated system under study – in imaginary time as an “average” (with respect
to a classical Gaussian probability distribution) of free evolution-like operators.
Especially for the ground state, AFQMC appears to be a clean, efficient, and
relatively “simple” algorithm to handle and implement. Extension to treat excited
states is also discussed. Illustrative examples refer to lattice models as well as
molecules and solids.
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The last two chapters are concerned with fundamental concepts in condensed
matter physics and related theories.

Under the denomination “modern theories of polarization and orbital magne-
tization” go rigorous definitions for a periodic system. Explicit expressions of
the measurable changes in terms of a Berry phase are obtained and make direct
calculations possible. The theory of polarization was well established already
more than 20 years ago, and relevant applications – within DFT – started to
appear soon after, leading to advances in the understanding of piezoelectricity
and ferroelectricity and calculations of related properties as well as of infrared
spectra of liquids and amorphous materials. Examples can be found in the ACE
component of this Handbook (Picozzi: “Multiferroic and Ferroelectric Rashba
Semiconductors” (Section “Applications of Materials Modeling to Magnetism,
Magnetic Materials, and Spintronics” Editor: Sanvito) and Lu and Rondinelli:
“Design of New Multiferroic Oxides” (Section “Oxides in Energy and Information
Technologies” Editor: Franchini and Yildiz)). Extension to orbital magnetization is
more recent and has allowed one to calculate, in particular, the nuclear magnetic
resonance shielding tensor and the electron paramagnetic resonance g-tensor (from
changes of the orbital magnetization) for periodic systems. �Chapter 8, “Electrical
Polarization and Orbital Magnetization: The Position Operator Tamed” by Resta
provides an exhaustive review especially of the conceptual background and the
mathematical formulation of the methods. We also wish to direct the reader to
an interesting article showing the importance of the modern theory of orbital
magnetization for the study of inhomogenous magnetic systems and especially of
spintronics (Hanke et al. 2016).

The physics underlying the formation of a glass continues to be a severe
challenge for the theory of condensed matter. The last chapter of this section
(Rizzo: �Chap. 9, “Critical Phenomena in Glasses”) discusses the state of the art
of theoretical approaches. It focuses on the mode-coupling theory, its successes and
shortcomings, and incorporates recent developments aimed at improving the present
characterization and understanding of the critical behavior of glasses.

3 Conclusions

The chapters of the section here introduced are diverse, spanning theoretical and
computational methods as well as a few illustrative “best practice” examples. Each
chapter provides a clear and critical view of current research and also of future
challenges. In spite of the different focus of each chapter, a few important common
messages can be extracted: the need for theoretical methods of wider reach, the
importance of the interplay of theory, computations and experiment, and the need
for more accurate algorithms as well as for their systematic validation. The latter
requirements are crucial in view of the growing demand for virtual experiments and
the generation of an increasing volume of data as basis for fully machine-driven
approaches.
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Abstract

An attempt will be made here to describe how modeling of solids in condensed
matter physics and materials science has influenced science and technology for
the past 100 plus years along with several examples.

1 Introduction

Since the focus when modeling solids and more generally condensed matter physics
(CMP) is on energies, physical sizes, and time scales that are not extremely big or
extremely small, but somewhere we loosely call the “middle,” it can be argued that
this characteristic of CMP allows it to have many links to other branches of physics
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and more generally other areas of science and engineering. In addition, the domain
of CMP is very broad. It has both applied and fundamental components. This paper
will focus mainly on the latter with emphasis on “modeling solids” which gave rise
to many intellectual and conceptual contributions to science and to applications.
The description here is centered on the development of concepts and models and
on the research involving the electronic structure of materials, semiconductors,
superconductors, and nanoscience. It begins by briefly discussing the development
of these areas over the past hundred years, followed by examples of some current
achievements and discoveries.

2 Basic or Applied?

William Gladstone, English Finance Minister (later Prime Minister), said to Michael
Faraday, “But what is the practical use of electricity?”. Faraday responded, “I don’t
know, but someday you may tax it.” When a student asks, “Should I do basic or
applied science,” the appropriate answer is the same as it is for the question of
whether light is a particle or a wave. The correct answer is “Yes.”

We have so many questions of this type in science and mathematics. In the latter
case, computer-based proofs, using the products of applied computer science, are
more readily accepted in recent years. If we set aside the philosophies connected
with motivation or goals in science and look at what really takes place, there are
countless examples of how developments in basic science have led to marvelous
technical advances and countless examples of how the discovery of new insights into
nature was arrived at through the pursuit of applications. Many of the great successes
in science and technology resulted from conceptual advances, sometimes on a philo-
sophical level, ab initio developments from fundamental theories, empirical models,
modeling, and simulation. There were arguments made by great scientists, like
Dirac, suggesting that the beauty and simplicity of an equation are often connected
with its correctness. At the other end, there are complex approaches, particularly
in the biosciences, that work well but have many widgets and appendices. Even
though they don’t have the “elegance” of the Dirac equation, they can be profound,
highly appropriate for solving the problems at hand and the genesis of new insights.
Early America’s most famous scientist, Benjamin Franklin, is an excellent example
of someone who benefitted from the cross-fertilization between basic and applied
studies. Franklin’s famous experiments were designed to prove that lightning is
electricity, and these experiments led to his invention of the lightning rod. In the
course of his studies, he was the first to label different electrical components as
positive and negative, and he was the first to discover the principle of conservation
of charge. Hence the notion of there being only an “Einstein or Edison” approach to
science is not well founded whether one is looking for discoveries of new principles
or new technologies.
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When describing the modeling of solids and its associated fields like condensed
matter physics (CMP) and materials science, it is useful to point out that like
Franklin, CMP embodies similar attributes. It rivals chemistry in its useful appli-
cations, and its contributions to basic physics are often at the forefront. CMP is
the largest branch of physics with one foot in fundamental physics and the other in
applied physics where inventions such as the transistor have had a large effect on
developed and some underdeveloped societies. More than 28 Nobel Prizes have been
awarded in this field, covering achievements in basic and applied areas. In addition,
CMP has strong connections to most areas of science and engineering because of its
focus on the sizes of energies, distances, and lengths of time that are sort of “in the
middle” of those studied in physics. Since these sizes are of interest in many other
fields, the result is that CMP is diverse and it is in a “sweet spot” or “Goldilocks
area” of science.

3 Empirical and Ab Initio

In covering this time span, it is important to realize that around 1900 the existence
of atoms was still debated, and research such as that represented by Einstein’s
thesis on sugar molecules and his work on Brownian motion were important in
establishing belief in the existence of atoms. Einstein’s interest in problems in CMP
was certainly based on an atomic model of solids. A classic example is his paper on
the heat capacity of solids. The theory of electrons produced by Paul Drude is similar
in spirit, and his simple approach to transport is still widely used today. Hence the
concept of a solid being composed of interacting atoms was being established at
that time, and the introduction of X-ray crystallography produced the picture of
a crystalline solid as a periodic array of interacting atoms. When one adds the
chemical identity of the constituent atoms, this view or model of a solid allows
some schemes for classifications of solids.

We will return to the conceptional models later; let us first consider the question
of how to calculate properties once a conceptional model has been developed.
Often the first approach can be characterized as empirical, semiempirical, or
heuristic. Even Einstein’s Nobel Prize winning theory of the photoelectric effect was
characterized as heuristic. The Bohr model of an atom was tremendously useful for
explaining experimental data, for understanding many aspects of quantum theory,
and it is still considered an excellent teaching aid in atomic and quantum physics
and a reliable model for making estimates of physical properties in a large number
of cases. Conceptually and practically, the Bohr model has been replaced by the
quantum mechanical approach where, for example, wavefunctions can be calculated
and used to calculate the probabilities associated with determining the position of
an electron in contrast to the purely planetary model of Bohr with electrons viewed
as particles. This is a good example of an ab initio approach, such as the use of
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the Schrodinger equation replacing the empirical Bohr model. A major point to be
made is that the use of the empirical model in explaining and understanding the
physics of atoms had a large effect on the development of the ab initio approach.
Another point is that at a fairly fundamental level, the Bohr model solved a host
of problems and in some sense “skimmed the cream” in the early days of applying
quantum ideas to atomic physics. The photoelectric effect is another case where
the heuristic theory was followed by more fundamental approaches. However, it is
important to emphasize that not only did the empirical theories provide conceptual
models to use when developing ab initio theories, but the empirical theories were
first and therefore have the characteristics of a “breakthrough.”

4 Models for Modeling

As was proposed above, modeling a crystalline solid as a periodic array of
interacting atoms is a natural approach, and this model has become the most
popular. In the end, properties are calculated based on this model, and the results
are compared to experiment. Usually the comparison is made using a response
function such as the reflectivity which is a representative response function for an
electromagnetic probe.

Since the goal of many calculations of the properties of solids is the construction
of a desired response function, another way of thinking about describing or
modeling solids, often referred to as the elementary excitation model, is based
on considering the response function first. Fundamentally, measuring response
functions is the central task of experimentalists, and in a sense the principal job
for theorists is to explain and/or predict the response functions. The concept of a
response function is associated with the basic question about how we learn about the
physical world. In most cases, we probe and respond. Our senses are seeing, hearing,
touching, smelling, and tasting. The probes for these senses are light, vibrations,
changing the temperature, using a stream of liquid or gas. By using these probes
and our “built-in” response sensors, we learn about the physical world around us.
Similarly, for measuring properties of solids, a few examples of the probes and
their associated response functions are light (dielectric function), magnetic field
(magnetic susceptibility), and temperature change (heat capacity). In the elementary
excitation model, we describe a solid in terms of its excitations which we create
when we probe the solid as illustrated in Fig. 1. The focus in this approach is on the
responses and hence the response function.

We have described two basic models. The interacting atom model focuses on
the building blocks and their interactions, while the elementary excitation model
focuses on the responses to probes and the emergent excitations characterizing the
solid. Both methods are important, and their applications have had a tremendous
influence on technology, and the related concepts have influenced other scientific
areas and science philosophy. The usefulness of the two approaches depends on
what properties are being studied. Early goals were classifications of solids in
terms of properties such as hardness or composition or structure. Although these
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Fig. 1 Illustration of the
elementary excitation model.
A probe (hammer) creates
elementary excitations
(phonons) measured by a
response sensor (ear)

mechanical, chemical, or structural properties are important for classifying and
modeling solids, a more influential property involves the electronic nature of a solid,
the electrical resistivity. This is discussed next using the interacting atom model. The
questions related to the building blocks in this model would be the atoms. Models
of atoms such as the Bohr model or the Thomas-Fermi model can give insight, but
using a full quantum mechanical approach with some approximations for potentials
is the standard approach. Sometimes the building blocks are not really atoms, and
the solid is considered to be just a box of free electrons. The discussion of the
resistivity below illustrates the use of the model and some of the approximations.

5 Electronic, Optical, and Structural Properties

The range of values of resistivity is enormous. For example, consider copper with
a value of 10∧-8 ohm-m compared to quartz with 10∧17 ohm-m. To emphasize
this span, it has been stated that the range is the same as the comparison between
the size of our galaxy and the head of a pin. Materials are classified according
to their resistivities: metals with values around 10∧-8 ohm-m, semimetals 10∧-5,
semiconductors 10∧-4 to 10∧11, and insulators 10∧16 to 10∧24. The resolution of
the problem of finding the origin of this wide range of properties and the four classes
of materials is based in the concepts related to electronic band theory of crystalline
solids. The central concept is an energy gap or forbidden energy region which can
arise when atoms interact. In the interacting atom model, the overlap between the
atomic wavefunctions spreads or widens the energies of the sharp atomic levels
into bands of allowed energy bands with energy regions or gaps where electron
states are not available for occupancy. As a result one can have several scenarios.
Suppose electron states are filled within each band of energies up to the energy gap.
Because of the Pauli principle, the states can have at most two electrons, each in
a different spin state, e.g., one with spin up and one with spin down. Because the
next unoccupied state is above the gap in energy, if the energy to “jump over” this
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gap is not supplied by electromagnetic radiation or heat, the electrons are frozen
and won’t contribute to electrical conductivity when an electric field is applied. At
finite temperatures, some electrons will be free to conduct, and the number will
depend on the size of the energy gap. This is a description of a semiconductor or
insulator. Roughly speaking, if the gap is 3 eV or less, the material is considered to
be a semiconductor. If the gap is larger, it is classified as an insulator. When bands
are partially filled, the separation between an occupied and empty state is extremely
small for a bulk solid, and the amount of energy required to free an electron so that
it can contribute to the transport of current is minute. Hence partially filled bands
lead to metallic behavior. Semimetallic behavior is the result of having bands with
low densities of electrons arising from the overlapping of the bands.

To calculate the resistivity which is the response function for an electric field, we
need the band structure represented by the function En(k) where n is the band index
and k represents the electron wavevector. In a sense the grouping of electrons into
bands arises from the periodicity of the crystal structure. One can argue that since
the cells in a crystal repeat, the effect on the electronic states is similar to the effect
of confinement in a box which leads to discrete electronic states. Now the discrete
electron states group into bands because of their interactions with the ionic cores.
Once we have determined En(k), we can then compute response functions resulting
from electronic excitations.

How do we obtain En(k)? What models give this important function? A model
introduced in the 1930s and still useful today is called the free electron gas (FEG)
model where we assume that the outer electrons have been freed from the atoms
and the positive cores have been smoothed out into a constant positive background
“jelly.” This model is sometimes called the jellium model. Because the electrons
are now free to move through the solid, the model is appropriate for a metal where
any excitation will allow an electron to contribute to the transport of current in the
sample. If scattering is introduced empirically to this model, we have the Drude
approach used to explain resistivity from a classical point of view. However now we
have a quantum model, and this model can explain many quantum effects such as the
electronic heat capacity, magnetism, and other properties that were mysterious in the
1930s. Starting with the second row of the periodic table, Na, Mg, and Al are metals,
so this FEG model is appropriate for describing their electron properties. However,
the next element is Si which is a semiconductor with bonds where valence electrons
pile up between the cores as shown in Fig. 2, and a gap in En(k) exists which is
related to the energy required to liberate an electron from a bond.

As described above, semiconductors have filled bands, valence bands, empty
bands, and conduction bands. The valence bands contain the electrons responsible
for creating the bonds holding the crystal together. When an electron is excited
to states above the gap and makes a transition into the conduction band, it is free
to conduct electricity and respond to electric fields much like a metal does. The
bonds and gaps arise primarily from the interaction of the valence electrons with the
attractive positive cores. In the FEG, the cores were smeared out into a structureless
jelly, but now the model describing a semiconductor or insulator is a periodic
lattice of positive cores as shown in Fig. 2. If the potential describing the valence
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Fig. 2 Schematic picture of a
semiconductor like silicon
showing ionic cores (made of
the nucleus and core
electrons) and valence
electrons forming bonds
between the cores. The
simple cubic structure is used
here for illustration.
Experimentally, silicon exists
in the diamond structure at
atmospheric pressures at
room temperature

electron-core interaction is weak, the FEG won’t be changed much, but the
symmetry of the lattice and the nature of the potential can affect the electrons
and create the bonds and gaps. At large distances from the core, a valence electron
responds to the attractive Coulomb 1/r potential, but near the core, the Pauli principle
is effective in keeping the valence electrons from occupying core states and keeps
the valence electrons out of the regions near the core and into the bonding sites.
This effect can be expressed by a repulsive potential which cancels part of the
Coulomb potential and results in a net weak potential called the pseudopotential
(Fermi 1934; Phillips and Kleinman 1959) which is illustrated schematically in
Fig. 3. If we assume pseudopotentials at each lattice site, or more specifically, at
each atomic site associated with a lattice point, then these atomic potentials perturb
the FEG and produce bonds such as the covalent bonds in Si shown in Fig. 2.

The above model is the standard model for a solid. Because of the periodicity, it
is convenient to express the potential as a Fourier sum in reciprocal or wavevector
space. There is a one-to-one relationship between the real space lattice and a lattice
in reciprocal space characterized by lattice vectors G. When the real space crystal
pseudopotential is expressed as a sum of atomic pseudopotentials in a Fourier sum,
the form factors for the potential are V(G). A structure factor is used to put the
potentials at the proper atomic sites. Using Si as an example, the V(G) for the
three smallest Gs allowed by the symmetry of the lattice, V(G2) = V(3), V(8),
V(11), are large. The values for V(G) decrease for larger G, roughly representing
the potential at smaller distances where the potential is weak. So all that is needed
is three numbers to represent the potential. Once these are known, the FEG can be
perturbed using a standard quantum mechanical approach.

The empirical pseudopotential method (EPM) (Cohen and Bergstresser 1966)
is an approach in which the V(G) values are obtained from experiment. For the
Si example, optical data alone provides the three needed coefficients. In fact, they
are overdetermined. A similar approach is appropriate for diamond, Ge, and gray
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Fig. 3 Schematic plot of an
atomic pseudopotential as a
function of distance from the
nucleus. The core region
containing the nucleus and
the core electrons is shaded.
The large distance behavior
of the pseudopotential is
Coulombic, but this attractive
potential is effectively
canceled in the core region
because of the Pauli exclusion
principle acting on the
core-valence electron
interactions

Sn since they all have the same crystal structure. Once the V(G) form factors
are determined, a calculation of En(k) is straightforward along with a calculation
of the corresponding wavefunction for each state. From these one can calculate
the desired response function. For example, the optical constants such as the
reflectivity, transmission, or absorption describing responses to light with energies
from the IR to the UV arising from electronic transitions can be obtained from a
calculation of the complex frequency-dependent dielectric function using En(k) and
the wavefunctions. The results of these calculations have been impressive. Starting
in the 1960s, dozens of materials were studied, and for the most part, the data
were explained and successful predictions were and are common for the EPM. The
method was extended to allow the valence electron density to adjust to nonperiodic
changes to study surfaces and interfaces. In addition to response functions, it was
possible to explore the electron density by squaring the wavefunction (Walter and
Cohen 1971). The prediction of the spacially dependent electron density was later
verified using X-ray scattering data.

In the above work, the crystal structure of the solid is taken from experiment.
To calculate the crystal structure from first principles, an ab initio pseudopotential
(ABP) is generated starting with atomic wavefunctions. There are many methods for
creating the ABP. Most are based on producing a pseudopotential which reproduces
the atomic wavefunctions at distances outside the core region and then allows the
pseudowavefunction to go smoothly to zero in the core region. The only input
information needed to produce the ABP is the atomic number. Once the ABP
is determined, the total energies for the solid can be computed using a density
functional approach (Kohn and Sham 1965). The energies of different candidate
crystal structures can be compared at varying volumes or pressures, and this can be
used to compare the stabilities of the candidate structures with the overall rule that at
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Fig. 4 Total energy
calculation for Si as a
function of volume
(normalized to the
atmospheric pressure volume
for Si in the diamond
structure) for various
candidate structural phases.
The dashed line illustrates the
pressure-induced path for the
solid-solid structural phase
transition from diamond to
β-tin

a given volume or pressure, the candidate structure with the lowest energy is the one
expected to be chosen by nature. By adding the atomic mass to the input data, it is
possible to compute the vibrational properties and the interaction between electrons
and vibrations. This scheme allows the determination of crystal structures (see
Fig. 4), solid-solid structural phase transitions, lattice constants, elastic constants,
bulk moduli, vibrational spectra, electron-phonon couplings, anharmonic properties,
and even superconducting properties (Cohen 1982, 1985; Liu and Cohen 1989). The
successful predictions of new high-pressure crystalline phases of Si and Ge and the
prediction of superconductivity (Chang et al. 1985) in some high-pressure phases
of Si are dramatic proofs of the applicability of this ABP-total energy approach for
calculating properties of solids.

6 Surfaces, Interfaces, and Nanoscience

The discussion above focused on studies of bulk solids, and it was stated that it
is possible to use the similar methods for surfaces and interfaces. An important
approach for doing the latter and for dealing with localized and lower dimensional
systems is based on the concept of a supercell (Cohen et al. 1975). The fundamental
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idea is to deal with the lack of periodicity, for example, when a surface is considered,
by imposing a different periodicity. For the surface case, by constructing a unit cell
with a slab containing the surface atoms plus a region of vacuum above it and repeat-
ing this cell infinitely many times, we have the same situation as in the case of a peri-
odic solid with several atoms at a lattice site. Another aspect of this method which
is unlike the EPM is that the charge density of the valence electrons which makes up
the electronic part of the potential is allowed to readjust to the surface. This is done
via a self-consistent method where the calculation is performed for a trial starting
arrangement of charge density, and then the output wavefunctions are used to con-
struct a new charge density which is fed back into the calculation. When input and
output converge to the same value, then the results are considered self-consistent.

When nanoscience studies became more popular, questions arose as to whether
the above methods for bulk three-dimensional configurations would be appropriate
for nanoscale systems. Possible concerns involved the nature of the electronic
states when there is confinement and different symmetry conditions because of
the reduced dimensional nature of the system. The results for calculations of
molecular systems, quantum dots, nanotubes, graphene, and a variety of one- and
two-dimensional structures proved very successful using a supercell approach. For
example, the theoretical methods successfully predicted new nanotube devices;
the existence of new nanotubes (e.g., see Fig. 5) containing B, N, and C; the
properties of graphene; BN graphene-like layer materials; and superlattices formed
from graphene and BN layers. This is a very active area of research, and there is
considerable collaboration between theorists, experimentalists, and engineers. It is
a field embraced by physicists, chemists, material scientists, computer scientists,
device engineers, biologists, etc. because of the size scale which is of interest in all
these areas.

Fig. 5 Schematic illustration
of the structure of the
predicted BN nanotube
subsequently verified by
experiment
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7 Emergence

Earlier when describing the models of a solid, it was pointed out that in addition
to the interacting atom model, a solid could be described in terms of its elementary
excitations. The interacting atom model focuses on the building blocks and their
interactions, whereas the elementary excitation model focuses on the responses to
probes and the emergent excitations characterizing the solid. In the early part of
the twentieth century, there was considerable discussion about reality in science
since we do express our findings in terms of human responses. In the elementary
excitation model, response functions like resistivity can be described by fictitious
particles. For example, the concept of a “hole” which can represent the absence of
one electron out of 1023 is very useful, since it is far easier to explore the dynamics
of this positron-like particle than all the remaining electrons after one is removed.
So the emergent particle here is a positive fermion with electron characteristics.
Similarly, in analogy with the particle-wave duality quantum concept for light, we
can treat sound waves in a solid in terms of their associated particles called phonons.
The phonon is a boson of spin zero, and many physical measurements involving
excitations of sound waves can be treated effectively by using the phonon concept.
One may ask whether when using this approach we are losing track of reality. Henri
Bergson, a French mathematician, physicist, philosopher, and Nobel Laureate in
literature, would have argued that all we know is what we sense; therefore, if this
approach explains the observed properties, it is an acceptable view. The concept
of emergence and emergent properties is widely discussed not only in condensed
matter physics but in many other areas. For example, it has even been proposed that
space-time is an emergent property.

Magnetism, superconductivity, and topological insulators with metallic surface
currents while having semiconducting bulk properties are examples of emergent
properties, so is the quantum Hall effect where resistance can be quantized (see
Fig. 6). The fractional quantum Hall effect is an excellent example showing how
quasiparticles can emerge from an electronic system having fractional charges like
1/3 e. Since the properties of the systems studied can be explained in terms of these
fractionally charged particles, then in the “Bergson sense,” this is a fully appropriate
way of explaining what the response function is measuring.

For superconductors, the emergence of this intriguing property of solids has
excited researchers since 1911. The formulation of the BCS theory (Bardeen et al.
1957) 46 years later appeared to answer all the experimental questions related
to superconducting materials discovered up to that time. The central ideas were
that the electrons formed pairs – Cooper pairs with zero spin – and these pairs
behaved in an almost boson manner allowing zero resistance. However, the pairs
were not Heitler-London pairs since for a superconductor like Al, the electrons
in a pair are far enough apart to have a million other pairs between them.
Roughly speaking, to excite or create a superconducting quasiparticle, one breaks
a pair with EM radiation or by raising the temperature. In the BCS scheme, this
quasiparticle behaves like a combination of an electron and a hole. The energy
needed to break the pair is referred to as a superconducting gap energy which is
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Topological Insulator

2D TI

Quantum Hall effect

hnexy /2=σ

------------------------------------------------------------------------------------------------------------------

Semiconductor in zero magnetic field

Hall bar in a strong magnetic field at low temperatures

Fig. 6 Two examples of emergent states are a so-called topological insulator which is a semicon-
ductor having conducting edge states while the bulk remains a semiconductor and the quantum
Hall effect where the Hall conductivity is quantized. For the fractional quantum Hall effect, the
quasi-electrons can have fractional charges

proportional to the superconducting transition temperature Tc. The superconducting
gap differs fundamentally from the semiconducting gap. The latter is caused by
electron-lattice interactions, while the former is related to the effective electron-
electron interactions. The pairing of the electrons is caused by polarizing the
lattice which in effect causes an attraction between electrons represented by the
electron-phonon pairing parameter λ. In the simplest form of the BCS theory, if
λ is larger than the repulsive Coulomb pairing parameter μ, then the electrons
can form pairs. Superconductors which can be described by the BCS theory with
the attractive pairing interaction originating from electron-lattice (electron-phonon)
interactions are considered to be Class 1 superconductors. The properties of these
superconductors are well understood, and it is likely that all experiments on these
superconductors can be explained using BCS theory.

In the late 1980s, the so-called high Tc superconductors containing copper and
oxygen were discovered with Tc values above the liquid nitrogen boiling point. In
fact, under pressure, Tc values in the range of 160 K were achieved. However, in
the past 30 years, despite extensive and creative research, there is no consensus
on a theoretical mechanism for the superconductivity in these systems. A similar
situation exists for the Fe-based high Tc superconductors. If we group these and
put them into a separate Class 2 category, the general situation presently is that
the Class 1 superconductors are completely understood in principle, but there is no
general agreement on a theory for Class 2 materials, except perhaps that electron
pairs are a central feature here too.

The quest for room temperature superconductivity has been a longtime goal.
Because of the high values for Tc of Class 2 superconductors, it was generally felt
that the best path to this goal is to try to enhance Tc in this group. However, since a
theoretical basis for predicting new Class 2 isn’t available, at this point the quest is
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in the hands of the experimentalists. In contrast, using BCS theory and the models
discussed above, it is possible to predict new Class 1 superconductors (Chang et al.
1985) and explain the properties of materials such as MgB2 (Nagamatsu et al. 2001;
Choi et al. 2002) which has the highest reported and experimentally reproduced
Tc for Class 1 superconductors. There is a recent report from one group (Drozdov
et al. 2015) of superconductivity near room temperature in a hydrogen-sulfur system
under pressure, and currently experiments are underway worldwide to reproduce
these findings and extend them.

Since Class 1 superconductors are well understood, theory can be used to explore
the question of what path is favorable for higher Tc values for Class 1. It is clear
that having a large λ is an advantage. Also in BCS theory, Tc scales with the
phonon frequency. For very large λ, Tc∼ ω λ1/2, where ω is some average of
the phonon frequencies. So we want large ω and large λ. It can be shown that λ,
which is dimensionless, can be expressed as the ratio of electronic and lattice
spring constants. Hence it is desirable to have strong bonds and light masses, and
this makes doped carbon systems desirable. Boron-doped diamond was found to
be superconducting first with Tc ∼ 4 K (Ekimov et al. 2004), and as the doping
levels increased, Tc ∼ 11.4 K. Studies (Moussa and Cohen 2008) of this system
predict possible values for Tc of approximately 55–80 K. However, experimentally
achieving higher levels of doping with boron is very difficult.

Since the arguments made above and the predictions are more generally applica-
ble than just to diamond, it is important to examine carbon-based materials that
can accommodate higher B concentrations. The recently synthesized Q-carbon
(Narayan and Bhaumik 2015) is just such a material, and it was found that with
a B doping of approximately 17%, this material became superconducting at 36 K
(Bhaumik et al. 2017) which is comparable to MgB2 at 39 K (see Fig. 7). At this
point, the detailed structural and electronic properties of boron-doped Q-carbon
have not been determined. However, many features have been reproduced theoret-

Fig. 7
Temperature-dependent
(normalized) resistivity
measurements of B-doped
Q-carbon thin films showing
the onset of the
superconducting transition
temperature at 37.8 K. The
inset depicts the enlarged
view of the superconducting
transition showing the
transition width to be 1.5 K.
(Bhaumik et al. 2017)
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ically (Sakai et al. 2018) using a simulated amorphous carbon system with boron
atoms replacing the carbon atoms one by one. It is found that the boron acceptor
states can be either shallow or deep, depending on the surrounding geometries. The
shallow acceptor states are important for achieving superconductivity because they
contribute to the holes at the Fermi energy. Hence this property can be controlled by
choosing specific substitutional sites. The electron-phonon coupling is also studied
to show that the shallow acceptor states can induce a superconductivity transition as
in boron-doped diamond. By calculating the Eliashberg spectral function α2 F(ω), λ
and Tc can be determined.. It was found that for a 14% boron doping, Tc = 37 K and
λ = 1.11. This result is in agreement with the measurements for B-doped Q-carbon
(see Fig. 8). This theoretical approach can be used to calculate other systems and
other dopings to maximize Tc for related systems (see Fig. 9). However, it should
be noted that at this point, the experimental results of Bhaumik et al. (2017) have
not been reproduced by other researchers.

Fig. 8 (a) Ball-and-stick model chosen for amorphous carbon. Orange and gray spheres represent
threefold and fourfold coordinated carbon atoms, respectively. (b) Radial distribution function of
amorphous carbon. (c) Density of states (in states/spin/Ry/cell) of undoped amorphous carbon (red
solid line) and its projection onto p-orbital of threefold coordinated carbon atoms (blue dashed
line). The vertical dashed line at 0 eV indicates the Fermi level. A Gaussian broadening width and
energy grid of 0.05 eV is used. (Sakai et al. 2018)
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Values of h
η (eV/Å2) EXP

C (diamond)* 54 290 ~ 10

C (graphite)* 48 270 ?

BN* 36 240 ?

Si* 10 82 ~10
*at peak of η(E)

(K)0.183 láw2ñ

Fig. 9 Table of the calculated peak values for the energy-dependent electronic spring constant
and the corresponding predicted superconducting transition temperatures for four materials. The
current experimental values are also shown. (Moussa and Cohen 2006)

8 Conclusions

The discussion in this overview of models for solid systems and their evolution
over the past century focused on the fact that often the models and theories
explaining and predicting properties of solids and in other areas of science start with
empirical approaches and develop into schemes that can be classified as being more
fundamental or ab initio. In addition to discussing the models and modeling
approaches, a few important examples of their applications to recent studies of
semiconductors, nanostructures, and superconductors were given. These fields are
extremely active at this time motivated by the hope that understanding will lead to
new materials which will allow better and smaller devices and higher temperature
superconductors. This theme of the importance of motivation from applied science
resulting in advances in basic science and vice versa is emphasized here. For
example, the quest for a deeper understanding of semiconductors led to new
methods for electronic structure calculations which gave us a deeper understanding
of the quantum nature of materials. For superconductors, the motivation to under-
stand superconductivity and possibly predict new useful superconductors stimulated
fundamental research which led to the development of the BCS theory which was
not only a major achievement in condensed matter physics, but it has had an impact
on other areas of physics. There is, of course, the influence of applied physics
research which led to the development of new instruments such as the laser and
the scanning tunneling microscope. New instruments for probing matter and the
synthesis of new materials have been essential for the advancement of this area of
science. It has been the synergy of pure and applied approaches to the study of
matter and its diversity and connections to other fields that has made this area of
science and engineering so important.
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Abstract

First-principles simulations of materials provide both computational microscopes
and predictive tools, which we aspire to turn into design strategies for materials
with target properties. One requisite to meet this goal is the enablement of
predictions of material properties on a large scale, so as to generate a vast
amount of validated computational data that may eventually be used to solve
inverse problems. However it is challenging to use big data to address the
“why question.” First-principles calculations of specific materials and properties
can instead be extremely effective at answering the “why question,” namely,
at unraveling mechanisms and providing fundamental, physical insights, thus
paving the way to innovative design strategies. In this chapter, we present
first-principles predictions of material properties relevant to energy conversion
processes. We also discuss some open challenges related to automated integration
of theory and computation with experiments and with validated, interpreted data.
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1 Introduction

Science and engineering of materials is a vast field ultimately enabling the develop-
ment of new technologies, with impact in energy, quantum information science,
medicine and health, and national security. Almost 10 years ago, in the United
States, President Obama launched the Materials Genome Initiative (MGI) (Obama
2011), with a speech at Carnegie Mellon (June 2011). MGI has been a game changer
in the way the scientific community thinks of and approaches research in materials.
The ambitious goal set by Obama, “To help businesses discover, develop, and deploy
new materials twice as fast . . . ,” catapulted research on materials at the forefront of
science and engineering on the national scene and pointed out clearly and forcefully
that business as usual was not an option in materials research. The MGI pushed
toward innovation, to developing brand new techniques to make, study, and predict
materials, and recognized theory and computation not only as an integral part of
the innovative process but as a driver seat player. Projects in developing predictive
tools and databases for materials flourished, for example, the Materials Projects
(Jain et al. 2013a) initiated at MIT and then established at LBNL and several related
initiatives (Curtarolo et al. 2012; Jain et al. 2013a, 2016; Saal et al. 2013; Bhat et al.
2015; Kalidindi and De Graef 2015; Rajan 2015; Blaiszik et al. 2016; Thygesen and
Jacobsen 2016; Chard et al. 2018).

In 2015 the US DOE established for the first time computational materials
centers (CMS) to develop methods and software to predict materials properties –
importantly to develop software open to the community – thus further enhanc-
ing the pace of research and innovation. Three centers were established, two
at National Laboratories (BNL: https://www.bnl.gov/comscope/ and ANL: http://
miccom-center.org/) and one on a university campus (USC: https://magics.usc.
edu/). A year later two additional centers were created, at LBNL (http://c2sepem.
lbl.gov/) and ORNL (https://cpsfm.ornl.gov/). These centers were born in the
ecosystems of the energy hubs conceived by Steven Chu (JCESR (www.jcesr.
org) and JCAP (https://solarfuelshub.org/)); the hubs have a clear mission toward
a societal grand challenge, climate change (global warming), and within that
ecosystems, many of the projects of DOE centers and other agencies, notably
NSF (www.nsf.gov/pubs/2019/nsf19516/nsf19516.htm), focused their research on
functional materials for energy.

A question that arises in many instances when discussing the impact of MGI
and the US CMS, as well similar centers established in in Europe and Asia, is
simply what’s new relative to the deployment of software in the semiconductor
and pharmaceutical industry: in these industries codes for materials and molecular
systems have been used for decades. However such codes have traditionally been
used as mostly end of the line engineering tools, e.g., to test molecules that would
not be synthetized first in the laboratory or to help design chips that had already
been planned, based on specific material choices. The theories, codes, and software
developed and pushed by MGI-like ideas are meant to become (and in some cases
are already becoming) beginning of the line multi-scale tools to produce innovative

https://www.bnl.gov/comscope/
http://miccom-center.org/
http://miccom-center.org/
https://magics.usc.edu/
https://magics.usc.edu/
http://c2sepem.lbl.gov/
http://c2sepem.lbl.gov/
https://cpsfm.ornl.gov/
http://www.jcesr.org
https://solarfuelshub.org/
http://www.nsf.gov/pubs/2019/nsf19516/nsf19516.htm
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ideas on materials that have not yet been made, have not yet been planned, and do
not even come from conventional synthetic and fabrication sources.

These theories and codes are envisioned to be general enough to meet two
upcoming scientific revolutions: artificial intelligence (AI) and big data (De Mauro
et al. 2015) and quantum information science and technology (Bennett and DiVin-
cenzo 2000). It is important to emphasize that general applicability is a key,
distinctive feature relative to the codes used in the semiconductor industry, for
example, which have traditionally been developed for specific tasks, targeting one
specific class of materials and processes. General codes may be used to produce the
data needed for AI technologies for vast classes of materials. Computer generated
data may then be part of design strategies that include innovative feedback loops
with experiments, as well as strategies to make data reproducible and available to
the scientific community worldwide (see, e.g., Govoni et al. 2019).

Contemporary computational methods and database mining techniques have
already made tremendous strides in the prediction of equilibrium properties of
materials that exhibit simple morphologies. However, the functionality of modern
materials depends critically on the integration of dissimilar components and on
the interfaces that arise between them. Hence the atomic- and molecular-scale
manipulation of these components and the heterogeneous structures that emerge
from them are key to materials design. In particular, the controlled and driven
assembly of building blocks into hierarchical systems, as well as the control
of defects and complex morphologies, offers the opportunity to create artificial
materials that do not exist in nature and that exhibit superior physical properties
for, e.g., emerging energy and quantum information technologies.

The simulations of heterogeneous materials and of the assembly process of
artificial materials are much less advanced than the study of equilibrium properties.
In order to accelerate the discovery of innovative functional materials, it will be key
to acquire the ability not only to compute the properties of the end product but also
to simulate and validate the assembly processes that take place during synthesis and
fabrication. In addition, in order to design materials relevant to many technologies,
it is essential to predict functionalities of systems with complex defective structures
and ultimately complex morphologies and to simulate and eventually engineer
the basic mass, charge, and energy transport phenomena, as pictorially illustrated
in Fig. 1. We emphasize that most transport phenomena, e.g., electron transport,
and phenomena involved in the spectroscopic characterization of materials, which
involve interaction with light, are inherently quantum mechanical and thus require
a first-principles, quantum mechanical treatment of interatomic interactions, at the
atomistic scale.

In the following, we focus on two examples (interfaces for energy conversion
processes, in Sect. 2 and materials composed of complex building blocks, in Sect. 3),
and we describe recent progress in describing heterogeneous, defective materials
with complicated morphologies using first-principles methods (Martin 2004, Martin
et al. 2016). We aim at showing the importance of unraveling mechanisms and
providing fundamental, physical insights, in order to pave the way to material design
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Fig. 1 Integrated predictions
of multiple properties are key
to define effective design
strategies for materials with
target characteristics. These
properties encompass the
atomistic structure of the
material, possibly derived
from the assembly of
complex building blocks, the
response to electromagnetic
fields (light) used to probe
and characterize the material
and transport properties,
including mass, charge, and
heat transport

strategies. We close (Sect. 4) by describing open challenges in understanding and
predicting synthetic pathways to obtain materials with target properties.

2 Energy Conversion at Interfaces from First Principles

In Figs. 2 and 3, we show some of the key processes and properties that one
aims at understanding to establish a structure-function relationship and eventually
predict optimal materials for solar-to-fuel and solar energy conversion, respectively.
The figures illustrate the complexity of the predictive endeavor and the multitude
of properties one should be able to compute, validate, and ultimately integrate
with experiments. We concentrate here on materials for photo-electrochemical cells
(PECs; Fig. 2).

The generation of hydrogen from water and sunlight through PECs is one
of the promising approaches investigated by the scientific community in the last
decades for producing sustainable carbon-free energy (Walter et al. 2010; McKone
et al. 2013; Pham et al. 2017). A key aspect to building an efficient PEC is
the availability of Earth-abundant semiconducting photoelectrode materials that
can absorb sunlight and eventually drive water-splitting reactions when interfaced
with the liquid. Despite steady efforts, no single material has yet been found that
simultaneously satisfies the efficiency and stability required for the widespread
commercialization of hydrogen technology, and efforts have been concentrated on
architectures composed of different materials, notably absorber solids interfaced
with catalysts. Hence, understanding the properties of the interfaces between the
various components is key to predict novel systems and eventually to optimize the
device performance.
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Fig. 2 Pictorial representation of key processes and systems involved in water-splitting reactions
occurring on a catalytic surface, which starts with harvesting light to form charge carriers and
involves proton-coupled electron transfer (PCET) processes

Fig. 3 Pictorial representation of the key physical processes involved in the prediction and design
of nanostructured semiconducting materials for solar energy conversion, including ensembles of
nanoparticles (NPs), embedded NPs, and inorganic clathrates (icons on right hand side). Electronic
(absorption, photoemission, and band offsets) and transport properties may be obtained from
calculations based on density functional and many-body perturbation theory

In this regard, electronic and structural properties of absorbers/catalysts/water
interfaces play a critical role, as rapid charge transfer between the photoelec-
trode, the catalysts, protective layers, and electrolytes is required for efficient fuel
production. Interfacial structural and electronic properties of PECs are of course
intertwined. For example, band edge positions of photoelectrode absorbers depend
on the surface termination, the reconstruction, and the concentration of impurities
and defects. In addition, the stability of the absorbers against oxidation (reduction) is
determined by the relative energy between their valence band maximum (conduction
band minimum) and intrinsic oxidation (reduction) potential. Such a complex
interplay results in a multi-property optimization problem which, given recent
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advances in high-performance computing and sophisticated electronic structure
theories and codes (Kresse and Hafner 1993; Soler et al. 2002; Gygi 2008; Blum
et al. 2009; Giannozzi et al. 2009; Hutter et al. 2014; VASP, Kresse and Furthmüller
(1996a, b) Kresse and Hafner (1994) www.vasp.at; SIESTA, www.icmab.es/siesta;
Qbox, www.qbox-code.org; FHI-AIMS, http://aims.fhi-berlin.mpg.de/; Quantum
Espresso, www.quantum-espresso.org; CP2K, www.cp2k.org; CPMD, www.cpmd.
org;), is now conceivable to tackle using first-principles simulations.

In recent years, it has been successfully demonstrated that first-principles
calculations can be employed to scan thousands of combinations of elements across
the entire periodic table to suggest new photoelectrode candidates (Greeley et al.
2006; Jain et al. 2013b; Castelli et al. 2015). However, computational screening
schemes available thus far in the literature have mostly focused on bulk properties
of candidate materials, and only recently the structural and chemical properties of
surfaces and interfaces with the electrolyte have attracted the attention that they
deserve to build successful design strategies. To paraphrase what Herbert Kroemer
so elegantly pointed out is his Nobel lecture (Kroemer 2000) on semiconductor
heterojunctions, the interface is still the device! As shown by us and others, the
effective predictions of band offsets for water photocatalysis require the simulations
of the electronic structure of solvated surfaces at finite temperature and in the case
of oxide surface, importantly of defective solvated surfaces (Gerosa et al. 2018).

For example, in a case we have recently studied, WO3 (Gerosa et al. 2018 and
reference therein), we have shown that the average potential energy difference at
the interface of pristine and defective WO3 varies by ∼1 eV and that solvation is
absolutely critical (see Fig. 4). In addition, we have shown the key importance of
using a high level of theory, beyond the widely used density functional theory (DFT)

Fig. 4 Energy levels (valence band maximum, blue; conduction band minimum, red; defect state
due to oxygen vacancies; yellow) of a WO3 surface in vacuo, at T = 0 and at room temperature,
in the presence of water (solvated). The energy levels have been obtained using first-principles
molecular dynamics simulations and calculations at the many-body perturbation theory level
(GW), starting from electronic states computed with hybrid density functionals (From Gerosa et al.
2018). Note the striking difference of the positions of the levels on the right and left hand side,
relative to the redox levels of liquid water

http://www.vasp.at
http://www.icmab.es/siesta
http://www.qbox-code.org
http://aims.fhi-berlin.mpg.de/
http://www.quantum-espresso.org
http://www.cp2k.org
http://www.cpmd.org
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(Hohnberg and Kohn 1964; Kohn and Sham 1965; Martin 2004) and hybrid DFT
(Perdew et al. 1996 ; Heyd et al. 2003, 2006) to carry out predictive calculations.
The latter have allowed us to understand that the excess charge present at defective
WO3 surfaces due to oxygen vacancies forms a large 2D polarons (∼10 A radius) on
the plane of the surface; the predicted charge localization properties hint at possible
formation of stable (OH−) groups at the surface in contact with water and at the fact
that holes transferred to water would then form a highly reactive (OH)*, a possible
precursor of water-splitting reactions. Altogether our calculations have identified
three major factors determining the chemical reactivity of oxide absorbers interfaced
with water: the presence of surface defects, the dynamics of excess charge at the
surface, and finite temperature fluctuations of the surface electronic orbitals. These
general descriptors are essential for the understanding and prediction of optimal
oxides for water oxidation.

This was presented as an example of the importance of gaining fundamental
physical insight into descriptors in order to define material design strategies and
in particular into non-intrinsic properties of materials such as interfaces between
complex components and defects present at finite temperature. We now turn to
a second example of materials made of complex, nanostructured building blocks,
where again interfaces – specifically buried interfaces – dominate the scene.

3 Building Blocks for Electronic Materials andMaterials for
Energy Conversion

In this section we consider materials made of nanostructured building blocks,
in particular semiconducting colloidal nanocrystals (NCs) (Scalise et al. 2018;
Greenwood et al. 2018; Talapin et al. 2010). Systems built from the assembly of
these “artificial atoms” are emerging as tunable, earth-abundant, and potentially
nontoxic materials for solar energy conversion, light emission, and electronic
applications (Talapin 2012; Kovalenko 2013; Wippermann et al. 2013, 2014, 2016).
The electronic and transport properties of NC-based solids depend on many factors
that encompass the intrinsic characteristics of the individual NCs, for example,
their shape, size, and composition, as well as their surface chemistry and mutual
interactions. Organic ligands traditionally used in NC synthesis play a central role
in controlling shape and size, as well as in driving self-assembly into superlattices.
However, these ligands are often composed of long hydrocarbon chains, which
create an insulating barrier that leads to low charge carrier mobilities. Significantly
higher mobilities could be achieved by using inorganic ligands, and their use has
enabled significant performance improvements of NC-based solar cells, transistors,
and lasers.

For example, InAs and CdSe NCs capped with molecular metal chalcogenide
complexes (MCC) were shown to exhibit high electron mobilities (Lee et al.
2011; Liu et al. 2013), with III–V-based nanomaterials preferable for commercial
applications due to their lower toxicity. However, the atomistic structure of these
materials is difficult to characterize, in particular that of the NC surfaces and
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Fig. 5 Schematic representation of the integrated experimental and computational strategy
adopted to obtain validated structural models and electronic properties of all inorganic semicon-
ductor materials composed of colloidal nanocrystals, represented in the inset on the bottom right
(see text)

interfaces, whose control is required to engineer systems with the desired properties.
Recently we proposed (Scalise et al. 2018) a strategy to model a broad class
of nanocrystal-in-glass systems that extends significantly beyond semiconductor
quantum dots and MCC ligands.

Our strategy is summarized in Fig. 5. By combining first-principles molecular
dynamics (MD) and ab initio stability diagram calculations (ab initio electronic
structure calculations of surface energies and stability), main structural motifs
were identified; in particular the structure of buried interfaces was determined.
Before proceeding to derive a complete structural model, the motifs obtained
computationally were experimentally validated, by carrying out XPS and Raman
measurements, which both confirmed the results of the calculations. Using these
validated structural motifs as a starting point of additional first-principles MD
simulations, a structural model consistent with experiment was finally derived and
used to analyze the electronic structure of the composite material. The predicted
electronic states were used to interpret and understand the reasons for the measured
negative photoconductivity, thus identifying specific reasons giving rise to proper-
ties that had remained unexplained and controversial for some time.

Overall, by combining electronic structure calculations and first-principles
molecular dynamics (MD) simulations with experiments, we showed that the
ligands are not absorbed as intact units but rather they decompose on contact with
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the NC surface to form an amorphous matrix that encapsulates the nanoparticles
(NPs). The intrinsic electronic properties of the isolated NCs are greatly modified
in the matrix, whose atomistic structure plays a key role in enabling an efficient
electronic transport. The structural model derived in this way permitted an
explanation of the origin of the measured negative photoconductivity of the
nanocomposite. This was presented as an example of novel material properties
emerging when assembling building blocks at the nanoscale and as an example of
the importance of tightly integrating theory, computation, and experiments. The
future challenge will be to achieve such integration automatically and to define
general validation strategies appropriate for broad classes of systems.

4 The Synthetic Challenge

One of the open challenges in computational materials science is the understanding
and prediction of how to synthesize materials with target properties (De Yoreo
et al. 2016). Using experimental data and simulations, the challenge is to establish
correlations between synthesis protocols (SP) and material structure (M) and
between synthesis protocols and material properties (P). This endeavor requires
the solution of both direct and so-called inverse problems (Kaipio and Somersalo
2005). The former include answering first the question: Given a synthesis protocol
(SP), what material (M) does one obtain? This forward problem is a grand challenge
for predictive, computational methods. We still lack well-defined physics models
that can describe synthesis; in addition “realistic” materials encompass complex
descriptors including crystal structure, morphology, defects, and surface coverings.
An even more complex forward problem concerns materials properties and the
following questions: Given a synthesis protocol, which properties (P) does one
get? This forward problem is clearly not unrelated to the first one (SP → M);
however, it poses additional experimental and theoretical challenges. In particular,
on the theory side, the prediction of certain complex properties is still in the making,
e.g., obtaining optoelectronic and vibrational spectroscopic data and transport data,
which require the use of sophisticated, cannot yet be used efficiently to acquire large
amount of data for broad classes of systems.

The ultimate goal of the science of synthesis research is to solve the inverse
problems associated with the forward problems mentioned above: Given a desired
material, what synthesis protocol should be used to obtain it? Given a set of
desired materials properties, what synthesis protocol should be used to obtain them?
Solutions to inverse problems are found by solving many forward problems in a
regression loop, which requires forward problems to be rapidly computable and the
use of data analytic approaches, designed to mine experimental and theoretical data.

Ultimately, by seeking correlations between data and synthesis conditions,
one will enable the discovery of materials and synthesis ontologies, i.e., a set
of descriptors linking materials and synthetic pathways (e.g., crystal phase and
synthesis temperature). Accurate ontologies are not yet known for synthesis, and
their definition may come from the use of machine learning (ML) to search for the
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most relevant descriptors for a given outcome and to relate different descriptors
used by different researchers. We expect that with the increasing population of
experimental and computational databases in the materials science community,
ML workflows (Jain et al. 2015; Pizzi et al. 2016; Meng and Thain 2017; Adorf
et al. 2018; Freire and Chirigati 2018) may be used to train models of materials
synthesizability and properties and hence to predict novel materials.

In closing, we would like to comment on data and data availability. A key guiding
principle for materials research is to make data findable, accessible, interoperable,
and reusable. The reproducibility of experiments and computations and of the
corresponding results is an important and critical part of the overall research process
of all scientific disciplines and in particular of materials predictions heavily relying
on large amount of data. Yet the data presented in most published scientific papers
are not made available to the community, and the procedures followed to obtain
or generate the data are often not articulated step by step or in any detail. Hence
making all data available to the public (Govoni et al. 2019), on a paper-by-paper
basis, so as to increase experimental and computational rigor in reporting results,
together with transparency, should become integral part of the research process. This
endeavor will also greatly contribute to devising improved validation procedures
for computational data as well as establishing experimental and computational
automatic feedback loops.
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Abstract

This chapter addresses the fourth paradigm of materials research – big data-
driven materials science. Its concepts and state of the art are described, and its
challenges and chances are discussed. For furthering the field, open data and an
all-embracing sharing, an efficient data infrastructure, and the rich ecosystem
of computer codes used in the community are of critical importance. For
shaping this fourth paradigm and contributing to the development or discovery of
improved and novel materials, data must be what is now called FAIR – Findable,
Accessible, Interoperable, and Repurposable/Reusable. This sets the stage for
advances of methods from artificial intelligence that operate on large data sets to
find trends and patterns that cannot be obtained from individual calculations and
not even directly from high-throughput studies. Recent progress is reviewed and
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demonstrated, and the chapter is concluded by a forward-looking perspective,
addressing important not yet solved challenges.

1 Introduction

Materials science is entering an era where the growth of data from experiments
and computations is expanding beyond a level that can be handled by established
methods. The so-called 4 V challenge – concerning Volume (the amount of data),
Variety (the heterogeneity of form and meaning of data), Velocity (the rate at
which data may change or new data arrive), and Veracity (the uncertainty of data
quality) – is clearly becoming eminent. Most importantly, however, is that big
data of materials science offer novel, extraordinary, and expansive opportunities
for achieving scientific knowledge and insight. These opportunities require new
research concepts and lines of thought. While this chapter focuses on computational
materials science, we emphasize that what is described here applies to experimental
data as well.

Today’s common approach in computational materials science is to publish
results as focused research studies, reporting only those few data that are directly
relevant for the respective topic. Thus, even from very extensive computations
(expending thousands or millions of CPU core hours), very few results are shared
with the community. Most data, in particular when they were not deemed of
immediate relevance, are kept private or even thrown away. Since a few years, the
community of computational materials science and engineering is undergoing “a
change in scientific culture” and has started the extensive sharing of data of this
field. Sharing of all data, i.e., the full input and output files of computations, implies
that calculations don’t need to be repeated again and again, and the field will have
access to big data which can be used in a totally new research manner, i.e., by
artificial intelligence methods (Draxl and Scheffler 2019 and references therein). As
will be elaborated in the next sections, one can find structure and patterns in big
data, gaining new insight that cannot be obtained by studying small data sets, and in
this way even allegedly inaccurate data can get value. A popular example from daily
life of the impact of big data analytics is the tracking of the movement of mobile
phones which provides instantaneous information on traffic flow and jam. Another
example is the local information of google searches for flu symptoms and medicine
which reflect the spreading of a flue wave. The latter example also illustrates the
danger of data analytics, as the “google flue trend” worked well for the first few
years, but then, in 2012, some aspects became unreliable. Reasons may be, among
others, anxiety-stimulated searches caused by reports in public and social media
and changes in google search technology, e.g., recommending searches based on
what others have searched (Lazer et al. 2014). This example also illustrates that big
data should not be viewed as substitute but as complement to traditional analysis.
Specifically, we note that even if the amount of data may be big, the independent
information may be small when data are correlated, or data may be even irrelevant
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or misleading for the purpose of interest. If such aspects are not considered properly,
a statistical analysis will be flawed.

Overcoming the “silo mentality” of computational materials science and the
development and implementation of concepts for an extensive data sharing was
achieved by the NOMAD Center of Excellence (NOMAD; Draxl and Scheffler
2019), considering all aspects of what is now called the FAIR data principles
(NOMAD 2014, Wilkinson et al. 2016): Data are Findable for anyone interested;
they are stored in a way that make them easily Accessible; their representation
follows accepted standards (Ghiringhelli et al. 2016, 2017a); and all specifications
are open – hence data are Interoperable. All of this enables the data to be used for
research questions that could be different from their original purpose; hence data are
Repurposable. We note that the NOMAD CoE uses the term repurposable, while in
the FAIR concept it was termed reusable. The former makes explicit that data can
not only be reused but even used for a different purpose. Obviously, FAIR data also
become usable for artificial-intelligence tools.

The chapter is structured as follows. In Sect. 2, we briefly summarize the
history of the four research paradigms of materials science, with particular focus
on the fourth one, “big data-driven materials science.” Section 3 then stresses
the importance of an extensive data sharing for the advancements of science
and engineering. Section 4 addresses artificial-intelligence concepts for materials
science data with some specific examples. Finally, in Sect. 5, we give an extensive
outlook on the developments and open questions of big data-driven materials
science.

2 The Four Research Paradigms of Material Sciences

The historical evolution of methods and concepts of materials science are sketched
in Fig. 1. We recall that experimental research dates back to the Stone Age, and
the basic techniques of metallurgy were developed in the Copper and Bronze Ages
which started in the late sixth millennium BCE. The control of fire prompted a major
experimental breakthrough. Toward the end of the sixteenth century, scientists began
to describe physical relationships through equations. Well-known names from the
early days are Tycho Brahe (1546–1601), Tomas Harriot (ca. 1560–1621), Galileo
Galilei (1564–1642), Johannes Kepler (1571–1630), Isaac Newton (1643–1727),
and Gottfried Wilhelm Leibniz (1646–1716). The latter two also developed the
concept of the mathematical differential and derivatives. Thus, analytical equations
became the central instrument of theoretical physics. Second from the left in Fig. 1,
this new way of thinking – the 2. paradigm – is symbolized by the Schrödinger
equation. Needless to say, the first paradigm, the empirical and experimental
sciences, did not become obsolete, but theoretical physics represents an important
complementary methodology.

Since the 1950s electronic structure theory was advanced for materials by J. C.
Slater (e.g., Slater 1937, 1953, 1965, 1967; Slater and Johnson 1972), the Monte
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Fig. 1 Development of research paradigms of materials science and engineering

Carlo method was introduced by Metropolis et al. (1953) and Alder and Wain-
wright (1958, 1962, 1970), and Rahman (1964) introduced molecular dynamics.
Hohenberg and Kohn (1964) and Kohn and Sham (1965) laid the foundation
of density-functional theory (DFT) (see �Chap. 11, “Recent Developments in
Density Functional Approximations” by Li and Burke) in the mid-1960s. All these
developments enabled computer-based studies and analysis of thermodynamics and
statistical mechanics on the one hand and of quantum mechanical properties of
solids and liquids on the other hand. They define the beginning of computational
materials science, what is nowadays considered the third paradigm. Herewith “com-
puter experiments” were introduced, i.e., simulations, whose results are often treated
and analyzed analogously to those of experimental studies. Initially developed
independently, the fields of electronic-structure theory and statistical mechanics
and thermodynamics are now growing together (Reuter et al. 2005 and references
therein). Likewise, in parallel to DFT, many-body techniques based on Green
functions were developed (Hedin 1965), which are now synergistically interleaved
with DFT to form the forefront of electronic-structure theory, including excitations.

Today, big data and artificial intelligence revolutionize many areas of our life,
and materials science is no exception (Gray 2007; Agrawal and Choudhary 2016).
Jim Gray had probably first discussed this fourth paradigm arguing explicitly that
big data reveal correlations and dependencies that cannot be seen when studying
small data sets. Let us generalize the “big data” concept by noting the complexity
of materials science (and others sciences as well): The number of potential but
initially unknown descriptive parameters that characterize or identify the properties
and functions of interest may be very big. Thus, the diversity and complexity of
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mechanisms represents a big data issue in materials science as well. A further
important difference to the second paradigm is that we accept that many materials
properties, i.e., patterns and correlations in big data, cannot be described in terms of
a closed mathematical formulation, as they are governed by several, intermingled
theoretical concepts and multilevel, intricate processes. As a consequence, such
patterns represent and advance knowledge, but they do not necessarily reflect
understanding.

What is our vision for exploiting the fourth research paradigm of our field?
Figure 2 provides a schematic view on it: The space of different chemical and
structural materials is practically infinite. However, when asking, e.g., for high-
performance thermal-barrier coatings, there are just a few suitable materials. Thus,
in terms of functional materials, the materials space is sparsely populated as most of
the already existing or in the future synthesized materials are irrelevant. Hence, the
relevant data are a statistically exceptional minority, and if this situation is ignored,
a statistical analysis that assigns the same importance to all data may well be
problematic. Finding regions or patterns that correspond to materials with superior
functional performance requires the identification of appropriate descriptors, noted
as d1 and d2 in Fig. 2. Obviously, in general, the dimensionality will likely be higher
than just two. At this point, Fig. 2 is just a sketch, and as for most properties, the
appropriate descriptors are unknown, and the patterns remain hidden. The scientific
challenge is to find appropriate descriptors. Let us emphasize, as the actually
relevant data is not big enough (in most cases of interest in materials science), it is
important if not crucial to use as much domain knowledge as possible. Compressed
sensing, subgroup discovery, and other methods of artificial intelligence are able to
identify these descriptors and patterns, and we will address these methods in Sect. 3
below.

We close this section by noting the radically decreasing time scales of new
developments and paradigms: sixth millennium BCE, 1600, 1950, and 2010. Thus,
a next research paradigm may be just ahead of us.

Fig. 2 Big data contain correlations and structure that are not visible in small data sets. Finding
descriptors that determine a specific property or function of a material is a crucial challenge. Once
this is in place, we will be able to machine learn the data and eventually draw maps of materials.
In difference to the sketch, these maps will be typically of higher dimension than just two
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3 Extensive Data Sharing: Why and How?

Data are a crucial raw material of this century. Our community is producing
materials data by CPU-intensive calculations since many years. Typically, the results
are stored on PCs, workstations, or local computers, and most of these data are not
used and often even thrown away, though the information content could well be
significant. The field is now slowly changing its scientific culture toward Open
Science and Open Data, and there are many reasons for doing so. Open access
and FAIRness of data implies that data can be used by anyone, not just by the
experts who develop or run advanced computer codes. If data were openly available
(and well described), many more people would work with the data, e.g., computer
scientists, applied mathematicians, analytic condensed matter scientists, and more.
We will be surprised what people will do with data when they are made available,
probably using tools that the present computational materials science community
does not even know.

Let us mention one example, a “crowd sourcing” data analytics competition at the
Internet platform Kaggle (Kaggle/NOMAD2018 2018). This competition addressed
the search for novel transparent and semiconducting materials using a data set of
(AlxGayInz)2O3 compounds (with x + y + z = 1). The aim of this challenge was
to identify the best machine-learning model for the prediction of two key physical
properties that are relevant for optoelectronic applications: the electronic bandgap
energy and the crystal formation energy. These target properties were provided for
2400 systems covering 7 different crystal space groups and unit cells ranging from
10 to 80 atoms. Six hundred additional systems made the test set for the competition.

The competition was launched in December 2017, and when it finished, 2 months
later, an impressive number of 883 solutions had been submitted by researchers or
research teams from around the world, employing different methods. Interestingly,
the three top approaches, summarized in a recent publication (Sutton et al. 2019),
adopted completely different descriptors and regression models. For example, the
winning solution employed a crystal-graph representation to convert the crystal
structure into features by counting the contiguous sequences of unique atomic sites
of various lengths (called n-grams) and combined this with kernel ridge regression
(KRR). This n-grams approach was new for materials science.

To enable the envisioned success of big data-driven materials science, the field
obviously needs a suitable data infrastructure that facilitates efficient collection,
data description in terms of metadata, and sharing of data. For the field of
computational materials science, this was developed by the NOMAD Center of
Excellence (NOMAD) which also instigated comprehensive data sharing. The
synergetic relationship with other major key data bases, in particular AFLOW (see
also �Chap. 82, “The AFLOW Fleet for Materials Discovery” by Toher et al. in this
handbook, and Curtarolo et al. (2012), Calderon et al. (2015)), Materials Project
(see also Jain et al. (2013) and �Chap. 81, “The Materials Project: Accelerating
Materials Design Through Theory-Driven Data and Tools,” by Jain et al. in this
handbook), and OQMD (see also Saal et al. (2013)), made it the biggest repository
in the field. Uploaded data files are tagged by a persistent identifier (PID), and users
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can request a DOI (digital object identifier) to make data citable. Downloading does
not require any registrations and refers to the Creative Commons License.

So what is behind FAIR? What does it mean for computational materials science?
The F stands for Findable. Making research data open and keeping them for

at least 10 years are now requested by many research organizations. Seen from a
practical point of view, it is also useful to avoid doubling of work and thus save
human and computational resources and energy. Since individual researchers create
their data on various platforms – from workstations to compute clusters to high-
performance computing (HPC) centers – it is often impossible to find a student’s
or postdoc’s data, some time after she/he has left the research group. Besides
matters of organization, issues may be related to automatic erasure of data in HPC
centers, missing permissions on local machines, data protection, and alike. Clearly,
making data findable requires a proper data infrastructure, including documentation,
metadata, search engines, and hardware. This is one of the reasons why the NOMAD
Repository and its metadata were established (see Meta info at NOMAD, NOMAD
2014).

The A stands for Accessible. Accessibility in materials science has different
facets. First, we should not forget about the proper hardware that allows for swift
access to data. Second, we need to provide application programming interfaces
(APIs). To make data fully accessible requires an important additional step, namely,
the formal description of the data, i.e., its metadata that also consider the metadata
interrelations. This connects to the I in FAIR.

The I stands for Interoperable. Here we need to consider in a first place the
extreme heterogeneity of computational materials data. The wider community is
using about 40 different, major computer codes (considering electronic-structure,
molecular-dynamics, and quantum-chemistry packages for materials) that differ in
various aspects of methodology and implementation. Consequently, the necessity
arises to make their results comparable, which is a major challenge not only in the
sense that they need to be brought to a common format and common units; we also
recall that one quantity may be named differently in different (sub-)communities or
one and the same expression may have a different meaning in one or the other area.
Thus, “dictionaries” are needed to translate between them. Obviously, if one would
restrict everything to just one computer program package, translations or conversion
are not necessary. However, then a significant part of the available data and, even
more importantly, of the community would be missed. In this sense, the NOMAD
concept is general and in fact orthogonal to essentially all other data repositories
that typically focus on just one computer code (see Draxl and Scheffler 2019).

Still, we need to ask if one can operate upon all available data in a meaningful
way. Apart from formats and units, there are more severe restrictions that may
hamper such important undertaking. These concern the computational parameters –
and consequently the numerical precision – that are used in different calculations.
We recall here that for extensive sharing, all open data can be considered valid in the
sense that, when the code and code version are provided, output files correspond to
the provided input files in a reproducible way. Nevertheless, data have been created
for different purposes which may require different levels of convergence in terms
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Fig. 3 Convergence of total energies of 71 elemental solids with increasing basis-set quality for
4 different electronic-structure codes. Red symbols indicate the materials with maximal error,
and black symbols display averages over all 71 materials. All values refer to the respective fully
converged results. RKmax is the LAPW-specific parameter defining the basis set size, Ecut is the
GPAW cutoff energy, and PREC is the VASP-specific parameter for basis set quality. The black
vertical lines for FHI-aims indicate light (left) and tight (right) settings, and the gray lines indicate
Tier1, Tier2, and Tier3 basis sets (from left to right). Note that the errors are displayed at a
logarithmic scale

Fig. 4 Predicted versus actual errors in total energy for 63 binary alloys, obtained from the errors
in elemental solids for four different electronic structure codes. Blue data are from calculations
performed at low-precision settings, and red data are from “standard quality” settings. Note that
they are close to the straight black line. For details see Carbogno et al. (2020)

of basis set size and alike (e.g., the determination of the atomic geometry may
need less stringent parameters than details in the electronic band structure. (see
also the discussion of Figs. 3 and 4)). More than that, we may even ask whether
different codes aiming at the solution of one and the same problem with “safe”
settings give the same results. For the latter, we point to the community effort led
by Stefaan Cottenier (Lejaeghere et al. 2016), where the equations of state for 71
elemental solids were calculated with many different ab initio electronic structure
packages. Over a time span of a few years, it turned out that upon improvements of
codes, basis sets, and in particular pseudopotentials, all codes lead to basically the
same answer. In fact, in the list at https://molmod.ugent.be/deltacodesdft, one has
to choose a reference where obviously an all-electron code is the natural choice,
and the precision of the all-electron packages WIEN2k, exciting, and FHI-

https://molmod.ugent.be/deltacodesdft
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aims are practically identical. Such investigations are extremely helpful and have
set the stage toward a culture of benchmarking, which had been established in
quantum chemistry for molecules already decades ago. The study by Lejaeghere
et al. (2016) is, however, only the beginning. Clearly, other properties, like energy
barriers, bandgaps, spectra, etc., and systems, like point defects, surfaces, interfaces,
and inorganic/organic hybrid materials, etc., will be much less forgiving than total
energies of simple bulk solids and will make discrepancies more obvious. Therefore,
more investigations along these lines are on the way.

While the above comparison (Lejaeghere et al. 2016) could only be made with
parameter sets that represent full convergence, calculations performed in daily life
are often far from this optimal case and are, in fact, often sufficient. This situation
obviously leads to the question how to compare and operate on calculations that
have been performed with different settings, e.g., in terms of basis sets, meshes
for Brillouin zone integrations, and alike. Below, it is shown that this is, in fact,
possible.

Let us demonstrate that fully converged results of complex materials can be
estimated by learning from errors of calculations of simple materials (Carbogno
et al. 2020). Four different codes have been employed for this study: two very
different all-electron codes and two projector augmented wave/plane-wave codes.
These are exciting (Gulans et al. 2014) and FHI-aims (Blum et al. 2009) and GPAW
(Enkovaara et al. 2010) and VASP (Kresse and Furthmüller 1996). Sources for
discrepancies of different calculations in publications and/or the various data repos-
itories are incomplete basis sets, approximate treatment of the k-space integration,
the use of pseudopotentials, and more. Since incomplete basis sets are, indeed, the
most severe issue, Fig. 3 shows how the total energies for fixed geometries change as
a function of basis set quality for the 71 elemental solids adopted from Lejaeghere
et al. (2016). The red symbols in Fig. 3 mark the materials exhibiting the largest
error, and the black symbols refer to the average taken over all materials. The
error, �E, is defined for each material with respect to the fully converged value
obtained with settings as or even more precise than the ones used in Lejaeghere
et al. (2016). In all cases, the error decreases systematically from the order of
1 eV for small basis sets down to meV precision for the high-quality basis set. The
fact that not all computer codes show a monotonous behavior for small basis set
sizes reflects the specific characteristics of different methods and implementations
(see Carbogno et al. 2020 for a detailed discussion). Based on these errors of
the elemental solids, the authors estimated the errors arising from the basis set
incompleteness in multicomponent systems, utilizing a simple analytic model, i.e.,
by linearly combining the respective errors of the constituents (elemental solids)
obtained with the same settings:

�Etot = 1

N

∑

N

Ni�Ei
tot. (1)
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Here Ni is the number of atoms of species i present in the compound, and �Ei
tot is

the error of this species in the respective elemental solid. This model was applied
to 63 binary solids that were chosen such to cover the chemical space (1 for
each element with atomic number up to 71, without noble gases). The approach
is validated by comparing the estimated errors to those of corresponding DFT
calculations for these binaries, as depicted in Fig. 4. The authors of this work find
a clear correlation between predicted and actual errors for all four codes (with the
details depending on peculiarities of the specific codes). For more in-depth analysis,
also including relative energies and ternary alloys and an extensive discussion about
the role of the employed method/basis set, we refer the reader to Carbogno et al.
(2020). In essence, the conclusion can be drawn that even when total energies are
calculated for a not converged basis set, the energetics for the fully converged case
can be extrapolated. This study sets the stage for data coming from different sources
fulfilling an important condition for the I.

The R stands for Reusable. In fact, we prefer the term repurposable that gives
a better impression about what is meant in the materials science context. It means
that we can use data that has been created for some specific scientific question,
in a different connection. Indeed, one and the same material can be considered
for various applications. So why should a researcher working on one aspect not
allow another researcher to use the same data for focusing on a different topic? Let
us illustrate this with the example of TiO2 which is an important support material
for heterogeneous catalysis. The detailed results are not only useful for researchers
working in this area but also in a different context. For example, for photovoltaics
TiO2 is a component of dye-sensitized solar cells. And, as another example we note
that TiO2 is used as pigment in paints and in cosmetic products.

It is generally agreed that research results obtained in academia should be
published. In view of what was discussed above, it should be a duty to publish all the
results, i.e., making also the complete data underlying a publication available. This
has been said by many people, funding agencies, politicians, and research journals.
Indeed, a few research journals have started to request that all details are uploaded
at a certified repository. Obviously, as mentioned above, data must be connected
to established metadata and workflows.1 However, to fully apply such concepts,
the necessary data infrastructure hardly exists so far. Let us cite from a recent
Nature Editorial “Empty rhetoric over data sharing slows science” (Nature editorial
2017): “Everyone agrees that there are good reasons for having open data. It speeds
research, allowing others to build promptly on results. It improves replicability.
It enables scientists to test whether claims in a paper truly reflect the whole data
set. It helps them to find incorrect data. And it improves the attribution of credit

1In technical terms “workflow” refers to the sequence and full description of operations for creating
the input file and performing the actual calculations. Important workflow frameworks that allow to
automatically steer, analyze, and/or manage electronic structure theory calculation are ASE (atomic
simulation environment) (Larsen et al. 2017), Fireworks (Jain et al. 2015), AFLOW (Calderon et al.
2015), and AiiDa (Pizzi et al. 2016).
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to the data’s originators. But who will pay? And who will host?” – and further
“Governments, funders and scientific communities must move beyond lip-service
and commit to data-sharing practices and platforms.” For computational materials
science though, NOMAD had already implemented an appropriate program (Draxl
et al. 2017, Draxl and Scheffler 2018, 2019).

4 Artificial-Intelligence Concepts for Materials Science Data

We are using “artificial intelligence (AI)” as umbrella term for computational
methods that “learn from experience”. As already mentioned, for materials science,
the complexity of the actuating mechanisms is big, but the number of relevant
data is typically on the lower side. Zhang and Ling (2018) recently addressed this
issue in terms of the degree of freedom of the model and the prediction precision.
In a similar sense, we argue that a proper analysis of data needs to consider at
least some aspects of the causality that drives the correlations of interest, i.e., one
needs to include domain knowledge in the learning process in order to achieve a
trustworthy description, interpretability, and possibly even deeper understanding of
the cause behind the structure or patterns in the data. Specifically, we recall that
from the practically infinite number of possible materials, only 10 or 100 may be
relevant for a certain purpose. Standard machine learning tools address a description
of the crowd or the majority and optimize the overall root-mean-square error or
alike and also introduce a regularization to avoid overfitting and/or to achieve a
smooth description. As a result, it is likely that statistically exceptional data are
concealed. But only these may carry the information we are interested in. The lower
the employed domain knowledge is, the larger is the amount of data that is needed
for the learning process, and it may happen that data are fitted but predictions and
even interpolations are not reliable. AI is a wide and interdisciplinary field, and
machine learning (learning from data) and compressed sensing (originating from
signal compression; primarily aiming at the identification of a low-dimensional
descriptor) are important subdomains.

As noted above (see the discussion of Fig. 2), big data may reveal correlations
(structure and patters) if and only if the data are arranged in a proper way, e.g.,
represented by appropriate descriptors. These correlations can be found by AI, but
the identification of such correlations does not necessarily go along with deeper
insight or understanding. To some extent we like to argue that the wish for insight
and understanding is often overrated. This is well documented by the Periodic Table
of the Elements that may arguably be considered as one of the most impacting
achievements for chemistry, condensed matter physics, engineering, and biophysics.
When Mendeleev published his table in 1871, based on knowledge of 63 atoms
(their weights and chemical behavior), there was no understanding of the deeper
cause behind the structure of the table (Scerri 2008; Pyykkö 2012). Still, the table
predicted the existence of at that time unknown atoms. The underlying causality,
i.e., that the different rows reflect the different number of nodes of the radial wave
functions of the outer valence electrons and that the different columns refer to the
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number of valence electrons, was unknown when the table was created. It only was
understood about 50 years later, when the shell structure of electrons in atoms was
described by quantum mechanics.

Thus, identifying correlations, structures, and patterns in (big) data is an
important step by its own. When the relationship between a property of interest,
P, and a set of useful descriptive parameters (the descriptors d1, d2, . . . – also
called representation) is known, graphs as in Fig. 2, or approximate equations, can
be obtained for the relationship P(d1, d2, . . . ). For the example of the Periodic
Table, the descriptors are the row and column numbers. Obviously, as the number
of possible materials is practically infinite, building a map as in Fig. 2 is a highly
demanding task, of much higher complexity than building the Periodic Table of the
Elements.

How to find the descriptors for materials properties? The general and complete
descriptor for a quantum mechanical materials problem is given by the position of all
atoms, the nuclear numbers, and the total number of electrons: {RI , ZI}, N e. These
descriptive parameters fully identify the many-body Hamiltonian, but “learning” the
properties that result from a given Hamiltonian is a very demanding goal. Thus, the
amount of data needed for training (fitting) a materials property or function directly
in terms of {RI , ZI}, N e is typically unrealistically high. Instead, for choosing proper
descriptors, that relate to the actuating mechanism of the property of interest, we
distinguish three concepts: (a) the descriptor may be selected out of a huge, system-
atically created pool of candidates; (b) the descriptor may be built in the machine
learning step in an abstract manner; and (c) one may just hand pick a known descrip-
tor assuming that with many data the actual choice may be not so important. Concept
(a) will be discussed below when we describe compressed sensing and subgroup
discovery. Concept (b) is realized in neural network approaches which, in the learn-
ing step, minimizes an objective function that quantifies the difference between the
predicted and the correct (known) data. Through this minimization, the weights (i.e.,
parameters) of the neural network are optimized (Hinton 2006; Hinton et al. 2006),
and in this way, the network learns the descriptors. Doren and coworkers and Lorenz
et al. (Blank et al. 1995; Lorenz et al. 2004, 2006) have shown early examples of rep-
resenting potential-energy surfaces of materials by neural networks. Hellström and
Behler describe recent advances in �Chap. 31, “Neural Network Potentials in Mate-
rials Modeling.” Concept (c) is probably the most widely used approach. Example
descriptors that encode the chemical and geometrical information are Coulomb
matrices (Rupp et al. 2012; Hansen et al. 2013), scattering transforms (Hirn et al.
2015), diffraction patterns (Ziletti et al. 2018), bags of bonds (Hansen et al.
2015), many-body tensor representation (Huo and Rupp (2017), smooth overlap of
atomic positions (SOAP) (Bartók et al. 2010, 2013), and several symmetry-invariant
transformations of atomic coordinates (Seko et al. 2017; Schütt et al. 2014; Faber
et al. 2015). This concept is nicely described in �Chap. 87, “Machine Learning of
Atomic-Scale Properties Based on Physical Principles” by Ceriotti et al. The recent
work by Xie and Grossmann (2018) may be viewed as a combination of concepts b)
and c) where the input to their neural network is provided in terms of crystal graphs,
an encoding of the above noted {RI , ZI} geometry and chemistry information.
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A systematic understanding of the suitability of various machine learning (ML)
models and thorough benchmarking studies are still lacking in materials science.
A first step was only recently addressed in terms of a public data analytics
competition that was hosted on the Internet platform Kaggle using a data set of
3000 (AlxGayInz)2O3 compounds (x + y + z = 1), already mentioned in Sect. 3
above (see Sutton et al. 2019).

Some caution may be appropriate. In general, an observed correlation will have
a causal reason – provided that it is supported by a sufficiently large data set (Pearl
2009). Thus, a correlation that is described by the function P(d1, d2, . . . ) may reflect
that (d1, d2, . . . ) = d are the actuators: d→ P. However, it could well be that the
reverse is true: P → d. Thirdly, it is possible that there is an “external master,”
M, who controls both d and P, with no direct relationship between d and P. And
fourthly, the data may be selected with a significant bias of the researcher or research
community. We fear that the latter may be happening much more frequently than
realized. But then the observed correlation may just reflect this bias. All this needs
to be kept in mind when tools of artificial intelligence are applied to big (or not so
big) data and when we ask for interpretability or even causality.

Let us add another warning about big data of materials science. The number
of possible materials is practically infinite, and we like to identify new materials
that have better performance or functionality than the materials that are used today.
Clearly, the amount of available data in materials science is getting big though from
the few (about 250,000) inorganic materials that have been synthesized up to now,
we often just know the atomic structure and hardly their electronic, elastic, or other
properties. Getting more and more data, however, does not imply that all the data
are relevant for all properties of interest. Materials science shows a high diversity,
i.e., it is ruled by a significant number of different properties and mechanisms, and
experience seems to show that at the end, the number of materials that are good
for a certain group of functions is very small. For example, if we ask for a highly
transparent materials with excellent heat conductivity and scratch resistance, there is
probably nothing better than and nothing even close to diamond. Another example is
the recent study by Singh et al. (2019) who studied 68,860 candidate materials for
the photocatalytic reduction of CO2. Only 52 of them turned out to be possibly
relevant. In general, it is likely that in the few “high-performance materials”, a
mechanism is active (or inactive) that is not relevant (or dominant) in the majority of
materials. Thus, the amount of available data may be big but the number of relevant
data, i.e., data that contain the needed information, is small. In simple words, in
materials science and engineering, we are often looking for “needles in a hay stack,”
i.e., for very few systems that are statistically exceptional, in some ways. Fitting all
data (i.e., the hay) with a single, global model may average away the specialties of
the minority (i.e., the needles). Thus, we need methods that identify the relevant,
possibly small, statistically exceptional subgroups in the large amount of data right
away.

Let us sketch this challenge for kernel methods of machine learning approaches
which presently play a significant role in the field. The property of interest is written
as a sum over a large, appropriate subset of all known data j
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P(d) =
∑N

j=1
cjK

(
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)
. (2)

There are many options for the kernel K. A most popular and very successful
choice is the Gaussian kernel
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Fitting a set of say N = 100,000 known data is achieved by determining 100,000
coefficients by minimizing
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}}
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Here
{
P̂i

}
are the actually known data that should be fitted, and we also

introduced a regularization term which prevents overfitting and creates a result that
does not go exactly trough the known data points but is smooth. This regularization
is noted as “norm of the applied model, m.” Figure 5 gives an example of such
fitting/machine learning approach. Let us, at first, ignore that these are two types of
data (noted as squares and circles): Obviously, fitting N data points with a function
that contains N free parameters must work, but the regularization creates some
uncertainty (a smooths curve), and the interpretability of the very many determined
coefficients is typically lacking. Figure 5 also shows a subgroup (statistically
exceptional data), together with its selector. These data are not described well by
the employed kernel approach. Unfortunately, typically we don’t know which data

Fig. 5 Sketch for a machine
learning method, i.e., fit of
1,000 data points (full line)
and the confidence interval,
which contains 69% of all the
data using Gaussian process
regression. Also noted is a
subgroup (encircled by a blue
dashed line) that is
statistically exceptional but
not treated correctly in the
global machine-learned
description. The selector
equation is noted in blue
(Boley 2017). For details see
the subsection on subgroup
discovery
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are relevant for the scientific question of interest and which are not. Otherwise, a
weighted sampling could be imposed (Chawla et al. 2002 and references therein).
The example of Fig. 5 reveals that the general statement “more data provide a better
description” does typically not apply to ML for materials science as it may just
mean, add more irrelevant information (more hay) to the information pool (the hay
stack). Obviously, this will not help to find the needles. Alternatively, could we turn
this around? Can we attempt to fit the hay and then consider the few materials that
are distinguished by a high fitting error as an interesting subgroup that contains
the needles? The difficulty here is that materials are very heterogeneous, and this
heterogeneity is not just restricted to the direct hay-needle comparison. Also the
“hay” is heterogeneous, and a high fitting error could also result from over- or
underfitting and is not necessarily correlated with the target properties of interest.

Nevertheless, whenever we attempt a global description, machine learning is a
great tool. �Chapter 86, “Quantum Machine Learning in Chemistry and Materials”
by Huang et al. gives an excellent description, and the abovementioned work on
metal oxides (Sutton et al. 2019) is a good example.

Two interpretability-driven approaches have recently been adopted by materials
science. These are subgroup discovery on the one hand and compressed sensing on
the other. Let us introduce them briefly.

4.1 Subgroup Discovery

As noted above, a global model addressing the quantitative description of the entire
data set may be difficult to interpret. For many requirements in materials research,
local models that identify and describe subgroups would be advantageous. For
illustration (see Fig. 6), a globally optimal regression model could predict a negative
relationship between the data (Fig. 6 left). However, a subgroup discovery analysis
may reveal that there are two statistically exceptional data groups (indicated by
blue and red color in the right part of the figure). Thus the relationship in the data
set does not have a negative slope (the global model) but positive slopes (the two
subgroups). As a physical example, the transition metals of the Periodic Table are
a subgroup, and the actinides, lanthanides, and halogens are other subgroups. Thus,

Fig. 6 Left, data points and a
global regression machine
learning model predicting a
negative relationship between
material properties y1 and y2.
Right, subgroup discovery
identifies statistically
exceptional regions marked
as red and blue, and machine
learning of these two regions
exhibits positive slopes.
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identification of subgroups is useful to gain an understanding of similarities of and
differences between families of materials.

The concepts of subgroup discovery (SGD) was introduced in the early 1990s,
when the advent of large databases motivated the development of explorative
and descriptive analytics tools as an interpretable complement to global modeling
(Duivesteijn et al. 2016; Klösgen 1996; Atzmueller 2015; Herrera et al. 2011; Siebes
1995; Wrobel 1997; Friedman and Fisher 1999). Simply speaking, the identification
of subgroups is built on three components:

(i) The use of a description language for identifying subpopulations within a given
pool of data. These are Boolean expressions, e.g., “the ionization potential of
atom A minus the ionization potential of atom B is smaller than X” where
X is a number that may be chosen iteratively. These expressions are called
selectors.

(ii) The definition of utility functions that formalize the interestingness (quality) of
a subpopulation. This may include requests as “the bandgap of the material is
between 1.1 and 1.5 eV” and “the cohesive energy is larger than 3 eV.”

(iii) The design of search algorithms to find selectors that describe the subpopula-
tions of interest (e.g., Goldsmith et al. 2017).

Figure 7 illustrates the approach for a recent study of heterogeneous
catalysis: finding potential catalysts that can transform the greenhouse gas CO2
into useful chemicals or fuels (Mazheika et al. 2019). This study concentrated
on metal oxides and realized that a global model (fitting all the data at once)
failed to provide an accurate description. However, searching for subgroups by
considering several potential indicators for a good catalytic activity and many
potential selectors reveals several subgroups that are statistically exceptional.

Fig. 7 Two subgroups of pristine oxide materials in a data set that describes the CO2 adsorption.
The blue subgroup is characterized by “small” angles of the O-C-O molecule (the neutral free
molecule is linear (180◦)). And the green subgroup is characterized by at least one large C-O
bond length (the bond lengths of the neutral free molecules are 1.17 Å). Both subgroups reflect
a weakening of the bond, but only the green one correlates with a good catalytic activity. Right:
density of systems of the full data set and of the two subgroups as function of adsorption energy
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Only one of them (marked in green in Fig. 7) contains the known catalytically
active materials. Details can be found in Mazheika et al. (2019). The study
identified a new indicator for the catalytic CO2 activation, and it provided
several suggestions for new potentially good catalysts.

4.2 Compressed Sensing and the SISSO Approach

As noted in the discussion of Fig. 2, finding a descriptor (two-dimensional in Fig. 2),
i.e., the set of parameters that capture the underlying mechanism of a given materials
property or function, is the key, intelligent step toward identification of structure
or patterns in (big) data. This central role of the descriptor was only recently
addressed explicitly and systematically in the works of Ghiringhelli and coworkers
(Ghiringhelli et al. 2015, 2017b; Ouyang et al. 2018). These authors recast the
descriptor identification challenge into a systematic formulation using compressed
sensing (CS).

The CS approach had been originally introduced for efficiently reproducing
a high-quality signal from a very small set of observations (Candès and Wakin
2008; Nelson et al. 2013; Candès et al. 2006; Candro et al. 2006; Donoho 2006).
Mathematically, this can be sketched as follows. Given a set of data P1, P2, . . . PN ,
where i = 1−N labels different materials (or different conditions), CS finds the
sparse solution c of an underdetermined system of linear equations

P(d i ) =
∑M

k=1
ĉk dki . (5)

{dki} = D is called the sensing matrix with the number of rows k = 1−M
significantly bigger than the number of columns, i= 1−N. Thus, the sensing matrix
is built from N vectors (the columns), each of length M. Material i is characterized
by vector i, i.e., by k = 1−M values (descriptive parameters), dki . Equation (5)
corresponds to Eq. (2) when the linear kernel is used. If most elements of the vector
ĉ were zero, specifically when the number of nonzero elements of ĉ is smaller than
N, the dimensionality of the problem is reduced (Candès et al. 2006; Donoho 2006;
Candès and Wakin 2008). In order to achieve this reduction, the coefficients ĉk

are determined by solving Eq. (4) with the norm ||m|| taken as the l0 norm of ĉ.
The norm zero of a vector is defined as the number of nonzero elements. Thus,
the regularization λ||ĉ||0 is a constraint that favors solutions for ĉ where most
elements of ĉ are zero. However, using the norm zero poses a combinatorically
extensive problem, and it has been shown that this is (asymptotically) NP hard. As a
consequence it has been suggested to approximate the norm zero by the norm l1, and
a popular approach to it is LASSO (least absolute shrinkage and selection operator)
(Tibshirani 1996). For materials science this has been introduced by Ghiringhelli
and coworkers (Ghiringhelli et al. 2015, 2017b).
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Thus, the idea behind the compressed sensing approach is to offer many
descriptor candidates and then let the optimization approach (Eq. (4)) find out
which of these candidates are relevant. Since Eq. (5) is linear, it is necessary that
the offered descriptor candidates contain the potential nonlinearities. Consequently,
different descriptor candidates, i.e., different columns of the sensing matrix, may
become correlated. Furthermore, the dimension of the sensing matrix increases
rapidly with the number of data points, and as LASSO requires that the matrix
is stored, the approach is getting intractable. These problems have been recently
tackled by Ouyang and coworkers (Ouyang et al. 2018) by solving the l0 challenge
in an iterative approach called SISSO (sure independence screening and sparsifying
operator). Interestingly, the mentioned correlations are not causing problems, and
the number of candidate descriptors can be increased in SISSO to many billions and
even trillions. Initially, from the previously mentioned “basic descriptors” {RI , ZI},
Ne, only ZI-derived quantities were used explicitly, e.g., the ionization potentials
of the atoms, the electron affinities, and information about the extension of the
atomic wave functions. Then, a combination of algebraic/functional operations is
recursively performed for extending the space of descriptor candidates. Details are
described in Ouyang et al. (2018). Clearly, when different structures are considered
or different charge states {RI}, Ne-related features are needed as well.

5 Outlook

Computational materials science took off with impressive early work by Moruzzi
et al. (1978) on various properties of metals and by Cohen and coworkers (Yin and
Cohen 1982) on the cohesion and phase transition of silicon and germanium (see
�Chap. 3, “Modeling Solids and Its Impact on Science and Technology” by M.
Cohen in this handbook, in particular Fig. 4). A number of computer codes for solv-
ing the Kohn-Sham equations have been developed since then, initially involving
approximations like pseudopotentials (removing the core electrons, creating smooth
potentials) or introducing touching or slightly overlapping atom-centered spheres in
which the potential was sphericalized. During the 1980s significant advancements in
the original pseudopotential approach have been made (see the work of Vanderbilt
and coworkers: Garrity et al. 2014 and references therein), and all-electron codes
have been developed that don’t require a shape approximation for the potentials
(e.g., Wimmer et al. 1981; Blaha et al. 1990; Gulans et al. 2014; Blum et al. 2009).
The work by Lejaeghere et al. (2016) provides a nice overview of the precision
of modern electronic-structure codes for elemental bulk solids, also demonstrating
how to involve the community. Clearly, this kind of work is important and needs to
be extended to more complicated structures and compositions, defects, surfaces, and
interfaces. Work in this direction is underway, as are studies for advanced electronic
structure methods, like the GW approach (van Setten et al. 2015). Furthermore, the
field urgently needs benchmarks for the various numerical approximations and for
exchange-correlation potentials in order to address also accuracy, not only numerical
precision. The MSE (materials science and engineering) project (Zhang et al. 2019)
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is a promising step in this direction. Without all this, data-driven science will be
limited in its capabilities.

Computational materials science is presently dominated by the third research
paradigm (cf. Fig. 1), but advancements in AI methods has been significant in recent
years, and the fourth paradigm is playing an increasing role. Still, at present there
is more hype than realism in what AI can do. Much of this relates to the fact that
the amount of relevant or independent data is often not really big. Machine learning
techniques can help a lot when general trends are of interest and when one needs
to fit and predict “the behavior of a big crowd” (see, e.g., the methods used in the
Kaggle competition for predicting properties of transparent conductors Sutton et al.
2019). Often, the sensible needs of materials science and engineering are, however,
different: We are typically not looking for a crowd behavior, but we are searching for
materials with extraordinary performance on certain functions or properties, often
even a combination of several properties. There are typically just a few, statistically
exceptional, suitable materials among the enormous number of possible materials
(already existing ones and those that will be synthesized in the future). However,
in many cases we don’t know how to identify this “class” of potentially interesting
functional materials. How can we distinguish which data/materials are relevant and
which are not? Learning about less than 0.01% relevant materials from thousands or
millions of irrelevant data is obviously problematic, and standard methods, which
optimize the regularized root-mean-square error, even emphasize the importance of
the irrelevant data, while surpassing the special cases. If the data could be grouped
in “a majority classes” and a “minority class,” methods have been developed to deal
with the problem (Chawla et al. 2002 and references therein). However, often these
classes are unknown, and advancements of the subgroup discovery concept for the
materials science domain are urgently needed.

What is missing at present? Let us list some issues:

• Close coupling of materials property prediction with stability analysis and
prediction of routes reproducible synthesis.

• High-throughput studies of metastable materials and of the lifetimes of these
metastable states.

• Materials under real conditions (T, p, and reactive environment): stability and
properties. This very much concerns multiscale modeling with robust, error-
controlled links with knowledge of uncertainty between the various simulation
methodologies. This has been often stated in the past but is still not fully realized.

• Error estimates of calculations in terms of numerical approximations (basis sets,
pseudopotentials, etc.) for specific properties (structure, elastic and electronic
properties, etc.).

• Computations beyond standard DFT as, for example, coupled-cluster methods
for calculations for solids (possibly also getting prepared for quantum comput-
ers).

• Complete description of scientific results accounting for the heterogeneity of
data, i.e., to improve and complement present metadata definitions. While sig-
nificant progress has been made for computational data from the many computer
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codes and the development of corresponding metadata (Ghringhelli et al. 2016,
2017a; Meta Info at NOMAD), it is now urgent that the same is being achieved
also for experimental data. The latter challenge is even bigger than the first. The
sample material used in the experimental study corresponds to the input file of a
calculation; the experimental condition (T, p, environment) and the experimental
equipment to the computer code. A not fully solved challenge is the complete
characterization of the sample material. In fact, this will often be impossible.
Obviously, closely coupled to the definition of metadata is the description of
workflows in the sample preparation and running of the experiment.

The field is just developing the methods for the fourth paradigm. The learning
curve connecting paradigms 1, 2, 3, and 4 is apparently getting steep. Thus the
next paradigm may be close, even though the fourth has not been developed well,
so far. What could be the next paradigm? Considering that “the future is already
here – it’s just not very evenly distributed” (Gibson 1999), it may be hintingly visible
already today. We guess that it may be virtual reality with direct and instantaneous
connection to new calculations or a merger of theory (predictions and analysis) and
experiment. There are exciting times ahead of us.
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Abstract

Time-dependent density functional theory (TDDFT) is currently the most effi-
cient approach allowing to describe electronic dynamics in complex systems,
from isolated molecules to the condensed phase. TDDFT has been employed
to investigate an extremely wide range of time-dependent phenomena, as spin
dynamics in solids, charge and energy transport in nanoscale devices, and
photoinduced exciton transfer in molecular aggregates. It is therefore nearly
impossible to give a general account of all developments and applications of
TDDFT in material science, as well as in physics and chemistry. A large
variety of aspects are covered throughout these volumes. In the present chapter,
we will limit our presentation to the description of TDDFT developments
and applications in the field of quantum molecular dynamics simulations in
combination with trajectory-based approaches for the study of nonadiabatic
excited-state phenomena. We will present different quantum-classical strategies
used to describe the coupled dynamics of electrons and nuclei underlying
nonadiabatic processes. In addition, we will give an account of the most recent
applications with the aim of illustrating the nature of the problems that can
be addressed with the help of these approaches. The potential, as well as the
limitations, of the presented methods is discussed, along with possible avenues
for future developments in TDDFT and nonadiabatic dynamics.

1 Introduction

Photoinduced isomerization processes, photosynthetic and photovoltaic energy
conversion phenomena, and charge and energy transport through molecular junc-
tions are all typical examples of, so-called, nonadiabatic processes. Nonadiabatic
processes are characterized by a strong coupling between electronic and nuclear
motion; in fact, nuclear motion is responsible for inducing electronic (nonadiabatic)
transitions, and in turn, the time evolution of the electronic states also affects
the nuclear dynamics at very short timescales (down to a few tens of fs). In
this nonadiabatic regime, thus when the Born-Oppenheimer approximation breaks
down, performing (quantum) molecular dynamics simulations is tremendously chal-
lenging. Accurate electronic structure properties are required to describe electronic
dynamics and to correctly drive the nuclear evolution. Identifying regions of nuclear
configuration space where the electronic states are coupled, as avoided crossings
and conical intersections, is essential to predict quantum yields. Efficient evolution
techniques have to be employed to describe nuclear motion in order, for instance,
to determine final molecular structures or to account for possible quantum effects.
Therefore, theoretical and numerical developments need to address the problem
from the perspective of both electronic structure theory and nuclear quantum
dynamics.

Perhaps the most celebrated method to investigate excited electronic states is
time-dependent density functional theory (TDDFT). TDDFT offers an in principle
exact formalism for propagating the time-dependent electronic density and, within
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linear-response theory, for calculating excitation energies as well as critical excited-
state properties. It is therefore without any surprise that TDDFT became the
electronic structure method of choice to be coupled with nonadiabatic dynamics.
Particularly successful has been the combination of TDDFT, employed to solve the
electronic problem, with the description of nuclear motion in terms of trajectories
that evolve or hop between coupled (electronic) potential energy surfaces. The most
well-known method is Tully’s “fewest switches” trajectory surface hopping (Tully
1990), which has evolved into a widely used and successful technique. The mean-
field Ehrenfest dynamics is often employed to investigate explicitly the electronic
dynamics, combined, for example, with real-time TDDFT (Tavernelli et al. 2005;
Tavernelli 2006). Full multiple spawning (Martínez et al. 1996; Martínez and
Levine 1997; Ben-Nun and Martínez 1998, 2002; Ben-Nun et al. 2000; Hack
et al. 2001; Virshup et al. 2008) propagates coupled Gaussian functions along
classical trajectories, whereas the coupled-trajectory mixed quantum-classical (CT-
MQC) scheme (Min et al. 2015) derived from the exact factorization (Abedi et al.
2010) is based on the propagation of trajectories along a time-dependent potential
energy surface (Abedi et al. 2013a). Other techniques like the quantum-classical
Liouville equation (Kapral and Ciccotti 1999; Nielsen et al. 2000; Kapral 2006),
Bohmian dynamics (Wyatt et al. 2001; Lopreore and Wyatt 2002; Rassolov and
Garashchuk 2005; Curchod and Tavernelli 2013), variational multiconfiguration
Gaussians (Worth et al. 2004, 2008; Lasorne et al. 2006, 2007; Mendive-Tapia et al.
2012; Richings et al. 2015), multiconfigurational Ehrenfest (Shalashilin 2010; Saita
and Shalashilin 2012; Makhov et al. 2017), or linearization approaches to compute
time-correlation functions (Bonella and Coker 2005; Huo and Coker 2012; Dunkel
et al. 2008) have been also proposed for nonadiabatic dynamics. Despite their differ-
ences, all the methods mentioned above are rooted in the Born-Huang representation
of the total molecular wavefunction, i.e., an expansion in an infinite sum over the
correlated Born-Oppenheimer electronic states. In contrast, the recently introduced
exact factorization of the time-dependent molecular wavefunction offers a paradigm
shift in our perception of nonadiabatic dynamics, away from the Born-Huang
picture, and blazes a trail for the development of nonadiabatic techniques away
from Born-Oppenheimer concepts. It is important to mention here that ensembles of
trajectories, when properly constructed via the method of characteristics (Agostini
et al. 2018), can represent, in principle arbitrarily closely, the solution of the
underlying partial differential equation. Practical implementations, however, involve
further-going approximations where, for instance, interference and tunneling effects
are neglected or only approximately taken into account. The advantage of trajectory-
based method is that they circumvent the enormous numerical effort associated
with quantum wave packets propagation techniques, such as multiconfiguration
time-dependent Hartree approach (MCTDH) (Meyer et al. 1990; Burghardt et al.
1999; Wang and Thoss 2003; Meyer and Worth 2003). By its very nature, this
approach requires the computation of the relevant potential energy surfaces (PESs)
and corresponding couplings before the actual propagation of nuclear wave packets.
This clearly implies an important computational effort that limits the applicability
of this method to a small number of degrees of freedom (up to ∼10). In addition,
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the determination of the relevant degrees of freedom to include in the dynamics
can also become a challenging problem, which requires some a priori knowledge
of the “active” vibrational modes involved in the dynamics. Such wavefunction-
based nonadiabatic approaches are beyond the scope of this chapter and will not be
discussed further.

The goal of this chapter is to present in a self-contained manner the key
theoretical concepts and equations of the most important methods cited above,
starting from the electronic structure problem and (LR-)TDDFT up to nuclear
dynamics methods like surface hopping, Ehrenfest dynamics, and ab initio multiple
spawning. To contrast with these Born-Huang-based methods, we also present the
formalism of the exact factorization and introduce the reader to the first mixed
quantum-classical algorithm derived from this formalism, coined coupled-trajectory
mixed quantum-classical (CT-MQC) dynamics.

2 Coupled Electron-Nuclear Dynamics in Molecules

In molecules and condensed phase systems, the time evolution of interacting
electrons and nuclei is described by the time-dependent Schrödinger equation:

ĤΨ (r,R, t) = ih̄∂tΨ (r,R, t) , (1)

where the electron-nuclear wavefunction Ψ (r,R, t) describes the state of the system
over time and Ĥ is the molecular Hamiltonian, i.e.:

Ĥ (r,R) =
Nn∑

v=1

−h̄2

2Mv

∇2
v + T̂e(r)+ Vee(r)+ Vnn(R)+ Ven(r,R)

=
Nn∑

v=1

−h̄2

2Mv

∇2
v + ĤBO(r,R) . (2)

Here, r = (r1, . . . , rNel
), R = (R1, . . . ,RNn), Nel is the number of electrons and

Nn the number of nuclei. The first term on the right-hand side of Eq. (2) is the
nuclear kinetic energy, with ∇v indicating the spatial derivative with respect to the
position of the nucleus v and Mv its mass, whereas ĤBO is the so-called Born-
Oppenheimer (BO), or electronic, Hamiltonian. ĤBO is defined as the sum of the
electronic kinetic energy, T̂e; the electron-electron, V̂ee; the nucleus-nucleus Vnn;
and the electron-nucleus, Ven, interactions.

Usually, the problem is reformulated adopting the Born-Huang expansion of the
molecular wavefunction in the adiabatic basis. The adiabatic, or BO, states, ϕ(k)

R (r),
are defined as the eigenfunctions of the BO Hamiltonian:

ĤBO(r,R)ϕ
(k)
R (r) = ε

(k)
BO(R)ϕ

(k)
R (r) , (3)
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with eigenvalues ε
(k)
BO(R). The electronic time-independent problem is diagonalized

at each nuclear position R; thus the eigenfunctions and eigenvalues depend on R.
Nuclear positions are interpreted here as parameters, which label both the electronic
states and the electronic energies. If Eq. (3) is solved for all nuclear configurations,
ε
(k)
BO(R) identify the so-called BO potential energy surfaces (PESs). In the Born-

Huang expansion of the electron-nuclear wavefunction,

Ψ (r,R, t) =
∑

k

χk(R, t)ϕ
(k)
R (r), (4)

the coefficients χk(R, t) clearly depend on nuclear positions and on time. These
coefficients can be interpreted as the nuclear contributions corresponding to the
electronic states included in the sum and can be also referred to as nuclear wave
packets. In fact, it can be easily proven that the nuclear density, defined as the
integral of |Ψ (r,R, t)|2 over electronic coordinates,

ż

dr |Ψ (r,R, t)|2 =
∑

k

|χk(R, t)|2 , (5)

can be written as the sum of adiabatic contributions, |χk(R, t)|2. Here, the orthogo-
nality of the BO states

ż

drϕ(l)
R
∗
(r)ϕ(k)

R (r) =
〈
ϕ
(l)
R

∣∣∣ϕ(k)
R

〉

r
= δlk (6)

has been used.
The Born-Huang expansion (4) is inserted in Eq. (1), which is then projected on

ϕ
(k)
R
∗
(r) and integrated over r. A set of partial differential equations are derived for

the expansion coefficients:

[
Nn∑

v

−h̄2

2Mv

∇2
v + ε

(k)
BO(R)

]
χk(R, t)+

∑

l

Fkl(R)χl(R, t) = ih̄∂tχk(R, t) . (7)

The last term on the right-hand side is responsible for coupling the evolution of the
k-th coefficient to all other coefficients, via the nonadiabatic couplings

Fkl(R) =
ż

dr ϕ
(k)
R
∗
(r)

[
Nn∑

v

−h̄2

2Mv

∇2
v

]
ϕ
(l)
R (r)

+
Nn∑

v

1

Mv

{
ż

dr ϕ
(k)
R
∗
(r)

[
−ih̄∇vϕ

(l)
R (r)

]}
· [−ih̄∇v] , (8)

arising from the effect of the nuclear kinetic energy operator on the parametric
dependence of the BO states on R. In the most general case, the non-diagonal
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elements of Fkl(R) are non-zero and induce a coupling between different electronic
states due to the motion of the nuclei. The nonadiabatic coupling term is responsible
for exchanging “nuclear contributions” between the electronic adiabatic states
k and l. The BO framework presented so far is widely adopted by a large community
of physicists and chemists to interpret the coupled electron-nuclear problem under
nonadiabatic conditions. However, such framework is not the only one, as we will
discuss below.

An alternative perspective on the coupled electron-nuclear problem has been
recently proposed, the exact factorization of the electron-nuclear wavefunc-
tion (Abedi et al. 2010, 2012). In this framework, we make an Ansatz different
from the Born-Huang representation of the molecular wavefunction, namely:

Ψ (r,R, t) = ΦR(r, t)χ(R, t) . (9)

Here χ(R, t) is the nuclear wavefunction and ΦR(r, t) is the electronic wavefunc-
tion which parametrically depends on the nuclear positions and satisfies the partial
normalization condition (PNC):

ż

dr |ΦR(r, t)|2 = 1 ∀ R, t . (10)

The theorems introduced in Abedi et al. (2010, 2012) prove the existence and
uniqueness of Eq. (9), up to within a (R, t)-dependent gauge transformation. The
PNC guarantees the interpretation of |χ(R, t)|2 as the probability of finding the
nuclear configuration R at time t and of |ΦR(r, t)|2 itself as the conditional
probability of finding the electronic configuration r at time t given the nuclear
configuration R.

The stationary variations (Frenkel 1934) of the quantum-mechanical action with
respect to ΦR(r, t) and χ(R, t) lead to the derivation of the following equations of
motion:

(
ĤBO(r,R)+ Û

coup
en [ΦR, χ ] − ε(R, t)

)
ΦR(r, t) = ih̄∂tΦR(r, t) (11)

[
Nn∑

v=1

[−ih̄∇v + Av(R, t)]2

2Mv

+ ε(R, t)

]
χ(R, t) = ih̄∂tχ(R, t), (12)

where the PNC is enforced by means of Lagrange multipliers (Alonso et al. 2013;
Abedi et al. 2013b). The electron-nuclear coupling operator (Agostini et al. 2015b),

Û
coup
en [ΦR, χ ] =

Nn∑

v=1

1

Mv

[
[−ih̄∇v − Av(R, t)]2

2

+
(−ih̄∇vχ

χ
+ Av(R, t)

)(
− ih̄∇v − Av(R, t)

)]
, (13)
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the time-dependent potential energy surface (TDPES) (Abedi et al. 2013a; Agostini
et al. 2013; Suzuki et al. 2015; Agostini et al. 2015a; Curchod et al. 2016a; Suzuki
and Watanabe 2016),

ε(R, t) = 〈ΦR(t)| ĤBO + Û
coup
en − ih̄∂t |ΦR(t)〉r , (14)

and the time-dependent vector potential (Curchod and Agostini 2017),

Av (R, t) = 〈ΦR(t)| − ih̄∇v ΦR(t)〉r (15)

are responsible for the coupling between electrons and nuclei in a formally exact
way. It is worth noting that the electron-nuclear coupling operator, Û coup

en [ΦR, χ ],
in the electronic equation (11), depends on the nuclear wavefunction and acts on
the parametric dependence of ΦR(r, t) as a differential operator. This “pseudo-
operator” includes the coupling to the nuclear subsystem beyond the parametric
dependence in the BO Hamiltonian ĤBO(r,R). The symbol 〈 · 〉r indicates an
integration over electronic coordinates only. The nuclear equation (12) has the par-
ticularly appealing form of a Schrödinger equation that contains a time-dependent
vector potential (15) and a time-dependent scalar potential (14) that govern the
nuclear dynamics and yield the nuclear wavefunction. χ(R, t) is interpreted as the
nuclear wavefunction since it leads to an N -body nuclear density, and an N -body
current-density, which reproduce the true nuclear N -body density and current-
density (Abedi et al. 2012) obtained from the full wavefunction Ψ (r,R, t).

In order to connect the Born-Huang representation to the exact factorization, the
electronic wavefunction ΦR(R, t) is expanded in terms of the BO states, similarly
to what is done for the molecular wavefunction of Eq. (4), namely:

ΦR(r, t) =
∑

k

Ck(R, t)ϕ
(k)
R (r). (16)

The expansion coefficients in Eqs. (4) and (16) are related,

χk(R, t) = Ck(R, t)χ(R, t), (17)

by virtue of the factorization (9). Additionally, the PNC can be rewritten as

∑

k

|Ck(R, t)|2 = 1 ∀ R, t. (18)

We point out that even in the case where the nuclear wave packet splits into more
than one BO PESs, the full wavefunction is still a single product: the nuclear wave
function has contributions (projections) on different BO PESs, while the electronic
wavefunction is a linear combination of the adiabatic states, but still we may write:
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Ψ (r,R, t) =
⎛

⎝e
i
h̄
S(R,t)

√∑

l

|χl(R, t)|2
⎞

⎠
(
∑

k

Ck(R, t)ϕ
(k)
R (r)

)
(19)

where the first term in parenthesis is χ(R, t), with a phase S(R, t) determined by
fixing the gauge freedom, and the second term in parenthesis is ΦR(r, t), using
Eq. (16).

In the absence of nonadiabatic couplings in Eq. (7), the evolution equations
for the coefficients χk(R, t) decouple, and each nuclear contribution now evolves
adiabatically according to the TDSE

[
Nn∑

v

−h̄2

2Mv

∇2
v + ε

(k)
BO(R)

]
χk(R, t) = ih̄∂tχk(R, t) , (20)

under the effect of a potential produced only by the electrons in the adiabatic
state k. This is the essence of the BO approximation. Analogously, in the limit
of infinite nuclear masses, Eqs. (11) and (12) (Scherrer et al. 2015, 2017; Schild
et al. 2016; Eich and Agostini 2016) reduce to the fundamental equations of the BO
approximation, namely, the static electronic equation (3) and a nuclear evolution
equation identical to Eq. (20) with χk(R, t) replaced by the nuclear wavefunction
χ(R, t) of the exact factorization.

If the nonadiabatic couplings cannot be neglected, the fully coupled electron-
nuclear problem, summarized in Eq. (7) or Eqs. (11) and (12), has to be solved.

Electronic dynamics is simulated at a quantum-mechanical level employing
quantum chemistry approaches, either based on the electronic wavefunction or
on the electronic density. If either the adiabatic or the diabatic basis is used to
characterize the electronic subsystem, electronic dynamics is implied in the time
evolution of the expansion coefficients (see, e.g., Eqs. (4) or (16)), since the basis
functions are time-independent. On the other hand, (real-time) TDDFT yields an
explicit evolution of the electronic subsystem, as the electrons are represented
via their time-dependent one-body density. As we will show below, real-time
TDDFT can be combined with a mean-field solution of the coupled electron-nuclear
dynamics. The linear response formulation of TDDFT, instead, is able to provide
information about the time-independent electronic properties, such as adiabatic
forces and nonadiabatic couplings, needed for approaches based on the Born-Huang
expansion. Possible extensions of TDDFT to solve the electronic equation of the
exact factorization are currently under investigation (Requist and Gross 2016).
Section 3 is devoted to a thorough review of the basis of TDDFT and of LR-TDDFT

Nuclear dynamics can be treated exactly or approximated at different levels,
depending on the complexity of the system of interest. Simulation methods that
retain the quantum character of nuclear dynamics are indeed very expensive, as the
numerical cost for solving the quantum-mechanical problem scales exponentially
with the number of degrees of freedom. Therefore, different strategies have been
proposed over the years to make the problem numerically tractable. Quantum wave
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packet propagation techniques aim at solving Eq. (7) either on grids (Lauvergnat
and Nauts 2010, 2014; Sadri et al. 2012) or by expanding the nuclear wave packets
χk(R, t) on a basis where calculations are computationally cheaper (Meyer et al.
1990; Burghardt et al. 1999; Wang and Thoss 2003; Meyer and Worth 2003; Sadri
et al. 2014). The major bottleneck of these approaches is the “pre-calculation” of
the electronic properties, i.e., BO PESs and of the nonadiabatic couplings, needed
to solve the nuclear equations. Attempts at solving exactly the coupled equations
at the basis of the exact factorization are currently under investigations. On-the-
fly calculations of electronic properties are instead possible, if only local nuclear
information is necessary to solve (in an approximate way) Eq. (7). Full and ab
initio multiple spawning methods (Martínez et al. 1996; Martínez and Levine
1997; Ben-Nun and Martínez 1998, 2002; Ben-Nun et al. 2000; Hack et al. 2001;
Virshup et al. 2008), similarly to direct dynamics techniques (Worth et al. 2004,
2008; Lasorne et al. 2006, 2007; Mendive-Tapia et al. 2012; Richings et al. 2015),
employ a representation of the nuclear wave packets in terms of moving Gaussian
functions, which evolve along trajectories determined either variationally or classi-
cally. Trajectory-based quantum-classical schemes adopt a representation of nuclear
dynamics in terms of purely classical trajectories, as in the Ehrenfest and surface-
hopping methods. They are indeed numerically cheaper than the methods above, but
the price to pay is sometimes the neglect of important quantum-mechanical features
both in the nuclear dynamics and in the coupling between electronic and nuclear
motion. Similarly to direct dynamics and full multiple spawning, evolving the nuclei
along trajectories enables us to exploit the locality of classical dynamics for on-the-
fly simulations, where electronic information is needed, and thus computed, only for
the visited nuclear configurations. Trajectory-based solutions of Eqs. (11) and (12)
have been proposed (Agostini et al. 2014; Abedi et al. 2014), and the most recent
developments (Min et al. 2017) will be reviewed in Sect. 4, along with Ehrenfest
dynamics (Tully 1998), trajectory surface hopping (Tully 1990; Doltsinis and Marx
2002; Böckmann et al. 2010; Jasper et al. 2004, 2006; Subotnik et al. 2013; Curchod
and Tavernelli 2013; Jaeger et al. 2012; Fang and Hammes-Schiffer 1999; Tapavicza
et al. 2007; Craig et al. 2005; Akimov and Prezhdo 2014), and full/ab initio multiple
spawning (Martínez et al. 1996; Martínez and Levine 1997; Ben-Nun and Martínez
1998, 2002; Ben-Nun et al. 2000; Hack et al. 2001; Virshup et al. 2008).

3 Electronic Dynamics: Time-Dependent Density Functional
Theory

3.1 Time-Dependent Density Functional Theory

The Hohenberg-Kohn (HK) theorem (Hohenberg and Kohn 1964) of ground-state
DFT states that knowledge of the ground-state density uniquely determines the
external potential of the system (up to within a trivial constant) and thus the entire
electronic Hamiltonian and the associated total ground-state energy. It is important
to realize that ground-state DFT in nearly all applications is intimately tied to the



84 F. Agostini et al.

BO approximation: the electronic density one calculates is the one produced by
clamped nuclei. Then, by varying the positions of the clamped nuclei, ground-state
DFT provides an efficient approach to map out the lowest BO PES and to calculate
physical observables associated with the lowest BO PES, such as vibrational spectra,
cohesive energies, barrier heights, etc. Higher BO PESs and the time evolution
of systems strongly driven by external fields are not accessible with ground-state
DFT.

In their seminal paper, Runge and Gross (1984) proved a theorem that established
a 1-1 correspondence between the time-dependent density and the time-dependent
external potential for systems evolving from a given initial many-electron state, Φ0.
The time evolution of the many-electron wavefunction is governed by the time-
dependent Schrödinger equation:

Ĥel(t)Φ(r, t) = ih̄
∂

∂t
Φ(r, t) (21)

Φ(r, t0) = Φ0(r)

with Hamiltonian

Ĥel(t) = T̂e(r)+ Vee(r)+ vext (r, t) . (22)

The general time-dependent external potential appearing in (22) covers different
scenarios: one important case is the (short-time) electron dynamics with clamped
nuclei, driven by an applied laser field:

vext (r, t) = Vnn(R)+ Ven(r,R)+ δvapp(r, t). (23)

Another case is the time-dependent electric potential produced by classically
propagated point-like nuclei:

vext (r, t) = Vnn(R(t))+ Ven(r,R(t)). (24)

In complete detail, the Runge-Gross theorem ensures that the densities ρ(r, t)
and ρ′(r, t) evolving from a common initial many-body state Φ0 = Φ(t0) under
the influence of two potentials Vext (r, t) and V ′ext (r, t) will become different
infinitesimally later than t0 if the potentials are Taylor expandable around the initial
time t0 and differ by more than a purely time-dependent constant Vext(r, t) �=
V ′ext(r, t)+ C(t). This implies that the potentials-to-densities map can be inverted:

ρ(r, t)→ vext[ρ](r, t). (25)

The Runge-Gross proof does not depend on the particular form of the particle-
particle interaction. The proof is valid for essentially any interaction, in particular
also for no interaction. This establishes the map for noninteracting particles:
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ρ(r, t)→ vs[ρ](r, t), (26)

implying that the potential vs(r, t), which reproduces the interacting density,
ρ(r, t), in a noninteracting system is uniquely defined. From now on, this unique
potential vs[ρ](r, t) will be called the time-dependent Kohn-Sham potential. The
corresponding system of single-particle time-dependent Schrödinger equations

ih̄
∂

∂t
φk(r, t) =

(
−1

2
∇2 + vs(r, t)

)
φk(r, t) , k = 1, . . . , N , (27)

whose orbitals reproduce the interacting density via

ρ(r, t) =
N∑

i=1

|φk(r, t)|2 (28)

is called time-dependent Kohn-Sham (TDKS) equations.
The Runge-Gross theorem guarantees uniqueness of the potentials

vext[ρ,Φ0](r, t) and vs[ρ, {φ(0)
k (r)}] for given initial many-body state Φ0 and

given initial orbitals {φ(0)
k (r)}, respectively (Gross and Kohn 1990). Apart from

uniqueness, whether or not, for a given function ρ(r, t), the potentials vext(r, t)
and vs(r, t) actually exist, is a separate question, known as (interacting and
noninteracting) v-representability problem. This problem has been solved – once
and for all – by van Leeuwen (1999), who demonstrated under mild conditions to
be satisfied by the densities ρ(r, t) that the potentials vext(r, t) and vs(r, t) can be
constructed explicitly as solutions of the Sturm-Liouville problem. Since this is a
constructive proof, the solution of the TDDFT v-representability problem is much
more satisfactory than the status of the v-representability problem in ground-state
DFT where a complete characterization of the domains of the v

gs
ext(r, t) and v

gs
s (r, t)

is still lacking.
The TDKS potential in Eq. (27) is usually written in the following form:

vs(r, t) = v0(r, t)+ vH [ρ](r, t)+ vxc[ρ](r, t) (29)

where v0(r, t) is the given external potential of the system at hand, vH [ρ](r, t) is
the time-dependent Hartree potential,

vH [ρ](r, t) =
ż

dr′ ρ(r
′, t)

|r− r′| (30)

and vxc[ρ](r, t) is the universal exchange-correlation (xc) functional of TDDFT

vxc[ρ](r, t) := vs[ρ](r, t)− vext[ρ](r, t)− vH [ρ](r, t). (31)
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The xc functional is well-defined through the right-hand side of Eq. (31): uniqueness
of vs[ρ] and vext[ρ] is guaranteed by the Runge-Gross theorem, and the existence
over a well-characterized domain is covered by the van Leeuwen theorem. Formally,
in addition to dependence on the density ρ(r, t), the xc potential also depends on the
initial many-body state Φ0 and on the initial orbitals {φ(0)

k (r)}. If the initial state is a

ground state, both Φ0 and {φ(0)
k (r)} are functionals of the initial ground-state density

ρ
gs

0 (r, t) via the HK theorem, and then the time-dependent xc potential becomes a
functional of the time-dependent density alone. The density dependence of the exact
time-dependent xc functional vxc[ρ(r′, t ′)](r, t) is nonlocal both in space and in
time, i.e., the potential vxc(r, t) at point r and time t depends on the density values
at all points r′ and at all previous times t ′ ≤ t .

An important aspect of the ground-state DFT is the HK variational principle
which ensures that the total energy as functional of the density is minimized by
the true ground-state density of the system at hand, and the value of the functional
at the minimum is the true ground-state energy. The HK variational principle is
important in two respects: first of all, the total energy is a quantity of prime interest
and the variational principle guarantees that the lowest possible value is achieved. Of
equal importance is the fact that the variational principle usually implies numerical
stability of the iterative algorithms, such as the Kohn-Sham (KS) self-consistency
cycle, because they ultimately go “downhill” in the total energy functional.

In the time-dependent case, variational principles play a less important role. First
of all, the usual Frenkel variational principle of quantum mechanics

δ

ż t1

t0

dt 〈Φ(t)| ih̄ ∂

∂t
− Ĥ |Φ(t)〉 = 0 (32)

normally does not have a minimum at the solution of the time-dependent
Schrödinger equation. There is only a stationary point, and consequently there is no
guarantee of the stability of the associated time propagation algorithms. Moreover,
unlike the ground-state energy, the value of functional (32) in the stationary point is
zero and of no physical significance. Nevertheless, a TDDFT variational principle
might still be desirable for some purposes, e.g., for the optimization of constrained
densities.

Straightforward combination of the Runge-Gross map with the Frenkel vari-
ational principle (32) leads to a variational formulation of TDDFT (Runge and
Gross 1984) which was later found to give rise to serious inconsistencies (Gross
et al. 1994). In particular, a noncausal xc kernel is found. This so-called causality
paradox arises from the fact that arbitrary density variations lead to variations
of the wavefunction at the upper boundary t1 of the Frenkel integral (32). If
the variations of the wavefunction are explicitly included, the causality paradox
disappears (Vignale 2008). Another way of getting rid of the upper boundary t1
of the Frenkel integral (32) is to formulate the TDDFT variational principle on the
Keldysh contour which maps the final time back to the initial time. This formulation
of the TDDFT variational principle was achieved by van Leeuwen (1998).
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3.2 Linear-Response TDDFT

Many applications of TDDFT deal with weak probes of the ground state of a static
potential v0(r), mediated by a small time-dependent perturbation δvapp(r, t). The
goal of linear-response TDDFT is to calculate the induced first-order change δρ(r, t)
in the density (Gross et al. 1996). To this end, we look at the density ρ[vext ](r, t)
as functional of the external potential and perform a functional Taylor expansion at
the unperturbed ground-state potential v0(r, t):

ρ[vext ](r, t) = ρ
[
v0 + δvapp

]
(r, t) (33)

= ρ[v0](r)+
ż

dr′
ż

dt ′ δρ(r, t)
δvext (r′, t ′)

∣∣∣∣
v0

δvapp(r′, t ′)+ . . . . (34)

The functional derivative on the right-hand side of Eq. (34), which connects the
change in the density with the perturbation is of enormous physical significance. It
is known as density-density response function and will henceforth be denoted by
χ(r, t, r′, t ′):

χ(r, t, r′, t ′) = δρ(r, t)
δvext (r′, t ′)

∣∣∣∣
v0

. (35)

The associated change in the density is known as linear density response:

δρ(r, t) =
ż

dr′
ż

dt ′ χ(r, t, r′, t ′)δvapp(r′, t ′). (36)

Since χ(r, t, r′, t ′) only depends on t − t ′, Eq. (36) is usually Fourier-transformed
to the frequency domain:

δρ(r, ω) =
ż

dr′ χ(r, r′, ω)δvapp(r′, ω) (37)

where, for simplicity, we use the same symbol for a function and for its Fourier
transform. The poles of χ(r, r′, ω) provide the charge-neutral excitation energies of
the unperturbed many-body system.

One may also look at the density ρs[vs](r, t) of noninteracting particles and their
density-density response function:

χs(r, t, r′, t ′) = δρs(r, t)
δvs(r′, t ′)

∣∣∣∣
vs,0

. (38)

While the full interacting density-density response function (35) is very hard to
evaluate (in many-body language, it is the reducible polarization propagator of the
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interacting system), the noninteracting counterpart is relatively easy to calculate: Its
Fourier transform reads

χs(r, r′, ω) =
∑

ijσ,klτ

φiσ (r)φ∗jσ (r)φkτ (r′)φ∗lτ (r′)χ s
ijσ,klτ (ω) . (39)

with

χ s
ijσ,klτ (ω) = δσ,τ δi,kδj,l

fjσ − fiσ

ω − (εiσ − εjσ )
, (40)

where εiσ are the ground-state KS orbital energies and fiσ their occupations in the
ground state. Multiplying this equation – in the operator sense – from the left with χs

and from the right with χ , and performing a Fourier transform to frequency space,
one obtains the following Dyson-like equation for the response function (Petersilka
et al. 1996):

χ(ω) = χs(ω)+ χs(ω) ∗ fHxc(ω) ∗ χ(ω) . (41)

This equation constitutes the cornerstone of linear-response TDDFT.
Acting with the operator in Eq. (41) on an arbitrary perturbation δvapp(r, ω) and

using the definition (37) of the linear density response, one ends up with an integral
equation for the desired density response:

δρ(ω) = χs(ω) ∗ (δvapp(ω)+ fHxc(ω) ∗ δρ(ω)
)
. (42)

An iterative numerical solution of this equation yields the full linear density
response as function of ω and was first achieved by Zangwill and Soven (1980) for
atoms in the frequency regime above the continuum threshold. If one is interested in
the discrete spectrum of the system, i.e., the discrete poles of the linear density
response, a considerable simplification can be achieved (Gross and Kohn 1985;
Grabo et al. 2000; Casida 1995; Petersilka et al. 1996; Jamorski et al. 1996), leading
to a generalized eigenvalue equation:

[
A B

B
∗
A
∗
] [

Xn

Yn

]
= ωn

[
I 0
0 −I

] [
Xn

Yn

]
. (43)

where the matrices A(ω) and B(ω) are given by

Aiaσ,jbτ (ω) = δσ,τ δi,j δa,b(εaσ − εiσ )+Kiaσ,jbτ (ω) (44)

Biaσ,jbτ (ω) = Kiaσ,bjτ (ω) . (45)

The matrices A and B are frequency-independent within the adiabatic approxima-
tion, which approximates that the exchange-correlation kernel fxc has a frequency-
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independent term (Casida 2009). (Note that memory-dependent functionals were
proposed (Dobson et al. 1997; Ullrich and Tokatly 2006; Wijewardane and Ullrich
2008; Kurzweil and Baer 2004), even if not commonly used.) Solving the Casida
equation Eq. (43) provides excitation energies and oscillator strengths for a molec-
ular system.

A common approximation, the Tamm-Dancoff approximation (TDA), consists
in neglecting the hole-particle terms, Yn ≡ 0, leading to the simpler eigenvalue
equation (Hirata and Head-Gordon 1999):

AXn = ωnXn. (46)

While the TDA allows for the design of better-converging algorithms (Hirata and
Head-Gordon 1999; Hutter 2003), it also sometimes leads to better results than
the full Casida equation (Casida et al. 2000; Tapavicza et al. 2008; Casida and
Huix-Rotllant 2012). This observation might find its source from the form of the
Casida equation for pure density functional theory. The Casida equation involves
the linear response of the one-body density matrix and therefore accommodates the
response treatment of hybrid functions in a natural way. However, when functionals
with no Hartree-Fock contribution are considered, the matrix (A − B) becomes
diagonal (with no Hartree-Fock exchange contribution in the functional, (A − B)

becomes (Casida 2009): (A− B)iaσ,jbτ = δi,j δa,bδσ,τ (εaτ − εiτ )). Then, the exact
secular equation takes a similar form as within the TDA, with A corrected by a
contribution from B (Casida 2009) and relates to the exact equation derived from
pure density functional response theory (Grabo et al. 2000). It is, however, important
to note that within TDA the Thomas-Reiche-Kuhn sum rule is not fulfilled (Furche
2001; Hutter 2003).

3.2.1 Pitfalls of the Approximation of Practical LR-TDDFT
LR-TDDFT has been successfully applied to compute excitation energies and
properties for a large number of molecular systems (Stratmann et al. 1998; Hirata
and Head-Gordon 1999; Maitra et al. 2003; Dreuw and Head-Gordon 2005; Ullrich
2012; Casida 2009; Elliott et al. 2009; Casida and Huix-Rotllant 2012; Adamo and
Jacquemin 2013; Laurent and Jacquemin 2013) However, while the LR-TDDFT
formalism is in principle exact, its practical application to compute excitation
energies for molecules requires the use of a series of approximations of the
xc-functional and its functional derivatives (like the adiabatic approximation),
which can lead to dramatic failures (Ullrich 2012; Marques et al. 2012; Casida
2009; Casida and Huix-Rotllant 2012). As a result of the adiabatic approximation,
LR-TDDFT is, for example, not able to properly describe electronic states with
a dominant (>50%, see Tozer and Handy 2000; Ullrich 2012) double excitation
character (Hsu et al. 2001; Maitra et al. 2004; Cave et al. 2004; Levine et al.
2006; Elliott et al. 2011). Also, the combination of an inaccurate description of
derivative discontinuities, the problem of self-interaction error, the incorrect long-
range properties of currently used xc-potentials, and the adiabatic approximation
are all at the heart of the most critical issue of LR-TDDFT: the charge transfer
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failure (Dreuw et al. 2003; Tozer 2003; Gritsenko and Baerends 2004; Dreuw and
Head-Gordon 2004; Maitra 2005; Wiggins et al. 2009; Hellgren and Gross 2012).
LR-TDDFT, within the adiabatic approximation and using standard functionals,
suffers to describe charge transfer excitations, i.e., excitations between a donor and
an acceptor that are spatially separated. Long-range corrected functionals (Leininger
et al. 1997; Iikura et al. 2001; Yanai et al. 2004) can, however, strongly improve the
situation. The adiabatic approximation also leads to difficulties in describing conical
intersections between the ground and first electronic state (Levine et al. 2006), even
if, at least in some cases, the use of the TDA improves the description of these
critical points (Tapavicza et al. 2008; Marques et al. 2012).

3.3 Nonadiabatic Coupling Vectors and Nuclear Forces Within
LR-TDDFT

The Casida equation introduced above gives a direct access to excitation energies
and oscillator strength. Nonadiabatic dynamics will require additional quantities
like nonadiabatic coupling vectors (last electronic term in Eq. (8)) or excited-state
nuclear forces. In the following, we will describe a strategy to compute matrix
elements of one-body operator within a LR-TDDFT framework, using the concept
of auxiliary many-electron wavefunctions that will give us access to nonadiabatic
coupling vectors as well as other quantities.

3.3.1 Matrix Elements in LR-TDDFT
Our goal is to find a general strategy for evaluating matrix elements of the form

〈ϕ(0)
R |Ô|ϕ(n)

R 〉 (47)

within LR-TDDFT, where the states |ϕ(0)
R 〉 and |ϕ(n)

R 〉 describe the ground-state and
nth electronic excited-state wavefunctions, respectively. To achieve this goal, we
will proceed by a direct comparison with the same quantity derived using many-
body perturbation theory (MBPT). Therefore, we start with a short outline of the
main linear-response equations in MBPT.

From the definition of the retarded density-density response function

χ(r, t, r′, t ′) = ΠR(r, t, r′, t ′) = −iθ(t − t ′)
〈ϕ(0)

R |[ρ̂(r, t), ρ̂(r′, t ′)]|ϕ(0)
R 〉

〈ϕ(0)
R |ϕ(0)

R 〉
,

(48)

the change of an observable O, under the influence of a perturbation vext(r′, t ′) in
the linear-response regime, is given by

δO(t) =
ż ∞

0
dt ′

ż

dr
ż

dr′ o(r)vext(r′, t ′)χ(r, t, r′, t ′) (49)
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(here we consider an interaction of the form δvext (r′, t ′) = v′(r′)E(t ′)). If χ

depends only on the difference (t − t ′), the Fourier transform in time gives

δO(ω) =
ż

dr
ż

dr′ o(r)v′(r′)E(ω)χ(r, r′, ω) . (50)

This expression can be rewritten, after a bit of algebra (Curchod et al. 2013), as a
sum-over-states (SOS) formula:

δO(ω) = −2
∑

n

ωn〈ϕ(0)
R |Ô|ϕ(n)

R 〉〈ϕ(n)
R |v̂′E(ω)|ϕ(0)

R 〉
ω2

n − ω2
, (51)

where |ϕ(n)
R 〉 and ωn are the true excitation energies and wavefunctions.

Meanwhile, if we use the KS representation of LR-TDDFT as above, the change
of observable is in matrix representation:

δO(ω) =
∑

ijσ,klτ

oijσ χijσ,klτ (ω)v′klτE(ω) , (52)

where oijσ = 〈φiσ |Ô|φjσ 〉 and v′klτ = 〈φlτ |v′(r)|φkτ 〉. Similarly, a SOS formula
can also be derived for LR-TDDFT (see Curchod et al. 2013 for a derivation) and
reads

δO(ω) = −2
∑

n

o† (A− B)1/2ZnZ†
n(A− B)1/2

ω2
n − ω2

v′E(ω) . (53)

with Zn is related to the eigenvectors of Eq. (43) according to Casida (2009) Zn =
(A− B)−1/2(Xn + Yn).

Comparing the residues of LR-TDDFT response function Eq. (53) with the
residues of the MBPT response function Eq. (51) at equal energy ωn, we obtain
the following identity:

〈ϕ(0)
R |Ô|ϕ(n)

R 〉 =
(fiσ−fjσ )>0∑

ijσ

1√
ωn

oijσ

(
(A− B)1/2Zn

)

ijσ
. (54)

(As stated before, with no Hartree-Fock exchange contribution in the functional,
(A−B) is diagonal and becomes (Casida 2009): (A−B)iaσ,jbτ = δi,j δa,bδσ,τ (εaτ−
εiτ ) .)

This equation was derived by Casida (1995) and then applied by Tavernelli et al.
and Hu et al. for the calculation of the nonadiabatic coupling vectors between the
ground state and an excited state. A similar equation was also given in Chernyak
and Mukamel (1996).
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3.3.2 The Concept of Auxiliary Many-ElectronWavefunction
It may be useful at this point to investigate the possibility to further simplify the
definition and the calculation of matrix elements within LR-TDDFT by means of the
definition of a set of “auxiliary” multideterminantal many-electron wavefunctions
based on KS orbitals. This route was first explored by Casida (1995) to solve the
assignment problem of the LR-TDDFT excited-state transitions and then further
developed by Tapavicza et al. (2007) in relation to the calculation of matrix elements
in the linear and second-order response regimes (Tavernelli et al. 2009a, b, 2010).

In Tavernelli et al. (2009a), it was showed that defining the ground-state many-
electron wavefunction 〈r1, r2, r3, . . . , rNel

|ϕ̃(0)
R 〉 as a Slater determinant of all

occupied KS orbitals {φi}Nel

i=1 and the excited-state wavefunction corresponding to
the excitation energy ωn as

〈r1, r2, r3, . . . , rNel
|ϕ̃(n)

R 〉 =
∑

iaσ

√
εa − εi

ωn

(Zn)iaσ â
†
aσ âiσ 〈r1, r2, r3, . . . , rNel

|ϕ̃(0)
R 〉

=
∑

iaσ

Cn
iaσ 〈r1, r2, r3, . . . , rNel

|ϕ̃aσ
R,iσ 〉, (55)

we obtain for any one-body operator of the form Ô = ∑
pqσ opqσ â

†
pσ âqσ (where

p, q are general indices) the correct linear-response expression for the matrix
element 〈ϕ(0)

R |Ô|ϕ(n)
R 〉. Eq. (55) is derived from Eq. (54) where now the index i

runs over all occupied and a over the unoccupied (virtual) KS orbitals and |ϕ̃aσ
R,iσ

〉
denotes a singly excited Slater determinant defined by the transition iσ → aσ .
This theory was then successfully extended to the case of the calculation of matrix
elements between two excited-state wavefunctions, 〈ϕ(n)

R |Ô|ϕ(m)
R 〉 as will be briefly

discussed in the next section on the calculation of nonadiabatic coupling vectors.
It is important to further stress the fact that both auxiliary functions introduced

above have a physical meaning only when used within LR-TDDFT for the calcula-
tion of matrix elements of the type 〈ϕ̃(0)

R |Ô|ϕ̃(n)
R 〉 and eventually 〈ϕ̃(n)

R |Ô|ϕ̃(m)
R 〉. The

use of this representations of the ground-state and excited-state KS many-electron
wavefunctions in other contexts is not justified.

3.3.3 Nonadiabatic Coupling Vectors Within LR-TDDFT
Using the concept of the auxiliary many-electron wavefunction approach described
above, we can now propose an approach for the calculation of nonadiabatic vectors
within LR-TDDFT.

Couplings Between Ground and Excited States
One can use an alternative definition of the nonadiabatic coupling vectors (Epstein
1954) (see also Ch. 5 of Baer 2006 for a complete discussion) between the ground
(0) state and the nth excited state for a molecular system characterized by nuclear
coordinates R in the configuration space (R3Nn):
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dγ

0n =
〈ϕ(0)

R |∂γ ĤBO |ϕ(n)
R 〉

ε
(n)
BO(R)− ε

(0)
BO(R)

(56)

where γ is an atomic label, ĤBO is the electronic Hamiltonian, and ∂γ ĤBO =
∂ĤBO/∂Rγ .

Applying the results of the above sections on the evaluation of matrix elements
of the form 〈ϕ(0)

R |Ô|ϕ(n)
R 〉 in LR-TDDFT to the nonadiabatic coupling vectors gives

directly the expression:

dγ

0n =
(fiσ−fjσ )>0∑

ijσ

1

(ωn)3/2 h
γ

ijσ

(
(A− B)1/2Zn

)

ijσ
(57)

where h
γ

ijσ =
ş

dr ∂γ ĤBO φ∗iσ (r)φjσ (r).
This formula for the nonadiabatic coupling vectors within LR-TDDFT was

derived several times in the literature using slightly different formalisms. The first
derivation was given by Chernyak and Mukamel (2000) using a classical Liouville
dynamics for the single-electron density matrix, followed by Baer (2002). Later,
Tapavicza et al. (2007), Tavernelli et al. (2009b), and Hu et al. (2007, 2008) arrived
to the same result (Eq. (57)) using the formulation based on Casida’s LR-TDDFT
equations (Casida 1995).

Concerning the numerical implementation of Eq. (56), several approaches have
also been proposed that differ mainly in the choice of the basis set and in the way
the implicit dependence of the pseudopotentials on the nuclear positions is treated.
Due to the technical nature of this subject, we will not go through the numerical
details but better refer to the literature, which is very rich on this subject (Tavernelli
et al. 2009b; Hu et al. 2007, 2010, 2012; Send and Furche 2010).

Couplings Between Excited States
LR-TDDFT only gives access strictly speaking to the couplings between ground
and excited state. However, the concept of LR-TDDFT auxiliary many-electron
wavefunctions can also be used as a good approximation, exact within the Tamm-
Dancoff approximation, to compute couplings between excited states (Tavernelli
et al. 2010), dkn. An exact derivation of these coupling terms beyond the linear-
response formalism of TDDFT was also proposed in the literature (Li and Liu 2014;
Li et al. 2014; Ou et al. 2015). However, this formalism implies the calculation of an
exchange-correlation hyperkernel and leads to the critical appearance of divergences
in the couplings as a result of the adiabatic approximations (Parker et al. 2016).
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3.4 Nuclear Forces Within LR-TDDFT

Excited-state dynamics using LR-TDDFT will also require the calculation
of nuclear forces. Among the different approaches developed for the calculation
of analytic derivatives, the Lagrangian method (Helgaker and Jørgensen 1989) is
of particular interest because of its numerical efficiency. However, the derivation of
LR-TDDFT forces is technically involved and goes beyond the scope of this chapter.
We refer the interested reader to the abundant literature on the subject (Pulay 1987;
Hutter 2003; Deglmann et al. 2002; Rappoport and Furche 2005; Marx and Hutter
2009).

4 Nuclear Dynamics: Trajectory-Based Quantum-Classical
Dynamics

In this section, different approaches to nonadiabatic electron-nuclear dynamics will
be presented, namely, the Ehrenfest scheme (Tully 1998), surface hopping (Tully
1990), the coupled-trajectory mixed quantum-classical (CT-MQC) method derived
from the exact factorization (Min et al. 2015), and full multiple spawning (Martínez
et al. 1996). Their common feature is the use of trajectories to explore the
nuclear configuration space, which are subject to the time-dependent effect of
the electrons in the ground state as well as in the excited states. The electronic
properties needed in the calculations can be determined on-the-fly based on ab
initio electronic structure methods. For the purpose of this work, TDDFT and its
LR formulation will be employed. Other approaches based on Bohmian trajectories
are also possible (Curchod et al. 2011; Curchod and Tavernelli 2013; Tavernelli
2013), but they will not be discussed in this book chapter.

Ehrenfest, surface hopping, and CT-MQC are based on a purely classical descrip-
tion of nuclear motion, which is coupled to the quantum-mechanical evolution of
the electrons. In the three approaches, a hypothesis is made to decompose the full
TDSE into two coupled equations, one describing the evolution of the electronic
subsystem and the other describing the evolution of the nuclear subsystem. The
main difference among them lies in the procedure followed for such decomposition.
In particular, only the exact factorization starts from an Ansatz for the molecular
wavefunction, which translates into exact coupled electronic and nuclear equations.
Only in a second step, the nuclear evolution is modeled using classical trajectories.
The full multiple spawning scheme, on the other hand, introduces an expansion
in terms of Gaussian wave packets to represent each nuclear coefficients χk(R, t)

of the Born-Huang expansion (4). The parameters of the Gaussians are evolved
classically, under the assumption that classical dynamics samples correctly the
nuclear configuration space. Indeed, in the limit of an infinite number of Gaussians,
full multiple spawning converges to an exact description of the electron-nuclear
problem.
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4.1 Ehrenfest Dynamics

To derive Ehrenfest decomposition, one makes the assumption that the full wave-
function can be written as a single product of a purely electronic Φ(r, t) and a purely
nuclear χ(R, t) wavefunction:

Ψ (r,R, t) = e
i
h̄

şt

0 dt ′EBO(t ′)
Φ(r, t)χ(R, t) . (58)

Here, the time-dependent phase on the right-hand side is inserted to simplify
the following equations derived from such an Ansatz; thus the energy EBO(t) is
chosen as

EBO(t) =
ż

drΦ∗(r, t)ih̄∂tΦ(r, t) . (59)

The product form of the molecular wavefunction in Eq. (58) is clearly uncorrelated,
and in this initial Ansatz lies the fundamental approximation of the Ehrenfest
scheme. When Eq. (58) is inserted into the molecular TDSE (1), the coupled
equations

[
T̂e(r)+ V̂ee(r)+

ż

dRχ∗(R, t)
[
V̂nn(R)+ V̂en(r,R)

]
χ(R, t)

]
Φ(r, t)

= ih̄∂tΦ(r, t) (60)
[
∑

v

−h̄2

2Mv

∇2
v +

ż

drΦ∗(r, t)ĤBO(r,R)Φ(r, t)

]
χ(R, t)

= ih̄∂tχ(R, t) (61)

are derived, by averaging over the instantaneous nuclear, in Eq. (60), and electronic,
in Eq. (61), state. In both equations, the wavefunctions Φ(r, t) and χ(R, t) are
supposed to be normalized. Therefore, Eq. (60) describes the evolution of the
electrons in the mean field created by the nuclei, whereas the nuclei move according
to Eq. (61) in the mean field of the electrons.

A quantum-classical algorithm can be derived from Eqs. (60) and (61) by
approximating classically the nuclear equation, that is, by determining the force
to propagate the nuclei as trajectories. A standard procedure can be followed, by
introducing a complex-phase representation of χ(R, t) and by only considering
terms O(h̄0) in the asymptotic expansion of the complex phase in powers of
h̄ (Van Vleck 1928). The equation for the zeroth order term S(R, t) of this expansion
is thus obtained, namely:

∂tS(R, t) = −
[
∑

v

[∇vS(R, t)]2
2Mv

+
ż

drΦ∗(r, t)ĤBO(r,R)Φ(r, t)

]
. (62)
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This Hamilton-Jacobi-like equation can be solved via characteristics, thus yielding
the expression of the classical (Ehrenfest) force as

Fv(t) = −∇v

ż

drΦ∗(r, t)ĤBO(r,R)Φ(r, t) . (63)

The classical approximation is also introduced in the electronic evolution
equation (60). Here, the nuclear density |χ(R, t)|2 is approximated as a product
of δ-functions centered at each time at the position of the classical nuclei, that is, at
the position of the classical trajectory R(I )(t). Therefore, the TDSE describing the
evolution of Φ(r, t) becomes

ĤBO

(
r,R(I )(t)

)
Φ
(

r,R(I )(t), t
)
= ih̄∂tΦ

(
r,R(I )(t), t

)
. (64)

The electronic wavefunction acquires an implicit dependence on the nuclear
positions, expressed as the classical trajectory, via the dependence of the BO
Hamiltonian on R(I )(t). The trajectory I of the nucleus v is determined by solving
Newton’s equation with force:

F(I )
v (t) =

ż

drΦ∗(r,R(I )(t), t)
[
−∇vĤBO(r,R(I )(t))

]
Φ(r,R(I )(t), t) , (65)

where now a label (I ) has been introduced to show that along a trajectory, Eqs. (64)
and (65) have to be evolved consistently. Multiple trajectories can also be employed,
to “wash out” some of the details of the coherent evolution along a single trajectory.
Nuclear and electronic observables can thus be determined as averages over this
ensemble of trajectories.

As it provides the true time-dependent electronic density, TDDFT can be used
within an Ehrenfest dynamics scheme to perform nonadiabatic molecular dynamics.
The mapping of the nuclear equation (Eq. (65)) into the DFT formalism is straight-
forward and only requires the description of the forces 〈−∇vĤBO(r,R(I )(t))〉 as a
functional of the time-dependent density ρ(r, t). If we replace the expectation value
of the electronic Hamiltonian with the DFT energy evaluated with the exchange-
correlation potential vxc[ρ]|ρ(r)←ρ(r,t), the gradient with respect to the nuclear
coordinates can be performed analytically as in the case of the adiabatic BO
dynamics and the Car-Parrinello (Car and Parrinello 1985) molecular dynamics
schemes (Marx and Hutter 2009).

4.1.1 Application of Ehrenfest Dynamics Combined with TDDFT
As Ehrenfest dynamics gives a direct access to electronic dynamics, it is a method
of choice to investigate the dynamics of the electronic density and subsequent
nuclear dynamics after a strong perturbation. Such perturbation can be induced
by the action of an external light pulse or through the collision with a highly
charged particle, generating either an electronic excitation or, in the some other
cases, electron abstraction (Tavernelli et al. 2005; Tavernelli 2006, 2015; Castro
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et al. 2004; Li et al. 2005; Yagi and Takatsuka 2005; Andrade et al. 2009; Moss et al.
2009; Liang et al. 2010; Gaigeot et al. 2010; Lopez-Tarifa et al. 2011; Elliott and
Maitra 2012). The latter takes place when an XUV attosecond pulse interacts with a
molecule and leads to a core ionization. In a Born-Huang picture, such an ultrafast
ionization leads to the generation of an electronic wave packet, i.e., the generation
of a coherent superposition of different nuclear contributions on a large number of
electronic states (the number of electronic states being considered depends on the
bandwidth of the ionizing pulse). Ehrenfest dynamics combined with TDDFT offers
an alternative to the Born-Huang picture by only requiring the generation of an
initial electronic density to represent the initial ionized state. Martín et al. employed
this strategy to study the role of nuclear motion in the electronic dynamics upon
XUV ultrafast ionization of a small amino acid, glycine (Lara-Astiaso et al. 2017).
The one-electron ionization generated by the sub-300-as XUV pulse generates an
electronic wave packet that can be described by a coherent superposition of more
than ten one-hole states, in an energy domain ranging from 17 to 35 eV (the pulse
bandwidth). The electronic density corresponding to this electronic wave packet,
ρ(r, t0), is used as initial condition for two simulations: (i) real-time TDDFT
with frozen nuclei and (ii) real-time TDDFT combined with Ehrenfest dynamics.
As a result of the nature of the electronic wave packet, the time evolution of
the unpaired electron (with respect to the initial density) shows that the electron
migrates over the entire molecular scaffold with a dynamics that is characterized
by only few, system dependent, frequencies (Fig. 1). This is the behavior that one
would expect in the case the ionized electron is removed from one given localized
orbital. Comparing the two panels of Fig. 1, one can observe that nuclear motion
starts altering the electronic dynamics already after the first 10 fs of dynamics,
emphasizing the importance of including nuclear dynamics in such simulations.
However, it is important to note that the mean-field character of Ehrenfest dynamics
might hamper a more detailed study of the electronic wave packet dynamics, in
particular due to the underestimation of decoherence and dephasing effects at longer
timescales (Vacher et al. 2017). The ease of the Ehrenfest formalism combined with

Fig. 1 Spin density differences at different times after interaction of a XUV attosecond pulse with
the glycine molecule. The initial conditions correspond to a geometry obtained after thermalization
at 100 K. (Adapted from Lara-Astiaso et al. 2017, Copyright (2017), with permission from
Elsevier)
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the efficiency of TDDFT offers nevertheless a valid tool for the study of the short-
time electronic wave packet dynamics in molecular systems.

4.2 Surface Hopping

Surface-hopping decomposition is derived under the preliminary assumption that
the nuclei evolve along classical trajectories. Therefore, the BO Hamiltonian
acquires an implicit time dependence via its dependence on the nuclear coordinates.
A TDSE is proposed in this way, namely:

ĤBO(R(I )(t))ΦR(I )(t)(r, t) = ih̄∂tΦR(I )(t)(r, t), (66)

for the electronic wavefunction, which is, itself, dependent on the classical trajecto-
ries. As done above, a classical trajectory is labeled by the index (I ). An expansion
in the adiabatic basis is introduced for ΦR(I )(t)(r, t):

ΦR(I )(t)(r, t) =
∑

k

Ck(t)ϕ
(k)

R(I )(t)
(r), (67)

and Eq. (66) yields

Ċ
(I )
k (t) = −i

h̄
ε
(k)
BO

(
R(I )(t)

)
C

(I)
l (t)−

∑

l

C
(I)
l (t)

Nn∑

v=1

P(I )
v (t)

Mv

· dv,kl

(
R(I )(t)

)
.

(68)

Here, the BO PES ε
(k)
BO (R) and the nonadiabatic coupling vectors, i.e.,

dv,kl(R) =
ż

drϕ
(k)
R
∗
(r)∇vϕ

(l)
R (r) =

〈
ϕ
(k)
R

∣∣∣ ∇vϕ
(l)
R

〉

r
, (69)

which are functions of the nuclear coordinates, are evaluated at the instantaneous
positions along the trajectories; they thus become functions of the trajectory itself.
Henceforth, a superscript (I ) will be introduced to indicate this dependence on the
trajectory.

The surface-hopping scheme takes its name from the idea suggested for the
evolution of the classical nuclear trajectories, namely, that a trajectory evolves
according to one adiabatic BO force, determined as (minus) the gradient of the BO
potential energy surface (PES), until a stochastic hop occurs onto another BO PES.
The classical (surface-hopping) force can then be written as

F(I )
v (t) = −∇vε

∗
BO, (70)
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with the symbol ∗ indicating that the force state is selected stochastically at each
time step. The discontinuity in the force, and thus in the potential energy, for a
given trajectory, is compensated by a discontinuity in the velocity, and thus in the
kinetic energy, that guarantees energy conservation. The hopping scheme fewest
switches (Tully 1990) prescribes that the trajectory I hops from surface k to surface
l according to the probability:

Pk→l = max

⎡

⎢⎣0,
−2 dt

∣∣∣C(I)
k (t)

∣∣∣
2

Re
[
C

(I)
k

∗
(t)C

(I)
l (t)

]∑

v

P(I )
v (t)

Mv

· d(I )
lk,v

⎤

⎥⎦ , (71)

with dt the integration time step.
The major drawback of the surface-hopping scheme is the (over)coherent evolu-

tion of the electronic coefficients coupled to the classical (independent) trajectories.
The issue has been well-documented in the literature (Subotnik et al. 2013; Bittner
and Rossky 1995; Curchod and Tavernelli 2013; Gao and Thiel 2017), and several
schemes have been proposed (Shenvi et al. 2011a, b; Shenvi and Yang 2012;
Subotnik and Shenvi 2011a, b; Jaeger et al. 2012; Jasper and Truhlar 2007; Granucci
and Persico 2007) to cure or alleviate this shortcoming.

4.2.1 Application of Surface Hopping Combined with LR-TDDFT
Surface hopping has been used to study a large number of excited-state mechanisms,
and we refer the interested reader to specialized reviews (Barbatti 2011; Curchod
et al. 2013; Persico and Granucci 2014) for a list of applications. The application
presented here highlights the combination of surface hopping with LR-TDDFT
(using the concepts developed in Sect. 3.2), including implicitly and explicitly
the role of spin-orbit coupling as well as explicit solvent effects. Ruthenium (II)
trisbipyridine, [Ru(bpy)3]2+, is an inorganic molecule recognized for its extremely
efficient intersystem crossing process, i.e., when the molecule changes, in this
particular case, from a singlet electronic state to a triplet electronic state (Cannizzo
et al. 2006; Gawelda et al. 2006). [Ru(bpy)3]2+ is initially photoexcited in a singlet
metal-to-ligand-charge-transfer (1MLCT) state before it rapidly relaxes among
other 1MLCT or 3MLCT, as a result of the high density of states; the overall
dynamics to the triplet states has been observed experimentally in water within a
∼50 fs timescale (Fig. 2).

In the first theoretical study (Tavernelli et al. 2011), the excited-state dynamics
of the [Ru(bpy)3]2+ in water was studied by employing surface hopping with
LR-TDDFT, in a QM/MM formalism where water molecules were treated clas-
sically. Intersystem-crossing events were analyzed a posteriori, monitoring the
crossings between singlet and triplet states and evaluating spin-orbit coupling from
qualitative rules. Owing to the cost of the overall dynamics, this study was limited
to only two trajectories. Nevertheless, both trajectories indicated an ultrafast decay
of the molecule toward triplet states in less than 50 fs, in good correlation with
experimental evidences. The MLCT character of the different excited states implies
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Fig. 2 Two surface-hopping trajectories for [Ru(bpy)3]2+ in water. The driving state is high-
lighted with blue circles, while the seven singlet excited states considered in the surface hopping
dynamics are represented by gray dashed lines and the seven triplet states by red continuous lines.
Filled circles indicate the analyzed crossings between singlet and triplet states, using the following
color coding: white = weak, gray = medium, and black = optimal SOC strength. The inset provides
a ball-and-stick representation of the [Ru(bpy)3]2+ molecule with part of its first water solvation
shell of water molecules for two selected frames (black arrows), highlighting the fast rotation of
a classical water molecule (in yellow) occurring during the dynamics. (Adapted from Tavernelli
et al. 2011, Copyright (2011), with permission from Elsevier)

that an electron moves from the central metal to one (or two, depending on the
state) solvent-exposed bipyridine ligands. Hence, the simulation showed that water
molecules in the first solvation shell can rapidly rearrange in a non-diffusive rotation
around the hydrogen bond axis to stabilize an extra charge located on a close ligand.
An explicit treatment of solvent molecules is central to capture such effects as well
as a proper ordering of the different electronic states.

In a more recent study (Atkins and González 2017), surface hopping combined
within LR-TDDFT was used to simulate the excited-state dynamics of [Ru(bpy)3]2+
in gas phase but with the explicit treatment of spin-orbit coupling in a pertur-
bative ZORA formalism (Wang and Ziegler 2005) and a larger number (101)
of trajectories. This study confirmed the ultrafast decay of the original 1MLCT
population toward triplet states, already at the early time of the dynamics. Horizontal
intersystem crossing processes were observed, followed by ultrafast nonadiabatic
dynamics among the triplet states (Fig. 3). Thanks to normal mode and principal
component analysis, the authors could identify that the motion of both the ruthenium
and the coordinated nitrogens is activated, even within such short timescale, leading
potentially to the intersystem crossing events.
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Fig. 3 Population trace of singlet (bluish) and triplet (brownish) states over 30 fs of surface
hopping (population of the three sublevels of each triplet are summed together). (Adapted with
permission from Atkins and González 2017, Copyright (2017) American Chemical Society)

4.3 Coupled-Trajectory Mixed Quantum-Classical Scheme

Within the exact factorization formalism, a trajectory-based solution of the elec-
tronic (11) and nuclear (12) equations is constructed by (i) determining the
classical limit of the nuclear equation, thus deriving the corresponding Newton’s
equation with forces computed from the time-dependent vector Av(R, t) and scalar
ε(R, t) potentials, (ii) introducing the Born-Huang-like expansion of Eq. (16) of the
electronic wavefunction, (iii) approximating the explicit dependence on the nuclear
wavefunction, i.e., the term −ih̄∇vχ(R, t)/χ(R, t) in the definition of the coupling
operator Û

coup
en [ΦR, χ ] (13) employing information obtained from the trajectories.

A thorough account of the steps adopted for the derivation of the algorithm is
given in Agostini et al. (2016). Following this procedure, the electronic and nuclear
equations of the exact factorization can be rewritten as

Ċ
(I )
l (t) = Ċ

(I )
Eh. l (t)+ Ċ

(I )
qm l (t) (72)

F(I )
v (t) = F(I )

Eh. v(t)+ F(I )
qm v(t) . (73)

The electronic equation yields a set of ordinary differential equations Ċ
(I )
l (t) for the

expansion coefficients in the Born-Huang expansion, each labeled by a superscript
(I ) indicating that they are calculated along the I−th classical trajectory. The
nuclear equation allows one to identify the classical force F(I )

v (t) acting on the v−th
nucleus that evolves along the I−th trajectory. Both equations can be decomposed
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as the sum of two terms: the first, indicated by Eh., comprises Ehrenfest-like terms,
while the second, qm, originates from the exact factorization. These last terms
depend on the so-called quantum momentum, whose expression is given below. The
Ehrenfest-like terms are

Ċ
(I )
Eh. l (t) =

−i

h̄
ε
(l)(I )
BO C

(I)
l (t)−

∑

k

C
(I)
k (t)

Nn∑

v=1

P(I )
v (t)

Mv

· d(I )
v,lk (74)

F(I )
Eh.,v(t)=−

∑

k

∣∣∣C(I)
l (t)

∣∣∣
2 ∇vε

(k),(I )
BO −

∑

k,l

C
(I)
l

∗
(t)C

(I)
k (t)

(
ε
(k),(I )
BO −ε

(l),(I )
BO

)
d(I )
v,lk,

(75)

where we introduced the symbols ε
(l)(I )
BO for the electronic adiabatic potential energy

surface corresponding to state l and evaluated at the position of the I−th trajectory,
d(I )
v,lk for the nonadiabatic coupling vectors defined as 〈ϕ(l)(I )|∇vϕ

(k)(I )〉r, as well

evaluated at the position of the trajectory I , and P(I )
v (t) for the classical momentum

of the v−th nucleus evolving along the I−th trajectory. The additional terms in
Eqs. (72) and (73), namely:

Ċ
(I )
qm l (t) = −

Nn∑

v=1

Q(I )
v (t)

h̄Mv

·
[
∑

k

∣∣∣C(I)
k (t)

∣∣∣
2

f(I )k,v(t)− f(I )l,v (t)

]
C

(I)
l (t), (76)

F(I )
qm v(t) = −

∑

l

∣∣∣C(I)
l (t)

∣∣∣
2
(

Nn∑

v′=1

2

h̄Mv′
Q(I )

v′ (t) · f(I )l,v′(t)

)

[
∑

k

∣∣∣C(I)
k (t)

∣∣∣
2

f(I )k,v(t)− f(I )l,v (t)

]
, (77)

can be derived only in the context of the exact factorization, as they both
depend on the quantum momentum (Garashchuk and Rassolov 2003) Q(I )

v (t) =
−h̄(∇v|χ(I)(t)|2)/(2|χ(I)(t)|2). Here, |χ(I)(t)|2 stands for the value of the nuclear
density evaluated at the position of the I−th trajectory. The quantum momentum
appears in the expression of Û

coup
en [ΦR, χ ] as a purely imaginary correction to the

(real-valued) classical momentum. As exhaustively described in Agostini et al.
(2016), the evaluation of the quantum momentum along the I−th trajectory at a
given time requires knowledge of the positions of all other trajectories at the same
time. This peculiar feature couples the trajectories in a nontrivial manner, thus
allowing for the correct description of quantum decoherence effects. The additional
new quantities appearing in Eqs. (76) and (77) are the adiabatic forces accumulated
over time f(I )l,v (t) = −

şt
dt ′∇vε

(l),(I )
BO .

The electronic structure inputs required in the propagation of the CT-MQC
equations of motion are the Born-Oppenheimer energies and the nonadiabatic
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coupling vectors. Any electronic structure methods providing these quantities can
therefore be used in combination with CT-MQC. In the following, we make the
choice of employing LR-TDDFT.

4.3.1 Applications
As an application of the CT-MQC approach, we report the analysis presented
in Min et al. (2017) and Curchod et al. (2018) where the photoinduced ring-
opening process in oxirane (Cordova et al. 2007; Tapavicza et al. 2008) triggered
by the excitation from S0 to S2. The following discussion is based on Curchod
et al. (2018). Electronic structure calculations are performed with the CPMD code
using the GGA functional PBE (Perdew et al. 1996) for ground state and excited
states. Linear-response TDDFT calculations are based on the Tamm-Dancoff
approximation (Tamm 1945; Dancoff 1950). The Kleinman-Bylander (Kleinman
and Bylander 1982) pseudo-potential has been used for all atom species together
with a plane-wave cutoff of 70 Ry. Initial conditions, i.e., positions and momenta,
have been sampled from an ab initio ground-state 2 ps trajectory at 300 K. Ntr=100
trajectories are propagated with a time step of 0.12 fs (5 a.u.).

Figure 4 shows the electronic populations (upper panel) and an indicator of deco-
herence (lower panel), both quantities averaged over the 100 coupled trajectories. As
indicated in Eq. (72), the coefficients in the expansion of the electronic wavefunction
are labeled by the trajectory index (I ); therefore the average population can be
determined as

ρk(t) = 1

Ntr

Ntr∑

I=1

∣∣∣C(I)
k (t)

∣∣∣
2

for k = 1, 2 . (78)

Between 7 and 15 fs, the trajectories cross the coupling region S1/S2; thus popula-
tion is transferred from the initially occupied electronic state S2 to S1. After about
20 fs, the nonadiabatic event is almost complete, and some trajectories evolving in
S1 will encounter a second coupling region S0/S1, as it is clearly shown by the
increase of population of S0 (and consequent decrease of population of S1) at about
25 fs.

Similarly to Eq. (78), the indicator of decoherence introduced in Agostini et al.
(2016), and Min et al. (2015, 2017) is computed between the states S1 and S2 as an
average over the trajectories:

η12(t) = 1

Ntr

Ntr∑

I=1

∣∣∣C(I)
1
∗
(t)C

(I)
2 (t)

∣∣∣
2
. (79)

The quantity C
(I)
1
∗
(t)C

(I)
2 (t) stands for the off-diagonal element of the electronic

density matrix in the adiabatic representation between the first two excited states and
depends on nuclear positions through the dependence on the trajectory index (I ).
The decoherence indicator depends on the choice of the representation used to
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Fig. 4 Upper panel: electronic populations of S0 (dark-green line), S1 (red line), and S2 (blue
line) as functions of time. Lower panel: (normalized) indicator of decoherence for the element
S1/S2 (black line) and its decomposition contributions arising from three sets of trajectories. The
sets of trajectories labeled by C1O (dashed orange line) and C2O (dashed green line) lead to a
final configuration where the oxirane ring opens via the breaking of one of the two equivalent CO
bonds; the set of trajectories labeled C1C2 (dashed purple line) yields final configurations where
the ring opens via elongation of the CC bond

describe the electronic states. Our particular choice has fallen on the adiabatic
representation, which is a natural choice since the dynamics is simulated in the
adiabatic basis. Furthermore, this indicator of decoherence contains information
simultaneously about electronic coherences and nuclear dynamics, via the para-
metric dependence of the adiabatic basis on the nuclear coordinates. Decoherence
can thus be related to the spatial separation in configuration space of different
bundles of trajectories (and thus of different wave packets), which “loose memory”
of each other while evolving along diverging paths after funneling through the
conical intersection. As abundantly discussed in the literature (Jasper et al. 2006;
Granucci and Persico 2007; Jaeger et al. 2012; Subotnik et al. 2013; Gao and Thiel
2017; Schwartz et al. 1996; Fang and Hammes-Schiffer 1999; Granucci and Persico
2007; Shenvi et al. 2011a, b; Shenvi and Yang 2012; Subotnik and Shenvi 2011a,
b; Agostini et al. 2016; Min et al. 2015, 2017), Ehrenfest dynamics and surface
hopping (in their standard formulations) are not able to capture the decay of such
quantity, observed here between 15 and 25 fs.
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Additional information on the dynamics can be extracted from the analysis
of the indicator of decoherence of Fig. 4. In fact, the pronounced double-peak
structure suggests that two groups of trajectories funnel through the S1/S2 conical
intersection at subsequent times. In order to interpret this observation, the indicator
of decoherence has been decomposed in different contributions (represented by the
colored curves in the lower panel of Fig. 4) arising from the different paths followed
by the trajectories after crossing the conical intersection S1/S2. The structures
identified at the end of the simulated trajectories are (i) a right-open ring structure
(observed with probability 36%), (ii) a left-open ring structure (observed with
probability 47%), (iii) a CC-extended bond structure (observed with probability
10%), and (iv) a closed-ring structure (observed with probability 7%). Structures
(i) and (ii) are indeed equivalent; thus the difference in the probabilities can be
probably cured by improving the statistics. These structures yield the ring-opening
of oxirane via breaking of one of the two CO bonds. In structure (iii), the oxirane
ring opens via the elongation of the CC bond. A few trajectories, identified as
structure (iv), are not reactive, since the molecule more or less stays in its original
configuration. If the indicator of decoherence is decomposed in contributions
arising from trajectories ending in structures (i), (ii), or (ii), we observe that the
first peak between 6 and 12 fs is produced by a first bundle of trajectories that
leads to the breakage of the equivalent CO bonds. However, the η12(t) curves do
not decay monotonically. Instead, the curves corresponding to the C1O and C2O
groups both contribute to the second peak (between 12 fs and 17.5 fs). This feature
indicates that the first group of trajectories is reached by a second group while
funneling through the conical intersection. The main contribution to the second
peak between 12 and 16 fs is given by trajectories yielding a final CC-extended
bond structure. These trajectories clearly encounter the nonadiabatic region with
some delay if compared to the sets of trajectories analyzed before. Here, the
indicator of decoherence is clearly single peaked, suggesting that the corresponding
trajectory bundle undergoes a transition through the S1/S2 conical intersection in a
single step.

Observation of different final structures is related to the different paths undergone
by the trajectories after crossing the S1/S2 region of nonadiabatic coupling.
Two representative trajectories have been selected among the 100, one yielding
a right-open ring structure (i) and one yielding a CC-extended bond configu-
ration (iii). Clearly, the analysis presented for the right-open ring structure can
be applied also to the equivalent left-open ring structure (ii). In Fig. 5 (upper
panels), we show the electronic populations |C(I)

k (t)|2 as functions of time and
for the selected trajectories, along with the energy profiles (lower panels) of the
three adiabatic states considered here and the gauge-invariant (GI) part of the
TDPES (the first two terms on the right-hand side of Eq. (14)). The TDPES
provides information about the “active” electronic state: if one wants to connect
the interpretation of the dynamics based on the exact factorization to the standard
perspective in terms of wave packets evolving “on” different adiabatic surfaces, it
is instructive to compare the TDPES with the BO PES, as done in Fig. 5 (lower
panels).



106 F. Agostini et al.

Fig. 5 Upper panels: populations of the electronic states S0, S1, and S2 as functions of time for
two selected trajectories of type (i) (left) and of type (iii) (right). The color code is the same used in
Fig. 4. Lower panels: energy profiles (in eV) along the selected trajectories, as in the upper panels.
The zero is set to be the value of the energy of S0 at time t = 0 fs. In the upper panels, a ball-stick
representation of oxirane at the final time is shown, whereas in the lower panels, the configurations
at the time of electronic population exchange are shown

The upper panels of Fig. 5 confirm that the coupling region is encountered by
trajectories of type (iii) (right panels) at later times if compared to trajectories of
type (i) or (ii) (left panels). Additionally, the S2/S1 population exchange is very
sharp for type (i) and smooth for (iii). Observing the TDPES, we can argue that after
about 5 fs, trajectories (i) encounter a steep S2 potential, which directs them toward
the conical intersection. Trajectories (iii) are trapped in a region of flat potential,
which prevents them from a fast de-excitation to S1. Subsequently, very different
paths are undertaken, and thus different regions of the S1 PES are explored. Toward
the end of the simulated dynamics, only trajectories of type (i) are expected to relax
to the ground state S0, as confirmed by the closing of the energy gap between S0
and S1 at 25 fs (lower left panel of Fig. 5). At this time, the trajectory of type (iii)
is evolving on a portion of the BO PES S1 that is located at about 4 eV from the
ground state.

4.4 Full and Ab Initio Multiple Spawning

4.4.1 Full Multiple Spawning
Full multiple spawning (FMS) (Martínez et al. 1996; Martínez and Levine 1997;
Ben-Nun and Martínez 1998, 2002; Ben-Nun et al. 2000; Hack et al. 2001; Virshup
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et al. 2008) proposes to expand the nuclear amplitudes in the Born-Huang expansion
in a linear combination of frozen multidimensional Gaussian functions (Heller
1981). But these Gaussians functions do not form a static grid; on the contrary, they
are evolving over time in both position and momentum space to better adapt to the
evolution of the nuclear wavefunctions, forming a set of trajectory basis functions
(TBFs):

Ψ (r,R, t) =
∑

k

NTBFs,k∑

I

C
(k)
I (t)χ̃

(k)
I

(
R;R

(k)

I (t),P
(k)

I (t), γ
(k)
I (t),α

)
ϕ
(k)
R (r) ,

(80)

where C
(k)
I (t) is the complex coefficient for the TBF I evolving on electronic

state (k) (used here as a label) and χ̃
(k)
I

(
R;R

(k)

I (t),P
(k)

I (t), γ
(k)
I (t),α

)
is the

traveling multidimensional Gaussian I on state (k) with mean position R
(k)

I (t),

momenta P
(k)

I (t), phase γ
(k)
I (t), and frozen width α. In FMS, the TBFs follow

classical trajectories, i.e., R(t) and P(t) are propagated according to Hamilton’s
equation of motion (and the phase is integrated semi-classically). We note that this
classical propagation of the TBFs does not imply that the method is semiclassical
in itself, as the TBFs are only a support for the propagation of the nuclear
wavefunctions. Indeed, in the limit of a large number of TBFs (NTBFs), the
FMS expansion would be exact. In fact, in the limit of an infinite number of
Gaussian functions, their dynamics is redundant, and we have a (infinitely fine)
grid. We note that other methods were proposed where the TBFs follow Ehrenfest
trajectories (Shalashilin 2009, 2010; Saita and Shalashilin 2012; Makhov et al.
2017) (multiconfiguration Ehrenfest, MCE) or quantum trajectories (Worth et al.
2004, 2008; Lasorne et al. 2006, 2007; Mendive-Tapia et al. 2012; Richings et al.
2015) (variational Multiconfiguration Gaussian, vMCG), as well as mixed strategies
(Makhov et al. 2014; Meek and Levine 2016; Izmaylov and Joubert-Doriol 2017;
Joubert-Doriol et al. 2017).

One can express the time-dependent Schrödinger equation (1) in the basis of
TBFs by inserting Eq. (80) in the former, left multiplying by

[
χ̃

(l)
J

(
R;R

(l)

J (t),P
(l)

J (t), γ
(l)
J (t),α

)
ϕ
(l)
R (r)

]∗

and integrating over both nuclear and electronic coordinates, leading, in atomic
units, to (Ben-Nun and Martínez 2002):

d

dt
Cl (t) = −i(S−1

ll )

⎡

⎣[Hll − iṠll

]
Cl +

∑

k �=l

HlkCk

⎤

⎦ . (81)
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for each electronic state l considered. The nonorthonormality of the Gaussian basis
results in overlap matrices Sll and Ṡll , with elements (Sll )J I = 〈χ̃ (l)

J |χ̃ (l)
I 〉R and(

Ṡll

)
J I
= 〈χ̃ (l)

J | ∂∂t χ̃ (l)
I 〉R. We note that in Eq. (81) Slk = Ṡlk = 0, ∀l �= k, due to the

orthonormality of the electronic basis.
As mentioned earlier, the trajectories in FSSH are uncoupled. This is not the case

in FMS, and TBFs are coupled thanks to the Hamiltonian matrix H in Eq. (81). Let
us consider the Hamiltonian matrix element between two TBFs J and I evolving in
adiabatic electronic states:

HIJ
kl =〈χ̃ (k)

I |T̂nuc|χ̃ (l)
J 〉Rδkl + 〈χ̃ (k)

I |ε(k)BO |χ̃ (l)
J 〉Rδkl

− 〈χ̃ (k)
I |

3N∑

ρ=1

1

Mρ

〈ϕ(k)
R | ∂

∂Rρ

|ϕ(l)
R 〉r

∂

∂Rρ

|χ̃ (l)
J 〉R

− 〈χ̃ (k)
I |

3N∑

ρ=1

1

2Mρ

〈ϕ(k)
R | ∂2

∂R2
ρ

|ϕ(l)
R 〉r|χ̃ (l)

J 〉R (82)

If the two TBFs are in the same electronic state k, they will be coupled via the
first two terms on the r.h.s of Eq. (82): the nuclear kinetic energy operator and the
(adiabatic) electronic energy. If the two TBFs belong to different electronic states
k and l, then a term containing the nonadiabatic coupling vectors (third term on
the r.h.s) and the second-order nonadiabatic couplings (fourth term on the r.h.s of
Eq. (82)) will ensure their coupling. We note that the diagonal second-order nona-
diabatic couplings (also known as “diagonal Born-Oppenheimer correction”) will
contribute an additional intrastate coupling. FMS can easily incorporate additional
source of couplings between TBFs like spin-orbit coupling (Curchod et al. 2016b),
tunneling effects (Ben-Nun and Martínez 2000), or an external electromagnetic
field (Mignolet et al. 2016), for example.

4.4.2 Spawning Algorithm
Up to this point, we have discussed the formal equations of FMS when a large
number of TBFs is considered. However, FMS, as its name indicates, proposes to
replace the large number of trajectory basis functions by an algorithm, coined the
spawning algorithm, that will adapt the size of the basis set dynamically during
the simulation. In other words, the spawning algorithm proposes the following
alteration: NTBFs → NTBFs(t). In short, a TBF is evolving on a given PES, and as
soon as a sizable coupling with a different electronic state is recorded, a spawning
mode is triggered and will determine if, where, and when a new TBF should be
created (“spawned”) on the coupled state to maximize the coupling with the existing
TBF and, therefore, the description of nonadiabatic transitions. Different versions of
the spawning algorithm have been proposed, and the interested reader is encouraged
to read Ben-Nun and Martínez (2002) and Yang et al. (2009) for more information.
It is perhaps important to note at this stage that the time dependence of the number
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of TBFs, NTBFs(t), implies that the size of matrices and vectors in Eq. (81) will
vary during the dynamics.

4.4.3 Ab Initio Multiple Spawning
FMS is in principle exact. However, the coupling between TBFs given in Eq. (82)
implies integration, and therefore knowledge, of electronic structure properties
like PESs or nonadiabatic couplings over the full nuclear configuration space.
Approximations are, therefore, needed to treat molecular systems in their full
dimensionality. Let us start by performing a Taylor expansion of the electronic
quantity of interest (e.g., here the electronic energy) around the centroid position

of two TBFs J and I evolving in electronic state k: R
(kk)

J I = R
(k)

J +R
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I

2 :
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+
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Owing to the locality of Gaussian functions, one will consider that, to a
good approximation, only the term of order zero can be retained; in other words

ε
(k)
BO(R) ≈ ε

(k)
BO

(
R

(kk)

J I

)
(Ben-Nun and Martínez 2002). This approximation,

called the saddle-point approximation of order zero (SPA0), strongly simplifies the
coupling between TBFs as the Hamiltonian matrix elements become

HIJ
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J 〉Rδkl + ε
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|χ̃ (l)
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(note that we also dropped the terms depending on second-order couplings). Hence,
calculating the coupling between TBF J and I only requires the extra calculation of
electronic structure quantities at their mutual centroid position, which can easily
be achieved in an on-the-fly dynamics scheme. The SPA0 allows to port the in
principle exact framework of FMS to the nonadiabatic dynamics of molecules.
The resulting nonadiabatic method within the SPA0 is often called ab initio
multiple spawning (AIMS). (We note that an additional approximation is commonly
employed within AIMS – the independent first generation approximation – that
approximates the initial nuclear wave packet at time t = 0 by a set of inde-
pendent parent TBFs, i.e., coupling between parent TBFs is neglected. Couplings
between all the TBFs spawned by each parent TBF are preserved (Ben-Nun and
Martínez 2002)). AIMS has been coupled with different level of electronic structure



110 F. Agostini et al.

like SA-CASSCF (Levine et al. 2008), MS-CASPT2 (Tao et al. 2009), FOMO-
CASCI (Pijeau et al. 2017), or LR-TDDFT (Curchod et al. 2017).

4.4.4 Applications
AIMS has recently (Curchod et al. 2017) been interfaced with an implementation of
LR-TDDFT accelerated by graphical processing units (GPUs) (Isborn et al. 2011),
offering an important speedup for the calculation of electronic energies, analytical
gradients, and nonadiabatic coupling terms. The combination of AIMS and GPU-
accelerated LR-TDDFT was employed to shed light on the excited-state dynamics
of 4-N,N’-dimethylaminobenzonitrile (DMABN). DMABN is a molecule known to
exhibit dual fluorescence depending on its environment, and it was proposed that
the nature of the two emitting states is correlated with a twist of the dimethylamino
(DMA) group (Grabowski et al. 2003) (see molecular structure in the inset of Fig. 6).
However, DMABN is photoexcited into its second excited state, S2, and relaxes to
the first excited state S1 where emission will occur at a later time. One question is
then: does the S2/S1 nonadiabatic dynamics imply a twist of the DMA group, which
could potentially have an influence on the fate of the molecule at later time in the
S1 state? Early static calculations have predicted that the S2/S1 transfer should be
fast and that a twist of the DMA was not required for the nonadiabatic transition
to occur (Gómez et al. 2005). AIMS combined with GPU-accelerated LR-TDDFT
confirmed that the S2 population decays to S1 in less than < 50 fs (blue line, left
panel of Fig. 6). Also, the transfer of the nuclear wave packet to S1 is not correlated

Fig. 6 Left panel: Population traces (with standard errors) of the different electronic states
considered in the AIMS/LR-TDDFT dynamics. The gray dashed line indicates the number of TBFs
during the dynamics. Right panel: Twist angle of the DMA group for the entire swarm of TBFs. The
line width is proportional to the TBF population. Inset: representation of the DMABN molecule,
with the DMA group highlighted in red. (Adapted with permission from Curchod et al. 2016c.
Copyright (2016) American Chemical Society)
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with the torsion of the DMA group, as showed by the projection of the TBFs on the
twist coordinate (right panel of Fig. 6). The DMA group in fact starts its rotation
only after the molecule reached S1 (t > 50 fs, see right panel of Fig. 6), and such
a transfer implies a change in the electronic character of the wave packet from
charge transfer in S2 around the Franck-Condon region to locally excited after the
nonadiabatic transfer to S1. On a more technical note, the gray dashed line on the left
panel of Fig. 6 indicates the number of TBFs during the AIMS dynamics. Starting
from 21 parent TBFs, the spawning algorithm rapidly creates a large amount of
child TBFs to ensure a good basis for the propagation in the different nonadiabatic
regions encountered.

5 Conclusions

The aim of this chapter has been to provide a broad overview of quantum molecular
dynamics methods to simulate nonadiabatic phenomena in isolated and condensed
phase systems, adopting a quantum-classical perspective. The combination of
classical and quantum-mechanical approaches is, in fact, capable to describe, accu-
rately and efficiently, dynamical processes involving electronic excited states. The
assumption that a good description of the nuclear dynamics can be achieved based
on classical mechanics is based on the fact that at the molecular scale, atoms (usually
heavier than a proton) are associated to a relatively short de Broglie wavelength, e.g.,
shorter than the typical scale of variation of the potential. Electrons, on the other
hand, require a purely quantum-mechanical description, which in this work has been
achieved using the framework of time-dependent density functional theory. The
challenges faced in the development of theoretical and numerical approaches for
nonadiabatic dynamics are copious, justifying the rise over the years of a multitude
of strategies to tackle these types of problems, some of which have been described
in this review chapter.

TDDFT has emerged as a very powerful method to describe electronic excited-
state dynamics, both for molecular systems and in condensed phase. TDDFT
describes the evolution of the electronic density in a time-dependent external
potential, and within the linear-response regime, LR-TDDFT allows the calculation
of excited-state properties, e.g., energies, forces, and nonadiabatic couplings at a
modest computational cost. The straightforward combination of the fundamental
TDDFT theorem (leading to the time-dependent Kohn-Sham equations) with the
classical motion of the nuclei gives rise to the conceptually simple Ehrenfest
dynamics scheme. We described some of its applications to molecular processes
involving explicit time-dependent electronic wave packet dynamics, pointing out its
limitations related to the mean-field character of the underlying approximations.

The strong interplay of electronic and nuclear motion is, however, highly nontriv-
ial, and effects beyond the mean-field approximations are difficult to capture with
trajectory-based approaches. In particular, the accurate description of the electronic
“nonadiabatic effects” on the nuclear dynamics requires the derivation of a suitable
theoretical framework that enables the separation of electronic and nuclear motions.
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Building on the TDDFT or LR-TDDFT description of the electronic dynamics
within either the Born-Huang or the exact factorization framework, we have then
reviewed three quantum-classical nonadiabatic simulation techniques that extend
beyond the mean-field Ehrenfest approach, namely, surface hopping, coupled-
trajectory mixed quantum-classical dynamics, and multiple spawning, along with
some of their recent applications. The common denominator of all these techniques
is that they combine “on-the-fly” trajectory-based dynamics with the computational
advantages of TDDFT.

In the past years, large progresses have thus been accomplished in mixed
quantum-classical nonadiabatic dynamics, and we hope that this chapter will
help newcomers to engage in this exciting field of research. We believe that
TDDFT-based nonadiabatic dynamics can become the method of choice for treating
photochemical and photophysical processes of complex molecular systems in the
gas and condensed phases. While it is hard to predict the outcome of current
and future developments, the improvement of the exchange-correlation functionals,
for instance, going beyond the adiabatic approximation, is one of the key issues
that should be addressed, aiming to get more reliable excited-state energies,
nonadiabatic couplings, nuclear forces, and electronic dissipation effects.Finally, the
development of coupling schemes to describe the interaction with electromagnetic
fields described quantum mechanically is underway (Flick et al. 2017a, b; Dimitrov
et al. 2017) and will open new research areas in the field of cavity quantum
electrodynamics.
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Abstract

The auxiliary-field quantum Monte Carlo (AFQMC) method provides a com-
putational framework for solving the time-independent Schrödinger equation in
atoms, molecules, solids, and a variety of model systems by stochastic sampling.
We introduce the theory and formalism behind this framework, briefly discuss
the key technical steps that turn it into an effective and practical computational
method, present several illustrative results, and conclude with comments on the
prospects of ab initio computation by this framework.
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1 Introduction

Predicting materials properties requires robust and reliable calculations at the most
fundamental level. Often the effects being studied or designed originate from
electron correlations, and small errors in their treatment can result in crucial
and qualitative differences in the properties. The accurate treatment of interacting
quantum systems is one of the grand challenges in modern science. In condensed
phase materials, the challenge is increased by the need to account for the interplay
between the electrons and the chemical and structural environment. Progress in
addressing this challenge will be fundamental to achieving the materials genome
initiative.

Explicit solution of the many-body Schrödinger equation leads to rapidly grow-
ing computational cost as a function of system size (see, e.g., Szabo and Ostlund
1989). To circumvent the problem, most computational quantum mechanical studies
of large, realistic systems rely on simpler independent-particle approaches based
on density-functional theory (DFT) (see, e.g., Kohn 1999; Martin 2004), using
an approximate energy functional to include many-body effects. These replace
the electron-electron interaction by an effective potential, thereby reducing the
problem to a set of one-electron equations. Methods based on DFT and through
its Car-Parrinello molecular dynamics implementation (Car and Parrinello 1985)
have been extremely effective in complex molecules and solids (Kohn 1999). Such
approaches are the standard in electronic structure, widely applied in condensed
matter, quantum chemistry, and materials science.

Despite the tremendous successes of DFT, the treatment of electronic cor-
relation is approximate. For strongly correlated systems (e.g., high-temperature
superconductors, heavy-fermion metals, magnetic materials, optical lattices), where
correlation effects from particle interaction crucially modify materials properties,
the approximation can lead to qualitatively incorrect results. Even in moderately
correlated systems when the method is qualitatively correct, the results are some-
times not sufficiently accurate. For example, in ferroelectric materials the usually
acceptable 1% errors in DFT predictions of the equilibrium lattice constant can lead
to almost full suppression of the ferroelectric order.

The development of alternatives to independent-particle theories is therefore
of paramount fundamental and practical significance. To accurately capture the
quantum many-body effects, the size of the Hilbert space involved often grows
exponentially. Simulation methods utilizing Monte Carlo (MC) sampling (Kalos
et al. 1974; Foulkes et al. 2001; Ceperley 1995; Blankenbecler et al. 1981; Sugiyama
and Koonin 1986; Zhang and Krakauer 2003) are, in principle, both non-perturbative
and well-equipped to handle details and complexities in the external environment.
They are a unique combination of accuracy, general applicability, favorable scaling
(low-power) for computational cost with physical system size, and scalability on
parallel computing platforms (Esler et al. 2008).

For fermion systems, however, a so-called “sign” problem (Schmidt and Kalos
1984; Loh et al. 1990; Zhang 1999a) arises in varying forms in these MC simulation
methods. The Pauli exclusion principle requires that the states be antisymmetric
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under interchange of two particles. As a consequence, negative signs appear, which
cause cancelations among contributions of the MC samples of the wave function
or density matrix. In some formalism, as discussed below, a phase appears which
leads to a continuous degeneracy and more severe cancelations. As the temperature
is lowered or the system size is increased, such cancelation becomes more and
more complete. The net signal thus decays exponentially versus noise. The algebraic
scaling is then lost, and the method breaks down. Clearly the impact of this problem
on the study of correlated electron systems is extremely severe.

In this chapter, we discuss the auxiliary-field quantum Monte Carlo (AFQMC)
method for many-body computations in real materials. We cast the MC random
walks in a space of over-complete Slater determinants, which significantly reduce
the severity of the sign problem. In this space we formulate constraints on the
random walk paths which lead to better approximations that are less sensitive to
the details of the constraint. We then develop internal checks and constraint release
methods to systematically improve the approach. These methods have come under
the name of constrained path Monte Carlo (CPMC) (Zhang et al. 1997) for systems
where there is a sign problem (e.g., Hubbard-like models where the auxiliary
fields are real due to the short-ranged interactions). For electronic systems where
there is a phase problem (as the Coulomb interaction leads to complex fields), the
methods have been referred to as phaseless AFQMC (Zhang and Krakauer 2003;
Al-Saidi et al. 2006; Motta and Zhang 2018). Here we will refer to the method as
AFQMC; when necessary to emphasize the constrained-path (CP) approximation
to distinguish the method from unconstrained free-projection, we will refer to it as
CP-AFQMC.

2 Formalism

The Hamiltonian for any many-fermion system with two-body interactions (e.g.,
the electronic Hamiltonian under the Born-Oppenheimer approximation) can be
written as

Ĥ = Ĥ1 + Ĥ2 = − h̄2

2m

M∑

m=1

∇2
m +

M∑

m=1

Vext(rm)+
M∑

m<n

Vint(rm − rn) , (1)

where rm is the real-space coordinate of the m-th fermion. The one-body part of
the Hamiltonian, Ĥ1, consists of the kinetic energy of the electrons and the effect
of the ionic (and any other external) potentials. (We have represented the external
potential as local, although this does not have to be the case. For example, in plane-
wave calculations, we will use a norm-conserving pseudopotential, which will lead
to a nonlocal function Vext.) The two-body part of the Hamiltonian, Ĥ2, contains
the electron-electron interaction terms. The total number of fermions, M , will be
fixed in the calculations we discuss. For simplicity, we have suppressed spin-index,
but the spin will be made explicit when necessary. In that case, Mσ is the number
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of electrons with spin σ (σ =↑ or ↓). We assume that the interaction is spin-
independent, so the total Sz, defined by (M↑ − M↓), is fixed in the calculation,
although it will be straightforward to generalize our discussions to treat other cases,
for example, when there is spin-orbit coupling (SOC) (Rosenberg et al. 2017).

With any chosen one-particle basis, the Hamiltonian can be written in second
quantization in the general form

Ĥ = Ĥ1 + Ĥ2 =
N∑

i,j

Tij c
†
i cj +

1

2

N∑

i,j,k,l

Vijklc
†
i c

†
j ckcl , (2)

where the one-particle basis, {|χi〉} with i = 1, 2, · · · , N , can be lattice sites
(Hubbard model), plane waves (as in solid state calculations) (Suewattana et al.
2007), Gaussians (as in quantum chemistry) (Al-Saidi et al. 2006; Purwanto et al.
2011), etc. The operators c

†
i and ci are creation and annihilation operators on |χi〉,

satisfying standard fermion commutation relations. The one-body matrix elements,
Tij , contain the effect of both the kinetic energy and external potential, while the
two-body matrix elements, Vijkl , are from the interaction. The matrix elements are
expressed in terms of the basis functions, for example,

Vijkl =
ż

dr1dr2χ
∗
i (r1)χ

∗
j (r2)Vint(r1 − r2)χk(r2)χl(r1) . (3)

In quantum chemistry calculations, these are readily evaluated with standard
Gaussian basis sets. In solid state calculations with plane waves, the kinetic and
electron-electron interaction terms have simple analytic expressions, while the
electron-ion potential leads to terms which are provided by the pseudopotential
generation. We will assume that all matrix elements in Eq. (2) have been evaluated
and are known as we begin our many-body calculations.

2.1 Non-orthogonal Slater Determinant Space

The AFQMC method seeks to obtain the ground state of the Hamiltonian in Eq. (2),
representing it stochastically in the form

|Ψ0〉 =
∑

φ

αφ |φ〉 , (4)

where |φ〉 is a Slater determinant:

|φ〉 ≡ ϕ̂
†
1 ϕ̂

†
2 · · · ϕ̂†

M |0〉 . (5)

In Eq. (5), the operator ϕ̂
†
m ≡ ∑

i c
†
i ϕi,m, with m taking an integer value

among 1, 2, · · · ,M , creates an electron in a single-particle orbital ϕm: ϕ̂
†
m|0〉 =∑

i ϕi,m|χi〉. The content of the orbital can thus be conveniently expressed as an
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N -dimensional vector {ϕ1,m, ϕ2,m, · · · , ϕN,m}. The Slater determinant |φ〉 in Eq. (5)
can then be expressed as an N ×M matrix:

Φ ≡

⎛

⎜⎜⎜⎝

ϕ1,1 ϕ1,2 · · · ϕ1,M

ϕ2,1 ϕ2,2 · · · ϕ2,M
...

...
...

ϕN,1 ϕN,2 · · · ϕN,M

⎞

⎟⎟⎟⎠ .

Each column of this matrix represents a single-particle orbital that is completely
specified by its N -dimensional vector. For convenience, we will think of the
different columns as all properly orthonormalized, which is straightforward to
achieve by, for example, modified Gram-Schmidt (see e.g., Zhang 2003, 2013;
Motta and Zhang 2018).

The mean-field Hartree-Fock (HF) solution is of course an example of a Slater
determinant: |φHF〉 = ∏

σ |φσ
HF〉, where |φσ

HF〉 is defined by a matrix Φσ
HF whose

columns are the Mσ lowest HF eigenstates. Similarly, the occupied manifold in a
DFT calculation forms a “wave function” which is a Slater determinant.

In standard quantum chemistry (QC) methods, the many-body ground-state wave
function is also represented by a sum of Slater determinants. However, there is a key
difference between it and the AFQMC representation. In QC methods, the different
Slater determinants are orthogonal. As illustrated in the left panel in Fig. 1, each
of the determinants is formed by excitations from the HF determinant. In other
words, each |φ〉 on the right-hand side of Eq. (4) is given by a set of M molecular
orbitals (MOs), and the corresponding matrix is formed by orthonormal unit vectors.
In contrast, in AFQMC the different Slater determinants on the right-hand side
of Eq. (4) are not orthogonal: 〈φ′|φ〉 �= 0. They are obtained by rotations of the
occupied orbitals using one-body Hamiltonians involving random auxiliary fields
(see further details below), as illustrated in the right panel in Fig. 1.

Several properties of non-orthogonal Slater determinants are worth mentioning.
The overlap between two of them is given by

〈φ|φ′〉 = det
(
Φ†Φ ′

)
. (6)

We can define the expectation of an operator Ô with respect to a pair of non-
orthogonal Slater determinants:

〈Ô〉φφ′ ≡
〈φ|Ô|φ′〉
〈φ|φ′〉 , (7)

for instance, single-particle Green’s function Gij ≡ 〈cic†
j 〉φφ′ :

Gij ≡
〈φ|cic†

j |φ′〉
〈φ|φ′〉 = δij − [Φ ′(Φ†Φ ′)−1Φ†]ij . (8)
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quantum chemistry AF QMC

2

1

4
3

N . . . . . . . . .

Fig. 1 Schematic illustration of the connection and difference between quantum chemistry (QC)
approaches and AFQMC. A fictitious system, with M↑ = 2, M↓ ≤ M↑ and N basis functions,
is shown. Vertical scale indicates single-particle energy. In QC-based methods (left), Slater
determinants are constructed using the molecular orbitals from a (restricted-orbital) HF calculation.
(“O” denotes occupied, “V” denotes virtual, and the thick line indicates the Fermi level.) All
resulting Slater determinants are orthogonal to each other and to the reference HF state. In
AFQMC, each Slater determinant in Eq. (4) is sampled by random walk. Each walker |φ〉 has
only “occupied” orbitals (denoted by the red and green lines) which are rotated during the random
walk, under the influence of stochastic auxiliary fields (illustrated by the wiggly lines, which move
up and down as the walker evolves from one step to the next). The Slater determinants generated
in AFQMC are non-orthogonal to each other

Given the Green’s function matrix G, the general expectation defined in Eq. (7)
can be computed for most operators of interest. For example, we can calculate the
expectation of a general two-body operator, Ô = ∑

ijkl Oijklc
†
i c

†
j ckcl , under the

definition of Eq. (7):

〈Ô〉φφ′ =
∑

ijkl

Oijkl(G
′
jkG

′
il −G′ikG′j l), (9)

where the matrix G′ is defined as G′ ≡ I −G.
A key property of Slater determinants we will invoke is the Thouless Theorem:

any one-particle operator B̂ of the form

B̂ = exp

(∑

ij

c
†
i Uij cj

)
, (10)

when acted on a Slater determinant, simply leads to another Slater determinant
(Hamann and Fahy 1990), i.e.,

B̂|φ〉 = φ̂
′ †
1 φ̂

′ †
2 · · · φ̂′ †

M |0〉 ≡ |φ′〉 (11)

with φ̂
′ †
m =∑

j c
†
j Φ ′jm and Φ ′ ≡ eUΦ, where U is a square matrix whose elements

are given by Uij and B ≡ exp(U) is therefore an N × N square matrix as well. In
other words, the operation of B̂ on |φ〉 simply involves multiplying an N×N matrix
to the N ×M matrix representing the Slater determinant.
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There are several generalizations of the formalism we have discussed which
extends the capability and/or accuracy of the AFQMC framework. These can be
thought of as generalizing one or both of the Slater determinants in Eqs. (6), (7), and
(8). From the viewpoint of AFQMC, as we shall discuss below, the“bra” in these
equations represents the trial wave function, and the “ket” represents the random
walker:

• The first generalization is to replace 〈φ| by a projected Bardeen-Cooper-
Schrieffer (BCS) wave function, that is, to use a projected BCS as a trial
wave function, which can be advantageous for systems with pairing order. The
corresponding overlap, Green functions, and two-body mixed expectations have
been worked out (Carlson et al. 2011).

• The second is to have both 〈φ| and |φ′〉 in generalized HF (GHF) form, which
is necessary to treat systems with spin-orbit coupling (SOC). The required
modification to the formalism outlined above is given by Rosenberg et al. (2017).

• The third generalization is to have both sides in Hartree-Fock-Bogoliubov (HFB)
form, for example, to treat Hamiltonians with pairing fields. This will also
be useful when using AFQMC as an impurity solver in which the embedding
induces pairing order. The corresponding AFQMC formalism has been described
(Shi and Zhang 2017).

2.2 Ground-State Projection

Most ground-state quantum MC (QMC) methods are based on iterative projection:

|Ψ0〉 ∝ lim
τ→∞ e−τĤ |ΨT 〉; (12)

that is, the ground state |Ψ0〉 of a many-body Hamiltonian Ĥ can be projected from
any known trial state |ΨT 〉 that satisfies 〈ΨT |Ψ0〉 �= 0. In a numerical method, the
limit can be obtained iteratively by

|Ψ (n+1)〉 = e−ΔτĤ |Ψ (n)〉, (13)

where |Ψ (0)〉 = |ΨT 〉. Ground-state expectation 〈Ô〉 of a physical observable Ô is
given by

〈Ô〉 = lim
n→∞

〈Ψ (n)|Ô|Ψ (n)〉
〈Ψ (n)|Ψ (n)〉 . (14)

For example, the ground-state energy can be obtained by letting Ô = Ĥ . A so-
called mixed estimator exists, however, which is exact for the energy (or any other
Ô that commutes with Ĥ ) and can lead to considerable simplifications in practice:
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E0 = lim
n→∞

〈ΨT |Ĥ |Ψ (n)〉
〈ΨT |Ψ (n)〉 . (15)

QMC methods carry out the iteration in Eq. (13) by Monte Carlo (MC) sampling.
The difference between different classes of methods amounts primarily to the space
that is used to represent the wave function or density matrix and to carry out
the integration. The AFQMC methods work in second quantized representation
and in an auxiliary-field space, while Green’s function Monte Carlo (GFMC)
or diffusion Monte Carlo (DMC) works in first-quantized representation and in
electron coordinate space (Kalos et al. 1974; Foulkes et al. 2001). The full-
configuration interaction QMC (FCIQMC) (Booth et al. 2009) works in orthogonal
Slater determinant space as in QC methods.

Let us assume that |ΨT 〉 is of the form of a single Slater determinant or a linear

combination of Slater determinants, as in Eq. (4). The operation of e−τĤ1 on a
Slater determinant simply yields another determinant, per Thouless theorem. The
ground-state projection would therefore turn into the propagation of a single Slater

determinant if it were somehow possible to write the two-body propagator e−τĤ2 as
the exponential of a one-body operator.

The above is realized in independent-electron theories. In the HF approximation,
Ĥ2 is replaced by one-body operators times expectations with respect to the current
Slater determinant wave function, schematically:

c
†
i c

†
j ckcl → c

†
i cl〈c†

j ck〉 − c
†
i ck〈c†

j cl〉 . (16)

(A decomposition that includes pairing is also possible, leading to a Hartree-Fock-
Bogoliubov calculation.) In the local density approximation (LDA) in DFT, Ĥ2 is
replaced by ĤLDA = Ĥ1 + V̂xc, where V̂xc contains the density operator in real-
space, with matrix elements given by the exchange-correlation functional which
is computed with the local density from the current Slater determinant in the
self-consistent process. In both these cases, an iterative procedure can be used,
following Eq. (13), to project out the solution to the approximate Hamiltonians, as an
imaginary-time evolution of a single Slater determinant (Zhang and Ceperley 2008).
This is illustrated by the blue line in Fig. 2. Note that this procedure is formally
very similar to time-dependent HF or time-dependent DFT (TDDFT), except for
the distinction of imaginary versus real time.

2.3 Hubbard-Stratonovich Transformation

Suppose that Ĥ2, the two-body part in the Hamiltonian in Eq. (2), can be written as
a sum of squares of one-body operators:
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n Δτ

Fig. 2 Illustration of the iterative imaginary-time projection to the ground state. The overlap of
the Slater determinants with a test wave function (e.g., the exact ground-state |Ψ0〉) is plotted

vs. imaginary time nΔτ . The thick blue line indicates a projection using e−ΔτĤLDA(φ(n)) which
converges to the LDA ground state (or a local minimum). The wiggly magenta lines indicate
an AFQMC projection which captures the many-body effect beyond LDA as a stochastic linear
superposition. The propagator is obtained by expanding the two-body part of the Ĥ , namely,
Ĥ2 − V̂xc, by a Hubbard-Stratonovich transformation as discussed in the next sections. The dotted
redline indicates a path which can lead to a sign problem (Sect. 3.2)

Ĥ2 = 1

2

Nγ∑

γ=1

λγ v̂
2
γ , (17)

where λγ is a constant, v̂γ is a one-body operator similar to Ĥ1, and Nγ is an integer.
We can then apply the Hubbard-Stratonovich (HS) transformation to each term

e−
Δτ
2 λ v̂2 =

ż ∞

−∞
dx

e− 1
2 x

2

√
2π

ex
√−Δτλ v̂, (18)

where x is an auxiliary-field variable. The constant in front of v̂ in the exponent on
the right-hand side can be real or imaginary, depending on the sign of λ. The key
is that the quadratic form (in v̂) on the left is replaced by a linear one on the right.
There are various ways to achieve the decomposition in Eq. (17) for a general two-
body term (Negele and Orland 1998). Below we outline the two most commonly
applied cases in electronic structure: (a) with plane-wave basis and (b) for a more
dense matrix Vijkl resulting from a general basis set such as Gaussians in QC.

In a plane-wave basis, the two-body part is the Fourier transform of 1/|rm − rn|
(Suewattana et al. 2007):

Ĥ2 → 1

2Ω

∑

i,j,k,l

4π

|Gi −Gk|2
c

†
i c

†
j clckδGi−Gk,Gl−Gjδσi ,σk

δσj ,σl
, (19)
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where {Gi} are plane-wave wave-vectors, Ω is the volume of the supercell, and σ

denotes spin. Let us use Q ≡ Gi −Gk and define a density operator in momentum
space:

ρ̂(Q) ≡
∑

G,σ

c
†
G + Q,σ cG,σ , (20)

where the sum is over all G vectors which allow both G and G + Q to fall within
the predefined kinetic energy cutoff in the plane-wave basis. The two-body term in
Eq. (19) can then be manipulated into the form

Ĥ2 →
∑

Q�=0

π

ΩQ2

[
ρ̂†(Q) ρ̂(Q)+ ρ̂(Q) ρ̂†(Q)

]
, (21)

where the sum is over all Q’s except Q = 0, since in Eq. (19) the Gi = Gk term
is excluded due to charge neutrality, and we have invoked ρ†(Q) = ρ(− Q). By
making linear combinations of

[
(ρ†(Q)+ ρ( Q)

]
and

[
(ρ†(Q)− ρ(Q)

]
terms, we

can then readily write the right-hand side in Eq. (21) in the desired square form of
Eq. (17) (Suewattana et al. 2007).

With a general basis such as Gaussians yielding matrix elements given in Eq. (3),
the most straightforward way to decompose Ĥ2 is through a direct diagonalization
(Al-Saidi et al. 2006, 2007; Zhang 2013). However, this is computationally costly.
A modified Cholesky decomposition leads to O(N) fields (Purwanto et al. 2011;
Motta and Zhang 2018). This approach, which has been commonly used in AFQMC
for molecular systems with Gaussian basis sets and for downfolded Hamiltonians
(Ma et al. 2015), proceeds as follows. Let us cast Vijkl in the form of a two-index
matrix by introducing the compound indices μ = (i, l) and ν = (j, k): Vμν =
V(i,l),(j,k) = Vijkl . The symmetric positive semidefinite matrix Vμν is decomposed
using a recursive modified Cholesky algorithm (Koch et al. 2003; Aquilante et al.
2010), to yield

Vμν =
Nγ∑

γ=1

Lγ
μL

γ
ν +Δ

(Nγ )
μν , (22)

where Δ
(Nγ )
μν is the residual error at the Nγ -th iteration. The iterative procedure

is repeated until all matrix elements of the residual matrix are less than some
predefined tolerance δ:

∣∣∣Vμν − V (NCD)
μν

∣∣∣ =
∣∣∣Δ(NCD)

μν

∣∣∣ ≤ δ . (23)

For molecular calculations, typical values of δ range between 10−4 and 10−6 in
atomic units (Motta and Zhang 2018). Using the NCD Cholesky vectors, we can
rewrite the two-body part of the Hamiltonian



7 Ab Initio Electronic Structure Calculations by Auxiliary-Field. . . 133

Ĥ2 → 1

2

NCD∑

γ=1

(
∑

il

L
γ

μ(i,l)c
†
i cl

)⎛

⎝
∑

jk

L
γ

ν(j,k)c
†
j ck

⎞

⎠+ O(δ) . (24)

Hence the form in Eq. (17) is realized, with v̂γ =∑
il L

γ

μ(i,l)c
†
i cl .

Different forms of the HS transformation can affect the performance of the
AFQMC method. For example, it is useful to subtract a mean-field “background”
from the two-body term prior to the decomposition (Baer et al. 1998; Purwanto and
Zhang 2005; Al-Saidi et al. 2006). The idea is that using the HS to decompose any
constant shifts in the two-body interaction will necessarily result in more statistical
noise. In fact, it has been shown (Shi and Zhang 2013; Motta and Zhang 2018) that
the mean-field background subtraction can not only impact the statistical accuracy
but also lead to different quality of approximations under the constrained path
methods that we discuss in the next section.

If we denote the collection of auxiliary fields by x and combine one-body terms
from Ĥ1 and Ĥ2, we obtain the following compact representation of the outcome of
the HS transformation:

e−ΔτĤ =
ż

dxp(x)B̂(x), (25)

where p(x) is a probability density function (PDF), for example, a multidimensional
Gaussian. The propagator B̂(x) in Eq. (25) has a special form, namely, it is a product
of operators of the type in Eq. (10), with Uij depending on the auxiliary field. The
matrix representation of B̂(x) will be denoted by B(x).

Note that the matrix elements of B(x) can become complex, for example, when
λ in Eq. (18) is positive, which occurs in both of the forms discussed above.
Sometimes we will refer to this situation as having complex auxiliary fields, but it
should be understood that terms in the PDF of the HS transformation and B̂(x) can
be rearranged, and the relevant point is whether the Slater determinant has matrix
elements which are real or complex, as further discussed in the next section.

In essence, the HS transformation replaces the two-body interaction by one-body
interactions with a set of random external auxiliary fields. In other words, it converts
an interacting system into many noninteracting systems living in fluctuating external
auxiliary fields. The sum over all configurations of auxiliary fields recovers the
interaction.

3 Ground-State AFQMCMethods

3.1 Free-Projection AFQMC

We first briefly describe the ground-state AFQMC method without any constraints.
Our goal is to illustrate the essential ideas, in a way which will facilitate our
ensuing discussions and help introduce the constrained path approximation and the



134 S. Zhang

framework for the general AFQMC methods that control the sign/phase problem.
We will not go into details, which are described in the literature.

We write the usual path-integral and Metropolis form explicitly here to show its
connection to the open-ended random walk approach. Ground-state expectation 〈Ô〉
can be computed with Eqs. (13) and (25). The denominator is

〈ψ(0)|e−nΔτĤ e−nΔτĤ |ψ(0)〉

=
ż

〈ψ(0)|
[ 2n∏

l=1

dx(l)p(x(l))B̂(x(l))
]
|ψ(0)〉

=
ż [∏

l

dx(l)p(x(l))
]

det
(
[Ψ (0)]†

∏

l

B(x(l))Ψ (0)
)
. (26)

In the standard ground-state AFQMC method (Sugiyama and Koonin 1986; Sorella
et al. 1989; Blankenbecler et al. 1981), a value of n is first chosen and is kept fixed
throughout the calculation. If we use X to denote the collection of the auxiliary
fields X = {x(1), x(2), . . . , x(2n)} and D(X) to represent the integrand in Eq. (26),
we can write the expectation value of Eq. (14) as

〈Ô〉 =
ş 〈Ô〉LR D(X) dX

ş

D(X) dX
=

ş 〈Ô〉LR

∣∣D(X)
∣∣Θ(X) dX

ş
∣∣D(X)

∣∣Θ(X) dX
, (27)

where

Θ(X) ≡ D(X)/
∣∣D(X)

∣∣ (28)

measures the phase of D(X), which reduces to a sign when the overlap, D(X), is
real along all paths {X}. The expectation for a given X, as defined in Eq. (7), is:

〈Ô〉LR ≡
〈φL|Ô|φR〉
〈φL|φR〉 (29)

with

〈φL| = 〈ψ(0)| B̂(x(2n))B̂(x(2n−1)) · · · B̂(x(n+1))

|φR〉 = B̂(x(n))B̂(x(n−1)) · · · B̂(x(1)) |ψ(0)〉,

which are both Slater determinants.
D(X) and 〈φL| and |φR〉 are completely specified by the path X in auxiliary-

field space, given |Ψ (0)〉. The expectation in Eq. (27) is thus a many-dimensional
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integration which can be evaluated by standard MC techniques. Often the Metropo-
lis algorithm (Kalos and Whitlock 1986) is used to sample auxiliary fields X from
|D(X)|. We will refer to this as free-projection (in contrast with a constrained
path calculations). There are special Hamiltonians (e.g., repulsive Hubbard model
at half-filling) where special symmetry makes the sign problem absent. In those
situations, the Metropolis approach described above is very effective and is the
standard approach. It should be mentioned that in those cases, an infinite variance
problem arises which must be controlled (Shi and Zhang 2016).

We carry out free-projection calculations with an open-ended random walk
(Zhang et al. 1997; Baer et al. 1998) instead of using Metropolis sampling
outlined above. For free-projection calculations, the open-ended approach has no
real advantage. However, when a sign or phase problem is present, it is difficult
to implement a constraint to control the problem in the Metropolis framework,
because of ergodicity issues (Fahy and Hamann 1990; Zhang et al. 1997). The
open-ended random walk framework avoids the difficulty and is straightforward to
project to longer imaginary time in order to approach the ground state. Moreover,
when we carry out constraint release (Shi and Zhang 2013), the formalism will
rely on the open-ended random walk. These points will become clear after we
illustrate the phase problem in electronic structure calculations below and discuss
how the constraint can be formulated. The structure of the open-ended random walk
is illustrated in Fig. 3.

Φ,w Φ,w

Φ,w Φ,w

Φ,w Φ,w

Φ,w

Φ,w

Φ,w

Φ,w

Φ,w
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P
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....

iteration

P

P
P

 . .

 . .

 . .

Fig. 3 Schematic illustration of the AFQMC method. Each box is a random walker, with |φ〉 the
stochastic Slater determinant and w its weight. A step (green oval) is similar to one SCF (self-
consistent-field) step in LDA. The red arrow indicates a population control, where birth/death can
occur. This structure allows for exceptional capacity for scaling on parallel computers. Multiple
walkers can reside on one processor (blue “P” box), or each walk can be split over processors for
large problems
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3.2 Constrained Path AFQMC

As mentioned, a sign/phase problem occurs in the free-projection AFQMC, except
for special cases where the single-particle propagator B̂(x) satisfies particular
symmetries (see, e.g., Wei et al. 2016). In these cases, Θ(X) (defined in Eq. (28))
vanishes, and D(x) is real and nonnegative. Absent such special circumstances, a
sign problem arises if B̂(x) is real, and a phase problem arises if B̂(x) is complex. As
mentioned, the Coulomb interaction in Vint leads to a phase problem in molecules
and solids. In this section we discuss the constrained-path (CP) AFQMC, which
for electronic systems has often been referred to as the phaseless or phase-free
approximation (Zhang and Krakauer 2003; Purwanto and Zhang 2004).

For real B̂(x) (e.g., Hubbard-type of short-range repulsive interactions decoupled
with spin form of HS transformation), the sign problem occurs because of the fun-
damental symmetry between the fermion ground-state |Ψ0〉 and its negative −|Ψ0〉
(Zhang 1999a; Zhang and Kalos 1991). For any ensemble of Slater determinants
{|φ〉} which gives a MC representation of the ground-state wave function, as in
Eq. (4), this symmetry implies that there exists another ensemble {−|φ〉} which
is also a correct representation. In other words, the Slater determinant space can
be divided into two degenerate halves (+ and −) whose bounding surface N is
defined by 〈Ψ0|φ〉 = 0. This dividing surface is unknown. (In the cases with
special symmetry mentioned above, the two sides separated by the surface are both
positive. This has to do with the over-complete nature of the non-orthogonal Slater
determinant space in AFQMC. A particular form of B̂(x) can pick out only a part
of the space which can be nonnegative.)

The idea of the ±-symmetry can be seen from Fig. 2, where the dotted red
line indicates a walker reaching the surface N, which will have a finite proba-
bility of occurring in a random walk, unless completely excluded by the dynam-
ics. Once it does, it can, in general, freely sample the two families of solu-
tions which are symmetric about the horizontal axis (above and below). A more
detailed illustration and discussion of the sign problem can be found in Zhang
(1999b, 2013). The idea of the phase problem is illustrated in Fig. 4. The complex
plane now replaces the vertical axis in Fig. 2, denoting the overlap of a random
walker |φ〉 with the (hypothetically) known exact wave function or the trial wave
function 〈ΨT |.

Cancelation schemes can partially alleviate the problem, as demonstrated in
coordinate space (Zhang and Kalos 1991; Diedrich and Anderson 1992) and in Fock
space (Booth et al. 2009). To fully stabilize the calculation and restore polynomial
scaling, however, an approximation has been necessary. To date, the most effective
and accurate method to achieve this has been the constrained path approach.

The method begins with a generalized similarity transformation in the spirit of
the importance-sampling transformation. To make the derivation more concrete,
we will use an explicit form of the HS transformation and write the two-body

propagator that results from Eq. (21) or (24) as
ş

e− x2
2 ex·v̂dx, where x is an Nγ -

dimensional vector as given by Eq. (25) (with γ labeling the auxiliary fields) and
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Fig. 4 Schematic illustration of the phase problem and constraints to control it. The left panel
shows, as a function of projection time β ≡ nΔτ , trajectories of five walkers (shown as five
different colors) characterized by the real (Re) and imaginary (Im) parts of their overlap with
the ground-state wave function. The right panel shows the walker distribution integrated over
imaginary time, i.e., the different frames in the left panel stacked together along β. The phase
problem occurs because the initial phase “coherence” of the random walkers rapidly deteriorates
with β, as they become uniformly distributed in the Re-Im-plane. The idea of the phase constraint
(Zhang and Krakauer 2003) is to apply a gauge transformation such that confining the random
walk in the single magenta plane (left) is a good approximation

v̂ = {v̂γ } denotes the collection of one-body operators. We introduce a shift to
obtain an alternative propagator:

ż

e−
x2
2 ex·x̄− x̄2

2 e(x−x̄)·v̂dx , (30)

which is exact for any choice of the shift x̄, including complex shifts.
We recall that the random walk is supposed to lead to a MC sampling of the

coefficient αφ in Eq. (4):

|Ψ0〉 .=
∑

{φ}
wφ |φ〉 . (31)

The sum in Eq. (31), which is over the population of walkers after an “equilibration”
portion of the open-ended random walk has been discarded, is in a Monte Carlo
sense, and is typically much smaller than the sum in Eq. (4). The weight of each
walker |φ〉, wφ , can be thought of as 1 (all walkers with equal weight); it is allowed
to fluctuate only for practical (efficiency) consideration.

Using the idea of importance sampling, we seek to replace Eq. (31) by the
following to sample Eq. (4):

|Ψ0〉 =
∑

φ

wφ

|φ〉
〈ΨT |φ〉 , (32)
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where any overall phase of the walker |φ〉 is canceled in the numerator and
denominator on the right-hand side (Zhang and Krakauer 2003). This implies a
modification to the propagator in Eq. (30):

ż

〈ΨT |φ′(x)〉e− x2
2 exx̄−x̄2/2e(x−x̄)·v̂ 1

〈ΨT |φ〉dx, (33)

where |φ′(x)〉 = e(x−x̄)·v̂|φ〉 and the trial wave function |ΨT 〉 represents the best
guess to |Ψ0〉. Let us define the following shorthand:

v̄ ≡ −〈ΨT |v̂|φ〉
〈ΨT |φ〉 ∼ O(

√
Δτ); v̄2 ≡ 〈ΨT |v̂2|φ〉

〈ΨT |φ〉 ∼ O(Δτ) . (34)

We can then evaluate the ratio 〈ΨT |φ′(x)〉/〈ΨT |φ〉 in Eq. (33) by expanding the
propagator (Moskowitz et al. 1982; Zhang and Krakauer 2003; Purwanto and Zhang
2004) to O(τ ), to obtain:

〈ΨT |φ′(x)〉
〈ΨT |φ〉 ex·x̄−x̄2/2 .= exp

[
−(x−x̄)·v̄+ 1

2
(x−x̄)2v̄2−1

2
(x−x̄)2v̄2+ x·x̄−x̄2/2

]
.

(35)

The optimal choice of the shift x̄, which we shall refer to as a force bias,
minimizes the fluctuation of Eq. (35) with respect to x, and it is straightforward
to show that it is x̄ = v̄. With this choice, Eq. (33) can be written approximately as
(Zhang 2013)

ż

e−
x2
2 e(x−v̄)·v̂e

v̄2
2 dx. (36)

Restoring Ĥ1, we obtain the complete propagator:

ż

e−
x2
2 exp

[
−ΔτĤ1

2

]
exp

[
(x− v̄) · v̂] exp

[
−ΔτĤ1

2

]
exp[−ΔτEL(φ)] dx,

(37)
where EL is the local energy, the mixed estimate of the Hamiltonian:

EL(φ) ≡ 〈ΨT |Ĥ |φ〉
〈ΨT |φ〉 . (38)

In the limit of an exact |ΨT 〉, EL is a real constant, and the weight of each walker
remains real. The mixed estimate for the energy from Eq. (15) is phaseless:

Ec
0 =

∑
φ wφEL(φ)∑

φ wφ

. (39)
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With a general |ΨT 〉 which is not exact, a natural approximation is to replace EL in
Eq. (37) by its real part, ReEL. The same replacement is then necessary in Eq. (39).

When B̂(x) (i.e., v̂) is real, this formalism reduces to the so-called constrained-
path approximation (Zhang et al. 1997). Regardless of whether v̂ is real, the shift
x̄ diverges as the random walk in the complex plane (see the right panel of Fig. 4)
approaches the origin, i.e., as 〈ΨT |φ′〉 → 0. The effect of the divergence is to move
the walker away from the origin. With a real v̂, the random walkers move only on
the real axis. If they are initialized to have positive overlaps with |ΨT 〉, x̄ will ensure
that the overlaps remain positive throughout the random walk.

For a general case with a complex v̂, however, the formalism above by itself is
not sufficient to remove the phase problem. To see this we consider the phase of
〈ΨT |φ′(x− x̄)〉/〈ΨT |φ〉, which we denote by Δθ . In general, Δθ ∼ O(−xIm(x̄)) is
non-zero. This means that the walkers will undergo a random walk in the complex
plane. At large β they will therefore populate the complex plane symmetrically,
independent of their initial positions. This is illustrated in the right panel of Fig. 4,
which shows 〈ΨT |φ〉 for a three-dimensional jellium model with two electrons
at rs = 10 for a total projection time of β = 250 (taken from Zhang 2013).
The random walk is “rotationally invariant” in the complex plane, resulting in a
vanishing signal-to-noise ratio asymptotically, even though the walkers are all real
initially with 〈ΨT |φ(0)〉 = 1. An alternative but related way to state the problem is
that, despite the divergence of x̄, the buildup of a finite density at the origin of the
complex plane cannot be prevented, unlike in the one-dimensional situation (real
〈Ψ0|φ〉, sign problem). Near the origin the local energy EL diverges, which causes
diverging fluctuations in the weights of walkers when the density does not vanish.

Thus the second ingredient of the constraint for the phase problem is to project
the random walk back to “one-dimension.” This is done by reducing the weight
of the walker in each step by the angular deviation of the overlap in the complex
plane:

wφ′ → wφ′ max{0, cos(Δθ)} . (40)

A prerequisite for this approximation to work well is the importance-sampling
transformation, which has eliminated the leading order in the overall phase of
|φ〉 in the propagator in Eq. (35). Given the transformation, several alternative
forms to the projection in Eq. (40) were found to give similar accuracy (Zhang
and Krakauer 2003; Zhang et al. 2005; Purwanto and Zhang 2005; Zhang
2013).

We can now summarize each step in the constrained path AFQMC formalism as
follows. For each random walker |φ〉 in the current population {|φ〉, wφ},

(a) Sample x and propagate the walker to |φ′〉

|φ〉 → |φ′〉 = exp

[
−ΔτĤ1

2

]
exp

[
(x− v̄) · v̂] exp

[
−ΔτĤ1

2

]
|φ〉, (41)



140 S. Zhang

(b) Update the weight of the walker

wφ → wφ′ = wφ exp
[
−Δτ · Re

(
EL(φ

′)+ EL(φ)
)
/2
]
·max{0, cos(Δθ)} .

(42)

Walkers so generated represent the ground-state wave function with importance
sampling, in the sense of Eq. (32).

For additional technical details, we refer the reader to Zhang (2013) and Motta
and Zhang (2018), and references therein, for example, re-orthogonalization proce-
dures (White et al. 1989; Zhang 2003) to stabilize the walkers against numerical
roundoff errors during the propagation, population control (Umrigar et al. 1993;
Zhang et al. 1997) to regularize the branching process, a hybrid alternative (Pur-
wanto et al. 2009a) to the local energy formalism in Eq. (36) to reduce computational
cost in evaluating El , correlated sampling (Shee et al. 2017), constraint release (Shi
and Zhang 2013), etc.

3.3 Back-Propagation for Observables and Correlation Functions

To calculate a correlation function or the expectation value of an observable which
does not commute with the Hamiltonian, the mixed estimate in Eq.(15) is biased,
and the full estimator in Eq. (14) needs to be computed. In the path-integral form
in Eq. (27), this is straightforward. With the open-ended random walks, however, it
is slightly more involved. A back-propagation (BP) technique (Zhang et al. 1997;
Purwanto and Zhang 2004; Motta and Zhang 2017) is employed.

The idea of the BP is to create two coupled populations to represent the bra
and ket in Eq. (14), respectively. Because the population in the random walk is
importance-sampled, two independent populations which are uncoupled would lead
to large fluctuations in the estimator after the importance functions have been
“undone” (Purwanto and Zhang 2004). In BP, we choose an iteration n and store
the entire population { |φ(n)

k 〉, w(n)
k }, where k labels the walker in the population.

As the random walk proceeds from n, we keep track of the following two items for
each new walker: (1) the sampled auxiliary-field values that led to the new walker
from its parent walker and (2) an integer label that identifies the parent. After an
additional m iterations, we carry out the back-propagation: For each walker l in
the (n + m)-th (current) population, we initiate a determinant 〈ψT | and act on it
with the corresponding propagators but taken in reverse order. The m successive
propagators are constructed from the items stored between steps n+m and n, with
exp(−ΔτĤ1/2) inserted where necessary. The resulting determinants 〈φ̄(m)

l | are

combined with its parent from iteration n, |φ(n)
k 〉, to compute 〈O〉BP, where k is the

index of the walker at step n from which walker l at step (n+m) descended.
In molecular systems, an improvement over the standard procedure has been

proposed (Motta and Zhang 2017). The approach, called back-propagation with path
restoration (BP-PRes), allows one to “undo” some of the effect of the constraint in
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the forward direction (the cos projection and the omission of the phase in El in the
weight). This reduced the effect of the constraint, which is applied in the forward
direction and does not preserve reversal symmetry in imaginary time. With these
advances, accurate observables and atomic forces have been obtained in molecules,
paving the way for geometry optimization and ab initio molecular dynamics with
AFQMC.

Another recent development in methodology is the computation of imaginary-
time correlation functions and excitations. The techniques (Vitali et al. 2016),
which have been applied in model systems and ultracold atoms so far, are directly
applicable to real materials.

4 Illustrative Results

The AFQMC method has been applied to lattice models, realistic solids (using
plane-wave basis and pseudo potentials), molecular systems (using Gaussian basis
sets), and downfolded model Hamiltonians of real materials (using DFT orbitals as
basis sets). The method is just coming into form, and rapid advances in algorithmic
development and in applications are ongoing. We briefly mention a few examples
here to provide a flavor of how it has been applied to date to tackle problems of
electron correlations in materials.

For lattice models, most of the applications involve “only” a sign problem,
because of the short-range nature of the interaction. Here the constraint has no
θ projection and reduces to a sign constraint. A large body of results exist,
including recent benchmark results (LeBlanc et al. 2015). Systems of O(1000)
electrons have been treated quite routinely. The AFQMC method has demonstrated
excellent capabilities and accuracy, illustrating its potential as a general many-body
computational paradigm. A key recent development (Qin et al. 2016) is to use the
density or density matrix computed from AFQMC as a feedback into a mean-field
calculation. The trial wave function |ΨT 〉 obtained from the mean-field is then fed
back into the AFQMC as a constraint, and a self-consistent constraining condition
is achieved. This has led to further improvement in the accuracy and robustness of
the calculation (Qin et al. 2016; Zheng et al. 2017).

For molecular systems, a recent review article is available (Motta and Zhang
2018) which describes in more detail the application of AFQMC in quantum
chemistry. The formulation of AFQMC with Gaussian basis sets has been extremely
valuable. Direct comparisons can be made with high-level QC results, which have
provided valuable benchmark information and have been crucial in gauging the
AFQMC method as a general approach. Figure 5 illustrates the results on molecules
using both plane-wave plus pseudopotentials and Gaussian basis sets. In these
calculations we have operated largely in an automated mode, inputting only the DFT
or HF solutions as |ΨT 〉. This illustrates a potential mode of operation for AFQMC
as a “post-processing” approach for molecules and solids where additional accuracy
is desired beyond standard DFT.
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Fig. 5 Calculated binding energies of molecules compared with experimental values. (Taken
from Zhang (2013); Esler et al. 2008). The discrepancy between theory and experiment is
plotted. Included are sp-bonded molecules, first- and second-row post-d elements, and transition
metal oxides. Several different forms of the AFQMC calculations were tested, including all-
electron Gaussian basis sets, Gaussian basis with effective-core potentials, and plane wave with
pseudopotential. The AFQMC is fed a trial wave function to start, which is taken directly from
DFT [with either LDA or the generalized-gradient approximation (GGA) functionals] or HF. The
corresponding DFT or HF results are also shown. As can be readily observed, the AFQMC results
are in excellent agreement with experiment and significantly improve upon the values from DFT
and HF

A benchmark study (Motta et al. 2017) was recently carried out involving
a large set of modern many-body methods. AFQMC was among the methods
included; consistent with previous findings, the accuracy of AFQMC is found to
be comparable to CCSD(T), the gold standard in chemistry (Bartlett and Musiał
2007; Crawford and Schaefer 2000), near equilibrium geometry. For bond breaking,
AFQMC was able to maintain systematic accuracy. Large basis sets and system sizes
were reached and an accurate equation of state was obtained.

The AFQMC method can be used to study excited states. Excited states distin-
guished by different symmetry from the ground state can be computed in a manner
similar to the ground state. For other excited states, prevention of collapse into the
ground state and control of the fermion sign/phase problem are accomplished by
a constraint using an excited state trial wave function (Purwanto et al. 2009b). An
additional orthogonalization constraint is formulated to use virtual orbitals in solids
for band structure calculations (Ma et al. 2013). These constraints are not as “clean”
or rigorous as that for the ground state. Use of improved trial wave functions (e.g.,
multi-determinant |ΨT 〉 in molecules) and the imposition of symmetry properties
(Shi and Zhang 2013) often lead to improved results. Tests in the challenging case
of the C2 molecule yielded spectroscopic constants in excellent agreement with
experiment (Purwanto et al. 2009b). In Fig. 6 results from an application in solids are
shown for the diamond band structure and for the fundamental band gap in wurtzite
ZnO (Ma et al. 2013).
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Fig. 6 Computation of excitations and many-body quasiparticle band structures. (Taken from Ma
et al. 2013). The figure presents results on the band gap in diamond. Blue is AFQMC results; GW

and DFT band structures are plotted by solid and dashed lines, respectively. Diffusion Monte Carlo
(DMC) results at high symmetry points Γ , X, and L are indicated by green triangles. Experimental
values are shown as red circles. The table shows the calculated fundamental band gap of wurtzite
ZnO, compared with experiment (and three DFT-based methods and GW )

Plane-wave calculations in AFQMC can be built on standard plane-wave tech-
nologies in DFT calculations, as we have outlined. Norm-conserving pseudopoten-
tials, including multiple-projector pseudopotentials, can be implemented straight-
forwardly (Ma et al. 2017). In order to reduce the cost of full plane-wave AFQMC
calculations, a downfolding approach (Ma et al. 2015) has been developed. The idea
is to use Kohn-Sham orbitals (occupied and virtual) as basis sets. The approach is
illustrated in Fig. 7. The size of the basis set in the largest calculation on the right,
after downfolding, is more than an order of magnitude smaller than the total number
of plane waves, leading to large savings in the AFQMC computation.

Figure 8 illustrates an application of AFQMC to the adsorption of Co atoms on
graphene. The goal of the study was to determine the stability and magnetic state of
the Co adatom as a function of its distance from the graphene sheet. The sensitivity
and complexity of the energetics requires a correlated treatment. In addition to
serving as a useful benchmark, the computed results provided an explanation for
experimental results with Co on free-standing graphene (Virgus et al. 2014). The
AFQMC calculation was performed by embedding it in a DFT calculation to extend
length scales, as illustrated on the right. After the DFT is performed, a many-body
Hamiltonian is generated, using a procedure similar to that of producing a frozen-
core Hamiltonian (Purwanto et al. 2013), except the “core” here is actually the
“outer” region indicated on the right. (Orbital localization procedures are applied
as needed.) The resulting Hamiltonian, which describes the region inside the shaded
circle embedded in the environment of the outer region whose orbitals are frozen, is
then treated by AFQMC. From a QC perspective, this approach can also be viewed
as casting AFQMC as a general “solver’ for a (very large) active space (Motta and
Zhang 2018).
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Fig. 7 Pseudopotential-free calculations in solids, and a simple “down-folding” approach to
generate realistic model Hamiltonians. The left panel illustrates a scheme to use Kohn-Sham (KS)
orbitals obtained from a DFT calculation as basis set for AFQMC. The DFT is performed with a
plane-wave basis using a helium-core. Keeping all the KS orbitals, including virtual orbitals, below
a certain cutoff (“Basis cut”), we compute the matrix elements with these orbitals as basis, to obtain
a many-body Hamiltonian, which is then fed into the AFQMC. In the AFQMC, the KS orbitals
corresponding to the neon-core are frozen (Purwanto et al. 2013). In the right panel, the calculated
equation of state (Ma et al. 2015) is shown for a sequence of “Basis cut” values. The calculated
equilibrium lattice constant and bulk modulus are in excellent agreement with experiment
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Fig. 8 Co-adsorption on graphene and embedding AFQMC within DFT. The figure (Taken from
Virgus et al. 2014) shows computed binding energy of Co on graphene, as a function of the
distance h between the Co atom and the graphene plane. Squares, diamonds, circles, and triangles
correspond to hollow (H, as illustrated on the right), bridge (B), and top (T) sites and the van
der Waals region, respectively. The dashed line indicates the low-spin H site (open squares).
Shaded areas are one-σ estimates of uncertainties, including the statistical errors in AFQMC. The
right illustrates the embedding scheme for these calculations. The “inner” region with Co and
the C atoms inside the circle are treated by AFQMC, with the “outer” region providing a frozen
environment
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5 Summary and Outlook

In this chapter, we have described a general computational framework for many-
body calculations which combines a field-theoretic description with stochastic
sampling. The approach, referred to as auxiliary-field quantum Monte Carlo
(AFQMC), is based on a stochastic superposition of DFT-like calculations. We have
shown how the framework can be applied to carry out ab initio electronic structure
calculations. As mentioned, some additional references for further details include a
set of lecture notes (Zhang 2013) (on which some of the sections in this chapter are
based), a pedagogical code for lattice models written in Matlab (Nguyen et al. 2014)
and a review on molecular systems (Motta and Zhang 2018).

The AFQMC approach has been applied in both condensed matter physics and
quantum chemistry. It has been implemented with both plane waves/pseudopoten-
tials and with Gaussian basis sets. We have discussed both types of calculations, as
well as a combination which uses Kohn-Sham orbitals generated from plane-wave
DFT as a basis to downfold the Hamiltonian for a solid. In all of these, as well as in
many applications to lattice models for strong electron correlation and for ultracold
atom systems, AFQMC has shown strong promise with its scalability (with system
size and with parallel computing platforms), capability (total energy computation
and beyond), and accuracy.

The AFQMC method has low-polynomial (cubic) scaling with system size, by
using Monte Carlo sampling to treat the exponential growth of the Hilbert space.
It samples the many-body ground state by a linear combination of non-orthogonal
Slater determinants. The connection with independent-electron calculations, as we
have highlighted, makes it straightforward to build AFQMC as a framework on
top of traditional DFT or HF calculations and take advantage of the many existing
technical machineries developed over the past few decades in materials modeling.

Recent developments in the computation of atomic forces and geometry opti-
mization, and the treatment of spin-orbit coupling and general magnetic order,
are manifestations of this connection. They significantly enhance the capabil-
ity of stochastic methods for electronic structure. Similarly, the formulation for
superconducting Hamiltonians and for embedding AFQMC in independent-electron
calculations to extend length scales will broaden the reach in materials computation.

The AFQMC is approximate, because of the constraint to control the sign/phase
problem. A major focus during the development of the framework has been to
systematically test (and improve) the accuracy of AFQMC. A large database has
now been accumulated, thanks in part to the major many-electron benchmark
initiatives recently. The accuracy that can be achieved by AFQMC with its present
stage of development is such that many applications are now within reach in
materials modeling. A variety of new developments are possible and currently being
pursued.

The structure of the open-ended random walk, as illustrated in Fig. 3, makes
AFQMC ideally suited for modern high-performance computing platforms, with
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exceptional capacity for parallel scaling. The rapid growth of high-performance
computing resources will thus provide a strong boost to the application of AFQMC
in the study of molecules and solids.

The development of AFQMC is entering an exciting new phase. A large number
of possible directions can be pursued, including many opportunities for algorithmic
improvements and speedups. These will be spurred forward and stimulated by
growth in applications, which we hope will in turn allow more rapid realization
of a general many-body computational framework for materials.
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Abstract

Macroscopic polarization P and magnetization M are the most fundamental
concepts in textbook treatments of condensed media. They are intensive vector
quantities that intuitively carry the meaning of dipole per unit volume. But for
many years, both P and the orbital term in M evaded even a precise microscopic
definition and severely challenged quantum mechanical calculations. Contrary
to a widespread incorrect belief, P has nothing to do with the periodic charge
distribution in the bulk of a polarized crystal; analogously, the orbital term
in M has nothing to do with the bulk current distribution. When a bounded
sample is addressed, P and M can indeed be expressed in terms of charge
and current distributions, but the boundary contributions are essential. The
field has undergone a genuine revolution since the early 1990s. The modern
theory of polarization, based on a Berry phase, is a mature topic since the
late 1990s; it is now implemented in most first-principle electronic structure
codes. Many calculations have addressed various phenomena (ferroelectricity,
piezoelectricity, lattice dynamics, infrared spectra of liquid, and amorphous
systems) in several materials and are in spectacular agreement with experiments;
they have provided thorough understanding of the behavior of ferroelectric and
piezoelectric materials. The modern theory of orbital magnetization started in
2005, but some fundamental issues are still in development at the time of writing
(2017). Only a few first-principle calculations have appeared so far.

1 Introduction

The elementary definitions of macroscopic polarization P and orbital magnetization
M address a bounded sample in the large-sample limit:

P = d
V
= 1

V

ż

dr rρ(micro)(r) (1)

M = m
V
= 1

2cV

ż

dr r× j(micro)(r). (2)

Here and in the following, we indicate with M the orbital term only; ρ(micro)(r) and
j(micro)(r) are the microscopic charge and current densities, and V is the sample
volume. The previous expressions are clearly dominated by surface contributions,
while instead phenomenologically P and M are bulk properties.

In general, electronic structure theory addresses bulk material properties by
adopting periodic Born-von Kármán boundary conditions (PBCs), whose main
virtue is that the system has no surface by construction. But the textbook definitions
of P and M, Eqs. (1) and (2), cannot be implemented within PBCs for a common
reason, i.e., the unboundedness of the position operator r. Indeed, the multiplicative
operator r is a “forbidden” operator within PBCs (Resta 1998).
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The drawback was overcome – and the nasty position operator was effectively
tamed – in the early 1990s for P and since 2005 onward for M. It was realized that
for an unbounded periodic system P cannot be determined – even in principle –
from a knowledge of the microscopic charge density ρ(micro)(r); analogously,
M cannot be determined from a knowledge of the microscopic current density
j(micro)(r). The expressions for P and M in use in modern electronic structure theory
(Resta 1994; Vanderbilt and King-Smith 1993; Resta and Vanderbilt 2007; Resta
2010; Thonhauser 2011; Spaldin 2012) look somewhat exotic and do not bear any
resemblance whatsoever to Eqs. (1) and (2); these expressions are instead deeply
rooted in the geometry of the electronic ground state.

The modern theory of polarization is a mature topic since the late 1990s and is
implemented in the most popular electronic structure codes, within both density-
functional and Hartree-Fock frameworks. The physical properties addressed, for
real materials, are spontaneous polarization, Born (alias infrared) effective charges,
infrared spectra, and piezoelectric coefficients.

The total magnetization of a sample is the sum of a spin and an orbital
contribution: the latter is typically a few percent of the total. The spin term does
not present a challenge for electronic structure calculations, while instead before the
advent of the modern theory (2005–2006), no formula was available for evaluating
orbital magnetization in bulk materials. The theory has been implemented at the
first-principle level, e.g., to evaluate M in the ferromagnetic metals Ni, Co, and
Fe (Ceresoli et al. 2010a; Lopez et al. 2012); it has also been used to address the
NMR (nuclear magnetic resonance) shielding tensors in some paradigmatic cases
(Thonhauser et al. 2009; Ceresoli et al. 2010b).

At variance with polarization theory, the modern theory of magnetization is partly
a work in progress at the time of writing (2017); outstanding contributions appeared
very recently (Bianco and Resta 2013; Marrazzo and Resta 2016; Resta 2018).
These recent papers emphasize some very important features – detailed below in
this chapter – which make P to behave very differently from M. This is remarkable,
given the very similar textbooks definitions (Eqs. (1) and (2)) and given the common
drawback therein. It is also remarkable given that the modern expressions for P and
M, as integrals in reciprocal space in terms of Bloch orbitals, look apparently – and
only apparently – very similar.

At the phenomenological level, there is another remarkable difference between
P and M which is worth stressing at this point. P is well defined only for insulators,
which strictly speaking exist only at zero temperature; M instead is well defined
for both insulators and metals, even at finite temperature. Here we provide only the
zero-temperature theory for M, as implemented in electronic structure codes (so far
density-functional theory only).

The modern theories provide the values of P and M in vanishing macroscopic
fields (electric and magnetic): this concept is illustrated in Sect. 2. Following it,
Sect. 3 provides an overview of polarization theory, and Sect. 4 provides the theory
in one dimension, where the formulation can be made particularly clear. Section 5
presents the full polarization theory, including the formulas actually implemented
in first-principle calculations. Section 6 is an overview of the modern theory of
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orbital magnetization, and Sect. 7 is the detailed presentation of it. Both theories are
presented here in an original way, which differs from the previous published reviews
(Resta 1994; Vanderbilt and Resta 2006; Resta and Vanderbilt 2007; Resta 2010;
Thonhauser 2011; Spaldin 2012), and does not follow the historical developments.

2 Electric andMagnetic Fields

2.1 The Fields E and B

The modern theories – illustrated throughout the present chapter – yield the P and
M values in absence of macroscopic fields E and B. In this section we explain with
some detail what this means in the framework of modern electronic structure theory,
where one addresses bulk quantities without dealing with real bounded samples.

The microscopic fields E(micro)(r) and B(micro)(r) are ideally measurable inside
the material, with no reference to what happens outside a bounded sample. Their
macroscopic averages E and B, i.e., the internal (or screened) macroscopic fields, are
therefore the variables of choice for a first-principle description. It must be realized
that, insofar as we address an infinite system with no boundaries, the macroscopic
field (either E or B) is just an arbitrary boundary condition. To realize this, it is
enough to focus on the electrical case for a crystalline material. The microscopic
charge density is neutral in average and lattice periodical; the value of E is just an
arbitrary boundary condition for the integration of Poisson’s equation. The usual
choice (performed within all electronic structure codes) is to impose a lattice-
periodical Coulomb potential, i.e., E = 0. Imposing a given nonzero value of E
is equally legitimate (in insulators), although technically more difficult (Souza et al.
2002; Umari and Pasquarello 2002).

More generally, even for a noncrystalline and/or correlated large and macroscop-
ically homogeneous sample, the adoption of PBCs amounts to assuming that both
the Coulomb potential and the vector potential obey PBCs, ergo E(micro)(r) and
B(micro)(r) average to zero over the sample.

2.2 The Fields D and H

Macroscopic descriptions of homogeneous media customarily adopt the electro-
magnetic free-energy density F(E,H), where the independent variables are the
fields E and H (not B). The conjugate variables are

D = E+ 4πP = −4π
∂F

∂E

B = H+ 4πM = −4π
∂F

∂H
. (3)
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The most general expansion of F(E,H) up to second order around E = 0 and
H = 0 reads

F(E,H) = F0−P0 ·E−M0 ·H− 1

8π
E
↔
ε E− 1

8π
H
↔
μ H− 1

4π
E
↔
α H, (4)

where textbooks ignore the last term.

It was discovered by Dzyaloshinskii (1960) that the tensor
↔
α is in general

nonzero in crystals where both inversion symmetry and time-reversal symmetry are
absent. In fact E is odd under inversion and even under time-reversal, while the
opposite happens for H: therefore their combination in the last term of Eq. (4) is

odd under each of the two transformation. The tensor
↔
α is responsible for the linear

magnetoelectric effect, which follows from Eq. (3): an H field induces polarization
(at E = 0), and conversely an E field induces magnetization (at H = 0). We are not

discussing magnetoelectric materials in this chapter, and we therefore set
↔
α= 0 in

the following.

As for the remaining second order terms,
↔
ε is the macroscopic dielectric tensor,

and
↔
μ is the magnetic permeability tensor. We draw attention to the minus signs,

explained, e.g., in the Landau textbook (Landau and Lifshitz 1984).
The first order terms yield the spontaneous polarization P0 = −∂F/∂E and

magnetization M0 = −∂F/∂H, where the derivatives are evaluated at E = 0 and
H = 0.

2.3 B vs. H

As said above, E and H are customarily chosen as the independent variables. As
for the electric field, this is clearly the natural choice. We have stressed that E
(not D) is the internal field, which is measurable in principle inside the material.
The macroscopic field E is also a control parameter in first-principle calculations.
Matters are different in the magnetic case: the internal field, measurable in principle
inside the material, is B, not H. In fact the modern theory of magnetization, as
discussed in the present chapter, addresses magnetization in zero B field.

So, why instead one adopts H, and not B, as the independent variable in the free-
energy density? There are several reasons. Phenomenologically, the experimenter
directly controls E (e.g., via capacitors) and H (via, e.g., solenoids or generally
currents); the fields E and H are directly read on the instruments. Several textbooks
even call H the “magnetic field,” which I find strongly misleading. I adopt the
nomenclature of the good textbooks, such as Feynman et al. (1964) and Griffiths
(1999) popular textbooks, where B is called “magnetic field” and H is just “H.” All
formulas have a pretty symmetric expression in terms of E and H; Feynman warns
however that “although the equations are analogous, the physics is not analogous.”
The equations would look asymmetrical and ugly using the genuine magnetic field
B instead.
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As said above, custom dictates that spontaneous magnetization is defined as
M0 = −∂F/∂H: this is not what is addressed throughout this chapter. However

B and H are related by the magnetic permeability tensor as B = ↔
μ H, and in

normal materials the permeability difference from one (in Gaussian units) is of the
order of (1/137)2. There is then little difference between M0 as addressed in this
chapter and M0 as customarily addressed. Whenever needed, the conversion of the
response tensors from their (E,H) definition to the (E,B) counterpart requires only
straightforward algebra.

2.4 Shape Issues

As explained so far, there is no need of addressing bounded samples and external
vs. internal fields from a theoretician’s viewpoint. Nonetheless a brief digression
is in order, given that experiments are performed over bounded samples, often in
external fields. Suppose a bounded macroscopic sample is inserted in a constant
external field E(ext): the microscopic field E(micro)(r) coincides with E(ext) far away
from the sample, while it is different inside because of screening effects. If we
choose an homogeneous sample of ellipsoidal shape, then the macroscopic average
of E(micro)(r), i.e., the macroscopic screened field E, is constant in the bulk of the
sample. The shape effects are embedded in the depolarization coefficients (Landau
and Lifshitz 1984): the simplest case is the extremely oblate ellipsoid, i.e., a slab of
a macroscopically homogeneous dielectric; more details are given in Resta (2010).
For the slab geometry in a vanishing external field E(ext), the internal field E
vanishes when P is parallel to the slab (transverse polarization), while E = −4πP
is the depolarization field when P is normal to the slab (longitudinal polarization):
see Fig. 1.

The magnetic case can be discussed along similar lines. Suppose a bounded
macroscopic sample is inserted in a constant external field B(ext): the microscopic
field B(micro)(r) coincides with B(ext) far away from the sample, while it is different
inside because of screening effects. If we choose an homogeneous sample of

x

z

+ + + + + +

− − − − − −

Fig. 1 Macroscopic polarization P in a slab normal to z, for a vanishing external field E(ext). Left:
when P is normal to the slab, a depolarizing field E = −4πP is present inside the slab, and charges
are present at its surface, with areal density σsurface = P ·n Right: when P is parallel to the slab, no
depolarizing field and no surface charge is present
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x

z

Fig. 2 Macroscopic magnetization M in a slab normal to z, for a vanishing external field B(ext).
Left: when M is normal to the slab, no demagnetizing field and no surface current is present.
Right: when M is parallel to the slab, a demagnetizing field B = 4πM is present inside the slab,
and dissipationless currents Ksurface = c M× n flow at the surfaces

ellipsoidal shape, then the macroscopic average of B(micro)(r), i.e., the macroscopic
screened field B, is constant in the bulk of the sample. The shape effects are
embedded in the demagnetization coefficients (Landau and Lifshitz 1984). For the
slab geometry in a vanishing external field B(ext), the internal field B vanishes
when M is normal to the slab (longitudinal polarization), while B = −4πM is the
demagnetization field when M is parallel to the slab (transverse polarization): see
Fig. 2. Notice that this is the opposite of what happens in the electrical case (Fig. 1).

3 Overview of Polarization Theory

Novel ideas about macroscopic polarization emerged in the early 1990s (Posternak
et al. 1990; Resta 1992); these led to the modern theory, based on a Berry phase,
which was founded by King-Smith and Vanderbilt soon afterward (King and
Vanderbilt 1993). At its foundation, the modern theory was limited to a crystalline
system in an independent-electron framework (either Kohn-Sham or Hartree-Fock).
Later, the theory was extended to correlated and/or disordered systems (Ortiz and
Martin 1994; Resta 1998).

Addressing polarization differences instead of polarization “itself” was instru-
mental to the first developments of the theory. Soon after the main breakthrough,
a key paper by Vanderbilt and King-Smith (1993) reformulated the theory in a
way where even polarization itself is a well-defined bulk property, although an
apparently exotic one, detailed below. For the time being, let us anticipate that
bulk polarization P is not a single-valued vector, at variance with its treatment in
elementary textbooks.

The first calculation ever of spontaneous polarization was published by Posternak
et al. (1990). The case study was BeO: it has the simplest structure where a bulk vec-
tor property is symmetry-allowed (i.e., wurtzite), and furthermore its constituents
are first-row atoms. The idea was to address the macroscopic polarization of a
slab of finite thickness, with faces normal to the c axis, embedding it in an ad
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Fig. 3 Top panel: the
14-atom BeO supercell in a
vertical plane through the
BeO bonds; the wurtzite (W)
and zincblende (ZB)
stackings are perspicuous.
Bottom panel: macroscopic
averages of the valence
electron density (solid) and of
the electrostatic potential
(dotted). (After Posternak
et al. 1990)

hoc medium which (i) has no bulk polarization for symmetry reasons (caveat: this
was common wisdom at the time, no longer nowadays!) and (ii) does not produce
any geometrical or chemical perturbation at the interface. The optimal choice is
a fictitious BeO in the zincblende structure. Because of obvious computational
reasons, the system is periodically replicated in a supercell geometry (Fig. 3, top
panel). The self-consistent calculation shows well-localized interface charges, of
opposite sign, and equal magnitude at the two nonequivalent interfaces (Fig. 3,
bottom panel). The interface charge is related to the difference in polarization
between the two materials: σinterface = ΔP · n. The computer experiment provides
the value of σinterface, and since P vanishes by symmetry in the zincblende slab, one
thus obtains the bulk value of P in the wurtzite material.

Notice that here P is a longitudinal polarization, in a depolarizing field, as in
Fig. 1. Longitudinal P is related to the zero-field P0, as defined in Eq. (4), by P =
P0/ε, where ε is the dielectric constant of the material.

It must be emphasized that the quantity really “measured” in this computer
experiment is ΔP, not the polarization P itself. After the paper was published,
a study of the experimental literature showed that – contrary to an incorrect
widespread belief – no experimental value of P in any wurtzite material exists: only
estimates are available. This paper marks, as said above, a change of paradigm: its
main message was that polarization must be defined by means of differences, and the
concept of polarization “itself” should be abandoned. With hindsight, it is nowadays
pretty clear that the problem exists already at the classical level: the dipole per cell
of an array of classical charges is ill defined: it depends on the (arbitrary) choice of
the unit cell. Most textbooks are missing this very basic fact.

The modern theory, in its original formulation, avoided addressing the “absolute”
polarization of a given equilibrium state, quite in agreement with the experiments,
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which invariably measure polarization differences. Instead, the theory addresses
differences in polarization between two states of the material that can be connected
by an adiabatic switching process. The time-dependent Hamiltonian is assumed
to remain insulating at all times, and the polarization difference was then defined
(Resta 1992) as the time-integrated transient macroscopic current that flows through
the insulating sample during the switching process:

ΔP = P(Δt)− P(0) =
ż Δt

0
dt j(t). (5)

In the adiabatic limit, Δt → ∞ and j(t) → 0, while ΔP stays finite. Addressing
currents (instead of charges) explains the occurrence of phases of the wave functions
(instead of square moduli) in the modern theory. Eventually the time integration in
Eq. (5) will be eliminated, leading to a two-point formula involving only the initial
and final states.

The two-point formula provides two values which can be interpreted as the
“absolute” polarizations P(0) and P(Δt) of the initial and final state, respectively.
One arrives therefore at defining polarization “itself,” at the price – as explained in
detail below – of adopting a new paradigm: polarization is not a single-value vector,
as instead in elementary theories.

The modern theory of polarization directly addresses polarization in zero E
field: therefore we simplify notations by identifying P0 with P in the following.
The presentation of the modern theory given here does not follow the historical
developments.

4 Polarization Theory in One Dimension

For pedagogical reasons we start illustrating the modern theory by addressing in
much detail a one-dimensional (1d) system; the 1d formalism applies as well to
quasi-1d systems (e.g., polymers), with just a change of notations. The three-
dimensional theory will be addressed in the following section, including the details
of a first-principle implementation.

4.1 Polarization “Itself”

We assume a system of N electrons in a segment of length L; the thermodynamic
limit (N →∞, L→∞, N/L = constant) is implicit. Neglecting irrelevant spin
variables, the ground-state wave function is

Ψ0 = Ψ0(x1, x2, . . . xj , . . . xN). (6)

This very general form includes disordered and/or correlated systems.
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According, e.g., to the popular (Kittel 2005) textbook, P is nonzero when “. . . .the
center of positive charge does not coincide with the center of negative charge” (my
italics). Supposing we have 1d nuclei of charge eZ� at sites X�, Kittel’s definition
leads to

Px = e

⎛

⎝ 1

L

∑

�

Z�X� − 2

L
〈Ψ0|

N∑

j=1

xj |Ψ0〉
⎞

⎠ , (7)

where the factor of two is included to ensure charge neutrality. The two terms in
parenthesis are indeed the centers of positive and negative charge, respectively.

Equation (7) makes sense and is correct for a bounded system, where (i) the sum
over � is finite and (ii) Ψ0 is square-integrable; it is instead complete nonsense when
PBCs are adopted. In the latter case, the sum over � is infinite; as for the wave
function, PBCs mean that for any j

Ψ0 = Ψ0(x1, x2, . . . xj , . . . xN) = Ψ0(x1, x2, . . . xj+L, . . . xN). (8)

If we restrict both the sum and the integration to a segment of length L, the result
depends on the choice of the coordinate origin.

The key observation is that within PBCs the xj coordinates are equivalent to the
angles ϑj = 2πxj/L, and the centers of positive and negative charges must be
obtained from phase angles. The solution is therefore to replace Eq. (7) with

Px = e

2π
Im ln ei

2π
L

∑
� Z�X� − e

π
Im ln 〈Ψ0|ei 2π

L

∑
j xj |Ψ0〉; (9)

the electronic term therein is the ground-state expectation value of a unitary and
periodic operator. We may equivalently write

Px = e

2π
Im ln 〈Ψ0|ei

2π
L

(∑
� Z�X�−2

∑
j xj

)

|Ψ0〉 = eγ

2π
= e

2π
(γ (nucl) − 2γ (el)),

(10)
where the phase angle γ (el) is a Berry phase of the electronic ground state in
disguise; nowadays in electronic structure jargon, this phase is dubbed “single-point
Berry phase.” Notice that the total phase γ in Eq. (10) is invariant by translation
of the coordinate origin, as a virtue of charge-neutrality; the nuclear and electronic
phases γ (nucl) and γ (el) are not separately invariant.

4.2 The Polarization “Quantum”

Given that any phase angle is defined modulo 2π , Eq. (10) shows that polarization
itself in 1d is arbitrary modulo e: as anticipated above bulk polarization is a 1d
lattice, not a single-valued quantity: this is the outstanding message of Vanderbilt
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and King-Smith (1993). The quantum arbitrariness is a real-world feature, not an
artefact of the theory.

When PBCs are adopted, the system has no boundary by construction, and only
the bulk electronic distribution is accessible. For any bounded realization of the
given linear system, the “modulo” value is determined only after the termination
is specified. Among the Px values allowed by the bulk, nature will choose the
minimum-energy one.

We are accustomed to assume that Px = 0 in centrosymmetric linear systems:
this is incorrect. The phase angles γ compatible with centrosymmetry are either
zero or π : this amounts to a Z2 topological classification of 1d centrosymmetric
insulators, which implies either Px = 0 mod e (Z2-even) or Px = e/2 mod e

(Z2-odd). The classification is topological, in the sense that it is impossible to
continuously deformate the Hamiltonian (and the ground state) of a Z2-even 1d
system into a Z2-odd one while keeping the system centrosymmetric and insulating.

The proof that the end charge in centrosymmetric linear polymers is topological
can be equivalently arrived at by Wannier-function counting– in the special case of
independent electrons – using Eq. (39) below (Kudin et al. 2007). Similar arguments
also prove the topological nature of the soliton charge in polyacetylene, first
discovered by Su et al. (1979). If we insist that we want a singlet wave function –
as everywhere here – then the soliton charge can only be ±e. But we may relax this
condition, adopting single occupancy (instead of double) for one of the Wannier
functions in the soliton region: the soliton is then neutral but carries spin ±1/2.

A perspicuous illustration of the quantum feature was provided by Kudin et al.
(2007), who addressed bounded quasi-1d systems of length L. A test case is trans-
polyacetylene, whose bulk is centrosymmetric and whose bulk Px value is 0 mod
e (Z2-even). We chose two different terminations, as illustrated in Fig. 4, and we
computed the dipole divided by L as a function of L for large L values. In both
cases the whole molecule is polar: therefore at finite L the two dipoles are nonzero
and nonquantized. The quantization is exact in the L → ∞ limit: the simulations
reported by Kudin et al. (2007) perspicuously show that the asymptotic value of the
dipole per unit length is either zero or e for the two different terminations of the
same “bulk” chain.

Fig. 4 A centrosymmetric
insulating quasi-1d “crystal”
with two different
termination: alternant
trans-polyacetylene. In this
picture the “bulk” is
five-monomer long. (After
Kudin et al. 2007)
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4.3 Polarization vs. Current

We have arrived at our main 1d result, Eq. (10), by a sort of plausibility argument.
In order to prove that the Px expression given above actually is the macroscopic
polarization, we have to resort to Eq. (5) and show that when Px is evaluated using
the adiabatic instantaneous eigenstate |Ψ0〉 at time t , its time derivative coincides
with the current density. The current carried by the classical nuclei is trivial; we
focus therefore on the electronic one, neglecting once more the factor of two
(spinless electrons).

j (el)
x (t) = − e

2π

d

dt
γ (el)(t) = − e

2π

d

dt
Im ln 〈Ψ0(t)|ei 2π

L
x̂ |Ψ0(t)〉

= − e

2π
Im

(
〈Ψ̇0|ei 2π

L
x̂ |Ψ0〉

〈Ψ0|ei 2π
L

x̂ |Ψ0〉
+ 〈Ψ0|ei 2π

L
x̂ |Ψ̇0〉

〈Ψ0|ei 2π
L

x̂ |Ψ0〉

)
, (11)

where |Ψ̇0〉 is the adiabatic time derivative of the ground eigenstate, x̂ = ∑
j xj ,

and the thermodynamic limit is understood.
We generalize the many-electron Hamiltonian as

Ĥ (κ) = 1

2m

N∑

j=1

(pj + h̄κ)2 + V̂ , (12)

where the potential V̂ includes one- and two-body terms and is periodic of period
L, while κ , called “flux” or “twist,” is a gauge transformation. This Hamiltonian
was first proposed by W. Kohn (1964), who observed that PBCs violate gauge-
invariance in the conventional sense: the ground-state energy actually depends on
κ . The ground eigenstate |Ψ0(κ)〉, which obtains by adiabatically varying κ , has a
nontrivial κ-dependence. To lowest order in κ , we get

|Ψ0(κ)〉 � |Ψ0〉 + h̄κ

m

∑

n �=0

|Ψn〉
〈Ψn| ∑N

j=1 pj |Ψ0〉
E0 − En

, (13)

where we set |Ψn(0)〉 = |Ψn〉. We consider next the state ei2πx̂/L|Ψ0〉: this state
obeys Schrödinger equation for κ = −2π/L and obeys PBCs as well. It is therefore
an eigenstate of Ĥ (−2π/L) with energy E0. If the system is an insulator, this state
coincides with the ground state |Ψ0(−2π/L)〉, obtained instead by adiabatically
varying κ in Eq. (12), hence:

ei2πx̂/L|Ψ0〉 � |Ψ0〉 − h

mL

∑

n �=0

|Ψn〉
〈Ψn| ∑N

j=1 pj |Ψ0〉
E0 − En

. (14)
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Inserting this into Eq. (11), one gets

j (el)
x � ieh̄

mL

∑

n �=0

〈Ψ̇0|Ψn〉
〈Ψn| ∑N

j=1 pj |Ψ0〉
E0 − En

+ c.c., (15)

where c.c. stays for complex conjugate. The n = 0 term is omitted from the sum
since 〈Ψ̇0|Ψ0〉 + 〈Ψ0|Ψ̇0〉 = 0. This concludes our proof: in fact the right-hand
member of Eq. (15) is the electronic current flowing through the system when the
potential V̂ is adiabatically varied, a well-known expression previously used by Niu
and Thouless (1984) in demonstrating the quantization of particle transport.

An important subtlety is worth stressing. The relative phase between eigenvectors
|Ψ0(κ)〉 at two different κ-values is arbitrary. The choice performed in the con-
ventional formulas of perturbation theory, as in Eqs. (13) and (14), correspond to
the so-called parallel-transport gauge; other choices are equally legitimate. Given
that the current is gauge-invariant, neglect of this phase factor (as we did here) is
harmless.

4.4 The King-Smith and Vanderbilt Formula

The modern theory of polarization was originally formulated by King-Smith and
Vanderbilt for a crystalline system of noninteracting electrons (in a mean-field
sense). Here we proceed in reverse historical order: we are going to derive their
formula as a special case of the previous more general one, i.e.

Px = e

2π
(γ (nucl) − 2γ (el)), γ (el) = Im ln 〈Ψ0|ei 2π

L

∑
j xj |Ψ0〉. (16)

Suppose we have a crystalline system of lattice constant a, where we impose PBCs
over M linear cells: there are then M equally spaced Bloch vectors in the reciprocal
cell [0, 2π/a):

ks = 2π

Ma
s, s = 0, 1, . . . ,M−1. (17)

The size of the periodically repeated system is L = Ma. The one-body orbitals can
be chosen to have the Bloch form:

ψmks (x + τ) = eiksτψmks (x), (18)

where τ = la is a lattice translation and m is a band index. Throughout this chapter
the Bloch orbitals are normalized to one over the unit cell.

There are N/M occupied bands in the Slater determinant wave function, which
we write (for spinless electrons) as
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|Ψ0〉 = 1√
MN

A
N/M∏

m=1

M−1∏

s=0

ψmks , (19)

where A is the antisymmetrizer: the 1/
√
MN factor in Eq. (19) owes to the different

normalizations: |Ψ0〉 is normalized over L = Ma, while the Bloch orbitals |ψmk〉
are normalized over a crystal cell of length a. It is now expedient to define a new set
of Bloch orbitals:

ψ̃mks (x) = e−i 2π
L

xψmks (x). (20)

We then recast the electronic Berry phase γ (el), Eq. (16), as:

γ (el) = −Im ln 〈Ψ0|Ψ̃0〉, (21)

where |Ψ̃0〉 is the Slater determinant of the ψ̃’s. According to a well-known theorem,
the overlap among two determinants is equal to the determinant of the overlap matrix
among the orbitals:

γ (el) = −Im ln
1

MN
det S, (22)

where

Ssm,s′m′ =
ż L

0
dx ψ∗mks

(x)e−i 2π
L

xψm′ks′ (x) = M

ż a

0
dx ψ∗mks

(x)e−i 2π
L

xψm′ks′ (x),

(23)
and ψmkM (x) ≡ ψmk0(x) is implicitly understood (so-called periodic gauge).

Owing to the orthogonality properties of the Bloch functions, the overlap matrix
elements vanish except when ks′ = ks + 2π/L, that is, s′ = s+1. The N ×N

determinant can then be factorized into M small determinants:

1

MN
det S =

M−1∏

s=0

det S(ks, ks+1), (24)

where for the small overlap matrix we use the notation

Sm,m′(ks, ks+1) =
ż a

0
dx ψ∗mks

(x)e−i 2π
L

xψm′ks+1(x) = 〈umks |um′ks+1〉, (25)

where |umk〉 = e−ikx |ψmk〉 is the periodic factor in the Bloch orbital. We finally get

γ (el) � −Im ln
M−1∏

s=0

det S(ks, ks+1) : (26)
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this is the well-known expression of the modern theory of polarization, as imple-
mented in many electronic structure codes. The formula was originally obtained by
King-Smith and Vanderbilt by defining a (continuum) Berry phase as a line integral
and then discretizing it.

For the sake of simplicity, we assume there is only one occupied band; Eqs. (25)
and (26) become then

S(ks, ks+1) =
ż a

0
dx ψ∗ks (x)e

−i 2π
L

xψks+1(x) = 〈uks |uks+1〉 (27)

γ (el) � −Im ln
M−1∏

s=0

〈uks |uks+1〉 = −
M−1∑

s=0

Im ln 〈uks |uks+1〉. (28)

If we adopt a gauge such that |uk〉 is a differentiable function of k, then

− Im ln〈uk|uk+Δk〉 � i〈uk|duk/dk〉Δk. (29)

In the large-M limit, the sum converges to the integral

γ (el) =
ż 2π/a

0
i〈uk|duk/dk〉 dk. (30)

This integral is a Berry phase (Zak 1989), and the integrand goes under the name
of Berry connection. Since |uk〉 is gauge-dependent (i.e., arbitrary by a k-dependent
phase factor), the Berry connection is gauge-dependent as well; the Berry phase,
instead, is gauge-invariant modulo 2π . As shown in Sect. 4.3, the electronic current
which flows through the one-dimensional sample during the switching process is

j (el)
x (t) = − ie

2π

d

dt

ż 2π/a

0
〈uk|duk/dk〉 dk, (31)

where the integrand is evaluated with the adiabatic instantaneous eigenstates. We
remind that the simplified Eq. (31) holds for one simply occupied band in one
dimension; we also remind that the system must be insulating at all times

As observed above, the continuum formulation of Eq. (30) requires |uk〉 to be a
differentiable function of k, while the discrete formulation of Eqs. (26) and (28) is
more general. This is of foremost importance in numerical work: in fact, when the
orbitals are obtained by numerical diagonalization, the choice of the gauge is erratic;
further ambiguity arises from band ordering in the many-band case. We stress that
this ambiguity is harmless in both Eqs. (26) and (28), which are numerically gauge-
invariant in form. To this aim, it is essential that the Hamiltonian is diagonalized M

times, not M + 1, in order to enforce the periodic gauge, i.e.

〈umk0 |um′kM 〉 ≡ 〈umk0 |e−i2πx/a|um′k0〉. (32)
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5 Polarization Theory in Three Dimensions

Considerations based on the adiabatic current – similar to those leading to the
simplified Eq. (31) – hold for a many-band system in three dimensions: we provide
in this section the corresponding formalism in detail. The formulas given below are
those implemented in most first-principle codes for electronic structure calculations,
both density functional and Hartree-Fock. Since the Berry phase is included in the
public distribution of such codes, it is impossible to keep track of the plethora of
calculations which have appeared in the literature, for the most diverse materials.
As of today (2018), the original 1993 paper by Vanderbilt and King-Smith scores
1,700 ISI citations; most of them are from papers which provided first-principle
Berry-phase calculations for real materials.

In the early years (1993 onward), the modern theory has mostly addressed
the ferroelectric perovskites, in order to compute (and predict) the spontaneous
polarization of the various phases, the Born (a.k.a infrared) effective charges for
lattice dynamics and the piezoelectric coefficients. The accuracy of the results
clearly depends on the form of the functional adopted and on its reliability in
describing the given material; in simple cases the overall accuracy can be evaluated
at about 5%. A tabulation of several state-of-the-art results, for many perovskite
oxides, has been published by Rabe and Ghosez (2007). In more recent years, the
theory has been applied – as said above – to the most diverse materials, with an
overall accuracy roughly of the same order, for large-gap materials at least. Small-
gap materials may be more critical and may show a stronger dependence on the
functional.

Another very successful application concerns the infrared spectra of amorphous
and liquid materials, where the modern theory is implemented in the framework of
ab initio (Car-Parrinello) molecular dynamics. The formalism is reviewed here in
Sect. 5.4; the very first implementations were for amorphous silicon by Debernardi
et al. (1997) and for liquid water by Silvestrelli et al. (1997). Water is arguably the
most difficult liquid of all: it is hard to model the hydrogen bond with classical
forces, and the light mass of hydrogen is the source of additional complications. For
this reason the infrared spectrum of water has been computed again several times,
with technically different first-principle ingredients. As an example, we quote here
a thorough study of water and ice by Chen et al. (2008).

5.1 The King-Smith and Vanderbilt Formula

If nb is the number of occupied bands, then the King-Smith and Vanderbilt formula
reads (per spin channel)

P(el) = − ie

(2π)3

nb∑

m=1

ż

BZ
dk 〈umk|∇kumk〉, (33)
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where BZ is the Brillouin zone. The adiabatic time derivative of Eq. (33) yields the
macroscopic current density due to the (spinless) electrons; the classical nuclear
term must be added. The real vector field i〈umk|∇kumk〉 is the Berry connection
of band m: it is gauge-dependent, while P(el) is instead gauge-invariant, modulo a
“quantum” detailed below.

The integral in Eq. (33) can be equivalently performed over a unit reciprocal cell,
defined by the reciprocal vectors Gi , i = 1, 2, 3; let the corresponding unit vectors
of the direct lattice be Ri , and the cell volume be Vcell = |R1·R2×R3|. We introduce
the dimensionless variables ξi , defined as

k =
∑

i

ξiGi , ξi = 1

2π
k · Ri . (34)

It is expedient to evaluate Gi · P for each i, which in turn uniquely determine the
three components of P(el). Performing the change of variables in Eq. (33), we get

Gi · P(el) = − ie

Vcell

nb∑

m=1

ż 1

0
dξ1

ż 1

0
dξ2

ż 1

0
dξ3 〈um| ∂

∂ξi
um〉, (35)

where |um〉 is now a function of the ξi . We focus now on a given i, say i = 3, and
we write

G3 · P(el) = − e

Vcell

nb∑

m=1

ż 1

0
dξ1

ż 1

0
dξ2 γ (ξ1, ξ2) (36)

γ (ξ1, ξ2) = i

nb∑

m=1

ż 1

0
dξ3 〈um| ∂

∂ξ3
um〉, (37)

where γ (ξ1, ξ2) is clearly a one-dimensional Berry phase in the variable ξ3.
First-principle calculations of P for real materials are based on the discretization

of Eqs. (36) and (37). The integral in (ξ1, ξ2), Eq. (36), is discretized in the trivial
way. Instead the many-band Berry phase, Eq. (37), is discretized in terms of overlap
matrices according to Eq. (26). Numerical diagonalizations at different (ξ1, ξ2, ξ3)

points provide eigenvectors which are affected by erratic phase factors; further
ambiguity is due to band ordering. This arbitrariness does not affect the result, which
is numerically gauge-invariant. Two features are essential, though: (i) the periodic
gauge must be enforced, according to Eq. (32), and (ii) the computed γ (ξ1, ξ2) at the
mesh points must be equivalent to the discretization of a continuous function. As for
the latter point, we observe that the phases at each mesh point are (independently)
arbitrary by 2π ; one must choose instead the phases at adjacent mesh point by
ensuring that their difference is much smaller than 2π .

Notice that the Berry-phase formula, as in the previous equations, yields the
electronic term for spinless electrons (i.e., for spin channel). When implemented
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for real materials, this P(el) value has to be multiplied by two, and the classical
nuclear term must be added. The Berry-phase formula is usually implemented –
within a first-principle framework – in order to evaluate differences in polarization
ΔP between two states of the material that are connected by an adiabatic switching
process, as in Eq. (5). The formula amounts to replacing the time integral in Eq. (5)
with a two-point formula.

The Berry phase γ (ξ1, ξ2) in Eq. (37) – either continuous or discretized – is
gauge-invariant modulo 2π for any given (ξ1, ξ2). If (and only if) we choose the
gauge in such a way that γ (ξ1, ξ2) is a continuous function of (ξ1, ξ2), then G3 ·P(el)

is arbitrary modulo 2πe/Vcell. Finally, we notice that if R is the most general lattice
vector, one has Gi ·R = 2πn, with n integer: ergo the polarization quantum (for each
spin occupancy) is eR/Vcell. A moment’s reflection shows that even the classical
nuclear term is affected by the same ambiguity.

The original definition of ΔP as the time integral of its derivative, as in Eq. (5),
is not affected by any quantum ambiguity. The Berry-phase theory shows that ΔP
can be alternatively cast as a two-point formula, thus requiring the evaluation of
two Berry phases only (of the initial and final state): the trade-off is the quantum
ambiguity. Usually this is not a problem when evaluating ΔP, since its value is
typically much smaller than the quantum eR/Vcell, for crystal cells of moderate
size. If there is any doubt about the quantum choice, one can add some intermediate
points between the initial and final ones.

5.2 Formulation in Terms of Wannier Functions

The independent-particle (or mean-field) ground state is a Slater determinant of
doubly occupied orbitals; any unitary transformation of the occupied states among
themselves leaves the determinantal wave function invariant (apart for an irrelevant
phase factor), and hence it leaves invariant any ground-state property.

For an insulating crystal, the Bloch orbitals of completely occupied bands can be
transformed to localized Wannier orbitals (or functions) WFs. This is known since
long time (Wannier 1937), but for many years the WFs have been mostly used as a
formal tool; they became a popular topic in computational electronic structure only
after the seminal work of Marzari and Vanderbilt (1997); the classical review on the
topic is by Marzari et al. (2012).

The transformation of the Berry phase formula in terms of WFs provides an
alternative, and perhaps more intuitive, viewpoint. The formal transformation was
known since the 1950s, although the physical meaning of the formalism was not
understood until the advent of the modern theory of polarization.

The unitary transformation which defines the WF wmR(r), labeled by band m

and unit cell R, within our normalization is

|wmR〉 = Vcell

(2π)3

ż

BZ
dk eik·R |ψmk〉 . (38)
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If one then defines the “Wannier centers” as rmR = 〈wmR|r|wmR〉, it is rather
straightforward to prove that Eq. (33) is equivalent to

P(el) = − e

Vcell

nb∑

m=1

rm0. (39)

This means that the electronic term (per spin channel) in the macroscopic polariza-
tion P is the dipole of the Wannier charge distributions in the central cell, divided
by the cell volume. The nuclear term is obviously similar in form to Eq. (39); the
sum of twice Eq. (39) plus the nuclear term is charge neutral.

WFs are severely gauge-dependent, since the phases of the |ψmk〉 appearing in
Eq. (38) can be chosen arbitrarily; further ambiguity arises from band crossings.
However, the sum of their centers in Eq. (39) is gauge-invariant modulo a lattice
vector. Therefore P(el) in Eq. (39) is affected by the same “quantum” indeterminacy
discussed above.

The modern theory, when formulated in terms of WFs, becomes much more
intuitive and in a sense vindicates the venerable Clausius-Mossotti viewpoint:
in fact, the charge distribution is partitioned into localized contributions, each
providing an electric dipole, and these dipoles yield the electronic term in P.
However, it is clear from Eq. (38) that the phase of the Bloch orbitals is essential to
arrive at the right partitioning. Any decomposition based on charge only is severely
nonunique and does not provide in general the right P, with the notable exception
of the extreme case of molecular crystals.

In the latter case, in fact, we may consider the set of WFs centered on a given
molecule; their total charge distribution coincides – in the weakly interacting limit –
with the electron density of the isolated molecule (possibly in a local field). This
justifies the elementary Clausius-Mossotti viewpoint. It is worth mentioning that
the dipole of a polar molecule is routinely computed in a supercell geometry via the
single-point Berry phase discussed below. The dipole value coincides with the one
computed in the trivial way in the large supercell limit. Finite-size corrections, due
to the local field (different in the two cases), can also be applied (Dabo et al. 2008).

The case of alkali halides – where the model is often phenomenologically used –
deserves a different comment (Resta 2010). The electron densities of isolated ions
(with or without fields) are quite different from the corresponding WFs charge
distributions, for instance, because of orthogonality constraints: hence the Clausius-
Mossotti model is not justified in its elementary form, despite contrary statements in
the literature. We stress once more that P cannot be determined – even in principle –
from a knowledge of the microscopic charge density of the polarized crystal.

5.3 The Single-Point Berry Phase

First-principle calculations for large systems, which simulate, e.g., liquids, are
routinely performed in a supercell formalism and diagonalizing the Hamiltonian
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at k = 0 only (the Γ point). The rationale beyond this is that the reciprocal cell
of a large supercell is small, and any BZ integral can be approximately evaluated
exploiting the mean-value theorem, i.e.

ż

BZ
dk f (k) � (2π)3

Vcell
f (0). (40)

The Berry phase cannot be evaluated in this way, because the Berry connection is
not gauge-invariant. The problem was solved by Resta (1998), where it was shown
that even polarization can be evaluated in a single-point formalism.

Suppose we have a large cubic supercell of side L. Then the electronic term of
polarization in the z direction is (for each spin occupancy)

P (el)
z = − e

2πL2 γ
(el) = e

2πL2 Im ln det S(z), (41)

where the overlap matrix elements are

S
(z)

mm′ = 〈um|e−i2πz/L|um′ 〉 = 〈ψm|e−i2πz/L|ψm′ 〉, (42)

and |um〉 ≡ |ψm〉 are the eigenstates at k = 0. Eq. (41) directly follows from the one-
dimensional formulation, Eqs. (26) and (32), in the single point case; alternatively,
it also follows from Eqs. (36) and (37) when a single-point discretization is adopted.
As usual, the nuclear contribution must be added to the electronic term.

There is nonetheless an outstanding difference between the one-dimensional and
the three-dimensional cases: in the former case, the polarization quantum is e; in the
latter case, the quantum is e/L2. Since polarization is defined in the large-sample
limit, the vanishing of the quantum implies that polarization “itself” is ill-defined
for a three-dimensional noncrystalline sample, at variance with the one-dimensional
(and quasi one-dimensional) case. Eq. (41) is very useful, though: see Sect. 5.4.

5.4 First-Principle Infrared Spectra

The main ingredient of the infrared spectrum is the imaginary part of the dielectric
function ε′′(ω). This can be obtained from the equilibrium fluctuations of the system
at temperature T . When the fluctuations are evaluated within PBCs, the formula for
a classical system is

ε′′(ω) = 2πω

3V kBT

ż ∞

−∞
dt e−iωt 〈d(t) · d(0)〉, (43)

where kB is the Boltzmann constant, d is the instantaneous dipole of the sample,
and V is its volume; the brackets indicate a statistical average. The PBCs choice
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goes under the name of Ewald-Kornfeld (Kornfeld 1924; Neumann 1983) in the
molecular-dynamics jargon.

Since the pioneering works of Silvestrelli et al. (1997) and of Debernardi
et al. (1997), first-principle infrared spectra of liquids and amorphous systems
are routinely evaluated from Eq. (43), where the dipole d = V P is provided by
the single-point Berry phase, Eqs. (41) and (42) (plus the classical term), and its
fluctuations are computed via a Car-Parrinello simulation on a cubic supercell of
volume V = L3. The formula, as given here, refers to classical nuclei and does not
include quantum corrections.

The integral in Eq. (43) is discretized over small intervals Δt , and its evaluation
needs polarization differences only. In fact at any discretized time nΔt , the
polarization is

P(nΔt) = P(0)+ [P(Δt)− P(0)] + [P(2Δt)− P(Δt)] + . . .

+ [P(nΔt)− P((n− 1)Δt). (44)

For a Car-Parrinello time step Δt of usual magnitude, each of the terms in square
parenthesis is much smaller than the polarization quantum e/L2 at typical supercell
sizes. This feature overcomes the quantum ambiguity.

6 Overview of Magnetization Theory

The magnetization of a homogeneous sample carries the intuitive meaning of
magnetic dipole per unit volume. At the nonrelativistic (and semi-relativistic) level,
it is the sum of a spin and an orbital contribution. Experimentally, magneto-
mechanical experiments, based on the Einstein-de Haas effect, provide the two
terms separately (Meyer and Asch 1961). The spin term is conceptually trivial: in
absence of time-reversal symmetry, the electronic spin density is nonzero, and spin
magnetization is proportional to the macroscopic average of the spin density. In the
crystalline case, electronic structure codes routinely compute the spin density, which
is a lattice-periodical function: its cell average yields the spin magnetization. Here
we are concerned with orbital magnetization only, indicating it with the symbol M.

The modern theory addresses M in zero macroscopic B field, where the time-
reversal symmetry is broken by some internal microscopic field, e.g., through the
spontaneous development of ferromagnetic order or via spin-orbit coupling to a
background of ordered local moments; in the crystalline case, the Hamiltonian is
lattice periodical.

The starting date of the modern theory is 2005; important developments are
much more recent. Originally, the theory addressed crystalline systems, and M
was expressed as a Brillouin zone integral for insulators, more generally as a
Fermi-volume integral for both insulators and metals. The integrand is based on
k-derivatives of Bloch orbitals; the M expression looks therefore superficially kind
of similar to the integrand in P (i.e., the Berry connection). It was early realized,
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however, that – at variance with the case of P – the integrand is gauge-invariant,
and M is free from any “quantum” ambiguity. The overwhelming consequences of
these two features have been fully realized only since 2013 onward and will be
emphasized below. For instance, tinkering with the boundary of a finite sample
may alter the value of P (Sect. 4.2), but not of M. After 2013 the theory may
deal with M in noncrystalline systems and even in inhomogeneous ones (e.g.,
heterojunctions). At the time of writing (2017), there is no theory for correlated
ground-state wave functions. The magnetization formula for crystalline systems of
noninteracting electrons was generalized to finite temperatures as well. We are not
dealing with the topic here: we refer to the original literature or to a previous review
by Resta (2010).

As we previously did for the case of P, the presentation is based on the most
recent findings (Bianco and Resta 2013; Marrazzo and Resta 2016; Resta 2018) and
does not follow the historical development of the theory.

7 Magnetization Theory

7.1 Ground-State Projector

In the independent-electron framework (in a mean-field sense), all ground-state
properties are embedded in the one-particle density matrix P, also called ground-
state projector. For the sake of simplicity, we give once more the formulas for
spinless electrons (or per spin channel).

First we address a bounded sample, where the occupied orbitals are square-
integrable: this case is usually called “open boundary conditions” (OBCs). If |ϕj 〉
are the single-particle orbitals with eigenvalues εj , the ground-state projector is

P =
∑

εj<μ

|ϕj 〉〈ϕj |, (45)

where μ is the Fermi level.
We are considering here a macroscopically homogenous system, either disor-

dered or crystalline (in the latter case a crystallite cut from the bulk). If O is
any operator defining a physical property, the corresponding intensive ground-state
observable is given by a trace per unit volume

〈O〉
V

= TrV {PO} = 1

V

ż

dr 〈r|PO|r〉, (46)

in the large-V limit. The electronic contribution to P and orbital magnetization M –
Eqs. (1) and (2) – are simple observables in this class. For instance, magnetization is
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M = − e

2c
TrV {P r× v}, (47)

where v = i[H, r]/h̄ is the velocity operator.
The orbitals, and hence the projector, depend of the choice of the gauge in the

Hamiltonian H. Once the gauge in H is fixed, the projector is gauge-invariant,
in the sense that it is invariant by unitary transformations of the occupied orbitals
among themselves; the many-electron wave function (i.e., the Slater determinant) is
gauge-invariant as well.

If instead we address an unbounded crystalline sample within PBCs, the ground-
state projector is cast as a BZ integral in terms of the Bloch orbitals |ψjk〉 =
eik·r|ujk〉; here they are normalized to one over the unit cell of volume Vcell. The
ground-state projector is then given by

P = Vcell

(2π)3

∑

j

ż

BZ
dk θ(μ− εjk)|ψjk〉〈ψjk|, (48)

where εjk are the band energies and θ is the step function. This expression applies
to both insulators (μ in a gap) and metals (μ across a band).

The PBCs projector is a lattice-periodical operator, commuting with the transla-
tion group:

〈r|P|r′〉 = 〈r+ R|P|r′ + R〉, (49)

where R is a lattice vector. It is also “nearsighted” Kohn (1996), i.e.

〈r|P|r′〉 → 0 for |r− r′| → ∞; (50)

the decay is quasi-exponential (i.e., exponential times a power) in insulators (He and
Vanderbilt 2001) and power law in metals.

In the PBCs framework, an intensive observable of the electronic ground state is
still expressed as a trace per unit volume, where Eq. (46) is replaced by

TrV {PO} = 1

Vcell

ż

cell
dr 〈r|PO|r〉, (51)

but in order for this to make sense, even O must be a lattice-periodical operator, i.e.

〈r|O|r′〉 = 〈r+ R|O|r′ + R〉. (52)

This clearly rules out P and M, if we wish to make use of Eqs. (1) and (2), where
the position operator r (unbounded and nonperiodical) plays a dominant role.

Finally we observe that, in both the OBCs and PBCs cases, the ground-state
projector can be formally written as
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P = θ(μ−H). (53)

All ground-state properties must be invariant by a translation of the energy zero
(bar possibly the energy itself); Eq. (53) perspicuously shows that P enjoys such
property. More generally, any ground-state observable is – at least in principle – a
function of H− μ.

7.2 TheMagnetization of a Bounded Sample

For a bounded sample, we may safely adopt the definition of Eqs. (2) and (46);
it is however expedient to write the velocity operator in the equivalent form v =
i[(H− μ), r]/h̄, whence

M = − ie

2h̄cV
Tr {Pr× (H− μ)r}, (54)

since r×r = 0. Insofar as the system remains finite, the appearance of μ in Eq. (54)
looks irrelevant. But our choice has the virtue that M is explicitly a function of
H− μ: this is essential in the thermodynamic limit for metals, where the spectrum
becomes dense around μ.

So far, we have identically transformed the textbook definition of Eq. (2) into the
equivalent Eq. (54): this is still plagued by the same original drawback: the r-space
integral includes an extensive contribution from the boundary. Next we are going
to tame the position operator by performing a transformation similar in spirit to an
integration by parts, where the same integrated value obtains from two very different
integrands. Eventually, the trace will be boundary-insensitive in the large-V limit.

Using the cyclic properties of the trace, the Cartesian components of M are

Mγ = ie

2h̄cV
εγαβTr {(H− μ)rαPrβ}. (55)

where εγαβ is the antisymmetric tensor and the sum over repeated indices is implicit
(here and throughout). The following lemma is then very useful. Let O be any
Hermitian operator commuting with P. Then

Tr {O [rα,P] [rβ,P]} = −Tr {OP rαrβ} − Tr {O(2P− I )rαPrβ}. (56)

We apply this lemma by identifying O with the operator |H − μ| = (H − μ)

(I − 2P) to get

Mγ = − ie

2h̄cV
εγαβTr {|H− μ| [rα,P] [rβ,P]}, (57)

where we have used (I − 2P)2 = I .
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If we now define the vector field

M(r) = − ie

2h̄c
〈r||H− μ| [r,P] × [r,P]|r〉, (58)

the previous main result can be cast in the very compact form

M = 1

V

ż

dr M(r), (59)

where we remind that the formula as it stands applies to spinless electrons. As
proved here, the integrated value in Eq. (59) is identical to Eqs. (2) and (54) at any
sample size; the key difference is that the integrands are quite different: Eqs. (2)
and (54) are dominated by boundary contributions, while Eq. (59) is free from such
drawback. Indeed, Eq. (59) is a local definition of magnetization: if the bounded
sample is a crystallite (cut from a bulk crystal), then a definition of M equivalent to
Eq. (59) in the large-sample limit is

M = 1

Vcell

ż

Vcell

dr M(r), (60)

where Vcell is a crystal cell in the center region of the crystallite. Obviously, a similar
property does not hold for the original integral (Eq. (2)). Owing to the locality
property, the definition of Eq. (60) can also deal – with obvious modifications –
with noncrystalline or inhomogeneous samples, like heterojunctions.

In all of the previous equations, the large-sample limit is understood; it has
been demonstrated (Bianco and Resta 2013; Marrazzo and Resta 2016) that the
convergence of Eq. (60) is much faster than the convergence of Eqs. (2), (54),
and (59). Simulations based on a model Hamiltonian in two dimensions have
proved that the convergence of Eqs. (2), (54), and (59) is of the order 1/L, where
L is the linear dimension of the sample, in both insulators and metals. Instead
the convergence of Eq. (60) is exponential in insulators and L−α , with α > 1, in
metals. The difference between the two owes to the different “nearsightedness” of
P, mentioned above (Kohn 1996; He and Vanderbilt 2001).

7.3 TheMagnetization of an Unbounded Crystalline Sample

The definition of the vector field M(r), Eq. (58), applies as it stands even to an
unbounded sample within PBCs. In the crystalline case, the P projector therein
is expressed in terms of Bloch orbitals as in Eq. (48). It is easy to verify that the
operator [r,P] commutes with the lattice translations, and therefore M(r) is a
lattice-periodical function. In this sense the commutator with P effectively “tames”
the nasty, unbounded, position operator r. The expression for M as a trace per
unit volume is therefore formally identical to Eq. (60), found above for a bounded
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sample. We show next how to express it as a BZ integral in terms of Bloch orbitals;
in metals the BZ integral is actually a Fermi volume integral, owing to the θ function
entering the P definition (Eq. (48)).

We start rewriting Eq. (48) as

〈r|P|r′〉 = Vcell

(2π)3

ż

BZ
dk eik·(r−r′)〈r|Pk|r′〉 (61)

Pk =
∑

j

θ(μ− εjk)|ujk〉〈ujk|. (62)

The Pk projector is gauge-invariant in the generalized Marzari-Vanderbilt sense
(Marzari and Vanderbilt 1997; Marzari et al. 2012), i.e., it is invariant for any unitary
transformation of the occupied |ujk〉 at the given k; it is also periodic in k (even
when the Chern invariant is nonzero). Therefore taking the k-gradient inside the
integral, we get

0 = i(r− r′)〈r|P|r′〉 + Vcell

(2π)3

ż

BZ
dk eik·(r−r′)〈r|∇kPk|r′〉; (63)

[r,P] = iVcell

(2π)3

ż

BZ
dk eik·(r−r′)∇kPk. (64)

The Hamiltonian H can also be written as a BZ integral, hence

|H− μ| = Vcell

(2π)3

ż

BZ
dk eik·(r−r′)|Hk − μ|, (65)

where Hk = e−ik·rHeik·r.
We thus get the relevant operator identity:

|H− μ| [rα,P] [rβ,P] = − Vcell

(2π)3

ż

BZ
dk eik·(r−r′)|Hk − μ|(∂kαPk)(∂kβPk).

(66)

Notice that the three BZ integrals entering the product on the l.h.s. – from Eqs. (64)
and (65) – eventually contract to a single BZ integral. This owes to the fact that both
〈r|Hk|r′〉 and 〈r|∇Pk|r′〉 are lattice-periodical in r and r′ separately.

The ultimate formula (Resta 2018) for the orbital magnetization of a crystalline
system is then, after Eqs. (58) and (60)

M = ie

2h̄c

ż

BZ

dk
(2π)3 Tr {|Hk − μ|(∇kPk)× (∇kPk)}. (67)
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7.4 Insulators andMetals

Our main magnetization formula (Eq. (67)) holds for both insulators and metals: the
latter case requires further clarification. We start from the Pk definition, Eq. (62),
and we further adopt a gauge where |ujk〉 is a differentiable function of k (this is
always possible, even for topologically nontrivial solids): then

∇kPk =
∑

j

θ(μ− εjk)(|∇kujk〉〈ujk| + |∇kujk〉〈ujk|)

−
∑

j

δ(μ− εjk)∇kεjk |ujk〉〈ujk|. (68)

The second line vanishes in insulators but is singular in metals. Nonetheless the
singularity does not affect Eq. (67), given that it cancels in the antisymmetrized
product. We may therefore safely neglect the second line of Eq. (68) in the
following. The integrand in Eq. (67) is a continuous function of k in insulators
and piecewise continuous in metals; Eq. (67) is indeed a well-defined Fermi-volume
integral in both cases. As for the first line of Eq. (68), we notice that, while ∇kPk
is gauge-invariant and Hermitian, the operators |∇kujk〉〈ujk| and |ujk〉〈∇kujk| are
in general gauge-dependent and non-Hermitian: in fact the trace of |∇kujk〉〈ujk|,
times i, is nothing else than the Berry connection of band j , i.e., the essential
ingredient of polarization theory (see Sect. 5).

At this point we wish to make contact with the original formula of magnetization
theory (Xiao et al. 2005; Thonhauser et al. 2005; Ceresoli et al. 2006), as reported
in the previous reviews (Resta 2010; Thonhauser 2011),and implemented in a few
first-principle calculations:

Mγ = − ie

2h̄c
εγαβ

∑

εjk<μ

ż

BZ
dk 〈∂kαujk|(Hk + εjk − 2μ)|∂kβ ujk〉. (69)

It is important to observe that Eq. (69) requires the so-called Hamiltonian gauge, i.e.,
the |ujk〉 are eigenstates of Hk: unitary mixing of them – à la Marzari-Vanderbilt
(Marzari and Vanderbilt 1997; Marzari et al. 2012) – is not permitted. Our more
general Eq. (67), instead, is fully gauge-invariant.

In order to prove the equivalence, it is expedient to introduce a lemma. Let Ok,
with eigenvalues ojk, be any operator which commutes with Hk, i.e.

Ok =
∑

j

|ujk〉ojk〈ujk|. (70)

Then the following identity holds:
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Tr {Ok(∂kαPk)(∂kβPk)} =
∑

j

θ(μ− εjk)ojk〈∂kαujk|∂kβ ujk〉 (71)

+
∑

j

θ(μ− εjk)〈∂kβ ujk|Ok(I − 2Pk)|∂kαujk〉.

This identity is somewhat reminiscent of Eq. (56) and is proved via a straightforward
although somewhat tedious calculation.

We now identify Ok with |Hk − μ| = (Hk − μ)(I − 2Pk) and we get

Tr {|Hk − μ|(∂kαPk)(∂kβPk)} =
∑

j

θ(μ− εjk)(μ− εjk)〈∂kαujk|∂kβ ujk〉

(72)

+
∑

j

θ(μ− εjk)〈∂kβ ujk|(Hk − μ)|∂kαujk〉,

where we have exploited (I − 2Pk)
2 = I . Antisymmetrization yields

εγαβTr {|Hk − μ|(∂kαPk)(∂kβPk)}
= εγαβ

∑

j

θ(μ− εjk)〈∂kαujk|(2μ− εjk −Hk)|∂kβ ujk〉, (73)

and substitution into Eq. (67) concludes our proof.

8 Conclusions

Macroscopic polarization P and orbital magnetization M are phenomenologically
known as intensive ground-state properties of condensed matter. Their elementary
definitions, Eqs. (1) and (2), are very similar and are affected by the same drawback:
the unboundedness of the position r therein. Because of this feature, the elementary
definitions cannot be adopted to address macroscopic systems: Eqs. (1) and (2) are
incompatible with periodic Born-von Kármán boundary conditions, which are at
the root of all condensed matter theory and which make bulk physical properties
accessible to computation (for both crystalline and noncrystalline materials).

The two very important observables P and M have remained problematic for
many years; the nasty position operator r has been effectively “tamed” in the early
1990s in the case of P and since 2005 onward in the case of M. In both cases
the formulas adopted by modern condensed matter physics, as presented in detail
throughout this chapter, do not bear any resemblance to Eqs. (1) and (2). In the
special case of a crystalline system of independent electrons, both P and M are
expressed as reciprocal-space integrals, where no reference to the position operator
r is made. The integrands therein look superficially – and only superficially – rather
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similar; here we have emphasized instead the key features which make the intensive
observables P and M, as defined by the modern theories, profoundly different
between themselves.

The qualitative difference came out as a big surprise, given the close similarity
of Eqs. (1) and (2); we may spell out such difference as follows. Macroscopic
polarization P is a Berry phase of the electronic ground-state wave function and
does not admit any local representation: there is no “polarization density” to speak
of. Orbital magnetization M can be defined – similarly to P – as a reciprocal-space
integral, but, at variance with P, it also admits a local representation with a well-
defined density in coordinate space. The modern theory of magnetization may even
address macroscopically inhomogeneous systems (e.g., heterojunctions), which are
not accessible to the modern theory of polarization.

The modern theory of polarization is nowadays a mature topic. Its formal-
ism, presented here in detail in Sect. 5, is implemented as a standard option in
most density-functional-theory electronic structure codes, based on first-principle
ingredients. Because of this, there have been hundreds of applications to the most
diverse materials, starting with the most common ferroelectrics and piezoelectrics.
The accuracy and predictive power are remarkable, of the order of 5%–10% for
nonproblematic materials. An extension of the theory – associated to Car-Parrinello
simulations – has also provided very accurate infrared spectra for amorphous and
liquid materials, including the paradigmatic case of water.

The modern theory of orbital magnetization is instead much less popular; there
are several reasons for this. Bulk magnetization is the sum of an orbital term and
a spin term: the latter is the dominant one in the most common materials. In the
paradigmatic ferromagnetic metals Fe, Co, and Ni, the orbital contribution to the
net magnetization is between 5% and 10%. Furthermore in most materials, the
orbital magnetization is due to very localized d orbitals, whose orbital moment can
be evaluated semiquantitatively via some crude approximation. Finally, a technical
complication concerns pseudopotential implementations: the core electrons do not
contribute to electrical polarization but contribute instead to orbital magnetization.
Therefore core-reconstruction corrections have to be added to the formulas pre-
sented here, whenever implemented in a plane-wave pseudopotential framework.

It is expected that the modern theory of polarization, in the different variants
described here, will remain a staple of electronic structure theory for years to
come. As for the modern theory of magnetization, its appeal for addressing real
materials from first principles is limited so far. It will be enhanced if some all-
electron implementations become available and if materials where the orbital term
is the dominant one are discovered.
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Abstract

Supercooled liquids become increasingly sluggish upon cooling down to the
glass temperature Tg where they can no longer be studied in equilibrium on the
laboratory scale and behave as off-equilibrium amorphous solids, i.e., glasses.
Simple activated dynamics account for the behavior of so-called strong liquids,
but deviations from Arrhenius behavior are observed in fragile ones and have
defied explanation for decades. Technical advances in experiments have steadily
unveiled more facets of the puzzling phenomenology of fragile liquids including
notably two-step relaxation, stretched exponentials, superposition principles, and
dynamical heterogeneities. Theoretical efforts have developed mainly around the
idea that some sort of finite-temperature critical phenomenon is at play, the key
role in the discussion being played by two different critical points. The first one
is thought to occur above Tg , and therefore it is not really a phase transition

T. Rizzo (�)
Institute for Complex Systems, Rome Unit, National Research Council of Italy, Rome, Italy

Physics Department, Sapienza University of Rome, Rome, Italy
e-mail: tommaso.rizzo@cnr.it

© Springer Nature Switzerland AG 2020
W. Andreoni, S. Yip (eds.), Handbook of Materials Modeling,
https://doi.org/10.1007/978-3-319-44677-6_52

183

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-44677-6_52&domain=pdf
mailto:tommaso.rizzo@cnr.it
https://doi.org/10.1007/978-3-319-44677-6_52


184 T. Rizzo

but rather a dynamical crossover. Numerical studies have shed much light on its
nature, and nowadays it is largely believed to be the outcome of the smoothing of
a sharp singularity spuriously predicted by mode-coupling theory. The existence
of a dynamical crossover is largely accepted, and what is disputed is whether that
is the end of the story.

Those who believe this is not the case typically put forward the classic
hypothesis of a true thermodynamic phase transition to an amorphous glass
state at some finite temperature below Tg . Originally suggested by elementary
extrapolations of experimental data, this putative critical point is nowadays
supposed to be a complex and fascinating object, notably the locus of a
configurational entropy crisis accompanied by a divergent static correlation
length. The quest to establish its existence, reinvigorated by the discovery of
the glass/spin-glass analogy, is very much open but has produced nonetheless
significant advances both at the theoretical and numerical level. Opponents of
the thermodynamic transition scenario include notably those who advocate for
dynamic facilitation, as realized in kinetically constrained models, to explain
physics solely in terms of a dynamical crossover. Understanding dynamics
between the crossover temperature and Tg would help assess both the range
of validity of a description in terms of the crossover and whether something
qualitatively different must be invoked close to Tg and below. Here the essential
missing piece of information is the nature and spatial extent of the activated
processes that should rule the dynamics: at the theoretical level, a consistent,
beyond phenomenological, theory of these dynamical processes has still to be
developed; at the experimental level, current techniques do not have enough
spatial resolution; finally numerical simulations have been typically confined to
higher temperatures due to hardware speed limitations but are beginning to access
the crossover region and may provide some guidance in the coming years.

1 Introduction

In spite of decades of experimental, theoretical, and numerical studies, the glass
problem is very much open: the community agrees only on a few statements while
all the rest is strongly debated. In the following an introductory critical discussion
will be given of some of the theoretical and numerical results inspired by the
idea that some sort of critical phenomena determines the puzzling phenomenology
of supercooled liquids. The reader should be aware that this covers only a part,
although significant, of the literature of this field. In the spirit of the handbook,
this contribution is not intended as a general and exhaustive review but rather as
an, hopefully stimulating, introduction to some of the main open questions. The
interested reader will find in the references a number of more technically detailed
review papers and books (Gotze 2009; Cavagna 2009; Wolynes and Lubchenko
2012; Berthier et al. 2011; Berthier and Biroli 2011).
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This line of research has evolved over the years around the existence of two
critical temperatures: the crossover temperature and the Kauzmann temperature.
The first critical temperature occurs upon supercooling the liquid when it still
can be studied in equilibrium, and its existence is largely agreed upon and can
be considered part of the phenomenology. The problem is that it does not mark
a genuine phase transition but rather a dynamical crossover; thus it is difficult
to make sharp and universal statements about it. In this context mode-coupling
theory (MCT) captures the initial steps of the dynamical slowing down but fails
spectacularly because it predicts a sharp transition instead of a crossover, and the
main open problem is to extend it to the crossover region and below. From the
point of view of material modeling and simulations, it is a particularly important
problem, because the resolution of current experiments cannot provide guidance
for its solution. On the other hand, microscopic details are fully under control in
numerical simulation, but hardware constraints limit them to considerably higher
temperatures than those reached by experiments. Nevertheless many believe that
the crossover region is attainable with present or near-future technology and hope
to finally understand this regime in the coming years.

It is fair to say that our shared understanding of the physics of glasses ends
with MCT slightly before the glass crossover. Below it we only know that some
kind of activated dynamic should set in. In this context a fascinating but strongly
debated hypothesis is the occurrence, at very low temperatures, of a genuine
thermodynamic transition from the liquid to an amorphous glass state. This line
of research has inspired a variety of novel analytical and numerical techniques;
the idea is that the information on slow dynamics can be obtained without
performing molecular dynamic simulations but rather by studying the equilibrium
configurations of appropriately constrained systems. From the analytical point of
view, the advantage is that one can perform static computations that are typically
easier than full-fledged dynamical ones. From the numerical point of view, the
advantage is that equilibrium configurations can be obtained through more efficient
algorithms than molecular dynamics. This is a field where numerical work has
been going on in the last 15 years, and significant recent developments include
algorithms to reach temperatures that even experiments cannot. Nevertheless evi-
dences for a genuine phase transition are still not decisive; besides this information
has not shed light into the fundamental question of why dynamics becomes
so slow.

This work is organized as follows. In order to define the problem, the main
dynamical features of realistic supercooled liquids as obtained from experiments
will be summarized in Sect. 2. In Sect. 3 the MCT scenario will be presented, and
it will introduce a discussion of the extent to which the phenomenology can be
explained in terms of an avoided MCT-like transition. Section 4 is devoted to the
existence of a genuine phase transition occurring in the regime that is not accessible
by experiments and to the conceptual, technical, and numerical developments it has
inspired. Conclusions will be drawn in the last section.
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2 Phenomenology of Supercooled Liquids

The main properties of supercooled liquids, as observed in experiments, are
(1) power law to exponential crossover, (2) two-step relaxation, (3) complex
dynamics (stretched exponentials), and (4) dynamical heterogeneities (violation
of the Stokes-Einstein relationship (SER)). These are dynamical properties that a
consistent theory of glasses should necessarily explain. In addition there are the so-
called thermodynamics/dynamics correlations whose significance in relationship to
the experimental dynamical features is more disputed.

The power law to exponential crossover is the oldest property that has been
observed and possibly the most important. Upon slowly cooling a liquid crystallizes
at the melting temperature. If one is able to further lower the temperature avoiding
crystallization, a supercooled liquid is obtained. Upon further cooling, the relaxation
time or equivalently the viscosity of the supercooled liquid increases up to a value
where the viscosity is equal to a (conventional) value of the order of the laboratory
timescale. This point defines the glass transition temperature Tg . It should be clear
that nothing special happens at Tg from the point of view of the system; it is just the
lowest temperature where the system can reach equilibrium in a timescale accept-
able to humans. Obviously there is nothing strange in dynamic slowing down upon
lowering the temperature; for instance, this occurs if dynamics proceeds through
elementary events that require to overcome a constant free energy barrier E. In this
case Arrhenius behavior is observed, with the logarithm of the relaxation time (or
equivalently the inverse of the viscosity) increasing as the inverse of the temperature:

τα ∝ e
− E

kBT (1)

Strong liquids exhibit by definition Arrhenius behavior upon supercooling, while
fragile liquids exhibit a different behavior: when the logarithm of the viscosity
is plotted vs. the inverse temperature in the so-called Angell’s plot (1995), the
data do not follow a straight line (see Fig. 1). In the early stages of supercooling,
the viscosity of fragile liquids increases slowly and can be fitted by the tail of a
power law diverging at some finite temperature. This temperature, however, marks
a dynamical crossover: close to it the viscosity deviates from the power law and does
not diverge; however it begins to increase in a more pronounced way that can only be
fitted with functional forms depending exponentially on the temperature variations.
Overall the data of fragile liquids exhibit a more or less pronounced bending with
respect to the straight line Arrhenius behavior, and the slope at Tg provides a
quantitative definition of kinetic fragility (note that this terminology has nothing
to do with the brittleness properties of the corresponding glass). Experimental data
above Tg have been fitted by many different functions, including some that, upon
extrapolation, predict a divergence of the relaxation time at some finite temperature
below Tg , notably the Vogel-Fulcher-Tammann (VFT) law:

τα = τ0 exp

[
DT0

T − T0

]
(2)
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Fig. 1 Phenomenology of supercooled liquids. (a) Strong liquids like silica (SiO2) follow a
straight line on the Angell’s plot, while fragile liquids like glycerol and ortho-terphenyl (OTP)
exhibit a bending (Ediger et al. 1996). (b) The self-intermediate scattering function Fs(q; t)
for q = 6.1 at various temperatures from a numerical simulation of a binary mixture, from
Flenner and Szamel (2013). The dashed line is a stretched exponential. (c) The susceptibility
spectrum of supercooled CKN (Li et al. 1992) is broader than that of a single exponential (solid
line); correspondingly the relaxation can be only fitted by a stretched exponential. (d) Diffusion
coefficient D versus viscosity η for experimental and numerical simulation data from Rizzo and
Voigtmann (2015). Dashed lines indicate D ∝ η−1 (Stokes-Einstein relation) and a fit with
D ∝ η−0.65 (fractional SE relation). A large circle marks the crossover temperature. Inset: D · τ
with simulation data

This leads to the two following essential questions: what causes the power law to
exponential behavior in fragile liquids? Will the relaxation time eventually diverge
at a finite temperature below Tg?

Models of supercooled liquids are often defined in terms of spherical particles
interacting with pairwise potentials, and the typical dynamical observable is the
intermediate scattering function:

F(q, t) ≡ 1

N

〈
ρq(t)ρ−q(0)

〉
(3)
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where the square brackets mean thermal average, ρq is the Fourier component of
the density,

ρq ≡
N∑

j=1

ei q rj (4)

and rj is the position of particle j . The intermediate scattering function is
equivalent, by means of Fourier transforms, to the dynamic structure factors and
the van Hove function. At t = 0 the intermediate scattering function is equal to
the static structure factor and relaxes to zero at large times. In experiments this
quantity is accessible through a number of techniques (Richert 2012; Lunkenheimer
et al. 2012). Observation of the two-step relaxation requires measurements on a
huge range of timescales. The main relaxation, associated with the viscosity, is
called the α process hence the name τα for the relaxation time. However, there
is an additional timescale τβ over which F(q, t) develops a plateau when plotted
vs. log(t) and the system appears to be essentially frozen. The β scale is orders
of magnitude smaller than τα , but it is considerably larger than the microscopic
timescale. In Fig. 1b the phenomenon is displayed as measured in a numerical
simulation for the relaxation of the self-intermediate scattering function (the Fourier
transform of the single-particle displacement). The origin of the two-step relaxation
is often attributed to the emergence of caging (Gotze 2009). The idea is that
when dynamics is sufficiently slow, the environment of a given particle appears
to be frozen, and therefore the particle itself is caged and will in turn cage its
neighbors.

Caging is observed clearly in numerical simulations of hard-sphere systems (Kob
1999), but its origin is not completely understood. In these systems the temperature
can be always reabsorbed into a rescaling of times, and the only nontrivial external
parameter to be changed is the density. It seems natural that upon increasing the
density at some point dynamics will slow down because of reduced volume effects.
The problem with this interpretation is that caging is observed already at rather low
density, and it appears abruptly in a rather narrow range of densities, meaning that
if one inspects instantaneous configurations it is rather difficult to tell the difference
between a configuration from a system that displays caging and one from a system
that does not. This is an aspect of the so-called structure vs. dynamics problem.
In other words the question is whether slow dynamics can be traced back to some
structural property of the instantaneous equilibrium configurations. We may ask if
there is some observable that can be measured on a given configuration that will
correlate with the fact that relaxation from that configuration will exhibit caging or
not. This is a fundamental question in the field, and the negative answer amounts to
say that glassiness is a completely dynamical problem; this issue will be discussed
again later on.

In simple Arrhenius dynamics relaxation decays exponentially in time. Relax-
ation in fragile liquids instead is complex, meaning that can only be typically
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fitted with a stretched exponential form exp
(−tb

)
. In experiments this result

in the broadening of the susceptibility spectra that are related to the Fourier
transform of the relaxation (see Fig. 1c). Much as the two-step relaxation, this
is not at all trivial. As soon as the relaxation is controlled by independent
microscopic events occurring in a uniform environment, the decay is necessarily
exponential, while in order to have a stretched exponential behavior, one must
either invoke spatial fluctuations in the environment or a moderately large cor-
relation length implying that the relaxation events are not elementary or involve
many particles. Which hypothesis is correct, if any of the two, is at present
unknown. Superposition principles are an additional nontrivial feature of the
relaxation. Strictly speaking they amount to say that the temperature dependence
of the relaxation is only encoded in the timescale τα , meaning that one can
write

F(q, t) = Cq(t/τα) (5)

for some function Cq(t). This property is verified approximately by many super-
cooled liquids in some temperature range; see Gotze (2009) for a more detailed
discussion of experimental data.

In the last 20 years dynamical heterogeneities (Ediger 2000; Berthier et al. 2011)
have emerged as a fundamental property of fragile liquids. In short the idea is
that approaching Tg if one look at the liquid at the microscopic level there will be
regions where dynamics is orders of magnitude faster than in the rest of the system.
The above generic statement can, and often is, misinterpreted if one does not give
it a more quantitative formulation. This is given by the so-called violation of the
Stokes-Einstein relationship (SER) connecting the viscosity with the inverse of the
diffusion constant of a given particle. The SER is verified at high temperatures, but
violations are observed approaching Tg and starting somewhere near the crossover
temperature (see Fig. 1d). The SER can be justified assuming that each particle
perform a kind of Brownian motion in a homogeneous environment. Conversely
violations should occur in a situation in which, even if the SER is satisfied locally,
the environment is not homogeneous and the local viscosity has strong fluctuations
in such a way that the inverse of its average is different from the average of its
inverse. Once again the precise mechanism leading to SER violations is not agreed
on, but they are definitively considered a hallmark of complex dynamics. MCT
helps to clarify that dynamical heterogeneities should not be confused with dynam-
ical fluctuations; indeed MCT has diverging dynamical fluctuations but no SER
violation.

In addition to the above dynamical features, a consistent part of the lit-
erature points toward the so-called thermodynamics/dynamics correlations con-
necting dynamical quantities like the viscosity with thermodynamical quantities
(the entropy) measured by calorimetry. They are often invoked in the context of
theories that advocate for the existence of a genuine phase transition below Tg , and
they will be discussed in more details in Sect. 4.



190 T. Rizzo

3 The Crossover Temperature

3.1 Mode-Coupling Theory

Mode-coupling theory (Gotze 2009) starts from the exact microscopic equations for
the dynamic structure factor of simple monoatomic liquid models and then makes a
certain number of approximations. The outcome is a set of closed equations that
can be solved numerically once the static structure factor is provided as input.
Before discussing MCT predictions, let us stress that there is at present a very
poor understanding of the approximations involved. The only justification comes
a posteriori as the results display a significant agreement with the behavior of actual
systems (again with some caveats), and the problem is complicated by the fact that
some of the approximations involved cannot even be tested directly. Therefore, in
spite of the fact that MCT starts from the exact microscopic dynamics, it is fair to
say that it is essentially a black box whose internal operation is unknown. Efforts to
understand it have been limited in the past, and more work should be devoted to this
essential open problem. Instead research activity has essentially ignored this issue
focusing on the empirical development of a sort of operating manual of the theory
and applying the resulting procedure to a variety of models and systems again with
impressing results.

There is a broad agreement that many supercooled fragile liquids can be modeled
by simple liquids with pairwise interactions, including hard-sphere (HS) systems.
However in two and three dimensions, monoatomic systems tend to crystallize
easily and cannot be supercooled to very low temperature; therefore one must
consider, at least, binary mixtures (Kob 1999). Mode-coupling equations can be
extended to binary systems of hard or soft spheres, and the resulting equations can
be solved to obtain the dynamic structure factor giving as input the static structure
factor typically obtained from numerical simulation.

The theory predicts that at a given value of the control parameter (temperature
or pressure), dynamical arrest occurs meaning that the infinite time limit of the
dynamic structure factor does not decay to zero as it should in the liquid phase
but tends to a constant momentum-dependent value, called the non-ergodicity
parameter. As we said already it is known that this prediction is completely wrong,
and in order to understand why, in spite of this dramatic failure, MCT is still
considered highly valuable; we have to discuss its predictions upon approaching
the transition temperature TMCT .

First of all, MCT predicts that the decay of the dynamic structure factor proceeds
in a two-step fashion as seen in experiments, with both scales τβ and τα diverging as
power law of τ ≡ TMCT −T . More precisely at the critical temperature T = TMCT ,
F(q, t) approaches the nonzero long-time limit Fc(q) in a power-law fashion with
a nontrivial exponent a: F(q, t) ≈ Fc(q) + c/ta . The exponent a controls the
divergence of the β scale through

τβ ∝ |τ | 1
2a . (6)
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For temperatures slightly larger than TMCT , F(q, t) reaches the plateau value Fc(q)

in a finite time that defines the scale τβ . For times of the order of τβ , it remains
close to the plateau value up to deviations of order square root of τ ≡ TMCT − T

before eventually leaving the plateau on the scale τα ∝ |τ |−γ . The decay on the α

scale satisfies both the superposition principle and the stretched exponential form
with exponent exp

[−tb
]
, in striking agreement with experiments. Furthermore the

exponent γ is related to a and b through

γ = 1

2a
+ 1

2b
(7)

and the two exponents a and b can be both expressed as

λ = Γ 2(1− a)

Γ (1− 2a)
= Γ 2(1+ b)

Γ (1+ 2b)
(8)

where λ is the so-called parameter exponent for which MCT provides quantitative
predictions.

Data from numerical simulations of a variety of models are consistent with this
scenario in some range of temperatures (Kob 1999; Gotze 2009). In particular, it is
often possible to estimate the critical temperature, the exponents, and the ergodicity-
breaking parameter Fc(q) and compare them with the quantitative predictions of
MCT. One should bear in mind that these estimates from realistic systems data
are intrinsically arbitrary because in principle MCT scalings are only well defined
close to the dynamical arrest transition, but in practice the transition does not
occur. In practice this ambiguity is reflected by the fact that the critical temperature
depends on the observable and also on the nature and range of the fit. In spite
of this intrinsic ambiguity, it turns out that the range of variations of the critical
temperature is often sufficiently small for the whole procedure to make sense. This
happens for most models and experimental systems, and indeed this experimental
MCT critical temperature (or density) is almost always reported in any study of
supercooled liquid. Furthermore the value of the ergodicity-breaking parameter can
be obtained from the data, and it is often in excellent quantitative agreement with
the predictions of MCT. The values of the critical exponents are more ambiguous
but still are in good agreement with the predictions of MCT. In particular it seems
that there is good consistency between the exponents a and b that control the β

regime with the exponent γ that controls the α regime. This is a manifestation of the
nontriviality of the double-step relaxation, in the sense that processes occurring on
large but comparatively very different timescales are related. It is worth mentioning
that MCT predictions appear to be somewhat meaningful even below the critical
temperature TMCT where the theory predicts that F(q, t) have a nonzero long-
time limit increasing as

√
τ for T smaller than TMCT . It turns out that in many

experimental systems and numerical simulations a square root increase of the
plateau value can be actually observed notwithstanding the fact that F(q, t) will
eventually leave the plateau at variance with MCT predictions.
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Overall the comparison between numerical simulations and theory suggests
a scenario in which ideal MCT predictions are accurate except very close to
the critical temperature where the theory needs some substantial modification.
Unfortunately this scenario is too optimistic in the sense that the effective MCT
temperature, the one for which MCT fits do describe actual data, is defini-
tively different from the value of the critical temperature obtained from the
solutions of the MCT equations itself (Kob 1999). This discrepancy is model-
dependent but seems rather universal; typically it is more pronounced in soft
sphere models than in HS, but its origin is unclear. As a result, it is often
said that the MCT critical temperature is wrong, but it should be clear that
there are two essentially different aspects of it being wrong. In a weak sense
it is wrong because its value does not compare well with the value used to
fit numerical data. The theory overestimates this value, and in practice in order
to obtain reasonable fits, one must plug into the MCT equations the structure
factors from higher temperatures. In a strong, more fundamental, sense MCT is
wrong because there is no true critical temperature in experiments and numerical
simulations.

The above discussion on the critical temperature allows to introduce the quan-
titative vs. qualitative MCT scenario. There are some features of MCT that are
more universal and are found also outside the original domain of the theory,
i.e., supercooled simple liquid models in physical dimension. The most striking
instance is the case of spin glasses displaying one step of replica symmetry breaking
(1RSB) in Parisi’s scheme (Mezard et. al. 1988). These systems are utterly different
from a liquid at the microscopic level; notably they are defined on a lattice, and
they have quenched disordered interactions, and yet, as discovered by Kirkpatrick
and Thirumalai (1987), their dynamics shares the very same phenomenology of
MCT, namely, dynamic arrest characterized by two-step relaxation with power-law
divergent timescales. Furthermore in the β regime, where the correlation stays near
the plateau, dynamics obeys the very same critical equation of MCT, i.e., a universal
quadratic dynamical equation that does not depend on the microscopic details of the
model. Thus one should always bear in mind that there are qualitative, much more
general, MCT predictions and quantitative MCT predictions that are only limited to
supercooled liquid models. In MCT literature this distinction is often not very clear.

An important instance of the qualitative/quantitative difference is the case of
simple supercooled liquids in large dimension. This problem has been investigated
extensively over the years under the expectation that in infinite dimension the
crossover should become a true transition and the problem should become solvable.
These studies culminated recently with the exact and complete solution (Charbon-
neau et al. 2016) that confirmed that the qualitative MCT scenario is correct (e.g.,
the relationship between the exponents holds), while the quantitative values of the
critical temperature and of the exponents are wrong.

Another striking instance of the universality of the qualitative MCT scenario is
provided by cooperative kinetically constrained models (KCM) (Ritort and Sollich
2003; Chandler and Garrahan 2010) that will be briefly discussed in the next
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section. Remarkably the Fredrickson-Andersen model, when studied on the (mean-
field) Bethe lattice, displays a dynamical arrest transition in agreement with the
qualitative MCT scenario (Berthier and Biroli 2011). Note that this statement is
only based on numerical observations, and justifying it analytically is a fascinating
open problem.

We are now in position to discuss the failures and successes of MCT in
connection with the phenomenology of real supercooled liquids presented in the
previous section. The two-step relaxation scenario is a significant success together
with the presence of stretched exponentials in the relaxation. The main failure is
the prediction of a true phase transition which in reality is a crossover; however
MCT is at least consistent with the initial power-law behavior. Another significant
failure of MCT is that even close to the critical temperature, it does not display
the SER violations associated with dynamical heterogeneities. By means of the
microscopic MCT equations, one can indeed obtain predictions for the diffusivity.
Remarkably the lack of SER violation is confirmed by the exact solution in infinite
dimension (Charbonneau et al. 2016). The fact that SER holds in MCT does not
mean that dynamical fluctuations are finite within the theory. Actually one can argue
that close to TMCT the theory predicts both diverging dynamical fluctuations and
diverging dynamical correlation length. This can be shown by means of an extension
called inhomogeneous MCT (Berthier and Biroli 2011) although care must be taken
in extracting the critical exponents as simple scaling arguments lead to incorrect
results (Rizzo 2014). Given that the dynamical arrest transition does not occur, these
divergences are also unrealistic and are not often emphasized in the MCT literature.

A few comments on the spurious divergence of the dynamical correlation length
are in order. In the early days of MCT, it was not clear what was the origin of
dynamical arrest, and some authors believed that no diverging correlation length
was involved (see, e.g., Ediger et al. 1996). One can argue on physical ground
that for ergodic statistical mechanics systems, a finite-temperature dynamical
transition must be necessarily associated with a diverging correlation length (these
arguments can be made rigorous in the case of spin-glass models (Berthier and
Biroli 2011)). This observation may appear not so important in the case of the
MCT crossover because in the end no dynamical arrest transition is present, but
it is important when discussing the possibility of a true transition occurring at
some finite temperature below Tg as we will see in the following section. Another
point worth mentioning is that while diverging fluctuations must be necessarily
accompanied by a diverging correlation length, a simple increase of fluctuations
does not imply an increasing correlation length. This is important to assess the rel-
evance of experimental measurements of nonlinear susceptibilities. The increase of
fluctuations reported in these experiments is sometimes interpreted as an indication
of an increase of the correlation length (Albert et al. 2016), overlooking the fact that
the connection between the two quantities requires additional assumptions. Actually
a recent theory of the crossover provides a counterexample in which increasing
dynamical fluctuations are accompanied by a decreasing correlation length (Rizzo
2014).
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3.2 Toward a Theory of the Crossover

The understanding of supercooled liquids ends slightly above the crossover tem-
perature and everything occurring below is disputed. While MCT is definitively
wrong at low temperatures, its success at moderate supercooling suggests that one
should amend it in order to describe the crossover region and then move to even
lower temperatures. Efforts in this direction have been going on for a long time,
but none is considered fully satisfactory and will not be discussed in detail. People
tried often to modify the theory at the microscopic level. In general it turns out to
be rather easy to remove the sharp transition, but this typically leads to a simple
exponential relaxation thus spoiling the stretched exponential which is one of the
great successes of MCT, not to mention that these modifications are always ad
hoc and phenomenological. Note that MCT also starts from the microscopic first-
principle description and then makes some uncontrolled approximations, however
there is no evident logical connection between the approximations made and the
final results, and in this sense MCT approximations are not considered ad hoc.

A different possibility is that in order to describe the physics at the crossover
and go beyond MCT, one should use instead a mesoscopic effective theory that is
accurate on a coarse-grained scale over which the microscopic details of the model
are unimportant. This is the way to proceed in the case of a genuine second-order
phase transition because they are characterized by a divergent correlation length.
Applications of these ideas in the context of the crossover appear counterintuitive,
since in the end the correct theory should tell us that there is no divergence of the
correlation length. Nevertheless one should note that in order for a mesoscopic
effective theory description to be valid, one does not need a diverging correlation
length; it is enough for it to be large compared to the microscopic scale. On the
other hand it is largely agreed that dynamics in the crossover region is cooperative
meaning that the dynamical correlation length, while not diverging, is indeed large
(Berthier and Biroli 2011; Harrowell 2011).

The mesoscopic theory can be shown to be equivalent to a solvable model of
dynamical stochastic equations. Quite interesting the resulting model displays all
the hallmark of supercooled liquid, namely, the power law to exponential crossover,
two-step relaxation, stretched exponential, and dynamical heterogeneities in the
form of SER violations (Rizzo 2014). Most importantly it is not a phenomenological
theory because these features are not the outcome of ad hoc assumptions. On the
other hand, by definition, there is no way to tell from the mesoscopic theory itself
if it is appropriate to describe a specific system. For that one should start from a
first-principle microscopic description and apply coarse-graining in a rigorous way.
This implies that in principle this description could be accurate for one system
but not for another system. It is also important to note that the validity of a
mesoscopic description for a given supercooled liquid model could also be assessed
explicitly by means of a numerical simulation. This requires to accurately measure
dynamical fluctuations and correlation lengths to check if the order parameter
after coarse-graining is sufficiently smooth to be described by an effective theory.
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The technology to measure dynamical correlations and fluctuations was developed
some 20 years ago motivated by the experimental observations of dynamical
heterogeneities (Berthier and Biroli 2011), and it is known that extracting these
quantities from numerical simulations is quite demanding.

4 Dynamics vs. Thermodynamics: The Kauzmann
Temperature

The idea of a genuine phase transition occurring below originated with Kauzmann’s
analysis of calorimetric experimental data (Kauzmann 1948). He noticed that
while at the melting temperature the entropy of the crystal is lower than that of
the liquid, it decreases less upon cooling in such a way that, by extrapolation,
they should become equal at a temperature TK < Tg . In order to avoid the
paradox of an amorphous state having lower entropy of the crystal, he considered
various possibilities including that the liquid had a genuine phase transition to a
thermodynamically stable glass state at TK . Nowadays Kauzmann’s observation is
not considered a paradox anymore: in the late 1950s computer simulations showed,
to the surprise of many, that an isolated liquid of hard spheres does crystallize,
and this occurs precisely because the crystal state has a higher entropy than the
disordered state! This is understood in terms of a balance between short-range and
long-range entropies: the crystal has a smaller long-range contribution to the entropy
but has a larger local contribution because the particles have locally more room
than in the amorphous state (Ackerson 1993). As we said already, crystallization is
actually a major problem in numerical simulations of supercooled liquids, and it is
typically avoided using binary mixtures or more polydisperse systems.

In spite of the fact that Kauzmann ’s observation is not really a paradox, the
debate over the existence of a genuine phase transition is still going on to this
day. Interestingly Kauzmann himself was against this hypothesis and believed that
the paradox would be solved by some dynamical mechanism. The main problem
being that it is not possible to study the supercooled liquid below Tg . Another
important aspect of the discussion is the observation of thermodynamics/dynamics
correlations (Adam and Gibbs 1965). Adam and Gibbs pointed out that for many
experimental systems VFT fits of viscosity data yield a critical temperature T0
compatible with the TK extrapolated from calorimetric data. In particular if one plots
the logarithm of the viscosity (a dynamical quantity) as a function of the inverse of
the excess entropy , i.e., the difference between the entropy of the supercooled liquid
and that of the crystal (a thermodynamic quantity), they appear to be correlated.

To complete the picture, Goldstein (1969) started with the observation that
approaching Tg relaxation from a given initial configuration proceeds in a two-
step fashion; first each particle explores its cage and then escapes from it. Then
he argued that the motion inside a cage defines a sort of metastable state and the
final relaxation can be seen as a jump from one metastable to another. If one further
argues that the entropy of the metastable state corresponds to a kind of vibrational



196 T. Rizzo

contribution (essentially analogous to the crystal entropy), it follows that the excess
entropy is a measure of the number of metastable states, called the configurational
entropy. The decrease of the configurational entropy thus explains the slowing down
of dynamics because the system in order to relax has less and less metastable states
to escape to.

It is important to realize that while the excess entropy is a well-defined object
that can be measured experimentally, the configurational entropy is not. Entropy is
a static equilibrium concept and thus cannot be applied to a metastable state that
can only be observed on a finite time window. More practically this is reflected
by the fact that there is no unique definition of it. On the other hand, Kirkpatrick,
Thirumalai, and Wolynes (KTW) pointed out that the previously mentioned mean-
field spin-glass models are indeed characterized by the presence of many metastable
states below a temperature TMCT and the corresponding configurational entropy
vanishes at some lower temperature TK (Kirkpatrick and Thirumalai 1987). At the
mean-field level there is simply no dynamics beyond TMCT , and they put forward
the idea that in physical dimension the mean-field picture should be modified
invoking nucleation arguments as in the classic Becker-Doring theory.

Classical nucleation theory describes the decay of a metastable phase to the stable
phase of lower free energy in terms of the expansion of droplets of the stable phase.
The surface tension tends to shrink the droplet, while the bulk free energy difference
tends to expand it. The two forces depend on the radius of the droplet and balance
at some critical radius rc: droplets larger than rc will expand, while smaller droplets
will shrink and disappear. The time to nucleate a critical droplet naturally increases
with the size of the critical radius which in turn increases and diverges at the
coexistence point where the free energy difference is zero and both phases are stable;
correspondingly the lifetime of the metastable state diverges exponentially. The idea
of KTW is to use nucleation arguments to describe the dynamics of supercooled
liquids using the configurational entropy in place of the free energy difference.
This offers an explanation of the thermodynamics/dynamics correlations and of the
exponential VFT-like divergence of the relaxation time. Furthermore the nucleation
argument implies that there is a diverging correlation length, which was already
advocated by Adam and Gibbs that suggested that dynamics is driven cooperatively
rearranging regions (CRR) of increasing size upon approaching Tg .

The existence of an actual phase transition at TK is an appealing topic because
it is a sharp statement, either true or false. On the other hand the nontrivial
phenomenology we need to explain is observed above Tg , and thus a consistent
part of the community does not consider it particularly relevant. At any rate, even if
a genuine glass transition occurred below Tg , one should still have to prove that the
physics observed above Tg is a consequence of its presence. Instead many believe
that the physics of supercooled liquid can be explained solely in terms of a crossover
temperature that was discussed in the previous section. Note that in the context
of mean-field theories, the existence of a TK requires logically the presence of a
crossover at a higher temperature while the opposite is not true: models exist for
which there is an MCT singularity, but the configurational entropy does not vanish
at any finite temperature.
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The opposite view that dynamics may be completely unrelated to thermody-
namics is supported by the so-called Kinetically constrained models (Ritort and
Sollich 2003; Chandler and Garrahan 2010). They are defined in terms of binary
variables (that can be viewed as spins) on a lattice. The variables do not interact
and thus the thermodynamics is trivial at all temperatures. Dynamics instead must
obey some constraint, for instance, in the well-known Fredrickson-Andersen model,
each spin must have at least k neighbors in the up state in order to flip. It turns
out that dynamically these models display many of the phenomenological features
of supercooled liquids, notably a power law to exponential crossover and two-
step relaxation. Since no thermodynamics transition may occur in these models,
their physics is typically interpreted solely in terms of the existence of a crossover
temperature. Furthermore on the Bethe lattice they seem to display a sharp MCT-
like transition, and the aforementioned dynamical features can clearly be associated
with this transition being avoided on lattices in three and two dimensions (Berthier
et al. 2011). The main open problem is that these models lack a clear microscopic
connection with the original liquid models, and it is not exactly clear how the
constraints on the dynamics should emerge from the (unconstrained) microscopic
Hamiltonian dynamics. In practice this is also reflected by the impossibility of
obtaining some sort of quantitative prediction. Another problem is that it seems
difficult to rationalize the Adam-Gibbs phenomenological correlations between
dynamics and excess entropy using these models, although, as we said before, one
may question their overall relevance.

An additional interesting open problem is inherently associated with facilitation
dynamics. At low temperatures one expects that in a supercooled liquid there are
large regions that are essentially frozen for a large amount of times and eventually
relax. One possible mechanism inducing the relaxation is the expansion/motion of
a mobile region from outside the blocked region into it, but one can also think of
relaxation led by thermally activated rare events. However this second mechanism
is impossible in KCM where relaxation can only propagate from the borders of the
blocked region. Thus knowing what is the mechanism at work in actual supercooled
liquids could help discriminate between competing theories, but at present this is
unclear.

From a practical point of view, the idea of a genuine thermodynamics transition
is appealing because one can study it in a purely static framework. In the context
of numerical simulations, one is no longer bound to use a physical algorithm
to thermalize the system, and more efficient algorithms can be devised. For
instance, particle-swap algorithms have been used in the last 15 years and recently
have produced spectacular results for specially designed polydisperse hard-sphere
mixtures that were thermalized up to densities corresponding to the laboratory
timescale and even below (Berthier et al. 2017).

Underlying any static study in the context of supercooled liquids is the key
question of whether nontrivial information can be extracted solely from the
instantaneous equilibrium configurations. At first one would say that the answer
is no, after all one of the striking features of supercooled liquid models of hard or
soft spheres is precisely the fact that if one looks at the instantaneous configurations
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at various temperatures (or densities) approaching the crossover, one cannot detect
any significant change that could justify the dramatic increase of the relaxation time.
Nevertheless, guided by the supercooled liquid/spin-glass analogy advocated by
KTW, various authors have suggested that nontrivial information can be obtained
solely from the equilibrium configurations by applying appropriate procedures
(Wolynes and Lubchenko 2012).

The general idea is that one has to use an equilibrium configuration of the
original system (the reference configuration) to define a new system and then show
that nontrivial information can indeed be red off the equilibrium configurations of
the new system. The first procedure that was introduced is the so-called Franz-
Parisi potential that counts the equilibrium configurations that are at some fixed
distance from the reference configuration. At the mean-field level, the potential has
a minimum as a function of the distance at the maximal distance but, upon lowering
the temperature, develops a secondary minimum at TMCT . The difference in height
between the primary and the secondary minimum is the configurational entropy
that will eventually vanish at a lower temperature . This mean-field picture must
be modified in finite dimension by applying a Maxwell construction as in ordinary
first-order phase transition: one expects that the potential first develops a constant-
slope segment close to the crossover temperature with the slope eventually going to
zero at TK .

Another interesting procedure is to measure the so-called point-to-set length
(Berthier and Biroli 2011). In this case the particle positions are frozen in the
reference configuration except inside a spherical cavity that it is then thermalized
again. One expects that when the cavity is very large the bulk should be insensitive
to the constraint at the boundaries, while if the cavity is sufficiently small, the
center of the cavity should be stuck in a metastable state (stabilized by the frozen
boundary). The point-to-set length is defined as the length that separates these two
regimes, and mean-field theory predicts that it should diverge at TK . This length
should provide a way to actually measure the size of CCRs thus rephrasing the
KTW idea of a diverging correlation length in a way that is amenable to be tested in
simulations.

Finally we can mention random pinning that amounts to freeze a finite fraction
of the particles of the reference configuration and equilibrate again the remaining
free particles (Berthier and Biroli 2011). In this case the existence of genuine phase
transition can be linked to the presence of a line of first-order transitions in the
temperature-concentration plane. Different geometries, e.g., the freezing/pinning
of an infinite wall of the system, have also been studied. Note that in both the
pinning and cavity procedure, it can be shown that the configuration in which the
free particles have the same positions they had in the reference configuration is
an equilibrium configuration for the constrained system, which is a considerable
advantage because one does not need to equilibrate the system again.

In the last 20 years the above procedures have been applied to various systems,
and the most spectacular results are those obtained recently by the swap algorithms
(Berthier et al. 2017). In these studies both the Franz-Parisi potential and the
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point-to-set length were measured in equilibrium for values of the density even
higher than the glass density ρg . Their behavior was found to be compatible
(through extrapolation) with the presence of an actual phase transition at some ρK .
Unfortunately, as it will be discussed in the following, while being a tremendous
improvement with respect to earlier studies, it seems that these results are not
enough to assess convincingly the validity of the scenario.

One problem is that the degree of extrapolation that one has to make on the
actual data is still significant, and if one thing can be learned from the extensive
literature on glasses is that extrapolations are always debated. Another problem
concerns the point-to-set length itself and emerged from the early numerical studies
of this quantity. Measurements of this quantity indicate a rather small value that
increases slowly; thus, while a divergence at lower temperature cannot be ruled out,
it is not particularly remarkable. Given that the growth and eventual divergence of
this quantity should be the driving mechanism behind the growth of the relaxation
time, we have a problem because this length is small while the relaxation time
is increasing exponentially. Therefore it is further postulated that the relationship
between the static length and the relaxation time is exponential due to some kind of
activation mechanism. To this day however, a solid theoretical foundation of these
statements is lacking.

The connection with dynamic raises an additional problem. As we discussed
in the previous section, the dynamical correlation length should diverge at TMCT .
In the region where it can be measured, it exhibits a significant growth, while
obviously being nondivergent. However in the region where both can be measured,
the dynamical correlation length is definitively larger than the point-to-set length
and appears to be growing more strongly, such that extrapolation suggests that their
difference would be even more pronounced at lower temperatures. In other words
the static length does not seem to be relevant for dynamics in the region where
dynamics is already nontrivial.

In order to complete the discussion on the relevance of static methods, one must
add that unphysical algorithms may allow to assess the validity of supercooled
liquid models. As we said already the problem of crystallization becomes less severe
increasing the dimension, but in three and two dimensions one is necessarily forced
to consider at least binary mixtures. Recent numerical studies suggest that even
if they do not crystallize at the temperatures reached by state-of-the-art molecular
dynamics simulations they will be at lower temperatures accessible at present only
by unphysical algorithms. Furthermore while up to now the knowledge of low-
temperature equilibrium configurations has not shed light into the central problem
of why dynamics slows down, they could be used to study the emergence of various
anomalies in the glassy state observed in experiments. Besides understanding why
swap algorithms are successful may shed light into why physical dynamics is instead
so slow.

Some comments are important on the analogy between spin glasses and super-
cooled liquids suggested almost 30 years ago by KTW. On general ground systems
with a completely different microscopic structure can be expected to share some
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common behavior if they have a sufficiently large correlation length, such that the
relevant physics occurs on a scale insensitive to microscopic details. In this light
the fact that static length measured is typically small is troublesome. Furthermore
many problems concerning these spin-glass models are still open irrespective of
their eventual connection with supercooled liquids. First of all there is no numerical
evidence that any of these spin models actually displays an entropy crisis transition
with a discontinuous order parameter in finite dimension: the fate of the MF
transition in finite dimensional system has still to be firmly established. Various
failures to identify such a model have been rationalized by noticing that short-
length fluctuations, already present on finite-connectivity mean-field lattices, are
responsible for the absence of the transition rather than long-length fluctuations
that would be a more general and harmful mechanism. Thus the quest for a good
candidate is still a fascinating open problem.

Besides the numerics, an additional problem is that there is no precise and
well-established analytical treatment of finite dimensional effects. In particular
the connection between statics and activated dynamics is not well established
even at the mean-field level, i.e., that of nucleation theory for metastability and
phase coexistence. Furthermore, in order to agree with experimental data, the
phenomenological expressions require the use of non-mean-field exponents that
nobody knows at present how to compute. Note that these are all well-defined
problems that should be addressed and solved irrespectively of their relevance to
supercooled liquids.

We have seen that the static approaches offer a considerable advantage at
the algorithmic level, but there are also major advantages at the analytic level,
because dynamics is typically more difficult than statics. The spin-glass/structural
glass analogy suggests that one has to use the replica method (Mezard and
Parisi 2012) that indeed provides a way to compute static objects like the Franz-
Parisi potential and the point-to-set length. In finite dimension the replica method
predicts a MCT-like transition that should be considered a spurious mean-field
modification of what is in reality a crossover. This follows from the fact that,
as in MCT, one must resort to some approximation scheme. As we said before,
MCT provides nevertheless good quantitative estimates for quantities like the
ergodicity-breaking parameter and the (pseudo)critical exponents. On the contrary
current approximation schemes in the replica method studies yield predictions of
considerable lower quality. On the other hand, as we said in the previous section, the
replica method has been used successfully to study supercooled liquids in infinite
dimension. This is an instance, albeit special, of a system where the connection
between dynamics and thermodynamics can be demonstrated starting from first-
principle microscopic methods, to be contrasted with KCM models, where, at
present, there is no explicit microscopic derivation of the assumption that dynamics
is facilitated. Still, the essential problem remains to describe how the ideal MCT
transition becomes a crossover in finite dimension, and it is not even clear if the
mechanism at work in large but finite dimension is the same in dimension two and
three.
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5 Conclusions

The body of work presented in the previous sections may be summarized as follows:
there is an accepted transition which is not really a genuine critical point, and then
there is another transition that is really critical but whose existence is highly debated.

State-of-the-art molecular dynamics simulations can equilibrate a few super-
cooled liquid models down to temperatures close and slightly below the crossover
temperature. While there is no precise way to substantiate these claims as we are
dealing with a crossover and not a sharp critical point, there is, nevertheless, a
widespread belief in the community that the next generation of numerical studies
will be able to probe the crossover region and beyond for a variety or models. This
makes all the more urgent to go beyond MCT and develop a comprehensive theory
of the crossover with qualitative and quantitative predictive power.

Additional motivation to tackle this problem comes from other critical phenom-
ena that have not been discussed here. In particular in the context of MCT, higher-
order glass-glass transitions have been predicted and also detected numerically to
some extent (Gotze 2009). Actually, the ability to predict these singularities prior to
observation has convinced many of the value of MCT and of the fact that one should
try to correct its shortcomings instead of throwing it away altogether. Much as the
MCT transition, these higher-order singularities are expected to become smooth
crossovers in realistic systems, and it seems reasonable that their understanding
would benefit from any development in the former. Similarly, the study of liquids
in high dimension (Charbonneau et al. 2016) has suggested the existence of even
more exotic critical points, notably full replica-symmetry-breaking critical points as
observed in mean-field spin glasses. At present the relevance of these transitions in
realistic models is unclear. Be as it may, they are intrinsically mean field in nature,
and their existence in realistic models poses a number of conceptual problems.
Actually they may be observed only after the MCT crossover has occurred, and
it is likely their fate in finite dimension could be fully understood only once the
crossover problem has been solved.

As for the debate on the existence of a genuine glass transition below Tg , the
bottom line is that the static objects that should manifest critical behavior, e.g., static
length scales, are compatible with a singularity, but their divergence is too mild
and not particularly remarkable in the range where they can be measured in current
numerical simulations. On the other hand their connection with the truly remarkable
dynamical features is still speculative and should be established more rigorously.
Nevertheless this is a field in which progress has been made steadily in the last
decades and more is expected to come.

If we had to single out one fundamental open question from the previous discus-
sion, that would be the nature of the activated process below the crossover tempera-
ture and above Tg . Measurements of increasing dynamical correlation lengths unam-
biguously show that kinetic fragility, i.e., the power-law-to-exponential crossover
is induced by the dynamics becoming cooperative. The problem is what happens
at lower temperatures: do correlation lengths continue to increase? Can dynamics
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be described solely in terms of the crossover, or can we identify some feature that
necessarily requires some other mechanism approaching Tg? Currently, experiments
do not have enough spatial resolution to shed light on these questions while the
timescales involved are too large for numerical simulations, but both problems could
be overcome in the future through some breakthrough.
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Abstract

The next set of 12 chapters provides an overview of the new advances since
the first edition of the Handbook of Materials Modeling in 2005 regarding the
description of the ground-state and excited-state electronic structure of complex
many-body systems by ab initio electronic structure methods. In this section
we present contributions aiming to providing an up-to-date description and
illustration of the main theoretical methods used by the electronic structure
community for the study of problems of actual materials, of prediction of
properties, and for the design of novel materials.

1 Introduction

Back in September 2015, I was contacted by Wanda and Sidney, who proposed
me the idea of joining the editorial board of the second edition of the Handbook
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of Materials Modeling as well as being the editor in charge of one section on
electronic structure and ab initio methods, which should work as a fundamental
point of reference for the following chapters within the volume. I thought this
was an excellent idea. After a lot of hard and excellent work by the contributors
to this section, I am delighted to welcome you to the introduction of the section
on “Electronic structure of materials by ab initio methods” in the Handbook of
Materials Modeling (2nd edition, Vol. 1).

A large part of research in condensed matter science is related to the char-
acterization of the electronic, structural, and bonding properties of interacting
many-electron systems. An accurate description of the electronic structure and its
response to external probes is essential to the understanding of the behavior of
systems ranging from atoms, molecules, and nanostructures to complex materials.
Solving for the electronic structure of an interacting electron system (in terms of the
many-particle Schrodinger equation) has an intrinsically high complexity: while the
problem is completely defined in terms of the total number of particles N and the
external potential V(r), its solution is a task of exponentially increasing complexity.
Fortunately, in the study of either ground- or excited-state properties of interacting
many-body systems, we seldom need the full solution to the Schrodinger equation.
When one is interested in structural properties, the ground-state total energy is
sufficient. In other cases, we want to study how the system responds to some external
probe; thus, the knowledge of a few excited-state properties is needed.

In the last two decades, we have seen a continuous but impressive improvement in
the accuracy of the approximate methods to deal with many-body electronic systems
together with a tremendous increase of computing power as well as improved
numeral algorithms. In this realm, ab initio computational sciences have become
a fundamental tool to understand, discover, and predict materials properties, as
well as to guide experimental efforts along those lines. Therefore, in this set of
chapters, we aim to lay out the fundamental concepts providing the basis for the
development of increasingly more realistic models and more powerful multi-scale
simulation methods as they are being applied nowadays in the materials science
community. We address in particular the development and application of a broad
range of experimental and computational methods to describe the electronic, optical,
and magnetic properties of matter, including nonadiabatic ultrafast phenomena
and non-equilibrium dynamical processes at different size and time scales. This
section plays a pivotal role in the whole structure of the Handbook of Materials
Modeling by providing the fundamentals of the methodologies used in the two
volumes. In particular, it has close ties with this volume’s sections on atom-
istic simulations, materials informatics, molecular dynamics-thermodynamics, and
magnetism-spintronics. Furthermore, it offers complementary information to many
of the sections in the second volume of the Handbook that focus on applications to
demonstrate and expand the capabilities of current models and simulation methods,
in particular the one dealing with photovoltaics from first-principles.

At the simplest level of treating the many-electron problem, the Hartree-
Fock theory (HF) is obtained by considering the wave function to be a single
Slater determinant. In this way the N-body problem is reduced to N one-body
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problems with a self-consistent requirement due to the dependence of the HF
effective potential on the wave functions. By the variational theorem, the HF total
energy is a variational upper bound of the ground-state energy for a particular
symmetry. The HF eigenvalues may be used as estimates of the true excitation
energies. The HF theory is far from accurate because the wave function of a
system in general cannot be written as a single determinant for the ground state
and Koopman’s theorem is in general a poor approximation. On the one hand,
a rigorous method is to employ the many-particle Green’s function approach in
which the poles of the one-particle and two-particle Green’s function give the
quasiparticle energies and optical transition energies, respectively. On the other
hand, within the density-functional theory (DFT), the ground-state energy of an
interacting system of electrons in an external potential can be written as a functional
of the ground-state electronic density. When comparing to conventional quantum
chemistry methods, this approach is particularly appealing since it does not rely on
the complete knowledge of the N-electron wave function but only on the electronic
density. However, although the theory is exact, the energy functional contains an
unknown quantity called the exchange-correlation energy, Exc[n], that has to be
approximated in practical implementations. For excited-state properties, the DFT
has been extended to a time-dependent formalism (TDDFT) and applied with
success to the calculations of optical properties and excited-state dynamics of finite
and extended systems. However, the commonly used adiabatic functionals in DFT
and TDDFT encounter problems when studying correlated materials and spectro-
scopic properties of extended systems and excitation energies in molecules. Of
course, when going to more complex systems, the key to describe and model most
physical effects in chemistry and materials is not achieving “chemical accuracy”
but being able to theoretically describe and capture the relevant physical-chemical
processes.

When describing light-matter interactions, those theoretical tools have a certain
range of validity as they often treat electromagnetic radiation and matter on a
different level of approximation. Photons are usually only treated as an external
perturbation that probes matter without any further influence and vice versa. The
standard theoretical modeling can thus be insufficient when photon and matter
degrees-of-freedom become equally important (as in the case of polariton conden-
sates). Indeed, these matter-only approaches can be viewed as approximations to
a density functional or Green’s function formulation of nonrelativistic quantum
electrodynamics (QED). In my group we have recently introduced a novel quantum-
electrodynamical density-functional approach (QEDFT) to describe such complex
dynamics of interacting electrons, photons, and phonon systems all on the same
theoretical footing (Ruggenthaler et al. 2018; Flick et al. 2015, 2017). QEDFT is
a novel framework to deal with electron-photon interactions from first-principles
(opening up the fields of cavity QED-chemistry and QED materials). Hybridizing
light strongly with the electronic structure of the system, novel effects appear
providing a promising route for new design of material, for example, Floquet
engineering (quantum topological matter), valley Hall effect in 2D materials,
chiral plasmonics, or phonon-driven spin-magneto valleytronics. Moreover, hidden
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aspects of photon-matter interaction can be revealed with new tailored spectroscopic
tools (Ruggenthaler et al. 2018; Flick et al. 2015, 2017).

2 Contributed Chapters to “Electronic Structure of Materials
by Ab Initio Methods”

The carefully chosen contributions presented here handle fundamental aspects of
the different frameworks to deal with static and dynamical properties of many-body
interesting systems (from molecules to solids). We touch up on basic ideas coming
from traditional quantum chemistry methods, condensed matter approaches based
on different flavors of many-body perturbation theory as well as static and time-
dependent density (and density matrix) functional approaches. Thus, the articles
collected in this section cover a wide and impressive range of topics in the fields of
chemistry, physics, and material science.

In the next 12 chapters (and in some of the 4 plenary presentations), we
provide an in-depth discussion of the basic concepts of density-functional theory
and the development of exchange and correlation functionals (�Chap. 11, “Recent
Developments in Density Functional Approximations,” L. Li and K. Burke), which
are able to cope with strong correlations, charge transfer phenomena (�Chap. 12,
“Charge Transfer in Molecular Materials,” T. Zhu, T. Van Voorhis, P. de Silva) and
dispersion (van der Waals) (�Chap. 13, “Van der Waals Interactions in Material
Modelling,” J. Hermann and A. Tkatchenko) forces within a DFT formalism and
beyond, both in the static as well as in time-dependent domains (touching on the effi-
cient ab initio modeling of pump probe spectroscopies (�Chap. 14, “Pump-Probe
Photoelectron Spectra,” U. De Giovannini)). After having presented the approach to
solve the many-body problem from a density-functional perspective, we change gear
and address the recent exciting developments in correlated many-body techniques
based on Green’s functions methods, including new developments on the GW+BSE
framework for fermions (�Chap. 15, “Modeling Excited States of Confined Sys-
tems,” L. Hung and S. Öğüt) and coupled fermion-boson systems (�Chaps. 16,
“Many-Body Calculations of Plasmon and Phonon Satellites in Angle-Resolved
Photoelectron Spectra Using the Cumulant Expansion Approach,” F. Caruso,
C. Verdi, F. Giustino, and � 17, “Non-equilibrium Green’s Functions for Coupled
Fermion-Boson Systems,” D. Karlsson and R. van Leeuwen), non-equilibrium
dynamical mean field approaches (�Chap. 18, “Non-equilibrium Dynamical Mean-
Field Theory,” M. Eckstein), quantum (�Chap. 19, “Correlations and Effective
Interactions from First Principles Using Quantum Monte Carlo,” L. Wagner), and
diagrammatic Monte Carlo approaches (�Chap. 20, “Diagrammatic Monte Carlo
and GW Approximation for Jellium and Hydrogen Chain,” K. Van Houcke, IS
Tupitsyn and NV. Prokof’ev) as well as coupled cluster and quantum chemistry
schemes (�Chap. 21, “Coupled Cluster and Quantum Chemistry Schemes for
Solids,” A. Grüneis). This section ends with a contribution on how those different
electronic structure methods could be combined with optimal control theory in order
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to design protocols that allow one to achieve specific predefined targets (�Chap. 22,
“Optimal Control Theory for Electronic Structure Methods,” A. Castro), i.e., bring a
system into a specified electronic state, maximize a higher order response function,
improve the yield of a chemical reaction, etc. Those methods are just several selected
from a lot of examples, given to illustrate the current status in ab initio calculations.
Yet work needs to be done toward the inclusion of higher order vertex effects into
the many-body description of electron-electron and electron-phonon interactions in
order to have a more general ab initio theory of the spectra of weak and strongly
correlated electronic systems.

3 Final Concluding Remarks

In conclusion, this section is a journey through some of the recent advances
in solving the many-body electronic problem in complex materials, which have
been enabled by major theoretical and methodological developments. Some of
the methods and ideas discussed are very recent and will clearly evolve in the
next years. Also, I want to mention here three other schemes that have emerged
as powerful tools to deal with correlated many-body systems that have not been
addressed by any of the chapters in this section, just to name a few: density-matrix
renormalization group (Schollwöck 2011) and embedding methods (Wouters et al.
2016), stochastic method for DFT (Cytter et al. 2018) and many-body schemes
(Neuhauser et al. 2014), auxiliary field quantum Monte Carlo (Motta and Zhang
2017), (the recent advances on this topic are reviewed in �Chap. 7, “Ab Initio
Electronic Structure Calculations by Auxiliary-Field Quantum Monte Carlo” by
S. Zhang in this volume) machine learning for many-body problems (Carleo and
Troyer 2017), quantum electrodynamical density-functional theory (Ruggenthaler
et al. 2018; Flick et al. 2015). This is just an indication of the dynamism and wealth
of ideas and methodologies being explored in our community to enable to tackle
the many-body problem in realistic interacting quantum materials. This is clearly an
exciting field of research.

Especially in this field, we have been witness of a real knowledge transfer
from academia to society in the last years, with the rise and establishment of
many start-up companies based on such accumulated knowledge (we are clearly
entering the age of big data analytics in many fields arounds us, and computational
materials science has joined the wave since the start). In this context, the whole
Handbook and in particular this fundamental section on electronic structure will
play an important role in further enabling and strengthening such synergy between
fundamental research and society.

I don’t want to take more space and much rather would like to leave you enjoying
the reading of the next articles in which many experts have laid out the fundamentals
of the electronic structure methods being in use now, which will shape the field of
chemistry and condensed matter physics in the next years. I hope you will find
those contributions interesting and relevant for your scientific work or scientific
curiosity.
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Table of acronyms in alphabetical order. References are given where they first appear in main text

General terms

DFT Density functional theory

G3 A standard database of molecular energy differences

GGA Generalized gradient approximation

GKS Generalized Kohn-Sham

HF Hartree-Fock

KS Kohn-Sham

LC20 A database of 20 lattice constants of solids

meta-GGA An extension of GGA that uses the KS kinetic energy

RPA Random-phase approximation

S22 A database of weakly bonded molecules

TDDFT Time-dependent density functional theory

XC Exchange-correlation

Approximate functionals

B3LYP The most popular functional in chemistry

B88 An exchange GGA that is the most popular in chemistry

LDA Local density approximation

PBE A popular GGA in materials science

PW86 A predecessor of PBE

PW91 The GGA that PBE is a simplification of

SCAN A recent meta-GGA

1 Introduction

Each year, at least 30,000 papers are published using density functional theory to
perform electronic structure calculations (Pribram-Jones et al. 2015). Almost all
solve the Kohn-Sham (KS) equations (Kohn and Sham 1965) self-consistently and
use some approximation for the exchange-correlation (XC) energy as a functional
of the (spin)-densities, EXC[n]. This chapter surveys some of the more popular
approximations. Some background is covered in Burke (2012), which is more
focused on chemistry.

1.1 Commonly Used Approximations

The original approximation was suggested by Kohn and Sham themselves (Kohn
and Sham 1965), namely, the local density approximation (LDA), in which the
XC energy density at each point in the system is replaced by that of a uniform
electron gas with the density at that point. The exchange contribution was first
written by Bloch (1929), with correlation now well-known from quantum Monte
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Carlo simulations of the uniform gas (Ceperley and Alder 1980), parametrized in
simple formulas (Vosko et al. 1980; Perdew and Wang 1992). LDA is remarkably
accurate for geometries but typically overbinds molecules by about 1 eV per bond,
making it relatively useless for thermochemistry (Jones and Gunnarsson 1989).

The next step in complexity is the generalized gradient approximation (GGA),
which creates an energy density using both the density and its gradient at each
point (Burke et al. 1997). The basic concept and its first realization were given
already in the pioneering work of Ma and Brueckner (1968). This was carefully
refined in the work of Langreth, leading to the Langreth-Mehl functional (Langreth
and Mehl 1981, 1983). Perdew pioneered the use of real-space cutoffs to create
GGA’s, leading to the PW86 functional (Perdew and Wang 1986). The highpoint
of this detailed construction was the PW91 functional (Perdew 1991; Perdew et al.
1992; Burke et al. 1997), and in 1993, it was shown that they yield useful accuracy
for binding energies, i.e., errors of about 6–10 kcal/mol (1 eV = 23 kcal/mol) (Gill
et al. 1992). The most commonly used GGA in materials today is a simplification
of the PW91 form called PBE (Perdew et al. 1996a), while in chemistry it is BLYP,
with B88 exchange (Becke 1988) and Lee-Yang-Parr correlation (Lee et al. 1988).
Both these are trained on noble gas atomic energies, yielding more accurate energies
for those atoms (Elliott and Burke 2009; Burke et al. 2016).

The last standard step is to create a hybrid of GGA with the exact exchange
energy from a Hartree-Fock calculation, by replacing a fraction, a, of the GGA
exchange with the Hartree-Fock (HF) exchange, as first suggested by Becke (1993).
This fraction is 20% in the famous B3LYP functional, (which stands for Becke, 3-
parameter, Lee-Yang-Parr), the most commonly used approximation in chemistry
today (Becke 1993; Lee et al. 1988; Vosko et al. 1980; Stephens et al. 1994). Its
analog is PBE0 (Perdew et al. 1996b; Ernzerhof and Scuseria 1999) which uses
25% mixing.

At least 80% of all DFT calculations currently being performed use one
of the approximations mentioned above. One can think of more sophisticated
approximations using more ingredients of the density, as in Jacob’s ladder (Perdew
and Schmidt 2001). An important principle of progress in making density functional
approximations is to ensure that (almost) everywhere, each level of approximation
performs at least, as well as the previous level, and also improves some features,
making the previous level obsolete (except to save computational time). One should
avoid having different functionals for different purposes.

1.2 Beyond Ground-State DFT

What has been described above is generic ground-state DFT in the non-relativistic
limit and for collinear magnetic fields. The single largest use of DFT beyond
this domain is using time-dependent DFT (TDDFT) (Runge and Gross 1984;
Maitra et al. 2004; Maitra 2016) in the linear response regime to extract electronic
transition frequencies (Casida 1996; Petersilka et al. 1996). As much as 10% of
all DFT publications include TDDFT estimates of excitations. Such calculations
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almost all use the adiabatic approximation for the XC kernel and so are uniquely
determined by the choice of ground-state approximation. Most such calculations
are for molecules (Burke et al. 2005), as a nonlocal contribution is needed to yield
details of bulk semiconductor spectra correctly (such as exciton binding energies),
and that contribution is missing from the commonly used functionals mentioned
above (Onida et al. 2002; Martin et al. 2016).

Other extensions include magnetic DFT for non-collinear fields, relativistic
DFT (Engel and Dreizler 2011) and even QED (Flick et al. 2015), DFT at finite
temperatures using the Mermin theorem (Smith et al. 2018), coupling between
nuclei and electrons (Requist and Gross 2016), and so on. Again, standard ground-
state approximations are used unless a particular effect requires going beyond these,
such as extracting double excitations (Maitra et al. 2004).

2 Recent Developments

This section is devoted to developments over the past 20 years.

2.1 RPA-Type Functionals

The famous adiabatic-connection fluctuation-dissipation formula of DFT yields
EXC in terms of the a frequency and coupling constant and spatial integral over
the density-density response function (Langreth and Perdew 1975; Harris and Jones
1974; Gunnarsson and Lundqvist 1976). This can be extracted directly from the
KS response function, constructed from the occupied and unoccupied orbitals, and
the XC kernel of TDDFT (Gross and Kohn 1985). Ignoring the kernel yields RPA,
also known as direct random-phase approximation (RPA) (Furche 2001; Langreth
and Perdew 1977, 1975; Chen et al. 2017) or TD-Hartree. This scheme thus yields
a fifth-rung (in Jacob’s ladder) approximation that can be costly to evaluate, but
the relative burden is always decreasing (Furche 2008; Eshuis et al. 2010). Direct
RPA overcorrelates systems, because it includes only “bubble” diagrams in the
many-body expansion of the energy, and misses other contributions at higher-
order that reduce correlation. It also has difficulties with self-interaction, because
it yields finite correlation energies even for only one electron. These two effects
yield inaccuracies in the dissociation energies of molecules. Recent progress has
included various approximations to the XC kernel to yield improved energetics and
computational cost savings. A very recent development, using the exact frequency-
dependent exchange kernel, and a clever and physically motivated resummation of
higher-orders, appears to overcome stability problems and even allows the binding
curve of N2 to be accurately calculated (Erhard et al. 2016; Burke 2016) (which is
difficult even in coupled-cluster theory, due to the multireference nature of the wave
function at large separations).
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2.2 Weak Interactions

Tremendous progress has been made in the last two decades for including weak, van
der Waals (vdW) interactions into DFT calculations. The standard functionals model
covalent, ionic, and metallic bonds reasonably well but fail for longer, weaker bonds.
Because of their semilocal nature, they cannot yield weak-binding that falls off as
R6, where R is the separation between two atoms or molecules. Thus corrections
must be added to the standard functionals to capture these effects. There are three
main schemes for doing this.

In the domain of explicit nonlocal density functionals, there is the sequence
of approximations originally developed by Langreth and Lundqvist and co-
workers (Dion et al. 2004). These approximations are derived nonempirically,
remarkably starting from contributions to the uniform gas correlation energy.
The original was from 2004, and an improved parameterization was given in
vdW2 (Klimeš et al. 2009). These explicit density functionals can be applied to
all materials, from molecules to solids, but have been designed assuming the system
has a gap (not a metal) (Berland et al. 2015).

At the extreme opposite end of the scale, there are the parametric schemes of
Grimme and co-workers (Grimme 2006), commonly referred to as DFT-D. These
are not explicit density functionals, but rather additional energies that include
estimates of the C6 (and higher-order) coefficients in the asymptotic expansion
of the vdW energy between atoms, combined with a damping factor to keep
the contributions finite as the separation reduces. Such schemes require empirical
parameters for each atom for a given standard XC approximation but can yield
highly accurate energy curves for small weakly bound molecules (Burns et al. 2017).

In between is the scheme developed by Tkatchenko and Scheffler, which requires
only one parameter for a given XC functional and produces accurate add-on
corrections to DFT energies (Tkatchenko and Scheffler 2009). This has been
expanded to incorporate collective electrostatic effects so that metals and materials
in many dimensions and on different length scales can be treated (Hermann et al.
2017). A final scheme is that begun by Becke and Johnson, which uses the dipole
moment of the exchange hole to determine C6 (and higher) coefficients (Johnson
and Becke 2006).

Of course, more expensive treatments, such as RPA mentioned above, automati-
cally include approximations to the vdW forces.

2.3 Meta-GGAs

The third rung of Jacob’s ladder is the meta-GGA, which adds a new ingredient
beyond that of the density and its gradient. This is most often chosen to be the
(positive) kinetic energy density of the KS orbitals. The aim for a good meta-GGA
is to aim for the accuracy of hybrids without the computational overhead of the
exact exchange contribution. The cost of exact exchange is relatively manageable
in molecular calculations with atom-centered basis functions but can often be
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prohibitive when using periodic boundary conditions and plane-wave basis sets.
Running a range-separated hybrid (see next section) can sometimes take 1000 times
longer than a typical GGA in a materials calculation.

Perdew and co-workers and many others have spent several decades developing
meta-GGAs, with many flawed attempts (Sun et al. 2015). But the most recent effort,
called strongly constrained and appropriately normed semilocal density functional
(SCAN), has passed many standard tests and appears very promising to join the
pantheon of commonly used functionals. The G3 dataset (Curtiss et al. 2005) is
a standard set of chemical bonds that LDA overbinds by about 3 eV (typically
about 1 eV/bond). PBE reduces this to about 1 eV, while SCAN reduces this to
about 1/4 eV. SCAN also has errors that are 2–3 times smaller than PBE on the
S22 dataset (Jurecka et al. 2006) of weakly bonded systems. At the same time,
SCAN reduces errors in lattice parameters on the LC20 data (Sun et al. 2011) set
from about 0.05Åin PBE to about 0.01Å. SCAN also yields better water properties
than PBE (Perdew et al. 2017). On the other hand, the underestimation of chemical
barrier heights by PBE is only mildly improved, by about a factor of 30% (whereas
hybrids are often 2–3 times better). Thus, for many properties, SCAN yields
accuracies similar to hybrid functionals but at a fraction of the computational cost
(for materials codes).

2.4 Range-Separated Hybrids

The theory behind range separation is an exact one, developed first by Andreas
Savin (Toulouse et al. 2009; Savin 1996; Leininger et al. 1997). One simply writes
the Coulomb repulsion as a sum of a short-ranged contribution (decaying more
rapidly than the inverse of the separation) and a long-ranged contribution, which has
no Coulomb singularity at zero separation. One can then include one contribution
as an interaction in some generalization of the KS equations and have the redefined
XC contribution accounting for the other. This is all formally exact, and exact
XC functionals exist for such schemes (though they differ from their regular KS
counterparts).

But a plethora of choices now await. The first is the length scale on which the
range separation is performed, often denoted 1/ω. This is a continuous parameter,
and since approximations will be made to the corresponding EXC, the results are
sensitive to it. Just like the fraction of exact exchange in global hybrids, there is
always a temptation to adjust it.

Furthermore, the separation into long- and short-ranged contributions can occur
for the exchange contribution (most common), the correlation, or both. Finally, one
may wish to treat the short-ranged contribution with an approximate functional or,
in other situations, the long-ranged contribution! For example, a vexing problem
in TDDFT is to accurately calculate charge-transfer excitations of well-separated
donor-acceptor complexes. Including long-ranged Fock exchange exactly works
very well for this problem (Stein et al. 2009). On the other hand, the very successful
HSE06 functional (Heyd et al. 2003) is a range-separated hybrid, in which the long-
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ranged exchange is treated with an approximate functional, but the short-ranged
exchange is treated exactly, to model screening in an extended insulator (Janesko
et al. 2009). This particular hybrid typically yields accurate gaps for moderate-gap
semiconductors and insulators (Perdew et al. 2017).

2.5 Gaps of Solids

A crucial failure of the standard approximations is their inability to predict gaps of
semiconductors and insulators. The LDA underestimates the gap of bulk Si by a
factor of 2 and makes Ge a metal, and GGAs fare little better. From very early on,
a great strength of the GW method (Aryasetiawan and Gunnarsson 1998) has been
its ability to provide accurate and reliable gaps.

To understand this issue, it is important to first note that the KS gap of a
periodic solid does not match the fundamental gap of the solid (Perdew et al. 1982;
Perdew 1985). All indications suggest that in fact LDA and GGA yield reasonably
accurate KS gaps (i.e., close to the KS gap found with the exact ground-state
functional) (Grüning et al. 2006). But, unlike LDA and GGA, the exact functional
allows access to the fundamental gap, which is just I − A, the difference between
the ionization energy and electron affinity of a system. Consider a very large but
finite cluster of material. One can then add and subtract an electron to find I and
A and deduce the exact gap. In fact, modern methods exist for doing this in a
periodic calculation (Stadele et al. 1999). But in LDA or GGA, the added electron
or hole delocalizes over the entire system and, because of their lack of a derivative
discontinuity, I −A collapses to the HOMO-LUMO KS energy difference, i.e., the
KS gap.

A great success of the past two decades has been the accurate calculation of
moderate gaps using hybrid functionals such as HSE06 (Heyd et al. 2003). This is
achieved by going to a generalized KS scheme (Seidl et al. 1996), in which the
orbital-dependent part of the functional is treated as in HF theory, not pure KS
theory (which would require treating it with optimized effective potential (OEP)
methods (Kümmel and Kronik 2008)). By having an orbital-dependent potential,
one can show that the generalized Kohn-Sham (GKS) gap of such a calculation
does match I−A, and because of the orbital-dependence, an approximate derivative
discontinuity is included. Thus the GKS gap in such a calculation is the approximate
fundamental gap and is wider than the corresponding KS gap. This is how hybrid
functionals and meta-GGAs yield wider and generally more accurate gaps than
GGA’s (Perdew et al. 2017).

3 Challenges and Hopes

Here we review some of the more depressing failures of our current approximations.
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3.1 Strong Correlation

The failure of DFT with standard approximations for strongly correlated systems
has been known since before its invention, as HF has problems for H2 when it is
stretched (Heitler and London 1927). The problem can be analyzed and related to
localization/delocalization errors of the standard approximations when integer (or
half-integer) numbers of electrons localize on different sites (Cohen et al. 2008).
This is often called static correlation in quantum chemistry and involves the KS gap
between two states becoming very small and the exact many-body wave function
becoming an (almost) equal mixture of two Slater determinants.

It is important to note that the difficulties lie only with the failure of approx-
imations under these circumstances, rather than the KS scheme itself. This can
be beautifully illustrated with the two-site Hubbard model, for which it is trivial
to construct the exact KS system, even when strongly correlated (Carrascal and
Ferrer 2012). Even in realistic cases (albeit in 1d), the KS equations for a strongly
correlated system always can be made to converge to the exact ground energy and
density if the exact XC functional is used (Wagner et al. 2013). But of course many
of the features of the KS system do not resemble those of the physical system under
such conditions (Carrascal et al. 2015). This point is often confused by practitioners
of many-body theory. The differences between KS response functions and the many-
body analogs for strongly correlated systems is not a signal that a density functional
approximation is failing to yield accurate energies for such systems.

But strong correlation in solids is even more difficult than static correlation
in molecules. To see this simply, consider chains of uniformly spaced H atoms.
As the spacing is increased, an electron localizes on each site. For H2, the true
wave function combines two Slater determinants. But for H4, there are four such
determinants, and a DFT calculation with, say LDA, will break symmetry into four
different solutions, one of which will have lowest energy (Wagner et al. 2014). As
the number of atoms in the chain grows, so does the number of nearly degenerate
solutions, separated by spin excitations of very small energy. In the thermodynamic
limit, these become infinite, and the usual quantum chemical starting point of a
single Slater determinant becomes hopeless (Qiu et al. 2017). Because this is such
an important problem, vast amounts of research have been performed studying this
limit, especially by the group of Weitao Yang (Zheng et al. 2011), but also by
Scuseria (Motta et al. 2017) and Becke (Johnson and Becke 2017).

3.2 The Role of Empiricism

The most practical systematic approach to the construction of density functionals
has that been championed by Perdew: combine exact conditions that are relevant
to a given level of approximation with appropriate norms, such as the uniform gas
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or hydrogen atom, to create approximations of tremendous generality (Medvedev
et al. 2017). A key aspect of this approach is that, as one rises on Jacob’s ladder,
each successive approximation works better than the previous one (or at least is
no worse) under almost all circumstances (and the cases where it does not are
usually very informative). Thus, for a given computational cost, there is a single
(or at least, very similar) obvious choice that is rarely worse than using a lower
rung. Use of appropriate norms may appear empirical, but it can be understood as
choosing parameters in the approximations to capture limits that have not been fully
derived as yet but in principle could be. The extremely successful B88 exchange
functional (Becke 1988; Elliott and Burke 2009) can be viewed as incorporating
appropriate norms (exchange energy of atoms).

On the other hand, the profusion of inexpensive computing resources has led
to many databases with either experimental results or those of high-level compu-
tational chemistry against which new approximations can be tested. It has also led
to empirical fitting of density functional approximations with many parameters, as
championed by Truhlar and co-workers (Zhao and Truhlar 2008, 2006; Zhao et al.
2006). This approach typically produces more accurate approximations than those
of Perdew et al. for the systems and properties fitted and for related systems and
properties. But it does not yield single universal approximations that generically
improve over previous steps on the ladder. Such approximations can fail badly when
applied beyond their range of applicability.

An entirely new approach to functional approximation is to use machine-learning
to learn from accurate data (Snyder et al. 2012; Rupp et al. 2012; Bartók et al. 2010).
This differs from the earlier approaches, because it automatically includes highly
nonlocal contributions, as captured for example, in the kernel which measures
density separations by integrals over the entire system (Snyder et al. 2012; Li
et al. 2016b; Vu et al. 2015; Snyder et al. 2013). Recent advances include the
first KS-MD simulation with an ML-DFT approximation to bypass solving the KS
equations (Brockherde et al. 2017) and accurate approximation of the full interacting
functional (including XC) (Li et al. 2016a) even for strong correlation and even for
extended systems (but so far, only in 1d, because of the cost of generating accurate
data).

3.3 NewHorizons

An entirely new arena for DFT which has grown immensely in the last decade
or so is applications to warm dense matter (Smith et al. 2018), with temperatures
significant on the electronic scale (about 100,000 K), but not so high that Thomas-
Fermi theory (or classical behavior) dominates. Applications range from modeling
planetary interiors to inertial confinement fusion. This field is so “hot” that even the
input to thermal LDA, the XC energy of a uniform gas as a function of temperature,
is only now being calculated at high accuracy (Groth et al. 2017).
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Abstract

Charge transport in materials has an impact on a wide range of devices – LEDs,
PVs, batteries, fuel cells, circuits, and sensors all prominently exploit charge
transfer characteristics of the underlying materials. As material design becomes
more sophisticated, molecular components are playing a larger role in these
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applications, so that an understanding of charge migration in molecular systems
is increasingly relevant. Here, we present a concise review of the principles of
charge transfer in molecular materials. After a brief summary of the key concepts
of Marcus theory, we discuss the key molecular and material properties that
influence charge transfer and how they can be accounted for. Using organic PV
and LED materials as a case study, we illustrate how these concepts can be used
to better understand the microscopic properties that underpin device function in
real devices.

1 Introduction

Charge transfer in materials is a central step in a host of technologies. In photo-
voltaic cells, charge separation turns sunlight into electricity (Sariciftci et al. 1992).
In batteries, long-lived charge transfer stores electrical energy (Goodenough and
Park 2013). In fuel cells, electron transfer converts chemical energy into mechanical
work (Wang et al. 2011). In LEDs, charge recombination turns electrical current into
visible light (Nakamura et al. 1994). In CO2 sequestration, charge transfer harnesses
electrical energy to perform a chemical transformation (Appel et al. 2013).

In each of these technological settings, the molecular picture of charge transfer
is increasingly important. In many cases, such as fuel cells, at least one of the
active phases is molecular in nature so that the need for a molecular description
is obvious. In other cases, the motivation for a molecular picture is driven by the
increasing success of molecular semiconductors. Whether one considers perovskite
photovoltaics (Kojima et al. 2009) or organic LEDs (Tang and VanSlyke 1987),
material discovery is consistently demonstrating that molecular materials are able
to outperform traditional network solids in a variety of technological settings.

In this review, we discuss charge transfer in these types of molecular materials
from a quantum chemical perspective. Whereas charge transport in inorganic
semiconductors is typically described in terms of band theory (Kittel 2005) and
delocalized charge carriers, in molecular systems, one typically employs Marcus
theory (Marcus 1956; Hush 1961) in which localized charge carriers hop from one
location to another. We begin by summarizing the basic principles of this Marcus
picture, emphasizing its physical underpinnings and limitations. Next, we outline
how modern quantum chemical tools can quantitatively simulate charge transfer
within the Marcus framework. Finally, we use some examples involving organic
solar cells and organic LEDs to illustrate the utility of these ideas and suggest
directions for future research efforts.

2 Marcus Picture of Charge Transfer

The Marcus picture describes electron (or hole) transfer from one localized center
(the donor) to another localized center (the acceptor) (Marcus 1956). Hence, by
its very nature, the Marcus picture assumes that electrons localize on individual
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centers. The resulting hopping-like picture of charge transport is thus fundamentally
irreconcilable with the band theory of transport common in solid-state physics.
Broadly speaking, the localized picture is expected to be appropriate in more
disordered materials, because disorder drives quantum-mechanical localization
(Anderson 1958). Molecular systems are only held together by weak intermolecular
forces, making them highly defective compared to inorganic network solids. The
resulting rugged energy landscape tends to localize charges, making the Marcus
picture the default approach in molecular materials (Coropceanu et al. 2007).

The two electronic states in which the electron is localized on one center
or the other are called diabatic states (Mead and Truhlar 1982; Van Voorhis
et al. 2010). Typically, one envisions localization on a single molecule, although
submolecular localization (e.g., within a polymer) or super-molecular localiza-
tion (e.g., to a single aggregate) is also possible. In any case, charge transfer
between the centers is driven by fluctuations in the energies of the diabatic states.
Again, molecular materials differ from their inorganic counterparts in this respect.
Whereas inorganic network solids tend to be inflexible, organic materials are
comparatively soft and deformable, leading to relatively large, dynamic fluctuations
in the energies of the diabatic states. These fluctuations in turn drive efficient
charge transfer. As illustrated in Fig. 1a, these fluctuations can arise both from
intramolecular reorganization (e.g., changes in bond lengths or torsion angles)
and intermolecular reorganization (e.g., molecular reorientation or polarization),
but the result is the same in either case: dynamic changes in the donor and
acceptor energies occasionally lead to configurations where the two states are
degenerate and charge transfer can occur rapidly. The rate of charge transfer is
thus partly determined by the probability of obtaining one of these rare degenerate
configurations.

For any given system, identifying the geometric changes that govern these
fluctuations (the so-called reaction coordinate) is a task unto itself (Marcus 1993).
However, the structural changes that accompany electron transfer tend to be
rather system-specific – the reaction coordinate for electrochemistry in solution
(Blumberger and Sprik 2006), for example, might be very different than for hole
transfer in a polymer (Brédas et al. 2004). This variability tends to complicate the
discussion of electron transfer in different systems that are otherwise physically
and mathematically analogous. As a result, it is common to instead use the energy
gap, q ≡ �E = EDonor − EAcceptor, as a universal reaction coordinate (Warshel
1982; Tachiya 1993). Clearly this gap will be negative for configurations where
the electron would prefer to be on the donor (the “reactant”) and positive for
configurations that favor the acceptor (the “product”) and so fulfills the key purpose
of the reaction coordinate: it distinguishes the product from the reactant.

Now, consider the probability, P(�E), of observing a given energy gap in our
system. Roughly speaking, the rate of charge transfer will be given by (Marcus
1964):

kCT ∝
∣∣〈!Donor

∣∣Ĥ
∣∣!Acceptor

〉∣∣2P(�E = 0) (1)
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Fig. 1 (a) The reaction coordinate in electron transfer involves molecular rearrangements and
polarization that go from stabilizing charge on the “donor” (left) toward stabilizing charge on the
acceptor (right). (b) The free energies of the system when the charge is on the donor (red) or
acceptor (blue) resemble two parabolas that intersect at the transition state for charge transfer.
Assuming the curves are exactly parabolic leads to the Marcus non-adiabatic rate expression

where the first term on the right-hand side is the electronic coupling between
the donor and acceptor. One can derive Eq. 1 starting from Fermi’s golden
rule assuming nuclear motion is classical (Barbara et al. 1996), but the physical
justification is clear. Charge transfer between two localized states is governed by
the product of two factors: (1) the probability of attaining a configuration where
donor and acceptor are degenerate (P(�E = 0)) and (2) the probability of quantum-

mechanical tunneling between donor and acceptor (∝ ∣∣〈!Donor
∣∣Ĥ

∣∣!Acceptor
〉∣∣2).

Visualization of the electronic coupling is challenging, but a qualitative picture
of the probability is straightforward. If the electron is on the donor, we will tend
to observe configurations in which �E will be negative. That is, Pdonor(�E) will
tend to be peaked at some negative value of �E. Meanwhile, the opposite will
be true of the acceptor: Pacceptor(�E) will tend to be peaked at some positive
value of �E. Thus, if we consider the free energy of each species (where
Gx(�E) ≡ − kT ln Px(�E)), then we will obtain a picture similar to Fig. 1b: two
free energies with minima at different points along the reaction coordinate that cross
at the transition state (�E = 0). Visually, these two curves resemble parabolas, and
one typically makes the linear response approximation that these curves actually are
parabolic, in which case the rate can be expressed in closed form:

kCT ∝
∣∣〈!Donor

∣∣Ĥ
∣∣!Acceptor

〉∣∣2e−
(�G+λ)2

4λkT (2)
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Equation 2 is the celebrated Marcus rate for non-adiabatic electron transfer. It
expresses the rate in terms of three physical parameters: (1) the electronic coupling
VDA ≡

〈
!Donor

∣∣Ĥ
∣∣!Acceptor

〉
, (2) the free energy difference (�G) between donor

and acceptor, and (3) the reorganization energy (λ) that measures the degree of
structural relaxation that accompanies electron transfer.

As can be seen from the discussion above, there are a number of approximations
built in to Eq. 2. There are therefore various extensions to the Marcus expression
that can be considered:

• Strong coupling: By invoking Fermi’s golden rule, one implicitly assumes that
the electronic coupling, VDA, is small. One can extend Eq. 2 to include higher-
order terms in the coupling – effects like superexchange (Siddarth and Marcus
1993; Cheng et al. 2017) and even the adiabatic limit (Marcus and Sutin 1985;
Jortner and Bixon 1988). In the context of materials, these higher-order terms
eventually connect the Marcus picture to the traditional band picture of transport
(Nan et al. 2009; Shuai et al. 2014).

• Variable coupling: In the above, we have assumed that the electronic coupling
is a single number, whereas in reality, it will depend on molecular structure.
Variation of the electronic coupling can influence the rate (Difley et al. 2010), and
these variations can have a crucial impact in highly ordered molecular crystals
(Troisi and Orlandi 2006a, b; Vehoff et al. 2010).

• Beyond linear response: The linear response approximation in Marcus theory
can be justified heuristically using the central limit theorem, but for many
systems, the free energy curves are markedly non-parabolic. In these cases,
corrections for anharmonicity are available (Yeganeh and Ratner 2006), although
less widely explored in molecular solids.

We will not dwell much on these extensions in what follows, in part because
the extensions of Eq. 2 are typically system-specific. That is to say, whereas Eq. 2
applies universally to any system that satisfies a handful of physical approximations,
the ways in which individual systems violate Eq. 2 are highly nonuniversal.
Thus, in order to maintain a focused review, we will direct our attention toward
computational realization of Eq. 2, leaving the discussion of extensions to other
work.

3 Computational Realization

3.1 Calculations of Charge-Localized States and Electronic
Couplings

Marcus theory provides a closed form expression for the charge transfer (CT)
rate. Its practical use hinges on the possibility of calculating diabatic charge-
localized states and electronic couplings. Standard electronic structure methods
diagonalize some effective Hamiltonian; therefore, they generate adiabatic states
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that are approximations to the true eigenstates of the Hamiltonian for the donor (A)-
acceptor (B) system. In the diabatic basis, the Hamiltonian is not diagonal anymore,
and the electronic coupling is simply its off-diagonal term:

VAB =
〈
!A

∣∣Ĥ
∣∣!B

〉 = 〈
!Donor

∣∣Ĥ
∣∣!Acceptor

〉
(3)

Since strict diabatization of the adiabatic basis is in general not possible (Mead
and Truhlar 1982), a number of practical methods to generate charge-localized states
have been developed. The practical concerns are computational feasibility and the
cost of the diabatization procedure as well as accuracy of the resulting electronic
couplings. The conceptually simplest method relies on modeling of the donor-
acceptor complex as a two-level system (Newton 1991). The eigenvalues of the
Hamiltonian are given by the expression:

E0,1 = 1

2

(
EA + EB ±

√
(EA − EB)2 + 4|VAB |2

)
(4)

In the case of a symmetric dimer (EA = EB), the expression simplifies, and the
electronic coupling is just half of the energy gap between the adiabatic states:

|VAB | = 1

2
(E1 − E0) (5)

Therefore, for a symmetric donor-acceptor system, no explicit diabatization is
needed, and the coupling can be computed just from the knowledge of the ground
and first excited state energies. This can be simplified even further if the one-electron
approximation is considered and adiabatic energies E0, E1 are replaced by orbital
energies εLUMO, εLUMO + 1 for electron and εHOMO − 1, εHOMO for hole transfer.

In a general case, one has to decide on the definition of a charge-localized
state that will be further used in calculations of couplings and driving forces.
Within the fragment orbital (FO) approach (Senthilkumar et al. 2003), diabatic
states are defined by the orbitals of isolated molecules. In the simplest variant, the
frozen orbitals of neutral molecules are considered, so only relevant frontier orbitals
participate effectively in the electron transfer process, and the coupling element is

V FO
AB =

〈
φ
HOMO/LUMO
A

∣∣̂h
∣∣φHOMO/LUMO

B

〉
(6)

where ĥ is the effective one-electron Hamiltonian constructed from the fragment
orbitals. HOMOs or LUMOs of the A/B fragments are considered for hole and
electron transfer, respectively. Such approach is computationally very efficient;
however, it neglects the effect of relaxation of orbitals upon charging/discharging
and mutual polarization of fragments. Several flavors of the FO method have been
proposed to address these shortcomings (Schober et al. 2016), which still rely
on separate calculations for fragments, but take account of the correct number of
electrons in the construction of the reference states and the Hamiltonian.
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More accurate calculations of diabatic states should fully take into account the
mutual interactions of the donor and acceptor fragments in their proper oxidation
states. Since minimization of the total energy leads to the adiabatic ground-state
wave function, one needs to impose some sort of a constraint that enforces an excess
electron or a hole to localize on the desired fragment. This is achieved in constrained
density functional theory (CDFT) (Wu and Van Voorhis 2005, 2006; Kaduk et al.
2012) through minimization of the total energy functional under an additional
constraint that the charge densities of fragments integrate to the predefined numbers
of electrons. Since there is no unique way to partition the electron density into
fragments, a weight function w(r) is introduced to define a charge constraint on
fragment A:

NA =
ż

wA (r) ρ (r) dr (7)

While there is much freedom in the definition of the weight function, in the
majority of implementations, it is based on Becke grid weights (Becke 1988)
or Hirshfeld density partitioning (Hirshfeld 1977). Despite this ambiguity, the
electronic couplings computed with CDFT states show only limited sensitivity to
the choice of the weight function (Goldey et al. 2017).

In CDFT, the energy is minimized subject to the constraint by finding a stationary
point of the following Lagrangian:

W [ρ, VA] = E [ρ]+ VA

(
ż

wA (r) ρ (r) dr −NA

)
(8)

This leads to Kohn-Sham equations that need to be solved to obtain a KS charge-
localized state:

(
−1

2
∇2 + vH (r)+ vxc (r)+ VAwA (r)

)
φi (r) = εiφi (r) (9)

where vH is the Hartree potential, vxc is the exchange-correlation potential, and
VAwA is the constraining potential that enforces the proper charge on fragment
A. Since the optimal Lagrange multiplier VA is not known a priori, it has to be
optimized together with the electron density. In practice, this is done by adding
an extra optimization loop to enforce Eq. 7 at each SCF cycle. The resulting
diabatic state is a Kohn-Sham determinant, which formally is only an auxiliary
mathematical object used to represent the electron density. This poses a challenge
for the calculation of electronic couplings (Eq. 3), which require knowledge of the
actual wave functions of the diabatic states. Since diabatic states are eigenstates of
the Hamiltonian with the constraining potential, the coupling can be rewritten in the
following way (Wu and Van Voorhis 2006):
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VAB =
〈
!A

∣∣Ĥ
∣∣!B

〉 = FA + FB

2
〈!A | !B〉−1

2
〈!A |VAwA (r)+VBwB (r)|!B〉

(10)

where FA/B = EA/B + VA/BNA/B are energies of the diabatic states interacting with
the constraining potential. In this form, the dependence of the electronic coupling
on the wave functions is reduced only to the overlap and one-body terms. At this
point, it is assumed that the Kohn-Sham determinant is a reasonable approximation
to the wave functions, which turns out to work well in practice.

Another DFT-based approach to compute charge-localized states and electronic
couplings takes advantage of splitting of the donor-acceptor complex into two
distinct but interacting Kohn-Sham subsystems. In subsystem DFT (sDFT) (Cortona
1991; Jacob and Neugebauer 2014), the starting point is the partitioning of the
electron density into fragments:

ρAB (r) = ρA (r)+ ρB (r) (11)

Each of the subsystem densities is a ground-state solution of Kohn-Sham
equations with constrained electron density (KSCED) (Wesolowski and Weber
1996), where interactions with the other subsystem are described through a local
embedding potential:

(
−1

2
∇2 + vKS

[
ρA/B

]
(r)+ vemb [ρA, ρB ] (r)

)
φ
A/B
i (r) = εiφ

A/B
i (r) (12)

where vKS[ρA/B](r) is a regular Kohn-Sham potential for the subsystem A/B and
vemb[ρA, ρB](r) is the embedding potential which is a nonsymmetric bifunctional
that couples the equations for both densities. In practice, the equations are solved
one at a time while keeping the density of the other subsystem frozen until both
densities converge. Such implementation of sDFT is closely related to frozen density
embedding (FDE) theory (Wesolowski and Warshel 1993), and both terms are often
used interchangeably in the literature.

The key feature of sDFT that allows for generating diabatic states is the non-
uniqueness of the density partitioning in Eq. 11. In particular, the number of
electrons assigned to subsystems A and B is completely arbitrary, so conceptually it
is straightforward to construct a state with a predefined charge. It is not immediately
clear why these charge-constrained states remain localized when the total energy of
the donor-acceptor system is minimized. Since KSCED equations yield the exact
density of the total system, the number of electrons assigned to subsystems A and
B should not matter at convergence as the initial fragment densities would polarize
and delocalize in order to add up to the correct one. Nevertheless, sDFT proved to
be an efficient computational tool to generate charge-localized states (Pavanello and
Neugebauer 2011; Pavanello et al. 2013) provided that initial densities are chosen
as isolated fragments with proper charges and each state is expanded in an atomic
basis set that is centered only on the given fragment’s nuclei. Such choice biases
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the solution toward the targeted diabatic states, and restricted basis prevents the
undesired delocalization of their densities while letting them mutually polarize each
other.

Computing of electronic couplings is problematic due to the use of Kohn-Sham
determinants instead of wave functions of interacting electrons. In the mean-field
approximation, the couplings can be rewritten as a functional of transition density
and wave function overlaps:

VAB = E
[
ρAB

]
det

(
SAB

)
(13)

Here SAB is a transition orbital overlap matrix with elements:

SAB
kl =

〈
φA
k

∣∣∣φB
l

〉
(14)

and ρAB(r) is the scaled transition density:

ρAB (r) =
∑

kl

φA
k (r)

(
SAB

)−1

kl
φB
l (r) (15)

By assuming that Kohn-Sham orbitals can be used to approximate the diabatic
states and using an approximate functional to evaluate E[ρAB], electronic couplings
between sDFT diabats are readily available through Eq. 13.

3.2 Incorporating Environmental Effects

Charge transfer reactions usually occur in condensed phases, and the environment
can have a significant effect on electronic structure of reactants and the resulting
charge transfer parameters. In fact, the environment’s degrees of freedom play a
crucial role in the CT process; their fluctuations make two diabatic states transiently
isoenergetic, at which point the electron hop happens. On average, the environment
stabilizes localized charges through polarization of its electron density, alignment
of multipole moments, and geometric deformation (polaron formation). For these
reasons, accounting for the presence of the environment in computational studies
of CT is of fundamental importance. The methods for including embedding effects
can be divided into explicit and implicit models, depending whether surrounding
molecules are present explicitly in the simulations or are replaced by a dielectric
continuous medium.

The Marcus rate expression involves two thermodynamic properties associated
with the CT reaction, the driving force �G and the reorganization energy λ. The
driving force is the difference between the free energies of the initial and final
diabatic states, so the role of the environment model is to describe the stabilization
of the charges after the environment’s degrees of freedom have been equilibrated.
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Calculations of the reorganization energies are more complicated as it is a non-
equilibrium property, which requires calculations of the energy of one diabatic state
in the equilibrium structure of the other. It is particularly challenging for the outer
sphere component of λ, which is associated with the rearrangement of surrounding
molecules, and its treatment depends on the type of the model used.

In modern implicit environment models (Cramer and Truhlar 1999; Tomasi et al.
2005), the molecule or the reactive complex is placed inside a cavity resembling
its molecular shape. The cavity is constructed either as a union of van der Waals
spheres or is enclosed inside an isosurface of the molecule’s electronic density. All
the space outside of the cavity is filled with a continuous medium characterized by
its dielectric constant ε, which is usually assumed to be frequency independent. The
presence of the molecular system inside the cavity induces charges in the dielectric,
which generate an effective reaction field interacting with the embedded electron
density. The free energy of interactions with the environment can be calculated by
solving the Poisson equation for the apparent charge on the surface of the cavity.
The surface charge generates a Coulomb potential:

φσ (r) =
ż

σ (rs)

|r − rs | drs (16)

which is then added to the Hamiltonian of the embedded molecule. In the self-
consistent reaction field (SCRF) family of approaches, the equations for the
electronic structure of the embedded system and the surface charge on the cavity
are solved iteratively until convergence. The converged electron density and electro-
static potential are used to compute the electrostatic contribution to the embedding
free energy:

�Ges = 1

2

ż

φreac (r) ρ (r) dr (17)

where the reaction field φreac(r) is the difference between electrostatic potentials
of a molecule in the cavity and vacuum. Apart from the electrostatic component,
the free energy of cavitation and dispersion/repulsion interactions can be accounted
for in implicit models. These contributions are usually highly parametrized to fit to
experimental or other theoretical data.

The implicit models used most frequently in computational studies of charge
transfer reactions in condensed phases are the polarizable continuum model (PCM)
(Miertuš et al. 1981) in its several variants (Mennucci 2012), conductor-like
screening model (COSMO) (Klamt and Schüürmann 1993; Klamt 2011), and the
SMx family of models (Kelly et al. 2005; Marenich et al. 2007, 2009), where
the latter are based on solution of the generalized Born instead of the Poisson
equation. The common advantage of these methods is that they are computationally
very efficient and account for the majority of important effects resulting from
interaction with the environment. However, they rely on many fitted parameters,
so transferability and accuracy are often an issue. Also, the specific interactions
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between the molecules, e.g., hydrogen bonding, are not accounted for in continuum
models. Another challenge of modeling of CT reactions with implicit environment
is that they assume thermodynamic equilibrium, and there is no direct way to freeze
environment’s geometric relaxation in calculations of reorganization energies.
Extensions of implicit models to non-equilibrium structures assume that the bulk
dielectric constant has a slow and fast (ε∞) component (Aguilar 2001), where the
latter is associated with electronic polarization only (high-frequency component).
Then, ε∞ can be used in calculations of reorganization energies, which is a
qualitative yet efficient approach.

While implicit models are efficient, they necessarily ignore the fact that the envi-
ronment is composed of individual molecules. Conversely, in explicit environment
models, the molecular system of primary interest is surrounded by a number of
discrete molecules that constitute its environment. Various models differ by how
interactions between different parts of the total system are treated. The conceptually
simplest approach is to do calculations on the whole supersystem without singling
out its individual components. Since a very large number of environment molecules
often number, this approach can become impractical due to steep computational
scaling of conventional electronic structure methods. Additionally, it may be
difficult to disentangle the properties of the embedded system and the environment
if their states begin to mix. This can be further exacerbated by errors of the
computational method, e.g., delocalization error of approximate density functionals.
These problems can be alleviated by the use of subsystem and embedding methods
that perform calculations on individual components, while including the interactions
with the others.

One of the fragment-based approaches that has been successfully used in CT
simulations is subsystem DFT, which has been already discussed in the context of
generating diabatic states. It is straightforward to generalize the density partitioning
(Eq. 11) to an arbitrary number of subsystems:

ρ (r) =
Nsub∑

i

ρi (r) (18)

where each subsystem density ρi(r) typically represents one molecule. For each
molecule, KSCED equations (Eq. 12) are solved, where the embedding potential is
a functional of its density and the density of all the remaining fragments. Since the
orbitals of the supersystem are never calculated, the method scales linearly with the
number of solvent molecules and relatively large clusters can be simulated. It is also
straightforward to calculate diabatic states of CT complexes interacting with their
environment by assigning the desired number of electrons to two of the subsystems
representing donor and acceptor molecules.

Further reduction of the computational cost of explicit models can be achieved
by employing hybrid quantum mechanics/molecular mechanics (QM/MM) methods
(Warshel and Levitt 1976; Field et al. 1990; Lin and Truhlar 2007). The supersystem
is partitioned into the embedded fragment, usually the solute molecule or the donor-
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acceptor complex, and the environment. The active subsystem is treated at the
quantum-mechanical level (e.g., DFT), while the environment is described by a
classical force field which does not explicitly account for the presence of electrons.
The Hamiltonian for the total system is therefore partitioned into the QM, MM, and
interaction terms:

Htotal = HQM +HMM +HQM/MM (19)

where HQM is the Hamiltonian accounting for interactions of nuclei and electrons of
the embedded fragment, HMM accounts for interaction of MM atoms, and HQM/MM

couples these two subsystems. The wave function of the quantum subsystem is
optimized by minimizing the energy of the total system; therefore the polarization
of the embedded subsystem by the environment is taken into account through
the electrostatic term in the interaction Hamiltonian. The final interaction energy
is given by the expression that accounts for coulomb interaction between solute
and MM atoms represented by point charges and the additional empirical term
representing van der Waals interactions:

EQM/MM= −
ş ∑
i∈MM

qi

|Ri − r ′|ρ
(
r ′
)
dr ′

+ ∑
i∈MM

∑
j∈QM

qiZj∣∣Ri −R′
∣∣ +

∑
i∈MM

∑
j∈QM

VνdW

(
Ri ,Rj

) (20)

In simulations of charge transfer parameters, it is important to also include the
polarization of the environment due to the presence of the donor-acceptor complex.
The relaxation of the environment’s electron density is the major contribution to
the overall outer sphere reorganization energy and is chiefly responsible for the
stabilization of charged diabatic states. Including this effect in QM/MM calculations
requires the use of a polarizable force field in the MM part. A simple yet
effective way of including polarization of MM atoms is based on Drude oscillators
(Lamoureux and Roux 2003), i.e., fictitious charged and massless particles that are
harmonically bound to nuclei. Drude particles are free to move around the atom to
which they are anchored in response to the electric field of other atoms and Drude
particles as well as the electron density of the QM region. The energy associated
with Drude particles is

EDrude =
∑

i

1

2
kDi |d i − r i |2 +

∑

ij

qD
i qj

|d i − r i | +
∑

ij

qD
i qD

j

|d i − d i | (21)

Every Drude particle is characterized by its charge qD
i and spring constant kDi ,

which determine the atomic polarizability αi =
(
qD
i

)2

kDi
. In practice, often a constant

value is assumed for the spring constant and the charges of Drude particles are fitted
to reproduce molecular polarizability or atomic polarizabilities obtained through the
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distributed multipole analysis (Stone 1981). Since the position of Drude particles
and the electron density of the QM region depend on each other, calculations cycle
between the optimization of the wave function and the position of Drude charges
until self-consistency is reached.

3.3 Effects of Configurational and Energetic Disorder

Charge transfer reactions between molecular systems often occur in disordered
and fluctuating environments like liquids, polymers, or glasses. Therefore, when
simulating CT processes, it is usually not sufficient to consider only one con-
figuration of the molecules surrounding the reaction center. This is especially
true for charge-transporting molecular materials, where macroscopic properties
like conductivity inherently depend on the morphology of the material. When a
charge hops between molecular sites, the energetic landscape it experiences changes
with the position and time. Incorporating these effects in molecular simulations
requires a significant amount of computational resources but is often indispensable
to understand macroscopic charge transport.

The overall disorder at any given instant of time has two primary sources.
The dynamic disorder results from coupling of the electronic structure to the
vibrations. Since vibrational modes of distinct molecules are not necessarily in
phase, the molecules in the ensemble have different geometries and experience
different local environments. This leads to a heterogeneity in CT parameters and
resulting instantaneous CT transfer rates, which are a time-dependent property. If
only dynamic disorder is present in the system, the distributions of these parameters
sampled over time are identical for all the sites in the ensemble. In contrast, if
there is static disorder present in the system, some of the sites have different
time distributions of the CT parameters. The difference between the dynamic
and static disorder is not always unambiguous as it depends on the time scale
over which the properties are sampled. For ergodic systems, every molecule will
eventually visit the entire phase space, so all the disorder in the ensemble is dynamic.
However, in the context of CT reactions, the distinction between the two types
of disorder is based on the time scale set by the charge transfer rate – motion
that is slower than charge transfer effectively appears static to the transferring
electron. In practice, it means that much of the disorder in molecular materials is
inherently static, which may result from factors like sites being kinetically trapped
in different local minima, presence of impurities, defects, phase boundaries, etc. The
disorder of CT parameters can be further divided into the energetic and positional
disorder. The former, which is also called the diagonal disorder, is manifested by
the distribution of energies of diabatic states (site energies). The positional (off-
diagonal) disorder gives rise to the heterogeneity of electronic couplings between
different diabats. Static disorder typically reduces charge mobility of the material
as the polaron encounters higher-energy barriers and often needs to move via
percolation pathways. Large static disorder may also lead to charge trapping and
subsequent chemical degradation of the material. In contrast, dynamic disorder is
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fundamental for a charge hop to occur as the vibrations make the diabatic states
transiently isoenergetic. Also, electronic couplings are very sensitive to the nuclear
configuration so dynamic positional disorder affects how effectively the charge can
be transferred between sites.

Atomistic computational studies of CT processes in a disordered material
require the knowledge of its morphology under experimental conditions. Realistic
configurations can be obtained from classical molecular dynamics (MD) simulations
carried out in NVT or NPT ensembles. After initial equilibration, the snapshots
of the MD trajectory are sampled at regular intervals, and these instantaneous
configurations are used in subsequent QM calculations of CT parameters. In
the hopping regime, only two molecular sites at a time are involved in charge
transfer, but the environment has an important effect on the calculated values.
Since nuclear configurations of the environment are sampled in the MD trajectory,
explicit environment models can be directly used for every snapshot. In particular,
polarizable QM/MM methods are well suited for such calculations (Difley et al.
2010) as they balance computational efficiency and inclusion of important physical
effects. Sampling the energy landscape of the relevant diabatic states allows to
compute the distribution of energy gaps, which can then be used to calculate
free energy differences through the thermodynamic perturbation or thermodynamic
integration methods (Frenkel and Smit 2002). In the linear response approximation,
the energy gaps are assumed to be normally distributed, and the driving force for
CT is expressed as the average energy gap in the reactant and product ensembles:

�G = 〈�E〉A + 〈�E〉B
2

(22)

while the reorganization energy is half of the difference between mean energy gaps

λ = 〈�E〉A − 〈�E〉B
2

(23)

Analytical rate expressions enable calculation of the CT reaction rate between
specific donor and acceptor sites. However, in a disordered material, there is a
distribution of charge hopping rates which vary for different pairs of molecules
involved in the CT reaction. To simulate the evolution of charge carriers, the material
can be mapped to a lattice of molecular sites with assigned hopping rates between
them. The mapping can be done based on atomistic simulations, where every
molecule in an MD snapshot is represented by a lattice site and Marcus rates are
calculated for every pair of nearest neighbors. Such approach reflects the realistic
morphology of a material but is computationally demanding due to the large number
of CT parameters that need to be computed. A simpler method that enables to study
charge transport through a disordered medium is to assume a distribution of CT
parameters and draw from this distribution to assign hopping rates based on some
rate expression. In the Gaussian disorder model (GDM) (Bässler 1993), site energies
ε are assumed to be normally distributed:
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ρ (ε) =
(√

2πσ 2
)−1

exp

(
− ε2

2σ 2

)
(24)

and the hopping rate between neighboring sites i and j is of the Miller-Abrahams
type (Miller and Abrahams 1960):

vij = v0 exp
(−2γ rij

)
{

exp
(
− εj−εi

kT

)
, εj > εi

1, εj < εi
(25)

where the parameters ν0 and γ are the frequency factor and the inverse localization
radius of the charge wavefunction. Extensions of GDM (Pasveer et al. 2005;
Bouhassoune et al. 2009; Kordt and Andrienko 2016) have been developed to
account for effects like correlations of site energies or finite charge-carrier density.
Evolution of a charge carrier in terms of site occupations {pi} is given by the
following master equation:

∂pi

∂t
=
∑

j

pjωji −
∑

j

piωij (26)

In a general case, Eq. 26 cannot be solved analytically. Instead, charge dynamics
can be directly simulated with the kinetic Monte Carlo (KMC) method (Bortz
et al. 1975), which propagates the carrier by constructing a Markov chain based
on predefined probabilities of transitions between different states (site occupations).
Averaging of independent KMC trajectories allows to calculate macroscopic proper-
ties like charge mobility, diffusivity, charge density, and current (Kwiatkowski et al.
2008).

4 Computational Results

To illustrate how quantum chemistry methods can help with understanding charge
transfer processes, we focus on their applications to organic semiconductors
(OSCs). OSC materials hold promise for photovoltaic devices due to their low
manufacture cost and for light-emitting diode devices because of their great optical
properties and flexibility. In order to improve the efficiency of organic photovoltaics
(OPVs) and organic light-emitting diodes (OLEDs), it is crucial to understand
processes such as charge separation at the interface, charge recombination, charge
transfer, and exciton diffusion in these devices. Therefore, we review some of
the recent work on modeling OSC devices, with an emphasis on our work using
QM/MM simulation techniques.
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4.1 Band Gaps

Band gaps are the most fundamental property for understanding charge transfer in
OSC devices. Especially, the optimization of OPV materials relies on estimating
their band gaps, for which experimental techniques are time-consuming and have
limited accuracy (Hüfner 2003; Zahn et al. 2006). Estimating band gaps by running
DFT calculations on single molecules is inaccurate because it ignores the disordered
environment in OSC devices. As discussed in Sect. 3.2, to incorporate the disordered
and polarizable effects of the environment, it is necessary to use implicit solvent
model (e.g., PCM) or explicit solvent model (e.g., QM/MM).

Recently, Kohn et al. (2017) modeled the PPV-PCBM and P3HT-PCBM OPV
devices and compared the accuracy of different methods on bulk OSC band
gaps. The authors first performed an MD simulation using OPLS force field
(Jorgensen et al. 1996) to sample the bulk structures of PPV, P3HT, and PCBM.
DFT calculations were then employed to compute ionization potential (IP) and
electron affinity (EA) of the chosen OSC molecule from MD snapshots. The
environment was treated in three different ways: as absent (vacuum), as point
charges (non-polarizable QM/MM), and as point charges with corresponding Drude
particles (polarizable QM/MM). The authors showed that non-polarizable QM/MM
improved the estimation of both IP and EA values of PCBM by 0.5 eV over the
vacuum but did not correct IP/EA values of P3HT and PPV. Adding Drude particles
in polarizable QM/MM significantly improved the band gaps of all three OSC mate-
rials: the EA values of PCBM, PPV, and P3HT were closer to experimental values
by 0.8 eV, 0.4 eV, and 0.9 eV, respectively. It was thus suggested that inclusion of
environmental polarizability is crucial for obtaining quantitative description of OSC
band gaps. This result is consistent with many earlier studies on OPVs and OLEDs
(Difley et al. 2010; Yost et al. 2011, 2014; Yost and Van Voorhis 2013).

A later study by de Silva and Van Voorhis (2018) applied the same methods to
an OLED emission layer consisting of PIC-TRZ2 and mCP. The authors found it
is important to include polarizable environment while computing the band gaps
of PIC-TRZ2 and mCP and showed this could be achieved by the polarizable
QM/MM or PCM methods. However, this study found that although PCM can obtain
quantitative mean values of band gaps, it failed to produce correct distributions of
energy levels due to the lack of explicit environment. Therefore, the polarizable
QM/MM method is a more accurate method to predict both mean values and
distributions of band gaps of OSC materials.

In OSC devices, most of the important charge transfer processes happen at
organic/organic interfaces, where the polarizable environment changes compared
to the bulk. The change of polarization can affect the band gaps significantly. Such
behavior is referred to band bending at the organic/organic interface in OPVs and is
crucial for understanding charge separation mechanisms (Ishii et al. 1999). Quantum
chemical simulations on several OPV devices have been performed to illustrate how
band gaps change at the interface (Verlaak et al. 2009; Linares et al. 2010; Yost
et al. 2011; Idé et al. 2013; Yost and Van Voorhis 2013). Figure 2 shows a recent
study using QM/MM simulations on PPV-PCBM and P3HT-P3BM interfaces (Kohn
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et al. 2017). This study demonstrated polarization effects that result in notable
band bending near the interface. For example, IP/EA values of PPV change by
about 0.3 eV from the bulk to the interface suggested by the polarizable QM/MM
method, which cannot be captured if the polarizable environment is ignored in
simulations. Based on this result, the authors concluded that band bending at the
PPV-PCBM interface promotes charge separation, while polarization effects inhibit
charge separation in the P3HT-PCBM system.

4.2 Localization/Delocalization

In addition to band bending, another explanation for charge separation at the
organic/organic interface in OPVs focuses on the role of delocalization of the
charges in the charge-separated state (Nayak et al. 2013; Bässler and Köhler 2015).
As donor materials in OPV devices are normally polymers, the hole state can
delocalize easily over the donor, decreasing its Coulombic interaction with the
electrons (McMahon et al. 2011; Castet et al. 2014). As a result, the hole-electron
binding energy is reduced, and the charge separation at the interface becomes
more efficient. Although the OPV acceptor materials are mostly fullerene-based,
the delocalization of electrons over multiple fullerene units have also been reported
(Jamieson et al. 2012; Savoie et al. 2014).

Kohn et al. (2017) have recently examined how the change of disorder and
polarization at the interface affects delocalization in the hole electronic states in
PPV-PCBM and P3HT-PCBM systems. Based on their QM/MM simulation results,
they performed a normalized inverse participation ratio (NIPR) analysis, which
counts the effective fraction of the polymer over which a hole state is spread. NIPR
was computed as:

NIPR = 1

N

1
∑

i∈sites P
2
i

(27)

where Pi is the Mulliken population of the hole on each monomer i and N is the
number of monomers in the polymer. The NIPR therefore indicates the extent of
hole delocalization: for a polymer in which the hole is equally distributed over all
N monomers, NIPR = 1, and for a polymer in which the hole is only localized
on one monomer, NIPR = 1

N
. Their NIPR results for hole states in PPV (14-mer)

and P3HT (20-mer) are shown in Fig. 3, as a function of the distance from the
interface. As can be seen, the NIPR for PPV does not change when the PPV chain
is closer to the interface, suggesting the hole delocalization on PPV is insensitive
to the PPV-PCBM interface. However, this is not the case for P3HT (which is
more disordered than PPV): the hole distribution becomes obviously more localized
when P3HT is closer to the P3HT-PCBM interface, indicated by the smaller NIPR
values. The authors explained that this behavior arises from the interfacially induced
disorder that disrupts the conjugation and causes a form of Anderson localization,
which was also observed in other theoretical studies on P3HT (McMahon and Troisi
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Fig. 3 Normalized inverse participation ratios (NIPRs) for the hole states in the electron-donating
polymers, PPV and P3HT, with different treatment of the environment: as a vacuum (red), as static
point charges (blue), or as static point charges with Drude particles (green) (Kohn et al. 2017)

2010; Barford et al. 2010). The authors pointed out although the localization of hole
states at the interface provides a driving force for charge separation, this effect is
overpowered by the polarization of the electronic environment in the investigated
systems. Therefore, they suggested considerations of electrostatic effects should
take priority when designing new OPV devices.

Polarization effects from the environment show great importance in describing
the hole delocalization. For PPV, the effect of static point charges added in the
non-polarizable QM/MM is negligible because of PPV’s less disordered structure.
However, adding Drude particles in the polarizable QM/MM localizes the hole states
in PPV by more than 30%. Such effects are smaller in P3HT: improved treatment
of the polarizable environment increases the degree of localization but only reduces
the hole size by about 15%. The authors thus concluded that the hole delocalization
of disordered materials (such as P3HT) may be well described without the use of a
polarizable environment.

4.3 Energetic Disorder

In OSC devices, the charge transport normally can be well described by a hopping
mechanism. The charge hopping rates are mostly affected by alignment of electronic
transport levels of individual sites (site energies) (Coropceanu et al. 2007). As a
result of amorphous structures of OSC materials, there is an energetic disorder
in site energies. As discussed in Sect. 3.2, there are two different sources of
energetic disorder, static and dynamic energetic disorder, and they affect the charge
transport properties in different ways. For example, as pointed out by Tummala et al.
(2015), static disorder is always detrimental for charge transport, while dynamic
disorder can sometimes lead to an enhancement of the transport properties via a
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phonon-assisted contribution to charge-carrier mobility. Therefore, it is important
to separately estimate the effects of static and dynamic disorder on charge transport
in OSCs.

However, widely used disorder models like the Gaussian disorder model (Bässler
1993) and its extensions (Novikov et al. 1998; Bouhassoune et al. 2009; Kordt and
Andrienko 2016) do not make an explicit distinction between these two types of
disorder. Meanwhile, many charge transport simulation studies use parametrizations
that assume all the disorder to be static (Rühle et al. 2011; Friederich et al. 2015;
Yavuz et al. 2015). Only very recently, there are studies simulating static and
dynamic energetic disorder in OSC devices. Tummala et al. (2015) investigated the
energetic disorder in fullerene systems, including C60, C70, PC61BM, and PC71BM,
using combined MD and DFT calculations. They found in the C60 and C70 bulk
amorphous structures, the extent of static disorder is comparable to that of dynamic
disorder. However, in the case of PC61BM and PC71BM, the static disorder increases
significantly and is twice as large as the dynamic disorder, due to the conformational
changes from the phenyl-butyric acid methyl ester adducts.

de Silva and Van Voorhis (2018) performed combined MD and polarizable
QM/MM simulations to study energetic disorder in emission layers of two OLED
devices, where PIC-TRZ2 (guest) is dispersed into two different host matrices: mCP
and UGH2. From sampling 20 different guest and host sites and their time evolution
over 100 MD snapshots, the authors obtained the overall energetic disorder. The
choice of the host matrix significantly affects the degree of energetic disorder
in site energies for both guest and host components. For example, the standard
deviations of EA levels of host and guest in mCP are in the range of 0.15–0.16 eV,
while in UGH2 the standard deviations are only 0.10 eV. The authors performed
further analysis of ensemble and time distributions of site energies to decompose
the total disorder into static and dynamic contributions. Similar to the results of
Tummala et al., they showed the dynamic disorder and static disorder are on the
same order of magnitude. More interestingly, they found the larger disorder of guest
and host molecules in PIC-TRZ2@mCP film is caused by the increase in the static
component. The dynamic disorder is not affected by the choice of host, but there
is a twofold increase in the static disorder when mCP is used as the host instead
of UGH2. The authors thus concluded that polarity is the dominant factor for static
disorder, while dynamic disorder does not depend significantly on intermolecular
interactions.

4.4 Reaction Coordinate

In host-guest OLED devices, guest (emitter) molecules can be treated as impurities
because they are dispersed into host molecules at a low concentration. The host-
guest interactions have been shown to be important for improving the OLED
device performance (Tao et al. 2011; Einzinger et al. 2017). It is then interesting
to investigate if the impurities affect the energy levels of their neighboring host
molecules, which may further influence the charge transfer efficiency from the host
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to the guest. This is similar to band bending at the organic/organic interfaces in
OPVs, which can facilitate or inhibit the charge separation processes. As OPV
devices normally consist of layers of donor and acceptor molecules, it is easy to
define the geometrical distance from a position in the bulk to the interface. Such
geometrical distance is then used as the reaction coordinate to study the energy level
changes (Yost et al. 2011; Yost and Van Voorhis 2013; Kohn et al. 2017). However,
distance between molecules is poorly defined in OLEDs because the molecules are
about the same size (∼1 nm) as the space between their centers of mass (1–5 nm). In
addition, since many guest molecules exist in the emission layer, it is ambiguous to
determine which host-guest distance to use for a specific host molecule. Therefore,
a new reaction coordinate is needed to indicate the effective distance between guest
molecules and a specific host molecule.

Zhu and Van Voorhis (2016) introduced a new reaction coordinate while studying
a phosphorescent OLED host-guest system consisting of BTDF and Ir(ppy)3 using
combined MD and polarizable QM/MM simulations. In order to investigate the
charge recombination process from the host to the guest, the authors used the
“host-guest interaction energy” as the reaction coordinate to evaluate the effect
of impurities on the host energy levels. For a specifically chosen host molecule,
the host-guest interaction energy is defined as the change of its IP/EA values
(�IP/�EA) with or without the electrostatic interactions with all guest molecules
in the system:

�IP = |IP (on)− IP (off)|
�EA = |EA (on)− EA (off)| (28)

where “off” means point charges and Drude particles on all guest molecules were
set to 0 in the MM part of the Hamiltonian in the polarizable QM/MM simulation
and “on” means all MM parametrized force field values are kept. Because the
electrostatic interaction between two molecules is inversely proportional to their
distance, this “host-guest interaction energy” can be used to directly measure the
effective distance: the larger host-guest interaction energy means closer distance
between the chosen host molecule and all guest molecules.

The IP and EA values of the host as a function of the host-guest interaction energy
are shown in Fig. 4. The authors showed that EA of the host increases by about
0.1 eV when the host is closer to guest molecules, while IP of the host stays almost
the same. Meanwhile, there are broader distributions of IP/EA at closer host-guest
distances, suggesting guest molecules result in slightly more disordered molecular
environment. Based on these results, the authors concluded that the change in EA
distributions makes the electron transfer from the host to the guest less efficient.
This study thus suggests the impurity effect on host energy levels caused by guest
molecules is minor in OLEDs. This is also confirmed by a later study of de Silva
and Van Voorhis (2018), where they observed no guest impurity effect on host
energy levels for PIC-TRZ2@mCP system. The authors explained that such effect
is completely suppressed by both static and dynamic energetic disorder in host
materials.
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Fig. 4 Left: Distribution of
electron affinities of BTDF as
a function of the host-guest
interaction energy �EA.
Right: Distribution of
ionization potentials of BTDF
as a function of the host-guest
interaction energy �IP. The
colored regions indicate the
standard deviations. (Zhu and
Van Voorhis 2016)

4.5 Charge Transfer State

OPV devices need a large driving force to break up excitons and create separate
electrons and holes. This driving force is provided by the offset of HOMO/LUMO
energy levels of two different OSC materials at their interface. A charge transfer
state is formed after the exciton breakup, and the binding energy of the CT state
is still around 10 kT, a prohibitively high-energy barrier at room temperature (Zhu
et al. 2009). Despite this problem, high interfacial charge separation efficiencies
are shown in many OPVs (Kippelen and Brédas 2009; Park et al. 2009; Few
et al. 2015). One proposed mechanism is that some of the excess exciton energy
might be used to create a “hot” CT state, where the carriers have sufficient kinetic
energy to overcome the dissociation barrier. This mechanism is supported by several



12 Charge Transfer in Molecular Materials 249

theoretical and experimental studies (Dimitrov et al. 2012; Jailaubekov et al. 2012;
Bakulin et al. 2013). Tamura and coworkers (Tamura and Burghardt 2013) simulated
the exciton dissociation in a TFB/F8BT dimer using a model Hamiltonian and
found a significant increase in the free charge formation rate when going through
a higher-energy, vibrationally excited CT state. Later work by Shen et al. (2015)
using the QM/MM simulation also showed in DTDCTB/fullerene solar cells, the
rate of exciton dissociation via the higher-energy CT state is much faster than that
of exciton dissociation via the CT ground state.

However, contradictory studies have shown that “cold” CT states can form free
charges just as efficiently as “hot” CT states (Vandewal et al. 2013; Bässler and
Köhler 2015; Gautam et al. 2016). The experimental study of Lee et al. (2010)
on the formation of hot CT states showed that the charge separation efficiency is
independent of whether the CT state was formed with excess energy. To understand
how charge separates from a cold CT state, it is important to accurately estimate the
binding energy of CT states at the organic/organic interface:

Ebind =
(
EDonor

IP − E
Acceptor
EA

)
− ECT (29)

where ECT is the energy of the CT state, EDonor
IP and E

Acceptor
EA are IP of the

donor and EA of the acceptor. Time-dependent DFT is known to underestimate
CT state energies, while CDFT is shown to be an effective tool to accurately
describe CT states and can easily incorporate the environment into the calculations.
A restricted open-shell Kohn-Sham approach has also been shown to work well for
intramolecular CT states (Hait et al. 2016).

Yost et al. (2011) performed combined MD and polarizable QM/MM simulations
on the H2Pc/PTCBI OPV interface. The authors computed the interfacial CT
states on a number of nearest-neighbor CT pairs using CDFT and found the CT
states have a broader energy distribution than first excited states of either H2Pc or
PTCBI, suggesting the CT states are more sensitive to the electrostatic environment.
Through further analysis on the CT binding energy, they found Ebind has a clear R−1

decay as a function of intermolecular distance, shown in Fig. 5. The average Ebind
for the closest pairs is 0.2 eV, while averaging over all of the nearest-neighbor pairs
gives a Ebind of 0.15 eV. There is also a scatter of 0.1 eV within each CT pair due
to thermal fluctuations, which is expected to facilitate the initial charge separation
at the organic-organic interface. In addition to the CT binding energy, the authors
also simulated energy levels at the H2Pc/PTCBI interface, where the band offset is
shown to be 0.25 eV larger than the bulk value. The authors thus concluded that
the interfacial CT states have higher average energy than fully separated charges in
bulk materials but are locally bound at the interface. This study suggested that it is
possible for bound interfacial CT states to dissociate in a barrierless fashion without
involving “hot” CT states.
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Fig. 5 Distribution of the H2Pc/PTCBI interfacial CT state binding energies. The coordinate R is a
linear combination of intermolecular distances. Each different color/shape combination represents
distinct dimer pairs in the simulation cell (Yost et al. 2011)

4.6 ChargeMobility

A major factor that limits the efficiency of OPVs is the low charge mobility of
OSC materials. The charge mobility at room temperature of most conductive OSC
materials is a few tens of cm2 V−1 s−1, an order of magnitude smaller than the
value of inorganic semiconductors (Ostroverkhova et al. 2006; Troisi 2011). To
understand this limit and design more conductive OSCs, one needs to be able to
accurately estimate the charge mobility. The simulation of charge mobility in OSCs
requires the evaluation of charge transfer rates and a subsequent analysis of the
solution of the master equation. Here, we only highlight the computational efforts
on charge transfer rates. For the use of kinetic Monte Carlo simulation and coarse-
grained lattice models to obtain the charge mobility, we direct the reader to the
review by Andrienko and coworkers (Kordt et al. 2015).

To compute the charge transfer rates following Marcus theory, one needs to
simulate the band gap, reorganization energy, and electronic coupling of OSC
materials, which requires the knowledge of diabatic states and the Hamiltonian
of the involved dimer. Semiempirical methods such as ZINDO have also been
shown to be useful in computing electronic coupling in a faster manner compared
to first principle calculations (Kirkpatrick 2008; Vehoff et al. 2010). However, a
more accurate and general method to construct diabatic states is CDFT. Difley
et al. (2010) performed CDFT calculations in polarizable MM environment to
simulate the charge transfer rates in Alq3 crystalline structure. The authors found
the electronic coupling can vary by as much as a factor of 5 as a function of time,
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indicating significant dynamic heterogeneity of the hopping rate on the nanosecond
time scale. The electronic coupling was also shown to depend strongly on the
relative orientation and distance of the involved Alq3 dimer. The authors further
found that although the reorganization energy for the electron transfer is larger than
the hole transfer, the considerably larger electronic coupling of the electron transfer
is enough to overcome the difference in activation barriers. As a result, the electron
transfer rate is shown to be larger than the hole transfer, which qualitatively agrees
with the experimental observation that Alq3 is a good electron transport material.
However, the authors also pointed out one must apply mesoscopic simulations
to obtain quantitative predictions on charge mobility (Kwiatkowski et al. 2008)
because of the heterogeneity of the charge transfer rates. This study thus suggests
it is crucial to include dynamic and static disorder and construct diabatic states
accurately when computing the charge transfer rates.

5 Conclusion

We have here presented a brief review of the principles of charge transfer in
molecular materials. The essential principles of electron transfer can be understood
using arguments from Marcus theory – an approximate model that was originally
designed for solution-phase electrochemistry but which has seen a shocking degree
of success describing charge transfer in widely disparate areas. Next, we highlighted
the main ingredients in any computational model: (1) a method to compute localized
charge states and their couplings (here chosen to be CDFT), (2) a method to
account for environment effects (here chosen to be QM/MM), and (3) a means
of differentiating between static and dynamic disorder of the system. Then, using
organic LED and PV materials as illustrations, we showed how careful consideration
of charge transfer reveals a wealth of information about the system: the behavior
of band gaps near heterojunction interfaces; the delocalization length of charge
carriers; the effective binding energy of electrons and holes; and the charge mobility
of materials.

Moving forward, there are a number of exciting directions for exploration. How
do oppositely charged carriers in host-guest complexes interact with one another,
and how does that interaction mediate charge recombination? In polymeric systems,
how does the dynamic localization and delocalization of charge impact charge
transport? How do charges interact with bound electron-hole pairs, like excitons,
and how can we understand the rate of exciton-charge annihilation? And finally, how
can we combine the molecular and solid-state pictures of charge transport in order
to appropriately describe hybrid organic-inorganic devices involving molecules and
traditional semiconductors simultaneously? All of these are intriguing research
directions, and we are at the auspicious moment of history where such questions
can and will be answered in the coming years.
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Abstract

Van der Waals (vdW) interactions stem from electronic zero-point fluctua-
tions and are often critical for the correct description of structure, stability,
and response properties of molecules and materials, including biomolecules,
nanomaterials, and material interfaces. Here, we give a conceptual as well
as mathematical overview of the current state of modeling vdW interactions,
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focusing in particular on the consequences of different approximations for
practical applications. We present a systematic classification of approximate
first-principles models based on the adiabatic-connection fluctuation-dissipation
theorem, namely the nonlocal density functionals, interatomic methods, and
methods based on the random-phase approximation. The applicability of these
methods to different types of materials and material properties is discussed in
connection with availability of theoretical and experimental benchmarks. We
conclude with a roadmap of the open problems that remain to be solved to
construct a universal, efficient, and accurate vdW model for realistic material
modeling.

1 Introduction

van der Waals (vdW) interactions stem from electronic zero-point (and possibly
thermal) fluctuations in electronic matter (Langbein 1974; Parsegian 2005). There-
fore, vdW interactions scale rapidly with system size and are often critical for
the correct description of structure, stability, and response properties of molecules
and materials, including biomolecules, nanomaterials, and material interfaces. This
makes proper description of vdW interactions a crucial aspect of modern material
modelling. This is especially important in the context of electronic-structure
calculations using approximate density functionals. Such functionals are normally
semilocal (“short sighted”) in the electronic density, meaning that nonlocal vdW
interactions are poorly or not at all described by these functionals.

From a classical electrostatic perspective, electrons repel each other. However,
quantum-mechanical correlation effects typically act to minimize the electric
repulsion between electrons. This correlation in the electronic motion results in
instantaneous effective multipoles that interact via electrostatic forces, attracting
different regions toward each other. When there is no significant overlap between
two interacting regions of electronic matter, we usually speak of the long-range
electron correlation, which is the underlying microscopic cause of vdW interactions.
(As Margenau put it already in 1939, “the term ‘van der Waals force’ is not one of
very precise usage,” which holds to this date. Here, we will use the term exclusively
to refer to the electron correlation part of noncovalent interactions.)

In many approaches to material modelling, ranging from empirical to those
based on first principles, the models that describe the short-range and long-range
parts of the electron correlation are constructed separately, because each requires a
different set of considerations. This chapter discusses currently used approaches to
the calculation of the long-range correlation energy – the vdW energy – with special
focus on the case when the short-range part of the correlation energy (and other
total energy components) is calculated within the density functional theory (DFT).
We begin with a conceptual understanding and importance of vdW interactions in
materials (Sect. 2), which has motivated the recent rapid development of new vdW
models presented in the subsequent sections. This is followed by a brief conceptual
overview of existing and widely used vdW models (Sect. 3), which can serve
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either as a stand-alone short synopsis or as an introduction to the subsequent more
detailed exposition. We then continue with a more theoretical presentation of current
approaches to modelling vdW interactions, first introducing a general framework for
discussing vdW models (Sect. 4), followed by a classification of current approaches
within that framework (Sect. 5). None of the existing vdW models is the best choice
for every system, and a close attention must be paid to their accuracy and areas
of applicability (Sect. 6). We conclude with an outline of outstanding problems in
the topic of modelling vdW interactions from first principles of quantum mechanics
(Sect. 7).

2 Role of van derWaals Interactions in Materials

Functional materials are becoming increasingly smaller in size and more het-
erogeneous in composition. These two aspects of novel nanomaterials lead to
the emergence of nontrivial quantum-mechanical effects that depend on size and
topology and which may ultimately determine the properties of a material of
interest. One important consequence of this evolution beyond traditional materials,
the functionality of which was largely regulated by bulk observables, is that nonco-
valent interactions play an increasingly important role in determining the structure,
stability, and ensuing function of homogeneous and heterogeneous nanostructured
materials. van der Waals interactions, which exhibit nontrivial scaling behavior with
system size (Dobson et al. 2006; Ruzsinszky et al. 2012; Gobre and Tkatchenko
2013), are often the dominant part of such noncovalent interactions. In general,
vdW interactions have already been recognized as playing an instrumental role
in determining the structure, stability, and functionality of biological materials,
supramolecular and sensor chemistry, pharmaceuticals, dye-sensitized solar cells,
and many other systems. More recently, the field of “van der Waals heterostructures”
has moved into the forefront (Geim and Grigorieva 2013) and has already led to
fundamental advances in the study of low-dimensional materials and to a number of
novel technological applications.

In this context, the importance of understanding and accurately modelling vdW
interactions in realistic materials can hardly be overemphasized. However, our
ability to model these ubiquitous quantum mechanical effects has been severely
impeded by the prohibitively high computational cost of explicitly correlated
quantum chemical methods and the lack of efficient approximations to the many-
electron correlation problem for large systems (Szabo and Ostlund 1996). In
fact, most successful approximations employed for modelling vdW interactions in
materials rely on the rather crude lowest-order pairwise additive approximation,
which is only exact in the weak polarization limit and at large interatomic distances.
For condensed-phase systems with a moderate to large polarizability density, such
pairwise approximations can often lead to qualitatively incorrect predictions of
structural, energetic, and response properties.

The structure and binding in organic materials is often driven by vdW inter-
actions, in combination with other contributions such as repulsion, electrostatics,
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and induction. Therefore, accurate modelling of vdW interactions is critical for
understanding the properties of organic materials. In recent years, substantial
progress has been achieved in the theoretical prediction of structures and stabilities
of molecular crystals by using vdW-inclusive DFT approaches. Today, the structures
of (simple) organic molecular crystals can be predicted with an accuracy of
2–3% and cohesive energies to 1–2 kcal/mol. Proper description of vdW correlations
becomes even more relevant when one looks at the relative energetics of molecular
systems, which are essential to predict the polymorphic behavior of molecular
crystals.

While the crucial role of vdW interactions in organic materials is well estab-
lished, our understanding of the relative importance of these ubiquitous interactions
in semiconductors, ionic solids, and metals is still in development. The contribution
of the long-range vdW energy to the cohesive energy of elemental and binary
semiconductors and ionic solids amounts to 0.2–0.3 eV/atom, which is around 8% of
the cohesive energy (Zhang et al. 2011). The contribution of vdW energy to the bulk
modulus is even more pronounced, reaching up to 22% for Ge and GaAs. Notably,
the inclusion of vdW interactions in DFA calculations allows to simultaneously
improve the performance for lattice constants, cohesive energies, and bulk moduli,
when compared to experiment. Similar conclusions have been reached for a wide
variety of hard solids. Because vdW interactions typically have larger contributions
to relative energetics than absolute ones, one expects significant effects for phase
transition pressures and phase diagrams of most solids.

The properties of many materials are substantially affected by the presence of
simple and complex defects. For example, the properties of semiconductors are
largely determined by neutral and charged interstitials and vacancies (Freysoldt et al.
2014). The formation of defects entails a modification of polarization around defect
sites, and this can have a substantial effect on the contribution of vdW energy to
the stability and mobility of defects. For instance, the inclusion of interactions in
DFT improves the description of defect formation energies, significantly changes
the barrier geometries for defect diffusion, and brings migration barrier heights into
close agreement with experimental values (Gao and Tkatchenko 2013). In the case
of Si, the vdW energy substantially decreases the migration barriers of interstitials
and impurities by up to 0.4 eV, qualitatively changing the diffusion mechanism.
Moving beyond point defects, it is to be expected that more complex neutral and
charged multiatom defects and dislocations will lead to even stronger nonlocal
polarization effects and intricate dependence of vdW interactions on the nature of
defects.

Hybrid inorganic/organic systems (HIOS) are relevant for many applications in
catalysis, light-emitting diodes, single-molecule junctions, molecular sensors and
switches, and photovoltaics. The predictive modelling and understanding of the
structure and stability of such hybrid systems are an essential prerequisite for tuning
their electronic properties and functions. The bonding in HIOS is often determined
by a delicate balance between covalent bonds, hydrogen bonds, charge transfer,
Pauli repulsion, and vdW interactions. Yet the latter are at the edge of what is
possible with current vdW approaches, because the inorganic substrate is often a
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metal or a doped semiconductor, which is difficult to model due to the delocalized
nature of metallic single-particle excitations.

3 Overview of Existing van derWaals Models

A common starting point for virtually all existing vdW models is an exact expression
for the electron correlation energy that can be constructed from the ACFD theorem
(Gunnarsson and Lundqvist 1976; Langreth and Perdew 1977). The essential idea
of this expression is an interpolation between a reference noninteracting mean-
field system and the fully interacting many-body system. The starting quantity
from which the correlation energy can be calculated is some form of a response
function (nonlocal polarizability, dielectric function, density response function),
which describes the linear response of the system to external electric field. This
quantity can be calculated either from first principles, using some mean-field
electronic-structure theory such as the Hartree–Fock (HF) method or Kohn–Sham
DFT (KS-DFT), or constructed semiempirically using approximate models. The
former approach is less ambiguous, but the complexity of such ab initio response
functions demands large computational cost and even then requires substantial
approximations to the interelectronic interactions. In contrast, the latter approach
leads to efficient methods, in which much of the complexity of the electronic
structure can be treated effectively by suitable parameterization of the model
response functions. In both cases, either the response functions or the interelectronic
interactions (or both) are treated approximately, leading to deviations from the in-
principle exact ACFD correlation energy.

Essentially all existing methods for modelling vdW interactions can be derived
by following various approximations to the ACFD theorem. Two major classes
of approximations that can be identified in existing vdW models are the coarse-
graining of the response functions and truncation of the many-body expansion. In
their full form, the response functions are two-point spatial functions, specifying a
response of a system at some point to the perturbation in the electric field in another
point. Such a description enables the calculation of the electron correlations across
the whole range of interelectronic distances, including the short-range intra-atomic
as well as long-range intermolecular correlations. This level of detail is largely
unnecessary for the calculation of the vdW energy, which comprises only the long-
range part of the electron correlation energy. Therefore, a common approach is to
coarse-grain the response functions into finite-size fragments – typically atoms –
and to evaluate only the long-range correlations between the fragments, while
the short-range intrafragment interactions are captured in the effective response
properties of the fragments. The second common approximation involves the
truncation of the many-body expansion. The closed-form ACFD expression can
be expanded as an infinite sum of terms that involve repeated couplings of the
noninteracting response functions. Ordering these terms by the number of times
a response function occurs in them, the electron correlation energy starts at second
order (two occurrences) and continues to infinity. The physical interpretation of the
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n-th order is such that n electronic fluctuations interact via the long-range Coulomb
potential to yield a contribution to the correlation energy. The magnitude of the
contribution of the individual orders to the vdW energy decreases with the growing
order, which motivates the common approximation of truncating the infinite sum at
some order, usually second or third. Using only the lowest second order results in
the large class of pairwise methods, which neglect any many-body effects in vdW
interactions.

a b

c d

many-body dispersion random-phase approximation

nonlocal density functionalsinteratomic pairwise methods

Fig. 1 Classification of different approaches to modelling vdW interactions based on their
approximations to the adiabatic-connection fluctuation–dissipation (ACFD) formula. The light
yellow and blue illustrate density fluctuations, and the arrows denote interactions between them.
General formulas for each method class are shown, with colors denoting parts with the same
origin in the ACFD formula: summation of all interactions in the system (green), encoding of
the response properties (red), and the interaction potentials (blue). In random-phase approximation
(RPA), both the noninteracting frequency-dependent density response function, χ0(r, r

′
, u), and

the electronic Coulomb interaction, v(r, r′) = |r− r′|−1, are nonlocal spatial quantities, and their
multiplication should be interpreted as [χ0v](r, r′, u) = ş

dr′′χ0(r, r′′, u)v(r′′, r′). The RPA itself
neglects the exchange–correlation screening of the Coulomb interaction and is not illustrated in this
figure. In many-body dispersion (MBD), the response function and potential are coarse-grained and
expressed as the nonlocal polarizability matrix, αij(u), and dipole matrix, Tij, which are multiplied
as ordinary matrices. Nonlocal functionals truncate the many-body expansion (expressed as the
logarithm in RPA and MBD) at second order, and the response function and interaction potential
are intermingled (violet) in the nonlocal kernel, #(r, r

′
). Interatomic pairwise models, coarse-

grained and truncated at second order, integrate the frequency-dependent polarizability into the
so-called C6 coefficients, while the square of the dipole potential yields the R−6 power law
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Organizing existing vdW models into a 2-by-2 matrix based on whether they
use the coarse-graining and/or the many-body truncation approximations (Fig. 1)
provides a concise classification that allows for an efficient discussion of the general
behavior of these models. The class of methods that do not coarse-grain nor truncate
the many-body expansion are based exclusively on the ab initio noninteracting
response functions obtained from the HF or KS-DFT methods. This requires other
approximations to the interelectronic interactions in the ACFD formula, which make
its evaluation tractable (though still computationally demanding). The most straight-
forward of these approaches is the so-called random-phase approximation (RPA), in
which the complex interaction between electronic fluctuations is replaced with the
bare Coulomb potential. In contrast, the other three vdW model classes use model
noninteracting response functions (usually polarizability), in which the electronic
fluctuations are usually assumed to be localized. In nonlocal density functionals,
the response function is modelled as a semilocal polarizability functional of the
electron density, which is coupled between all pairs of points in space, resulting
in a double spatial integral. The many-body dispersion (MBD) approach models
the response of atomic fragments as that of harmonic oscillators, which enables
efficient evaluation of the ACFD formula without any truncation of the many-body
expansion. Finally, interatomic pairwise models use both the coarse-graining and
the truncation to provide a particularly simple formula for the vdW energy, in which
the response functions are expressed in the form of the so-called dispersion C6 (C8,
C10, . . . ) coefficients.

Within each of the four classes of vdW models, there are multiple instances that
differ in more subtle details. These include the particular parametrization of the
model response functions or the mechanisms that separate the short-range and long-
range parts of the electron correlation. These differences influence the performance
of the individual methods but do not change their general behavior for different
types of molecules and materials, which will be discussed in more detail in Sect. 6.
These individual models together with a more rigorous mathematical formulation
of this overview are presented in the following two sections.

4 Long-Range Electron Correlation

The ACFD theorem yields an in-principle exact expression for the electron correla-
tion energy and serves as a basis for the various approximate vdW models discussed
in this chapter. The present and the following sections give a brief introduction to
the mathematical formulation of this topic, which can be found in greater detail
elsewhere (Hermann et al. 2017). The ACFD formula expresses the vdW energy in
terms of the response of an electronic system to an external electric field, which is
introduced in the remainder of this section, while the formula itself and the various
approximations to it are discussed in the following section.
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4.1 Response Functions and Polarizability

The polarization of electronic matter under the influence of a time-periodic external
electric field, E� = − ∇v�, with a given frequency, u, can be expressed by the
change in the electron density, �n, from the unpolarized state (E� = 0). In the linear
regime, this change is related to the corresponding potential, v�, via the density
response function,

�n (r, u) =
ż

dr′χ
(
r, r′, u

)
v�

(
r′, u

)
(1)

Alternatively, the polarization state can be described by the polarization density,
P, which can be interpreted as a dipole density and which gives the polarized charge
density via divergence,

�n (r, u) = ∇ · P (r, u) (2)

The polarization density is related to the electric field via the (nonlocal) dipole
polarizability, α, (Hunt 1983),

P (r, u) = −
ż

dr′α
(
r, r′, u

)
E�

(
r′, u

)
(3)

In general, the response of the electron density is anisotropic, E� and P are not
aligned, and the polarizability must be a tensor. The relation between the density
response function and dipole polarizability is obtained by taking the divergence of
Eq. 3, integrating by parts, using the definitions of E� and P, and comparing to
Eq. 1,

χ
(
r, r′, u

) = −∇ · ∇′ · α (
r, r′, u

)

= −∑
ιζ

∂2

∂rι∂r
′
ζ

αιζ

(
r, r′, u

)
(ι, ζ = x, y, z) (4)

Whereas the electron density and the density response functions interact electri-
cally via the Coulomb operator, the polarization density and dipole polarizability
interact via the dipole operator,

T (R) = ∇ ⊗ ∇′v (∣∣r− r′
∣∣)
∣∣∣ r=R

r′ = 0
= −3R⊗ R+ R2I

R5 (5)

For instance, the electrostatic Coulomb self-interaction of �n, with its corre-
sponding P, can be expressed in two equivalent ways,

J [�n] = 1
2

şş

dr1dr�n (r1) v (|r1 − r2|)�n (r2)

= 1
2

şş

dr1dr2P (r1) · T (r1 − r2)P (r2)
(6)
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The description of the response via the density response function and dipole
polarizability is equivalent, and likewise the ACFD formula can be expressed
using both. The density response functions are directly accessible from ab initio
electronic-structure calculations, whereas the dipole polarizability is better suited
for the formulation of approximate models. The reason for this is that the density
response function has a complex nodal structure, as it describes depletion of the
electron density at some points and its accumulation elsewhere. In contrast, the
corresponding polarizability is a smooth rotation-free vector field which encodes
that underlying nodal structure implicitly in terms of its local behavior via the
divergence operators in Eq. 4. This is true even in the case of a delocalized density
response that is characteristic of gapless or near-gapless systems. Therefore, the
strength of the response is translated directly into the magnitude of the polarizability,
whereas it is translated only indirectly into the magnitude of the gradient of the
density response function.

For illustration, consider two one-dimensional (1D) Gaussian charge densities
located at ±1 (as crude model of atoms) and two model density response functions,
local and nonlocal (Fig. 2). In one dimension, the dipole polarizability is a scalar
and uniquely determined by integrating over the density response function,

α1D (x, y) =
ż x

−∞
dx′

ż y

−∞
dy′χ1D (

x′, y′
)

(7)

Even in these trivial models, the density response function changes sign around
atoms and has a nontrivial nodal structure, whereas the polarizability is positive
everywhere. Furthermore, the delocalized density response translates into a polariz-
ability that is still localized but over a larger region spanning both atoms.

4.2 Harmonic Oscillator Model of Polarizability

When the dipole polarizability is localized, as in the examples in the previous
section, it can be relatively accurately represented as an effective local polarizability,
αeff(r, u), formally obtained by integrating over some neighborhood, M(r), around
each point, r,

αeff (r, r′, u
) ≈ δ

(|r− r′|)
ż

M(r)
dr′′α

(
r, r′′, u

) ≡ δ
(|r− r′|)αeff (r, u) (8)

A wide variety of approaches to model the spatial dependence of αeff exist, which
will be discussed in the following sections.

The frequency dependence, on the other hand, is very often modelled by
that of a charged harmonic oscillator (HO) – a Drude oscillator. Having been
Fourier-transformed from the time domain, the frequency-dependent polarizability
is a complex-valued function, with the real and imaginary parts encoding the
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x

Fig. 2 Density response function, χ (x, y), compared to nonlocal dipole polarizability, α(x, y).
The figure considers two different model one-dimensional two-particle systems with particle
coordinates x and y. The left and right systems have a delocalized and localized response,
respectively. The columns encode the response of the two systems in two different but equivalent
ways – as a density response function (top), χ(x, y), and as a nonlocal dipole polarizability
(bottom), α(x, y). The red and blue colors correspond to positive and negative values. The red
lines denote the positions of the two responding Gaussian charge densities on the x-axis

nondissipative and dissipative parts of the response, respectively. The frequency
dependence of the imaginary part of the polarizability encodes the full optical
(electromagnetic) absorption spectrum. This is equivalent to knowing the full energy
spectrum of the corresponding Hamiltonian, which is a much harder problem than
calculating the ground-state energy. Accordingly, the ACFD formula for the electron
correlation energy contains the polarizability only under the integral sign over all
frequencies, and it is sufficient to model the spectrum only such that its sum total
is represented accurately, which is conveniently achieved with the so-called Wick
rotation,

ż ∞

0
du Im α(u) =

ż ∞

0
du α (iu) . (9)
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In contrast to the full absorption spectrum, Im α(u), which is a complicated
and highly system-dependent function of the frequency, the imaginary-axis part
of α, α(iu), is a real-valued monotonically decreasing function, which has the
same general shape for all kinds of systems. Together with the localized nature
of the polarizability, this justifies the use of the harmonic oscillator to model the
frequency dependence of the polarizability of more complex electronic systems. The
polarizability of a harmonic oscillator is a simple function with two parameters, the
static polarizability, α0, and the resonance frequency, ω,

αHO (iu) = q2ω2

m
(
ω2 + u2

) ≡ α0ω
2

ω2 + u2
(10)

Consider a system of nonoverlapping bodies of electronic matter interacting via
the usual electronic Coulomb force (described equivalently either by the Coulomb
or dipole potential). Putting aside the internal structure of these bodies for now, their
interaction energy, Eint, consists of the electrostatic part (including induction) and
the (long-range) electron correlation part, Ec – the vdW energy. The ACFD formula
for Ec derives its name from two parts: first, the correlations in the electronic
fluctuations can be expressed in terms of the response of the bodies to an external
field via the so-called fluctuation–dissipation theorem (Landau and Lifschitz 1980,
sec. §124). Second, Eint is the difference in the total energy of the system when
the Coulomb potential between the interacting bodies is switched on (λ = 1) and
switched off (λ = 0). This difference can be alternatively expressed as an integral
over from 0 to 1 while keeping the system at its ground state for all λ, in this way
adiabatically connecting the noninteracting and interacting cases. Putting these two
parts together, the ACFD theorem gives Ec in terms of the total polarizability of the
nonoverlapping subsystems,

− 1

2π

ż ∞

0
du

żż

drdr′
ż 1

0
dλ Tr

[
α
(
r, r′, iu; λ)Tint (r, r′

)]
(11)

where Tint(r, r′) is set to zero for r, r′ from the same subsystem.

4.3 Range Separation in Density Functional Theory

The distinction between the short-range and long-range parts of the electron
correlation energy becomes blurred in realistic systems at equilibrium geometries,
where the overlaps between (or within) the interacting subsystems cannot be
neglected. Some ab initio electronic-structure methods can treat both parts on an
equal basis, but those are often computationally demanding and not applicable to
large systems. It is therefore more common that the short-range and long-range
parts are treated with different models, which must be somehow seamlessly joined,
to avoid both omitting or double counting of some midrange part of the correlation.



270 J. Hermann and A. Tkatchenko

Notably, one of the most successful of such approaches is the combination of the
density functional theory (DFT) in semilocal approximation for the short-range
correlation and explicit vdW models for the long-range correlation.

The ACFD formula can be derived within the density functional for the total
correlation energy of a general electronic system (see Callen and Welton 1951;
Parr and Yang 1989, Sect. 8.6; Kohn et al. 1998), not only for the interaction
energy of nonoverlapping bodies as in the previous section. In this form, it yields
the exchange–correlation (XC) energy, Exc, the exchange part stemming from the
antisymmetry of the electronic wave function,

Exc = − 1
2π

ş∞
0 du

şş

drdr′
ş1

0dλχ
(
r, r′, iu; λ) v (r, r′

)

= − 1
2π

ş∞
0 du

şş

drdr′
ş1

0dλ Tr
[
α
(
r, r′, iu; λ)T

(
r, r′

)] (12)

Within time-dependent DFT, the true response functions can be further expressed
in terms of the response functions of the KS noninteracting system, corresponding
to λ = 0, as a Dyson screening equation,

χ (iu; λ) = χ (iu; 0)+ χ (iu; 0) (v + fxc (iu; λ) χ (iu; λ) (13)

where fxc is the so-called XC kernel, in general an unknown system-dependent
nonlocal function. In approximate vdW models, the XC effects contained in the
kernel are usually incorporated implicitly into the effective polarizability,

α (iu; λ) ≈ αeff (iu)+ αeff (iu)Tα (iu; λ) (14)

The XC energy can be formally divided into a short-range (sr) and long-range
(lr) part by separating the double spatial integral in Eq. 12 into two parts using some
range-separating function, f, which should decay at least exponentially fast for large
distances,

şş

dr1dr2 =
şş

dr1dr2 (1− f (r1, r2))+
şş

dr1dr2f (r1, r2)

≡ şş

srdr1dr2 +
şş

lrdr1dr2
(15)

In practice, the short-range part is calculated via some semilocal XC functional,
for which the corresponding f is system-dependent and in general unknown. On the
other hand, most vdW models have f explicitly built in, and the aim is to find explicit
f for the vdW method that matches the implicit f of a given XC functional. This is
in general an unsolved problem, and most current approaches resort to a varying
degree of empiricism.

The most radical difference in the range separation to semilocal DFT and vdW
methods runs along the border between systems with uniform and nonuniform
electron density. The vdW force between atomic bodies held together by covalent,
ionic, or metallic binding is always caused by the long-range electron correlation,
but not all effects of the long-range correlation are considered to be a vdW force.
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In metals, the electrons from the nonconducting bands are localized on atoms, which
form nonuniform islands in the sea of approximately uniform electron density of the
conducting electrons (Tao et al. 2010). Here, the long-range correlation between the
conducting electrons contributes to the metallic binding. In nonmetals, however,
all electrons are nonconducting, the electron density is nowhere uniform, and
long-range correlation is mostly associated with vdW interactions. The electronic
structure within a single uniform subsystem differs qualitatively in many aspects
from that in a nonuniform system. In a uniform system, the exchange effects, the KS
density response function, and the XC kernel decay only algebraically with distance
(they are long-ranged) as a result of the conducting electrons, whereas they decay
exponentially (they are short-ranged) in nonuniform systems (Ge and Lu 2015).
(The true density response function decays algebraically in both cases because
of electron correlation.) Correspondingly, semilocal and hybrid XC functionals
capture both short-range and long-range part of the XC energy in uniform systems
but only the short-range part in the nonuniform systems. The vdW interactions
can be therefore associated with all long-range electron correlation except for
that between conducting electrons within a single uniform subsystem, which is
fortunately covered by semilocal and hybrid density functionals. The nonuniform
situations include interactions between conducting electrons in disjoint metallic
bodies; interactions of conducting electrons with localized electrons, either in the
same metallic body or in other bodies; and all interactions between localized
electrons.

The consequences of the differences between uniform and nonuniform systems
for the range separation can be summarized as follows:

uniform :
Exc

nonuniform :
=

semilocal/hybrid︷ ︸︸ ︷
Esr

x + Esr
c︸ ︷︷ ︸

semilocal/hybrid

+ Elr
x︸︷︷︸
≈0

+ Elr
c︸︷︷︸

vdW

(16)

With the caveat about the uniform systems, the vdW interactions can then be
associated with the long-range XC energy. In this setup, care must be taken about
the potential double counting of the long-range XC energy in uniform systems from
the semilocal or hybrid functionals and from the long-range ACFD formula. This
double counting does not matter in situations when the result of a calculation is an
energy difference, such as when calculating the adsorption energy of a molecule
on a metal surface. But it may pose a problem in other cases, for instance, when
investigating a lattice expansion of a metal.

5 Classification of van derWaals Functionals

Most existing models of long-range correlation can be described in terms of various
approximations to the range-separated effective-polarizability version of the ACFD
formula (Eqs. 12 and 14) (Hermann et al. 2017). One of them is the already
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discussed local representation of the effective polarizability. Two other general and
common approximations are spatial coarse-graining of the system and truncation of
the many-body expansion of the vdW energy.

5.1 Coarse-Graining of Response Functions

Given a set of functions, wp(r), that partition space into fragments,
∑

pwp(r) ≡ 1,
and respective centers of the fragments, Rp, each spatial function or operator,
such as the dipole polarizability, can be represented as a sum over the partitioned
components, αpq, which can be in turn expanded in the basis of solid harmonics
(multipole expansion), αpq,ll′mm′ , around the centers (Stone 2013),

α
(
r, r′, u

) =
∑

pq

wp (r)wq

(
r′
)
α
(
r, r′u

) ≡
∑

pq

αpq

(
r, r′, u

)→ αpq,ll′mm′

(17)

(Here, l, l′ start from 1, because the expanded quantity is a tensor. The
corresponding expansion of the scalar density response function, χ , would start
from l = l′ = 0.) The dipole potential is expanded correspondingly. Unlike the
Fourier transformation, the multipole expansion is not invertible, but like the Fourier
transformation, it introduces a correspondence between spatial integrals and infinite
sums,

P (r, u) = −
ż

dr′α
(
r, r′, u

)
E
(
r′, u

) ⇐⇒ Pp,lm(u)

= −
∑

q,l′m′
αpq,ll′mm′(u)Eq.l′m′

(18)

The motivation for this multipole reformulation is that because both Teff and Tlr
are long-ranged and their moments decay increasingly faster for higher l’s; all the
matrix multiplications (infinite sums) converge quickly and can be approximated
well by finite sums.

The feasibility of the coarse-graining and multipole expansions is dictated by the
choice of the fragments and the response properties of the system. In a nonuniform
system, the nonlocal effective polarizability is exponentially localized on atoms,
and atom-centered fragments are a natural basis of a quickly converging multipole
expansion. In a uniform system, the effective polarizability is long-ranged, diffused,
and there are no natural centers for the multipole expansion, leading to large
higher moments and slow convergence or even divergence of the expansion. In
principle, this problem is mitigated in combination with the KS-DFT, because the
long-range XC energy within the uniform systems is captured by the semilocal or
hybrid functional, and the multipole convergence of the correlation energy due to
the interaction with a separate uniform or nonuniform system is helped by larger
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separations between the fragments. But such an interplay is not well understood,
and none of the coarse-grained models discussed in this chapter take advantage of
this cancellation.

5.2 Truncation of Many-Body Expansion

After inserting the Dyson screening equation into the ACFD formula, the coupling-
constant integration can be carried out analytically either when using the effective-
polarizability formulation or by approximating the XC kernel with some form
that depends on explicitly. In both cases, the λ-integration results in a logarithm
expression such as

Exc ≈ − 1

2π

ż ∞

0
du

żż

drdr′ Tr
[
ln
(
1− α

(
r, r′, iu; λ = 0

)
T
(
r, r′

))]
(19)

The operator logarithm is defined as an infinite series, and writing it out explicitly
in terms of individual orders leads to a many-body decomposition of the XC energy,
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(20)

The term “many-body” is best motivated in the coarse-grained models where the
individual terms correspond to interactions between increasing number of fragments
(bodies). (The order does not necessarily correspond to the number of bodies. At
fourth order, for instance, some terms are a back-and-forth interaction between two
bodies.) When constructed from the bare KS polarizability, the first order evaluates
to the exact exchange, and the correlation energy starts at the second order. With any
local approximation for the bare polarizability, the first term evaluates identically to
zero, and the formula gives only the correlation energy. The long-range part of the
second term is the leading term for vdW interactions and the basis of all nonlocal
correlation functionals and coarse-grained pairwise methods discussed below. The
third term corresponds to the Axilrod–Teller–Muto (ATM) three-body potential
(Axilrod and Teller 1943; Mutō 1943) when coarse-grained to atoms.

5.3 Random-Phase Approximation

The approximations to the ACFD formula that are fully many-body and not coarse-
grained can be based on the bare KS density response function. Because the KS
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density response function can be calculated directly from the KS orbitals via the
so-called Adler–Wiser formula, these approximations are usually formulated and
evaluated in the χυ-representation rather than the αT-representation. Furthermore,
because the KS response has a well-defined short-range structure, this construction
allows the evaluation of the total XC energy, not only its long-range part, so the use
of these methods goes beyond long-range correlation energy. Here, we discuss the
methods from the perspective of vdW interactions.

The simplest of these methods is the RPA itself, which amounts to setting the
XC kernel in Eq. 13 to zero (Ren et al. 2012). The omitted XC kernel is short-
ranged in nonuniform systems, but its omission influences both short-range and
long-range correlation energy, because the short-range XC effects still influence the
total polarizability of the system, which is manifested in the long-range correlation
energy via the ACFD formula. As a result, although RPA does not suffer from any
systematic errors in the long-range correlation energies, the overall accuracy is often
worse than that of the many effective models discussed below (Olsen and Thygesen
2013b). This is further amplified in vdW systems in equilibrium geometries, where
the short-range XC energy also contributes to the total interaction energy. Attempts
at improvement go both ways, replacing the short-range correlation energy with a
better model than RPA and improving the effective polarizability.

Kurth and Perdew (1999) suggested to correct the short-range correlation
energy from RPA with that from a semilocal XC functional, in what they called
the RPA+ method. Rather than explicitly range-separating the ACFD expression,
RPA+ removes the RPA short-range part by subtracting correlation energy from a
specially designed semilocal correlation functional, EGGA@RPA

c , and reintroduces it
back with a standard semilocal functional, EGGA

c .

ERPA+
c = ERPA

c − EGGA@RPA
c + EGGA

c (21)

EGGA@RPA
c is constructed in a similar way as standard functionals, but its

uniform part is parameterized to reproduce the RPA energy of the electron gas rather
than the true energy. RPA+ attempts to fix the short-range correlation energy of
RPA, but the long-range part is unchanged, so the vdW force remains the same,
and it is only the interaction due to electron-density overlap, which occurs at
equilibrium, that can be possibly improved. Furthermore, the range separation in
RPA+ is unsystematic in the sense that there is no guarantee that EGGA@RPA

c and
EGGA

c have the same effective range.
Toulouse et al. (2004) formulated a range-separated version of the KS scheme,

in which the XC functional is designed from the beginning to treat only the short-
range part of the electron correlation. This leads to an alternative range separation
of the ACFD formula, in which α(λ) is not the polarizability of the wave function
that minimizes

〈
!| T̂ + λV̂ |! 〉

but rather of one that minimizes
〈
!| T̂ + λV̂lr |!

〉

(Toulouse et al. 2009). In this scheme, the RPA of the Dyson-like equation results
in a model in which the effective polarizability is still equal to the bare KS
polarizability, like in normal RPA, but the effective dipole operator is only the
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long-range part of the full operator. The underlying assumption then is that the
dipole operator and the XC kernel partially cancel out at short range, giving a
different estimate of the effective polarizability than normal RPA. This is supported
by numerical evidence on select small systems. A similar scheme, proposed earlier
by Kohn et al. (1998), also uses a range-separated version of the KS scheme, but
instead of obtaining the true polarizability at the RPA level, χ (λ) is obtained for each
λ by explicitly perturbing the corresponding λ-scaled system with electric field.

A straightforward way to improve the RPA is to devise approximate XC kernels,
which improves the short-range behavior of the polarizability and hence both short-
range and long-range correlation energies. Extending the LDA to the time domain,
the adiabatic LDA (ALDA) assumes that the XC kernel has no memory, leading to a
frequency-independent local XC kernel. Unlike LDA, which is exact for the uniform
electron gas (UEG), ALDA does not give the true XC kernel of the UEG (which is
nonlocal in both time and space) and violates several known properties of the true
XC kernel. Despite that, it is a useful approximation in TD-DFT calculations when
one is interested only in a certain range of the frequency spectra. Still, it turns out
not to be a good approximation in the ACFD formula, where it gives worse results
than the absent XC kernel of the RPA (Lein et al. 2000).

Olsen and Thygesen (2012) constructed a correction to ALDA by fixing its large-
q (short-range) behavior in the UEG to better reproduce the known exact behavior.
Taking this renormalized ALDA (rALDA) kernel, transforming back to real space,
and using the mean density in two points as the corresponding uniform density,
this procedure gives a universal XC kernel. This construction is computationally
no more demanding than RPA but improves upon RPA in almost every case tested
(Olsen and Thygesen 2013a, 2014). The rALDA XC kernel gives a more realistic
short-range screening of the bare KS polarizability, resulting in more accurate long-
range correlation energies and better description of vdW systems.

A different path toward improving the accuracy of RPA can be taken using
the many-body perturbation (MBPT) theory. This is possible because, as Gell-
Mann and Brueckner (1957) showed, yet another equivalent definition of RPA is
via a certain subset of Feynman diagrams, the so-called ring diagrams. Summing
different subsets of the diagrams similar to those corresponding to RPA then leads
to different RPA-like models and sometimes confusing terminology, when a certain
modification of the XC kernel in RPA is equivalent to adding additional terms to the
RPA XC energy that do not seem to be related to RPA (Scuseria et al. 2008; Jansen
et al. 2010; Ángyán et al. 2011).

The second-order Møller–Plesset correlation energy (MP2) consists of the
Coulomb direct and exchange terms, of which only the former is long-ranged.
In this context, RPA can be understood as the sum of all MP2-like direct terms
(ring diagrams) in the infinite MBPT expansion. Similarly, the MP2 exchange
can be renormalized by replacing one of the Coulomb interactions with the
RPA sequence of ring diagrams, leading to the second-order screened exchange
(SOSEX). Furthermore, unlike in the Møller–Plesset perturbation theory, where
the first order is guaranteed to be zero, single-electron excitations contribute to
the XC energy in the MBPT based on KS orbitals. Combining RPA, SOSEX,
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and RPA-renormalized single-excitation correction then results in the renormalized
second-order perturbation theory (rPT2) (Ren et al. 2011, 2013). Although the
MP2 exchange term is short-ranged, the renormalization in SOSEX is long-ranged,
and the long-range correlation energy of rPT2 is different from that of RPA. The
combined improvements of the short-range and long-range XC energy in rPT2
compared to RPA lead to improved accuracy in vdW binding energies.

5.4 Nonlocal van der Waals Density Functionals

The models of long-range correlation energy discussed in this section are in the class
of approximations to the ACFD formula that truncate the many-body expansion at
second order, but do not do any spatial coarse-graining. This leads to XC functionals
that are characterized by nonlocal dependence of the XC energy density on the
electron density via some nonlocal kernel, ·,

Enl−df
c = −1
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# [n]

(
r, r′

)

= −
ż

dr n (r)
ż

dr′ 1
2
n
(
r′
)
# [n]

(
r, r′

) (22)

The effective polarizability is approximated with a local isotropic polarizability,

αeff
(
r, r′, u

) ≈ Iαeff (r, u) δ
(
r− r′

)
(23)

This results in the first-order term in the many-body expansion being zero,
which means that such a functional cannot capture any exchange energy, which
is intentional, since the nonlocal functionals are designed to capture only the long-
range correlation energy. The locality of the effective polarizabilities reduces two
of the four integrals in the second-order term, and the isotropy allows to take the
polarizabilities out of the trace in Eq. 20.

A general form of the local effective polarizability used in many models is
obtained from the polarizability of a harmonic oscillator by setting the ratio of the
charge and mass to that of an electron, q/m= 1, and substituting the electron density
for the charge,

αHO
tot (iu) = q2/m

ω2 + u2 → αeff [n] (r, iu) = n (r)

ω2
eff [n] (r)+ u2

(24)

Besides the obvious reason of modelling electrons, the charge–mass ratio of
one is motivated by the f-sum rule for an electronic system that dictates that
αtot(iu)→ N/u2 (N is the number of electrons), which the form above automatically
satisfies. (Strictly speaking, this is not necessary, because the rule does not need to
be satisfied in any local form, and furthermore, the local effective polarizability is
not supposed to integrate to the total polarizability without any long-range coupling.
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However, the local form is a straightforward way to satisfy the global rule.) The local
effective resonance frequency, ω2

eff, can be in general any functional of the electron
density but is often approximated semilocally.

The approximated ACFD formula can then be recast in the form of a nonlocal
density functional, where the nonlocal kernel is a functional of the effective
resonance frequency and some (so far unspecified) range-separating function,

Ec,lr ≈ −1
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(25)

The asymptotic behavior of the long-range correlation energy calculated in this
way is fully specified by ωeff.

The first general functional of this form, referred to simply as the vdW density
functional (vdW-DF), was developed by Dion et al. (2004). Although the derivation
of vdW-DF starts from the ACFD formula, it follows quite a different direction than
the framework in this chapter, and most of the approximations along the way are
done in reciprocal space, until everything is transformed back to real space in the
end. However, the final result can still be cast in the form of Eq. 25. The effective
resonance frequency in the vdW-DF is constructed from a GGA-type XC energy
density. The first equality is motivated by using ω2

eff to calculate the XC energy of
a slowly varying electron gas via the ACFD formula. The particular choice of the
semilocal approximation to the XC energy density is rather arbitrary and completely
independent of the semilocal functional potentially used to complete the vdW-DF at
short range.

A serious disadvantage of the vdW-DF in light of other long-range correlation
models is that its range-separating function is fixed by the underlying theory.
Because of the construction in the reciprocal space, the parameter A appears both
in the effective resonance frequency and the range-separating function. Since the
asymptotic behavior of any nonlocal functional depends only on ωeff, not the range-
separating function, the parameter A is essentially fixed, and there is no remaining
freedom in the range-separating function that could be adjusted for a particular
choice of a short-range semilocal functional in a full KS-DFT calculation.

The form of the range-separating function is complex due to the reciprocal-space
formulation, but there are two underlying physical motivations for it. When the two
oscillators given by the resonance frequencies ωeff are close to each other such that
their ground-state wave functions would overlap, the underlying model does not
work anymore, the corresponding part of the XC energy must be covered by the
semilocal functional, and the dipole coupling must be damped. This is effectively
achieved by increasing the resonance frequency as k2 in the reciprocal space. The
second damping mechanism is that the nonlocal functional must evaluate to zero for
the uniform electron gas, whose long-range correlation energy is already covered
by a semilocal or a hybrid functional. This forces the range-separating function to
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negative values at short range, to counterbalance the attractive contribution from the
long range.

The complex form of vdW-DF was simplified in the VV09 functional, which
used a substantially different form of ωeff,

ω2
VV [n] (r) = 4π

3
n (r)+ C

|∇n|4
n4 (26)

Here, 4πn is the resonance frequency of the macroscopic (small-q limit) plasmon
fluctuations of the uniform electron gas. The factor of 1/3 comes from the Clausius–
Mossotti relation between the microscopic local polarizability and the macroscopic
dielectric function. The density-gradient term is a local model of a bandgap obtained
from considering the behavior of the electron density in the density tail of a finite
system. The range-separating mechanism of VV09 is still constructed in reciprocal
space. The latest attempt at a simplified formulation of the vdW-DF, named VV10,
was constructed entirely in real space (Vydrov and Van Voorhis 2010). Both the
resonance frequency and range-separating function of Eq. 25 have a simple form
in VV10. The former is the same as in VV09, and the latter is constructed using
the same mechanism of reduced polarizabilities of overlapped oscillators as in the
original vdW-DF but in real space.

5.5 Pairwise Interatomic Models

The oldest approaches to fix the missing long-range electron correlation in HF or
semilocal KS-DFT calculations are of the interatomic pairwise form,

Ec,lr ≈ −1

2

∑

pq

C6,pq

f
(
Rp,Rq

)
∣∣Rp − Rq

∣∣6
(27)

Here, f is some range-separating (damping) function, Rq are the atom coordi-
nates, and the so-called dispersion coefficients, C6,pq, determine the asymptotic
interaction between two atoms. This type of interatomic potential has origin in
empirical force fields dating back to the Lennard–Jones potential, even before it
was clear that the correct leading term of the vdW force is 1/R6. In the context of
electronic-structure methods, it was first used by Hepburn et al. (1975) to correct
interaction curves of rare-gas dimers from HF calculations. This approach was
later extended to molecules and KS-DFT calculations, and the C6 coefficients were
extended to a wider range of systems (Halgren 1992; Mooij et al. 1999; Elstner
et al. 2001; Wu and Yang 2002). Grimme (2004) then presented a parametrization
of C6 and f, termed DFT-D (“D” for dispersion), that could in principle be applied
to any molecule or solid, in combination with any XC functional. This marked a
start of routine addition of the long-range correlation energy to semilocal KS-DFT
calculations.
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The pairwise interatomic model of Eq. 27 can be obtained as a coarse-grained
truncated approximation to the ACFD formula. The derivation follows the same
course of second-order truncation and local approximation to the effective polar-
izability as nonlocal vdW density functionals but starting from the coarse-grained
multipole-expanded ACFD formula (see Eq. 18),

Ec,lr ≈ − 1

4π

ż ∞

0
du Trp,lm (αeff (iu)Tlrαeff (iu)Tlr) (28)

Here, the trace is over multipole moments and fragments, which are chosen to be
atoms in most cases. (In this context, the formal definition of an atom in a molecule
is given by some partition function.) Approximating the local effective polarizability
as isotropic, αeff,pll′mm′ = δll′δmm′αeff,pl , the formula is reduced as in the case of
nonlocal vdW XC functionals. The standard pairwise formula of Eq. 27 is recovered
by keeping only the lowest dipole–dipole term (l = l′ = 1, K11 = 6), where the
expression for the corresponding dispersion coefficient is called the Casimir–Polder
integral,

C6,pq = 3
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ż ∞

0
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Some pairwise methods are formulated directly in terms of the dispersion coef-
ficients, not the underlying polarizabilities, in which case approximate combination
rules for calculating unknown heteronuclear coefficients from known homonuclear
coefficients are useful. Such rules can be derived from the Casimir–Polder integral
using some model polarizability. An often used rule is obtained from the harmonic-
oscillator model,
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Using the single-pole polarizability of the harmonic oscillator in situations where
the true spectrum is more complex, such as in the equation above, is called the
Unsöld (1927) approximation.

The models of Grimme, mentioned above, are different from the rest discussed in
this section in that they are formulated only in terms of the geometry of a molecule,
{Rp}, not the electron density. This makes them straightforwardly useful even for
empirical short-range electronic models that do not produce any electronic density,
but at the same time, it makes it much harder to achieve truly general models,
because the electron density encodes much useful information about the system.

The first version of DFT-D used fixed homonuclear C6 coefficients, the com-
bination of Eq. 30 with all polarizability ratios set to 1 and a range-separating
function constructed from vdW radii that did not go to 1 in infinity (Grimme
2004). The second version was a numerical reparametrization of the first one with
a changed combination rule, which set the polarizability ratios equal to those of
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the C6 coefficients (Grimme 2006). In the first and second version, the atomic
C6 coefficients do not depend on the molecular environment, which is a crude
approximation. The third version was an improvement in several regards (Grimme
et al. 2010). The range separation was modified to obey the correct asymptotic
behavior. An elementary dependence of the C6 coefficients on the environment was
included via geometrical factors estimating the coordination number of an atom. The
dipole–quadrupole term (l = 1, l′ = 2) was included, and a three-atom correction
was suggested, which is the third-order triple-dipole term in the logarithm expansion
of the coarse-grained ACFD formula. The corresponding dispersion coefficients, C8
and C9, are obtained by combination rules similar to those for the C6 coefficient.

Soon after the first version of DFT-D and in stark contrast to it, Becke
and Johnson (2005b) developed a method to calculate C6 coefficients from first
principles, using an approximation to the polarizability based on the dipole moment
of the XC hole of the HF model, the exchange-hole dipole method (XDM). Their
initial derivation was rather heuristic, with a wrong prefactor, but the final result can
be in fact obtained directly from the Casimir–Polder integral using the fluctuation–
dissipation theorem for the density response function and the Unsöld approximation
(Ángyán 2007; Heßelmann 2009; Ayers 2009). A semilocal approximation to the
XC hole by Becke and Roussel (1989) works as well as that from the HF model
and with the additional benefit of reduced computational complexity (Becke and
Johnson 2005a). To formulate a general interatomic pairwise method, the (local)
dipole moment of the XC hole is coarse-grained using the partitioning scheme
devised by Hirshfeld (1977). In this scheme, the atomic partition functions, wp, are
constructed from radially averaged electron densities of isolated atoms, nfree,

wHirsh
p (r) = nfree

p

(|r− Rp|
)

∑
q nfree

q

(|r− Rq |
) (31)

The corresponding static dipole polarizabilities of the atomic fragments are
calculated from free-atom dipole polarizabilities, assuming that they scale linearly
with the Hirshfeld measure of a volume (Hirshfeld volume),

αp1(0) = αfree
p1 (0)

V Hirsh
p [n]

V Hirsh
p

[
nfree

] (32)

V Hirsh
p [n] =

ż

dr n (r)wHirsh
p (r)

∣∣r− Rp

∣∣3 (33)

The fragment C6 coefficients are then calculated from the fragment polar-
izabilities and coarse-grained XC hole dipole moment. The harmonic-oscillator
combination rule is used to get the rest of the C6 coefficients. The XDM can be
extended to higher multipole dispersion coefficients by calculating higher multipole
moments of the XC hole polarization around each atomic center (Becke and Johnson
2006; Johnson and Becke 2006).
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A simple yet accurate interatomic pairwise method was developed by
Tkatchenko and Scheffler (2009) (TS), who extended the free-atom scaling
approach to all the atomic parameters, including the C6 coefficients and the vdW
radii, and thus formulated the calculation of interatomic pairwise vdW interactions
into a true density functional. Assuming that the excitation energies of the atoms
are independent of the volume, the Unsöld approximation and the Casimir–Polder
integral dictate that the C6 coefficients scale with the second power of the Hirshfeld
volume ratio,

C6,pq = Cfree
6,pq

(
V Hirsh
p [n]

V Hirsh
p

[
nfree

]
)2

(34)

The free-atom reference values may not be the most effective choice in metals
and some solids, whose electron density is often substantially different from the
superposition of free-atom densities. Zhang et al. (2011) and Ruiz et al. (2012)
used an adapted TS method, where the reference values are obtained from bulk
macroscopic dielectric constant.

Sato and Nakai (2009, 2010) developed an atomic pairwise method based on the
local effective polarizability functional from the vdW-DF-09 nonlocal functional.
A system is described by the local effective polarizability given by the harmonic-
oscillator formula with the resonance frequency from Eq. 26. The atomic fragments
are defined using the partitioning functions from the scheme by Becke (1988), which
is most often used to define atomic radial grids in KS-DFT calculations, but here it
is used as an alternative to the Hirshfeld partitioning. The partitioned polarizability
is used to calculate a coarse-grained representation of the system via multipole
expansion and Casimir–Polder integrals up to the C10 coefficient.

Silvestrelli (2008) formulated a pairwise method in which the coarse-grained
fragments are not atoms but Wannier functions (WFs) (Marzari et al. 2012). Wannier
functions are any set of localized one-electron wave functions that in principle
form a complete basis. In finite molecular systems, they are called Boys orbitals.
The Wannier functions of conducting and nonconducting electrons are localized
algebraically and exponentially, respectively. In the vdW-WF method, each WF
is approximated with a single spherically symmetric exponential function that has
the same width (second central moment) as the true WF. The polarizability of the
approximate WF is calculated with the polarizability functional of Andersson et al.
(1996) (ALL). Here, np is the electron density of the WF and k is a nonempirical
constant. The C6 coefficients between the WFs are calculated from the Casimir–
Polder integral, and the range-separating function is the same as in the TS method,
with vdW radii of the WFs defined via an electron density cutoff (Silvestrelli
et al. 2009). The vdW-WF scheme has two theoretical shortcomings: first, the
partitioning of the total electron density is only approximate because of the use of
the approximate WFs, and second, the ALL polarizability functional was designed
for the total electron density, not one-electron densities.

Coarse-grained methods in which the fragment polarizabilities and C6 coeffi-
cients are calculated directly, rather than obtained by explicit partitioning of some



282 J. Hermann and A. Tkatchenko

continuous quantity, may be sensitive to a particular choice of the partitioning
scheme. This motivated a series of modified Hirshfeld partitioning schemes that
should capture better the redistribution of the electron density in a molecule with
respect to free atoms. Steinmann and Corminboeuf (2010, 2011) adapted the
XDM to use the self-consistent Hirshfeld scheme, which gives a more consistent
description of ionic systems (Bultinck et al. 2007). Bučko et al. (2013, 2014) did the
same with the TS method. The self-consistent Hirshfeld partitioning uses the same
stockholder formula in Eq. 31 as the original scheme, but the reference densities
are generalized and depend recursively on the partitioning, leading to equations
that need to be solved iteratively (Verstraelen et al. 2012). A common form of the
generalized reference densities, used in the modified XDM and TS methods, is a
linear combination of free-atom and free-ion densities that maintains the charge
of the Hirshfeld-partitioned atomic density. This scheme is complicated by the
instability of many isolated anions, which requires addition of auxiliary negative
charges, making the partitioning somewhat arbitrary.

5.6 Many-Body Dispersion

The fourth class of approximations to the ACFD formula covers nontruncated
coarse-grained models. A common theme of all such models is to interpret the
Unsöld approximation with its single resonance frequency literally and model a real
molecular system as a collection of coupled charged oscillators. The corresponding
Hamiltonian describes a system of distinguishable particles characterized by a
charge, qi, and a mass, mi, each having its own harmonic potential defined by the
resonance frequency, i, and a center, Ri, interacting via the Coulomb force,

Ĥosc =
∑

i

p̂2
i

2
+
∑

i

1

2
miω

2
i |̂ri − Ri |2

+
∑

i<j

qiqj

(
1∣∣̂ri − r̂j

∣∣ −
1∣∣̂ri − Rj

∣∣ −
1∣∣Ri − r̂j

∣∣ +
1∣∣Ri − Rj

∣∣

) (35)

The centers of the harmonic potentials additionally host a compensating charge
of the opposite sign. If the centers are the same as those of the atoms, this
Hamiltonian can be interpreted as a very crude approximation to the electronic
Hamiltonian, in which all electrons of individual atoms are described by distin-
guishable psuedoelectrons that move in an effective potential which is the combined
result of the nuclear potential and the mean field of the electrons. In particular, any
exchange effects and hence charge transfer and delocalization are not considered.
Expanding the Coulomb operator in a multipole series and keeping only the dipole
term result in dipole-coupled oscillator Hamiltonian,
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Ĥdosc =
∑

i

p̂2
i

2
+
∑

i

1

2
miω

2
i |̂ri − Ri |2

+
∑

i<j

qiqj (̂ri − Ri )T
(
Rj − Ri

) (
r̂j − Rj

) (36)

A useful property of this Hamiltonian is that it can be solved exactly by
coordinate transformation into a system of uncoupled quasi-oscillators, which
describe different collective oscillations. The ground-state wave function of such a
system is then a simple product of the single-oscillator ground-state wave functions,
and the ground-state energy is a sum of the single-oscillator ground-state energies,
E0 = ∑

nω̃n/2. Drawing analogy with the RPA, the individual oscillators model
the particle-like quasi-electrons in some coarse-grained way, while the coupled
oscillations model the wavelike electron oscillations. This Hamiltonian has been
used many times to obtain various qualitative properties of long-range electron
correlation (Bade 1957; Bade and Kirkwood 1957; Mahan 1965; Lucas 1967;
Renne and Nijboer 1967; Donchev 2006) but only recently to formulate general
quantitative methods.

The relevance of the dipole-coupled oscillator model to the true electronic system
can be derived directly from the coarse-grained ACFD formula by performing the
frequency integration analytically (Tkatchenko et al. 2013). When truncated at
the dipole term, the approximate long-range correlation energy is then equal to
the difference in the ground-state energy between the dipole-coupled oscillators
and noninteracting oscillators. The exact equivalence between the dipole-coupled
oscillators and the approximated ACFD formula breaks when going beyond the
dipole approximation. The effective Hamiltonian derived from the ACFD formula
is always bilinear in the interaction and contains one oscillator per each fluctuating
moment (dipole, quadrupole, etc.). In contrast, the coupled-oscillator Hamiltonian
has always 3N coordinates, independent of the degree of the multipole expansion of
the Coulomb operator, and the interaction terms above the dipole order are formed
from nonlinear combinations of the coordinates, making the Hamiltonian unsolvable
in closed form.

The use of the coupled-dipole approach to formulate general methods for the
long-range correlation energy was initiated in the many-body dispersion (MBD)
model developed by Tkatchenko et al. (2012). MBD reuses the effective dynamic
polarizability as approximated in the TS pairwise method and combines it with a
physically motivated effective dipole operator. Motivated by the Gaussian shape of
the harmonic-oscillator ground-state wave function, the dipole potential in MBD,
Tgg, is derived from the screened Coulomb interaction between two Gaussian unit-
charge densities (Mayer 2007), with widths derived from the corresponding dipole
polarizabilities. In general, the dipole potential in the Dyson equation should be
different from that in the ACFD formula and independent of the XC functional
used for the short-range part of the correlation energy. To circumvent this obstacle,
Ambrosetti et al. (2014b) separated Tgg into the long-range part and the short-range



284 J. Hermann and A. Tkatchenko

remainder. The long-range correlation energy is then calculated in two steps. First,
the effective polarizability is screened by the short-range dipole potential via the
Dyson equation. Second, the dipole-coupled Hamiltonian is solved with the long-
range dipole potential.

Silvestrelli (2013) developed another method inspired by MBD in which the
oscillators do not model the response of the atoms but of Wannier functions.
This Wannier-based MBD is to the pairwise vdW-WN method as what the range-
separated MBD is to the pairwise TS method. Unlike in vdW-WN, here the
polarizabilities of the Wannier functions are not calculated using a local polariz-
ability functional but directly from the Hirshfeld volumes of the Wannier func-
tions.

6 Applicability in Material Modelling

Most vdW models have been designed following some set of theoretical principles
(as is common in DFT), rather than obtained by a straightforward application of
systematic approximations (as is common in quantum chemistry). As a result, a
careful attention must be paid to the evaluation of the accuracy of the models, to
avoid any systematic bias, both within and between different classes of systems, and
to know the level of uncertainty in predicted quantities that one may expect. In this
regard, the systematic verification of a given DFT+vdW method is usually achieved
through comparison against the results of higher-level (more costly and more
accurate) theoretical methods or experimental results with sufficient resolution.

In the case of organic molecules and materials, several benchmark sets of
binding energies of complexes and lattice energies of molecular crystals have been
established that allow for systematic testing of vdW models. For smaller molecules,
the reference data have been obtained by high-level correlated methods of quantum
chemistry (Jurečka et al. 2006; Řezáč et al. 2011), for larger molecules by diffusion
quantum Monte Carlo (Ambrosetti et al. 2014a) and for molecular crystals by
extrapolating experimental lattice enthalpies to zero temperature (Otero-de-la-Roza
and Johnson 2012; Reilly and Tkatchenko 2013b). Initially, the development of
vdW models was largely driven by their performance for small molecules on the
S22 and S66 benchmark sets, and currently most popular DFT+vdW methods are
able to achieve accuracies of 10–20 meV (better than 10%). The remaining errors
are due to inaccuracy in the asymptotic vdW coefficients, empirical parameters
in damping functions, and errors in the XC functional. Because of such rather
uniform performance of different methods for small molecules, the focus has shifted
to assessing the performance for larger systems. Here, in fact, the differences are
more prominent, because the vdW energy makes a much larger relative contribution
to cohesion. For example, for polarizable supramolecular systems, such as the
“buckyball catcher” complex, pairwise dispersion corrections overestimate the
binding energy by 0.4–0.6 eV, whereas including many-body dispersion effects
reduces this error to 0.1 eV.
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For periodic molecular crystals, some coarse-grained DFT+vdW methods are
able to achieve remarkable accuracy of 40–50 meV per molecule (5%), compared
to experimental results (Reilly and Tkatchenko 2013a, b; Brandenburg and Grimme
2014). Since the difference in lattice energies between various available experiments
is on the same order of magnitude, this highlights the mature state of vdW dispersion
corrections to semilocal DFT. The nonlocal density functionals yield somewhat
larger errors (Otero-de-la-Roza and Johnson 2012). Understanding the performance
of different vdW-inclusive methods for large molecular systems is still a subject of
ongoing research. Accurate description of vdW interactions becomes even more
relevant for the relative energetics of molecular systems, which are essential to
predict the correct polymorphic behavior of molecular crystals (Reilly et al. 2016).

Beyond organic materials, the performance of DFT+vdW methods have started
to be tested only recently. Reference lattice and interlayer binding energies calcu-
lated with RPA exist for a range of bulk solids (Harl et al. 2010; Schimka et al.
2013) and layered materials (Björkman et al. 2012; Björkman 2012, 2014), but the
accuracy of RPA on the organic systems is comparable to that of DFT+vdW meth-
ods. Alternatively, experimental data are available for many of these systems. Of the
different material types, the performance of individual methods for semiconductors
is usually comparable to that of the organic compounds. In contrast, the accuracy
with which ionic solids and metallic materials are described differs greatly between
vdW models. In some cases, this has motivated the development of different flavors
of vdW models, each targeting a specific class of materials.

7 Toward the Ultimate van derWaals Model

Despite the numerous advances in recent years discussed in the previous sections,
a general, accurate, and efficient vdW model is not yet available. Arguably, this is
a result of each of the current vdW models having some theoretical deficiencies,
some of which are shared by all the models. Therefore, and to stimulate the reader
with potential research problems, we conclude this chapter with a list of theoretical
features that are missing from some or all current vdW models. Furthermore, we
discuss which types of materials do we expect to benefit from potential addition of
such features.

• All current vdW models assume a localized noninteracting polarizability, which
is appropriate for gapped electronic systems, but not for gapless ones. At the same
time, it is not clear what is the importance of the delocalized part of the response
to vdW interactions in different circumstances. For instance, one can expect that
the delocalized fluctuations will be manifested more strongly in the case of two
metallic objects and less in the case of a molecule adsorbed on a metallic surface.
Developing a unified model that uses both the localized and delocalized parts
of the electronic response would enable treating the widest possible range of
systems from purely covalent to purely metallic.
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• Most current interatomic approaches assume a single-oscillator frequency depen-
dence of the polarizability. This may be adequate for lighter elements of the
periodic table in which majority of the response comes from the valence
electrons with similar response properties. However, the core shells contribute
nonnegligibly to the polarizability of heavier elements, and in such cases the use
of two oscillators to capture separately the response of inner-shell and valence
electrons could be beneficial to accuracy.

• All current models of effective polarizability assume isotropic local response.
Could the directionality of the density gradient be used to construct an anisotropic
polarizability model? The part of anisotropy resulting from the long-range inter-
actions (for instance, due to specific packing in a molecular crystal) is already
captured in many-body vdW effects. But the part stemming from short-range
interactions between neighboring atoms (such as in planar aromatic compounds)
is currently neglected.

• The VV functional is perhaps the most accurate semilocal functional for the
local polarizability, but it is still lacking in accuracy to some of the interatomic
approaches. Could this be potentially remedied by including dependence on the
kinetic energy density or the second derivative of the electron density? Are there
some exact constraints and limits on the polarizability functional? Improvements
of this type can be expected to improve the accuracy of the vdW models across
the whole spectrum of materials.

• All methods that use vdW models are based on some empirical coupling of the
short-range and long-range parts. The empiricism necessarily hinders generality
and introduces bias toward the system on which the coupling was constructed.
Many theoretical results are available about general properties of XC functionals
yet none so far that would enable a more rigorous coupling between semilocal
DFT and vdW models. This question is especially relevant in systems where
long-range vdW interactions contribute only partially to the total interaction
energy, such as smaller organic complexes or organic/inorganic systems.

• Except for the costly RPA-based methods, there is no general vdW model
that would be simultaneously many-body while treating also higher multipole
moments of the polarizability. Some pairwise interatomic models include higher
multipole moments, and nonlocal vdW functionals do not need to because of
the lack of coarse-graining, but none of them are fully many-body methods.
The MBD methods, on the other hand, have not yet been extended beyond the
dipole approximation. The inclusion of higher multipoles would be beneficial
for two reasons. First, it should improve the accuracy of the vdW model for
strongly polarizable systems at equilibrium geometries. Second, it would enable
to systematically study a whole new class of vdW effects such as the dependence
of vdW interactions on external electric fields, which cannot be done within the
dipole approximation.
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Abstract

Pump-probe photoelectron spectroscopy provides a tool to observe excitations
taking place in electronic systems as they evolve in time. This technique is
frequently applied to study complex phenomena taking place in chemistry
and solid-state physics. To properly capture the dynamics observed in the
experiments, one needs to employ non-perturbative theories capable to describe
the complete time evolution of large physical systems. After a pedagogical survey
on the literature, in this chapter, we focus on TDDFT and illustrate how this
theory can be formulated in a way that can capture the entire ionization dynamics
in atoms, molecules, and solids.

1 Overview

Photoelectron spectroscopy (PES) is nowadays one the most prominent experimen-
tal tools employed to measure the electronic structure of matter in the solid, gas,
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and liquid phases. In this chapter we are concerned with the application of PES to
two classes of electronic systems: finite systems, such as atoms and molecules in
gas phase, and infinitely periodic systems, such as bulk crystals and surfaces. This
spectroscopy is based on the photoelectric effect, the physical phenomenon where
electrons are extracted from a sample by illuminating it with light of an appropriate
wavelength which was first discovered by Hertz in 1887. Electrons emerging from
this kind of process are normally called photoelectrons.

The fundamental equation governing photo-ionization is the Einstein law which
states the energy balance between the kinetic energy of the ionized electrons Ekin,
the energy of the photon h̄ω, and the ionization energy, or ionization potential,
Ip, that keeps them bind to the sample. Depending on the context, this relation
is expressed in slightly different ways. In atomic and molecular physics, it usually
reads: Ekin = h̄ω − Ip. In solid-state and surface physics, it is customary to break
down the ionization energy as the sum of the work function φ and the binding
energy Eb both measured from the Fermi energy as illustrated in Fig. 1. In this case
the relation becomes Ekin = h̄ω − φ − Eb. Obviously, the underlying mechanism
remains the same.

From these basic considerations, the spectroscopic potential of the photoelectron
observables is immediately apparent because, by measuring the kinetic energy of the
ionized electrons and knowing the frequency of the field, one can obtain a picture
of the electronic energy levels of the system. It must be noted, however, that this
technique can only access the properties of occupied states. To measure empty
states, one in principle can use the inverse process where an electron is captured
by the material and emits a photon.

In the literature, it is customary to divide photoelectron spectroscopy in two main
categories depending on the radiation used. We are dealing with ultraviolet PES, if
the field is in the UV range and only ionizes valence electrons, while we have X-ray
PES if the field is energetic enough to ionize inner shell electrons. However, based
on the same physical process, there are theoretical details specific for each energy

a b

Fig. 1 Schematic of photoelectron spectroscopy in the case of (a) finite systems, such as atoms
and molecules, and (b) infinitely periodic systems, i.e., bulk crystals
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scale, most notably whether or not it is allowed to invoke the dipole approximation.
The discussion of this chapter is concerned with photon energies up to the XUVs
(≈100 eV) where the dipole approximation is well justified.

The intensity of the photoelectron current, or equivalently the probability rate
to eject photoelectrons with a given velocity, is the observable quantity in the
experiments. It can be estimated using Fermi’s golden rule

I = 2π

h̄

∑

f

∣∣∣
〈
f

∣∣∣
e

mc
A · p̂

∣∣∣ i
〉∣∣∣

2
δ(Ef − Ei − h̄ω). (1)

In the equation, |i〉 is the many-body N -electrons ground state representing the
system in its initial state, while |f 〉 is the state describing a single ionization and is
composed of N − 1 bound electrons plus one in the continuum with momentum p.

By summing overall the possible final states that satisfy the energy conser-
vation – the Einstein relation – imposed by the delta function, one recovers the
full distribution in momentum, I (p). This quantity goes under different names
depending on the community of reference. In atomic and molecular physics, it is
oftentimes called photoelectron angular distribution (PAD), while in the solid-state
community, it goes under the name of angular-resolved photoelectron spectroscopy
(ARPES) spectrum. The reasons for this apparent dichotomy originate from the
differences in the experimental detectors and the specific spectroscopic information
attainable in the different contexts. In solid-state physics, the usual assumption
is that, during ionization, the photoelectron’s momentum parallel to the surface
is conserved and equal to the crystal momentum of the electrons in the sample,
p‖ = k‖. Therefore the intensity expressed as a function of the binding energy and
the parallel momentum, I (p‖, Ekin), measures the dispersion of the energy levels of
the system, i.e., the band structure. For molecules the physical content of I (p) is still
in the process of beginning to be fully understood, for instance, in planar molecules,
it was shown to be linked with the molecular orbital spatial distribution (Puschnig
et al. 2009).

The picture given by (1) is an idealization of the photoemission process that
does not take into account electron-electron interaction and surface effects. In fact,
the electrons in the system have to relax in order to screen the hole left behind
after ionization, and, during this dynamical process, they can excite other modes
of the sample. In solids, for instance, it is often possible to observe charge density
oscillations – plasmons – or lattice vibrations, phonons, being excited by the ejected
electrons on their way to the vacuum. These processes ultimately affect the kinetic
energy distribution of the photoelectrons by introducing new peaks and by imposing
a finite peak width that reflects the lifetime of the excitation. To include these effects
in (1), the delta function has to be substituted by the more general spectral function
A(ω,p). The spectral function is a many-body object which can be rigorously
defined in terms of the one-particle Green’s function, and it is usually calculated
in the so-called GW approximation. For more details, we remind to the review
article (Damascelli et al. 2003) and references therein.



296 U. De Giovannini

After substituting the delta with the spectral function, to get the full ionization
current from (1), one has to evaluate the dipole matrix elements. These terms contain
the photoelectron current dependence on the external field properties such as photon
polarization and energy and are crucial for the complete account of the experimental
spectrum. To calculate the matrix elements, one needs to explicitly evaluate the
continuum states of the Hamiltonian that constitutes the scattering-wave component
– i.e., the ionized electron – of the final state |f 〉. The simplest approximation often
employed in the literature is to substitute the scattering wave with a plane wave
|p〉, so that the matrix element turns into a simple Fourier transform of the initial
wavefunction: for one-electron systems, 〈p|A · p̂|i〉 = A · p〈p|i〉. The quality of this
approximation varies from system to system and is not always good especially for
low-energy continuum states that are strongly affected by the electrostatic potential.
For a better agreement to experiments, one has to turn to more sophisticated
approaches. The time-reversed low-energy electron-diffraction – known as LEED
– states (Pendry 1990) in solid-state physics and the B-spline basis (Bachau et al.
2001) in atomic and molecular physics are among the most popular expansions.

Non-perturbative approaches alternative to (1), like the direct solution of the
time-dependent Schrödinger equation (TDSE), can also be used to model the full
ionization process. This is a usual practice in the atomic strong-field community
where the fields are so strong to allow multiphoton processes to take place and
where the interference pattern formed by the photoelectrons ejected at different
times in the pulse encodes a plethora of valuable information. In these cases, the
photoelectron spectrum can be directly obtained by projecting the long time limit
of the time-dependent wavefunction |Ψ (t)〉 on the continuum states: I ∝ 〈f |Ψ (t)〉.
Even in this approach, a detailed account of the continuum state is therefore needed,
which oftentimes is already present in the basis used to integrate the TDSE.

Motivated by the need of a non-perturbative theory, the strong-field community
developed methods to calculate the photoelectron probability that do not require
any explicit knowledge of the continuum states; the resolvent technique (Catoire
and Bachau 2012) and the t-SURFF method (Tao and Scrinzi 2012) are the most
notable results of this effort. These methods have been successfully employed
to calculate PES and PADs in atoms under strong and long wavelength pulses
where electrons follow large rescattering trajectories before being released into
the continuum (Blaga et al. 2009). Clearly, the application of a non-perturbative
approach to the single photon ionization described so far is straightforward, even
though the solution of the TDSE may not be very efficient or properly motivated.
When PES is employed to study systems out of equilibrium, however, the non-
perturbative approach becomes more necessary.

Time-resolved photoelectron spectroscopy extends PES to excited states in the
time domain. In this extension the spectra are usually acquired in pump-probe setups
where two laser pulses are directed onto the sample and where one of the pulses, the
pump, creates an excitation in the system which is then observed by ionizing it with
the probe. The presence of two pulses breaks the time translation symmetry, and
therefore the spectra acquire an explicit dependence on the relative delay between
the pulses. Recording different spectra as a function of this delay constitutes the
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time-resolved spectrum from which one can access information about the dynamics
of the excitation.

In pump-probe experiments, by selecting the length of the pulses, one can
observe the time trace of different physical excitations. On the femtosecond scale,
the scale of ionic motion, time-resolved measurements have been applied to study
chemical reactions ranging from bond breaking in dimers to nuclear motion in large
biological molecules. This line of research developed into the field of femtochem-
istry (Stolow et al. 2004) which culminated with the Nobel Prize in Chemistry to
A. H. Zewail in 1999. With shorter pulses, one can further increase time resolution
and observe even faster dynamics. The shortest time scale attainable today is the
attosecond scale, the characteristic scale of the electronic excitations. It lays at the
forefront of the research as it combines complex experiments with the theoretical
challenges presented by the description of coherent electron dynamics (Lépine et al.
2014). In solid-state physics, the use of ultrafast time-resolved approaches started
later than molecular physics but quickly caught up, and the last decade has seen
these techniques applied to study many different processes such as, for instance,
the exciton relaxation and excitation dynamics or the ultrafast charge migration and
screening in insulators (Krausz and Stockman 2014).

Given the dynamical nature of the physical observables accessible via pump-
probe PES, it is clear that any theoretical approach used to interpret the results of
the experiments must be capable to account for the time evolution of the system.
In this respect, we must first distinguish between two substantially different regimes
depending on whether the pulses overlap or not. When the pulses overlap, the system
is governed by a time-dependent Hamiltonian which explicitly contains the pump
field and that can be quite different from the one of the samples in equilibrium. This
is no longer the case when the two pulses do not overlap because the Hamiltonian
is the same as the one in equilibrium.

In the nonoverlapping regime, the system finds itself into a state which, in the
most general case, is in a superposition of different excited states of the equilibrium
Hamiltonian. In this case one can still use (1) by choosing as initial state |i〉 the
pump-generated wavepacket, |Ψ (t)〉, which is expanded in the basis of the exact
excited states |Ψi〉 with eigenvalues Ei : |Ψ (t)〉 = ∑

i Aie
−i(Ei t/h̄+φi)|Ψi〉. Here

φi and Ai are, respectively, the phases and expansion coefficients of the wavepacket
and are completely determined by the pump. The strength of this formulation is that,
for isolated systems, the coefficients are time independent and therefore the time
propagation can be carried out analytically. In practice, since the exact eigenstates
are not easily available, one usually has to resort to approximate eigenstates of a
simplified Hamiltonian, and therefore the coefficients become time dependent (Wu
et al. 2011). Besides the specific approximations concerning the details of the
physical system under study, one limitation of this approach is that the construction
of the initial wavepacket can be accurately approximated only for a limited number
of cases. To cover the most general situation, one needs to simulate the pump
excitation process with a non-perturbative approach.

Non-equilibrium Green’s function theory offers, in principle, a more general
platform to formulate the out-of-equilibrium many-body problem (Kadanoff and
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Baym 1962). In this context the most promising approach to date is based on the
Kadanoff-Baym formulation for the lesser Green’s function G< (Perfetto et al.
2016a). Given the computational cost of the implementation, this approach has been
so far limited to simple systems, e.g., Perfetto et al. (2016b).

When pump and probe overlap, PES carries spectroscopic information about
the pump-dressed system. The interest in this regime is that, since the pump field
directly enters the Hamiltonian, it can give a handle to parametrically modify it. This
modification can possibly result in new physical properties of the driven system
that can be observed by PES (Hsieh et al. 2017). From the basic standpoint, the
properties of the periodically driven system can be understood in the framework of
Floquet theory. However, to properly account for the PES even in this regime, it
appears necessary to simulate the full time-dependent evolution.

After this brief and non-exhaustive survey of the theoretical approaches available
to model pump-probe PES, it emerges that, in order to include the largest possible
spectrum of experimental conditions, one needs to simulate the full photo-ionization
process as it develops in time. Our choice for this chapter is time-dependent density
functional theory (TDDFT). TDDFT is an exact reformulation of the TDSE in
terms of the time-dependent density which has been successfully used to model the
dynamics of atomic, molecular, and solid-state systems. This flexibility offers the
opportunity to illustrate the application of the theory to finite systems and infinitely
periodic systems on equal footing.

In the remainder of this chapter, unless otherwise specified, we use Hartree
atomic units where h̄ = e = me = 4πε0 = 1.

2 Real-Time TDDFT

Below, we briefly recall the relevant concepts of TDDFT, already introduced in
the plenary �Chap. 6 ,“TDDFT and Quantum-Classical Dynamics: A Universal
Tool Describing the Dynamics of Matter,” and the specific features of the real-time
approach that are instrumental for the description of pump-probe photoemission.

The central idea of TDDFT is to express the equation of motion for the
time-dependent density, n(r, t), of an interacting many-body system as a set of
equations for the density of a fictitious auxiliary system of noninteracting electrons
– the Kohn-Sham (KS) system. The resulting equations – the time-dependent KS
(TDKS) equations – are expressed in terms of the orbitals ϕi of a single KS Slater
determinant as follows:

i
∂

∂t
ϕi(r, t) = HKS(r, t)ϕi(r, t), i = 1, . . . , N/2, (2)

HKS(r, t) = 1

2

(
−i∇ − A(t)

c

)2

+ vKS[n](r, t)

n(r, t) = 2
N/2∑

i=1

|ϕi(r, t)|2. (3)
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To avoid nonessential complications in the notation, here we choose to describe
systems with an even number of electrons N , so that each spatial orbital ϕi is doubly
occupied with two electrons of opposite spin. The time-dependent density n(r, t)
corresponds both to the real and to the KS system, thanks to the action of the KS
potential vKS, which is composed of

vKS[n](r, t) = vion(r, t)+ vH[n](r, t)+ vxc[n](r, t). (4)

In the definition, the first term, vion(r, t), is the electron-ion potential provided by
the nuclei, while the second term is the classical electrostatic, or Hartree, potential
vH[n](r, t), and the last term vxc[n](r, t) is the so-called exchange and correlation
potential, whose form is unknown and must be approximated.

For observables involving ionization, like PES, it is crucial to choose a func-
tional capable to provide a good ionization energy. Exception made from hybrid
functionals, containing the computationally expensive exact-exchange functional –
i.e., the Fock operator – the large majority of functionals is unable to cancel the
self-interaction component of the Hartree potential, self-interaction error, which
results in an unphysical asymptotic exponential decay instead of the correct ∝
1/r given by the electrostatic potential of a point charge. Overall this results
in a systematic underestimation of the ionization energy. Many self-interaction
correction (SIC) strategies have been developed over the years, but, owing to its
simplicity, the average-density SIC (Legrand et al. 2002) has been so far the most
adopted.

Another important aspect that has to be considered in order to properly describe
ionization is charge removal. Any numerical implementations aiming at solving the
TDKS equations have to deal with a finite basis set or simulation box which is
incompatible with a correct description of ionization where, by definition, electrons
are removed from a system and taken to infinity. To simulate the presence of an
infinite surrounding vacuum space, it is customary to use absorbing boundaries.
These boundaries act to prevent spurious reflections when the electronic density
reaches the limit of the numerical representation mimicking the behavior of an
open system. Note that, in the presence of these boundaries, the total charge is
not conserved and the Hamiltonian is no longer Hermitian. The choice is between
complex absorbing potentials and exterior complex scaling. While this last one is
in principle superior, its numerical implementation is quite involved, and in practice
very few codes use it. Complex potentials, though much easier to implement, pay
the price of being not perfectly absorbing. This translates into having to deal with a
window of kinetic energies for which the transparency is achieved that depends on
the functional form of the potential and that has to be carefully tuned on the basis of
the expected ionization dynamics (De Giovannini et al. 2015).

To simulate pump-probe spectra, one needs to couple the system with an external
laser field. In (2), this coupling is expressed in the so-called velocity gauge with the
field represented by a classical time-dependent vector potential A(t) in the dipole
approximation. This means that the vector potential is taken to be constant in space,
a good approximation as long as the field’s wavelength is much larger than the
spatial extension of the system – up to soft X-rays for systems smaller than 1 nm.
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The use of the velocity gauge is uncommon in atomic and molecular physics where
the coupling is usually expressed in terms of the electric field, E · r, in the so-called
length gauge. The reason for this choice is functional to our scope. That is because
the velocity gauge is compatible with both finite and periodic systems and, as we
will show in the next section, it is particularly convenient to describe the coupling
with ionized free electrons.

The choice of describing the coupling with a classical field instead of a quantized
one is well justified in those cases, like in modern pump-probe experiments, where
the laser fields employed have large fluences and are thus constituted by a large
number of photons. In particular since A(t) is a general function of time, it is well
suited to describe any linear combination of laser pulses and thus can perfectly
account for any pump-probe configuration. It is important to stress that, given the
nature of the pulses, it is not possible to invoke any linear response approach and
the TDKS equations have to be integrated by real-time propagation. A large array
of propagation options is available in the literature to perform this task (Castro et al.
2004).

The TDKS equations are general to any atomic and molecular system regardless
of their shape and size and, in principle, are suited to describe systems, such as
bulk crystals, which are microscopically infinite. Considering an infinitely extended
ϕi(r, t) is of course not practical, but, exploiting the translation symmetry, it is
possible to substantially simplify the formulation of the problem. Since the crystal
periodically repeats in space, we can describe the infinite lattice with wavefunctions
defined in a primitive cell, and using the Bloch theorem, we can express the KS
orbitals as Bloch waves

ϕi,k(r, t) = eik·rui,k(r, t) (5)

where ui,k(r, t) is a wavefunction with the periodicity of the lattice and k spans the
first Brillouin zone (BZ) in reciprocal space.

By plugging the expression for the Bloch wave into (2), we arrive to a new set of
TDKS equations only for the periodic component of the KS orbitals

i
∂

∂t
ui,k(r, t) = 1

2

(
−i∇ + k− A(t)

c

)2

ui,k(r, t)+ vKS[n](r, t)ui,k(r, t),

i = 1, . . . , N/2, (6)

n(r, t) = 2
N/2∑

i=1

ż

BZ

dk |ϕi,k(r, t)|2 = 2
N/2∑

i=1

ż

BZ

dk |ui,k(r, t)|2. (7)

These equations govern the time evolution of a generic nonmagnetic bulk insulator
where each of the N/2 lowest-lying orbital states accommodates two electrons of
opposite spin.
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Fig. 2 Scheme illustrating the geometries employed to calculate the photoelectron spectra for (a)
finite and (b) infinitely periodic systems

3 Photoemission from Atoms andMolecules

The outcome of a ionization process is characterized by the total ionization
probability P: the probability to find a system, an atom, or a molecule, in a
determined charged state after ionization. Given a spherical region Ω surrounding
the system, like in Fig 2a, one can calculate P by integrating the charge density in
its complement Ω̄ , which is equivalent to the number of escaped electrons Nesc(t),
any time t > t ′ after the ionization has taken place. In the long time limit, it follows
from this definition that

P = lim
t→∞

Nesc(t)

N
= lim

t→∞

ş

Ω̄
dr n(r, t)

N
. (8)

As we discussed at the beginning of this chapter, many important physical properties
can be obtained only by looking at more resolved ionization observables than just
the total probability. These include the energy-resolved or momentum-resolved
photoelectron probabilities, P(E) and P(p), which can be obtained from P by
direct differentiation

P(E) = ∂P

∂E
and P(p) = ∂P

∂p
. (9)

In order to use this definition, one needs to expose the functional dependence of
P from the differentiating variable, p or E, and in what follows, we employ the
flux of the ionization current through a closed surface to accomplish this task. This
approach is based on the t-SURFF method, first introduced by Scrinzi (Tao and
Scrinzi 2012) in the strong-field community for single-electron systems. Since here
we are interested in many-electron systems described with TDDFT, we present the
extended version of this method (Wopperer et al. 2017).
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Note that the two quantities in (9) are not independent and one can recover one
from the other using E = p2/2 – the free electron energy dispersion. In particular
P(p), being resolved in momentum is the most general one. For this reason we can
concentrate only on P(p), granted the other quantities can be derived from it by
integration.

First we postulate that the KS Hamiltonian Ĥ (r, t) describing a photo-ionization
process can be factored out into two spatially separated components, one describing
fully interacting electrons in an area surrounding the system, Ω , and another one
representing the asymptotic behavior of quasi-free electrons in the ionization region,
Ω̄ . In practice this is done assuming that the TDKS Hamiltonian (2) asymptotically
reduces to a Volkov Hamiltonian in Ω̄:

Ĥ (r, t) =
⎧
⎨

⎩
ĤKS(r, t) if r ∈ Ω

ĤV(r, t) if r ∈ Ω̄
. (10)

The Volkov Hamiltonian describes noninteracting free electrons driven by an
external vector potential A(t) and is defined as

ĤV(r, t) = 1

2

(
−i∇ − A(t)

c

)2

. (11)

Note that the partitioning (10) is an idealization since we are discarding the long-
range tails of the Coulomb potential always present in the real systems. We are thus
committing an error that is proportional to the radius of Ω and (10) that has to be
considered as an approximation. The price that we pay is well compensated by the
properties of the Volkov Hamiltonian. In particular the fact that it is analytically
solvable and its time-dependent solutions – the Volkov waves – defined by

χp(r, t) = 1

(2π)
3
2

eip·reiΦ(p,t) with Φ(p, t) =
ż t

0
dτ

(
p− A(t)

c

)2

(12)

are eigenstates of the momentum operator and form a complete set. This means that
in Ω̄ we can expand the KS orbitals as a superposition Volkov waves

ϕi(r, t) =
ż

dp bi(p, t)χp(r, t) (13)

and that, from (8) and (7), the number of escaped electrons can be written as

Nesc(t) = 2
N/2∑

i=1

ż

Ω̄

dr |ϕ(r, t)|2 = 2
N/2∑

i=1

ż

dp |bi(p, t)|2. (14)
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This provides us with an expression for Nesc(t) with an explicit dependence on p
that we can exploit to calculate the the resolved probability from (9)

P(p, t) = 1

N

∂Nesc(t)

∂p
= 2

N

N/2∑

i=1

|bi(p, t)|2 (15)

from which the connection with the Volkov expansion coefficients bi(p, t) is
apparent. This result is consistent with the construction of the Hamiltonian (10)
which serves the purpose of exposing the momentum dependence of the scattering
states by approximating them with Volkov waves and offers the interpretation of the
expansion coefficients as scattering amplitudes.

The second part of the problem is the evaluation bi(p, t) from the knowledge of
the TDKS orbitals. To this end we express Nesc(t) as a flux integral of the current
density J(r, t). By applying the continuity equations for the volume Ω̄ , we find that

Nesc(t) = −
ż t

0
dτ

∮

S

ds · J(r, τ ), (16)

where ds is the surface element vector pointing in the direction normal to the surface
S enclosing the region Ω as shown in Fig. 2a. The current density can be evaluated
as an expectation value over the TDKS wavefunction as

J(r, t) = 2
N/2∑

i=1

〈ϕi(t)|ĵ|ϕi(t)〉 with ĵ = Re

{
−i∇ − A(t)

c

}
(17)

being the single-particle current operator. If we expand the bra |ϕi(t)〉 in Volkov
waves with (13), we have that

J(r, t) = 2
N/2∑

i=1

ż

dp bi(p)〈ϕi(t)|ĵ|χp(t)〉, (18)

together with the conjugate expression obtained by expanding 〈ϕi(t)|. By plugging
this equation and its conjugate into (16), we obtain a formula that we can directly
confront to (14). From the comparison, it results that the Volkov expansion
coefficients can be written as the surface flux integral of the projected single-particle
current operator ĵp,i (r, t) ≡ 〈χp(t)|ĵ|ϕi(τ )〉 accumulated over time

bi(p, t) = −
ż t

0
dτ

∮

S

ds · 〈χp(t)|ĵ|ϕi(τ )〉. (19)

This formulation is particularly convenient since it only involves the evaluation of
ĵp,i (r, t) on the surface S and, given



304 U. De Giovannini

ĵp,i (r, t) = 1

2

{
iϕi(r, t)∇χ∗p (r, t)− iχ∗p (r, t)∇ϕi(r, t)− 2

A(t)

c
χ∗p (r, t)ϕi(r, t)

}
,

(20)
it is easy to see that it requires the evaluation of the gradient operator only on S.
Furthermore, as long as the time integral runs for times longer than the complete
ionization process, during the time propagation, electrons can seamlessly flow back
and forth through the surface without producing any artifact in the final spectrum.
This provides with the freedom to choose the radius of Ω only on basis of the quality
of the approximation of (10) which in practice has to be converged case by case.

4 Photoemission from Crystal Surfaces

The t-SURFF formalism can be easily extended to include the description of
electron photoemission from bulk crystals. Since the derivation largely overlaps
with the one presented in the previous section, here we focus on the differences and
remind the interested reader to De Giovannini et al. (2017) for the full derivation.

A crystal can be considered as a very large molecule with a highly ordered
lattice structure; thus, in principle, one just needs to find a suitable geometry to
calculate the flux of the ionization current. The need for a surface to calculate
the flux immediately implies that the model must include the material termination
from which the electrons can escape. Therefore, in contrast to the usual practice of
solid-state physics where the crystal is considered as a periodically repeating lattice
in all directions, we need to reduce the periodicity from three to two dimensions
and explicitly introduce a surface. Given this arrangement, one can choose S as an
infinite plane oriented perpendicular to the nonperiodic dimension like in Fig. 2b
and calculate the photoelectron probability with (15) and (19).

Further, to exploit the translational symmetry, one can use the periodic formu-
lation of the TDKS equations (6) and (7) on a bidimensional primitive cell with
lattice vectors a1 and a2 spanning the surface. At this point we just need to adapt
the t-SURFF equations to the new periodic boundary conditions.

These boundary conditions impose slight but crucial modifications to the Volkov
waves. First, applying the Bloch theorem to the Volkov Hamiltonian results into
a decomposition of the momentum p in the definition of (12). Indeed, given
the Bloch factorization (5), the plane-wave momentum p can be seen as a sum
of a bidimensional crystal momentum k plus a reciprocal lattice vector G – a
component of the spatial Fourier transform on the unit cell: p = k + G. Because
of periodicity, the component of G parallel to the surface, G‖, can assume only
discrete values, while the perpendicular one, G⊥, is continuous. Second, χp(r, t)
must be normalized to the unit cell area such that the Volkov wave definition (12)
becomes

χp(r, t) =
√

2π

a1a2
eip·reiΦ(p,t) =

√
2π

a1a2
ei(k+G)·reiΦ(k+G,t), (21)
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while the definition of the phase Φ(p, t) is unmodified.
With this prescription, we can expand each KS orbital for a given k with Volkov

waves at the same k. The Volkov expansion given by (13) turns into

φi,k(r, t) =
ż

dG bi(k+G, t)χk+G(r, t), (22)

where the decomposition of the momentum p explicitly appears.
The expansion coefficients bi(p, t) even in this case act as scattering amplitudes

and are central to the definition of P(p, t). In fact using the expansion (22), it
is possible to derive the same expression for the photoelectron probability given
by (15). The difference in the derivation is that, likewise for the definition of the
charge density of a periodic system (7), the equations for the number of escaped
electrons Nesc(t) (14) and the current density J(r, t) (18) have to be integrated
over the full BZ. Once the connection between photoelectron probability and
expansion coefficients is established, we are left with the problem of calculating
the coefficients.

Like in the nonperiodic case, the expansion coefficients can be defined with an
expression involving a flux integral of the current density. This results in an equation
identical to (19), only for φi,k(r, t). This formula can be further simplified using
the Bloch factorizations of χp(r, t) and φi,k(r, t) to obtain an equation containing
only the periodic components of the orbitals ui,k(t) and plane waves |G〉 with the
periodicity of the lattice

bi(p = k+G, t) = −
ż t

0
dτ

∮

S

ds · 〈G|ĵ|ui,k(t)〉eiΦ(k+G,t). (23)

This final expression is well suited for the periodic TDKS equations (6) and (7) and
any numerical implementation designed to solve them.

5 Applications

Nowadays TDDFT can be used to calculate the photoelectron spectrum of a large
variety of material complexes and laser configurations. Given the general form in
which the field A(t) enters the TDKS equations, the formalism trivially includes the
special case where the system is simultaneously irradiated by a pump and a probe
laser pulses with a given time delay, τ , just by employing a field of the form

A(t) = Apump(ωP , t)+ Aprobe(ω, t + τ). (24)

Likewise in the experiments where, in order to expand the dependence on τ , one has
to repeat the measure for every value of the delay, in the simulations, one needs to
perform a separate calculation for every different configuration of pulses.
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Fig. 3 Pump-probe photoelectron spectrum of ethylene. The time-resolved photoelectron spec-
trum (a) is calculated by performing a different simulation for each value of τ . The spectra at fixed
time delays (b) can be further analyzed expanding the angular dependence of electrons ionized
with a fixed kinetic energy displayed as spheres in the inset. (Reproduced from De Giovannini
et al. 2013)

As an example, consider the case of an ethylene molecule pumped by a laser
pulse resonant with the energy of transition between the HOMO – the highest
occupied molecular orbital – and the LUMO, the lowest empty molecular orbital.
The plot in Fig. 3a is obtained by calculating several energy-resolved photoelectron
spectra P(E) and illustrates how the resonant excitation takes place as function of
τ . The appearance of a population on the excited state is clearly observable as an
increase of the photoelectron probability for the energy E2 – corresponding to the
LUMO energy – which survives for delay times longer than the pump pulse.

Having access to the full P(p) provides a higher level of detail that can be
used to further inspect the excitation process. For instance, for a fixed τ , one
can analyze the angular distribution of the photoelectrons emerging with a given
kinetic energy:P(p = √2E, θ, φ). The plot in Fig. 3b shows how by applying this
analysis to the HOMO and LUMO energies, E1 and E2, it is possible to observe
the correlation between the nodal structure of the spatial orbitals and the angular
distribution of the photoelectrons.

So far we discussed molecular models where the only role of the nuclei is to
provide the source of the external potential, but a full molecular problem involves
the entire electron-nuclear wavefunction. The simplest strategy is the so-called
Ehrenfest dynamics in which the ions are fully classical and are coupled to the
electrons via the density (see plenary �Chap. 6, “TDDFT and Quantum-Classical
Dynamics: A Universal Tool Describing the Dynamics of Matter”). To illustrate
how the ion dynamics can reflect in the photoelectron spectrum in Fig. 4, we
present the time-resolved photoelectron spectrum of ethylene initialized into an
excited state where one electron is promoted from the HOMO to the LUMO. Given
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Fig. 4 Pump-probe photoelectron spectrum of ethylene with moving ions. At time zero the
system is initialized by promoting one electron from the HOMO (πz bonding) to the LUMO
(π∗z antibonding), and the evolution is monitored by probing the system at different time delays.
The time evolution of the molecular geometry (a) is reflected in the time-resolved spectrum (b).
(Reproduced from Crawford-Uranga et al. 2014)

the antibonding nature of the LUMO orbital – of π∗ symmetry – the excitation
initiates an ionic motion on the C-C bond which results in the combination of a
vibrational and a torsional mode shown in Fig. 4a. This nuclear motion is reflected
in the electronic configurations, and their time evolution can be monitored with
time-resolved PES by probing the system at different time delays as in Fig. 4b. In
particular, one can observe how the peaks corresponding to the HOMO, πz, and the
LUMO, π∗z , move in energy toward each other as the torsion angle increases. A fact
easy to interpret by looking at the shape of the orbitals, depicted in the inset of the
figure, and noticing that in the limit of 90◦ torsion πz and π∗z become degenerate.

Of course the TDDFT methodology described so far is by no means limited to
small molecules. For instance, in Wopperer et al. (2017), the photoelectron spectrum
of C60 was easily simulated for a single strong-field laser pulse. In practical
calculations, the largest part of the computational burden is carried by the amount
of vacuum needed to account for ionization, i.e., the size of the region Ω . This
computational cost scales with the third power of the radius of Ω , while the TDKS
equations have a much lighter linear scaling with the total number of electrons N .
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Fig. 5 Pump-probe ARPES on monolayer hBN. The ARPES spectrum (a) of the system in
equilibrium is modified by pumping it with a laser pulse resonant with the gap at K. The resulting
pump-probe ARPES spectrum (b) displays finite electron populations of the electrons in the
conduction band across the gap. The band structure is plotted as dashed lines. (Reproduced
from De Giovannini et al. 2017)

Therefore the size of the system itself is not critical for a relatively large number of
atoms (≈50).

The scaling with the volume of Ω is less severe for periodic systems. Indeed,
since the vacuum only extends in one dimension, the computational cost scales
linearly. In this kind of calculations however, the number of points needed to sample
the reciprocal space – the k-points – constitutes an additional dimension that one
needs to take into account. Thus even though the primitive cell contains only few
atoms, the cost of the simulation can be considerable. Nevertheless the simulation
of pump-probe photoelectron spectra for periodic systems can be reduced to a
manageable task.

As an example in Fig. 5, we present the photoelectron spectrum of monolayer
hexagonal boron-nitride (hBN). The ARPES spectrum can be directly obtained from
the photoelectron distribution as P(p‖, E). This is in perfect agreement with the
band structure shown in Fig. 5a. The ARPES spectrum is modified by pumping the
system with a pulse resonant with the gap and by probing it after the pump has been
switched off, Fig. 5b. Granted the fact that ARPES probes only occupied states, the
appearance of a signal in correspondence of the conduction band at K is a clear
indication of the population transfer operated by the pump.

For the sake of clarity, in this chapter, we restricted the discussion to a simplified
formulation, and it is however important to keep in mind that the general theory can
handle more complex systems than simple nonmagnetic insulators. For instance,
it can easily describe systems with non-negligible spin-orbit coupling, such as
monolayer WSe2, and in highly out-of-equilibrium configurations, like the example
in Fig. 6. Similar to the former case, the system is pumped with a laser resonant
with the bandgap at K but is probed at different time delays in such a way to
explore different overlap configurations between the pump and the probe fields.
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Fig. 6 Pump-probe ARPES on monolayer WSe2 strongly driven out of equilibrium. The spectra
are obtained with different pump-probe configurations: (a) the probe comes before the pump, (b)
the probe is fully contained in the pump, (c) the pump and the probe only partially overlap, and (d)
the probe comes after the pump. The photon-dressed bands are reported for comparison in panels
(b) and (c). Pump (red) and probe (blue) configurations are depicted as cartoons below each panel.
(Reproduced from De Giovannini et al. 2016)

When the pump field is strongly coupled with the electrons, the system can
undergo a transition into a state where quasiparticles formed by the dressing of
photons to electrons emerge as new eigenstates. This is typically accompanied by a
proliferation of the energy levels like the one observed in the Autler-Townes effect in
atomic physics. The same dressing mechanism can be observed in Fig. 6b, c where
the ARPES signal in correspondence of the conduction band becomes deformed and
splits in two – this feature is indicated by the red marker bar in the figure. This is a
highly out-of-equilibrium feature that can be properly understood in the context of
the Floquet theory – for details, see De Giovannini et al. (2016).

6 Conclusions

From the standpoint of the experiments, pump-probe photoelectron spectroscopy
nowadays appears as a mature field where the key tools are established and have
been tested and available in many laboratories around the world. The perspective of
the field is the application of this toolset to investigate new dynamical processes in
a vast array of system going from atoms to large molecules and bulk crystals.

This roadmap raises important challenges for the theory, some of which can be
tackled within TDDFT. Using the versatility of TDDFT, the goal of this chapter was
to present an overview of this vast field by covering finite and infinite systems on
the same ground.

Clearly, the accuracy in the description of the photoemission process presented
here is affected by the same restrictions involved with the approximation of the
exchange and correlation functionals in TDDFT. Future developments aimed at
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improving these functionals to overcome present limitations, such as the descrip-
tion of static and dynamic correlations or long-range interactions, will positively
affect photoelectron observables. Much-needed developments in this direction will
make possible the description of exciton dynamics in solids or double-excitation
phenomena such as Fano resonances which currently lay beyond the reach of the
application of the theory.

We conclude mentioning that the code to perform real-space and real-time
TDDFT simulations of pump-probe photoelectron spectra with the techniques
presented in this chapter is freely available to the public (Andrade et al. 2015).
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Abstract

The many-body perturbation theory methods based on the GW approximation
and the Bethe-Salpeter equation (BSE) provide a first-principles route to model-
ing one- and two-particle excitations in a variety of bulk and molecular systems.
This chapter reviews the current status of GW -BSE methods in the context of
confined systems. We describe methods for basis set convergence, which allow
sufficient numerical precision for accurate benchmarking of GW and BSE theory
and study various theoretical approximations within GW . The differences in
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various flavors of GW and GW -BSE, including perturbative, self-consistent, and
vertex-corrected implementations, are compared in the context of benchmark sets
of sp-bonded aromatic molecules and Group IB and IIB transition metal atoms
and ions with filled d shells.

1 Introduction

From a historical perspective, excited-state descriptions of materials have lagged
behind descriptions of the ground state. This is especially true for density functional
theory (DFT) methods where the initial formalism was developed to describe only
ground-state properties. However, studies during the last three decades on time-
dependent density functional theory (TDDFT) and Green’s function methods, such
as the GW approximation and the Bethe-Salpeter equation (BSE), have provided
new methodologies to examine excited-state properties within similar frameworks
as the ground state (Hedin 1965; Hybertsen and Louie 1986; Strinati 1988; Rohlfing
and Louie 2000; Onida et al. 2002; Casida 2009). Developed in the mid-1960s by
Hedin, the GW approximation allows one to solve for the interacting one-particle
Green’s function, whose poles are associated with vertical ionization potentials
and electron affinities as measured in photoemission and inverse photoemission
experiments. The BSE, on the other hand, allows one to construct an interacting two-
particle correlation function from one-particle Green’s functions; the poles of the
two-particle Green’s function are associated with neutral excitations such as those
observed in optical absorption experiments. Developments in TDDFT, also used
to simulate neutral excitations, are covered in greater detail in another chapter of
this Handbook �Chap. 6, “TDDFT and Quantum-Classical Dynamics: A Universal
Tool Describing the Dynamics of Matter”.

Since the overview of GW and BSE methods in the first edition of the
Handbook of Materials Modeling (Louie and Rubio 2005), many-body perturbation
theory methods based on the GW -BSE formalism have become standard tools to
simulate the excited state of materials. However, while certain theoretical methods
underlying the GW approximation and the BSE are well established, the accuracy
of such methods in predicting properties of real systems is still being assessed
and improved. Recent benchmarks for various bulk materials, nanostructures, and
molecules are now available to quantify the trade-off between cost and accuracy for
approximations within GW and the BSE. In this chapter, we discuss how theoretical
and numerical approximations affect the accuracy of excited-state energies for
confined systems, e.g., nanoclusters and molecules.

The physical properties of confined systems can deviate from those of extended
systems; specifically, stronger self-interaction effects and less delocalized wave
functions would be expected (especially in atoms and small molecules). Therefore,
any conclusions from benchmarks of TDDFT, GW , and the BSE on the solid
state might not be completely applicable to confined systems. Nevertheless, in
the past 10 years, multiple GW and GW -BSE benchmarks specifically focused
on molecules have been reported to quantify the accuracy of different levels of
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theory (Ma et al. 2010; Rostgaard et al. 2010; Ke 2011; Faber et al. 2011; Qian
et al. 2011; Blase and Attaccalite 2011; Ren et al. 2012; Baumeier et al. 2012;
Marom et al. 2012; Bruneval and Marques 2013; Pham et al. 2013; Caruso et al.
2013; Atalla et al. 2013; Koval et al. 2014; Boulanger et al. 2014; Körbel et al.
2014; Hirose et al. 2015; Wang 2015; Krause et al. 2015; Bruneval et al. 2015;
Jacquemin et al. 2015; van Setten et al. 2015; Hung et al. 2016, 2017; Knight et al.
2016; Blase et al. 2011, 2016). Several of these benchmarks also compare software
packages to validate the different implementations. In general, GW -BSE methods
have proven to be rather accurate for modeling charged and neutral excitations,
particularly for excitations between orbitals with s and p character. For systems
containing transition metal elements, however, computations using the GW -BSE
formalism face greater challenges, since the enhanced electron correlations inherent
in such systems necessitate the use of more sophisticated approaches beyond simple
perturbative implementations. Understanding the level of theory needed to achieve
a reasonable balance between accuracy and computational demand is therefore a
crucial step in enhancing the predictive power of the GW -BSE formalism and
extending its applicability to a wider range of materials.

In Sect. 2, we begin by reviewing the theory and implementation of the GW -
BSE framework, including descriptions of prevalent approximations. In Sect. 3, we
discuss methods that improve the numerical convergence of energies, which enables
the theoretical accuracy of GW -BSE to be accurately compared. In Sect. 4, we apply
various flavors of GW -BSE methods, including perturbative (one-shot) G0W0,
GW calculations performed with a simple vertex derived from the local density
approximation (LDA) of DFT, and self-consistent GW (in the form of quasiparticle
and eigenvalue self-consistency), as well as the ensuing BSE calculations. Our
examples are centered on a set of six aromatic molecules comprising benzene
(C6H6), thiophene (C4H4S), 1,2,5-thiadiazole (C2H2N2S), naphthalene (C10H8),
benzothiazole (C7H5NS), and tetrathiafulvalene (TTF, C6H4S4) and Group IB and
IIB atoms in three valence electron configurations: d10 (Cu+, Ag+, Zn2+, and
Cd2+), d10s1 (Cu0, Ag0, Zn+, and Cd+), and d10s2 (Cu−, Ag−, Zn0, and Cd0).
We conclude with a brief summary in Sect. 5.

2 Many-Body Perturbation Theory and Implementation

In this section, we present the theory behind the GW -BSE framework and an
implementation that uses a transition-space representation of excited states. The
transition-space (spectral) basis is efficient for confined systems due to their discrete
energy levels. It also allows the exact integration of GW self-energies, unlike
the contour deformation (Godby et al. 1988) and plasmon pole (Hybertsen and
Louie 1986) techniques commonly used with a plane-wave basis. The framework
described throughout this section is presented in more detail in Tiago and Che-
likowsky (2006).
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2.1 One-Particle Excitations: TheGW Approximation

Electron or hole injection into a system (e.g., processes occurring during ionization
or anion formation) is considered single-particle excitations. The energies of these
processes are associated with the poles of the one-particle Green’s function G,
which can be expressed as the Dyson equation:

G(1, 2) = G0(1, 2)+
ż

d(34)G0(1, 3)ΔΣ(3, 4)G(4, 2). (1)

Here, (1) ≡ (r1, σ1, t1) is a many-body notation for the spatial, spin, and time
coordinates, and G0 is a mean-field Green’s function. While G0 traditionally
denotes the noninteracting Green’s function (from a Hartree calculation), here we
use it to indicate any mean-field calculation, expressed in general as DFT with some
exchange-correlation potential Vxc. Equation 1 also includes the term ΔΣ , which is
the difference between the self-energy Σ and the mean-field exchange-correlation
potential.

In Hedin’s equations (Hedin 1965), the interacting one-particle Green’s function
can be determined self-consistently with four other equations that define the
polarizability χ , screened Coulomb interaction W , self-energy Σ , and vertex
function Γ :

χ(1, 2) = −i

ż

d(34)G(1, 3)G(4, 1+)Γ (3, 4; 2), (2)

W(1, 2) = VH (1, 2)+
ż

d(34)VH (1, 3)χ(3, 4)W(4, 2), (3)

Σ(1, 2) = i

ż

d(34)G(1, 3)W(4, 1+)Γ (3, 2; 4), (4)

Γ (1, 2; 3) = δ(1, 2)δ(1, 3)+
ż

d(4567)
δΣ(1, 2)

δG(4, 5)
G(4, 6)G(7, 5)Γ (6, 7; 3),

(5)

where 1+ denotes that t1 → t1 + η for some positive infinitesimal η, VH is the bare
Coulomb potential, and δ(1,2) is the Dirac delta function.

Hedin’s equations are too computationally demanding to model realistic systems.
Accordingly, an approximation is taken to reduce the three-point vertex function to

Γ (1, 2; 3) = δ(1, 2)δ(1, 3), (6)

which removes the need to evaluate a four-point integral. This vertex approximation
gives rise to the naming of the GW approximation, since the expression to compute
Σ becomes an integral over only G and W .
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For the implementation of a GW self-energy calculation using a quasiparticle,
transition-space basis, the self-energy Σ is partitioned into two contributions: a bare
exchange part Σx and a correlation part Σc. The bare exchange self-energy matrix
element between quasiparticles j and j ′ can be written as a sum over occupied
states:

〈j |Σx |j ′〉 = −
occ.∑

n

Kx
njnj ′, (7)

where the exchange kernel is

Kx
vcv′c′ =

ż

dr
ż

dr′ϕv(r)ϕc(r)VH (r, r′)ϕv′(r
′)ϕc′(r

′), (8)

and ϕ are real-valued quasiparticle wave functions. Since only states j , j ′, and
occupied states contribute to this finite summation, the exact value of Σx (given the
basis) can always be computed.

In contrast, the energy-dependent Σc is expressed as a double infinite sum over
quasiparticles n and transitions s:

〈j |Σc(E)|j ′〉 = 2
∞∑

n

∞∑

s

V s
njV

s
nj ′

E − εn − ωsηn

, (9)

where ηn is −1 for occupied state n (quasihole) and +1 for empty state n

(quasielectron), and

V s
nj =

occ.∑

v

empty∑

c

Kx
njvc

(
εc − εv

ωs

)1/2

Zs
vc, (10)

where εn are quasiparticle eigenvalues (poles of G), v is the index over occupied
states, and c is the index over empty states. The transition energies ωs (poles of W )
and eigenvectors with components Zs

vc are from the solution of Casida’s equations
(Casida 2009).

A cutoff in the infinite sums (over the number of empty states and transitions)
therefore must be chosen when computing Σc. As is discussed in Sect. 3, great care
must be taken to ensure numerical convergence of the correlation self-energy.

Once Σx and the energy-dependent Σc are summed to obtain the total self-
energy, the quasiparticle energy EQP is determined from the Dyson equation for
G (Eq. 1), expressed in the quasiparticle basis as

[
−1

2
∇2 + VH (r)+ V0(r)+ΔΣ(E

QP
j )

]
ϕ

QP
j = E

QP
j ϕ

QP
j , (11)

where V0 is a local external potential with contributions from the ionic potential and
the mean-field exchange-correlation potential. In the case of self-consistency, we
solve for the EQP that satisfies Eq. 11 at each iteration. Depending on the level of
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self-consistency, the quasiparticle wave functions ϕQP may also be updated, but in
a separate step. In that case, the full self-energy matrix – not just the diagonal terms
– must be computed at each iteration.

2.1.1 Vertex Approximations
Multiple works have addressed the issue of improving the description of the vertex
beyond that of conventional GW (Eq. 6) while still maintaining a computationally
efficient form. These alternate vertex functions may include higher-order terms
(Ummels et al. 1998; Maebashi and Takada 2011; Grüneis et al. 2014; Stefanucci
et al. 2014) or capture the response of density functionals (Del Sole et al.
1994; Marini and Rubio 2004; Bruneval et al. 2005). In this chapter, we include
benchmarks using a vertex derived from a local density functional approach, in
which the polarizability χ is expressed within TDDFT and a consistent level of
approximation is achieved by replacing the vertex function with

ΓLDA(1, 2; 3) = δ(1, 2)δ(1, 3)− iδ(1, 2)fxc(1)×
ż

d(45)G(1, 4)G(5, 1+)ΓLDA(4, 5; 3), (12)

where fxc = δVxc/δρ and Vxc is the LDA exchange-correlation potential. Although
a three-point vertex is needed to accurately describe certain physical properties
(Romaniello et al. 2009; Grüneis et al. 2014), this two-point form of the vertex
allows computations that cost only a prefactor more than conventional GW .

2.1.2 Levels of Self-Consistency
Because of the computational cost, GW predictions often are presented as a
perturbative (one-shot) result, which is computed by adding only one cycle through
Hedin’s equations onto the initial mean-field starting point instead of a fully self-
consistent procedure. This amounts to solving Eq. 11 for quasiparticle energies only,
with quasiparticle wave functions set to the mean-field (e.g., DFT) wave functions.
With this so-called G0W0 approximation, there is a significant dependence of the
predicted quasiparticle energies on the starting mean-field description.

Even when a self-consistent result is reported, the level of self-consistency must
be specified. Some self-consistent calculations are only eigenvalue self-consistent
(evGW ), where the “diagonal approximation” is applied so that quasiparticle wave
functions remain fixed at the mean-field wave functions and only eigenvalues are
updated. A higher level of self-consistency is achieved with quasiparticle self-
consistent GW (QSGW ), where the wave functions are optimized as well. In
QSGW (Faleev et al. 2004), the GW self-energy is used to construct a better
approximation for the mean-field effective potential, which is in turn used to build a
new set of mean-field Green’s functions. Using the new Green’s functions, the cycle
(including updates to W ) is repeated until self-consistency is reached between the
mean-field and new G0W0 Green’s functions. Note that even though QSGW allows
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updates to the wave functions, it is different from full self-consistency. Both evGW

and QSGW results are presented in Sect. 4.

2.2 Two-Particle Excitations:GW -BSE and TDDFT

The promotion of an electron into an excited state is considered a two-particle
excitation, due to the coexistence of both an electron and a hole. The BSE expresses
the two-particle correlation function L as (Strinati 1988)

L(1, 2; 1′, 2′) = G(1, 2′)G(2, 1′)+
ż

d(3456)G(1, 3)G(4, 1′)

K(3, 5; 4, 6)L(6, 2; 5, 2′), (13)

where G is, as before, the one-particle Green’s function, and the electron-hole
interaction kernel is expressed as

K(3, 5; 4, 6) = −iδ(3, 4)δ(5, 6)VH (3, 6)+ δΣ(3, 4)

δG(6, 5)
. (14)

Assuming that G is represented using quasiparticles and that electron-hole
excited states are long-lived, the BSE can be written as a generalized eigenvalue
problem with block matrix form (Rohlfing and Louie 2000):

(
A B

−B −A

)(
Xl

Yl

)
= Ωl

(
Xl

Yl

)
, (15)

where Ωl is the energy of electron-hole excitation l.
From the definition of the BSE kernel (Eq. 14), it is clear that G determines

the quality of ensuing BSE predictions. When G is obtained from the GW

approximation (as in the GW -BSE framework) and neglecting dynamical effects,
the BSE kernel can be split into an exchange part Kx (Eq. 8) and a direct part:

Kd
vcv′c′ = Kx

vv′cc′ + 4
∑

s

V s
vv′V

s
cc′

ωs

, (16)

and the block submatrices for GW -BSE corresponding to the spin-conserving
excitations (and ignoring spin-orbit interactions) are

A↑↑,↑↑ = A↓↓,↓↓ = D +Kx +Kd,

B↑↑,↑↑ = B↓↓,↓↓ = Kx +Kd,

A↑↑,↓↓ = B↑↑,↓↓ = A↓↓,↑↑ = B↓↓,↑↑ = Kx, (17)
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where

Dvcv′c′ = (Ec − Ev)δcc′δvv′, (18)

with c, c′ being indices for empty states, v, v′ being indices for occupied states,
and Ec and Ev being their quasiparticle energies. If the ground state is not spin
polarized, its neutral singlet (and triplet) excitations can be computed with a basis
set two times reduced. Singlet excitations correspond to a BSE Hamiltonian with

A = D + 2Kx +Kd,

B = 2Kx +Kd. (19)

In addition, when a vertex function is used in GW calculations, a corresponding
vertex contribution must also be added to the BSE kernel to maintain a consistent
level of theory. The LDA vertex term

K
f

vcv′c′ = 2
∑

s

V s
vv′F

s
cc′ + F s

vv′V
s
cc′

ωs

, (20)

is added to the BSE Hamiltonian wherever Kd contributes for GWΓLDA-BSE
calculations. Here, F s

nj has the same form as V s
nj (Eq. 10) with Kx

njvc replaced by

KLDA
njvc , where LDA exchange-correlation kernel KLDA is defined as

KLDA
vcv′c′ =

ż

drϕv(r)ϕc(r)fxc(r)ϕv′(r)ϕc′(r). (21)

The BSE can also use a lower level of approximation for G, constructing it
directly from wave functions and energies (ϕ and ε) corresponding to the Kohn-
Sham DFT electronic structure, with the self-energy in the BSE kernel (Eq. 14)
approximated by Σ(1, 2) ≈ Vxc(1)δ(1, 2). This form of the BSE is in fact linear-
response TDDFT in Casida’s formalism. The eigenvalue equation can be written as

R1/2
[
R + 4(Kx +KLDA)

]
R1/2Zs = ω2

s Zs. (22)

Here, the matrix R is diagonal with entries Rvcv′c′ = δvv′δcc′ (εc − εv). Compared to
GW -BSE, TDDFT offers a computationally more efficient method for calculating
absorption spectra of confined systems �Chap. 6, “TDDFT and Quantum-Classical
Dynamics: A Universal Tool Describing the Dynamics of Matter”.

As a final note, the BSE frameworks outlined above represent G in the diagonal
approximation. However, past work has shown that off-diagonal terms can alter
G0W0 and G0W0-BSE energies by more than 1 eV, especially for unoccupied states
in finite systems or when occupied states are poorly described within DFT (Rohlfing
and Louie 2000; Kaplan et al. 2015). In this chapter, we include the off-diagonal
terms with the expression
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Dvcv′c′ = δvv′
∑

c̄

εc̄〈c|c̄〉〈c̄|c′〉

− δcc′
∑

v̄

εv̄〈v|v̄〉〈v̄|v′〉,
(23)

where c and v are indices for the original Kohn-Sham DFT electronic structure and
the overbar indicates energies and wave functions of the diagonalized quasiparticle
basis. The equation above is used in place of Eq. 18 when solving the BSE. Note that
the expression above corresponds to the case where the occupied-state subspace and
the unoccupied-state subspace are diagonalized separately and the electron density
remains unchanged (Tiago and Chelikowsky 2006; Hung et al. 2017).

3 Numerical Convergence

The typical target for theoretical accuracy in GW and BSE is ∼0.1 eV. Therefore,
the necessary numerical accuracy must also be near ∼0.1 eV. This level of accuracy
in the computation of charged and neutral excitation energies of confined systems
requires one to pay particular attention to convergence issues within the GW -BSE
framework. We focus here on the evaluation of the correlation self-energy (Eq. 9),
where summations over empty states converge slowly and become the bottleneck of
the computation. More generally stated, this is where convergence relative to basis
set size is most difficult. The challenge in obtaining the convergence of excited-
state energies with basis set size has motivated the development and testing of
techniques to accelerate convergence or approximate the complete basis set limit.
These include extrapolation (Sharifzadeh et al. 2012; Klimeš et al. 2014; Hung et al.
2014), the extrapolar method (Anglade and Gonze 2008; Bruneval and Gonze 2008;
Berger et al. 2010), Lanczos-chain techniques (Rocca et al. 2008; Umari et al. 2010),
construction of more efficient basis sets (Samsonidze et al. 2011; Jiang and Blaha
2016), sampling fewer high-energy states (Gao et al. 2016), and approximations
for the missing basis set contributions (Tiago and Chelikowsky 2006; Kang and
Hybertsen 2010; Deslippe et al. 2013).

The methods that approximate missing basis set contributions are based on
adding a “static remainder” correction to the GW correlation self-energy. This
correction is derived from the static limit of the GW approximation, which is known
as the Coulomb-hole-screened-exchange (COHSEX) approximation, and is added
to summation over quasiparticles (Eq. 9) truncated at some quasiparticle index N .
In work by Tiago and Chelikowsky (2006), the COHSEX correction is given by the
difference between the total COHSEX Σc calculated using a completeness relation
and the COHSEX Σc in sum-over-states form, truncated at the same index N . More
recent work shows that a correction of half that difference is a better approximation
(Kang and Hybertsen 2010; Deslippe et al. 2013).

While the static remainder already improves convergence for most confined
systems, it is important to note that it only enhances the convergence of the
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summation over quasiparticle states. In addition, numerical convergence must also
be sought with respect to the infinite summation over transitions s in the expression
for Σc. We focus here on methods of extrapolation to achieve that convergence.

To approach the complete basis set limit with respect to transitions s via
extrapolation, one can calculate the GW energies with increasing number of
quasiparticle states N and increasing number of transitions s between those states.
The converged GW energy is then obtained by fitting E∞ and coefficients c1 and
c2 to

E(N) = E∞ + c1

N + c2
, (24)

where the 1/N dependence has been suggested (Gulans 2014) as arising from the
electron-electron cusp condition. With atom-centered Gaussian-type basis sets that
are more common in quantum chemistry methods, similar extrapolation and fitting
schemes can be used. Since all quasiparticles and transitions that exist within a given
basis are included in the computation, extrapolation is performed across basis sets
of increasing size. With Dunning basis sets, the GW energies at the complete basis
set limit are obtained by fitting the extrapolated energy E∞ and coefficient c1 to

E(X) = E∞ + c1X
−α (25)

where X = 3, 4, or 5 ranging from aug-cc-PVTZ, aug-cc-PVQZ, or aug-cc-PV5Z,
respectively. An X−3 dependence – equivalent to the N−1 scaling where N is the
number of basis functions – is commonly used for extrapolating the correlation
energy with Dunning basis sets (Bruneval 2012; Kaplan et al. 2016). However, a
smaller exponent (α ≈ 2) has been empirically shown to provide a better fit for
quasiparticle energies computed on finite basis sets (Truhlar 1998; Bruneval et al.
2016).

In this chapter, the majority of computations use the RGWBS software suite
(Tiago and Chelikowsky 2006), with numerical convergence achieved with a
combination of the half COHSEX remainder and extrapolation. Results from
BerkeleyGW (Deslippe et al. 2012) are converged with a combination of sampling
high-energy states and extrapolation. Results from MolGW (Bruneval et al. 2016)
use extrapolation.

4 Simulating Atoms andMolecules

4.1 Numerical Validation

Software packages make a variety of choices in their numerical implementation
that may affect the final computed GW results. We compare the RGWBS software
suite with BerkeleyGW and MolGW and find that the numerical error is fairly well
controlled. RGWBS, which represents wave functions on a uniform real-space grid,
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Fig. 1 Error of G0W0 IPs
relative to experiment.
Computations use two
software packages: black
circles are RGWBS
(real-space framework), and
orange squares are
BerkeleyGW (plane-wave
framework)
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and BerkeleyGW, which has a plane-wave basis, are compared in Fig. 1 across the
aromatic molecule test set (Hung et al. 2016). The frontier orbitals differ by no more
than 80 meV, and only five IPs differ by more than 100 meV despite the different
basis sets and other numerical approximations. A similar comparison has also been
made comparing MolGW, which represents wave functions with Gaussian bases,
with RGWBS for transition metal atoms and ions, with differences at the complete
basis set limit near ∼0.2 eV (Hung et al. 2017).

Figure 1 also shows that, often, G0W0 with a LDA or generalized gradient
approximation (GGA) starting point is sufficient for good agreement with experi-
ment in sp-bonded systems (see Sect. 4.3 below). As has also been noted in earlier
work, we observe that the error in G0W0 energies is insensitive to the type of orbital,
correcting from DFT where the energies of orbitals with σ character are significantly
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less accurate than those of π orbitals (Hybertsen and Louie 1986; Qian et al. 2011;
Marom et al. 2012).

4.2 Starting-Point Dependence

Among the various approximations, the effect of the mean-field starting point on the
quasiparticle energies of molecules has perhaps been the most studied. In multiple
benchmarks, hybrid functional mean-field starting points have been consistently
observed to produce better agreement between G0W0 and experiment as seen in
benchmarks referenced in Sect. 1. Here we only briefly touch on one set of examples
illustrating the starting-point dependence.

The effect of the amount of exact exchange in the mean-field starting point on
GW predictions is shown in Fig. 2 for the Zn atom and ions. Computations in
MolGW are performed where none, half, or all of the exchange density functional is
replaced with a corresponding amount of exact exchange (Hung et al. 2017). At the
DFT level, the lowest unoccupied molecular orbital (LUMO) becomes less bound
with increasing amounts of exact exchange, while the highest occupied molecular
orbital (HOMO) is more bound. The G0W0 results decrease or even reverse the trend
observed at the DFT level, and the changes in trends are most evident at the evGW
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Fig. 2 DFT (left), G0W0, and evGW (right) quasiparticle energies of Zn, Zn+, and Zn2+ with
mean-field starting points of 0% exact exchange (GGA), 50% exact exchange, and 100% exact
exchange (HF). Dashed lines indicate the experimentally measured IPs
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level of theory. This example illustrates that the starting-point dependence persists
even if eigenvalues are iterated to self-consistency. The starting-point contribution
may only be removed with optimization of the quasiparticle wave functions as well.

4.3 Combining Γ and Self-Consistency

The LDA-derived vertex approximation has, in the past, been generally associated
with a near-constant shift of all energies compared to conventional GW values.
We see the same trend for our test set of aromatic molecules (Fig. 3). Compared to
G0W0 ionization potentials (IPs), G0W0ΓLDA predictions are consistently shifted
downward by∼0.7 eV. The electron affinities (EAs) are similarly shifted downward

Fig. 3 Shift of quasiparticle
energies from predictions at
G0W0, for GW variants
including self-consistency
and vertex corrections, for the
aromatic molecule set
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by ∼0.7 eV for G0W0ΓLDA compared to G0W0. As a result, going from G0W0 to
G0W0ΓLDA barely affects the fundamental gap.

Figure 3 also shows that quasiparticle self-consistency makes the occupied
orbitals more bound compared to the perturbative calculations. The first IP is slightly
shifted upward, and deeper orbitals exhibit a greater shift. In contrast, EAs move in
the opposite direction from IPs and become more negative compared to perturbative
results. Quasiparticle self-consistency therefore increases the fundamental gap by
0.8–0.9 eV.

The two trends of the near-constant shift of eigenvalues after applying ΓLDA
and the opening of the GW gap upon self-consistency agree with other benchmark
studies for both confined and extended systems. In addition, these trends are also
observed when both the LDA vertex and self-consistency are applied in combination
through QSGWΓLDA. The IPs predicted by QSGWΓLDA remain nearly a constant
shift below those predicted by standard QSGW with an energy difference ∼0.8 eV,
and the EAs computed via QSGWΓLDA are on average ∼0.8 eV lower than those
computed with QSGW . Again, the fundamental gap, predicted with ΓLDA, is
essentially unchanged from the gap of conventional QSGW .

For the IPs, these benchmarks show a cancellation between the effects of vertex
corrections and GW self-consistency, as reported in earlier work (Shirley 1996;
Ummels et al. 1998). For EAs, on the other hand, we see that the vertex and self-
consistency effects are still roughly the same magnitude, but they shift in the same
direction from G0W0 predictions, such that QSGWΓLDA compounds their effects
instead of canceling them out. The comparable magnitudes of self-consistency
and vertex corrections are likely coincidental, although it may be worth studying
whether such cancellations for IP predictions are inherent to the physical properties
of aromatic or sp-bonded molecules.

In benchmarks relative to experiment, we find that despite the greater effort in
ΓLDA and self-consistent computations, G0W0 predictions are closest to measured
IPs. Experimental measurements exist for IPs up to 15 eV in most of the molecules,
and G0W0 energies all lie within 0.6 eV of measured values with a mean absolute
error less than 0.3 eV (Figs. 1 and 4). Predictions of IPs from G0W0ΓLDA are
too low, consistent with a benchmark of single atoms (Morris et al. 2007). The
quasiparticle self-consistent results reverse the trend: an increase of the QSGW

IPs from perturbative values results in decreased accuracy, but the increase in
QSGWΓLDA IPs improves agreement with experiment – although not to the extent
of improving on the G0W0 values.

Experimental comparisons for EAs are only available for benzene and naphtha-
lene, which are reported in Table 1 together with our GW predictions. In contrast
to the IPs, it is G0W0ΓLDA and QSGW that best predict the EAs. Interestingly,
EAs from G0W0ΓLDA are in good agreement with coupled-cluster [CCSD(T)]
calculations, although both are too negative relative to experiment. It is unclear
whether these differences are due to the difficulties in experimental measurements
or an inaccurate representation of the unoccupied orbitals in the calculations. For
instance, the limited basis set used in the higher-order corrections of CCSD(T) may
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Fig. 4 Error for the first IP
(top) and the mean absolute
error of orbitals with IPs up to
15 eV (bottom), relative to
experiment for each molecule
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Table 1 First EA in eV with comparison to electron transmission spectroscopy (ETS) measure-
ments (Burrow et al. 1987) and CCSD(T) (Hajgató et al. 2008) calculations

Molecule Orbital ETS CCSD(T) G0W0 G0W0ΓLDA QSGW QSGWΓLDA

Benzene 1e2u (π∗) −1.12 −1.526 −0.84 −1.55 −1.33 −2.12

Naphthalene 2b1g (π∗) −0.19 −0.477 0.38 −0.30 −0.15 −0.93

numerically bind the wave functions, and similarly, our perturbative calculations use
a DFT-LDA electronic structure, a theory which over-binds the unoccupied orbitals.

When we take the difference of predicted IP and EA for each molecule, we
find that the fundamental gaps of benzene and naphthalene computed using QSGW

(11.01 and 8.61 eV, respectively) and QSGWΓLDA (10.98 and 8.57 eV) are nearly
identical to fundamental gaps determined from experimental IPs and CCSD(T) EAs
(10.98 and 8.62 eV). However, we also see that no single variant of GW studied
here is best for the absolute IPs and EAs. For perturbative calculations, G0W0 is
more accurate for IPs, and G0W0ΓLDA is more accurate for EAs, while among
self-consistent calculations (which reduce or eliminate starting-point dependence),
QSGWΓLDA is more accurate for IPs, and QSGW is more accurate for EAs.
This example simulating real molecules confirms an earlier prediction derived from
model systems: a two-point DFT-derived vertex can alleviate self-screening errors
felt by occupied orbitals, but only a three-point vertex can be expected to treat both
occupied and unoccupied orbitals accurately (Romaniello et al. 2009).

Concerning self-consistency, these results contrast with multiple benchmarks
which show improved spectral properties for molecules after eigenvalue, QS, or
fully self-consistent GW (Dahlen and van Leeuwen (2005), Stan et al. (2006),
and Stan et al. (2009) and some references in Sect. 1). These computations are
performed using various numerical implementations. Therefore, for self-consistent
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GW , numerical considerations such as the choice of a quasiparticle basis for self-
consistency and the basis set chosen to represent wave functions must be better
understood before a consensus can be reached on the theoretical accuracy of self-
consistent GW for molecules.

Eigenvalue self-consistency and the LDA vertex are also used to compute
GW quasiparticle energies of Cu, Ag, Zn, and Cd atoms in neutral and charged
configurations, with comparison to experiment in Fig. 5. Similar to QSGW with
the aromatic molecules, evGW widens the fundamental gap, although not all
quasiparticle energies are affected to the same degree. The evGW energies for
the HOMOs with s character (d10s and d10s2 valence) remain fairly similar to
perturbative values. However, the energies of the LUMOs (all of which have s

character) increase, and energies of the HOMO with d character (d10 valence)
decrease. The resulting d quasiparticle energies from evGW are less accurate than
in G0W0, and there is no systematic improvement for s or p states. Again, the

Fig. 5 Error of GW

quasiparticle energies for Cu,
Ag, Zn, and Cd atoms and
ions, relative to experiment
for various flavors of GW .
The reference valence
electron configurations are
given in bold on the right
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worsened quasiparticle energies differ from the majority of self-consistent GW

benchmarks (see list of benchmarks in Sect. 1), but similar results were observed
in earlier studies of azabenzenes and small transition metal molecules (Marom et al.
2012; Körbel et al. 2014).

A more unusual result is observed for the LDA-vertex-corrected GW bench-
marks. Unlike the aromatic molecule test set (and other earlier studies), the energy
change associated with the vertex correction is not constant but rather ranges
between 0.6 and 1.1 eV. The variation is not due to differences in angular momentum
character – indeed, the energy differences for d-states are ∼0.8 eV, in the middle of
the observed range. However, the LDA-derived vertex function’s sensitivity to the
local wave function amplitude is showcased by the character of orbitals on single
atoms, which range from localized to diffuse. We observe that the LDA vertex
affects the quasiparticle energies most dramatically for the HOMO corresponding
to the d10s ← d10 and the d10s2 ← d10s excitations; the quasiparticle wave
functions used in computing these states are overly delocalized due to the use of
the LDA exchange-correlation functional. In contrast, the LDA vertex changes the
quasiparticle energies the least for the LUMO corresponding to the d10s → d10s2

excitation; this wave function is overly localized by the LDA exchange-correlation
functional.

Despite the increased versatility of the LDA vertex in this context, the inclusion
of ΓLDA still does not improve agreement with experiment, and G0W0 remains
the best predictor of ionization energies for these single atoms. Eigenvalue self-
consistency and the LDA vertex correction together also do not exhibit any
fortuitous cancellation of effects for this test set.

These benchmarks show that, although self-consistent GW solutions have certain
theoretical advantages, such as starting-point independence, fulfillment of energy
and momentum conservation laws, and consistent values for observables when using
different partitioning functions (Baym 1962), they do not necessarily perform well
for the spectral properties of confined systems. In fact, for fully self-consistent
GW , inaccuracies in computed values are unavoidable as long as the vertex
approximation remains. This is the same as for extended (bulk) systems, where
ground-state properties are in general accurately represented by self-consistent GW ,
but band energies can be less accurate than perturbative calculations, and valence
bandwidths are too large (Ku and Eguiluz 2002; Kutepov et al. 2009).

4.4 GW -BSE

When computing two-particle interactions within the GW -BSE framework, the
initial errors in the quasiparticles predicted via GW (and DFT) may be propagated,
amplified, or canceled out. Therefore, the level of theory best for GW -BSE must be
confirmed in benchmarks separate from the GW approximation alone.

We begin with a quick check of numerical convergence in the top row of Fig. 6,
which contains TDDFT (with LDA exchange-correlation) spectra for the aromatic
molecules in our test set computed in two different-sized simulation cells. For
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Fig. 6 The absorption cross section for each of the molecules as predicted by various levels
of theory (with Gaussian broadening of 0.1 eV). The TDLDAbig calculations are performed in
simulation cells with radii of 20 bohr, while TDLDAsmall simulation cells have radii that are either
12 bohr (for benzene, thiophene, and 1,2,5-thiadiazole) or 14 bohr (for naphthalene, benzothiazole,
and TTF). GW -BSE calculations are performed in the smaller simulation cells

both cell sizes, the lowest-energy excitations are in agreement; deviations are only
observed for the higher-energy excitations that involve transitions to regions farther
from the atomic cores. This suggests that the simulation cell size is numerically
converged for the lower-energy, localized excitations. Figure 6 also illustrates the
trends in the GW -BSE energies (in the diagonal approximation) occurring due to
self-consistency and the vertex function. The spectra from perturbative GW -BSE
(G0W0-BSE and G0W0ΓLDA-BSE) are all redshifted compared to the other spectra.

The trends due to self-consistency and the vertex approximation are also reflected
in the detailed comparison of GW -BSE predictions of low-lying valence (localized)
singlet excitations, in the top left panel of Fig. 7. All calculations are presented
as the difference from mixed GW -BSE predictions, which we explain later in
this section. In these benchmarks, the choice of vertex only minimally changes
excitation energies. This is unsurprising, since as mentioned in the previous section,
the energy differences between quasiparticles (both holes and quasielectrons) upon
adding the LDA vertex essentially amount to a rigid shift, while energy differences
between quasiparticle levels remain unchanged. The small differences in transition
energies upon inclusion of ΓLDA – increasing an average of 0.09 eV for perturbative
GW -BSE and 0.02 eV for QSGW -BSE – are attributed to the inclusion of ΓLDA
in the BSE kernel. In contrast, self-consistency in GW -BSE has a large effect
on excitation energies. QSGW -BSE has an average 0.91 eV increase of singlet
excitation energies over G0W0-BSE, and QSGWΓLDA-BSE has an average 0.84 eV
increase compared to G0W0ΓLDA-BSE.
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Fig. 7 Left: with mixed GW -BSE predictions as reference, the top panel plots the difference
between vertical valence excitation energies predicted by several variants of GW -BSE; the bottom
panel is the difference between mixed GW -BSE and literature values computed using quantum
chemistry methods (see text for references). Right: the difference between TDDFT and GW -BSE
predictions and literature “reference” values

A comparison of GW -BSE and TDDFT predictions relative to best previous
theoretical results for the aromatic molecules is shown in the right panel of Fig. 7.
For benzene, naphthalene, and thiophene, the best previous theoretical values were
computed including contributions from singles, doubles, and triples excitations
(Falden et al. 2009; Fliegl and Sundholm 2014; Stenrup 2012). The mean absolute
difference across these three molecules is 0.78 eV for G0W0-BSE, 0.68 eV for
G0W0ΓLDA, 0.25 eV for QSGW -BSE, 0.24 eV for QSGWΓLDA-BSE, and 0.25 eV
for TDDFT. For 1,2,5-thiadiazole, the cited calculation only includes singles and
doubles excitations (Palmer 2008), and the mean absolute difference is larger at
1.26 eV for G0W0-BSE, 1.14 eV for G0W0ΓLDA, 0.33 eV for QSGW -BSE, 0.29
for GWΓLDA-BSE, and 0.61 for TDDFT. We observe that BSE calculations that
build on perturbative GW calculations produce singlet excitation energies that are
too small by 0.7–0.8 eV compared to previous theoretical computations of benzene,
naphthalene, and thiophene. On the other hand, QSGW -BSE and QSGWΓLDA-
BSE have mean signed differences that are negative for benzene but positive for
naphthalene and thiophene.

In Figs. 6 and 7, we also mention a “mixed GW -BSE” method. This is where we
apply the BSE to a mixed set of GW quasiparticles: occupied orbitals are associated
with G0W0 quasiparticle energies, unoccupied orbitals have G0W0ΓLDA quasiparti-
cle energies, and the screened interaction is computed using LDA quantities without
vertex contributions. The quasiparticle wave functions in this case are given by
the DFT wave functions. The mixed GW -BSE calculation is motivated by the
observation in the previous section that G0W0 energies have the best agreement with
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experimental values for IPs, while G0W0ΓLDA energies are better for EAs. Through
this construction, mixed GW -BSE has an optical gap larger than perturbative GW -
BSE calculations, which better matches reference values. For this set of molecules,
the mean signed difference between mixed GW -BSE and previous theoretical
results is approximately −0.1 eV, but we emphasize that this observed cancellation
of effects is not necessarily transferable across different physical systems.

Also in Figs. 6 and 7, TDDFT predictions for localized valence excitations
of sp-bonded molecules are shown to be in good agreement with higher-level
quantum chemistry calculations. However, TDDFT with the LDA functional cannot
properly simulate excitations such as charge-transfer and Rydberg excitations,
where long-range interactions become important (Tozer and Handy 1998; Casida
et al. 1998). In such cases, TDDFT functionals that better account for exchange and
correlation interactions must be used to produce good optical spectra for molecules
(Refaely-Abramson et al. 2011; Leang et al. 2012; Laurent and Jacquemin 2013).
This reliance on specific exchange-correlation functionals contrasts with the self-
consistent GW -BSE framework, which – assuming an adequate starting point –
treats all excitations on equal footing.

We now turn to predictions from variants of the GW -BSE method for optical
excitations in the Group IB and IIB atoms and compare them with spin-orbit-
averaged experimental absorption energies and TDDFT eigenvalues. We focus on
low-lying, spin-conserving excitations promoting electrons from the HOMO to
the unoccupied valence s or p shells. Here, we also move beyond the diagonal
approximation (Eq. 18), which was used for all GW -BSE energies computed for the
above aromatic molecules, and determine BSE eigenvalues while also accounting
for off-diagonal terms of the GW self-energy. Figure 8 and Table 2 summarize the
GW -BSE error relative to experiment, with the rectangles in Fig. 8 indicating the
ranges from minimum to maximum error across the Cu, Ag, Zn, and Cd test set.

In the diagonal approximation, perturbative GW -BSE eigenvalues underestimate
absorption energies, with improvements in accuracy for self-consistent GW -BSE,
a trend consistent with other recent GW -BSE benchmarks of confined systems.
The inclusion of the LDA vertex increases the predicted energies of optical
excitations; however, without self-consistency (BSE@G0W0ΓLDA@LDA), this still
underestimates excitation energies. This is the same trend as observed for the
aromatic molecules above, where perturbative GW -BSE excitation energies are
too small, and some amount of self-consistency must be incorporated for better
agreement with reference energies.

With the inclusion of off-diagonal terms, however, the predicted absorption
energies increase for all variants of GW -BSE. This effect occurs because the
low-lying LDA (and GGA) unoccupied orbitals are overly localized, and off-
diagonal terms help delocalize the quasiparticles. With this energy increase,
eigenvalue self-consistency no longer improves accuracy for all calculations.
BSE@evGW@LDA deteriorates in accuracy compared to BSE@G0W0@LDA,
but BSE@evGW@GGA is the most accurate variant of conventional GW tested,
with errors no more than 0.5 eV. We also find that the computationally efficient
BSE@G0W0ΓLDA@LDA provides excellent agreement with experiment that is
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Fig. 8 Error of GW -BSE
predictions relative to
experimental absorption
energies from a d10 (first four
sets of bars), d10s (fifth set),
or d10s2 (sixth set) electron
configuration to the
configuration listed along the
horizontal axis. Rectangles
matching the legend indicate
the error range across the Cu,
Ag, Zn, and Cd test set, with
fainter colored bars providing
a guide for the eye
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Table 2 Mean error of GW -BSE eigenvalues (including off-diagonal terms) associated with
excitations from the HOMO to the lowest empty s or p quasiparticle, relative to experimental
energies

BSE@ BSE@

TDDFT G0W0 evGW G0W0ΓLDA evGWΓLDA G0W0 evGW

Transition @LDA @LDA @GGA

d10s2 → d10sp (1P) −0.03 −0.29 −0.07 −0.10 −0.06 – –

d10s → d10p (2P) 0.51 −0.21 −0.09 −0.05 −0.04 – –

d10 → d9p (1P) −1.48 −0.28 0.72 0.21 1.11 −0.81 0.18

d10 → d9p (1D) −1.90 −0.56 0.50 −0.01 0.92 −1.08 −0.03

d10 → d9p (1F) −1.95 −0.75 0.25 −0.23 0.67 −1.27 −0.28

d10 → d9s (1D) −1.54 −0.56 0.44 −0.11 0.84 −1.08 −0.10

comparable to BSE@evGW@GGA. While further study is needed, at least for
the Group IB and IIB test set, DFT-derived vertex corrections combined with off-
diagonal terms allow an accurate calculation of BSE energies from less exact GW

quasiparticles.

5 Summary

Computational advances now make it feasible – if still expensive – to perform GW

calculations at varying levels of theory, and researchers have begun to understand
the intricate approximations used to model the excited state from first principles.
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In this chapter, we discussed many-body perturbation theory methods that
allow the simulation of the excited state in confined systems. We overviewed an
efficient implementation of GW , BSE, and TDDFT that uses a transition-space
basis to describe excitations and presented benchmarks of excitations in atoms and
molecules, comparing approximations taken in theory and implementation. Since
the accuracy of variants of GW and GW -BSE can be compared only after knowing
the numerical accuracy for context, we discussed the impact of finite basis sets,
including methods to estimate quasiparticle energies at the complete basis set limit.

Using test sets of aromatic molecules and transition metal atoms and ions,
we examined the impact of self-consistency within GW as well as the vertex
approximation. In our benchmarks involving self-consistency, we found worsened
accuracy compared to G0W0 results but caution that the performance of these
and other benchmarks may still be influenced by numerical approximations, not
just theory. For the LDA-derived vertex, the results presented here generally
agreed with past work, where the vertex shifted both occupied and unoccupied
states to lower energies compared to conventional GW . However, while all past
results reported shifts of a near-constant magnitude, the LDA vertex applied to
transition metal atoms resulted in shifts whose magnitude varied according to the
diffusivity of associated orbitals. We also addressed the off-diagonal terms of the
self-energy. These did not necessarily improve accuracy in GW predictions (such as
in QSGW ) but did contribute to improved descriptions of neutral excitations within
the perturbative GW -BSE framework.
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Abstract

The interaction of electrons with crystal lattice vibrations (phonons) and col-
lective charge-density fluctuations (plasmons) influences profoundly the spectral
properties of solids revealed by photoemission spectroscopy experiments. Pho-
toemission satellites, for instance, are a prototypical example of quantum
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emergent behavior that may result from the strong coupling of electronic
states to plasmons and phonons. The existence of these spectral features has
been verified over energy scales spanning several orders of magnitude (from
50 meV to 15–20 eV) and for a broad class of compounds such as simple
metals, semiconductors, and highly doped oxides. During the past few years, the
cumulant expansion approach, alongside with the GW approximation and the
theory of electron-phonon and electron-plasmon coupling in solids, has evolved
into a predictive and quantitatively accurate approach for the description of
the spectral signatures of electron-boson coupling entirely from first principles,
and it has thus become the state-of-the-art theoretical tool for the description
of these phenomena. In this chapter we introduce the fundamental concepts
needed to interpret plasmon and phonon satellites in photoelectron spectra, and
we review recent progress on first-principles calculations of these features using
the cumulant expansion method.

1 Introduction

The emergence of satellites in photoemission spectroscopy provides direct evidence
of the electronic coupling to bosonic excitations in solids. Satellites are spectral
features that reflect the simultaneous excitation of a hole and of a boson, and they
are separated from the quasiparticle peak by a multiple of the boson energy. The
origin of these features may be understood based on simple considerations on the
energy scales involved in the photoemission process. When a photon with energy
h̄ω is absorbed by an electron with binding energy εi , if no boson modes are excited
in the system, energy conservation requires the condition h̄ω = εi + Φ + Ekin to
be satisfied, where Φ is the work function of the system and Ekin is the kinetic
energy of the photo-emitted electron. In photoemission, by measuring Ekin and Φ,
the electron binding energy can thus be inferred. If, in addition to the creation of
a hole, a fraction of the absorbed photon energy is transferred to the system in the
form of bosonic modes, such as plasmons and phonons, the energy conservation
condition is modified as follows: Ekin = h̄ω − εi − nEb − Φ, where Eb is the
energy of the boson and n an integer. Since h̄ω and Φ are constants, the kinetic
energy distribution of the photo-emitted electrons will be peaked at the energies
corresponding to (i) the binding energy of electrons εi and (ii) the sum of the binding
and boson energies εi + nEb, and it may thus provide direct information regarding
the coupling of electrons to bosonic modes in solids.

The presence of satellites in the photoemission spectra of solids was first
predicted by a theoretical analysis of the spectral function of the homogeneous
electron gas by Lundqvist (1967), Hedin and Lundqvist (1970), and Langreth
(1970) and subsequently verified experimentally for the core electrons of simple
metals (Baer and Busch 1973). Recently, the availability of energy resolutions of
the order of 25–50 meV in angle-resolved photoelectron spectroscopy (ARPES)
made it possible to observe new low-energy signatures of electron-boson coupling
in experiments. In particular, high-resolution ARPES measurements of graphene
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by Bostwick et al. (2010) have revealed plasmon-induced satellite structures with
characteristic energies of the order of ∼1 eV. More recently, polaronic satellites at
energies of the order ∼100 meV from the band edges have been observed in doped
oxides, for example, by Moser et al. (2013) and Wang et al. (2016). At variance with
valence-plasmon satellites, which typically appear at energies between 5 and 15 eV
below the Fermi energy and have been known since the early days of photoemission
spectroscopy, low-energy satellites are a manifestation of the coupling between
low-energy bosonic modes and electronic carriers near the band edges. In addition
to the formation of satellites, the coupling to bosons may lead to the emergence
of photoemission kinks (Lanzara et al. 2001; Damascelli et al. 2003) and to a
renormalization of energy levels (Logothetidis et al. 1992; Giustino et al. 2010;
Poncé et al. 2015) and carrier lifetimes (Eiguren et al. 2002; Park et al. 2007).

In this chapter we will discuss the state-of-the-art techniques for the description
of plasmon and polaron satellites and their application to the prediction and
interpretation of photoemission spectroscopy experiments.

2 The Localized ElectronModel

To illustrate how the interaction between electrons and bosons may lead to the
emergence of satellites in photoemission spectra, we consider in the following the
exactly solvable model of a “localized electron” in a solid interacting with a boson
bath. The latter can be regarded as a set of phonons, plasmons, or any other bosonic
excitations that may be approximately represented as a set of uncoupled harmonic
oscillators. The localized electron is assumed to be dispersionless, that is, its energy
ε is independent of the crystal momentum, and its interaction with other electrons in
the system is neglected. Instances in which the electron energy levels exhibit a weak
dependence on momentum, and can thus be approximated as nondispersive, are, for
example, core electrons in solids, localized impurity levels, and 4f electrons. On the
other hand, electron-electron interactions are typically strong and non-negligible in
three-dimensional solids, which poses limitations to the applicability of this model
to real physical systems. This simplified model, however, is remarkably successful
in describing the emergence of bosonic satellites in the spectral properties and is
in good qualitative agreement with more advanced theories, whereby the electron-
electron interaction is accounted for. This is demonstrated, for instance, by the
generalization of the localized electron model reported by Langreth (1970).

The localized electron model is described by the following electron-boson
coupling Hamiltonian:

Ĥ = Ĥe + Ĥb + Ĥint = εĉ†ĉ +
∑

q

h̄ωqb̂
†
qb̂q +

∑

q

gqĉ
†ĉ(b̂q + b̂

†
−q), (1)

where ĉ† and ĉ are fermionic creation and annihilation operators for the local-
ized electron, respectively, which satisfy the ordinary anti-commutation relations.
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Similarly, the operators b̂
†
q and b̂q, respectively, create and annihilate a boson with

energy h̄ωq and momentum q and satisfy bosonic commutation relations. The
absence of two-particle interaction terms in the Hamiltonian reflects the fact that
both electron-electron and boson-boson interactions are neglected. The localized
electron interacts with the boson bath with the coupling strength gq.

As we are primarily interested in the effects of the electron-boson interaction on
the photoemission intensity, the relevant quantity that we want to compute is the
electron spectral function:

A(ω) = − 1

π
ImGret(ω), (2)

with the single-particle retarded Green’s function Gret defined as:

Gret(t) = −i 〈Ψ0| {ĉ(t), ĉ†(0)} |Ψ0〉 θ(t), (3)

where { , } denotes the anticommutator, Ψ0 the electronic ground state, and the time-
dependence of the operators is accounted for in the Heisenberg picture. As shown by
Langreth (1970), the Green’s function associated to the Hamiltonian in Eq. (1) can
be calculated exactly. In fact, by applying a unitary transformation, Eq. (1) is recast
in the form of a shifted harmonic oscillator Hamiltonian for which eigenvalues and
eigenvectors are known (Mahan 2000). The spectral function for a localized electron
can thus be expressed as (Langreth 1970):

A(ω) =
∞∑

n=0

e−aan

n! δ(h̄ω − ε − ah̄ωb + nh̄ωb), (4)

where a =∑
q g2

q/(h̄ωb)
2 and for simplicity the energy of the boson mode has been

replaced by its average value h̄ωb.
In the small coupling limit, that is for gq → 0, the spectral function reduces

to the case of a noninteracting electron A(ω) = δ(h̄ω − ε), and the Dirac delta
function is peaked at the quasiparticle energy. For finite coupling strengths, the
structure of the spectral function in Eq. (4) reveals that the effect of the interaction
between electrons and bosons on the spectral properties of the system is twofold.
First, the quasiparticle energy of the localized electron is shifted by ah̄ωb. This
process is analogous, for example, to the well-known band-gap renormalization of
semiconductors and insulators due to the electron-phonon interaction (Allen and
Heine 1976; Giustino 2017), and it results from the dressing of the bare quasiparticle
via the interaction with the boson modes. Second, the spectral function exhibits
a series of additional features at lower energies which are separated from the
quasiparticle peak by multiples of the boson energy h̄ωb. These spectral features
arise from the simultaneous excitation of the localized electron and of one or more
bosons with energy h̄ωb.
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Fig. 1 (a) Spectral function of the localized electron model evaluated using Eq. (4) for a
nondispersive electron with binding energy ε coupled to a boson with frequency ωb with a
coupling strength gq. (b) Spectral intensity map for an electron with parabolic band dispersion
εk = ε + h̄2k2/2m. The Dirac δ functions in Eq. (4) have been replaced by Lorentzian functions
with a 20 meV broadening

In Fig. 1a we show the spectral function obtained from Eq. (4) considering
ε = −40 meV, h̄ωb = 100 meV, gq = 100 meV. A picture in closer agreement
with angle-resolved photoemission spectroscopy is obtained when considering the
case of dispersive electronic states: Fig. 1b illustrates the spectral intensity map for a
parabolic band, obtained by replacing the electronic energy with εk = ε+ h̄2k2/2m
in Eq. (4). This simple generalization of the localized electron model illustrates that,
in presence of nontrivial energy-wavevector dispersion relations, the energy of the
satellite features induced by electron-boson coupling also acquires a dependence
on the crystal momentum that follows closely the dispersion of the ordinary
quasiparticle states. This phenomenon translates into the formation of plasmonic
polaron bands due to electron-plasmon coupling (Caruso et al. 2015; Caruso and
Giustino 2015; Lischner et al. 2015; Gumhalter et al. 2016; Caruso et al. 2018)
and polaron satellites due to electron-phonon coupling (Moser et al. 2013; Wang
et al. 2016; Verdi et al. 2017) in the ARPES spectra of semiconductors and n-doped
oxides, respectively.

Overall, the solution of the localized electron model reveals that the spectral
function of a system of interacting electrons and bosons, whereby the interaction is
described by the last term of Eq. (1), may exhibit a series of satellite structures, with
binding energy blueshifted with respect to the main quasiparticle peak by multiples
of the boson energy. Despite the simplicity of the model, this result provides a first
indication that the coupling to plasmons and phonons in real systems, in which the
coupling Hamiltonian assumes a similar form, may also induce the formation of
satellite features for sufficiently strong coupling.
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3 First-Principles Description of Satellites in Photoemission

Despite the different nature of plasmon and phonon collective excitations in
solids, the many-body theory of electron-boson interaction represents the common
playground to describe their coupling to electronic states and to investigate the
spectral fingerprints resulting from this interaction. The Hedin-Baym equations
(Giustino 2017) based on many-body perturbation theory (MBPT) provide a
formally exact framework to investigate the coupling to plasmons and phonons and
are the starting point for the theoretical description of satellites in photoemission
spectra. The electron self-energy for the coupled electron-phonon system in the
Migdal approximation, that is neglecting vertex corrections, is given by Hedin and
Lundqvist (1970) and Giustino (2017):

Σ(k, ω) = i

ż

dq

Ω̃

dω

2π
G(k+ q, ω + ω′)[We(q, ω′)+Wph(q, ω′)] (5)

where Ω̃ is the reciprocal-space volume, G is the single-particle Green’s function,
and We (Wph) is the screened Coulomb interaction due to the electron-electron
(electron-phonon) interaction. It can be shown that the electron-phonon part may
be expressed as Wph = WeDWe (in symbolic notation), where D is the density-
density correlation function for the nuclear fluctuations. Eq. (5) neglects the so-
called Debye-Waller contribution to the self-energy; however this contribution is
frequency-independent and therefore does not give rise to additional structures in
the electron spectral function (Giustino 2017).

If the nuclei are treated in the clamped-ion approximation, that is Wph(q, ω) =
0, the ordinary GW approximation is recovered. By expanding the Bloch wave
functions in a basis set of plane waves, ψnk(r) = ∑

G cnk(G)ei(k+G)·r, the GW

self-energy ΣGW can be expressed in a form more suitable for first-principles
calculations of crystalline solids (Aulbur et al. 2000):

ΣGW
nk (ω) = ih̄

2π

∑

mGG′

ż

dq
ΩBZ

Mmn
G (k,q)∗Mmn

G′ (k,q)
ż

dω′
vG(q)ε−1

G,G′(q, ω)

h̄ω + h̄ω′−ε̃mk+q
,

(6)
where Mmn

G (k,q) = 〈ψmk+q|ei(q+G)·r|ψnk〉 are the optical matrix elements, ΩBZ

is the volume of the Brillouin zone, and vG(q) = e2/ε0|q+G|2 (ε0 is the
vacuum permittivity). We defined ε̃mk+q = εmk+q − iη sgn(εmk+q), with η a
positive infinitesimal and εmk+q the Bloch electron energy relative to the chemical
potential μ. The dielectric matrix εG,G′(q, ω) is related to the screened Coulomb
interaction via WG,G′(q, ω) = vG(q)ε−1

G,G′(q, ω). In GW calculations, the dielectric

function is typically expressed as εG,G′(q, ω) = δG,G′ − vG(q)χ0
G,G′(q, ω), where

χ0
G,G′ is the independent-particle polarizability (see, e.g., Aulbur et al. 2000).
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The second term in Eq. (5) represents the electron-phonon self-energy Σep in
the Migdal approximation. Its expression in the basis of single-particle Bloch wave
functions reads:

Σ
ep
nk(ω) =

∑

mν

ż

dq
ΩBZ

|gmnν(k,q)|2×
[

nqν + fmk+q

h̄ω − εmk+q + h̄ωqν + iη
+ nqν + 1− fmk+q

h̄ω − εmk+q − h̄ωqν + iη

]
, (7)

where nqν and fmk+q are the Bose-Einstein and Fermi-Dirac distributions, respec-
tively. Equation (7) is derived after transforming the frequency integration in Eq. (5)
into a Matsubara summation to extend the formalism to finite temperatures, and
performing the integration analytically by using the expressions for the unperturbed
electron and phonon Green’s functions. The self-energy is then analytically con-
tinued to the real frequency axis (Mahan 2000), and only the diagonal terms are
retained, as in Eq. (6). The electron-phonon matrix element g is defined as:

gmnν(k,q) = 〈ψmk+q|ΔqνVKS|ψnk〉. (8)

and it contains the variation of the self-consistent Kohn-Sham (KS) (Kohn and Sham
1965) potential VKS with respect to a phonon perturbation. The umklapp processes
are included by letting k + q fall outside the first Brillouin zone and folding it
back with a reciprocal lattice vector G. The definition in Eq. (8) corresponds to
taking the bare Coulomb potential between the electrons and the nuclei screened
by the electronic dielectric function εG,G′(q, ω). In principle the matrix element
should be frequency dependent; however in ab initio calculations, it is taken to be
static, following the adiabatic approximation of standard density-functional theory
(DFT). In Sect. 5 we will discuss how going beyond this approximation is needed
when describing polarons in ARPES spectra. In practical calculations Eq. (8) is
evaluated using density-functional perturbation theory (DFPT) by determining the
linear variation of the self-consistent Kohn-Sham potential. A rigorous discussion of
the calculation of the DFPT screening as compared to the many-body random-phase
approximation (RPA) can be found, for example, in Marini et al. (2015).

3.1 The Electron Spectral Function

The calculation of the self-energies defined by Eqs. (6) and (7) constitutes the first
step toward the description of satellites from first principles. Details regarding
the numerical evaluation of these expressions have been thoroughly reported, for
instance, in Marini et al. (2009) and Poncé et al. (2016) and will not be discussed
here. Once the electron self-energy Σnk(ω) is known, the spectral function is
obtained by combining Eq. (2) with the Dyson’s equation Gnk = [h̄ω − εnk −
Σnk(ω)]−1, which yields:
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A(k, ω) = − 1

π

∑

n

ImΣnk(ω)

[h̄ω − εnk − ReΣnk(ω)]2 + [ImΣnk(ω)]2 (9)

The spectral function exhibits sharp peaks whenever the first term in the denomina-
tor of Eq. (9) [h̄ω − εnk − ReΣnk(ω)] vanishes or has a minimum. In particular,
quasiparticle peaks in the spectral function arise at the energies h̄ω = εnk +
ZnkReΣnk(εnk), where Znk = [1 − ∂ReΣnk(ω)/∂ω|ω=εnk

]−1 is the quasipar-
ticle weight. If the Bloch single-particle energies εnk are obtained from a DFT
calculation, Eq. (9) should be modified to avoid double counting of the exchange-
correlation (Aulbur et al. 2000).

A more suitable framework for the evaluation of satellites in photoemission
is provided by the cumulant expansion approach. The cumulant expansion is an
alternative formulation of the (retarded) single-particle Green’s function which is
in principle exact. The Green’s function is expressed in the form (Gumhalter et al.
2016; Kas et al. 2014):

Gnk(t) = iθ(t)exp[−i(εnk − iη)t/h̄+ Cnk(t)], (10)

where we introduced the cumulant function Cnk(t) which is defined by:

Cnk(t) = − 1

h̄π

ż

dω ImΣnk(εnk/h̄− ω)
1− eiωt + iωt

ω2 (11)

In practice, the spectral function obtained from Eqs. (2), (10), and (11) can be recast
into a form that is more suitable for numerical calculations (Aryasetiawan et al.
1996; Aryasetiawan and Gunnarson 1998; Verdi et al. 2017):

A(k, ω) =
∑

n

[
1+ AS1

nk(ω) ∗ +1

2
AS1

nk(ω) ∗ AS1
nk(ω) ∗ + · · ·

]
A

QP
nk (ω). (12)

Here we introduced the following quantities:

AQP(ω) = eRe*′(ε/h̄)

π

|Im*(ε/h̄)|
[h̄ω − ε − Re*(ε/h̄)]2 + [Im*(ε/h̄)]2 ,

AS1(ω) = − 1

π

Im*(ε/h̄+ ω)− Im*(ε/h̄)− h̄ωIm*′(ε/h̄)
(h̄ω)2

,

where we omitted the dependence on n and k, and the prime symbol denotes the
first derivative. In the limit of a localized electron interacting with a plasmon bath,
one may show that Eq. (12) reduces to the exact solution of the localized electron
model given by Eq. (4). The application of this formalism to core and valence
excitations of crystalline solids, on the other hand, involves several approximations
such as neglecting recoil effects, that is, the correlations between successive boson
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emission and reabsorption events. A detailed discussion of the range of validity of
the cumulant expansion has been reported, for instance, in Hedin (1980), Gumhalter
et al. (2016), Kas et al. (2014), and Zhou et al. (2015).

As discussed by Holm and Aryasetiawan (1997), the cumulant expansion has the
advantage of introducing additional crossing and non-crossing Feynman diagrams
that are neglected in the standard GW and Migdal approximation for the self-energy,
and it results in an improved description of the electron-plasmon and electron-
phonon interactions. The ab initio cumulant expansion approach is based on the
evaluation of Eq. (12) employing either the GW or Migdal self-energy. As discussed
in Sect. 6, this formalism also lends itself to describe the formation of hybrid modes
resulting from the combined effects of plasmons and phonons.

The self-consistent solution of the Dyson’s equation could in principle provide
an alternative route to include additional diagrams beyond the GW /Migdal approxi-
mation in the Green’s function. However, while self-consistent GW has been shown
to systematically improve the description of the quasiparticle energies of molecules
and solids (Caruso et al. 2013, 2016; Kutepov et al. 2012), the study of satellites
has revealed that self-consistency leads to an unphysical renormalization of the
satellite intensity which, ultimately, is expected to deteriorate the agreement with
experiment (Holm and von Barth 1998). Additional first-principles investigations
would be needed to further explore this aspect.

3.2 Plasmon Satellites

The concept of plasmons, collective fluctuations of the electron density, can be
introduced based on a simple model of carrier dynamics for a homogeneous system
(that is, a system characterized by a homogeneous electron density and a positively
charged ionic background) in which the quantum-mechanical character of the
electrons is ignored. If an external perturbation as, for example, a homogeneous
electric field is present, a displacement x of the electron density with respect to
the positively charged ionic background is induced. The displaced electron density
then generates an induced polarization P = −nex, where n is the average electron
density and e the electron charge and an electric field E = −P/ε0. Using Newton’s
law mẍ = −eE with m the electron mass, the classical equation of motion for
the density displacement vector x may be rewritten as ẍ + ne2x/(ε0m) = 0. This
model illustrates that the classical collective dynamics of electrons in solids can be
approximately described by a harmonic oscillator with a characteristic frequency
ωP =

√
ne2/(ε0m), the plasma frequency, which is independent of the perturbation

and is determined exclusively by the intrinsic properties of the solid.
More generally, plasmons in solids may be excited at momenta q and frequencies

ωP which correspond to vanishing real part of the macroscopic dielectric function
εM and sufficiently small imaginary part, that is:

εM(q, ωP) = iη, (13)
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Fig. 2 The loss function of the HEG for a Wigner-Seitz radius rs = 4. The plasmonic structures
in the loss function follow a characteristic parabolic dispersion which, for momenta smaller than a
critical momentum qc, is well separated from the continuum of electron-hole excitations (e-h). For
q > qc, the plasmons are damped by the interaction with electron-hole pairs (Landau damping)

The macroscopic dielectric function εM is related to the microscopic dielectric
function ε via ε−1

M (q, ω) = [εG,G′(q, ω)]−1
G=G′=0, with G and G′ reciprocal lattice

vectors and q in the first Brillouin zone. Whenever the condition expressed by
Eq. (13) is satisfied, the system may support collective charge fluctuations even
in the absence of an external driving field. In practice, the possibility of exciting
plasmons is reflected by the emergence of sharp peaks in the loss function L(q, ω) =
Im [ε−1

M (q, ω)] at the momenta and frequencies at which the macroscopic dielectric
function εM vanishes. The plasmon peaks in the loss function exhibit well-defined
energy-momentum dispersion relations. These structures are exemplified in Fig. 2
for the loss function of the homogeneous electron gas (HEG). If one neglects
local-field effects and thus assumes that the macroscopic and microscopic dielectric
functions coincide, the plasmon energy is obtained by seeking the frequencies that
satisfy the condition v(q)−1 = Reχ0(q, ω). For the HEG in the long-wavelength
limit (q → 0), this condition yields again the result ωP =

√
e2n/(ε0m).

The inspection of Eqs. (13) and (6) reveals that when the condition for the
excitation of plasmons is satisfied, the screened Coulomb interaction WG,G′(q, ω) =
vG(q)[εG,G′(q, ω)]−1 exhibits a pole at the plasmon energy. Correspondingly, one
expects the GW self-energy to encode information regarding electron-plasmon
interaction.

To examine in more detail the inclusion of electron-plasmon coupling effects
in the GW self-energy, we discuss below its connection with the electron-boson
coupling model introduced in Sect. 2. Using the condition given in Eq. (13) in
combination with Eq. (6), the plasmonic contribution to the screened Coulomb
interaction W can be disentangled from the other electronic contributions to
the screening, such as electron-hole pairs. This idea, initially introduced for the
homogeneous electron gas (Lundqvist 1967) and subsequently generalized to
semiconductors (Caruso and Giustino 2016), allows one to define a self-energy
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which stems exclusively from the coupling between electrons and plasmons. The
resulting electron-plasmon self-energy can be recast into the following form (Caruso
and Giustino 2016):

ΣeP
nk =

ż

dq
ΩBZ

∑

m

|geP
mn(k,q)|2

×
[

nq + fmk+q

εnk − εmk+q + h̄ωP(q)+ iη
+ nq + 1− fmk+q

εnk − εmk+q − h̄ωP(q)+ iη

]
,

(14)

where the coefficients geP
mn(k,q) are the electron-plasmon scattering matrix ele-

ments between the initial state ψnk and the final state ψmk+q and are given by:

geP
mn(k,q) =

[
ε0Ω

e2h̄

∂ε(q, ω)

∂ω

]− 1
2

ωP(q)

1

|q| 〈ψmk+q|eiq·r|ψnk〉, (15)

with Ω being the volume of the unit cell. Equation (14) has the form of an electron-
boson coupling self-energy in the Migdal approximation (see Eq. (7)), which may
alternatively be derived from an electron-boson coupling Hamiltonian of the form:

Ĥ eP =
∑

nm

∑

k,q

geP
nm(k,q)ĉ†

mk+qĉnk(b̂q + b̂
†
−q). (16)

Here b̂
†
−q (b̂q) and ĉ

†
mk+q (ĉnk) are the boson and fermion creation (destruction)

operators, respectively. The localized electron model of Eq. (1) is recovered from
Eq. (16) by (i) replacing the Bloch energies εnk with a single nondispersive
energy and (ii) neglecting the k-dependence of the electron-boson coupling matrix
elements. This result indicates that the GW self-energy accounts for the coupling
between electrons and plasmons. However, at variance with the localized electron
model which could be solved exactly, here the electron-plasmon interaction is
treated only at first-order in the interaction strength, which corresponds to the
Migdal approximation in the ordinary electron-boson coupling theory.

The inclusion of electron-plasmon coupling in the GW theory is reflected by
the emergence of plasmon satellites in the spectral function, which are analogous
to the satellite features discussed in Sect. 2. In fact, in the presence of plasmons,
the frequency dependence of the self-energy typically presents a pole, which may
produce additional satellite structures in the spectral function signaling the coupling
to plasmons.

Two clear shortcomings emerge when evaluating the spectral function within the
GW approximation and limit its predictive power for the description of satellites
in PES: (i) the energy difference between the satellite and the quasiparticle peak
is typically overestimated by a factor of 1.5 with respect to photoemission exper-
iments, and (ii) the GW approximation may erroneously predict the formation of
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Fig. 3 Spectral function for a model self-energy in the strong (a) and weak (b) coupling regime.
Quasiparticle peaks are marked by vertical dashed lines and correspond to the intersection between
ReΣ(ω) and h̄ω − ε

spurious plasmaron peaks, which stem from additional solutions of the quasiparticle
equation and often result in an overestimation of satellite intensities. The concept of
plasmaron was initially introduced by Lundqvist (1967) as a new quasiparticle state
emerging from the strong coupling between electrons and plasmons. Later studies,
however, revealed that plasmaron peaks are an artifact of the GW approximation
and, in fact, they disappear when one resorts to a more accurate level of theory
(Langreth 1970). These issues can be illustrated by using a simplified model for the
GW self-energy: Σ(ω) = α(h̄ω − ε + ωP + iη)−1. This expression is derived
from Eq. (6) by (i) assuming nondispersive electron energies, (ii) replacing the
oscillator strengths by δ functions, (iii) using a plasmon-pole model for the dielectric
function in the form ε−1(ω) = 1 + ω̃/(ω2 − ω2

P + iη), and (iv) carrying out
the frequency integration analytically. As shown in Fig. 3, the self-energy exhibits
a pole at frequencies around ω = h̄−1(ε − h̄ωP), which may lead to additional
unphysical solutions of the quasiparticle equation when h̄ω−ε = ReΣ(ω) as shown
in panel (a) or to a minimum in h̄ω − ε − ReΣ(ω) resulting in a weak satellite,
as shown in panel (b). In both cases the spectral function is characterized by the
emergence of satellites; however their binding energy is blue-shifted with respect to
the energy ε − h̄ωP at which satellites are typically observed in PES experiment.
As we will discuss in Sect. 4, the combination of the GW approximation with
the cumulant expansion approach (GW+C) allows to successfully address these
issues and recover an energy separation between satellite and quasiparticle peaks
that agrees well with PES measurements for a broad class of materials.

3.3 Polaron Satellites

Similarly to the case of the interaction with plasmons, the coupling between
electrons and phonons may give rise to satellite structures in the spectral function
of semiconductors and insulators, which are the signature of the dressing of the
electronic quasiparticles as polarons. The formation of polarons is typically linked



16 Many-Body Calculations of Plasmon and Phonon Satellites in . . . 353

to the polarization of the lattice induced by longitudinal optical (LO) phonons. In
other words, in polar semiconductors and insulators, the fluctuations of the ionic
positions corresponding to LO phonons at long wavelength generate macroscopic
electric fields which can couple strongly to electrons and holes. This long-range
interaction is known as Fröhlich coupling. The Fröhlich model strictly describes
the interaction of a conduction electron in a parabolic band with LO phonons of
constant energy h̄ωLO, in an isotropic and uniform medium (Fröhlich 1954). Under
these assumptions, the electron-phonon matrix element does not depend on the band
index and electron momentum, and it takes the form:

gF(q) = i

|q|
[

e2

4πε0

4π

Ω

h̄ωLO

2

(
1

ε∞
− 1

εs

)]1/2

, (17)

where εs is the total static permittivity (or dielectric constant) and ε∞ is the optical
dielectric constant, that is, εM(q = 0, ω = 0). The matrix element in Eq. (17) is
often expressed in terms of a dimensionless parameter α which is referred to as the
Fröhlich coupling constant:

α = e2

h̄

(
mb

2h̄ωLO

)1/2 ( 1

ε∞
− 1

ε0

)
, (18)

with mb the band effective mass of the conduction electron. The Fröhlich Hamil-
tonian has the form in Eq. (16) after substituting geP

mn with gFδmn, and it is thus
historically representative of the general problem of a fermionic particle interacting
with a boson field. Depending on the value of α, i.e., on the strength of the coupling,
the Fröhlich self-energy produces a spectral function that usually exhibits satellite
replica of the main quasiparticle band.

First-principles calculations of electron-phonon self-energies and ARPES spectra
to capture polaronic effects are limited by the almost prohibitive computational
cost of sampling the singular behavior of the matrix elements for small phonon
wavevectors. A procedure that enables accurate calculations of the electron-phonon
coupling in the presence of Fröhlich interaction at a reduced computational cost
has been reported by Verdi and Giustino (2015) and Sjakste et al. (2015). This is
achieved via the separation of the long-range, singular part of the electron-phonon
matrix element and of the short-range part. The long-range part gL constitutes the
generalization of the Fröhlich matrix element to multiple, anisotropic electronic
bands and phonon modes and reads:

gLmnν(k,q) = i
4πe2

Ω

∑

κ

(
h̄

2Mκωqν

)1/2

×
∑

G,q+G�=0

(q+G) · Z∗κ · eκν(q)
(q+G) · ε∞ · (q+G)

〈ψmk+q|ei(q+G)·(r−τ 0
κ )|ψnk〉,

(19)
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where Z∗κ is the Born effective charge tensor of atom κ in the unit cell, Mκ the
atomic mass, and eκν(q) a phonon eigenvector. If combined with the Wannier-
Fourier interpolation technique of Giustino et al. (2007), Eq. (19) enables accurate
calculations of polaron satellites.

As in the case of the GW method, the calculation of the spectral function
including electron-phonon coupling in the Migdal approximation suffers from two
main shortcomings. First, it produces only a single polaronic satellite rather than
a Lang-Firsov series as shown by the model of Eqs. (1) and (4) and as measured
in experiments. Second, its energy separation from the main quasiparticle peak is
larger than the characteristic LO phonon energy. As we will illustrate in Sect. 4
and 5, the cumulant expansion method can successfully be employed to improve the
description of satellites. While this method has been mostly used in combination
with the GW approximation to study plasmon satellites, it can also naturally be
applied in the context of polaronic systems, since the theory stems from the exact
solution of an electron-boson coupling Hamiltonian of the Fröhlich type (Langreth
1970; Story et al. 2014). The formalism corresponds to the one presented in
Sect. 3.1, with the Migdal electron-phonon self-energy used as a seed.

4 Plasmon Satellites in Metals and Semiconductors

First-principles calculations of plasmon satellites based on the GW+C approach
have first been performed by Aryasetiawan et al. (1996) for metallic sodium and
aluminum. The integrated photoemission spectroscopy experiment on sodium by
Steiner et al. (1979) revealed, besides a quasiparticle peak centered at a binding
energy of 1 eV which corresponds to the excitation of photo-holes in the valence
band, two broader and less intense satellite peaks blue-shifted with respect to the
quasiparticle peak by 6 and 12 eV respectively. These energies are compatible
with multiples of the plasma energy of sodium h̄ωP � 5.9 eV, suggesting that
the satellites arise from the excitation of one and two plasmons. At variance with
the GW results, which overestimate the energy and intensity of the satellites, the
spectral function of Na obtained from the GW+C approach and shown in Fig. 4a
improves significantly the agreement with the experiment. Additionally, the GW+C
approach lends itself to describe also processes in which more than one plasmon
are excited and captures the emergence of a series of satellite peaks spaced by the
plasmon energy. On the other hand, only one satellite is obtained within the GW

approximation, reflecting the fact that multi-plasmon processes are neglected.
Subsequently, photoemission satellites have been measured in the photoemission

spectra of graphene, and the identification of these features has been supported
by theoretical calculations of the self-energy and spectral function for linearly
dispersive bands (Bostwick et al. 2010). Satellites in semiconductors have first been
investigated from first principles by Guzzo et al. (2011) for the case of silicon.
In analogy with metals, also photoemission measurements of semiconductors may
exhibit a series of satellites (Fig. 4b) with an energy separation that is compatible
with the plasma energy. In this case, however, plasmons are generally characterized
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Fig. 4 (a) Cumulant expansion for Na. (b) Cumulant expansion for silicon (Reproduced with
permission from Aryasetiawan et al. 1996 and Guzzo et al. 2011)

by a smaller oscillator strength, which is reflected by the lower intensity of the
satellite peaks. For silicon, the GW approximation yields a single satellite blue-
shifted by ∼22 eV with respect to the quasiparticle peak, which is incompatible
with the plasma energy h̄ωP = 16.6 eV and with the experimental observations. On
the other hand, when vertex corrections are included via the GW+C approach, the
energy of the plasmon satellite peak is in good agreement with experiment. Some
discrepancies between theory and experiment still remain, namely, (i) the intensity
of the satellite peak is underestimated, (ii) the relative intensity between the different
substructures of the quasiparticle peak differs from the experimental result, and (iii)
experiments present a featureless background signal that increases with the electron
binding energy and that is not captured by theory. The points (i)–(iii) are directly
related to the interpretation of the spectral function as a photoelectron current,
an approximation that is typically referred to as sudden approximation (Hüfner
2003; Damascelli et al. 2003). In practice, the sudden approximation assumes
that all electrons are equally likely to interact with an incoming photon and that
after photoexcitation the electrons do not interact further with the sample. These
assumptions neglect the scattering cross-section effects due to the different orbital
symmetries and the additional energy losses that photo-electrons may undergo after
emission from the initial state. The issues mentioned in (i)–(iii) could be improved
by adopting a picture of the photoemission process that goes beyond the sudden
approximation, e.g., by explicitly accounting for extrinsic losses, background signal,
and cross-section effects. In this way, a quantitatively accurate description of
satellites in semiconductors may be achieved (Guzzo et al. 2012).
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Inspection of the first satellite peak in Fig. 4b indicates that the plasmon-induced
spectral features of silicon are characterized by a substructure – in this case a central
peak and two shoulders observed in both theory and experiments – that resembles
the density of states (DOS) of the ordinary quasiparticle bands. To understand
the origin of these features, it is convenient to recall the concept of Van Hove
singularities from the quantum theory of solids. The density of states J for a set
of Bloch electrons can be expressed as:

J (ω) = 1

4π3

∑

n

ż

S(h̄ω)

dSk
1

|∇kεnk| (20)

where the integral is performed over the isosurfaces in k-space with energy h̄ω,
denoted by S(h̄ω). If for a given energy h̄ω, the isosurface S(h̄ω) contains a crystal
momentum for which the electron velocity vanishes (vnk = ∇kεnk/h̄ = 0), the
divergence of the integrand in Eq. (20) leads to a sharp structure in J (ω), referred
to as a Van Hove singularity. Peaks in the DOS may thus be attributed to regions of
the Brillouin zone in which electronic bands are flat (∇kεnk � 0). These structures
are clearly visible in PES experiments of silicon for binding energies between 0
and −15 eV (Fig. 5b) and in the DOS obtained from DFT calculations in the local
density approximation (Fig. 5c). The structure of plasmon satellites measured in
PES also exhibits a substructure of peaks and shoulders that resembles the Van Hove
singularities, as it can be noted when comparing it with the DOS of the ordinary
quasiparticle bands red-shifted by the plasmon energy (Fig. 5b–c). This suggests

Fig. 5 (a) Theoretical calculations of the plasmonic polaron band of silicon, based on the GW

plus cumulant expansion approach. (Adapted from Gumhalter et al. 2016). (b) Integrated X-ray
photoemission spectrum (XPS) of silicon from Guzzo et al. (2011). (c) Density of states of silicon
from a density-functional theory calculation alongside with a replica of the full DOS red-shifted
by the plasmon energy h̄ωP = 16.6 eV
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that the plasmon satellites observed in integrated PES also stem from the average
over the Brillouin zone of spectral features that are characterized by well-defined
energy-momentum dispersion relations.

This hypothesis has been verified by first-principles calculations of the angle-
resolved spectral function of silicon in the GW+C approach (Caruso et al. 2015),
which revealed that electron-plasmon interaction leads to the emergence of plas-
monic polaron bands, that is, plasmon-induced replica of the valence band structure
of semiconductors red-shifted by the plasmon energies. These features are illus-
trated for silicon in Fig. 5a. As compared to the quasiparticle bands, plasmonic
polaron bands are less intense due to the small oscillator strength of plasmon in
semiconductors and broadened out by lifetime effects. The existence of plasmonic
polaron bands has been corroborated by further theoretical and experimental
investigations of the ARPES spectrum of silicon for binding energies up to 40 eV by
Lischner et al. (2015). Overall, the dispersive character of plasmon-induced features
in ARPES indicates that plasmon satellites in integrated PES may be interpreted as
Van Hove singularities which arise from the flattening of the plasmonic polaron
bands at specific regions in the Brillouin zone.

5 Polaron Satellites in Doped Semiconductors

Low-energy satellites have recently been observed by ARPES experiments in doped
oxides. These systems constitute an ideal playground for the study of polaron
physics. In particular, satellite replicas were measured for n-doped TiO2 (Moser
et al. 2013), SrTiO3 (Chang et al. 2010), and monolayer FeSe on SrTiO3 (Lee et al.
2014). Evidence of Fröhlich polarons was found also from the investigation of two-
dimensional (2D) electronic states at the surfaces or interfaces of oxides, with the
most studied case being the 2D electron gas (2DEG) formed at the surface of SrTiO3
(King et al. 2014; Chen et al. 2015; Wang et al. 2016). Other notable examples are
the 2DEG at the interface between SrTiO3 and LaAlO3 (Cancellieri et al. 2016)
and on the surface of ZnO (Yukawa et al. 2016). The experiments also show a
remarkable evolution of the carriers with doping concentration, from polarons to
a Fermi liquid weakly coupled to phonons (Moser et al. 2013; Wang et al. 2016).

Calculations of the spectral function using model self-energies or the localized
electron model of Eq. (4) have been performed for some of these systems, for
example, in Moser et al. (2013), Lee et al. (2014), King et al. (2014), and Rademaker
et al. (2016). Fully ab initio calculations showing satellite band replica were first
reported for the insulating compounds MgO and LiF by Antonius et al. (2015),
subsequently exploring also the effect of the cumulant expansion method (Nery et al.
2018). First-principles calculations of ARPES spectra in doped materials including
polaronic effects were carried out by Verdi et al. (2017) for the prototypical
case of anatase TiO2 by using the methods presented in Sect. 3. Given that the
crystals are doped, an important element that needs to be taken into account
when performing ab initio calculations is the presence of additional charges in the
conduction band. Since the systems of interest are degenerate and present well-
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defined Fermi surfaces, doping can be treated in the rigid-band approximation, that
is, by placing the Fermi level inside the conduction or valence band of the pristine
system. Moreover, the added carriers provide an additional source of screening of
the electron-phonon interactions. This effect is critical especially in the case of polar
coupling, where the screening of the macroscopic electric field created by the LO
phonons can change dramatically the strength of the Fröhlich interaction (Mahan
2000). This aspect can be understood by considering the simple Thomas-Fermi
screening model, which describes the static response of a homogeneous electron
gas at small wavevectors: εTF(q) = 1 + q2

TF/|q|2, with qTF =
√

2e2n/(ε0ε∞EF)

(EF is the Fermi energy). From the wavevector dependence of εTF(q), it follows
immediately that the screened matrix element, gF(q)/εTF(q), no longer exhibits
a singularity at long wavelength. This model is valid in the adiabatic limit where
the doped carriers instantaneously follow the atomic motion. In a more accurate
description, the timescale of the electronic response is dictated by the plasma
frequency of the doped carriers, ωP =

√
ne2/(ε0ε∞mb) in the HEG model (Kittel

1976).
To capture the evolution of the electron-phonon coupling and of the polaronic

features with doping, the electron-phonon matrix element needs to be screened
by the dynamical dielectric function evaluated at the phonon energies, that is,
gNA
mnν(k,q) = gmnν(k,q)/εRPA(q, ωqν + i/τnk) (Mahan 2000; Verdi et al. 2017).

The superscript NA indicates that retardation effects are taken into account by using
this non-adiabatic matrix element, and h̄/τnk is the electron lifetime near the band
edge, which can approximately be taken to be constant. In practical calculations the
dynamical screening arising from the doped carriers can be computed analytically
using the RPA dielectric function for a homogeneous electron gas with the same
density n, which is known as the Lindhard function (Hedin 1965).

In Fig. 6 we show the ARPES spectra acquired for n-doped anatase TiO2 by
Moser et al. (2013), and we compare them with the first-principles calculations
performed by Verdi et al. (2017). The spectra for the first two doping levels exhibit
a satellite about 0.1 eV below the main parabolic band and a second very dim
satellite at another 0.1 eV higher binding energy. Since the energy separation of
the band replica is compatible with the high-energy Eu LO phonon of anatase TiO2,
these satellites were attributed to polaronic effects. At the highest doping, on the
other hand, the satellites disappear and are replaced by band structure kinks near a
binding energy of 0.1 eV. All the spectral features and their evolution with doping
are reproduced by the calculations, thus confirming the transition from a polaronic to
a Fermi liquid picture and demonstrating the success of the first-principles methods
used to investigate quasiparticle spectra. From the calculated ARPES spectra, the
electron-phonon coupling strength λ was extracted, by using the ratio between the
Fermi velocities of the bare band and of the dressed band (Mahan 2000). The
results are reported in Fig. 7, together with an analysis of the energy scales at play.
The study showed that the crossover from polarons to a weakly coupled Fermi
liquid and, correspondingly, from satellite replica to band structure kinks occurs
when the plasma frequency of the carriers becomes of the order of the LO phonon
frequency. In fact, in the polaronic regime, corresponding to ωP < ωLO, the carriers
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Fig. 6 ARPES spectra of n-doped anatase TiO2 on samples with doping concentrations 5 ×
1018 cm−3 (a), 3 × 1019 cm−3 (b), and 3.5 × 1020 cm−3. (Taken from Moser et al. 2013).
The corresponding first-principles spectra from Verdi et al. (2017) are shown in panels (d)–(f).
The calculated spectral functions were multiplied by the Fermi-Dirac distribution at the experi-
mental temperature (T = 20 K) and were convoluted with Gaussian masks of widths 25 meV
and 0.015 Å−1 in order to account for the experimental resolution in energy and momentum,
respectively

are too slow to screen the long-range electric field generated by the Eu phonon
vibrations. In this case satellites appear in the spectra, and the electron-phonon
coupling strength is approximately independent of doping. When ωP > ωLO,
in the Fermi liquid regime, the Fröhlich coupling is strongly suppressed, with
the polaron satellites gradually replaced by kinks. Correspondingly, the coupling
strength decreases. This first-principles analysis indicated that the interplay between
lattice vibrations and plasma oscillations can have a strong impact on the polaronic
properties of charge carriers in doped oxides.
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Fig. 7 Polaronic and Fermi
liquid regimes in n-doped
anatase TiO2, from Verdi
et al. (2017): the red disks
indicate the plasma energy at
each doping level; the blue
disks indicate the
electron-phonon coupling
strength λ. The blue line is a
guide to the eye, while the red
line represents the relation
between the plasma energy
and the doping density in the
homogeneous electron gas.
The horizontal line is the
energy of the LO Eu phonon
of anatase TiO2, 109 meV

6 Hybrid Plasmon-Phonon Satellites

Interestingly, the effects of electron-phonon and electron-plasmon interactions can
be readily combined within first-principles calculations if the sum of the relative
self-energies (Eqs. (7) and (14)) is included in the calculation of the spectral
function, which can thus contain both plasmon and polaron satellite features. This
concurrence of plasmon and polaron satellites has been observed experimentally in
the case of the ferromagnetic semiconductor EuO and confirmed by first principles
calculations (Riley et al. 2018). Experimental ARPES spectra for Gd-doped EuO
are reported in Fig. 8a–c for three different doping concentrations, showing the
bottom of the conduction band centered at the X point of the Brillouin zone. The
energy distribution curves (EDCs) at the conduction band minimum for several
dopings are reproduced in Fig. 8g, and they clearly show a shoulder peak whose
energy separation with respect to the main quasiparticle band increases with
carrier concentration. Such a satellite peak is not resolved above a carrier density
n ≈ 1020 cm−3, whereas at low carrier concentration (n ≈ 1018 cm−3) two
additional satellites can be distinguished. The spectra calculated with the cumulant
expansion method including electron-phonon and electron-plasmon coupling on the
same footing are presented in Fig. 8d–f, and they reproduce the features seen in
the experiment. In particular, the calculations confirmed that for the lowest doping
concentration the series of satellites is mainly due to phonon excitations, with the
LO phonon energy of EuO being compatible with the peak separation energy of
about 56 meV. Moving to higher dopings, the polar electron-phonon coupling is
gradually suppressed by the free-carrier screening, and the satellite peak shifts to
higher binding energies. Since the plasma energy increases as the square root of the
carrier density, this finding constitutes a fingerprint of the coupling of electrons to
plasmonic excitations of the conduction electrons. The first-principles calculations
confirmed that the renormalization of the spectral properties at higher dopings is
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Fig. 8 (a)–(c) Measured ARPES spectra of EuO samples with increasing carrier concentrations
as indicated on top of each panel, with the Fermi surface contours shown in the insets. The
corresponding first-principles data are shown in (d)–(f). To directly compare with the experiments,
the calculated spectral functions were convoluted with two Gaussian masks of widths 20 meV and
0.015 Å−1, and integrated along the out-of-plane direction kz. (g) Measured energy distribution
curves taken at k = kX (conduction band minimum) for different doping levels. (Figure adapted
from Riley et al. 2018)

due to the interplay between electron-phonon and electron-plasmon coupling, and
that in particular the low-energy broad satellite seen in Fig. 8c, f is due to plasmonic
excitations (Riley et al. 2018).

We remark that the calculations and methods presented so far neglect the effects
of mutual renormalization between plasmon and phonon modes, which can arise
when the frequency of plasmon and phonon oscillations are of the same order
(Varga 1965; Settnes et al. 2017). The inclusion of these effects entirely from first
principles represents one of the challenges still open in the investigation of the
spectral properties of doped systems.

7 Conclusions

The emergence of satellites in photoemission spectroscopy is a universal manifesta-
tion of electron-boson interactions in solids. The origin of satellites can be ascribed
to the excitation of different types of bosonic modes such as valence plasmons,
extrinsic plasmons, or polar phonons. These spectral features have thus far been
observed in metals, semiconductors, and highly-doped oxides. Despite the diversity
of the physical processes that underpin the satellite formation, and the broad
energy scales (from 50–100 meV up to 15–20 eV), many-body perturbation theory
provides a unified framework for their description. In combination with standard
approximations for the electron-electron and electron-phonon self-energies, the
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cumulant expansion approach is a powerful tool for investigating the emergence
of spectral fingerprint of electron-boson coupling in solids.

The study of satellites in solids has thus far provided valuable insight into
the many-body interactions between electrons, plasmons, and phonons. Recent
work in this area has demonstrated that first-principles techniques have reached
an accuracy sufficient to even precede experiments in discovering new hallmarks
of the coupling between electrons and bosons. The emergence of satellites in
photoemission spectroscopy is just one facet of the many effects that electron-
boson interaction may induce. The recent findings discussed in this chapter call for
a systematic investigation of the influence of low-energy plasmons on the formation
of photoemission kinks, waterfall effects, as well as novel mechanisms of supercon-
ductive pairing. Furthermore, other spectroscopic techniques, such as absorption,
electron energy loss, or time-resolved spectroscopies, provide less explored tools for
investigating the coupling between electrons, plasmons, and phonons. Highly doped
oxides constitute a particularly exciting playground for exploring the influence of
these phenomena on the optoelectronic properties and possible opportunities for
exploiting these new emergent properties. In these compounds, the interplay of
carriers, extrinsic plasmons, and polar phonons induces complex spectral features
that reflect the simultaneous excitation of plasmon and phonon modes and that are
highly tunable via the carrier concentration.

In conclusion, the last few years have witnessed a remarkable increase in the
accuracy of theoretical techniques for the description of the excited-state phe-
nomena from first principles. These advances, alongside with a relentless increase
in experimental resolution, are contributing to strengthen the synergy between
theoretical and experimental research, providing numerous opportunities to unveil
and understand unexplored forms of fermion-boson coupling in quantum matter.
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Abstract

In this book section, we give a brief introduction to many-body perturbation the-
ory for coupled fermion-boson systems using non-equilibrium Green’s functions.
Using the language of modern many-body perturbation theory and the so-called
contour-ordered correlators, a single consistent formalism arises which can be
applied to a multitude of classes of systems.
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1 Introduction

The many-body problem is at the heart of the field of condensed matter physics.
While the Schrödinger equation is impossible to solve except for the smallest of
systems, condensed matter physics deal with the whole spectrum of few-body to
many-body physics. This makes it difficult to consider the many-body wave function
as a useful object.

Another different route is to try to lower one’s ambitions. While the wave
function gives access to all measurable observables in a system, including high-
order correlation functions, experimentally one is most often interested in low-order
correlation functions such as one-particle correlation functions (e.g., particle densi-
ties and electric currents) or two-particle correlation functions (e.g., polarizabilities
and magnetic susceptibilities). As such, it has been useful to concentrate on
obtaining approximate expressions for reduced objects.

Non-equilibrium Green’s functions (NEGF) offer one such route. The one-
particle Green’s function contains all information about one-particle observables,
and similarly higher-order Green’s functions contain information on higher-order
correlators. The complexity of these objects is much lower than for the full
wave function, and powerful diagrammatic techniques for calculating the Green’s
function as a perturbation series are available. Moreover, the NEGF formalism
unlocks the door to out-of-equilibrium physics, such as transient effects in quantum
transport and pump-probe spectroscopy.

There is plenty of literature concerning different types of electron-boson inter-
actions treated within many-body perturbation theory in (e.g., Fetter and Walecka
2003; Bruus and Flensberg 2004) and out (e.g., Henneberger et al. 2000; Bonitz
2016) of equilibrium. The theoretical structure for different kind of bosons is
very similar, as also stressed in Schüler et al. (2016), where quantized photons,
phonons, and other excitations can be treated in an almost identical way. They
give the example of time-dependent photoemission under the influence of plas-
monic excitations. Other electron-boson systems are, for example, electron-magnon
systems (Mahfouzi and Nikolić 2014) and electron-phonon systems (Sentef et al.
2016).

We begin with a general introduction to NEGF, and diagrammatic perturbation
theory will be systematically built up. The discussion will follow the notation and
structure of Stefanucci and van Leeuwen (2013).

2 Introduction to NEGF

2.1 Time-Dependent Observables

We consider a system containing two different species of particles: fermions and
bosons. The system is initially prepared in an ensemble at time t = t0, described
by the statistical density matrix ρ̂(t0) = ρ̂. The initial ensemble average O(t0) of a
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general operator Ô(t) is defined as O(t0) = Tr
[
ρ̂Ô(t0)

]
, where the trace Tr [· · · ]

is over all states and particle numbers in Fock space. We write the density matrix as

ρ̂ = e−βĤM
/Z, where the Matsubara Hamiltonian ĤM = Ĥ − μN̂ determines the

initial state, where Ĥ = Ĥ (t0) is the equilibrium Hamiltonian. μ is the chemical
potential for the fermions, N̂ is the corresponding particle number operator, and β is

the inverse temperature. The partition function Z = Tr
[
e−βĤM

]
yields Tr

[
ρ̂
] = 1.

For times t > t0, we imagine that the system is perturbed to bring it out of
equilibrium. This is described by the time-dependent Hamiltonian Ĥ (t), under
which the density matrix changes according to

ρ̂(t) = Û (t, t0)ρ̂Û (t0, t). (1)

We introduced the time-evolution operator U(t, t0), defined as

Û (t1, t2) =

⎧
⎪⎪⎨

⎪⎪⎩

T

{
e
−i

şt2
t1

dt̄ Ĥ (t̄)
}

for t2 later than t1

T̄

{
e
+i

şt1
t2

dt̄ Ĥ (t̄)
}

for t1 later than t2

(2)

where T {· · · } (T̄ {· · · }) denotes (anti)time-ordering, which orders the latest (earli-
est) time to the left.

Using the cyclic property of the trace, we can write the time-dependent ensemble

average O(t) = Tr
[
ρ̂(t)Ô(t)

]
as

O(t) = Tr
[
ρ̂Û (t0, t)Ô(t)Û (t, t0)

]
. (3)

Using the definitions, we can write Eq. (3) as

O(t) = Tr

[
ρ̂T̄

{
e−i

şt0
t

dt̄ Ĥ (t̄)
}
Ô(t)T

{
e
−i

şt

t0
dt̄ Ĥ (t̄)

}]
. (4)

Equation (4) is a bit awkward to handle since it contains two different types of time-
ordering operators. The ensemble average can be written in a more convenient way

by introducing a vertical track via e−βĤM = e
−i

şt0−iβ

t0
dz̄ĤM(z̄)

, where ĤM(z) =
ĤM is constant. The ensemble average of Eq. (4) can then be viewed as three
different time-evolution operators, one going forward in time from t0 to t , then
going backward in time from t to t0, and then finally going from t0 to t0 − iβ.
All these different time-evolution operators can be written using a single time-
ordering by introducing a directed time-ordered contour γ , depicted in Fig. 1. The
contour consists of three branches. Times on the forward and backward branches
are denoted t− and t+, respectively, while times on the vertical (Matsubara) branch
are denoted tM . A general contour time is denoted by z, and we define Ĥ (z =
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Backward branch

Forward branch

Vertical (Matsubara) branch

t0
– t–

t0
+

t0
+

t+

ib—

Fig. 1 The contour. The equations of motion are defined on this contour, consisting of a forward
branch, backward branch, and an imaginary (Matsubara) branch. The initial point on the contour
is zi = t−0 , and the final point is zf = t+0 − iβ. The contour can be deformed into various other
ones used in the literature

t±) = Ĥ (t), Ĥ (z = tM) = ĤM . For all other operators we consider, we define
Ô(z = t±) = Ô(t), Ô(z = tM) = Ô(t0). The use of the contour allows us to write
the ensemble average of Eq. (4) in the elegant form

O(z) =
Tr

[
Tc

{
e
−i

ş

γ
dz̄Ĥ (z̄)

Ô(z)

}]

Tr

[
Tc

{
e
−i

ş

γ
dz̄Ĥ (z̄)

}] . (5)

where Tc {· · · } denotes contour time-ordering, in the sense of the directed contour.
Earlier contour times appear first when following the directed contour starting from
t−0 . For an in-depth discussion, see, for example, Stefanucci and van Leeuwen
(2013) and Špička et al. (2014).

The time contour allows for elegant expressions of non-equilibrium physics via
Eq. (5). Furthermore, the contour yields simple equations of motion for Heisenberg
operators. We define an arbitrary Heisenberg operator ÔH (z) as

ÔH (z) = Û (zi, z)Ô(z)Û(z, zi) (6)

where zi is the initial time on the contour, and the time-evolution operator on the
contour is given by

Û (z2, z1) =

⎧
⎪⎪⎨

⎪⎪⎩

Tc

{
e
−i

şz2
z1

dz̄ Ĥ (z̄)
}

for z2 later than z1

T̄c

{
e
+i

şz1
z2

dz̄ Ĥ (z̄)
}

for z1 later than z2

(7)

where T̄c {· · · } denotes contour anti-time-ordering. Using the time-evolution opera-
tor defined on the contour, we can derive the contour Heisenberg equation of motion:



17 Non-equilibrium Green’s Functions for Coupled Fermion-Boson Systems 371

i
d

dz
ÔH (z) =

[
ÔH (z), ĤH (z)

]

− + Û (zi, z)

(
i

d

dz
Ô(z)

)
Û (z, zi) (8)

These are the basic equations necessary to describe systems out of equilibrium.
We will now specify the type of systems we will study.

2.2 The Structure of the Hamiltonian

We consider a time-dependent fermion-boson Hamiltonian as

Ĥ (z) = Ĥel(z)+ Ĥbos(z)︸ ︷︷ ︸
Ĥ0(z)

+ Ĥel-el(z)+ Ĥel-bos(z)︸ ︷︷ ︸
Ĥint(z)

, (9)

where the non-interacting part Ĥ0 consists of one-body operators and the interaction
part Ĥint consists of higher-order operators. To avoid confusion and to increase
clarity, we write that the two different kinds of particles are electrons and bosons.
We note, however, that the same formalism will be valid if Ĥel and Ĥel-el would refer
to general fermions or bosons. The difference is in the (anti)commutation relations,

which we denote
[
Ô1, Ô2

]

∓ = Ô1Ô2 ∓ Ô2Ô1, where the upper/lower sign is for

bosons/fermions.
The purely electronic part is

Ĥel(z) =
ż

dxdx′ψ̂†(x)
〈
x

∣∣∣ĥ(z)
∣∣∣ x′

〉
ψ̂(x′), (10)

where x denotes a collective space-spin variable. The field creation operator
ψ̂† and destruction operator ψ̂ obey the usual (anti)commutation relations[
ψ̂(x), ψ̂(y)

]

∓ =
[
ψ̂†(x), ψ̂†(y)

]

∓ = 0,
[
ψ̂(x), ψ̂†(y)

]

∓ = δ(x − y). To

simplify the notation, we will assume
〈
x1

∣∣∣ĥ(z1)

∣∣∣ x2

〉
= δ(x1 − x2)h(x1, z1), that is,

that the one-body part does not contain spin-flip terms. The one-body term h(x, z)

contains the kinetic energy and a general time-dependent external potential.
The electrons interact among each other via a two-body interaction Ĥel-el:

Ĥel-el(z) = 1

2

ż

dxdx′ψ̂†(x)ψ̂†(x′)v(x, x′, z)ψ̂(x′)ψ̂(x), (11)

where v(x, x′, z) is the time-dependent pair interaction. The interaction can be
coulombic, but we allow for more freedom by allowing a general two-body
interaction; this allows for considering, for example, local interactions where
v(x, x′, z) ∼ δ(x − x′), ubiquitous in model systems and in cold atom gases (Bloch
and Zwerger 2008). We also allow for a time-dependence that permits to describe,
for example, interaction quenches or an adiabatic switch-on of the interaction.
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We now focus on the bosons, which we will treat slightly differently. The
fundamental reason for this is that the interaction part of the electron-boson
Hamiltonian is not particle conserving. Let us first consider the noninteracting part
Ĥbos as

Ĥbos(z) =
∑

μ

ωμ(z)â
†
μâμ, (12)

in the diagonal form where ωμ(z) is the frequency of mode μ of the bosons and
â†
μ(âμ) are the corresponding creation (annihilation) operator for mode μ. The

operators fulfill the usual commutation relations [âμ, âν] = [â†
μ, â

†
ν ] = 0 and

[âμ, â†
ν ] = δμν . There are many situations in which it is more convenient to work

with the Hermitian displacement ûμ and momentum p̂μ operators, defined via the
transformation

ûμ =
(
â†
μ + âμ

)
/
√

2, p̂μ = i
(
â†
μ − âμ

)
/
√

2. (13)

The displacement and momentum operators fulfill the usual commutation rela-
tions [ûμ, ûν] = [p̂μ, p̂ν] = 0, and [ûμ, p̂ν] = iδμν . In order to prepare the
discussion for more general situations, it turns out that a convenient description
can be obtained if the ûμ and p̂μ operators are gathered into a vector φ̂μξ , with
φ̂μ,1 = ûμ and φ̂μ,2 = p̂μ. We also introduce the composite index μ̄ = (μ, ξμ) to
simplify the notation. The bosonic Hamiltonian, Eq. (12), can be generalized to

Ĥbos(z) =
∑

μ̄ν̄

Ωμ̄ν̄(z)φ̂μ̄φ̂ν̄ . (14)

Equation (14) is then written using Hermitian operators, which generalize Eq. (12).
More specifically, Eq. (14) can contain terms proportional to (â†)2 and â2, thereby
violating particle number conservation. The commutation relations between the φ̂-
fields can be given compactly as

[
φ̂μ̄, φ̂ν̄

]

− = αμ̄ν̄ , with αμ̄ν̄ = δμν

(
0 i

−i 0

)

ξμξν

. (15)

The advantage of the φ̂-field vector formulation will become clear when we later
discuss the equations of motion. It implies that instead of using second-order
equations for the displacement, we can use a first-order equation for the coupled
displacement and momentum operators.

In order to include the multitude of electron-boson interactions in the literature,
we take the interaction to be
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Ĥel-bos(z) =
∑

μ̄

ż

dx ψ̂†(x)λμ̄(x, z)ψ̂(x)φ̂μ̄. (16)

As in the case of v(x, x′, z), the (real-valued) coupling strength λμ̄(x, z) can be
time-dependent. The electron-boson interaction could be written more generally
by letting λμ̄(x, z) being a differential operator, and this will not change the
overall discussion. However, for simplicity, we let λμ̄(x, z) be a local operator.
Equivalent forms of the electron-boson interaction can be obtained by defining
mμ(x) = (λμ,1(x)− iλμ,2(x))/

√
2, which yields

Ĥel-bos =
∑

μ

ż

dx ψ̂†(x)ψ̂(x)
(
mμ(x)â

†
μ +m∗μ(x)âμ

)
.

Another form can be obtained by choosing a discrete electron basis, ψ̂(x) =∑
l ϕl(x)ĉl , which yields Ĥel-bos = ∑

μkl ĉ
†
k ĉl(m

kl
μ â†

μ + mlk,∗
μ âμ), where the

elements mkl
μ = ş

dx ϕ∗k (x)mμ(x)ϕl(x). Written in the above way, the general
interaction Hamiltonian, Eq. (16), includes the commonly used electron-phonon
interaction, electron-plasmon, electron-magnon, electron-photon in cavity quantum
electrodynamics, and others.

We finally note that we have not included the so-called half-body terms in the
bosonic Hamiltonian, terms proportional to a single φ̂ operator. These terms are
important in several contexts, such as in the description of forced oscillators and
superfluid systems, but the half-body interactions can change the diagrammatic
structure, for example, in a Bose-Einstein condensate. For a thorough diagrammatic
treatment of half-body interactions, see De Dominicis (1963). Keeping this in mind,
we will limit ourselves to the Hamiltonian of Eq. (9).

2.3 Operator Correlators

To calculate time-dependent ensemble averages, like in Eq. (5), we need to deal with
time-ordered products of arbitrary operators – operator correlators. In this section,
we derive general equations of motion for such objects. The time-ordering operator
for the same particle species acts in the following way:

Tc

{
Ô1(z1)Ô2(z2)

}
= θ(z1, z2)Ô1(z1)Ô2(z2)± θ(z2, z1)Ô2(z2)Ô1(z1), (17)

that is, the time-ordering orders the later contour time to the left. Here, as in the
rest of the chapter, the upper/lower sign refers to bosonic/fermionic operators. The
functions θ(z1, z2) are step functions on the contour, with θ(z1, z2) = 1 if z1 is
later than z2 on the contour and 0 otherwise. We define the Dirac delta function on
the contour as δ(z1, z2) = ∂z1θ(z1, z2) = −∂z2θ(z1, z2). For a string of operators
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that contain operators pertaining to different species of particles, we define them to
commute under the time-ordering operator.

The equations of motion for the time-ordered product is given by

∂

dz1
Tc

{
Ô1(z1)Ô2(z2)

}
= δ(z1, z2)

[
Ô1, Ô2

]

∓ +Tc

{
∂

∂z1
Ô1(z1)Ô2(z2)

}
.

(18)

The generalization of Eq. (18) to an arbitrary correlator is

∂

∂zk
Tc

{
Ô1 . . . Ôn

}
= ∂θ

zk
Tc

{
Ô1 . . . Ôn

}

+Tc

{
Ô1 . . . Ôk−1

(
∂

∂zk
Ôk

)
Ôk+1 . . . Ôn

}
(19)

where we have defined the contribution from differentiating the step functions in
the first term on the right-hand side. Most often, one is interested in the equations of
motion when the operators Ô1, · · · , Ôn fulfill the extra condition that their equal-
time (anti)commutators commute with other operators:

[
Ôk(z), Ôl(z)

]

∓ = ckl1̂, (20)

where ckl is a number. We will consider such cases here; the creation and destruction
operators, as well as the φ̂-fields, fulfill the relation of Eq. (20). In that case, the

explicit form of ∂θ
zk

Tc

{
Ô1 . . . Ôn

}
is given by

∂θ
zk

Tc

{
Ô1 . . . Ôn

}
=

k−1∑

l=1

(±)k−lδ(zk, zl)
[
Ôk, Ôl

]

∓Tc

{
Ô1 . . .

#
Ôl . . .

#
Ôk . . . Ôn

}

+
n∑

l=k+1

(±)l−k−1δ(zk, zl)
[
Ôk, Ôl

]

∓Tc

{
Ô1 . . .

#
Ôk . . .

#
Ôl . . . Ôn

}
,

(21)

where
#
Ôl denotes that the operator Ôl is missing from the string.

The equation of motion for operator correlators, Eq. (19), is very general, and
is the equation that will give rise to the equations of motion for different kinds of
Green’s functions with different types of particles. To proceed, we need to specialize
our discussion to which types of correlators we want to consider.
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2.3.1 n-Particle Correlators on the Contour
In systems that conserve the number of electrons, all observables can be expressed
as linear combinations of field operators that contain an equal number of creation
and destruction operators. We thus define the n-particle correlator Ĝn as

Ĝn(1, . . . , n; 1′, . . . , n′) = (−i)nTc

{
ψ̂H (1) · · · ψ̂H (n)ψ̂

†
H (n′) · · · ψ̂†

H (1′)
}

(22)
where unprimed variables k = (xk, zk) pertain to destruction operators ψ̂H (k),
while primed variables k′ = (x′k, z′k) pertain to creation operators ψ̂

†
H (k′). The 2n-

point correlators Ĝn(1, . . . , n; 1′, . . . , n′) fulfill the following equations of motion,
which follow from Eqs. (19) and (21) and the Heisenberg equation of motion,
Eq. (8):

[
i

∂

∂zk
− h(k)

]
Ĝn(1, . . . , n; 1′, . . . , n′)

= (−i)nTc

{
ψ̂H (1) . . .

[
ψ̂H (k), Ĥint(zk)

]

− . . . ψ̂H (n)ψ̂
†
H (n′) . . . ψ̂†

H (1′)
}

+
n∑

j=1

(±)k+j δ(k; j ′)Ĝn−1(1, . . . ,
#
k, . . . , n; 1′, . . . ,

#
j ′, . . . , n′),

(23)

and likewise for the primed coordinates. We define Ĝ0 = 1̂.
We now consider the situation where the operators in the correlator are taken to

be φ̂-fields. Similarly to the electronic case, we define the n-body bosonic correlator:

D̂n(1, 2, . . . , 2n) = (−i)nTc

{
φ̂H (1)φ̂H (2) . . . φ̂H (2n)

}
, (24)

where 1 = (μ̄1, z1) is a collective index. Here, n can also be a half-integer, because,
as we will see, the ensemble average of an odd number of φ̂-fields is nonvanishing
when the electron-boson interaction is present.

The equations of motion for D̂n can be found in the same way as for Ĝn, yielding

i
∂

∂zk
D̂n(1, . . . σ̄zk . . . , 2n)−

∑

μ̄ν̄

ασ̄μ̄Ω̄μ̄ν̄ (zk)D̂n(1, . . . , νzk, . . . , 2n)

= (−i)nTc

{
φ̂H (1) . . .

[
φ̂H (k), Ĥint(zk)

]

− . . . φ̂H (2n)

}

+
2n∑

j=1,j �=k

δ(zk, zj )ασ̄,μ̄j
D̂n−1(1, . . . ,

#
k, . . . ,

#
j, . . . , 2n). (25)
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We define D̂0 = 1̂ and D̂−1/2 = 0̂. Equation (25) is somewhat different than the
one for Ĝn, Eq. (23), owing to the presence of the α matrix from the commutation
relations. However, the main structure is identical.

As an illustration of Eq. (25), we consider the case of n = 1/2. In this
case the correlator is the φ̂-field itself, D̂1/2(1) = (−i)1/2φ̂(1). Using the com-

mutators
[
φ̂σ̄, Ĥel-bos

]

− = ∑
μ̄

ş

dxλμ̄(x, z)ασ̄μ̄ψ̂
†(x)ψ̂(x) and

[
φ̂σ̄, Ĥbos

]

− =
∑

μ̄ν̄ Ω̄μ̄ν̄ασ̄μ̄φ̂ν̄ where Ω̄μ̄ν̄ = Ωμ̄ν̄ +Ων̄μ̄, we obtain

i
d

dz
φ̂H (σ̄z) =

∑

μ̄ν̄

Ω̄μ̄ν̄ (z)ασ̄μ̄φ̂H (ν̄z)+
∑

μ̄

ż

dxλμ̄(xz)ασ̄μ̄ψ̂
†
H (xz)ψ̂H (xz).

(26)
Another equivalent form that will be used later can be obtained from Eq. (26) by
using the idempotency relation δσ̄σ̄′ =∑

μ̄ ασ̄μ̄αμ̄σ̄′ :

∑

μ̄

(
iασ̄μ̄

d

dz
− Ω̄σ̄μ̄(z)

)
φ̂(μ̄z) =

ż

dxλσ̄(xz)ψ̂
†
H (xz)ψ̂H (xz). (27)

Equations (25) and (23) are independent on the initial state and play an important
role in the development of the theory. As we explain in the subsequent sections, the
whole structure of diagrammatic perturbation theory is encoded in them.

2.4 Many-Body Green’s Functions

The ensemble averages of the correlators Ĝn and D̂n define corresponding n-particle
Green’s functions as

Gn(1, . . . , n; 1′, . . . , n′) ≡ Tr
[
ρ̂Ĝn(1, . . . , n; 1′, . . . , n′)

]
(28)

Dn(1, . . . , 2n) ≡ Tr
[
ρ̂D̂n(1, . . . , 2n)

]
. (29)

n-particle Green’s functions directly provide ensemble averages of n-particle
objects. With the time contour, as in Eq. (5), Green’s functions can be written as

Gn(1, . . . , n; 1′, . . . , n′)

= (−i)n
Tr

[
Tc

{
e
−i

ş

γ
dz̄Ĥ (z̄)

ψ̂(1) . . . ψ̂(n)ψ̂†(n′) . . . ψ̂(1′)
}]

Tr

[
Tc

{
e
−i

ş

γ
dz̄Ĥ (z̄)

}] (30)
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Dn(1, . . . , 2n) = (−i)n
Tr

[
Tc

{
e
−i

ş

γ
dz̄Ĥ (z̄)

φ̂(1) . . . φ̂(2n)

}]

Tr

[
Tc

{
e
−i

ş

γ
dz̄Ĥ (z̄)

}] . (31)

Note that the operators appearing in the time-ordering are Schrödinger operators.
For future reference, we also define noninteracting Green’s functions gn and dn by
replacing Ĥ with Ĥ0. The form of Eqs. (30) and (31) is well-suited for perturbation
expansions, which we will discuss in the next section.

The Green’s functions Gn, gn, Dn, and dn fulfill the so-called Kubo-Martin-
Schwinger (KMS) boundary conditions, which can be derived from Eqs. (30) and
(31). For Gn, the conditions are G(zi, . . .) = ±G(zf , . . .) where zi/zf is the
initial/final time on the contour. The same holds for all arguments. Likewise, for
Dn: Dn(zi, . . .) = Dn(zf , . . .), and similarly for gn and dn.

The equations of motion for the Green’s functions Gn and Dn follow from the
equations for their corresponding correlators, Eqs. (23) and (25).

[
i

∂

∂zk
− h(k)

]
Gn(1, . . . , n; 1′, . . . , n′)

=(−i)nTr

[
ρ̂Tc

{
ψ̂H (1) . . .

[
ψ̂H (k), Ĥint(zk)

]

− . . . ψ̂H (n)ψ̂
†
H (n′) . . . ψ̂†

H (1′)
}]

+
n∑

j=1

(±)k+j δ(k; j ′)Gn−1(1, . . . ,
#
k, . . . , n; 1′, . . . ,

#
j ′, . . . , n′),

(32)

i
∂

∂zk
Dn(1, . . . σ̄zk . . . , 2n)−

∑

μ̄ν̄

ασ̄μ̄Ω̄μ̄ν̄ (zk)Dn(1, . . . , νzk, . . . , 2n)

= (−i)nTr

[
ρTc

{
φ̂H (1) . . .

[
φ̂H (k), Ĥint(zk)

]

− . . . φ̂H (2n)

}]

+
2n∑

j=1,j �=k

δ(zk, zj )ασ̄μ̄j
Dn−1(1, . . . ,

#
k, . . . ,

#
j, . . . , 2n).

(33)

To further discuss these equations, we work out the commutators:

[
ψ̂H (xz), Ĥel-el(z)

]

− =
ż

dx′v(x, x′, z)ψ̂†
H (x′z)ψ̂H (x′z)ψ̂H (xz)

[
ψ̂H (xz), Ĥel-bos(z)

]

− =
∑

μ̄

λμ̄(xz)ψ̂H (xz)φ̂H (μ̄z)

[
φ̂H (σ̄z), Ĥel-bos

]

− =
∑

μ̄

ż

dxλμ̄(xz)ασ̄μ̄ψ̂
†
H (xz)ψ̂H (xz).
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Let us start by considering only Ĥel-el, that is, imagining that λ = 0. In this case,
Dn = dn and would only couple to Dn−1 = dn−1. The electronic case is different;
Gn couples to Gn−1 but also to Gn+1.

In the case of a non-zero electron-electron and electron-boson interaction, Gn

would couple to Gn−1, and Gn+1, but also to mixed Green’s functions consisting
of a mix of ψ̂, ψ̂†, and φ̂. Likewise, Dn couples to Dn−1 but also to mixed Green’s
functions. The equations of motion for these objects can also be derived in precisely
the same way, but it will turn out that we will not need them for our purposes. For
the derivation of mixed Green’s functions, see Säkkinen (2016).

The full set of equations are referred to as the Martin-Schwinger hierarchy
(Martin and Schwinger 1959). Together with the Kubo-Martin-Schwinger boundary
conditions, we can uniquely obtain any nth-order correlation function. The exact
solution is, of course, out of reach in most physical systems of relevance.

In the noninteracting case, the separate hierarchies of gn and dn will close on
themselves: gn (dn) couples only to gn−1 (dn−1). This allows for writing gn and dn
in terms of g1 and d1, respectively. This is usually referred to as Wick’s theorem
and is the cornerstone of perturbation expansions. This will be further discussed
below. First we will describe the general structure of perturbation theory for Green’s
functions.

2.5 Perturbation Expansion

Green’s functions Gn and Dn written using the time-contour ordering, Eqs. (30)
and (31), permit an expansion in terms of Ĥint. We focus on the single-particle
G ≡ G1, but the discussion for D1 or higher-order Green’s functions is identical.
Under the time-ordering operation Ĥ0, Ĥel-el and Ĥel-bos commute, and thus the
exponentials of the three Hamiltonians can be separated. It then becomes natural to

define the noninteracting average as Tr

[
Tc

{
e
−i

ş

γ
dz̄Ĥ0(z̄) · · ·

}]
= 〈Tc {· · · }〉0 and

expand e
−i

ş

γ
dz̄Ĥel-el(z̄)e

−i
ş

γ
dz̄Ĥel-bos(z̄) in both numerator and denominator, resulting

in

G(ab′) = −i

Z

∞∑

k,�̃=0

(−i)k+�̃

k!�̃!
ż

γ

dz̄1dz̄1̃ . . . dz̄kdz̄
�̃

〈Tc

{
Ĥel-el(z̄1) . . . Ĥel-el(z̄k)Ĥel-bos(z̄1̃) . . . Ĥel-bos(z̄�̃)ψ̂(a)ψ̂†(b′)

}
〉0,

(34)

where the partition function has a similar expansion

Z =
∞∑

k,�̃=0

(−i)k+�̃

k!�̃!
ż

γ

〈Tc

{
Ĥel-el(z̄1) . . . Ĥel-el(z̄k)Ĥel-bos(z̄1̃) . . . Ĥel-bos(z̄�̃)

}
〉0.

(35)
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To distinguish between the fermion expansion and the boson one, we denote bosonic
coordinates with tildes.

To evaluate Eq. (34), we need to be able to calculate time-ordered strings

like Tr

[
Tc

{
e
−i

ş

γ
dz̄Ĥ0(z̄)ψ . . . ψψ̂† . . . ψ̂†φ̂ . . . φ̂

}]
with an arbitrary number of

operators. To make progress, it is crucial to note that the respective operators in
Ĥ0 = Ĥel + Ĥbos belong to different Hilbert spaces. As such, the eigenstates for
Ĥ0 factorize into tensor products between the eigenstates of Ĥel and Ĥbos. The

noninteracting partition function Z0 = Tr

[
Tc

{
e
−i

ş

γ
dz̄Ĥ0(z̄)

}]
can thus be written

as Z0 = Trel

[
Tc

{
e
−i

ş

γ
dz̄Ĥel (z̄)

}]
Trbos

[
Tc

{
e
−i

ş

γ
dz̄Ĥbos(z̄)

}]
= ZelZbos. The

same type of factorization allows us to simplify the expression above, as

〈Tc

{
ψ . . . ψψ̂† . . . ψ̂†φ̂ . . . φ̂

}
〉0 = 〈Tc

{
ψ . . . ψψ̂† . . . ψ̂†

}
〉0〈Tc

{
φ̂ . . . φ̂

}
〉0,
(36)

where it will be clear from the context if 〈Tc {· · · }〉0 refers to the electronic or
bosonic case.

The right-hand side of Eq. (36) is proportional to noninteracting Green’s func-
tions under suitable reorderings of the arguments. 2n operators yield n-particle
Green’s functions, gn for ψ̂, ψ̂†, and dn for φ̂. The expression for G(ab′), Eq. (34),
with order k for the electrons and �̃ for the bosons, yields the following time-ordered
averages for the bosonic case (Eq. (31) with Ĥ → Ĥ0):

〈Tc{φ̂, · · · , φ̂︸ ︷︷ ︸
�̃ operators

}〉0 = Zbosi
�̃/2d

�̃/2(1̃, · · · , �̃).

For the fermionic operators, we have (Eq. (30) with Ĥ → Ĥ0)

〈Tc{ψ̂†ψ̂†ψ̂ψ̂, · · ·︸ ︷︷ ︸
4k operators

, ψ̂†ψ̂, · · ·︸ ︷︷ ︸
2�̃ operators

, ψ̂(a)ψ̂†(b′)︸ ︷︷ ︸
2 operators

}〉0

= Zeli
2k+�̃+1g2k+�̃+1(a, 1̃, · · · �̃, 1, 1′, · · · ; b′, 1̃+, · · · , �̃+, 1+, 1′+, · · · ),

where we have been careful in reordering the operators, which results in an even
number of permutations. To ease notation, we defined g(1̃, · · · ) = g(x1̃, z1̃, · · · ).

From these considerations, we can rewrite Eq. (34) as

G(ab′) = Z0

Z

∞∑

k,�̃=0

ik

2kk!
i�̃/2

�̃!
ż

v(11′) · · · v(kk′)
ż

λ(1̃) · · · λ(�̃)

d
�̃/2(1̃, . . . , �̃)g2k+�̃+1(a, 1̃, . . . , �̃, 1, 1′, . . . ; b′, 1̃, . . . , �̃, 1+, 1′+, . . .),

(37)
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where we defined v(11′) = δ(z, z′)v(x, x′, z). The first type of integral is over
1, 1′, . . . , k, k′, and the second type of integral is over 1̃, . . . , �̃, by which we
mean

ş

γ
dz̄1̃ · · · dz̄�̃

ş

dx1̃ · · · dx�̃
∑

μ̄1,··· ,μ̄�̃
. To ease the notation, we write λ(�̃) =

λμ̄
�̃
(x

�̃
, z

�̃
) and d(1̃, · · · ) = d(μ̄1̃, z1̃, · · · ). The factor 1/2k comes from the factor

1/2 in Ĥel-el. The factor i1 conveniently canceled the (−i) factor in the definition
of G. A similar equation holds for D = D1 and all higher-order Green’s functions
Gn and Dn.

As such, perturbation theory for mixed fermion-boson systems is reduced to
finding practical expressions for the separate non-interacting electronic and bosonic
n-particle Green’s functions, gn and dn. The expressions are provided by Wick’s
theorem, which is the topic of the next section.

2.6 Wick’s Theorem

Wick’s theorem provides a recipe of how to write gn as products of g1:s and dn
as products of d1. The original theorem (Wick 1950) was an operator identity
which related time-ordered products to normal-ordered ones and contractions.
Although being the cornerstone of zero-temperature formalism, where normal-
ordered products vanish, the theorem is not immediately applicable for finite
temperature or systems out of equilibrium. Also, Wick’s discussion was focused
on creation and destruction operators.

Here we will show how a Wick-like decoupling works for the general case
for gn and dn. All cases (zero temperature, finite temperature in equilibrium,
non-equilibrium) follow from using the general time contour and then deforming
it (Stefanucci and van Leeuwen 2013). The decoupling follows from the Martin-
Schwinger hierarchy, Eqs. (32) and (33), with Ĥint = 0. The decoupling is different
for gn and dn, essentially since gn contains two types of non-Hermitian operators
(ψ̂ and ψ̂†), while dn contains only one type of Hermitian operator (φ̂). As such, we
discuss them separately, starting with the more familiar case of gn.

2.6.1 Wick’s Theorem for gn

The determining relation for gn is the Martin-Schwinger hierarchy for Gn, Eq. (32),
with Ĥint = 0, and the KMS boundary conditions:

[
i

∂

∂zk
− h(1)

]
gn =

n∑

j=1

(±)k+j δ(k; j ′)gn−1(1, . . . ,
#
k, . . . , n; 1′, . . . ,

#
j ′, . . . , n′).

(38)

The Martin-Schwinger hierarchy for gn couples only to gn−1, and thus by iteration,
we can find the solution to Eq. (38) in terms of single-particle Green’s functions
g(1; 1′) ≡ g1(1; 1′). The explicit solution is given by a permanent/determinant
for bosons/fermions of g(1; 1′) (Martin and Schwinger 1959; Bruus and Flensberg
2004; Stefanucci and van Leeuwen 2013):
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gn(1, . . . , n; 1′, . . . , n′) =

∣∣∣∣∣∣∣

g(1; 1′) . . . g(1; n′)
... . . .

g(n; 1′) . . . g(n; n′)

∣∣∣∣∣∣∣
±

, (39)

where g(1; 1′) satisfies (Eq. (38) with n = 1)

(
i

∂

∂z1
− h(1)

)
g(1; 1′) = δ(1; 1′). (40)

The permanent/determinant Eq. (39) satisfies the Martin-Schwinger equations for

gn, Eq. (38), as can be checked by applying the differential operator
[
i ∂
∂zk
− h(1)

]
.

Furthermore, the KMS boundary conditions are satisfied since g satisfies them.
As an example, we consider the decoupling for g2:

g2(1, 2; 1′, 2′) = g(1; 1′)g(2; 2′)± g(1; 2′)g(2; 1′) (41)

which is depicted in Fig. 2. The correct sign is taken into account by simply counting
the number of times lines cross each other.

We can also write the decoupling recursively. For g3, expanded along 1

g3(1, 2, 3; 1′, 2′, 3′) = g(1; 1′)g2(2, 3; 2′, 3′)± g(1; 2′)g2(2, 3; 1′, 3′)

+ g(1; 3′)g2(2, 3; 1′, 2′), (42)

which is depicted in Fig. 3. In the recursive form along k, it is immediately clear that

g3 satisfies the Martin-Schwinger hierarchy by applying
[
i ∂
∂zk
− h(1)

]
.

Fig. 2 Wick’s theorem for
noninteracting two-particle
Green’s function g2, Eq. (41)
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Fig. 3 Wick’s theorem for noninteracting three-particle Green’s function g3, Eq. (42). The second
diagram on the right-hand side gives a contribution (±1), having one crossing, while the right
diagram gives (±1)2 = 1. We have prolonged the edges of the g2:s with a thin dashed line to the
correct vertices since we can then easily see which sign the diagram has by counting the number
of crossings
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2.6.2 Wick’s Theorem for dn

The determining relation for dn is the Martin-Schwinger hierarchy for Dn, Eq. (33),
with Ĥint = 0, and the KMS boundary conditions:

∑

μ̄

[
iασ̄μ̄

∂

∂zk
− Ω̄σ̄μ̄(zk)

]
dn(1, . . . , μ̄zk, . . . , 2n)

=
2n∑

j=1,j �=k

δ(zk, zj )δσ̄μ̄j
dn−1(1, . . . ,

#
k, . . . ,

#
j, . . . , 2n).

(43)

The hierarchy for dn, Eq. (43), clearly resembles the hierarchy for the electronic
case, gn, Eq. (38). The structure becomes more clear by defining the operator in
front of dn on the first line as an (discrete) integral operator Lk , leading to

Lkdn(1, . . . , k, . . . , 2n) =
2n∑

j=1,j �=k

δ(k, j)dn−1(1, . . . ,
#
k, . . . ,

#
j, . . . , 2n). (44)

This is the formal analogue to Eq. (38), and as such it is not surprising that Wick’s
theorem for gn and dn is very similar. The difference is that for dn, all operators
need to be contracted with each other, as there is no separation into cases as it was
for creation and destruction operators.

Another feature that is different from the electronic case is the appearance of an
odd number of fields, when n is a half-integer. From Eq. (44), we see that integer
n connects with integer n− 1 and half-integer n connects with half-integers n− 1.
As such, we have two separate hierarchies of equations. Furthermore, we have that
dn = 0 when n is a half-integer. This can be seen by considering the ensemble
average of the equation of motion for φ̂H , Eq. (27), in the interacting case:

∑

μ̄

(
iασ̄μ̄

d

dz
− Ω̄σ̄μ̄(z)

)
φ(μ̄z) =

ż

dxλσ̄(xz)G(x, z, x, z+). (45)

This equation can be solved, and the solution is given by

φ(σ̄, z) = −i
∑

μ̄

ż

dx
ż

γ

dz̄ d(σ̄z; μ̄z̄)λμ̄(x, z̄)G(x, z̄, x, z̄+), (46)

where d = d1 is the bosonic Green’s function of Eq. (44) with n = 1 that fulfills

∑

μ̄

[
iασ̄μ̄

∂

∂z1
− Ω̄σ̄μ̄(z1)

]
d(μ̄z1, 2) = δ(z1, z2)δσ̄μ̄2 . (47)
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In the non-interacting state, we have immediately that 〈φ(σ̄, z)〉0 = 0, that is, we
have d1/2 = 0. Moreover, the Martin-Schwinger hierarchy couples half-integers to
half-integers. Consider n = 3/2:

L1d3/2(1, 2, 3) = δ(1, 2)d1/2(3)+ δ(1, 3)d1/2(2) = 0

We have that d3/2 = 0 is a solution, which fulfill the KMS boundary conditions. As
such, this is the only solution. By induction, dn = 0 for half-integers. As such, from
now on, we only consider n being an integer in the noninteracting case.

As in the case of gn, the equation of motion for dn only connects to lower-order
Green’s functions, making it plausible that we can write the solution to Eq. (43) in
terms of single-particle Green’s functions d(1, 2) ≡ d1(1, 2). For dn; the solution to
Eq. (43) is given by the so-called Haffnian (Säkkinen 2016):

dn(1 . . . 2n) = d(12)d(34) · · · d(2n− 1, 2n)+ d(13)d(24) · · · d(2n− 1, 2n)+ . . . ,

(48)
where . . . denote the rest of the permutations of 1 to the set {4, . . . , 2n}.

As examples of the decoupling of dn, d2 is given by

d2(1234) = d(12)d(34)+ d(13)d(24)+ d(14)d(23). (49)

The solution can also be written in a recursive form, which can be seen as expanding
the Haffnian around a point. For d3, expanded around the point 1

d3(123456) = d(12)d2(3456)+ d(13)d2(2456)+ d(14)d2(2356)

+ d(15)d2(2346)+ d(16)d2(2345).
(50)

The recursive form of Eq. (50) makes it clear that d3 satisfies Eq. (43) with k = 1.
The expansion for d3 is shown in Fig. 4, which exemplifies that the Haffnian can be
visualized in terms of the so-called chord diagrams. We also note that the Haffnian is
commonly written in a more symmetric form, due to the symmetry d(12) = d(21):

dn(1 . . . 2n) = 1

2nn!
∑

P

n∏

i=1

d(P (2i − 1), P (2i)), (51)

where P denotes permutations of {1, . . . 2n}.
We thus again note the crucial difference between Wick’s theorem for gn and

dn: For gn we need to connect unprimed coordinates to primed coordinates in
all possible ways. However, for dn, there is no distinction between primed and
unprimed coordinates, and we need to connect all coordinates in all possible ways. It
is thus natural that for gn we organize the vertices in two columns, while for dn it is
more natural to put the vertices on a circle. It is important to note, however, that the
decoupling, Wick’s theorem, is in both cases the solution to the corresponding non-
interacting Martin-Schwinger hierarchy with the proper Kubo-Martin-Schwinger
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Fig. 4 Pictorial description of Wick’s theorem for d3, Eq. (50), when expanding around point 1.
Dots connected with a wiggly line denote d1, while non-connected dots denote higher-order
Green’s function. Note that we do not need to take into account the number of possible crossings,
since the particles here are bosons

boundary conditions. As stated before, the time contour construction permits a
finite-temperature, non-equilibrium perturbation theory. By specializing to different
contours, we obtain the zero-temperature formalism by an adiabatic switch of the
interaction or the Matsubara formalism by considering the vertical track only. This
shows the elegance of the contour formalism for mixed electron-boson systems.

3 Diagrammatic Perturbation Theory

Wick’s theorems provided explicit expressions for noninteracting Green’s functions
gn and dn, which were the building blocks in the perturbation expansion for many-
body Green’s functions Gn and Dn, via equations like Eq. (37).

Equipped with Wick’s theorem, we can write the expansion for G(ab′), Eq. (37),
in diagrams. It turns out, however, that many of the resulting diagrams are topologi-
cally equivalent and as such we only need to sum over the topologically inequivalent
diagrams. This will cancel the combinatorial factors in Eq. (37). Furthermore, we
only need to sum over connected diagrams, meaning that the internal vertices need
to connect to the outer vertices (those vertices not integrated over). The disconnected
diagrams will cancel against the expansion for Z in Eq. (35). For a more in-depth
discussion, see, for example, Säkkinen (2016). The resulting formulas for G and D

become

G(ab′) =
∞∑

k,�̃=0

ik+�̃

ż

v(11′) · · · v(kk′)
ż

λ(1̃) · · · λ(2�̃)

d1̃(1̃, . . . , 2�̃)g2k+2�̃+1(a, 1̃, · · · , �̃, 1, 1′, . . . ; b′, 1̃, · · · , �̃, 1+, 1′+, . . .)|t.in.c

(52)
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Fig. 5 Example diagrams of G(ab′). Wavy lines denote d propagators, while dashed lines denote
the pair interaction v(x, x′, z). Solid straight lines denote g propagators

D(ab) =
∞∑

k,�̃=0

ik+�̃

ż

v(11′) · · · v(kk′)
ż

λ(1̃) · · · λ(2�̃)

d
�̃+1(ab1̃ . . . 2�̃)g2k+2�̃(1̃, · · · , �̃, 1, 1′, . . . ; 1̃, · · · , �̃, 1+, 1′+, . . .)|t.in.c,

(53)

where the abbreviation (t.in.c) denotes that we consider only the topologically
inequivalent and connected diagrams when expanding gn and dn in permanents/de-
terminants and Haffnians. The same considerations can be applied to higher-order
Green’s functions without any formal complication. As such, perturbation theory
for coupled electron-boson systems is now completely well-defined.

3.1 Skeleton Diagrams and the Kadanoff-Baym Equations

The Feynman rules for the fermionic and bosonic n-particle Green’s functions
completely determine these functions in terms of the propagators g and d. We
can, however, reduce the number of distinct diagrammatic terms considerably by
expressing them in terms of the so-called dressed propagators. Let us start by
discussing the dressing of the fermion propagator G.

We first give some examples of the diagrammatic expansion of G(ab′), in
Fig. 5. We note that many diagrams will contain repetitions of smaller blocks. This
motivates us to define the concept of an irreducible self-energy Σ , which consists
of the set of diagrams contributing to G that, after the removal of the ingoing and
outgoing g lines, cannot be cut into two pieces by removal of a g line. With these
definitions we can write G as a repetition in series of irreducible pieces:

G = g + gΣg + gΣgΣg + . . . = g + gΣG (54)

in which the products in these expressions consist of repeated convolutions, i.e.,
ab(1, 2) = ş

γ
d3 a(1, 3)b(3, 2). The self-energy Σ[g, d] is itself expressed as an

infinite sum of irreducible diagrams in terms of g and d. Examples of diagrams for
Σ[g, d] are shown in Fig. 6.

Within these Σ diagrams themselves, we can also distinguish self-energy
insertions (e.g., the last diagram in Fig. 6), i.e., pieces of diagrams that can be made
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Σ[g, d] =

Fig. 6 Example diagrams of the electronic self-energy Σ[g, d]. The last diagram contains a self-
energy insertion

Σs[G, d] =

Fig. 7 Example diagrams of the skeletonic electronic self-energy Σs [G, d]

disjoint of the rest of the diagram by cutting two g lines. The diagrams obtained
by the removal of all self-energy insertions are the so-called skeleton diagrams.
The full set of Σ diagrams can be obtained by dressing the skeleton graphs with
self-energy insertions in all possible ways. This amounts to the replacement of the
bare g lines by the full propagators G in every diagram. We can therefore write
Σ[g, d] = Σs[G, d] where we used the subscript s to denote that Σs is the sums of
all skeleton diagrams in terms of G and d . We can therefore write

G = g + gΣs[G, d]G. (55)

Examples of diagrams for Σs[G, d] are shown in Fig. 7.
Let us now proceed with the discussion of the bosonic Green’s function D(ab).

The diagrammatic structure comes from expanding gn and dn in Eq. (53), and
example diagrams are shown in Fig. 8.

New types of diagrams, the double “tadpole” diagrams (top middle in Fig. 8),
occur for D(ab) that were not present for G(ab), and as such we discuss them first.
The tadpoles are in fact the diagrammatic expansion of the half-body term φ(a). All
the tadpole diagrams can be conveniently summed up, which is done in Fig. 9. The
diagrammatic rules yield

φ(σ̄,, z) = −i
∑

μ̄

ż

dx
ż

γ

dz̄ d(σ̄ z; μ̄z̄)λμ̄(x, z̄)G(x, z̄, x, z̄+), (56)
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Fig. 8 Example diagrams of D(ab). The top middle diagram is referred to as the double tadpole
diagram

+ + + + + . . .  =

Fig. 9 Summation of all tadpole diagrams, which yields φ(a), Eq. (56)

Fig. 10 Example diagrams of D(ab) after resumming the double tadpole diagrams

a result that we already obtained from the equations of motion for φ(a), Eq. (46).
As such, we can write the expansion for D as

D(1, 2) = φ(1)φ(2)+ d(1, 2)+ (dΠd)(1, 2)+ (dΠdΠd)(1, 2)+ . . . , (57)

where we also introduced a bosonic self-energy Π [g, d] as the collection of
diagrams which cannot be made disjoint by cutting two d lines. Some example
diagrams are shown in Fig. 10.

Differently from the electronic case, D(12) does NOT fulfill a Dyson equa-
tion, due to the presence of φ(a)φ(b). As such, we are motivated to define a
new type of Green’s function D(ab) = D(ab) − φ(a)φ(b) which has these
terms subtracted. D(ab) can be defined using the so-called fluctuation operators,



388 D. Karlsson and R. van Leeuwen

Πs[G, d] =

Fig. 11 Example diagrams of the bosonic skeletonic self-energy Πs [G, d]

Σss[G, D] =

Fig. 12 Example diagrams of the double skeletonic electronic self-energy Σss [G,D] = ΣH[G]+
Σxc[G,D], see Eq. (63). The first two diagrams, the tadpole diagrams, make up the time-local ΣH

Δφ̂H (a) = φ̂H (a) − φ(a), with 〈Δφ̂H (a)〉 = 0. We then have that D(ab) =
−iTr

[
Tc

{
ρ̂Δφ̂H (a)Δφ̂H (b)

}]
. The Fluctuation Green’s function D(ab) fulfills

a Dyson equation, obtained by rewriting Eq. (57) as

D = d + dΠd + dΠdΠd + . . . = d + dΠ [g, d]D. (58)

We can now proceed as above and remove all fermionic self-energy insertions
inside Π [g, d] diagrams and form skeleton diagrams and replace the bare g by the
dressed G as Πs[G, d] = Π [g, d]. This is shown in Fig. 11.

We note now that we can continue this way and also remove all bosonic self-
energy insertions inside the Πs diagrams and dress these diagrams with the full D
line such that Πss[G,D] = Πs[G, d] where Πss are the self-energy diagrams that
are skeletonic with respect to removal of both fermionic and bosonic self-energy
insertions. A similar procedure can be carried out for the fermionic self-energy,
where we can write Σss[G,D] = Σs[G, d], except that we must not dress the time-
local diagrams, as shown in Fig. 12. In conclusion, we obtain the following set of
equations

G = g + gΣss[G,D]G (59)

D = d + dΠss[G,D]D. (60)

Example diagrams are shown in Fig. 12 for Σss[G,D] and Fig. 13 for Πss[G,D].
The Dyson equations, Eqs. (59) and (60), can be rewritten in a form often used

in time-dependent calculations, by using the equations of motion for bare Green’s
functions:
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Πss[G, D] =

Fig. 13 Example diagrams of the double skeletonic bosonic self-energy Πss [G,D]

[
i∂z1 − h(1)

]
G(1, 2) = δ(1, 2)+

ż

γ

d3Σss[G,D](1, 3)G(3, 2) (61)

[
iα∂z1 − Ω̄(1)

]
D(1, 2) = δ(1, 2)+

ż

γ

d3Πss[G,D](1, 3)D(3, 2). (62)

These are self-consistent equations for the fermion and boson propagator, once an
approximation for Σss and Πss in terms of skeleton graphs has been chosen. Two
similar adjoint equations involving the time derivative with respect to z2 can be
derived in a similar way. These equation are known as the Kadanoff-Baym equations
(KBE), together with the KMS boundary conditions discussed earlier.

The solution of the KBE yields a wealth of information. Apart from non-
equilibrium spectral functions and the total energy, the expectation value of any
one-body operator can be obtained from the solution. Since external time-dependent
fields are treated explicitly, the approach allows, for example, for the calculation of
higher response functions. For the case of linear response functions, this provides
an alternative for the Bethe-Salpeter equation while at the same time admitting
sophisticated memory kernels which are difficult to treat in the standard approach.

The solution of the KBE requires full self-consistency, as the self-energies
depend on Green’s functions that are themselves solutions of the equations. This
feature can be a numerical disadvantage, but it also has two important theoretical
advantages. First of all, it removes the dependence of the result on bare Green’s
functions, allowing for an unambiguous calculation of observables. Secondly, by
a proper diagrammatic choice of the self-energies, we can make sure that the
observables calculated from the Green’s functions satisfy the conservation laws for
energy, momentum, and particle number. For this purpose, the self-energies must be
chosen in a so-called Φ-derivable manner. To define this properly, it is convenient
to split off the spatially and temporally local Hartree part ΣH of the fermionic self-
energy and to define the remaining exchange-correlation part Σxc by

Σss(1, 2) = ΣH(1, 2)+Σxc(1, 2). (63)

The Hartree part is given by the two tadpole diagrams of Fig. 12. Now we define a
functional Φ[G,D] by closing each skeleton diagram for Σxc with a G line which
produces a set of vacuum diagrams. The procedure is explained in more detail in
Fig. 14.
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Φ[G,D] = 1
2 +1

2 +1
4 +1

2 +1
4 +1

4 +1
2

Fig. 14 Example diagrams of Φ[G,D] yielding Σss [G,D] and Πss [G,D]. As examples, the
operation δ/δG, i.e., removing a G line, applied to the first two diagrams gives the third and
fourth diagram for Σss [G,D] in Fig. 12 (Fock-like, or exchange-like, diagrams). The operation
−2δ/δD|S applied to the second diagram yields the first diagram for Πss [G,D] in Fig. 13

Each of the topologically different vacuum diagrams will also be multiplied
with a symmetry factor 1/NS where NS is the number of equivalent G lines that
yield the same self-energy diagram by their respective removal (the relevant fact
that the different classes of equivalent lines in a vacuum diagram are equal in size
can be proven as in Stefanucci and van Leeuwen 2013). We furthermore introduce
an additional minus sign since the removal of a G line from a vacuum diagram
changes the number of fermion loops by one. By construction the Φ-functional has
the property that Σxc(1, 2) = δΦ/δG(2, 1). Along the lines of Stefanucci and van
Leeuwen (2013), we can further prove that Πss(1, 2) = −2δΦ/δD(1, 2)|S where
the subscript S refers to the symmetrized derivative [δ/δD(12)+ δ/δD(21)] /2.

So far we dealt with the exact self-energies, but in practice we have to
consider approximate self-energies. We say that such self-energies Σxc and Πss are
Φ-derivable, whenever there exists a functional Φ[G,D] such that

Σxc(1, 2) = δΦ

δG(2, 1)
(64)

Πss(1, 2) = −2
δΦ

δD(1, 2)
|S. (65)

In practice the corresponding Φ-functional is obtained by selection of an appropriate
set of sub-diagrams of the exact Φ-functional.

The significance of this procedure lies in the fact that the Φ-functional has
invariance properties with regard to certain space-time and gauge transformations
that imply the satisfaction of corresponding conservation laws for Green’s functions
obtained from the KBE in which the Φ-derivable self-energies are used (Baym and
Kadanoff 1961; Baym 1962). We therefore have a way to automatically guarantee
the satisfaction of conservation laws for approximate self-energies. We finally
mention that it is also possible to develop partially self-consistent approaches in
which, for example, only number conservation is guaranteed (Karlsson and van
Leeuwen 2016). Such approaches are of interest when full self-consistency is hard
to achieve, for example, due to computational limitations.

We finally note that for the purely electronic case, it is very common to dress also
the two-body interaction v(x, y, z), to obtain expansions in terms of the so-called
screened interaction W . This construction, to lowest order, constitutes the often-used
GW approximation (Hedin 1965). The redressed Φ-diagrams are referred to as the
Ψ [G,W ]-functional (Almbladh et al. 1999). In the presence of phonons, similar
types of resummations can be done (Hedin and Lundqvist 1970).
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We should mention that the KBE for practical applications are typically, by
selecting time variables on various branches of the contour, rewritten in terms of
real-time, imaginary time, and mixed real-imaginary time components using the so-
called Langreth rules. This is more a technical issue, and we refer to the literature
(Dahlen and van Leeuwen 2007; Stefanucci and van Leeuwen 2013) for details. In
practice these equations are first solved on the vertical imaginary track of the con-
tour, after which a time propagation in the double real-time and real-imaginary time
variables can be performed. In practice the KBE are typically converted, using a suit-
able basis, into time-dependent matrix equations which can be solved by employing
suitable time-stepping techniques in the double-time plane (Stan et al. 2009).

4 Conclusions

The use of non-equilibrium Green’s function methods has seen an explosive rise
in the last two decades, mainly due to developments in nano-science and nonlinear
pump-probe laser technologies that allow for in-depth studies of non-equilibrium
systems.

One of the large research fields that has been developed over the last years
is the study of molecular transport which studies charge transport through single
molecules and nano-junctions (Stefanucci and Almbladh 2004; Datta 2005; Cuevas
and Scheer 2010) attached to metallic leads. The small size of the system makes
it necessary to have a detailed description of the electronic structure in which a
correct description of the Coulomb interactions between the electrons in the system
is crucial. The Kadanoff-Baym approach is well-suited to study time-dependent
quantum transport systems. If the macroscopic leads are treated as effectively non-
interacting, the leads can be incorporated non-perturbatively into the KBE using
the so-called embedding self-energy, which is simply added to the many-body self-
energy. The first applications of KBE to transient phenomena in correlated charge
transport of electrons are by now a decade old (Myöhänen et al. 2008, 2009;
Puig von Friesen et al. 2010; Uimonen et al. 2011) with later developments of
numerically efficient but simplified approaches (Latini et al. 2014) based on the so-
called generalized Kadanoff-Baym ansatz (Lipavský et al. 1986). These approaches
have given new insights into various non-equilibrium phenomena such as transients
and memory effects (Myöhänen et al. 2008), as well as bistability (Uimonen et al.
2010; Khosravi et al. 2012), image charge effects (Myöhänen et al. 2012), bias-
induced gap closings (Myöhänen et al. 2009), and other correlation effects in the
non-equilibrium regime.

Another research field that developed quickly is that of strong-field pump-probe
laser spectroscopy of single molecules in strong laser fields. In these systems, there
is a considerable ionization yield, and the use of non-equilibrium Green’s functions
is very well-suited to describe these systems using similar embedding techniques
as in the quantum transport case, in which the embedding is now done for the
ionization continuum rather than the macroscopic leads. This allows for treating
strong external fields non-perturbatively (Perfetto et al. 2015). The formalism has
been applied to the first-principle study of ultrafast phenomena in large organic
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molecules such as the early-stage density oscillation of the electronic charge in
the photoexcited phenylalanine amino acid (Perfetto et al. 2018) as well as the
electronic charge separation in photoexcited donor-C60 complexes (Boström et al.
2018).

All these systems were purely electronic. However, recent years have seen
the development of the KBE for coupled electron-boson systems (Säkkinen et al.
2015a, b) as well as the study of the KBE (Tuovinen et al. 2016) for heat transport
(Arrachea et al. 2012; Wang et al. 2014). In these systems we not only deal with
electrons but also with various bosonic systems. The KBE for electron-boson
systems have been used to study polaron formation in coupled electron-phonon
systems (Säkkinen et al. 2015a, b), spin transport for electron-magnon systems
(Mahfouzi and Nikolić 2014), and pump-probe spectroscopies in electron-plasmon
systems (Schüler et al. 2016), and there is a considerable activity toward the
study of electron-photon systems in cavity quantum electrodynamics (Ruggenthaler
et al. 2014; Flick et al. 2017) with various connections to time-dependent density
functional theory. This research field is growing rapidly, and the KBE method and
its simplifications are becoming standard tools; there is a transition of applications
from model systems to realistic systems (Perfetto et al. 2015; de Melo and Marini
2016; Schlünzen et al. 2016).

Pump-probe and nonlinear spectroscopy on molecules and solids is also exper-
imentally a growing research field, and therefore there is an increasing need for
theoretical methods to interpret and describe new experiments. In this work, we
outlined a suitable formalism to achieve this goal. The formalism has already been
used successfully in the lowest orders, and many promising new applications and
further developments of the theory are within reach.
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Špička V, Velický B, Kalvová A (2014) Electron systems out of equilibrium: nonequilibrium
Green’s function approach. Int J Mod Phys B 28(23):1430013. https://doi.org/10.1142/
S0217979214300138; http://www.worldscientific.com/doi/abs/10.1142/S0217979214300138?
journalCode=ijmpb&quickLinkVolume=28&quickLinkIssue=23&quickLinkPage=1430013&
selectedTab=citation&volume=28#.VvAQ0PsV1sE.mendeley

Stan A, Dahlen NE, van Leeuwen R (2009) Time propagation of the Kadanoff-Baym equations
for inhomogeneous systems. J Chem Phys 130(22):224101. https://doi.org/10.1063/1.3127247;
http://www.ncbi.nlm.nih.gov/pubmed/19530756

Stefanucci G, Almbladh CO (2004) Time-dependent partition-free approach in resonant tunneling
systems. Phys Rev B 69(19):195318. https://link.aps.org/doi/10.1103/PhysRevB.69.195318

https://doi.org/10.1209/0295-5075/84/67001
http://stacks.iop.org/0295-5075/84/i=6/a=67001?key=crossref.7f76c45bb53d32a8d0f63a9c53ac212b
http://stacks.iop.org/0295-5075/84/i=6/a=67001?key=crossref.7f76c45bb53d32a8d0f63a9c53ac212b
https://doi.org/10.1103/PhysRevB.80.115107
http://prb.aps.org/abstract/PRB/v80/i11/e115107
http://prb.aps.org/abstract/PRB/v80/i11/e115107
https://link.aps.org/doi/10.1103/PhysRevB.80.115107
http://prb.aps.org/abstract/PRB/v85/i7/e075105
http://prb.aps.org/abstract/PRB/v85/i7/e075105
https://link.aps.org/doi/10.1103/PhysRevB.85.075105
http://link.aps.org/doi/10.1103/PhysRevA.92.033419
http://pubs.acs.org/doi/10.1021/acs.jpclett.8b00025
http://link.aps.org/doi/10.1103/PhysRevB.82.155108
http://link.aps.org/doi/10.1103/PhysRevB.82.155108
https://doi.org/10.1103/PhysRevA.90.012508
http://urn.fi/URN:ISBN:978-951-39-6814-4
http://urn.fi/URN:ISBN:978-951-39-6814-4
https://doi.org/10.1063/1.4936142
http://aip.scitation.org/doi/10.1063/1.4936142
http://aip.scitation.org/doi/10.1063/1.4936142
https://doi.org/10.1063/1.4936143
http://aip.scitation.org/doi/10.1063/1.4936143
http://aip.scitation.org/doi/10.1063/1.4936143
https://link.aps.org/doi/10.1103/PhysRevB.93.035107
https://link.aps.org/doi/10.1103/PhysRevB.93.035107
https://link.aps.org/doi/10.1103/PhysRevB.93.054303
https://link.aps.org/doi/10.1103/PhysRevB.93.144506
https://link.aps.org/doi/10.1103/PhysRevB.93.144506
https://doi.org/10.1142/S0217979214300138
https://doi.org/10.1142/S0217979214300138
http://www.worldscientific.com/doi/abs/10.1142/S0217979214300138?journalCode=ijmpb&quickLinkVolume=28&quickLinkIssue=23&quickLinkPage=1430013&selectedTab=citation&volume=28#.VvAQ0PsV1sE.mendeley
http://www.worldscientific.com/doi/abs/10.1142/S0217979214300138?journalCode=ijmpb&quickLinkVolume=28&quickLinkIssue=23&quickLinkPage=1430013&selectedTab=citation&volume=28#.VvAQ0PsV1sE.mendeley
http://www.worldscientific.com/doi/abs/10.1142/S0217979214300138?journalCode=ijmpb&quickLinkVolume=28&quickLinkIssue=23&quickLinkPage=1430013&selectedTab=citation&volume=28#.VvAQ0PsV1sE.mendeley
https://doi.org/10.1063/1.3127247
http://www.ncbi.nlm.nih.gov/pubmed/19530756
https://link.aps.org/doi/10.1103/PhysRevB.69.195318


17 Non-equilibrium Green’s Functions for Coupled Fermion-Boson Systems 395

Stefanucci G, van Leeuwen R (2013) Nonequilibrium many-body theory of quantum systems: a
modern introduction. Cambridge University Press, Cambridge

Tuovinen R, Säkkinen N, Karlsson D, Stefanucci G, van Leeuwen R (2016) Phononic heat
transport in the transient regime: an analytic solution. Phys Rev B 93(21):214301. http://arxiv.
org/abs/1604.02298; http://link.aps.org/doi/10.1103/PhysRevB.93.214301

Uimonen AM, Khosravi E, Stefanucci G, Kurth S, van Leeuwen R, Gross EKU (2010)
Real-time switching between multiple steady-states in quantum transport. J Phys Conf Ser
220(1):012018. https://doi.org/10.1088/1742-6596/220/1/012018; http://stacks.iop.org/1742-
6596/220/i=1/a=012018

Uimonen AM, Khosravi E, Stan A, Stefanucci G, Kurth S, van Leeuwen R, Gross EKU (2011)
Comparative study of many-body perturbation theory and time-dependent density functional
theory in the out-of-equilibrium Anderson model. Phys Rev B 84(11):115103. http://prb.aps.
org/abstract/PRB/v84/i11/e115103; https://link.aps.org/doi/10.1103/PhysRevB.84.115103

Wang JS, Agarwalla BK, Li H, Thingna J (2014) Nonequilibrium Green’s function method for
quantum thermal transport. Front Phys 9(6):673–697. http://link.springer.com/10.1007/s11467-
013-0340-x, 1303.7317

Wick GC (1950) The evaluation of the collision matrix. Phys Rev 80(2):268–272. https://link.aps.
org/doi/10.1103/PhysRev.80.268

http://arxiv.org/abs/1604.02298
http://arxiv.org/abs/1604.02298
http://link.aps.org/doi/10.1103/PhysRevB.93.214301
https://doi.org/10.1088/1742-6596/220/1/012018
http://stacks.iop.org/1742-6596/220/i=1/a=012018
http://stacks.iop.org/1742-6596/220/i=1/a=012018
http://prb.aps.org/abstract/PRB/v84/i11/e115103
http://prb.aps.org/abstract/PRB/v84/i11/e115103
https://link.aps.org/doi/10.1103/PhysRevB.84.115103
http://springerlink.bibliotecabuap.elogim.com/10.1007/s11467-013-0340-x
http://springerlink.bibliotecabuap.elogim.com/10.1007/s11467-013-0340-x
https://link.aps.org/doi/10.1103/PhysRev.80.268
https://link.aps.org/doi/10.1103/PhysRev.80.268


18Non-equilibriumDynamical Mean-Field
Theory

Martin Eckstein

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
2 Theoretical Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400

2.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
2.2 Green’s Functions and Electronic Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
2.3 Keldysh Formalism: Real-Time Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402
2.4 Kadanoff-Baym Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404

3 The Dynamical Mean-Field Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
3.1 Self-Consistent Mapping to an Impurity Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
3.2 Impurity Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407
3.3 Non-equilibrium Steady States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408

4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
4.1 Quenches and Thermalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
4.2 Photo-Doping in Mott Insulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410

5 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413

Abstract

Intense and ultrashort light pulses allow to investigate new states of matter
in complex materials under non-equilibrium conditions. The formulation of
dynamical mean-field theory (DMFT) using Keldysh Green’s functions provides
a framework to calculate the electronic structure of correlated materials out of
equilibrium. The approach has contributed insight into a wide range of topics,
including photo-induced processes in Mott insulators, non-equilibrium steady
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states in driven materials, and the fundamental question how isolated quantum
systems thermalize. In this chapter we outline the theoretical foundations of non-
equilibrium DMFT, present some of the major results so far, and briefly discuss
future directions, which are needed in order to develop a framework in which
material properties out of equilibrium can be obtained from first principles.

1 Introduction

Traditionally, computational material research is concerned with the equilibrium
properties of matter. This is challenged by the new possibilities offered by ultrafast
laser techniques (Giannetti et al. 2016). Intense femtosecond light pulses can
stimulate new quantum states of matter which exist only out of equilibrium.
Examples include possible light-induced superconductivity (Fausti et al. 2011)
and the transient control of lattice constants and electronic properties through the
excitation of an-harmonically coupled phonons (Rini et al. 2007). Photo-induced
changes of material properties can even be long-lived, as evidenced by the switching
to hidden phases (Ichikawa et al. 2011; Stojchevska et al. 2014) with new types
of spin and orbital order. This new research direction poses great challenges to
theory, as many fundamental concepts of condensed matter physics rely on the
notion of thermal equilibrium or a projection to low-energy states. Even the single-
particle band structure is in part an equilibrium concept: in complex materials,
electronic quasiparticles are only well-defined close to the ground state, and the
screened potential is determined by the collective response of the electronic system
itself. To identify the theoretical challenges, let us discuss some questions in more
detail.

Transient nonthermal dynamics For many situations one can assume rapid
thermalization of electrons, so that photo-excited states in solids can be described
in terms of an electronic quasi-equilibrium state. However, nontrivial transient
phenomena such as the enhancement of electronic orders cannot be explained by
a photo-induced hot electron temperature and must occur prior to thermalization.
There is no generic answer to the question how fast a system of interacting
particles would thermalize after a perturbation, although this concerns the basic
foundations of statistical physics. Isolated model systems can behave strictly
non-ergodic, in particular at integrability (Polkovnikov et al. 2011). Condensed
matter systems are never ideal in that sense, but their short-time behavior may
reflect the non-ergodic behavior of a related integrable system, leading to a two-
stage relaxation with an earlier pre-thermal state (Moeckel and Kehrein 2008;
Kollar et al. 2011), which can show long-range order even if the corresponding
thermal state does not (Sciolla and Biroli 2013; Tsuji et al. 2013). Even far
from integrable points, fast electronic thermalization is not obvious, e.g., close
to the Mott transition (Sayyad and Eckstein 2016). The validity of Boltzmann
kinetic equations, which can describe the dynamics in semiconductors (Haug and
Jauho 2008), relies on the existence of well-defined quasiparticles and is not
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clear for the ultrafast dynamics in strongly correlated systems. Nonthermal states
are also important when non-perturbative electric fields act on a material. Short
laser pulses can have peak fields that would break a material in the steady state,
but not as long as the dynamics remains quantum coherent (Higuchi et al. 2017),
when instead phenomena like Bloch oscillations and high-harmonic generation can
occur.

Non-equilibrium steady states When a system is subject to a rapidly oscillating
time-periodic perturbation, averaging over the fast driving can yield a new effective
Hamiltonian, in analogy to dynamical stabilization of new equilibria in mechanical
systems (Bukov et al. 2015). This so-called Floquet engineering is used to design
tight-binding Hamiltonians in cold-gas experiments (Goldman and Dalibard 2014),
including topologically nontrivial band structures (Jotzu et al. 2014). Floquet
engineering can be used to manipulate emergent many-body interactions such as
spin exchange interactions (Mentink et al. 2015) or superconducting pairing (Knap
et al. 2016), which suggests many routes for material design out of equilibrium. The
fundamental question in this context is whether a non-equilibrium system can be
directed into the ground state or a thermal state of such engineered Hamiltonians
or whether the process is dominated by heating effects. To answer this question,
one needs to understand the non-equilibrium steady states in strongly correlated
open quantum system, in which energy input and dissipation to the environment are
balanced.

A viable approach to describe both the ultrafast transient evolution and non-
equilibrium steady states of many-body systems is the Keldysh formalism. It is
based on non-equilibrium Green’s functions, which describe the propagation of
particles and holes between different space-time points. Green’s functions contain
both the information on the spectrum (electronic structure, quasiparticle energies)
and the occupation of states, which mutually depend on each other out of equi-
librium. In equilibrium, dynamical mean-field theory (DMFT) nowadays provides
a standard approach to describe correlated systems (Georges et al. 1996). DMFT
maps a lattice model with local interactions to an effective impurity model, which
can be solved numerically. This approximation accurately treats local temporal
fluctuations and can therefore capture many phenomena that originate from the
competition of atomic correlations and the itinerant behavior of electrons. DMFT
can be applied to generic models obtained from density-functional theory and thus
quantitatively predict the electronic structure of complex materials (Pavarini et al.
2014). When reformulated within the Keldysh formalism, DMFT can describe non-
equilibrium phenomena in correlated materials (Aoki et al. 2014; Schmidt and
Monien 2002; Freericks et al. 2006). The solution of the DMFT equations in
real time still poses many numerical challenges. The purpose of this chapter is to
explain the foundations of non-equilibrium DMFT within the Keldysh framework
(Sect. 2), to discuss DMFT and the impurity problem out of equilibrium (Sect. 3),
and to give examples for the application of non-equilibrium DMFT (Sect. 4).
Current developments of non-equilibrium DMFT are briefly sketched in the outlook
(Sect. 5).
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2 Theoretical Foundations

This section summarizes theoretical aspects needed for the development of non-
equilibrium DMFT, in particular the Keldysh formalism. Only the main concepts
are presented. For more details we refer to the literature, e.g., books by Haug and
Jauho (2008) and Kamenev (2011).

2.1 Models

We first define typical models which are addressed within non-equilibrium DMFT.
The basic model for correlated electrons is the one-band Hubbard model,

H =
∑

i,j,σ

vij c
†
iσ cjσ + U

∑

j

nj↑nj↓. (1)

Here njσ = c
†
jσ cjσ , c†

jσ (cjσ ) create (annihilate) an electron with spin σ at site j

of a crystal lattice, vij is the hopping matrix element, and electrons interact via
a local Coulomb interaction U . DMFT can also be formulated for models with
more than one orbital per site and different local interactions, such as a coupling
to localized spins (Kondo lattice model) or Einstein phonons (Holstein model).
For equilibrium simulations, such lattice Hamiltonians can be downfolded from
an ab initio band structure. Regarding non-equilibrium DMFT, the development of
analogous downfolding schemes is still subject to current research.

To incorporate electric fields, a tight-binding model such as (1) is modified to

H0 =
∑

i,j,σ

vij e
ieAij c

†
iσ cjσ +

∑

iσ

eφic
†
iσ ciσ , (2)

where e is the charge, φi = φ(Ri ) is the scalar potential, and Aij =
şRj

Ri
dr · A(r)

is a vector potential along a link of the lattice. This so-called Peierls substitution,
which can be derived assuming localized Wannier orbitals, is the minimal extension
of the lattice model that ensures a local gauge symmetry. It does not include terms
such as Zeeman fields, Stark-shifts of orbitals, etc. Such terms may be described by
additional free parameters in the noninteracting part of the Hamiltonian and do not
change the general DMFT framework.

2.2 Green’s Functions and Electronic Structure

In equilibrium, the electronic structure is fully characterized by the spectral
function, which defines the electronic bands in an interacting system. A suitable
generalization to non-equilibrium is given in terms of two-time Green’s functions.
One can start from the electron and hole propagators,
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G<
a,a′(t, t

′) = +i〈c†
a′(t

′)ca(t)〉, G>
a,a′(t, t

′) = −i〈ca′(t)c†
a(t

′)〉. (3)

Here c
†
a and ca denote the creation and annihilation operators for an electron in a

single-particle orbital |a〉, i.e., momentum or position and spin and orbital degrees
of freedom. The time-dependence of the operators is understood in the Heisenberg
picture, and 〈· · · 〉 = tr[ρ0 · · · ] averages over the density matrix of the initial
equilibrium state at some early time t0. To keep the notation concise, we will only
indicate a diagonal momentum index k in the following, Gk ≡ Gk,k . The functions
G<

k (t, t ′) and G>
k (t, t ′) give the amplitude for the propagation of a hole or an

additional electron in the (possibly non-equilibrium) many-body state and therefore
fully characterize the single-electron dynamics in the solid. In equilibrium, G<

k (t, t ′)
and G>

k (t, t ′) depend only on time-difference t − t ′. Using an expansion in many-
body eigenstates (Lehmann representation), one can show that the Fourier transform
Gk(ω) = ş

dt eiωtGk(t, 0) satisfies the relations

G<
k (ω) = 2πi Ak(ω)f (ω), G>

k (ω) = −2πi Ak(ω)[1− f (ω)], (4)

where f (ω) is the Fermi function and Ak(ω) is the spectral function, which contains
the information about the quasiparticle energies and their lifetimes.

2.2.1 Wigner Representation and Photoemission Spectrum
Equation (4) is an example of the fluctuation dissipation theorem and allows to
rigorously separate spectrum and occupations in equilibrium. Out of equilibrium,
such a separation is not possible in general. When time-translational invariance
is lost, a suitable representation for two-time functions F(t, t ′) is the Wigner
transform, where one introduces average time tav = (t + t ′)/2 and relative time
trel = t − t ′ and Fourier-transforms with respect to trel,

F(tav, ω) =
ż

dtrel eiωtrel F(tav + trel/2, tav − trel/2). (5)

The Wigner transform G<(t, ω) has an intuitive interpretation: the factorization of
−iG<

k (ω) as product of a density of states and an occupation function (cf. Eq. (4))
suggests that the Wigner transform G<

k (t, ω) gives the probability distribution to
remove a particle with energy h̄ω and momentum k from the system at time t ,
e.g., in a time- and angle-resolved photoemission experiments. This interpretation
is true, when G<

k (t, ω) is averaged over a time and frequency window which
satisfies the uncertainty relation ΔtΔω � 1, in analogy to the Wigner phase-space
density in semiclassical physics, which becomes of positive phase-space density
positive after a suitable average of position and momentum over a phase-space
volume h̄.

More precisely, time-resolved photoemission measures the probability that an
electron with energy Eout is emitted under the action of a probe pulse with finite
duration and given delay tp with respect to some excitation (“time zero”). The
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signal can be obtained using time-dependent perturbation theory in the light-matter
coupling (Freericks et al. 2009; Eckstein and Kollar 2008),

I (E, tp) ∝
ż

dt dt ′ eiE(t−t ′)(−i)G<(t, t ′) S(t − tp)S(t
′ − tp)

∗. (6)

Here the probe pulse has a frequency Ω and an envelope S(t), and E = (Eout−Ω) is
the energy extracted from the solid. Matrix elements, which would select out certain
orbital and momentum components of G, are not shown in Eq. (6). In addition, the
sudden approximation was employed in the derivation, which assumes that there is
no interaction between the outgoing electrons and the solid. Using a Gaussian profile
S(t) = exp

(−t2/2Δt2
)

with duration Δt , Eq. (6) transforms to the convolution of

G<(ω, t) with the kernel e
− (t−t−p)2

Δt2 e−(ω−E)2Δt2
, which implies the abovementioned

probabilistic interpretation of non-equilibrium Green’s functions.

2.3 Keldysh Formalism: Real-Time Evolution

In order to describe the time evolution of a quantum system, we aim to compute
observables of the general form

〈O(t1)〉 = tr
[
ρ0 U(t1, t0)

† O U(t1, t0)
]
. (7)

Here ρ0 is the density matrix which defines the state at some initial time t0,
and U(t, t0) is the unitary time evolution operator, which is given by the time-

ordered exponential Tt exp
[
−i

şt

t0
dt̄H(t̄)

]
. Equation (7) describes the evolution of

an isolated quantum system without contact to environment.
As a mathematical trick, the time-ordering in U(t, t0) and the corresponding anti-

time-ordering in U(t, t0)
† can be combined into an ordering along a time contour

which extends from t0 forward and then backward in time. Furthermore, the thermal
density matrix can be written as a time evolution operator along an imaginary time
axis [0,−iβ]. The three branches can be combined into a single L-shaped contour
C, as depicted in Fig. 1. Together with C we introduce the contour-ordering operator

Fig. 1 The L-shaped Keldysh contour C. Times on the horizontal branches are purely real and
denoted with a book-keeping index ± to distinguish upper and lower branch, respectively. The
arrows denote the time-ordering along C from earlier to later contour times
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TCA(t)B(t ′) =
{
A(t)B(t ′) if t later on C than t ′
ξB(t ′)A(t) if t ′ later on C than t

, (8)

where the sign ξ is −1 (+1) if the permutation of A and B involves an odd
(even) number of permutations of fermion creation or annihilation operators. The
expectation value (7) can then be written as

〈O(t)〉 = 1

Z
tr[TCe

−i
ş

C dt̄H(t̄)O(t+)], (9)

where
ş

C dt is the integral along the contour. The contour ordering allows to
formally extend the Matsubara formalism for many-body systems to real time.
Diagrammatic perturbation theory and path integrals can be reformulated by merely
replacing integrals over imaginary time by integrals over C: in particular, the path-
integral action for a generic Hamiltonian H is given by

S =
ż

C
dt

∑

a

c∗a(t)i∂t ca(t)−H [c∗(t), c(t)], (10)

the partition function can be written as a path integral Z = ş

D[c∗c]eiS ,
and the expectation value (9) becomes an average 〈O(t)〉S , with 〈· · · 〉S =
Z−1

ş

D[c∗c]eiS · · · . The electron and hole propagators (3) appear naturally as
components of a single contour-ordered Green’s function,

Gab(t, t
′) = −i〈ca(t)c∗b(t ′)〉S, (11)

with G(t+, t ′−) = G<(t, t ′) and G(t−, t ′+) = G>(t, t ′) for t, t ′ ∈ R.
The analogy to the Matsubara formalism implies that contour-ordered Green’s

functions satisfy Wick’s theorem when the action is quadratic (the latter is merely
a consequence of Gaussian integration). Hence the rules for constructing Feynman
diagrams are identical to the Matsubara formalism (Mahan 2000). We can introduce
the two-time self-energy Σ(t, t ′) as the sum over all irreducible diagrams. The
Dyson equation then relates interacting (G) and noninteracting (G0) Green’s
functions,

G = G0 +G0 ∗Σ ∗G = G0 +G ∗Σ ∗G0. (12)

Here ∗ denotes convolution over C. In contrast to equilibrium, where a solution of
the Dyson equation is obtained in Fourier space, the Dyson equation in real time is
an integral equation on C. Its solution presents a formidable numerical task, which
is discussed in the next section.
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2.4 Kadanoff-Baym Equations

Given an approximation to the self-energy, the determination of the Green’s function
requires the solution of the Dyson equation (12). With a suitable time grid of M time
slices along C, the linear integral equation (12) may be reduced to a matrix equation
of dimension M (Freericks 2008). In practice, however, one mostly proceeds
differently, in order to make use of the causality in the time-propagation: on a given
time grid, the solution of Eq. (12) can be extended from real times t, t ′ ≤ nΔt to the
domain t, t ′ ≤ (n + 1)Δt without modification of the solution on previous times.
The Dyson equation can therefore be formulated as a time-propagation scheme.
This is useful because typically Σ[G] itself is a (causal) functional of the Green’s
function, e.g., in the form of a perturbative expression. Mathematically, the causal
structure implies that integral equations on C can be reduced to a set of Volterra
equations, which can be solved using high-order accurate algorithms (Brunner and
van der Houwen 1986). The representation of the Dyson equation in terms of
coupled integral equations for the real-time propagators is referred to as Kadanoff-
Baym equations. Various implementations have been presented, which differ in the
representation of the Green’s function in terms of the lesser, Keldysh, and retarded
components (Bonitz 2000; Eckstein et al. 2010a; Aoki et al. 2014).

Applications of two-time Green’s functions to condensed matter systems range
from the dynamics of screening in semiconductors (Bányai et al. 1998) to electron-
phonon coupled superconductors (Kemper et al. 2017). In general, for M time slices,
the required computational resources scale like O(M2) for memory and O(M3) for
CPU time. This is a major limiting factor, in particular when Green’s functions
carry many orbital indices. Simulations based on full Kadanoff-Baym equations
have therefore been restricted to few-orbital model systems. An important step
toward first-principle simulations of non-equilibrium electronic structure would be
a formulation of the GW approximation (Onida et al. 2002) in the time domain.
Within GW, the self-energy Σk is expanded to leading order in the screened
interaction Wk , and the polarizability χk is in turn computed using the Lindhard
function. This captures nonlocal phenomena resulting from charge fluctuations,
including screening and plasmonic modes. Even though the Dyson equations for
Wk and Σk can be computed in parallel, the calculation of the self-energies and
polarization functions requires a summation over all k-points, which makes the
solution of the full lattice GW simulations a formidable task. Results for a four-
band system have been discussed in Golež et al. (2016).

The numerical cost of solving the Kadanoff-Baym equations motivates a possible
truncation of the integrals. The convolution Σ∗G in the Dyson equation corresponds
to memory effects in the propagation of the single-particle Green’s functions. In
contrast, kinetic equations provide a differential equation for the propagation of a
single-particle density matrix (occupations) without memory integrals. A possible
approximation to the Kadanoff-Baym approximation which focuses on the single-
particle density matrix is the so-called generalized Kadanoff-Baym ansatz (GKBA)
(Lipavský et al. 1986), used in combination with a mean-field approximation to the
retarded propagators, i.e., assuming ideal quasiparticles. To what extent the GKBA
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is useful in condensed matter systems relies on the validity of the quasiparticle
approximation, which needs to be critically accessed for correlated systems.

3 The Dynamical Mean-Field Formalism

3.1 Self-Consistent Mapping to an Impurity Model

The starting point for the development of DMFT has been the limit of infinite
lattice coordination number (Metzner and Vollhardt 1989). For a fermionic tight-
binding model, this limit is defined together with a rescaling of the hopping matrix
elements v, in order to preserve the competition between kinetic and interaction
energies which underlies many phenomena in correlated electron systems. For a
d-dimensional cubic lattice with nearest neighbor hopping, the correct rescaling is
v = v∗/

√
2d, where v∗ is kept constant for d → ∞. The infinite-dimensional

limit implies that the self-energy becomes momentum-independent, i.e., local in
real-space (Müller-Hartmann 1989),

Σij (t, t
′) = δij Σii(t, t

′). (13)

This fact is proven by counting powers of d in the diagrams and therefore holds
equally well in the Keldysh and Matsubara formalism.

The locality of the self-energy can be taken as a non-perturbative approximation
for finite-dimensional systems. The summation of local Σ-diagrams to infinite
order is facilitated by the solution of an auxiliary impurity model (Georges and
Kotliar 1992), as illustrated in Fig. 2. The mapping to the impurity model can be
explained, e.g., in a functional language: in general, the self-energy can be expressed
as a functional of the fully interacting Green’s function. This so-called skeleton
functional Σ skel[G] consists of the sum over all self-energy diagrams in which
the lines do not have self-energy insertions and are in turn replaced by the fully

Fig. 2 Mapping from a lattice model with local self-energy to an impurity model with hybridiza-
tion function Δ(t, t ′)
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interacting G. For an auxiliary impurity problem in which one site of the lattice is
embedded in a noninteracting medium, the skeleton functional Σ imp[G] does not
depend on the form of the noninteracting part of the Hamiltonian. The solution
of the impurity model for the Green’s function Gimp and self-energy Σimp can
therefore be seen as a device to approximate the lattice functional Σ skel

jj [G] with
the contributions from the local Green’s function Gjj to all orders. This argument
was first given for the Falicov-Kimball model by Brandt and Mielsch (1991). An
alternative intuitive and elegant way to formulate the mapping to an impurity model
is given by the so-called cavity method, as introduced in Georges et al. (1996).

For the single-band Hubbard model, the corresponding impurity model has the
form of a general Anderson impurity Hamiltonian (Georges and Kotliar 1992)

Himp = Uc
†
↑c↑c

†
↓c↓ + εf

∑

σ

c†
σ cσ +

∑

pσ

(Vp(t)c
†
σ apσ + h.c.)+

∑

pσ

εp(t)a
†
pσ apσ ,

(14)

where one interacting site is coupled to noninteracting bath orbitals p. Equivalently,
we can write the model as a single site with a general quadratic action, which is
defined through the hybridization function Δ(t, t ′),

Simp =
ż

C
dt
{∑

σ

c∗σ (t)i∂t cσ (t)−Hloc(t)
}
−
∑

σ

ż

C
dtdt ′ c∗σ (t)Δ(t, t ′)cσ (t ′).

(15)

The impurity Dyson equation Gimp = G+ G ∗Σimp ∗Gimp fixes a relation between
the impurity Green’s function Gimp(t, t

′) = −i〈c(t)c∗(t ′)〉Simp and the impurity
self-energy (G[Δ] is the noninteracting impurity Green’s function). The impurity
self-energy is then taken as an approximation for the local lattice self-energy,

Σimp(t, t
′) = Σjj (t, t

′), (16)

and the lattice Green’s function Gij (t, t
′) is obtained from the lattice Dyson

equation. (To simplify the notation, the framework is presented for a translationally
invariant state, i.e., a possible dependence of local quantities on the site is not
shown.) At this stage, the noninteracting lattice Green’s function incorporates the
effect of external electromagnetic fields. The DMFT equations are closed when the
bath Δ(t, t ′) (or equivalently the bath parameters Vp(t) and εp(t)) are determined
self-consistently such that the local lattice Green’s function and the impurity Green’s
functions Gimp(t, t

′) = Gjj (t, t
′) match.

In equilibrium, the self-consistent solution of the DMFT equations is achieved
iteratively. One can start from a guess for Σ , solve the lattice Dyson equation to
obtain Gjj , invert the impurity Dyson equation to get Δ, and solve the impurity
model with action (15) to get Σ . DMFT is in essence a solution of the lattice
Dyson equation with a nonlinear functional Σjj [G] defined through the auxiliary
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impurity model. Because this functional is causal, the DMFT equations on the
Keldysh contour can be solved step by step in time, as explained for the Dyson
equation in Sect. 2.4. The main conceptual and computational bottleneck in the
DMFT framework is the solution of the impurity model, which we summarize in
the following section.

3.2 Impurity Solvers

At present there is no general-purpose approach to solve the impurity problem, but
a number of techniques which work well in certain parameter regimes, or provide
exact results in a short time.

3.2.1 Weak-Coupling Expansions
When perturbation theory is applied to the impurity model, i.e., in combination
with a self-consistent determination of the bath, it can capture non-perturbative
phenomena like the Mott metal-insulator phase transition (Georges et al. 1996).
The most important example is iterated perturbation theory (IPT), i.e., a second-
order expansion of Σ in G[Δ]. IPT is numerically relatively inexpensive (using IPT,
the numerical cost of DMFT is determined by the solution of the lattice Dyson
equation). Interesting applications include the study of nonthermal critical points in
the quench dynamics of the antiferromagnetic spin-density wave (Tsuji et al. 2013).
However, IPT is a non-conserving approximation. Diagrammatic approximations
to the self-energy respect conservation laws like energy and particle number when
they are based on a truncation of the skeleton expansion in terms of the interacting
G (Baym and Kadanoff 1961). In equilibrium, expansions in the bare Green’s
functions are often quantitatively more accurate, but their non-conserving nature
can become problematic in the real-time evolution (Eckstein et al. 2010a). The
use of IPT has so far remained restricted to the weak-coupling regime, although in
equilibrium IPT extrapolates between weak and strong coupling for the half-filled
single-band model.

3.2.2 Strong-Coupling Expansions
The perturbative expansion in the hybridization function is a flexible approach to
study systems in the strongly interacting regime. Starting from the isolated impurity
Hamiltonian Hloc, it defines propagators Ga,a′ in terms of the many-body Fock
states of the impurity site. Particle creation and annihilation events on the impurity
induce transitions between the states a, i.e., the hybridization Δ in the action (15)
corresponds to a retarded “two-body” interaction between the many-body states.
Although Wick’s theorem is not valid when the zeroth order of the expansion
corresponds to a non-quadratic Hamiltonian, one can re-sum the expansion of
the partition function in terms of Δ to generate conserving approximations. The
adaption of the strong-coupling techniques to the Keldysh contour is described in
Eckstein and Werner (2010b). The general starting point of the expansion allows
for an extension to arbitrary local Hamiltonians, including electron-phonon coupled
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systems (Werner and Eckstein 2013), bosonic DMFT (Strand et al. 2015), or multi-
orbital Hubbard models.

The approach has been widely used to study photo-induced dynamics in Mott
insulators (Sect. 4.2). However, only the first order (the so-called non-crossing
approximation, NCA) and to some extent the second order are numerically feasible.
Higher-order expansions require multidimensional integrations over time, which
become costly in particular for multi-orbital systems, when the matrix dimension
of the propagators Ga,a′ is set by the dimension of the local Fock-space. Low-order
expansions cannot recover the weakly interacting limit, which has so far excluded
studies of correlated metallic phases at low-energy.

3.2.3 QuantumMonte Carlo (QMC)
QMC corresponds to a stochastic summation of the perturbation expansion in the
hybridization function or the interaction to all orders. This is nowadays the standard
approach to solve DMFT in equilibrium at finite temperature (Gull et al. 2011). In
real time, however, the terms of the perturbation expansion become complex-valued
(dynamical sign problem), and Monte Carlo is so far limited to times of the order
of few inverse hoppings (Mühlbacher and Rabani 2008; Werner et al. 2009). QMC
solvers have been used to address fundamental problems related to the short-time
dynamics (Sect. 4.1), but for the study of the photo-induced dynamics, few hopping
times are usually not yet sufficient. A recent development to possibly overcome
the dynamical sign problem has been presented by Cohen et al. (2015), using the
causality of the time-propagation within a diagrammatic Monte Carlo approach. It
will be interesting to apply this approach in the context of non-equilibrium DMFT.

3.2.4 Hamiltonian-Based Impurity Solvers
A different direction to develop numerically exact impurity solvers is based on exact
diagonalization. Here one takes a finite system such as the single-impurity Anderson
model Eq. (14), to approximately reproduce a given hybridization function Δ(t, t ′),
and uses the size of the bath as a numerical control parameter. Finite representations
of the bath have been derived both for the steady state, using an impurity model
in which the bath-sites are coupled to dissipative Lindblad terms (Arrigoni et al.
2013) and for real time (Gramsch et al. 2013). In the latter case, wave-function
propagation techniques based on matrix product states (MPS) can be used to
compute the Green’s function (Wolf et al. 2014). The numerical effort in these
Hamiltonian-based techniques increases exponentially with the number of orbitals
in the representation, which limits the frequency resolution in the steady state and
the accessible times in the real-time formalism.

3.3 Non-equilibrium Steady States

The Green’s function formalism can easily deal with open quantum systems in a
quite general environment. When a system is subject to a steady perturbation and
coupled to an environment, it can eventually reach a non-equilibrium steady state
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in which energy input is balanced by dissipation. We can distinguish two different
settings.

3.3.1 Time-Independent Perturbations
This includes in particular the coupling to external leads at a given voltage bias. For
time-independent perturbations, we can expect that Green’s functions depend only
on the time-difference, but the Fermi function in (4) is replaced by a nonthermal
distribution function. One can impose the time-translational invariance as an ansatz
in the DMFT equations. The impurity model then has to be solved for a bath
Δ representing a non-equilibrium steady state, which has so far been done using
either IPT or the auxiliary Master equations (Arrigoni et al. 2013). The steady-state
formalism has been used, e.g., to discuss the negative differential resistance in a
correlated metal (Amaricci et al. 2012) or resistive switching at the Mott transition
(Li et al. 2015).

3.3.2 Time-Periodic Perturbations
As discussed in the introduction, time-periodic perturbations offer the possibility
to control the Hamiltonian parameters in a so-called Floquet Hamiltonian. Under
the effect of steady driving, the system can approach a time-periodic steady state,
in which all two-time correlation functions remain invariant if both arguments are
shifted by the periodicity τ of the driving, G>,<(t + τ, t ′ + τ) = G>,<(t, t ′).
Again this can be used as an ansatz in the formalism, and Green’s functions can be
parametrized using a standard Fourier transform for the difference and a discrete
Fourier transform for the average time. Within DMFT, this formalism has been
pioneered by Schmidt and Monien (2002) and taken up by Tsuji et al. (2008)
and Joura et al. (2008). For the details of the representation, we refer to Aoki et al.
(2014). As one of the more recent results, e.g., the steady state of a Holstein model
with parametric driving of the phonons was studied to investigate the possibility of
light-enhanced superconductivity (Murakami et al. 2017).

4 Applications

In this section we present some applications of the non-equilibrium DMFT frame-
work. We discuss results for the interaction quench in the Hubbard model, which
have provided an important benchmark for the development of the theory, and
results for the photo-doped Mott insulators, which best represent the path toward
material modelling. This is not at all intended to be an exhaustive list of references.
Among the many topics which are omitted here are in particular results for
driven systems (Tsuji et al. 2011; Mentink et al. 2015; Murakami et al. 2017),
inhomogeneous systems (Eckstein and Werner 2013a), the dielectric breakdown
of Mott insulators (Eckstein et al. 2010b), or long-range interactions in extended
DMFT (Golež et al. 2015).



410 M. Eckstein

4.1 Quenches and Thermalization

A fundamental question of statistical physics is whether and how an isolated
many-body system thermalizes after an excitation. Motivated by experiments in
artificial quantum systems, where parameters can be controlled to high-precision,
this question has been investigated in a large class of models (Polkovnikov et al.
2011). Non-equilibrium DMFT opened the unique possibility for numerically
exact studies in systems of dimension d > 2. Beyond the relevance for the
understanding of thermalization, these studies serve as a useful benchmark results
for the development of impurity solvers.

The DMFT equations were solved using an QMC impurity solver for a quench
in the single-band Hubbard model, where the interaction is suddenly changed from
zero to a finite value U > 0 (Eckstein et al. 2009). Corresponding numerically exact
results for quenches from the atomic limit have been obtained with an MPS-based
impurity solver (Balzer et al. 2015). The results for the quench from U = 0 are
best understood by the evolution of the momentum occupation n(k) = 〈c†

k(t)ck(t)〉.
In the initial state, taken at temperature T = 0, n(k) shows a step discontinuity of
size one at the Fermi energy (εkF

= 0). For quenches to small values of U , one
observes a rapid relaxation to a nonthermal state in which an exact discontinuity
at εk = 0 is retained. For quenches to large U , nk shows damped collapse
and revival oscillations, which reflect the behavior in the atomic limit, where the
dynamics is perfectly 2π/U -periodic. Within a sharp crossover region between
large and small U , rapid thermalization is observed, i.e., within few hopping times
the single-particle properties of the system can be described well by a system
in thermal equilibrium with the same energy. The small U behavior corresponds
to pre-thermalization (Moeckel and Kehrein 2008), which is representative for
the dynamics of near-integrable systems, and can be understood in terms of a
perturbative time evolution with approximate constants of motion (Kollar et al.
2011). Apart from DMFT only exact numerics for finite or one-dimensional systems
currently allow to address the breakdown of the perturbative evolution.

4.2 Photo-Doping in Mott Insulators

The Mott metal-insulator transition, at which electrons get localized by a strong
Coulomb interaction, is one of the hallmarks of strong correlations in solids. It
happens for a large class of transition metal compounds or molecular crystals with
narrow conduction bands (Imada et al. 1998). In the Mott phase, spin and orbital
degrees of freedom are still active, which is the origin of a variety of complex
magnetic and orbital orders. The interaction of doped electrons or holes with
such short-ranged magnetic and orbital correlations may furthermore lead to new
phases such as high-temperature superconductivity. DMFT has been instrumental
in the understanding of the Mott transition, and it is therefore natural to use non-
equilibrium DMFT to study the wide range of phenomena related to photo-doped
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Mott insulators. This section will outline some major results for the one-band
Hubbard model.

Thermalization of small-gap Mott insulators DMFT predicts a first-order phase
transition from a Fermi liquid to a Mott insulator around U ≈ W in the paramag-
netic phase of the one-band Hubbard model, with a critical endpoint at a temperature
T ∗, above which the transition becomes a crossover. In the correlated metallic phase,
the spectral function features a quasiparticle band around ω = 0 in addition to
Hubbard bands around ω = ±U/2, which corresponds to strongly renormalized
quasiparticles. At the Mott transition, the quasiparticle band disappears, and a gap
is opened. A straightforward excitation protocol is an electric field pulse with
frequency Ω ≈ U , which generates charge excitations in the Mott insulator, i.e.,
doubly occupied and empty sites. This setting was analyzed in Eckstein and Werner
(2011). Without coupling to environment (which is justified for times when lattice
and electronic subsystem can be treated as decoupled), the system thermalizes on
very short timescales if the interaction is close to the metal-insulator transition, and
the final state is in the crossover regime. Thermalization can be verified, e.g., by
considering the evolution of the double occupancy or the fluctuation dissipation
relation (4). The rapid thermalization of small-gap Mott insulators is in agreement
with very recent results for the relaxation of photo-doped TaS2 (Ligges et al. 2018).
The agreement of theory and experiment in this case is highly nontrivial, as the final
thermalized states lie in the metal-insulator crossover regime where quasiparticles
are not well-defined and standard kinetic approaches for the description electronic
thermalization fail.

The thermalization of small-gap Mott insulators can be interpreted in terms of
ultrafast impact ionization processes (Werner et al. 2014), where the kinetic energy
of charge excitations is used to generate additional doublon-hole pairs, similar to
an Auger process in atomic physics. Impact ionization is a carrier multiplication
process which can potentially enhance the efficiency of light-harvesting devices.
DMFT show that impact ionization processes in Mott insulators can be much faster
than typical electron-phonon relaxation times, which would mostly dominate intra-
band relaxation in semiconductors.

Doublon-hole recombination Deep in the Mott phase, the thermalization time
increases exponentially with U/W . For U $ W , this result has an intuitive
interpretation: a single charge excitation can only take an energy comparable to
the single-particle bandwidth W , while the conversion of a high-energy excitation
into multiple excitations is generally expected to give exponentially long lifetimes.
The decay of doublons has been discussed and measured with ultra-cold atoms
(Strohmaier et al. 2010), and the DMFT results are in agreement with the observed
exponential scaling (Eckstein and Werner 2011). In condensed matter systems, the
decay of photo-excited carriers in Mott insulators can indeed range to picoseconds,
i.e., thousands of hopping times (Okamoto et al. 2010). For a quantitative under-
standing, one must account for additional processes which involve spins (Lenarčič
and Prelovšek 2014) or high energy phonons (Mitrano et al. 2014).



412 M. Eckstein

The buildup of the Fermi liquid The high temperature state after the thermal-
ization of a correlated metal is a so-called bad-metal (Deng et al. 2013), in which
coherent quasiparticles are absent and the scattering length becomes comparable to
the lattice constant. A fundamental question is on which timescale the Fermi liquid
can be reformed by cooling the electronic system, e.g., by coupling to phonons.
Assuming rapid electronic thermalization, the corresponding timescale would be
set by the rate of energy transfer to the bath. Surprisingly, there appears to be a
much slower relaxation bottleneck of electronic origin at the onset of the Fermi
liquid (Sayyad and Eckstein 2016). The finding implies that ultrashort quasiparticle
lifetimes, i.e., rapid quasiparticle scattering, do not at all imply rapid thermalization,
which clearly demonstrates the failure of naive kinetic descriptions. To date, the
precise timescale for the formation of the Fermi liquid must be considered an open
question. In practice, the absence of well-defined quasiparticles implies bad metallic
properties of photo-doped Mott insulators (Eckstein and Werner 2013b), which
could be analyzed using transient THz spectroscopy.

Coupling of charge dynamics with antiferromagnetic correlations At low
temperatures, the half-filled single-band Hubbard model shows a tendency toward
antiferromagnetism. In the Mott phase, antiferromagnetism is a consequence of
a super-exchange interaction 4v2∗/U . Excitation of long-lived charge carriers, as
described previously for the paramagnetic phase, now leads to both melting of
the order parameter and a reduction of the kinetic energy of the carriers (Werner
et al. 2012). This mutual interaction of the carriers with the spin background
happens because a hole or doublon in the antiferromagnetic spin background
induces a spin-flip in every hopping process, and each spin-flip transfers an energy
O(Jex) ∼ v2∗/U from the mobile charges to the spin sector (Golež et al. 2014).
The rapid energy transfer to spins is also possible in the paramagnetic phase due
to short-range spin correlations. Short-range fluctuations cannot be captured in
conventional single-site DMFT, but they have been studied using cluster extensions
of non-equilibrium DMFT (Eckstein and Werner 2016). The relaxation times
τ ∼ 10 − 20f s are compatible with the timescales found in the rise-time of the
optical response in cuprates after a laser excitation and exact diagonalization results
(Dal Conte et al. 2015).

5 Future Directions

As the previous examples have shown, non-equilibrium DMFT simulations have
led to a number of predictions so far, mainly based on one-band model systems.
By adjusting the parameter of these models, first quantitative agreement with exper-
iment could be achieved. The status of non-equilibrium DMFT is thus comparable to
equilibrium DMFT 15 years ago (Georges et al. 1996). A long-term goal is certainly
to make DMFT as useful for the study of non-equilibrium states as it is nowadays for
the prediction of equilibrium properties. This suggests a few developments which
are subject to ongoing research:
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Many phenomena in correlated materials rely on the existence of several
degenerate valence orbitals. The behavior of multi-orbital systems is governed by
the interplay of orbital order, spin-order, and the strong coupling to the lattice. The
strong-coupling impurity solver (Eckstein and Werner 2010b) can be extended to
impurity models with more than one orbital. The multi-orbital nature becomes man-
ifest already at the shortest times, as it opens new relaxation path for photo-excited
carriers (Strand et al. 2017). At long times, systems with more than one orbital
may be prone to expose thermodynamically hidden states under non-equilibrium
conditions when the multi-orbital nature may lead to competing orders. A controlled
theoretical description of such hidden orders is an open question. A possible first
step may be to measure the interactions between competing order parameters in the
photo-doped state, similar to the measurement of spin-exchange interaction in the
photo-doped single-band Hubbard model (Mentink and Eckstein 2014).

Furthermore, a wide range of phenomena relies on long-range interactions.
Of immediate importance is the long-range Coulomb interaction, which leads to
screening of the local interactions and provides a feedback of non-equilibrium
distribution on the interaction parameters. In equilibrium simulations, GW+DMFT
is used as a parameter-free approach to determine the interactions and the band
structure, which does not suffer from the double-counting problem that arises when
the ground-state DFT is combined with the finite-temperature diagrammatic DMFT
approach (Biermann et al. 2003). GW+DMFT out of equilibrium provides a way to
obtain the local interactions in a self-consistent way and may therefore provide the
basis to a first-principle approach to correlated systems out of equilibrium (Golez
et al. 2017). A full GW simulation out of equilibrium is currently not feasible
because of the numerical restriction given by Kadanoff-Baym equations. However,
as a first step, one can set up a multi-scale approach, in which DFT is used to obtain
a band structure in a wide energy range, from which successively smaller energy
windows are selected for more accurate few-band GW and DMFT+GW simulations.
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Golež D, Bonča J, Mierzejewski M, Vidmar L (2014) Mechanism of ultrafast relaxation of a photo-
carrier in antiferromagnetic spin background. Phys Rev B 89:165118

Golež D, Eckstein M, Werner P (2015) Dynamics of screening in photodoped Mott insulators.
Phys Rev B 92:195123

Golež D, Werner P, Eckstein M (2016) Photo-induced gap closure in an excitonic insulator. Phys
Rev B 94:035121

Golez D, Boehnke L, Strand H, Eckstein M, Werner Ph (2017) Nonequilibrium GW+EDMFT:
antiscreening and inverted populations from nonlocal correlations. Phys Rev Lett 118:246402



18 Non-equilibrium Dynamical Mean-Field Theory 415

Gramsch C, Balzer K, Eckstein M, Kollar M (2013) Hamiltonian-based impurity solver for
nonequilibrium dynamical mean-field theory. Phys Rev B 88:235106

Gull E, Millis AJ, Lichtenstein A, Rubtsov A, Troyer M, Werner P (2011) Continuous-time Monte
Carlo methods for quantum impurity models. Rev Mod Phys 83:349

Haug H, Jauho A (2008) Quantum kinetics in transport and optics of semiconductors. Springer,
Berlin

Higuchi T, Heide C, Ullmann K, Weber H, Hommelhoff P (2017) Light-field-driven currents in
graphene. Nature 550:224–228

Ichikawa H et al (2011) Transient photoinduced ‘hidden’ phase in a manganite. Nat Mater
10(2):101–105

Imada M, Fujimori A, Tokura Y (1998) Metal insulator transitions. Rev Mod Phys 70:1039
Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D, Esslinger T (2014)

Experimental realization of the topological Haldane model with ultracold fermions. Nature
515:237–240

Joura A, Freericks J, Pruschke T (2008) Steady-state nonequilibrium density of states of driven
strongly correlated lattice models in infinite dimensions. Phys Rev Lett 101:196401

Kamenev A (2011) Field theory of non-equilibrium systems. Cambridge University Press,
Cambridge

Kemper A, Sentef M, Moritz B, Devereaux T, Freericks JK (2017) Review of the theoretical
description of time-resolved angle-resolved photoemission spectroscopy in electron-phonon
mediated superconductors. Annalen der Physik 529:1600235

Knap M, Babadi M, Refael G, Martin I, Demler E (2016) Dynamical cooper pairing in nonequi-
librium electron-phonon systems. Phys Rev B 94:214504

Kollar M, Wolf FA, Eckstein M (2011) Generalized Gibbs ensemble prediction of prethermaliza-
tion plateaus and their relation to nonthermal steady states in integrable systems. Phys Rev B
84(5):054304
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Abstract

Quantum Monte Carlo (QMC) comprises a set of techniques that use random
numbers to address quantum mechanical problems. They are some of the most
accurate techniques that can address large systems. This chapter gives the basics
of QMC techniques on first principles models of materials.

1 First Principles

Any quantum system is defined by a Hilbert space H and Hamiltonian Ĥ . Already
at this level, there are several choices to be made. In all cases considered here,
different choices will lead to the same results within some limit.

1.1 The Hilbert Space

The simplest case is for a fixed number of fermions N with open boundary
conditions, in which case H is the space of all L2 normalizable antisymmetric
functions from R

3N → C. This Hilbert space is appropriate for an isolated molecule
or other finite system. Table 1 collects a few common choices for the Hilbert
space.

1.2 First Principles Hamiltonian

The fundamental mathematical problem is the many-particle Schrödinger equation:

i
∂ |Ψ (t)〉

∂t
= Ĥ |Ψ 〉 . (1)

In first principles (ab initio) calculations of condensed matter, materials, and
chemical systems, the nonrelativistic Hamiltonian is universal:

Table 1 Hilbert spaces commonly used in first principles calculations

Molecule R
3N → C, antisymmetric, L2 normalizable

Solid (twisted boundary
conditions)

Ψk(r1, r2, . . . , rk + L, . . . , rN ) = eik·LΨk(r1, r2, . . . , rk, . . . , rN ),
antisymmetric, normalizable on the unit cell defined by lattice
vectors L

Embedding As above, but the number of particles can vary (Fock space)

On a basis Space spanned by some basis: |Ψ 〉 =∏
c† |0〉
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Ĥ =
∑

i

−h̄2

2me

∇2
i +

∑

α

−h̄2

2mα

∇2
α +

∑

ij

e2

rij
+
∑

iα

−Zαe
2

riα
+
∑

αβ

ZαZβe
2

rαβ
, (2)

where
i, j electron indices
α, β nuclear indices
Zα atomic number of nucleus α

mα mass of nucleus α

me mass of the electron

Throughout this chapter, we will use atomic units, in which h̄, me, and e are all set
to 1. The unit of energy is the Hartree (27.2114 eV) and the unit of length is the Bohr
(0.529 Å). This Hamiltonian is not quite perfect; it is missing relativistic effects. At
the current accuracy of quantum Monte Carlo calculations, the relativistic effects
are often of similar size to the solution error.

1.3 Born-Oppenheimer Approximation

Most electronic structure quantum Monte Carlo calculations are performed within
the Born-Oppenheimer approximation, in which the electronic Hamiltonian is used.
It is not absolutely necessary to do this; QMC techniques can operate with fully
quantum nuclei and electrons. However, the approximation is often quite small and
improves the efficiency and simplicity of the algorithms by a large amount.

1.4 Effective Core Potentials

For nuclei with large Z, the core electrons increase the variance of the total energy,
which decreases the efficiency of Monte Carlo. However, these electrons do not
affect the physics and chemistry of the material very much at the energies of interest.
For that reason, it is often a good trade-off in terms of accuracy/efficiency to replace
the core electrons with an effective core potential:

Zα

rαi
→ Zeff,α

riα
+ Vl(riα)+

∑

�m

V�(riα) |lm〉 〈lm| . (3)

This must be done with high accuracy; if density functional theory (DFT) potentials
are used, then the QMC calculation will be limited mainly by the accuracy of the
potential. There are now several sets of effective core potentials (Trail and Needs
2013; Burkatzki et al. 2007, 2008) meant for QMC calculations that retain accuracy
and are smooth for efficiency purposes. These are chosen so that the ions (nucleus
plus the core electrons) emulate accurate calculations of the full system. They also
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typically include at least averaged relativistic effects and may include polarization
terms and non-scalar relativistic effects like L · S coupling.

1.5 Useful Mathematical Relationships

Some of these relationships are available in most books on quantum mechanics; we
remind the reader of them here and clarify notation.

Ĥ can be diagonalized. There is a set of states {|Φi〉} such that

Ĥ =
∑

i

|Φi〉Ei 〈Φi | . (4)

The state with lowest energy E0 is called the ground state |Φ0〉. If |Ψ 〉 ∈ H, then
it has a spectral expansion |Ψ 〉 = ∑

i ci |Φi〉, for some complex numbers ci . If
|Ψ 〉 ∈H, then by the variational principle:

〈Ψ |Ĥ |Ψ 〉 ≥ E0. (5)

This is provable using the above relationships.

Projection Suppose that |Ψ (τ)〉 = exp
(
−τĤ

)
|Ψ (0)〉. Then |Ψ (τ)〉 =

∑
i ci exp(−τEi) |Φi〉 and

|Ψ (τ)〉√〈Ψ (τ)|Ψ (τ)〉 =
∑

i

ci exp(−τEi)√∑
j c2

j exp
(−2τEj

) |Φi〉 . (6)

Define

ci(τ ) = ci exp(−τEi)√∑
j c2

j exp
(−2τEj

) . (7)

Suppose that there is a k such that Ek < Ei . Then we can divide the numerator and
denominator by exp(−τEk):

ci(τ ) = ci exp(−τ(Ei − Ek))√
c2
k +

∑
j �=k c

2
j exp

(−2τ(Ej − Ek)
) (8)

So long as ck �= 0, ci(τ ) goes to zero exponentially as τ →∞. The only remaining
nonzero coefficient is the lowest eigenstate with a nonzero component of |Ψ 〉. This
is an example of the power method, in which an operator is applied repeatedly to
obtain its largest eigenstate.
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Mixed estimator for energy As long as 〈Φi |Ψ 〉 �= 0,

〈Φi |Ĥ |Ψ 〉
〈Φi |Ψ 〉 = Ei. (9)

This can be derived by using Ĥ |Φi〉 = Ei |Φi〉.
As a result of Eqs. 8 and 9, if 〈Ψ |Φ0〉 �= 0,

〈Ψ | exp
(
−τĤ

)
Ĥ |Ψ 〉

〈Ψ | exp
(
−τĤ

)
|Ψ 〉

= E0, (10)

the ground state energy.

2 Monte Carlo

The main use of Monte Carlo in this chapter will be to evaluate many-dimensional
integrals. Suppose that X is some vector. Then

ż

f (X)ρ(X)dX = 〈f (X)〉X∼ρ. (11)

Here, X ∼ ρ means that X is sampled from the probability density ρ, and the angle
brackets 〈〉 denote the average. For this to be true, ρ(X) must be a probability density
(ρ(X) ≥ 0 and

∫
ρ(X)dX = 1), but f (X) may be any function.

Monte Carlo evaluation of an integral consists of two parts: sampling and
averaging. Sampling means to generate X with probability proportional to ρ(X).
Averaging means evaluation of f (X) and evaluation of statistical uncertainties.

Suppose that we generate some number N of Xi ∼ ρ. For the moment, we will
assume that the Xi are independent, although this is not necessary. Then we would
like to know the distribution of the average variable fN = 1

N

∑N
i f (Xi ). Let the

variance of f be

Varf =
〈
(f (X)− 〈f (X)〉)2

〉

X∼ρ
. (12)

If Varf is finite and in the limit of large N , then the central limit theorem states that
fN has a normal distribution centered around the exact average and with reduced
variance:

fN ∼ N

(
〈f 〉, Varf

N

)
. (13)
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Every Monte Carlo calculation should include an estimate of the variance of the
average. On plots, the square root of the variance (the standard deviation) is typically
represented as an “error bar.”

3 Trial Functions

Trial functions are many-particle wave functions. Typically there are some param-
eters P in the wave function. x is the position (r) and spin (ω) coordinate of an
electron. χi is a function of x which produces a complex number. N is the number
of electrons. Much of the code in quantum Monte Carlo programs is devoted to
evaluating trial wave functions efficiently.

Quantum Monte Carlo brings two major improvements over deterministic
methods based on variational wave functions. First, a complex Jastrow factor can
be used, which improves the efficiency and accuracy dramatically. While a single
Slater determinant is often not a good approximation to an interacting electronic
system, a Slater determinant multiplied by a Jastrow factor is much better. Second,
projection Monte Carlo techniques can be used which further improve the accuracy
beyond an analytic form.

3.1 Slater Determinant

Then

ΨS(x1, x2, . . . ;χ1, χ2, . . . , χN) =

∣∣∣∣∣∣∣∣∣

χ1(x1) χ1(x2) χ1(r3) · · · χ1(xN)

χ2(x1) χ1(x2) χ2(r3) · · · χ2(xN)
...

...
...

. . .
...

χN(x1) χN(x2) χN(r3) · · · χN(xN)

∣∣∣∣∣∣∣∣∣

is antisymmetric on exchange of spin and position. It is a functional of the spin
orbitals.

For spin collinear calculations, one typically works in a basis of Sz eigenstates,
so there is a constant N↑ and N↓.

χi(x) =
{
φi(r)α(ω) if i ≤ N↑
φi(r)β(ω) if i > N↑

(14)

Assume N↑ ≥ N↓. Then the real-space orbitals φi can be either restricted, which
means that φi = φi+N↑ for i = 1 . . . N↑, or they can be unrestricted, which relaxes
this condition.
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Table 2 Common basis functions used in quantum Monte Carlo

Name Basis type

Blip Localized finite support basis

Gaussian Sum of Gaussian basis functions centered around atoms

Slater Sum of exponential basis functions centered around atoms

Localized numerical Numerical basis functions centered around atoms

Plane waves Periodic plane wave functions

A given real-space orbital φi is parameterized in a basis {bj }:

φi(r) =
∑

j

cij bj (r). (15)

The trial function is thus specified by the basis functions {bj } (see Table 2) and the
coefficient matrix cij . These may be optimized directly within the variational Monte
Carlo framework (Toulouse and Umrigar 2008) or taken from a density functional
theory or quantum chemistry program. Most QMC packages provide conversion
tools for this operation. In some cases, a hybrid approach is used (Wagner and Mitas
2003), in which the orbitals are generated using different density functionals.

It is also possible to perform noncollinear calculations using quantum Monte
Carlo (Melton et al. 2016). In that case, ω is parameterized and allowed to
dynamically change.

3.2 Jastrow Factor

The Jastrow factor (Bijl 1940; Dingle 1949; Jastrow 1955) is an all-positive factor
that includes electron-electron correlations:

ΨJ (x1, x2, . . . ;P) = exp

⎡

⎢⎢⎢⎢⎢⎣

∑

ij

χ(xi , xj ;Pcusp)

︸ ︷︷ ︸
Cusp condition

+
∑

ij

f (ri , rj ;PCorrelation)

︸ ︷︷ ︸
Correlation factor

⎤

⎥⎥⎥⎥⎥⎦

(16)

For electronic systems, a high-quality Jastrow factor can account for between 50%
and 85% of the correlation energy with a few parameters. It is related to the f12 and
transcorrelated methods used in quantum chemistry.

The cusp part of the Jastrow factor enforces the Kato cusp conditions. The cor-
relation part can be expanded in many ways, which can differ from implementation
to implementation. It appears that different parameterizations obtain quite similar
results (Doblhoff-Dier et al. 2016).
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3.3 Multiple Slater Determinants

As in quantum chemistry calculations, the many-body wave function can be
expanded as a sum of Slater determinants. When multiplied by a Jastrow factor,
the convergence in determinants is much faster than without (Umrigar et al. 2007).
Determinants can be selected from a configuration interaction calculation, one of
various selected configuration interaction calculations, or directly within quantum
Monte Carlo (Holzmann et al. 2003; Williams and Wagner 2016).

3.4 Backflow and Iterated Backflow

Construct a dressed coordinate:

qi = ri +
∑

j �=i

f (rj , ri ), (17)

where f is a vector-valued function. Then instead of xi = (ri , ω), use xi = (qi , ω)

in the Slater determinant (or pairing wave function). There are several ways to
achieve this (Kwon et al. 1993; López Ríos et al. 2006; Taddei et al. 2015). As in the
original application (Feynman and Cohen 1956), this wave function is particularly
effective for metallic systems. If the function f is efficient to evaluate, then the
Slater determinant can be evaluated with a moderate increase in computational time
(Filippi et al. 2016).

3.5 Tensor Networks, Correlator, andMatrix Product States

The broad class of tensor network states (Wouters et al. 2014) and correlator product
states (Changlani et al. 2009) have been used in some quantum Monte Carlo studies
as trial wave functions. These work essentially and similarly to a determinant
expansion, since they are written in a second-quantized notation. These functions
have not been used very much in first principles calculations and so this chapter will
not focus on them.

3.6 PairingWave Functions: Geminal and Pfaffians

The most general form of the pairing wave function is the Pfaffian (Bajdich et al.
2006):

Pf

⎡

⎣
ξ↑↑ Φ↑↓ φ↑

−Φ↑↓T ξ↓↓ φ↑
−φ↑T −φ↑T 0

⎤

⎦ , (18)
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where each of the Greek letters in the matrix is a sub-matrix that correlates electrons
of the corresponding spins and the φ sub-matrices address unpaired electrons.
This function is antisymmetric due to the properties of the Pfaffian, which can be
computed in a similar amount of time as a determinant.

If the same-spin electrons are not correlated (ξ = 0 in Eq. 18), Eq. 18 reduces
to the antisymmetrized geminal product, which only correlates the different-spin
electrons. This is the same as the number-projected Bardeen-Cooper-Schrieffer
wave function. In practice, these wave functions suffer from severe size-consistency
issues which require them to be used with a Jastrow factor (Neuscamman 2012).

4 QuantumMonte Carlo Methods

4.1 Variational Monte Carlo

Parameterize a wave function according to some parameters P. Then the expectation
value of the energy is

E(P) = 〈Ψ (P)|Ĥ |Ψ (P)〉
〈Ψ (P)|Ψ (P)〉 . (19)

This expectation value can be written as an integral in some basis |b〉 (suppressing
the P argument from Ψ ):

E(P) =
∫ 〈Ψ |b〉〈b|H |Ψ 〉db
∫ 〈Ψ |b〉〈b|Ψ 〉db (20)

=
ż 〈Ψ |b〉〈b|Ψ 〉

∫ 〈Ψ |b〉〈b|Ψ 〉db
︸ ︷︷ ︸

ρ(b)

〈b|H |Ψ 〉
〈b|Ψ 〉︸ ︷︷ ︸
f (b)

db, (21)

where ρ(b) and f (b) refer to Eq. 11. It is most common for the basis b to be the
position, but other basis sets are possible (Neuscamman 2012).

Using the variational principle (Eq. 5), E(P) ≥ E0. So minimizing E(P) gives
an upper bound to the ground state energy. The current state of the art uses the linear
method (Umrigar et al. 2007) to accomplish this. In this method, the wave function
is approximated using a first-order Taylor expansion:

|Ψ (P)〉 = |Ψ (P0)〉 +
∑

i

δpi

∂ |Ψ (P)〉
∂pi

∣∣∣∣
P=P0

. (22)

Minimizing E(P) results in a generalized eigenvalue problem. The reason this
method is efficient is that it is possible to evaluate the necessary matrix elements
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with very low variance. A major theme of advances in variational Monte Carlo
techniques is the reduction of variance while maintaining zero bias.

4.2 ProjectionMonte Carlo

Projection Monte Carlo techniques are stochastic implementations of the power
method. Let the projection operator with parameter τ be P̂ (τ ). Typically, as τ → 0,
P̂ goes to the identity operator, and often there is an accuracy/efficiency trade-off as
τ is increased. Formally, we wish to stochastically implement the operation:

|Ψ (Nτ)〉 =
(
P̂ (τ )

)N |Ψ (0)〉 . (23)

As N → ∞, |Ψ (Nτ)〉 will be the desired state, as shown in Eq. 8 for the e−τĤ

operator.
The stochastic implementation of projection can be understood as a Monte Carlo

integration. Insert identity operators in a many-body basis b in Eq. 23:

〈b0|Ψ (Nτ)〉 =
ż

[
N∏

i=1

〈bi−1|P̂ (τ )|bi〉
]
〈bN |Ψ (0)〉db1 . . . dbN . (24)

The set {bi} of N many-body coordinates in the basis space is called the path. It
must be the case that the matrix element 〈bi−1|P̂ (τ )|bi〉 is known. This is often why

τ must be relatively small; for the example of P̂ (τ ) = exp
(
−τĤ

)
, the Trotter-

Suzuki (Trotter 1959; Suzuki 1976) expansion can be used for small enough τ . To
simplify the notation, set

〈bi−1|P̂ (τ )|bi〉 = Pi−1,i (25)

and

B = {bi} (26)

To fully translate Eq. 24 into a Monte Carlo integral, we must identify a
probability density ρ to sample and a function f to evaluate. The main constraints
are that ρ must be a probability density and that the variance of f must be finite and
small enough so that its expectation value can be determined using the central limit
theorem efficiently. There are many choices of these functions, which can affect
efficiency and biases of the final algorithm. In this chapter, we will focus on the
mixed estimator (Eq. 10), which allows for efficient evaluation of the ground state
energy. This estimator is
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〈Ψ (0)|Ĥ |Ψ (Nτ)〉
〈Ψ (0)|Ψ (Nτ)〉 = E0 = (27)

ż 〈Ψ (0)|Ĥ |b0〉
〈Ψ (0)|b0〉︸ ︷︷ ︸

f̃

〈Ψ (0)|b0〉
[∏N

i=1 Pi−1,i

]
〈bN |Ψ (0)〉

∫ 〈Ψ (0)|b0〉
[∏N

i=1 Pi−1,i

]
〈bN |Ψ (0)〉db1 . . . dbN

︸ ︷︷ ︸
ρ̃

db1 . . . dbN

(28)

ρ̃(B) is not quite a probability density yet, since it may be negative or in some
cases it can be complex. In some cases, including bosonic systems and a number
of model Hamiltonians, a formulation of ρ̃ and f̃ can be found such that ρ̃ is
positive and the variance of f̃ is small enough so that the method can be efficient.
In other techniques, such as the released node or transient, the signs of ρ̃ are put
into f̃ , which increases the variance of f̃ dramatically. This variance increases
exponentially with system size, which is called the sign problem.

In cases where the sign problem cannot be removed, one is either left with an
algorithm that scales exponentially, or an approximation must be made. The simplest
approach is to approximate ρ̃ such that it is always positive. For example, one can
take the following weight function:

w(B) =
{
ρ̃(B) if ρ̃(B) ≥ 0

0 if ρ̃(B) < 0
. (29)

Then one can sample a probability density ρ(B) = w(B)∫
w(B)dB

. This can be done in

several ways, as noted in Sect. 5.3.
The differences between projector Monte Carlo methods consist of what approx-

imation (if any) is made for ρ and f and what basis B is used to express the path
and matrix elements. Some of the methods write their basis in second-quantized
form, while others write them in first-quantized form. For a detailed discussion,
see Kolodrubetz et al. (2013) and Umrigar (2015). These choices interact with one
another, and there are many variations and trade-offs between them. Table 3 lists
several common projector Monte Carlo methods and their choices.

5 Simulation Errors

5.1 Time Step Errors

Suppose that we use the projector exp
(
−τĤ

)
and are working in the real-space

basis. Then we wish to evaluate the matrix elements:
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Table 3 Projection operators and basis used in different Monte Carlo techniques

Method Basis Quantization Operator Stabilization

DMC R First exp
(
−τĤ

)
Fixed node/phase

Reptation Monte Carloa R First exp
(
−τĤ

)
Fixed node/phase

Full CI QMC Finite basis Second (1− τĤ ) Initiator

Auxiliary field QMC Finite basis Second exp
(
−τĤ

)
Phaseless

Lattice regularized DMC Lattice on R First (1− τĤ ) Fixed node/phase

Green function MC R First (1− τĤ )−1 Fixed node/phase

aAlso known as variational path integrals and path integrals for the ground state

〈R| exp
(
−τĤ

)
|R′〉. (30)

This is typically done in the small τ approximation and is a rather lengthy subject. A
detailed discussion for this operator on electronic systems can be found in Umrigar
et al. (1993).

5.2 Finite Size Effects

Bulk systems are typically approximated using twisted boundary conditions, in
which the bulk wave function is approximated as wave function with the following
constraint:

Ψk(r1, r2 + L, . . . , rN) = exp(ik · L)Ψk(r1, r2, . . . , rN), (31)

where L is a lattice vector of the simulation cell. The infinite limit is taken by
increasing the size of the simulation cell and the number of particles, keeping the
density N/V constant.

There are two main sources of finite size errors, corresponding to the kinetic
and potential energy of the Hamiltonian. Kinetic energy errors can be corrected by
considering many values of k, so-called twist averaging. Errors due to the Coulomb
interaction can be removed in several ways, either through embedding (Drummond
et al. 2008) or using the electron structure factor (Chiesa et al. 2006).

5.3 Fixed Node/Sign Control Errors

In many cases, projection Monte Carlo methods have a sign problem as discussed in
the relevant section. This sign problem makes exact calculations untenable except
for quite small systems. Different techniques approach this sign error in different
ways, noted in Table 3.
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Orbitals from
Kohn-Sham

Variational Monte
Carlo: optimize
Slater-Jastrow

Fixed node diffu-
sion Monte Carlo

(Optional) optimize the functional

Fig. 1 Workflow for FN-DMC calculations of materials

6 Variational + Fixed Node DiffusionMonte Carlo

This chapter has so far focused on general statements about quantum Monte Carlo
techniques for ab initio systems. This section will focus on a standard operating
procedure that has emerged in the past decades. It offers a good trade-off between
accuracy, efficiency, and complexity of the calculation (Fig. 1).

6.1 Hamiltonian

Since core electrons are very expensive to simulate, they are typically replaced
with an effective core potential. Potentials based on density functional theory
are typically not accurate enough (Saritas et al. 2017), so correlation-consistent
potentials must be used (Burkatzki et al. 2007, 2008; Trail and Needs 2013; Bennett
et al. 2017). Modern algorithms use the T-move (Casula 2006; Casula et al. 2010)
method to handle the nonlocal operator in the projector.

6.2 Trial Wave Function

The trial wave function |ΨT 〉 is the Slater-Jastrow wave function, which consists of
a Slater wave function multiplied by a Jastrow correlation factor. The orbitals in the
Slater determinant are typically taken from Kohn-Sham density functional theory
calculations. The functional used can affect the quality of the orbitals; often using
hybrid DFT orbitals offer good quality without needing to optimize the orbitals
within QMC. The Jastrow factor is typically energy optimized (Umrigar et al. 2007),
which leads to better wave functions than variance optimizations.

6.3 Fixed Node DiffusionMonte Carlo (FN-DMC)

Application of FN-DMC to the trial wave function results in an energy dependent
on several factors: EDMC({φi}, τ,N), where {φi} are the orbitals, τ is the time step,
and N is the number of electrons in the simulation. If τ is small enough and N is
large enough, then
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EDMC({φi}, τ,N) = EDMC({φi}, 0, N)+ τεtime step({φi}, N). (32)

One thus performs the calculation for several values of τ and extrapolates the result
to zero to obtain EDMC({φi}, 0, N). Then

EDMC({φi}, 0, N) = EDMC({φi}, 0,∞)+ εfinite size({φi})/N. (33)

Finally, EDMC({φi}, 0,∞) is an upper bound to the exact ground state energy. One
can vary {φi} to obtain the lowest upper bound.

7 Effective Interactions andModels fromQuantumMonte
Carlo

The stabilization method for projector Monte Carlo restricts what wave function
can be obtained using the technique. One way to understand this is that the final
wave function after projection is now a functional of the guiding wave function:
|Φprojected[ΨG]〉. For brevity, we will just call this |Φ[g]〉, where g is the guiding
wave function. Because of the projection operation, |Φ[g]〉 contains only small
components of high-energy wave functions. By varying g, one can obtain a sampling
of wave functions with relatively low energy compared to the overall spectrum. As
noted in Sect. 6, g can be varied to obtain minimum upper bounds, if a variational
way of evaluating the energy expectation value can be found. However, these wave
functions can also be used to explore effective models. The detailed theory is
available in a recent publication by Changlani et al. (2015).

Consider the objective of estimating an electronic gap using quantum Monte
Carlo. The effective model of the material is

∑
iσ εi n̂iσ , where n̂i is the orbital

occupation operator. Then

E[g] =
∑

iσ

εi〈Ψ [g]|n̂iσ |Ψ [g]〉, (34)

where Ψ [g] is only allowed to vary along the lowest-energy wave functions that
change the orbital occupation. From this equation, one can compute εi − εj by
varying the occupation. This is typically done in solids by using two trial functions:
Slater-Jastrow wave functions with different occupations of KS orbitals. Empiri-
cally, this procedure obtains results that are in close agreement to experimental
values, with around 0.1 eV errors.

The same procedure can be used to estimate superexchange constants using
QMC. In this case the effective model is

E[g] =
∑

ij

Jij 〈Ψ [g]|Si · Sj |Ψ [g]〉, (35)

so one should sample projected wave functions that differ in their spin orientations.
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An example of how this works for a spin dimer. It is relatively easy to compute
the frozen spin states of the dimer, |↑↑〉 and |↑↓〉. For a dimer Heisenberg model,

H = JS1 · S2 = 1

2
J
[
(S1 + S2)

2 − S2
2 − S2

1

]
= 1

2
J [s(s + 1)− 3/2] . (36)

For the two frozen spin states:

E(↑↑) = 〈↑↑ |JS1 · S2| ↑↑〉 = J/4 (37)

and

E(↑↓) = 〈↑↓ |JS1 · S2| ↑↓〉 = −J/4. (38)

The energy difference between these two states is thus J/2. The singlet eigenstate√
1
2

(| ↑↓〉 − | ↓↑〉) (with s = 0) has energy −3J/4, while the triplet eigenstate
| ↑↑〉 (with s = 1) has energy J/4, so the singlet-triplet excitation energy is J .

8 Conclusions and outlook

At the time of this writing (2018), quantum Monte Carlo techniques have been
applied to many materials systems. A semi-complete list of strongly correlated
systems studied using these techniques was compiled in 2016 (Wagner and Ceperley
2016). Excitation energy gaps, equations of state, including bulk moduli and
lattice constants, and ground state magnetic orderings are now a matter of routine
for these techniques with modern program packages. Nonenergetic ground state
properties like electron density, spin density, and static correlation functions are
also computed routinely. A very rough limit on the size of systems treatable with
modern computational resources is around 1000 valence electrons, although this
number can vary dramatically depending on the energy scale and variance of the
quantity of interest. Currently, this is very much a moving target and so we will not
go very much into detail; we refer readers to �Chap. 46, “Quantum Monte Carlo for
Electronic Systems Containing d and f Electrons” in this volume for more details.
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Abstract

Within the general framework of skeleton diagrammatic expansions, the fully
self-consistent GW approximation (sc-GW) is the simplest scheme based on the
lowest-order diagrams. However, this established method for electronic structure
calculations is rarely used in its original form when the polarization function is
obtained from the product of two fully dressed single-particle Green’s functions
because its most serious deficiency is known to be an incorrect prediction of the
dielectric response. In this contribution, we examine the sc-GW approximation
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for the homogeneous electron gas and find that problems with the dielectric
response are solved by enforcing the particle number conservation law in the
polarization function. Our protocol for restoring physical properties of the
sc-GW approximation (and more advanced schemes based on computing higher-
order vertex corrections) is physically transparent and easy to implement at
no additional computational cost. We further examine the accuracy of the sc-
GW approximation and systematic convergence of the bold diagrammatic Monte
Carlo scheme to the exact result for the single-orbital hydrogen chain system.

1 Introduction and Formalism

Dealing with interacting many-electron systems and accurately predicting proper-
ties of real solid-state materials are the major challenges of great technological
importance. Among numerous theoretical methods developed for this problem, the
diagrammatic many-body perturbation theory (Fetter 1971; Mahan 2000) offers
a number of unique advantages. Instead of dealing with finite ensembles of
electrons, the field-theoretical approach discussed in this work is based on the
standard Feynman diagrammatic technique formulated in terms of single-particle
propagators, or Green’s functions, and interactions. Even the lowest-order schemes
can grasp the essential physics of screening effects and allow one to deal with the
long-range Coulomb interaction in the thermodynamic limit. One of the simplest
schemes is the random-phase approximation (RPA) that can qualitatively (and even
quantitatively) explain such features of metals as screening, plasmon, and Friedel
oscillations. In principle, the skeleton diagrammatic expansion discussed below
allows one to systematically improve on these results and obtain accurate solutions
to the many-electron problem. In practice, however, progress is hindered because
more sophisticated than RPA lowest-order diagrammatic approximations are not
necessarily leading to better results right away (and in this contribution, we explain
why and how this is happening), while evaluation of higher-order vertex corrections
within the skeleton approach appears to be too costly computationally (apart from
important questions concerning series convergence).

For three-dimensional systems with Coulomb interactions, one cannot use the
diagrammatic expansion in terms of the bare interaction potential V(k) = 4πe2/k2

because of divergencies coming from geometric series-based “bubble” diagrams.
The way out is to work with a formulation that expresses all diagrams self-
consistently in terms of fully dressed propagators and interactions (Hedin 1965).
Here we employ the skeleton expansion of the Luttinger-Ward (LW) functional
Φ[G,W ] (Luttinger and Ward 1960). The method is thermodynamically consistent
and conserving; in particular, the relation between the Fermi momentum kF and
particle density is preserved (Baym and Kadanoff 1961; Baym 1962). As the
corresponding diagrams for the electron self-energy, Σ , and polarization, Π , are
composed of three-point vertices connected pairwise by fully dressed Green’s
functions, G, and screened effective interactions, W (with the exception of the
Hartree diagram that is based on V ), the corresponding diagrammatic technique
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is often called the G2W -expansion. Self-consistency is achieved through the Dyson
equations written symbolically as

G = G0 +G0ΣG, W = V + VΠW, (1)

where G0 is the bare electronic propagator (depending on the representation, the
products on the r.h.s. should be understood as convolutions over the space, time,
spin, orbital, etc. indexes not mentioned here for brevity).

The self-consistent GW (sc-GW) approximation truncates the skeleton sequence
at the lowest-order graphs (see upper left panel in Fig. 1), and contributions to Σ

and Π are based on pair products of the G and W functions. Within the bold
diagrammatic Monte Carlo (BDMC) framework (see, e.g., Van Houcke et al. 2012;
Kulagin et al. 2013), the configuration space of leading vertex corrections (upper
right panel in Fig. 1) and higher-order diagrams (lower panel in Fig. 1) is sampled
stochastically. Since different diagram topologies contribute with a different sign,
one might naively expect to be faced with a sign problem in the Monte Carlo
simulation. Note, however, that there is no conventional sign problem:

(i) the diagrammatic theory is formulated directly in the thermodynamic limit, and
therefore there is no exponential scaling of the computational time with system
volume (Prokof’ev and Svistunov 2007; Van Houcke et al. 2012);

(ii) the sign alternation of diagrammatic contributions is essential to be able to sum
the full series: in the best-case scenario, it can render the series convergent,
and polynomial computational complexity can be achieved (Rossi 2017; Rossi
et al. 2017) – in this specific sense, it is rather “sign blessing” than problem;

(iii) there is no vanishing denominator to deal with because normalization is
established through the lowest-order terms.

1S =

1P =

n = 1 or GW

n = 3

2 1+S = S

3 2+S = S

2 1+P =P

n = 2

¼

G

W

V

Fig. 1 Skeleton diagrams for self-energy and polarization function in terms of fully dressed
Green’s functions (double lines) and screened interactions (wavy lines) at order n = 1 (equivalent
to the sc-GW approximation) and order n = 2, upper left and right panels, respectively. In the
lower panel, we show some of the self-energy diagrams at order n = 3
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Moreover, diagrammatic Monte Carlo can be applied to any system at finite
temperature with arbitrary dispersion relation (doped or undoped) and with arbitrary
shape of the interaction potential. Both Σ and Π are computed as sums of skeleton
graphs, up to order n; we denote these sums as Σn and Πn and abbreviate the
corresponding level of approximation as BDMCn, i.e., BDMC1 is identical to
sc-GW. To obtain final answers, one has to perform an extrapolation to the n→∞
limit; this was demonstrated for several Coulomb systems in Tupitsyn et al. (2016)
and Tupitsyn and Prokof’ev (2017).

In this contribution, we discuss two related topics. First we examine properties
of the sc-GW approximation for the jellium model – a system of electrons on
a homogeneous positive charge background with the same charge density – and
present a simple strategy to enforce physical behavior for charge correlations. Our
strategy can be applied at every order of the skeleton expansion and does not
produce any systematic bias in the infinite-order limit for convergent series. We also
provide accurate values for the ground-state energy, the quasiparticle Z-factor, and
the effective mass renormalization m∗/m (where m is the bare electron mass) at the
Fermi level. Second, we discuss merits of the sc-GW approximation for the single-
orbital hydrogen chain system and demonstrate that the BDMC method allows
one to obtain highly accurate results with full control over systematic errors by
evaluating higher-order corrections. Most of the discussion closely follows material
presented in Van Houcke et al. (2017) and Motta et al. (2017).

2 JelliumModel

Self-consistent GW approximation is the most established “beyond RPA” diagram-
matic method for electronic structure calculations (Hedin 1965; Aryasetiawan and
Gunnarsson 1998; Onida et al. 2002). However, by evaluating “bubble” diagrams
in a self-consistent way [we do not discuss here numerous variations of the method
based on partial, or incompletely dressed, propagators and interaction lines], the
sc-GW approximation fails to reproduce some key results for the two-particle
correlation functions and does not properly describe even the plasmon properties, in
contrast to RPA. This drawback has been clearly demonstrated for a homogeneous
electron gas (jellium model) by Holm and von Barth in Holm and von Barth (1998).
Moreover, incorrect screening properties are expected to have a feedback on single-
particle spectra of real materials for which the sc-GW approximation sometimes
fails to account for the observed value of the absolute bandgap (Schöne and Eguiluz
1998).

Let us start by briefly reviewing the sc-GW approximation for the unpolarized
jellium model. In the position-imaginary time (r, τ )-representation, the lowest-order
skeleton diagrams for the self-energy Σ and polarization Π read as (the Hartree
diagram is canceled by the positive background)

Σ(r, τ ) = −G(r, τ )W(r,−τ), Π(r, τ ) = 2G(r, τ )G(r,−τ), (2)
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where the factor of two comes from the sum over the spin index. These are self-
consistently defined through algebraic solutions of the Dyson equations in the
momentum-Matsubara frequency (k, ωn) representation:

G(k, ωn)
−1 = G0(k, ωn)

−1 −Σ(k, ωn), W(k, ωn)
−1 = V (k)−1 −Π(k, ωn).

(3)

Here G0
σ = (iωn + μ − k2/2m)−1. Knowing the one-body Green’s function G is

sufficient for obtaining the system’s energy, as well as quasiparticle properties such
as m∗ and Z (see Fetter 1971; Mahan 2000).

We performed all calculations at finite temperatures well below the Fermi
energy εF = k2

F /2m. Equations (2) and (3) were solved by iterations until the
convergence was reached. The chemical potential μ used in each step was adjusted
to preserve the desired electron density with accuracy up to six significant digits.
After convergence, the total energy is computed from Σ and G. For ground-
state properties, we extrapolated results to zero temperature using the Fermi-liquid
behavior. In Fig. 2, we show a typical plot for energy measured in units of Hartree,
Ha = me4/h̄2 at rs = 1, with standard definition of rs as the ratio of the typical
interparticle spacing and the Bohr radius aB = h̄2/me2.

2.1 Dielectric Response

The work by Holm and von Barth (1998) has established that the sc-GW approxima-
tion is not suitable for analysis of two-particle correlation functions. More precisely,
the spectral function S(k, ω) of the polarization Π was found to have incorrect
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Fig. 2 Energy per electron (in Ha) as a function of (T /εF )2 revealing the Fermi-liquid behavior.
The solid line is a linear fit giving a ground-state energy of E/N = 0.5783(2) Ha
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Fig. 3 Imaginary part of the dielectric function within the sc-GW approximation at rs = 1,
k/kF = 0.1, and T/εF = 0.02. Red dashed curve is the original sc-GW result, and the solid
black line is the corrected sc-GW spectrum. The crucial difference at frequencies ω > kvF is
clearly seen in the inset

behavior at frequencies ω > kvF , where vF is the Fermi velocity; as a consequence,
the real part of the dielectric function ε(k, ω) = 1 − (4πe2/k2)Π(k, ω) at
small momenta k & kF has its zero shifted away from the plasmon frequency
ωp =

√
4πne2/m to completely unrealistic values (see Fig. 3 in Holm and von

Barth (1998)).
Our results confirm this key observation: we also find that at k & kF and

ωn $ kvF , the polarization is orders of magnitude larger than the values dictated by
the hydrodynamic plasmon mode physics, Π(k, ωn) ≈ −nk2/mω2

n (see thorough
discussion in Nozieres (1999)). This unphysical behavior can be traced back to the
fact that the sc-GW approximation does not respect the dynamic particle number
conservation law, which implies that at zero momentum, Π(k = 0, ωn) ∝ δn,0 or,
identically, Π(k = 0, τ ) = const. Indeed, for an arbitrary interaction potential,
Π is related to the density-density correlation function, χ(k, ωn) = 〈|δn̂(k, ωn)|2〉,
as Π = −χ/ (1− Vχ), while (in imaginary-time representation) χ(k = 0, τ ) =
〈δN̂(0) δN̂(τ )〉 ≡ const because the total number of particles N̂ commutes with
the Hamiltonian. [To prevent divergence of V (k) when substituting k = 0, the
bare potential may be regularized at small momenta to have the Yukawa form,

V (k) = 4πe2

k2+k2
0

, with small but finite Yukawa screening wave vector k0 that is sent

to zero at the end of the calculation.] As a result, at k = 0 the density response is
purely static, χ(k = 0, ωn �= 0) ≡ 0 (see Nozieres 1999), implying that the same is
true for the polarization function
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Π(k = 0, ωn �= 0) ≡ 0, (Particle number conservation law). (4)

By assuming physical behavior of Π at small momenta, one would conclude that
W/V − 1 → −ω2

p/(ω
2
p + ω2

n) and frequencies larger than 100ωp are not required
for highly accurate calculations.

Instead, within the sc-GW approximation, one finds that Π(k = 0, ωn) has
significant amplitudes at finite frequencies, and correspondingly, Π(k, ωn �= 0)
is not approaching zero when k → 0. This also causes significant problems for
the proper technical implementation of the sc-GW approach in Coulomb systems
because (4πe2/k2)Π(k, ωn �= 0) tends to diverge as small momenta and forces one
to consider extremely large frequencies (exceeding 106ωp) in the calculation of the
screened interaction W . We believe that this frequency range was not covered in the
sc-GW implementations reported in Holm and von Barth (1998), Holm (1999), and
García-González and Godby (2001) leading to the discrepancy in the final results
outside of reported error bars (see Table 1).

Since all problems originate from the violation of the dynamic particle conserva-
tion law, we propose a simple strategy to enforce the physical behavior of Π(k, ωn).
All one has to do is to perform a transformation:

Π(k, ωn �= 0)→ Π(k, ωn)−Π(0, ωn �= 0), (5)

before calculating the dielectric response from the sc-GW solution. In other words,
one has to subtract the spurious frequency dependence at k = 0. Note that
this transformation is compatible with the higher-order skeleton expansion and
the suggestion is that it should be implemented within the fully self-consistent
skeleton scheme whenever one has to iterate properties of the W -function. Indeed,
in the large-order expansion limit, the correction term is supposed to vanish as
Π(k = 0, ωn) converges to the correct physical behavior ∝ δn,0.

In Figs. 3 and 4, we show how our protocol works by considering the case of
rs = 1 at low temperature T/εF = 0.02 and small momentum k/kF = 0.1.
After performing numeric analytic continuation of the imaginary frequency data
for ε(k, ωn) to get the imaginary part ε′′(k, ω) (using protocols described in Goulko
et al. 2017; Mishchenko 2012), we obtain the real part ε′(k, ω) from the Kramers-
Kronig relation. The improvement in terms of eliminating the unphysical behavior
is dramatic. After the transformation, the high-frequency tail of ε′′(k, ω) gets
suppressed by nearly two orders of magnitude. As a result, the real part of the
dielectric function now has its zero at ω(GW)

p ≈ 0.89(1)ωp and is approaching unity

from below at ω $ εF . [In order to have ω
(GW)
p to coincide with ωp within the

sc-GW approximation, one would need to divide Π by Z2 by hand, mimicking the
effect of vertex corrections that can be obtained properly only by implementing
the BDMCn scheme.] Everything about the original sc-GW data at frequencies
ω > kvF is completely unsatisfactory.
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Table 1 Minus the ground-state exchange-correlation energy per particle−EXC (in Hartree). We
compare results for−EXC obtained within the sc-GW approximation discussed in this chapter with
quantum Monte Carlo data from Ceperley and Alder (1980) (labeled as QMC1) and Ortiz et al.
(1999) and Ortiz and Ballone (1994) (labeled as QMC2) and with the earlier implementations of
the sc-GW approximation data published in García-González and Godby (2001) (labeled as GW1)
and Holm and von Barth (1998) (labeled as GW2)

rs 1 2 4 5 10

QMC1 0.5180 0.2742 0.1464 0.1197 0.0644

QMC2 0.5127 0.2713 0.1201

GW2 0.2741 0.1465

GW1 0.5160(2) 0.2727(5) 0.1450(5) 0.1185(5) 0.0620(9)

GW (this work) 0.5267(2) 0.2789(1) 0.1488(1) 0.1216(1) 0.06498(2)
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Fig. 4 Real part of the dielectric function within the sc-GW approximation at rs = 1, k/kF = 0.1,
and T/εF = 0.02. The original sc-GW result (red dashed curve) completely misses the plasmon
zero and predicts unrealistically large response at frequencies above εF . The corrected result (solid
black line) crosses zero within 10% of ωp and saturates to unity at ω > εF

2.2 Ground-State Properties

Since precise knowledge of Gσ is required in order to calculate Π via Eq. (2),
we extract basic Fermi-liquid properties from the Green’s function and compare
them against known results. Early implementations of the sc-GW approximation
(García-González and Godby 2001; Holm and von Barth 1998; Holm 1999) reported
ground-state energy values in very good agreement (often at the sub-percent level,
see Table 1) with diffusion Monte Carlo results (Ceperley and Alder 1980). We
find that our sc-GW exchange-correlation energies differ from those of García-
González and Godby (2001), Holm and von Barth (1998), and Holm (1999) well
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Table 2 The quasiparticle residue Z and the effective mass renormalization m∗/m at the Fermi
level for the unpolarized 3D homogeneous electron gas. These quantities were obtained by using
the standard sc-GW approach, i.e., solving the set of Eqs. (2) and (3) without any correction
procedures to cure the unphysical behavior of Π

rs 1 2 4 5 10

Z 0.899(1) 0.842(1) 0.769(2) 0.743(2) 0.658(2)

m∗/m 0.944(2) 0.931(2) 0.913(2) 0.906(2) 0.875(2)

Table 3 Minus the ground-state exchange-correlation energy per particle −EXC (in Hartree), the
quasiparticle residue Z, and the effective mass renormalization m∗/m at the Fermi level for the
unpolarized 3D homogeneous electron gas. These are obtained by using the modified sc-GW, or
GW(Π), approach, i.e., by solving the set of Eqs. (2) and (3) self-consistently and at the same time
applying the transformation Eq. (5) to Π at each iteration of the self-consistent scheme.

rs 1 2 4 5 10

−EXC 0.5205(2) 0.2716(2) 0.1413(1) 0.1143(1) 0.05873(2)

Z 0.880(3) 0.808(2) 0.722(2) 0.692(3) 0.605(4)

m∗/m 0.934(3) 0.900(2) 0.834(2) 0.803(2) 0.673(4)

outside the error bounds by an amount bigger than the difference between the sc-
GW and various other approximations, for instance GW(0). While the exact origin of
discrepancy is not settled yet, it is most likely linked to the violations of the particle
conservation law (4) discussed above. To ensure correctness of our sc-GW results,
we developed two absolutely independent codes that did not share a single common
idea about grids and cutoffs for storing and processing the data, Fourier transforms,
and energy evaluation (see next subsection). It turned out that energy data used for
plots in Yan (2011) were also in perfect agreement with our results; ultimately, five
independently developed finite-T codes (including codes developed by L. Pollet and
S. Schultess) were compared and found to be in agreement with each other within
the error bounds reported in Table 2.

For benchmark purposes, we also report the quasiparticle residue at the Fermi
surface, or Z-factor, and the effective mass renormalization in Table 2. Error
bounds were estimated from variations induced by changing momentum-time grids,
cutoffs, and extrapolation procedures to the zero-temperature limit. All results in
the table were obtained for the standard sc-GW formulation; i.e., the transformation
procedure (5) was not applied when solving Eqs. (2) and (3).

While applying the transformation Eq. (5) to the sc-GW solution vastly improves
the two-body spectral properties, it is natural to ask what impact it has on the
Fermi-liquid properties when applied at each iteration of the self-consistent scheme;
we abbreviate the corresponding scheme that always respects (4) as GW(Π ). The
exchange-correlation energy, Z-factor, and effective mass renormalization obtained
in that way are given in Table 3. The relative change in exchange-correlation energy
ranges from about 1% for rs = 1 up to almost 10% for rs = 10. Given that the
relative difference in exchange-correlation energy calculated within the standard sc-
GW approach and the diffusion Monte Carlo method (Ceperley and Alder 1980)
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Fig. 5 Effective mass renormalization (solid curves) and quasiparticle residue (dashed curves) as
functions of rs within the sc-GW approach (black) and its modified GW(Π ) version

is at the level of few percent, we conclude that the GW(Π ) scheme has the same
quality in terms of the ground-state energy while it improves the two-body spectral
function by orders of magnitude.

The effect of the transformation (5) on Z and especially on m∗/m is more
pronounced (see Fig. 5). If changes for the quasiparticle residue can be considered
“quantitative,” the same cannot be said about the effective mass renormalization –
it is far more dramatic within the GW(Π) approach. Moreover, the dependence of
m∗/m on rs within the sc-GW approximation can hardly be extrapolated to unity
for the noninteracting system without assuming an anomalously strong increase in
the dm∗/drs derivative.

2.3 Details on Practical Implementation

To verify the correctness of treating the properties at small momenta in our
implementation of the sc-GW scheme (no matter how unphysical they might be),
a good strategy is to develop a code for the screened Yukawa potential as well.
Let us refer to these implementations as the Coulomb code and the Yukawa code,
respectively. To recover the final answer for the Coulomb system with the Yukawa
code, one should extrapolate results obtained for a set of small k0 values to zero (see
Fig. 6). The expectation is that the function is linear. Let us highlight some technical
details of the two implementations. We discuss the Yukawa code first.
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Fig. 6 Energy per electron
(in Hartree) as a function of
Yukawa screening wavevector
for T/εF = 0.02 and rs = 1.
The result of the Coulomb
code is also shown
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In the Yukawa code, the high-momentum cutoff was set at 17kF for the Green’s
function and at 33kF for the screened potential. We verified that by increasing these
cutoffs by 50%, energies and other Fermi-liquid parameters remained the same up
to six significant digits. The smallest momentum resolution was set at 10−4kF . This
resolution was used in the vicinity of three special points: k = 0, kF , and 2kF . Away
from the special points, the grids were made more sparse (we used logarithmic
grids with 16 equidistant points per scale). Similarly, in imaginary-time domain,
the smallest time resolution was set at 5 × 10−5/εF in the vicinity of two special
points τ = 0 and τ = β, and we used the same law (16 equidistant points per
scale) to describe the entire domain. All functions in the momentum-imaginary
time representation were obtained by considering parabolic (in both momentum
and time) interpolations between the grid points. When solving the Dyson equation,
we considered up to 220 Matsubara frequencies. Our parameters were such that by
decreasing the resolution of the grids (increasing the number of grid points) by a
factor of two, or increasing the number of Matsubara frequencies, we were not able
to detect changes in the final results within the reported error bounds.

When computing the self-energy and polarization function values (in imaginary-
time representation) from the momentum integrals of the GW and GG products,
the Yukawa code was relying on the direct numerical integration, i.e., the Fourier
transforms to the real-space and back to momentum space were not used.

In the Coulomb code, on the other hand, the high-momentum cutoff was set
at 25kF , for both the Green’s function and the screened potential, and it was also
verified that final results did not change upon increasing this cutoff. A logarithmic
grid was used for small momenta (the smallest momentum being 10−8kF ). In the
region [0.1kF , 2kF ], the typical spacing is of the order 10−3kF , while for momenta
bigger than 2kF , it is of the order 10−2kF . In imaginary-time domain, the smallest
time resolution was set at 10−6/εF in the vicinity of τ = 0 and τ = β, and we used
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the same law (80 equidistant points per scale) to describe the entire domain. For the
frequency domain, a logarithmic grid was used, the largest frequency being of the
order 107 × π/β. No dependence of the final results on this cutoff was observed.

In contrast to the Yukawa code, the convolutions to obtain the self-energy
and polarization function values in imaginary-time representation were done by
explicitly going to position space and back to momentum space via (slow) numerical
Fourier transforms. The grid in position space was logarithmic with cutoff 500/kF ,
and the smallest position grid point corresponded to 10−4/kF .

3 Hydrogen Chain

As it was already mentioned, the sc-GW approximation is one of the most estab-
lished methods for electronic structure calculations. It is widely used in material
science systems, but in many cases, its systematic bias remains unknown. Below we
address this question within the hydrogen chain problem (Hachmann et al. 2006)
using the BDMC technique. Despite its simplicity, the hydrogen chain contains all
the basic ingredients distinguishing real materials from the jellium model.

3.1 Hamiltonian and Diagrammatic Representation

In atomic units, the chain of hydrogen atoms, composed of N fixed equidistant
protons and N electrons, is described by the Hamiltonian:

H = −1

2

∑

i

∇2
i −

∑

i,m

1

|ri − Rm| +
1

2

∑

i �=j

1

|ri − rj | +
1

2

∑

m�=n

1

|Rm − Rn| , (6)

where the first two terms give the kinetic and potential energy of i-th electron in
the protons’ field while the third and fourth terms represent the electron-electron
and proton-proton Coulomb interactions. The positions of electrons and protons are
described by ri and Rm, respectively. The protons along the chain are separated by
the distance R.

We start by projecting this Hamiltonian onto the finite orbital space using field
operators:

Ψσ (r) =
∑

i,α

φi,α,σ (r) fi,α,σ , (7)

where φi,α,σ (r) ≡ φα,σ (r−Ri ) is the α-th orbital of the electron with spin σ at the
i − th proton and fi,α,σ is the standard electron annihilation operator. To simplify
notations, we will also use a composite index a = (i, α, σ ), as in Fig. 7. In terms of
these operators, the Hamiltonian can be presented as
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c d
τ

Fig. 7 Diagrammatic elements representing screened interaction, W , Green’s function, G, and
bare interaction, V , in the orbital representation. Each index {a, b, c, d} combines all three discrete
indices (i, α, σ )

Ĥ = −
∑

a,b

ta,bδσb,σa f †
a fb + 1

2

∑

a,b,c,d

Va,b,c,dδσa,σb
δσc,σd

f †
a f †

c fd fb (8)

with nonzero hopping amplitudes and interactions given by

ta,b = −
ż

dr φ∗i,α,σ (r)
[
−1

2
∇2 −

∑

a

1

|r− Ra|

]
φj,β,σ (r) (9)

and

Va,b,c,d =
ż

drdr′ φ∗i,α,σ (r) φ∗k,γ,σ ′(r
′) 1

|r− r′| φl,δ,σ ′(r
′) φj,β,σ (r). (10)

All integrals are taken over the three-dimensional orbital coordinates. In this
representation, electronic coordinates are replaced with discrete orbital indices. This
solves the problem of strong coupling between the electrons and ions and leads
to the diagrammatic technique that is more or less standard for lattice models. Of
course, part of the problem complexity is now in the size of the orbital Hilbert space.

From the set of Eqs. 8, 9, and 10, it is clear that the topology of diagrams
within the G2W skeleton expansion remains unchanged, but their index structure
gets more complicated. To be more specific, in Fig. 7, we show the structure of all
diagrammatic elements in the orbital representation. Each interaction line depends
on four site/atom indices {(i, j); (k, l)}, four orbital indices {(α, β); (γ, δ)}, and two
spin indices {σ ; σ ′} (note that the Coulomb interaction vertex does not change the
spin index).

In what follows, we further simplify the problem and limit ourselves to consid-
ering one orbital per atom (the so-called minimal basis set; STO-6G basis). In this
case, the Hamiltonian takes the form

Ĥ = −
∑

i,j

∑

σ

ti,j (σ ) f
†
i,σ fj,σ + 1

2

∑

i,j,k,l

∑

σ,σ ′
Vi,j,k,l(σ, σ

′) f
†
i,σ f

†
k,σ ′ fl,σ ′ fj,σ

(11)
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and the 1st order contributions to the self-energy Σ and polarization Π become
(we employ periodic boundary conditions)

ΣH(|j − i|, σ ) =
∑

σ ′

∑

k,l

G(|k − l|, τ = −0, σ ′) Vi,j,k,l(σ, σ
′) (12)

ΣGW(|l − i|, τ, σ ) = −
∑

j,k

G(|k − j |, τ, σ ) Wi,j,k,l(−τ, σ, σ ) (13)

Π(i, j, k, l, τ, σ, σ ) = G(|k − j |, τ, σ ) G(|i − l|,−τ, σ ), (14)

where G and W are the solutions of the Dyson equations. To avoid double counting,
the Hartree diagram with fully dressed Green’s function should contain only the
bare (time-independent) interaction Vi,j,k,l(σ, σ

′).
To make use of the translation invariance, we introduce variables u = i − j and

v = k − l, defining relative distances between the orbital centers. Then u = v = 0
corresponds to the “density-density” part of the interaction potential Vi,j,k,l(σ, σ

′).
For the model under consideration, this density-density part dominates the answer,
and inclusion of terms with nonzero values of u and v in the Dyson equation for
W introduces only minor changes. We find that energies per atom, computed with
cutoffs u∗ = v∗ = 2, differ from the full answer just by ∼10−5 in relative units
even at the smallest inter-atom separations. The possibility to introduce such cutoffs
in a controlled way enormously simplifies the computational effort and memory
requirements in high diagrammatic orders.

3.2 Pauli Exclusion Principle: Zero Terms

There exist two different standards in the formulation of the projected Hamiltonian.
The first approach explicitly respects the Pauli exclusion principle in the interaction
terms, while the second approach pays no special attention to it. Physically, the
two standards deal with identical Hamiltonians and would lead to the same answer
if solved exactly. However, if one truncates self-consistent diagrammatic series
at low order (as in the sc-GW approximation), the two standards of formulating
the projected Hamiltonian would produce different answers. Given that these two
approaches are “inherent” to two different communities (lattice models vs material
science) and that the sc-GW approximation is a widely used method, we consider
both alternative here to quantify the effect of adding/subtracting zero Hamiltonian
terms on the sc-GW approximation.

To illustrate the point, consider an ideal spin-polarized lattice Fermi gas with
added contact interaction term

Ĥ0 = −
∑

ij

tij f
†
j↑ fi↑ + U

∑

i

f
†
i↑ f

†
i↑ fi↑ fi↑. (15)



20 Diagrammatic Monte Carlo and GW Approximation for Jellium and. . . 449

Fig. 8 Effect of zero terms
on the sc-GW results for the
hydrogen chain: energy per
atom (minimal basis set,
thermodynamic limit). Black
line: the DMRG curve (best
variational answer). Blue
line: the sc-GW(H ) curve
(the material science
protocol). Red line: the
sc-GW(H ′) curve (the lattice
model protocol)

Because of the Pauli principle, this interaction term is zero. Even if we keep it, in
the diagrammatic expansion with respect to U , all diagrams of the same order will
cancel each other, order by order. However, this is true only in the case of exact
solution accounting for all the orders in U . The sc-GW scheme includes some (but
not all) higher-order corrections in U ; unaccounted terms will thus lead to different
answers for Eq. 15 with U = 0 and U �= 0.

Similar considerations hold true for any Hamiltonian projected onto the orbital
basis. The terms with matrix elements Vabad and Vbada have no effect on the exact
answer because of the Pauli principle – they are “zero terms” and one can either
(i) keep them (material science community protocol) or (ii) drop them (lattice
model Hamiltonian community protocol). We distinguish these two protocols by
introducing notation (i) Ĥ and (ii) Ĥ ′, respectively. In Fig. 8 (energy per atom
for different values of the lattice distance R), we demonstrate how the same sc-
GW scheme for two formally identical Hamiltonians Ĥ and Ĥ ′ produces different
answers. As one can see from this figure, the effect of zero terms on the sc-GW
results is far from being negligible, especially in the region of large inter-atom
distances R > 1.8 aB . Also, while the sc-GW(Ĥ ) is more accurate in the
perturbative region (R < 1.8 aB ), the sc-GW(Ĥ ′) appears to produce more
consistent energies throughout the entire range of R. Since the two sc-GW answers
surround the DMRG one, the difference between them can be considered as an
estimate of the systematic bias within the sc-GW approximation. Indeed, in the next
subsection, we show that this difference has similar magnitude as the energy shift
produced by considering the leading vertex correction.

3.3 Energy per Atom: Convergence of BDMC Results

To go beyond the sc-GW approximation, we employ the BDMC technique and
obtain the ground-state energy per atom (using the same T → 0 extrapolation
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Fig. 9 Ground-state energy
in different skeleton orders
(minimal basis set,
thermodynamic limit). By
accounting for higher-order
vertex corrections, the BDMC
results converge to the best
variational answer – DMRG
(black curve). Red line: The
BDMC1(H ′) = sc-GW(H ′)
curve. Green line: The
BDMC2(H ′) curve. Blue
line: the converged
BDMC(H ′) result (see text)

1

2

procedure as presented in Fig. 2) for system (11) in the thermodynamic limit (we
work with Ĥ ′).

The convergence of the BDMCn results to the exact (DMRG) answer as the
largest accounted for order n is increased and is presented in Fig. 9. BDMC2 data
are already extremely accurate at the inter-atom separation R ≤ 1.8 aB . One
has to increase the expansion order and consider BDMC3 to achieve the same
accuracy for R = 2.4 aB , indicating that we are entering a non-perturbative regime.
For R = 2.8 aB , convergence is reached only when all diagrams up to the 5th
skeleton order are included, while larger values of R require simulation of even
higher expansion orders and the development of appropriate resummation methods.
From this study, we conclude that the BDMC technique for systems with Coulomb
interactions can be used to obtain converged answers for interesting parameter
regimes (see also Tupitsyn et al. 2016 and Tupitsyn and Prokof’ev 2017) with full
control over systematic and statistical errors. The study of the hydrogen chain is
the first application of the many-body diagrammatic technique to a material science
system (Motta et al. 2017); usually such calculations are limited to the lowest-order
schemes and involve an unknown systematic bias.

4 Conclusions

We have proposed a simple strategy to drastically improve key properties of the
two-particle correlation functions within the sc-GW approximation and applied it
to the jellium model. The strategy is designed to cure unphysical behavior of the
polarization function Π that originates from the violation of the dynamic particle
conservation law. The very same trick can be applied to other models and materials
science systems and can be used in the diagrammatic Monte Carlo approach that
considers higher-order vertex corrections (which should correct the unphysical
behavior of Π ). We also provide benchmark values of key Fermi-liquid parameters
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for jellium within the standard sc-GW approximation and the modified GW(Π )
version.

To explore merits of the bold diagrammatic Monte Carlo approach for materials,
we applied this technique to a prototype material science system by evaluating
diagrams of all relevant orders to obtain the answer with controlled accuracy. We
proposed a protocol for estimating the systematic bias of the sc-GW method using
an important ambiguity in the formulation of this diagrammatic approximation. It is
related to two opposite ways of treating the Pauli exclusion principle and inherent to
two different communities – to the lattice model Hamiltonian and material science
ones. Being “innocent” at the level of exact solution, in the case of low-order
schemes, such as the sc-GW approximation, this ambiguity leads to answers that
differ by an amount similar to that coming from vertex corrections. We demonstrated
that the BDMC technique for the single-orbital hydrogen chain converges to the
exact answer, i.e., higher-order vertex corrections allow one to reach the desired
accuracy in a controlled way.
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Abstract

Quantum chemical wavefunction-based theories approximate the true many-
electron wavefunction in a compact fashion and bear the potential to predict
materials properties with high accuracy. Their computational complexity is
significantly higher than that of the current workhorse method in computational
materials science, density functional theory in the framework of approximate
exchange, and correlation density functionals. However, the increase in available
computer power and methodological and algorithmic improvements during the
last decade have made quantum chemical studies of increasing system sizes
possible. Coupled cluster theories are among the most widely used quantum
chemical wavefunction-based methods. They employ an exponential ansatz of
the electronic wavefunction that constitutes a good trade-off between accuracy
and computational cost for weakly correlated many-electron systems. Here, we
discuss methodological aspects and recent developments of coupled cluster and
related quantum chemical theories for ab initio-based materials modeling.
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1 Introduction

The solution of the many-electron Schrödinger equation is at the heart of ab initio
calculations in computational materials science. Owing to the complex interplay of
interelectronic interactions as well as the Pauli exclusion principle for fermionic sys-
tems, the many-electron Schrödinger equation is a “non-polynomial hard” problem.
Density functional theory (DFT) in the framework of approximate exchange and
correlation energy functionals has revolutionized computational materials science
by mapping the many-electron Schrödinger equation to a computationally tractable
Kohn-Sham Hamiltonian for noninteracting electrons in an effective potential,
achieving reasonable accuracy for quantum mechanical systems. However, despite
the great successes of DFT during the last decades, a number of challenges in the
field of electronic structure theory calculations remain unresolved. Some of the
most prominent examples where currently available approximate density functionals
fail in achieving a qualitatively correct description of materials properties include
systems with strong electronic correlation effects, systems where nonlocal van der
Waals interactions play an important role, and systems with localized electronic
states that are incorrectly described due to self-interaction errors. From the perspec-
tive of quantum chemical wavefunction theories, these challenges could be dealt
with by employing an appropriate ansatz for the true many-electron wavefunction,
albeit increasing the computational complexity substantially.

2 Quantum Chemical Wavefunction Theories

In traditional quantum chemistry, the many-electron wavefunction is expanded
into a basis of Slater determinants that are constructed from a set of orbitals. By
construction, this basis is antisymmetric under exchange of two coordinates, as
required for any fermionic wavefunction, solving the problem of self-interaction
even on the lowest level of quantum chemical wavefunction-based theory, the
Hartree–Fock (HF) approximation. In HF theory the many-electron wavefunction
is approximated using a single Slater determinant only such that:

|ΦHF〉 = 1√
N !

∣∣∣∣∣∣

⎛

⎝
φ1(r1) .. φn(r1)

.. .. ..

φ1(rn) .. φn(rn)

⎞

⎠

∣∣∣∣∣∣
. (1)

The HF determinant is constructed from a set of orthonormal one-electron orbitals,
φi(r), which are obtained by minimizing the Hartree–Fock energy, whereby all
the coupling terms of the Hamiltonian between the Hartree–Fock determinant and
the corresponding single-excited Slater determinants vanish, which is also referred
to as Brillouin’s theorem. In periodic systems the index i is a compound index
of the Bloch wave vector ki used to sample the first Brillouin zone and the
band index ni . Hartree–Fock (HF) theory can be regarded as a low-rank tensor
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approximation to the many-electron wavefunction, employing an antisymmetrized
outer product of one-electron orbitals to approximate the many-body wavefunction.
Hence, by construction, HF theory neglects electronic correlation effects that cannot
be captured using products of one-electron functions only.

Traditional quantum chemical post-HF methods, such as Møller-Plesset pertur-
bation, coupled cluster, and full configuration interaction (FCI) theories, capture
electronic correlation effects by extending the wavefunction basis with additional
excited HF determinants (Helgaker et al. 2000). The FCI wavefunction reads:

|Ψ 〉 = c0|ΦHF〉 +
∑

i∈occ.
a∈unocc.

cai |Φa
i 〉 +

∑

i,j∈occ.
a,b∈unocc.

cabij |Φab
ij 〉

+ . . .+
∑

i1,..,in∈occ.
a1,..,an∈unocc.

c
a1..an
i1..in

|Φa1..an
i1..in

〉. (2)

|Φa
i 〉 correspond to singly excited determinants that are constructed from the HF

determinant by replacing the i-th occupied orbital with the a-th unoccupied orbital.
Higher excitated determinants are obtained in an analogue manner. In n-electron
systems we can construct at most n-fold excited determinants. These determinants
form a complete and orthonormal basis that can be systematically improved upon
toward a formally complete basis set. Computationally, the basis of (excited) Slater
determinants is very convenient. All required occupied and unoccupied orbitals
are obtained in the underlying HF ground state calculation. Furthermore this
choice of the basis introduces a large degree of sparsity to the full many-electron
Hamiltonian. Based on the Slater-Condon rules, electronic structure codes need to
compute one- and two-electron integrals only that can be kept in storage or rapidly
calculated on the fly. Furthermore we note that the Coulomb interaction does not
couple determinants with different total momenta, increasing the sparsity of the
Hamiltonian for systems with periodic boundary conditions even further. However,
the downside of this approach is that the number of wavefunction coefficients in
the Slater determinant basis (cai , cabij , .. , c

a1..an
i1..in

) grows combinatorially with
respect to the number of electrons and the number of unoccupied HF orbitals. In
ab initio calculations the number of unoccupied orbitals is finite only because the
one-electron basis set is truncated. The latter typically corresponds to plane waves
or atom-centered basis functions such as Gaussian-type orbitals that are used to
expand the occupied and unoccupied one-electron orbitals. In full configuration
interaction theory, no further approximations are made to the wavefunction coef-
ficients, and the exact diagonalization of the many-electron Hamiltonian in the
Slater determinant basis yields the corresponding coefficients of ground and excited
many-electron states. However, in practice full configuration interaction theory is
not feasible for real materials that require the treatment of systems containing more
than hundred electrons and significantly larger numbers of unoccupied orbitals.
Therefore wavefunction parametrizations are needed to approximate the coefficients
in a more compact manner without compromising accuracy. We note that for
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weakly correlated systems, these coefficients are reasonably well approximated
using independent electron pair approximations such as the second-order Møller-
Plesser perturbation (MP2) theory (Møller and Plesset 1934). MP2 theory employs
intermediate normalization (c0 = 1) and approximates the singles (cai ) and doubles
(cabij ) coefficients as well as the correlation energy in a perturbative manner. MP2
theory accounts for pair-wise additive van der Waals interactions between atoms. We
stress, however, that higher-order effects such as the screening of these interactions
caused by polarization of the remaining electrons in the system are neglected.
Furthermore MP2 theory is not suitable for small gap and metallic systems, where
any order of truncated Møller-Plesset perturbation theory fails and would require the
resummation of all electron-pair coupling terms in the so-called ring approximation
to account for higher-order polarization effects such that the correlation energy
in metals converges. The so-called ring approximation is included in the coupled
cluster singles and doubles (CCSD) theory as well as in the widely used random-
phase approximation. Coupled cluster theory uses an exponential ansatz of cluster
operators for the wavefunction that reads:

|Ψ CC−n〉 = eT̂ |ΦHF〉, (3)

where T̂ =∑n
m=1 T̂m and

T̂m|ΦHF〉 =
∑

i1,..,im∈occ.
a1,..,am∈unocc.

t
a1..am
i1..im

|Φa1..am
i1..im

〉. (4)

In coupled cluster singles and doubles theory, the cluster operator reads T̂ =
T̂1 + T̂2. We stress that due to the exponential ansatz of the CCSD wavefunction,
the coefficients of all i-fold excited Slater determinants with i ≥ 2 are being
approximated using the amplitudes of the singly and doubly excited determinants;
for example, cabcijk = tai t

bc
jk . Coupled cluster theory can be regarded as a low-rank

tensor approximation to the exact configuration interaction wavefunction coeffi-
cients in the Slater determinant basis. The exponential ansatz used in coupled cluster
theories effectively approximates the coefficients of highly excited determinants by
outer products of cluster amplitudes with a lower rank. CCSD theory is exact for
two-electron systems, and higher orders of coupled cluster theory become exact
for systems with the corresponding number of electrons. The cluster amplitudes tai

and tabij are obtained by solving the amplitude equations 〈Φa
i |e−T̂ HeT̂ |ΦHF〉 = 0

and 〈Φab
ij |e−T̂ HeT̂ |ΦHF〉 = 0, respectively. In this manner the coupling between

different electron pairs is accounted for in an approximate manner including
perturbation theory diagrams of a certain type to infinite order. The coupled-
cluster method was initially proposed by Fritz Coester and Hermann Kümmel for
applications in the field of nuclear physics (Coester 1958; Coester and Kümmel
1960). In 1966, Jiri Cizek reformulated the method for electron correlation in atoms
and molecules (Cizek 1966), where it became a standard for quantum chemical
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calculations on systems that do not exhibit strong static correlation (Bartlett and
Musiał 2007). For most applications a good trade-off between computational cost
and high accuracy is achieved by truncating the cluster operator at doubles (CCSD)
and accounting for the effect of triples in a perturbative manner. This approach is
referred to as CCSD(T) theory (Raghavachari et al. 1989) and achieves chemical
accuracy for the prediction of reaction energies and barrier heights for a wide
range of chemical reactions (Bartlett and Musiał 2007; Helgaker et al. 2000). As
a consequence of the approximations to the many-electron wavefunction employed
in CC theory, the treatment of strong correlation problems is extremely limited.
However, this is an area of ongoing research, and the discussion of quantum
chemical theories that are capable of treating strong correlation problems would
be beyond the scope of this article.

One advantage of quantum chemical theories is that they constitute a hierarchy,
which, starting from the one-particle Hartree–Fock (HF) approximation, allows for
a systematic treatment of the quantum many-body effects that are captured with an
increasing level accuracy by employing MP2, CCSD, and CCSD(T) theories. Cal-
culated ground state properties such as cohesive energies, lattice constants, or bulk
moduli of solids typically exhibit decreasing errors using higher levels of theory.
Some of the most widely used ab initio codes for the study of periodic systems
that have implementations of theories mentioned above include CRYSCOR, CP2K,
FHI-AIMS, PYSCF, SIESTA, and VASP. We note that these implementations
differ in their choice of the employed one-electron basis set and algorithms used
to compute the electronic correlation energies. For the study of materials using
quantum chemical theories, the calculated properties need to be carefully checked
for convergence with respect to the employed computational parameters. This has to
be done in a similar manner as for the more widely used density functional theory
calculations. However, in practice the convergence with respect to the employed
basis sets and cutoff parameters is slower than for their DFT counterparts. This is
caused by the fact the wavefunction theories account for all electronic correlation
effects explicitly.

3 Approaching the Complete Basis Set Limit

The many-electron wavefunctions introduced above are expanded in a basis of Slater
determinants constructed from (unoccupied) Hartree–Fock orbitals. The computa-
tional complexity of canonical Møller-Plesset perturbation theory, coupled-cluster
methods, and full configuration interaction theory scales between quadratically
and exponentially with respect to the number of unoccupied orbitals. Therefore
the ability to span the relevant parts of the Hilbert space with as few orbitals as
possible is crucial for the implementation of efficient periodic correlated methods. In
practice all calculated quantities suffer from a basis set incompleteness error that is
caused by the truncation of the employed unoccupied orbital manifold. The optimal
choice of the unoccupied orbital manifold minimizes the incompleteness error of
the calculated quantity in a controllable manner.
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Some of the most widely used basis sets for the expansion of unoccupied orbitals
include plane waves and GTOs. As an illustration of their respective characteristic
properties, we consider two limiting cases, the uniform electron gas and an atom in
a box. From the perspective of the uniform electron gas, plane waves are the natural
choice of basis to expand one- and many-electron wavefunction quantities. Plane
waves are eigenfunctions of the kinetic energy operator and exhibit the same peri-
odicity as the simulation cell. In realistic ab initio calculations, these plane waves
also have a number of appealing features. A single cutoff parameter that limits the
kinetic energy of the included plane waves is used to systematically expand the plane
wave basis to completeness which is free from basis set superposition errors (BSSE)
and linear dependencies. However, there are obvious drawbacks to plane wave
expansions. They lack reference to the nature of the atomic environment, having
equal basis coverage throughout the cell. This can lead to a substantial waste of com-
putational effort when studying an atom or molecule in a box (Grüneis et al. 2011).

For atoms or molecules, GTOs form a very compact orbital basis. Their
widespread use in the field of quantum chemistry has led to standardized tabulated
basis sets of increasing size and flexibility (Dunning 1989; Balabanov and Peterson
2005). Orbitals beyond the core and valence shells are included to account for
appropriate polarization of the atomic wavefunctions in bonding environments and
to provide a description of correlation effects. Basis sets are commonly arranged in
hierarchies so that they can be systematically expanded to allow for consistent and
extrapolatable convergence. Gaussian-type orbitals are used in a range of periodic
electronic structure codes (Dovesi et al. 2014; Pisani et al. 2012; Maschio et al.
2010; Hirata et al. 2004; Arnim and Ahlrichs 1998; Lippert et al. 1999; Krack
and Parrinello 2000; Kudin and Scuseria 2000; Füsti-Molnár and Pulay 2002;
VandeVondele and Hutter 2003; Sun et al. 2018). However, the introduction of such
local basis sets also leads to several shortcomings such as basis set superposition
errors (BSSE) and linear dependencies of diffuse atom-centered basis functions in
densely packed solids. These problems can partly be accounted for by counterpoise
BSSE corrections and removing linearly dependent basis functions. The local nature
of these functions is often used for reduced scaling techniques in order to approach
linear scaling mean-field treatments (Goedecker 1999; Strain et al. 1996; Burant
et al. 1996; Goedecker and Scuseria 2003) and can also be extended to local
treatment of correlation (Maschio et al. 2010; Pisani et al. 2008).

For the calculation of energy differences such as the adsorption energy of a
molecule on a surface, it is beneficial to employ basis sets that can be truncated
such that a large fraction of the incompleteness error cancels in a controllable
manner. GTOs exhibit this advantageous property, allowing for obtaining accurate
estimates of interaction energies between weakly interacting fragments such as
binding energies of physisorbed molecules on surfaces, despite suffering from
large incompleteness errors in the respective absolute energies. Plane wave basis
sets can also be used to expand (pseudized) GTOs, inheriting these advantageous
properties (Booth et al. 2016).

Another approach to obtain compact unoccupied orbital manifolds for the expan-
sion of many-electron wavefunctions is provided by natural orbitals (Löwdin 1955).
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Natural orbitals are obtained by diagonalizing the unoccupied-unoccupied orbital
block of the reduced density matrix and truncating the obtained natural orbital
manifold according to their occupation number. This procedure yields for many
applications an optimal unoccupied orbital manifold. To reduce the computational
cost of this procedure, it is possible to approximate the reduced density matrix at
a lower level of theory such as direct MP2 only. Natural orbitals “downfold” the
unoccupied orbitals calculated using plane wave basis sets for atoms and molecules
in a box to manifolds that are similarly compact as GTOs (Grüneis et al. 2011).

Despite all the considerations outlined above, the convergence of the many-
electron wavefunction and that of calculated expectation values such as the cor-
relation energy is frustratingly slow with respect to the number of unoccupied
orbitals (Helgaker et al. 2000; Hättig et al. 2012). Therefore extrapolation tech-
niques that remove the remaining basis set incompleteness error are needed on
top of these fairly large basis set calculations. In the case of plane wave basis
set calculations, analytic and numerical results from MP2 theory suggest a 1/M
decay of the basis set incompleteness error where M is the number of plane
waves used in the calculation, allowing for straightforward extrapolation to the CBS
limit (Shepherd et al. 2012; Marsman et al. 2009). Similar scaling laws are employed
for the extrapolation of correlation energies to the complete basis set limit using
GTOs (Helgaker et al. 2000).

3.1 Explicitly CorrelatedMethods

The slow convergence of properties calculated using wavefunction-based methods
with respect to the number of orbitals originates from the difficulty to describe the
many-electron wavefunction in the vicinity of the electron cusp. As the electrons
coalesce, a derivative discontinuity or “cusp” must arise, so that a divergence in
the kinetic energy operator cancels an opposite one in the potential. The shape of
the wavefunction at the cusp is exactly defined to first-order in the interelectronic
distance by the Kato cusp conditions (Pack and Byers Brown 1966; Kato 1957). The
a priori inclusion of the cusp conditions in the wavefunction ansatz is a cornerstone
of explicitly correlated or so-called F12 theories (Kutzelnigg and Klopper 1991;
Ten-no 2004a, b; Werner et al. 2007; Hättig et al. 2010, 2012; Grüneis et al. 2017).
Explicitly correlated methods augment the conventional wavefunction expansions
discussed in the previous section with additional terms that account for the cusp
conditions explicitly. Since electronic correlation is for the most part a short-
ranged phenomenon, the proper description of the wavefunction shape at short
interelectronic distances allows for capturing the largest fraction of the correlation
energy in solids and molecules.

Figure 1a depicts the different contributions to the explicitly correlated first-
order wavefunction for two electrons in a box with a homogeneous background.
It can be seen that the resultant F12 wavefunction exhibits a cusp at the electron
coalescence point. Within an expansion of Slater determinants, the exact cusp is
never obtained, and a quantitatively correct linear form at small interelectronic
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Fig. 1 (a) Illustration of the different contributions to the explicitly correlated two-electron
wavefunction in a box with a homogeneous background. f12 is the Slater-type correlation factor
with the variational parameter γ . (b) Convergence of the MP2 and MP2-F12 correlation energies
for the 54 electron UEG simulation cell (rs = 5.0 bohr) with respect to the employed number of
orbitals M (Grüneis et al. 2013)

distances only arises with large basis sets of high momenta. Explicitly correlated
methods provide a more compact ansatz for the many-electron wavefunction by
augmenting a traditional Slater determinant expansion with geminals that are
centered at the electron coalescence points, satisfying the first-order cusp condition
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exactly. The first-order pair functions are expanded as:

|uF12
ij 〉 =

1

2

∑

ab

tabij |ab〉 + tij Q̂12f12|ij 〉. (5)

The first and second term on the right-hand side of the above equation correspond
to the conventional MP1 pair function and the strongly orthogonal geminals,
respectively. tij are geminal amplitudes determined by the universal cusp conditions,
and f12 is the correlation factor that models the shape of the correlation hole and is
typically chosen to be a Slater-type function. This choice ensures that the geminal
functions included in the basis are linear with respect to r12 in the vicinity of the
electron-electron cusp and decay to zero at large r12, where the wavefunction is
expected to vary smoothly and is generally well-represented by the conventional
determinantal basis. The projector Q̂12 enforces strong orthogonality between the
first-order and the HF wavefunction, and it also enforces orthogonality between the
standard and F12 contributions to the first-order wavefunction. Figure 1b shows
that the MP2-F12 correlation energy converges much more rapidly than the MP2
correlation energy with respect to the employed basis set (≈ 1

M2 ), reducing the
required basis set significantly without compromising accuracy. Even though the
findings shown in Fig. 1b were obtained for homogeneous systems, similar basis
set reductions can be achieved for ab initio systems. F12 theories introduce the need
for three- and sometimes even four-electron integrals. The direct calculation of these
integrals is circumvented in practice by the introduction of complementary auxiliary
basis sets, significantly increasing the prefactor of the computational complexity
for F12 calculations (Klopper and Samson 2002). As a result explicitly correlated
methods are only advantageous for more complex parent methods such as CC
theories (Knizia et al. 2009; Hättig et al. 2010). In recent years these developments
are also being adapted to the field of periodic correlated methods, showing great
promise in expanding the scope of quantum chemical wavefunction theories for
solids (Usvyat 2013; Grüneis 2015).

4 Approaching the Thermodynamic Limit

Quantum chemical wavefunction-based methods are most widely used for the study
of atoms and molecules. In contrast to molecular systems, properties of solids and
surfaces need to be calculated in the thermodynamic limit (TDL) in order to allow
for a direct comparison to experiment. The thermodynamic limit is approached as
N → ∞, where N is the number of particles in the simulation (super-)cell while
the density is kept constant. The TDL is usually approached by sampling the first
Brillouin zone using increasingly dense k-meshes. However, the convergence of
calculated properties to the thermodynamic limit is very slow, often exceeding the
computational resources of even modern supercomputers due to the steep scaling
of the computational complexity of most post-HF methods with respect to system
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size. We stress that many properties such as the binding energy of molecules on
surfaces converge slower than their counterparts calculated on the level of mean-
field theories such as DFT. This originates from the fact that correlated post-HF
methods capture long-range electronic correlation effects such as van der Waals
interactions explicitly. Even though the corresponding long-ranged contribution
to the electronic correlation energy is small compared to short-ranged correlation
energy contributions, the accumulation of weak van der Waals interactions can
become a non-negligible contribution to the property of interest. Different strategies
have been developed to correct for finite size errors that are defined as the
difference between the thermodynamic limit and the finite simulation cell results.
Local theories that employ correlation energy expressions depending on localized
electron pairs can approximate correlation energy contributions of long-distant pairs
using computationally more efficient yet less accurate theories. Alternatively local
theories can account for electron pairs that are disregarded based on a distance
criterion by correcting using an R−6-type extrapolation (Usvyat et al. 2012).
Canonical implementations of periodic post-HF methods employ scaling laws for
extrapolations to the TDL that are based on an analogue rationale (Booth et al.
2013; Ben et al. 2013; McClain et al. 2017). We note in passing that auxiliary
field quantum Monte Carlo theory employs finite size corrections that are based
on parametrized density functionals obtained from finite uniform electron gas
simulation cells (Kwee et al. 2008).

The problem of slow thermodynamic limit convergence and concomitantly
large finite size errors is a common feature of quantum Monte Carlo (QMC) and
correlated quantum chemical methods. QMC methods employ correction schemes
that reduce finite size errors originating from the evaluation of the kinetic and
potential energy operators in the many-electron Hamiltonian (Chiesa et al. 2006;
Kwee et al. 2008; Holzmann et al. 2016). The most notable corrections include
structure factor interpolation techniques and twist averaging. The latter reduces
finite size errors originating from the one-electron operators, whereas the structure
factor interpolation method allows for reducing finite size errors originating from the
two-electron operator. Recently we have introduced finite size correction methods
that are inspired by the corresponding techniques used in QMC calculations. These
finite size corrections allow for achieving thermodynamic limit results of solids
and surfaces using quantum chemical wavefunction theories in a very efficient
manner (Gruber et al. 2018; Liao and Grüneis 2016), reducing the computational
cost significantly.

5 Reduced-Scaling Approximations

In this last section, we briefly mention promising developments from the field
of quantum chemical wavefunction-based methods that allow for reducing the
scaling of the computational complexity. The steep polynomial scaling of the
computational complexity with respect to system size of canonical CCSD (O(N6))
or CCSD(T) (O(N7)) theories arises from the use of spatially delocalized canonical
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orbitals. Canonical orbitals are conceptually and computationally convenient. They
are orthogonal and diagonalize the Fock matrix, greatly simplifying the post-HF
correlation schemes. However, these orbitals are spatially delocalized, and their use
does not allow one to exploit the fact that electronic correlation is an intrinsically
short-ranged phenomenon. The use of spatially localized, instead of canonical,
orbitals allows to construct MP2 and CC algorithms that scale more favorably with
system size, down to even O(N), at the price of a significant increase in complexity
of the underlying equations with respect to their canonical counterparts. The most
notable among them are (based on) the local correlation method of Pulay and
Saebø (Pulay and Saebø 1986; Saebø and Pulay 1993; Schütz et al. 1999; Subotnik
and Head-Gordon 2005), the so-called local ansatz of Stollhof and Fulde (Stollhoff
and Fulde 1978, 1980; Stollhoff 1996), the method of increments of Stoll (Stoll
1992a, b, c; Paulus 2006; Schwerdtfeger et al. 2010; Rościszewski et al. 1999), the
atomic orbital basis formulations of Ayala and Scuseria (Ayala and Scuseria 1999;
Scuseria and Ayala 1999), or the use of truncated pair natural orbitals (Neese et al.
2009; Kubas et al. 2016; Ma et al. 2017). Other recent developments to reduce the
scaling of the computational cost with respect to system size include techniques that
calculate the MP2 correlation energy using stochastic methods (Willow et al. 2012;
Neuhauser et al. 2013). Furthermore we note that the change of the representation
also allows for reducing the scaling of the computational cost without necessarily
requiring a local orbital representation (Mardirossian et al. 2018; Schäfer et al. 2017;
Friesner 1985).

Finally we note that tensor rank decomposition techniques and so-called tensor
hypercontraction methods have also successfully lead to a reduction of the computa-
tional cost. The tensor hypercontraction (THC) technique introduced by Hohenstein
et al. (Hohenstein et al. 2012a, b; Parrish et al. 2012) performs a low-rank tensor
decomposition of the Coulomb integrals. Furthermore, Shenvi et al. (2013) used
a similar approach. In the work of Benedikt et al., it was shown that tensor rank
decomposition techniques allow for a low-rank decomposition of the coupled cluster
amplitudes directly (Benedikt et al. 2013).

The above discussion of reduced scaling approximations is by no means com-
plete but reflects the effort of the electronic structure theory community to reduce
the computational cost and expand the scope of quantum chemical methods for the
study of materials further.

6 Conclusion

In conclusion, we have summarized recent developments in the field of quantum
chemical wavefunction-based theories that show great promise of expanding the
scope of quantum chemical wavefunction theories for materials modeling. A
significant amount of research effort is expended on accelerating the convergence
of the many-electron wavefunction approximations and resultant expectation values
with respect to the employed orbital basis set, system size, and other computational
parameters. Furthermore local approximations allow for the reduction of the scaling
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of the computational complexity with respect to system size, making studies of
materials containing more than hundred atoms possible. These developments pave
the way for a routine use of accurate quantum chemical theories such as coupled
cluster methods in the field of surface chemistry and solid-state physics. The ability
to predict accurate benchmark results will help the entire electronic structure theory
community to improve further upon computationally more efficient yet less accurate
ab initio workhorse theories.
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Abstract

Optimal control theory (OCT) is a branch of mathematics that deals with the
problem of finding optimal trajectories for dynamical systems. It can be used in
combination with time-dependent quantum mechanical methods that describe the
evolution of the electronic and/or nuclear wave functions of atoms, molecules,
or materials in the presence of external perturbations, such as electromagnetic
fields. OCT may then find the optimal shape of those external perturbations: the
optimal character is defined in terms of a functional of the behavior of the system.
This chapter provides a brief description of the basic elements of the theory and
an overview of its applications to quantum dynamics and electronic structure.
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1 Introduction

Spectroscopy studies the interaction of radiation with matter. Its parenthood is
attributed to Newton, who explained the famous prism experiments that decomposed
light into its colored components. He used for the first time the word spectrum (that
means appearance, image, or apparition) to refer to the decomposed light image
[“Comparing the length of this coloured spectrum with its breadth (. . . )” (Newton
1671)], initiating the field of research and giving it its name at the same time.

The essence of the typical spectroscopic experiment has not changed: take some
form of radiation, make it interact with a piece of matter, and observe the radiation
reflected or transmitted by it. The resulting data, typically radiation intensities as
a function of their wavelength, have continued to be called spectra since Newton.
By interpreting these spectra, we learn how matter reacts to the perturbation, and,
most importantly, we can deduce its microscopic structure. Spectroscopy is the key
to understanding how matter looks like at the scale of its constituents.

Moreover, if radiation induces a reaction, it means that the state of matter can
be manipulated or controlled by tuning the radiation characteristics: expose skin to
light, and you can control its tan by adjusting exposition time, modulating its inten-
sity with sunscreen, etc. Initially, only incoherent control could be exercised, since
all available sources emitted incoherent radiation. One could only manipulate the
state of macroscopic portions of matter by tuning time-averaged characteristics of
the radiation, since the many photons of an incoherent source impinge stochastically
on the microscopic elements of the sample.

This state of affairs changed with the invention of the laser (Maiman 1960): the
photons could then be emitted coherently, the frequency could be tuned to the point
of almost monochromaticity, and very high intensities could be obtained. The laser
is the ideal tool for the manipulation of matter at its microscopic scale. Coherent
control (Rice and Zhao 2000; Brumer and Shapiro 2003), also known as quantum
control, was born. In essence, it is some kind of inverse spectroscopy: the goal is not
to understand how a piece of matter (atom, molecule, nanostructure, solid material,
etc.) reacts to an external electromagnetic field but, inversely, to find out what is the
precise form of an external field that may induce a given reaction.

The first attempts targeted selective photochemistry, in particular the goal of the
cleavage of molecules by some particular bond, with a simple concept: one uses the
remarkable monochromaticity that a laser source can achieve to tune the light to
the characteristic frequency of that bond. If enough energy can be deposited on it,
the bond will break. This can only work if a particular frequency can be associated
to the given bond (vibrational molecular modes may not correspond to single-bond
vibrations but may represent collective motions). However, the biggest problem is
intramolecular vibrational redistribution (IVR) (Bloembergen and Zewail 1984):
the energy quickly flows to other degrees of freedom, before the wanted reaction
takes place. The final outcome is an increase in the molecular temperature – as it
happens when incoherent irradiation is used – and perhaps its fracture at unexpected
places.
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In the following section, the early proposals of coherent control that overcame
this limitation are briefly reviewed. However, the great leap forward was achieved
thanks to the improvement of pulse shapers – capable of creating almost arbi-
trary pulses – and the adaptive feedback control proposal (AFC) by Judson and
Rabitz (1992). This will also be described in the next section. Optimal control
theory (OCT) (Kirk 1998) is presented in Sect. 3; its application in combination
with electronic structure theories will finally be discussed in Sect. 4.

2 Early Coherent Control Proposals and the Adaptive
Feedback Control Setup

Given the inability of single monochromatic laser beams to control the complexity
of chemical reactions and other quantum processes, the next obvious step is
the use of two frequencies. Brumer and Shapiro (1986a, b, 1989) analyzed the
problem of unimolecular reactions triggered by light (i.e., photodissociation) and
proposed the control through the quantum interference of two pathways: suppose
that two reaction channels are accessible from a given initial state and the energy
necessary for it can be supplied by two different paths, one single photon of a given
frequency and a multiple number of photons of smaller (commensurate) frequency.
Furthermore, suppose that the two beams can act coherently on the system. Then,
the relative phase of the two beams can be adjusted, and the yields of the various
channels will depend on the interference between them. The modification of the
relative phase (as well as, possibly, the relative intensity) becomes in this way a
control mechanism.

A different approach was taken by Tannor and Rice (1985) and Tannor et al.
(1986), who proposed the use of femtosecond pulses in a pump-dump setup,
illustrated in Fig. 1. A compound “ABC” is initially in its ground-state configuration;
two dissociative channels, AB+C and A+BC, exist in the ground-state potential
energy surface but are adiabatically blocked by a barrier. An initial pump pulse at t0
can be used to place the system in an electronic excited state surface (or perhaps in
a linear combination of those). The system then evolves, and a second dump pulse
can be used at different times, with different effects: if applied at t1, the system
is transferred back to the electronic ground state, but on the dissociative channel
AB+C; if applied later at t2, the system will dissociate to A+BC.

There have been other “early” quantum control scheme proposals – such as the
stimulated Raman adiabatic passage (STIRAP) (Gaubatz et al. 1988; Kuklinski
et al. 1989), etc. However, all those first schemes were characterized by the use
of relatively simple field shapes and few control parameters (the relative phases,
the time delay, etc.). It soon became obvious that they could all be regarded as
particular forms of a more general concept: the use of arbitrary laser pulse shapes,
with durations and frequencies of the order of the mechanism that is to be controlled,
and the variation of many control parameters, controlling those shapes.
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Fig. 1 The pump-dump control setup proposed by Tannor, Kosloff, and Rice (Tannor and Rice
1985; Tannor et al. 1986). A compound in its initial “ABC” ground-state configuration is pumped
at t0 with a femtosecond laser pulse to an electronic excited state. It then evolves freely until a later
dump pulse transfers it back to the ground state potential energy surface; depending on the delay
time, t1 or t2, the system may land on different dissociative channels, AB+C or A+BC

The key instrument to realize this ambitious concept is the laser shaper, a device
capable of designing the temporal shape of a pulse. This tool quickly evolved during
the 1990s (Weiner 2000). Essentially, it works in the following way: A grating
decomposes a simply shaped laser pulse into its frequency components, each of
which passes through a filter, capable of modifying its intensity, phase, or both.
Then, a second grating is used to combine all the components into the output, shaped
pulse.

Based on the laser shapers, Judson and Rabitz (1992) proposed the adaptive
feedback control (AFC) setup. It is illustrated in Fig. 2. Suppose that we wish to find
a laser pulse capable of producing some given reaction. This fact can be measured,
for example, by using a time-of-flight mass spectrometer. The failure or success
of the pulse can be summarized by a performance function, defined in terms of
the experiment outcome. The idea then is to create a learning loop: the value of
the performance function is fed to an optimization algorithm, which decides on the
value of the parameters that determine the shape of the next laser pulse to be probed.
This loop is iterated a number of times, until an optimal pulse is found.

The AFC mechanism has become the most successful control technique for
quantum processes (see Brif et al. (2010) for a rather exhaustive list of applications).
Its success is based on various facts: (1) the remarkable capacity that laser shapers
have acquired to produce almost arbitrary pulses with high intensities, (2) the
high repetition rate that the AFC loop normally has, (3) the existence of efficient
optimization algorithms for many-variable functions, and (4) the robustness of the
solutions found by the AFC technique.
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Fig. 2 The adaptive feedback control (AFC) experimental setup (Judson and Rabitz 1992). (From
Rabitz et al. (2000). Reprinted with permission from AAAS)

3 Optimal Control Theory: Mathematical Framework

In parallel to the experimental advances described above, a complementary the-
oretical framework was necessary to describe and solve the problem of quantum
control, i.e., finding the parameters that define some external action on some model
for a quantum system, capable of forcing it to behave in some target manner.
This description of the problem falls within the scope of control theory, a branch
of engineering and mathematics that was however invented for other problems.
Optimal control theory (OCT) (Kirk 1998) is a particularly successful form of
control theory. This section is a crash course on OCT. Its application to quantum
problems (quantum OCT, i.e., QOCT), with focus on electronic systems, will be the
topic of the next section.

The state of a system, within the mathematical framework of dynamical systems,
is typically modeled as a point y in some smooth manifold; this state is fully
described by a set of coordinates y1, . . . , yn ≡ y (assuming the manifold dimension
to be finite). The system evolves according to a dynamical law:

ẏ(t) = f (y(t), u(t), t) . (1)

y(t0) = y0 . (2)
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The functions u(t) = u1(t), . . . , uM(t) are the control inputs or control functions.
The idea behind the definition of the state of a system is the following: it is a set of
numbers (that change in time, as the state changes) such that, given their knowledge
at a given time t0, fully determine the behavior of the system at times t ≥ t0 (given
fixed control inputs). If the evolution of the system is smooth in time, this means
that the equation of motion or dynamical law is a first-order differential equation
such as Eq. (1).

In a typical formulation of a control problem, the evolution of the system is
usually constrained to a set of admissible trajectories that we may denote by Y .
For example, one may require that the starting state is given: y ∈ Y ⇒ y(t0) = y0.
Likewise, the control inputs may be constrained in multiple ways, and therefore we
must define a set of admissible controls U .

Sometimes, the control inputs are not presented as functions but as real numbers,
usually called the control parameters. Note that there is no loss of generality
in considering one or the other option: in any numerical implementation of the
problem, each function is represented by a set of parameters; inversely, any set of
parameters can be considered as a set of functions that are constrained to be constant
in time.

The previous Eqs. (1) and (2) are not general enough to describe any possible
physical model: stochastic terms, for example, are not included, which exclude
relevant models such as Langevin’s equations. Of course, extensions of the basic
framework of OCT exist for more general situations. However, many important
processes fall into this category, such as any quantum process described by
Schrödinger’s equation. In this case, the dynamical law is linear:

f (y(t), u(t), t) = −iH [u(t), t]y(t) , (3)

where H [u(t), t] is the Hamiltonian, a linear Hermitian operator.
In the realm of electronic structure theory, the state y is a many-electron wave

function. However, more often than not, one does not solve the full many-electron
problem, too large for more than a few electrons, but uses some of the many
electronic structure methods that have been developed over the years, for example,
multi-configuration time-dependent Hartree-Fock (Nest et al. 2005; Beck et al.
2000) or time-dependent density-functional theory (Marques et al. 2012), which
both have been combined with OCT (Mundt and Tannor 2009; Castro et al. 2012).

If the control inputs u are given, the evolution of the system is fully determined by
its equations of motion. However, if we can control the values of these parameters,
then we can manipulate the evolution of the system. This is the gist of control
theory; “optimal” control theory, in particular, pursues this control by defining
a performance measure (also known sometimes as target functional), a function
dependent on the system trajectory, and searching for the control parameters
that maximize it. In some cases, the problem statement obviously and uniquely
determines the definition for the performance function, whereas in some other cases,
many possible valid options exist, and the practitioner must choose one. A very
generic form for this function is:
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F(y, u) = h(y(T ))+
ż T

t0

dt g(y(t), u(t), t) . (4)

This definition separates a terminal part h(y(T )), which depends on the final system
state, and a time-dependent or trajectory part,

şT

t0
dt g(y(t), u(t), t), which depends

on the full evolution of the system. The time T is the final propagation time. This
may be fixed or not: an important class of control problems is the minimization of
the time that it takes for some process to happen.

We already have all the necessary ingredients to formally formulate the optimal
control problem: find an admissible control u∗ ∈ U , such that it forces the system
to follow an admissible trajectory y∗ ∈ Y :

ẏ∗(t) = f (y∗(t), u∗(t), t) , (5)

y∗(t0) = y∗0 , (6)

and such that it maximizes the value of the performance measure, i.e.:

F(y∗, u∗) = h(y∗(T ))+
ż T

t0

dt g(y∗(t), u∗(t), t) ≥ F(y, u) (7)

for any other admissible y and u. Note that, since the specification of u determines
the system evolution, i.e., u→ y[u], one may reformulate this as the maximization
of a function of the control inputs alone:

G(u) = F(y[u], u) . (8)

Also note that, one may indistinctly speak of minimization or maximization; the
formalism is identical except for a sign in the performance function (that typically
changes its name to cost function when the goal is its minimization).

One very common example of control problem in the quantum world is the
following: suppose that we wish to find the precise shape of the amplitude of
an electric field, u(t), such that it has moderate intensity, and it maximizes the
population of some excited states yI at the final propagation time T . Then, a possible
definition for the performance measure is:

F(y, u) = |〈y(T )|yI 〉|2 − α

ż T

0
dt u2(t) . (9)

The second term somehow codifies the requirement of moderate intensity and is
generally called a penalty term. Of course, multiple other definitions are possible
(given the imprecise character of the moderate intensity requirement), and this fact
exemplifies the lack of uniqueness in the definition for the performance function
that control problems often have.
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There are two main mathematical approaches to the control theory problem: the
dynamic programming method developed by Bellman (1957) and the method based
on Pontryagin’s minimum principle (Boltyanskii et al. 1956; Pontryagin et al. 1962).
Both are briefly described in the following two subsections.

3.1 Dynamic Programming

This approach is based on the principle of optimality:
If a trajectory y∗(t), corresponding to the control inputs u∗(t), is optimal for

a given performance measure defined in the interval [t0, T ], then any final piece
of that trajectory (i.e., the restriction of y∗(t) to an interval [ta, T ] for any ta ∈
(t0, T )), with the same control inputs, is also optimal for the same performance
measure.

This is in fact a rather simple principle, and it can be very easily proved by
reductio ad absurdum (Kirk 1998). It can be used to solve the control problem in
two different equivalent ways:

• Frequently, the problem is first discretized in time, and the set of admissible
states is also fully enumerated (it may happen that the problem is already discrete
from the beginning and is posed as a series of decisions). Then, the principle of
optimality can be used to create a recurrence relation that fully determines the
optimal solution. One starts from the last part of the trajectory, whose optimal
solution must be a part of the full solution according to the principle of optimality.
Then, a step-by-step backward repetition of this idea is used.

• One may directly derive a partial differential equation that constitutes a necessary
and sufficient condition for a set of control inputs and corresponding trajectories
to be optimal: the Hamilton-Jacobi-Bellman (HJB) equation. Of course, its
solution then requires an a posteriori discretization.

The HJB equation, or the equivalent discretized recurrence algorithms, appar-
ently supplies a complete solution to the optimal control problem. Unfortunately,
it is not always useful due to the bad scaling of the computational cost with the
problem variables: number of time steps, system state dimensions, and number of
control inputs. This drawback was already identified by Bellman, who named it the
curse of dimensionality, and it is probably the reason behind the fact that dynamic
programming has been rarely used for quantum control problems.

3.2 Pontryagin’s Minimum Principle

Pontryagin et al. (Boltyanskii et al. 1956) established a set of necessary conditions
for the optimal control inputs and state trajectory of a control problem, which is
known as Pontryagin’s minimum principle. This is not the place to present it in
detail, or to demonstrate it, but it is worth to outline a simplified version.
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Given a control problem defined by the dynamical system, Eqs. (1) and (2), and
by the performance function defined in Eq. (4), we define a Hamiltonian function
(not to be mistaken with the Hamiltonian of the system, if it exists):

H (y(t), u(t), p(t), t) = g(y(t), u(t), t)+ pT (t) · f (a(y(t), u(t), t)) . (10)

This definition needs a new set of variables, p(t) = p1(t), . . . , pn(t), sometimes
called the costate, or the momentum variables. The following are necessary
conditions for u∗(t) and y∗(t) to minimize the performance functions:

ẏ∗(t) = ∇pH (y∗(t), u∗(t), p∗(t), t) , (11)

y∗(t0) = y0 , (12)

ṗ∗(t) = −∇yH (y∗(t), u∗(t), p∗(t), t) , (13)

p∗(T ) = ∇yh(y(T )) , (14)

H (y∗(t), u∗(t), p∗(t), t) ≤ H (y∗(t), u(t), p∗(t), t) for any u ∈ U . (15)

Note that this is a simplified version of the principle that assumes that the final time
T is fixed, the initial state is also fixed, and, in contrast, the final state at time T is
not constrained in any way. However, it is sufficient to display one of its key traits:
the use of an auxiliary set of variables, p(t), that verify equations of motion that are
similar, but not identical, to the ones verified by the original variables. The boundary
conditions specified in Eq. (14), in particular, are given at the final time T , which
means that the computation of p must be obtained via a backward propagation.

4 Application to Electron Dynamics

Pontryagin’s minimum principle is in fact at the theoretical base of most applications
of OCT to quantum problems. Or, put differently, the equations used in the field
of QOCT can be considered re-derivations of Pontryagin’s minimum principle for
particular cases, even if it is often uncredited. For example, a prototypical QOCT
problem may be defined by the target in Eq. (9) and by an evolution governed
by Schrödinger’s equation – i.e., the linear relation in Eq. (3). Let us assume
furthermore that the Hamiltonian has the form:

H [u(t), t] = H0 + u(t)D . (16)

H0 may be the field-free Hamiltonian of a molecule, whereas D may be its dipole
coupling to the electric field component of a laser pulse whose amplitude is u(t)

(assuming the dipole approximation). Then, one can prove that the optimal u∗ is
given by:
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u∗(t) = − 1

α
Im〈p∗(t)|D|y∗(t)〉 , (17)

where y∗(t) and the auxiliary wave function p∗(t) are fully determined by:

ẏ∗(t) = −iH [u∗(t), t]y∗(t) . (18)

y∗(T ) = y0 , (19)

ṗ∗(t) = −iH [u∗(t), t]p∗(t) . (20)

p∗(T ) = 〈yI |y∗(T )〉yI . (21)

These equations can be derived by application of Pontryagin’s principle or from
scratch by making use of variational calculus.

Equation (17) is in fact the zero condition for the variation of the performance
function with respect to the control input. Specifically,

δG

δu(t)
= 2Im〈p[u](t)|D|y[u](t)〉 − 2αu(t) , (22)

where, remember, G(u) = F(y[u], u) [Eq. (8)]. Setting the previous functional
derivative to zero is obviously a requisite [i.e., Eq. (17)] for the control input (the
laser pulse, in our example) to be optimal.

Many algorithms aimed at finding the solution control given in Eq. (17) have been
developed over the years. A very successful one was designed by Zhu and Rabitz
(1998). We describe it in Fig. 3 as an example, especially since it is the scheme used

1. Choose an initial guess solution u(0)(t).
2. Propagate y0 → y(T ) using the Hamiltonian H0 + u(0)(t). The

solution is y(0).
3. Let p(0)(T ) = 〈yI |y(0)(T )〉yI .
4. Propagate p(0)(T ) → p(0)(0) using the Hamiltonian H0 +

u(0)(t). The solution is p(0).
5. Let u(1)(t) = − 1

α Im〈p0(t)|D|y0(t)〉 .
6. Let k = 1.
7. Propagate y0 → y(T ) using the Hamiltonian H0 + u(k)(t). The

solution is y(k).
8. Let p(k)(T ) = 〈yI |y(k)(T )〉yI .
9. Propagate p(k)(T ) → p(k)(0) using the HamiltonianH0+u(k)(t).

The solution is p(k).
10. Let u(k+1)(t) = − 1

α Im〈pk(t)|D|yk(t)〉 .
11. If u(k+1) ≈ u(k), stop and u∗ = u(k+1) is the solution. Otherwise,

repeat steps 7–11 until convergence.

Fig. 3 The monotonic algorithm of Zhu and Rabitz (1998)



22 Optimal Control Theory for Electronic Structure Methods 479

for one of the examples below. Some of the most common features of all quantum
control algorithms can be learned from the analysis of this one, namely:

• The algorithm requires backward propagations of the auxiliary state p (since the
boundary condition is established at the final propagation time T ). This is not
surprising, as this fact is already implicit in Pontryagin’s minimum principle.
Note, however, that not all schemes require backward propagations: they are
only needed if the scheme makes use of the gradient of the target functional with
respect to the control parameters – or the functional derivative with respect to u(t)

if a continuous function is used as control. Many algorithms only require function
evaluations (e.g., evolutionary algorithms), and therefore the only operation
required is the propagation of the equations of motion.

• Convergence to the global optimum is not guaranteed. The algorithm of Zhu and
Rabitz is always monotonic, but in general, no algorithm can guarantee that a
global optimum will be found. Multiple local solutions may exist.

• The cost of the optimization grows linearly with the cost of propagating the
wave functions, as this is the basic operation of the algorithm. The number of
propagations needed to reach convergence depends however on the scheme and
grows with the number of control parameters or functions.

The previous discussion, based on Eqs. (16), (17), (18), (19), (20), (21), and (22),
considers a continuous function of time, u(t). Therefore, the “gradient” of the
functional [Eq. (22)] is in fact a functional derivative. It is worth to reconsider
the theory assuming that the control inputs are a set of parameters u1, . . . , uM –
especially since, upon discretization for their numerical representation, the control
input functions are also reduced to a finite set of parameters. Schrödinger’s equation
would then read:

ẏ(t) = −iH [u, t]y(t) , (23)

y(t0) = y0 . (24)

and the performance function can be, for example:

F(y, u) = 〈y(T )|O|y(T )〉 − P(u) , (25)

where O is some operator whose expectation value at the end of the process we wish
to maximize (the case O = |yI 〉〈yI | corresponds with the excited state population
described above) and P(u) is a penalty function (which, as in the example above,
may be added to avoid unwanted features of the control parameters, such as too high
intensities). The previous functional derivative is now a normal gradient, given by:

∂G

∂uk

(u) = 2Im
ż T

t0

dt 〈p[u](t)| ∂H
∂uk

(u, t)|y[u](t)〉 − ∂P

∂uk

(u) . (26)
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where the auxiliary state p[u] is defined by its equations of motion:

ṗ[u](t) = −iH [u, t]p[u](t) , (27)

p[u](T ) = Oy[u](T ) . (28)

Note the remarkable similarity of these equations to the ones that define the state:
p also follows Schrödinger’s equation, and the only difference is the initial value
condition that changes to a final value one. This similarity is a consequence of (1) the
linear character of Schrödinger’s equation, (2) the quadratic character of the target
functional with respect to the state, and (3) the fact that the target functional only
depends on the state at the final time of the propagation, T . If any of these conditions
is not met, the equations of motion for p become more complex, including nonlinear
or inhomogeneous terms.

These QOCT equations, or variations of it, have been applied many times in
numerous investigations, since the first attempts in the 1980s (Shi et al. 1988;
Peirce et al. 1988; Shi and Rabitz 1989; Kosloff et al. 1989). Most of these, up to
recently, have focused on the control, with femtosecond pulses, of the motion of the
nuclear wave packet on one or a few potential energy surfaces. That motion typically
happens on a time scale of hundreds of femtoseconds or picoseconds. However, laser
technology has improved dramatically, reaching the attosecond time scale when the
millennium turned (Krausz and Ivanov 2009). This access to the attosecond scale
has enabled the possibility of not only observing electron dynamics in their natural
time scale but also controlling them.

Therefore, the combination of QOCT with non-equilibrium quantum dynamics
methods has become necessary to match the experimental advances. Unfortunately,
modeling electron dynamics is notoriously difficult (van Leeuwen and Stefanucci
2013). The main reason is the exponential growth of computational cost and
memory requirements with the number of electrons involved in the calculations.
For this reason, the simple Schrödinger equation is substituted with more elaborate
models that operate on smaller objects, at the cost of losing the structural simplicity
of the original linear equation. This problem becomes especially relevant for
QOCT calculations: the expression for the gradient of the performance function
with respect to the control parameters involves the forward propagation of the
system state, and the backward propagation of a fictitious costate. This means that
performing QOCT calculations is as costly as performing a number of propagations
for the system and model employed.

In the following, in order to show a glimpse of the possibilities that the
combination of QOCT with electronic dynamics methods offers, three sample cases
are briefly presented.

4.1 One Electron Case: Control of Motion in Quantum Rings

If there is only one electron (or if the electron-electron interaction can be neglected),
electron dynamics is actually easy and manageable, and quantum optimal control
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Fig. 4 (a) Shape of the
external confining potential
for a quantum ring and an
example of a circularly
polarized laser field. (b)
Energy-level spectrum of a
quantum ring. The transitions
are allowed along the dashed
line so that Δl = ±1
(Reprinted with permission
from Räsänen et al. (2007).
Copyright 2007 by the
American Physical Society)
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can be performed by making use of the very same equations described above for the
case in which the system simply follows Schrödinger’s equation.

For example, Räsänen and collaborators (Räsänen et al. 2007) studied single
electrons in quantum rings: the rings are in fact two-dimensional traps built
in semiconductor heterostructures, where the electrons of the two-dimensional
electron gas formed at the interface can be confined. They can be modeled with
simple Hamiltonians, i.e.:

H0 = − h̄2

2m∗
∇2 + 1

2
m∗ω2

0r
2 + V0e

−r2/d2
. (29)

This is a 2D Hamiltonian (r2 = x2 + y2), whose confinement potential is depicted
in Fig. 4a: one may see how the potential well is ring-shaped. Note that to describe
these systems, one makes use of the effective mass approximation: the parameter
m∗ is an effective mass (in this particular example, it was set to 0.067 times the real
electron mass, the experimental value measured in GaAs).

The energy levels of this Hamiltonian are also depicted in Fig. 4b. The x axis
represents the orbital angular momentum: positive and negative values correspond
to clockwise and anticlockwise electron rotation within the ring. The goal of this
study was to fully control the rotation of the electron, by placing the electron into
any of those excited states, making use of two-component electric fields, i.e., the
time-dependent Hamiltonian is given by:

H(t) = H0 − xεx(t)− yεy(t). (30)

The fields εx and εy are the control inputs. The optimization was achieved by
making use of the rapidly convergent algorithm described above in Fig. 3 (Zhu
and Rabitz 1998). The target or performance function was set to be, as above,
the population of the excited states, in order to design electric pulses capable of
changing the electron rotation.
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The use of QOCT in this work led to finding optimal shapes for the controlling
fields that are more complex than simple continuous wave pulses tuned to the
energy differences of the states. Those optimal pulses could arbitrarily transfer the
population between states almost at will in very short times.

4.2 QOCT in Combination with Multicomponent Hartree-Fock

In order to go beyond single-electron cases and attempt the control of larger
electronic systems, one must make use of one of the many approaches to the time-
dependent many-electron problem that have been developed since the dawn of
quantum mechanics. Mundt and Tannor were the first to attempt the combination
of one of these schemes, multi-configuration time-dependent Hartree-Fock (MCT-
DHF) (Nest et al. 2005; Beck et al. 2000), with QOCT (Mundt and Tannor 2009).

In MCTDHF, the very large and unmanageable N -electron wave function
Ψ (x1, . . . , xN , t) (where xi represents the position and spin coordinates of one
electron) is substituted by the smaller ansatz:

ΨMCTDHF (x1, . . . , xN , t) =
K∑

k1

· · ·
K∑

kN

ck1,...,kN (t)ΠN
l=1ϕkl (xl, t) . (31)

The single-particle orbitals {ϕk} define a basis in the single-particle Hilbert space
and may change in time along with the coefficients ck1,...,kN (t). The number of
orbitals K determines the accuracy of the method. The evolution of this new wave
function – that means the evolution of the coefficients and of the orbitals – is
determined by the Dirac-Frenkel variational principle (Raab 2000), which ensures
the minimum possible distance to the true solution. The resulting equations are
rather involved, and it is not worth to repeat them here. The key point, however,
is that it is no longer a simple set of linear equations such as Schrödinger’s. As a
consequence, the control equations also become very involved, and, in fact, they
were not derived and used in the work of Mundt and Tannor. In contrast, the
idea was to use the simple control expressions valid for Schrödinger’s equation
and use the MCTDHF wave function as an approximation to the true wave
function.

This approach can only be valid if the MCTDHF is of very high quality: the
number of orbitals of the single-electron basis is very large, in which case the
wave function tends to the exact one. Unfortunately, this also means that the
computational cost must be very large, too: the cost grows with

(
K
N

)
. And, in any

case, the obtained optimal control inputs will be sub-optimal, due to the fact that
the true control equations for the model are not used. Due to these reasons, this
approach has not been widely followed yet.
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4.3 QOCT in Combination with Time-Dependent
Density-Functional Theory

A different approach to the time-dependent many-electron problem is time-
dependent density-functional theory (TDDFT) (Marques et al. 2012). Density-based
methods substitute the many-electron wave function by the one-electron density as
the working variable, an idea that in the case of TDDFT is founded on the one-
to-one correspondence between densities and external potentials proved in Runge
and Gross (1984). In fact, one can further prove (van Leeuwen 1999) that the
time-dependent electron density of a system can be reproduced by a unique external
potential in a system with a different electron-electron interaction. If the two systems
are identical (i.e., both have the same electron-electron interaction), the uniqueness
implies the one-to-one correspondence mentioned above. And, if the first system is
the real one but the second one is a noninteracting system, the theorem shows that
one can find an external potential for this fictitious system, which reproduces the
density of the real one (the Kohn-Sham (KS) potential).

This noninteracting system can be modeled with a set of one-particle equations,
the time-dependent Kohn-Sham (TDKS) equations:

i
∂

∂t
ϕi(r, t) = −1

2
∇2ϕi(r, t)+ vKS[n](r, t)ϕi(r, t) (i = 1, . . . , N/2) , (32)

n(r, t) = 2
N/2∑

i=1

|ϕi(r, t)|2 . (33)

The orbitals ϕi form a single Slater determinant (we assume them here to be doubly
occupied, with one pair of spin-up and one spin-down electrons occupying each
spatial orbital), which is enough for noninteracting electrons. n(r, t) is both the real
and the fictitious time-dependent electron density. The KS potential vKS is given by:

vKS[n](r, t) = vext(r, u, t)+ vH[n](r, t)+ vxc[n](r, t) , (34)

where vext is the true external potential, which must be fully determined by the
specification of the set of control inputs u ≡ u1, . . . , uM . vH[n](r, t) =

ş

dr′ n(r′,t)
|r−r′| is

the electrostatic potential, and vxc[n](r, t) is the exchange and correlation potential,
whose precise form is unknown and must be approximated. In purity, at each time
t , it depends on all density values at t ′ ≤ t . Normally, however, the adiabatic
approximation is assumed:

vxc[n](r, t) ≈ vGS
xc [nt ](r) , (35)

where vGS
xc [nt ](r) is one of the approximations to the exchange and correlation

potential functional used in ground-state DFT. The notation of Eq. (32) can be
shortened with matrix notation:
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iϕ̇(t) = Ĥ [n(t), u, t]ϕ(t) , (36)

where we use the underlined symbol ϕ to denote a vector containing all KS
orbitals and we use the matrix notation H [n(t), u, t] = HKS[n(t), u, t]I (I is the
N/2-dimensional unit matrix). HKS[n(t), u, t] is the KS Hamiltonian that comprises
all the terms in the right-hand side of Eq. (32).

Once the model is fully specified, the control equations can be derived. First, the
performance function must be given:

F(ϕ, u) = F td(ϕ, u)+ F term(ϕ(T ), u) . (37)

The first term depends on the full propagation, whereas the second is the terminal
target that only depends on the state at the end of the propagation. Considering
that u → ϕ[u] (i.e., the specification of the control inputs determines the system
trajectory) and defining, once again, G(u) = F(ϕ[u], u), one can prove that

∇uG(u) = ∇u F (ϕ, u)

∣∣∣
ϕ=ϕ[u] + 2Im

⎡

⎣
N∑

j=1

ż T

0
dt 〈χj [u](t)|∇uvext(u, t)|ϕj [u](t)〉

⎤

⎦

(38)

where the costate χ is determined by the equations:

iχ̇(t) =
[
ĤKS[n[u](t), u, t] + K̂[ϕ[u](t)]

]
χ(t)− i

δF td

δϕ∗
, (39)

χ(T ) = δF term

δϕ∗(T )
. (40)

The optimal solution is of course found at one of the zeroes of the gradient in
Eq. (38). To note:

• The nonlinearity of the TDKS equations causes the appearance of the operator
matrix K̂[ϕ[u](t)]. The (operator) matrix elements of this object are given by:

〈r|K̂ij [ϕ[u](t)]|ψ〉 = −2iϕi[u](r, t)×

Im

[
ż

d3r ′ψ∗(r′)fHxc[n[u](t)](r, r′)ϕj [u](r′, t)
]
, (41)

where fHxc is the kernel of the Kohn-Sham Hamiltonian, defined as:

fHxc[n](r, r′) = 1

|r− r′| +
δvxc[n](r)
δn(r′)

. (42)
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• Equation (39) is inhomogeneous, due to the presence of the functional derivative
of F td with respect to ϕ (the last term in the right-hand side). This term disappears
of course if the target functional is only of terminal type.

• The previous scheme permits to control the Kohn-Sham system. However, the
goal is to control the real system. In principle, one would be tempted to design a
target in terms of the real many-electron wave function – an object that however
is not provided by TDDFT, which only provides the density. Therefore, the ideal
situation would be that in which the performance function can be defined only
through the density n. In this manner, optimizing for the Kohn-Sham system is
strictly equivalent to optimizing for the real one.

This formalism has been implemented in the Octopus code (Marques et al. 2003;
Castro et al. 2006). An illustrative simple example was described in Castro et al.
(2012): the charge transfer of two electrons between two neighboring asymmetric
potential wells, which is defined with the simple model:

v0(x, y) = 1

64
x4 − 1

4
x2 + 1

32
x3 + 1

2
y2. (43)

This potential landscape is depicted in Fig. 5a. A ground-state DFT calculation
performed with the 2D LDA exchange and correlation parameterization provided
in Attaccalite et al. (2002) sets the two electrons on the left well [see Fig. 5b].

The control mechanism is an electric field, polarized along the x direction.
Its amplitude is parameterized by its Fourier coefficients uj , which constitute the
control inputs, i.e.:

vext(r, u, t) = v0(x, y)+
∑

j

ujgj (t)x, (44)

where gj (t) are the Fourier basis functions (normalized sines and cosines). The
coefficients are constrained to enforce ε(0) = ε(T ) = 0. The performance function
is defined as:

F [ϕ, u] =
ż

x>0
d2r n(r, T )− α

ż T

0
dt ε2[u](t), (45)

an expression that encodes the goal: at the final time of the propagation (T ), there
should be as much charge as possible at the right well (x > 0). The last term of
Eq. (45) is a penalty that prevents the solution field from having too much intensity.

The optimal field is shown in Fig. 5c. In order to find the solution, in this case,
a standard conjugate gradient algorithm was used. After around 60 CG iterations
(the convergence plot is also shown in Fig. 5), the calculation was converged. The
optimal pulse successfully transfers the charge from the left well to the right well.
The final charge density is plotted in Fig. 5b.
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Fig. 5 (a) External potential defining a model for a double quantum dot. (b) Density of the initial
ground state [blue, n0(r)] and final propagated density [red, n(r, T )]. (c) Optimized electric field
for the charge-transfer process described in the text. (d) Convergence history of the conjugate
gradient algorithm. All magnitudes are given in effective atomic units (Reprinted with permission
from Castro et al. (2006). Copyright 2012 by the American Physical Society)

Therefore, TDDFT can be combined with QOCT. This combination has been
explored a few times, even sometimes in combination with nonadiabatic molecular
dynamics to allow for the movement of the nuclei (Castro 2016; Walkenhorst
et al. 2016; Gómez Pueyo et al. 2016). The scheme is numerically challenging but
tractable. Note, however, that the use of TDDFT always implies an approximation
and, in consequence, an error, which may be especially worrisome when employing
high-intensity fields. This fact was analyzed, for example, in Raghunathan and Nest
(2011).

5 Conclusions

The application of OCT to problems in the quantum realm (QOCT) has already
some history and can be considered a mature theory, with numerous applications
in various fields. QOCT is a generic framework, and its basic formulation makes
no assumption on the nature and modeling of the quantum system to be optimized.
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It must be combined with a given level of theory. In practice, the solution of the
QOCT equations requires multiple propagations of the system under study. The cost
of applying QOCT is typically therefore multiple times the cost of simulating the
system once, and in consequence, it is determined by the cost of the chosen level of
theory.

For many-electron systems, the propagations with truly ab initio and precise
levels of theory become prohibitively expensive as the number of electrons grows,
and usually few-level simplifications and models are used when attempting the
combination with QOCT. These simplifications may not be accurate enough: the
strong pulses that have nowadays become available imply the occupation of many
excited states, and perturbative expansions also fail with increasing intensities. The
advances in experimental techniques that permit the access to the attosecond time
scale make it necessary to work on the possible combination of QOCT with first-
principles methods. TDDFT is one possible choice.

The possibilities that these combinations of QOCT with non-equilibrium
time-dependent electron dynamics methods offer are numerous: shaping of the
high-harmonic-generation spectrum (i.e., quenching or increasing given harmonic
orders), selective excitation of electronic excited states that are otherwise difficult
to reach with conventional pulses, control of the electronic current in molecular
junctions, etc.
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Abstract

Atomistic simulations are recognized worldwide as an important tool for deep-
ening our understanding of the physics, chemistry, and mechanics of materials.
Formidable efforts are being made in the theoretical, modeling, and computa-
tional approaches to extend their validity to the complex systems and processes
relevant to current technologies as well as to enhance their predictive power.
This section reports on recent developments which address the problems of
system-size and time scales that are especially critical for ab initio atomistic
simulations. In particular, three chapters are devoted to the remarkable advances
recently achieved in enhanced sampling methods that are paving the way to the
study of the dynamics of complicated transformations and chemical reactions in
condensed-matter systems.
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1 Introduction

During the past two decades, computer simulations at the atomic level have become
the dominant tool for the investigation of physical and chemical processes in real
materials. Still, many are the challenges one faces in trying to render the simulation
“realistic.” For example, building a “reliable” model of the system to be simulated
is a task of primary importance. On the one hand, the model size should be adequate
to represent its composition and the range of the relevant interactions. On the other
hand, an approximation must be selected for the system Hamiltonian. Currently, the
description of the interatomic interactions mainly relies either on semi-empirical
potentials or on “standard” (GGA) schemes derived from density functional theory
(DFT). In several cases, these approximations are not sufficiently accurate and
more sophisticated methods are required, which are computationally expensive.
These include DFT-based molecular dynamics using hybrid exchange-correlation
functionals. For advances regarding calculations of the electronic structure of
extended systems we refer the reader to the MTM Section “Electronic Structure
of Materials by Ab Initio Methods” (Editor: Rubio).

Moreover, there exist fundamental challenges pertaining to the simulation meth-
ods themselves, be they Monte Carlo or molecular dynamics. Their ability to
represent the thermodynamics as well as the kinetics of activated processes remains
the main concern, and in particular their aptness to identify and characterize the so-
called rare events. A general discussion of related issues and open problems can be
found in a very recent review (Camilloni and Pietrucci 2018).

In this section important method developments of the last decade, including very
recent proposals, are discussed which are expected to play an important role for
many applications in the near future. A brief overview is reported here with the aim
of guiding the reader through a diverse and highly relevant set of chapters.

2 A Brief Chapter Overview

The “system-size problem” is especially crucial for nonempirical simulations
that involve the calculation of the electronic structure. �Chapter 24, “Extending
the Scale with Real-Space Methods for the Electronic Structure Problem” by
Chelikowsky shows that a remarkable extension of the size limits can be obtained
using a real-space representation of the electronic states, at least within schemes
based on density functional theory and reduced to the valence electron subspace via
the pseudopotential scheme.

Going beyond “standard” (LDA or GGA) approximations of density functional
theory for the description of the electronic structure is important for the atomistic
simulations of diverse types of materials. However, currently, this effort is highly
computationally demanding. An ingenious and efficient algorithm allowing ab initio
molecular dynamics based on correlated wavefunction-based methods is described
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in �Chap. 25, “MP2- and RPA-Based Ab Initio Molecular Dynamics and Monte
Carlo Sampling” by Hutter et al. A very interesting application to liquid water
is then presented including comparison with DFT-based calculations using hybrid
exchange-correlation functionals.

In the search for ways to alleviate the “time-scale problem,” methods aimed at
directly accelerating the simulation are of special interest. For a broad discussion of
the latter – including related technical issues – we refer the reader also to the MTM
section on “Computational Methods for Long-Timescale Atomistic Simulations”
(Editors: Perez and Uberuaga), and to the Chap. 11, “Long Time-Scale Atomistic
Modeling and Simulation of Deformation and Flow in Solids” by Fan and Cao in
the ACE section “Plenary Topics” (Editors: Andreoni and Yip).

In the present section, Mazzola and Sorella describe in detail a new, very
promising, efficient algorithm (�Chap. 26, “Accelerated Molecular Dynamics for
Ab Initio Electronic Simulations”) which is based on Langevin dynamics. A few
examples are presented to illustrate its performance, both within classical and ab
initio molecular dynamics. We emphasize that in the latter forces can be derived
not only from DFT calculations but also from first-principles approaches like the
quantum Monte Carlo method.

Enhanced sampling approaches can be considered also as ways to solve the
“time-scale problem,” when one is interested to investigate systems with multiple
metastable states separated by high-energy barriers and capture the mechanisms
leading to the related transitions.

In 2002, the seminal paper by Laio and Parrinello (2002) introduced metady-
namics as an efficient tool for configurational sampling and the reconstruction of
the free-energy surface. In particular, it was readily implemented in DFT-based
molecular dynamics. Several ways to extend and improve on the original scheme
have been proposed since then. �Chapter 27, “Metadynamics: A Unified Frame-
work for Accelerating Rare Events and Sampling Thermodynamics and Kinetics”
by Bussi, Laio, and Tiwari, provides an overview of this progress. In partic-
ular, we would like to draw attention to the discussion of a simple algorithm
based on metadynamics that was recently introduced by Tiwari and Parrinello
(2013) to determine kinetic rates and later successfully applied in several cases.
This approach is a welcome addition to the toolbox of methods addressing the
kinetics - something that remains one of the major challenges for molecular
simulation.

Two additional chapters report on more recent developments and results.
Pietrucci’s �Chap. 28, “Novel Enhanced Sampling Strategies for Transitions

Between Ordered and Disordered Structures,” introduces an effective representation
of the physical system, namely the adjacency matrix of interatomic connections. It
goes on to demonstrate the ability of this representation to characterize the different
states (phases) of the system and to lead to transitions from one to the other. Selected
examples illustrate the results of applications of this new conceptual framework
coupled to ab initio molecular dynamics and metadynamics or umbrella-sampling.
We emphasize that this scheme not only overcomes the bottleneck of having to

https://doi.org/10.1007/978-3-319-44680-6_150
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choose ad hoc collective variables, but is applicable to a wide variety of physical and
chemical processes. Moreover, it describes ordered and disordered systems on the
same footing and thus naturally allows for the simulation of order–disorder phase
transitions.

�Chapter 29, “Variationally Enhanced Sampling” by Valsson and Parrinello,
describes a novel theoretical framework aimed at establishing rigorous foundations
for enhanced sampling. The problem of exploring and estimating free energy
landscapes is recast into that of minimizing a convex functional. In particular, this
new scheme allows one to address systems characterized by high-dimensional free
energy surfaces or complex processes that cannot be described with a small number
of (collective) variables.

Parallel to the many developments in ab initio simulations, progress continues to
be made in devising interatomic potentials for a wide variety of materials. This
is important because a fully classical scheme permits simulations using larger-
size models and for longer duration. On the other hand, other severe fundamental
problems continue to limit their application in spite of the increasing development of
specific software. Force fields tailored to simulate biological systems have undoubt-
edly been very successful. For other materials – of interest to this handbook –
however, their accuracy and predictive power is often not satisfactory. Typically,
in the case of analytic potentials, the functional form is fixed a priori and the
parameters are adjusted to either empirical data or some DFT calculations or to a
mixed set of results, i.e. from both experiment and computations. A general criticism
to the use of classical potentials – including the widely employed class of “reactive
potentials” (see, e.g., Liang et al. 2013) – regards their transferability, namely their
validity in modeling a system in physical and chemical conditions different from
those considered in the fitting procedure.

Two examples based on classical schemes are presented in this section.
One is specifically targeted to water. Indeed, building a classical potential

that could reproduce a variety of its (anomalous) properties has been the focus
of research for decades (for a recent review see, e.g., Demerdash et al. 2018).
Not surprisingly, the physical behavior of water continues to be under constant
investigation, in diverse conditions and environments, not only experimentally but
also via molecular simulations. �Chapter 30, “Water: Many-Body Potential from
First Principles (From the Gas to the Liquid Phase)” by Paesani illustrates the
performance of a recently developed potential (MB-pol) by means of a critical
comparison with ab initio calculations and experiment.

Significant progress in the creation of classical approaches was marked by the
introduction of high-dimensional neural network potentials (NNP) for the prediction
of the potential energy surface (Behler and Parrinello 2007). �Chapter 31, “Neural
Network Potentials in Materials Modeling” by Hellström and Behler provides an
exhaustive and critical overview of the state of the art and clarifies the steps needed
in the construction of NNP, including their validation. Very recently, the combi-
nation of artificial neural networks and advanced machine learning strategies, also
employing accurate reference data, has led to a classical scheme of unprecedented
performance for the simulation of liquid and solid water (Cheng et al. 2019).
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3 Conclusions

Over the last 20 years, atomistic simulations have become a “must” for progress
to be made in many domains of materials science. Their ability is called for not
only for understanding the behavior of given materials under certain conditions,
but also for predicting it as well as for designing novel materials and devising
or modifying processes relevant to technology. In order to comply with these
“tasks,” extension of computational power is essential but not sufficient. Currently,
advances are primarily required in the simulation methods, in particular along the
lines discussed in the various articles of this section. On the one hand, we repeat
that the endeavor to improve on the accuracy of the description of the interatomic
interactions is crucial, and also to increase the size-scale of the molecular model
and its complexity (composition, structure, etc.) and the timescale of the events
to be simulated. On the other hand, we recall some of the problems that are still
beyond the reach of atomistic simulations: the characterization of the kinetics of
nontrivial chemical reactions, the evolution of fundamental processes like that of
the nucleation of, say, a crystal phase from a solution, or the dynamics of interfaces
between heterogeneous materials as present in typical devices and their structural
transformations under device operating conditions. At this stage, not only extensions
of current methodologies but also new formulations appear to be necessary.

References

Behler J, Parrinello M (2007) Generalized neural-network representation of high-dimensional
potential-energy surfaces. Phys Rev Lett 98:146401

Camilloni C, Pietrucci F (2018) Advanced simulation techniques for the thermodynamic and
kinetic characterization of biological systems. Adv Phys X 3:1477531

Cheng B, Engel EA, Behler J, Dellago C, Ceriotti M (2019) Ab initio thermodynamics of liquid
and solid water. Proc Natl Acad Sci 116:1110

Demerdash O, Wang L-P, Head-Gordon T (2018) Advanced models for water simulations. WIREs
Comput Mol Sci 8:e1355

Laio A, Parrinello M (2002) Escaping free-energy minima. Proc Natl Acad Sci 99:12562
Liang T, Shin YK, Cheng Y-T, Yilmaz DE, Vishnu KG, Verners O, Zou C, Phillpot SR, Sinnott

SB, van Duin ACT (2013) Reactive potentials for advanced atomistic simulations. Annu Rev
Mater Res 43:109

Tiwary P, Parrinello M (2013) From metadynamics to dynamics. Phys Rev Lett 111:230602



24Extending the Scale with Real-Space
Methods for the Electronic Structure
Problem

James R. Chelikowsky

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500
2 The Kohn-Sham Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
3 Real-Space Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505
4 Eigensolvers Using Subspace Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
5 Chebyshev Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509
6 Subspace Iteration Using Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513
7 Applications and Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514
8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520

Abstract

In principle, the electronic structure of a material can be determined by a solution
of the many-body Schrödinger equation. This was first noted by Dirac shortly
after the invention of quantum mechanics in 1929. However, Dirac also noted
that the solution of the many-body quantum mechanical equations was much too
difficult to be solved. He challenged his colleagues to develop “practical methods
of applying quantum mechanics,” which can lead to an explanation of the
main features of complex atomic systems.” In this chapter, we explore concepts
and algorithms targeting “Dirac’s challenge.” Two key physical concepts will
be employed: pseudopotential theory and density functional theory. For many
weakly correlated systems, this formalism works well for ground-state properties
such as phase stability, structural properties, and vibrational modes. However,

J. R. Chelikowsky (�)
Center for Computational Materials, Institute for Computational Engineering and Sciences,
Departments of Physics and Chemical Engineering, The University of Texas at Austin, Austin,
TX, USA
e-mail: jrc@utexas.edu

© Springer Nature Switzerland AG 2020
W. Andreoni, S. Yip (eds.), Handbook of Materials Modeling,
https://doi.org/10.1007/978-3-319-44677-6_57

499

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-44677-6_57&domain=pdf
mailto:jrc@utexas.edu
https://doi.org/10.1007/978-3-319-44677-6_57


500 J. R. Chelikowsky

applying this approach to large systems, e.g., systems with thousands of atoms,
remains a challenge even with contemporary computational platforms. The goal
of this chapter is to show how new algorithms can be used to extend computations
to these systems. The approach centers on solving the nonlinear Kohn-Sham
equation by a nonlinear form of the subspace iteration technique. This approach
results in a significant speedup, often by more than an order of magnitude with
no loss of accuracy. Numerical results are presented for nanoscale systems with
tens of thousands of atoms and new methods are proposed to extend our work to
even larger systems.

1 Introduction

Many properties of a material can be determined from a knowledge of its electronic
structure, i.e., the energy and spatial distribution of electronic states. For example,
optical and structural properties can be predicted by knowing the energetic and
spatial distribution of electrons in the material.

This was recognized with the inception of quantum mechanics shortly after the
work of Schrödinger, Heisenberg, and Dirac. As Dirac noted: “The underlying
physical laws [quantum theory] necessary for the mathematical theory of a large
part of physics and the whole of chemistry are thus completely known, and the
difficulty is only that the exact application of these laws leads to equations much too
complicated to be soluble. It therefore becomes desirable that approximate practical
methods of applying quantum mechanics should be developed” (Dirac 1929).

The most popular electronic structure methods are based on pseudopoten-
tials (Phillips 1958; Phillips and Kleinman 1959; Chelikowsky and Cohen 1992)
and density functional theory (Hohenberg and Kohn 1964; Kohn and Sham 1965).
Pseudopotential theory simplifies the electronic structure problem by replacing the
“all electron” atomic potential with an effective “pseudopotential,” which only
binds the valence states. Density functional reduces the original multi-electron
Schrödinger equation into an effective one-electron Kohn-Sham equation, where
the nonclassical electronic interactions are replaced by a functional of the charge
density, i.e., the spatial distribution of electrons. Combining pseudopotentials with
DFT can significantly reduce the number of computed one-electron wave functions.
More importantly the energy and length scales are set solely by the valence states.
Species such as a silicon and tin can be treated on equal footing in solving the
electronic structure problem even though the number of electrons in tin is more than
three times that of silicon.

Even with these practical simplifications, solving the Kohn-Sham equation
remains computationally challenging when the system of interest contains a large
number of atoms, e.g., more than a few thousand atoms. Researchers have advocated
different approaches to overcome the computational impediments (Saad et al. 2010).
These approaches may be classified as basis-free or basis-dependent approaches,
according to whether they use an explicit basis set for electronic orbitals or not.
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Among the most popular basis-dependent approaches is the plane wave basis
set, which is frequently used in applications of pseudopotential density functional
theory to periodic systems where plane waves can easily accommodate the boundary
conditions (Kresse and Furthmülle 1996; Giannozzi et al. 2009). Another popular
approach uses localized basis sets such as Gaussian orbitals, which are commonly
utilized in quantum chemistry calculations (Koch and Holthausen 2000; Martin
2004; Saad et al. 2010).

We focus on a different approach based on real-space methods, which are “basis
free.” These methods are popular owing in great part to their great simplicity and
ease of implementation (Chelikowsky et al. 1994a, b; Seitsonen et al. 1995; Beck
2000; Fattebert and Bernholc 2000; Ono and Hirose 2005; Kronik et al. 2006;
Enkovaara et al. 2010; Andrade et al. 2013). They can be readily implemented in
parallel computing environments as they minimize global communications (Saad
et al. 2010). Another advantage of real-space methods is that they do not impose
artificial periodicity to handle nonperiodic systems. While plane wave basis tech-
niques can be applied to clusters (or molecules), such applications often proceed
by placing the cluster of interest in a large supercell. Provided the supercell is
sufficiently large so that the cluster is removed from neighboring replicants, the
electronic structure solution will correspond to that of the isolated cluster. However,
because the potential from neighboring cells can be significant, in some cases this
is not a practical solution, i.e., supercell solutions may converge slowly with the
size of the cell (Alemany et al. 2004). A related, and perhaps more significant, issue
is that the use of supercells is not easily applied to systems that are electronically
charged. Charged systems can be handled within plane wave methods by including
a compensating uniform charge or a more complex procedure (Alemany et al. 2004;
Teter et al. 1992). Real-space methods need not address such complications. The
application of the Hamiltonian to electron wave functions is performed entirely in
real space. While the Hamiltonian matrix in real-space methods is typically larger
than similar applications with plane waves, the matrices are extremely sparse and
never stored or computed explicitly. Only matrix-vector products that represent the
application of the Hamiltonians on wave functions are calculated.

The prime obstacle to solving the Kohn-Sham equations is obtaining a solution
to the nonlinear eigenvalue problem. While one can judiciously choose a well-
crafted basis or pseudopotential, the end game is a solution of a difficult eigenvalue
problem. For example, suppose one considered a local basis of ten orbitals per
atom for a system containing 10,000 atoms. The resulting Hamiltonian matrix is
large (100,000 × 100,000) and dense. While we might be interested in obtaining a
small fraction of the total number of eigenvalue solutions, this is a difficult problem.
Moreover, the scaling of the problem is difficult with a solution often exceeding
O(Nn) where N is the number of eigenvalues and n is formally equal to 3, but
owing to a small prefactor in realistic computations the operational value is closer
to 2 (Saad et al. 2010). Often workers will focus solely on the scaling, but the pre-
factor is important too. The prefactor for orthogonalization is often small, so the
resulting operation is closer to the square of the eigenvalue number. In general, the
key measure is not scalability per se but time to solution [TTS].
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In this chapter, we center on efficient algorithms for eigensolvers applicable
to real-space Hamiltonians. Specifically, we will present examples of nonlinear
Chebyshev-filtered subspace iteration algorithms implemented in our solution
package called PARSEC (Pseudopotential Algorithm for Real-Space Electronic
Calculations) (Chelikowsky et al. 1994a, b).

Although described in the framework of real-space pseudopotentials, subspace
filtering can be employed to other approaches. This method takes advantage of the
fact that intermediate self-consistent iterations do not require accurate eigenvalues
and eigenvectors of the Kohn-Sham equation. Still, the self-consistent solution is
the same accuracy as other eigensolvers. Unlike some so-called “O(N)” meth-
ods (Otsuka et al. 2008; Goedecker 1999), subspace filtering is equally applicable
to metals and insulators.

Solutions by filtering do not focus on the intermediate linearized Kohn-Sham
eigenvalue problems. Typically, explicit eigenvectors are computed only at the first
self-consistent field (SCF) iteration, in order to provide a viable initial subspace.
After the first self-consistent step, the explicit computation of eigenvectors at
each succeeding iteration is replaced by a subspace filtering step. The method
reaches self-consistency within a similar number of iterations, when compared
to eigenvalue-based approaches. However, since eigenvalues are not explicitly
computed after the first step, a significant gain in execution time results when
compared with methods based on explicit diagonalization. When compared with
calculations based on efficient eigenvalue packages such as ARPACK (Lehoucq
et al. 1998) and TRLan (Wu et al. 1999; Wu and Simon 2000), an order of magnitude
speedup is often observed.

Filtering methods enable us to perform a class of challenging electronic structure
calculations, including clusters with over tens of thousands atoms, which were
not feasible before without invoking additional approximations in the Kohn-Sham
problem (Zhou et al. 2006a, b; Zhou and Saad 2007; Schofield et al. 2012b).

2 The Kohn-Sham Equation

Density functional theory provides a practical method for solving the electronic
structure problem, the Kohn-Sham equation (Kohn and Sham 1965):

[
− h̄2

2m
∇2 + Vtotal(ρ(r), r)

]
Ψi(r) = EiΨi(r) (1)

where Ψi(r) is a wave function or eigenfunction, Ei is a Kohn-Sham eigenvalue, h̄
is the Planck constant, and m is the electron mass. (We use atomic units: h̄ = m =
e = 1 in the following discussion.)
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The total potential, Vtotal , is the sum of three contributions:

Vtotal(ρ(r), r) = Vion(r)+ VH (ρ(r), r)+ Vxc(ρ(r), r), (2)

where Vion is the external ionic pseudopotential, VH is the Hartree or Coulomb
potential, and Vxc is the effective exchange-correlation potential. Within density
functional theory, exchange-correlation potentials depend solely on the charge
density ρ(r), which is defined as

ρ(r) =
nocc∑

i=1

|Ψi(r)|2. (3)

Here nocc is the number of occupied Kohn-Sham levels, which is equal to half the
number of valence electrons in the system if the system is nonmagnetic. Equation (3)
can be generalized to situations where the highest occupied states have fractional
occupancy or when there is an imbalance in the number of electrons for each
spin component. The Hartree potential is solved from Poisson’s equation using the
electronic charge density.

The total potential, Vtotal , depends on the charge density ρ(r), which in turn
depends on the wave functions Ψi . The Kohn-Sham equation can be viewed as a
nonlinear eigenvalue problem.

Such equations are typically solved using an iterative procedure to generate a
“self-consistent field.” The iteration process begins with an initial guess of the
charge density, which is usually constructed from a superposition of free atomic
charge densities. Using this approximate density, one obtains the initial Vtotal and
solves Eq. (1) for Ψi(r)’s to update ρ(r) and Vtotal . Then the Kohn-Sham (Eq. (1))
is solved again for the new Ψi(r)’s, and the process is iterated. We terminate the
process when the charge density is self-consistent, i.e., the solution of the Kohn-
Sham equation yields a charge density consistent with the Hamiltonian used to
generate the charge density.

The standard SCF process is described in Algorithm 1 and illustrated in Fig. 1

Algorithm 1 Self-consistent-field iteration
1. Provide initial guess for ρ(r) and get Vtotal(ρ(r), r).
2. Solve for Ψi(r), i = 1, 2, . . . , from

[
−1

2
∇2 + Vtotal(ρ(r), r)

]
Ψi(r) = EiΨi(r).

3. Compute the new charge density ρ(r) =∑nocc

i=1 |Ψi(r)|2.
4. Obtain new Hartree potential VH by solving: ∇2VH (r) = −4πρ(r).
5. Update Vxc; get new Ṽtotal(ρ, r) = Vion(r)+VH (ρ, r)+Vxc(ρ, r) with a potential-mixing

step.
6. If ‖Ṽtotal − Vtotal‖ < tol, stop; Else, Vtotal ← Ṽtotal , go to step 2.
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Assume initial density: r

Solve: Ñ2VH = –4p er

Solve:
–h2Ñ2

2m
Yn = EnYn

Form: r=e Yn
n, occup
S 2

Fig. 1 Flow diagram for obtaining a self-consistent solution of the Kohn-Sham equation

The number of eigenvectors needed in Step 2 of Algorithm 1 is just the number
of occupied states. In practice, a few more eigenvectors are usually computed.
For complex systems, i.e., when the number of valence electrons is large, each
of the linearized eigenvalue problems can be computationally demanding. This
is compounded by the fact that Hamiltonian matrices can be of very large size.
For example, a cubic system with 100 grid points on a size results in a matrix of
106 × 106, although the matrix remains very sparse.

For this reason, we wish to reduce the computational load in Step 2 of
Algorithm 1. There are several avenues open to us. One could use some physical
arguments to reduce the matrix size or zero some existing elements. One could
attempt to avoid diagonalization altogether, as is done in work represented by linear-
scaling or order-N methods (see, e.g., Otsuka et al. 2008; Goedecker 1999). This
approach, however, has other limitations. In particular, the approximations involved
rely heavily on some decay properties of the density matrix in certain function bases.
In particular, they can be difficult to implement in real-space discretizations or for
systems where the decay properties are not optimal, e.g., in metals. Another option
is to use better (faster) eigensolvers.

The approach discussed here avoids standard diagonalizations but otherwise
makes no new approximations to the Hamiltonian. We take advantage of the fact that
accurate eigenvectors are unnecessary at each SCF iteration, since Hamiltonians are
only approximate in the intermediate SCF steps, and exploit the nonlinear nature of
the problem. The main point of the new algorithm is that once we have a good
starting point for the Hamiltonian, it suffices to filter each basis vector at each
iteration. In the intermediate SCF steps, these vectors are no longer eigenvectors,
but together they represent a good basis of the desired invariant subspace.
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3 Real-Space Approach

A real-space solution of the Kohn-Sham equation is commonly approached using a
uniform, Cartesian grid as shown in Fig. 2.

We solve the Kohn-Sham equation, Eq. 1, for the grid-sampled values of wave
functions, potentials, and the electron density. The Kohn-Sham wave functions are
vectors whose length is the number of grid points. Each of the operators in the
Kohn-Sham equation (kinetic, pseudopotential, Hartree, and exchange-correlation)
is represented by a square matrix.

We use high-order finite differencing to express the kinetic energy Laplacian
term. The discretization of the Laplacian utilizes several/neighbors for calculating
the derivative around each point of interest, instead of just the immediate
neighbors, i.e.:

∇2ϕ(x, y, z)

= 1

h2

M∑

l,k,m=−M

[Ckϕ(x+kh, y, z)+ Clϕ(x, y+lh, z)+ Cmϕ(x, y, z+mh)]

(4)

where M is half the number of neighbors used along each axis or half the expansion
order and h is the grid spacing. The coefficients (Ck , Cl , Cm) depend only on the
choice of the expansion order, M . They can be found from a high-order Taylor
expansion, although other algorithms for their determination are also available
(Fornberg and Sloan 1994). The kinetic energy matrix has only 3M elements in
each row (in addition to the diagonal), resulting in a very sparse matrix.

Fig. 2 The finite-difference
real-space approach. For open
boundary conditions (shown
in the figure), wave functions
are sampled on a uniform grid
within a spherical domain and
vanish outside its boundary.
Black dots denote grid points,
and the blue balls denote
atoms (a dimer example is
shown)
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There are many algorithms for constructing reliable pseudopotentials (Phillips
1958; Phillips and Kleinman 1959; Chelikowsky and Cohen 1992). We employ
norm-conserving pseudopotentials. Typically Troullier-Martins pseudopotentials
(Troullier and Martins 1991) are used. These potentials have been optimized for
convergence with a plane wave basis and can be easily implemented in real-space
methods.

The price paid for the simplification afforded by pseudopotentials is that the ionic
potential operator is no longer local. Different atomic orbitals experience different
pseudopotentials, so that application of the pseudopotential requires nonlocal
projectors (Chelikowsky and Cohen 1992):

Vps(r) =
N∑

a=1

∑

l

V l
a,ps(|r− Ra|)

l∑

m=−l

|l, m >< l,m| (5)

where V l
a,ps is the pseudopotential of the lth angular momentum orbital of the ath

atom, Ra is the coordinate of the ath atom, and |l, m〉 is the lmth spherical harmonic.
An easy way of making the matrix corresponding to the pseudopotential operator
sparse is to use the projection scheme suggested by Kleinman and Bylander (1982):

Vps(r) =
N∑

a=1

[
V loc
a,ps(r)+

|ΔV l
a,ps(r)ϕa

lm(r)〉〈ΔV l
a,ps(r)ϕa

lm(r)|
〈ϕa

lm(r)|ΔV l
a,ps(r)|ϕa

lm(r)〉

]
, (6)

where V loc
a,ps(r) is a pseudopotential corresponding to one specific angular momen-

tum component (of atom a), arbitrarily chosen as the local one, and ΔV l
a,ps(r) ≡

V l
a,ps(r) − V loc

a,ps(r). Finally, ϕa
lm(r) is the atomic pseudo-wave function with lm

quantum angular momentum numbers.
This form of the pseudopotential has several advantages: ΔV l

a,ps differs from
zero only inside a relatively small region around each atom. (The size of the
region corresponds to the pseudopotential cutoff radius). Only the normalization
scalars calm = 〈ϕa

lm(r)|ΔV l
a,ps(r)|ϕa

lm(r)〉 and the highly sparse vectors ua
lm =

|ΔV l
a,ps(r)ϕ

a
lm(r)〉 are stored explicitly instead of holding an entire matrix. The calm

and ua
lm terms are computed only once in the entire self-consistent solution, because

they only depend on the atom coordinates, Ra , and angular momentum numbers,
{l, m}, which do not change during the iterative computation.

The Hartree potential is found by solving the Poisson equation:

∇2VH (r) = −4πρ(r) (7)

using the conjugate gradient method. The Hartree potential is local with the
associated matrix diagonal. The exchange-correlation potential is defined as the
functional derivative of the exchange-correlation energy with respect to the charge
density. For a local exchange-correlation, the associated matrix is diagonal.
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Fig. 3 Schematic of the
Hamiltonian matrix for
Si28H36 showing the
non-zero matrix elements for
the kinetic and nonlocal
pseudopotential contributions

0
0

50000

100000

150000

50000 100000 150000

Kinetic
Nonlocal

The resulting Hamiltonian matrix, being a sum of all matrix operators, each of
which is diagonal or highly sparse, is sparse itself. The only quantities computed and
stored explicitly are the diagonal elements (diagonal component of kinetic energy,
local pseudopotential, Hartree potential, and exchange-correlation potential), the
high-order finite-difference expansion coefficients, and the relatively small nonlocal
pseudopotential vectors ulm. This results in huge memory savings, which are crucial
for the computation of large systems containing thousands of atoms or more.

The structure of the Hamiltonian matrix is illustrated in Fig. 3. Non-zero matrix
elements for the kinetic energy operator and for the nonlocal pseudopotential
elements are shown for a small nanocrystal (Si28H36). The matrix size is 195,112×
195,112 and with 0.0118% of the matrix not sparse. The matrix need not be
explicitly stored, nor are there off-diagonal element updates.

4 Eigensolvers Using Subspace Filtering

Subspace filtering is an effective operation to extract a subset of eigenvalues. We
illustrate some of the essential features of the filtering process. Consider a matrix
problem: eigenvalues. Consider a matrix problem:

HΨ = ΛΨ (8)

where H is the real-space matrix as defined above. Ψ is a wave function matrix for
the eigenfunction solutions for an N ×N matrix:

Ψ =

⎛

⎜⎜⎜⎝

ψ1,1 ψ1,2 · · · ψ1,N

ψ2,1 ψ2,2 · · · ψ2,N
...

... · · · ...

ψN,1 ψN,2 · · · ψN,N

⎞

⎟⎟⎟⎠ (9)
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The eigenvalue matrix is given by

Λ =

⎛

⎜⎜⎜⎝

λ1 0 · · · 0
0 λ2 · · · 0
...

... · · · ...

0 0 · · · λN

⎞

⎟⎟⎟⎠ (10)

where the Kohn-Sham eigenvalues are given by λi .
Using this notation, we consider the product Φ = ΨΨ T . The diagonal element

of Φ will give the sum of the squares of the wave functions for each grid point.
Now consider a different matrix ΨU where U is an orthonormal matrix such that
UUT = I , where I is the identity matrix. We can write Φ = Ψ (UUT )Ψ T =
(ΨU)(UT Ψ T ), and using the matrix identity, BT AT = (AB)T , we get Φ =
(ΨU)(ΨU)T .

This matrix manipulation has a clear implication. We can use either Ψ or ΨU to
find Φ. All we care about is the diagonal of Φ. So, we do not need to know each
eigenvector to get the charge density as rotation of the space will do.

We can be more explicit. Suppose we consider to define a few more matrices
such as P(H) where P is a polynomial. As a simple example, suppose P = H 2.
Applying H 2 to Ψ , we find H 2Ψ = H(HΨ ) = HΛΨ = Λ2Ψ . In general we can
write P(H)Ψ = P(Λ)Ψ .

Consider the following operations. Suppose we take an approximate eigenfunc-
tion, ψ̃j , for the j eigenvector and apply a polynomial P(H) to ψ̃j :

P(H)ψ̃j = P(H)

(
∑

i

αijψj

)
=
∑

i

αijP (λj )ψj (11)

where we have assumed that our approximate eigensolution can be expressed as

ψ̃j =
∑

i

αijψj (12)

This follows from the completeness of the solution set. Suppose we take our filtered
eigenfunction, ψf

j , as

ψ
f
j = P(H)ψ̃j =

∑

i

αijP (λj )ψj (13)

and chose an appropriate polynomial, e.g., suppose we chose P(λ) ≈ 0 for all
values of λ above the fermi level. In this case, only components of the occupied
wave function or eigenfunctions would contribute. This is what we want.
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Fig. 4 Schematic of a
filtering polynomial showing
regions of “wanted” and
“unwanted” eigenvalues

A schematic of a filtering polynomial is shown in Fig. 4. Any polynomial with
this shape will do. We want a large amplitude in the desired subspace and a small
one otherwise.

5 Chebyshev Filters

Often Chebyshev polynomials are useful for our purposes as they have a number
of desirable properties. Chebyshev polynomials of the first kind (Parlett 1998; Saad
1992) are defined, for k = 0, 1, · · · , :

Ck(t) =
{

cos
(
k cos−1(t)

)
, −1 ≤ t ≤ 1,

cosh
(
k cosh−1(t)

)
, |t | > 1.

We can express the polynomials in s convenient recursion relation. We start with
the first two polynomials:C0(t) = 1, C1(t) = t . The following recurrence is easy to
derive from properties of the cosine function and can be written:

Ck+1(t) = 2t Ck(t)− Ck−1(t), t ∈ R (14)

Within the interval |t | ≤ 1, the polynomials have nodes and possess a magnitude
less than unity. In principle, we want the filtering process to magnify the desired
components of the wave function. If the process is repeated indefinitely, the
filtered wave function should have zero components in the “unwanted” part of the
eigenvalue spectrum.

A filtering operation applied to a vector has the effect of enhancing desired
eigen-components of the vector relative to undesirable components. If the process is
repeated indefinitely, the resulting vector will have zero components in the unwanted
part of the spectrum. Suppose our wanted eigenvalues correspond to the occupied
states. Our goal is to filter out all components associated with the empty states or,
equivalently, to enhance the components associated with occupied states, relative to
other components.

We exploit well-known properties of Chebyshev polynomials to accomplish
filtering. It is known that among all polynomials of degree k, which have value one
at a certain point |γ | > 1, the polynomial Ck(t)/Ck(γ ) is the one whose maximum
absolute value in the interval [−1, 1] is minimal. Thus, Ck(t)/Ck(γ ) can be viewed
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Fig. 5 Degree six Chebyshev
polynomial on the interval
[0, 2]. The shaded area
corresponds to
eigen-components that will
be amplified relative to the
other eigen-components. The
value of l is determined by an
affine mapping. See text

as an optimal polynomial if one wishes to dampen values of the polynomial in
[−1, 1] among all polynomials p of degree k, scaled so that p(γ ) = 1. A 6th degree
Chebyshev polynomial so scaled is shown in Fig. 5.

Assume that the full spectrum of H (denoted by Λ(H)) is contained in [γ, b].
Then in order to approximate the eigensubspace associated with the lower end of
the spectrum, say [γ, a] with γ < a < b, it is necessary to map [a, b] into [−1, 1]
before applying the Chebyshev polynomial. This can be easily realized by an affine
mapping.

Assume that the full spectrum of H (denoted by Λ(H)) is contained in [γ, b].
In order to approximate the eigensubspace associated with the lower end of the
spectrum, say [γ, a] with γ < a < b, it is necessary to map [a, b] into [−1, 1]
before applying the Chebyshev polynomial. This can be easily realized by an affine
mapping defined as

l(t) := t − c

e
; c = a + b

2
, e = b − a

2

where c denotes the center and e the half-width of the interval [a, b].
The Chebyshev iteration utilizing the recurrence in Eq. 14 to dampen values on

the interval [a, b] is given in Algorithm 2 (see Zhou et al. 2006b). We write the
filtered vector as Y , with the unfiltered vector as X, and perform the operation:

Y = pm(H)X (15)

where pm(t) = Cm [l(t)] is the mapped Chebyshev polynomial.
The recursion operation is given by

Xj+1 = 2

e
(H − cI)Xj −Xj−1, j = 1, 2, . . . , m− 1.

with X0 given and X1 = (H − cI)X0.
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Algorithm 2 [Y ] = Chebyshev_filter(X,m, a, b, γ )

Filter column vectors of X by an m degree Chebyshev polynomial in H that dampens on the

interval [a, b]. Output the filtered vectors in Y .

1. e = (b − a)/2; c = (b + a)/2;
2. σ = e/(γ − c); σ1 = σ ; γ = 2/σ1.

3. Y = σ1
e
(HX − cX);

4. For i = 2 : m
5. σ2 = 1/(γ − σ);
6. Ynew = 2σ2

e
(HY − cY )− σσ2X;

7. X = Y ;
8. Y = Ynew;
9. σ = σ2;

10. End For

The above iteration is without any scaling. In the case of the interval [−1, 1], we
scaled the polynomial by Ck(γ ) in order to ensure that the value of the polynomial at
γ equals one. For general intervals, this leads to the scaled sequence of polynomials
(Saad 1992)

X̃j = Cj [ 2
e
(H − cI)]

Cj [ 2
e
(γ − cI)] X0.

The scaling factor is ρj = Cj [ 2
e
(γ − cI)].

This algorithm requires an estimate for γ which, in our case, is the smallest
eigenvalue of the Hamiltonian. However, since this is used for scaling, for the
purpose of avoiding overflow, only a rough value is needed.

The eigen-components associated with eigenvalues in [a, b] will be transformed
to small values, while those to the left of [a, b] will be around unity owing to the
properties of the Chebyshev polynomials. This is the desired filtering property when
computing an approximation to the eigensubspace associated with the lower end of
Λ(H). As seen in Algorithm 2, a desired filter can be easily controlled by adjusting
two endpoints that bound the higher portion of Λ(H).

The lower bound can be any value that is larger than the Fermi level but smaller
than the upper bound. It can also be a value slightly smaller than the Fermi level;
thanks to the monotonicity of the shifted and scaled Chebyshev polynomial on the
spectrum of H and the fact that we compute s > nocc number of Ritz values, the
desired lowered end of the spectrum will still be magnified properly with this choice
of lower bound.

Since the previous SCF iteration performs a Rayleigh-Ritz refinement step, this
step provides a natural approximation for the lower bound a. Indeed, we can
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Algorithm 3 CheFSI for SCF calculation

1. Start from an initial guess of ρ(r), get Vtotal(ρ(r), r).

2. Solve
[
− 1

2∇2 + Vtotal(ρ(r), r)
]
Ψi(r) = EiΨi(r) for Ψi(r), i = 1, 2, . . . , s.

3. Compute new charge density ρ(r) = 2
∑nocc

i=1 |Ψi(r)|2.

4. Solve for new Hartree potential VH from ∇2VH (r) = −4πρ(r).

5. Update Vxc; get new Ṽtotal(ρ, r) = Vion(r)+ VH (ρ, r)+ Vxc(ρ, r) with a potential-mixing

step.

6. If ‖Ṽtotal − Vtotal‖ < tol, stop; Else, Vtotal ← Ṽtotal (update H implicitly),

call the Chebyshev-filtered subspace method (Algorithm 4) to get s approximate wave

functions; go to step 3.

Algorithm 4 Chebyshev-filtered Subspace (CheFS) method

1. Get the lower bounds blow and γ from previous Ritz values (use the largest one and the

smallest one, respectively).

2. Compute the upper bound bup of the spectrum of the current discretized

Hamiltonian H .

3. Perform Chebyshev filtering (call Algorithm 2 in Sect. 5) on the previous basis Ψ , where Ψ

contains the discretized wave functions of Ψi(r), i = 1, . . . , s:

Ψ = Chebyshev_filter(Ψ, m, blow, bup, γ ).

4. Ortho-normalize the basis Ψ by iterated Gram-Schmidt.

5. Perform the Rayleigh-Ritz step:

(a) Compute Ĥ = Ψ T HΨ ;

(b) Compute the eigendecomposition of Ĥ : ĤU = UD,

where D contains non-increasingly ordered eigenvalues of Ĥ and U contains the

corresponding eigenvectors;

(c) “Rotate” the basis as Ψ := ΨU ; return Φ and U .

simply take the largest Rayleigh quotient from the previous SCF iteration step as
an approximation to the lower bound for the current Hamiltonian.

The upper bound for the spectrum (denoted by b) can be estimated by a k-step
standard Lanczos method. The higher endpoint b must be a bound for the full
spectrum of H . This is because the Chebyshev polynomial also grows fast to the
right of [−1, 1] (Zhou and Saad 2007). So if [a, b] with b < λmax(H) is mapped
into [−1, 1], then the [b, λmax(H)] portion of the spectrum will also be magnified,
which will cause the procedure to fail. Therefore, it is imperative that the bound b

be larger than λmax(H).
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6 Subspace Iteration Using Filtering

The main structure of Chebyshev filtering, which is given in Algorithm 3, is quite
similar to that of the standard SCF iteration (Algorithm 1). One major difference is
that the inner iteration for diagonalization at Step 2 is now performed only at the first
SCF step. Thereafter, diagonalization is replaced by a single Chebyshev subspace
filtering step, performed by calling Algorithm 4. The filtering process is illustrated
in Fig. 6.

Although the charge density (Eq. (3)) requires only the lowest nocc states, the
number of computed states, which is the integer s in Algorithm 3, is typically set to

Select initial Potential (e.g., superpose atomic
charge densities)

Find the charge density from the basis:

r = y n
n,occup
S 2

Solve for V
H

 and and compute Vxc:

Ñ2VH = −4pr  Vxc = Vxc[r]

H =
–1

2
Ñ2 +Vion

p +VH +Vxc

Apply Chebyshev filter to the basis:

ŷ n{ } = Cm l H( )( ) y n{ }

Get initial basis: {ψn} from diagonalization

Construct Hamiltonian:

Fig. 6 Flow diagram for obtaining a self-consistent solution of the Kohn-Sham equation using
damped Chebyshev subspace filtering
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a value larger than nocc, in order to avoid missing any occupied states. In practice
we fix an integer nstate which is slightly larger than nocc.

The parallel implementations of Algorithms 3 and 4 are quite straightforward.
The matrix-vector products related to filtering, computing upper bounds, and
Rayleigh-Ritz refinement can easily execute in parallel. The re-orthogonalization at
Step 4 of Algorithm 4 uses a parallel version of the iterated Gram-Schmidt DGKS
method (Daniel et al. 1976), which scales better than the standard modified Gram-
Schmidt algorithm.

If a standard iterative diagonalization method is used to solve the linearized
eigenproblem (Eq. 2) at each SCF step, then it also requires (i) the orthonormal-
ization of a (typically larger) basis, (ii) the eigendecomposition of the projected
Rayleigh quotient matrix, and (iii) the basis refinement (rotation). These opera-
tions need to be performed several times within this single diagonalization. But
Algorithm 4 performs each of these operations only once per SCF step. Therefore,
although Algorithm 4 scales in a similar way to standard diagonalization-based
methods, the scaling constant is much smaller. For large problems, CheFS can
achieve a tenfold or more speedup per SCF step, over using the well-known efficient
eigenvalue packages such as ARPACK (Lehoucq et al. 1998) and TRLan (Wu et al.
1999; Wu and Simon 2000).

In summary, a standard SCF method has an outer SCF loop – the usual nonlinear
SCF loop – and an inner diagonalization loop, which iterates until eigenvectors
are within specified accuracy. Algorithm 3 essentially bypasses the second loop, or
rather it merges it into a single outer loop, which can be considered as a nonlinear
subspace iteration algorithm. The inner diagonalization loop is replaced by a single
Chebyshev subspace filtering step.

7 Applications and Performance

Our real-space package (PARSEC (http://parsec.ices.utexas.edu/)) has been applied
to study a wide range of material systems, many of which would not be accessible
without a filtering algorithm (Dalpian and Chelikowsky 2006; Tiago et al. 2006;
Alemany et al. 2007; Chan et al. 2008, 2009; Chan and Chelikowsky 2010; Chan
et al. 2014; Chelikowsky et al. 2011; Sakai et al. 2016).

We focus on large hydrogenated Si nanocrystals, up to systems with over 20,000
atoms. Such a Si nanocrystal is illustrated in Fig. 7. The surface is capped with
hydrogen atoms to saturate the surface atoms and remove any dangling bond states
from the gap.

Relatively few numerical results exist because of the difficulty of eigenvector-
based methods applied to large systems without periodicity. In particular, Zhao
et al. (2004) have examined clusters containing up to 1,100 silicon atoms, using the
well-known VASP code (Kresse and Furthmülle 1996). They found applications to
clusters with more than ∼1,200 silicon atoms were “too computationally intensive”
with the computation platforms available to them. As a comparison, PARSEC using
the Chebyshev filter algorithm (CheFSI), together with the currently developed

http://parsec.ices.utexas.edu/
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Fig. 7 Si10701H1996
nanocrystal the surface is
capped with hydrogen atoms
shown as a black dots

Table 1 Si525H276, using 16 processors. The Hamiltonian dimension is 292584, where 1194
states need to be computed at each SCF step. The first step diagonalization by Chebyshev-Davidson
costs 79755 #MVp and 221.05 CPU seconds; so the total #MVp spent on CheFS in CheFSI is
110,000. The polynomial degree used is m = 17 for Chebyshev-Davidson and m = 8 for CheFS.
The first step diagonalization by TRLan requires 14909 #MVp and 265.75 CPU seconds

Method #MVp #SCF steps total_eV/atom CPU(s)

CheFSI 189755 11 −77.316873 542.43

TRLan 149418 10 −77.316873 2755.49

Diagla 493612 10 −77.316873 8751.24

symmetric operations of real-space pseudopotential methods, can routinely solve
silicon clusters with several thousands of atoms.

We used the total energy per atom to assess accuracy of the final results. The
number of iteration steps needed to reach self-consistency is given by #SCF . The
number of matrix-vector products is given by #MVp.

In Table 1, we present a relatively small silicon cluster Si525H276, which is
used to compare the performance of CheFSI with two eigenvector-based methods.
The hardware for the computations illustrated here is modest, if not dated: an SGI
Altix cluster consisting of 256 Intel Itanium processors at CPU rates of 1.6 GHz,
sharing 512 GB of memory (but a single job is allowed to request at most 250 GB
memory). Diagla and TRLan are standard eigensolver methods, which are not based
on subspace filtering (Stathopoulos et al. 2000; Wu et al. 1999). Computational
details such as grid spacings, pseudopotentials, and density functionals can be found
in the literature (Zhou et al. 2006a, b).
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We considered Si2713H828, Si4001H1012, and Si9041H1860. Results for these
nanocrystals are show in Table 2. For these systems, the eigensolver Diagla became
too slow to be practical. In the case of Si2713H828, we could still apply TRLan
for the first step diagonalization for comparison, but we did not iterate until self-
consistency was reached without excessive computational resources. Note that
with the problem size increasing, Chebyshev-Davidson compares more favorably
over TRLan. This is because we employed an additional trick in Chebyshev-
Davidson, which corresponds to allowing the last few eigenvectors not to converge
to the required accuracy. The number of the nonfully converged eigenvectors is
bounded above by actmax, which is the maximum dimension of the active subspace.
Typically 30 ≤ actmax ≤ 300 for Hamiltonian size over a million where several
thousand eigenvectors are to be computed. The implementation of this trick is rather
straightforward since it corresponds to applying the CheFS method to the subspace
spanned by the last few vectors in the basis that have not converged to required
accuracy.

In Fig. 8, we illustrate the density of states for a large nanocrystal: Si20389H3076.
This system presents a number of challenges. While the nanocrystal possesses some
symmetry, the system is not periodic. There are 42,316 occupied states in this
system. This requires the diagonalization in the Rayleigh-Ritz step of a large dense
matrix.

We can compare the density of states to bulk silicon with the resulting energy
distributions of energy levels for the nanocrystal, also shown in Fig. 8. The spectral
features of this large nanocrystal have evolved to match the bulk. For this system, we
can compute the complete evolution of the electronic structure from small molecular
fragments of hydrogenated silicon nanocrystals to the bulk.

Within density functional theory, we can also examine the evolution of adding or
removing electrons from a nanocrystal. First, we compute the energy to remove an
electron and create a hole. For a semiconductor, this means we remove an electron
from the highest occupied state and move it to the vacuum level. This energy is the
ionization potential, I . The energy to create an electron in the lowest unoccupied
state is called the electron affinity, A. These energies are defined as follows:

I = E(N − 1)− E(N)

A = E(N)− E(N + 1)
(16)

Table 2 Performance of the CheFSI methods for large hydrogenated silicon nanocrystals. All
calculations were done on 16 processors

System Dim. of H nstate #MVp #SCF total_eV/atom 1st CPU total CPU

Si4001H1012 1472440 8511 1652243 12 −89.12338 18.63 h 38.17 h

Si6047H1308 2144432 12751 2682749 14 −91.34809 45.11 h 101.02 h

Si9041H1012 2992832 19015 4804488 18 −92.00412 102.12 h 294.36 h
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where N is the total number of electrons in the system and E is the total electronic
energy. In principle, the affinity and ionization energies are ground-state properties,
and if the correct functional were known, these quantities would be accurately
predicted by density functional theory.

We examine the scaling of the ionization potential and the electron affinity by
assuming a simple power law behavior and fitting such a form to the calculated
values (shown in Fig. 9):

I (D) = I∞ + A/Dα

A(D) = A∞ + B/Dβ
(17)

where D is the diameter of the nanocrystal. A fit of these quantities results in I∞ =
4.5 eV, A∞ = 3.9 eV, α = 1.1, and β = 1.08. The fit gives a quasiparticle gap of
Eqp(D → ∞) = I∞ − A∞ = 0.6 eV in the limit of an infinitely large dot. This
value is in good agreement with the gap found for crystalline silicon using the local
density approximation (Sham and Schlüter 1983).

The gap is not in good agreement with experiment owing to the failure of the local
density approximation to describe band gaps of bulk semiconductors in general.
We learned something interesting here. Even though I and A were computed from

Fig. 8 Density of states for
silicon. Top figure is for bulk
silicon. The bottom figure is
for a nanocrystal,
Si20389H3076



518 J. R. Chelikowsky

Fig. 9 Evolution of the
ionization potential (IP) and
electron affinity (EA) with
quantum dot size. Also shown
are the eigenvalue levels for
the highest occupied
molecular orbital (HOMO)
and the lowest unoccupied
molecular orbital (LUMO)

ground-state properties for large system, they do not yield correct properties for
the ground state. This situation reflects some fundamental flaw in our choice of
functionals and is not surprising as no known functional is “perfect.”

A key aspect of this example is to show the scaling of the ionization potential and
electron affinity for nanocrystals ranging from silane (SiH4) to hydrogenated silicon
systems containing thousands of atoms. We not only verify the limiting value of the
quasiparticle gap, but also we can ascertain how this limit is reached, i.e., how the
ionization potential and electron affinity scale with the size of the dot, and what the
relationship is between these quantities and the highest occupied and lowest empty
energy levels. In our example, we effectively have gone from the molecular limit
to the crystalline limit. We have spanned the entire nanocrystal regime, at least for
silicon.

Since values of I and A as calculated from density functional theory are reason-
ably accurate for atoms and molecules, one can ask how the size of the nanocrystal
affects the accuracy of such calculations. Unfortunately, experimental values for the
ionization potentials and electron affinities are not known for hydrogenated silicon
clusters and nanocrystals, a notable exception being silane, where the electron
affinity is negative, which means an electron added to the nanocrystal is unbound.

8 Conclusions

A pathway to improving algorithms is to focus on existing “bottlenecks” and remove
them. The resolution of these bottlenecks improves the performance of the code in
a systematic fashion.

A current bottleneck is the Rayleigh-Ritz step in Algorithm 4. This step involves
solving an eigenvalue problem for a dense matrix whose size is equal to the
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number of eigenvalues. Suppose we wish to solve for a Si nanocrystal with 100,000
atoms or so. In such a situation, the Rayleigh-Ritz step would involve roughly
a 200,000 × 200,000 dense matrix. With the algorithms outlined in this chapter
coupled to current hardware, this is an insurmountable bottleneck.

A possible solution to this problem is to consider a combination of filters such
that the eigenvalue problem is decomposed into a number of such problems each
corresponding to a solution within an “energy window.” Each window can then be
handled separately, introducing an extra level of parallelism.

Implementing such an algorithm is difficult. The windows must be chosen so that
each interval has approximately the same number of eigenvalues. This insures some
reasonable load balancing. Often the eigenvalue spectrum is known for a similar
system of interest, e.g., amorphous silicon or liquid silicon possesses occupied states
that have a similar distribution as crystalline silicon. In this case, an approximate
windowing is straightforward to implement without knowing the detailed eigenvalue
spectrum.

A more challenging problem centers on not missing or duplicating states near
the edge of an energy window. To avoid missing states, the energy windows should
overlap. However, this overlap can result in double-counting states. Duplicates can
be removed by single-value decomposition methods. Ongoing work is focused on
this approach (Schofield et al. 2012a). The initial results are promising and should
lead to our ability to do systems with thousands or tens of thousands of atoms.

Our focus in this chapter is on scalability and the extension of current methods
to very large systems. We have not focused on an important related issue. Namely,
can we also improve the accuracy of the computations? Local density functionals
as those implemented in the present work are limited to weakly correlated sys-
tems, e.g., electronic materials like silicon, carbon, or gallium arsenide. Strongly
correlated systems such as rare earths or rare earth oxides require more accurate
functionals. These functionals often include nonlocal terms, e.g., the inclusion
of Fock exchange. Such functionals can be implemented in real-space methods
using the general framework outlined here (Boffi et al. 2016). The implementation
of nonlocal functional results in a more complicated Hamiltonian and memory
management issues. Typically, the scaling of such methods is notably limited.

Our quest to solve for large-scale systems should be apparent. Many problems
require us to consider systems with very large numbers of atoms. For example,
suppose we wish to examine a molecular system in an aqueous solution, a nucleation
seed in the melt, or a solid-liquid interface. In these case, we might want to include
thousands of atoms in a dynamical simulation to address important questions: How
do materials dissolve? What is the structural and dynamical nature at a liquid-
solid interface? Why do some nucleation sites promote crystal growth in only
certain crystallographic directions? These systems are frequently beyond our reach.
Numerical methods for these systems offer us the ability to test new models, gain
new insights, and picture the microscope world in new ways.
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Abstract

Nonlocal correlation methods based on wave function theory are developed for
application to condensed matter systems. These methods include MP2 and direct-
RPA theory as well as double-hybrid functionals. Analytic gradients and stress
tensors for MP2 theory in the gamma point approximation have been developed.
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Sampling complex systems at ambient temperature, for example, liquid water,
becomes possible with efficient algorithms for massively parallel computers.
Results show a qualitative improvement over standard local density functionals
as well as hybrid functionals.

1 Introduction

Combining ensemble sampling techniques, like molecular dynamics or Monte Carlo
methods, with first-principles electronic structure theory is commonly referred
to as ab initio molecular dynamics (AIMD) (Marx and Hutter 2009). AIMD
as a modern simulation technique was started by the seminal work of Roberto
Car and Michele Parrinello (Car and Parrinello 1985). The Car-Parrinello (CP)
method made AIMD simulations possible for a wide range of applications. In
the early years, the CP method dominated the field and became a synonym
for AIMD. The original CP method was proposed using Kohn-Sham density
functional theory within the pseudopotential plane-wave framework. Standard
simulation protocols for CP simulations were established and used by many
groups. In recent years, new developments were able to overcome limitations of
the CP method while keeping all of the benefits of the original method (Hutter
2012).

With the availability of more and more computer power, it became possible to
also use Monte Carlo (MC) sampling techniques (McGrath et al. 2005a). In MC
sampling the reuse of previous wave function information is much more difficult
than in MD sampling. However, when atom-centered basis functions are used, this
problem is considerably less severe than, for example, in plane-wave calculations.
MC sampling has advantages over MD sampling in specific situations, like the
simulation of the vapor-liquid coexistence curve (McGrath et al. 2005a, b), in
situations where high barriers make sampling difficult (Schönherr et al. 2014) or
if forces are not available (Del Ben et al. 2013b).

In the past, using other electronic structure methods than Kohn-Sham density
functional theory was explored but never gained wide popularity. The lack of
efficient implementations of correlated wave function methods for periodic systems
and, especially, insufficient computational power to perform extensive sampling
made such applications very demanding. A first step in the direction of the
application of wave function correlation methods in AIMD was the successful incor-
poration of efficient exact exchange functionals in condensed matter simulations
(Todorova et al. 2006; Guidon et al. 2008). Only in recent years, it has been possible
to combine extensive sampling approaches with wave function correlation methods
(Del Ben et al. 2013b, 2015b). In this article we will summarize developments of
electronic structure methods that made the application of wave function correlation
methods in AIMD possible. We will also investigate the results from pioneering
applications.



25 MP2- and RPA-Based Ab Initio Molecular Dynamics and Monte Carlo Sampling 525

2 MP2 and RPA Correlation EnergyMethods

The generalized gradient model (GGA) within Kohn-Sham DFT had tremendous
success in numerous applications. Yet, the model has significant shortcomings that
also influence, e.g., the quality of simulations for aqueous chemistry. Most notable
are the absence of van der Waals interactions and a significant self-interaction error.
The former leads, e.g., to an underestimation of the water density (Schmidt et al.
2009; Wang et al. 2011), while the latter leads to an underestimated bandgap, with
implications for redox chemistry (Adriaanse et al. 2012) and the static dielectric
constant (Schönherr et al. 2014). It is possible to go beyond GGA in various
ways, and improvements have been made by including various descriptors of the
electronic system to yield models with improved accuracy. In an attempt to classify
this progress, Perdew et al. (2005) employed the metaphor of a “Jacob’s ladder”
for which each rung of the ladder introduces more descriptors of the electronic
system and yields models with improved accuracy. This ladder has currently five
rungs which include as descriptors (1) the electronic density; (2) its gradient; (3) the
kinetic energy density; (4) the occupied molecular orbitals (MO), usually in the form
of Hartree-Fock exchange; and (5) the unoccupied or virtual MOs. GGA belongs to
the second rung, while hybrid functionals belong to the fourth rung. At the fifth
rung, the inclusion of the virtual orbitals allows for taking into account nonlocal,
dynamical, electron correlation effects that contribute to the long-range van der
Waals (vdW) dispersion interactions. Many of the various functionals on the fifth
rung are based on either the random phase approximation (RPA) (Eshuis et al. 2012;
Paier et al. 2012; Grimme and Steinmetz 2016) or second-order Møller-Plesset
perturbation theory (MP2) (Grimme 2006; Goerigk and Grimme 2011), in the form
of double hybrids (DH). Direct use of RPA and MP2 energies and variations thereof
is also of interest for many applications. As a basic building block, the calculation
of the RPA and MP2 energies has to be provided. We will in the subsequent sections
concentrate on the theory and implementation of these methods.

2.1 Theory

We present briefly the theoretical framework of the methods and refer to the original
works for more details. First, the resolution of the identity approximation for
two-electron repulsion integrals (ERIs) is introduced, and then its application to
the different correlation methods is formulated. The following index notation has
been adopted: i, j, k, . . . refer to canonical occupied molecular orbitals (MOs);
a, b, c, . . . to canonical virtual MOs; μ, v, λ, . . . to atomic orbital basis set
functions (AO); and P,Q,R, . . . to auxiliary basis set functions (AUX). The one-
electron MO and AO functions are symbolized with ψ and φ, respectively. The
number of occupied and virtual orbitals is denoted by o and v while the total number
of primary and auxiliary basis functions as n and Na . In order to express, in general,
the system size, the symbol N is used.
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2.1.1 Periodic Boundary Conditions
In order to minimize boundary effects, simulations of condensed matter systems
are performed using periodic boundary conditions. In periodic systems the infinite
number of particles to be treated is reduced to the unique particles in the simulation
cell, and the calculation of the electronic energy involves an integration over the first
Brillouin zone. For disordered systems, as, for example, liquids, this integration can
be replaced by a single point in the center of the integration volume, the Γ -point.
In the following chapters, we will always assume that this Γ -point approximation
is invoked, and we can further assume that the single-particle wave functions at this
point are real.

2.1.2 The Resolution of the Identity (RI) Approximation
The two-electron repulsion integrals (ERI), in Mulliken notation, of the type (ia|jb)
are of central importance for all the methods presented. Within the RI approximation
(Whitten 1973; Dunlap et al. 1979), based on the Coulomb metric (Vahtras et al.
1993), these integrals are factorized according to:

(ia|jb)RI =
∑

PQ

(ia|P)(P |Q)−1(Q|jb) (1)

where (P |Q)−1 is the inverse matrix of the Coulomb metric,

(P |Q) =
żż

φP (r1)
1

|r1 − r2|φQ(r2)dr1dr2. (2)

The auxiliary basis set size Na grows only linearly with the system size (Feyereisen
et al. 1993). The main advantage of the RI approximation is that four-center integrals
of the type (ia|jb) are computed from three- and two-center ERIs. This allows to
strongly reduce the effort for the integral computation without significant loss of
accuracy (Weigend and Häser 1997). Since the (P |Q) matrix is positive definite, its
inverse can be efficiently obtained from a Cholesky decomposition

(P |Q) =
∑

R

LPRL
T
RQ (3)

followed by inversion of the triangular matrix L. In this way the factorization of the
(ia|jb) integrals can be expressed in a compact form as:

(ia|jb)RI =
∑

P

Bia
P B

jb
P . (4)

B is a matrix with ov rows and Na columns, given by:

Bia
P =

∑

R

(ia|R)L−1
PR. (5)
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Since the three-center integrals (ia|R) are computed starting from integrals over
AOs (μν|R), the final expression for the Bia

P elements reads:

(ia|P) =
∑

v

Cva

∑

μ

Cμi

∑

R

(μν|R)L−1
PR (6)

where C is the MO coefficient matrix.
Computation of the B matrix thus includes, first, calculation of (P |Q) and

via Cholesky decomposition and triangular inversion, L−1. Second, three-center
integrals (μν|R) are computed and transformed using the C and L−1 matrices
(Eq. 6). The first two steps formally scale O(N2) and O(N3), respectively, while
three-center integral computation requires formally O(N3) operations and integral
transformations scale O(N4). Within the RI approximation, the asymptotically
dominating step in computing B is thus the index transformation.

2.1.3 RI-MP2Method
In second-order Møller-Plesset perturbation theory (Møller and Plesset 1934), the
correlation energy E(2) for a closed-shell system is given by:

E(2) = −
o∑

i≤j

(2− δij )

v∑

ab

(ia|jb)[2(ia|jb)− (ib|ja)]
εa + εb − εi − εj

. (7)

where εa and εi are orbital energies. In a canonical MP2 energy algorithm, the time-
limiting step is the computation of the (ia|jb) integrals obtained from the ERIs
over AO (μν|λσ) via four consecutive integral transformations. The computational
effort for the first quarter transformation (no sparsity considered) is O(on4), making
the MP2 energy calculation a method scaling as O(N5). The application of the
RI approximation to MP2 is straightforward (Feyereisen et al. 1993) and consists
in replacing (ia|jb) integrals with the approximate (ia|jb)RI given in Eq. 4. The
computation of (ia|jb)RI requires O(o2v2Na) operations implying that the RI-MP2
method is also scaling O(N5). The main reason for the speedup observed in RI-MP2
lies in the strongly reduced integral computation part.

2.1.4 RI Direct Random Phase Approximation Correlation Energy
Method

The RPA correlation energy is given as the difference between the zero-point energy
of two harmonic oscillator excitation problems for which the first includes a corre-
lated ground state (RPA) and the second does not (configuration interaction singles)
(Furche 2008; Scuseria et al. 2008). Within the direct-RPA (dRPA) approach, which
is RPA without exchange contributions (Eshuis et al. 2010), EdRPA

c can be expressed
in terms of a frequency integral

EdRPA
c = 1

2

ż +∞

−∞
dω

2π
Tr(ln(1+Q(ω))−Q(ω)), (8)
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with the frequency-dependent matrix Q(ω) in the RI basis which is determined by

QPQ(ω) = 2
o∑

i

v∑

a

Bia
P

εa − εi

ω2 + (εa − εi)2
Bia

Q . (9)

For a given ω, the computation of the integrand function in Eq. 8 using Eq. 9 requires
O(N4) operations. The integral of Eq. 8 can be efficiently calculated by Clenshaw-
Curtis numerical quadrature, and usually 30−40 quadrature points are enough to
achieve micro-Hartree accuracy. Thus, the introduction of the resolution of the
identity approximation and the frequency integration techniques for computing
EdRPA

c lead to a reduction of the computational cost to O(N4Nq) and O(N3)

storage, where Nq is the number of quadrature points.

2.2 Nuclear Gradients and Stress Tensor

Calculation of analytic derivatives is of central importance for applications in
electronic structure theory. The specific derivatives needed for nuclear gradients and
stress tensor have received most attention as they are connected to basic structural
properties of molecules and materials. In almost all applications, the availability
of analytic derivatives is of advantage for reasons of accuracy and efficiency.
The quantum chemistry community has a long tradition in developing algorithms
for analytic derivatives, especially also for non-variational methods as the ones
considered here (Handy and Schaefer 1984). These techniques have been used
to derive derivatives for double-hybrid functionals (Neese et al. 2007) and RPA
methods (Burow et al. 2014). For periodic systems, derivatives for MP2 in the
restricted (Del Ben et al. 2015a) and unrestricted (Rybkin and VandeVondele 2016),
as well as RPA (Ramberger et al. 2017) methods, have been reported.

2.2.1 Analytic Derivatives for RI-MP2
The analytic derivative of the RI-MP2 energy E

(2)
RI with respect to a perturbation

parameter x, for a closed-shell restricted Hartree-Fock wave function, is given by
Weigend and Häser (1997):

E
(2)
RI

x = dE
(2)
RI

dx
= 4

AUX∑

Q

AO∑

μν

Γ Q
μν(μν|Q)x − 2

AUX∑

PQ

Γ PQ(P |Q)x

+ 2
MO∑

pq

[
P (2)
pq F (x)

pq −W(2)
pq S(x)

pq

]
. (10)

In the above expression, for each summation, a common structure can be rec-
ognized, that is, the contraction of terms involving AO derivatives (μν|Q)x,

(P |Q)x, F
(x)
pq , S

(x)
pq , with elements of the intermediates Γ

Q
μν, Γ

PQ, P
(2)
pq ,W

(2)
pq . The



25 MP2- and RPA-Based Ab Initio Molecular Dynamics and Monte Carlo Sampling 529

first two summations involve the contraction of three- and two-center RI integral
derivatives (μν|Q)x, (P |Q)x with corrections to the two-particle density matrix
(2-PDM), Γ Q

μν and Γ PQ. These quantities are available from the energy calculation
(Del Ben et al. 2015a). The last summation in Eq. 10 consists in the contraction of
P

(2)
pq , the MP2 correction to the 1-PDM, and W

(2)
pq , the MP2 correction to the energy-

weighted density matrix, with the skeleton derivatives of the Fock and overlap
matrix elements

F (x)
pq =

AO∑

μν

Cμp

[
hx
μν +

∑

λσ

PHF
λσ (μν|λσ)x − 1

2

∑

λσ

PHF
λσ (μλ|νσ)x

]
Cvq (11)

S(x)
pq =

AO∑

μν

CμpS
x
μνCvq . (12)

In Eq. 11, hx
μν and (μν|λσ)x are the derivatives of the one-electron Hamiltonian

integrals and the ERIs, while PHF
μν = 2

o∑

i

CμiCvi is the Hartree-Fock density

matrix. In order to take advantage from sparsity, the update of the E
(2)
RI derivative

is performed in the AO basis, after back transformation of P
(2)
pq and W

(2)
pq from the

MO basis.
The diagonal blocks of the 1-PDM P

(2)
pq can be calculated again using quantities

from the energy calculation. The virtual occupied block of P (2) contains information
related to the orbital relaxation caused by the perturbation x, i.e., first-order response
of the MO coefficients. It is computed as the solution of the Z-vector equations
(Handy and Schaefer 1984)

v∑

a

o∑

i

[
δij δab(εa − εi)+ Aaibj

]
P

(2)
ai = −Lbj (13)

where Aaibj is an element of the orbital Hessian matrix

Aaibj = 4(ai|bj)− (ab|ij)− (aj |bi), (14)

and L is a specific RI-MP2 Lagrangian matrix given by:

Lbj = 2
v∑

a

AUX∑

Q

(ba|Q)Γ
Q
ja − 2

o∑

i

AUX∑

Q

(ij |Q)Γ
Q
ib

+
v∑

ac

P (2)
ac Aacbj +

o∑

ik

P
(2)
ik Aikbj . (15)
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Due to the large size of the orbital Hessian matrix A (ov× ov), the linear system
of Eq. 13 is commonly solved by iterative techniques. Rather than calculating and
storing the full A, at each iteration, the matrix-vector product

∑
ia XaiAaibj is

computed, with X being a trial solution. Finally, the MP2 correction to the energy-
weighted density matrix W

(2)
pq can be calculated from the relaxed 1-PDM P

(2)
pq . The

methodology presented is of general validity for any perturbation parameter x. In
particular, for the calculation of the forces acting on the ions, the gradients of E

(2)
RI

with respect to the atomic positions have to be computed.
The RI-MP2 contribution to the total stress tensor is calculated according to

Nielsen and Martin (1985) and Del Ben et al. (2015a):

Π
(2)
αβ = −

1

3V

3∑

γ=1

∂E
(2)
RI

∂hαγ

hT
γβ (16)

where hαγ are elements of the matrix of the cell vectors (Bravais lattice vectors)
given by a1, a2, and a3, that is, h = [a1, a2, a3].

2.3 Implementation and Performance

2.3.1 RI Gaussian and Plane-WaveMethod
The Gaussian and plane-wave (GPW) method has been shown to be an efficient
approach for computing ERIs especially when periodic boundary conditions are
considered (Del Ben et al. 2012). The basis of the GPW approach for the
computation of the ERIs is the direct formulation of the half-transformed integrals
of the type (ia|λσ) in terms of the electrostatic potential via of the pair density ρia

(ia|λσ) =
żż

ψi(r1)ψa(r1)
1

r12
φλ(r2)φσ (r2)dr1dr2

=
ż
[

ż

ρia(r1)

r12
dr1

]
φλ(r2)φσ (r2)dr2

=
ż

via(r2)φλ(r2)φσ (r2)dr2. (17)

The form of the last equation is essentially identical to the one used in the GPW
method (Lippert et al. 1997) to compute matrix elements of the Hartree potential.
Thus, the highly efficient implementation of that operation in the CP2K code
can be directly used, and we refer to VandeVondele et al. (2005a) for a detailed
discussion.

Within the RI approximation, two types of ERIs have to be computed, the
two-center (P |Q) and three-center (ia|P) integrals. Three-center integrals are
computed starting from the integrals over AOs that are subsequently transformed
with C and L−1. The index transformation over the auxiliary basis can be avoided,
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since it is possible to directly compute half-transformed integrals for an associated
density ρ as

(μν|P) =
∑

R

(μν|R)L−1
PR =

żż

φμ(r1)φv(r1)
1

r12

[
∑

R

φR(r2)L
−1
PR

]
dr1dr2

=
ż

φμ(r1)φv(r1)

[
ż

ρP (r2)

r12
dr2

]
dr1 =

ż

φμ(r1)φv(r1)v
P (r1)dr1.

(18)

The same approach holds for the (P |Q) integrals. An alternative way to calculate
these integrals over Gaussian basis functions using analytic Ewald techniques is also
available (Wilhelm et al. 2016).

Of central importance in GPW is the representation of the density on a regular
grid, which is equivalent to an expansion of the density in an auxiliary basis of plane
waves (PW). The expansion is given by

ρP (r) ≈ 1

Ω

∑

|G|≤Gc

ρP (G)eiG·r (19)

where the sum over the reciprocal lattice vectors G is determined by the resolution
of the grid. ρP (G) are the Fourier coefficients of the density, and Ω is the volume
of the simulation cell. Fast Fourier transforms (FFTs) efficiently change between
real-space and reciprocal-space representations. In reciprocal space, it becomes
straightforward to solve the Poisson equation for the potential vP

vP (G) = 4π

G2
ρP (G) (20)

and an additional back FFT will yield the potential in real space. For G = 0 the
value of the potential is set to zero, corresponding to a constant shift of the potential,
enforcing zero average. Due to the orthogonality of the occupied-virtual orbitals,
this shift has no influence on the final value of the (ia|P) integrals. Within the GPW
method, pseudopotentials have to be employed in order to have sufficiently smooth
densities. Once the potential vP is available, the numerical integration over the basis
functions is performed by summing over the grid points. For a given |P), all matrix
elements that are non-zero within a given threshold can be obtained in linear scaling
time. A further gain in efficiency is obtained by employing a multigrid technique that
represents the potential vP on grids with increasingly coarser grid spacing. Finally,
(μν|P) integrals are transformed into MO ERIs using (sparse) matrix multiplication
as implemented in the DBCSR library (Borštnik et al. 2014).

The accuracy of the RI approximation is directly related to the completeness of
the auxiliary basis set. It has been shown that it is possible to generate compact
auxiliary basis sets with a size of approximately three times the size of the orbital
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Table 1 Counterpoise-corrected PWPB95-D3 interaction energies (kcal/mol) of the S22 set
obtained employing the cc-TZ, cc-QZ, and aug-cc-TZ basis sets (Del Ben et al. 2013a). Mean
absolute deviation (MAD), root mean square deviation (RMSD), maximum deviation (Max), and
mean absolute percentage deviation (MA%D) of each basis set with respect to the reference values
(Goerigk and Grimme 2011) are reported

cc-TZ cc-QZ aug-cc-TZ

MAD 0.43 0.27 0.15

RMSD 0.52 0.31 0.21

Max 1.24 0.71 0.59

MA%D 7.45 5.42 3.48

basis set with a transferable overall accuracy of ≈1mHartree/atom (Weigend et al.
1998). Specific RI basis sets for the application in condensed systems have been
generated and tested (Del Ben et al. 2013a).

The setup used in the applications presented later has been tested with respect to
the basis set error for correlated calculations. The slow convergence of correlated
methods with basis set size is a well-studied problem in quantum chemistry. In
Table 1 results for three basis sets are presented for calculations of the S22 reference
sets using a double-hybrid functional. An improvement of results with the increase
of the basis set can be observed. However, it should be noted that the reference
used is itself not fully converged and that there are other parameters, e.g., the
pseudopotential used, that result in differences. It can be seen that the results
obtained with the cc-TZ basis, that is used in the liquid water simulations, is of
good quality but cannot be considered fully converged.

2.3.2 Parallel Implementation of the RI-GPWMethods
In this section the parallelization strategies for the methods introduced are presented.
The algorithms are split in two steps: the first deals with the computation of
the ERIs (ia|P) and is common for all methods, and the second is specific to
the type of correlation energy calculated. The parallelization is achieved with a
multi-level hybrid OpenMP/MPI scheme using a careful process layout. The first
level of parallelization corresponds to distributing the work performed for a single
given auxiliary basis function φP or vector |P) = ∑

R φRL
−1
PR . The second

level of parallelization corresponds to a distribution of these nearly independent
calculations. The Np processes available in total are split in NG groups, each
group working on a given φP or |P) and each consisting of Nw processes (Np =
NGNw). The first level of parallelization involves parallel FFTs, halo-exchanges,
and sparse matrix multiplications over Nw processes and corresponds to the standard
parallelization scheme for DFT calculations in CP2K (VandeVondele et al. 2005a).
The second level is straightforward and only requires intergroup redistribution of
two-center ERIs (Q|P) in order to calculate L−1.

The total workload for the integral computation is distributed by splitting the
auxiliary basis functions into NG ranges. Additionally, each of the Nw processes
within a group is assigned a range of virtual orbital indices, while the occupied
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orbital index is fully replicated. Once the integrals (ia|P) are available, we can
proceed to calculate the RI-MP2 energy. Since Nw is usually small compared to the
total number of processes, the virtual index a is distributed over a small number of
MPI tasks within the group G, while the auxiliary index P is distributed over a large
number of NG groups. First, the independent ij pairs (i ≤ j ) are distributed over the
NG groups. For each ij pair, the full range of the auxiliary index P is collected on a
local buffer from all other groups while keeping the virtual index distribution within
the group. The (ia|jb) integrals are generated for the actual ij pair in a matrix-
multiplication fashion (Eq. 4) requiring only a small amount of communication
within the group. Once the (ia|jb) are available, they are accumulated into the
MP2 energy according to Eq. 7, requiring an additional negligible amount of
communication within the group. With this choice, the main source of intergroup
communication in the parallel algorithm is related to the redistribution of the
BP

ia integrals, required for each ij pair. The time-determining step is the (ia|jb)
integral generation that is essentially a local matrix multiplication. This allows
to fully exploit the performance of highly optimized routines and can be further
accelerated by employing a hybrid implementation that utilizes graphics processing
units (GPUs).

The dRPA correlation energy implementation is based on the method developed
by Del Ben et al. (2013a). The parallel algorithm has a two-level workload
distribution. The first level corresponds to the distribution of the work necessary
for a given quadrature point of the integral in Eq. 8. The second level distributes
the calculation of the independent quadrature points over subgroups of processes.
The B matrix has to be replicated within the groups in order for the algorithm to
proceed independently for each integration point. As a first task, the matrix B′
is calculated as G(ω)B. Since G(ω) is a ov × ov diagonal matrix with elements
Gia,ia(ω) = (εa − εi)((εa − εi)

2 + ω2)−1, the calculation of B′ proceeds without
communication. The time-determining step of the algorithm is the calculation of the
matrix Q(ω) computed as 2BTB′(ω). This task is performed as a standard parallel
matrix multiplication. The calculation of Tr[ln (Q(ω)+ 1)] can be efficiently carried
out by considering the identity Tr[ln A] = ln (Det[A]), that is:

Tr[ln (Q(ω)+ 1)] = 2
Na∑

i=1

ln (Uii) (21)

where the U matrix is the Cholesky decomposition of Q(ω)+ 1.
The excellent performance of the presented implementation can be seen from

the results in Fig. 1. Panel (a) shows the achieved scaling for a 64-water-molecule
system using a range of 512 to 32,768 processes. Both methods, MP2 and dRPA,
show similar overall scalability with ≈80% efficiency over the full range tested. In
panel (b) timings for the RI integral generation as well as the energy calculation
for different methods are shown. In a doubly logarithmic plot, the system size
(generated as increasing water systems) is given versus the total CPU time. All
measured timings show a linear dependency, resulting in an estimate for the true
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Fig. 1 (a) Measured speedup with respect to 512 processes for the calculation of the MP2 and
dRPA energy of 64 bulk water molecules. dRPA calculation performed employing 60 quadrature
points for the numerical integration. (b) CPU time as a function of the number of replicas of the
supercell containing 32 H2O molecules. Twenty quadrature points were used for dRPA. Lines
represent a linear two-parameter fit of the form y = bxa

scaling of the method from the observed slope of the linear fit. The observed scaling
laws closely reproduce the theoretical scaling from the analysis of the implemented
algorithms.

3 Application: Properties of Water

Despite the apparent simplicity of the H2O molecule, bulk liquid water has a rich
chemistry and physics. This is commonly illustrated referring to its many anomalous
properties. These macroscopic properties are well characterized experimentally,
but resolving the underlying atomistic picture is far more difficult (Errington and
Debenedetti 2001), and even the structure of the neat liquid is still debated intensely
(Nilsson and Pettersson 2011; Soper 2013). Ultimately, our understanding must go
beyond the neat liquid. The properties of water, as a solvent or reactant, in the bulk,
near interfaces or in confinement are of central importance in many fields, such as
biology, electrochemistry, catalysis, earth, and climate science.

Theory and simulations can complement the experimental efforts and have a
long tradition. For example, liquid water was among the first systems studied when
molecular dynamics (MD) based on empirical potentials became available in the
1970s (Rahman and Stillinger 1971). Recent models are mostly derived based
on high-level electronic structure calculations and show excellent agreement with
the experiment for a variety of properties at low computational cost. However,
empirical methods might fail when applied outside their fitting range, and the effort
to parameterize the models and refine the employed functional forms cannot be
underestimated. This challenge rises considerably as soon as solutes come into
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play or if more complicated chemical phenomena, such as autodissociation and
reactivity, must be taken into account. Computing the intermolecular interactions
during the entire simulation using electronic structure theory is an alternative to
empirical models as complexity increases, since no assumptions on the form of
the interactions must be made. The pioneering application of electronic structure
theory to bulk liquid water was based on Kohn-Sham density functional theory
using a GGA density functional approximation (Laasonen et al. 1993), and the
same class of functionals has been employed for most subsequent applications
(see, e.g., VandeVondele et al. 2005b; McGrath et al. 2005a). Recently, also
hybrid functionals have been used for the simulation of liquid water (Todorova
et al. 2006; Guidon et al. 2008; DiStasio et al. 2014). The importance of vdW
interactions for the description of liquid water has also become apparent, and
current applications rely on different available approaches to augment standard local
functionals. The two main approaches, empirical pair potentials (Grimme et al.
2010) and explicit nonlocal correlation functionals (Dion et al. 2004), are outside the
Perdew classification. The performance of these approaches has been extensively
tested, and results show a systematic improvement upon the uncorrected GGA or
hybrid functionals (Schmidt et al. 2009; DiStasio et al. 2014).

We assess the performance of various methods, with a focus on MP2, RPA, and
double-hybrid functionals. In particular, the structural and dynamical properties
of bulk liquid water have been studied by means of Monte Carlo (MC) and
molecular dynamics (MD) simulations (Del Ben et al. 2013b, 2015b). The MC
simulations have been performed in the NpT ensemble under ambient pressure
and temperature and are focused on the structural properties, while MD has been
employed to obtain dynamical observables, namely, the infrared spectrum and the
diffusion constant (Del Ben et al. 2015b). A significant advantage of the MC scheme
is that the sampling of the phase space is solely determined by a total energy-
based criterion and that forces and stresses are not explicitly required, simplifying
the implementation. The downside is that dynamical properties are not available
and that suitable moves are needed to efficiently explore large portions of the
configuration space.

3.1 Computational Setup

All calculations presented have been performed with the CP2K program. The CP2K
code makes use of a dual representation for the electronic density and MOs in
terms of Gaussian and plane-wave (GPW) (Lippert et al. 1997; VandeVondele
et al. 2005a). Unless specified otherwise, the Gaussian basis is of correlation-
consistent triple-zeta quality (Dunning 1989; Del Ben et al. 2012), while the PW
cutoff is set to 800 Ry. To efficiently expand the density and orbitals in plane
waves within GPW, core electrons are replaced by pseudopotentials (Goedecker
et al. 1996) that have been parametrized for the employed functionals. The exact
exchange calculations are performed employing a Γ -point implementation making
use of a truncated Coulomb operator to avoid divergence of the energy (Guidon
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et al. 2008, 2009); the truncation radius is set to 6 Å. The RI auxiliary basis is
specifically fitted for this purpose (Del Ben et al. 2015b). All dRPA calculations
have been performed employing KS Perdew-Burke-Ernzerhof (PBE) (Perdew et al.
1996) orbitals as input. More details on the computational setups are reported in
supporting information of Del Ben et al. (2015b). The model system is made of
64 H2O molecules in a cubic box under periodic boundary conditions (PBC). The
Monte Carlo simulations have been performed with thermodynamic constraints set
to ambient conditions, that is, T = 295 K and p = 1 bar. The MC efficiency is
improved with the presampling of moves (Iftimie et al. 2000); in the actual case,
the approximated potential is calculated at the DFT level employing the PBE1W
(García-González et al. 2007) functional, for which the basis and D3 parameters
have been specifically refitted in order to closely approximate the energy of the wave
function methods and thus to increase acceptance of moves. Molecular dynamics
(MD) simulations which started from equilibrated MC configurations and used a
multiple time-step scheme are previously proposed in the context of hybrid density
functionals (Guidon et al. 2008).

3.2 Structural Properties of LiquidWater

In Fig. 2 the density fluctuation over the MC trajectory obtained with the MP2 and
RPA methods is reported. At the RPA level, the density quickly equilibrates, giving
an average density of 0.994 g/mL in excellent agreement with the experiment. The
root mean square deviation of the instantaneous density is 0.015 g/mL similar to
that of the MP2 method which has an average density of 1.020 g/mL. As RPA is
computationally less demanding than MP2, roughly twice the number of MC cycles
has been performed relative to MP2 (26.8 kcycles vs. 14.6 kcycles). Nevertheless,
finite sampling times cannot exclude sudden structural rearrangements on longer
timescales. This was observed at the PWPB95-D3 level (Del Ben et al. 2015b),
where, initially, the fluctuations of the instantaneous density seem to equilibrate to
a stable average value of 1.002 g/mL. However, later a sharp transition occurred
to a high-density phase, which was not fully stabilized after an additional 10,000
cycles. Fluctuations between high-density (HD) and low-density (LD) phases
would be expected near a liquid-liquid phase transition, for small samples, but
the high computational cost of these simulations did not allow for exploring this
in depth. Overall the results support the view that the MP2 and RPA methods
describe the potential energy surface of bulk liquid water accurately and emphasize
the value of treating dispersion interactions at the same level as hydrogen-bond
interactions.

Figure 3 shows the radial distribution functions (RDF) obtained at the MP2 and
RPA level, respectively. The RDFs are in very good agreement with the recent
experimental gOO(r) obtained from X-ray diffraction (Skinner et al. 2013). The
height of the first peak is overestimated by about 10%, while the features of the
long-range part are remarkably well reproduced, being only very slightly more
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Fig. 2 The red portion of the plots denotes MC cycles considered for equilibration, the green part
refers to that used for the calculation of the average properties, and the blue line shows the running
average density. Estimated errors are reported as yellow dashed lines. Panel (a) shows results for
MP2, panel (b) for RPA

Fig. 3 Oxygen-oxygen pair radial distribution functions as obtained from the NpT-MC simula-
tions (T = 295 K and p = 1 bar) at (a) MP2 (b), RPA level of theory (solid red line). Experimental
RDF (solid black line) taken from Skinner et al. (2013)
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structured. In order to gain additional information on the local environment around
each water molecule in the liquid, the positions of the 4th and 5th neighboring
H2O were analyzed, as they serve as an indicator for the overlap of coordination
shells. GGAs and hybrid functionals not corrected for van der Waals interactions
give highly structured and significantly less dense (around 10–20%) liquids. The
introduction of dispersion improves the liquid description but in general gives too
dense water (5–10%) (Del Ben et al. 2015b). In particular the distributions of the
4th and 5th neighboring waters show a clear separation between the first and second
coordination shells for GGA functionals, whereas they move closer when vdW
interactions are included, and a similar overlapping pattern is found for MP2 and
RPA methods.

The accurate prediction of the water density and structure requires thus a balance
between vdW and hydrogen-bond interactions. On this basis, it can be argued that
the accurate prediction of the water density and structure by RPA and MP2 can be
attributed to the fact that these theories provide, for this system, a correct balance
between hydrogen-bond and van der Waals interactions. Reaching this balance
might be facilitated by the fact that both interactions are obtained from the same
level of theory. Note that in general, MP2 and RPA tend to overbind and underbind,
respectively, noncovalent complexes as, e.g., found in the S22 set (Jurecka et al.
2006), which covers a broader range of systems, including compounds that are
aromatic or have double bonds (Eshuis and Furche 2012; Ren et al. 2012). While
these effects are not pronounced for water, it might nevertheless lead to the
slightly higher and lower water densities calculated at the MP2 and RPA level,
respectively.

To put these results in context, Table 2 summarizes the density and structural
features of the RDF of liquid water obtained from NpT-MC simulations at different
levels of theory but with consistent choice of simulation parameters (Del Ben
et al. 2015b). In addition to functionals including orbital correlation (RPA, MP2),
standard GGA and hybrid functionals (PBE, PBE0) with D3 and nonlocal vdW
corrections are shown. The reported average values show the slight overestimation

Table 2 Average density and structural data obtained from the NpT-MC simulations (T = 295 K
and p = 1 bar). The method labeled with optB88-vdW (Klimeš et al. 2010, 2011) represents a
functional of the nonlocal van der Waals type. The label D3 stands for a dispersion correction
according to Grimme et al. (2010). For the calculated average densities, an error estimation is
reported (Δρ)

Density [g/mL] 1st Max 1st Min 2nd Max

ρ Δρ r [Å] gOO(r) r [Å] gOO(r) r [Å] gOO(r)

PBE-D3 1.055 0.006 2.73 3.07 3.25 0.69 4.43 1.21

PBE0-D3 1.053 0.005 2.74 2.88 3.29 0.79 4.32 1.21

optB88-vdW 1.081 0.003 2.74 2.94 3.34 0.80 4.31 1.21

MP2 1.020 0.004 2.76 3.05 3.32 0.72 4.41 1.21

RPA 0.994 0.006 2.78 2.93 3.41 0.78 4.49 1.19

exp. 1.00 2.80 2.57 3.45 0.84 4.5 1.12
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when GGA and hybrid functionals with the D3 vdW corrections are used. For the
considered nonlocal van der Waals functional, the obtained results show a larger
density of∼8%, and the structure of the liquid is rather well reproduced but with all
features shifted to shorter distances, in agreement with previous NVT simulations
(Wang et al. 2011). Even though at the limit of statistical accuracy, both the inclusion
of the D3 correction and the use of hybrid functionals reduce the height of the first
peak of the gOO(r) for PBE. This combined effect of dispersion and exchange has
been emphasized recently (DiStasio et al. 2014).

GGA functionals, which underestimate the bandgap, lead to a too polarizable
solvent, which in turn should lead to too strong hydrogen bonds. This is similar to
the effect of charge transfer from anions to the solvent that has been observed to be
too strong for GGAs as compared to hybrids (VandeVondele et al. 2012). The effect
of hybrid functionals on the dielectric constant of water ice has been quantified
(Schönherr et al. 2014) showing that GGA functionals lead to more polar structures
while also overestimating the polarization of these structures. Whereas the effect of
bandgap underestimation is already noticeable in neat water, it becomes even more
visible in the context of aqueous electrochemistry. Redox levels of various species
can be significantly influenced, if water band edges are incorrect; in particular they
will be pushed up if these are close to the valence band of the liquid (Adriaanse
et al. 2012). Results obtained with RPA and double-hybrid functionals for redox
levels near the band edges appear promising (Cheng and VandeVondele 2016).
This highlights the importance of going beyond the neat liquid in assessing the
performance of electronic structure theory for liquid water.

Finally the equilibrium parameters of ice Ih, calculated at various levels of
theory, are reported in Table 3 for comparison (Del Ben et al. 2015b). The results
reported are obtained at 0 K neglecting nuclear quantum effects and zero-point
energies. Despite being important in many situations, these effects have been
shown to have a lesser influence (≤1%) for the equilibrium volume of ice Ih both
theoretically (Santra et al. 2013; Pamuk et al. 2012) and experimentally (Röttger
et al. 2012). Analogously to the liquid water case, the calculated ice densities
are ∼2% larger and ∼1% smaller than experimental results for MP2 and RPA,
respectively. At both the MP2 and RPA level, these results show the nontrivial
prediction that ice floats on water, with a quantitatively correct ratio of liquid and
solid density.

Table 3 Equilibrium volumes and energies (at 0 K) for ice Ih expressed per molecule without
corrections for the quantum nature of the nuclei and zero-point energies. Experimental values are
from Hobbs (1974) and Whalley (1984)

Ecoh [kJ/mol] Vmol [Å3] ρ [g/mL]

PBE −62.8 30.69 0.975

MP2 −58.7 31.34 0.955

RPA −52.5 32.37 0.924

Exp. −58.9 32.05 0.933
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4 Outlook

With the methods described here, nonlocal wave function correlation methods can
be applied to liquids, solutions, crystals, and simple interfaces. As the available
computational resources continue to grow, such applications will become increas-
ingly more routine. At the same time, the algorithms will be further refined and
improved. Reduced scaling algorithms (Wilhelm et al. 2016) will make it possible
to tackle larger systems. Multiple time-step algorithms are developed that make
ab initio molecular dynamics simulations using high-level methods more efficient.
These methods are also combined with path integral techniques (Kapil et al. 2016)
and bring MP2 and RPA based simulations including nuclear quantum effects within
reach.
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Abstract

A recently proposed method for accelerating current molecular dynamics algo-
rithms, used for the simulation of classical particles at finite temperatures, is
reviewed (Mazzola and Sorella, Phys Rev Lett 118:015703, 2017). This method
is based on an efficient implementation of a first-order Langevin dynamics
modified in a way to reduce the autocorrelation times and the time step error
for the integration of the stochastic equations of motion. This work represents an
improvement upon previously known algorithms that, on one hand, are too much
simplified to be used in realistic simulations and, on the other hand, are too much
complicated and computationally demanding for their practical implementations.
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The details of the method are presented with few applications to standard test
cases on Lennard-Jones models at various temperatures. In particular it is shown
that this technique represents an ideal tool for ab initio molecular dynamics,
when the Born-Oppenheimer energy surface is estimated by computationally
demanding methods, such as, for instance, the quantum Monte Carlo stochastic
approach.

1 Introduction

One of the simplest, but nevertheless robust, methods for simulating a given number
N of classical particles in a finite volume V for a temperature T , namely, for
computing physical quantities in the so-called NVT ensemble (Allen and Tildesley
1987; Tuckerman 2010) is given by the first-order Langevin dynamics, which is
defined by the following set of stochastic differential equations:

dR(t)

dt
= f[R(t)] + η(t), (1)

where R(t) is a (time dependent) p dimensional vector with components Rj

(j = 1, . . . , p, with p = N × d , d being the spatial dimensionality). The classical
potential V (R) defines the deterministic “force” with components fj (R):

fj (R) = −∂V (R)

∂Rj

; (2)

whereas η(t) is a random vector with components ηj (t) (j = 1, . . . , p), with
vanishing mean value and no correlations between components i �= j and times
t �= t ′:

〈ηj (t)〉 = 0, (3)

〈ηi(t)ηj (t
′)〉 = 2T δi,j δ(t − t ′), (4)

where 〈. . . 〉 indicates the expectation value. This conventional first-order Langevin
dynamics (CFOLD) (1) is substantially different from the Newton equations of
motions that are second-order (deterministic) differential equations connecting the
actual force to the acceleration of the particles. The advantage of using first-order
equations will be clear in the following because of their apparent simplicity. On
one hand, they are analytically less involved, and, on the other hand, they contain
less parameters, namely, the mass of the particles and their damping coefficients.
The latter quantities have to be introduced in the Newton-like equations in order
to sample correctly the NVT ensemble, because they provide a simple solution to
the well-known ergodicity problems of weakly interacting harmonic systems and,
in this way, improve the efficiency of the sampling (Ceriotti et al. 2009; Kühne et al.
2009).
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Contrary to ordinary differential equations, the stochastic differential equations
do not provide a unique solution starting from a given initial condition, but the
possible solutions acquire a statistical meaning: starting at t = t0 from R0 ≡ R(t0),
several stochastic trajectories are possible depending on the particular realization of
the noise. Thus, we are naturally led to define the probability P(R, t) to find a given
configuration R at time t , with the initial condition:

P(R, t0) = δ(R− R0). (5)

After an equilibration time, P(R, t) converges to the equilibrium distribution
Peq(R) that is independent of the initial condition R0. Then, the solution Rn at
discrete times tn of the differential equations (1) provides a large number M of
samples that can be used to compute statistically any correlation function O(R):

ż

dR O(R) Peq(R) ≈ 1

M

∑

n

O(Rn) (6)

similarly to the ordinary Monte Carlo method.
The main purpose of this chapter is to show that, by using the simpler formal-

ism of the first-order stochastic equation, it is possible to solve exactly, within
the harmonic approximation, the problem of long autocorrelation times, usually
affecting the implementation of molecular dynamics in complex systems such as
water at ambient conditions or complex processes such as protein folding. The latter
phenomenon takes place within the time scale of μs, much larger than the period of
the molecular vibrations of the order of the f s (Scheraga et al. 2007). To this end,
we have to introduce a more general approach, already known in literature, starting
with the covariant version of the first-order Langevin dynamics equations (LDE):

Ṙ = S−1[R(t)]f[R(t)] + η

〈ηiηj 〉 = 2T δ(t − t ′)S−1
ij [R(t)] (7)

where S[R(t)] is, for the time being, an arbitrary positive-definite symmetric
matrix – i.e., with all eigenvalues strictly positive – that is used to accelerate the
dynamics in the way we will discuss in the following sections. Notice also that
this matrix is explicitly dependent on the atomic positions, a peculiar but very
important property of this approach; otherwise, this method coincides with the
standard accelerated dynamics introduced long time ago by Parisi (1984). Moreover,
for Sij = δij , Eq. (7) describes the conventional first-order Langevin dynamics
discussed at the beginning.

The equilibrium probability implied by these stochastic differential equations,
containing a position dependent matrix S[R(t)], is given by a generalized Boltz-
mann distribution:
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Peq(R) = 1

Z
|S[R(t)]|γ exp

[
−V (R)

T

]
, (8)

where |S[R(t)]| is the determinant of the matrix S[R(t)] and Z is the partition
function, needed for the normalization condition of the probability:

Z =
ż

dR|S[R(t)]|γ exp

[
−V (R)

T

]
. (9)

In principle the LDE of Eq. (7) does not depend on the parameter γ , while the
equilibrium distribution is explicitly dependent on it. At first sight, this may appear
in contradiction, but, as we will see in the following, this dependency may arise
due to the arbitrariness of the continuous limit of stochastic differential equations,
as there are several consistent ways to integrate Eq. (7). Notice that for γ = 0, we
obtain the conventional canonical Boltzmann distribution that can be used for our
purposes. Another important case is when γ = 1/2, the matrix S representing the
metric of the space, and the LDE acquire the covariant property, namely, they are
independent of any nonlinear transformation R → R′ of the variables in the non-
euclidean space defined by the metric S[R(t)], namely, the infinitesimal distance
ds between two points of the space is given by ds2 = ∑

ij

Si,j [R]dRidRj . The

motivation for introducing an acceleration matrix S[R(t)] in the equations becomes
clear if we consider the limiting T = 0 case, where the finite temperature Eq. (7)
reduces to a structural relaxation equation. If we first discretize Eq. (7), with a finite
time step Δ, and consider an harmonic problem defined by a potential

VH (R) = 1

2

∑

i,j

Hi,j (R− Req)i(R− Req)j (10)

where H is the Hessian matrix and Req the equilibrium positions, we obtain that

R(t +Δ) = R(t)+ΔS−1f(t) . (11)

Thus, if S[R] = H and Δ = 1, it is possible to reach the minimum Req , starting
from any arbitrary configuration R(t), in only one step, simply because S−1f(t) =
−(R(t)−Req) in this case. On the contrary, the standard steepest-descent algorithm,
with S[R] being the identity matrix, is affected by a slowing down controlled by the
condition number Kcond = Kmax/Kmin of the matrix H , i.e., the ratio between its
maximum (Kmax) and minimum non-zero (Kmin) eigenvalues.

In the following we generalize this approach from structural optimization to the
finite temperature dynamics of our interest. The main difficulty consists in finding
an efficient iterative scheme able to produce the unbiased sampling while retaining
the property of decreasing the autocorrelation time by means of a suitable position
dependent matrix S[R]. In the next section, we develop such scheme in a general
way, without specifying the matrix S[R] but keeping in mind that, for practical
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calculations, this matrix could be a positive-definite matrix that at low temperatures
is very close to the Hessian for optimal performances. This approach is similar in
spirit to the mass tensor scheme (Bennett 1975; Tsuchida 2015) where a mass tensor
M plays the role of our acceleration matrix S. However the method that we present
here becomes much simpler when it is necessary to consider acceleration matrices
(M or S) that are explicitly dependent on R, because the algorithm we propose does
not contain any cumbersome differentiation of S. On the other hand, recent attempts
based on damped molecular dynamics (Ceriotti et al. 2010) cannot have optimal
efficiency in the harmonic case but can reduce the correlation time only by a factor
proportional to

√
Kcond (Tassone et al. 1994). They should be therefore much less

efficient (by a factor proportional to
√
Kcond) than the algorithm we discuss here.

2 Fokker-Planck Equation and Approach to the Canonical
Distribution

Quite generally, conventional differential equations are integrated approximately
at discrete short time intervals Δ, by introducing a so-called time step error that
is unavoidable in any realistic simulation. Unfortunately stochastic differential
equations like the LDE in Eq. (7) are not well defined because the noise introduces
nonanalytic terms proportional to

√
Δ, yielding discretized equations depending

upon arbitrary choices (e.g., Ito or Stratonovich). In our opinion the correct way
to deal with stochastic differential equation is to start just from a given, though
arbitrarily chosen, discretized version of the equation and show that the associated
probability distribution P(R, t) satisfies a well-defined Fokker-Planck equation,
equilibrating to the canonical distribution Peq(R) in the long time limit.

We start therefore from the integration of Eq. (7), at discrete time t = nΔ, that
is conventionally adopted in textbooks (Risken 1996) and is given by the following
rather involved expression

R(t +Δ)j = R(t)j +Δ
(
S−1(R)fR

)

j
+ TΔ

(
∑

i

∂iS
−1
j i (R)

)
+√2TΔzj (t)

〈zi(t)zj (t)〉 = S−1
i,j (R(t)) (12)

(fR)j = −∂jV (R)+ γ T ∂j ln |S(R)| (13)

where, as it will be shown in the following, this discretization provides an
equilibrium distribution for Δ→ 0 of the form given in Eq. (8). In the following we
are interested to the canonical distribution, defined in the standard Euclidean metric,
and therefore we have to keep in mind that our interest is for γ = 0, though all the
forthcoming derivation remains valid for any value of γ .

The above Markov chain univocally defines a discretized master equation for the
probability function P(R, t) that, in the limit Δ→ 0, becomes a Fokker-Planck one
of the following form:
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∂tP (R, t) =
∑

j

∂j

{
−
[
S−1(R)fR

]

j
P (R, t)+ T

∑

i

[
S−1
j,i (R)∂i

]
P(R, t)

}

(14)

In order to find the equilibrium distribution, it is enough to equate to zero the
term between braces which immediately gives P(R, t) up to a constant, in turn
determined by the normalization condition of probabilities, yielding:

Peq(R, t) = |S(R)|γ exp(−V (R)/T )

Z
, (15)

namely, the desired distribution. Unfortunately the Markov chain of Eq. (12) is not
practical, because it contains, what in the following will be named the “cumbersome
term”:

Γj (R) =
∑

i

∂iS
−1
j,i (R) (16)

Indeed, this term is computationally very demanding, because the calculation of the
inverse of a matrix takes the order of p3 operations, as well as each derivative of S−1

with respect to any variable i, e.g., by using a finite difference method. Thus, in order
to make the summation overall i for each j in the above equation, we end up with
an algorithm scaling in most cases as the fourth power of p, unless for particularly
simple cases. Moreover the expressions for the inverse derivatives become so much
complicated that they are very difficult to implement in practice (Mazzola et al.
2012), especially within ab initio approaches such as quantum Monte Carlo (Foulkes
et al. 2001), DFT (Kohn and Sham 1965), or quantum chemistry wave function
methods (Dykstra et al. 2005).

3 Avoiding the “Cumbersome Term”: A First Simplified
Algorithm

Before deriving the final convenient expression for sampling in the most efficient
way the canonical distribution by the proposed accelerated Langevin dynamics, we
consider the following Markov chain that does not require the evaluation of the
“cumbersome term” Γj (R):

y = R+√2TΔz(t)

R′ = y+ΔS−1(R)fR − 1

2
S−1(R) [S(y)− S(R)] (y− R)

〈zi(t)zj (t)〉 = S−1
i,j (R) (17)



26 Accelerated Molecular Dynamics for Ab Initio Electronic Simulations 551

where here R = R(t) and R′ = R(t + Δ). We will show in the following that the
above Markov chain implies the same Fokker-Planck equation (14) corresponding
the much more involved discretization in Eq. (12), and therefore the equilibrium
distribution for Δ→ 0 will be the correct one. In this way it is possible to avoid the
“cumbersome term,” with a minor computational effort, namely, by calculating the
matrix S twice for each time step.

Let’s therefore proceed with the main proof of this section. The Markov chain
in Eq. (17) defines in a unique way the conditional probability density of having
R′ = R(t +Δ) given R(t) = R:

K(R′|R) =
ż

dzpμR(z)δ
{

R′ − R−ΔS−1(R)fR −
√

2TΔz

+ 1

2
S−1(R)

[
S(R+√2TΔz(t))− S(R)

]√
2TΔz(t)

}

(18)

where the normalized Gaussian probability density μR(z) is given, according to
Eq. (17), by:

μR(z) =
exp

[
− 1

2 (z, S(R)z)
]

ş ş

dzp exp
[
− 1

2 (z, S(R)z)
]

= (2π)−
p
2 exp

[
−1

2
(z, S(R)z)+ 1

2
T r[ln S(R)]

]
(19)

where in the latter equation, we have used a well-known property relating the multi-
dimensional Gaussian integrals to the determinant |S(R)| written, for convenience,
as exp T r[ln S(R)]. Here and henceforth we denote by (a, b) the scalar product of
two p− dimensional real vectors, and matrix-vector multiplication is understood
when a matrix appears before (from left to right) a given vector. We want to obtain a
Fokker-Planck equation in the limit of Δ→ 0. To this purpose we write the master
equation:

Pn+1(R′) =
ż

dRpK(R′|R)Pn(R) (20)

and employ the integration in dRp after substituting the expression of K(R′|R)

given above. In all the forthcoming derivation, all the effort is spent to extract the
leading term O(Δ) of the above master equation that will define in a unique way
the Fokker-Planck equation that is in turn necessary to establish the equilibrium
distribution. For this purpose we solve the argument of the δ function, by replacing
R with R′ when it is allowed at the leading order in Δ:
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R(R′) = R′ − √2TΔz−ΔS−1(R′)fR′

+ 1

2
S−1(R′)

[
S(R′ + √2TΔz)− S(R′)

]√
2TΔz+ o(Δ) (21)

we obtain that the master equation for the evolution of the probability is explicitly
given:

Pn+1(R′) =
ż

dzpJΔ(R(R′))μR(R′)(z)Pn

(
R(R′)

)
(22)

where JΔ(R(R′)) = 1 + ΔB(R′) + o(Δ) is the Jacobian of the transformation
of Eq. (21) that can be expanded in Δ with a well-defined expression for B(R′)
that we do not explicitly write in the following, because, as we will see soon, it
is not important for the derivation. μR(R′)(z) comes from the original probability
density μR(z) in Eq. (19) once R is substituted with the z-dependent expression
given in Eq. (21). Indeed, by substituting the transformation of Eq. (21) in Eq. (22),
and expanding the latter equation to the leading order in Δ, we obtain the following
expression:

Pn+1
(
R′
) = [

1+ΔC(R′)
]
Pn(R′)+

ż

dzpμR(R′)(z)

⎧
⎨

⎩−
∑

j

{√
2TΔzj

+Δ

[
S−1(R′)

(
fR′ −

S(R′ + √2TΔz)− S(R′)
2Δ

√
2TΔz

)]

j

⎫
⎬

⎭ ∂jPn(R′)

+ ΔT
∑

i,j

zizj ∂i∂jPn(R′)

⎫
⎬

⎭+ o(Δ) (23)

In the above iteration of Eq. (23), there is therefore a term that simply multiplies
Pn(R′) by a function:

1+ΔC(R′) (24)

where C(R′) is rather involved and comes from the expansion in small Δ of all the
factors (J and μ) of the integrand in Eq. (22) multiplying P(R(R′)):

C(R′)Δ = −1+
ż

dzpJΔ(R(R′))μR(R′)(z) = ΔB(R′)−1+
ż

dzpμR(R′)(z)+o(Δ)

(25)
Notice that R(R′) depends on the random variable z via Eq. (21), and therefore the
term

ş

dzpμR(R′)(z) in the above equation is nontrivial and different from one by
O(Δ). We will not attempt to calculate this term, as well as B(R′), but derive it
from the conservation of the normalization condition of the probability.
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As evident in Eq. (23), there are three different contributions depending on the
order of the derivatives. The term that couples to the first derivative of Pn(R′) reads:

− Δ
∑

j

ż

dzpμR′(z)

[
S−1(R′)

(
fR′ − S(R′ + √2TΔz)− S(R′)

2Δ

√
2TΔz

)]

j

∂jPn(R′) (26)

−
ż

dzpμR′(z)
∑

i,j,k,l

(2ΔT )zj

[
1

2
zk
(
∂iSk,l(R′)

)
zlzi − 1

2
S−1
k,l (R

′)
(
∂iSkl(R′)

)
zi

]
∂jPn(R′) (27)

where the latter equation comes from the expansion of μ(R(R′)) at leading order
O(
√
Δ), where, to this end, we have also used the following relation:

T r[ln S
(
R(R′)

] = T r[ln S(R′)] −
∑

i

T r[S−1(R′)∂iS(R′)]
√

2TΔzi +O(Δ)

= T r[ln S(R′)] − √2TΔ
∑

i,k,l

S−1
kl (R′)∂iSkl(R′)zi +O(Δ) (28)

and in the last equation, we have used that S−1 is symmetric because S is symmetric.
By carrying out the simple integration in dzp, i.e., by replacing

ş

dzpμR′(z)zj =<

zj >= 0 and
ş

dzpμR′(z)zizj = <zizj> = S−1
i,j (R

′) and by applying the
Wick’s theorem for the integration of the higher-order polynomial involved, i.e.,
< zjzkzlzi >=< zjzk >< zlzi > + < zjzl >< zkzi > + < zjzi >< zkzl >, we
obtain that Eq. (27) reads:

− ΔT
∑

i,j,k,l

[(
S−1
jk S−1

li + S−1
j l S−1

ki + S−1
j i S−1

kl − S−1
kl S−1

j i

)
∂iSkl

]
(R′)∂jPn(R′)

= 2ΔT
∑

i,j

(
∂iS

−1
j,i (R

′)
)
∂jPn(R′)

= 2TΔ
∑

j

Γj (R)∂jP (R′) (29)

where, by S+ δS = S(I + S−1δS)→ (S+ δS)−1 = S−1− S−1δSS−1+ o(δS)→
∂iS

−1
j i = −

[
S−1(∂iS)S

−1
]
j i

, we easily verify that the LHS and RHS of the above
Eq. (29) are consistent, as, for instance, by using that S is a symmetric matrix, we
have that:
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∑

kl

S−1
j l (R′)S−1

ki (R′)∂iSkl(R′) =
∑

kl

S−1
j l (R′)S−1

ki (R′)∂iSlk(R′) = −∂iS
−1
j i (R′)

(30)
Thus this term partially cancels with the contribution coming from the expansion in
small Δ of the term

[
S(R′ + √2TΔz)− S(R′)

]

k,l
= √2TΔ

∑

i

∂iSkl(R′)zi (31)

present in Eq. (26). Indeed, in the Fokker-Planck equation, the term proportional to
∂jP coming from the Eq. (26) acquires a contribution:

TΔ

ż

dzpμ(z)
∑

i,k,l

S−1
j,k (R

′)∂iSk,l(R′)zizl = TΔ
∑

i,k,l

S−1
j,k (R

′)∂iSk,l(R′)S−1
i,l (R

′)

= −TΔ
∑

i

∂iS
−1
j,i (R

′) = −TΔΓj (R′)

(32)

where in the last equality, we have used the relation given in Eq. (30). In this way
the total term proportional to ∂jPn(R′) reads:

∑

j

{
−Δ

[
S−1(R′)fx′

]

j
+ TΔΓj (R′)

}
∂jPn(R′) (33)

Finally the term proportional to the second derivative leads to:

ΔT
∑

i,j

S−1
ij (R′)∂i∂jPn(R′) = TΔ

∑

i

∂i

[
S−1
ij (R′)∂jPn(R′)

]

−T
∑

j

[
∑

i

∂iS
−1
i,j (R

′)
]
∂jPn(R′)

= TΔ
∑

i

∂i

[
S−1
ij (R′)∂jPn(R′)

]

−TΔ
∑

j

Γj (R′)∂jPn(R′) (34)

By collecting all the terms obtained in Eqs. (24), (33), and (34), all the ones
proportional to the “cumbersome gradient” Γj (R′) cancel out, and, by carrying out
the limit Δ→ 0, we obtain the following Fokker-Planck equation:
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∂tP (R, t) =
∑

j

∂j

{
−
[
S−1fR

]

j
P (R, t)+ T

∑

i

S−1
i,j ∂iP (R, t)

}
+ C̄(R)P (R)

(35)
where all the terms proportional to P(R) include C(R) and the ones that com-
pensate the expression implied by the total divergence, namely, C̄(R) = C(R) +∑

j ∂j
[
S−1fR

]
j
. In the above equation, C̄(R) has not been computed explicitly

as it should simply vanish because it is determined by the standard property of
the Fokker-Planck equation, namely, that the RHS should be a total divergence,
so that once integrated overall volume, it guarantees that the normalization of the
probability is conserved for any initial probability guess, as a simple consequence
that the conditional probability satisfies

ş

d[R′]pK(R′|R) = 1 for any Δ and in
particular in the limit Δ → 0. Therefore we finally obtain the following Fokker-
Planck equation with C̄(R) = 0:

∂tP (R, t) =
∑

j

∂j

{
−
[
S−1[R]fR

]

j
P (R, t)+ T

∑

i

[
S−1
j,i [R]∂iP (R, t)

]}

(36)
that concludes the proof of this section.

3.1 AMore Efficient Algorithm

The previous Markov chain given in Eq. (17) solves the problem of computing the
“cumbersome term” Γj (R) at the expense of evaluating the matrix S(R) twice for
each iteration. In the following we describe another way to obtain the same Fokker-
Planck equation, with an iterative scheme requiring only one evaluation of the
matrix S(R). This is important in our implementation of the Langevin dynamics,
whenever the evaluation of the matrix S(R) requires high computational effort
as in computationally demanding applications based on DFT or quantum Monte
Carlo. To this purpose the following more convenient iteration scheme defines the
new coordinates R(t + Δ) not only in terms of R(t) but also of the previous one
R(t − Δ). This remains formally a Markov chain in an extended space acting on a
2p− dimensional vector R̃n = [Rn,Rn−1], so that all the results of Markov chains
used in the previous section can be applied also in this case. We propose therefore
the following iteration scheme:

R(t +Δ) = R(t)+ΔS−1 [R(t)] fR(t) +
√

2TΔz(t)

−1

2
S−1 [R(t)] {S [R(t −Δ)]− S [R(t)]} [R(t −Δ)− R(t)]

〈zi(t)zj (t)〉 = S−1
i,j [R(t)] (37)
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In order to verify that also this Markov chain converges, for Δ → 0 to the
equilibrium distribution given in Eq. (8), it is enough to show that, at the leading
order in Δ, the previous iteration scheme is equivalent to the Markov chain in
Eq. (17). This is evident by considering that, as in the previous case:

(R(t −Δ)− R(t)) = −√2TΔz(t −Δ)+O(Δ) (38)

Therefore the “cumbersome term” in Eq. (37) comes naturally from simple Taylor
expansion:

{[S(R(t −Δ))− S(R)] (R(t −Δ)− R(t))}k
= 2TΔ

∑

i,l

(
∂iSk,l(R(t))

)
zi(t −Δ)zl(t −Δ)

� 2TΔ
∑

i,l

(
∂iSk,l(R)

)
zi(t)zl(t) (39)

Thus the iteration scheme in Eq. (37) is equivalent to the following Markov chain:

R(t +Δ)j = R(t)j +Δ
(
S−1[R]fR

)

j

−TΔ
∑

i,k,l

S−1
j,k [R] (∂iSkl[R]) zi(t)zl(t)+

√
2TΔzj (t)

〈zi(t)zj (t)〉 = S−1
i,j [R(t)], (40)

namely, it coincides with the Markov chain we have considered in the previous
section up to order O(Δ) because one can substitute in Eq. (17) [S(y)− S(R)]kl
with its expansion in Δ:

√
2TΔ

∑
i ∂iSklzi +O(Δ).

Strictly speaking the rightmost equality in Eq. (39) is valid for the associated
Fokker-Planck equation where one can substitute the correlator 〈zi(t−Δ)zl(t−Δ)〉
with the one 〈zi(t)zl(t)〉, clearly allowed because in this way only a negligible error
O(Δ) is introduced.

We have therefore verified that the Markov chain in Eq. (17) is equivalent to the
proposed one in Eq. (40) that can be more efficiently implemented while leading to
the same Fokker-Planck equation for Δ→ 0 and therefore to the same equilibrium
distribution in Eq. (8).

3.2 Renormalization of the Target Temperature

In the case of an harmonic potential VH with equilibrium position Req , as defined
in Eq. (10), it is readily seen that for Δ = 1, with a matrix S = H independent of
R, the Markov chain of Eq. (37) simplifies to:
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R(t +Δ) = Req +√2T z

〈zizj 〉 = H−1
i,j (41)

which corresponds to the direct sampling of the canonical distribution
exp(−VH/2T ), namely, correlation time equal to one and temperature renormalized
by a factor two. Thus, in the harmonic case, the present scheme provides a simple
scaling of the simulated target temperature Ttarget, which turns out to be two times
the nominal one T for large time steps Δ = 1 and S = H . This consideration
suggests that it is possible to apply Eq. (37) and determine the target temperature
of the simulation a posteriori as it is often done in the case of second-order
Langevin dynamics, by measuring the average squared velocities of the particles.
Unfortunately a direct estimation of the simulated temperature is rather difficult in
the first-order Langevin dynamics, as the virial theorem usually provides a quite
noisy estimate of this quantity and it is also difficult to apply in periodic systems.

3.3 Efficiency Gain in Controllable Models

In this section we break our discussion to apply and numerically demonstrate the
efficiency of the method. We use different definitions for the matrix S to prove
the generality of our framework. In the first, low-dimensional example, the matrix
S is derived from geometrical considerations, while in the second case, a dense
liquid of dimers interacting with a Lennard-Jones potential, we use a regularized
version of the Hessian matrix. A third possibility, which can only be implemented
in combination with a quantum Monte Carlo calculation of the forces, will be
discussed in Sect. 3.5.

3.3.1 Rotating Spring on a Plane
We first consider a simple toy model, a rotating spring lying on a plane. The endpoint
(x, y) is subject to a radial harmonic potential of the form

U(x, y) = 1

2
k

(√
x2 + y2 − a

)2

, (42)

while being free to rotate around the origin. The configuration’s space visited during
the dynamics is a circular ring, whose radius is a and width given by the (radial)
thermal fluctuation. This is perhaps the simplest model where a strong decoupling
of time scale, in this case the vibrational and rotational ones, is present.

Let us define the following matrix Gλ:

Gλ = 1

λ

⎛

⎝
x2+y2λ

x2+y2
xy(1−λ)

x2+y2

xy(1−λ)

x2+y2
x2λ+y2

x2+y2

⎞

⎠ (43)
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Fig. 1 Average potential energy as a function of the integration time step Δ. Black points refer
to the CFOLD (Eq. (1)), while red points to the improved dynamics (Eq. (37)) with nontrivial
metric tensor S = Gλ=0.1, from Eq. (43). The red data series is obtained with the integration
scheme of Eq. (37). We use the following parameters, T = 0.01, k = 2, a = 1.4. We see
that the new approach greatly alleviates the time step error compared to the standard dynamics
while maintaining a very similar rotational diffusion coefficient at fixed Δ (not shown). Solid lines
represent linear fit of the respective data series

where λ is a control parameter and G reduces to the identity when λ = 1. It
can be shown, following geometrical considerations, that, if G−1

λ multiplies the
forces, it effectively reduces by a factor λ the radial component of the associated
displacement. Since this matrix is always positive definite, it represents a good
candidate for the dynamics preconditioner. We therefore use S = Gλ in Eq. (12),
with λ < 1.

From Fig. 1 we see that the preconditioned Langevin dynamics, with nontrivial
S, results in a better time step error, compared to the standard Langevin dynamics.
This demonstrates also in a simple toy model that a large computational gain can be
achieved by this framework. In particular the iterative scheme of Eq. (37) removes
the time step bias almost completely.

3.3.2 A Lennard-Jones Molecular Liquid
The second model is much more realistic, where the force field arises from the
following potential:

V = Vmol + VLJ =
N∑

[i,j ]mol

1

2
k(rij − a0)

2 +
N∑

[i �=j ]mol

4ε0

[(
σ0

rij

)12

−
(
σ0

rij

)6
]

(44)
where N is the total number of atoms, rij is the distance between atoms i and j , and
the symbols [i, j ]mol([i �= j ]mol) indicate that the sum includes (excludes) atoms
which belong to the same dimer. The force field parameters are chosen to mimic
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the radial pair distribution of a dense molecular liquid. In the simulations we fixed
a0 = 1.4 a.u., to mimic the equilibrium bond length of the hydrogen molecule
(which is nevertheless reduced to ≈1.38 due to the intermolecular interactions),
σ0 = 2 and k = 10, ε0 = 0.03. We set the temperature T = 0.1 (with kB = 1) and
a particle density given by 0.07 a.u.−3. We use periodic boundary conditions.

This dense liquid of dimers is strongly nonharmonic; therefore, its Hessian is
not positive definite for any particle configuration. We regularize the Hessian in
the following way: we first decompose the H matrix into H = QΛQT , where Q

contains the eigenvectors (in columns) of H and Λ is the diagonal matrix containing
the eigenvalues λi , with i = 1, · · · , 3N . Then we regularize the eigenvalues λi of
the Hessian using a smooth function, such that λreg = u(λ), with

u(λ) = 1

δ
n((λ− ε)/τ)+ λ(1− n((λ− ε)/τ)), (45)

where n(x) = 1/(1+ex) is the Fermi function. This works better than simply cutting
off the eigenvalues smaller than ε, because in such a case, the finite difference
evaluation of the derivative of S in Eq. (37) could be strongly biased. These
parameters are system dependent. We choose ε = 1, τ = 2/δ. After this procedure
we can use this matrix in the preconditioned Langevin equation (Eq. (37)). We notice
that much better choices may exist for the hessian regularization.

We again test the time step bias of the different dynamics. We plot in Fig. 2
the results as a function of the dimensionless parameter Δ/τcorr, where τcorr is
the largest correlation time that can be measured for this system. In our case, one
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Fig. 2 Average potential energy of the MD simulations as a function of the integration time step
Δ, renormalized with the measured autocorrelation time τcorr. The system consists of 24 particle
dimers in a box, interacting via Eq. (44). We compare the CFOLD integrator (black) with the
proposed one, by using Eq. (37) (red), using the regularized Hessian matrix. Solid lines represent
quadratic fit of the respective data series
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of the slowly varying processes is the autocorrelation time of the intermolecular
component, VLJ , of the total potential. We measure this quantity for the different
dynamics, to have an unbiased estimation of the efficiency gain.

3.4 Nuclear Quantum Effects

As it is well known, it is possible to simulate nuclear quantum effects at finite
temperature by using the classical mapping to a system of P replicas – usually called
beads – of the classical system, provided we make two basic assumptions: (i) the
temperature is small but not too small that the statistics of nuclei becomes important;
(ii) we can use the Born-Oppenheimer approximation in order to decouple the
nuclear motion from the electronic one (Ceriotti et al. 2010; Tuckerman et al. 1993).
The resulting classical potential, at rescaled temperature TP = T × P , is defined
in terms of the p = 3NP degrees of freedom R = {rai }, for 1 ≤ i ≤ N and
0 ≤ a ≤ P −1, with periodic boundary conditions, i.e., rPi = r0

i , and can be written
as follows:

VP (R) =
N∑

i=1

P−1∑

a=0

V (rai )+
miT

2
P

2

(
rai − ra+1

i

)2
(46)

where mi is the mass of the ith particle in units kB = h̄ = 1. The Hamiltonian (46)
describes a classical system of PN particles that are interacting with an Hessian
matrix, whose leading large P term do not couple the 3N spatial coordinates ν, μ:

Kaν,bμ = δν,μ
miT

2
P

2
(2δa,b − δa+1,b − δb+1,a)+ 1

2
δa,b

[
∂ν∂μV (Ra)

]
(47)

Therefore if we neglect the less relevant terms inside the square brackets, coming
from the expansion of V , this matrix can be readily diagonalized by a Fourier
transform, with plane wave eigenvectors qν

ωn
(a) = Cωn exp(iωna) with ωn = 2π

P
n,

n = 0, 1, · · ·P − 1, Cωn appropriate constants and eigenvalues miT
2
P (1 − cosωn).

The condition number of the above matrix can be readily evaluated and is given by
Kcond = P 2/π because the maximum eigenvalue is obtained for ωn = π and
the minimum non-zero one for ωn = 2π

P
. Thus it is clear that it is possible to

accelerate the dynamics by a factor � P 2 using for S the harmonic matrix given in
Eq. (47), with a reasonable approximation for the term depending on V because this
term is almost negligible, i.e., finite, for P → ∞. We remark therefore that, also
for the simulation of nuclear quantum effects, it is extremely important to use an
appropriate acceleration matrix in order to avoid extremely large correlation times.
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3.5 AcceleratedMolecular Dynamics Within QMC Applications

This section concerns the specific application of this LDE in QMC. While Eq. (37)
can be applied already as it is when using exactly computed ionic forces f (from
either force-fields or DFT based calculations), one additional step is required in the
case of QMC, where forces are given with a certain statistical error.

In the simplest variational quantum Monte Carlo approach (Attaccalite and
Sorella 2008; Mazzola et al. 2014; Zen et al. 2015) (VMC), it is possible to
perform finite temperature ab initio simulation of classical particles interacting via
the Born-Oppenheimer energy surface, through a quantum mechanical variational
optimization of a correlated electronic wave function Ψα , which contains several
parameters {α}:

V (R) = Minα
〈Ψα|HR|Ψα〉
〈Ψα|Ψα〉 (48)

where HR is the full-many body electronic Hamiltonian with Coulomb interaction,
at fixed atomic positions. Being a statistical method, the forces are affected by a
finite statistical error in QMC (Attaccalite and Sorella 2008) and a very useful matrix
naturally emerges – the covariance matrix – describing the correlations between the
force noise components:

Cov(f) = 〈〈fi(R)fj (R)〉〉 − 〈〈fi(R)〉〉〈〈fj (R)〉〉 (49)

where 〈〈 〉〉 indicates a statistical average over a given number of samples at fixed
atomic positions.

In this QMC approach, we use S = Cov(f ), where Cov(f ) is the correlation
matrix corresponding to the statistical fluctuations – i.e., the error bars – of the
nuclear forces. In this case it is also very simple to correct for the extra noise given
by the QMC forces (Luo et al. 2014). This is achieved in a very simple way, just
by changing the temperature T used in the dynamics for the correct simulation at a
given target temperature Ttarget, simply as follows:

2TΔ = 2TtargetΔ−Δ2. (50)

that is possible for Δ < 2Ttarget (notice that for this particular choice of S the time
of the dynamics has the unusual dimension of an energy).

In order to show that this technique is extremely convenient, even within a
computationally demanding method such as QMC, we present in Fig. 3 a molecular
dynamics simulation of a mixture containing 118 hydrogens and 10 helium, at
Jupiter interior conditions, with an accurate basis set. It is remarkable that, within
the same simulation, different phases can be reached in a short simulation time,
clearly showing the efficiency of the method and its capability to identify the
metal-insulator transition/crossover which is of paramount importance for the
understanding of the structure of giant planets, such as Jupiter and Saturn.
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Fig. 3 Snapshot of an H-He mixture simulation, a NVE molecular dynamics driven by true
QMC nuclear forces (Mazzola et al. 2018). The cyan, yellow, and red colors represent the 108
H, 10 He, and H-molecule bonds (H2), respectively. The temperature is 6000 K and the density
0.53 g/cm3 (P = 54 Gpa), i.e., near to the liquid-liquid metal-insulator transition. The occurrence of
these fluctuations between qualitatively different phases indicates that a metal-insulator insulator
transition or at least a sharp crossover could occur within this pressure range. This has a clear
impact for the equation of state of large planets, such as Jupiter, and is important in view of the
recent data reported from the NASA JUNO mission

4 Conclusions

Within the framework of first-order Langevin dynamics, it is possible to define
a method that, for classical dynamics, solves the problem of working with very
different time scales, by using an acceleration matrix S, suitably chosen, that
generates an efficient dynamics where all the time scales become equal. Roughly
speaking in the period when a fast molecular oscillation occurs also a long distance
rearrangement of the electronic structure takes place (e.g., weak molecular binding).
From the theoretical side, it is shown that, with the present method, if compared with
the standard Langevin dynamics without S, a gain in efficiency of the order of the
condition number K of the Hessian matrix (or the square of the condition number of
the dynamical matrix) is achieved at least at low temperatures where the harmonic
approximation holds. Indeed, provided S is chosen to be equal to the Hessian matrix,
the proposed algorithm generates essentially an independent configuration for each
step of molecular dynamics, as the time step Δ can be as large as the correlation
time, short and common for all energy scales.

This gain in efficiency is remarkable even if compared with state-of-the-art
second-order Newtonian dynamics (Ceriotti et al. 2009; Mouhat et al. 2017)
because, in the latter cases, only a gain of order K is possible with present
algorithms. Considering that K can be as large as 100 in the water dimer and
is typically growing with the system size, the potential of this method is easily
understood. For a non-molecular solid, the matrix S can be chosen independent
from the atomic positions, and in this case the method coincides with the standard
method of acceleration (Parisi 1984). The important result of this work is that
the dependence of the matrix S from the atomic positions can be taken formally
into account at no cost. This is extremely important because, even at very low
temperatures, there exist instances of solids where the molecules do not freeze
(therefore the elastic constant matrix K depends explicitly on the instantaneous
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orientation of the molecules). A simple example is the low-pressure phase I of
hydrogen, which consists of freely rotating H2 molecules centered on a hexagonal
close-packed lattice (Loubeyre et al. 1996). This is indeed the generic case at
finite temperature, as, for instance, in liquid water, it is impossible to speed up
the molecular dynamics without considering, in the acceleration matrix S, the
orientation of all the water molecules, because their mutual interaction strongly
depends on the hydrogen bonds network. It would be extremely interesting to apply
our technique within DFT because it is well known that extremely long simulations
are necessary to obtain reliable equilibrium properties in water, the autocorrelation
time for Newtonian MD with stochastic velocity rescaling thermostat being around
1 ps (Grossman et al. 2004; Dawson and Gygi 2018). In this case the best choice for
S has not been determined yet, but it is likely that, by taking for S a simple Hessian
corresponding to independent water molecules, a good speed up should be achieved.
So far this technique has been implemented within the ab initio molecular dynamics
tool provided in the TurboRVB QMC package and significative performances
have been achieved in several systems, from nanotubes (Varsano et al. 2017) to
hydrogen-helium mixtures (Mazzola et al. 2018) and structural optimization of
graphene (Sorella et al. 2018), but several other applications are possible, especially
considering that this useful and simple scheme can be applied even within more
conventional ab initio simulation methods based on DFT. It would be also extremely
important to generalize this technique within the second-order Newton dynamics,
because the time has clear physical meaning in this case. Indeed, the generalization
of the acceleration within the Newtonian dynamics with friction has not been carried
out so far, and this should be worthwhile for the future development of the method.
In principle, with this technique, one could carry out ab initio molecular dynamics,
where only the longest, more interesting, time scales remain meaningful, all the
other being rescaled.
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Abstract

Metadynamics is an enhanced sampling algorithm in which the normal evolution
of the system is biased by a history-dependent potential constructed as a sum
of Gaussians centered along the trajectory followed by a suitably chosen set of
collective variables. The sum of Gaussians forces the system to escape from local
free energy minima and is used to iteratively build an estimator of the free energy.
This original idea has been developed and improved over the years in several
variants, which nowadays allow addressing in a unified framework some of the
most important tasks of molecular simulations: computing the free energy as
a function of the collective variables, accelerating rare events, and estimating
unbiased kinetic rate constants. This chapter provides a survey of the many
formulations of metadynamics with an emphasis on the underlying theoretical
concepts and some hints on the appropriate manner of using this approach for
solving complicated real-world problems.

1 Introduction

The metadynamics method was introduced in 2002 (Laio and Parrinello 2002),
and it has rapidly become popular for the study of thermodynamics and kinetics
in molecular systems that are hard to sample even with the best available com-
puting resources. This algorithm, like umbrella sampling, requires the preliminary
identification of a set of collective variables (CVs) that are assumed to describe the
process of interest. A bias depending on these CVs is then constructed iteratively
and dynamically as a sum of Gaussians centered along the trajectory followed by
the CVs. The longer the dynamics is continued, the more Gaussians are added.
Therefore, the bias is time dependent, and it never stops changing. These Gaussians
discourage the system from revisiting the same spot in CV space and encourage
an efficient exploration of the free energy surface. Indeed, if the dynamics is
started in a free energy minimum, the Gaussian potentials accumulate and fill this
minimum, until the system moves to a close-by free energy minimum. This allows
the system to migrate from well to well. In the original non-tempered form of
metadynamics, when all the wells are filled with Gaussians, the dynamics in the
CV space becomes diffusive, and the bias potential of metadynamics resembles the
ideal bias of umbrella sampling, namely, the negative of the free energy.

Biasing the dynamics with Gaussians is an idea that was introduced well before
the 2002 paper. The taboo search method (Cvijovic and Klinowski 1995) and, in the
context of molecular dynamics, the local elevation method (Huber et al. 1994) are
based on the same idea. Also the idea of using a history-dependent bias to estimate
thermodynamic quantities, in particular the density of states, was introduced before,
in the Wang and Landau algorithm (Wang and Landau 2001). The main novelty
introduced by metadynamics is exploiting these ideas together with dimensionality
reduction, in which the dynamics is considered important and biased only in the
CV space, in the spirit of the work by Kevrekidis (Theodoropoulos et al. 2000;
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Kevrekidis et al. 2004). In practical terms, this allows using the framework of taboo
search for biasing efficiently more than one CV at the same time, still obtaining a
meaningful free energy estimate. In 2002, the most popular approach for computing
the free energy was thermodynamic integration (Carter et al. 1989), which allows
using only one CV at a time. The possibility offered by metadynamics of obtaining
“on-the-fly” free energy landscapes in two or three dimensions was extremely
important in the field and is possibly one of the main reasons of the success of
the algorithm.

A second important advantage of metadynamics is that the method can be profi-
ciently used also for accelerating rare events and studying the reaction mechanism
of complex processes. Since the history-dependent potential iteratively compensates
the underlying free energy, a system evolved with metadynamics tends to escape
from any free energy minimum via the lowest free energy saddle point. This makes
metadynamics a rather flexible tool that can be used not only to compute efficiently
the free energy but also to explore new reaction pathways, accelerate the observation
of rare events, and even compute kinetic rate constants in a relatively straightforward
manner. If the CVs are chosen sensibly, the system will quickly find its way over
the lowest free energy saddle point and evolve over the next minimum as it would
eventually do in a very long molecular dynamics simulation. This flexibility is
reflected in the numerous contexts in which this method has been applied so far,
including solid state and material science, crystal structure prediction, biophysics
and chemistry. A final advantage of metadynamics is its inherent self-diagnostic
capability. Indeed, the dynamics of the CVs under the action of the bias can provide
useful signs to alert user whether the reconstructed free energy/kinetics can be
trusted or not.

The key assumption of the method is that the time-dependent potential defined by
the sum of Gaussians deposited up to time t provides an unbiased estimate of the free
energy in the region explored during the dynamics. This property, which does not
follow from any ordinary thermodynamic identity, such as umbrella sampling (Patey
and Valleau 1975), was postulated on a heuristic basis in Laio and Parrinello (2002)
and afterward verified empirically in several systems of increasing complexity.
Successively (Bussi et al. 2006b), it was shown that this property derives from rather
general principles and can be demonstrated rigorously for systems in which the
dynamics of the CVs is adiabatically separated from the other degrees of freedom.
More recently, a modified version of the algorithm was developed in which conver-
gence can be proved explicitly and rigorously for a generic dynamics (Barducci et al.
2008). In this approach, called well-tempered metadynamics, the rate at which the
history-dependent potential is modified gradually decreases during the simulation
according to a schedule that allows fluctuations in the potential to be damped out.
This is done by introducing an extra parameter that controls this damping and that
can be used to interpolate between unbiased molecular dynamics and non-tempered
metadynamics. Notably, the modified algorithm only samples a low free energy
portion of the CV space and in the long limit corresponds to altering the temperature
of the biased CVs alone. A rigorous proof of convergence of the algorithm in this
formulation is presented in Dama et al. (2014).



568 G. Bussi et al.

2 The Basic Algorithm

Consider a system described by a set of coordinates x and a potential V (x) evolving
under the action of a dynamics, which could be, for instance, Langevin, Newtonian
(under the action of a thermostat), or Monte Carlo, whose equilibrium distribution
is canonical at a temperature T . The set of coordinates x may include ordinary
atomic positions, but also electronic coordinates, as in Car-Parrinello molecular
dynamics (Car and Parrinello 1985), or any other auxiliary variables. We aim at
exploring the properties of the system as a function of a finite number of CVs
Sα (x) , α = 1 . . . d where d is a small number. The CVs can be any explicit
function of x such as, for example, a distance, a coordination number, or the gyration
radius of a subset of atoms. The free energy F (s) is given by

F (s) = − 1

β
log

(
ż

dx exp (−βV (x)) δ (s − S (x))

)
. (1)

where β = 1
kBT

is the inverse temperature. In Eq. 1 (and in the following), capital S
is used for denoting the function of the coordinates S (x), while lower case s is used
for denoting the value of the CVs.

In the simplest molecular dynamics implementation of metadynamics, the
external potential acting on the system at time t is given by

VG(S (x) , t) = w
∑

t ′ = τG, 2τG, · · ·
t ′ < t

exp

(
−
(
S (x)− s

(
t ′
))2

2δs2

)
(2)

where s (t) = S (x (t)) is the value taken by the CV at time t . This specific variant
of the algorithm is referred to as “direct metadynamics,” to distinguish it from
previous variants of the algorithm where the CV dynamics was performed separately
from that of the rest of the system either using time-dependent restraints (Laio
and Parrinello 2002) or an extended Lagrangian formulation (Iannuzzi et al. 2003).
Three parameters enter the definition of the VG:

1. The Gaussian height w.
2. The Gaussian width δs.
3. The frequency τG at which the Gaussians are added.

The first two parameters define the shape of the extra bias added at time intervals of
τG. As it will be discussed in detail in the following, if the Gaussians are large, the
free energy surface will be explored at a fast pace, but the reconstructed profile will
be characterized by large fluctuations.

As an example, consider the system in Fig. 1. Metadynamics is performed on
the one-dimensional potential with three minima represented in the lower panel.
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The system evolves through an overdamped Langevin equation (Risken 1989) with
time step 1, diffusion coefficient D = 0.005, and at a temperature of 1. The dynamics
is started from the central minimum. Without any bias, the system would escape
from this minimum with low probability, since the barriers separating it from the
other minima are large with respect to the thermal energy. The upper panel shows
the trajectory followed by the system under the action of a metadynamics bias. A
Gaussian of width δs = 0.4 and height w = 0.3 is added every 300 steps. After
∼20 Gaussians, the central minimum is filled, and the system escapes from the well
through the lowest saddle point (blue lines in Fig. 1). The second well is filled after
∼70 Gaussians (red lines). The second highest saddle point is reached after ∼100
Gaussians, and the full free energy surface is filled with a total of ∼180 Gaussians
(orange lines). After that time, the motion of the system becomes diffusive and
unbound in the region of CV space between ∼−5 and 5. The metadynamics
potential VG (Eq. 2) is represented at different times in Fig. 1, middle panel. The
lower panel of Fig. 1 reports the sum of VG and of the external potential (thick black
line). Clearly, as the simulation proceeds, VG iteratively compensates the underlying
potential.

This provides a hint of the two different manners in which metadynamics can be
used:

• It can be used to escape free energy minima (Laio and Parrinello 2002), namely,
to find the lowest free energy saddle point out of a free energy minimum. In
this case, metadynamics could be stopped as soon as the walker exits from the
minimum and starts exploring a new free energy minimum. In Fig. 1, this happens
after ∼20 Gaussians are placed.

• It can be used to explore a region in the CV space including two or more
free energy minima and reconstruct the free energy surface. In this case, the
simulation could be stopped when the motion of the walker becomes diffusive
in this region. In Fig. 1, this happens after ∼180 Gaussians are placed.

The basic assumption of metadynamics is that VG (s, t) defined in Eq. 2 after a
sufficiently long time provides an estimate of the underlying free energy:

VG(s, t) ∼ −F(s)+ C(t). (3)

where C(t) depends on time but not on the collective variables s. This equation
states that an equilibrium quantity, namely, the free energy, can be estimated by
a non-equilibrium dynamics in which the bias potential is changed continuously,
every time a new Gaussian is added. Equation 3 was postulated heuristically in
Laio and Parrinello (2002), based on the behavior observed in model systems.
For instance, in the example of Fig. 1, it is clear that the sum of F and VG

after ∼180 Gaussians is approximately a constant. For an atomistic system in
which the potential depends on several coordinates, the free energy is the result
of a complex dimensional reduction; Eq. 3 can be qualitatively understood in the
limit of very small w. In this limit, VG(s, t) varies slowly, and the probability to
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Fig. 1 Upper panel: trajectory of a one-dimensional system evolved by a Langevin equation
on the three-minima potential represented in the lower panel. The dynamics is biased with a
metadynamics potential VG as defined by Eq. 2. The parameters are δs = 0.4, w = 0.3, and
τG = 300. Middle panel: time evolution of the metadynamics bias potential VG. Blue line, VG as
when the first minimum is filled and the system escapes to the second minimum; red line, VG as
when also the second minimum is filled; orange line, VG when the entire profile is filled and the
dynamics becomes diffusive. Lower panel: time evolution of the sum of the metadynamics potential
VG and of the external potential, represented as a thick black line. (After Laio and Gervasio 2008)

observe s is always approximately proportional to exp
[
− 1

T
(F (s)+ VG(s, t))

]
.

If the function F(s) + VG(s, t) has some local minimum, s will preferentially
be localized in this minimum. It is therefore likely that some Gaussians will be
added there until the minimum is filled. Let us consider instead the case in which
F(s)+ C(t) ∼ −VG(s, t) in a region Ω (s). The probability will be approximately
constant in this region, and the new Gaussians will be placed in a random location.
Hence, if w → 0, the only corrugations in the free energy that are not flattened
by the dynamics will be of the order of the size of the newly added Gaussians. If
the dynamics is continued keeping the value of w fixed, more and more Gaussians
will be added, and corrugations of a size of the order of w will appear in different
locations.
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From this qualitative discussion, we can draw a few important observations,
which, as we will show, are at the basis of all the approaches which allow obtaining
from metadynamics an estimate of the free energy.

• The bias potential defined in Eq. 2 at finite w provides only an approximate
estimate of the free energy, since every new Gaussian adds a corrugation to the
profile.

• When the dynamics is diffusive in a region of CV space, the corrugations appear
randomly in different positions (see Fig. 1). A more accurate estimate of the free
energy can be obtained by taking the time average of the bias potential. This
manner of estimating the free energy will be discussed in Sect. 3.

• An alternative manner of obtaining an accurate estimate of the free energy is
reducing iteratively the value of w, in such a way that the size of the corrugations
becomes smaller and smaller. In Sect. 4, we will show that this simple idea
can be embedded in a powerful conceptual framework, called well-tempered
metadynamics, which allows estimating the free energy exactly.

3 The Bias Potential as a Dynamic Variable

We first describe a procedure for estimating the free energy based on taking the time
average of the bias potential defined in Eq. 2. In order to understand in more detail
why this can be done, let us consider the case in which the system evolves following
an overdamped Langevin dynamics:

dx = −βD∇V dt +√2DdW (t) (4)

where dW (t) is a (possibly multivariate) Wiener process and D is the diffusion
coefficient. The evolution of this system under the action of metadynamics is
modeled adding a history-dependent term:

dx = −βD∇
(
V (x)+

ż t

0
dt ′g

(
S (x) , s

(
t ′
)))

dt +√2DdW (t) (5)

where g
(
s, s′

)
is a kernel that specifies how fast the metadynamics potential

changes. In the normal implementation, g is a Gaussian of width δs and height
w/τG (see Eq. 2):

g
(
s, s′

) = w

τG
exp

(
−
(
s − s′

)2

2δs2

)

Equation 5 describes a non-Markovian process in coordinate space. In fact,
the forces acting on the CVs depend explicitly on their history. Due to this non-
Markovian nature, it is not clear if, and in which sense, the system can reach a
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stationary state. In Bussi et al. (2006b) a formalism was introduced which allows to
map this history-dependent evolution into a Markovian process in which the history-
dependent potential itself is considered a dynamic variable. Indeed equation 5 can
be written as

dVG (s, t) = g (s − s (t)) dt (6)

dx = −βD∇
(
V (x)+

ż

dsδ(s − S(x))VG(s, t)

)
dt +√2DdW(t) (7)

These equations are fully Markovian, i.e., the state of the system at time t + dt

depends only on the state of the system at time t , if one assumes that the state of the
system is not defined by the coordinates x alone but by the coordinates and the bias
potential VG (s). In other words, the bias potential should be considered a dynamic
variable, whose evolution is coupled to the evolution of the coordinates as implicit
in Eq. 7. Under the action of the dynamics, the configuration of the system (x, VG)

follows a trajectory and samples a probability distribution P (x, [VG]) where the P

is an ordinary function of the coordinates x and a functional of VG (s).
In Bussi et al. (2006b), it was shown that if the dynamics of the CVs is

adiabatically decoupled from the dynamics of the other coordinates, in the limit of
long time P converges to a Gaussian in functional space, centered on the negative
of the free energy −F (s). The expected deviation of VG (s, t) from −F (s)+C(t),

ε =
√〈

(VG (s)+ F (s))2〉, can be estimated explicitly. The exact expression of the
error is rather complex and depends on the dimensionality and on the boundary
conditions in CV space. Approximately, for a one-dimensional metadynamics in a
region of size S (Laio et al. 2005),

ε ∼ Cd

√
Swδs

βDτG
(8)

where Cd is a constant that depends only on the dimensionality. Thus, VG deviates
from −F (s) + C by fluctuations that grow with the square root of the Gaussian
height w, with the Gaussian width δs, and with the inverse of the diffusion
coefficient D.

This is illustrated in Fig. 2 in which the results obtained integrating numerically
Eq. 5 for four different profiles F (s) are shown. The average value of VG (s, t) +
F (s) is represented as a continuous line in all the four profiles and is constant in
all the explored region. The standard deviation of VG, approximately estimated by
Eq. 8, is independent on the free energy profile.

These examples illustrate clearly that, if metadynamics is used to compute the
free energy, the history-dependent potential at a single time VG (s, t) should not be
used as a free energy estimator, even if the dynamics of the CVs is adiabatically
decoupled. Indeed, VG is by construction affected by statistical errors. However,
as suggested by Eq. 7, VG should be considered a dynamics variables, and all the
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computed over 1000 independent trajectories is represented as a dashed line, with the error bar
estimated as standard deviations. The metadynamics parameters are δs = 0.1 and w/τG =
4×10−4. We also have D = 0.0005 and T = 1, and the CVs satisfy reflecting boundary conditions
in a region of length 8. (After Laio et al. 2005)

profiles VG (s, t) are equally reliable estimates of the free energy up to a constant.
Thus, as first proposed in Micheletti et al. (2004), after the entire free energy
landscape has been filled, the best possible estimate of the free energy is the time
average of all the profiles. More precisely, if tF is the time at which the CV starts
diffusing in all the relevant region (possibly fixed by the appropriate boundary
conditions, see Sect. 3.1) and ttot is the total simulation time, the best estimate of
the free energy is

− V̄G (s) = − 1

ttot − tF

ż ttot

tF

VG (s, t) dt (9)

Similarly to an average of a standard observable in ordinary molecular dynamics or
Monte Carlo, the standard deviation of −V̄G from the free energy decays to zero
with the square root of ttot − tF . The prefactor is determined by the autocorrelation
time τcorr of the history-dependent potential:
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ε2(s) = (
V̄G (s)+ F (s)

)2 ∼ τcorr

ttot − tF
(10)

The error on the free energy estimated by Eq. 9 is conveniently evaluated by
block analysis. For example, using NB blocks, one divides the time interval [tF , ttot]
in NB nonoverlapping intervals of the same size. One then computes the average of
VG (s, t) restricted to each block. Since the free energy is always defined modulo an
irrelevant constant, one chooses this constant in such a way that the average on the
domain in which metadynamics is performed of all the block averages is equal to
zero. Denoting by V̄ α

G with α = 1, . . . , NB the averages on the blocks, the error is
then estimated as

ε2(s) = 1

N2
B

NB∑

α=1

(V̄ α
G(s)− V̄G(s))2 (11)

Like in normal block analysis, one should then repeat this calculation with different
NB -s and consider the error estimate meaningful if the result is approximately
invariant with respect to this choice.

It is important to remark that Eqs. 9 and 10 have been demonstrated rigorously
only if the dynamics is adiabatically decoupled in the CVs (Bussi et al. 2006b).
However, these equations have been proved to hold numerically in systems in which
this condition is violated, in particular a Ising model in which metadynamics is
performed using as a CV the magnetization (Crespo et al. 2010) and a peptide in
water solution (Marinelli et al. 2009). We are not aware of a molecular system in
which a systematic deviation of the estimator in Eq. 9 from the free energy has been
reported.

3.1 Boundary Conditions

In order to take the average over different profiles in Eq. 9, it is necessary that the
dynamics of the CV is bound in a finite region of CV space, in such a way that
the history-dependent potential can reach a stationary state. This can be achieved
by restraining the dynamics in the region of choice by a suitable external potential.
For example, if one wants to estimate the free energy profile for a distance smaller
than 5 Å, one can add a harmonic potential acting on the CV when it becomes larger
than 5. However, introducing a potential restraining the dynamics in a finite region
is not sufficient for reaching a stationary state for the dynamics of VG. Indeed,
metadynamics simulations typically take advantage of a finite Gaussian width to
fill the free energy surface quickly. Adding more and more Gaussians can induce
systematic errors at the boundaries of CV space (whether natural or artificially
imposed): these errors are due to the fact that a sum of finite width Gaussians cannot
accurately reproduce the free energy profile where the derivative of the free energy
is very high (or infinite, in the case of a sharp boundary). At the beginning of the
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simulation, these errors are small and are usually overlooked, but at long times
they can become important, preventing the dynamics from reaching a stationary
condition. These systematic errors close to the CV boundary can be eliminated in at
least three different manners.

The first (and simplest) procedure consists in setting the force deriving from the
history-dependent potential equal to zero beyond the boundary (Baftizadeh et al.
2012). If, for example, a restraining potential is active for s > sw, one still updates
the history-dependent potential according to Eq. 2, but one then sets to zero the
forces coming from VG if the system is beyond the boundary. In this way, the force
on the system for s < sw comes from metadynamics and molecular interactions.
For s > sw, it comes from the restraining potential and the molecular interactions.
Using this procedure, the history-dependent potential VG reaches a stationary state,
and its time average in Eq. 9 becomes meaningful. This average value converges to
the negative of the free energy everywhere, except in a region close to sw, of size
of the order of the Gaussian width δs. This procedure is simple and efficient, but it
works only if the CV is one dimensional.

Another procedure for correcting the systematic errors that is accurate even close
to the boundary is described in Crespo et al. (2010). In this procedure, if the system
is in s, close to a boundary located in sw, one extra Gaussian is added outside the
boundary, in a position 2sw−s, specular to s with respect to the boundary. The scope
of this extra Gaussian is iteratively imposing that, in a suitably interval around sw,

VG(sw − s, t) ≈ 2VG(sw, t)− VG(sw + s, t) (12)

This property ensures that, at stationary conditions, the history-dependent potential
is approximately linear close to the boundary, but it does not impose the value of its
derivative, which is iteratively determined by the thermodynamic bias. In practice,
this condition is implemented as follows. If |s − sw| < χ , the additional Gaussian
has a height w. χ is a free parameter that is normally chosen equal to the Gaussian
width. If |s − sw| > χ , the height of the extra Gaussian is given by

(VG(sw − s, t)− 2VG(sw, t)+ VG(sw + s, t)) y(sw − s) (13)

where the function y(x) =
(

1+
(

sw−s
4χ

)10
)−1

is approximately one for x < 4χ

and goes to zero for x > 4χ . This ensures that VG goes smoothly to zero
in the unphysical region. The procedure can be straightforwardly generalized to
multidimensional CVs, but it leads to small systematic error at points near the joint
boundaries of multiple CVs (Michael and de Pablo 2013).

A third approach for correcting the systematic errors at the boundaries was
introduced in Michael and de Pablo (2013) and is possibly the most general,
since it works in multiple dimensions and in domains of any shape. Consider a
metadynamics performed in a finite domain Ω in arbitrarily many dimensions.
The idea is modifying the Gaussian form of the bias potential in such a way
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that, when the dynamics is at convergence, adding a new bias potential does not
alter on average the free energy estimator. When metadynamics is at convergence
in the region Ω , the probability of observing the system in a point s ∈ Ω is
Pconv(s) = 1/VΩ = 1/

ş

Ω
ds. One possible form of bias potential satisfying this

property is

g̃(s, s′) = w
g(s − s′)VΩ

ş

Ω
ds′g(s − s′)

(14)

where g(s − s′) = exp
(
− (s−s′)2

2δs2

)
. Indeed, it is straightforward to prove that

ş

Ω
ds′Pconv(s

′)g̃(s, s′) = w for all the possible choices of s. This condition
automatically ensures that the bias potential becomes asymptotically well behaved
as soon as the dynamics becomes diffusive in Ω .

4 Well-TemperedMetadynamics

In this section it is described an alternative approach for obtaining a reliable
estimator of the free energy, called well-tempered metadynamics. The idea at the
basis of this approach is reducing iteratively the height of the Gaussians w. We will
show that this framework allows deriving an exact estimator of the free energy, valid
also at finite simulation time, namely, while w �= 0.

The algorithm discussed in the previous section is a truly non-equilibrium
algorithm, where the bias potential acting on the system is modified at a finite rate.
For this reason, it is not true that F(s) + VG(s, t) = C(t). As discussed above,
the free energy can be empirically estimated from the time average of VG(s, t),
defined in Eq. 9. An exact relationship between VG(s, t) and F(s) can be obtained
if the rate at which the bias potential is modified is suitable decreased as the
simulation progresses. The first algorithm exploiting this idea is well-tempered
metadynamics (Barducci et al. 2008). Here, the update rule for the potential is
modified as follows:

VG(S (x) , t) = w
∑

t ′ = τG, 2τG, · · ·
t ′ < t

exp

(
−VG(S (x) , t ′)

kB�T

)

exp

(
−

d∑

α=1

(
Sα (x)− sα

(
t ′
))2

2δs2
α

)
(15)

where �T is an additional parameter that has the units of a temperature. Note that
often instead of �T , one sees the equivalent parameter γ = T + �T

T
in literature

where T is the temperature of the simulation. γ is called bias or biasing factor.
Clearly, by setting �T = ∞, one recovers non-tempered metadynamics. However,
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choosing a finite value of �T , the rate at which the bias potential grows decreases
with time. It has been shown that with this choice the rate decreases proportionally
to one over the simulation time and makes the bias converge exactly provided that
the simulation is sufficiently long (Barducci et al. 2008; Dama et al. 2014). The

choice of including a “tempering factor” exp
(
−VG(S(x),t ′)

kB�T

)
that depends on the

value of S has an interesting consequence. In fact, it can be shown that the potential
converges to

VG(s, t) = − �T

T +�T
F(s)+ C(t) , (16)

that is an a priori tunable fraction of the original free energy profile. In the limit
where �T is vanishingly small, plain (unbiased) molecular dynamics is recovered.
For a finite �T , the residual barriers will make the system sample a probability

distribution proportional to exp
(
−F(s)

kBT

)
exp

(
�T

T+�T
F(s)
kBT

)
= exp

(
− F(s)

kB(T+�T )

)
,

which corresponds to increasing the temperature of the sampled CV. Thus, the
effect of well-tempered metadynamics is similar to that of other non-equilibrium
methods (VandeVondele and Rothlisberger 2002; Rosso et al. 2002; Maragliano
and Vanden-Eijnden 2006) but is obtained with a quasi-equilibrium procedure. The
influence of the choice of �T on the sampled distribution can be seen in Fig. 3. In
short, the consequences of the well-tempered algorithm are twofold:

• The bias potential converges, due to the one-over-time schedule.
• The bias potential does not tend to cancel completely barriers but rather to

partially compensate them.

These two factors can also be decoupled, and it is possible to design an algorithm
where the potential converges rigorously but also cancels exactly the underlying
free energy landscape (see, e.g., the globally tempered algorithm discussed in Dama
et al. 2014).

It is interesting to observe that the one-over-time schedule of well-tempered
metadynamics is commonly used in stochastic optimization problems, since it
allows minimization to converge without remaining stuck. Interestingly, in the
stochastic optimization literature, a common recipe is to estimate the parameters
from their time average during the optimization procedure. In the case of well-
tempered metadynamics, this would amount in using the time average of the bias
potential in order to estimate the free energy profile, as it is commonly done in non-
tempered metadynamics (see above). Whereas this is not strictly necessary, it can be
done in order to decrease the numerical noise of the estimator. We also notice that
computing the free energy profiles from the bias potential and comparing results
for different simulation lengths might be misleading. Similarly to a cumulative
average, such an estimator will converge by construction. In order to estimate errors,
reweighting procedures in combination with block analysis are more reliable (see
Sect. 4.1).
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Fig. 3 Panels (a–c): Representative trajectories obtained using well-tempered-metadynamics for
different choices of �T (see text for definition) represented in the (φ, ψ) space for alanine
dipeptide in vacuum. Green dots represent the visited conformations. Colors indicate the free
energy profile. Panel (d): Estimate of the free energy difference between two metastable minima
as a function of the simulation time. The estimate, obtained from the bias potential using Eq. 16,
converges to the correct value. (After Barducci et al. 2008)

A simple interpretation of the fact that, in a well-tempered metadynamics
simulation, the distribution of the CV at long times is not flat is the following. Since
the prefactor for the accumulated Gaussians depends on the value of S, Gaussians
of different heights are placed in different regions of the CV space. In order to
reach a stationary distribution, it is thus necessary that the system spends more
time in regions where small Gaussians are added and less time in regions where
large Gaussians are added. This idea can be pushed further and used to convert
metadynamics in an algorithm that is not designed to flatten completely (as in
non-tempered metadynamics) or partially (as in well-tempered metadynamics) the
histogram of the CVs but rather to enforce a predefined distribution (White et al.
2015; Marinelli and Faraldo-Gómez 2015). This application departs from the usual
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scope of metadynamics simulations, which is enhancing sampling, and allows this
technique to be used, for instance, to enforce experimental distributions (White et al.
2015; Marinelli and Faraldo-Gómez 2015; Gil-Ley et al. 2016). Notably, it can
be shown that this approach is equivalent to a maximum entropy approach (Pitera
and Chodera 2012) where the variables of which the average is constrained are the
populations of each of the bins in the enforced distribution.

A further comment about the well-tempered formulation of metadynamics is
that it is easy to see that the conventional estimator for the free energy Eq. 3 is,
in the limit of Gaussians with a small width, completely equivalent to this umbrella
sampling relation:

F(s) = −kBT logN(s)− VG(s) (17)

Here N(s) is the histogram accumulated along the biased trajectory. This latter
expression has however a fundamental advantage from the practical standpoint,
namely, that it can be used also in the following cases (Branduardi et al. 2012):

• When the width of the Gaussians is too large to represent features of the free
energy landscape.

• When one is willing to analyze a variable that is not equivalent to the one biased
during the metadynamics simulation (reweighting), as it will be discussed in the
next section.

These cases should be treated with some care. In the first case, if the free energy
landscape contains significant barriers that can only be compensated by adding
narrow Gaussians, clearly those barriers will not be sampled correctly. The second
case is even more critical: if the analyzed (and not biased) variable displays
significant barriers that were not compensated by a bias potential, its distribution
might be very difficult to converge. A detailed analysis of finite width corrections
to free energy estimation in well-tempered metadynamics was recently provided in
Tiwary et al. (2015a).

4.1 Reweighting fromWell-TemperedMetadynamics

The reweighting operation in metadynamics is one of its many useful features as
it allows projecting probability densities on arbitrary CVs without having to repeat
the simulation. As discussed in previous sections, in metadynamics one constructs a
time-dependent bias V (S(x), t) as a function of a low-dimensional CV S(x). Here
x denotes the configurational coordinates. By assuming that the evolution of V is
very slow and that the system is thus at equilibrium, at time t the biased probability
distribution for x is given by
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P(x, t) = e−β[U(x)+V (S(x),t)]
ş

dx e−β[U(x)+V (S(x),t)] = P0(x) e
−β[V (S(x),t)−c(t)] (18)

where U(x) is the potential energy of the system (Tiwary and Parrinello 2014),
P0(x) is the unbiased Boltzmann probability density, and the function c(t) is defined
as

c(t) = 1

β
log

ş

dse−βF(s)

ş

dse−β(F (s)+V (s,t))
(19)

As shown in Tiwary and Parrinello (2014) and Valsson et al. (2016), c(t) can be
calculated by substituting the running estimate of F(s) (Tiwary and Parrinello 2014)
into Eq. 19:

c(t) = 1

β
log

ş

ds exp
{[

γ
γ−1βV (s, t)

]}

ş

ds exp
{[

1
γ−1βV (s, t)

]} . (20)

Here γ is the bias factor introduced previously. Using Eq. 20 in Eq. 18 , we can then
easily calculate the distribution of any generic observable O(x) over the unbiased
ensemble from the metadynamics trajectory through

〈O(x)〉0 =
〈
O(x)eβ[V (S(x),t)−c(t)]〉 . (21)

It is also possible to derive a similar relation that is valid in the case where only
the orthogonal variables (not biased) are sampled at equilibrium, provided that an
independent estimate of the free energy as a function of the biased CVs P̃0(s) is
provided. Namely, one can construct an estimator of the unbiased probability P̃ (x)

as

P̃ (x) = P̃0(S(x))
ş

dx′ δ(S(x′)− S(x))
P (x) (22)

It is interesting that this reweighted distribution is, among all the possible distribu-
tions, the one that is closest to the distribution observed during the simulation and at
the same time results in a marginal probability as a function of s that is identical
to P̃0(s), in a maximum entropy spirit (Pitera and Chodera 2012; White et al.
2015; Marinelli and Faraldo-Gómez 2015). By replacing the free energy estimator

in Eq. 16, one obtains P̃0(s) ∝ e
− F(s)

kBT ∝ e
VG(s)

kBT
T+�T
�T where VG(s) is the final bias

potential. Similarly, it is possible to notice that the denominator in Eq. 22 is the
histogram of the CV as observed during the metadynamics simulations, which, in

well-tempered metadynamics, is proportional to e
− V (s)

kB�T (Barducci et al. 2008). By
straightforward algebra, one can obtain the following estimator:



27 Metadynamics: A Unified Framework for Accelerating Rare Events. . . 581

P̃ (x) ∝ e
V (S(x))
kBT P (x) (23)

Averages of arbitrary variables can be computed as

〈O(x)〉0 =
〈
O(x)eβ[VG(S(x))]〉
〈
eβ[VG(S(x))]〉 (24)

where the bias potential at the end of the trajectory should be considered. This
scheme has been proposed in Branduardi et al. (2012) to analyze simulations
performed with Gaussian potentials larger than the typical features of the simulated
landscape but can be used to reweight any CV.

A third option for reweighting has been introduced in an earlier work Bonomi
et al. (2009a), although it is less practical than the two methods discussed above
since it requires accumulating joint histograms for the biased and non-biased CVs.

It is interesting to compare the two alternative schemes presented in Eqs. 21
and 24. In the latter, the weight of each snapshot only depends on the value of
the biased CVs for that specific snapshot, whereas in the former it depends on the
specific form of the bias potential at the time when the snapshot was collected.
This means that Eq. 24 is practical when analyzing a posteriori a trajectory, since
one is not required to synchronize the history-dependent potential with the saved
trajectory. However, Eq. 21 is the only option for on-the-fly analysis. The two
procedures are expected to provide equivalent results in the long time limits,
but performances of the two methods might be different if the simulation is not
fully converged. This connects to a powerful yet not very widely used aspect of
metadynamics and its self-diagnostic features. There are different schemes to obtain
estimates of the converged free energy from a metadynamics run. While agreement
in the estimates made using these different schemes is not a sufficient condition
to judge the convergence of metadynamics, it clearly is a necessary condition. We
thus encourage the user to make use of these different estimators – which are all
implemented in a seamless and easy-to-use manner in PLUMED (Tribello et al.
2014) – for judging the quality and reliability of the free energy estimate made in
metadynamics.

An important property of reweighting methods is that they basically allow
free energies to be computed directly from histograms. These histograms can be
compared across as-independent-as-possible fractions of the simulated trajectory
(e.g., first half vs second half) or, to rigorously quantify the statistical error, using
a block analysis. Clearly, results from different blocks will be consistent only if the
same metastable states have been repeatedly visited.

4.2 Kinetic Rate Constants fromWell-TemperedMetadynamics

One of the recent and very powerful developments in well-tempered metadynamics
has been the demonstration of how to obtain unbiased kinetic properties from biased
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metadynamics simulations of processes with very high barriers. Here we summarize
the key ideas in this approach. We mention its requirements for applicability and
how one may ascertain a posteriori whether or not these requirements have been
met. We then mention some recent powerful applications of this approach to obtain
timescales for difficult rare event problems such as drug unbinding and liquid
droplet nucleation.

The method to obtain unbiased timescales from suitably biased metadynamics
simulations has been called “infrequent metadynamics” (Tiwary and Parrinello
2013; Salvalaglio et al. 2014; Tiwary and Berne 2016b), as it involves periodic
but infrequent biasing of a CV in order to increase the probability of escape from
metastable states where the system would ordinarily be trapped for extended periods
of time. If the biased CV can demarcate all relevant stable states of interest and if
the time interval between biasing events is much longer compared to the transition
path time spent in the ephemeral transition state (TS) regions, then one increases
the probability of not adding bias in the TS regions and thereby not corrupting the
dynamics during barrier crossing. This in turn preserves the sequence of transitions
between stable states that the unbiased trajectory would have taken. The acceleration
α of transition rates through biasing which directly yields the true unbiased rates can
be obtained directly (i.e., without having to converge the free energy) through the
use of the following expression which was first proposed by Grubmueller in the
context of conformational flooding and independently by Voter in the context of
hyperdynamics (Voter 1997; Grubmüller 1995):

α = 〈eβV (s,t)〉t (25)

Here s is the CV being biased, V (s, t) is the bias experienced at time t , and the
subscript t indicates averaging under the time-dependent potential.

Clearly such an approach will work only if (a) there is a clean timescale
separation between the time spent in the TS and in the basins and (b) the chosen
CV does actually demarcate between all stable states of interest. One can verify a
posteriori if these requirements were met by checking if the cumulative distribution
function for the transition times obtained by the use of a time-dependent biasing
potential corrected using Eq. 25 indeed conforms to a time-homogeneous Poisson
distribution (Salvalaglio et al. 2014). By the use of methods such as SGOOP (Tiwary
and Berne 2016c, 2017; Tiwary 2017), it has been shown how one can construct
a CV which is likely to meet these requirements on the basis of preliminary
metadynamics runs using a sub-optimal CV.

5 The Choice of CVs

Similar to other methods that reconstruct the free energy in a set of generalized
coordinates, the reliability of metadynamics is strongly influenced by the choice of
the CVs. Ideally the CVs should satisfy three properties:
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• They should clearly distinguish between the initial state, the final state, and the
intermediates.

• They should describe all the slow events that are relevant to the process of
interest.

• Their number should not be too large; otherwise it will take a very long time to
fill the free energy surface.

Clearly, the second and third condition might be mutually exclusive, and in many
cases it can be very difficult to find a “good” set of CVs.

Biasing explicitly all “slow” degrees of freedom is important for (a) the speed
at which metadynamics converges to a reliable free energy and (b) the possibility
to reconstruct unbiased rate constants from metadynamics. As per the proof of
Dama et al. (2014), one may think that in principle metadynamics is agnostic
to the precise choice of CVs being used for sampling. That is, even with sub-
optimal choices of CVs which have some overlap with all slow degrees of freedom,
metadynamics will converge to the right free energy. However in practice it is
extremely useful to improve the choice of CVs before attempting to converge a
metadynamics simulation. A simple metadynamics run on an idealized model can
be enlightening. Consider the Z-shaped two-dimensional free energy depicted in
Fig. 4. If a metadynamics simulation is performed biasing only CV1 and neglecting
CV2, the simulation, which is started in basin B, is not able to perform in due
time a transition toward A, and metadynamics goes on overfilling this minimum.
A transition is finally observed only when the height of the accumulated Gaussians
will largely exceed the true barrier height. This behavior will continue indefinitely
without ever reaching a situation in which the free energy grows evenly like in the
example of Fig. 1. A similar behavior is often observed in practical applications of
metadynamics to real-world problems and is a strong indication that an important
CV is missing. In general, one can check a posteriori if the description provided
by the chosen set of CVs is accurate, for instance, by using transition path
sampling techniques (Dellago et al. 1998, 2002) or by performing a committor
test (see Dellago et al. 1998, 2002) or, when using metadynamics to obtain kinetic
properties, by performing a Kolmogorov-Smirnov test as proposed in Salvalaglio
et al. (2014). Even without performing a specific check, an hysteretic behavior
in the free energy reconstruction always signals the lack of a relevant CV. If,
instead, the free energy grows “smoothly,” it is likely that the set of variables is
adequate.

From the above discussion, it should be clear that it is not easy to a priori
identify the correct set of CVs for a given problem at hand, and in many cases,
it is necessary to proceed by trial and error, attempting several metadynamics
simulations with different combinations of variables. That said, a large number of
methods drawing from diverse inspirations have been proposed over the years that
aim to systematically identify a good set of CVs for any given problem. Given the
wide range of different ideas that have been used to design these methods, it would
take another chapter to discuss them in a complete manner. As such, here we just
point out some of the references that the interested reader is encouraged to look
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Fig. 4 The effect of neglecting a relevant degree of freedom. Left side: 2D Z-shaped potential.
Right side: the projection of the free energy on s1 and a typical metadynamics bias generated using
only s1 as CV. Transitions from A to B are not described by s1 causing strong hysteresis in the
reconstructed free energy. (After Laio and Gervasio 2008)

up (Tribello et al. 2012; Rohrdanz et al. 2013; Tiwary and Berne 2016c, 2017; Sultan
and Pande 2017; McCarty and Parrinello 2017).

6 Multi-replica Metadynamics Simulations

In this section, we discuss methods that can be used to combine metadynamics
simulations performed simultaneously on separate replicas.

6.1 Multiple-Walkers Algorithms

The history-dependent potential used in metadynamics substantially depends on the
histogram of the visited conformations in the CV space. The simulation can be
straightforwardly parallelized by accumulating this potential in parallel. In other
words, many simultaneous simulations could be used to update the bias potential
that is then felt by all of them. The first application of this principle is the so-called
multiple-walkers algorithm (Raiteri et al. 2006). In the non-tempered formulation
of metadynamics, it has been shown that the error in the estimator of the free energy
profile is independent of the number of walkers (Raiteri et al. 2006; Bussi et al.
2006b). Thus, a large number of walkers can be used to speed up the filling of
the potential without affecting the final accuracy of the result. Walkers should only
communicate when a new Gaussian is added to the bias potential (i.e., typically
every few hundred steps), so that communication does not usually introduce any
significant overhead. However, one should make sure that the walkers are initialized
as independently as possible from each other. Similar properties are found when
using well-tempered metadynamics (Barducci et al. 2008).
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Interestingly, this idea has been recently extended to the case where series
of similar (though not identical) systems are studied. For instance, if the free
energy landscape associated to a protein-ligand binding should be evaluated for
a number of different ligands that are similar to each other, then simulations can
be performed simultaneously and the bias potential constructed by using also
the information obtained with the other ligands. This scheme has been called
altruistic metadynamics (Hosek et al. 2016) and requires the definition of an
additional parameter, the altruistic factor, which weights the contribution of different
simulations to a given bias potential. In its original formulation, the accuracy of the
result is slightly deteriorated for large values of this altruistic factor. However, we
suggest that by using reweighting schemes where the strict relationship between
bias potential and free energy landscape is not required (as, e.g., in Branduardi et al.
2012) systematic errors might be decreased or eliminated.

6.2 Parallel TemperingMetadynamics

Parallel tempering metadynamics (PTmetaD) (Bussi et al. 2006a) is another
approach based on running several metadynamics in parallel on different replicas.
Multiple replicas of metadynamics are run at different temperature. An exchange
of the coordinates of two replicas at adjacent temperatures is attempted with a
fixed frequency, like in ordinary parallel tempering (Merlitz and Wenzel 2002). The
acceptance ratio for an exchange involving replicas i and j is

P = min

{
1, exp

[
(βj − βi)(V (xj )− V (xi))

+ βi(VGi
(s(xi))− VGi

(s(xj )))+ βj (VGj
(s(xj ))− VGj

(s(xi)))
]}

where V is the potential energy, xi are the coordinates of replica i, βi is the inverse
temperature of replica i, and VGi

is the metadynamics potential of replica i before
the exchange. If the move is accepted, the coordinates are exchanged.

In this approach, the free energy profile as a function of the same collective
variable s is filled in parallel at all temperatures. Combining parallel tempering
and metadynamics in this way improves the convergence of the free energy even
when the CV is nonoptimal. Indeed, parallel tempering improves the sampling
over the degrees of freedom not explicitly included in the CV space. At the
same time, the approach converges more quickly than ordinary parallel tempering,
since metadynamics enforces the exploration of high free energy configurations,
ultimately leading to a more reliable estimate of the height of the free energy
barriers.

A similar scheme can be used to combine solute tempering (Camilloni et al.
2008) or other variants of parallel tempering with metadynamics.
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6.3 Bias Exchange

One of the reasons that make the choice of the CVs in metadynamics delicate
is that they cannot be more than two or three in practical applications. Indeed,
the time required to escape from a local minimum in the free energy surface is
determined by the number of Gaussians that are necessary to fill the well. This
number is proportional to (1/δs)d , where d is the number of CVs that are biased.
Hence, the efficiency of the method decreases exponentially with the number of
dimensions involved. This applies both to ordinary metadynamics and to its well-
tempered version.

A possible manner of addressing this problem is offered by bias exchange (Piana
and Laio 2007) (BE), another technique based on the combined use of replica
exchange and metadynamics. In this approach, one runs in parallel, at the same
temperature, a large number NR of metadynamics, with a bias potential acting
on different CVs. The bias in each replica typically acts only on a single CV.
Therefore the free energy wells can be filled efficiently. If all the variables were
relevant for describing the process and the replicas were run independently, all
the metadynamics would be affected by hysteresis, like in the example in Fig. 4.
In bias exchange, at fixed time intervals, one attempts to swap the bias potentials
between pairs of replicas. Let us denote by sk , k = 1, · · · , NR the NR different
CVs biased on the NR replicas. For two replicas of coordinates xi and xj and
bias potentials VG (sk (xi) , t) and VG

(
sl
(
xj
)
, t
)
, an exchange move consists in

swapping VG (sk, t) and VG (sl, t). The move is accepted with a probability:

P = min

{
1, exp

[
β(VG(sk(xi), t)+ VG(sl(xj ), t)

−VG(sk(xj ), t)− VG(sl(xi), t))
]}

In this way, each replica is sequentially biased by a bias potential acting on one
CV at a time. When a swap is accepted, the bias potential acting on two replicas
changes direction. Simultaneously, the values of the CVs involved in the swap
perform a jump. If, for example, an exchange between replica 1 and 2 is accepted,
the CV biased on replica 1 will jump from s1(x1) to s1(x2), where x1 and x2 are the
coordinates of the atoms in replica 1 and 2 before the exchange. These jumps greatly
help decorrelating the dynamics and have the effect of improving the accuracy of
the free energy estimate, greatly reducing the hysteresis. Of course, hysteresis can
be eliminated only if all the relevant variables are included and are biased by at
least one replica. Thus bias exchange does not eliminate the necessity of selecting
before the simulation an appropriate set of CVs. Still, the approach allows treating
simultaneously much more CVs than normal metadynamics. Therefore, it is of
great help in setting up a simulation assuming as little as possible on the reaction
mechanism.
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It should also be remarked that in BE the bias potential grows in order to
compensate NR one-dimensional projections of the free energy. In order to obtain
multidimensional projections, it is necessary to combine data from all the replicas.
This can be done using the WHAM method (Kumar et al. 1995) as explained
in detail in Marinelli et al. (2009). A graphic user interface has been developed
specifically to perform this task (Biarnés et al. 2012). In a typical BE simulation
performed with a few tens of replicas, one might be able to reconstruct the free
energy as a function of a few selected CVs. Reconstructing the free energy as
a function of all the biased CVs is usually not possible (since it would require
accumulating a histogram on a very high-dimensional space). In addition, although
it is possible to compute free energies with respect to a posteriori chosen non-biased
CVs, one should be aware that some of them might be hindered by non-flattened
barriers and, as such, might not be sampled correctly.

The procedure discussed above to combine results from the multiple metadynam-
ics simulations used in BE can be used to combine arbitrarily biased simulations.
For instance, a bias-exchange-like procedure was used in Cunha and Bussi (2017)
where each replica was running a metadynamics simulations biasing the distance
between a ion and a possible binding site. However, in each replica, the coordination
of the ion with the other binding sites was hindered by a repulsive potential. This
straightforward generalization shows that arbitrary potentials can be added guided
by the knowledge of the system and by the results of preliminary calculations and
later reweighted using the WHAM method.

6.4 Other Ways to Bias a Large Number of CVs

Bias-exchange metadynamics is a commonly used algorithm that allows a large
number of CVs to be biased and has been used already in a large number
of applications. We here discuss two alternative approaches that emerged more
recently.

The first approach is parallel-bias metadynamics (Pfaendtner and Bonomi
2015). This approach can be seen as a single-replica variant of the bias-exchange
metadynamics protocol. Here, a possibly large number of CVs are defined that are
alternatively biased (one at a time) during the simulation. An integer index keeps
track of which is the currently biased CV and is evolved using a MC procedure. This
procedure resembles the simulated-tempering scheme (Marinari and Parisi 1992),
where a single simulation is performed and the temperature of the system is allowed
to change in order to enhance sampling. In simulated-tempering simulations, an
iterative procedure is required in order to force the simulation to spend the same
amount of time at each temperature (see, e.g., Park and Pande 2007). On the
contrary, in parallel-bias metadynamics, this effect is an implicit consequence of the
self-healing character of the metadynamics bias potential. Indeed, if the simulation
spends a large fraction of time biasing one specific CV, the bias potential acting
on that CV will grow and will thus favor a transition such that a different CV will
be biased. It should be said that in its practical implementation, the extra variable
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corresponding to the index of the biased CV is usually marginalized so that it is not
necessary to track it. As a consequence, the bias potential acting on the system reads

VPB(s, t) = − 1

β
log

∑

α

(
−βV

(α)
G (sα, t)

)
(26)

where V
(α)
G is the bias potential accumulated based on the history of variable sα .

The parallel-bias metadynamics approach can be used in a multiple-walkers fashion
(see Sect. 6.1) in order to exploit a parallel machine. The advantage with respect
to traditional bias-exchange metadynamics is that the number of required replicas
becomes effectively independent of the number of biased CVs.

An alternative procedure has been called replica exchange with CV temper-
ing (Gil-Ley and Bussi 2015). Here, multiple CVs are biased concurrently in
each simulation. More precisely, bias potentials aimed at compensating barriers on
individual CVs are constructed as if these barriers were independent of each other.
Since concurrently biasing many variables leads to sampling a conformational space
that is very different from the original Boltzmann distribution, unbiased results are
recovered by constructing a ladder of replicas with progressively increasing values
of the bias factor (see Sect. 4). The resulting bias potential on replica i is thus

V
(i)
RECT (s, t) =

∑

α

(
V

(γi ,α)

G (sα, t)
)

(27)

where V
(γi ,α)

G is a potential accumulated based on the history of variable sα and
using a bias factor γi . The γi corresponding to the lowest replica should be set
equal to 1 in order to allow unbiased results to be recovered, whereas the one
corresponding to the highest replica should be large enough for the important
energy barriers to be crossed. Similarly to other replica exchange-based methods,
the acceptance rate should take into account the different bias potentials acting on
different replicas. Importantly, the accuracy of the final result is independent of the
assumption that CVs are independent of each other. We notice that, at variance with
parallel-bias metadynamics and bias-exchange metadynamics, replica exchange
with CV tempering concurrently accelerates all the chosen CVs. At variance with
bias-exchange metadynamics, the number of required replicas scales with the square
root of the number of CVs. However, concurrently biasing too many CVs could
also be counterproductive since it might enlarge too much the extension of the
conformational space that should be sampled in order to converge a simulation.
On the other hand, it might be more effective when biasing simple variables that are
not well correlated with the overall barriers hindering the free energy landscape.
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7 Discussion and Outlook

Metadynamics was introduced in 2002 as a method to escape and sample free energy
minima in complex molecular systems. Over the years, it has grown significantly
in its variants and in range of applications and have been implemented in several
software plugins and analysis tools (Bonomi et al. 2009b; Henin et al. 2009; Fiorin
et al. 2013; Giorgino et al. 2017; Sidky et al. 2018). In this book chapter, we
have attempted to summarize the state of the art concerning the different forms
and formulations of metadynamics, with a focus on the theory rather than the
applications. We did not discuss all problems in full detail – for example, the
methods for automatic construction of the CVs – an important problem at the center
of several efforts in the community. In this final section, we conclude with our
outlook on some dos and don′ts concerning metadynamics in its traditional use for
estimating free energy profiles, drawing from the experience of the three authors.
Our discussion mainly concerns two vital points regarding any metadynamics
simulation which we have already discussed in this chapter and would like to
emphasize here: (a) the choice of the appropriate variant of metadynamics according
to the dimensionality of the CV space and (b) ascertaining when the sampled
distribution has converged and the simulation is meaningful. The discussion in this
chapter is clearly limited for space reason. Interested readers can refer to the many
available reviews dedicated to the metadynamics method (Laio and Gervasio 2008;
Barducci et al. 2011; Bussi et al. 2015; Valsson et al. 2016; Tiwary and van de Walle
2016).

• In general, well-tempered metadynamics is an apt choice if the number of
CVs is less than or equal to 3. This approach requires choosing one extra
parameter with respect to ordinary metadynamics (the CV temperature �T ) that
allows a tuning of the explored region, and its convergence has been proved
rigorously (Barducci et al. 2008; Dama et al. 2014). When using more than
3 CVs, bias exchange or other methods based on the idea of reconstructing
multiple low-dimensional potentials should be preferred. Indeed, accumulating
statistics in a high-dimensional space to construct a bias potential capable to
enhance sampling could be virtually impossible. In cases when one-dimensional
projections of the free energy are barrierless, non-tempered metadynamics should
be preferred, since the quasi-static bias potential obtained at the end of a
well-tempered metadynamics simulation would likely not help in enhancing
transitions and the simulation could remain stuck. On the contrary, non-tempered
metadynamics would effectively increase the diffusion coefficient in the CV
space by forcing it to sample equivalently all the points.

• Standard metadynamics should always be used together with the appropriate
boundary conditions on the CV, as described in Sect. 3.1. The free energy
should be always estimated as a time average of the history-dependent potential,
controlling the accuracy by block analysis.
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• In metadynamics simulations (as much as in all molecular dynamics simu-
lations), it is very important to check if transitions between “reactants” and
“products” are actually observed during the simulation. In case a very small
number of such transitions are detected, one should carefully assess the conver-
gence and the reproducibility of the results. Special attention should be paid in
analyzing replica exchange simulations, where continuous trajectories should be
analyzed (in opposition to the discontinuous trajectories corresponding to each
replica).

• When analyzing well-tempered-metadynamics, it is important to recognize that
the changes in the bias potential are decreasing by construction since the
Gaussian height decreases as one over time. Computing the free energy profile
from the bias potential and comparing results for different simulation length
might be misleading if there are not multiple transitions observed as discussed
above. Performing a block analysis on a reweighting procedure can provide more
robust error estimations (see Sect. 4.1).

While in this chapter we did not discuss in detail the various applications of
metadynamics to materials modeling problems, here we would like to point out
that the metadynamics approach has been extensively used from the very beginning
for modeling materials and predicting their properties. For example, the approach
was used to characterize the properties of bulk materials, in their crystalline and
amorphous phases (Donadio et al. 2005; Donadio and Bernasconi 2005; Di Pietro
et al. 2006; Behler et al. 2008; Hu et al. 2012; Pietrucci et al. 2010), and to
study nucleation (Trudu et al. 2006; Quigley and Rodger 2008; Piaggi et al.
2017; Salvalaglio et al. 2015, 2016; Fitzner et al. 2017; Mendels et al. 2018),
charge diffusion (Laino et al. 2007; Iannuzzi and Parrinello 2004; Vartak et al.
2013), interaction of small molecules with surfaces or porous materials (Palafox-
Hernandez et al. 2014; Hasell et al. 2016; Boyer et al. 2016; Munro et al. 2016; Bui
et al. 2017), role of solvent in nanoassembly (Tiwary et al. 2015b; Tiwary and Berne
2016a), and hydrogen fuel cells (Cheng et al. 2017), just to name a few. Another
field related to material science in which the approach has been applied with great
success is crystal structure prediction (Martoňák et al. 2003, 2005, 2006, 2007;
Ceriani et al. 2004; Oganov et al. 2005; Karamertzanis et al. 2008). Finally, the
method can be used for studying chemical reactions on surfaces and heterogeneous
catalysis (Ensing et al. 2006; Zipoli et al. 2004; Fleming et al. 2016; Oliveira et al.
2018; Fu and Pfaendtner 2018).

In conclusion, metadynamics has now become a standard tool in the workbox
of a practitioner interested in sampling molecular systems. Many of the original
intuitive formulations have now been demonstrated on a sound theoretical footing,
and many variants have also come up which have truly extended the applicability
of the approach. The role of intuition – especially in the choice of low-dimensional
CVs – has not yet been eliminated and possibly will never be completely gone.
A very important property of metadynamics is that, if a simulation is analyzed
correctly, it is relatively easy to identify errors due to incorrect sampling. In many
cases, problematic simulations can be used in order to choose better CVs for a next
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round of simulations. This is not true in the case of the standard umbrella sampling
protocol performed combining multiple independent restrained simulations, where
hysteresis effects are often very difficult to detect. It has also become clear now that
the infrequent metadynamics formulation can safely and self-consistently be used
to compute unbiased kinetic rate constants in a wide class of rare event systems.
We thus end on a note of optimism for the future use of metadynamics in tackling
diverse and relevant problems in science and technology.
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Abstract

At the atomic scale, condensed matter displays a fascinating variety of structural
transformation processes. Examples include phase transitions between ordered
and/or disordered structures (crystal to crystal, liquid to crystal, amorphous
to crystal, etc.), isomerization of nanoclusters, chemical reactions, protein
conformational changes, and many other phenomena. In all these cases, it is
necessary to find suitable distance metrics and collective variables in order
to analyze atomistic simulations of transformations as well as to accelerate
them with enhanced sampling techniques, yielding mechanisms and free-energy
landscapes. In this context, the present chapter illustrates approaches stemming
from the idea of watching transformations of matter as modifications of the
adjacency matrix formed by interatomic connections. The resulting tools have a
general formulation and can therefore be applied to a range of different processes
in physics, chemistry, and nanoscience.
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1 Introduction

A major challenge of computational materials science is the accurate prediction
of the transition mechanisms connecting together different structures of a same
material. These structures, both in extended solids or liquids and in nanostructures,
range from perfectly ordered to highly disordered and typically correspond to
minima separated by barriers in a free-energy landscape as a function of suitable
order parameters. Very often, it is much easier to generate in silico a large number of
putative structures than to characterize the transformation pathways between them,
and this asymmetry has important practical consequences.

A prominent example is the synthesis of new crystalline structures with desired
properties. In recent years, computational structure prediction methods (Glass
et al. 2006; Pickard and Needs 2011; Wang et al. 2012) have contributed to the
rapid increase of new predicted phases of materials, of high interest for potential
applications (see, e.g., Wilmer et al. 2012). However, at present, no general
theoretical approach has been developed to guide experiments along the possible
pathways connecting stable structures, so that synthesis remains a challenging
endeavor, slowed down by expensive trial-and-error cycles and often dominated by
kinetics rather than thermodynamics.

In principle, a powerful tool for investigating transformation mechanisms and
the corresponding energetics is provided by atomistic molecular dynamics or
Monte Carlo simulations combined with enhanced sampling techniques that accel-
erate barrier-crossing and allow the reconstruction of free-energy landscapes.
Unfortunately, available approaches for phase transitions and other structural
transformations lack transferability. In other words, the study of each particular
system and process typically requires a time-consuming preliminary optimization
of the computational setup, often involving trial-and-error and several repetitions
of the simulation. In particular, since most enhanced sampling techniques demand
to identify system-specific collective variables (CVs) to accelerate the exploration
of pathways and reconstruction of free-energy landscapes, finding suitable CVs is
often the crucial and most cumbersome step in the computational study (Pietrucci
2017). At the basic level, such CVs must be capable of distinguishing the initial and
final states of the transformation, as well as intermediate structures: from this point
of view, disordered systems can be more problematic to analyze than ordered ones,
due to the lack of evident symmetries.

Both in experiments and in silico, it is unclear, in general, how to find a
viable pathway reaching a particular poly(a)morph (or nanostructure) different from
the starting one, possibly separated by several intermediate steps. To complicate
things, metastable forms are very often involved in phase transitions (Schreiber
et al. 2017), and sometimes their kinetic stability is very high. Thus, in order to
recover the desired structure, one needs to manipulate the control parameters, e.g.,
pressure and temperature, often in a complex and delicate way that is not trivial to
guess (Radha et al. 2015). A precise understanding of transition mechanisms and
the corresponding kinetics is therefore the key to explain and control the behavior
of matter. In this chapter, some recent conceptual and practical developments are
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presented that aim to bridge the gap between structure prediction and synthetic
routes prediction, illustrated by means of different examples ranging from silicon
and carbon nanostructures to water poly(a)morphism. As mentioned at the end, this
class of methodologies can be very effective also for the study of chemical reactions
in solution.

2 RepresentingMatter Through the AdjacencyMatrix

Let us consider the possible transformation processes occurring in condensed
matter, adopting, for the latter, a broad definition including atomic aggregates like
molecules, nanostructures, liquids, and solids. These diverse systems undergo a
variety of transformations including, e.g., phase transitions, chemical reactions, or
protein conformational changes. From the viewpoint of theory and simulation, an
interesting question is whether we can find a unified way to describe in atomic
detail the transition pathways of all such different phenomena. One immediately
imagines, building upon the basic Cartesian coordinates of atoms, many possible
mathematical representations: examples are sets of distances, cell parameters (for
periodic systems), coordination numbers, symmetry indicators, dihedral angles,
root mean square deviations, etc. However, the preceding examples are typically
tailored on specific systems and transformations. Is it possible to find a general
representation, able to accurately track the detailed dynamic evolution of a wide
range of transformations?

A possible starting point is to consider a generic atomic structure as a network:
atoms are the nodes, while links can be defined based on proximity. Likewise,
structural transitions become network transformations. The advantages of this view
are its generality, encompassing many processes in condensed matter, and the
availability of the powerful graph theory toolbox. In particular, a graph of N nodes
can be represented by a N × N adjacency matrix (also called contact matrix):
aij = 1 if nodes i and j are connected and zero otherwise. The matrix contains
the detailed topology of the network. Clearly, the “connection” between atoms
appears as a somehow arbitrary concept: it can be chosen to reflect the existence
of a chemical bond (ionic, covalent, hydrogen-bond, etc.), based on energy and
electronic structure, or it can be introduced as an arbitrary property of close-enough
atoms. Both choices have merits and for its simplicity we will follow the second one
(that often is compatible with the first). In practice, it is convenient to introduce a
switching function f (dij ) of the interatomic distance, decaying smoothly from one
to zero in a chosen range of distances (an example is the Fermi-Dirac function).
The range can be inferred by inspecting pair distribution functions, e.g., so that
f differentiates bonded atomic pairs from second-shell pairs. Note that replacing
plain distances with a monotonic function of the distances preserves the same
information, except when distances are so large (or so small) that the derivative
of f is close to zero.

The resulting adjacency matrix is composed by real-valued elements aij ≡
f (dij ) ∈ [0, 1]: examples for different systems are shown in Fig. 1. In this way,
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continuous changes of atomic structure are reflected in continuous changes of the
matrix, and starting from the latter, one can attempt to construct suitable topology-
sensitive coordinates, being able to track the transformations of matter in a rather
general way. Besides an analysis tool, such coordinates can be also exploited within
enhanced sampling methods to accelerate activated processes.

When adopting the adjacency matrix as a basic representation of matter, we are
limited by at least two hypotheses. The first is that we can safely neglect large
distances between pairs of atoms (where f tends to zero), hoping that they do
not play an important role in distinguishing structures or that they are effectively
included in the shorter-range network structure. The second hypothesis is that
the invariance of aij under operations leaving the set of all distances unchanged
does not introduce ambiguity. Even if counter-examples violating these hypotheses
exist – like enantiomer molecules, where a mirror operation may lead to different
interactions with biological systems – the vast majority of structural transformations
of matter leaves a clear mark in the adjacency matrix. For this reason, several
proposals have been made to employ graph theory in order to classify atomic
structures and related physicochemical properties (see, e.g., Manolopoulos and
Fowler 1992; Ivanciuc and Balaban 1998; Giuliani et al. 2008; García-Domenech
et al. 2008; De Corato et al. 2013). In the following sections, graph theory-inspired
coordinates are introduced not only for classification purposes but especially to
study dynamical transformation pathways.

Note that, in principle, effective CVs correspond to good approximations of
the ideal reaction coordinate: the latter can be defined, for the transition between
two metastable states A and B, by means of the committor function pB(R)

(or equivalently pA(R)) associating each configuration R in the full 3N -dimensional
space the probability to reach B before A (or equivalently A before B). The
committor function varies smoothly between zero and one, assuming a value of
0.5 at the transition state; therefore, it indicates the progress of the reaction, and it
can be estimated at selected configurations to test the quality of a CV (Bolhuis et al.
2002; Best and Hummer 2005; Weinan and Vanden-Eijnden 2010; Pietrucci 2017).

3 Social PeRmutation INvarianT (SPRINT) Coordinates

This section provides a first example of topology-based coordinates: within the
sandbox of nanoclusters isomerization, it illustrates the philosophy behind the
invention and exploitation of such tools, and it motivates further developments in
the direction of phase transitions and chemical reactions. The reader will hopefully
be indulgent if here the adjective “social” is attributed, somehow playfully, to
coordinates sensitive to the network of neighbors surrounding a given atom.

The physical properties of nanoscale clusters strongly depend on their pre-
cise structure, which unfortunately is often out of reach of experimental tech-
niques (Baletto and Ferrando 2005; Billinge and Levin 2007). Simulations can thus
play an important role in exploring the thermodynamically relevant configurations.
Numerous computational strategies have been applied to determine low-energy
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geometries of atomic clusters (Woodley and Catlow 2008; Rossi and Ferrando
2009), including simulated annealing (Ballone et al. 1988; Roethlisberger et al.
1994; Roethlisberger and Andreoni 1991), genetic algorithms (Deaven and Ho
1995; Ho et al. 1998), random search (Lloyd and Johnston 1998; Saunders 2004),
basin hopping (Wales and Doye 1997), and minima hopping (Goedecker 2004;
Schoenborn and Oganov 2009) methods. As mentioned in the introduction in the
case of crystals, usually in all these techniques, the focus is on the fast generation of
candidate low-energy structures rather than on the exploration of physically relevant
transition pathways.

An alternative approach based on graph theory and on ab initio (density
functional theory (DFT)-based) molecular dynamics was introduced in Pietrucci
and Andreoni (2011) and exploits the so-called “Social PeRmutation INvarianT”
(SPRINT) coordinates. Consider the adjacency matrix aij of a nanocluster, where
the ij are all pairs of atoms: the matrix is symmetric, nonnegative, and also
irreducible when it represents a connected graph, i.e., if any pair of vertices
is connected through a path. In this case the Perron-Frobenius theorem holds:
the largest modulus eigenvalue λmax is real, positive, and nondegenerate, and
the corresponding eigenvector vmax

i has all non-zero components with equal sign
(we adopt the positive sign convention). In particular, a few very interesting proper-
ties can be shown (considering here binary adjacency matrix for simplicity):

• λmax carries global information on the network: it grows with the number of
bonds and lies between the average and the maximum coordination number.

• vmax
i carries information about both the short- and long-range topology of the

atomic network surrounding atom i: for any positive integer M

vmax
i = 1

(λmax)M

∑

j

(
aM

)
ij

vmax
j (1)

where (aM)ij is the number of walks of length M connecting i and j . Equation 1
shows the “social character” of vmax

i (Bonacich 1987; Bryan and Leise 2006;
Porto et al. 2004).

These observations suggest the possibility to combine the largest eigenvalue and
corresponding eigenvector into the following definition of topological SPRINT
coordinates:

Si =
√
N λmax v

max,sorted
i ; i = 1, 2, . . . , N (2)

where N is the number of atoms and the ith component must be taken after sorting
the eigenvector from its smallest to its largest component. It is this sorting operation
that renders the vector S invariant with respect to the N ! permutations of the labeling
of N identical atoms (and thus also with respect to point-group symmetries). Clearly,
the constraint S1 ≤ S2 ≤ . . . ≤ SN strongly reduces the volume of the space to be
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Fig. 2 Examples of simple
graphs with each vertex
labeled by the SPRINT
topological coordinate Si in
Eq. 2. Clearly the coordinate
of a vertex is sensitive both to
the number of neighbors and
to the connectivity of the
neighbors themselves

explored: this is a very desirable property in connection with enhanced sampling
techniques. On the contrary, a permutation changes the order of rows and columns
in aij . An additional advantage is the substantial dimensional reduction from
N(N − 1)/2 elements of the contact matrix to N elements only.

Figure 2 illustrates how the SPRINT coordinates work on a simple example,
distinguishing topologically inequivalent atoms and carrying information about
both local coordination and the longer-range network topology. In order to track
dynamical transitions in a smooth way (as discussed in the previous section), aij
is conveniently generalized from a binary matrix to a real-valued one, by means of
a switching function f (dij ). Note that the gradual decay of the switching function
implies that Si coordinates contain information not only on the cluster topology but
also, to some extent, on the 3D geometry.

It is important to remark that SPRINT coordinates are not a rigorous solution
to the problem of resolving isomorphic graphs from truly different ones: in other
words, different graphs can share the same SPRINT coordinates. Empirically,
however, this degeneracy appears infrequent in small, physically meaningful nan-
oclusters, where so far these coordinates proved very effective (see below). Instead,
different crystal phases sharing a same number of first neighbors for all atoms
(e.g., silica) cannot be efficiently resolved by this approach: a solution is presented
in next section. It is interesting to note how the principal eigenvector of the
adjacency matrix inspired remarkable applications in very different fields, including
the compact description of protein structures (Porto et al. 2004), the centrality
concept in social networks (Bonacich 1987), and, last but not least, the tremendously
successful PageRank algorithm of Google – based on the so-called 25 billion dollars
eigenvector (Bryan and Leise 2006).
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An interesting application of SPRINT coordinates consists in using them as CVs
in combination with metadynamics (Laio and Parrinello 2002; Laio and Gervasio
2008). In the latter technique, a molecular dynamics simulation is supplemented
with a history-dependent bias potential constructed as a sum of repulsive Gaussians
added in CV space at regular time intervals, with the aim of escaping rapidly
from local free-energy minima. SPRINT coordinates are implemented in the plugin
PLUMED (Tribello et al. 2014), providing enhanced sampling capabilities to many
MD codes. As shown in Pietrucci and Andreoni (2011), in the benchmark case of
Lennard-Jones clusters, the simulation, starting from an arbitrary initial structure,
is able to quickly explore, among many other isomers, also the global minimum
(an icosahedron for 55 atoms and a face-centered truncated octahedron for 38
atoms). An appealing feature of this approach is that the exploration proceeds in a
fully blind way, without the need of any educated guess about relevant symmetries
or transition mechanisms. Furthermore, the spread of the Si values easily allows to
distinguish high-symmetry from low-symmetry structures: in particular, the passage
from a nondegenerate set of SPRINT values to a highly degenerate one marks a
disorder-to-order transition. Note that since a large number of CVs are biased at
once (one per atom), an unconventional situation in metadynamics applications, the
algorithm is somehow in the spirit of local elevation (Huber et al. 1994). The reason
is that the aim of this kind of simulations is the quick exploration of a large number
of structures with different topologies, not the reconstruction of a low-dimensional
free-energy landscape. Alternative CVs for metadynamics simulations of cluster
isomerization can be found, e.g., in Tribello et al. (2011) and Rossi and Baletto
(2017).

Silicon clusters represent a more realistic system, often taken as benchmark for
DFT-based algorithms designed to search for the global minimum. Also for this
system, SPRINT-based ab initio metadynamics at room temperature started from
arbitrary initial structures lead to the fast and efficient exploration of a multitude
of low-energy isomers (Pietrucci and Andreoni 2011). In the case of Si10, the
consensus lowest-energy structure (tetra-capped trigonal prism) (Ballone et al.
1988; Lyon et al. 2009) is quickly explored, among others. Increasing the cluster
size, a richer variety of structures can be observed. For example, in the case of
Si16, five independent simulations generated hundreds of different geometries over
a cumulative time of 400 ps. Geometry optimization identified 16 different isomers
within only 45 meV/atom, including a lowest-energy minimum in agreement with
previous studies (Goedecker et al. 2005; Yoo and Zeng 2005). Already at this small
size, an impressive diversity of structural motifs lie within a narrow energy range,
from fused units (e.g., B, C, D, M) to capped (deformed) cores like the tri- or
tetra-capped trigonal prism (A, E, F, G, I, K), from symmetric configurations (high
SPRINT degeneracy) to quasi-amorphous (low degeneracy), as shown in Fig. 3.

In a study focused on structural transition mechanisms, SPRINT-based ab initio
metadynamics was employed to study the spontaneous transformation of small
graphene nanoflakes into spheroidal cages (Pietrucci and Andreoni 2014), as
observed in transmission electron microscopy experiments (Chuvilin et al. 2010).
A set of simulations at different temperatures allowed to identify complex mul-
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Fig. 3 SPRINT coordinates distribution for Si16 cluster geometries of increasing energy. Atoms
are colored from red to blue for increasing magnitude of the corresponding coordinates. The more
a structure is symmetric, the higher the level of degeneracy of the coordinates. (Adapted from
Pietrucci and Andreoni 2011)

tistep pathways and discovered without any human bias ingenious transformation
processes (Fig. 4). Among them, the zipping of a planar flake into a nanocone,
the passage from a “bowl” to a cage with the help of carbon chains, and the
formation of a pair of pentagons embedded into hexagons (the pyracylene unit,
typical of fullerenes) by expelling a dimer from a four-membered ring. The latter
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Fig. 4 Progressive evolution of a graphene flake toward a three-coordinated carbon cage during an
ab initio metadynamics simulation based on SPRINT coordinates. Pyracylene units are highlighted
in red and blue. (See Pietrucci and Andreoni 2014 for details)

transformation, in particular, is highly nontrivial, pointing to the exploration power
of this technique, and is fully compatible with available experiments, being the
inverse process of a well-known synthetic route to C62 from the C60 fullerene (Qian
et al. 2003).

A special case of search of cluster structures and related transition mechanisms
consists in exploring the possible isomerization reactions of organic molecules: e.g.,
in Pietrucci and Andreoni (2011), the possible topologies of a C4H5N molecule in
gas-phase were explored with metadynamics at room temperature. Remarkably, at
times the molecule also splits into smaller fragments that are able to recombine if
a wall – i.e., a repulsive potential – prevents very large separations, hence probing
dissociation and association reactions. Note that if the fragments remain within the
range of the switching function, the adjacency matrix does not break down into
separate blocks and the principal eigenvector components remain all positive. Note
also that, since different elements are present, sorting of the principal eigenvector
in Eq. 2 must be performed only within sets of alike atoms. The simulation could
explore a sizable list of linear and ring-like isomers, including pyrrole, and smaller
molecules like acetylene and hydrogen cyanide. A similar approach, performed
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however in a more systematic way (analyzing an ensemble of trajectories), allowed
in Zheng and Pfaendtner (2014) to reconstruct a relatively complex reaction network
for methanol oxidation, displaying analogies with the consensus network obtained
from literature. Other SPRINT applications include the study of H2SO4 · HSO−4
dimer formation in the atmosphere (Wang et al. 2016) and the kinetics of the
SN2 reaction of CH3Cl + Cl− (Fu et al. 2017). For comparison, the “ab initio
nanoreactor” method of Wang et al. (2014) squeezes together molecular species
at extreme pressure to discover reaction channels, albeit obtained under unphysical
conditions.

An important class of systems is represented by molecules or clusters embedded
into a solid matrix: in these cases, in addition to the internal degrees of freedom of
the “guest”, its possible manifold interactions with the host have also to be included
in the configuration space exploration. In Balan et al. (2016), for instance, DFT-
based SPRINT-metadynamics simulations allowed to identify the most probable
configurations of B(OH)−4 (an important proxy of past ocean pH) inside calcite and
aragonite crystals. Theoretical 11B NMR spectra of the predicted structures were
found in agreement with experimental results.

Besides enhanced sampling, a different use of topological coordinates aims at
the automatic classification of molecular topologies. The basic idea is that different
structural isomers are (usually) characterized by different SPRINT vectors that can
be directly compared to detect similarity thanks to their invariance under permuta-
tion of identical atoms. Examples are the study of complex combustion reactions
of hydrocarbons (Lai et al. 2014; Johansson et al. 2016), of the reaction network of
C3H4O explored with automated transition state search methods (Martínez-Núñez
2015), and of isomers of pure and hydrogenated silicon nanostructures (Baturin et al.
2014) explored with the USPEX structure prediction method (Glass et al. 2006).

On the other hand, as mentioned above, SPRINT coordinates have a limited
resolving power in the case of homogeneous bulk systems with uniform coordina-
tion patterns, such as pure silica or water phases, for instance. This is not surprising
given the dimensional reduction implied in the passage from the adjacency matrix
to a N -dimensional vector. The next section introduces a different set of topological
coordinates that avoid such dimensional reduction, displaying a remarkable ability
to distinguish even very similar structures of bulk materials.

4 The Difficult Case of Water Poly(a)morphism: A Simple
Metric Resolves Different Topologies

Despite the simplicity of its molecular unit, water is a challenging system, because
of its uniquely rich polymorphism (Bartels-Rausch et al. 2012), the existence
of different amorphous forms (polyamorphism), as well as predicted but yet
unconfirmed features, including an elusive liquid-liquid transition (Palmer et al.
2014) and the possible formation of plastic phases (Himoto et al. 2014). It turns
out that it is possible to define a simple metric, capturing changes in the topology
of the interatomic network as represented by the adjacency matrix aij , being
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able to differentiate water (meta)stable structures. The metric further allows to
systematically track transitions among liquid, amorphous, and crystalline forms
throughout the whole phase diagram of water: this is a crucial feature, because it
naturally leads to CVs for enhanced sampling simulations that open the possibility
of studying complex transitions like crystal nucleation from liquid or amorphous
forms at a cheap computational cost. As shown below, the formulation of the metric
and of the related CVs is very general, not specific to water, indicating applicability
to a wide range of materials and transformation processes.

Several experiments disclosed connections between stable and metastable water
phases (Mishima and Stanley 1998; Klotz et al. 2005), while simulations highlighted
the importance of metastable states in understanding the mechanism of phase
transitions and related transformations (Russo et al. 2014). A classic example is
the connection between the crystalline ice stable at ambient pressure (ice I) and
the low-density amorphous (LDA) and high-density amorphous (HDA) ices: by
compressing ice I up to 10 kbar at ≈80 K, one obtains HDA instead of ice VI
(Mishima et al. 1984), which may be transformed into LDA by decompression
of HDA at 130 K (Klotz et al. 2005) or by heating recovered HDA at ambient
pressure to beyond 130 K; (Mishima and Stanley 1998) finally ice I is recovered by
heating up LDA. Similar connections between crystalline and amorphous ices are
found in the high-pressure region of the water phase diagram, where a very-high-
density amorphous (VHDA) ice, plastic ices, and crystalline structures with complex
hydrogen-bond network (e.g., ice VII) have been observed or predicted (Amann-
Winkel et al. 2016; Himoto et al. 2014). Clearly, the experimental evolution of water
structures is a complex matter, and the observed outcomes are often determined by
kinetics rather than pure thermodynamics. In other words, the evolution strongly
depends on the detailed path followed – a trajectory in pressure, temperature,
and time variables. Water appears therefore an ideal playground for simulation
techniques able to navigate complex free-energy landscapes.

Molecular dynamics, based on realistic interatomic potentials (or, if affordable,
DFT) and accelerated by enhanced sampling techniques, is in principle able to
track such transitions. However, the CVs suitable to this task are often designed for
specific classes of structural transformations (Lechner and Dellago 2008; Martoňák
et al. 2003; Giberti et al. 2015; Haji-Akbari and Debenedetti 2015): no general
CV scheme was proved successful for a wide class of different problems, in
particular those involving disordered systems. Recently, on the other hand, several
distance metrics have been developed with the aim of distinguishing and classifying
structures of molecular or extended systems, based on atomic environment and/or
interatomic networks (Valle and Oganov 2010; Gallet and Pietrucci 2013; Pietrucci
and Martoňák 2015; Pietrucci and Saitta 2015; Zhu et al. 2016; De et al. 2016;
Piaggi and Parrinello 2017; Martelli et al. 2018; Barthel et al. 2018). In this
context, an important question is whether a given metric is able, besides classifying
locally stable structures, to also track dynamical transitions in a continuous and
accurate way.

A general and effective metric for the comparison of condensed matter structures
results from the permutation invariant vector (PIV) introduced in Gallet and
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Fig. 5 Simple system of two water molecules illustrating the definition of PIV: the upper diagonal
part of the 6×6 symmetric adjacency matrix aij (where values close to one correspond to covalent
bonds and 0.25 to hydrogen bonds) is rearranged into a vector V of 15 components. The entries
from each matrix block corresponding to O–O (in red), O–H (in yellow), and H–H pairs (in gray)
are sorted in ascending order

Pietrucci (2013) and Pipolo et al. (2017). Each configuration of the system is
associated with a vector V, while configurations A and B are compared by simply
computing the Euclidean distance between the corresponding vectors ||VA − VB ||.
The vector is built by first organizing the elements of a real-valued adjacency matrix
into the following blocks vkk′ , where kk′ indicates a pair of elements (e.g., in the
case of water, O–O, O–H or H–H, see Fig. 5):

v
ββ ′
kk′ = ckk′ f

(
3

√
Ω0

Ω

∣∣∣∣Rβk − Rβ ′k′
∣∣∣∣
)

. (3)

where Rβk is the position vector of the β-th atom of type k, with β > β ′,
k > k′; ckk′ are coefficients that introduce some flexibility (they can be set to one
for simplicity); Ω and Ω0 are the volume of the simulation box and a reference
volume, respectively; and f is, as usual, a switching function monotonically
decreasing from one to zero for increasing distance. The PIV V is finally obtained
by simply sorting the elements of each vkk′ block in ascending ordered and joining
together the blocks into a N(N − 1)/2 -dimensional vector. The sorting operation
within each block introduces invariance upon permutation of identical atoms:
with growing system size, this operation becomes computationally demanding, so
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Fig. 6 (a) Representative structures of liquid water and low-density, high-density, and very-high-
density amorphous ices. (b) Distribution of PIV distances between pairs of structures belonging to
different disordered water forms. Only oxygen atoms are included in the definition of V, and the
switching function f is focused in the range 1.0–4.5 Å. The gap between same-type and different-
type distances proves the possibility to automatically resolve the four disordered forms, e.g., by
means of cluster analysis. (See Pietrucci and Martoňák 2015 for details)

that efficient parallelization is required for high performance. The volume scaling
factor was introduced in Pipolo et al. (2017) to avoid excessive fluctuations of the
cell parameters during metadynamics simulations (see below). The choice of ckk′
coefficients depends on the application: in water, e.g., the computational burden can
often be reduced by focusing on oxygen atoms only with cOO = 1, cOH = cHH =
0 (Pietrucci and Martoňák 2015; Pipolo et al. 2017) (see Fig. 6).

The decay range of the switching function is the main parameter entering the
PIV definition, which is otherwise very general since it does not depend on specific
coordination numbers, angles, symmetries, etc. Conceptually, the switching func-
tion f is introduced to focus on a specified range of interatomic distances: short- to
medium-range distances are usually the most useful ones, as they display differences
between structures (for instance, at the level of pair distribution functions). In water,
ranges going from about 2–5 to 2–10 Å allow to resolve different phases (Pipolo
et al. 2017): since many neighbors beyond the first shell are included, the term
“adjacency matrix” is here employed in a broader sense rather than just considering
chemical bonds.

Ideally, the PIV-based metric should display (i) large distances between struc-
tures corresponding to different classes like liquid water, crystals, and amorphous
forms, (ii) small distances among independent structures within the same class
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Fig. 7 Two-dimensional maps faithfully reproducing PIV distances between structures (devi-
ations <6% for water, correlation coefficient >0.99 in the other systems) for a set of diverse
materials. The axes are arbitrary. (See Pipolo et al. 2017 for details)

(differing by thermal fluctuations or by the particular realization of the amorphous
network). As shown in Fig. 6, this is indeed the case, with a clear gap between
distances corresponding to same-type structures and different-type structures. Based
on this result, a convenient graphical representation consists in drawing a two-
dimensional diagram, or map, where each structure corresponds to a point and
where Euclidean distances between PIVs of the different structures are reproduced
with good precision (besides this requirement, the axes of the map are arbitrary).
As shown in Fig. 7, it is possible (for reasons that remain to be clarified) to draw
such maps in a faithful way for different materials, including water, silicon, iron,
and oxides, employing a simple Monte Carlo optimization of the positions starting
from random initial ones. This type of illustrations is helpful in visualizing the
configuration space of different systems (in the same spirit as alternative approaches
of Oganov and Valle 2009; De et al. 2016) and suggests that the PIV-based metric
is able to systematically distinguish different forms of a material, both ordered
and disordered ones, with ample tolerance for the choice of the switching function
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range. Further evidence in this direction comes from the analysis of 50 experimental
polymorphs belonging to 13 different materials (covalent, metallic, ionic, and
molecular), indicating in all cases the effectiveness of the metric (Pipolo et al. 2017).

5 Simulating Transitions Between Ordered and Disordered
Water Forms

The maps in Fig. 7 are suggestive of interesting possibilities: in particular, one
may wonder whether proximity of structures in the map correlates to kinetic
proximity, i.e., the existence of a transformation pathway connecting directly the
two forms without passing through the others. In the case of water, comparison
with the phase diagram and with the known preparation routes of crystalline and
amorphous phases suggests a good correlation (Pietrucci and Martoňák 2015). If
confirmed for other materials, this correspondence would allow to organize the vast
information available about crystal structures (predicted or observed) in terms of
possible transition pathways, helping to guide the experimental synthesis of new
materials with desirable properties.

From the point of view of enhanced sampling simulations, the PIV-based
metric can be employed to construct CVs able to track complex transformation
mechanisms, reconstructing the corresponding free-energy landscapes and barriers.
A straightforward recipe makes use of the so-called path CVs (Branduardi et al.
2007): given the structure of the system at a given time R(t) and a set of n reference
structures providing a (discretized) putative pathway between an initial state R1 and
a final state Rn, the variables are defined as

s(t) =
∑n

k=1 ke−λD(R(t),Rk)

∑n
k′=1 e−λD(R(t),Rk′ )

(4)

z(t) = −1

λ
log

(
n∑

k=1

e−λD(R(t),Rk)

)
(5)

with s quantifying the progress of the transformation and z the distance from the
putative path. Both are important: s allows to direct biasing forces to accomplish
the transformation, whereas z discriminates between different pathways and allows
tracking transitions to states different from the target. Note that the approach shares
similarities with the string method (Weinan et al. 2005; Maragliano et al. 2006).
The crucial ingredient is the metric D that in the following is taken simply as
the squared Euclidean distance between PIVs: D(R(t),Rk) = ||V(t) − Vk||2 (see
Eq. 3). λ is a parameter that can be conveniently set to the order of the inverse
distance between neighboring reference configurations, assuming they are equally
spaced. A much larger λ would produce very irregular and discontinuous pathways,
while a much smaller one would hamper the resolution of different phases. In
several works, path collective variables have been employed to study conformational
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changes of biomolecules (Berteotti et al. 2008; Pfaendtner et al. 2009) and chemical
reactions in gas phase (Branduardi et al. 2011; Gallet et al. 2012; Pietrucci and
Andreoni 2014), based on simple root mean square deviations between Cartesian
positions as a metric. Employing PIV-based distances, these coordinates become
an effective tool for the simulation of phase transitions. Clearly, if feasible, using
only the initial and final states as references (n = 2) amounts to a significant
simplification, removing the need for educated guesses about the transformation
mechanism: application to water, as described below, demonstrates that this can
be done, letting the system discover transition pathways without prejudice (Pipolo
et al. 2017) (see also Pietrucci and Saitta (2015) for an analogous scheme applied to
chemical reactions in solution, using the distance between coordination patterns of
selected atoms as a metric).

Figure 8 overlaps the phase diagram of a realistic model of water (TIP4P/2005
Abascal and Vega 2005) with structural transitions obtained by metadynamics and
umbrella sampling simulations (at fixed pressure and temperature) based on PIV
path CVs. A particularly interesting result is represented by the crystallization
transitions both at low and high pressure, since passing from disordered to ordered
water forms (particularly without strong supercooling) is probably one of the most
difficult tasks in the general field of molecular simulations. At low pressure, the
crystallization of ice I is obtained both from the liquid and from amorphous (LDA)
ice, in the temperature range 240–260 K around the melting point (Tm � 250 K
for the adopted interatomic potential Abascal and Vega 2005). As shown in Fig. 9,
nucleation of ice proceeds through the formation of a crystal nucleus of cubic
symmetry (Ic), ending up in a final state with either a perfect cubic symmetry or

Fig. 8 The water phase
diagram obtained in Abascal
and Vega (2005) for the
TIP4P/2005 interatomic
potential (gray) is
superimposed with
metadynamics and umbrella
sampling simulations of
phase transitions (red arrows)
between (meta)stable phases
(blue). Dashed green lines
represent pressure and
temperature variations within
a phase, obtained with
unbiased molecular dynamics
simulations. (Adapted from
Pipolo et al. 2017)
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Fig. 9 (a) Free-energy profiles, projected along the s path coordinate, for the crystallization
transitions LDA – ice I at T = 240 K and liquid – ice I at T = 260 K, both at P = 1 bar. The latter
transition appears thermodynamically unfavorable, consistently with the temperature being higher
than the melting temperature of 250 K (TIP4P/2005 potential). Umbrella sampling simulations
with N = 800 water molecules were seeded from structures extracted from a metadynamics
trajectory. The free-energy minima are arbitrarily set to zero. (b) Representative structures along
the transition pathway for LDA – ice I crystallization. Ice-like molecules, characterized by an
averaged local tetrahedral bond order parameter (Lechner and Dellago 2008) of oxygen >0.7, are
marked in blue. Snapshot c shows the ice I nucleus at its critical size. Snapshot d displays stacking-
disordered ice I, with cubic regions separated by hexagonal layers (green lines). (See Pipolo et al.
2017 for details)

made up of layers of cubic Ic and hexagonal Ih ice, consistently with experiments
finding stacking-disordered ice I (Malkin et al. 2012). At high pressure, simulations
of the VHDA–ice VII transformation lead to observe two additional metastable
configurations: a plastic phase previously proposed in Himoto et al. (2014) and
a new phase characterized by a tetragonal oxygen lattice and stacked layers of
hydrogen-bond networks. This result illustrates how the approach does not constrain
the system to sample configurations along a simple path connecting the two
reference structures but rather allows it to follow complex mechanisms and discover
new free-energy basins.

The possibility to study crystallization at (or even above) the melting tempera-
ture, in the bulk, without any seeds and with the realistic TIP4P/2005 water model
indicates that very challenging transformations can be simulated both in favorable
and unfavorable thermodynamic conditions, with a moderate computational cost
(of the order of 100 ns for metadynamics and of 1000 ns for umbrella sampling
simulations) (Pipolo et al. 2017). The PIV-path-CVs approach helped also pro-
viding new insight in the problem of heterogeneous ice nucleation, reconstructing
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mechanisms, and free-energy landscapes. In Fitzner et al. (2017), ice nucleation
was simulated using the mW model of water (Molinero and Moore 2009) and two
different fcc model surfaces: the latter give rise to different precritical nucleation
clusters that have an important effect on kinetics by controlling which ice polymorph
will form. Since different substrates lead to the formation of different ice crystals,
heterogeneous classical nucleation theory turns out to be unsuitable to describe the
process.

6 Conclusions

In the attempt to find a general description of transformation processes at the atomic
scale, the adjacency matrix corresponding to the graph of interatomic connections
proves a fruitful starting point for structural comparison metrics as well as enhanced
sampling coordinates. A distinct feature of this approach is its simple and universal
character, as a broad range of condensed matter systems becomes amenable to
study in a unified way, addressing ordered and disordered structures on the same
footing. In particular, besides the case studies on nanostructures and bulk materials
presented in the preceding sections, another important and rapidly growing field of
application of such topology-based techniques corresponds to chemical reactions
in solution (Pietrucci and Saitta 2015), traditionally difficult to simulate in a
robust way as attested by the lack of systematic studies. Among desirable future
developments, an important challenge consists in obtaining a more direct access
to the kinetic properties of transformation processes (as of today, most enhanced
sampling techniques are focused on time-less free-energy landscapes): eventually,
the subtle interplay between thermodynamics and kinetics is the key to understand
and control the experimental behavior and synthetic routes of materials. In this
context, the possibility to construct in a systematic way good approximations of
the ideal reaction coordinates represents a significant step forward.

Index terms structural transformations, phase transitions, crystallization, nanos-
tructures, disordered systems, chemical reactions, water phase diagram, enhanced
sampling, metadynamics, umbrella sampling, free-energy landscapes, structural
comparison, structural fingerprints, distance metrics, collective variables, reaction
coordinates, graph theory, adjacency matrix, topology of interatomic bond network.
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Abstract

Atomistic simulations can give a microscopic understanding of materials. How-
ever, their use is generally limited by the time scales that can be accessed as
normally this falls short of what is needed to properly sample the complex free
energy landscapes that characterize most material systems. Advanced methods
are thus needed to enhance the sampling and overcome this time scale problem.
Variationally enhanced sampling is one such approach based on identifying the
important slow degrees of freedom and enhancing their fluctuations through the
introduction of an external bias potential. The method is based on a variational
principle that shows how the bias potential can be constructed by minimizing a
convex functional, which brings a lot of flexibility. We introduce the theory and
methodology of variationally enhanced sampling and discuss various novel and
innovative applications and extensions.

1 Introduction

Atomistic simulations constitute an important part of material modeling allowing
for a microscopic understanding of their behavior. However, it is well known that
such simulations generally suffer from severe limitations as the time scales that can
be accessed fall short of what is needed. A case in point is nucleation of a crystal,
in most cases the nucleation process occurs on much longer time scales than can
be simulated in practice. This comes from the fact that free energy landscapes of
material systems are characterized by many metastable states that are separated by
barriers much larger than the thermal energy, leading to kinetic bottlenecks. This
problem is of course quite general and comes up anywhere atomistic simulations
are used in chemistry, physics, and biology. It is therefore of great importance to
develop advanced methods that lead to an enhanced sampling of phase space.

A large and important class of such enhanced sampling techniques is based
on identifying the important slow degrees of freedom and in different manners
enhancing their fluctuations, allowing the system more easily to migrate between
metastable states (Valsson et al. 2016). In practice this is done by considering so-
called collective variables (CVs) which are coarse-grained descriptors that depend
on the atomic coordinates and properly distinguish between the metastable states
of the system. CV fluctuations are then enhanced by adding a bias potential that
acts in the space spanned by the CVs. The origin of this idea can be traced to
umbrella sampling introduced by Torrie and Valleau (1977) where they employed
a static bias potential obtained by trial and error. Constructing a suitable bias
potential that effectively enhances CV fluctuations is far from straightforward as
this implies knowledge about the underlying free energy landscape which is nearly
always unknown a priori and the very object that one is interested in obtaining.
Methods have thus been developed that construct the bias on-the-fly during the
simulation. Among such techniques are, for example, local elevation (Huber et al.
1994), adaptive biasing force (Darve and Pohorille 2001), Wang-Landau algorithm
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(Wang and Landau 2001), energy landscape paving (Hansmann and Wille 2002),
Gaussian-mixture umbrella sampling (Maragakis et al. 2009), and metadynamics
(Laio and Parrinello 2002; Barducci et al. 2008), to name a few.

Variationally enhanced sampling (VES) (Valsson and Parrinello 2014) is a
method in this spirit that we introduced in 2014. What makes VES interesting is that
it is based on a variational principle that shows how an effective bias potential can
be constructed by minimizing a convex functional. This brings a lot of flexibility,
for example, in the form of the bias potential that can be employed. Furthermore,
it is possible to tailor in which way the CV fluctuations are enhanced. We will here
introduce the theory and methodology of VES and discuss its various applications
and extensions.

2 Theory andMethodology of Variationally Enhanced
Sampling

2.1 Collective Variable-Based Enhanced Sampling

We consider a system described by coordinates R and potential energy function
U(R). The Boltzmann distribution, which one wants to sample with molec-
ular dynamics (MD) or Monte Carlo simulations at a given temperature T ,
is defined as P(R) = e−βU(R)/

ş

dR e−βU(R) where β = (kBT )−1 is the
inverse temperature. One can introduce some set of collective variables s(R) =
(s1(R), s2(R), . . . , sn(R)) that depend on R and are able to properly distinguish
between the relevant metastable states. The equilibrium probability distribution
associated with the CVs is defined as

P(s) = 〈δ (s− s(R))〉 =
ż

dR δ(s− s(R)) P (R). (1)

The free energy surface (FES) associated with the CVs is defined as the logarithm
of the probability distribution,

F(s) = − 1

β
logP(s), (2)

where we can ignore immaterial constants. Under the influence of an external bias
potential V (s(R)) that acts in the space spanned by the CVs, the biased probability
distribution is

PV (s) = 〈δ (s− s(R))〉V =
ż

dR δ(s− s(R)) PV (R)

= e−β[F(s)+V (s)]
ş

ds e−β[F(s)+V (s)] ∝ P(s) e−βV (s) (3)
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where PV (R) = e−β[U(R)+V (s(R))]/
ş

dR e−β[U(R)+V (s(R))] is the biased Boltzmann
distribution.

2.2 Variational Principle to Enhanced Sampling

Variationally enhanced sampling is based on a variational principle given by a
functional Ω[V ] that depends on an external bias potential V (s) (Valsson and
Parrinello 2014). The functional is defined as

Ω[V ] = 1

β
log

ş

ds e−β[F(s)+V (s)]
ş

ds e−βF(s) +
ż

dsp(s)V (s), (4)

where p(s) is a predefined probability distribution that is assumed to be normalized.
It can be shown that Ω[V ] is invariant under the addition of a constant to V (s),
namely, Ω[V + k] = Ω[V ], and that it is a convex functional, i.e., fulfills

Ω

[
V1 + V2

2

]
≤ 1

2
Ω[V1] + 1

2
Ω[V2]. (5)

The minimum of Ω[V ] is given up to a constant by

V (s) = −F(s)− 1

β
logp(s). (6)

It follows from the convexity of Ω[V ] that this is the global minimum. By inserting
this bias potential into Eq. (3), which gives PV (s) = p(s), one can see that at the
minimum the CVs are sampled according to the distribution p(s). In other words,
the distribution p(s) is a so-called target distribution that determines the sampling
of CVs that is obtained when minimizing Ω[V ].

The variational principle implies that one can construct an effective bias potential
by minimizing Ω[V ] and that the FES F(s) can be directly obtained from the bias
potential that minimizes Ω[V ]. Furthermore, by appropriately choosing the target
distribution, one can tailor the way in which CV fluctuations are enhanced. As
discussed below there is considerable freedom in how this can be done.

The functional Ω[V ] has close relation to the concepts of cross entropy, relative
entropy, and the Kullback-Leibler (KL) divergence (Rubinstein 1999; Shell 2008;
Bilionis and Koutsourelakis 2012; Zhang et al. 2014). This can be seen by rewriting
the functional as (Invernizzi et al. 2017)

βΩ[V ] = DKL(p||PV )−DKL(p||P) = Hx(p||PV )−Hx(p||P), (7)

where DKL(P ||Q) = ş

dsP(s) log P(s)
Q(s) is the KL divergence (or relative

entropy) between two probability distributions P(s) and Q(s) and Hx(P ||Q) =
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− ş

dsP(s) logQ(s) is the cross entropy. Thus, minimizing Ω[V ] is equivalent to
minimizing the KL divergence or the cross entropy between the biased distribution
PV (s) and the target distribution p(s).

2.3 Minimization in Practice

In practical applications the variational principle is utilized by assuming some
functional form for V (s;α) that depends on a set of variational parameters
α = (α1, α2, . . . , αK). In this way, one goes from an abstract functional mini-
mization to that of the multidimensional function Ω(α) = Ω[V (α)]. During the
minimization of Ω(α), the variational parameters α are iteratively updated by using
some recursion formula that utilizes the gradient ∇Ω(α). The elements of the
gradient ∇Ω(α) are defined as

∂Ω(α)

∂αi

= −
〈
∂V (s;α)

∂αi

〉

V (α)

+
〈
∂V (s;α)

∂αi

〉

p

, (8)

where the expectation values are obtained under the influence of the bias potential
V (s;α) or over the target distribution p(s), respectively. If needed, the Hessian
matrix H(α) can be defined in similar manner as

∂2Ω(α)

∂αi ∂αj

=−
〈
∂2V (s;α)

∂αi ∂αj

〉

V (α)

+
〈
∂2V (s;α)

∂αi ∂αj

〉

p

+ β cov

[
∂V (s;α)

∂αi

,
∂V (s;α)

∂αj

]

V (α)

. (9)

Since ∇Ω(α) is intrinsically noisy due to statistical averaging, it is necessary to
use stochastic optimization methods. In particular the averaged stochastic gradient
descent algorithm introduced by Bach and Moulines (2013) has proven a good
choice so far. In this algorithm the variational parameters α are updated according
to the following recursion equation

α(n+1) = α(n) − μ
[
∇Ω(ᾱ(n))+H(ᾱ(n))

[
α(n) − ᾱ(n)

]]
, (10)

where μ is a fixed step size and the gradient and Hessian H(ᾱ(n)) are obtained using
the averaged parameters ᾱ(n) = 1

n+1

∑n
k=0 α(k) (i.e., the bias potential depends on

the averaged parameters). The averaging leads to a smooth convergence of the bias
and the estimated FES. Furthermore, it allows for the usage of rather short sampling
time for each iteration, on the order of few thousand MD steps. It should be noted
that this averaged stochastic gradient descent algorithm is not a unique choice and
other stochastic optimization methods could be used. In fact, it is an interesting
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research question to develop and benchmark new optimization algorithm to perform
the minimization of Ω(α).

It has proven quite useful to utilize multiple walkers (Raiteri et al. 2006) within
VES. In this scheme multiple copies of the system that share the same bias potential
are run in parallel. The averages needed for the gradient and the Hessian are then
obtained by combined sampling of the different copies. Furthermore, in the same
way as for metadynamics (Bussi et al. 2006), VES can be used together with parallel
tempering or other replica exchange techniques that help with sampling missing
slow degrees of freedom.

2.4 Linear Basis Set Expansion

The most natural way to represent the bias potential is to consider a linear expansion
in some set of basis functions fk(s),

V (s;α) =
∑

k

αk fk(s). (11)

Most applications so far have employed basis functions constructed as tensor
product of one-dimensional orthogonal basis functions such as Fourier series
(i.e., plane waves) for periodic CVs and Legendre or Chebyshev polynomials for
nonperiodic CVs. For example, for two CVs the bias potential is written as

V (s1, s2;α) =
∑

i,j

αi,j gi(s1) hj (s2), (12)

where gi(s1) and hj (s2) are some one-dimensional orthogonal basis functions. A
relatively modest number of basis functions is needed in most cases as FESs are
generally smooth functions.

Although the basis function types considered so far have performed quite
satisfactory, it is interesting to consider other types and see how they perform. For
example, one idea would be using localized basis functions like splines or wavelets.
Along this direction, Demuynck et al. (2017) employed VES with one-dimensional
bias potential written as a sum of Gaussians, though the performance of this choice
was not compared to other basis function types.

2.5 Target Distribution

A strength of variationally enhanced sampling is its flexibility in choosing the target
distribution p(s), which allows to tailor the sampling of CVs. Generally one wants
to employ a target distribution where the sampling is enhanced as compared to the
unbiased distribution P(s). The simplest choice is to consider a uniform target
distribution, in other words try to completely flatten the sampling in CV space.
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However, this is often rather non-optimal as it leads to sampling regions high in
free energy that are generally not of interest. Instead, it is usually better to take
inspiration from well-tempered metadynamics (Barducci et al. 2008) and consider
the so-called well-tempered distribution given by

p(s) = [P(s)]1/γ

ş

ds [P(s)]1/γ =
e−(1/γ )βF(s)

ş

ds e−(1/γ )βF(s) , (13)

where γ > 1 is an adjustable parameter called the bias factor that controls how
much the sampling is enhanced as compared to the unbiased distribution P(s). In
this way it is possible to enhance CV fluctuations in a controllable manner and focus
the sampling toward the lowest free energy regions that are most relevant. This
distribution can also be viewed as sampling on an effective free energy landscape
where the barriers have been reduced by a factor of γ . Within VES the dependence
on the a priori unknown F(s) is bypassed by using a simple iterative scheme
(Valsson and Parrinello 2015).

In general using the well-tempered distribution as target distribution is the most
appropriate choice. However, in specific cases it can be useful to use other choices,
for example, to localize the sampling on a specific region in CV space or to enforce
restraints on the CVs.

2.6 Reweighting

From the bias potential it is possible to directly estimate the FES as a function of
the biased CV using Eq. 6. However, it should be noted that by reweighting it is also
possible to get the FES as a function of any other set of CVs or to get the unbiased
expectation values of any observable that depends on the atomic coordinates.

From the relation P(R) ∝ PV (R) eβV (s(R)), one can write the unbiased average
of an observable O(R) as

〈O(R)〉 =
〈
O(R) eβV (s(R))

〉
V〈

eβV (s(R))
〉
V

, (14)

where the expectation values on the right-hand side are obtained in the biased
ensemble. In other words, each configuration obtained in the biased ensemble
is weighted by the value of the bias acting on it. It is possible to employ this
reweighting even during the VES optimization if the bias potential is changing
sufficiently slow that it can be considered as quasi-stationary.

The FES as a function of any set of CVs s′ can be obtained by using the relation

F(s′) = − 1

β
log

〈
δ(s′ − s′(R))

〉 = − 1

β
log

〈
δ(s′ − s′(R)) eβV (s(R))

〉

V
, (15)



628 O. Valsson and M. Parrinello

which in practice is obtained by computing a reweighted histogram. It can happen
that the form of the bias potential employed is efficient enough to enhance the
sampling but might not have sufficient variational flexibility to fully represent the
FES. In such cases one can use reweighting to obtain the FES for the biased CVs. In
any case, it is a good general policy to obtain the FES by reweighting and compare
that to the one obtained directly from the bias potential, significant difference
between the two might indicate that there are some problems with the simulation, for
instance, the CVs are poorly chosen or the basis set size is not sufficient to describe
the FES.

2.7 Software Implementation

Variationally enhanced sampling is available through the VES code (http://www.
ves-code.org) which is a module for the PLUMED 2 molecular dynamics plug-in
(Tribello et al. 2014). This makes it possible to use VES with all the MD codes that
can be interfaced with PLUMED 2 and make use of its vast library of CVs. The
VES code is open-source and is officially integrated into PLUMED since version
2.4. We refer the reader to the manual of PLUMED 2 to see the features available in
the VES code.

3 Applications and Extensions of Variationally Enhanced
Sampling

Variationally enhanced sampling has already been used in various applications
(Piccini et al. 2017; Piaggi et al. 2017; Palazzesi et al. 2017; Demuynck et al. 2017;
Perego et al. 2018; Yang and Parrinello 2018). However, the most intriguing aspect
of VES is that it is based on a variational principle. This can be used in novel and
innovative ways by employing clever choices for the bias potential and the target
distribution. In some sense VES can be viewed as a framework for developing new
ideas and methods within enhanced sampling and free energy calculations. Already
there are numerous interesting applications of VES that utilize the variational
principle in this direction. We will briefly describe them in the following.

3.1 Free-Energy Flooding for Kinetic Rate Calculations

Obtaining kinetic properties of rare events from molecular simulations is of great
practical interest, for example, how much time on average the system takes to go
from one metastable state to another. Inspired by the success of using metadynamics
to obtain kinetics of rare events from biased simulation (Tiwary and Parrinello
2013), an extension of VES has been developed for this purpose.

http://www.ves-code.org
http://www.ves-code.org
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The main assumption is that the transition state should be free of bias. It can then
be shown that following relations holds between the physical transition time τ and
the transition time in the biased simulation τV (Voter 1997; Grubmüller 1995)

τ = τV

〈
eβV (s)

〉

V
, (16)

where 〈eβV (s)〉V is the so-called acceleration factor measured in the biased simula-
tion that tells how much the time is boosted as compared to the unbiased simulation.

The idea that McCarty et al. (2015) followed is to use VES to generate a
bias potential that only fills the underlying FES up to some predefined cutoff
value Fc. Thus, by appropriately choosing the cutoff value, it is possible to
significantly accelerate transitions between metastable states while still ensuring
that the transition states are free of bias, thus allowing the usage of Eq. 16. This is
achieved by considering a bias potential of the form

V (s;α) = v(s;α) · S(−v(s;α)− Fc), (17)

where v(s;α) is some representation of the FES (e.g., a linear expansion as in
Eq. 11) and S(x) is a sigmoidal switching function that continuously goes from 1 to
0 around x = 0. This is combined with a target distribution given by

p(s) = S(F ∗(s)− Fc)
ş

ds S(F ∗(s)− Fc)
, (18)

that is iteratively updated using the current best estimate of the FES F ∗(s) ≈ −v(s).
In practical applications the bias potential is first optimized with a given cutoff

value Fc until a satisfactory convergence has been achieved. The bias potential is
then fixed, and many independent simulations are performed to obtain the necessary
statistics. It is a good practice to run at least two sets of simulations using different
cutoff values in order to check the consistency of the results. The physical time in
each simulation is simply obtained by rescaling the MD time step ΔtMD by the bias
acting at each MD step

t0 =
nMD∑

i

ΔtMD · eβV (s(ti )), (19)

where nMD is the number of MD steps and s(ti) is the value of the CVs at time
ti = i ΔtMD.

The method has been used to obtain kinetic rates for chemical reactions (Piccini
et al. 2017) and unfolding times of small proteins (Palazzesi et al. 2017).



630 O. Valsson and M. Parrinello

3.2 Approximate Bias Potentials for Exploring High-Dimensional
Free Energy Landscapes

It is of great importance to be able to efficiently sample high-dimensional free
energy landscapes. Unfortunately, CV-based enhanced sampling methods are gen-
erally limited in the number of CVs that can be biased at the same time. Various
ideas and methods have thus been introduced that tackle this problem (Piana and
Laio 2007; Abrams and Vanden-Eijnden 2010; Pfaendtner and Bonomi 2015).

A rather interesting idea to approach this problem within VES is to employ
approximate bias potentials. One of the simplest examples would be to consider
a bias potential that is a sum of pairwise terms

V (s1, s2, . . . , sd ;α) =
∑

i,j

V (si, sj ;α(i,j)), (20)

where for each pairwise term we employ a linear expansion in some basis functions.
This idea was pursued by Shaffer et al. (2016a) which considered the folding

of a small protein where the conformational landscape is described by the large
number of backbone dihedral angles. They employed a bias potential written as sum
of pairwise terms where only nearest-neighbor dihedral angles along the protein
backbone were explicitly correlated. The authors then combined this with a clever
choice of the target distribution that indirectly accounts for the important long-
range correlations that are missing in the approximate bias potential. In this way the
authors were able to generate a bias potential that allowed for an efficient sampling
of the folding process. In a follow-up paper (Shaffer et al. 2016b), the authors further
extended this idea and showed how it can be used to construct simple coarse-grained
models for protein dynamics.

3.3 Bespoke Bias for Obtaining Free Energy Differences

An intriguing possibility that VES offers is to use purpose-built bias models that
depend on a few variational parameters that are optimized. In this spirit, McCarty
et al. (2016) considered a bespoke bias potential based on a model for a two-state
free energy landscape given by

F(sA, sB) = FA(sA)+ FB(sB)

2
−
√(

FA(sA)− FB(sB)−ΔF

2

)2

+Δ2,

(21)

where FA(sA) and FB(sB) are free energy models for the two metastable states, ΔF

is a proxy for the free energy difference between the two states, and Δ is a coupling
parameter. The free energy models used in this equation only need to be locally
valid descriptions of the two metastable states, thereby bypassing the need to find
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CVs that globally describe the full conformational space of interest. By optimizing
the two parameters ΔF and Δ, it is possible to obtain a bias potential that leads to
an effective sampling of the two metastable states.

3.4 Bespoke Bias from Physical Models

Similar in spirit to the previous example, Piaggi et al. (2016) followed an interesting
idea where they designed a bias potential based on a known physical model.
In particular, they considered the important subject of nucleation that is rather
challenging for molecular simulations due to the long time scale on which the
nucleation process occurs. By employing a bias potential based on a free energy
model taken from classical nucleation theory, they were able to greatly accelerate the
sampling of nucleation events. This example shows clearly the value of employing a
bespoke bias potential based on a physically motivated functional form within VES.

3.5 Coarse-Graining from Variationally Enhanced Sampling

A common way to tackle complex system is to construct mesoscopic coarse-
grained models that are able to describe its main physical behavior. However, such
models introduce phenomenological parameters that need to be derived from the
microscopic system. In general this is not an easy task. Invernizzi et al. (2017)
showed that VES can be turned into a powerful method to systematically obtain
these phenomenological parameters from the microscopic simulations. In particular,
they considered the Ginzburg-Landau model for a second-order critical point and
showed how VES can be used to obtain its phenomenological parameters in
the region close to the liquid-vapor critical point of a Lennard-Jones fluid. The
procedure introduced by the authors is completely general and can be adapted for
other coarse-grained models.

3.6 Variational Approach toMonte Carlo Renormalization Group

A rather interesting application of VES to critical phenomena was reported by Wu
and Car (2017). They used VES to develop a method for Monte Carlo renormaliza-
tion group theory where the critical slowing down near a critical point is avoided by
using a bias potential. By optimizing the bias potential within VES, it is possible to
obtain an accurate estimate of the renormalized coupling constants and the critical
exponents. The authors applied their method to the two-dimensional Ising model.
The method can be extended to tackle critical phenomena in more complex systems.
For instance, the authors mention it should be possible to adapt the method to tackle
field theoretical models, such as the Ginzburg-Landau model. Thus, by combining
their method with the phenomenological coarse-graining method from the previous
Sect. (3.5), it would be possible to investigate critical phenomena starting from the
atomistic scale.
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4 Conclusion and Outlook

Despite the relatively short time since its introduction, variationally enhanced
sampling has already been used in numerous innovative and interesting applications,
as we have discussed in the previous section. It is our firm belief that many more
will come in the future. Furthermore, we believe that the performance of VES can
be further improved in many ways. Thus, the future of VES looks bright and there
are many new innovations to be expected.
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Abstract

Computer simulations have become an integral part of the toolbox of any
researcher interested in molecular sciences, often providing new insights that
are difficult (if not impossible) to obtain by other means. However, the predictive
power of a computer simulation directly depends on the level of realism that
can be used to represent the molecular system of interest. Since the early times
of computer simulations, the search for a molecular model of water capable
of describing its unique properties across different phases has been the focus
of intense research. The continued increase in computer power accompanied
by advances in the design of efficient algorithms for correlated electronic
structure calculations and tremendous progress in the representation of global
potential energy surfaces have recently opened the doors to the development of
molecular models rigorously derived from many-body expansions of interaction
energies. By quantitatively reproducing individual interaction terms between
molecules, it has been shown that these many-body potential energy functions
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can achieve unprecedented accuracy in computer simulations. This chapter
provides an overview of the theoretical formalism underlying such many-body
representations, with a particular focus on the performance of the MB-pol
potential energy function in predicting the energetics as well as structural,
thermodynamic, dynamical, and spectroscopic properties of water from the gas
to the condensed phase.

1 Introduction

The importance of water cannot be overemphasized. This is the case primarily
because the combination of unique physical properties and the wide range of
conditions in which it exists in the liquid phase make water essential to life as we
know it (Maréchal 2007). After decades of research, there is now little question that
the unique behavior of water does not simply result from a three-atom, 10-electron
molecule, but rather from the delicate interplay of many-body interactions between
individual water molecules, which is further modulated by temperature and pressure
(Eisenberg and Kauzmann 1969).

Given water’s key role as life’s matrix (Ball 2008), it is not surprising that
many theoretical and computational studies have attempted to derive a molecular-
level picture of water from the gas to the condensed phase. Since the first Monte
Carlo (MC) and molecular dynamics (MD) simulations of liquid water performed
respectively by Barker and Watts (1969), and Rahman and Stillinger (1971), a
myriad of models have been developed, based either on molecular mechanics
(commonly defined as “force fields”) or quantum mechanics (commonly defined
as “ab initio” models). Various flavors of force fields, with different degrees
of empiricism, have been proposed over the years, ranging from coarse-grained
representations with no atomistic details to classical parameterizations in terms
of point charges and rigid bonds, and more sophisticated models that account for
molecular flexibility, electronic polarization, and charge transfer (Guillot 2002;
Vega and Abascal 2011; Cisneros et al. 2016; Shvab and Sadus 2016). Despite much
progress, it has been shown that even the most successful and popular water force
fields still exhibit limited accuracy and effectively lack predictive power (Cisneros
et al. 2016).

On the other hand, ab initio models are based on either wavefunction theory
(WFT) or density functional theory (DFT). Although correlated WFT methods, such
as coupled cluster with single, double, and perturbative triple excitations, commonly
abbreviated as CCSD(T), can enable molecular level studies of water with chemical
accuracy, usually defined as a deviation of 1 kcal/mol from the “exact” result (Rezac
and Hobza 2013; Simova et al. 2013), the associated computational cost limits their
application to systems containing no more than a handful of molecules (Manna
et al. 2017). This implies that DFT remains the only viable ab initio approach
for simulations of water across different phases. However, existing DFT models
are affected by several shortcomings that drastically limit their predictive ability in
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describing the properties of water from small clusters in the gas phase to the liquid
phase and ice (Gillan et al. 2016).

As an alternative to both force fields and ab initio models, a new class of
analytical potential energy functions (PEFs) has recently been introduced. These
PEFs are derived from a rigorous representation of the many-body expansion (MBE)
of the interaction energy (VN) between N water molecules (Hankins et al. 1970)

VN (r1, . . . , rN) =
N∑

i=1

V1B (ri)+
N∑

i<j

V2B
(
ri, rj

)

+
N∑

i<j<k

V3B
(
ri, rj, rk

)+ · · · + VNB (r1, r2, r3, . . . , rN)

(1)

where ri collectively denotes the coordinates of the oxygen and hydrogen atoms
within the ith water molecule. In Eq. (1), V1B is the one-body (1B) potential,
representing the energy required to deform an individual water molecule from its
equilibrium geometry, while all higher n-body (nB) interaction terms (VnB) are
defined recursively through

VnB (r1, . . . , rn) = Vn (r1, . . . , rn)−
N∑

i=1

V1B (ri)−
N∑

i<j

V2B
(
ri, rj

)− . . .

−
N∑

i<j<k<···<n−1

V(n−1)B
(
ri, rj, rk, . . . , rn−1

)
.

(2)

The importance of many-body effects in water was already recognized in the
1950s by Frank and Wen who introduced a molecular picture of liquid water
consisting of “flickering clusters of hydrogen-bonded molecules,” emphasizing the
cooperative nature of hydrogen bonding (Frank and Wen 1957). The first attempts
to develop many-body (MB) potential energy functions (PEFs) for water only using
ab initio data were made by Clementi and co-workers (Matsuoka et al. 1976;
Evans et al. 1987; Niesar et al. 1990). These pioneering studies demonstrated that
Eq. (1) converges rapidly for water, showing that 3B effects can contribute as
much as 15–20% to the interaction energy of cyclic water structures and 4B effects
represent, on average, 1% of the interaction energy.

With the continued development of faster hardware and efficient algorithms
for correlated WFT methods, it is nowadays routine to perform calculations of
accurate interaction energies for small molecular systems, which can then serve
as a reference for deriving analytical representations of the individual terms of
Eq. (1). In particular, exploiting the rapid convergence of the MBE for water,
the “Stratified Approximation Many-Body Approach” (SAMBA) has been shown
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to provide highly accurate interaction energies for water clusters through the
application of progressively lower-level electronic structure methods to represent
subsequently higher-body terms of the MBE (Gora et al. 2011). In parallel with
hardware and algorithmic developments, tremendous progress has been made in
constructing multidimensional mathematical functions that can accurately represent
global potential energy surfaces with a large number of degrees of freedom
(Braams and Bowman 2009; Bartók et al. 2010; Behler 2016). This progress has
been accompanied by the development of efficient classical schemes for treating
electrostatic interactions in many-body molecular systems (Thole 1981; van Duijnen
and Swart 1998; Cisneros et al. 2006; Piquemal et al. 2006; Torheyden and Jansen
2006; Cisneros et al. 2007; Handley et al. 2009; Gao et al. 2014). As a result, several
MB PEFs have been proposed in the last years, the most notable of which are CC-pol
(Bukowski et al. 2007), WHBB (Wang et al. 2011) HBB2-pol (Babin et al. 2012),
and MB-pol (Babin et al. 2013, 2014; Medders et al. 2014).

Among existing many-body PEFs, MB-pol has been shown to correctly predict
the properties of water across different phases (Reddy et al. 2016), reproducing the
vibration-rotation tunneling spectrum of the water dimer (Babin et al. 2013), the
energetics, quantum equilibria, and infrared spectra of small clusters (Babin et al.
2014; Brown et al. 2017), the structural, thermodynamic, and dynamical properties
of liquid water (Medders et al. 2014), the energetics of ice phases (Pham et al.
2017), the infrared (IR) and Raman spectra of liquid water (Medders and Paesani
2015; Reddy et al. 2017), the vibrational sum-frequency generation spectrum of the
air/water interface (Medders and Paesani 2016), and the IR and Raman spectra of
ice Ih (Moberg et al. 2017).

This chapter reviews recent progress in modeling the properties of water
across different phases using computer simulations with the MB-pol PEF. After
a brief overview of the theoretical formalism underlying MB-pol and associated
computational algorithms, a systematic analysis of the MBE for water is presented,
with comparisons with both force fields and ab initio models. The accuracy of
MB-pol in representing the multidimensional Born-Oppenheimer potential energy
surface of water in the liquid phase and ice is then assessed. Finally, the ability of
MB-pol to predict structural, thermodynamic, and dynamical properties as well as
vibrational spectra of water from small clusters in the gas phase to the liquid phase
and ice is discussed. This is followed by a brief outlook on future developments
and applications of many-body PEFs in computer simulations of generic molecular
systems.

2 MB-pol Theoretical Framework and Functional Form

MB-pol was rigorously derived from Eq. (1). It includes explicit 1B, 2B, and
3B terms, while all higher-order contributions are accounted for in a mean field
sense through a classical representation of N-body induction (Babin et al. 2013,
2014). Each water molecule is represented by six sites: three sites correspond to the
physical atoms (oxygen and two hydrogen atoms), two fictitious sites are located
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Fig. 1 MB-pol model of a
water molecule. O, H1, and
H2 correspond to the oxygen
and hydrogen atoms,
respectively, L1 and L2
represent the oxygen
lone-pairs, and M is an
additional fictitious site

symmetrically along the directions of the oxygen lone-pairs, and an additional
M-site is located along the HOH bisector (Fig. 1). The number and location of
the six sites were optimized to reproduce both dipole and quadrupole moments of
an isolated water molecule as well as to accurately represent the anisotropy of the
potential energy surface of the water dimer.

The 1B term of MB-pol corresponds to the monomer PEF developed by
Partridge and Schwenke which accurately reproduces the rovibrational spectrum
of an isolated water molecule in the gas phase (Partridge and Schwenke 1997).
Associated with the 1B energy expression is a nonlinear dipole moment surface
represented by geometry dependent (positive) point charges on the two hydrogen
atoms, which are balanced by a negative point charge placed on the M-site (Fig. 1).
The molecular polarizabity tensor of an isolated water molecule is represented by
isotropic atomic polarizabilities located on the three physical atoms.

MB-pol 2B term is expressed by combining classical expressions for permanent
and induced electrostatics, and dispersion energy with a multidimensional term
that corrects for deficiencies associated with a purely classical representation of
intermolecular interactions at short range (Stone 1997). This additional term, which
smoothly switches to zero as the separation between the oxygen atoms of the two
water molecules within a dimer approaches 6.5 Å, effectively represents quantum-
mechanical interactions arising from the overlap of the monomer electron densities
(Babin et al. 2013), such as charge transfer and penetration and Pauli repulsion
(Khaliullin et al. 2007, 2008). Both 2B permanent electrostatics and induction
are represented by a modified Thole-type expression derived from the TTM4-F
model (Burnham et al. 2008), while the dispersion energy is expressed through a
rigorous fit to the asymptotic ab initio reference energy as originally introduced by
the CC-pol PEF (Bukowski et al. 2008). Following the same theoretical scheme,
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MB-pol represents 3B interactions by combining a classical 3B induction term
with a multidimensional short-range function, which smoothly switches to zero
when the oxygen-oxygen separations between all pairs of water molecules within
a trimer approach 4.5 Å (Babin et al. 2014). Given its functional form, MB-pol
can then be viewed as a many-body PEF built upon a baseline polarizable model
supplemented by short-range 2B and 3B contributions that effectively represent
quantum-mechanical interactions that cannot be described by purely classical
expressions (Medders and Paesani 2015).

The short-range 2B and 3B multidimensional functions are expressed by 4th-
degree permutationally invariant polynomials (Braams and Bowman 2009) in
variables that are functions of the distances between all six molecular sites (Fig. 1).
The invariance is imposed with respect to permutations of whole molecules as
well as of the two hydrogen atoms within the same molecule. The coefficients
of both 2B and 3B permutationally invariant polynomials were optimized using
supervised learning (Abu-Mostafa et al. 2012) to reproduce the interaction energies
calculated at the CCSD(T) level of theory in the complete basis set (CBS) limit for
approximately 42,000 and 12,000 dimers and trimers, respectively. Specific details
about MB-pol 2B and 3B training sets can be found in the original references (Babin
et al. 2013, 2014).

As shown in Fig. 2, MB-pol provides an accurate description of the low-
order terms (i.e., 2B, 3B, and 4B) of the MBE. Specifically, the 2B term is
associated with a root-mean-square-deviation (RMSD) of 0.028 kcal/mol relative
to the CCSD(T)/CBS reference values. The latter were obtained via a two-point
extrapolation (Halkier et al. 1999a, b) of the energies calculated with aug-cc-pVTZ
and aug-cc-pVQZ basis sets (Dunning 1989) supplemented with an additional set
of midbond (mb) functions (Tao and Pan 1992) placed at the center of mass of
each dimer configuration. The RMSD associated with the MB-pol 3B term is
0.026 kcal/mol relative to CCSD(T)/CBS reference values obtained with the aug-
cc-pVTZ basis set supplemented with the same set of midbond functions used
for the 2B calculations, which were placed at the center of mass of each trimer
configuration. Finally, the RMSD for the 4B interactions is 0.030 kcal/mol relative
to MP2 reference values obtained with the aug-cc-pVTZ basis set supplemented
with the same set of midbond functions described above, which were placed at the
center of mass of each tetramer.

The accuracy of MB-pol in reproducing the individual terms of the MBE
(Fig. 2) reflects the ability of the underlying functional form to correctly represent
many-body effects at both short and long intermolecular separations. To further
demonstrate this aspect, Fig. 3 shows a comparison between the results obtained
with MB-pol and the absolutely-localized molecular orbital energy decomposition
analysis, ALMO EDA, method (Khaliullin et al. 2007, 2008) for a radial scan
along the hydrogen bond coordinate of the minimum energy structure of the water
dimer. In this analysis, the O-O distance (ROO) is constrained at different values
while all other atomic coordinates are optimized. Panel (a) shows the comparison
between MB-pol (Thole-damped) permanent and induced electrostatics and the
corresponding terms obtained from ALMO EDA calculations carried out at the
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Fig. 2 Correlation plots of 2B (a), 3B (b), and 4B (c) interaction energies. On the x-axes are the
reference values calculated at the CCSD(T)/CBS (for 2B and 3B) and MP2/aVTZ (for 4B) levels
of theory. On the y-axes are the corresponding MB-pol values. (Adapted from Paesani 2016)

ωB97M-V level of theory (Mardirossian and Head-Gordon 2015) with the def2-
TZVPPD basis set (Weigend and Ahlrichs 2005; Rappoport and Furche 2010).
In this analysis, ωB97M-V was specifically chosen because it yields interaction
energies in close agreement with the CCSD(T) reference data (see Fig. 5), while
the def2-TZVPPD basis set is large enough to fully capture charge transfer but still
relatively small to avoid inter-monomer-orbital linear-dependence.

The agreement between MB-pol and ALMO EDA for ROO > 3.5 Å demonstrates
that the baseline electrostatic model adopted by MB-pol correctly reproduces
permanent and induced electrostatic interactions at medium and long range, where
there is minimal, if any, overlap between the monomer electron densities. As
expected, deviations due to charge penetration, which cannot be represented by
classical expressions, are found at short range, particularly, for the contribution asso-
ciated with permanent electrostatics. Similarly, panel (b) shows that the (damped)
dispersion energy term of MB-pol quantitatively reproduces the corresponding
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Fig. 3 Comparison between MB-pol and ALMO EDA energy decomposition for a radial scan
along the hydrogen bond coordinate of the minimum energy structure of the water dimer. (a)
Comparison between permanent and induced electrostatic interactions obtained from MB-pol
and ωB97M-V/def2-TZVPPD. (b) Comparison of the terms associated with dispersion energy
and charge transfer combined with Pauli repulsion obtained from ωB97M-V/def2-TZVPPD
calculations with the corresponding MB-pol terms. (c) Comparison of MB-pol and ωB97M-
V/def2-TZVPPD total interaction energy. (d) Comparison between the nonclassical terms obtained
with ωB97M-V/def2-TZVPPD and MB-pol permutationally invariant polynomial

ALMO EDA values at medium and long range, with deviations at short distances,
where the definition of dispersion energy derived from the asymptotic expansion of
the interaction energy breaks down (Stone 1997). The comparisons shown in panel
(b) also demonstrate that the energy contribution associated with the MB-pol 2B
permutationally invariant polynomial displays the same radial dependence as the
combined charge transfer and Pauli repulsion terms calculated from ALMO EDA.
However, as expected, there are noticeable differences between these two terms at
short range since MB-pol’s permutationally invariant polynomial must also recover
effects associated with charge penetration that are not taken into account by the
baseline classical electrostatic model (panel a).

After adding all MB-pol terms together, the comparison in panel (c) demonstrates
that MB-pol quantitatively reproduces the total interaction energy predicted by
ωB97M-V. Finally, panel (d) shows that when MB-pol contributions associated with
electrostatic interactions and dispersion energy are subtracted from the ωB97M-V
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total interaction energy, MB-pol’s permutationally invariant polynomial quanti-
tatively recovers all remaining terms (i.e., charge transfer and penetration, and
Pauli repulsion) that, by construction, are not included in the classical baseline
model adopted by MB-pol. The analysis presented in Fig. 2 thus provides evidence
that, within the MB-pol functional form, the 2B and 3B permutationally invariant
polynomials quantitatively represent quantum-mechanical effects that cannot be
described by purely classical expressions.

As a final note, it should be emphasized that maintaining the same functional
form introduced with the original implementation of MB-pol (Babin et al. 2013,
2014), higher accuracy can be achieved by increasing the order of the permutation-
ally invariant polynomials used to represent short-range 2B and 3B interactions.
The choice to limit the highest order to the 4th degree was dictated by the neces-
sity of achieving the optimal compromise between accuracy and computational
efficiency. It should also be noted that the adoption of permutationally invariant
polynomials is simply one among several options that exist to accurately represent
multidimensional potential energy surfaces. In this context, it has recently been
shown (Thuong et al. 2018) that it is possible to achieve similar accuracy as
the original MB-pol implementation by replacing the 2B and 3B permutationally
invariant polynomials with analogous neural networks (Behler 2016) and Gaussian
approximation potentials (Bartók et al. 2010).

3 Energetics of Water Clusters, LiquidWater, and Ice

The accuracy and transferability of MB-pol can be systematically assessed from the
analysis of both energetics and many-body effects in small water clusters, liquid
water, and ice. To this purpose, MB-pol interaction energies for the low-lying
isomers of the tetramer, pentamer, and hexamer clusters are compared in Fig. 4
with the corresponding reference values calculated at the CCSD(T)-F12/VTZ-F12
level of theory (Adler et al. 2007; Peterson et al. 2008; Knizia et al. 2009) for MP2
optimized geometries (Bates and Tschumper 2009; Temelso et al. 2011). Since the
interaction energies are defined as the cluster energies minus the energies of the
individual molecules in the same geometry as in the cluster, they are not affected by
differences in the 1B energies predicted by CCSD(T)-F12/VTZ-F12 and MB-pol.
For all isomers of the different clusters, MB-pol provides interaction energies in
close agreement with the reference values, with the differences always being within
chemical accuracy (Medders and Paesani 2015; Paesani 2016).

Among small water clusters, the hexamer holds a special place since its low-
lying isomers display three-dimensional structures reminiscent of hydrogen-bond
arrangements found in liquid water and ice. Furthermore, due to small differences
in the interaction energies between different isomers, the hexamer cluster generally
serves as a prototypical system to assess the accuracy of force fields and ab initio
models of water. Figure 5 shows comparisons between the interaction energies of
the low-lying hexamer isomers calculated using several advanced polarizable force
fields (Fig. 5a) and common DFT models, without and with dispersion contributions
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Fig. 4 Comparisons between CCSD(T)-F12/VTZ-F12 and MB-pol interaction energies for the
low-lying isomers of the tetramer (a), pentamer (b), and hexamer (c) clusters. The clusters
geometries, shown at the bottom of the corresponding figures, were optimized at the MP2/avtz
level of theory (Bates and Tschumper 2009; Temelso et al. 2011)

(Fig. 5b, c, respectively), and the corresponding CCSD(T)-F12/VTZ-F12 and
MB-pol values.

While all polarizable force fields predict interaction energies relatively close to
the reference values, only TTM3-F (Fanourgakis and Xantheas 2008) and WHBB
(Wang et al. 2011) correctly reproduce the energy order. However, while the
difference between TTM3-F and CCSD(T)-F12/VTZ-F12 is approximately of the
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Fig. 5 Interaction energies
of the low-lying hexamer
isomers calculated with
advanced polarizable force
fields (a), and DFT models
without (b) and with (c)
dispersion corrections. Also
shown are the reference
CCSD(T)-F12 and MB-pol
values for comparison. Due to
large variations in the
interactions energies
calculated with polarizable
force fields and DFT models,
different energy ranges are
used in the three panels
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same magnitude for all isomers, WHBB, which, as MB-pol, was systematically
derived from the MBE in Eq. (1), accurately describes the first two isomers
(prism and cage) but predicts interaction energies that progressively deviate (up to
2 kcal/mol) from the reference CCSD(T)-F12/VTZ-F12 values for all other isomers.
POLI2VS, which was developed to model vibrational spectra of water (Hasegawa
and Tanimura 2011), completely fails to reproduce the energy progression from
the prism to the cyclic boat-2 isomers and predicts the cyclic chair isomer, which
lies ∼2 kcal/mol above the prism isomer at the CCSD(T)-F12/VTZ-F12 level of
theory, to be the most stable isomer. Both versions of the AMOEBA force field,
AMOEBA2003 (Ren and Ponder 2003) and AMOEBA2014 (Wang et al. 2013),
qualitatively reproduce the overall trend, although the stability of some isomers is
inverted. Interestingly, the TTM4-F model (Burnham et al. 2008) fails, by a large
margin, to describe the energetics of the first three isomers, predicting prism to
be the most unstable structure, while correctly reproduces the energy order of the
higher-energy isomers.

Figure 5b, c shows analogous comparisons for several DFT models that are com-
monly used in computer simulations of water. Specifically, this analysis includes
GGA functionals: BLYP (Becke 1988), PBE (Perdew et al. 1996), and revPBE
(Zhang and Yang 1998); meta-GGA functionals: TPSS (Tao et al. 2003), and
SCAN (Sun et al. 2015); hybrid GGA functionals: B3LYP (Becke 1993), PBE0
(Adamo and Barone 1999), and revPBE0 (Goerigk and Grimme 2011); meta hybrid
GGA functionals: M06-2X (Zhao and Truhlar 2008); range-separated hybrid func-
tionals: ωB97X (Chai and Head-Gordon 2008); and range-separated meta hybrid
functionals: ωB97M-V (Mardirossian and Head-Gordon 2015). DFT energies were
calculated without and with the empirical D3(0) dispersion correction (Grimme
et al. 2010) except for ωB97M-V that, by construction, accounts for dispersion
energy through the VV10 nonlocal functional (Vydrov and Van Voorhis 2010). All
DFT calculations were carried out with the aug-cc-pVQZ basis set using Gaussian
09 (Frisch et al. 2009) except for revPBE, revPBE0, SCAN, and ωB97M-V for
which Q-Chem 5.0 was used (Shao et al. 2015).

Without dispersion corrections, only M062X, ωB97X, and SCAN predict the
correct energy order of the hexamer isomers, although the differences from the
CCSD(T)-F12/VTZ-F12 reference values can be as large as ∼6 kcal/mol. Although
the inclusion of dispersion energy contributions significantly improves the agree-
ment with the reference data, none of the functionals examined in this analysis, with
the exception of ωB97M-V, achieves the same accuracy as MB-pol.

To further investigate the ability of MB-pol to reproduce many-body effects
in water, the interaction energies of the prism, cage, and cyclic chair isomers
are decomposed into individual many-body contributions, and the errors relative

to the CCSD(T)-F12/VTZ-F12 reference values
(
�E = �Emodel

nB −�ECCSD(T)
nB

)

are shown in Fig. 6. To put the MB-pol results in perspective, the same analysis
is also carried out with the polarizable force fields and DFT models used in
Fig. 5. Independently of the isomer, MB-pol reproduces, nearly quantitatively, the
reference values for all terms of the MBE. Importantly, since, within MB-pol all
terms higher than 3B are represented entirely by classical many-body induction, the
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agreement between MB-pol and the reference values for these terms demonstrates
that higher-order interactions in water are primarily electrostatic in nature.

Among functionals without dispersion corrections, PBE and PBE0 provide
the closest agreement with the CCSD(T)-F12/VTZ-F12 values. However, both
functionals are associated with appreciable errors at the 4B level. Interestingly, the
corresponding modified versions (revPBE and revPBE0) largely underestimate 2B
contributions, while providing similar accuracy for higher-body terms. The correct
energy order predicted by M06-2X in Fig. 5 effectively results from (well-balanced)
error cancellation between different interaction terms, which, individually, are
associated with errors on the order of 1 kcal/mol even at the 5B level. Large 2B
errors are also associated with BLYP, B3LYP, TPSS, SCAN, and ωB97X, with the
first three functionals underestimating and the last two functionals overestimating
the strength of the interactions in the water dimers, respectively. Explicit inclusion
of dispersion contributions significantly improves the accuracy of the 2B terms
predicted by BLYP, TPSS, B3LYP, revPBE, and revPBE0, but, at the same time, the
2B terms of PBE-D3, PBE0-D3, and SCAN-D3 become less accurate than those
from the bare functionals. Overall, the best performance is provided by ωB97M-V,
which effectively exhibits similar accuracy as MB-pol for all interaction terms.

An important aspect that emerges from the analysis reported in Fig. 6 is the
inability of some functionals to correctly reproduce high-body interaction terms.
As mentioned above, MB-pol is able to correctly reproduce all terms higher
than 3B entirely through classical many-body induction. This implies that several
functionals that are currently used in water simulations (e.g., PBE-D3, PBE0-
D3, revPBE-D3, and revPBE0-D3) effectively provide a less accurate description
of many-body interactions than a purely classical electrostatic model. Since, by
construction, classical electrostatics relies on a multipole representation of the
electron density, functionals that exhibit large errors for high-body interactions are
likely unable to correctly describe the electron density (and associated electrostatic
properties) of the water molecules.

After investigating water clusters, the final step to assess the ability of MB-pol
to accurately describe the multidimensional Born-Oppenheimer surface of water
across different phases is represented by the analysis of the energetics of liquid water
and different ice phases. As discussed in the Introduction, due to the associated
computational cost, CCSD(T) calculations are currently unaffordable for condensed
phase systems, and quantum Monte Carlo (QMC) effectively becomes the reference
method for molecular systems in periodic boundary conditions. Direct comparison
with QMC relative energies calculated for molecular configurations extracted from
simulations carried out with the vdW-DF and vdW-DF2 functionals (Morales
et al. 2014) determined that MB-pol predicts the energetics of liquid water in
close agreement with the reference values, resulting in a mean absolute deviation
of 0.048 kcal/mol per molecule, which is more than two times smaller than the
most accurate value obtained with popular DFT models commonly used in computer
simulations of liquid water (Medders and Paesani 2015).

More recently, the energetics of several ice phases was also investigated with
MB-pol (Pham et al. 2017). As reported in Table 1, in all cases, the lattice energies



648 F. Paesani

Fi
g
.
6

E
rr

or
s,
( �

E
=

�
E

m
od

el
nB

−
�

E
C

C
SD

(T
)

nB

)
re

la
tiv

e
to

C
C

SD
(T

)-
F1

2/
V

T
Z

-F
12

re
fe

re
nc

e
va

lu
es

fo
r

th
e

in
di

vi
du

al
te

rm
s

(n
B

)
of

th
e

m
an

y-
bo

dy
ex

pa
ns

io
n

of
th

e
in

te
ra

ct
io

n
en

er
gy

ca
lc

ul
at

ed
us

in
g

M
B

-p
ol

,p
ol

ar
iz

ab
le

fo
rc

e
fie

ld
s,

an
d

D
FT

m
od

el
s

fo
r

th
e

(a
−c

)
pr

is
m

,(
d−

f)
ca

ge
,a

nd
(g
−i

)
cy

cl
ic

ch
ai

r
he

xa
m

er
is

om
er

s.
T

he
fir

st
co

lu
m

n
(p

an
el

s
a,

d,
g)

re
po

rt
s

th
e

re
su

lts
ob

ta
in

ed
w

ith
th

e
po

la
ri

za
bl

e
fo

rc
e

fie
ld

s.
T

he
se

co
nd

(p
an

el
s

b,
e,

h)
an

d
th

ir
d

(p
an

el
s

c,
f,

an
d

i)
co

lu
m

ns
re

po
rt

th
e

re
su

lts
ob

ta
in

ed
w

ith
th

e
sa

m
e

D
FT

m
od

el
s,

w
ith

ou
ta

nd
w

ith
di

sp
er

si
on

co
rr

ec
tio

ns
,r

es
pe

ct
iv

el
y,

as
in

Fi
g.

5



30 Water: Many-Body Potential from First Principles (From the Gas. . . 649

Table 1 Space groups and supercell dimensions along with the number of water molecules (N)
used in the calculations of the lattice energies (in kcal/mol) for the experimental crystal structures
of several ice phases (Pham et al. 2017)

Lattice energy (kcal/mol)
Ice phase Space group Supercell N MB-pol experiment

Ih P63cm (3,3,3) 324 −14.09 −14.07
IX P41212 (3,3,3) 324 −13.86 −13.97
II R 3 (4,4,4) 768 −13.90 −14.04
VIII I41/amd (4,4,3) 384 −13.60 −13.30

calculated using the experimental crystal structures are in good agreement with the
corresponding experimental values. Further analysis of the MB-pol results in terms
of fundamental energy contributions showed that the differences in lattice energies
between different ice phases are primarily dependent on the balance between short-
range 2B and 3B interactions, many-body induction, and dispersion energy.

To provide an overall assessment of the MB-pol accuracy, Table 2 reports the
results obtained by applying the same scoring scheme that was introduced to
compare the ability of various DFT models to predict key properties of the water
monomer, dimer, and hexamer and different ice phases (Gillan et al. 2016). Specif-
ically, the properties considered in this analysis are: the harmonic frequency of the
monomer symmetric stretch

(
fmono
ss

)
, the dimer binding energy

(
Edim

b

)
, the binding

energy per monomer of the cyclic chair hexamer isomer
(

Ering
b

)
, the sublimation

energy of ice Ih

(
EIh

sub

)
, the difference per monomer between the binding energies

of the prism and cyclic chair hexamer isomers
(
�Eprism−ring

b

)
, the difference of

sublimation energies of ice Ih and ice VIII
(
�EIh−VIII

sub

)
, the equilibrium oxygen-

oxygen distance of the dimer
(
Rdim

OO

)
, and the equilibrium volumes per monomer of

ice Ih

(
VIh

eq

)
and ice VIII

(
VVIII

eq

)
. The scores are then assigned by determining

the deviations from the corresponding reference data obtained from high-level
electronic structure calculations or experimental measurements. A score of 100%
is assigned if the magnitude of the deviation is less than a predefined tolerance
δxtol, and a deduction of 10% is applied for each successive increment δxtol in
|x − xref|. A score of zero is given if |x − xref| > 11 δxtol. Specific details about
the scoring scheme are given in the original study (Gillan et al. 2016). As shown in
Table 2, MB-pol scores 90% or higher for all properties except for the difference
in binding energies between the prism and cyclic-chair hexamer isomers and the
equilibrium volume per monomer of ice VIII. MB-pol’s average percentage score
is 91% using the reference values reported in the original study (Gillan et al. 2016),
which becomes 93% if more accurate reference values for the harmonic frequency of
the monomer symmetric stretch and oxygen-oxygen distance in the water dimer are
considered. To put things in perspective, the best DFT model among those analyzed
in the original study scores 74% (Gillan et al. 2016).
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4 From the Born-Oppenheimer Potential Energy Surface
to Experimental Observables

Considering the accuracy with which MB-pol predicts the energetics of water from
the gas to the condensed phase, there is reason to wonder if this is sufficient for
equally accurate predictions of structural, thermodynamic, dynamical, and spec-
troscopic properties that can be measured experimentally. Since, by construction,
MB-pol effectively provides an analytical representation of the Born-Oppenheimer
potential energy surface of water, from a rigorous theoretical standpoint, computer
simulations with MB-pol should explicitly account for nuclear quantum effects
(Tuckerman 2010). For small clusters, methods based on basis set expansions
and finite grids have been shown to be quite effective in describing nuclear
quantum dynamics with MB-pol (Babin et al. 2013; Richardson et al. 2016;
Brown et al. 2017). For systems with many degrees of freedom, methods based
on Feynman’s path-integral formalism (Tuckerman 2010), such as path-integral
molecular dynamics (PIMD), enable numerically exact calculations of structural
and thermodynamic properties for a given a Born-Oppenheimer potential energy
surface. To date, exact calculations of quantum dynamical properties (e.g., diffusion
and vibrational spectra) are unaffordable for systems with many degrees of freedom.
Several approximate quantum dynamics methods for condensed phase systems have
been proposed, including centroid molecular dynamics (CMD) (Voth 1996), which
has been used extensively in quantum simulations of liquid water and ice using MB-
pol (Medders et al. 2014, Medders and Paesani 2015, 2016; Straight and Paesani
2016; Moberg et al. 2017; Reddy et al. 2017).

It was shown that MB-pol quantitatively reproduces the experimental vibration-
rotation tunneling spectrum of the water dimer as well as both second and third virial
coefficients (Babin et al. 2013, 2014). When combined with PIMD simulations
carried out at different temperatures within the replica exchange formalism, it was
shown that MB-pol correctly reproduces quantum equilibria between different hex-
amer isomers, predicting cage and prism to be the (quantum) ground-state structures
of (H2O)6 and (D2O)6, respectively (Brown et al. 2017). Local-monomer/local-
mode calculations (Wang and Bowman 2011; Cheng and Steele 2014; Cheng et al.
2016) were then carried out on the isomeric quantum distributions to monitor the
microscopic melting of the water hexamer through the analysis of vibrational spectra
and various structural order parameters as a function of temperature (Brown et al.
2017). In two joint experimental-theoretical studies, MB-pol was used to determine
the tunneling pathways in the prism isomer of the hexamer cluster (Richardson et al.
2016) as well as to interpret the THz spectra of the octamer cluster (Cole et al. 2016).

Classical MD and quantum PIMD and CMD simulations were also carried
out to investigate the properties of liquid water (Medders et al. 2014). Classical
and quantum oxygen-oxygen (O-O), oxygen-hydrogen (O-H), and hydrogen-
hydrogen (H-H) radial distribution functions (RDFs) calculated, respectively,
from MD and PIMD simulations in the isobaric-isothermal (constant number of
molecules – constant pressure – constant temperature or NPT) ensemble are
compared in Fig. 6 with the corresponding experimental data. Nearly quantitative
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agreement is obtained between PIMD and experimental O-O RDFs, indicating
that MB-pol predicts the correct structure of liquid water and nuclear quantum
effects play a nonnegligble role in determining the properties of the underlying
hydrogen-bond network. The importance of nuclear quantum effects becomes more
apparent from the analysis of the O-H and H-H RDFs, which are predicted to be
significantly more structured by classical MD simulations. PIMD simulations at
298.15 K also predict for liquid water a density of 1.001 g cm−3 and an enthalpy
of vaporization of 10.1 ± 0.4 kcal mol−1, which are in good agreement with
the corresponding experimental values of 0.997 g cm−3 and 10.5 kcal mol−1,
respectively. Furthermore, the diffusion coefficient (D) and orientational relaxation
time (τ2) of liquid water calculated from CMD simulations carried out with
MB-pol at 298.15 K were found to be 0.22 ± 0.03 Å2 ps−1 and 2.3 ± 0.3 ps,
respectively, which compare well with the corresponding experimental values of
D = 0.23 Å2 ps−1 and τ2 = 2.5 ps.

Classical (MD) and quantum (CMD) simulations were also carried out to model
both infrared (IR) and Raman spectra of liquid water (Medders and Paesani 2015;
Straight and Paesani 2016; Reddy et al. 2017) and ice (Moberg et al. 2017), as
well as the vibrational sum-frequency generation (vSFG) spectrum of the air/water
interface (Medders and Paesani 2016; Moberg et al. 2018). Figure 7 shows a
comparison between classical and quantum IR spectra of liquid water at 298.15 K
and ice at 200 K. In these simulations, MB-pol was combined with a many-
body representation of the associated dipole moment (MB-μ) surface to calculate
the relevant dipole-dipole correlation function (Medders and Paesani 2013, 2015).
Both CMD spectra are in good agreement with the experimental data. By contrast,
neglecting zero-point energy effects, the classical spectra are blueshifted compared
to experiment, particularly in the high frequency region corresponding to the OH
stretching band. As expected from the inverse relationship between temperature and
De Broglie’s thermal wavelength, the magnitude of the blueshift increases from
liquid water at 298.15 K to ice at 200 K. A systematic analysis of the IR lineshapes
for both liquid water and ice demonstrated that a rigorous representation of many-
body effects is necessary for a quantitative reproduction of the experimental data.

Despite the overall agreement between experimental and simulated vibrational
spectra, some differences still remain. In particular, the simulated OH stretching
band of the IR spectrum of liquid water misses some intensity on the lower
frequency portion. It has been argued that this discrepancy is primarily due to
the inability of CMD to quantitatively capture the Fermi resonances between
the bending overtone and the stretching vibrations (Medders and Paesani 2015;
Straight and Paesani 2016). However, further investigations are needed. Second,
the positions of the simulated IR OH stretching bands for both liquid water
and ice are slightly blueshifted (60 cm−1) compared to experiment, indicating
that MB-pol predicts slightly too weaker hydrogen bonds. Finally, it was shown
that although the vSFG spectrum obtained from CMD simulations with MB-
pol correctly reproduces all spectral features in the OH stretching region, the
calculated lineshape corresponding to dangling OH bonds is noticeably broader
than in the experimental spectra (Medders and Paesani 2016). This deficiency is
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Fig. 7 Classical (MD) and quantum (PIMD) radial distribution functions calculated for liquid
water at 298.15 K. (a) O-O, (b) O-H, and (c) H-H RDFs. The experimental data are from (Skinner
et al. 2013) and (Soper and Benmore 2008)

a typical manifestation of approximate quantum dynamics methods based on the
path-integral formalism, such as CMD, which, under particular conditions, affects
the lineshape of high-frequency vibrational modes (Witt et al. 2009; Paesani and
Voth 2010; Rossi et al. 2014) (Fig. 8).

5 Summary and Outlook

Building upon the pioneering studies by Stillinger and coworkers (Hankins et al.
1970) and Clementi and coworkers (Matsuoka et al. 1976; Evans et al. 1987; Niesar
et al. 1990), the last decade has witnessed renewed interest in the development
of accurate potential energy functions rigorously derived from many-body expan-
sions of the interaction energies. These efforts have been supported by continued
hardware improvements as well as by the development of efficient algorithms for
correlated electronic structure methods which nowadays enable routine calculations
of interaction energies for small molecular systems, with chemical accuracy. In
parallel with these technological and algorithmic developments, there has been
tremendous progress in the representation of multidimensional potential energy
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Fig. 8 Comparisons between experimental (panels a and b) and both classical (MD) and quantum
(CMD) simulated (panels c and d) IR spectra of liquid water at 298.15 K (left) and ice at 200 K
(right). Adapted from Medders and Paesani (2015), and Moberg et al. (2017)

surfaces with a large number of degrees of freedom, using permutationally invariant
polynomials (Braams and Bowman 2009), neural networks (Behler 2016), and
Gaussian approximation potentials (Bartók et al. 2010).

Given the importance of water as life’s matrix (Ball 2008) and considering
the key role that water has played in the history of computer simulations since
the first studies by Barker and Watts (1969) and Rahman and Stillinger (Rahman
and Stillinger 1971), it is not surprising that several many-body potential energy
functions for water have recently been developed, such as CC-pol (Bukowski et al.
2007), WHBB (Wang et al. 2011) HBB2-pol (Babin et al. 2012), and MB-pol (Babin
et al. 2013, 2014; Medders et al. 2014). When employed in simulations that allow
for explicit treatment of nuclear quantum effects, these PEFs have been shown to
correctly reproduce the properties of water from the gas to the condensed phase,
thus enhancing the predictive ability of computer simulations.

This chapter has provided a critical review of the performance of MB-pol in
representing the Born-Oppenheimer potential energy surface of water from the
dimer to small clusters, liquid water, and ice (Paesani 2016). It is shown that
MB-pol achieves high accuracy by quantitatively reproducing the individual terms
of the many-body expansion of the interaction energy through the combination of
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explicit short-range representations of 2B and 3B interactions along with a physi-
cally correct description of many-body electrostatic interactions at all distances.

Despite representing a step forward toward the long-sought-after “universal
model” capable of correctly describing structural, thermodynamic, dynamical, and
spectroscopic properties of water across different phases, it should always be kept
in mind that MB-pol is still a “model” of water, with its own approximations
and limitations. In particular, MB-pol is a physical model of water in the limit
pKw → ∞, i.e., autoionization events are not allowed. While this is a reasonable
approximation of pure water, the situation drastically changes in complex aque-
ous solutions with pH values lower or higher than pure water. In addition, as
demonstrated by the analysis of vibrational spectra, some experimental features
are not reproduced quantitatively by quantum dynamics simulations with MB-
pol. Although it has been argued that these differences may be related to the
approximate nature of quantum dynamics methods, further studies are necessary to
address these deficiencies. Finally, the application of MB-pol in studies of complex
solutions will require the development of many-body representations for generic
molecular systems. Although some progress has already been made along this
direction (Bajaj et al. 2016; Riera et al. 2017; Sode and Cherry 2017; Wang and
Bowman 2017), further theoretical and computational developments are needed. In
this context, given the unconventional functional form adopted by MB-pol, which
is not supported by popular software for computer simulations, synergistic efforts
between theoretical/computational chemists/physicists and computer scientists will
be key to the development of specialized and more efficient software for many-body
molecular dynamics simulations which can take full advantage of modern hardware.
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Abstract

The availability of reliable interatomic potentials is necessary for carrying out
computer simulations of complex materials. While electronic structure methods
like density functional theory have been applied with great success to many
systems, the high computational costs of these methods severely restrict the
scientific problems that can be studied. Consequently, in recent years a lot of
effort has been spent on the development of more efficient potentials enabling
large-scale simulations. In particular, machine learning potentials have received
considerable attention, because they promise to combine the accuracy of first-
principles methods with the efficiency of force fields. In this chapter an important
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class of machine learning potentials employing artificial neural networks will be
reviewed and discussed.

1 Introduction

Artificial neural networks (NNs) are phenomenally versatile and are at present used
in a wide range of machine learning (ML) applications (Bishop 1996; Haykin 2011):
speech and hand-writing recognition, self-driving vehicles, business intelligence,
industrial process control, and game playing, to name just a few. Neural networks
are capable of handling the two major types of problems targeted by ML algorithms:
classification and regression. This chapter focuses on how NNs can be used for a
particular regression problem, namely, the prediction of the potential energy surface
(PES), i.e., the potential energy as a function of the atomic positions in a system.
Such a neural network is referred to as a neural network potential (NNPs) (Handley
and Popelier 2010; Behler 2011b, 2017).

The PES lies at the heart of many problems in materials modeling, theoretical
condensed matter physics, and computational chemistry. It gives the relative
stabilities of different atomic configurations and is directly connected to, for
example, mechanical properties, defect distributions, reaction rates, thermodynamic
equilibria, spectroscopic signatures, and many other properties.

There are multiple ways of calculating the PES, where the most commonly
used in the materials modeling community include electronic structure methods,
most prominently density functional theory (DFT) (Parr and Yang 1989), and a
wide range of atomistic or even coarse-grained potentials. DFT calculations have
been proven to have a fairly good predictive capability for many experimental
properties. However, DFT calculations become computationally very demanding
if large systems are modeled. This typically limits the applicability of DFT to static
(single-point) calculations of a few hundred atoms or to short dynamic simulations
in the order of several hundred picoseconds. Atomistic potentials, on the other hand,
are more approximate and thus provide estimations for the PES at a much lower
computational cost than DFT. They can therefore practically be applied to large-
scale simulations. The required parameters are typically fitted to reproduce either
some experimental properties of the system modeled or to reproduce some key
results like energies from DFT calculations. The latter approach is an example of
the so-called multiscale modeling, where information from a high level of theory
(DFT) is used to parameterize a lower level of theory.

A neural network potential is in many ways similar to a force field. However,
unlike force fields, the functional forms of NNPs are not based on any physical
approximations. Instead, the great flexibility of NNs is exploited, and the NNP
is parameterized to reproduce the PES obtained from DFT reference calculations
or from some other electronic structure method. The NNP then provides a com-
putationally inexpensive way to predict the PES, which makes it possible to use
NNPs in large-scale Monte Carlo and molecular dynamics simulations to sample
configurational and phase space. During the NNP parameterization, the NN “learns”
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the stabilities of different molecules and structural motifs. An NNP is thus inherently
“reactive,” meaning that chemical reactions or significant structural rearrangements
including the breaking and forming of covalent bonds can be accurately described,
as long as the relevant training data is provided. To the end user, there is no apparent
difference between using a neural network potential or a reactive force field. Both
types of approaches provide the PES at a similar computational cost and can be
applied for similar types of reactive systems.

NNs have been used for more than two decades for the representation of
potential energy surfaces starting with the pioneering work of Doren and coworkers
(Blank et al. 1995). The first generation of NNPs suffered from a restriction to
small molecular systems containing only a few atoms, but this limitation could
be overcome in 2007 by the introduction of high-dimensional NNPs (Behler and
Parrinello 2007). In recent years also ML methods other than neural networks have
found use in a similar fashion to construct potentials for atomistic simulations of
complex systems. For example, methods like Gaussian approximation potentials
(Bartók et al. 2010), kernel ridge regression (Rupp et al. 2012), and support vector
machines (Balabin and Lomakina 2011) can also be used to describe the PES
and related quantities. A review of recent advances in machine learning-based
interatomic potentials was given by Behler (2016).

A presentation of the entire theory of artificial neural networks, which can be
found in many text books (e.g., Bishop 1996; Haykin 2011), is beyond the scope
of this chapter. We will therefore focus on the design choices that are typically
made for estimating the PES of a given material. The potential energy is a single
real-valued number, and the input features representing the atomic structure are real-
valued numbers, so the NNP is a function χ : Rn → R.

We will discuss how NNPs can be used to compute the potential energy, how the
conversion from a set of atomic positions to a suitable NN input can be made, how a
NNP is parameterized, and how a NNP is validated, as well as some of the strengths
and weaknesses of NNPs.

2 A Feed-Forward Neural Network

Figure 1 shows a schematic representation of a small fully connected feed-forward
NN that defines a function χ : R

2 → R, which transforms an input vector
G = (G1,G2)

T into the output value E. The function has several parameters
contained in the weight matrices a(0), b(0), a(1), b(1), a(2), and b(2), defining
E = χ(G; a(0),b(0), a(1),b(1), a(2),b(2)). The example NN consists of an input
layer with two nodes, two hidden layers that contain three nodes each, and an
output layer containing one node. In addition, a bias node with a fixed value of
1 is connected to all nodes in the hidden layers and the output layer (shown in blue).
The example NN has an architecture of 2–3–3–1. The input features (G1,G2) in
layer 0 correspond to the values (y

(0)
1 , y

(0)
2 ).
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Fig. 1 Illustration of a 2–3–3–1 feed-forward neural network along with typical
choices of the activation functions f (k)(x). This NN defines a function E =
χ(G1,G2; a(0),b(0), a(1),b(1), a(2),b(2)). Black arrows with empty heads between y

(k)
i

and x
(k+1)
j represent the element a(k)

ij in the weight matrix a(k); this is explicitly shown for a few

of the elements of a(0). Similarly, the blue arrows represent the bias weights. Arrows with filled
heads represent the application of the activation function f (k)

The computation proceeds left to right: from the input layer values, the first
hidden layer values y(1) = (y

(1)
1 , y

(1)
2 , y

(1)
3 )T are computed, and a bias node is

added; those values are then used to compute y(2) = (y
(2)
1 , y

(2)
2 , y

(2)
3 )T in the second

hidden layer and a bias node is added; those values are used to compute the final
output value E.

The values in a preceding layer, y(k−1), are used to compute the values of y(k) in
the next layer via an intermediate vector x(k):

x(k) = (a(k−1))Ty(k−1) + (b(k−1))T. (1)

In Eq. 1, each element of the vector x(k) is calculated as the sum of a bias weight in
(b(k−1))T and a linear combination of the elements of y(k−1), with the coefficients
given in the weight matrix a(k−1). For example, in Fig. 1, x

(1)
1 = a

(0)
11 y

(0)
1 +

a
(0)
21 y

(0)
2 + b

(0)
11 . The elements of a(k−1) and b(k−1) are parameters (NN weights)

that must be determined before the NN can be used for energy predictions; how this
determination is made is shown later. The purpose of the bias node (with the value
of 1, shown in blue in Fig. 1) in layer k − 1 is to add some desired constants that do
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not depend on the values y(k−1), to each element of x(k) (i.e., to the next layer). The
values of the vector x(k) are then transformed via an activation function (sometimes
called transfer function or basis function) f (k)(x):

y
(k)
i = f (k)(x

(k)
i ) (2)

For the hidden layers, a nonlinear sigmoid activation function is typically used,
for example, the logistic function f (x) = 1

1+exp(−x)
or the hyperbolic tangent

f (x) = tanh(x). There are also other possible choices for the hidden layer activation
functions. For the output layer, the linear activation function f (x) = x is used to
avoid a constrained range of output values of the NN.

For a NN to predict the potential energy of the system, the input vector G must
contain all of the information about the system which determines the potential
energy. In the absence of any external fields, the potential energy is invariant
under rotation and translation. Thus, a poor choice would be to simply select the
Cartesian coordinates of the atoms as the input vector, since these do not possess
these invariances. A better choice would be internal coordinates like interatomic
distances and bond angles that by design are invariant under rotation and translation.
This works well as long as the number of internal coordinates is manageable,
for example, to describe the PES of small molecules. However, for large systems
containing thousands or more degrees of freedom, this approach quickly becomes
intractable, since the number of input features becomes very large. Another severe
challenge is the inclusion of permutation invariance of the PES with respect to the
interchange of atoms of the same element, which is also problematic in case of
internal coordinates.

Rather than having the NN describe the PES of the entire system (a “low-
dimensional” NNP), it is possible to construct NNs that describe the PES of
individual atoms. By combining several such atomic NNs together, the number of
input features can be limited while retaining the ability to model large systems with
thousands of atoms. These high-dimensional NNPs will be the focus of the rest of
this chapter. High-dimensional NNPs are typically used in conjunction with the so-
called symmetry functions as input features. They are described in the next section.

3 High-Dimensional Neural Network Potentials and
Symmetry Functions

In a high-dimensional neural network potential, the total energy is computed as the
sum of “atomic” energies Ei :

E =
Natom∑

i=1

Ei (3)
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where Natom is the number of atoms in the system. Each atomic energy Ei is
determined by means of an element-dependent feed-forward NN, where the input
features describe the chemical environment around the atom. This is akin to how the
sum over atomic environments (e.g., bond lengths and angles) is used to calculate
the total energy in many force fields. However, high-dimensional NNs have a
considerably more flexible functional form and can easily capture high-order many-
body effects; indeed, the input features are typically computed using particular
many-body functions known as symmetry functions.

For a multicomponent system with more than one element, one NN is employed
for each element. For example, to describe a CuAgAu alloy, three elemental NNs
are created, one for Cu, one for Ag, and one for Au, and each NN is called once for
each atom of the respective element. Different NN architectures (number of input
features, number of hidden layers, and/or number of nodes per hidden layer) can
be used for the different elements. The atomic energies for all the Cu atoms in the
system would be evaluated using the same Cu-specific NN, with only the numerical
values of the input vectors differing, since the atomic environments around different
atoms may vary. This treatment ensures that the total energy is permutationally
invariant with respect to the order with which the Cu atoms are provided in the
input file. Figure 2 shows schematically how the total energy E is calculated using
a high-dimensional neural network potential.

Below, we refer to specific atoms using the indices i, j , and k, and to elements
using capital letters I , J , and K , and we use the notation i ∈ I to specify that atom
i is of element I . The set of all atomic positions together with the corresponding
elements is denoted {R, Z}, where {R} denotes the Cartesian coordinates and Z the
element. Thus, {R, Z} contains all of the information normally contained in a single
frame of a Monte Carlo simulation or of a single frame of a molecular dynamics
simulation (without the particle velocities).

For an atom i ∈ I , the atomic energy Ei in Eq. 3 is calculated as

Ei∈I = χI (GI (i)) (4)

where χI denotes the NN for element I . The input vector GI (i) is a vector of
symmetry function values:

GI (i ∈ I ) =

⎛

⎜⎜⎜⎜⎜⎝

GI
1(i, {R, Z})

GI
2(i, {R, Z})

...

GI
N sym(I )(i, {R, Z})

⎞

⎟⎟⎟⎟⎟⎠
(5)

The symmetry functions are descriptors of the chemical environment around the
atoms. Typically, only the local environment within a cutoff sphere of radius Rcut is
considered. This is achieved by means of a tapering function fcut(R) that smoothly
decays to 0 in value and slope at R = Rcut. A common choice for fcut(R) is
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Fig. 2 Schematic representation of the evaluation of the total energy E for a system with 100
atoms and two elements I and J , using a high-dimensional neural network potential. In this
example, N sym(I ) = 40 and N sym(J ) = 30. The evaluation of each atomic energy Ei is performed
as in Fig. 1

fcut(R) =
⎧
⎨

⎩
tanh3

(
1− R

Rcut

)
R ≤ Rcut

0 R > Rcut

(6)

although other forms of fcut are also possible. An example of a “radial symmetry”
function for an atom i ∈ I is (Behler 2011a)
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Fig. 3 (a) The summand of the radial symmetry function in Eq. 7 for some different values of η

and Rshift, using the cutoff function fcut(R) from Eq. 6. (b) The angular part of the summand of
the symmetry function in Eq. 8, for some selected values of ζ and λ

GI (i ∈ I, {R, Z}; η,Rshift, J ) = ϕ

⎛

⎜⎜⎝
∑

j∈J
j �=i

e−η(Rij−Rshift)
2 · fcut(Rij )

⎞

⎟⎟⎠ . (7)

This function is a descriptor for how atoms of the element J (that can be same as
or different from I ) are distributed around the atom i ∈ I . It is a sum of Gaussians
multiplied by the cutoff function fcut(R). The optional feature scaling function ϕ

modifies the range of values output by the symmetry function GI , which can be
useful during the NN parameterization. The scaling function is further discussed in
Sect. 4.2. The two parameters η and Rshift determine the width and center of the
Gaussian functions. Figure 3a shows the value of the summand in Eq. 7 for different
distances, for a few selected values of η and Rshift. Here, the cutoff distance is set
to the typical value of Rcut = 6 Å, and the cutoff function from Eq. 6 is used. The
black line (η = 0 Å−2) is equivalent to the plain cutoff function fcut(R).

Typically, for every combination of central element I and neighboring element
J , several functions of the type in Eq. 7 with different values of η and/or Rshift are
used as input features to the NN in Eq. 5. Using several such symmetry functions
provides a significantly better fingerprint of the atomic environment than could be
accomplished with only a single symmetry function. For example, if the single
function with η = 0 Å−2 in Fig. 3 is used, then two neighbors around the atom
i, both at a distance R = 3 Å, yield the same value of GI (i) = 0.197 as a single
neighbor at a distance R = 2 Å. By using several symmetry functions, the aim is to
“encode” all the relevant information about the atomic environment around an atom
i into the input vector GI (i) and to provide a structural fingerprint of the atomic
environment as the input to the NN.

The radial symmetry function in Eq. 7 is only distance-dependent or in other
words spherically symmetric. Therefore it is required to incorporate also angular
dependencies into the symmetry functions. A common choice for an angular
symmetry function is (Behler 2011a)
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GI (i ∈ I, {R, Z}; η, ζ, λ, J,K)

= ϕ

⎛

⎜⎜⎜⎜⎜⎝
21−ζ

∑

j∈J, k∈K
j �=i, k �=i

k �=j

(1+ λ cos θjik)
ζ · e−η(R2

ij+R2
ik+R2

jk) · fcut(Rij ) · fcut(Rik) · fcut(Rjk)

⎞

⎟⎟⎟⎟⎟⎠

(8)

where the interatomic distances Rij , Rik , and Rjk and angle θjik between three
atoms i ∈ I , j ∈ J , and k ∈ K are used to compute the value of the symmetry
function, for each of the possible unique combinations of neighbors j and k around
the central atom i. Again, the elements J and K may be the same as or different
from I , and ϕ is a scaling function. In Eq. 8, ζ determines the range of angles for
which the angular term is approximately 0, and λ takes on a value of either +1
or −1. The angular part of the symmetry function is shown in Fig. 3b, for a few
different values of ζ and λ. Notably, the angular part is periodic with a period of
360◦ and symmetric around 0◦ and ±180◦.

By using a cutoff radius, long-range interactions like electrostatic interactions
are truncated at the cutoff. This can be problematic for many types of systems. An
approach for including long-range interactions into the PES using high-dimensional
NNPs is described in Sect. 5.

A high-dimensional NNP can also be used to evaluate the analytic forces acting
on atoms, which is central to applications like molecular dynamics simulations. The
force with respect to some atomic coordinate α is

Fα = −∂E

∂α
= −

Natom∑

j=1

∂Ej

∂α
= −

∑

J∈{Z}

∑

j∈J

N sym(J )∑

μ=1

∂Ej

∂GJ
μ(j)

· ∂G
J
μ(j)

∂α
(9)

where the outermost sum runs over all chemical elements J in the system and where
GJ

μ(j) is the μth symmetry function for the element J evaluated for the atom j ∈ J .

4 Construction of a High-Dimensional NNP

The construction of a high-dimensional NNP for some given chemical system is a
procedure involving

• The procurement of training and validation data
• The choice of symmetry functions (including the cutoff radius Rcut) for each

element
• The choice of network architecture for each element
• The fitting of the weight matrices a(k) and b(k) for each element
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Moreover, the fitted NNP must be critically evaluated and inspected for regions of
the potential energy surface that are not well-described.

In typical applications of high-dimensional NNPs, 1–3 hidden layers and 10–40
nodes per hidden layer are used for each elemental NN. The number of symmetry
functions strongly depends on the number of chemical elements in the system.
Typically, for an element I , 5–10 radial symmetry functions (Eq. 7) per possible
neighboring element J , and 5–10 angular symmetry functions (Eq. 8) per possible
combination of neighboring elements J and K , are used. The cutoff distance Rcut
is typically set to be in the range from 6 to 10 Å consistently for all symmetry
functions.

4.1 Procurement of Training Data

The procurement of training data is essential to the successful application of a high-
dimensional neural network potential. The neural network can only be as good as
the data to which it has been trained. Therefore, it is important to select a reference
computational method that is accurate for the modeled material. Often, some form
of density functional theory (DFT) is used as the reference method. The training set
then consists of a set of structures, with energies that have been determined using
DFT. Optionally, the DFT forces acting on the atoms, which contain valuable local
information about the PES, can also be used to train the NN. The aim of the training
procedure is for the NN to, as closely as possible, reproduce the reference energies
and forces; this is achieved by iteratively optimizing the weight matrices a(k) and
b(k) for each elemental NN.

In a typical setting, more and more training data is iteratively added to the training
set, in order to obtain better neural network potentials. From some initial collection
of training data, several high-dimensional neural network potentials χ

(0)
0 , χ(1)

0 , etc.
are trained (as described in the next section). By applying those potentials to, for
example, molecular dynamics simulations, it is possible to identify structures that
are poorly described. This can be accomplished in several ways:

1. By monitoring the values of the symmetry functions for the different structures
that appear in the simulation. If a symmetry function value lies outside the range
of values which appear in the training set, or if the value of the symmetry function
only appears very rarely in the training set, then the prediction made by the neural
network is likely inaccurate.

2. By comparing the energies and forces predicted by different neural networks
χ

(0)
0 , χ

(1)
0 , etc. on identical structures. If the energies and/or forces are very

different for different fits of the neural network, then the respective part of
configuration space is insufficiently sampled.

The structures identified in any of above ways are then recalculated using the
reference method and added to the training set, which is followed by new NN
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optimizations, yielding new NN potentials χ
(0)
1 , χ(1)

1 , etc. In this manner, more and
more training data is iteratively added to the training set, until the NN is deemed to
accurately describe the PES of all structures that appear in the simulation.

4.2 The Choice of Symmetry Functions

The vector of symmetry functions, GI in Eq. 5, for each element I , is what
allows the NNP to discriminate between different structures. Thus, an important
consideration, when designing a NNP for some chemical system, is which symmetry
functions GI

μ to use when evaluating GI . If only a few symmetry functions are used,
the NNP may not reliably be able to distinguish between different structures.

In practice, the set of symmetry functions is often empirically chosen and refined
until the NNP gives satisfactory results. A “good” set of symmetry functions
normally contains functions fulfilling the following conditions:

• The value of a given symmetry function is not the same for all atoms in the
training set. More generally, the range of values for a certain symmetry function
when calculated for different atoms in the training set should not be too small,
since the NN could then assign large changes in the total energy to small changes
of the symmetry function values. In addition, the distribution of values of a
certain symmetry function should be analyzed, so as to ensure that the range
of values is not dominated by a few outliers.

• The set of symmetry functions covers a range of chemically meaningful dis-
tances. For example, the most quickly decaying radial symmetry function (the
one with the largest value of η, Eq. 7) should decay around the distance of the
shortest possible meaningful bond between atoms of elements I and J .

• Atoms that experience very different forces (as calculated by the reference
method) necessarily exist in substantially different environments and should
therefore have substantially different values for at least one of the symmetry
functions. If this is not the case, then the set of symmetry functions needs to
be augmented.

• The correlation between any two symmetry functions should not be too large.

It can be useful to “precondition” input features to the neural network. The
optional scaling function ϕ in the example symmetry functions in Eqs. 7 and 8 could,
for example, ensure that the symmetry function values for different structures in
training set all lie within some predefined range, for example, [−1, 1]. The definition
of ϕμ would then, for the symmetry function Gμ, be

ϕμ(x) =
2(x −G◦,min

μ )

G
◦,max
μ −G

◦,min
μ

− 1 (10)
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where G◦,min
μ and G◦,max

μ are the minimum and maximum values in the training set
obtained for the corresponding unscaled symmetry function G◦μ. This kind of feature
scaling helps to balance the relative importances of different symmetry functions. It
is also possible to use other types of feature scaling functions.

4.3 Optimization of the NNWeights

The optimization of the NN weight parameters a(k) and b(k) for each chemical
element starts with an initial guess of their values. The initial weights could simply
be random numbers, but there also exist several ways in which the initial weights
can be chosen so as to minimize the time needed to train the neural network, for
example, the scheme developed by Nguyen and Widrow (1990). It can also be useful
to set the weights connecting the last hidden layer with the output layer so that
the average and standard deviation of the initially predicted energies (before any
training) matches the average and standard deviation of the reference energies in
the training set. The reference energies are invariably provided with some unit; the
weights can be thought of as dimensionless numbers that give NN energies in the
correct unit.

The optimization of the weights is achieved by iteratively minimizing the cost
function Γ . An optimization iteration is often referred to as an epoch. The cost
function is frequently taken to be the weighted average of the squared differences
between the NN-calculated and reference values. For example, the cost function for
the energies, ΓE , is

ΓE = 1

N struct

N struct∑

i=1

wi,E

(
ENN

i − ERef
i

Natom
i

)2

(11)

where N struct is the number of structures in the training set, wi,E is a structure-
dependent weight parameter, and Natom

i is the number of atoms in the ith structure.
By choosing different values of wi,E for different structures in the training set, it is
possible to assign a greater importance to some structures in the training set than to
others. Note that the weight wi,E which indicates the importance of the structure i

in the training set is set by the user and not fitted, unlike the NN weights a(k) and
b(k). In practice, it is common to assign the same weight wi,E = 1 to all structures
in the training set.

Similarly, the cost function for the forces, ΓF , becomes

ΓF = 1

N struct

N struct∑

i=1

⎡

⎣ wi,F

3Natom
i

3Natom
i∑

j=1

(FNN
j − FRef

j )2

⎤

⎦ (12)

where the inner sum is taken over all 3Natom
i force components in the training set

structure i. If the NN is optimized to both the energies and forces, it is possible to
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either alternate between the ΓE and ΓF cost functions for each optimization step
(where the NN weights a(k) and b(k) are updated) or to combine them into a single
cost function

Γ = ΓE + ΓF (13)

In this case, the structure-dependent weights wi,F are usually set to much smaller
numbers than wi,E , since for the structure i, there is only a single energy Ei but
3Natom

i force components. The expression for the cost function can also depend
on the optimization algorithm; for example, some algorithms include history-
dependent terms in the cost function.

Many possible optimization algorithms exist. The simplest one, steepest descent
(or “backpropagation” (Rumelhart et al. 1986)), updates the weights according to
the following rule:

a
(k)
ij (t + 1) = a

(k)
ij (t)− η · ∂Γ

∂a
(k)
ij (t)

(14)

where t is the epoch number and η is the learning rate. This step is performed
for each elemental NN. However, other weight optimization algorithms also exist
and are frequently used, such as the Levenberg-Marquardt algorithm (Levenberg
1944; Marquardt 1963) and the global extended Kalman filter (Haykin 2001). The
description of those algorithms lies outside the scope of the current chapter.

Often, the quality of a set of NN weights is characterized by the root mean
squared error, RMSE, for the energies and forces:

RMSE(E) per atom =
√√√√ 1

N struct

N struct∑

i=1

(
ENN

i − ERef
i

Natom
i

)2

(15)

RMSE(F ) =

√√√√√ 1

N struct

N struct∑

i=1

⎡

⎣ 1

3Natom
i

3Natom
i∑

j=1

(FNN
j − FRef

j )2

⎤

⎦ (16)

RMSE(E) is often reported as a value normalized “per atom,” because structures
containing many atoms typically have larger absolute errors in the energy as
compared to structures containing few atoms. For RMSE(F ), the inner sum is taken
over all 3Natom

i force components of the ith structure in the training set.
A good NN will have small values for the RMSE. Typical values reported in the

literature are about RMSE(E) = 1 meV per atom and RMSE(F ) = 100 meV/Å.
However, what constitutes a good fit depends on how the NN will be applied.
Moreover, the RMSE provides only a simple measure for how well the trained NN
performs on the training data. If the training data is very varied, for example, with
respect to the chemical composition of the system, the RMSE averaged over all the
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structures in the training set does not necessarily help the scientist find structures
or chemical compositions that are not well described by the NN. In such cases, it
is a good idea to split the training set into several different groups, e.g., according
to composition and calculate the RMSE for each group separately. In addition, it is
helpful to explore the distribution of errors in the energies and forces made by the
NN. If the NN performs poorly for some particular set of structures, it can be helpful
to increase their weights wE and wF in the training procedure (Eqs. 11 and 12) or
to modify the set of symmetry functions so that the atomic chemical environments
are better described.

4.4 Training Set, Validation Set, Test Set, Overfitting and
Underfitting

The procured reference data is typically divided into a training set and a test set. The
training set consists of the structures used to determine the NN weight parameters.
The test set consists of additional reference data that is not used to train the NN. By
using a test set, the quality of the fitted NN can be evaluated on structures to which
it has not been trained by monitoring the cost function of both sets.

The usage of a test set is instrumental for detecting the so-called overfitting
(also known as high variance). An example of overfitting is illustrated in Fig. 4a
in a simple one-dimensional case: Although the NN represented by the blue line
reproduces the reference values at each training point (red circles) very well, the NN
makes quite inaccurate predictions for values that lie outside the training set (orange
triangles). Therefore, although the RMSE on the training set would be small, the
RMSE for a test set would be considerably greater. This indicates that the NN makes
poor interpolations between the data points in the training set. Overfitting normally
happens as a result of the neural network architecture being too large, e.g., with
respect to the number of hidden layers or the number of nodes per hidden layer. The
overfitting can be combated by reducing the size of the neural network, by stopping

E

G

(a) overfitting

training set
test set

E

G

(b) underfitting

training set
test set

E

G

(c) good fit

training set
test set

Fig. 4 Examples of (a) overfitting, (b) underfitting, and (c) a good fit. The red circles represent
data points in the training set; the orange triangles represent points in the test set
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the NN weight optimization at an earlier epoch, or by including a regularization term
to the cost function Γ . A regularization term penalizes large values of the weights
a
(k)
ij , and many types of regularization terms are possible (e.g., the so-called L1 and

L2 regularization). A more in-depth discussion on regularization in connection with
neural networks can be found in, for example, Haykin (2011).

The opposite of overfitting is underfitting (also known has high bias), illustrated
in Fig. 4b. Underfitting is characterized by a high RMSE for both the training and
test sets and typically occurs if not enough epochs are run for the NN weight
optimization. If running more epochs does not address the underfitting, it can help
to make the neural network functional form more flexible, for example, by adding
more nodes to the hidden layers.

Figure 4c illustrates a “good fit,” where the error between the NN prediction and
the reference data is small, as well as roughly equal for both the training and test
sets.

If several neural network architectures are evaluated for the purpose of address-
ing, for example, overfitting, then there is a danger that the finally selected neural
network architecture has a deceivingly small error on the test set, since the test set
was used to select the neural network architecture. In such cases, the “test set” used
to evaluate the NN architecture is commonly referred to as a validation set, and the
error of the finally selected NN is then evaluated for another, independent, test set.

5 Inclusion of Long-Range Electrostatics

The neural network potential described in Sect. 3 relies on a vector of symmetry
function values as input, and for any given atom, only atoms in the environment
(within the sphere of the cutoff radius Rcut) contribute to the symmetry function
values. Thus, a fundamental assumption of the type of high-dimensional NNP
described in Sect. 3 is that the potential energy of the system can be calculated from
local atomic environments. Some type of interactions, in particular electrostatic
interactions, decay only slowly with increasing distance and can have considerable
impact on energies and forces even if the distance between two interacting atoms is
larger than Rcut.

The calculation of electrostatic contributions requires information about the
charge distribution. This can be achieved by, for example, associating each atom
with a point charge. The signs and magnitudes of those charges can either be fixed
at some predetermined (element-dependent) values or be determined “on-the-fly”
in some manner. One example of the latter type of approach that has been used
in conjunction with NNPs, is to use a second, different, NNP (Artrith et al. 2011;
Morawietz et al. 2012). This second NNP would then be fitted to reproduce the
atomic charges, akin to how the type of NNP previously introduced is used to
determine atomic energies. With this approach, some approximation for the atomic
charges must be provided in the training set. Typically, one of the many types
of atomic charges that can be derived from electronic structure calculations, such
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as Mulliken charges (Mulliken 1955), Bader charges (Bader 1985), or Hirshfeld
charges (Hirshfeld 1977), is used. Figure 5 illustrates this approach, where one
high-dimensional NNP is used to compute the “short-range” energy Eshort that only
depends on the local atomic environments, and a second high-dimensional NNP
is used to estimate the atomic charges that are used to compute the “long-range”
energy Elong (via, e.g., an application of Coulomb’s law or Ewald summation). The
potential energy is then obtained as E = Eshort + Elong. The NN architectures and
symmetry functions used for the different elements to calculate atomic charges need
not be the same as those used to calculate the atomic energies.

Regardless of the scheme used to generate the atomic charges and to calculate
Elong, it is crucial that the short-range NN is fitted to reproduce only the difference
between Etot and Elong, in order to avoid double-counting of contributions to the
total energy. In the calculation of Elong, it has been shown to be beneficial to use a
Coulomb potential that is screened at short distances, since otherwise the NN might
need to fit a more corrugated potential energy surface for the short-range energies.

The force with respect to some atomic coordinate α becomes

Fα = F short
α + F

long
α = −∂Eshort

∂α
− ∂Elong

∂α
(17)

where F short
α is calculated as in Eq. 9. For a nonperiodic system, F

long
α can be

calculated as

F
long
α = −1

2

∂

∂α

Natom∑

i=1

Natom∑

j=1
j �=i

qiqj

Rij
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]
(18)

where qi is the charge on atom i. If a NNP with symmetry functions is used to
determine the atomic charges, as in Fig. 5, then it can be shown that

F
long
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∑

J∈{Z}

∑

j∈J
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qi

Rij

·
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2

qj

Rij

∂Rij

∂α
−

N sym(J )∑

μ=1

∂qj

∂GJ
μ(j)

∂GJ
μ(j)

∂α

⎤

⎦ . (19)

For a periodic system, where the electrostatic energy is evaluated using, for example,
Ewald summation, the expression for F long

α becomes more complicated, although it
can be derived in a similar fashion.
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Fig. 5 Illustration of two high-dimensional neural network potentials, using the same chemical
system and color coding as in Fig. 2. The upper NN (white background) yields the short-range
energy Eshort; the lower NN (gray background) yields the atomic charges qi that are used to
compute Elong. Together they give the total energy E
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6 Applications and Limitations of Neural Network Potentials

NNPs, and in particular high-dimensional NNPs, have been developed and applied
to a range of different molecules and materials (for reviews see Behler 2014, 2017).
Some examples include silicon (Behler et al. 2008), carbon (Khaliullin et al. 2011),
sodium (Eshet et al. 2012), zinc oxide (Artrith et al. 2011), germanium telluride
(Sosso et al. 2012), copper (Artrith and Behler 2012), Cu clusters on ZnO (Artrith
et al. 2013), Cu-Au nanoalloys (Artrith and Kolpak 2015), water on Cu (Natarajan
and Behler 2016), titanium dioxide (Artrith and Urban 2016), gold (Boes et al.
2016), copper-palladium-silver alloys (Hajinazar et al. 2017), N2 on Ru (Shakouri
et al. 2017), and water on ZnO (Quaranta et al. 2017).

Because of the unprecedented accuracy that can be obtained at low computational
cost with such a flexible method, the development of NNPs, and of the NNP
methodology, but also of other similar ML potential methods, is currently a very
active research field. Some limitations and drawbacks of high-dimensional NNPs,
as they have been presented in this chapter, include the following:

• The iterative construction of large training sets. Typical training sets include
thousands of structures that must be computed using a reference electronic
structure method. Moreover, the generation of new training set structures is often
done in an empirical fashion, using, for example, high-temperature molecular
dynamics simulations.

• Limited number of elements in the chemical system. With more than three or four
chemical elements in the system, the number of needed symmetry functions to
describe the local chemical environment around an atom becomes exceedingly
large. For such systems, another type of input feature might be beneficial.

• Complicated and time-consuming fitting procedure. NNPs contain many weights
that need to be fitted. Even with the use of advanced fitting algorithms, obtaining
a good fit is often a time-consuming procedure. This problem is exacerbated with
the inclusion of long-range electrostatics as outlined in Sect. 5.

7 Summary

In recent years, neural network potentials (NNPs) have become a very useful tool
for atomistic materials modeling simulations. They provide the potential energy
surface (PES) of a system at low computational cost, while the accuracy is very
close to that of first-principles methods. Because of the flexible functional form
of NNPs, they can be used to describe all types of atomic interactions (covalent
bonding, dispersion interactions, hydrogen-bonding, etc.) on an equal footing. In
case of significant long-range electrostatic interactions, NNPs can be extended with
some scheme for determining reference atomic charges or multipoles, to include
the long-range contribution to the total energy. While NNPs are fitted to reproduce
reference data (typically total energies and atomic forces) from electronic structure
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calculations, a careful validation of the obtained potentials is required due to the
intrinsically nonphysical but purely mathematical functional form. In case of high-
dimensional NNPs, one NN is fitted for each chemical element in the system. The
element-specific NN then describes the PES around a particular type of atom. The
local atomic environment is transformed into input for the NN using, for example,
symmetry functions. The total energy is then calculated by summing over all atomic
contributions.

The errors associated with NNPs, as compared to the reference electronic
structure method, can be made extremely small (<1 meV per atom), which makes
NNPs a promising tool for future applications in materials modeling and simulation.
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Abstract

Because of their considerable predictive power, atomistic simulations are
extremely powerful tools in the computational materials scientist’s toolbox. This
power however comes at a significant computational price that rather strongly
limits the accessible simulation space, especially in terms of the timescales that
can be directly simulated. Specialized methods specifically designed to overcome
timescale limitations while still faithful to the underlying dynamical behavior
of the system are hence essential in order to bridge the gap with experiments.
This section summarizes the most recent advances in a class of open-ended long-
timescale atomistic simulation techniques that include accelerated molecular
dynamics and kinetic Monte Carlo methods. The different chapters introduce the
basics of these methods as well as a review of their most recent developments.
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1 Introduction: The Timescale Limitations of Molecular
Dynamics

Molecular dynamics simulations have become a workhorse in the general endeavor
of computational materials science. By providing an atomic-scale description
of materials, each and every atom can be followed and its behavior tracked
computed, a resolution simply not possible with any other technique, experi-
mental or otherwise. These types of simulations have provided unprecedented
insight into the behavior of materials. For example, some of the first molec-
ular dynamics simulations were on the problem of collision cascades during
irradiation. Indeed, it is from such simulations that the majority of our knowl-
edge about the primary damage state created during a radiation damage event
arises. Similarly, knowledge of the complex behavior of dislocations, interfaces,
or grain boundaries is in great part due to our ability to carry out direct atomistic
simulations.

However, despite the immense popularity of molecular dynamics in materials
research, significant shortcomings still limit the types of studies that can be
performed. Chief among these is the limited timescales. While heroic efforts can
reach microseconds for some systems, most are limited to nanoseconds, and all
fall far short of the timescales relevant to most experimental conditions. Coming
back to the problem of radiation damage, one would ideally wish to predict the
response of the material over years of irradiation, or at least be able to simulate on
timescales that correspond to collision cascades hitting the same region of space
more than once at realistic fluxes. The art of molecular dynamics therefore often
lies in carefully designing simulation protocols or initial conditions such that long-
time behavior can be inferred from short simulations. While this is sometimes
possible, it is often extremely challenging to do accurately, which severely limits
the contribution of molecular dynamics to answering key questions in materials
science.

It is important to note that this limitation persists regardless of the size of
the computer that is employed. This is due to the intrinsically serial nature of
the numerical solution of the atomistic equations of motion: work on a given
timestep has to be completed before work on the next can begin. Therefore, effective
parallelization of conventional molecular dynamics can only proceed within a
timestep, not across. This usually translates into a spatial parallelization scheme
where different processing elements are in charge of computing the forces acting
on atoms in distinct physical regions, an approach that is efficient only if every
computing element is assigned enough work that communication or synchronization
costs are negligible; it however breaks down when the number of atoms assigned
to each processing element becomes too small. Parallelization of conventional
molecular dynamics is therefore a viable approach to extend the simulation length-
scales, but typically not their timescales. Thus, there has been a recognized need for
methods that retain the full atomistic fidelity of the underlying interatomic model
but push the accessible timescale to those more amenable to direct comparison with
experiment.
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2 Accelerating Rare Event Dynamics

With this motivation in mind, a number of scientists have developed fundamentally
new simulation approaches with precisely this goal. Such efforts have traditionally
been focused on systems that evolve through so-called rare events, where long
waiting periods, often corresponding only to vibrational motion, are punctuated
by rare but rapid transitions to different configurations. This class of materials is
especially crippled by the limitations of standard approaches, as short simulations
are extremely unlikely to be informative of their long-time behavior. The exact
nature of what makes these events rare can vary between materials and external
conditions, ranging from high energetic barriers to entropic constrictions. These
obstructions lead to a so-called separation of timescales between fast (corresponding
to local exploration of the potential energy surface) and slow (corresponding to
rare transitions over the kinetic bottlenecks) components of the dynamics. This
separation enables a statistical treatment of the slow events, as local equilibrium
with respect to the fast degrees of freedom can be assumed. The simplifications that
follow from this assumption are key to enabling most of the long-timescale methods.

Efforts have long been underway in the development of techniques that can
exploit the separation of timescales to extend the predictive power of atomistic
simulations beyond what can directly be simulated. In broad terms, these techniques
can be classified into what we term kinetic and dynamic methods. Kinetic techniques
are designed to compute transition rates or sample from the ensemble of reactive tra-
jectories for rare transitions that occur along pre-specified reaction pathways or that
otherwise connect specific regions of configuration space (e.g., the solid and liquid
regions). This family contains a very large number of methods, including free energy
(see �Chaps. 29, “Variationally Enhanced Sampling” and � 27, “Metadynamics: A
Unified Framework for Accelerating Rare Events and Sampling Thermodynamics
and Kinetics”), path sampling, and milestone-based approaches. These tools are
especially powerful when one is interested in characterizing a process which is
known to occur or when the basic nature of phenomena of interest is known a
priori, e.g., when one can identify or construct a proper reaction coordinate for the
process of interest. These methods are also adept at handling energy landscapes that
are largely smooth on energy scales larger than kBT, hence their popularity in the
soft matter community. When this is not the case, truly dynamical methods, where
a single (or a small number of) unbiased trajectories can be generated – just like
in standard molecular dynamics – are preferred. This family of techniques is in
comparison much smaller.

3 Summary of the Section

In order to allow for a comprehensive overview, we here restrict our attention to
the second class of methods, and especially to accelerated molecular dynamics and
adaptive kinetic Monte Carlo techniques. These methods are often very effective
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for hard materials at moderate temperatures, but they tend to fare less well for
softer systems where the topology of the fast-equilibrating regions of configuration
space can be very complex. For these systems, kinetic methods, where additional
knowledge can be exploited, are often preferred. The most recent developments
in dynamical methods are described in this section, written by global leaders in
the field. These approaches broadly fall into two categories: (i) bypass the problem
altogether by foregoing the integration of the equations of motion in favor of direct
searches for escape pathways or (ii) use molecular dynamics as a computational
engine, but “trick” it into revealing relevant kinetic information faster.

The first approach requires methods to search and characterize the potential
energy surface of the system. Hannes Jónsson is the original developer of the
nudged elastic band (NEB) method (Jónsson et al. 1998), a method for finding
saddle points on potential energy surfaces given an initial and final state of the
system. He and his colleague describe recent developments in such static approaches
to finding saddle points and to computing transition rates along these pathways,
for example, using transition state theory (TST) (see �Chap. 33, “Exploring
Potential Energy Surfaces with Saddle Point Searches”). Given the static nature of
these types of calculations, they are more amenable to application with electronic
structure approaches such as density functional theory than are dynamics-based
methods. While these methods can be characterized as kinetic according to the
above discussion, they are instrumental in the design of truly dynamical methods
like adaptive kinetic Monte Carlo (KMC) (Henkelman and Jónsson 2001). KMC
techniques can generate long trajectories that overcome many of these bottlenecks
without having to assume that their nature or kinetics is known a priori. The
most recent developments in these types of approaches are described by Normand
Mousseau and Graeme Henkelman, two pioneers in this field (see �Chap. 34, “Off-
Lattice Kinetic Monte Carlo Methods”).

The alternative approach is embodied by the so-called accelerated molecular
dynamics (AMD) methods (Voter 1997, 1998; Sorensen and Voter 2000), now over
20 years old. Generally, though not exclusively, based on TST, these approaches
sacrifice fidelity on the scale of atomic vibration to describe accurate state-to-
state dynamics on timescales longer, in some cases much longer, than molecular
dynamics. While some of the AMD methods provide acceleration even in serial,
the increased availability of massively parallel platforms has provided unique
opportunities to further enhance their reach. �Chapter 35, “Accelerated Molecular
Dynamics Methods in a Massively Parallel World” by Richard Zamora, Arthur
Voter, and co-workers describes a number of such parallelization strategies that can
be employed to extend the temporal reach of molecular dynamics.

Tony Lelièvre delves into recent developments in the fundamentals of the
AMD methods, putting them on a solid mathematical foundation (see �Chap. 36,
“Mathematical Foundations of Accelerated Molecular Dynamics Methods”). Many
of these new insights stem from the crucial concept of quasi-stationary distribution,
which has proved extremely powerful to understand the behavior of systems that
evolve through rare events. This concept can be used to reinterpret all of the AMD
methods and gain new insights on the precise nature of the assumptions that they
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each entail and on their relative strengths and limitations. In particular, this formal
framework has been used to show that one method, parallel replica dynamics, can be
made arbitrarily accurate by adjusting a single free parameter (Le Bris et al. 2012).
This chapter also casts the other traditional AMD methods in this new framework.

While AMD and adaptive KMC methods are adept at reaching long timescales on
relatively small systems, simultaneously increasing the timescales and length-scales
is an ongoing challenge. Ellad Tadmor and Woo Kyun Kim show how concurrent
multiscale methods that reduce the number of degrees of freedom that need to be
explicitly simulated for systems where capturing the proper elastic response of the
environment is crucial (such as the quasicontinuum method (Shenoy et al. 1999))
can be coupled with the AMD methods to yield extended simulation times while
preserving the fidelity of the simulation (see �Chap. 37, “Temporal Acceleration in
Coupled Continuum-Atomistic Methods”).

Finally, Arthur Voter, Tony Lelièvre, Graeme Henkelman, Normand Mousseau,
and Hannes Jónsson all come together for a joint chapter on the challenges and best
practices associated with the development and use of long-timescale methods (see
�Chap. 38, “Long-Timescale Simulations: Challenges, Pitfalls, Best Practices, for
Development and Applications”). Broken into four questions that get at the heart of
these approaches, each offers his perspective on the state of the art, particular pitfalls
that need to be considered when developing and implementing long-timescale
methods, and challenges in using them. They also discuss where they think the
future of these methods lies.

Together, these chapters provide both a brief introduction but, more importantly,
a current perspective on the state of the art of long-timescale atomistic simulations.
Each chapter highlights the current capability of each method as well as potential
opportunities for next steps in advancing the method and the field. With the advent
of massively parallel computing architectures, these approaches will find new
application that will extend our collective knowledge of the complex atomic-scale
behavior that underlies much of the macroscopic materials properties that scientists
worldwide are investigating. Thus, these methods will become even more central in
the ongoing quest to understand materials.
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Abstract

The energy surface of an atomic scale representation of a material contains
the essential information needed to determine the structure and time evolution
of the system at a given temperature. Local minima on the surface represent
(meta)stable states of the system, while first-order saddle points characterize
the mechanisms of transitions between states. While many well-known meth-
ods make it relatively easy to find local minima, the identification of saddle
points is more challenging. In this chapter, methods for finding saddle points
are discussed as well as applications to materials simulations. Both doubly
constrained search methods, where the final and the initial state minima are
specified, and singly constrained search methods, where only the initial state
is specified, are discussed. The focus is on a classical description of the atom
coordinates, but saddle points corresponding to quantum mechanical tunneling
are also mentioned. An extension to magnetic systems where the energy surface
depends on the orientation of the magnetic vectors is sketched.

1 Introduction

Atomic scale simulations of materials often involve finding likely arrangements
of the atoms as well as identifying the mechanism and estimating the rate of
transitions between different arrangements such as diffusion events, migration of
dislocations, chemical reactions, and phase transformations. These can be obtained
by analyzing the energy surface characterizing the system, i.e., the electronic
ground-state energy of the system as a function of the location of the atoms (and
possibly also the orientation of the moments of magnetic atoms) (Peters 2017).
Each state corresponds to a minimum on the energy surface and the potential well
surrounding it. Excited electronic states can, in some circumstances, be important,
but the discussion here will focus on the electronic ground state. Even so, the energy
surface is complex and multidimensional for most material systems of interest, and
it requires efficient tools to navigate on the energy surface and extract the desired
information.

Given some initial configuration of the atoms and a method for evaluating
the energy and its gradient with respect to atom coordinates, the nearest local
minimum can readily be identified with any number of available minimization
methods. A significant challenge, however, is to find all the relevant minima for
given conditions, such as temperature. The lower the local energy minimum of the
state, the more likely the system is to be in that state, according to Boltzmann
statistics. The width of the energy well around the minimum and the number of
equivalent minima relate to the vibrational and configurational entropy, respectively,
and also contribute to the stability of the state. The identification of the most likely
state of a system requires navigation on the energy surface, for example, advancing
from one energy minimum to another.

One way to discover new minima is to move through regions of dips in the energy
ridge, i.e., regions around first-order saddle points on the energy surface. At a first-
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order saddle point, the gradient of the energy vanishes, and the Hessian, the matrix
of second derivatives, has one and only one negative eigenvalue. The eigenvectors
are referred to as modes, and the one corresponding to the negative eigenvalue is
the unstable mode. A general feature of energy surfaces for atomic systems is that a
lower energy saddle point tends to lead to a lower-energy minimum on the other side
(the basis of so-called Brønsted-Evans-Polanyi relation). So, more often than not, a
low-energy minimum can be discovered by moving over the energy ridge through a
low-energy saddle point. Methods for finding first-order saddle points can, therefore,
be used to identify local minima and likely states of the system.

It may, however, not be possible to reach some states, such as the one corre-
sponding to the global energy minimum, on a given time scale because of a large
energy barrier. The rate at which the system moves from one state to another is the
key quantity that is needed to predict the long time scale evolution of the system. On
a given time scale, only transitions that are frequent enough are relevant. Classical
dynamics simulations based on Newton’s equation of motion can be carried out,
but the time scale of such simulations is limited by the vibrational frequency of the
atoms and even for the simplest description of the energy surface – an empirical
potential function – such a simulation can only span a small fraction of a second,
while the challenge is often to predict the evolution of a material over years. As is
explained in the following section, the first-order saddle points on the energy surface
and their vicinity can be used to estimate the rate of transitions between states of the
system. The central focus of this chapter is methods for finding first-order saddle
points for the purpose of exploring energy surfaces of material systems.

2 Estimation of Transition Rates

The dynamics of atoms in materials that are relatively stable under conditions of
interest can be characterized by a large number of vibrations back and forth, mostly
in the close vicinity of the local energy minimum but occasionally involving large
excursions caused by rare fluctuations through coupling to the heat bath. Such
fluctuations can be large enough for the system to enter a new state. Since the
system spends a long time in each state, a Boltzmann distribution of energy is
typically established in all degrees of freedom, and the rate at which the system
can transform from one state to another can be estimated to a first approximation by
using statistical mechanics.

The basic tool for estimating transition rates in materials is transition state
theory (TST) (Wigner 1938; Peters 2017). Assuming the atoms can be described
as classical particles and that Boltzmann distribution of energy has been established
in all degrees of freedom, the lifetime of a given initial state and possible final
states of transitions from it can be estimated in a two-step procedure referred to as
Wigner-Keck-Eyring (WKE) dynamics (Wigner 1938; Keck 1967; Eyring 1935).
In the first step, a dividing surface in configuration space separating the initial
state from other states is defined. The dividing surface should be placed in such
a way that it lies through regions of the energy surface where the system is least
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likely to be found. The dimensionality of the dividing surface is D − 1 where
D is the total number of degrees of freedom in the system (in three dimensions,
D = 3N where N is the number of atoms). By adding a small width around the
dividing surface, a subspace of dimensionality D is generated, and this is referred
to as the transition state. Transition state theory assumes that if the system makes
it to the transition state and has velocity pointing away from the initial state, a
transition will occur and the system enter a new state. This basic TST assumption
is an approximation. Dynamical trajectories can be reflected back after crossing the
transition state and reenter the initial state. They can, in fact, recross multiple times,
and each recrossing to the initial state leads to an overestimate of the transition rate
in the TST approximation. As a results, TST is guaranteed to give an upper bound to
the transition probability. This gives a variational principle for the placement of the
dividing surface. The dividing surface that leads to the lowest TST transition rate
estimate is the optimal one. The first step of the WKE procedure should, therefore,
involve a variational optimization of the dividing surface in addition to giving an
approximation to the transition rate, kTST.

The second step of the WKE procedure involves the calculation of short
time scale trajectories started from the dividing surface. Since the transition state
represents a region of low probability, the system advances quickly from there to
either the initial state or some final state. The trajectories in the second WKE step
reveal possible final states of the transition. Note that TST does not specify the
final state. The trajectories also serve as a means to correct the TST rate estimate
and obtain (in principle) the exact estimate of the rate by evaluating a dynamical
correction factor, κ (Keck 1967; Voter and Doll 1985). The less the dividing surface
was optimized in the first step, the larger the number of trajectories needed in the
second step to obtain a statistically converged correction factor. A recrossing of
the transition state can occur either because of the shape of the energy surface,
such as a curved valley on the energy surface in the final state, or because of a
fluctuation from the heat bath resulting in a reversal of the relevant component of the
velocity. Both effects are included in the short dynamical trajectories of the second
WKE step. The WKE procedure, therefore, provides essentially an exact estimate
of the transition rate, k = κkTST. Instead of involving impossibly long dynamical
trajectories started near the initial state energy minimum, WKE uses a statistical
estimate of the probability of making it to the transition state and then short time
scale trajectories for the evolution from the transition state to possible final states.

The full implementation of the WKE procedure is in general challenging because
of the need to represent and optimize a high-dimensional dividing surface. Efficient
tools for such calculations have not been developed yet. The simplest approach is to
use a hyperplanar dividing surface where both the location and the orientation are
variationally optimized (Jóhannesson and Jónsson 2001). The orientation specifies
which atoms are displaced and by how much at the transition state. The orientational
optimization identifies the optimal transition mechanism. A single hyperplane is,
however, in general not sufficient to specify the full dividing surface, and either a
curved surface (Ciccotti et al. 1995) or a mosaic of hyperplanar segments is needed
(Bligaard and Jónsson 2005).
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The most commonly used form of TST involves an approximation to the energy
surface. By expanding the energy to second order in the vibrational normal modes
at both the initial state minimum and at a first-order saddle points on the energy rim
surrounding the initial state, an approximation to the rate constant is obtained and
referred to as harmonic TST (HTST) (Vineyard 1957):

kHTST =
∏D

j νi,m
∏D−1

j νi,s
exp (−(Es − Em)/kBT ) (1)

where Em and Es are the values of the energy the νi,m and νi,s are the vibrational
frequencies at the minimum and at the saddle point, kB is the Boltzmann constant,
and T is the temperature. This expression agrees with the empirical Arrhenius
dependence of the rate constant on temperature:

k = A exp (−Ea/kBT ) (2)

showing that the activation energy, Ea, is the energy difference between the first-
order saddle point and the initial state minimum and the prefactor is related to the
width of the potential energy well at the minimum and the energy valley at the saddle
point.

The vibrational frequencies are obtained from the positive eigenvalues of the
Hessian. The number of vibrational modes at the saddle point is one less than at
the minimum because the dividing surface does not contain the unstable mode, the
vibrational mode corresponding to negative eigenvalue. The ratio of the products of
vibrational frequencies represents the relative vibrational entropy of the transition
state and the initial state. Effectively, the dividing surface is approximated in HTST
by a hyperplane going through each one of the first-order saddle points on the
energy rim surrounding the initial state minimum with normal vectors pointing in
the direction of unstable modes. Strictly speaking these should be finite hyperplanar
segments, but the full hyperplane is included for each saddle point in order to obtain
a simple analytical expression for the rate constant.

The HTST approximation can give an accurate estimate of the rate constant
for materials at not too high or too low temperature. For low enough temperature,
nuclear quantum effects need to be accounted for (see below). The energy surface
must be smooth enough and the first-order saddle points separated by regions of
high enough energy for the harmonic approximation to accurately represent the
energy surface in the neighborhood of the extrema where the Boltzmann statistical
weight is appreciable. This means that the first-order saddle points on the energy
ridge must be separated by second-order saddle points that are significantly higher
in energy, by several kBT , compared to the first-order saddle points. Below, we will
describe a method that can be used to check whether the energy landscape satisfies
this criterion.

The main challenge is to find the relevant saddle points. The lower the energy of
a saddle point, the more probable the corresponding transition is. While the number
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of saddle points surrounding a given minimum on the energy surface can easily be
enormous, it is enough to find only the lower lying saddle points in order to identify
the relevant transitions. The task of finding saddle points can be divided into two
categories. In the more general category, only the initial state is known, and the
task is to find all relevant saddle points on the energy ridge surrounding the energy
minimum. In some cases, the final state of interest is also known, and the task can
then be cast in terms of finding the minimum energy path (MEP) between the initial
and final state minima. The MEP is a path for which the energy is at a minimum
in directions orthogonal to the path. A maximum along the MEP corresponds to a
first-order saddle point. The activation energy for the overall transition is then given
by the highest rise in energy along the path. We will first discuss methods for finding
the MEP when both initial and final states are given. Then, we discuss methods for
the more challenging problem of finding relevant saddle points when only the initial
state is specified.

3 Initial and Final States Specified, CI-NEB

A path between a given initial and final state can be discretized by creating a number
of replicas of the system and arranging them in such a way as to trace out a curve
between the states. We will refer to the discretization points as “images” of the
system. An image labeled i is specified by the coordinates of the atoms, Ri . The
task is to first generate a reasonable initial path and then apply an optimization
algorithm to iteratively move the images to the MEP. There can exist more than one
MEP between the given minima, an issue that is addressed below. At this point, the
task is just to find the MEP closest to the initial path.

The simplest way to generate an initial path is to make a linear interpolation
in Cartesian coordinates between the two minima. This method is frequently used
in materials simulations. It can, however, lead to unphysical configurations of the
atoms. For example, two atoms may end up being very close to each other leading
to a strong repulsive interaction. When the calculation of the energy and atomic
forces is carried out using an electronic structure method, such strong overlap
may slow down or even prevent the self-consistency calculation from converging.
Furthermore, the initial path generated by a linear interpolation may be far from
any MEP. A better approach is to generate the initial path by taking the pairwise
distances between atoms into account. This can be done with the image dependent
pair potential (IDPP) method (Smidstrup et al. 2014). There, the pairwise distances
between neighboring atoms are interpolated linearly between the two minima and
an initial path generated to match those distances as closely as possible. Since there
are many more pairwise distances than atom coordinates, the matching can only
be approximate and the initial path is found by minimizing the sum of squared
deviations (Smidstrup et al. 2014). Another approach that avoids the problem of
overlapping atoms is to generate the initial path by linear interpolation in internal
coordinates (Goumans et al. 2009).



33 Exploring Potential Energy Surfaces with Saddle Point Searches 695

In order to find the MEP closest to the initial path, the images are moved
iteratively in a direction obtained from the atomic forces, i.e., negative gradient of
the energy with respect to atomic coordinates, −∇E(Ri). But only the component
perpendicular to the path should be used to modify the shape of the path. A force
projection is, therefore, required based on an estimate of the local tangent to the
path. While it seems natural to estimate the tangent at a given image, i, from the
coordinates of atoms at the two adjacent images, i − 1 and i + 1, it turns out to
be numerically more stable to use only the coordinates of the neighboring image
that has the higher energy (Henkelman and Jónsson 2000). Letting the normalized
tangent be denoted τ̂i , the force acting on the shape of the path at image i is given
by

F
p
i |⊥ = −∇E(Ri)+ ∇E(Ri) · τ̂i τ̂i . (3)

By displacing the images in the direction of F p
i |⊥, the perpendicular component

of the atomic forces will vanish, and the images are then on the MEP. At each
iteration of the optimization, the atomic forces of all images need to be calculated.
The evaluation of the energy and atomic forces is typically the most computationally
intensive part of the calculation. However, the calculations can readily be performed
simultaneously, using parallel or distributed computing.

It is also necessary to specify how the images are distributed along the path. If
the distribution is not controlled, the images tend to slide down to the local energy
minima. The distribution is commonly controlled using a restraint method where a
harmonic spring acts between adjacent images in the direction parallel to the path:

F s
i |‖ =

(
ks
i (Ri+1 − Ri)− ksi−1 (Ri − Ri−1)

) · τ̂i τ̂i . (4)

The spring constants, ks
i , can be chosen to produce a desired distribution of the

images, for example, with higher density in regions of higher energy (Henkelman
et al. 2000a). Most often, though, the spring constants are chosen to have the same
constant value resulting in an even distribution of images along the path. For optimal
convergence rate, the magnitude of the spring constant should be chosen such that
the magnitude of F p

i |⊥ and F s
i |‖ is comparable. The effective force acting on image

i in the path is then given by the sum of the two force components:

Fi = F
p
i |⊥ + F s

i |‖. (5)

The force projections, referred to as “nudging,” separate the distribution of the
images along the path from the displacements of images affecting the shape of the
path. The distribution of the images along the path can also be controlled using a
constraint method based on an estimate of the total length of the path (Weiqing and
Vanden-Eijnden 2002).

The most important part of the MEP is the highest energy point along the path,
i.e., the highest first-order saddle point along the path connecting the initial and final
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states. The activation energy of transitions between the two states can be estimated
from the first-order saddle point using HTST. In order to obtain an accurate estimate
of the saddle point, one of the images can be forced to “climb” upward along the path
and converge to the highest saddle point. This image is referred to as the “climbing
image.” Generally, the highest energy image after a few normal iterations (or a
certain user-defined threshold) is chosen to become the climbing image, i = c.
The effective force acting on this image is (Henkelman et al. 2000a)

Fc = −∇E(Rc)+ 2
(∇E(Rc) · τ̂c

)
τ̂c (6)

The assumption here is that the tangent estimate at the climbing image gives an
accurate estimate of the direction of the unstable mode at the saddle point. It is used
to transform the gradient of the energy around the first-order saddle point so as to
mimic the gradient around a minimum. An ordinary minimization algorithm can
then be used with the transformed gradient to converge the climbing image on the
first-order saddle point. This method is referred to as the climbing image nudged
elastic band (CI-NEB) method (Henkelman et al. 2000a).

3.1 Optimization of the Path

Various iterative algorithms can be used to zero the effective force and hence move
the images to the MEP.

Note, however, that the objective function, the function that gives the effective
force by differentiation, is not known explicitly because of the force projections,
i.e., the nudging. The optimization algorithm should, therefore, be based only on
the forces, not on the objective function itself. This, for example, makes the usual
implementation of line search approaches not applicable and hence complicates the
implementation of some of the optimization methods.

In early implementations of the method (Mills et al. 1995; Jónsson et al. 1998),
a velocity projection method based on the velocity Verlet dynamics algorithm
(Andersen 1980) was used. There, the velocity, v, is zeroed in directions orthogonal
to the force if v · F > 0 and in all directions if v · F < 0. A parametrized extension
of the algorithm has been devised (Bitzek et al. 2006). The velocity projection
algorithm gives fast and reliable performance in the initial stages where the images
may be located far from the MEP and the effective forces large (especially when
linear interpolation is used to generate the initial path). However, the convergence
close to the MEP can be faster by using more advanced approaches (Chu et al. 2003;
Sheppard et al. 2008). The limited memory Broyden-Fletcher-Goldfarb-Shanno
(L-BFGS) (Nocedal 1980) algorithm has proved to be efficient (Sheppard et al.
2008). If the second derivatives of the energy are available and can be computed
in each iteration without large effort (which however is generally not the case), a
highly efficient optimization algorithm can be used (Bohner et al. 2013).

An example of a CI-NEB calculation on a modified two-dimensional Müller-
Brown energy surface using the L-BFGS algorithm is shown in Fig. 1. The algorithm
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Fig. 1 A climbing image nudged elastic band calculation of the minimum energy path of a model
two-dimensional potential surface (a modified Müller-Brown surface (Ásgeirsson and Jónsson
2018)). In addition to the initial and final states, which are fixed (red dots), the path is represented
by ten discretization points, referred to as images (black dots). The initial path is generated from
a straight line interpolation (in more realistic systems, it is better to use the IDPP method). The
position of images is shown after 0, 5, 10, 15, and 21 L-BFGS iterations. The green dashed line
shows the minimum energy path. A red dot marks the first-order saddle point to which the climbing
image converges. Inset: Energy along the minimum energy path and energy of the images after
convergence has been reached

is used here right from the start. A more reliable strategy is to start out with the more
stable and conservative velocity projection algorithm and then switch to the faster
L-BFGS method once the effective force acting on each atom has dropped below
some user-defined threshold, for example, ||Fi || < 0.5 eV/Å.

A calculation may be considered tightly converged to the MEP when the norm of
the force acting on each atom perpendicular to the path ||F p

i |⊥|| is below 0.01 eV/Å
for all images. However, the MEP is mainly needed to identify where the highest
energy point is and to estimate the tangent to the path at that point. The tight
convergence is really only needed for the climbing image, and a looser threshold
can be used for all other images, such as ||F p

i |⊥|| < 0.1 eV/Å.
When electronic structure methods, such as density functional theory (DFT) or

ab initio quantum chemistry, are used in combination with a CI-NEB calculation,
it is particularly important to reduce as much as possible the number of energy
and atomic force evaluations. Recently, it has been shown that machine learning
approaches can reduce the number of energy and force evaluations by an order of
magnitude. Both neural networks (Peterson 2016) and Gaussian process regression
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(GPR) (Koistinen et al. 2016, 2017) have been applied. There, an approximate
energy surface is constructed with a machine learning model using all previous
energy and force evaluations carried out by the electronic structure method. A
CI-NEB calculation is carried out on the approximate energy surface and the
electronic structure calculation then done for each image or only the image
where the estimated uncertainty of the approximate energy surface is largest. The
approximate energy surface is then refined using the new information and the
CI-NEB calculation carried out again, etc. The GPR has the advantage of having
a built-in error estimate which can be used to choose in an optimal way which
image should be evaluated by the electronic structure method. The machine learning
approach helps make optimal use of each electronic structure calculation, while
traditional optimization methods, such as the velocity projection algorithm, only use
the forces obtained at the current step and disregard all previous force evaluations.
The L-BFGS keeps memory of the last M steps (typically M = 20) to construct
an approximate Hessian matrix, but the machine learning algorithm constructs an
approximate surface of a more general shape. As a result, the machine learning
approach can use all previous energy and force calculations and reach convergence
with fewer electronic structure calculations than L-BFGS.

3.2 Interpolation and Strategy

In order to analyze and visualize the results of a CI-NEB calculation as well as
to monitor the progress of the calculation, it is important to not just interpolate
the energy of the images but also the derivative of the energy along the path, i.e.,
the component of the atomic forces parallel to the path. It is convenient to use
a cubic polynomial for each interval between adjacent images (Henkelman and
Jónsson 2000). An interpolation using the derivative may reveal the presence of
an intermediate minimum along the path, while a simple interpolation of only the
energy does not. A good strategy in such a case is to locate the energy minimum with
a separate minimization calculation and then proceed with CI-NEB calculations of
the two segments of the path separately.

In an analogous manner, the atom coordinates can be interpolated to add
new images and hence improve the resolution in certain regions along the path
(Henkelman and Jónsson 2000). This especially applies to regions of high curvature
and rapid changes in the tangent from one image to another which can cause
inaccuracies and even non-convergence of the calculation. As any other numerical
method that relies on discretization, the CI-NEB method requires the number of
images to be large enough. However, instead of doubling the number of images in
such a situation, it may be sufficient to simply add an image (or a few images) in the
problematic region along the path. Note that the spring constants associated with the
new image need to be twice as strong such that the location of the adjacent images
does not get disrupted.

When the CI-NEB method is applied to materials where periodic boundary
conditions are applied to the simulation cell, the size and shape of the cell can be
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made part of the MEP calculation, in addition to the atom coordinates (Sheppard
et al. 2012). This is needed if the crystal structure is changing during the transition.
When the method is applied to finite systems such as clusters or molecules, it is
important to remove the overall translation and rotation of the system from the
available degrees of freedom. The optimization of the path could otherwise lead to
an artificial lengthening of the path involving translation and/or rotation in order
to enable images to slide down from high-energy regions. This can reduce the
resolution of the path in regions of high energy and increase the computational effort
or even prevent the calculation from converging. A method based on quaternions
has been formulated for the purpose of constraining the translation and rotation
(Melander et al. 2015).

3.3 Application of CI-NEB andWKE Dynamics

An application of the CI-NEB method is shown in Fig. 2. It illustrates how the
method can reveal a mechanism that is entirely different from the one implicitly
assumed in the initial path. Also, after the MEP and relevant saddle point had been
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Fig. 2 An application of the climbing image nudged elastic band method to a surface reaction
where a CH4 molecule is formed on a Ni(111) surface from a subsurface H atom and a CH3
admolecule. While such a transition mechanism had been postulated to be efficient, the calculation
shows that a corresponding minimum energy path does not exist on the DFT/PW91 energy surface.
While the initial path is consistent with direct addition of the subsurface H atom with the CH3
admolecule, the optimization of the path reveals that the CH3 first hops to the side, the H atom
emerges to the surface to a state that corresponds to a deep intermediate minimum, and, finally, the
H adatom and the CH3 combine in a regular surface reaction mechanism to form the CH4, which
leaves the surface. The calculation illustrates how the method can find at a complex minimum
energy path involving several elementary reaction steps even when the initial path is generated
with an incorrect mechanism in mind. (From Henkelman et al. 2006)
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located, short time scale dynamics were initiated from the transition state to obtain
various information about the atomic dynamics.

There had been some suggestions that subsurface H atoms could play an
important role in the formation of CH4 molecules from CH3 molecules adsorbed on
a catalyst surface. As can be seen from the inset showing the initial state, it seems
reasonable that the H atom could add directly to the CH3 as it moves up from the
subsurface site. This mechanism appears to be more facile than the typical surface
reaction mechanism since an H adatom on the surface cannot easily approach to
the C atom in the CH3 admolecule. A CI-NEB calculation for this reaction on a
Ni(111) surface was carried out using DFT/PW91 to evaluate the energy and atomic
forces (Henkelman et al. 2006). The calculation started from a linear interpolation
assuming that the direct addition of the subsurface H atom to the C atom in CH3
could take place. The initial path is simple and mainly involves the displacement of
the H atom up from the subsurface site. Optimization of the path, however, revealed
that an MEP corresponding to this direct reaction mechanism does not exist on
the DFT/PW91 energy surface. Instead, the path converged on a complex multistep
mechanism. First, the CH3 hops to the side to a nearby bridge site, freeing up the
surface site for the H atom. Then, the H atom hops to the surface. A deep minimum
corresponds to this intermediate configuration. Finally, the H adatom and the CH3
admolecule combine in the usual surface reaction step to form a CH4 molecule that
leaves the surface.

This is a good example of how a CI-NEB calculation can undo an incorrect
preconceived notion of a reaction mechanism. While it can seem plausible that a
subsurface H atom attaches directly to a CH3 admolecule, the results obtained for
the DFT/PW91 energy surface do not support this notion. The reason appears to be
that the Ni atoms do not have catalytic activity where they are bonded to each other.
The catalytic activity is confined to the side where the Ni atoms are exposed, i.e., to
the surface.

Assuming the system is thermalized in the deep intermediate minimum corre-
sponding to the H adatom and the CH3 admolecule, the critical energy barrier
for forming CH4 is the one corresponding to the last saddle point. An interesting
observation made from the CI-NEB calculation was a large displacement of the
underlying Ni atom, by 0.25 Å. While a similar observation had been made in
calculations of CH4 formation on Ir(111) (Henkelman and Jónsson 2001), most
surface reaction calculations were at that time carried out with frozen surface atoms.

This raises interesting questions about the atomic dynamics of the transition. For
example, how is the 0.85 eV excess energy gained by the system as it advances past
the transition state to a gas phase CH4 molecule and clean Ni surface partitioned
between the Ni atoms and the CH4 molecule? Also, how is the energy of the
CH4 molecule partitioned among its vibrational modes? For the reverse reaction,
dissociative sticking of CH4, this reveals to what extent translation and the various
vibrational modes of the molecule can enhance the sticking probability. To answer
these questions, the second step of the WKE approximation was carried out,
using the HTST approximation of the transition state. Only a minimal sampling
of trajectories was carried out, starting with small displacements from the saddle
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point. The calculations showed that 15% of the excess energy go into Ni atom
vibrations, while 79% go into translation, 22% into vibrations, and 4% into rotation
of the CH4 molecule. Surprisingly, most of the vibrational energy goes into the
stretching modes not the lower frequency deformation modes. This result indicates
that excitation of the stretching modes is more likely to enhance sticking than
excitation of the deformation modes. The translation is, however, by far most
effective in enhancing sticking.

Another interesting dynamics issue that could be addressed in the second step of
the WKE procedure is whether the high kinetic energy of the H adatom as it emerges
at the surface could enhance the reaction with the CH3. To address this question,
dynamical trajectories started at the transition state for the subsurface to surface hop
were calculated, but none of the trajectories led to a combination of the H atom with
the CH3. The conclusion is that subsurface H atoms do not play an important role
in hydrogenation of CH3 admolecules under the conditions simulated.

3.4 Variants of theMethod

There are several different variants of the method for finding an MEP when both
initial and final states are specified, and a few of them will be mentioned here briefly.

When the shape of the MEP has become clear enough for the approximate loca-
tion of the highest energy saddle point to be located approximately, computational
time can be saved by confining the calculations to the region in the vicinity of the
saddle point and halting calculations of images in other regions. There have been
several different implementations of this approach. In its simplest form, two images
on opposite sides of the highest energy image of the partly converged path are
chosen to be the fixed endpoints instead of the local minima, but a better approach is
to make the new endpoints follow selected equipotential contours to the MEP (Zhu
et al. 2007; Zhang et al. 2016). Another approach is to use two climbing images
located on opposite sides of the highest energy image so as to bracket the saddle
point (Zarkevich and Johnson 2015).

Alternatively, a single-ended saddle point search, discussed below, can be
launched from the highest energy image on the partially converged path (Henkelman
et al. 2000b).

When dealing with complex energy surfaces with multiple local minima and
curved MEPs, the stability of the calculation can be improved by including part
of the component of the spring force perpendicular to the path (Jónsson et al. 1998)
or by using the so-called double nudging (Trygubenko and Wales 2004; Sheppard
et al. 2008). Also, long paths and large number of images can cause the distance
between images to become uneven. In such cases, a combination of the restraint and
constraint approaches for distributing the images along the path can be used (Maras
et al. 2016, 2017). Alternatively, it is good to divide the path calculation and focus
on each segment separately whenever there is a sign of an intermediate minimum,
as discussed above. An automatic algorithm for adding new images to the discrete
representation of the path has been developed (Kolsbjerg et al. 2016).
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4 Only Initial State Specified, MMF

It can be hard to predict the mechanism and even the possible final states that can
be formed in a thermally activated transition. Ideally, a computer calculation should
be able to reveal such information given only the initial state of the system. This
is a harder problem than the one discussed above where the final state is specified
as well as the initial state. One option is to raise the temperature of the system
and identify new states that get visited, followed by an NEB calculation to find
the minimum energy path from the initial state (Sørensen et al. 1996). But the
increase in temperature will place larger emphasis on states with high entropy and
the transitions relevant at the low temperature of interest may be hard to find. What
is needed is a method for climbing up the energy surface from the initial state to
converge onto a first-order saddle point. Such searches need to be carried out several
times in order to identify all relevant, i.e., low-lying saddle points on the energy
ridge surrounding the initial state minimum. Armed with such a method, the long
time scale evolution of a materials system can be simulated, as discussed in chapter
“The Chapter on AKMC Methods”.

A first-order saddle point differs from a local minimum in that the Hessian matrix
has one negative eigenvalue, corresponding to the unstable mode. The atomic forces
near a first-order saddle point can be made to mimic atomic forces near a local
minimum by reversing the component of the force in the direction of the unstable
mode. More generally, let λ̂ be a unit vector along the eigenvector corresponding to
the lowest eigenvalue of the Hessian, the minimum mode (irrespective of the sign of
the lowest eigenvalue). If the system is made to follow an effective force given by

F eff(R) = −∇E(R)+ 2
(
∇E(R) · λ̂(R)

)
λ̂(R) (7)

then convergence will be reached at a first-order saddle point. This is analogous to
the force on the climbing image in the CI-NEB algorithm except that λ̂ is used here
instead of the path tangent, which is not known in this case. If the second derivatives
of the energy can be evaluated easily, then the Hessian matrix can be constructed and
its eigenvalues and eigenvectors computed quite readily, although the computational
effort can be significant for large systems, as it scales with the third power of the
number of degrees of freedom.

In most cases, however, the second derivatives of the energy cannot be obtained
easily, and the challenge is to evaluate F eff using only the first derivatives, i.e.,
the atomic forces, and without even evaluating the Hessian matrix. There are
several ways to do this. One is to construct a dimer, i.e., two replicas of the
system held at a small, fixed distance apart. The lowest energy orientation of the
dimer is the direction of the minimum mode, λ̂, and it can be found by iterative
minimization of the energy using only the first derivatives (Henkelman and Jónsson
1999). An analogous method was formulated at a similar time (Munro and Wales
1999). Another way to find the minimum mode is to use the iterative Lanczos or,
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even better, the Davidson method (Malek and Mousseau 2000; Olsen et al. 2004;
Gutiérrez et al. 2016).

Since the system is displaced uphill in energy along the minimum mode, the
method is often referred to as minimum mode following (MMF). The first step is
to displace the atoms slightly from the initial state minimum and drive the system
in some way into the region where the lowest eigenvalue of the Hessian is negative.
From then on, the system is displaced in the direction of F eff until the magnitude of
the force drops below a given tolerance. The minimum mode will often change only
slightly between iterations. Therefore, it is possible to save computational effort
by only evaluating the minimum mode every few iterations (Gutiérrez et al. 2016).
The MMF method is discussed in more detail in chapter “The Chapter on AKMC
Methods”.

Figure 3 shows MMF calculations for two-dimensional test problems. There, a
random displacement from the initial state minimum is first applied, and then it is
advanced in the direction of the minimum mode until the lowest eigenvalue becomes

R

+

+

+

+

Fig. 3 An illustration of the minimum mode following method for finding first-order saddle points
given only the initial state minimum (blue). Saddle points are marked with + signs. Left: Three
saddle point searches started from different, random displacements from the minimum. In one of
the searches (green), a kink on the path is evident when the lowest eigenvalue becomes negative and
the perpendicular relaxation is turned on. After locating the saddle point, the system is displaced
in the direction of the unstable mode, followed by minimization to locate the final state minimum.
Right: A larger number of saddle point searches started from three different initial states. The
region around each saddle point where at least one eigenvalue is negative is illustrated with a
lighter color. In some cases, several different search paths trace the same final approach to the
saddle point
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negative. From that point on, the system is advanced in the direction of F eff, and
relaxation perpendicular to the minimum mode is included. This can result in a kink
in the path. The figure also shows that several paths can approach a saddle point in
a similar way even when they start out being quite different.

An application to a materials problem is shown in Fig. 4 where various different
migration mechanisms of a kink on a dislocation in silicon crystal are identified
(Pedersen et al. 2009a). The calculation made use of the EDIP empirical potential
function (Justo et al. 1998). Three different mechanisms were found from multiple
saddle point searches. The optimal mechanism, the one corresponding to lowest
activation energy, involves an intermediate state where three Si atoms have fivefold
coordination. Two of the mechanisms, including the optimal one, involve an
intermediate state.

0.1

0.2

0.3

eV

Reaction coordinate

M-I

Saddle

Intermediate

Saddle Saddle

Intermediate

III-MII-M

[101]
IF

Fig. 4 Application of the minimum mode following method to find the mechanism of dislocation
kink migration in crystalline silicon, based on the EDIP empirical potential function. Fivefold
coordinated atoms are shown in blue and threefold coordinated atoms in red. The three lowest
energy saddle points are shown (top row), two of them lead to an intermediate state (middle row).
The initial state with two kinks separated by a large distance is shown (bottom), with a red line
indicating the dislocation. (From Pedersen et al. 2009a)



33 Exploring Potential Energy Surfaces with Saddle Point Searches 705

Minimum mode saddle point searches have been used in various studies, for
example, of the binding and diffusion of H2O molecules on the surface of proton-
disordered ice (Pedersen et al. 2014, 2015) and structure and diffusion in metal
grain boundaries (Pedersen et al. 2009b; Pedersen and Jónsson 2009). Several other
applications are discussed in chapter “AKMC Methods”.

5 Additional Characterization of the Energy Surface

In this section, a few additional saddle point search methods that can be used to
further characterize the energy surface of a system are discussed.

5.1 Search for Optimal MEPs

So far, the discussion of the MEP calculations has focused on finding only the MEP
closest to the initial path. Sometimes the energy surface is simple enough, and the
initial and final states are similar enough that only a single MEP connects the two.
But, more generally, there can be two or more MEPs for a given pair of endpoints.
One example is the CH4 formation shown in Fig. 3. The CH3 admolecule could
jump to the left instead of jumping to the right in the first step to make room for
the H atom on the surface. Also, the subsurface H atom could jump to an adjacent
subsurface site before going to the surface, analogous to an MEP found for H2
formation (Henkelman et al. 2006). These various paths would all have the same
critical step, namely, the combination of an H adatom and a CH3 admolecule on the
surface, so they would, for practical purposes, be equivalent.

For other systems, it may be important to sample the MEPs to find the one that
corresponds to lowest overall activation energy. One example of such a system is
the nucleation of dislocation on a strained Ge overlayer (Maras et al. 2017). Since
the atomic model of the dislocation involves a large number of atoms, there are
many possible mechanisms, and each one involves a large number of intermediate
minima. A global optimization strategy based on an evolutionary algorithm has been
applied to this problem (Maras et al. 2017). There, segments of different paths are
mixed and matched and a catalog maintained of all the intermediate minima found
so far. More work needs to be done to develop optimal strategies for such complex
systems.

5.2 Energy Ridge Tracking

The accuracy of the HTST approximation rests on the assumption that second-
order saddle points are significantly higher in energy, on the scale of kBT , than
the first-order saddle points. In order to check that, a calculation of a path lying
along the energy ridge between two first-order saddle points can be carried out.
The method, ridge tracking nudged elastic band (RT-NEB), is an extension of the
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CI-NEB method where each discretization point is a dimer of images (Maronsson
et al. 2012). It combines, in a sense, the technique discussed above for finding an
MEP and the dimer method for finding a saddle point given only the initial state. Just
as the CI-NEB method can reveal the presence of intermediate minima that were not
known beforehand, the RT-NEB method can reveal the presence of first-order saddle
points in between known saddle points. It can, therefore, help complete the table of
possible transitions a system can undergo (Maronsson et al. 2012).

5.3 Saddle Points for Quantum Tunneling

At low enough temperature, quantum mechanical tunneling becomes the dominant
transition mechanism rather than hops over the energy barrier. An estimate of the
crossover temperature can be obtained from the MEP (Gillan 1987). The larger the
curvature of the MEP and the lower the effective mass along the unstable mode at
the saddle point, the higher the crossover temperature.

The quantum statistical mechanics of the system can be obtained conveniently
from thermal path integrals (Feynman and Hibbs 1965). Within that formalism,
the classical energy surface gets replaced by an energy surface for a ring polymer
where the beats are replicas of the system connected with temperature-dependent
springs. This gives an effective, quantum mechanical energy surface that depends
on temperature. The higher the temperature and the larger the mass of the atoms,
the stiffer the springs and more classical the system becomes (Feynman and Hibbs
1965). A quantum mechanical extension of transition state theory can be formulated
in terms of the rate of transitions of the ring polymer from the initial state to the final
state (Mills et al. 1997, 1998; Richardson and Althorpe 2009; Hele and Althorpe
2013). Within a harmonic approximation, the optimal tunneling path is a first-order
saddle point on the quantum mechanical energy surface (Benderskii et al. 1994;
Mills et al. 1998), and the rate of thermally activated tunneling can be estimated
from its properties (Benderskii et al. 1994; Richardson 2016). The optimal tunneling
path is often referred to as an “instanton.”

Saddle point search methods, such as the MMF method, can be used to find
instantons (Andersson et al. 2009; Rommel and Kästner 2011). However, a more
efficient approach is to use a path optimization method that minimizes a line integral
along the path. This line integral nudged elastic band (LI-NEB) method can be used
to find the optimal tunneling path at a given energy based on the semiclassical
JWKB approximation. There, the images can be distributed evenly. Then, after the
path has been found, a larger number of images need to be distributed unevenly
along the path to represent an instanton, the optimal Feynman path for tunneling
at a given temperature (Einarsdóttir et al. 2012; Ásgeirsson and Jónsson 2018).
The beads of the ring polymer have a higher density in the lower-energy regions,
making the direct search for the instanton using the MMF method less efficient than
the LI-NEB.

Examples of tunneling paths at two different values of the temperature are shown
in Fig. 5 for the same two-dimensional energy surface as in Fig. 1. The calculation
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Fig. 5 Optimal tunneling paths found using the line integral nudged elastic band method. The
energy surface is the same as in Fig. 1. (a) Tunneling occurs in two steps, first into the intermediate
state and then the final state. The initial, straight line interpolation path is shown with black and
gray dots, while the optimal tunneling paths are shown with red and brown dots. The corner cutting
of the tunneling path is particularly clear at saddle point II where the MEP has a larger curvature.
(b) Tunneling occurs in one step between states R and P, without visiting the intermediate state. At
low enough temperature, this becomes the dominant transition mechanism. The initial, straight line
interpolation path is shown with black dots, while red dots show the optimal tunneling path. Insets:
Energy along the minimum energy path and along the optimal tunneling paths. (From Ásgeirsson
and Jónsson 2018)
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of the first-order saddle points on the quantum mechanical surface, the instantons,
serves as further explorations of the energy surface. In regions where the MEP is
curved, the tunneling path cuts corners. At the higher temperature, the tunneling
takes place in two steps, first from the initial state, R, to the intermediate state
and then from there to the final state, P. At the lower temperature, the tunneling
takes the system directly between states R and P without entering the intermediate
state. Results of the LI-NEB calculation are shown where the images are evenly
distributed along the optimal tunneling path.

6 Saddle Points for Magnetic Transitions

Transitions from one magnetic state of a material to another can also be slow on
the time scale of the vibrations of magnetic moments (Braun 2012). The same
considerations about time scale differences and rare events discussed above in the
context of atomic rearrangements can apply to such transitions. As a result, the
characterization of the energy surface as a function of the magnetic degrees of
freedom using saddle point searches is also useful when studying magnetic systems.
It turns out that a semiclassical, adiabatic approximation can usually be made
where the angles specifying the orientation of the magnetic momentum vectors
are treated as slow variables while the length of the magnetic momentum vectors
is a fast variable, determined by the electronic structure (Antropov et al. 1996).
A full semiclassical specification of the configuration of an atomic scale system
should, therefore, include the location of the atomic nuclei as well as two angles,
for example, the polar and azimuthal angles (θ and φ) for each atom. A transition
can involve simultaneous rearrangement of atoms and reorientation of magnetic
moments. Within a harmonic approximation, the mechanism of such a transition
can be characterized by a saddle point on this higher-dimensional energy surface.

A brief account will be given here of tools for navigating on magnetic energy
surfaces, analogous to the tools presented above for atomic rearrangements. For
simplicity, the atom coordinates will be assumed to be fixed and only the orientation
of the magnetic moments treated as variables. The configuration space of N
magnetic moments is a direct product of N two-dimensional spheres. The fact
that the configuration space is curved brings up special considerations for the
saddle point search methods. Again, the activation energy for thermally activated
transitions is given by the energy difference between a first-order saddle point
and the initial state minimum. But the equation of motion for magnetic moments,
the Landau-Lifshitz equation, gives a different pre-exponential factor in the HTST
approximation for the rate constant (Bessarab et al. 2012, 2013).

6.1 Geodesic CI-NEBMethod

The distance between two points in the configuration space of magnetic moments is
given by the length of the geodesic path connecting the two points. This should be
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taken into account in the CI-NEB calculations of minimum energy paths between
two local minima on the magnetic energy surface. Also, the nudging needs to
include a projection onto the tangent space of the N two-dimensional spheres. This
variant of the method for finding MEPs for magnetic transitions is referred to as the
geodesic nudged elastic band (GNEB) method (Bessarab et al. 2015).

An example of a calculation of an MEP for a two-dimensional magnetic system is
shown in Fig. 6. The Hamiltonian here is of an extended Heisenberg form including
the Dzyaloshinsky-Moriya interaction (Uzdin et al. 2018). The system initially

Fig. 6 Geodesic climbing image nudged elastic band method calculation of a minimum energy
path for a magnetic transition where a skyrmion first attaches to a three-atom nonmagnetic impurity
and then collapses. Red (blue) arrows show spins with z-component pointing up (down). Initially,
the skyrmion and the nonmagnetic impurity are separated by a large distance, (1). By overcoming
a small energy barrier, (2), a more stable state is reached where the skyrmion incorporates
the impurity in a region where its magnetic moments lie in the plane (black arrows), (3). The
skyrmion then collapses by overcoming a larger energy barrier (4) resulting in the ground-state,
ferromagnetic phase (5). (From Uzdin et al. 2018)
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contains a localized non-collinear structure called a skyrmion. There is great interest
in such states as they represent a pseudo-particle that can be quite stable and could
be used for future data storage and even data manipulation. The MEP shows the
skyrmion approaching a triatomic, nonmagnetic impurity. By overcoming a small
energy barrier, the impurity becomes incorporated in the skyrmion, in a region
where the magnetic moments lie in the plane of the system. This lowers the energy
of the system slightly. While a skyrmion in a continuous field is rigorously stable
due to topological protection, its collapse can occur with a finite energy barrier on
a discrete lattice (Bessarab et al. 2015). Here, the collapse occurs in the presence
of the impurity. The mechanism involves shrinkage of the skyrmion and finally
rotation of the core. For this set of parameters, the uniform ferromagnetic phase is
lower in energy.

6.2 Mode Following in Curved Space

Since transitions involving reorientations of magnetic moments can be complex,
many different types of transitions can be possible; a saddle point search method
where only the initial state is specified is useful, just as for atomic rearrangements.
The curvature of the configuration space needs to be taken into account when
constructing the Hessian and calculating the eigenvalues and eigenvectors. An
extension of mode following has recently been formulated for magnetic systems and
applied to skyrmions (Müller et al. 2018). In addition to collapse and escape through
a boundary, the method identified a transition where the skyrmion divides and forms
two equivalent skyrmions. The activation energy for this duplication process was for
some parameter values similar to that of collapse and escape. A dynamics simulation
based on the Landau-Lifshitz equation showed that a time-dependent external field
could induce the duplication process (Müller et al. 2018).

More work is needed to complete the implementation of the saddle point searches
for systems of atoms with magnetic moments. First of all, an efficient method
for constraining spin orientations in nonstationary configurations in electronic
structure calculations needs to be developed. Then, a formulation of these various
saddle point search methods for energy surfaces that are functions of both atomic
coordinates and magnetic momentum orientations needs to be developed and
implemented.

7 Conclusion

This chapter has summarized briefly various frequently used methods for finding
saddle points. Such calculations can be used to reveal new states of the system by
identifying local energy minima, not just saddle points. The height of the saddle
point and the curvature of the energy surface around it as well as around the
minimum can, within HTST, be used to estimate the rate of transitions between
states. The simplest and most stable way to find saddle points is by finding MEPs
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and identifying maxima along the path. This is now routinely done in the context of
electronic structure calculations, DFT or ab initio. The MMF method where only the
initial state is specified is more challenging and computationally demanding, and
most calculations so far have been carried out with empirical potential functions.
This will likely change in the future when more computational cores become
available since the calculations involve several independent saddle point searches
that can easily be carried out simultaneously via parallel or distributed computing
(Chill et al. 2014a). Machine learning such as Gaussian process regression will also
likely reduce the number of electronic structure calculations, as has already been
demonstrated in CI-NEB calculations. Saddle point searches may even become
an important component of global optimization algorithms (Pedersen et al. 2012;
Plasencia et al. 2014). It is important to keep improving the algorithms to reduce
the computational effort. A web page that collects algorithms and performance
numbers for saddle point searches has been set up and is a valuable resource in this
field (Chill et al. 2014b).
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Abstract

Exact modeling of the dynamics of chemical and material systems over exper-
imentally relevant time scales still eludes us even with modern computational
resources. Fortunately, many systems can be described as rare event systems
where atoms vibrate around equilibrium positions for a long time before a
transition is made to a new atomic state. For those systems, the kinetic Monte
Carlo (KMC) algorithm provides a powerful solution. In traditional KMC,
mechanism and rates are computed beforehand, limiting moves to discretized
positions and largely ignoring strain. Many systems of interest, however, are not
well-represented by such lattice-based models. Moreover, materials often evolve
with complex and concerted mechanisms that cannot be anticipated before the
start of a simulation. In this chapter, we describe a class of algorithms, called off-
lattice or adaptive KMC, which relaxes both limitations of traditional KMC, with
atomic configurations represented in the full configuration space and reaction
events are calculated on-the-fly, with the possible use of catalogs to speed
up calculations. We discuss a number of implementations of off-lattice KMC
developed by different research groups, emphasizing the similarities between the
approaches that open modeling to new classes of problems.

1 Introduction

Modeling the dynamics of chemical and material systems is a fundamental chal-
lenge for computational scientists. While the equations of motion of atomic
scale systems have been known since the days of Newton, their integration over
experimentally relevant time scales still eludes us even given modern computational
resources. With empirical potentials, we can achieve nanoseconds of simulation
time per day, and with ab initio methods, we are limited to picoseconds. But in
most chemical and material applications, we are interested in the human time scales
of seconds to minutes, which are relevant for applications including catalysts and
batteries. Bridging the time scale gap between what we can model with molecular
dynamics (MD) and practical applications is key to making molecular simulations
relevant.
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Fortunately, many systems in chemistry and material science are what can be
described as rare event systems. In this case, atoms in the material vibrate around
equilibrium positions for a long time before a transition is made to a new atomic
configuration, or state. This might be the hopping of a Li atom between sites in a
battery material or a bond-breaking event in a catalytic reaction. With microscopic
kinetics taking place on time scale well separated from phonons, rare event systems
open the door to the application of various numerical solutions based on the
transition state theory that are not available generally: instead of modeling the
vibrational dynamics, which occurs on a femtosecond time scale, transition state
theory can be used to average over the thermal motion and calculate the rate of the
slowest rare event of interest. If all such important rates can be found, the state-
to-state evolution of the system can be calculated on the time scale of the rare
events.

A powerful approach for modeling the evolution of a system when the rates
are known is the kinetic Monte Carlo (KMC) method. In traditional KMC, the
mechanism and the rate of every possible event are required before a calculation is
started. This requirement essentially limits atomic KMC simulations to be defined
on a lattice where interactions between atoms and atomic motion can be defined
discretely. In KMC, a table of all possible events is made, and a single event
is chosen with a probability proportional to its rate. The amount of time that
evolves between KMC steps is, on average, given by the inverse of the sum of the
rates. Thus, each KMC step can be accomplished with just a couple of random
numbers and the bookkeeping required to keep track of the possible events; this
computational efficiency allows for KMC simulations of millions or billions of
events and time scale orders of magnitude longer than any single elementary event.

Obvious limitations of traditional KMC are (i) the need to know all possible
events a priori and (ii) the representation of atomic configurations on a lattice.
Many atomic systems of interest, however, especially in the presence of defects or
disorder, are not well-represented by a lattice-based model. Additionally, materials
often evolve with complex and concerted mechanisms that cannot be anticipated
before the start of a simulation; it is the evolution of the system into unanticipated
configuration via unexpected events that make simulations most interesting.

The purpose of this chapter is to describe a class of algorithms, called off-lattice
or adaptive KMC, which relaxes both limitations of traditional KMC. Specifically,
atomic configurations are represented in the full configuration space, and reaction
events are calculated on-the-fly so that the KMC event table is not fixed but rather
adapts as the simulation progresses. Thus, off-lattice KMC can be applied to a much
wider range of interesting systems, and the calculated evolution of the system can
reveal unexpected dynamics that were not anticipated by the modeler.

There are now a number of implementations of off-lattice KMC developed
by different research groups. Later in the chapter, we will discuss some of the
differences in philosophy and specific algorithms, but a primary objective here is
to highlight what is common between off-lattice KMC methods and emphasize that
what may appear to be different methods with different names are in fact often minor
variations on a common theme.
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2 Off-Lattice KMC

Off-lattice KMC was inspired by a number of closely related earlier methods. In
an approach by Sørensen et al., high-temperature MD simulations were used to
determine possible reaction mechanisms between a probe tip and a metal surface
(Sørensen et al. 1996). These pathways were refined using the nudged elastic band
(NEB) method (Jónsson et al. 1998; Henkelman and Jónsson 2000; Henkelman
et al. 2000) to determine the energy barriers and rates at the lower temperature of
interest. While the authors did not fully sample a rate table for KMC, their work
anticipates the philosophy of off-lattice KMC and, in fact, was later developed
into an accelerated molecular dynamics method called temperature-accelerated
dynamics (Sørensen and Voter 2000). A second method with close connections
to off-lattice KMC is the activation-relaxation technique (ART) (Mousseau and
Barkema 1998b) in which local arrangements of atoms were driven away from
their minimum positions on the potential energy landscape, over ridges, and into
neighboring basins of attraction. Again, no KMC event tables were calculated, but
the idea of sampling reaction pathways from local displacements of atoms became
a key idea for off-lattice KMC methods. ART was later extended into an off-
lattice KMC method called kinetic ART, the details of which will be discussed here
(El-Mellouhi et al. 2008; Béland et al. 2011).

The earliest implementation of off-lattice KMC that we know of was in 2001 by
Henkelman and Jónsson (2001). In this method, local atomic displacements were
made to initiate minimum-mode following saddle point searches; these searches
iteratively find the lowest mode of the Hessian and follow this mode to a saddle
point.

Over the 15 years since the first introduction of off-lattice KMC, there have been
a number of significant improvements to the algorithm. Much of the development
has been devoted to identifying and implementing efficient methods for storing
and reusing information about reactive events that have been calculated. Another
key issue, which will be discussed later, is the so-called low-barrier or flickering
problem in which fast events limit the overall time scale that can be achieved
by off-lattice KMC. Today, there are a number of approaches associated with
different aspects of off-lattice KMC methods. Yet, they can generally be described
in the single framework outlined in Fig. 1. In brief, all off-lattice KMC methods
start from an initial state and explore configuration space around the state to find
reactive events which lead to adjacent states. While not absolutely essential, existing
methods tend to focus on finding saddle points on the boundary of the initial
state and use the harmonic approximation to TST to calculate the rate of each
possible reaction mechanism. Current saddle points can be found using a number
of ways: minimum mode following saddle point searches, high-temperature MD,
the recycling of saddle point information from previous steps, or informed by a
database of topologies or structures. As new reaction mechanisms are found, they
are added to the rate table and passed to any database being used to store event
information. Also, as the configuration space around the initial state is searched for
possible reaction events, and the KMC event table is constructed, an estimation of
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Fig. 1 Flow chart showing
the general structure of
off-lattice KMC algorithms

Initialize

Search for saddle points leading to 
neighboring states
  - minimum-mode following methods
  - high temperature molecular dynamics
  - recycling saddles from previous steps
  - database of local topologies
  - database of local structures

New reaction 
mechanism found?

yes

no

Calculate rate and update kinetic 
Monte Carlo (KMC) event table

Update any database of kinetic 
events 

Update confidence in the fraction of 
the KMC event table found

Is the KMC event 
table sufficiently 

accurate?

yes

no

Choose event to new state and 
update the simulation time 
according to the KMC algorithm

Is the desired 
simulation time 

reached?

yes

no

Stop

the completeness of the event table is updated. When there is sufficient confidence
in the event table for escaping the current state, a KMC move is made to a new state,
and the process is repeated.

The various off-lattice KMC implementations differ in the specifics in how
saddle points are found and stored for reuse and how low barriers are managed.
A number of the different philosophies and methods will be discussed next.
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3 Search for Saddle Points Leading to Neighboring States

Even for relatively simple systems such as diffusing interstitials in metals, the
complexity of the energy landscape is such that it is not possible to identify by hand
all mechanisms (Henkelman and Jónsson 1999; Marinica et al. 2011). Open-ended
event search methods are therefore necessary to identify the diffusion mechanisms
and their associated barriers. There are two main classes of open-ended methods:
(1) minimum-mode following methods and (2) molecular-dynamics based methods.
Furthermore, local structures and topologies can be classified in order to identify
where saddle points searches should be performed and also in order to classify and
reuse these events in subsequent steps.

3.1 Minimum-Mode FollowingMethods

The minimum-mode following approach stabilizes first-order saddle points by
finding the direction of lowest curvature on the potential energy surface, inverting
the force in that direction, and relaxing the system, guided by these modified forces.
A number of such methods have been proposed. The method used by Henkelman
and Jónsson was named the dimer method because two images, separated by a
finite displacement, were used to approximate the local curvature (Henkelman and
Jónsson 1999). The dimer method was later shown to be equivalent to a method
developed at the same time in the Wales’ group, called the hybrid-eigenvector
following method (Munro and Wales 1999). In fact, both methods use a Raleigh-Ritz
quotient for iteratively determining the lowest curvature mode and a force inversion
along this mode to stabilize first-order saddle points. Around the same time, ART
was proposed, using a force projection approach to move the conformation toward
saddle point (Barkema and Mousseau 1996). For better stability and convergence,
the force projection was replaced by a Lanczos-based algorithm a few years later,
forming ART nouveau (ARTn) (Malek and Mousseau 2000). It was subsequently
further optimized, as described in details in Machado-Charry et al. (2011). Through
benchmarking (Chill et al. 2014a) and a mathematical analysis (Zeng et al. 2014), it
is now clear that these minimum-mode following methods are essentially equivalent
in terms of computational efficiency for finding saddle points and that they differ
mostly in their specific implementation.

A typical minimum-mode following search occurs in three steps:

1. From a local minimum, an atom and possibly its neighborhood are displaced
in a direction that can be initiate randomly or systematically which aim to
push the system out of the local harmonic state. To avoid collisions between
atoms, the system can be partially relaxed in the hyperplane perpendicular to the
displacement. This procedure can also be repeated until the lowest eigenvalue
becomes negative or falls below a given threshold (typically between −1 and
−10 eV/Å2 for bulk semiconductors and metals).
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2. The system is iteratively maximized along the negative (lowest) eigenvector
and minimized in the hyperplane orthogonal to this direction. In the dimer
and hybrid-eigenvector following methods, this is accomplished by following
an effective force with the component along the negative mode inverted. Any
optimizer, such as L-BFGS (Nocedal 1980), can then be used to converge to
a first-order saddle point. In the ARTn method, the system is moved along the
direction of the negative eigenvalue away from the initial minimum, and the
energy is minimized in the orthogonal hyperplane at each iteration. In ARTn,
if at any point the lowest eigenvalue becomes positive, iteration is stopped, and a
new event search is launched, going back to (1). If the lowest eigenvalue becomes
positive in the dimer method, the system is pushed up along the lowest positive
mode until a negative mode is recovered. For either of these methods, a saddle
point is considered located when the total force on the system falls below a given
threshold (typically 0.01 eV/Å) with a negative lowest eigenvalue.

3. From the saddle point, the system is displaced along the negative mode and
relaxed to find the connecting final minimum, completing the event.

Although the initial deformation is often limited to an atom and its surroundings,
all the atoms in the box are allowed to respond to this change and to move, avoiding
constraints on the nature and the size of the transition state. As the system leaves
the harmonic basin and converges onto a first-order saddle point, however, many
atoms initially displaced fall back close to their original position as events tend to
be local in nature. In ARTn typically 50% of the time the negative eigenvalue is lost
as the system is pushed along the eigenvector associated with the lowest eigenvalue,
and it falls back into the initial minimum, as the structure of the energy landscape
can include shoulders and bumps that do not lead to transition state. Any attempt
to eliminate these lost events requires large initial deformations that typically bring
the system to saddle points that are not directly connected to the initial minimum,
breaking the continuity of the trajectory. With the dimer method, when a negative
mode is lost, the system follows the lowest mode up the potential until a negative
mode is recovered. While this approach allows minimum-mode following searches
to push through positive curvatures, there is a greater chance of finding saddles that
are disconnected from the minimum. The recently developed κ-dimer method, (Xiao
et al. 2014) which uses the isocontour curvature to detect boundaries of the initial
state, largely eliminates the problem of disconnected saddles.

The discovery of disconnected saddles is not always a problem. Wales and
collaborators, for example, use large deformations to facilitate the construction
of a transition matrix and can be then used to extract global kinetic information
(Wales 2002). For other applications, however, it is essential to produce a continuous
trajectory, and all transition states are tested to ensure that they are directly
connected to the initial minimum.

As long as the lowest eigenvalue remains negative, moving to the saddle point
is straightforward. While a convergence force of 0.01 eV/Å is generally chosen,
ensuring convergence of the energy barrier to less than 0.01 eV within a few hundred
force evaluations, the convergence criterion can be tightened.
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3.2 High-Temperature Molecular Dynamics

An alternative to minimum-mode following methods for finding saddle points is
to perform high-temperature MD initiated within the current state and use periodic
quenching to see if a transition has been made. When a transition to a new state is
detected, a double-ended saddle search method is used to find the minimum energy
path between the two states. An efficient strategy for this is to use the climbing-
image nudged elastic band method (Henkelman and Jónsson 2000; Henkelman et al.
2000) and then optionally, to save computational time, switch to a minimum-mode
following search from within the neighborhood of the saddle.

The MD approach for finding saddle points from an initial state is very similar
to the temperature-accelerated dynamics method (Sørensen and Voter 2000). The
difference is that temperature-accelerated dynamics uses high-temperature MD to
find for the first escape that would take place at the low temperature of interest,
using harmonic TST to extrapolate to the low-temperature escape time. For off-
lattice KMC, high-temperature MD is used to find all of the low-energy escape
mechanisms and rates. What is common to both methods is that the use of MD to
search for saddles can provide a rigorous confidence measure in the accuracy of the
simulation. In the case of off-lattice KMC, this confidence measure is the fraction
of the rate table which has been found using the MD saddle searches (Chill and
Henkelman 2014).

Each MD saddle search typically takes more computational work to find a saddle
than a minimum-mode following search. For off-lattice KMC, however, the cost
of finding any one saddle is less important than the cost of evaluating the full
rate table. For that, MD and minimum-mode following searches are competitive. If
there is sufficient knowledge about the system to target minimum-mode following
searches, they can find the rate table more efficiently. However, if there are many
processes available to the system, MD searches can selectively find those which are
most important because events with a higher rate are found more rapidly than slow
events with MD searches (Chill and Henkelman 2014). Independent of efficiency,
however, the main benefit of the MD searches is the confidence measure that it
provides and the simplicity of having just one parameter to set, the high temperature,
although anharmonicity may induce a false sense of completeness as discussed
below.

4 Classifying Local Off-Lattice Environments

It is a good practice to classify local structures in order to identify those on which the
saddle point searches should be centered, as well as to catalog events to be reused
for future use. Several strategies for classifying structures and storing saddle point
information are described here.
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4.1 Lattice-Based Classification

To be useful, structural classification must be able to reduce a wide range of global
conformations onto a finite set of locally defined variables. When atomic motion
is limited to a discrete set of positions, there is no ambiguity when comparing
two states: they’re the same or they’re not. For off-lattice calculations, atomic
positions can occupy a continuous range of values. In effect, it is highly unlikely
for two different global conformations to present identical local environments. To
classify and compare structures in an off-lattice system, it is possible to define
a discretization procedure that will map the continuous array of solutions into a
discrete set of states while ensuring that these states share sufficient similarity when
it comes, for example, to their list of diffusion mechanisms.

Pattern recognition approaches, such as the one adopted by Trushin et al. (2005)
with the self-learning kinetic Monte Carlo method (SLKMC), are a step away from
standard predetermined catalogs, allowing to treat a wider range of conformations
and, therefore, better include local strain effects. Nevertheless, this algorithm still
requires an underlying lattice to ensure the discretization of the configurations
and events, and, while barriers are constructed on the fly, the event catalog
consists only of single-atom nearest-neighbor hops characterized using the drag
method.

With the self-evolving atomistic kinetic Monte Carlo (SEAK-MC), Xu et al.
(2011) propose an off-lattice approach limited to near crystalline configurations
with an on-the-fly event searching step. A particular feature of this approach
is the construction of active volumes associated with defects or noncrystalline
environments. These defects are identified using a geometric criterion. Focusing
on these defective regions reduces the computational effort for constructing an
event catalog. Dimer (or ARTn Béland et al. 2015a) searches are used to search for
mechanisms, starting from each defect in the active volume. After a KMC step, only
the defects in the affected active volume are sampled for diffusion; events associated
with other regions are simply carried over from the previous step. Although
SEAK-MC can handle more complex environments than SLKMC, because of its
reliance on defects to identify active volume, the method is not applicable to
fully disordered configurations. Since it does not reconstruct all barriers after each
step, moreover, SEAK-MC does not fully take into account long-range elastic
effects.

4.2 Topological Classification

Introducing a topological classification, the kinetic activation-relaxation technique
(k-ART), first published in 2008 (El-Mellouhi et al. 2008), lifts these limitations and
is the first fully off-lattice KMC approach with on-the-fly cataloging.
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Fig. 2 The topological classification of each atom, in k-ART, is determined by its local environ-
ment. (a) An atom and its neighborhood are first identified; (b) vertices are drawn between atoms
within a cutoff distance generally selected between first and second neighbor; (c) the resulting
graph is then sent to NAUTY, which returns an identifier characterizing the automorphic class its
belongs too and a set of transformation onto a reference graph

K-ART attributes a topological key to each atom in a cell based on its local
environment (see Fig. 2): all neighboring atoms within a sphere centered on the
reference atom are considered as vertices of a graph, with edges drawn between
atoms within a specific cutoff, typically, but not always, set between first and second
nearest distances. As a function of the system’s complexity, the sphere radius is
generally set between 6 and 8 Å, including around 50 to 80 atoms. The graph, as
generated, is then sent to NAUTY, a rich topological analysis code developed over
many decades by McKay (McKay et al. 1981; McKay and Piperno 2014) used as a
library by k-ART. NAUTY returns a key characteristic of the graph’s automorphic
class as well as a mapping list into a reference graph. This list is used by k-ART
to map specific local environments onto reference configurations found in the event
catalog.

For each key, a series of ART nouveau event searches is launched centered on
the atom associated with this key. Saddle points with different topological keys
are considered unique and stored. The topological key associated with a specific
atom defines the list of possible events it can undergo. Using the mapping list, it is
possible to assign a correspondence between the specific environment and the atoms
in the catalog associated with the generic event. Using this correspondence and the
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atomic positions of the generic configuration at the saddle point, one can reconstruct
an approximate saddle point for the specific configuration. In the presence of strain,
this saddle point will be close to the reference event, but not exactly the same, and
a few steps of ART nouveau relaxation are needed to converge onto the specific
saddle point, providing a precise information on the geometry and energetics of the
transition state.

K-ART’s basic assumption poses that local minima in the same automorphic
class share a unique set of events, characterized by the topological classifications,
with the geometrical details at the saddle point depending on the elastic deformation.
This allows k-ART to store events based on the local topology and reconstruct their
specific geometry at these specific points on the energy landscape. This assumption
is valid most of the time for three reasons: (i) the correspondence is set to work only
at specific points on the energy landscape – minima and first-order saddle points;
(ii) the correspondence holds therefore only for a given forcefield or, equivalently,
a unique energy landscape; and (iii) the local graph is reconstructed after it is
embedded within the larger two- or three-dimensional space and attached to the rest
of the network. This one-to-one correspondence between topology and geometry
can fail. However, this failure can be identified readily as activated configurations
reconstructed from a reference geometry will not show a first-order saddle point
in their vicinity. In general this error indicates that more than one geometries is
associated with the topology. To lift this degeneracy, k-ART reduced the edge cutoff
criterion until these geometries are assigned to different classes.

PESTO, by Louis Vernon (Vernon et al. 2011; Vernon 2010, 2012), is a variation
on adaptive KMC, which has integrated a number of k-ART’s features. While
topological classification in k-ART is based on the local environment of atoms,
PESTO is based on the local environment of defects. This is a three-step process.
First, defects are identified using a variety of schemes including comparison to a
reference lattice. These defects can be point or extended defects. Second, NAUTY
is used to identify the defect’s topology. While k-ART looks at cluster of atoms
centered on individual atoms, PESTO looks at cluster of atoms centered on defects.
Third, the positions of the atoms in this cluster are compared to those of previously
stored clusters for this topology. If they match those of the stored cluster, the
configuration is considered to be known. If they do not, the configuration is
considered to be new and it is stored.

In 2016, Alexander and Schuh developed a version of k-ART that used a
systematic and orderly search and classified transition based on atomic motion
vectors, rather than a topological classification. Displacement vectors of each atom
between the saddle point and the initial state and between the final and the initial
states are stored for future comparisons. Comparison of two transitions is performed
by comparing the x, y, and z displacement of each atoms of both transitions. The
goal pursued by Alexander and Schuh is to evaluate the convergence of the residence
time by assessing the completeness of search for any configuration in the potential
energy landscape.
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4.3 Geometric Classification

An alternative to characterizing local environments by the bonding topology is
to directly use the atomic geometry of the atoms which participate in a reactive
event. In the kinetic database (KDB) approach (Terrell et al. 2012), all atoms
that move by more than a specified distance are considered part of the reaction
mechanisms. The position of those atoms in the initial, saddle, and final states, as
well as their direct neighbors, is stored in the KDB. Figure 3 shows a calculation
of CO oxidation on Au(111) in the presence of hydroxyl, using forces from density
functional theory (Ojifinni et al. 2008). When a hydroxyl formation mechanism is
discovered, the local geometry of the reacting atoms are stored in the KDB. Later
in the simulation, or in an entirely different simulation, the KDB tries to match the
reaction mechanisms stored to the current geometry. Specifically, matching is done
using a geometric fingerprint of each atom in the database structure (initial or final
state geometries). Using a depth-first tree search, neighboring atoms in both the
database and current configuration are matched. If a complete match is made, the
optimal alignment is calculated, and a score is assigned to each candidate, based
upon the difference in atomic positions between those in the database and those in
the current configuration. In Fig. 3, the final hydroxyl structure in the database was
matched to a hydroxyl on the surface in a subsequent step in the off-lattice KMC
simulation. The KDB is then used to predict possible saddle points by moving the
local atoms to their saddle point configuration from the database. These suggested
saddle geometries are used as initial configurations for minimum-mode following

into
KDB new

saddle

initial

saddle

final

new
state

match

Fig. 3 Kinetic database example of OH and CO reacting on Au(111). When a new reaction
mechanism is found, the configurations of the moving atoms and their first neighbors are stored in
the database. In any subsequent state, the database is queried to see if any known initial or final
states match
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searches so that the true saddle point and rate of the event in the new environment
are calculated. Importantly, the KDB is used to provide approximate saddle point
configurations for the current geometry based upon what has been seen before. Only
if an exact saddle can be found is the mechanism entered into the rate table. In
this way, there is no additional approximation for off-lattice simulations using the
KDB. As the database stores a greater number of kinetic events, saddle suggestions
become more accurate and converge more rapidly to true saddles, when they exist,
so that the cost of the off-lattice KMC simulation approaches that of KMC.

There are some key differences between the topological classification of reactive
events used in k-ART and the geometric classification in the KDB. K-ART has
the advantage that matching structures from the database to the current simulation
is extremely efficient. Also, if there is sufficient trust in the catalog of events in
the database, then new saddle searches need only to be done when an unknown
topology is reached. In the KDB, on the other hand, the structure matching is not
discretized; geometries which are close, but not exact, are used to suggest saddle
point structures. When these structures are converged, the exact geometry of the
saddle and the activation energy are calculated. If no saddle point is found, the loss
is only the computational time required for the saddle search. Both methods can be
used to store and recover information that has been learned to accelerate off-lattice
simulations.

4.4 Challenges in the Event Reconstruction

Reconstruction of saddle points is crucial in any scheme that creates a generic
catalog built either on geometrical or topological keys as symmetry operations and
elastic deformations in an off-lattice system must be taken account.

To describe this challenge, we focus here on the topological approach used in k-
ART, which creates a catalog based on reference geometries at the initial minimum
and saddle point and uses the knowledge of current geometry at the minimum
and the correspondence between the reference and the current topologies at the
minimum to reconstruct a new saddle point.

1. Atoms of the current minimum configuration are matched with the reference
minimum using the correspondence between the two graphs drawn by NAUTY.

2. A reference frame is then constructed, by comparing the relative positions of the
various atoms in the two configurations.

3. Atoms in the current minimum are then displaced using this reference frame,
according to the difference between the reference saddle point and energy
minimum.

4. The energy and forces are evaluated on the reconstructed activated state. If the
activation energy difference between the reconstructed and the reference state
and the absolute forces in the reconstructed state are below given thresholds,
the reconstruction is considered successful ARTn is applied to converge to the
nearby saddle. If not, then the possibility that many correspondences between the



728 M. Trochet et al.

reference and current graphs exist is considered and a number of permutations
in the correspondence labeling are attempted, based on various reconstructed
reference frames.

5. When no attempted reconstruction is accepted, k-ART concludes that the corre-
spondence between topology and geometry for this environment is not unique.
The cutoff for defining edges between atoms is then modified, and the topology
is split. If a new topology is found in the way, it is then populated by events, if a
known topology is generated, the algorithm starts over for generating a specific
event (Fig. 4).

The success in reconstruction depends closely on the graph. For compact
systems, such as bulk metals or semiconductors, a graph containing between 50 and
70 atoms, with edges drawn between nearest neighbor atoms, is sufficient. For an
anisotropic system such as graphene, however, it is necessary to define long-enough
cutoff to ensure that planes are linked. Reconstruction also requires that a specific
saddle point related to the generic one exist. For high-enough barriers, typically
above 0.1 eV, a deformation strong enough to make such a barrier disappear would
lead to a change in topology. For low barriers, particularly surrounding unstable
points, this is not always the case. To avoid this problem, one can systematically
recreate the event catalog associated with a given topology when such a low-energy
barrier disappears, either automatically cross or simply ignore them.

Fig. 4 Reconstruction of a saddle point from the topological classification. (a) ART nouveau
generates an event from the initial topology of a central atom (red sphere). (b) Once ART
nouveau search is done, k-ART reconstructs each event associated with the same initial topology:
topological correspondence of two central atoms (blue and red spheres). (c) Applying geometrical
symmetry is needed to the initial structure of the second central atom (blue sphere) as well as the
saddle point and final structures. (d) Finally, guess structures (i.e., saddle point and final applied of
the second central atom) are then refined using ART nouveau to include elastic deformations
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5 Confidence in the Completeness of the Saddle Point
Catalog

An important parameter for off-lattice KMC is determining how many saddle
point searches must be done. Too few searches will lead to incorrect kinetics, but
searches can be computationally wasteful if all important transitions are already
known. Some methods – such as k-ART and SEAK-MC – perform a finite number
of searches for each defect that is encountered. In the case of k-ART, the event
catalog is reused for all know topologies; new searches are performed to complete
the catalog or to complete it, if a new topology is added. New searches are also
performed to improve the event catalog, for very common topologies (searchers are
added every log-10 times a topology is found). In SEAK-MC, the event catalog for
a given defect is destroyed after the execution of one of those events and is rebuilt
from scratch every time a defect is encountered.

When using minimum-mode following searches to find saddles, the complete-
ness of the KMC catalog can be estimated from the statistics of how often new
saddles are found. For example, if an increasing number of searches are done
without finding any new events, there should be a growing confidence that the rate
table is complete. Importantly, however, there can be a wide range in the frequency
at which different saddles are found, and this bias can lead to unquantifiable
uncertainties in the completeness of the catalog (Henkelman and Jónsson 1999).

Another way to estimate the completeness of the event table is to use MD
saddle searches, as discussed previously. The key difference between MD searches
and minimum-mode following searches is that the probability of finding any event
using MD is proportional to its rate. Since we are interested in rare events, basin-
constrained MD at an artificially high temperature is used to determine possible
reaction mechanisms, and harmonic TST is used to calculate the rate of the events
at the low temperature of interest. To the extent that harmonic TST holds, one can
calculate a well-defined estimator for the fraction of the rate table that is missing,
based upon the amount of MD time that is used to determine the rate table and the
events that have been found (Chill and Henkelman 2014).

It should be noted that while high-temperature MD searches can provide an
estimate of the completeness of the catalog, the high-temperature event catalog
may miss events for which the rate decreases as temperature increases. Such
non-Arrhenius behavior would be due to strong entropic effects. Examples of
such behavior include thermal stabilization of nano-voids (Perez et al. 2013) and
dislocations (Kim and Tadmor 2014).

6 The Low-Barrier Problem and Coarse Graining

While off-lattice KMC is able to coarse grain over the fast atomic vibration time
scale and model the slower time scale of the state-to-state dynamics, it is ubiquitous
to have another separation of time scales between the fastest state-to-state events and
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slower time scales of interest. This so-called low-barrier problem describes how off-
lattice KMC simulations can spend all of the computational time on fast events so
that they are not able to reach long time scales.

A key idea that has been used to bridge the gap between fast and slow events
is the framework of the Monte Carlo with adsorbing Markov chains (MCAMC),
which was described by Novotny in 1995 (Novotny 1995). In this pioneering work,
Novotny showed how the kinetics of a system that was partitioned into a set of
transient states and adsorbing states could be solved to give a specific time for
the transition from a transient state to a specific adsorbing state. Remarkably, this
was shown to be possible without adding any approximations beyond the rates that
are used in KMC regardless of the partitioning between transient and adsorbing
states. This means that in an off-lattice KMC simulation, any set of states can be
identified as transient, and the time to transition to a neighboring adsorbing state
can be calculated using the MCAMC approach without additional approximations.

The exact calculation of transition times from transient states to adsorbing states
requires an iterative set of matrix calculations each with dimension of the size of the
total number of states involved. Novotny also showed that it was possible to simplify
this calculation and instead calculate the average escape time from the transient
states via the first moment of the escape time distribution (Novotny 2001). This
approximation was later referred to as the mean-rate method (MRM) by Puchala
et al. (2010) since the escape time from the set of transient states is characterized by
a single rate. The mean-rate approximation works well when there is a separation of
time scales between the transient and the adsorbing states. In this regime, the set of
transient states has been referred to as a superbasin. The mean-rate method reduces
the computational cost of escaping a superbasin to a single matrix inversion.

The MCAMC approach allows off-lattice KMC simulations to switch, at any
point, between a KMC description of the state-to-state dynamics to a transition
between any specified state of transient states to the neighboring adsorbing states.
When MCAMC is done exactly, any set of transient states can be chosen, and
so different definitions of the set of transient states have been proposed. On one
extreme, all visited states can be considered transient so that every transition is
made to a new state. This strategy was described in the Markov web, proposed by
Boulougouris and co-workers (Boulougouris and Frenkel 2005; Boulougouris and
Theodorou 2007). While advantageous in terms of being able to visit new states
as rapidly as possible, this comes at the cost of losing the state-to-state detail of
the trajectory to states that have been visited. Additionally, for simulations which
are out of equilibrium and explore new parts of configuration space, including
all states in the transient space add unnecessary cost to the matrix operations.
Another possibility is to count the number of times that each state has been visited
and combine states into a superbasin when the visit-count exceeds a specified
threshold (Chill et al. 2014b). It is also possible to consider the energy of the
states and the saddles between them (Pedersen et al. 2012) or combine states into
a superbasin when they are connected by rates above a specified value, as in the
basin-autoconstructing MRM (bac-MRM) (Brommer et al. 2014). However the
superbasins are defined, they can grow as more transient states are explored.
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7 How to Reduce Computational Costs

The main computational costs of a typical on-the-fly KMC run are associated
with the evaluation of forces and energies and the construction of neighbor lists.
Neighbor-list costs can be decreased using standard cell and Verlet neighbor
list methods. Computational cost reduction, for force evaluations, requires taking
advantage of the fact that the reference states, in KMC, are effectively at zero
temperature, allowing algorithms to exploit the local nature of activated events.
Given the large literature on the neighbor-list cost-reduction techniques, this section
will focus on the forces.

A number of studies (Mousseau and Barkema 1998b; Pedersen and Luiser 2014;
Xu et al. 2015; Guteŕrez et al. 2016) found that initial deformations applied to
search for saddle points should be local in order to successfully lead faster to a
diverse set of activated events. No more than a few hundred atoms should initially
be involved in the event search, and usually less. As the positions of atoms are
optimized while reaching the saddle point, more atoms will be deterministically
displaced (typically, a few thousand); an even larger number will be displaced as the
system is relaxed into a new minimum. Notably, extended cascade-type concerted
events can take place during this phase (Béland and Mousseau 2013). In other
words, while relaxation should be performed globally, activation can generally be
performed locally to maximize the probability of successfully finding saddle points.

Search algorithms can exploit the locality of activated events (Mousseau and
Barkema 1998b). The simplest way is to impose activation volumes. For instance,
Xu et al. (2011, 2015) showed that a spherical active volume of 4 lattice parameters
is sufficient to capture the activation barrier for vacancy diffusion in BCC iron within
0.001 eV, while an active volume of 6 lattice parameters was sufficient for the case
of the dumbbell interstitial, and an active volume of 7.5 Å could capture the kinetics
of 37-interstitial clusters (Xu et al. 2013). In other words, saddle searches can yield
accurate results by calculating forces and energies over a subset of a few hundred
atoms. It is also possible to find saddle points using small active volumes and then
refine them using increasingly larger ones.

Imposing strict active volumes does have drawbacks. For instance, such an
approach imposes static long-range elastic interactions, preventing a dynamical
reaction of the whole system. To avoid this bias, it is possible to dynamically update
a list of active atoms during the event search (Béland et al. 2011; Joly et al. 2012)
defined by those atoms with a minimum force acting upon them and their neighbors.
As the search progresses, an increasing number of atoms will have non-negligible
forces. This procedure can effectively make computational time scale sublinearly
with system size, with no strong assumptions to be made about the size of the active
volume involved during event searches (Joly et al. 2012).

Such an approach, while elegant, is difficult to implement with standard force
field libraries such as LAMMPS (Plimpton 1995). In this case, one turns to a partial
use of active volume. After a global energy minimization of the whole structure, to
ensure that all elastic effects are fully incorporated in the local minimum, a sphere
is drawn around the central atom in the topology. An inner radius defines the set of
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Fig. 5 Graphical description of the local force calculations. Two spheres are centered on the same
atom associated with a given topology. In the inner sphere (green atoms), all atoms can move
following the activation. Atoms in the outer sphere (blue atoms) are fixed and contribute to ensuring
that the correct forces apply to the inner atoms

atoms that are allowed to move during activation; a second, outer radius includes
fixed atoms needed to ensure that the forces are accurate in the inner part. As a
general rule, the inner sphere contains between 500 and 2000 atoms, while the outer
shell is determined by the force field cutoff radius (Fig. 5) (Trochet et al. 2017).
As with large enough active volumes, the error on the energy is small, and generic
events are generated without further global relaxation at the saddle point nor the
final minimum. Specific events, for their part, see by default the barrier fully relaxed
at the saddle point after a first local relaxation, with the final configuration also
relaxed globally. For systems with simple localized defects, it is possible to avoid
a global relaxation at the saddle point for specific events, provided that the active
volume is large enough, reducing the global relaxation only to accepted minimum
states. The parameters to ensure a given error threshold must then be assessed
specifically for each system. As a general rule, however, the use of local forces on
systems containing 10,000 to 1 million atoms makes the event search almost order 1,
considerably accelerating the algorithm without any significant loss in information
or precision (Raine et al. 2017).

For the simulation of large systems, parallelization is crucial. An advantage of
MC is that every event search can be performed independently, which means that
many computer cores can simultaneously generate events to be added to the catalog.
As mentioned in Sect. 7, one can accelerate the saddle searches by exploiting
the locality of events. By increasing the number of “worker” computer cores
proportionally to the number of saddle points to be generated, and by considering a
local subset of atoms during saddle searches, the runtime between KMC steps will
be approximatively independent of system size, if event management and KMC
overhead costs are negligible.

8 Advantages of MC: Tricks and Shortcuts Available

Monte Carlo methods present a major advantage over molecular dynamics: it is
much easier to use tricks to focus on the problems of interest, since the system’s
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evolution is event-based, instead of being continuous, offering a much better control
on the rules that are used. In this section, we review a number of approximations,
solutions, and tricks that make these off-lattice approaches more competitive that
could be expected through a simplistic evaluation of their computational costs.

The Low-Barrier Problem We have already presented the approach for handling
processes with low barriers. Such methods are crucial for long-time simulations of
complex materials, with many low-barrier events. By solving analytically the in-
basin kinetics, it is possible to effectively perform billions of jumps without having
to compute them directly, allowing the simulation to reach the relevant time scale
instead of being slowed down to a halt by irrelevant mechanisms.

Constant prefactor The use of constant prefactor is not essential, and some of
us compute the prefactor for every event using the harmonic approximation. Nev-
ertheless, for most compact system, the prefactor varies relatively little compared
with the barrier, so it can be given a constant value, leaving the cost of evaluating
a barrier to converging to a saddle point (Valiquette and Mousseau 2003). Clearly,
however, as shown by Koziatek et al. (2013), the harmonic approximation fails in
systems with significant density fluctuations, and it is generally necessary to, at
least, demonstrate the validity of this approximation before using it. Prefactors can
be affected by temperature, when barriers are low with respect to kBT , as discussed
previously. Overcoming this limitation requires likely to turn to thermodynamical
integration, which is computationally heavy and has not yet been automated.

Restricting event searches to specific environments To decrease computational
costs, it is possible to prevent off-lattice KMC calculations from searching for events
in very stable environments. For example, when we are interested by a phenomena
occurring on time scales of vacancy or interstitial diffusion, identifying events from
perfectly crystalline environment, with barriers that are many eVs high, does not
contribute to the dynamics. In some case, also, we can focus on specific regions, near
a defect, for example, so that we may want to ignore the rest of the box, knowing
that it will not contribute to the kinetics of interest. Off-lattice KMC calculations can
therefore be instructed to ignore all crystalline topologies, specific atomic species,
or regions when constructing its catalog.

Biasing pathways While the previous shortcuts do not significantly affect the
kinetics of the system on the time scale selected, it is also possible to give up the
correct kinetics in exchange for exploring specific pathways. This can be done in
many ways. First, a general bias in a given direction can be imposed, either through
a selection bias from a complete event catalog or through the construction of an
event catalog that only allows moves along a given pathway, specific mechanisms
or a general direction. It is also possible to hand select, at every step, the event of
interest among the list and evolve the system along a biased path.

The list of tricks with Monte Carlo approaches is largely limited only by the
researcher’s imagination. In many ways, it is through these shortcuts that allow a
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better focus on the important physics that KMC methods are most useful that, in
addition to accelerating the simulation, they provide a much clearer picture of the
fundamental mechanisms dominating specific processes.

9 Applications

Off-lattice KMC methods have been used to study a wide range of system,
including metal on metal diffusion (Henkelman and Jónsson 2001), interstitials and
vacancy clusters in c-Si (El-Mellouhi et al. 2008; Trochet et al. 2015), methanol
decomposition on Cu, (Xu et al. 2009) Fe (Brommer et al. 2014; Restrepo et al.
2016) and Ni (Mahmoud et al. 2018), ion-implanted relaxation in Si (Béland et al.
2013; Béland and Mousseau 2013; Jay et al. 2017), ion- and neutron-irradiated
metals (Béland et al. 2015b; Lu et al. 2016) and alloys (Béland et al. 2016; Lu et al.
2016; Osetsky et al. 2016), grain boundary diffusion in Cu (Pedersen et al. 2009),
hydrogen diffusion in Al grain boundaries, (Pedersen and Jónsson 2009) a solid-
solid phase transformation in Mo (Duncan et al. 2016) defects in amorphous Si (Joly
et al. 2013), Li impurities in Si (Trochet and Mousseau 2017) and C impurities in
Fe (Restrepo et al. 2016, 2017), and many more.

We review here a few applications that represent some of the strengths and
limitations of these methods.

9.1 Loop Transformation in FeCr

Off-lattice KMC is a powerful tool to simulate the long-time kinetics of point
defects and small defect clusters. However, it is not limited to these relatively
simple problems and can be used to capture slow kinetics involving extended
defects. A good example of such a problem is the transformation of 1/2〈111〉
prismatic dislocation loops in Fe into 〈100〉 prismatic dislocation loops. 1/2〈111〉
and 〈100〉 loops in bcc Fe and FeCr are common interstitial-type defects observed
in neutron- and ion-irradiated samples. The 1/2〈111〉 loops are known to be fast
one-dimensional diffusers, which are closely related to void swelling. 〈100〉 loops
are largely immobile. The ratio of formation of 1/2〈111〉 to 〈100〉 loops is directly
linked to void-swelling rates. However, collision cascades simulations in bulk Fe
predict the formation of 1/2〈111〉 loops, but not of 〈100〉 loops. There must be a
post-cascade mechanism that permits the transformation of the post-cascade defects
into 〈100〉 loops. High-temperature MD simulations – more than 1000 K – of two
1/2〈111〉 loops intersecting and transforming into a single loop suggested that this
reaction solely leads to one large 1/2〈111〉 loop (Terentyev et al. 2008). Using
off-lattice KMC in Fe (Xu et al. 2013) and FeCr (Béland et al. 2015a), a novel
mechanism for the transformation of two 1/2〈111〉 into a 〈100〉 was discovered,
which is illustrated in Fig. 6. At 600 K, the waiting time was 200 ns in off-lattice
KMC – i.e., a 0.73 eV overall activation barrier. This mechanism was later confirmed
by molecular dynamics, as reported in Xu et al. (2013). The simulations in FeCr
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Fig. 6 An illustration of the transformation of two 1/2〈111〉 interstitial clusters into a 〈100〉 loop
in FeCr (10 at. % Cr). The red circles indicate the subregion that is changing orientation within the
interstitial cluster. Gray spheres are Fe atoms not sitting on bcc lattice sites, orange spheres are Cr
atoms not sitting on bcc lattice sites, and yellow atoms are empty bcc lattice sites. The simulation
cell contains 16074 atoms. (The figure is adapted from Béland et al. 2015a)

(10 at. % Cr) also indicated that Cr decoration of the interstitial clusters favor the
transformation to a large 1/2〈111〉, relative to the situation in pure Fe. This was a
good example of a situation where off-lattice KMC was able to predict a mechanism
that helped guide further MD simulations.

9.2 Phase Transformation in Mo

Figure 7 illustrates both the success and limitations of the off-lattice KMC method
for the simulation of a transition between a complex A15 phase to the lower-energy
BCC state in bulk Mo (Duncan et al. 2016). In this calculation, the interatomic
interactions are described by an embedded atom method potential (Zhou et al. 2001).
The formation and dissolution of complex (topologically close-packed) phases are
important both for understanding the hardness and fracture of Ni-based superalloys
(Sinha 1972). In Fig. 7a the phase transition from A15 to BCC is observed with
AKMC to occur at 300 K over time scales of microseconds. The atoms are colored
according to a common-neighbor analysis (Faken and Jónsson 1994) to better
visualize the interface (gray) between the A15 (red) and BCC (blue) phases.

The simulation in Fig. 7a involves only a few hundreds of atoms, and yet we
can already see a system-size-related problem caused by the disorder at the phase
boundary. Specifically, as shown by the disconnectivity graph in Fig. 7b, there are
many states connected to the initial state by low barriers which form a superbasin.
All of these states must be enumerated in the AKMC simulation, as well as the
rates between them. Only then a MCAMC move can be used to find a higher barrier
process leading to interface motion, to the final state indicated. An analysis of the
superbasin states shows that most transitions within the superbasin involve groups of
atoms switching from A15- to BCC-coordinated. The fundamental problem is that
when there are several such independent groups of flickering atoms, the total number
of states in the superbasin grows combinatorially with the number of groups. This
catastrophic situation is shown clearly in Fig. 7c where the supercell is increased
and the total number of states in the superbasin is so large that even a single-layer
transition between A15 and BCC cannot be observed with our off-lattice KMC
machinery.



736 M. Trochet et al.

(A)

nu
m

be
r 

of
 a

to
m

s

simulation state
0 20 40 60 140 160 180

A15

BCC

other

0

20

120

140

40

60

80

100

80 100 120
(µs)

959

958

957

956

955

954

953

951

(B) (C)

InitialFinal

energy

superbasin states

superbasin
states

Fig. 7 (a) AKMC simulation of a transition from the A15 complex phase in Mo to the lower-
energy BCC phase, which occurs on the timescale of microseconds at room temperature. (b) A
disconnectivity graph showing that disorder at the interface between the phases gives rise to many
states connected by low barriers. (c) As the system is made larger, the number of states in the
superbasins grows combinatorially, making the simulation intractable for simulating even a single-
layer transition
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10 Discussion

Off-lattice KMC approaches have allowed to study the long-time dynamics of
systems that were long off-limits, including systems with many defects, alloys,
interfaces, grain boundaries, and even fully disordered materials. These methods
have also demonstrated that, even for systems that appeared simple, unexpected
mechanisms could play a significant role and that even lattice-based methods would
benefit from constructing their event catalog using unbiased search methods.

10.1 Limits

While open-end saddle point search methods such as ART, ART nouveau, and
the dimer methods are powerful, we still lack a fundamental theoretical support
for establishing the completeness of the generated event catalog. How many event
searches should one launch by atom? When can one be certain that all relevant
events are found? From experience, we know that, with ART nouveau, lower-energy
barrier are found much more often than very high barriers. For a method such as k-
ART, this is certainly positive. Moreover, comparison with MD and other methods,
when possible, suggest that it recovers all previously identified mechanisms. Yet,
it is not possible to assess, even statistically, what the error is with these methods
contrary to what can often be obtained by the MD-based accelerated approaches of
Voter and colleagues (see discussion above). Theoretical bounds or limits would
certainly help greatly to ensure that these simulations do capture the essential
physics.

While off-lattice with or without on-the-fly catalog building KMC approaches
can reach time scales inaccessible to MD, these methods remain much heavier than
lattice-based atomistic KMC and are typically limited to a tens of thousands of
KMC steps, not counting, for course, analytically handled flickers. These methods
can therefore only be applied to systems where physically relevant mechanisms are
largely dominated by local mechanisms.

For example, vacancy-induced solute diffusion in metal, where one must wait for
a vacancy to diffuse near a solute to see the atom jump, is much too expensive for
these types of simulations. To overcome these limitations, one could solve directly
in the equilibrium distribution of vacancies of the system for the time step between
configurations with vacancies near a solute or couple off-lattice KMC with lattice-
based KMC so that the vacancy diffusion away from solutes can be solved efficiently
while the elastic effects and interactions between solutes and points defects are
addressed exactly with off-lattice description. Clearly, other possibilities exist, and
work will have to be performed in this field to assess the best way of coupling these
scales.

Also, the total number of defects that can be effectively handled by off-lattice
KMC is typically limited to a few hundred defects. Increasing the number of
defects increases the computational cost in two ways. (1) Events must be assigned
to each additional defect. While efficient recycling of events can minimize the
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associated computational cost, such recycling is not always an option. For example,
in concentrated alloys, the number of local configurations grows combinatorially
with the number of elements, which limits the usefulness of recycling events. (2) As
the number of defects increases, the total rates increases as well, which reduces
the waiting time of each KMC step. More KMC steps – i.e., more computational
resources – are necessary to reach the same time scales. While synchronous (Shim
and Amar 2005; Martínez et al. 2008) and asynchronous (Shim and Amar 2006)
KMC parallelization techniques offer a possible solution to this problem, this is still
an unresolved challenge for off-lattice KMC.

Another fundamental limit of on-the-fly KMC is that it probes the potential
energy surface. If the problem of interest involves significant entropic contributions
to the free energy, exploring the potential energy surface might lead to incorrect
predictions. On the other hand, many free energy landscape-based methods suffer
from the “curse of dimensionality” (Althorpe et al. 2016); to be effective, these
accelerated methods necessitate that a proper – and relatively small – set of reaction
coordinates be inputed. In the future, we can imagine on-the-fly KMC being used to
find promising reaction coordinates to be used as input for accelerated free energy
methods.

10.2 Future Developments

Beyond these questions, a number of other developments should be undertaken to
improve the efficiency of off-lattice KMC methods.

Moving beyond master-worker parallelization As larger systems with more
defects are simulated, the computational overhead of the master-worker paralleliza-
tion scheme of current off-lattice KMC codes will become a bottleneck. The way
forward may be to switch to a decentralized parallelization scheme. While it entails
challenges in regard to cataloging, recycling, and load-balancing, such an approach
could significantly increase the scalability of off-lattice KMC.

Recycling basins to handle flickers The absorbing Markov chain algorithm
described above – i.e. the superbasins – can be define states either as global
configurations – cf. Sect. 6 – or local configurations – (Fichthorn and Lin 2013).
The latter can provide a significant acceleration over the former as it can decouple
the kinetics of non-interacting defects. This local treatment of superbasins is
implemented in a number of the current off-lattice codes. A further acceleration
would be to reuse superbasins built previously if the configurations are encountered
again. This would increase the bookkeeping costs but can largely use the same
geometrical and topological classification tools that are currently used to recycle
events.

Extended defects Off-lattice KMC can handle certain extended defects. For
example, it was used to simulate the propagation of a grain boundary in Mo (Duncan
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et al. 2016) and to simulate the transformation of prismatic dislocation loops in
bcc Fe and FeCr (Xu et al. 2013; Béland et al. 2015a). However, the kinetics of
dislocation lines and their interactions with other extended defects has not been
captured yet by off-lattice KMC. This is an important challenge, since MD cannot
simulate such kinetics at strain rates consistent with experiments. However, building
an event catalog for a dislocation line – which contains thousands of interconnected
possible sites where events may be take place – is a daunting task.

11 Conclusion

The last years have seen considerable developments with respect to accelerated
atomistic methods, with access to ever more powerful computers and the introduc-
tion of new algorithms. These tools are giving modelers access to questions that
could not even be asked in a recent past, increasing their interest for communities
that are more turned to applications rather than methodological developments.

This additional interest will be beneficial to the field as it attracts new researchers
with original ideas, knowledge, and skills, which will result in accelerated develop-
ments. Yet, as we have shown here, in spite of some limitations and questions, even
in the current implementations, off-lattice kinetic Monte Carlo methods can deliver
new insights for a wide range of problems dominated by activated diffusion.

The codes are available, and there is no reason today not to try them!

12 Code Availability

Various version of ART nouveau are available at http://normandmousseau.com. The
kinetic ART package can be obtained freely by writing to MT or NM. The EON
code is available at http://henkelmanlab.org/eon/.

Acknowledgments This work was supported in part by a grant from the Natural Science and
Engineering Research Council of Canada. MT and NM are grateful to Calcul Québec and Compute
Canada for providing extensive computer time and computer access. The work in Austin was
supported by the National Science Foundation (CHE-0645497, CHE-1152342, and CHE-1534177)
and the Welch Foundation (F-1841). Sustained computational resources have been provided by the
Texas Advanced Computing Center.

References

Alexander KC, Schuh CA (2016) Towards the reliable calculation of residence time for off-lattice
kinetic Monte Carlo simulations. Model Simul Mater Sci Eng 24(6):65014. http://stacks.iop.
org/0965-0393/24/i=6/a=065014?key=crossref.38e788234d74209ed2f8ad8b6b21fa51, https://
doi.org/10.1088/0965-0393/24/6/065014

Althorpe S, Angulo G, Astumian RD, Beniwal V, Bolhuis PG, Brandão J, Ellis J, Fang W, Glowacki
DR, Hammes-Schiffer S et al (2016) Application to large systems: general discussion. Faraday
Discuss 195:671–698

http://normandmousseau.com
http://henkelmanlab.org/eon/
http://stacks.iop.org/0965-0393/24/i=6/a=065014?key=crossref.38e788234d74209ed2f8ad8b6b21fa51
http://stacks.iop.org/0965-0393/24/i=6/a=065014?key=crossref.38e788234d74209ed2f8ad8b6b21fa51
https://doi.org/10.1088/0965-0393/24/6/065014
https://doi.org/10.1088/0965-0393/24/6/065014


740 M. Trochet et al.

Barkema GT, Mousseau N (1996) Event-based relaxation of continuous disordered systems. Phys
Rev Lett 77(21):4358–4361

Béland LK, Mousseau N (2013) Long-time relaxation of ion-bombarded silicon studied with the
kinetic activation-relaxation technique: microscopic description of slow aging in a disordered
system. Phys Rev B 88(21):214201

Béland LK, Brommer P, El-Mellouhi F, Joly JF, Mousseau N (2011) Kinetic activation-relaxation
technique. Phys Rev E 84(4):046704. https://doi.org/10.1103/PhysRevE.84.046704

Béland LK, Anahory Y, Smeets D, Guihard M, Brommer P, Joly JFF, Pothier JcC, Lewis LJ,
Mousseau N, Schiettekatte F, Postale C, Centre-ville S (2013) Replenish and relax: explaining
logarithmic annealing in ion-implanted c-Si. Phys Rev Lett 111(10):105502–105506. https://
doi.org/10.1103/PhysRevLett.111.105502, http://arxiv.org/abs/1304.2991

Béland LK, Osetsky YN, Stoller RE, Xu H (2015a) Interstitial loop transformations in FeCr.
J Alloys Compd 640:219–225

Béland LK, Osetsky YN, Stoller RE, Xu H (2015b) Slow relaxation of cascade-induced defects in
Fe. Phys Rev B 91(5):054108

Béland LK, Samolyuk GD, Stoller RE (2016) Differences in the accumulation of ion-beam damage
in Ni and NiFe explained by atomistic simulations. J Alloys Compd 662:415–420

Boulougouris GC, Frenkel D (2005) Monte Carlo sampling of a Markov web. J Chem Theory
Comput 1:389–393

Boulougouris GC, Theodorou DN (2007) Dynamical integration of a Markovian web: a first
passage time approach. J Chem Phys 127:084903

Brommer P, Béland LK, Joly JF, Mousseau N (2014) Understanding long-time vacancy aggregation
in iron: a kinetic activation-relaxation technique study. Phys Rev B 90(13):134109–134117.
https://doi.org/10.1103/PhysRevB.90.134109

Chill ST, Henkelman G (2014) Molecular dynamics saddle search adaptive kinetic Monte Carlo.
J Chem Phys 140:214110

Chill ST, Stevenson J, Ruhle V, Shang C, Xiao P, Farrell J, Wales D, Henkelman G (2014a)
Benchmarks for characterization of minima, transition states and pathways in atomic systems.
J Chem Theory Comput 10:5476–5482

Chill ST, Welborn M, Terrell R, Zhang L, Berthet JC, Pedersen A, Jónsson H, Henkelman G
(2014b) Eon: software for long time scale simulations of atomic scale systems. Model Simul
Mater Sci Eng 22:055002

Duncan J, Harjunmaa A, Terrell R, Drautz R, Henkelman G, Rogal J (2016) Collective atomic
displacements during complex phase boundary migration in solid-solid phase transformations.
Phys Rev Lett 116(3):035701

El-Mellouhi F, Mousseau N, Lewis L (2008) Kinetic activation-relaxation technique: an off-lattice
self-learning kinetic Monte Carlo algorithm. Phys Rev B 78(15):153202. https://doi.org/10.
1103/PhysRevB.78.153202

Faken D, Jónsson H (1994) Systematic analysis of local atomic structure combined with 3D
computer graphics. Comput Mater Sci 2:279–286

Fichthorn KA, Lin Y (2013) A local superbasin kinetic Monte Carlo method. J Chem Phys
138(16):164104
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Abstract

As high-performance computing systems now rely on hardware parallelism for
continuous improvements in performance, the timescales accessible to direct
molecular dynamics (MD) remain limited by the relatively stagnant performance
of a single processor. While spatial decomposition allows extremely large
systems to be simulated for short periods of time, alternative methods are needed
to extend these simulations to significantly longer timescales. Although parallel
means to produce long-timescale trajectories have been known since the late
1990s, several newer methodologies falling under the umbrella of accelerated
molecular dynamics (AMD) have recently been developed with parallelism in
mind. In this chapter, we review the current state of the art in replica-based
AMD and review several additional means of parallel scaling. Following a
brief introduction to the serial AMD procedures, the chapter is organized into
three general categories of parallel extensions: replication, speculation, and
localization.

1 Introduction

Although CPU technology has generally kept pace with Moore’s law over the
past few decades, serial clock-speed performance has stagnated. Therefore, both
hardware and software developers have been forced to rely on parallelism to
continue improving the performance of both personal devices and leadership-scale
machines. Within scientific computing, this has motivated significant efforts in
the application and development of parallel algorithms, including many related to
molecular dynamics (MD). For direct MD, these algorithms have focused on the
most computationally intensive task: the calculation of forces on each atom for every
sequential time-integration step. Increasing the simulation timescale has therefore
been synonymous with decreasing the wall clock time (WCT) needed to calculate
the forces (i.e., the WCT needed for each integration step).

For example, the so-called force-decomposition approaches employ shared
memory techniques to speed up the calculation of forces. This approach is typically
more scalable for computationally expensive potentials, like those based in quantum
mechanics (Niklasson et al. 2016) or neural networks (Smith et al. 2017), where the
amount of work is sufficiently large relative to the communication overhead. When
the expensive potential can be approximated by a less-accurate (but faster) surrogate
potential, the multi-time step parareal approach can be used to further leverage
abundant parallel resources (Audouze et al. 2009). A significant speedup (with
respect to conventional CPU architectures) can also be obtained using application-
specific integrated circuits (ASIC) to optimize chip-level logic pipelines. Although
this approach has been used to produce millisecond MD simulations for biomolecu-
lar systems (Shaw et al. 2008), the overall performance is still limited by the need for
sequential time integration. Further scaling, i.e., across multiple nodes, usually relies
on spatial decomposition methods. In fact, spatial decomposition methods have been
so successful that modern petascale machines are routinely used to simulate billions
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of atoms, or more, for short periods of time (Plimpton 1995; Germann and Kadau
2008; Zepeda-Ruiz et al. 2017).

While these approaches can be used for efficient weak scaling (i.e., efficiency can
be maintained if the problem size increases in proportion to the number of cores),
communication and synchronization overheads limit the potential for strong scaling
(i.e., increasing the number of cores at fixed system size). This is because the true
bottleneck of direct MD is the need to perform time-integration steps sequentially,
requiring parallel algorithms to synchronize before (or after) each force calculation.
As such, efforts to accelerate the force calculations alone are ultimately limited
to the same timescales as serial MD (for small system sizes and fast interatomic
potentials). Given that serial time integration is typically limited to microsecond
timescales, conventionally parallel MD is still prevented from capturing critical
long-time phenomena, such as thermally activated processes.

In this chapter, the typical material subjects of interest are solid-state configura-
tions of atoms that are likely to evolve at finite temperature through so-called rare
events. Here, a rare event corresponds to a state-to-state transition that is likely to
occur on a timescale that is, on average, much larger than the time-integration step.
States are defined as coarse regions of configuration space that are usually, but not
exclusively, basins of attraction on the potential energy surface (PES). Good state
definitions are such that a typical MD trajectory spends a long time within a state
before moving on to another one. When the evolution of a system is truly dominated
by rare events, a direct MD simulation becomes unlikely to pass through more than
a small handful of states.

To capture dynamical processes that are driven by rare events, specialized
simulation techniques are typically needed to bypass the limitations of sequential
time integration. This chapter focuses specifically on the accelerated molecular
dynamics (AMD) family of techniques. In a nutshell, the AMD strategy to long-
timescale simulations is to leverage the disparity between rapid thermal fluctuations
within a state, and activate state-to-state transitions, to controllably accelerate the
simulated dynamics. AMD is distinct from adaptive kinetic Monte Carlo (AKMC)
(Henkelman and Jónsson 2001), because MD is used to discover every transition in
the simulated trajectory, avoiding the need to build a complete rate catalog for every
visited state.

Beginning in 1997, three AMD methods were proposed to accelerate the gen-
eration of state-to-state trajectories for rare-event systems, namely, hyperdynamics,
which relies on a direct manipulation of the underlying PES (Voter 1997), parallel
replica dynamics (PRD), which relies on the parallel accumulation of MD time
(Voter 1998), and temperature-accelerated dynamics (TAD), which relies on the
exponential increase in transition rates as the temperature is increased (Sørensen
and Voter 2000). For the sake of a self-contained review, we will briefly reintroduce
these original AMD methods and refer the reader to the first issue of the Handbook
of Materials Modeling for a more in-depth discussion of the theoretical details
(Uberuaga et al. 2005). In this chapter, our primary goal is to highlight recent and
ongoing efforts to improve upon the performance of established techniques, using
parallel algorithms.
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Of the original AMD methodologies, only PRD is a fundamentally parallel
approach. However, recent work has shown that a number of parallel techniques
can also be leveraged by the other methods. In this chapter, we will focus our
discussion on the most recent advances in this spirit. Generally, these approaches
fall into (at least) one of the following three categories: replication, speculation, and
localization.

2 Serial AMD

Before discussing recent developments, we first review the methodologies that do
not require parallel computing resources to achieve a speedup (boost) with respect
to direct MD. We present only the fundamental concepts of these methodologies
to provide a foundation for the following discussions on replication, speculation,
and localization. The reader is referred to the referenced resources for a more
comprehensive discussion.

2.1 Hyperdynamics

As in all the AMD methods, the goal of hyperdynamics is to use a modified MD-
based approach to find an appropriate first-escape path from the current state more
quickly than MD would (Voter 1997). Here, “appropriate” means that the relative
probability of choosing a particular escape path is the same as it would be in direct
MD (i.e., proportional to its rate constant) and that the time at which the escape
occurs is drawn from the same distribution.

Hyperdynamics achieves this by executing dynamics on a modified potential
surface, V(X) + V b(X), in which the nonnegative bias potential V b(X) has been
added to the original potential to partially “fill in” the basin. The main requirement
on V b(X) is that it be zero at all dividing surfaces between states. The derivation
assumes that transition state theory (TST) holds on both the original and modified
potentials; i.e., there are no correlated events such as recrossings or multiple hops,
so every crossing of a dividing surface is followed by loss of memory in the new
state. In this limit, the transition rate between states is directly expressible as a
thermodynamic quantity: the equilibrium flux of trajectories through the dividing
surface between states. When this is a good approximation, it can be shown that
hyperdynamics will increase all transition rates out of a given states by the same
factor, the so-called boost factor, which is defined as:

ηhyper = 〈exp(+V b(X(t))/kBT )〉. (1)

In other words, the state-to-state dynamics on V(X) and V(X) + V b(X) are
equivalent up to a rescaling of time by ηhyper to account for the fact that physical
time flows ηhyper -times faster on the biased potential as compared to the original
one.
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The design of an effective, and valid, bias potential is a major project in itself, as
it must be zero at all dividing surfaces in spite of having no explicit knowledge
of where those surfaces may be. While a number of alternatives are available,
Miron and Fichthorn (2003) proposed a particularly effective, geometry-based form,
expressed in terms of “bond” lengths, where a bond is defined as any pair of atoms
within a threshold distance of each other (typically the threshold would be set a
little larger than a nearest-neighbor distance in the native crystal form). The idea
behind the bond boost bias is to make V b = 0 for any geometry in which one or
more bonds is distorted (either shortened or lengthened) beyond a threshold value
(e.g., 30%). For bond j , the “equilibrium” bond length r

eq
j is the distance between

the pair of atoms when the system potential energy has been minimized (i.e., at the
basin-bottom configuration Rmin), and the relative distortion of bond j is defined as

εi = [rj − r
eq
j ]/reqj . (2)

In the “simple bond boost method” (Perez et al. 2009) (SBB), the bias potential
depends only on the distortion εmax of the most distorted bond in the system,

V b
SBB = V b

SBB(εmax) =
{
V b

max

[
1− (εmax/q)

2] , |εmax| < q

0, otherwise,
(3)

where q is the threshold distortion for complete shutdown of the bias and V b
max is the

maximum possible bias energy. (Note that the original bond boost method requires
the use of an envelope function to allow multiple bonds to contribute to the total
bias potential.)

2.2 Temperature-Accelerated Dynamics (TAD)

Temperature-accelerated dynamics efficiently predicts the escape path from a given
state by performing basin-constrained MD (BCMD) at an elevated temperature
compared to the actual physical system of interest (Sørensen and Voter 2000;
Zamora et al. 2016a). In BCMD, high-temperature MD is performed as usual, but
whenever a transition is detected, the system is placed back into the original state
(effectively constraining the dynamics to a single PES basin). This is repeated until
one can assess that the transition that should have occurred first at the original
temperature has been observed at the high temperature. To project the observed
transition times at high temperature onto a hypothetical low-temperature time line,
the method assumes that harmonic transition state theory (HTST) holds (Vineyard
1957). Using this approximation, an observed high-temperature transition along
pathway j corresponds to a hypothetical low-temperature transition at time

tLow
j = t

High
j exp

[
Ej

(
1

kBTLow
− 1

kBTHigh

)]
. (4)
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Here, kB is the Boltzmann constant, THigh is the high temperature used for BCMD,

TLow is the low temperature of interest, and t
High
j is the observed transition time

at THigh. The value of the energy barrier for pathway j , Ej , is typically calculated
using the nudged elastic band (NEB) method of Henkelman et al. (2000).

Since an elevated temperature tends to favor high-barrier transition pathways, it
is important that BCMD be performed until it becomes sufficiently unlikely that a
later transition at THigh will correspond to the earliest transition at TLow. In practice,

this “stop” time, tHigh
Stop , is defined in terms of the shortest low-temperature transition

time, tLow
Short, an adjustable uncertainty parameter, and an assumed minimum pre-

exponential factor.
For the following discussion, we define t

High
Winner as the value of tHigh

j corresponding

to tLow
Short when the TAD procedure is completed for the current state. In order to

predict a long-time trajectory involving many sequential state-to-state transitions,
this procedure is typically repeated after moving the system into the state corre-
sponding to the winning high-temperature transition time, t

High
Winner, once t

High
Stop has

been reached.

2.2.1 Synthetic-Mode TAD
In practice, the performance of any AMD method is limited by the rate of state-
to-state transitions in the simulated physical system, i.e., the boost is typically
controlled by the fastest processes that change the state of the system. For users
and developers of rare-event simulation techniques, this is often referred to as the
low-barrier problem. When a system is able to visit a large number of distinct
states without having to overcome significant energy barriers (relative to kBT ), the
standard TAD procedure will have very little opportunity to provide a boost. For
many realistic systems, local clusters of neighboring states will be connected by
energy barriers that are much lower than those separating the cluster from external
states. This type of cluster is often referred to as a superbasin of states, because it
can be defined as a basin of other PES basins. Since the system can typically move
among the internal states of a superbasin at a much faster rate than it can escape into
an external state, an MD trajectory is likely to revisit the internal states many times
before making its way to another (super) basin.

One significant advantage of TAD is that its theoretical foundation allows a so-
called synthetic mode to be used whenever superbasins are encountered (Sørensen
and Voter 2000). When individual states are revisited many times, synthetic mode
provides a means to leverage the total high-temperature BCMD time that has already
been accumulated over all previous visits. The basic idea is that tHigh need not be
reset to zero when the TAD procedure is initiated in a state that has already been
explored. Instead, the high-temperature clock can pick up where it left off during
the previous visit, as long as every previously observed escape pathway is explicitly
represented as a future transition at a predetermined time, and the projected low-
temperature time is offset from the previous visit.



35 Accelerated Molecular Dynamics Methods in a Massively Parallel World 751

The predetermined transition times for a given escape pathway can simply
correspond to previously observed high-temperature transitions that were not
accepted. However, if the escape path has a known (or approximately known)
transition rate, a corresponding escape time can be randomly sampled. If the low-
temperature transition rate can be accurately estimated for a given pathway, using
either observed statistics or a direct calculation, the pathway can be promoted to
synthetic mode. Once a pathway is in synthetic mode, all future transition times
correspond to synthetic predictions that are determined using a sampling procedure
similar to kinetic Monte Carlo (KMC). This means that subsequently observed MD
transitions along synthetic pathways no longer need to be projected onto the low-
temperature time line.

It is clearly advantageous to allow tHigh to grow as large as possible within
a single state, because the fixed increment in tLow projected by each MD step
grows exponentially with tHigh. After a state has been revisited many times, the
synthetic-mode procedure can result in the accumulation of enough tHigh to accept
many synthetic transitions at once. After this has happened in every internal state
of a superbasin, the performance of synthetic-mode TAD can approach that of
KMC, until the system escapes from the superbasin. In practice, the synthetic mode
is invaluable for the simulation of realistic material defects. For this reason, the
procedure will also play a critical role in the performance of some parallel TAD
extensions discussed below.

Now that hyperdynamics and TAD have been briefly introduced, the stage has
been set to describe their parallel extensions. But, before doing so, we will first
describe the basic procedure behind the remaining original AMD method, PRD,
and introduce the broader concept of parallel replication.

3 Replication

Although PRD was first introduced in 1998 (Voter 1998), the method has recently
experienced a coming of age, both due to the increasing availability of parallel
computing resources and to a better mathematical understanding of the underlying
theory (Le Bris et al. 2012). Also key to its usefulness is the fact that the general
time-wise decomposition approach used by PRD, referred to here as parallel
replication, can be extended to improve the performance of other methodologies.
In the following, we will review the current state of the original PRD approach
and present recent PRD+X efforts to combine parallel replication with other AMD
approaches. In order to best describe the fundamentals of parallel replication, we
will start by reviewing the basics of PRD. For a more comprehensive introduction,
the reader is referred to the recent review by Perez et al. (2015).

3.1 Parallel Replica Dynamics (PRD)

For PRD, we assume that there are Nr dedicated computing units available,
called replica processes, that are each capable of carrying out independent MD
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simulations. Starting with the system in some initial state, the PRD algorithm
follows the steps illustrated in Fig. 1:

1. Let one replica carry out MD until it remains in the same state for a correlation
time (τc). This is called the decorrelation stage (blue).

2. Broadcast the decorrelated state to the other Nr − 1 replicas (orange). These
replicas then independently carry out MD until they spend τc in the initial
decorrelated state, rejecting transitions whenever they are detected. This is called
the dephasing stage (red), because it is used to ensure that each replica is
statistically independent.

3. After successfully dephasing/decorrelating, each replica enters the parallel stage
(green), where it independently carries out MD, periodically checking whether
a transition occurred (note that different replicas can enter the parallel stage at
different times).

4. Once a transition is detected, the replica on which the transition occurred triggers
a new decorrelation step, initiating a new algorithm cycle. At each cycle, the total
simulation time is incremented by the duration of the decorrelation stage, plus the
sum of the MD times accumulated on all replicas during the parallel stage (blue
+ green).

This algorithm has been shown to produce an arbitrarily accurate state-to-state
dynamics, simply by adjusting the value of τc (Le Bris et al. 2012). For a physical
system with a well-defined global transition rate of kg , the speedup of PRD over
direct MD can be written as

ηPRD = Nr

(
(1+ fQ)(1+ 2Nrkgτc)

)−1
, (5)

where fQ is the fractional number of additional force calculations, per MD step,
needed to periodically assess whether a transition has occurred. Note that Eq. (5)
assumes that serial MD is performed by each replica process.

Fig. 1 Illustration of the PRD algorithm for a simple energy landscape where the states are defined
as local basins of attraction on the PES (black curves). For each idealized geometry, the circle
indicates the position of the system on the landscape. The different stages of the algorithm are
indicated by colors: decorrelation (blue), broadcast (orange), dephasing (red), and parallel (green)
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This analysis suggests that the parallel efficiency of PRD is inversely propor-
tional to kg and that perfect speedup of Nr can be obtained only in the limit where
kg → 0. This general rule is not specific to the performance of PRD but also
describes the upper bound on the other original AMD methods. That is, while both
standard hyperdynamics and TAD can provide a significant boost factor without the
need for parallel computing resources, the optimal boost should be comparable to
PRD with Nr → ∞. When combining replication-based parallelism with these
other AMD approaches (PRD+X), as we will discuss below, parallelism alone
cannot move the performance of these methods beyond the theoretical limits of pure
PRD on a sufficiently large number of cores. However, if such a number of cores
are not available, a PRD+X combination might allow for the optimal boost to be
achieved with more accuracy than X-only, since it will allow for a less aggressive
bias potential in hyperdynamics or a lower high temperature in TAD.

To help express the advantages and limitations of replication, as well as the
other parallel methodologies to be discussed below, it is useful to directly compare
the available performance of PRD with that of spatially parallel MD. Following
the analysis of Martínez et al. (2014), Fig. 2 shows a comparison of the available
simulation timescale (x-axis) and length scale (y-axis) for both MD and PRD. The
plot assumes a 24-hour simulation using a classical interatomic potential, with an
escape rate per atom of k = 105 (s atom)−1, a 1 fs MD time step, an execution

Fig. 2 Comparison of the simulated timescales and length scales accessible to both MD and AMD,
given a 24-hour run time on a hypothetical exascale machine. The specific shapes of the MD and
PRD polygons are based on benchmark simulations and analysis presented in reference (Martínez
et al. 2014). The shape of the PRD region assumes a per-atom escape rate of k = 105 (s atom)−1,
a 1 fs MD time step, a processor speed of 1 μs per atom per time step, and 12 million processors
on the whole machine. The theoretical parallel limit is shown as a dashed black line. The intended
direction of improved performance is also shown for speculation and localization
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time of 1 μs per atom per time step on a single processor, and 12 million processors
on the whole machine. Note that the size-dependent escape rate is here given by
kg = kNat , where Nat is the number of atoms in the system.

Since PRD must rely on parallelism to access extended timescales, limits on
available computing resources will always lead to an upper limit on performance.
In Fig. 2, this theoretical limit is depicted by a dashed black line that divides the
plot into upper and lower triangles. The x-intercept of this line can be defined by
the kg → 0 limit of Eq. (5). It is important to recognize that, unlike PRD, neither
hyperdynamics nor TAD are strictly prevented from accessing the upper triangle of
this performance landscape, because they do not rely on parallelism to achieve their
boost. However, at increasingly large computational scales, the actual performance
of AMD methods is increasingly more likely to depend on the value of kg than on
the parallel limit.

Figure 2 clearly shows that PRD can provide access to a significant portion of
spatiotemporal simulation space that is inaccessible to direct MD at the exascale.
However, the plot also illustrates that the global transition rate can prevent PRD
from reaching the theoretical parallel limit on a large machine. Breaking this
limitation is the motivation behind many of the novel speculation and localization
approaches that will be described below.

3.2 PRD+X

3.2.1 Parallel Replica Hyperdynamics (PRH)
The parallel replica hyperdynamics method (PRH), corresponding to the combi-
nation of PRD and hyperdynamics, is almost as old as its two components (Voter
and Germann 1998). Given an appropriate hyperdynamics bias potential, combining
these two methods is straightforward: PRD is performed as usual, except the
dynamics on each replica is performed on the biased potential surface, V(X) +
V b(X), to further accelerate the local transition rate. Since each replica process will
experience a boosted transition rate of kgηH

r , where ηH
r is the hyperdynamics boost

factor obtained on each replica, the new algorithm can be expected to provide a
speedup of

ηPRH = Nrη
H
r

(
(1+ fQ)(1+ 2Nrη

H
r kgτc)

)−1
. (6)

This approximate equation demonstrates that the available boost factors of PRD
and hyperdynamics do not simply multiply, because the efficiency of PRD will be
inhibited by the boosted transition rate experienced by each replica. The maximum
possible speedup in PRH therefore tends to that of PRD as the number of processors
increases. However, the hybrid technique can be very valuable when resources are
limited. For example, in cases where ηPRD is limited by Nr , rather than kg , it is very
likely that PRH will outperform PRD-alone.
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3.2.2 Parallel Replica TAD (ReplicaTAD)
The newest PRD+X combination is the parallel replica TAD method (ReplicaTAD)
(Zamora et al. 2018). ReplicaTAD uses one computing unit to carry out the
original TAD procedure, including all NEB calculations, and Nr to carry out high-
temperature MD using PRD.

In contrast to original PRD however, ReplicaTAD uses replication to reach t
High
Stop

as quickly as possible, rather than to decrease the waiting time to observe a single
transition (although this is also achieved). Since TAD uses BCMD rather than direct
MD, the parallel replication procedure can be performed in a way that is more
efficient than the original PRD. For example, individual replicas must dephase only
when they locally observe a transition, and, when this occurs, the final state does
not have to be broadcasted to every other replica but only to the master.

Like PRH, ReplicaTAD is powerful but unlikely to outperform pure PRD if
unlimited parallel resources are available (this does not consider the case where
the synthetic mode can be used by ReplicaTAD to escape superbasins). Although
BCMD allows for the use of a more efficient replication procedure, the elevated
temperature means that the parallel replica efficiency is worse than it would
have been at the low temperature of interest. However, the real advantage of
ReplicaTAD is that computational resources can be used to improve the accuracy of
the TAD procedure. Since the kinetics in most material systems departs from HTST
predictions when the temperature becomes too large, TAD is most accurate when
THigh approaches TLow. While a low THigh setting is likely to produce a meager boost
in serial TAD, adding parallel replication can produce a boost that is equivalent to,
if not larger than, the serial TAD boost with an optimal THigh setting.

4 Speculation

Speculative execution is a well-established technique used across various appli-
cations such as distributed computing and modern CPU logic. For many modern
pipe-lined CPU architectures, for example, the use of branch prediction is often
required to achieve optimal performance. The basic idea is that, when excess
computing resources are available, it may be preferable to perform certain tasks
before there is any guarantee that the task is necessary, so long as the early execution
of said task has the potential to decrease the overall execution time.

Within the context of AMD, parallel speculation generally refers to the parallel
scaling of a parent method by leveraging speculative execution in states that the
physical system is expected to visit (or revisit) in the future. Execution becomes
speculative in nature when the simulated trajectory has yet to require additional
MD in that state to continue. Although it is generally not straightforward to make
accurate predictions of future needs, there are at least two situations in AMD
where this can be done relatively simply. The first of these cases occurs during
any TAD simulation. The second case occurs when the trajectory is trapped in
a superbasin. Next, we discuss two recent approaches intended to address these
speculative execution opportunities.
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4.1 Speculation in TAD

The opportunity for efficient speculation within the TAD method arises from
the use of BCMD. While transitions are explicitly rejected before the proper
low-temperature transition is finally identified, their occurrence can be used to
accurately predict the next official state along the trajectory (note that we use
the term official state to describe a state that is included in the final state-to-state
trajectory).

4.1.1 Speculatively Parallel TAD (SpecTAD)
The speculatively parallel TAD (SpecTAD) method uses speculative execution to
scale the serial TAD algorithm across multiple processors (Zamora et al. 2016a). As
mentioned above, the nature of BCMD leads to an ideal opportunity for speculative
execution. After a transition pathway is first observed at high temperature, an idle
processor can be used to immediately begin executing the TAD procedure in the
final state if it is possible that the transition will ultimately be accepted. For many
real TAD simulations, speculative execution can allow significant parallel scaling,
because t

High
Stop can be more than an order of magnitude longer than t

High
Winner. Since

Eq. (4) is used to update tLow
Short as soon as the NEB is performed for each high-

temperature transition, it is also straightforward to decide which speculative states
should be prioritized for exploration on the available CPU resources.

The basic SpecTAD procedure requires relatively simple modifications to the
traditional TAD approach. The most significant change is that a new master
process is needed to build the long-time trajectory of many sequential state-to-
state transitions. This master process does not need to perform any MD or know
much about the TAD procedure. Instead, this process simply manages some number
of speculation processes that are each responsible for performing a modified TAD
procedure in a single assigned state. When a speculation process is not performing
TAD, it simply waits for the master process to assign it a new state (in practice,
this idle waiting time is what typically limits the parallel scaling of SpecTAD). As
illustrated in Fig. 3, the simulation will begin with the master sending the initial
state geometry (State A) to a random process (Process 0). Note that the processes
in Fig. 3 are labeled in the order that they are first assigned a state but that any idle
process could be used to explore each state. When a process is assigned a new state,
it executes the TAD procedure with the following modifications:

1. When tLow
Short is replaced by a new transition at THigh, using Eq. (4), a speculation

message must be sent to the master process. This message will include the
geometry of the neighboring state corresponding to the new tLow

Short.

2. When t
High
Stop is reached, the master process must be alerted that the most recent

speculation from this process actually corresponds to the winning transition for
the corresponding state visit and that this process is now idle.
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Fig. 3 Schematic illustration of SpecTAD on an idealized 2-D potential energy landscape. Each
rectangle corresponds to a distinct speculation process, which executes a modified TAD procedure
in a single assigned state. The simulation begins with the master process assigning State A to
Process 0, where the red-dashed line circle corresponds to a detected transition, on Process 0, to
State B. Once informed of the transition, the master process assigns State B to Process 1, and the
same process is repeated when a transition is detected in State B (blue-dashed line circle)

3. Processes must occasionally probe for a kill message from the master. This
message indicates that this process is currently exploring a state that is no longer
a priority.

Although the schematic illustration in Fig. 3 excludes the killing of speculation
processes to reassign work, the intended execution flow is clearly shown: as soon
as Process 0 detects a transition that allows it to set (or reset) tLow

Short, the master
process will assign the next expected state (State B) to an idle speculation process
(Process 1). This same procedure is then repeated in State B, leading to a third
speculation process (Process 2) exploring State C. Since t

High
Stop can be orders

of magnitude longer than t
High
Winner for each distinct speculation process, all three

processes can perform much of their work in parallel.
In contrast to replication-based AMD methods like ReplicaTAD, the parallel effi-

ciency of SpecTAD is clearly dependent on the total number of transitions that occur
in the official low-temperature trajectory. Since the only source of parallel speedup
is the concurrent execution of TAD in speculative future states, the simulation of
a trajectory with N transitions could never use more than N cores efficiently. In
practice, this is not a stringent limitation, as long-time simulations often include
thousands of transitions or more. Instead, the maximum parallel speedup is more
typically limited by the ratio: w̃Stop/w̃Winner, where w̃Stop corresponds to the average
wall-clock time (WCT) needed to reach the stop time for a given state and w̃Winner
corresponds to the average WCT needed to find the winning transition. Since each
speculation process must discover its winning transition before subsequent states
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can be explored, this ratio gives an approximate upper bound on the attainable
parallel speedup.

4.1.2 Synthetic-Mode SpecTAD
Like the original TAD method, SpecTAD is particularly well-suited for the simu-
lation of physical systems containing superbasins of states. This is because each
speculation process can employ synthetic-mode transitions to leverage previously
accumulated tHigh in revisited states. More importantly, however, is the fact that
the application of synthetic transitions can actually improve the overall parallel
efficiency of SpecTAD. Although the synthetic-mode procedure is likely to reduce
the value of w̃Stop, the procedure will even more dramatically reduce the value of
w̃Winner. Since the procedure requires that future time stamps be assigned to all
escape pathways observed during previous visits, it becomes likely that the winning
transition out of a revisited state can be accurately predicted before any additional
MD is performed. Therefore, once a SpecTAD simulation becomes stuck within a
deep superbasin of known states, it becomes possible for the simulation to use all
available resource to escape from the superbasin.

4.1.3 Hybrid SpecTAD
Although SpecTAD is certainly a powerful extension of the original TAD method,
in general, pure speculation is unlikely to be the most efficient use of parallel
resources. For example, when a physical system exhibits anharmonic behavior
above some modest temperature, an accurate simulation may require that the value
of THigh be set relatively close to TLow. In such cases, ReplicaTAD will often
outperform SpecTAD, because the w̃Stop/w̃Winner ratio becomes too small for pure
speculation to scale efficiently. However, in that case, a flexible combination of both
speculation and replication can be used to efficiently improve the TAD boost for any
THigh > TLow.

The basic idea behind the hybrid SpecTAD method (Zamora et al. 2018) is to
allow for the combination of both speculation and replication. This is accomplished
by modifying the SpecTAD algorithm to utilize Nr local replica processes within
each of the Ns speculation processes. Using this scheme, which is schematically
illustrated in Fig. 4, each speculation process performs a ReplicaTAD procedure,
using Nr + 1 computing units. It is useful to note that this hybrid method will
improve upon the performance of conventional SpecTAD, even when Nr = 1, as
NEB calculations and MD can then be executed concurrently.

In practice, the most important advantage of hybrid SpecTAD is that it provides
a straightforward way to trade accuracy and resources. It becomes practical to
start with an MD-accurate method with THigh = TLow and then to raise the high
temperature until the required timescale can be accurately accessed, using whatever
computing resources are available. The application of an elevated temperature also
opens up the opportunity to promote repetitive events into synthetic mode – possibly
leading to KMC-like performance.

The development of this new hybrid method demonstrates the advantages of
combining multiple forms of parallelism. In contrast to MD-accurate methods,
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Fig. 4 Schematic illustration of hybrid SpecTAD on an idealized 2-D potential energy landscape.
Each rectangle corresponds to a distinct speculation process, which uses a local master process,
and Nr local replica processes, to execute a modified TAD procedure in a single assigned state.
Like conventional SpecTAD, a global master process is used to manage the assignments of states
to available speculation processes

however, TAD-based algorithms are not limited to the lower triangle presented
in Fig. 2. In practice, the boost available from hybrid SpecTAD can be many
orders of magnitude larger than the theoretical parallel limit. For example, recent
work by Zamora et al. (2016b) has leveraged both synthetic-mode transitions and
speculation to achieve boost factors greater than 1015 over MD, corresponding to
years of simulated time. By combining replication and speculation, extreme boost
factors like this should become even more accessible, because parallel resources are
more efficiently used to accelerate the rate at which internal superbasin states are
explored.

4.2 Speculation in PRD

The TAD formalism offers a straightforward way to speculate which transitions are
likely to occur in the future, as a transition is always observed at high temperature
before it is officially accepted as a valid low-temperature transition. This delay opens
a window of opportunity to overlap calculations in different states. Such a delay is
however not available in PRD, since transitions are accepted as soon as they are
observed. Nonetheless, if one can hazard a prediction that some states might be
visited, or revisited, in the future, it can be leveraged to improve efficiency of replica
methods like PRD.
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4.2.1 Parallel Trajectory Splicing (ParSplice)
The parallel trajectory splicing (ParSplice) method (Perez et al. 2016) is an exten-
sion of PRD, designed to dramatically improve the parallel efficiency when states
are likely to be revisited. Like PRD, the ParSplice boost is obtained through replica-
based parallelism. However, the worker processes are no longer synchronized in
the same states. Indeed, the key idea in ParSplice is to factor the problem of
generating a long state-to-state trajectory into independent tasks that can be carried
out concurrently, independently, and asynchronously. These tasks are to generate
so-called trajectory segments such that the system remained for at least τc in a given
state prior to the beginning of the segment and at least τc in a given state (potentially
different from one where the segment began) prior to the end of the segment. It can
be shown using the same formalism developed for PRD (Le Bris et al. 2012) that
such segments can be assembled (or spliced) into a proper state-to-state trajectory
as long as the new segment begins in the same state where the trajectory currently
ends.

The improvement in efficiency over PRD is primarily due to aggressive book-
keeping: first, segments that cannot be immediately spliced into the main state-to-
state trajectory are stored in a database for future use in case the trajectory revisits
their starting state at a later time; second, end points of segments, which are by
construction proper starting points for subsequent segments, are stored and reused
in order to avoid having to re-dephase in states that have been previously visited.
Taken together, this insures that computer cycles invested in MD can potentially be
leveraged to create the state-to-state trajectory.

Efficiency is further improved through speculative segment execution. Indeed, as
shown in Fig. 5, ParSplice workers are not constrained to run in the same state.
Instead, segments can be simultaneously generated in multiple states according
to the expected likelihood that they will be spliced into the trajectory in the
future. Operationally, this likelihood optimization is carried out using simulations
of the possible future evolution of the trajectory based on a kinetic model that is
constructed on the fly. As with SpecTAD, this procedure is speculative in nature
because one cannot certify that the segment that is about to be generated will
be indeed spliced into the trajectory. Exploiting this uncertainty however enables
a considerable increase in the parallelism available to the algorithm – one can
parallelize over the possible futures of the trajectory, in addition to its present state
– thereby dramatically increasing scalability in some cases.

ParSplice performs best in the rather common situation where the trajectory is
trapped in a superbasin of states (Perez et al. 2018). In this case, the same states
will be revisited over and over, which maximizes the probability that completed
segments are already available at the current end of the trajectory and that dephased
starting points are available to efficiently generate additional segments. Further, the
evolution of a trajectory in a superbasin is statistically predictable. This allows for
the optimal assignment of additional segments in the different states within the
superbasin. It was recently shown that ParSplice can maintain excellent performance
as long as the escape out of the superbasin is slow, even when individual intra-basin
transitions occur so rapidly that a synchronous PRD approach would be inefficient
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Fig. 5 Illustration of the ParSplice method. Trajectory segments are independently and concur-
rently generated in multiple states. These segments are then assembled into a long state-to-state
trajectory by splicing together segments whose end points match

(Perez et al. 2018). This enables one to leverage massive parallel resources to
investigate complex systems where the distribution of transition rates is very wide.

It is useful to recognize that ParSplice is actually a natural combination of
both parallel replication and speculation. For this reason, the general resource-
management approach can be used to efficiently scale the performance of hyper-
dynamics or TAD on parallel resources. In the case of TAD, there is no reason
that a master process needs to directly splice the generated segments into a single
official trajectory. Instead, the master can separately splice many distinct high-
temperature trajectories, corresponding to both current and speculative states, and
then use Eq. (4) to project each of these spliced trajectories onto a single (official)
low-temperature trajectory. When compared to the existing version of hybrid
SpecTAD, the incorporation of a ParSplice-based resource management procedure
would effectively produce an adaptive load balancing mechanism to optimally
choose the number of replication and speculation processes in use. Given the
significant value of efficiency in the world of high-performance computing, this
expected outcome is a powerful motivation for further development.

5 Localization

While replica and speculation-based parallelism can allow an AMD method to
access significantly longer timescales than direct MD, other techniques are often
needed to allow the boost to be maintained at larger length scales. Indeed, the boost
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of a traditional AMD method often scales poorly with an increase in the system
size, because the global transition rate will also proportionally grow. For example,
an infinite system will always experience at least one transition occurring at some
location at any given time. Since PRD, TAD, and hyperdynamics all rely on a
separation of timescales between thermal fluctuations and state-to-state transitions,
their performance suffers when these timescales converge. That is, once the average
transition time becomes shorter than the correlation time of the system, the original
AMD methods no longer provide any advantage over direct MD.

In order to improve the spatial scaling of traditional AMD methods, new
approaches have been introduced based on the concept of localization. Although
the global transition rate is likely to grow when a physical system increases in
size, the transition rate within a given local region is unlikely to change, because
a very large majority of transition processes are local in nature, so that while the
absolute number of possible transitions increases with system size, their spatial
density remains relatively constant.

In the following section, we discuss two novel methodologies that exploit this
locality. First, we discuss the synchronous sub-lattice (SL) algorithm, which has
been used to improve the performance of the PRD and TAD approaches. Second,
we discuss the recently introduced local hyperdynamics method, which can improve
the spatial scaling of hyperdynamics without the need for SL decomposition.

5.1 Synchronous Sub-lattice Decomposition

The synchronous sub-lattice (SL) algorithm is a two-layer spatial decomposition
routine that was originally designed to improve the spatial scaling of KMC
simulations (Shim and Amar 2005). Over the past decade, this approach has also
been used to improve the performance of both TAD (Shim et al. 2007) and PRD
(Martínez et al. 2014). The recursive subdivision procedure, at the heart of SL,
results in a set of noninteracting regions that can be advanced concurrently in
time. This ultimately allows multiple computing units to work on distinct localized
regions of the sample, in parallel.

In contrast to spatially parallel MD, the approach is designed to reduce the
frequency of communication between neighboring regions while retaining a suf-
ficient level of accuracy. Figure 6 shows a two-dimensional SL decomposition
schematically, where numbers and letters refer to domains and subdomains, respec-
tively. Starting with a system of atoms, the global geometry is first partitioned into
domains, which can each be assigned to distinct processors (numbers in Fig. 6).
Each domain is then further divided into a set of 2Dim sub-domains (letters in Fig. 6),
where Dim is the number of spatial dimensions used in the decomposition. Intra-
domain labeling is assigned in a cyclic fashion, so that sub-domains sharing the
same letter do not interact. The collection of all sub-domains with a matching label
(letter) is called a sub-lattice.
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Fig. 6 Illustration of the
synchronous sub-lattice
algorithm used in SLPRD and
parTAD. Note that the image
corresponds to a
two-dimensional
discretization, requiring four
sub-domains for each
processor domain

To advance the global simulation time by τadv using the SL procedure, each of
the 2Dim sub-lattices are chosen sequentially, with the full loop resulting in a sub-
lattice cycle. For each loop iteration, a desired modeling algorithm (KMC, PRD,
TAD, etc.) is used to advance the simulated time by τadv within the corresponding
sub-lattice. Since the sub-lattice is composed of noninteracting sub-domains, each
of these regions can be advanced concurrently by distinct processors.

Since neighboring sub-domains must be synchronized on a timescale that is
coarse relative to MD time integration, a boundary skin must be added to each of
the sub-domains when the local time is advanced. This skin must include an inner
boundary of moving atoms (the light-gray region surrounding sub-domain 0D in
Fig. 6), as well as an outer boundary of fixed atoms (the dark-gray region in Fig. 6).
Although the inner-boundary atoms are allowed to move when the local time is
advanced, the sub-domain must explicitly reject any transitions outside the inner
boundary, unless the center of mass (the center of mass of all atoms involved in the
transition) is contained within the sub-domain.

The SL algorithm is designed to address boundary conflicts in which two
mutually exclusive events occur at some domain boundary. However, it does not
avoid causality errors in which events happening at different times might affect the
dynamics of the system. Although an extension of the original algorithm exists in
which causality errors are completely avoided (Martínez et al. 2008, 2011), some
small bias is still introduced by the spatial decomposition itself. In most cases, this
bias is known to be relatively small (Shim and Amar 2005; Martínez et al. 2011).
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5.1.1 Sub-lattice PRD
The sub-lattice PRD method (SLPRD) corresponds to an SL implementation in
which PRD is used to advance the simulated time within each sub-domain (Martínez
et al. 2014). In general, the parallel speedup of SLPRD is given by

ηSLPRD = η̃PRD
sd D

O(skin)
, (7)

where D is the number of domains , η̃PRD
sd is the average PRD speedup achieved

in each local sub-domain, and O(skin) is the additional overhead corresponding to
the aforementioned boundary regions. The O(skin) overhead is a linear function of
the extra number of atoms in each sub-domain and can be obtained through MD
simulations (Martínez et al. 2014). In the hypothetical scenario that O(skin)→1,
SLPRD produces an ideal weak scaling of the average PRD boost achieved in
each sub-domain. However, the proportion of boundary atoms, with respect to the
active atoms, is strongly dependent on the size of each processor domain. For this
reason, the most efficient use of computing units often requires large SL domains
and spatially parallel force calls within each replica process.

In practice, the SLPRD algorithm becomes most advantageous (relative to
original PRD with spatially parallel force calls – also known as ParPRD) when there
are both many atoms to simulate and many computing units available. For example,
Martínez et al. (2014) have directly compared real simulations with a more-detailed
form of Eq. (7) to produce the performance projections in Fig. 7. In this figure,
MD, ParPRD, and SLPRD are all assumed to leverage spatially parallel force calls.
The results clearly show that the SL algorithm becomes most effective when the
computing system is extremely large and that the potential for weak scaling is not
strongly dependent on the per-atom transition rate of the system.

Although SL does require the computationally expensive use of boundary atoms,
the development and analysis of an SLPRD method is certainly a significant
AMD advancement. This work has clearly demonstrated both the advantages and
limitations of combining SL with a replication-based method like PRD. This
accomplishment has ultimately paved the way for the ongoing development of a
new sub-lattice ParSplice (SLParSplice) method. Both the theoretical and measured
performance of SLPRD, as presented in Martínez et al. (2014) (and reviewed above),
can be taken as a lower bound on the available performance of a quality SLParSplice
implementation.

5.1.2 Sub-lattice TAD
In addition to KMC and PRD, the SL algorithm has also been used within the
parallel TAD method (parTAD) to dramatically improve the spatial scaling of TAD
(Shim et al. 2007). ParTAD is very similar to SLPRD, in the sense that AMD is
used to advance the simulation time within each sub-domain of the decomposed
sub-lattice geometry. In practice, however, parTAD has an even better chance of
achieving improved spatial scaling, because TAD is known to scale especially
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Fig. 7 Speedup vs. the number of total processors in the system with (a) 54,784 atoms and
k = 105 (s atom)−1 and (b) 106 atoms and k = 106 (s atom)−1. SLPRD(A) and SLPRD(S) show
analytical and simulated results, respectively. (Figure reproduced with permission from Martínez
et al. 2014)

poorly. That is, for a serial simulation of Nat atoms, the run time is expected to
scale approximately as N

3+1/3+γ
at , where γ = TLow/THigh. This behavior can be

improved, to N
2−γ
at , when local NEB calculations are employed (Shim et al. 2013).

However, such a localization must be performed with care, since an undersized NEB
geometry can lead to a significant error in the calculated saddle-point energy and
therefore the transition rate. Instead of localizing these calculations directly, SL can
accomplish the same NEB performance while also reducing the effective transition
rate within each domain. Overall, the parallel execution of parTAD can lead to a
logarithmic scaling of the serial TAD boost with respect to system size.

5.2 Local Hyperdynamics

In hyperdynamics, because the bias potential must go to zero whenever the system
is near a dividing surface, increasing the system size will necessarily lead to a lower
boost factor for a given definition of the bias potential. Thus, for any proper bias
potential, the boost will decay to unity in the limit of large system size. Local
hyperdynamics (Kim et al. 2013) mitigates this problem by taking advantage of the
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Fig. 8 Schematic illustration
of local hyperdynamics
system, showing local
domains I and J centered on
bonds i and j (shown as
dots), respectively. Every
bond (or atom) in the system
has its own domain. Distant
domains do not interact with
each other. (Figure
reproduced with permission
from Kim et al. 2013)

intrinsic locality of the transition pathways. In systems where transitions are local,
the dynamics in two regions separated by a large distance evolve independently.
More precisely, we define a locality range L, beyond which the correlation between
bond distortions is zero or smaller than some threshold value set by the user. Given
this locality assumption, we define a modified hyperdynamics procedure that only
requires that the bias force on an atom be zero when there is a nearby geometry
distortion taking the system near a dividing surface. We briefly describe the method
here, while full detail can be found in Kim et al. (2013).

The local hyperdynamics (LHD) procedure is designed to generate an appro-
priate escape from the current state, in the same spirit as hyperdynamics, but in
a way that maintains a constant boost factor as the system size is increased. In
principle, LHD can utilize most any form of bias potential, but for this discussion,
we will focus on the use of the simple bond boost (SBB) form, a simplified version
(Perez et al. 2009) of the bond boost bias (Miron and Fichthorn 2003), as discussed
above. For this type of bias, the natural entity of interest is the bond, rather than the
atom. We define a domain J , centered on bond j , which includes all bonds out to a
distance D from j , as shown in Fig. 8. Every bond in the system has such a domain
associated with it, so that, for example, an N -atom fcc system would have roughly
6N overlapping domains. For each domain J , a scaled version of Eq. (3),

V b
J = V b

J (RJ ) = CJV
b
SBB(RJ ), (8)

is employed to compute the domain bias energy V b
J , using only the coordinates of

the atoms that belong to that domain, as denoted by RJ . If, in domain J , bond j

is the most distorted bond, then the gradient of Eq. (8) is employed to determine
the force on bond j ; otherwise, the force on bond j is zero. (Note that the force on
a bond corresponds to the equal, but opposite, force on each atom composing the
bond.) Each domain has a bias-energy scaling factor CJ ; these scaling coefficients
are adjusted to give the same average boost factor Btarget for every domain in the
system. This is accomplished using a boostostat, which nudges the coefficient up
or down at each time step by an amount proportional to Btarget − BJ , where BJ is
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the instantaneous boost on bond j . This is a key component of the LHD procedure,
ensuring that all bonds in the system advance in time at the same accelerated rate
(on average). We choose a boostostat coupling constant that is not too high (which
would distort the dynamics and change the escape rates) and not too low (which
would not allow the system to settle into the proper behavior quickly enough relative
to the time to next escape. (Note that the best value of Btarget is system dependent.)

An important characteristic of LHD is that because the force on each bond
is governed by a local energy definition, the system dynamics overall is not
conservative (i.e., the dynamics with the Langevin thermostat turned off will not be
conservative). Surprisingly, though, this procedure nonetheless gives impressively
accurate rate constants, typically within a few percent of the exact rates, determined
by comparing to MD or regular hyperdynamics benchmarks for various systems.
We have shown (Kim et al. 2013) that as the domain size D is increased, the
LHD dynamics should become increasingly accurate, even when D is still smaller
than the system size. This is because the relative contribution from the crescent
regions (see Fig. 8), which give rise to the mismatch between the actual force on
bond j and the force on bond j expected by bond i, decreases with D. (When D

is large enough that each domain includes the whole system, then LHD trivially
reduces to regular hyperdynamics.) We have also shown (Kim et al. 2013) that for
a homogeneous system (all bonds equivalent) and the SBB bias, when D ≥ 2L,
the dynamical evolution will be consistent with Langevin dynamics, in spite of the
apparent nonconservative nature, and the accelerated escape rates should be correct.
We do not yet know how to show, nor is it necessarily true, that the LHD results are
correct for an inhomogeneous system (inequivalent bonds), although the accuracy
of the results we have obtained is suggestive.

When a transition from the current state occurs, in addition to redefining the SBB
bias potential, adjustment of the CJ coefficients is required for all domains affected
by the geometry change caused by the transition. The boostostat, with a properly
chosen coupling coefficient, takes care of this, ideally on a timescale that is short
compared to the time until the next event in this region. Also, one or more new bonds
may have formed due to the transition, requiring creation of new domains and new
CJ values, which can be initiated with a good starting guess (e.g., the average CJ

value for all bonds in the system), after which the boostostat settles them in.
LHD will give constant boost for an arbitrarily large system, provided that no

new lower-barrier pathways show up as the system size is increased; an example for
a homogeneous system is shown in Fig. 9. In a massively parallel implementation,
LHD will give good parallel weak-scaling provided the extra work required when
transitions occur is distributed such that it does not grow with the number of
transitions in time.

Although SL could also be used to scale the performance of hyperdynamics, the
method requires the use of many boundary atoms to accurately perform MD within
each distinct sub-lattice domain. In contrast, the local hyperdynamics approach to
localization does not require the use of fixed/free boundary atoms and can therefore
be expected to be more efficient than a hypothetical SL-based alternative.
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Fig. 9 Boost factor for local hyperdynamics, red (+), and regular hyperdynamics, green (×) for
bulk Ag systems of various sizes modeled with an embedded atom method potential (Voter 1988).
(Figure reproduced with permission from Kim et al. 2013)

6 Discussion

In this chapter, we reviewed a variety of modern techniques for performing long-
timescale AMD simulations using parallel computing systems. The approaches
broadly fall into three categories: replication (PRH, ParSplice), speculation (Spec-
TAD, ParSplice), and localization (SLPRD, parTAD, and local hyperdynamics).
Clearly, it is possible for an AMD method to fall into more than one of these
categories. For example, the most novel feature of ParSplice is that it can leverage
speculative execution to outperform PRD when states are often revisited. However,
the ParSplice boost itself relies on a generalization of the replication concept. In
fact, the performance of ParSplice is very similar to that of PRD when states are not
likely to be repeated, because they are both built on the replication foundation.

Like all the AMD methods that came before them, the primary challenge facing
modern AMD algorithms is the so-called low-barrier problem. As discussed earlier
in the chapter, the boosts of the original PRD, ParSplice, TAD, and hyperdynamics
methods degrade dramatically as the global transition rate (kg) increases. When high
rates stem from large system sizes, localization methods can be leveraged to lower
the effective value of kg .

Unfortunately, many systems have large kg because the dynamics are simply
dominated by low-barrier transition pathways. When these low-barriers connect
states into superbasins, modified state definitions or advanced techniques such
as SpecTAD and ParSplice can still reach very long timescales. In other words,
recent techniques can exploit more general separations of timescales than only
between vibrations and transitions. Problems however remain: for example, while
it might in principle be possible to define suitably metastable states on complex
energy landscapes, doing so in practice remains a considerable challenge that
will require new mathematical or physical insights or novel machine-learning
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approaches. Further, as the computational scale increases, maintaining efficiency
becomes increasingly difficult, as one has to identify a large amount of work that
can be carried out concurrently. However, the number of processors that can be
efficiently leveraged to generate escapes out of a single or a few states is limited.
Efficient speculation then becomes critical, and new developments will be required
to make this process efficient.

Although challenges exist, the value of AMD is clearly expanding with the avail-
ability of parallel computing resources. In light of new mathematical understandings
and rapidly improving parallel algorithms, there is good reason to expect the
available time and length scales to continue improving. What is especially exciting,
however, is that these AMD advances can (and will) be used to dramatically acceler-
ate the simulation of highly accurate MD-based trajectories. Since computationally
expensive force calculations often result in clear opportunities for strong scaling, it
has just recently become practical to leverage electronic-structure-based approaches
within AMD methodologies. Given that some parallel approaches can be tuned to
achieve arbitrary accuracy (with respect to the underlying interatomic forces), it is
reasonable to expect that massively parallel AMD will lead to significant materials
research progress in the coming years.

7 Applications and Lessons Learned

In this chapter, we have focused our attention on the theoretical details of several
new parallel AMD methodologies for long-timescale simulations. Since all of the
highlighted techniques are still under significant development at the time of writing,
some have yet to be used to investigate high-profile materials phenomena. A few
of these methods, however, have already proven useful for materials applications of
clear technological interest. For example, SpecTAD has been used to investigate the
effects of di-vacancy and di-interstitial formation on the mobility of point defects
in magnesium aluminate spinel (MgAl2O4), a complex oxide with applications in
both nuclear reactors and military body armor (Zamora et al. 2016b). In MgAl2O4,
the formation of point defect clusters often leads to a complex potential energy
landscape in which the system will need to move through a series of deep
superbasins for net defect migration to occur. Within each of these superbasins,
the energy barriers can be at least an order of magnitude smaller than those needed
to escape to external states. For this reason, synthetic-mode SpecTAD is extremely
effective and can be used to reach years of simulated time at experimentally relevant
temperatures. In this case, the long-time simulations provided sufficient simulation
data to fully characterize the self-diffusivity of various point defect clusters across
a range of possible temperatures.

ParSplice has also proven to be a valuable tool for the investigation of material
systems that evolve in time through superbasins of states. Recently, for example,
ParSplice was used to simulate the long-time relaxation of platinum nanoparti-
cles, which are of significant interest for possible applications in catalysis and
medicine (Perez et al. 2018). By tracking the evolution of an initially disordered
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Pt nanoparticle, this work demonstrated that ParSplice can be used to simulate
significantly longer timescales than either direct MD or PRD. Since the trajec-
tory is likely to visit many of the same states repetitively, the algorithm can
efficiently leverage thousands of cores to produce a simulation rate greater than
1.4 microseconds per minute of WCT (at 300K). For the same physical system,
the efficiency of the traditional PRD approach is significantly lower, because the
lack of speculation and extensive bookkeeping leads to a much higher dephasing
overhead. In fact, this application of ParSplice produced so many state-to-state
transitions that a dedicated clustering algorithm was needed to post-process the
data (Huang et al. 2017). Using a 16 microsecond (70,000-transition) ParSplice
trajectory, the Perron Cluster Cluster Analysis (PCCA) was used to detect a series
of ∼10 critical superbasin clusters connecting a metastable Marks decahedral state
with the thermodynamically favored icosahedral state for a 147-atom nanoparticle.

The possibility of generating large quantities of state-descriptive data is an
important similarity between the aforementioned applications of SpecTAD and
ParSplice. As a by-product of favorable superbasin simulation performance, these
methods can generate state-to-state trajectories that are more difficult to interpret
than traditional AMD methods. In order to achieve optimal boost factors, less-
important trajectory information (like the details of some intermediate and/or
repeated states) is sometimes ignored. For example, the MgAl2O4 SpecTAD appli-
cation captured billions of rare events, meaning that information about many of the
state visits is necessarily excluded from the raw output. In ParSplice, the generation
of splice-able segments is specifically designed to allow shallow intermediate states
to be ignored. While it is a clear performance advantage over PRD to allow
segments to include multiple intermediate transitions, the properties of a segment
can make the final ParSplice trajectory more difficult to parse. Overall, a valuable
lesson learned through these recent applications is that high-performance simulation
methods tend to require high-performance analysis tools. As parallel algorithms
continue to improve, the growing volume and complexity of the raw simulation
data is likely to become a key concern for the developers and users of these
methods.

8 Conclusion

In a world with an increasing availability of distributed computing clusters, the value
of parallel algorithm development is continuously growing. As high-performance
computing vendors prepare for the exascale and beyond, it is becoming clear that
hardware parallelism is likely to increase for the foreseeable future. In this chapter,
we have reviewed a variety of modern advances in parallel accelerated molecular
dynamics (AMD). To provide a reasonable organization of concepts, we began by
introducing the serial AMD approaches and then discussed three distinct classes
of parallel methods: replication, speculation, and localization. An emphasis was
placed on the more recently developed methods, especially those expected to play a
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significant role as the high-performance computing world approaches the exascale.
Given the wide range of opportunities and challenges for the application and
development of parallel AMD on modern computing resources, there is significant
motivation for ongoing and future work.
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Abstract

The objective of this review chapter is to present recent results on the mathemat-
ical analysis of the accelerated dynamics algorithms introduced by A.F. Voter
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can be modeled by a kinetic Monte Carlo model. Moreover, under some
geometric assumptions, one can prove that this kinetic Monte Carlo model can
be parameterized using Eyring-Kramers formulas. These are the building blocks
required to analyze the accelerated dynamics algorithms, to understand their
efficiency and their accuracy, and to improve and generalize these techniques
beyond their original scope.

1 Introduction

The objective of this chapter is to review recent works on the mathematical
analysis of the accelerated dynamics techniques introduced by A.F. Voter and
coworkers from the late 1990s up to recently (Voter 1997, 1998; Sørensen and
Voter 2000; Perez et al. 2015a). The objective of these methods is to efficiently
simulate thermostated molecular dynamics trajectories over very large timescales.
The mathematical analysis which has been developed gives the set of assumptions
underlying these algorithms and a way to assess their accuracy. This helps to
understand their limitations, but also to improve and extend these numerical
methods beyond their original scope.

The aim of statistical computational physics and molecular dynamics is to infer
from a microscopic model of matter its macroscopic properties. At the microscopic
level, the atomic configuration is given by a set of positions of the atoms (or group
of atoms), and the basic ingredient is a potential energy function:

V : Rd → R. (1)

Here d is the number of degrees of freedom (typically three times the number of
atoms), and the function V associates to a given atomic configuration its energy.
We will not discuss here how to build such a function V . Let us simply mention
that this is related to the construction of so-called force fields, which requires a
lot of chemical intuition to infer the functional form of the force field and good
parametrization using either experimental data or ab initio computations to evaluate
the electronic structure associated with given positions of the nuclei. Combining
optimally these informations in order to improve the predictive abilities of force
fields is a very lively research subject, at the interface between physics, chemistry,
numerical analysis, and data sciences.

For a given potential V , at a fixed temperature T , the configurations of the atomic
system at thermal equilibrium are distributed according to the Boltzmann-Gibbs
measure (a.k.a. the canonical measure):

μ = Z−1 exp(−βV (q)) dq (2)

where q ∈ R
d is the positions of the atoms, β−1 = kBT (kB being the Boltzmann

constant), and Z = ş

Rd exp(−βV (q)) dq is assumed to be finite. Computing
averages with respect to μ gives access to so-called thermodynamic quantities.
Examples include heat capacity, free energy difference, stress, etc. The focus of
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this work is rather to discuss numerical methods to compute dynamical quantities,
namely, observables which depend on the trajectories of the molecular system:
transition times, transition paths, reaction mechanisms, etc. This requires to define a
dynamics. The typical dynamics one should have in mind is the Langevin dynamics:

⎧
⎨

⎩

dqt = M−1pt dt

dpt = −∇V (qt ) dt − γM−1pt dt +
√

2γβ−1dWt

(3)

where (qt , pt ) ∈ R
d×d denotes the positions and momenta of the particles

at time t ≥ 0, M is the mass tensor, γ > 0 is a friction parame-
ter, and Wt is a standard d-dimensional Brownian motion. Under loose
assumptions on V , this dynamics is ergodic with respect to the phase-
space canonical measure Z exp

(−β(V (q)+ pT M−1p/2)
)
dq dp, where Z =

ş

Rd exp
(−β(V (q)+ pT M−1p/2)

)
dq dp. The marginal in q of this measure

is the measure μ defined above (see (2)). In particular, for any test function
ϕ : Rd × R

d → R,

lim
t→∞

1

t

ż t

0
ϕ(qs) ds =

ż

Rd

ϕdμ. (4)

In the following, we will also consider the overdamped Langevin dynamics which
is obtained from (3) in the limit γ →∞ or M → 0 (see, e.g., Lelièvre et al. 2010,
Section 2.2.4):

dXt = −∇V (Xt) dt +
√

2β−1dWt (5)

where Xt ∈ R
d denotes the positions of the particles. More precisely, the over-

damped Langevin dynamics is, for example, derived from the Langevin dynamics
in the large friction limit and using a rescaling in time: assuming M = Id for
simplicity, in the limit γ →∞, (qγ t )t≥0 converges to (Xt )t≥0. Again, under loose
assumptions on V , this dynamics is ergodic with respect to the canonical measure μ.
The Langevin and overdamped Langevin dynamics are thus thermostated dynamics:
they describe the evolution of the system at a given temperature T . Simulating these
dynamics over large timescales in order to have access to macroscopic properties
of the system (both thermodynamic and dynamical quantities) is the objective
of molecular dynamics simulations with applications in many scientific areas:
biology, chemistry, materials sciences, etc. To obtain accurate results, this requires
to simulate stochastic dynamics in large dimension over very large timescales.

The main difficulty when simulating the dynamics (3) or (5) in practice is that
they are metastable. This means that the trajectory of the positions (qt )t≥0 or (Xt )t≥0
remains trapped for very long periods of time in some regions of the configurational
space called metastable states. This is actually expected from a physical viewpoint:
these metastable states typically correspond to some macroscopic conformations of
the system. In materials sciences, for example, one could think of these metastable
states as positions of some defects in a crystal or of some adatoms on a surface.
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In biology, these metastable states can be associated, for example, with molecular
conformations of a protein. And it is indeed expected that the residence times in
these metastable states are much larger than the typical timescale of vibration within
the metastable states. In practice, one needs, for example, to use timesteps of the
order of 10−15 s to discretize (3), while the typical phenomena of interest occur
over timescales of the order of 10−6 s up to seconds or even more! The numerical
counterpart is twofold: to compute thermodynamic quantities, the convergence of
time averages such as (4) is very slow; and to evaluate dynamical quantities of
interest, namely, typically transition paths and transition times between metastable
states, one needs to sample rare events, namely, the exit from metastable states
and the transition to a new metastable state. The objective of the accelerated
dynamics algorithms is indeed to efficiently sample metastable dynamics in order
to have access to some dynamical quantities. Let us make precise that we are here
considering numerical methods to sample the whole dynamics from states to states
and not, for example, the ensemble of reactive paths between two given metastable
states, for which other dedicated methods can be used (splitting techniques (van
Erp et al. 2003; Allen et al. 2005; Cérou et al. 2011), transition path sampling
methods (Dellago et al. 1999), etc.)

The basic idea of the accelerated dynamics algorithms is the following: if the
stochastic process (qt , pt )t≥0 or (Xt )t≥0 remains trapped for a sufficiently long time
in a metastable state, it forgets the way it entered this state, and this means that the
exit event from this metastable state can be modeled by the exit event of a kinetic
Monte Carlo model, namely, a pure jump Markov process. This will be explained
in Sect. 2. We will then show in Sect. 3 that, in the small temperature regime, it
is possible to parameterize the kinetic Monte Carlo model modeling the exit event
using Eyring-Kramers laws, which gives the basis for a rigorous foundation of the
harmonic transition state theory. From these properties, it is then possible to devise
efficient algorithms to simulate metastable dynamics. This is explained in Sect. 4.
The bottom line is that the details of the dynamics within metastable states are not
interesting: only the exit events from these states need to be simulated.

2 Kinetic Monte Carlo Models and Quasi-stationary
Distribution

In this section, we consider a set S ⊂ R
d , which is assumed to be bounded, regular,

and open. This set is intended to be associated with one state of a kinetic Monte
Carlo (kMC) model, and we would like to relate the exit event from S using the
Langevin (3) or overdamped Langevin (5) dynamics and a kinetic Monte Carlo
model. We will first present in Sect. 2.1 how the exit event from a state is modeled
in a kinetic Monte Carlo model. We will then introduce in Sect. 2.2 the notion of
quasi-stationary distribution (QSD), which is the basic ingredient to connect the
simulation of the exit event from a set S for (3) or (5) with a kMC model, as
explained in Sect. 2.3. Finally, we will conclude this section with a discussion on
the way to estimate the convergence time to the QSD in Sect. 2.4.
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2.1 Kinetic Monte Carlo Models

Kinetic Monte Carlo models (a.k.a. Markov state models, see Bowman et al. 2014
and Schütte and Sarich 2013) are continuous-time Markov processes with values
in a discrete state space, namely, a jump Markov process (see Voter (2007) for a
nice introduction to kMC models). They consist of a collection of states that we can
assume to be indexed by integers and rates (ki,j )i �=j∈N which are associated with
transitions between these states. For a state i ∈ N, the states j such that ki,j �= 0 are
the neighboring states of i denoted in the following by:

Ni = {j ∈ N, ki,j �= 0}. (6)

One can thus represent such a jump Markov model as a graph: the states are the
vertices, and an oriented edge between two vertices i and j indicates that ki,j �= 0.

Starting at time 0 from a state Y0 ∈ N, the model consists in iterating the
following two steps over n ∈ N: Given Yn,

• Sample the residence time Tn in Yn as an exponential random variable with
parameter

∑
j∈NYn

kYn,j :

∀t ≥ 0, P(Tn ≥ t |Yn = i) = exp

⎛

⎝−
⎡

⎣
∑

j∈Ni

ki,j

⎤

⎦ t

⎞

⎠ . (7)

• Sample independently from Tn the next visited state Yn+1 starting from Yn using
the following law:

∀j ∈ Ni , P(Yn+1 = j |Yn = i) = ki,j∑
j ′∈Ni

ki,j ′
. (8)

The associated continuous-time process (Zt )t≥0 with values in N defined by:

∀n ≥ 0, ∀t ∈
[

n−1∑

m=0

Tm,

n∑

m=0

Tm

)
, Zt = Yn (9)

(with the convention
∑−1

m=0 = 0) is then a (continuous-time) jump Markov process.
The exit event from the state i is thus modeled by the couple of random

variables (T , Y ) where:

1. T and Y are independent;
2. T is exponentially distributed with parameter

∑
j ki,j ;

3. Y takes the value j ∈ Ni with probability
ki,j∑

j ′∈Ni
ki,j ′

.
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The question we would like to address in the following is: when can one use
such a model to simulate the exit event from a metastable state for the Markov
dynamics (3) or (5)? The cornerstone to make this connection is the notion of quasi-
stationary distribution, which will be introduced in Sect. 2.2.

The interest of using a kMC model rather than the Markov dynamics (3) or (5)
to model the evolution of the system is twofold. From a modeling viewpoint, new
insights can be gained by building such coarse-grained models that are easier to
handle. From a numerical viewpoint, the hope is to be able to build the jump
Markov process from short simulations of the full-atom dynamics from states to
states. Then, once the rates have been defined, it is possible to simulate the system
over much larger timescales than the time horizons attained by standard molecular
dynamics, either by using directly the jump Markov process or as a support to
accelerate molecular dynamics (see, e.g., Voter (1997, 1998) and Sørensen and
Voter (2000) and Sect. 4). It is also possible to use dedicated algorithms to extract
from the graph associated with the jump Markov process the most important
features of the dynamics (e.g., quasi-invariant sets and essential timescales using
the large deviation theory of Freidlin and Wentzell 1984), see, e.g., Wales (2003)
and Cameron (2014).

2.2 Quasi-stationary Distribution

In this section, we focus for simplicity on the overdamped Langevin dynamics (5).
Generalizations to the Langevin dynamics (3) are expected to be true and are the
subject of works under progress (see, e.g., Nier (2018) for a first result in that
direction). Let us consider the first exit time from a fixed set S ⊂ R

d :

TS = inf{t ≥ 0, Xt �∈ S}.
The exit event from S is fully characterized by the couple of random variables:

(TS,XTS
).

The basic intuition already mentioned in the introduction is that if the process
remains for a sufficiently long time in S, it should be possible to model the exit
event by the exit event of a kMC model. This naturally leads us to consider the
quasi-stationary distribution which is the invariant law for the process conditioned
to stay in S.

Definition 1. A probability measure νS with support in S is called a quasi-
stationary distribution (QSD) for the Markov process (Xt )t≥0 if and only if

∀t > 0, ∀A ⊂ S, νS(A) =

ż

S

P(Xx
t ∈ A, t < T x

S ) νS(dx)

ż

S

P(t < T x
S ) νS(dx)

.
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In other words, νS is a QSD if when X0 is distributed according to νS , for all
positive t , the law of Xt conditionally to the fact that (Xs)0≤s≤t remains in the
state S is still νS .

The QSD satisfies three properties which will be crucial in the following. We
refer, e.g., to Le Bris et al. (2012) for a proof of these results and to Collet et al.
(2013) for more general results on QSDs.

Proposition 1. Let (Xt )t≥0 follow the dynamics (5) with an initial condition X0∈S.
Then, there exists a probability distribution νS with support in S such that

lim
t→∞L(Xt |TS > t) = νS, (10)

where for a given t > 0, L(Xt |TS > t) denotes the law of the random variable Xt

conditioned to the event {TS > t}. The distribution νS is the QSD associated with S.

A consequence of this proposition is the existence and uniqueness of the QSD.
In some sense, the QSD can thus be seen as the longtime limit of the process
conditioned to stay in the state S.

Let us now give a second property of the QSD.

Proposition 2. Let L = −∇V ·∇+β−1Δ be the infinitesimal generator of (Xt )t≥0
(satisfying (5)). Let us consider the first eigenvalue and eigenfunction associated
with the adjoint operator L∗ = div (∇V + β−1∇) with homogeneous Dirichlet
boundary condition:

{
L∗u1 = −λ1u1 on S,

u1 = 0 on ∂S.
(11)

The QSD νS associated with S satisfies:

dνS = u1(x) dx
ż

S

u1(x) dx

where dx denotes the Lebesgue measure on S.

The QSD thus has a density with respect to the Lebesgue measure, which is nothing
but the ground state of the Fokker-Planck operator L∗ associated with the dynamics
with absorbing boundary conditions. The existence, uniqueness, and positivity of
this ground state are a standard consequence of the ellipticity of the operator L∗ and
the boundedness of the set S.

Finally, the last property of the QSD concerns the exit event from S, when X0 is
distributed according to νS .
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Proposition 3. Let us assume that X0 is distributed according to the QSD νS in S.
Then the law of the couple (TS,XTS

) (namely, the first exit time and the first exit
point from S) is fully characterized by the following properties:

1. TS is independent of XTS
.

2. TS is exponentially distributed with parameter λ1 (defined in Eq. (11) above).
3. The law of XTS

is given by (Here and in the following, the superscript νS in E
νS

or PνS indicates that the stochastic process starts under the QSD: X0 ∼ νS .): for
any bounded measurable function ϕ : ∂S → R:

E
νS (ϕ(XTS

)) = −

ż

∂S

ϕ ∂nu1 dσ

βλ1

ż

S

u1(x) dx

(12)

where σ denotes the Lebesgue measure on ∂S induced by the Lebesgue measure
in R

d and the Euclidean scalar product and ∂nu1 = ∇u1 ·n denotes the outward
normal derivative of u1 on ∂S.

Proposition 3 explains the interest of the QSD. Indeed, if the process is initially
distributed according to the QSD in S (namely, from Proposition 1, if it remained
for a sufficiently long time in S), then the exit event from the state S can be modeled
using a kinetic Monte Carlo model, since the exit time is exponentially distributed
and independent of the exit point. This will be explained in more detail in the next
section.

Remark 1 (From overdamped Langevin to Langevin). As mentioned above, the
existence of the QSD and the convergence of the conditioned process toward
the QSD for the Langevin process (3) require extra work compared to the over-
damped Langevin process (5). For results in that direction, we refer to the recent
manuscript (Nier 2018). The main difficulties are twofold: (i) even if S is a bounded
set, the associated ensemble in phase space is not bounded (the velocities are indeed
not bounded) and (ii) the Langevin dynamics is not reversible and not elliptic
(noise only acts on velocities, not on positions). This implies some difficulties
when studying the spectral properties of the infinitesimal generator with absorbing
boundary conditions on ∂S.

2.3 Modeling of the Exit Event from aMetastable State

Using Proposition 1, if the process (Xt )t≥0 remains sufficiently long in the state S,
the random variable Xt is approximately distributed according to the QSD νS . Then,
from Proposition 3, the exit event (TS,XTS

) satisfies the basic properties needed to
be modeled by the exit event of a kinetic Monte Carlo model: TS is independent
from XTS

and exponentially distributed.
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Fig. 1 The boundary ∂S of
the domain S is divided into
four subdomains (∂Si)1≤i≤4,
which are the common
boundaries with the
neighboring states (Si)1≤i≤4

S

S1

S2S3

S4
∂S1

∂S2

∂S3

∂S4

To be more specific, let us consider the domain S, and let us divide its boundary
∂S into subsets (∂Si)i=1,...,J associated with transitions to neighboring states
(Si)i=1,...,J (see Fig. 1 for a schematic representation in the case J = 4). The next
visited state is thus defined by the random variable YS with values in {1, . . . , J }
defined by:

YS = i if and only if XTS
∈ ∂Si.

Let us now introduce the rates: for i = 1, . . . , J ,

ki = λ1P
νS (XTS

∈ ∂Si) (13)

where from (12)

P
νS (XTS

∈ ∂Si) = −

ż

∂Si

∂nu1 dσ

βλ1

ż

S

u1(x) dx

. (14)

We recall that (λ1, u1) has been defined in Proposition 2. Now, from Proposition 3,
we obviously have the following properties on the couple of random variables
(TS, YS):

1. TS and YS are independent.
2. TS is exponentially distributed with parameter

∑J
j=1 kj .

3. YS takes the value i ∈ {1, . . . , J } with probability ki∑J
j ′=1 kj ′

.

which are exactly the properties needed to model the exit event using a kMC model
(see Sect. 2.1).
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Fig. 2 The points (zi)i=1,...,5
are the five local minima of V
on ∂S. The point x1 is the
global minimum of V on S.
In a global kMC model, exits
through the neighborhood of
z1 is associated with a
transition to S1, exits through
the neighborhoods of z3 and
z4 are associated with a
transition to S3, etc

S

S1

S2S3

S4

z1

z2

z3

z4

z5

x1

Notice that we have here considered a partition of the boundary ∂S dictated by
the a priori knowledge of neighboring states, having in mind a global kMC model as
defined in Sect. 2.1. If one is only interested in simulating the exit from S (without
any a priori knowledge of Rd \ S), a natural partition of the boundary is then

∂S = ∪I
i=1Bzi

where (zi)i=1,...,I are the local minima of V on ∂S (see Fig. 2) and for all
i ∈ {1, . . . , I }, Bzi is a neighborhood of zi . Indeed, in the small temperature regime,
exits through ∂S occur around the local minima of V on ∂S (this will be discussed in
Sect. 3.2, see Remark 3). More precisely, for the mathematical analysis in Sect. 3.2,
we will define Bzi as the basin of attraction of zi for the dynamics ẋ = −∇T V (x)

in the boundary ∂S (where ∇T V denotes the tangential gradient of V along the
boundary ∂S):

Bzi =
{
x0 ∈ ∂S, lim

t→∞ x(t) = zi, where x(0) = x0 and ẋ = −∇T V (x)
}
. (15)

We will then show that exits through Bzi actually only occur through a neighborhood
of zi in the small temperature regime β → ∞. Using this partition, one can thus
simulate the exit event as explained above through a couple of random variable
(TS, YS), where YS = i if the exit occurs through the neighborhood Bzi of zi (where
i ∈ {1, . . . , I }). The associated rates are those defined above, replacing the partition
(∂Si)i=1,...,J by (Bzi )i=1,...,I :

ki = λ1P
νS (XTS

∈ Bzi ) = −λ1

ż

Bzi

∂nu1 dσ

βλ1

ż

S

u1(x) dx

. (16)
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As explained above, this is useful to simulate the exit from the state S much more
efficiently than by integrating in time the Langevin (3) or overdamped Langevin (5)
dynamics. It can be used as such in a kinetic Monte Carlo model. It is also the
basic ingredient of the accelerated dynamics that will be discussed in Sect. 4. These
algorithms aim at accelerating the sampling of the metastable trajectories of the
Langevin or overdamped Langevin dynamics, by efficiently generating the exit
event from a metastable state S when those dynamics get trapped in S.

Notice that the results presented here are very general: they hold for both
energetic and entropic traps and for any Markov dynamics as soon as a QSD exists
(nonreversible Markov dynamics, discrete-time Markov dynamics, etc.).

One practical difficulty to use the results above as such in a kMC dynamics
and in some of the accelerated dynamics algorithms is that one needs in addition
a simple way to evaluate the rates ki (with a more explicit formula than the integral
formulation in (16)). We will come back to this in Sect. 3, where the Eyring-Kramers
formulas will be introduced to approximate these rates, in the small temperature
regime.

2.4 Estimating the Convergence Time to the Quasi-Stationary
Distribution in Practice

We have seen in the previous section that if the process (Xt )t≥0 starts from the QSD
in S, one can model the exit event from S exactly using a kMC model. In addition, in
view of Proposition 1, the QSD is reached for the process conditioned to stay in S in
the longtime limit. A natural question is then: how long the process (Xt )t≥0 should
remain in S so that one can assume it is sufficiently close to the QSD? In the original
paper (Voter 1998), this time is called the correlation time, denoted by τcorr, and is
typically fixed as a constant for all the states, this constant being estimated using
some physical intuition on the system at hand or an harmonic approximation. When
the dynamics enters a state S, one thus waits for some time τcorr before assuming
that the QSD has been reached: this is called the decorrelation step in Voter (1998).
Let us now discuss two ways to estimate the time needed to reach the QSD: one
theoretical and one numerical.

From a theoretical viewpoint, the following result proven in Le Bris et al. (2012)
gives a first estimate of τcorr.

Proposition 4. Let (Xt )t≥0 satisfies (5) with X0 ∈ S. Let us consider −λ2 <

−λ1 < 0 the first two eigenvalues of the operator L∗ on S with homogeneous
Dirichlet boundary conditions on ∂S (see Proposition 2 for the definition of L∗).
Then, there exists a constant C > 0 which depends on the law of X0, such that, for
all t ≥ C

λ2−λ1
,

sup
f, ‖f ‖L∞≤1

∣∣E(f (TS − t, XTS
)|TS ≥ t)−E

νS (f (TS,XTS
))
∣∣ ≤C exp(−(λ2 − λ1)t).

(17)
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In other words, the total variation norm between the law of (TS−t, XTS
) conditioned

to TS ≥ t (for any initial condition X0 ∈ S) and the law of (TS,XTS
) when X0 is

distributed according to the QSD νS decreases exponentially fast with rate λ2−λ1.
This means that τcorr should be chosen of the order 1/(λ2 − λ1). There are however
two difficulties with this result. First, this is not a very practical result since
computing the eigenvalues λ1 and λ2 is in general impossible. Second, the constant
C in the righthand side of (17) and in the inequality t ≥ C

λ2−λ1
depends in a

complicated way on the law of the initial condition X0 ∈ S. And one indeed expects
the convergence time to the QSD to strongly depend on the initial condition.

A more practical approach to estimate the convergence time τcorr to the QSD has
been proposed in Binder et al. (2015). The method uses two ingredients:

• The Fleming-Viot particle process (Ferrari and Maric 2007), which consists in N

replicas (X1
t , . . . , X

N
t )t≥0 which are evolving and interacting in such a way that

the empirical distribution 1
N

∑N
n=1 δXn

t
is close (in the large N limit) to the law

of the process Xt conditioned on t < TS .
• The Gelman-Rubin convergence diagnostic (Gelman and Rubin 1992) to esti-

mate the correlation time by the convergence time to a stationary state for the
Fleming-Viot particle process.

Roughly speaking, the Fleming-Viot particle process consists in the following:
each replica (Xi

t )t≥0 evolves according to the original dynamics (5) driven by
independent Brownian motions (starting from the same initial conditions X0), and,
each time one of the replicas leaves the domain S, another one taken at random is
duplicated. The Gelman-Rubin convergence diagnostic consists in comparing the
average of a given observable over replicas at a given time, with the average of
this observable over time and replicas: when the two averages are close (up to
a tolerance, and for a well-chosen list of observables), the process is considered
at stationarity. The interest of this approach is that it gives a practical way to
approximate τcorr which explicitly takes into account the initial condition of (Xt )t≥0
in S. Of course, one should be cautious when using this technique in practice, since
bad choices of the observables may lead to false convergence. We refer to Binder
et al. (2015) for examples of applications.

In the following, even though the correlation time τcorr depends in principle on
the state under consideration S and on the initial condition of the process in S, we
do not indicate explicitly this dependency and stick to the simple notation τcorr.

3 Eyring-Kramers Law and the Harmonic Transition
State Theory

In the previous section, we explained that if the process (Xt )t≥0 remains sufficiently
long in the state S, then the exit event can be exactly modeled using a kMC model,
with the definitions (16) for the rates associated with exits through local minima of



36 Mathematical Foundations of Accelerated Molecular Dynamics Methods 785

V on ∂S. As will become clear below, some accelerated algorithms will require in
addition formulas for the rates, which explicitly depend on the potential V and the
temperature β. This is used in particular in the temperature accelerated dynamics
(see Sect. 4.4) to infer the exit event at low temperature from exit events observed
at a higher temperature. Such formulas are given by the so-called Eyring-Kramers
laws, which are introduced in Sect. 3.1. A mathematical result showing that the exit
rates from a state S can indeed be approximated by the Eyring-Kramers laws will
then be presented in Sect. 3.2, for the overdamped Langevin dynamics (5).

3.1 Eyring-Kramers Laws

The Eyring-Kramers laws give formulas which are used in many contexts as
approximations of the rates modeling the exit event from the state S in the small
temperature regime (β →∞). Let us consider again the situation of Fig. 2, and let
us introduce the global minimum x1 of V in S and the local minima (zi)i=1,...,I of
V on ∂S. We assume in the following that they are ordered such that

V (z1) ≤ V (z2) ≤ . . . ≤ V (zI ).

Notice that we also assume in the following that all the critical points of V and
V |∂S are nondegenerate, which implies in particular that there are a finite number
of local minima of V |∂S . The Eyring-Kramers formula gives estimates for the exit
rates (kj )j=1,...,I through neighborhoods of the local minima (zj )j=1,...,I , namely:

∀j ∈ {1, . . . , I }, kj = νj exp
(−β[V (zj )− V (x1)]

)
(18)

where νj > 0 is a prefactor which depends on the dynamic under consideration and
on V around x1 and zj . Let us give a few examples. If S is taken as the basin of
attraction of x1 for the dynamics ẋ = −∇V (x) so that the points zj are order one
saddle points, the prefactor writes for the Langevin dynamics (3) (assuming M = Id
for simplicity):

νL
j =

1

4π

(√
γ 2 + 4|λ−(zj )| − γ

)
√

det
(∇2V

)
(x1)

√
| det

(∇2V
)
(zj )|

(19)

where ∇2V is the Hessian of V (which, we recall, is assumed to be nondegenerate)
and λ−(zj ) denotes the negative eigenvalue of ∇2V (zj ). This formula was derived
in Kramers (1940) in a one-dimensional situation. The equivalent formula for the
overdamped Langevin dynamics (5) is:

νOL
j = 1

2π
|λ−(zj )|

√
det

(∇2V
)
(x1)

√
| det

(∇2V
)
(zj )|

. (20)
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Notice that limγ→∞ γ νL
j = νOL

j , as expected from the rescaling in time used to go
from Langevin to overdamped Langevin (see Sect. 1). The formula (20) has again
been obtained in Kramers (1940), but also by many authors previously (see the
exhaustive review of the literature reported in Hänggi et al. 1990).

Using the Eyring-Kramers rates (18) in the kinetic Monte Carlo model introduced
in Sect. 2.1, one can then model the exit event from S as follows. The exit event from
S is modeled by the couple of random variables (T , Y ) where T is the first exit time
from S and Y = j if the process exits from S in a neighborhood of zj . This couple
has the following law:

1. T and Y are independent.
2. T is exponentially distributed with parameter

n∑

j=1

kj ∼
⎛

⎝
I0∑

j ′=1

νj ′

⎞

⎠ exp(−β[V (z1)− V (x1)]) (21)

3. Y takes the value j ∈ {1, . . . n} with probability

kj∑n
j ′=1 kj ′

∼ νj
∑I0

j ′=1 νj ′
exp

(−β[V (zj )− V (z1)]
)
. (22)

where the equivalents ∼ are valid in the small temperature regime β → ∞ and
where I0 ∈ {1, . . . , I } denotes the number of global minima of V on ∂S:

V (z1) = . . . = V (zI0) < V (zI0+1) ≤ . . . ≤ V (zI ).

The modeling of the exit event using a kMC model parameterized by the Eyring-
Kramers laws is sometimes called the harmonic transition state theory in the
literature. We refer, for example, to Voter (2007) for an introduction to this theory
and relevant references.

As already explained in Sect. 2.1, using such a model rather than the Langevin or
overdamped Langevin dynamics to model the exit event from S is useful either to
simulate the evolution of the dynamics over very long time using the kMC model or
to accelerate the sampling of metastable trajectories of the Langevin or overdamped
Langevin dynamics, as will be explained in Sect. 4.

This raises the following theoretical question: are the Eyring-Kramers rates (18)
a valid approximation to model the exit event from S using a kMC model, for the
Langevin or overdamped Langevin dynamics? To be more precise, let us consider
the overdamped Langevin dynamics (5). We have already seen in Sect. 2.3 that if the
stochastic process (Xt )t≥0 remains for a sufficiently long time in S, then it is indeed
valid to use a kMC model to simulate the exit event from S, with associated rates
defined using the eigenvalue-eigenfunction pair (λ1, u1) (see Eq. (16)). The question
is then: can these rates defined by (16) be approximated using the Eyring-Kramers
laws (18)?
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3.2 Approximating the Exit Rates by the Eyring-Kramers
Laws: AMathematical Framework

Let us consider the dynamics (5) with an initial condition distributed according to
the QSD νS in a domain S. We assume the following:

• The domain S is an open smooth bounded domain in R
d .

• The function V : S → R is a Morse function with a single critical point x1
(A Morse function is a function such that, at any critical point, the Hessian is
nonsingular. Notice that this is in particular required to define the prefactors in
the Eyring-Kramers laws.). Moreover, x1 ∈ S and V (x1) = minS V .

• The normal derivative ∂nV is strictly positive on ∂S, and V |∂S is a Morse function
with local minima reached at z1, . . . , zI with

V (z1) = . . . = V (zI0) < V (zI0+1) ≤ . . . ≤ V (zI ).

• The height of the barrier is large compared to the saddle point height discrepan-
cies: V (z1)− V (x1) > V (zI )− V (z1).

• For all i ∈ {1, . . . I }, consider Bzi ⊂ ∂S the basin of attraction for the dynamics
in the boundary ∂S: ẋ = −∇T V (x) (where ∇T V denotes the tangential gradient
of V along the boundary ∂S, see Eq. (15)). We assume that

inf
z∈Bc

zi

da(zi, z) > max(V (zI )− V (zi), V (zi)− V (z1)) (23)

where Bc
zi
= ∂S \ Bzi .

Here, da is the Agmon distance:

da(x, y) = inf
γ∈Γx,y

ż 1

0
g(γ (t))|γ ′(t)| dt

where g =
{ |∇V | in S

|∇T V | in ∂S
, and the infimum is taken over the set Γx,y of all

piecewise C1 paths γ : [0, 1] → S such that γ (0) = x and γ (1) = y. The Agmon
distance is useful in order to measure the decay of eigenfunctions away from critical
points. These are the so-called semiclassical Agmon estimates (see Simon 1984
and Helffer and Sjöstrand 1984). Under the assumptions stated above, the following
result is proven in Di Gesù et al. (2017).

Theorem 1. Under the assumptions stated above, in the limit β → ∞, the exit
rate is:

λ1 =
√

β det
(∇2V

)
(x1)

2π

I0∑

k=1

∂nV (zk)√
det

(∇2V|∂S
)
(zk)

e−β(V (z1)−V (x1))(1+O(β−1)).

(24)
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Moreover, for any open set Σi containing zi such that Σi ⊂ Bzi ,

P
νS (XTS

∈ Σi) =
∂nV (zi )√

det(∇2V |∂S)(zi )
∑I0

k=1
∂nV (zk)√

det(∇2V |∂S)(zk)
e−β(V (zi )−V (z1))(1+O(β−1)). (25)

Formula (24) (resp. (25)) should be compared with (21) (resp. (22)) introduced
above. We refer to Di Gesù et al. (2017) for a proof and for other related results
(see also Helffer and Nier (2006) for a proof of (24)). The proof uses techniques
developed in particular in the previous works: Helffer et al. (2004), Helffer and
Nier (2006), Le Peutrec (2010), and Lelièvre and Nier (2015). The analysis requires
to combine various tools from semiclassical analysis to address new questions:
sharp estimates on quasimodes far from the critical points for Witten Laplacians
on manifolds with boundary, a precise analysis of the normal derivative on the
boundary of the first eigenfunction of Witten Laplacians, and fine properties of the
Agmon distance on manifolds with boundary.

Using the two results of Theorem 1 and the formula (16) for the definition of the
exit rates, one obtains that the exit rate associated with an exit in the neighborhood
Σi of zi is

ki = λ1P
νS (XTS

∈ Σi)

= ν̃OL
i e−β(V (zi )−V (x1))(1+O(β−1)) (26)

where the prefactors ν̃OL
i are given by

ν̃OL
i =

√
β

2π
∂nV (zi)

√
det

(∇2V
)
(x1)

√
det

(∇2V|∂S
)
(zi)

. (27)

This should be compared to the formulas (18) and (20) of the previous section (see
Remark 2 below for a discussion on the precise values of the prefactors). This gives
a rigorous framework to use a kMC model parameterized using Eyring-Kramers
laws to model the exit event from S, as introduced in the previous section. Let us
emphasize that Theorem 1 provides estimates on the probability P

νS (XTS
∈ Σi)

and not only on the logarithm of these probabilities (as obtained, e.g., using large
deviation results, see Eq. (28) below). Notice that Theorem 1 also gives error
estimates (actually, it can be shown that the terms O(β−1) in (24), (25), and (26)
admit full expansions in positive powers of β−1).

Let us finish this section with a few important remarks.

Remark 2 (From generalized saddle points to real saddle points). As stated in the
assumptions, Theorem 1 is proven under the assumption that ∂nV > 0 on ∂S:
the local minima z1, . . . , zI of V on ∂S are therefore not saddle points of V but
so-called generalized saddle points (see Helffer and Nier 2006 and Le Peutrec 2010).
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In a future work, we intend to extend these results to the case where the points
(zi)1≤i≤I are saddle points of V (This is indeed natural if S is taken as the basin of
attraction of x1 for the gradient dynamics ẋ = −∇V (x), as in Sect. 3.1.), in which
case we expect to prove the same result (26) for the exit rates, with the prefactor

ν̃OL
i being

1

π
|λ−(zj )|

√
det

(∇2V
)
(x1)

√
| det

(∇2V
)
(zj )|

(this formula can be obtained using formal

expansions on the exit time and the Laplace’s method). Notice that the latter formula
differs from (20) by a multiplicative factor 1/2. This is due to the fact that λ1 is the
exit rate from S and not the transition rate to one of the neighboring state (see,
e.g., the remark on page 408 in Bovier et al. (2004) on this multiplicative factor
1/2 and the results on asymptotic exit times in Maier and Stein 1993). One way to
understand this multiplicative factor 1/2 is that once on the saddle point, in the limit
β →∞, the process has a probability one half to go back to S and a probability one
half to effectively leave S. This multiplicative factor does not have any influence
on the law of the next visited state which only involves a ratio of the rates ki (see
Eq. (8)).

Remark 3 (On the importance of prefactors). The importance of obtaining a result
including the prefactors in the rates is illustrated by the following result, which is
also proven in Di Gesù et al. (2017). Consider a simple situation with only two local
minima z1 and z2 on the boundary ∂S, with V (z1) < V (z2). Compare the two exit
probabilities:

• The probability to leave through Σ2 such that Σ2 ⊂ Bz2 and z2 ∈ Σ2;
• The probability to leave through Σ such that Σ ⊂ Bz1 and infΣ V = V (z2).

By classical results from the large deviation theory (see, e.g., (28) below), the prob-
ability to exit through both Σ and Σ2 scales like a prefactor times e−β(V (z2)−V (z1)):
the difference can only be read from the prefactors. Actually, it can be proven that,
in the limit β →∞,

P
νS (XTS

∈ Σ)

PνS (XTS
∈ Σ2)

= O(β−1/2).

The probability to leave through Σ2 (namely, through the generalized saddle
point z2) is thus much larger than through Σ , even though the two regions are at
the same potential height. This result explains why the local minima of V on the
boundary (namely, in our setting the generalized saddle points) play an important
role when studying the exit event.

Remark 4 (On the geometric assumption (23)). Among the assumptions required
to prove Theorem 1, the geometric assumption (23) involving the Agmon distances
is probably the most unexpected one. Such an assumption indeed never appeared
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before in any mathematical works on Eyring-Kramers laws or on the analysis of the
exit event. In Di Gesù et al. (2017), we investigated numerically this assumption,
and we observed in some simple geometric settings that if it is not satisfied, the
results of Theorem 1 indeed do not hold (more precisely, by computing the exit
probabilities (25), we observed that the prefactors are not those predicted by the
Eyring-Kramers formulas).

Remark 5 (From overdamped Langevin to Langevin). The results of Theorem 1
have been obtained for the overdamped Langevin dynamics (5), and it is then natural
to ask whether similar results could be obtained for the Langevin dynamics (3).
Indeed such estimates on the rates are actually assumed to be correct for Langevin
dynamics in many models and numerical methods using harmonic transition state
theory and in particular in the temperature accelerated dynamics algorithm (see
Sect. 4.4). We already mentioned in Remark 1 that the existence of the QSD
for Langevin requires some additional investigations compared to overdamped
Langevin. This is all the more true for the analysis of the exit event starting from the
QSD in the small temperature regime. There is hope to obtain similar properties
by combining results on the operator associated with Langevin dynamics with
absorbing boundary conditions (Nier 2018) and works on the semiclassical analysis
of Langevin dynamics (Hérau et al. 2011).

Remark 6 (On the mathematical results on the Eyring-Kramers law). Given the
importance of the Eyring-Kramers laws in the physics literature, many mathematical
approaches have been proposed in order to justify these formulas. Some authors
adopt a global approach: they look at the spectrum of the infinitesimal generator
of the overdamped Langevin dynamics in the small temperature regime β → ∞
(see, e.g., the work by Helffer et al. (2004) based on semiclassical analysis results
for Witten Laplacian and the articles by Bovier et al. (2004, 2005) and Eckhoff
(2005) where a potential theoretic approach is adopted). These global approaches
give the cascade of relevant timescales to reach from a local minimum any other
local minimum which is lower in energy. However, they do not give the law of the
exit event from a metastable state.

In the context of this chapter, we are more interested in a local approach: we
consider the exit event from a state S ⊂ R

d , and we would like to relate continuous
state-space Markov dynamics such as (5) and (3) and kinetic Monte Carlo model to
describe this exit event. In the mathematical literature, the most famous approach to
study the exit event is the large deviation theory (Freidlin and Wentzell 1984). In the
small temperature regime, large deviation results provide the exponential rates (18),
but without the prefactors and without precise error bounds. For the dynamics (5), a
typical result on the exit point distribution is the following (see Freidlin and Wentzell
1984, Theorem 5.1): for all S′ compactly embedded in S, for any γ > 0, for any
δ > 0, there exists δ0 ∈ (0, δ] and β0 > 0 such that for all β > β0, for all x ∈ S′
such that V (x) < min∂S V , and for all y ∈ ∂S,

e−β(V (y)−V (z1)+γ ) ≤ P
x(XTS

∈ Vδ0(y)) ≤ e−β(V (y)−V (z1)−γ ) (28)
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where Vδ0(y) is a δ0-neighborhood of y in ∂S. The strength of large deviation theory
is that it is very general: it applies to any dynamics (reversible or nonreversible)
and in a very general geometric setting, even though it may be difficult in such
general cases to make explicit the rate functional and thus to determine the exit
probabilities.

Theorem 1 thus differs from all these previous results in the following ways: it
gives precise asymptotic estimates of the distribution of XTS

; the approach is local,
justifies the Eyring-Kramers formula (18) with the prefactors, and provides sharp
error estimates.

4 Accelerated Dynamics Algorithms

The aim of this section is to explain how the mathematical analysis of metastability
and metastable states presented in Sects. 2 and 3 can be used to build efficient
algorithms to sample metastable dynamics such as (3) or (5). We present for the sake
of simplicity the algorithms in the setting of the overdamped Langevin dynamics (5).
The algorithms can be generalized to the Langevin dynamics (3) and actually to
many Markov dynamics, under some assumptions that will be discussed below. We
will present four algorithms together with their mathematical foundations: parallel
replica (Sect. 4.1), parallel trajectory splicing (Sect. 4.2), hyperdynamics (Sect. 4.3),
and temperature accelerated dynamics (Sect. 4.4). Finally, we will discuss in
Sect. 4.5 how to define in practice the metastable states.

4.1 Parallel Replica

The idea of the parallel replica algorithm is to evolve a reference replica follow-
ing (5) and, if it remains trapped for a long time in a state, to simulate in parallel the
exit event from this state. The original parallel replica algorithm (see Voter 1998)
consists in iterating three steps:

• The decorrelation step: As already explained in Sect. 2.4, in this step, a reference
replica evolves according to the original dynamics (5), until it remains trapped
for a time τcorr in one of the states. During this step, no error is made, since
the reference replica evolves following the original dynamics (and there is of
course no computational gain compared to a naive direct numerical simulation).
Once the reference replica has been trapped in one of the states (that we denote
generically by S in the following two steps) for a time τcorr, the aim is to generate
very efficiently the exit event. This is done in two steps.

• The dephasing step: In this preparation step, (N−1) configurations are generated
within S (in addition to the one obtained from the reference replica) as follows.
Starting from the position of the reference replica at the end of the decorrelation
step, some trajectories are simulated in parallel for a time τcorr. For each
trajectory, if it remains within S over the time interval of length τcorr, then its



792 T. Lelièvre

end point is stored. Otherwise, the trajectory is discarded, and a new attempt to
get a trajectory remaining in S for a time τcorr is made. This step is pure overhead.
The objective is only to get N configurations in S which will be used as initial
conditions in the parallel step.

• The parallel step: In the parallel step, N replicas are evolved independently
and in parallel, starting from the initial conditions generated in the dephasing
step, following the original dynamics (5) (with independent driving Brownian
motions). This step ends as soon as one of the replica leaves S. Then, the
simulation clock is updated by setting the residence time in the state S to N

(the number of replicas) times the exit time of the first replica which left S. This
replica now becomes the reference replica, and one goes back to the decorrelation
step above.

The computational gain of this algorithm is in the parallel step, which (as explained
below) simulates the exit event in a wall clock time N times smaller in average
than the wall clock time needed to simulate the exit of the reference walker. This
of course requires a parallel architecture able to handle N jobs in parallel. (For a
discussion on the parallel efficiency, communication and synchronization, we refer
to the papers Voter 1998; Perez et al. 2015b; Le Bris et al. 2012; Binder et al. 2015.)
This algorithm can be seen as a way to parallelize in time the simulation of the exit
event, which is not trivial because of the sequential nature of time.

In view of the results presented in Sect. 2, the parallel replica is indeed a
consistent algorithm (it generates in a statistically correct way the exit event from
metastable states) for the following reasons. First, in view of the first property (10)
of the QSD, the decorrelation step is simply a way to decide whether or not
the reference replica remains sufficiently long in one of the states so that it can
be considered as being distributed according to the QSD (see also Sect. 2.4 for
an analysis of the error introduced by choosing τcorr too small (see in particular
Proposition 4) and a discussion on how to evaluate τcorr on the fly). Second, by the
same arguments, the dephasing step is simply a rejection algorithm to generate many
configurations in S independently and identically distributed with law the QSD νS
in S. Finally, the parallel step generates an exit event which is exactly the one that
would have been obtained considering only one replica. Indeed, up to the error
quantified in Proposition 4, all the replica are i.i.d. with initial condition, the QSD
νS . Therefore, according to the third property of the QSD stated in Proposition 3 (see
item 1), their exit times (T n

S )n∈{1,...N} are i.i.d. with law an exponential distribution
(T n

S being the exit time of the n-th replica) so that

N min
n∈{1,...,N}(T

n
S )

L= T 1
S . (29)

This explains why the exit time of the first replica which leaves S needs to be
multiplied by the number of replicas N . This also shows why the parallel step gives
a computational gain in terms of wall clock: the time required to simulate the exit
event is divided by N compared to a direct numerical simulation. Moreover, since
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starting from the QSD, the exit time and the exit point are independent (see item 2
in Proposition 3), one also has

X
N0

T
N0
S

L= X1
T 1
S

,

where (Xn
t )t≥0 is the n-th replica and N0 = arg minn∈{1,...,N}(T n

S ) is the index
of the first replica which exits S. The exit point of the first replica which exits S

is statistically the same as the exit point of the reference walker. Finally, by the
independence property of exit time and exit point, one can actually combine the two
former results in a single equality in law on couples of random variables, which
shows that the parallel step is statistically exact:

(
N min

n∈{1,...,N}(T
n
S ),X

N0

T
N0
S

)
L= (T 1

S ,X1
T 1
S

).

We presented the results in the context of the overdamped Langevin dynamics (5)
for simplicity. The mathematical analysis actually shows that the parallel replica
is a very versatile algorithm. In particular, it can be applied to both energetic
and entropic barriers, and it does not assume a small temperature regime (in
contrast with the analysis, we will present below for hyperdynamics and temperature
accelerated dynamics). In addition, it can also be used for nonequilibrium system
(driven by nonconservative forces) and for any Markovian dynamics as soon as a
QSD exists. We refer, for example, to Wang et al. (2018) for recent applications to
continuous-time Markov chains.

The only errors introduced in the algorithm are related to the rate of convergence
to the QSD of the process conditioned to stay in the state. The algorithm is efficient
if the convergence time to the QSD is small compared to the exit time (in other
words, if the states are metastable). Equation (17) gives a way to quantify the error
introduced by the whole algorithm. In the limit τcorr →∞, the algorithm generates
exactly the correct exit event. This implies that the resulting dynamics is exact
in terms of the laws on trajectories (and not only of the time marginals – master
equation – or the stationary state, for example). It gives the correct transition times
and trajectories to go from one state to another, for example. The price to pay is that
the details of the dynamics within the states are lost.

Remark 7 (Parallel replica for discrete-time Markov process). As a remark, let us
notice that in practice, discrete-time processes are used (since the Langevin or
overdamped Langevin dynamics are discretized in time). Then, the exit times are
not exponentially but geometrically distributed. It is however possible to generalize
the formula (29) to this setting by using the following fact: if (σn)n∈{1,...N} are i.i.d.
with geometric law, then

N (min(σ1, . . . , σN)− 1)+min (n ∈ {1, . . . , N}, σn = min(σ1, . . . , σN))
L= σ1.

We refer to Aristoff et al. (2014) for more details.
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Remark 8 (Generalized parallel replica dynamics). In view of the analysis above,
the crucial parameter of the parallel replica algorithm is the correlation time τcorr.
As explained in Sect. 2.4, Binder et al. (2015) propose an approach to estimate τcorr
on the fly by combining the Fleming-Viot particle process to simulate the law
of the process Xt conditioned on t < TS and the Gelman-Rubin convergence
diagnostic to estimate the convergence time to a stationary state for the Fleming-
Viot particle process, which thus gives an estimate of the correlation time. Using
this idea, a generalized parallel replica algorithm is introduced in Binder et al.
(2015), as follows. Each time the reference replica enters a new state, a Fleming-Viot
particle process is launched using (N−1) replicas simulated in parallel (with initial
condition the configuration of the reference replica). Then the decorrelation step
consists in the following: if the reference replica leaves S before the Fleming-Viot
particle process reaches stationarity, then a new decorrelation step starts (and the
replicas generated by the Fleming-Viot particle process are discarded); if otherwise
the Fleming-Viot particle process reaches stationarity before the reference replica
leaves S, then one proceeds to the parallel step. Notice indeed that the final positions
of the replicas simulated by the Fleming-Viot particle process can be used as initial
conditions for the processes in the parallel step, since they are (approximately)
distributed according to the QSD. This procedure thus avoids the choice of a
correlation time τcorr a priori: it is in some sense estimated on the fly, depending
on the state under consideration, and on the initial condition within this state. For
more details, discussions on the correlations included by the Fleming-Viot particle
process between the replicas and numerical experiments (in particular in cases with
purely entropic barriers), we refer to Binder et al. (2015).

4.2 Parallel Trajectory Splicing

Parallel trajectory splicing (abbreviated as ParSplice) is a variant of the parallel
replica algorithm which has been introduced in Perez et al. (2015a). The idea of the
algorithm is to generate in parallel many trajectory segments, which spent at least
a time τcorr in one state before the beginning of the segment, and ends in a state
where it again spends at least a time τcorr before the end of the segment. A trajectory
segment ending in a state S is then appended to a trajectory segment starting in the
same state S. The analysis of this algorithm is very similar to the one described
above for parallel replica: if τcorr is sufficiently large, the trajectory segments start
under the QSD in a state and end in a state being again distributed according
to the QSD. Therefore, the exit event from the ending state can be simulated by
considering any segment which starts under the QSD within the same state. This
justifies the fact that these trajectory segments can be appended to form a long
molecular dynamics trajectory.

The main difficulty when implementing this technique is to manage the con-
current generation of the segments from many molecular dynamics instances. A
database of segments is populated as the simulation proceeds, and this database is
used at the same time to generate the molecular dynamics trajectory. This should
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be done carefully in order to introduce no bias. For example, segments generated
from a given state should not be used in increasing order of their generation time,
but using a first-in-first-out queue (otherwise short segments would be favored). In
addition, in order to schedule the production of new segments to be added to the
database, one uses some prediction of the future trajectory, based on the current
knowledge of the visited states. For more details, we refer to Perez et al. (2015a).

4.3 Hyperdynamics

As in parallel replica, let us assume that a reference replica (Xt )t≥0 following the
overdamped Langevin dynamics (5) remains trapped for a time τcorr is a metastable
state S. If τcorr is sufficiently large, one can assume that the process is distributed
according to the QSD. The principle of the hyperdynamics algorithm is then to raise
the potential inside the state in order to accelerate the exit from S. The algorithm thus
requires a biasing potential δV : S → R, which satisfies appropriate assumptions
detailed below. The algorithm then proceeds as follows:

• Equilibrate the dynamics on the biased potential V + δV , namely, run the
dynamics (5) on the process (XδV

t )t≥0 over the biased potential conditionally
to stay in the well, up to the time the random variable XδV

t has distribution
close to the QSD νδV

S associated with the biased potential. This first step is a
preparation step, which is pure overhead. The end point XδV

t will be used as the
initial condition for the next step.

• Run the dynamics (5) over the biased potential V + δV up to the first exit time
T δV
S from the state S. The simulation clock is updated by adding the effective

exit time B × T δV
S where B is the so-called boost factor defined by:

B = 1

T δV
S

ż T δV
S

0
exp

(
β δV (XδV

t )
)
dt. (30)

The exit point is then used as the starting point for a new decorrelation step.

Roughly speaking, the assumptions required on δV in the original paper (Voter
1997) are twofold:

• δV is sufficiently small so that the exit event from the state S can be modeled by
a kinetic Monte Carlo models parameterized by the Eyring-Kramers laws.

• δV is zero on a neighborhood of the boundary ∂S.

The derivation of the method relies on explicit formulas for the laws of the exit time
and exit point, using the harmonic transition state theory, as explained in Sect. 3.

The algorithm we present here is actually slightly different from the way it is
introduced in the original paper (Voter 1997). Indeed, in the original version, the
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local equilibration steps (decorrelation step and equilibration step on the biased
potential) are omitted: it is assumed that the states are sufficiently metastable (for
both the original potential and the biased potential) so that these local equilibrations
are immediate. It would be interesting to check if the modifications we propose here
improve the accuracy of the method.

Let us now discuss the mathematical foundations of this technique and, in
particular, a way to understand the formula (30) for the boost factor. We actually
need to compare two exit events. The first one is the exit event for the original
process Xt following the dynamics (5), starting from the QSD νS associated with
the state S and the dynamics with potential V . The second one is the exit event for
the process XδV

t following the dynamics (5) on the biased potential V +δV , starting
from the QSD νδV

S associated with the state S and the dynamics with potential
V + δV . Referring to Sect. 3, one way to justify the algorithm is to use the fact that,
both on the original potential V and the biased potential V +δV , a kMC model with
transition rates defined by (18) with prefactors such as (19), (20), or (27) can be used
to model the exit event (see in particular Theorem 1). Indeed, if this is the case, by
using the biasing potential V+δV , one easily checks that the ratio of exit rates kj /ki
(which gives the relative probability to exit through a neighborhood of zj compared
to the probability to exit through a neighborhood of zi) does not depend on δV

since, by assumption, δV is zero on ∂S: this gives the consistency of the algorithm
in terms of the distribution of the first exit point. Concerning the exit time, we know
that it is exponentially distributed with parameter

∑I
i=1 ki , with explicit dependency

on V (or V + δV for the biased potential) in the small temperature regime thanks
again to the formulas (18) (and (19), (20), or (27)). For example, in the framework
of Theorem 1, the parameter of the exponential law is λ1, where the dependency
of λ1 on the potential V is explicitly given by formula (24). In particular, one
easily checks that (indicating the dependency of λ1 on the underlying potential in
parenthesis)

λ1(V + δV )

λ1(V )
=
√

det
(∇2(V + δV )

)
(x1)

det
(∇2(V )

)
(x1)

eβδV (x1)(1+O(β−1))

(we again used the fact that δV is assumed to be zero on ∂S). The righthand side

is equal, in the regime β →∞, to
ş

S
exp(−βV )

ş

S
exp(−β(V+δV ))

(1 +O(β−1)), which is indeed

well approximated by the boost factor B (in the limit of a sufficiently large residence
time T δV

S , using the ergodicity of the dynamics). This shows that Theorem 1 applied
to V and to V + δV justifies the use of hyperdynamics.

Let us mention that in Theorem 1, the relative error on the law of the exit
event scales like O(β−1). It is actually possible to show that the relative error for
hyperdynamics scales like O(exp(−cβ)) for some positive c, and to prove this result
under less stringent geometric conditions than Theorem 1, see Lelièvre and Nier
(2015). Again, generalizing these results to the Langevin dynamics, (3) is an open
problem that we are currently investigating (see Remark 5).
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Notice that, contrary to the parallel replica method, the hyperdynamics is limited
to energetic barriers and a small temperature regime, at least for our mathematical
analysis. On the other hand, for very high energetic barriers, hyperdynamics is in
principle much more efficient: the parallel replica method only divides the exit time
by N (the number of replicas), while for deep wells, the boost factor B is very large.

Remark 9 (On the biasing potential). A practical aspect we did not discuss so far is
the effective construction of the biasing potential δV . In the original article (Voter
1997), A.F. Voter proposes a technique based on the Hessian ∇2V . Alternatively,
a well-known method in the context of materials science is the bond-boost method
introduced by Miron and Fichthorn (2003). More recently, some authors proposed
to build the biasing potential on the fly, by using adaptive biasing techniques (see,
e.g., Tiwary and Parrinello (2013), Bal and Neyts (2015), and Dickson (2017)).
Let us also mention the recent variant called local hyperdynamics (Kim et al.
2013) which does not enter the previous framework since the bias is actually a
nonconservative biasing force (which does not derive from a biasing potential).

4.4 Temperature Accelerated Dynamics

Let us finally introduce the temperature accelerated dynamics (TAD) (see Sørensen
and Voter 2000). Let us assume again that a reference replica (Xt )t≥0 following the
overdamped Langevin dynamics (5) remains trapped for a time τcorr in a metastable
state S, so that one can assume that the process is distributed according to the QSD.
The principle of TAD is to increase the temperature (namely, increase β−1 in (5)) in
order to accelerate the exit from S. The algorithm consists in:

• Simulating many exit events from S at high temperature, starting from the QSD
at high temperature,

• Extrapolating the high-temperature exit events to low-temperature exit events
using the Eyring-Kramers law (18).

As for the hyperdynamics algorithm, in the original paper by Sørensen and Voter
(2000), no equilibration step is used: it is assumed that the states are sufficiently
metastable at both high and low temperatures so that the convergence to the QSD is
immediate. In particular, in the simulations at high temperature, the replica is simply
bounced back into the state S when it leaves S (and not resampled from the QSD
in S). Let us now describe more precisely how the extrapolation procedure is made.

Let us consider the exit event from S, at a given temperature. Using the results
of Sect. 2, the exit event can be modeled using a kMC model with transition rates
(ki)i=1,...,I through the local minima (zi)i=1,...,I of V on ∂S. More precisely, let
us consider the process evolving in S which is resampled according to the QSD
within S after each exit event. For i ∈ {1, . . . , I }, let us denote by τi the first
exit time through a neighborhood of zi for this process. One readily checks that
τi is exponentially distributed with parameter ki and that the τi’s are independent.
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Therefore, using the notation of Sect. 2.1, the exit time TS and exit local minimum
YS (YS = i if the exit point is in Bzi ) satisfies:

(TS, YS)
L= (min(τ1, . . . , τI ), arg min(τ1, . . . , τI )).

Now, using the results of Sect. 3 (see in particular Theorem 1), namely, using
the Eyring-Kramers law to parameterize the kMC model, one can compute, in the

small temperature regime, the ratios
khii
kloi

, where khii (resp. kloi ) denotes the rate at

high-temperature βhi (resp. low-temperature βlo). For example, if one considers
real saddle points on the boundary, with the prefactors (19) (for Langevin) or (20)
(for overdamped Langevin), one obtains:

khii

kloi

� exp
(
−(βhi − βlo)(V (zi)− V (x1))

)
. (31)

Likewise, in the framework of Theorem 1 (namely, for generalized saddle points),
one obtains:

khii

kloi

�
√

βhi

βlo
exp

(
−(βhi − βlo)(V (zi)− V (x1))

)
. (32)

Using these formulas, one can infer the exit events at inverse temperature βlo from
the exit events observed at inverse temperature βhi , since:

(τ lo
1 , . . . , τ lo

I )
L= (Θ1τhi

1 , . . . , ΘI τhi
I ) (33)

where

Θi = khii

kloi

is a multiplicative factor constructed from the ratio of the rates. In the equality in
law in (33), the random variables τ

hi/ lo
i are, as described above, exponential random

variables with parameter khi/loi . To have analytical formula for the correction factors
Θi and make the algorithm practical, the Eyring-Kramers law is assumed to be
exact, and one uses in practice Θi = exp

(−(βhi − βlo)(V (xi)− V (x0))
)
, see (31)

(or Θi = √
βhi/βlo exp

(−(βhi − βlo)(V (xi)− V (x0))
)
, see (32)).

The TAD algorithm thus consists in running the dynamics at high temper-
ature, observing the exit events through the saddle points on the boundary of
the state, and updating the exit time and exit region that would have been
observed at low temperature. More precisely, if, at a given time, exits through
the saddle points {s1, . . . , sk} ⊂ {1, . . . , I } have been observed, one computes
min(Θs1τhi

s1
, . . . , Θsk τhi

sk
) and arg min(Θs1τhi

s1
, . . . , Θsk τhi

sk
) to get the correspond-

ing exit time and exit region at low temperature.
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The interest of TAD compared to a brute force saddle point search is that it is not
required to observe exits through all the saddle points in order to obtain a statistically
correct exit event. Indeed, a stopping criterion is introduced to stop the calculations
at high temperature when the extrapolation procedure will not modify anymore
the low-temperature exit event (namely, will not modify min(Θs1τhi

s1
, . . . , Θsk τhi

sk
),

{s1, . . . , sk} ⊂ {1, . . . , I } being the saddle points discovered up to the time the
stopping criterion is fulfilled). This stopping criterion requires to provide some a
priori knowledge, typically a lower bound on the barriers V (zj ) − V (x1) (j ∈
{1, . . . , I }) or a lower bound on the prefactors νj in (18) (see, e.g., Aristoff and
Lelièvre (2014) for a discussion). In some sense, TAD can be seen as a clever saddle
point search, with a rigorous way to stop the searching procedure.

From the above discussion, the mathematical analysis of the TAD algorithm
thus requires to prove that the exit event from S can be modeled using a kMC
model parameterized by the Eyring-Kramers formulas. This is exactly the content
of Theorem 1 for the overdamped Langevin dynamics (5) with generalized saddle
points on ∂S. See also Aristoff and Lelièvre (2014), for the case of a one-
dimensional potential. The generalization of Theorem 1 to real saddle points on ∂S

and to the Langevin dynamics (3) is a work under progress (see Remarks 2 and 5).
Notice that, compared to the hyperdynamics, TAD is really based on the Eyring-

Kramers formulas, with relative error terms which scales like 1/β, while for
hyperdynamics, one can prove that the error is exponentially small in β. On the
other hand, the interest of TAD compared to the hyperdynamics is that it does not
require a biasing potential, which may be complicated to build in some situation.

4.5 How to Choose theMetastable States?

Let us finally make a few comments on how the metastable states can be defined
in practice. As explained above, the overall efficiency of the accelerated dynamics
methods depends on the choice of these metastable states: the algorithms indeed
provide an acceleration after assuming that the QSD has been reached in a
metastable state. The efficiency of the algorithms thus depends on the choice of the
states, which should be metastable regions, so that the stochastic process generically
reaches the local equilibrium (the QSD) before leaving the state. How to define the
metastable states is a difficult question, very much related to the definition of good
reaction coordinates (or good reduced degrees of freedom) for molecular dynamics.
Notice that choosing good metastable states also implies being able to estimate the
correlation time τcorr within each state either from some a priori knowledge or some
on the fly estimates, as already explained in Sect. 2.4.

In the original papers by Voter (1997, 1998), Sørensen and Voter (2000),
and Perez et al. (2015a), the states are defined as the basins of attraction of the
gradient dynamics:

dq

dt
= −∇V (q). (34)
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For almost every initial conditions, this dynamics converges to a local minimum
of V : there are thus as many states as local minima of V , and the states define (up
to a negligible set of points) a partition of the state-space R

d . This means that in
practice, a steepest descent is performed at regular time intervals to identify the
state in which the system is. One big advantage of this definition is that the states
do not need to be defined a priori: they can be numbered as they are discovered by
the dynamics, when new local minima of V are identified. Formally, in such a case,
one can introduce a map

S : Rd → N

which to a given position associates a label of a basin of attraction of (34).
Accelerated dynamics then aim at efficiently simulating the so-called state-to-state
dynamics (S(qt ))t≥0 or (S(Xt ))t≥0.

For a system with more diffusive or entropic barriers (this is typically the case
for biological applications), one could think of defining the states using relevant
reaction coordinates (see, e.g., Kum et al. (2004) where the states are defined in
terms of the molecular topology of the molecule of interest). This requires to identify
the states before starting the simulation.

An important point to make is that since the numerical methods are local in
nature, one does not need a partition of the state space to apply these techniques.
Two situations can then be considered. One can first define metastable states (Si)i≥1
which are disjoint open subsets of Rd (they are called milestones by Faradjian and
Elber 2004, target sets, or core sets by Schütte et al. 2011). Each time the process
enters one of these states, one checks if the QSD is reached before leaving (this is
the decorrelation step, see Sect. 2.4), and then parallel replica, hyperdynamics, or
temperature accelerated dynamics can be used to efficiently sample the exit event.
Parallel trajectory splicing can also be applied in such a situation. These techniques
thus do not require a partition. On the other hand, since one has to simulate the
original dynamics outside ∪i≥1Si , if the time spent outside ∪i≥1Si is large, the
algorithms are less efficient.

Another possibility is to introduce again an ensemble (Ci)i≥1 of disjoint open
subsets of Rd and to define the state Si as follows:

Si = R
d \ ∪j �=iCj .

(The state is then unbounded, which raises some mathematical question about the
existence and uniqueness of the QSD, which could be addressed under appropriate
assumptions on the growth of the potential V at infinity.) The dynamics then goes as
follows: when the process enters one of the core set Ci , one considers the exit event
from the associated state Si , namely, the next visited core set which is different
from Ci . In terms of kMC dynamics, this corresponds to projecting the dynamics
(Xt )t≥0 (or (qt )t≥0) onto a discrete state-space dynamics obtained by considering
the last visited core set as in Vanden-Eijnden et al. (2008) and Schütte et al. (2011).
The interest of such an approach is that the time to reach the QSD starting from
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∂Ci in Si should be quite small if the Ci’s are well chosen. In such a setting, the
process thus should decorrelate very quickly before exiting, and an approximation
using a global kMC algorithm becomes relevant. However, one drawback is that the
description of the underlying continuous state-space dynamics may become poor,
especially for very small core sets (since the information of the last visited core set
may not be very informative about the actual state of the system).

In summary, one should keep in mind that there is possibly room for improve-
ments in the way the metastable states are defined, compared to the original
papers where a partition of the state space in basins of attraction of the gradient
dynamics (34) is considered (see also Perez et al. (2015b) for a recent discussion).
This is particularly relevant since there are now techniques to approximate the
convergence time to the QSD which can be applied for sets which are not basins
of attractions of (34) (see Binder et al. (2015) and Sect. 2.4).

5 Conclusion and Perspectives

We presented a mathematical analysis of the accelerated dynamics proposed by
A.F. Voter and coworkers in order to efficiently generate exit events from metastable
states. The analysis is based on the notion of quasi-stationary distribution (QSD),
which gives a natural framework to prove that the exit event from a state S for the
Langevin or overdamped Langevin dynamics can be modeled by a kinetic Monte
Carlo (kMC) model, if the QSD is reached before exiting from S. Moreover, under
some assumptions, we reported on recent mathematical results which show that the
Eyring-Kramers formula can be used to parameterize the kMC model.

From a theoretical viewpoint, we already mentioned above that the mathematical
analysis proving that the Eyring-Kramers formulas are good approximations of the
exit rates is for the moment restricted to the overdamped Langevin dynamics (5)
and to a domain S such that ∂nV > 0 on ∂S, which prevents us from considering
real saddle points zi on ∂S. The generalization of the results presented in Sects. 2
and 3 to the Langevin dynamics (3) and real saddle points on ∂S is a work
in progress. It would also be interesting to investigate Langevin or overdamped
Langevin dynamics with nongradient forces (nonequilibrium systems).

From a numerical viewpoint, the mathematical analysis shows the versatility and
the limitations of the accelerated dynamics algorithms. The parallel replica and the
parallel trajectory splicing algorithms, for example, are very general, and can be
applied in many contexts: general Markov dynamics, general definitions of states,
etc. Likewise, the principle of the temperature accelerated dynamics algorithm can
be used as soon as formulas approximating the exit rates are available (one could
think, for example, of versions of TAD where the potential is modified, in the
spirit of hyperdynamics but without the assumption that the biasing potential is zero
on ∂S). Generally speaking, the investigation of the performance of these algorithms
to new physical settings and general Markov dynamics is a very promising research
direction.
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In parallel, there have been efforts to extend the time scale accessible in
molecular simulations by filtering out atomic vibrations and focusing on the more
interesting dynamics associated with the formation and motion of defects. This
article focuses on a current research trend to combine these two complementary
approaches into a unified framework that can simultaneously span multiple
length and time scales from the microscopic to the macroscopic. As a specific
example, the combination of the spatial quasicontinuum (QC) method with the
temporal hyperdynamics method to create “hyper-QC” is described.

1 Introduction

In typical engineering simulations of macroscopic systems, no limitations are placed
on length or time scales. Using high-performance computing, a system being
modeled can be as large as needed and can be simulated for as long as needed.
For example, continuum finite element (FE) simulations of an entire aircraft during
flight, or a crash test of a vehicle, are routinely performed. However, the situation
is very different when simulating systems on microscopic length scales. In this
case, the atoms constituting the material introduce an inherent length and time
scale into the problem; these are the separation between atoms on the order of
an Angstrom (10−10 m) and atomic vibrations that set a characteristic time on the
order of a femtosecond (10−15 s). This severely limits the size and times that can
be modeled, with most simulations restricted to a tiny fraction of the full system on
sub-microsecond time scales.

Two parallel efforts have been pursued to address the length and time scale
limitations in microscopic simulations. To overcome the length problem, spatial
coarse-graining methods have been introduced in which the atoms in the system
are strategically thinned in a manner that retains the physics of interest. This can
be traced back to the work of Kirkwood (1935) on the potential of mean force and
to earlier work on statistical mechanics. More recently, a class of computational
partitioned-domain methods have been introduced in which atomistic resolution
is retained in regions of interest (e.g., near a crack tip or dislocation core), while
a continuum approximation is used elsewhere (Miller and Tadmor 2009). Thus a
coupled continuum-atomistic approach is adopted.

Among the various partitioned-domain methods (many of which are reviewed
in Miller and Tadmor 2009; Curtin and Miller 2003; Tadmor and Miller 2011),
the quasicontinuum (QC) method of Tadmor and co-workers (Tadmor et al. 1996;
Shenoy et al. 1999) is one of the earliest and has been widely adopted in various
domains. The original static QC method was extended to study finite temperature
effects in dynamics simulations; this approach is referred to as “hot-QC” (Dupuy
et al. 2005; Tadmor et al. 2013). An alternative “fully nonlocal” version of the QC
method (which we refer to as “cluster-QC” (CQC)) was developed by Knap and
Ortiz (2001). In CQC, summation in continuum regions is conducted node-by-node
using nodal clusters, as opposed to the original QC method that adopts element-by-
element summation using the Cauchy-Born rule (see Sect. 3.1).
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In parallel to the spatial coarse-graining efforts, different methods for extending
the time scale accessible in microscopic simulations have been pursued. These
efforts can be traced back to work on the kinetic Monte Carlo (KMC) method in
the 1960s (Voter 2007) and earlier work on rate kinetics and transition state theory
(TST). A variety of methods have been introduced since then to accelerate dynamics
in microscopic simulations. These include hyperdynamics (Voter 1997), the parallel
replica method (Voter 1998), temperature-accelerated dynamics (Sørensen and
Voter 2000), on-the-fly KMC (Henkelman and Jónsson 2001), metadynamics (Laio
and Parrinello 2002), and diffusive molecular dynamics (Li et al. 2011). Briefly,
hyperdynamics adds a bias potential to reduce energy barriers and expedite the
escape from potential energy wells. In the parallel replica method, several statistical
copies of the original system are simultaneously evolved to increase the probability
for transitions. Temperature-accelerated dynamics seeks transition pathways at
elevated temperatures. The on-the-fly KMC approach constructs the KMC rate
table at each state by searching for escape pathways across saddle points. In
metadynamics, the potential energy is modified by adding Gaussian potentials
defined by several “collective variables” to discourage revisits to previously sampled
configurations. In diffusive molecular dynamics, diffusion is simulated by evolving
the occupation probabilities of the mean positions of atomic sites by minimizing a
free energy expression based on the Gibbs-Bogoliubov inequality.

The spatial coarse graining and temporal acceleration methods described above
have largely been developed separately. A current research focus is to formulate
methods that combine these efforts into a single framework to enable simulations
of large microscopic systems over long times. In this article, we discuss methods
where both length and time scales are extended simultaneously. We focus on the
“hyper-QC” method, which is an extension of hot-QC based on hyperdynamics.
We also briefly describe a second approach that employs the maximum entropy
(max-ent) formalism of Jaynes (1957a, b) within CQC, which we refer to as “finite-
temperature CQC.” (The term “hot-QC” is sometimes applied to this approach as
well, which can be confusing.)

We begin in Sect. 2 with general background on the mechanics of systems of
particles including the Hamiltonian formulation and statistical mechanics. The hot-
QC approach for spatial coarse graining is discussed in Sect. 3. The integration
of temporal acceleration into spatial coarse-graining methods, with emphasis on
hyper-QC, is in Sect. 4. This includes a discussion of infrequent events and the
hyperdynamics method for accelerating molecular dynamics. We end in Sect. 5 with
brief concluding remarks.

2 Background: Mechanics of Systems of Particles

2.1 Hamiltonian Formulation

Consider a material system consisting of N atoms. The total energy of the system,
which is called the “Hamiltonian” and denoted by H, is given by
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H(q,p) = V(q)+K(p), (1)

where q = (q1, . . . , qN) and p = (p1, . . . ,pN) represent the positions and
momenta of all atoms, V is the potential energy due to interactions between atoms
(see, e.g., Tadmor and Miller 2011), and K = ∑N

i=1 ||pi ||2/(2mi) is the kinetic
energy, where mi is the mass of particle i. It is assumed that the potential energy
can be represented as a sum over individual atom energies Vi :

V =
N∑

i=1

Vi(q). (2)

Then, the Hamiltonian can also be written as a sum over individual atom Hamilto-
nians hi :

H =
N∑

i=1

hi(q,pi ), (3)

where hi = Vi(q) + ||pi ||2/(2mi). Note that the potential energy of atom i will in
general depend on some subset of positions in q in the vicinity of qi , whereas the
kinetic energy of atom i only depends on pi .

The dynamical trajectories of the atoms are governed by Newton’s equations of
motion, which in terms of the Hamiltonian are given by

q̇i =
∂H
∂pi

, ṗi = −
∂H
∂qi

, (4)

where the dot represents differentiation with respect to time. The first equation in
Eq. (4) enforces the connection between momentum and position, and the second
is Newton’s equation of motion (second law). The dynamical trajectories of all
atoms (q(t),p(t)) are obtained by integrating the equations of motion subject to
any existing macroscopic constraints. This is the method of “molecular dynamics”
(MD).

2.2 Statistical Mechanics

In practice, it is not possible to integrate the equations of motion in Eq. (4) for a
macroscopic system due to the huge numbers of atoms involved, due to lack of
knowledge of initial conditions, and due to the exponential sensitivity of trajectories
to these conditions. Instead in statistical mechanics, a probabilistic approach is
adopted. The probability of finding the system in microstate (q,p) is given by a
distribution function ρ(q,p) satisfying macroscopic constraints. Any macroscopic
observable A is then represented as an ensemble average of a corresponding phase
function A(q,p):
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A = 〈A(q,p)〉 =
żż

A(q,p) ρ(q,p) dq dp, (5)

where the integration is over the entire phase space of the system (i.e., all possible
values of q and p) and dq dp = dq1 . . . dqNdp1 . . . dpN . The distribution function
ρ satisfies the normalization condition:

żż

ρ(q,p) dq dp = 1. (6)

Under equilibrium conditions, for a system of N atoms at constant volume V and
in contact with a heat bath at temperature T (the so-called canonical or NVT

ensemble), the distribution function has the Boltzmann form:

ρ(q,p;β) = 1

Z(β)
e−βH(q,p), (7)

where β = (kBT )−1, kB is the Boltzmann constant, and the canonical partition
function is

Z(β) =
żż

e−βH(q,p) dq dp. (8)

2.3 Harmonic Approximation

The partition function in Eq. (8) can be evaluated approximately by employing the
quasi-harmonic (QH) approximation, whereby the potential energy V(q) (which is
part of H(q,p)) is expanded to second order about mean atom positions q̄:

VQH(q; q̄) = V(q̄)+ 1

2
(q − q̄)TH(q)(q − q̄). (9)

Here H is the 3N × 3N Hessian (stiffness) matrix, and the positions q̄ are free
parameters to be determined later. At sufficiently low temperatures (below half the
melting temperature according to LeSar et al. 1989), the off-diagonal terms in H can
be neglected, which leads to the local harmonic (LH) approximation:

VLH(q; q̄) = V(q̄)+
N∑

i=1

1

2
(qi − q̄i )

TΦ i (q)(qi − q̄i ), (10)
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where Φi is the force constant matrix for atom i given by

Φi =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2V
∂qi1∂qi1

∂2V
∂qi1∂qi2

∂2V
∂qi1∂qi3

∂2V
∂qi2∂qi1

∂2V
∂qi2∂qi2

∂2V
∂qi2∂qi3

∂2V
∂qi3∂qi1

∂2V
∂qi3∂qi2

∂2V
∂qi3∂qi3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (11)

and qi = (qi1, qi2, qi3). The LH approximations for the canonical distribution
function and partition function follow as

ρLH(q,p;β, q̄) = 1

ZLH
e−βV(q̄)

N∏

i=1

e
−β

{
(qi−q̄i )

T Φi (qi−q̄i )

2 + ||pi−p̄i ||2
2mi

}

, (12)

ZLH(β, q̄) = e−βV(q̄)
N∏

i=1

√
1

det Φ i

(√
2π

β

)3 (√
2πmi

β

)3

. (13)

The identification of q̄ with the mean positions of the atoms is confirmed since

〈
qi

〉
LH = q̄i (i = 1, . . . , N). (14)

The internal energy and Helmholtz free energy can also be calculated:

ULH(β, q̄) = −∂ lnZLH

∂β
= V(q̄)+ 3N

β
=

N∑

i=1

(
Vi(q̄)+ 3

β

)
, (15)

ΨLH(β, q̄) = − 1

β
lnZLH =

N∑

i=1

ψi(β, q̄), (16)

where

ψi(β, q̄) = Vi(q̄)+ 1

β
ln

√
det Φ i (q̄)

(2π
√
mi/β)3

. (17)

For a quasistatic process, q̄ is determined by minimizing ΨLH, i.e., by solving

∂ΨLH

∂ q̄i

= ∂

∂ q̄i

(
N∑

i=1

ψi

)
= 0, (i = 1, . . . , N), (18)

and ensuring the solution corresponds to a minimum.
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3 Spatial Coarse Graining

The atomistic methods described in the previous section can in principle be used to
obtain the dynamics of a system of atoms (Sect. 2.1) and its equilibrium properties
(Sects. 2.2 and 2.3). However in practice, such simulations become prohibitively
expensive when the number of atoms is too large. Spatial multiscale methods,
like the hot-QC method (Dupuy et al. 2005; Tadmor et al. 2013), address this by
systematically reducing the number of atoms in a manner that retains the physics
of interest – a process referred to as “coarse graining.” A description of the hot-QC
approach to coarse graining follows.

3.1 Finite-Temperature Quasicontinuum (Hot-QC)

As a first step to developing a rigorous coarse-graining procedure, one must
introduce a well-defined design principle. In the static QC method, the objective is
to approximate the total potential energy of the fully atomistic system in a manner
that ensures convergence to the exact result as the atomistic region is increased
in size (Tadmor et al. 1996). For a dynamical method at finite temperature, a
different design principle is required. Hot-QC assumes equilibrium thermodynamic
conditions and sets as its goal to approximate phase averages of the system in a
controlled fashion. The exact expression being approximated is provided below after
some preliminary definitions.

Consider an atomistic system of N atoms that is partitioned into an atomistic
region where the deformation changes appreciably on atomic length scales (this
is where the interesting physics is occurring) and a continuum region where the
deformation varies slowly on the atomic scale (Fig. 1a). The atoms in each region
are distinguished using the superscripts “at” and “c” so that q = (qat, qc) =
(qat

1 , . . . , qat
Nat , q

c
1, . . . , q

c
Nc), where Nat and Nc are the number of atoms in the

atomistic and continuum regions (N = Nat +Nc). Note that at this stage no coarse
graining has taken place.

Returning to the hot-QC design principle, equilibrium properties of this system
in the canonical ensemble are given by (Sect. 2.2):

A = 1

Z

żżżż

A(qat,pat)e−βH(qat,qc,pat,pc) dqat dpat dqc dpc, (19)

where the dependence on the atoms in the atomistic and continuum regions has been
made explicit. Since the intent is to coarse grain the system by removing the atoms
in the continuum region, only phase functions that depend on the atoms retained in
the atomistic region are considered in Eq. (19). It is straightforward to show that, by
reordering the sequence of integrations, Eq. (19) is exactly given by the following
expression (Shenoy et al. 1999; Tadmor et al. 2013):
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(a) (b)

Fig. 1 A portion of a QC model for an atomically sharp crack. Frame (a) shows the atoms in the
vicinity of the crack tip. The colored square is the “atomistic region” of QC. The continuum region
encompasses all atoms outside this square and extends beyond the boundaries of the figure. Frame
(b) shows the corresponding QC model. Atoms retained in the model are called “repatoms” and
shown as filled circles. The repatoms serve as the nodes of an FE mesh. The positions of unfilled
atoms are then obtained through FE interpolation

A = 1

Z

żż

A(qat,pat)e−βHat(qat,pat;β) dqat dpat, (20)

where Hat is the effective Hamiltonian of the atomistic region

Hat(qat,pat;β) = Vat(qat;β)+Kat(pat;β), (21)

and Vat and Kat are the corresponding effective potential and kinetic energies:

Vat(qat;β) = − 1

β
ln

ż

e−βV(qat,qc) dqc, (22)

Kat(pat;β) = − 1

β
ln

ż

e−βK(pat,pc) dpc. (23)

The effective potential energy Vat corresponds to the potential of mean force
introduced by Kirkwood (1935).

The hot-QC approach is based on an approximate computation of Hat. The
effective kinetic energy in Eq. (23) can be computed analytically. (See Dupuy et al.
(2005) for details on how coarse graining is handled for this term.) The effective
potential energy Vat in Eq. (22) can be approximated by expanding the potential
energy about mean positions of the continuum atoms q̄c and applying the LH
approximation (Sect. 2.3):
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Vat
LH(qat, q̄c;β) =

Nat∑

i=1

V at
i (qat, q̄c)+

Nc∑

i=1

ψc
i (q

at, q̄c;β), (24)

where V at
i is the potential energy of atom i in the atomistic region and ψc

i follows
in similar fashion to Eq. (17):

ψc
i (q

at, q̄c;β) = V c
i (q

at, q̄c)+ 1

2β
ln
[
det Φc

i (q
at, q̄c)

]
, (25)

where V c
i refers to the potential energy of continuum atom i. (Note that ψc

i only
includes the potential part of the free energy, since the kinetic part is included in
Kat.) The LH expression in Eq. (24) depends on the mean positions of the continuum
atoms. Treating the continuum as a heat bath that occupies an equilibrium state as
the atomistic region evolves, Vat in Eq. (22) is identified with the minimum of the
LH expression:

Vat(qat;β) ≈ min
q̄c

Vat
LH(qat, q̄c;β). (26)

The expression in Eq. (24) still involves a sum over all Nc atoms in the continuum
region making it prohibitively expensive. To reduce the computational cost, a small
subset of atoms is selected from the continuum region to represent the remainder.
The set of all atoms in the atomistic region and the selected atoms in the continuum
region are called “representative atoms” or “repatoms” for short. The atoms in the
atomistic region are “nonlocal” repatoms (since their energy depends nonlocally on
other repatoms in their vicinity), whereas the retained continuum atoms are “local”
(since their energy is computed using a local continuum approximation).

The repatoms constitute the nodes of an FE mesh as shown in Fig. 1b. Note
that for computational convenience the mesh is continued into the atomistic region,
although it serves no purpose there. The positions of discarded continuum atoms
(appearing as open circles in Fig. 1b) are determined by FE interpolation:

q̄c
i = Qc

i +
Nnode∑

J=1

NJ (Q
c
i )uJ , (27)

where Qc
i is the reference position of continuum atom i, NJ is the FE shape function

associated with node J , uJ is the displacement of node J , and Nnode is the number of
nodes. Thus, the total number of degrees of freedom is reduced from 3N to 3Nnode.

Using the FE discretization, the sum over continuum atoms in Eq. (24) is
approximated by employing the Cauchy-Born rule, which maps the continuum
deformation to the motion of the underlying continuum atoms (Tadmor and Miller
2011):
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Nc∑

i=1

ψc
i (q

at, q̄c;β) ≈
Nelem∑

e=1

νe ψ
CB(F e;β). (28)

Here νe is the number of continuum atoms associated with element e that fall
within the continuum region, F e is the deformation gradient of element e (computed
from the FE interpolation), and ψCB(F e;β) is the potential part of the Helmholtz
free energy per atom computed for an infinite crystal deformed by F e at inverse
temperature β. (Note that for multilattice crystals, the displacement of basis atoms
must be accounted for; see Tadmor et al. 1999.)

Putting everything together, the QC effective potential is given by

VQC(qat;β) = min
uc

⎧
⎨

⎩

Nat∑

i=1

V at
i (qat,uc)+

Nelem∑

e=1

νe ψ
CB(F e;β)

⎫
⎬

⎭ . (29)

The hot-QC Hamiltonian is then

HQC(qat,pat;β) = VQC(qat;β)+Kat(pat;β). (30)

A hot-QC simulation corresponds to an MD simulation of the atoms in the atomistic
region using the QC Hamiltonian in Eq. (30).

The hot-QC formulation derived so far involves the minimization in Eq. (29)
at every time step as qat is updated. A further approximation referred to as
“hot-QC-dynamic” allows both nonlocal atoms and continuum nodes to evolve
simultaneously by adding a correction term to account for artificial entropy associ-
ated with the mesh. With this correction, second-order accuracy in kBT is retained.
See Dupuy et al. (2005) and Tadmor et al. (2013) for details.

4 Integrating Temporal Acceleration into Spatial Coarse
Graining

The hot-QC approach presented in the previous section significantly reduces the
number of degrees of freedom in a system, thereby reducing the computational cost,
but remains limited by the very short time step (∼1 fs) required for integrating the
equations of motion of the nonlocal repatoms (i.e., atoms in the atomistic region).
This severely limits the duration of hot-QC simulations. As a result, the loading
rates in hot-QC simulations (as in MD simulations) are typically far larger than
in experiments (otherwise no appreciable deformation would occur). For example,
the hot-QC simulations of nanoindentation reported in Dupuy et al. (2005) were
performed with an indenter velocity of about 5×106 μm/s, whereas the experimental
loading rate is typically in the range of 0.001–1 μm/s. Such large differences in rates
can strongly influence the response of material systems, even leading to qualitative
changes in some cases. Methods are therefore needed to accelerate the dynamics
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occurring on the molecular scale. One approach suited for solid systems takes
advantage of the separation between atomic vibrations and the far larger time scales
associated with the nucleation and motion of defects. The idea is to skip over the
uninteresting vibrations directly to the more infrequent defect-related events that
evolve the system. Below is a description of this approach in a fully atomistic
setting, followed by a discussion of how it can be incorporated into hot-QC.

4.1 Infrequent Events and Transition State Theory

The energetics of a system of N particles can be represented in terms of a potential
energy surface (PES). The PES is a conceptual plot of the energy of the system as a
function of the positions of the atoms. Think of it as a topographical map in 3N + 1
dimensions. The PES includes energy minima that are associated with equilibrium
states of the system, separated from each other by dividing surfaces. The low points
on the dividing surfaces are saddle points through which the system can most easily
cross from one minimum to another; these are the transition states of the system. A
two-dimensional schematic of a PES is shown in Fig. 2.

A solid system at a sufficiently low temperature spends most of its time vibrating
within the basins of attraction of equilibrium states with occasional, rapid, thermally
activated transitions between states. The trajectory of a typical system is represented
as the black line in Fig. 2. The transition rate RA→B is defined as the frequency of
transitions from state A to state B (i.e., the number of transitions from A to B per

A

B

S

S

S

S

Fig. 2 A PES for a system with two degrees of freedom represented by the horizontal and vertical
axes. The colors represent the energy of the system with blue being lowest and red highest. Two
equilibrium states (minima) are shown, denoted as A and B. The dashed lines are the dividing
surfaces separating the region associated with one equilibrium state (“basin of attraction”) from
surrounding states. The low points on the dividing surfaces are saddle points denoted by S. The
black line represents a trajectory of the system
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unit time). It is important to understand that this rate is defined in the thermodynamic
limit where the system spends an infinite amount of time transitioning back and forth
between A and B. It is given by

RA→B ≡ lim
t→∞

NA→B(t)

tA(t)
, (31)

where NA→B(t) is the number of crossings from A to B during time t and tA(t) is the
portion of time spent in state A during time t . Inverting Eq. (31) gives the average
waiting time that the system spends in state A before escaping:

t̄wait
A ≡ lim

t→∞
tA(t)

NA→(t)
= 1

RA→
. (32)

This expression has been generalized to the case where there can be multiple escapes
out of A. The total number of escapes out of state A during time t is NA→(t).

Under the assumption that every crossing of the dividing surface corresponds to a
transition between states, the transition rate in Eq. (31) can be computed within the
TST formalism of statistical mechanics (see, e.g., Vanden-Eijnden and Tal 2005).
This is an approximation since dynamical trajectories that cross the dividing surface
may return back to their original state instead of equilibrating in the new state
(see Fig. 2 where the trajectory briefly crosses the dividing surface twice before
making a true transition to state B). Neglecting these dynamical recrossings, the
TST expression for Eq. (31) is

RTST
A→B =

1

2

ş

ΣAB
dq

ş

dp |vn| e−βH(q,p)

ş

ΩA
dq

ş

dp e−βH(q,p)
= 〈|vn| δAB(q)〉A , (33)

where ΣAB is a portion of the dividing surface separating A and B, ΩA is a region in
the configuration space (basin of attraction) associated with A, and vn is the velocity
normal to the dividing surface. In the second expression, δAB is the Dirac delta,
which is zero everywhere except on the dividing surface between A and B, and the
subscript A indicates that the phase average is computed over ΩA. The TST rate
defined in Eq. (33) is an equilibrium property of the system.

At low temperatures, the TST rate can be evaluated analytically by expanding
the potential energy in the numerator about the saddle point configuration S
and the potential energy in the denominator about A and applying the harmonic
approximation (Sect. 2.3). The result is the famous Arrhenius equation that governs
many physical processes:

RhTST
A→B = νe−βEa , (34)

where ν is an attempt frequency related to the curvatures at states A and S and
Ea = V(qS) − V(qA) is the activation energy (the energy barrier for crossing from
A to B across S).
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4.2 Transitions in Hot-QC

As explained in Sect. 3.1, hot-QC is designed to reproduce equilibrium phase
averages. As a result hot-QC simulations should exhibit transition behavior that
is consistent with TST (since the TST rate itself is an equilibrium property as
noted in Sect. 4.1). This is indeed correct provided that two conditions are satisfied
(Kim et al. 2014):

1. All atoms significantly affected by the transition are inside the atomistic region.
2. The dividing surface can be approximated as a function of only atoms in the

atomistic region.

Both assumptions are consistent with the basic hot-QC ansatz in Eq. (19) of limiting
consideration to phase averages over degrees of freedom in the atomistic region.
Under these conditions, it can be shown that

(
RTST
A→B

)

V
= 1

2

ş

ΣAB(q
at)

dqat
ş

dp |vn| e−βH(q,p)

ş

ΩA(qat)
dqat

ş

dp e−βH(q,p)

= 1

2

ş

ΣAB(q
at)

dqat
ş

dpat |vat
n | e−βHQC(qat,pat)

ş

ΩA(qat)
dqat

ş

dp e−βHQC(qat,pat)
=
(
RTST
A→B

)QC
. (35)

Thus TST rates in the QC system equal those in the fully atomistic system for
transitions occurring in the atomistic region. This analytical result was verified
numerically by Kim et al. (2014).

4.3 AcceleratedMolecular Dynamics (Hyperdynamics)

Equation (34) provides guidance on how to increase transition rates in systems
governed by TST; one can either decrease the activation energy Ea or increase the
temperature (i.e., reduce β). These two approaches are adopted in hyperdynamics
(Voter 1997) and temperature-accelerated dynamics (Sørensen and Voter 2000),
respectively. Here we focus on hyperdynamics.

Consider a system with positions q that is within the basin of attraction ΩA of
state A. To expedite the escape from this state, the true potential energy of the system
V(q) is modified by the addition of a nonnegative “bias potential” ΔV(q), such that

Vb(q) = V(q)+ΔV(q), (36)

in which

ΔV(q) =
{
> 0 if q ∈ ΩA,

= 0 if q ∈ ΣA,
(37)
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where ΣA is the dividing surface separating state A from surrounding states.
(Methods for constructing bias potentials are discussed below.)

An MD simulation using Vb(q) in Eq. (36) will by design escape from state
A more quickly than the original system with potential V(q). However, since the
biased system has a different potential energy, it is in fact a different material. Why
then would the results obtained with Vb be relevant to the original material? The key
lies in the condition in Eq. (37) that requires ΔV to vanish on the dividing surfaces. It
is shown next that if this is satisfied, then the state-to-state dynamics of the original
and biased systems will be the same. In other words, if both systems were simulated
for a very long time, they would visit each state with the same relative probability,
even though the dynamics within each state would be different. All of this holds
only within the TST formalism (Sect. 4.1); thus the state-to-state dynamics of the
biased and original systems would differ due to dynamic recrossings, an effect that
becomes more pronounced with increasing temperature (Vanden-Eijnden and Tal
2005).

In order to prove the state-to-state dynamics assertion, recall the TST rate expres-
sion in Eq. (33). Separating the Hamiltonian into kinetic and potential contributions
and multiplying the denominator and numerator by exp(+βΔV) exp(−βΔV) = 1,
the following relation is obtained:

RTST
A→B =

1

2

ş

ΣAB
dq

ş

dp |vn| e−β(K+V+ΔV)eβΔV
ş

ΩA
dq

ş

dp e−β(K+V+ΔV)eβΔV = 〈|vn| δAB(q)〉Ab〈
eβΔV 〉

Ab

. (38)

In the second expression, the subscript Ab indicates a phase average on the
biased PES. This expression follows from the first by dividing the numerator and
denominator by the biased partition function restricted to state A:

ż

ΩA

dq

ż

dp e−β(K+V+ΔV).

Next, enforcing the condition in Eq. (37) that ΔV = 0 on ΣAB and rearranging,
Eq. (38) becomes

RTST
Ab→B =

〈
eβΔV

〉

Ab
RTST
A→B, (39)

where the definition in Eq. (33) was used. This result shows that the escape rate from
the biased state Ab is boosted by the exponential factor

〈
eβΔV 〉

Ab
. (Since ΔV ≥ 0,

the boost is always greater or equal to one.) Further, considering two possible
escapes, A → B and A → C, the relative probabilities are preserved on the biased
PES since

RTST
Ab→B

RTST
Ab→C

=
〈
eβΔV 〉

Ab
RTST
A→B〈

eβΔV 〉
Ab

RTST
A→C

= RTST
A→B

RTST
A→C

(40)

This is the basis for the statement that state-to-state dynamics are preserved by the
biased system (Voter 1997).
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The remaining step is to relate the time scale of the biased system dynamics to
the original system. For example, if the biased system escapes from a basin in 1 ns,
what does this correspond to in the original system? This is a subtle question. To
understand this, recall the TST definition of the average waiting time in Eq. (32).
Using Eq. (39) and rearranging, the true waiting time is related to the biased waiting
time by

t̄wait
A =

〈
eβΔV

〉

Ab
t̄wait
Ab

. (41)

Converting from a phase average to the time average performed in an MD
simulation, one can relate the MD time step of the biased system ΔtMD to the
corresponding boosted time step for the real system:

Δtkboosted = eβΔV(qk) ΔtMD, (42)

where k is the time step index and qk is the corresponding atomic configuration. The
stepwise definition in Eq. (42) will give statistics that are consistent with Eq. (41)
(Voter 1997).

The key step in setting up and running a hyper-QC simulation is the construction
of a bias potential that is zero on dividing surfaces (as stated in Eq. (37)) and
provides good boost. In the original hyperdynamics method (Voter 1997), the lowest
eigenvalues and corresponding eigenvectors of the Hessian were used to construct
the bias potential. However, this approach can be computationally expensive. Later,
a bias potential without significant computational overhead, called the “bond-boost
method,” was proposed by Miron and Fichthorn (2003). The bond-boost method is
based on the increased changes in bond lengths that occur when a system makes
transitions. In particular, a bias potential ΔV̂(en) can be defined in terms of the
fractional bond length change, en = |ln−lref

n |/lref
n , where ln is the bond length of the

nth bond and lref
n is the bond length in the reference configuration (usually taken as

the potential energy minimum). The functional form ΔV̂(en) is selected to guarantee
that if any en exceeds a threshold value (which can be empirically estimated by
preprocessing simulations), the total bias potential vanishes. Other bias potentials
have been proposed including one which uses the hyperdistance from a reference
configuration (Kim and Falk 2010) and a “mechanism-based bias potential” that
makes use of the specific physics being modeled to obtain better boosts (Kim and
Tadmor 2017).

4.4 Temporal Acceleration in Hot-QC (Hyper-QC)

The last step is to integrate hyperdynamics within the hot-QC framework to
create the hyper-QC method. Adopting the conditions outlined in Sect. 4.2, it is
straightforward to show that the hyperdynamics derivation carries over to hot-QC
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with a bias potential that is a function of only atoms retained in the atomistic region
(Kim et al. 2014):

VQC
b (qat;β) = VQC(qat;β)+ΔVQC(qat;β). (43)

A hyper-QC simulation corresponds to doing MD with VQC
b . Analogous to standard

hyperdynamics, hyper-QC preserves the original state-to-state dynamics of hot-QC
under the TST assumptions (Kim et al. 2014). See Kim and Tadmor (2017) for a
detailed discussion of the practical issues in setting up and performing hyper-QC
simulations.

Hyper-QC was first applied to a one-dimensional system to verify the formula-
tion (Kim et al. 2014). A chain of 1000 atoms undergoing a transition from a bonded
state to an unbonded state at constant temperature was studied. The hyper-QC
simulations exactly recovered the TST rates of the fully atomistic model, running
77 to 92 times faster in terms of computation time.

A hyper-QC application to nanoindentation of a face-centered cubic (fcc) nickel
crystal is described in Kim and Tadmor (2017). The single crystal is of size
2000 × 100 Å with periodic boundary conditions corresponding to the minimal
repeated distance of 4.31 Å applied in the out-of-plane direction. The indenter is
cylindrical with a diameter of 100 Å. The hyper-QC model contains 6,135 repatoms,
which represent a fully atomistic system of 79,461 atoms. The atomic interactions
are modeled by an embedded atom method (EAM) potential (Zhou et al. 2004).
A mechanism-based bias potential designed to accelerate slip events in fcc is
employed.

Simulations were performed at three temperatures, T = 100, 200, and 300 K,
and indenter velocities ranging from 106 to 102 μm/s. Results for the critical force
required to nucleate the first dislocation under the indenter are plotted in Fig. 3.
A typical logarithmic dependence on the indenter velocity is observed, indicating
that the dislocation nucleation is thermally activated. Based on this observation,

Fig. 3 The indentation force
at which the first partial
dislocation nucleates as a
function of indenter velocity
at temperatures of 100, 200,
300 K. The straight lines are
obtained from the
Tomlinson-Prandtl model.
(Reprinted with permission
from Kim and Tadmor 2017)

0.0001 0.001 0.01 0.1 1
Indenter Velocity (m/sec)

20.0

25.0

30.0

35.0

40.0

45.0

50.0

In
de

nt
at

io
n 

Fo
rc

e 
(n

N
)

Continuous, Unbiased (Full-Atom)
Stepped, Unbiased (Full-Atom)
Continuous, Unbiased (Hot-QC)  
Stepped, Unbiased (Hot-QC)
Stepped, Biased (Hyper-QC)

T = 300 K

T = 200 K

T = 100 K



37 Temporal Acceleration in Coupled Continuum-Atomistic Methods 821

a simple Prandtl-Tomlinson model is constructed (Tomlinson 1929; Gnecco et al.
2000; Tadmor et al. 2013). The predictions of the model are shown as the straight
lines in Fig. 3. (In Fig. 3, the model was fit separately at each temperature, and a
fit over all temperatures shows more scatter but is still good overall; see Kim and
Tadmor 2017.)

The smallest indentation rate of 102 μm/s achieved in the hyper-QC simulation is
significantly lower than that attainable using hot-QC and is approaching experimen-
tal loading rates (see start of Sect. 4). This is possible due to speedups in hyper-QC
ranging from 1000 (at T = 300 K) to 10,000 (for T = 100 and 200 K) compared
with hot-QC. This speedup includes both the spatial coarse graining and temporal
acceleration.

4.5 Other Approaches: Finite-Temperature CQC

The extension of QC to finite temperature, dynamics, and temporal acceleration
described above (i.e., hot-QC and hyper-QC) is based on equilibrium statistical
mechanics. A different approach is adopted in the CQC method. Based on the
maximum entropy principle of Jaynes (1957a, b) and a mean field approximation
(Kulkarni et al. 2008; Venturini et al. 2014), the finite-temperature CQC method
seeks a probability distribution ρ(q,p) of the form:

ρ ∝ exp

[
−

N∑

i=1

βi

{
miω

2
i ||qi − q̄ i ||2

2
+ ||pi − p̄i ||2

2mi

}]
, (44)

which maximizes the entropy functional S defined as

S[ρ] ≡ −kB〈ln ρ〉 = −kB

ż

ρ ln ρ dq dp. (45)

The maximum is sought subject to local constraints, 〈hi〉 = ei (i = 1, . . . , N),
where ei is regarded as the energy of atom i observed on a macroscopic time
scale. In Eq. (44), βi , q̄ i , and p̄i are the local temperature, mean position, and mean
momentum of atom i, respectively, and ω are free parameters to be determined.

For a quasistatic process, q̄, p̄, and ω are determined by maximizing the
canonical free entropy Φ given by (Venturini et al. 2014)

Φ(β; q̄, p̄,ω) = −kB

N∑

i=1

[
βi

( ||p̄i ||2
2mi

+ 〈Vi〉
)
− 3

2
+ 3 ln

(
βiωi

2π

)]
. (46)

A Hamiltonian dynamics is postulated for the evolution of the mean positions and
momenta (q̄, p̄) (Ponga et al. 2015, 2016):

˙̄qi =
∂HME

∂p̄i

, ˙̄pi = −
∂HME

∂ q̄i

, (47)
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where HME is the max-ent Hamiltonian:

HME = −
N∑

i=1

1

kB

∂Φ

∂βi

. (48)

Next, an FE-based coarse-graining scheme is introduced to reduce the number of
degrees of freedom using the fully nonlocal cluster-based summation method of
Knap and Ortiz (2001).

In contrast to hot-QC, which is based on equilibrium statistical mechanics and
assumes a system at constant uniform temperature, the finite-temperature CQC
method can be applied to nonequilibrium systems with nonuniform temperature
fields. As such, Eqs. (46) and (47) can be coupled with a phenomenological atomic-
level heat conduction equation to determine β (Venturini et al. 2014). Moreover,
since the equations of motion are for the mean positions and momenta, where the
short-time thermal vibrational modes are averaged out, the resultant trajectory will
be smooth on microscopic time scales enabling much larger time steps than those
used in conventional MD simulations (Ponga et al. 2015).

5 Concluding Remarks

The size of systems that can be simulated using fully atomistic MD continues to
increase as computing power grows, with the current world record well above one
trillion atoms (Germann and Kadau 2008). Given this, one may wonder regarding
the need for accelerated continuum-atomistic methods that aim to reduce degrees
of freedom and extend time scales in molecular simulations. There are several
reasons why such methods remain of interest. First, as more complex materials
are modeled, the computational expense of interatomic models greatly increases,
dramatically reducing the size of systems that can be studied. This is the case for
state-of-the-art reactive force fields, bond-order potentials, and machine learning-
based potentials that are of current interest (Tadmor and Miller 2011). Second,
without acceleration techniques, the time scales attainable in molecular simulations
are typically very short leading to loading rates that are many orders of magnitude
higher than experiments except under extreme conditions. Third, the reduction in
computation time promised by the methods described in this article will make
it possible to perform multiple simulations of a given system and thereby obtain
uncertainty estimates in terms of the various physical and numerical parameters in
the problem. Finally, there is the philosophical view that expending huge amounts
of effort and energy to simulate the dynamics of trillions of atoms that are mostly
obeying continuum field theories is not the best use of resources. The challenge lies
in developing robust and predictive multiscale methods that are able to span multiple
length and time scales and are applicable to a broad range of materials under both
equilibrium and nonequilibrium conditions. These topics remain an exciting and
ongoing area of research.
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Abstract

In this chapter, we examine the practice of developing, implementing, and
applying long-timescale simulation methods. In contrast to standard molecular
dynamics, the performance, and sometimes the accuracy, of long-timescale
atomistic methods can vary greatly from one application to another. Therefore,
for the practitioners, it is particularly important to understand the strengths and
weaknesses of the methods, in order to assess their respective potential for
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specific problems, as well as maximize their efficiency. For the method developer,
clearly assessing the challenges faced by current methods as well as the areas of
opportunities for future development is paramount.

In the following, we present the opinion of five leaders in the field regarding
best practices, challenges, and pitfalls in the use and development of such
methods. Their answers both provide a roadmap to how best to approach the
field and deliver insight into areas that need addressing in the future.

Question 1: In your experience, what are the biggest challenges associated with
extending the timescale of atomistic simulations? What pitfalls does one need
to be aware of?

AFV: Biggest challenges: Low barriers, low barriers, low barriers! In general,
the lowest barriers in a system may be substantially lower than the relevant higher
barriers, those barriers one needs to surmount to reach the timescale of interest.
In this case, although there may be good acceleration compared to direct molecular
dynamics, the gap between the fast rates (low barriers) and slow rates (high barriers)
might prevent observation of the desired very-long-time dynamics, because a huge
number of the lower-barrier events need to take place before a high-barrier event
occurs. Especially frustrating is when the lowest barriers are actually so low, relative
to kBT, that there is very little absolute acceleration.

The very worst case is “persistent low barriers,” in which the system keeps
visiting new states, and each of these new states has low-barrier pathways that
inhibit acceleration. For a state that has been visited previously (especially if it was
visited many times previously), accumulated information can be used to improve
the performance on the revisit. This cannot be done very effectively on the first
visit, however, so that for this type of system the acceleration will be very low.

For systems with a serious low-barrier problem, there is hope for being able
to combine many states that are connected by low barriers into a single superbasin
state. The quasi-static distribution (QSD) formalization of parallel-replica dynamics
offers a framework for this kind of generalization. In some cases, we have been
able to improve the boost substantially by using our understanding of the system to
apply such an approach. So far, however, it has proved challenging to develop an
automated approach to this problem, one that would work, e.g., for proteins.

NM: I totally agree with this problem. At one point, however, the low-barrier
problem mixes with the configuration entropy problem. In the case of proteins, for
example, many barriers have a significant entropic contribution, meaning that the
transition state cannot be well described with a single point on the energy landscape.

In materials, where the problem is simpler, we have to consider two types of
low barriers: those that do not evolve the system, which are generally referred to as
flickers, and those that are an intrinsic part of the evolution. Distinguishing between
those requires a deep knowledge of the problem. Moreover, it is not always possible
to draw a clear line between the two.

For kinetic Monte Carlo (KMC), the main problem is that every time one leaves
a basin, it becomes necessary to reconstruct it, which means a lot of effort for a
relatively short time step. When barriers remain energy-activated, it is nevertheless
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possible to see a solution where basins, incorporating multiple states separated by
low barriers, are generated on a local basis and merged if needed. As long as those
states are distinct, KMC is efficient. When this is not the case, however, one can get
overloaded by the cost of rebuilding the basin.

AFV: Unfortunately, pitfalls also abound. For example, the shape of the bias
potential in hyperdynamics is a very subtle problem. In hyperdynamics, one must
take care to design a bias potential that is zero at all dividing surfaces, so that it
does not “block” any pathways (i.e., slow them down). A problem is that there is
typically not any obvious signature when a pathway is being blocked. In principle,
one can check for a nonzero bias at a dividing surface for an escape mechanism that
has been observed, but for a mechanism that has not been observed because the rate
was slowed down too much, no such check can be performed – then the dynamics
are just wrong.

Another pitfall is the high dimensionality of typical problems in materials. Our
intuition can be easily misled by drawings in one or two dimensions when the
real system is 3N dimensional. An example is the flat bias potential of Steiner,
Genilloud, and Wilkins (1998), in which the potential energy is replaced with a
flat potential for energies lower than some threshold, with this threshold chosen to
be lower than the energy of the lowest saddle point bounding the state (picture a
frozen lake in the mountains). In one dimension, or a few dimensions, this simple
form of bias potential can indeed give good acceleration, and it is natural to think
that this characteristic would persist to high-dimensional systems. However, it does
not. Although it is a valid bias, because the bias is guaranteed to be turned off
whenever the potential energy is higher than the lowest barrier, it is no longer an
effective bias because the typical potential energy in a system with N atoms is
roughly 3NkBT/2, which for large N will be much higher than the threshold energy,
so that the instantaneous boost is rarely turned on. This is difficult or impossible to
draw in a one-dimensional diagram.

Another example of where our intuition can fail us in higher dimension is for
a bias potential that is constructed from space-filling objects in a low-dimensional
collective-variable space, as in an approach based on metadynamics, for example.
Then, although the acceleration can remain large as N increases, the bias form itself
may no longer be valid for hyperdynamics. This is because any reaction coordinate
that is orthogonal to the collective variable space will be blocked. Thus, extreme
care must be exercised.

NM: This problem is not limited to hyperdynamics. Methods such as ART
nouveau and the dimer evolve the system through this high-dimension landscape
to find saddle points. Yet, this search does not always work and, often, it is clear that
the failure to find a saddle point is related to the structure of the energy landscape,
a structure that is almost impossible to figure out given the high-dimensionality of
the problem. Similarly, without a detailed knowledge of the energy landscape, it is
not possible to ensure that these methods can find, even in principle, all connected
saddle points.

HJ: In my opinion, the most basic pitfall is to assume some transition mecha-
nism(s), some reaction coordinate, and base the time acceleration scheme on that
assumption. This can lead to incorrect time evolution of the system. There is a
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myriad of cases where the mechanism for atomic scale transitions turned out to be
entirely different from what one might guess a priori. The simulation should show
what the relevant transition mechanism is, and not rely on a preconceived notion
of the mechanism. There are many schemes that are based on such preconceived
notion, metadynamics being one of them that is used frequently. It is also important
to realize that full free energy sampling using such an assumed reaction coordinate
is not going to make up for a bad choice of the reaction coordinate. If the sampling
is carried out in a subspace (e.g., hyperplane) that is not lined up with the transition
state of the relevant mechanism, then no matter how much sampling is carried out,
the deduced rate of the transition will be wrong and the simulated time evolution
incorrect.

Question 2: What are the main limitations of current methods and what
needs to be done to address them?

NM: There has been considerable development over the last two decades
regarding accelerated methods. While they have opened up new regimes of physics
that had been out of reach until now, significant challenges remain.

(I) Cost-effective accurate force fields. Long-time simulations in materials typ-
ically require relatively large systems, as following kinetics often implies
displacement. Ab initio calculations being still limited to boxes of 1000
atoms or less, they cannot be used directly in these simulations. For lattice-
based atomistic KMC methods, it is possible to construct an event catalog
using small cells and density functional theory (DFT). Yet, for complex
systems with significant deformations or a large number of configurations,
even catalog building becomes too costly with ab initio. When dealing with
elemental systems, especially pure metals, empirical potentials can offer a
decent level of precision. These potentials cannot be relied upon, however,
for conformations far away from the close-packed states, in the presence of
many elements or when considering semiconductors, magnetic elements, etc.
Over the last decade, statistical-derived potentials, using neural networks or
other automatic learning methods, have shown significant promise. There is
still work to be done, however, before these methods can be used regularly.
Moreover, these new approaches remain very costly, limiting their application.

(II) Entropic effects. KMC methods, whether off-lattice or lattice-based, are
effectively run at zero K. Most of the time, entropic contributions are included
through a constant prefactor that supposes that the local environments remain
relatively similar throughout the simulation. Some groups go beyond this
simple approximation and evaluate the local entropic contributions for each
environment using the harmonic approximation of transition state theory
(TST), which supposes a temperature-independent prefactor, an approxi-
mation also made in temperature accelerated dynamics (TAD), one of the
accelerated MD (AMD) approaches. Yet, this is not always valid. For example,
an atom moving in a three-vacancy cluster in an FCC metal forms a tetrahedral
vacancy cluster centered around an atom, a structure stable at high tempera-
ture. As it turns out, this structure is very unstable at low temperature, although
it exists. In Ni, this state is at an energy 0.4 eV above ground state, separated
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from it by a barrier of only 0.08 eV. Its stabilization at high temperature is
clearly due to an increase in thermal vibrations that prevent the atom from
moving back into its original position, a feature that might not be captured by
the harmonic approximation (S. Mahmoud, et al., Acta Materialia (in press)).
It is therefore likely necessary to go beyond the harmonic approximation with
thermodynamic integration methods that can be automated.

(III) Going beyond TST. Most accelerated methods rely on TST at some level.
There is a need to work on this theory and see how one can expand it to
complex systems without having to use the heavy tools developed in systems
dominated by entropy, such as transition path sampling.

(IV) Handling flickers and energy barrier distributions efficiently. In spite of
considerable advances over the last years, handling systems with a wide
distribution of relevant barriers remains a challenge. Yet, following the
evolution of a grain boundary, the formation of a nanostructure, or the
aging of a multicomponent glass, involves working with continuous energy
distributions.

(V) A more efficient cataloging. Recognizing local environments, whether using
KMC or MD-based methods is an essential part of recycling previous efforts.
Over the years, a number of approaches have been proposed – geometrical,
lattice-based, and topological. Yet, all of them suffer from some limitations
that decrease the recycling. There is a need to carefully study this aspect
and identify methods that are flexible, can be applied to wide range of
environments, provide useful comparison, and facilitate the reconstruction.

HJ: Current methods are mainly based on the identification of local minima on
the potential energy surface (with the exception of parallel replica dynamics, though
even there, in practice, states are often defined in terms of local energy minima).
There is a large set of problems, where entropy plays a central role and energy
barriers are small and numerous. The definition of states needs to be more in terms
of subspaces where the system spends enough time to locally equilibrate and for
which the time evolution can be described as a Markov chain. Full TST, as opposed
to the harmonic approximation to TST, coupled with the variational principle can,
I believe, deal with these kinds of systems, the problem is coming up with an
efficient algorithm for representing and optimizing the dividing surface that defines
a state. Very little work has been done on this so far. Is it timely now to give it
a try?

TL: I think that in some sense, AMD methods can be seen as a way to go beyond
the TST, especially parallel replica dynamics or parallel trajectory splicing. Indeed,
the decorrelation step is a way to check if first order kinetics can be applied to model
the exit event, and then, these algorithms do not require knowledge of the exit rates.
However, the efficiency in parallel replica is limited by the decorrelation time within
the state. Parallel trajectory splicing is a nice idea to overcome this problem, but
we need to think more about algorithms that are able to exploit massively parallel
machines.

AFV: Normand, Tony, and Hannes make good points. As discussed under
question 1, in my mind the main limitation of the methods is how hard it is to get
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good acceleration for systems with persistent low barriers. Although some progress
has been made on this front by various groups, I have been surprised by how difficult
this challenge has remained. Ever greater cleverness will be required.

Amplifying Normand’s point on the difficulty in using electronic structure forces,
although in principle AMD methods can be used as easily with an expensive first-
principles force call as it can with an empirical potential, in practice this may be
far from the truth. For electronic structure forces, it may take so much computer
time to advance the dynamics that the system will still be in its initial state when
the computer budget runs out. In this situation, while formally the boost factor may
be high, if the system has not yet jumped to a new state, the effective boost factor is
zero.

Question 3: Are there specific issues or challenges associated with applying
these methods as opposed to their development? What could be done to further
their widespread adoption?

GH: Echoing Normand’s point above, perhaps the most important challenge
associated with a more widespread application of accelerated methods is that they
cannot, at present, be used with standard DFT. There is an enormous community
of scientists using DFT to model dynamics in chemical and material science
applications, but we have not provided accelerated methods which are sufficiently
efficient to be used routinely with energies and forces from DFT. While current
methods can be based upon empirical potentials, for example as implemented
in parallel codes such as LAMMPS, there are a vanishingly small number of
applications for which we have accurate potentials as compared to those which can
be described by DFT.

Some of the problem, I believe, can be attributed to the electronic structure com-
munity, which puts a greater emphasis on the accuracy of each energy calculation
rather than an accurate sampling of configuration space. Recent developments of
surrogate models, including those based upon machine learning, have the potential
to change this bias if sampling could be done at a fraction of the cost of DFT.
Additionally, there is a potential application for more approximate methods which
can be used directly with DFT. Regardless of which direction the connection is
made, either more approximation and efficient methods or more approximate and
efficient potentials, providing tools in a form which can be used directly by the
community of people running DFT calculations is key to their widespread adoption.

TL: I have the feeling that one of the major difficulties when applying AMD
techniques in a general setting is the definition of good metastable states. It would
be great to be able to define automatically or adaptively (as the simulation runs)
good metastable states. These metastable states should be such that:

(I) The time to leave these states is much larger than the time to reach local
equilibrium (quasi-stationary distribution QSD), for a generic initial condition
obtained when entering the state.

(II) The discrepancy between the transition rates associated with these states is not
too large (otherwise the algorithm spends much of the time switching over low
barriers).
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(III) The states give a reasonable description of the macroscopic state of the system
(since the details of the dynamics within states are lost).

(IV) There is a way to estimate the convergence time to local equilibrium faithfully.

The list is rather long, but one could think of using modern statistical techniques
to extract from the trajectories “good” states. The fact that these states do not need
to define a partition of the state space could be used to make the construction easier.
This is very much related to discussions about choosing good reaction coordinated
or collective variables, which is obviously a difficult question, but the interest of
AMD methods is that even if some of the states are not really well chosen, the
methods can still give reliable results, e.g., with parallel replica dynamics.

AFV: I have been somewhat surprised that effective application of the AMD
methods seems to require serious dedication on the part of the user. In essence, the
user must become an expert; this takes time, and some users become discouraged
before reaching this stage. Further automation of the methods, as discussed above,
should help, and we may achieve this in the future, so that for a nonexpert user,
applying an AMD code could be a “turnkey” operation.

NM: In addition to the challenges already mentioned, with which I totally
agree, I would add that the current accelerated methods, based on high energy
barriers with respect to kBT, are restricted to solids well below melting. This is
a considerable limitation as it prevents us from looking at molecules in solvent,
including biomolecules, many catalytic and growth processes and a number of
other fundamental questions. Overcoming this limitation is not impossible but it
will require rethinking the approach and, more important, reworking TST.

HJ: Transition state theory actually works fine in cases where the free energy
barrier is mainly of entropic origin. The effusion through a hole in a cavity
is a nice example of how TST can give exact results even where there is no
energy barrier. What is missing, however, is an efficient implementation of full
TST where the dividing surface is systematically optimized (using the variational
principle) to obtain the free energy barrier and thereby the mechanism(s) of the
transition. But, I want to emphasize that I agree with all that has been written here
above.

Question 4: In developing or applying an approach, what are the best
practices you recommend?

HJ: The first rule is to have one or more test problems that are simple enough
or well enough established so that the answer that should be obtained from the
calculation is known. For example, when testing a method for estimating a transition
rate, choose a system where the energy barrier is low enough and the temperature
high enough that relatively long, but not too long, simulations of the dynamics
using basic equations of motion can be used for comparison. When finding saddle
points, use a test system where the energy surface can be visualized and the
search path illustrated. Also, when it comes to implementation of a previously
developed approach, do a calculation on a system that has been studied with the
method previously and where the performance has been documented. Here, the
web site OptBench.org is of great help. There, various benchmark problems have
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been documented and the performance of various methods reported by experts.
There are too many articles in the literature where performance of a method
is reported but the implementation is not optimal. It is important to compare
performance reported by those who developed or are knowledgeable about the
method.

The challenge in atomic scale simulations is typically the large number of degrees
of freedom. While a system with only a few degrees of freedom can be valuable to
test and illustrate a method, performance should not be measured with application
to such systems. A method that works well for a system with only a few degrees of
freedom may not work well for a realistic system with many degrees of freedom.
The opposite can also be the case. It is important to document performance on
challenging systems for which the method has been developed.

When documenting performance, it does not make sense to report CPU time.
Computers change rapidly and such information is quickly obsolete. Identify the
most computationally intensive operation and report the number of such operations
needed to reach the desired results from the simulation. In most simulations of
atomic scale systems, the evaluation of the energy and atomic forces is the most
computationally intensive operation. A natural measure of computational effort in
calculations of transition rate, identification of a reaction mechanism or a saddle
point search is the number of times the energy and force needs to be evaluated.

It is also important to keep focus on the ultimate goal of the calculation, not
intermediate steps. The question whether an approach is useful and how large the
computational effort is should be answered by evaluating the quantity of interest.

Performance in terms of computational effort is of course not the only criterion
for evaluating the appropriateness of a method. A method that is not reliable in that
the answer obtained cannot be trusted is not useful even if it is fast. The results
obtained using a fast method should be compared with results obtained using a
slower but safer method on a range of problems similar to the application of interest.

GH: The points raised, including the recommendations to compare new methods
to existing methods through benchmarks and the strategy of developing methods on
model system with known results and then demonstrating how well they work in
complex high dimensional systems are spot-on. Adopting these recommendations
as best practices would benefit the community of method developers and the people
who aim to apply the methods. An additional recommendation, which is gaining
traction in the community, is that computational methods that are developed in the
public domain should be made available in the form of open source code. There are
many details associated with computational methods which are not easily described
in publications. To make our methods transparent and our calculations reproducible,
other developers and users should be able to see the algorithms at the level of the
source code and reproduce published results and benchmarks directly from the code.
The adoption of an open-source policy for computational material science is, in my
opinion, encouraging collaboration in the field and facilitating the development of
computational frameworks that are larger than the scope of a single research group,
such as the Materials Project.
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Finally, I think that there is an opportunity in the field to consider how computa-
tional methods compare with respect to more than one objective. Taking the example
of modeling molecular dynamics over long timescales, for example, we have
efficient methods based upon harmonic transition state theory (e.g., temperature
accelerated dynamics and off-lattice kinetic Monte Carlo), which have the inherent
limitations associated with that approximation, and other methods for which the
harmonic approximation is relaxed (e.g., parallel replica dynamics and hyperdynam-
ics), that may have additional computational costs. What is not typically considered
is the pareto-optimal set of methods which can deliver the highest accuracy for
the minimum computational cost. In other words, the community of developers can
establish a set of tools which can most efficiently accelerate dynamics for a specified
level of accuracy. There is similar multiobjective optimization problem between the
accuracy of the energy and force evaluations (e.g., empirical potentials vs. density
functional theory) and the degree to which the energy landscape can be sampled.
Research groups that focus on the accuracy of electronic structure calculations can
neglect the potential importance of exploring the energy landscape. On the other
hand, a focus on highly accurate sampling will typically put little emphasis on
the accuracy of the potential landscape. A set of efficient methods for modeling
dynamics or sampling potential surfaces targeting a wide range of available sample
sizes would facilitate the use of methods such as accelerated dynamics for the large
community of scientists modeling systems of interest with density functional theory.

AFV: Graeme and Hannes have covered this well; I will add just a few general
points. As with any careful computational work (or any careful science for that
matter), one should always be on the lookout for indications that something is not
working correctly or not making sense. This is especially important for simulation
methods that are capable of giving results for timescales that cannot be reached
in any other way. For example, perhaps there is a nonlinearity that only causes
significant inaccuracy at very large boost factors, which means it might not show
up until the simulated timescales are beyond what can be checked with MD.

Although I think most readers of this chapter will already understand this, there
is a general principle I feel is important for developing any method of this type –
a method that is tied to an interatomic potential and that attempts to improve
the efficiency of the simulation of a physical, material, or chemical property.
When testing the method, the accuracy should be gauged by how well the method
reproduces accurate simulation results for that same interatomic potential, not an
experimental result. For long-time dynamics methods, the correct reference is direct
molecular dynamics, and the benchmark systems must be chosen with some care, as
MD may not be capable of directly reaching the long timescales (as Hannes pointed
out).

Finally, on this issue of common codes, while I agree that standard software
packages make development faster and easier than ever, one should absolutely not
be afraid of developing one’s own code from scratch. This can take longer, but
sometimes it opens possibilities for creativity in the development that would be
steered in a different direction, or inhibited, by using existing packages. Moreover,
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the developer typically gains a deeper understanding of the methodology by
proceeding in this way. And standard codes are not totally bug- or mistake-free, so
the developer may uncover such problems by having a redundant code with which
to compare, thereby doing the community a favor.

NM: Previous advice is excellent and I agree with all those. Developing methods
is a risky business. It is generally impossible to tell how well it will perform on
realistic systems before the method is in place. For a method to be useful, it has to
be beyond what is available, either by doing faster or allowing access to new regimes
of physics. This is why, I would also suggest that you make sure that the method that
you are developing can go beyond what other approaches can do by applying it, as
soon as possible, on nontrivial problems. So: yes, do check on simple systems that
can allow you to compare results with other approaches, but make sure that also
apply your algorithm to something nontrivial that demonstrate the interest of your
method; too many methods are demonstrated on simple well-understood systems
but have failed to produce any new significant physics.

It is also worth remembering that few computational physicists today write
extensive codes. Most will use standard packages and write analysis or extension
bits. If your algorithm has any degree of complexity, it is therefore essential that
you write a code that is portable and useable by others, if you want your approach
to gain exposure and have the impact you expect. This means that your code should
be easy to read, modular, and adaptable. Be aware of this requirement from the day
you start planning your software; this will decrease the time you will have to spend
getting your code ready for distribution.

TL: Let me make two points along those lines. First, I would like to mention here
that it is actually very difficult for nonspecialists to have access to test problems
which are simple enough to have reference values, but not considered overly simple
by the applied community. It would be very useful for the development of new
approaches to agree on a sequence of test problems with graded difficulty, where the
problem would be only a timescale problem (and not a modeling problem related
to the force field for example). Second, when very long timescales are reached,
weird results may be observed because of two reasons: (i) the algorithm gives
incorrect estimates or (ii) the model is incorrect. Concerning the second item, notice
indeed that many force fields have been parameterized and checked using only short-
timescales simulations: when looking at very long trajectories, one is thus visiting
unexplored territories. In such situations, it is very important to have rigorous ways
to assess the quality of the numerical results in order to distinguish between the two
sources of errors. This shows the importance of deriving certified error bounds for
such algorithms (which is indeed sometimes a challenge!).
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Abstract

Spanning over a wide range of length and time scales, magnetism is one of the
most fascinating states of matter and one that poses many challenges to theory.
Here we briefly review how different state-of-the-art approaches to the modeling
of the magnetic order interface with each other and provide a complete toolset
to explore this fascinating area of condensed matter theory. Methods include
accurate quantum-mechanical approaches, such as density functional theory both
in its static and dynamical version, atomistic spin dynamics tools, and continuum
models to be solved in a finite difference framework.

1 ModelingMagnetism

Magnetism is one of the most fascinating macroscopic orders of matter. It is deeply
rooted in quantum mechanics and spans over many different scales in time, space,
and energy (see Fig. 1). At its core magnetism is based on the m-J -κ paradigm.
The Hund’s coupling is responsible for the formation of the magnetic moment, m,
often localized close to the atomic nuclei. This is active in open shell ions; hence
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Fig. 1 Length, time and energy scales of magnetism. At the atomic level, the high-energy Hund’s
coupling is responsible for the formation of the local moments, which are then coupled to
each other through exchange interaction. Finally, magnetic anisotropy aligns the moment along
particular directions in space. The computational tools needed to explore and explain magnetism
range from quantum mechanics-rooted methods, such as density functional theory (DFT) and
Quantum Monte Carlo (QMC), to atomistic spin dynamics, and to effective theories allowing large-
scale coarse graining, such as the Landau-Lifshitz-Bloch (LLB) and the micromagnetic approach

m forms in 2p radicals, among the elements in the 3d period, in rare earths and
some 4d ions. Then the exchange interaction, J , makes the moments interacting
with each other. At the microscopic level, a large variety of mechanisms is active in
generating J at both sides of the metal/insulator boundary. These range from direct
exchange to ion-mediated mechanisms and to those where the magnetic interaction
is mediated by free electrons. Finally, the magnetic anisotropy, κ , is responsible for
the interplay between spatial and spin degrees of freedom and ties the local moment
to specific directions in space. The anisotropy, at the atomic level, is determined by
the spin-orbit coupling.

The interplay and competition among the different interactions participating to
the m-J -κ paradigm guide the formation of a multitude of magnetic orders. Locally
exchange and anisotropy contribute to establish an alignment among the local
moments, thus that often a microscopic order emerges. In simple cases, this can
have the same periodicity of the crystal unit cell, but most frequently the crystal and
magnetic cells are different. Then, classical magnetostatics imposes the formation
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of macroscopically ordered regions (domains), separated by others where the order
changes (domain walls). Symmetry breaking, for example through the presence of
a surface, introduces additional complexity. In general the exchange and anisotropy
get altered and, as a result, so does the macroscopic order.

Excitations of different energy can tip the various interactions and probe
magnetism over many time scales. Intense, femtosecond-long, laser pulses interact
directly with the electronic degrees of freedom (femtomagnetism). At this energy
and time scale, the Hund’s coupling, the exchange interaction, and the magneto-
crystalline anisotropy are all functions of time, and the short-time dynamics is
determined by their evolution. As time passes, the most energetic of the interactions,
the Hund’s coupling, returns m to its ground state value, meaning that the local
moment recovers first. The dynamics is then determined by electronic currents
interacting with local spins via exchange interaction. The same dynamics can also be
engineered by passing spin-polarized electrical currents through magnets of various
order. This is the realm of spin-transfer-torque devices. Now the exchange and the
anisotropy are perturbed, and the magnetic order can be manipulated, both locally
and globally. The energy scale of this phenomena is lower than that needed to alter
the local moment, and the typical times vary between picoseconds and nanoseconds.
In the slower limit of this range operates magnetic data storage technologies. Finally,
when the dynamics is governed by macroscopic domain walls motion, magnetism
slows down further, the exchange interaction becomes constant, and the time scale
may approach the macroscopic range.

It is then clear that magnetism is both an atomic and a macroscopic phenomenon,
and as such, it necessitates computational tools spanning a broad range of time and
length scales. This chapter wishes to provide a map of the theoretical methodologies
used to date to describe and understand the magnetic interaction.

At the atomic level, density functional theory (DFT) is usually the theory of
choice, since it can describe all the interactions on the same footing and does not
require any parameters from experiments. DFT for magnetism will be reviewed in
�Chap. 42, “Density Functional Theory for Magnetism and Magnetic Anisotropy”
by Bihlmayer, while Friedrich, Müller, and Bluegel in �Chap. 43, “Spin Excitations
in Solid from Many-Body Perturbation Theory” will present how it can be applied
to the description of magnetic excitations. Beyond-DFT methods usually require
computational resources significantly larger than DFT itself. However, in some
cases, they provide a more accurate description of both the moment formation and
the exchange. Recent progress in Monte Carlo technique for d and f ions will be
reviewed by Wagner in �Chap. 46, “Quantum Monte Carlo for Electronic Systems
Containing d and f Electrons”. Finally, the DFT description of magnetism can be
extended to time-dependent phenomena, as discussed by Elliott and co-workers in
�Chap. 40, “Time-Dependent Density Functional Theory for Spin Dynamics”, and
to open systems in the presence of a steady-state current, as described by Rungger
and collaborators in �Chap. 44, “Non-equilibrium Green’s Function Methods for
Spin Transport and Dynamics”.

The next level of description is obtained by neglecting an explicit description
of the electronic degrees of freedom. Namely, one can represent a magnet by
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using local spins of constant magnitude associated to each atom. This provides
an atomistic view of spin phenomena, at a course-graining scale analogous to
that used in classical molecular dynamics for the ionic motion. These methods,
reviewed by Ma and Dudarev in �Chap. 47, “Atomistic Spin-Lattice Dynamics”,
can describe magnetic phase transitions for systems including up to several millions
atoms and require parameters extracted either from experiments or from DFT
calculations. Intriguingly, the interplay between the spin and the vibrational degrees
of freedom can be described on the same footing. One can then integrate the
dynamics over larger regions of space and move to a continuous description. This is
the domain of micromagnetic methods, which allow to reach time and length scales
approaching the macroscopic limit. The foundation of micromagnetic theory and
and its connection to spintronics are discussed by Abert in �Chap. 45, “Spintronics
in Micromagnetics”. In its most conventional form, only the transverse component
of the magnetization can vary, while its longitudinal part is constant. However,
a formalism based on the Landau-Lifshitz-Bloch equations allows to go beyond
this approximation. Such range of methods is presented by Chubykalo-Fesenko
and Nieves in �Chap. 41, “Landau-Lifshitz-Bloch Approach for Magnetization
Dynamics Close to Phase Transition”.

2 Conclusion

We have briefly reviewed the state of the art in the modeling of the magnetic
order both in the static and time-dependent domains. This develops over a range
of computational schemes capable of bridging many length and time scales. In
particular we have discussed the approximations that allow one to connect the
various levels of theory, where a progressively smaller number of degrees of
freedom are treated explicitly. Such a body of work gives us a complete toolset
to tackle this fascinating area of materials science.
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Abstract

With the development of ultrashort sub-picosecond laser pulses, the last two
decades have witnessed the emergence of a new field of magnetism, namely,
femtomagnetism. This consists of controlling the magnetic interactions by using
purely optical stimuli at sub-picosecond timescales, where both the exchange
interaction and the magnetic anisotropy cannot be considered constant. The
modeling of such phenomena is at present populated by semiempirical theories,
which heavily rely on assumptions about the dominant interactions responsible
for the dynamics and the system intrinsic properties (e.g., the conductivity).
However, in the last few years, there have been a few attempts to look at
the problem from a purely ab initio point of view, namely, by using time-
dependent density functional theory. Here we will review the progress in this
field and show how a theory not biased by assumptions can shed light into the
fundamental aspects of the laser-induced magnetization dynamics. In particular
we will discuss the ultrafast demagnetization of transition metals both in their
cluster and bulk form and the possibility of spin transfer between sublattices in
compounds containing magnetic ions. The chapter is also complemented by a
short review of time-dependent spin density functional theory in the context of
spin dynamics.

1 Introduction

In 1996 it was first demonstrated that an intense laser pulse could generate ultrafast
light-induced demagnetization (in Ni), with typical demagnetization times faster
than a few picoseconds (Beaurepaire et al. 1996). Recently, these spin-manipulation
times have been reduced to a few femtoseconds, owing to the great advances made
in the production of short-time laser pulses. As the control of spin moments by light
may strongly impact several technological applications such as magnetic storage,
spintronics, all-optical switching, heat-assisted magnetic recording, just to name a
few, the field of femtomagnetism has recently become intensively active. To date
several experimental methods are available to study magnetism at high speed. These
include THz emission (Kampfrath et al. 2011; Walowski and Münzenberg 2016),
time-resolved X-ray circular dichroism (Stamm et al. 2007; Boeglin et al. 2010),
and high harmonic generation (La-O-Vorakiat et al. 2009).

Femtomagnetism has two ultimate goals: (i) to understand the physics of light-
induced spin dynamics and, on this basis, (ii) to manipulate the spin in a fully
controlled manner using designed materials and/or tailored laser pulses. However,
a complete understanding of the underlying physics of light-induced spin dynamics
is hard to reach. In fact, since there is not strong direct coupling between light
and spins, laser-induced spin dynamics is an indirect phenomenon, driven by spin-
charge and spin-lattice interactions. A variety of distinct and simultaneous physical
mechanisms thus underpins the observed magnetization dynamics. Some of these,
such as interatomic spin transfer or spin-flips, begin early after the laser pulse,
while other processes such as spin canting, spin currents (spin diffusion), or spin-
lattice-induced spin-flips make significant contributions only at a later time (Fig. 1).
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Fig. 1 Comparison of timescales for sub-nanosecond physical phenomena, where we have also
included the characteristic times for time-dependent molecular and electronic dynamics

Disentangling these processes and identifying the relevant timescales are among the
first outstanding challenges of this field.

2 Models of Ultrafast Spin Dynamics

There have been several distinct attempts at explaining optically induced spin
dynamics. At the thermodynamical level, three-temperature models (3TMs), which
assume the ultrafast demagnetization to be a thermal process, are widely used
(Beaurepaire et al. 1996). For times earlier than picoseconds, the magnetic system
cannot be considered in thermal equilibrium with electrons and phonons. The laser-
induced initial hot electron distribution initiates spin dynamics, which is driven by
a spin temperature different from the electronic and lattice ones. Thus the electronic
and lattice degrees of freedom act as energy reservoirs for the spin system. From a
practical point of view, one solves three coupled differential equations representing
the electronic, spin, and lattice dynamics. The demagnetization then crucially
depends upon the coupling strengths between the three subsystems, coupling
strengths that remain free parameters. Fitting is performed against experimental data
usually with good success (Vodungbo et al. 2012; Ostler et al. 2012).

At the dynamical level, there is a vast range of approaches depending on the
material type and conditions. These include lattice models using the Landau-
Lifshitz-Gilbert equation with effective magnetic fields and damping parame-
ters (Kazantseva et al. 2008) and direct spin-photon interaction models derived from
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a lower-order nonrelativistic expansion of the Dirac Hamiltonian (Hinschberger and
Hervieux 2012; Jean-Yves Bigot and Beaurepaire 2009). This type of description
usually neglects many-body electron-electron interactions by assuming that during
the application of the laser pulse, the demagnetization process occurs through the
interplay between the spin-laser and spin-orbit interactions.

When electron transport takes place, the Elliott-Yafet mechanism describes
scattering-induced spin-flips (Koopmans et al. 2010) modulated by phonons, which
may lead to a global momentum loss. The speed of such demagnetization process
is, however, bound to the slow lattice dynamics and hence cannot be used to explain
early-femtosecond (∼10–20 fs) demagnetization. The super-diffusive spin-transport
mechanism (Battiato et al. 2010) instead completely neglects spin-orbit coupling
(SOC) and relies on spins diffusing away and thus causing a local reduction in
the material moment. These assumptions are controversial, and the literature is
populated by experimental results confirming them (Vodungbo et al. 2012) and
others contesting their validity (Schellekens et al. 2013).

3 Why Time-Dependent Spin Density Functional Theory?

Given the wide range of theoretical approaches and the uncertainty over their
assumptions and range of validity, it is desirable to look into an ab initio method
to describe ultrafast spin dynamics. Time-dependent density functional theory
(TDDFT) is an in-principle exact approach for calculating electron, and thus
spin, dynamics induced by external fields. It builds on ground-state (GS) density
functional theory and has been successfully applied in the linear-response regime.
We will first review the basic foundations of TDDFT before detailing several recent
applications of TDDFT to spin dynamics. For simplicity we will introduce TDDFT
for the spin-unpolarized case and use atomic units throughout unless otherwise
specified.

3.1 Basic TDDFT Concepts

We begin with the nonrelativistic time-dependent Schrödinger equation:

i
∂

∂t
Ψ (r1, r2 . . . rN, t) = Ĥ (t)Ψ (r1, r2 . . . rN, t), Ψ (t0) given, (1)

which governs the dynamics of N electrons, starting from a given initial state,
Ψ (t0), and under the influence of a time-dependent Hamiltonian, Ĥ (t). In the spatial
representation, the Hamiltonian is written as

Ĥ (t) =
N∑

i=1

[
−1

2
∇2

i + vext(ri , t)
]
+ 1

2

N∑

i �=j

1

|ri − rj | , (2)
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where the first term is the kinetic energy, the last is the electron-electron interaction,
and vext(r, t) is the time-dependent external potential, which contains both the
electron-nuclear interaction and any external electric fields (e.g., a laser pulse). The
time-dependent one-electron density is defined as

n(r, t) = N

ż

d3r2 . . .

ż

d3rN |Ψ (r, r2, . . . rN, t)|2 . (3)

TDDFT is based on the Runge-Gross (RG) theorem (Runge and Gross 1984),
which proves that the knowledge of n(r, t), rather than the full wavefunction, is
sufficient to determine all the observables of the system. The RG theorem states
that, if two time-dependent Taylor-expandable (around the initial time t0) external
potentials, vext(r, t) and v′ext(r, t), differ by more than a purely time-dependent
function, then the associated time-dependent densities, n(r, t) and n′(r, t), evolving
from a common initial state, must be different. In other words, there is a one-
to-one mapping between the density and the external potential and hence all the
observables.

The proof of the RG theorem is split into two parts. First we consider the
difference Δj(r, t) = j(r, t) − j′(r, t) between two current densities evolving
in the potentials vext(r, t) and v′ext(r, t), respectively. The time evolution of this
difference is

∂Δj(r, t)
∂t

∣∣∣∣
t=0

= −n0(r)∇Δvext(r, 0) , (4)

where Δvext(r, 0) = vext(r, 0)− v′ext(r, 0) and n0(r) is the initial density (which is
the same for both systems due to the common initial wavefunction). Equation (4)
was derived by inserting the paramagnetic current density operator:

ĵp(r) = 1

2i

N∑

j=1

[∇j δ(r− rj )+ δ(r− rj )∇j

]
, (5)

into the Heisenberg equation of motion. At this point, we make use of the restriction
to the class of external potential, which are Taylor expandable around the initial
time, t0, namely:

vext(r, t) =
∞∑

j=0

1

j !vj (r)(t − t0)
j , (6)

where vj (r) are the Taylor coefficients of this expansion. If vext(r, t) and v′ext(r, t)
differ by more than a time-dependent constant, then there must be some order, k, at
which the Taylor expansion coefficient of Δvext(r, t) is not a constant
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uk(r)− u′k(r) =
∂k

∂tk

[
vext(r, t)− v′ext(r, t)

]∣∣∣∣
t=t0

�= constant . (7)

Thus, if we take k additional time derivatives of Eq. (4), we can see that the time
evolution of the two current densities must be different. This establishes the one-to-
one correspondence between external potential and the current density. The second
step of the RG proof utilizes the continuity equation:

∂n(r, t)
∂t

= −∇ · j(r, t) , (8)

along with Eq. (4) to relate the charge density to the external potential and prove
that the mapping between them is unique. Thus we can write vext[n,Ψ0](r, t), i.e.,
the external potential is a functional of the density and the initial wavefunction.

We can also apply the RG theorem to a noninteracting system, referred to
as the Kohn-Sham (KS) system. There is then a potential, vS[n,Φ0](r, t), such
that the evolution of noninteracting fermions in this potential reproduces the
exact time-dependent density. This requires various assumptions about the N - and
v-representability of the density and potential, a discussion that is beyond the
scope of this review, but can be explored in van Leeuwen (1999), Li and Ullrich
(2008), and Ruggenthaler and van Leeuwen (2011). The time-dependent Kohn-
Sham equations are

i
∂φj (r, t)

∂t
=
[
−∇

2

2
+ v0(r, t)+ vH[n](r, t)+ vxc[n](r, t)

]
φj (r, t) , (9)

where φj (r, t) denotes the single-particle Kohn-Sham orbitals. The density is given
by:

n(r, t) =
N/2∑

j=1

∣∣φj (r, t)
∣∣2 , (10)

and the Hartree potential is

vH[n](r, t) =
ż

d3r ′ n(r
′, t)

|r− r′| . (11)

The exchange-correlation (XC) potential, vXC, is defined as

vxc[n,Ψ0, Φ0](r, t) ≡ vs [n,Φ0] (r, t)− vext [n,Ψ0] (r, t)− vH[n](r, t) (12)

and has a functional dependence on the density of the system at the current and at all
previous times, as well as the initial interacting and noninteracting wavefunctions.
These initial states need not be the GS or an eigenstate of the initial potential,



40 Time-Dependent Density Functional Theory for Spin Dynamics 847

vext(r, t0). However, if we start from the GS, then all initial-state dependence is
subsumed into the initial density due to the Hohenberg-Kohn theorem (Hohenberg
and Kohn 1964). In practice, the XC potential must be approximated, with the most
commonly used being the adiabatic approximation. This simply inserts the density
at each time into a ground-state DFT XC functional.

3.2 TDSDFT for Ultrafast Spin Dynamics

TDDFT can be extended to include the electron spin degree of freedom and its
interaction with an external magnetic field, Bext(r, t), via the Zeeman interaction.
Hence, in addition to the exact density n(r, t), TD spin DFT (TDSDFT) will also
reproduce the exact magnetization (or spin) density, m(r, t) = Tr

[
ρ̂(r, t)σ

]
, where

ρ̂ is the single-particle density matrix, i.e., n(r, t) = Tr
[
ρ̂(r, t)

]
, and σ is the vector

of Pauli matrices. The TD-KS equations become (from Eq. (9)):

i
∂φj (r, t)

∂t
=

[
1

2

(
−i∇ + 1

c
Aext(t)

)2

+ vS(r, t)+ 1

2c
σ · Bs(r, t)

+ 1

4c2 σ · (∇vs(r, t)×−i∇)

]
φj (r, t) , (13)

where BS(r, t) = Bext(r, t) + BXC(r, t) is the KS effective magnetic field and BXC

is the XC magnetic field, which may be approximated for non-collinear systems
according to the method of Kübler (Kubler et al. 1988). In Eq. (13), the external
laser field is written as a purely time-dependent vector potential, Aext(t). If gauge
transformed to the length gauge, it recovers the dipole approximation to the electric
field of a laser. This form is necessary for periodic systems so that the Hamiltonian
retains lattice periodicity. The last term of Eq. (13) is the SOC. If we assume vS(r, t)
to be spherically symmetric around each atom, then this term reduces locally to
the more familiar form, ξ(r) L̂e · Ŝ, where L̂e is the electronic angular momentum
operator, Ŝ = 1/2σ̂ is the spin operator, and ξ(r) = ∂rvS(r)/2c2r . SOC typically
provides small contributions to the GS energy, but, as we will see, it has dramatic
effect on the dynamics.

3.2.1 Spin Continuity Equation
A spin continuity equation for the local magnetization density can be derived using
the Heisenberg equation of motion (EOM) along with the Hamiltonian in Eq. (13):

d

dt
m(r, t) = −∇· ↔JS (r, t)+ 1

2c
m(r, t)× Bs(r, t)+ 1

4c2 〈(∇vs(r)×−i∇)× σ̂ 〉
(14)

where the first term on the right-hand side represents the spin current divergence of
the noninteracting Kohn-Sham system. Here we defined the spin current operator

to be
↔
ĴS (r, t) = σ̂ ⊗ ĵ or, equivalently, ĵν = σ̂ν ĵ, where ν = {x, y, z} and
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ĵ(r, t) = ĵp(r)+ n̂(r)Aext(t)/c is the usual current density operator (which includes
a diamagnetic term in order to be gauge invariant). The middle term is a precessional
term due to the effective KS magnetic field, and the last term is the magnetization
torque due to SOC.

We may integrate Eq. (14) to find the equation of motion for the global spin
moment, M(t) = ş

d3r m(r, t). After some algebra and in the absence of an
external magnetic field, one can write:

∂

∂t
M(t) = 1

2c2

ż

d3r

⎡

⎣
x̂

ŷ

ẑ

⎤

⎦ ×
⎡

⎣
∇vs(r, t)× jx(r, t)
∇vs(r, t)× jy(r, t)
∇vs(r, t)× jz(r, t)

⎤

⎦ , (15)

where we used Gauss’ theorem and the TDSDFT zero-torque theorem (Capelle
et al. 2001). Equation (15) demonstrates that only SOC can change the global spin
moment.

4 Ultrafast Demagnetization of Small Magnetic Clusters

We will now review some of the results obtained with TDSDFT towards the
understanding of ultrafast spin dynamics by starting from transition-metal clusters
and then moving to bulk magnets. TDSDFT simulations have shown that, similarly
to ferromagnetic films, a number of small iron clusters (i.e., Fe2, Fe4 and Fe6)
demagnetize rapidly when excited by a strong electric field pulse a few femtosecond
long (Stamenova et al. 2016). The real-time evolution of the system described by
TDSDFT simulations allows one to gain unparalleled microscopical insights into the
physical processes, driving the ultrafast dissipation of spin angular momentum. It is
understood that, in the absence of direct light-to-spin coupling, the demagnetization
onset is triggered by the electronic charge response to the electric field component
of the laser pulse. A more transparent microscopic interpretation of the observed
first-principles spin dynamics can be sought in the spin continuity equation, which
in turn leads to a set of coupled magnetohydrodynamical equations (Simoni et al.
2017). This will allow us to understand the demagnetization process through the
following mechanism: the charge and spin currents generated by the electric pulse
in the magnetic media give rise to an effective magnetic field that, in combination
with the SOC, facilitates spin-flip and a global spin decay. We will elaborate on this
picture bellow.

4.1 TDSDFT Simulations

The TDSDFT platform of choice is the OCTOPUS code (Castro et al. 2006), which
uses a real-space representation of the wavefunctions and is particularly suited
for an accurate treatment of small atomistic systems and shaped time-dependent
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Fig. 2 (a) A typical pulse used in the TDSDFT simulation and isosurface snapshots of the spin
density variation with respect to the GS at given times after the initiation of the pulse for two
different directions of the electric field relative to the cluster geometry. Red and blue isosurfaces
correspond, respectively, to positive and negative variation of the same magnitude with respect to
the GS spin density. (b) The evolution of the net spin of the cluster for the two directions of the
electric field

excitations. SOC is included at the level of pseudopotential, vPP(r), i.e., it is part of
the KS potential, v0(r), of Eq. (9):

vPP(r) =
∑

I

∑

l

l∑

m=−l

(
V̄ ion
l (r)+ 1

4
V SO
l (r)+ αV SO

l (r)L̂I · Ŝ
)
|l, m〉 〈l, m| ,

(16)
where Ŝ is the spin operator, L̂I is the angular momentum operator associated to the
atomic center “I ,” while the scalar part of the pseudopotential, V̄ ion

l (r), includes the
effect of the mass shift and the Darwin term. Here V SO

l (r) defines the range of the
SOC term, and α is a scaling parameter used to enhance/reduce the contribution
of the SOC from the regular value α = 1. In the following the adiabatic local
spin density approximation (ALSDA) to the XC functional has been used with the
Perdew and Wang parameterization.

Any TDSDFT simulation starts with a GS SDFT calculation. We then consider
a strong bipolar pulse of an homogeneous electric field as illustrated in Fig. 2a and
applied as per Eq. (13) in length gauge. In the case of Fe6, which has the shape of an
(almost) square-based bipyramid (Gutsev and Beuschlicher 2003), the direction of
the electric field with respect to the cluster affects the net demagnetization process.
The snapshots from such TDSDFT simulations, presented in Fig. 2, highlight the
local variation of the spin density of Fe6 for two pulses differing only by the E-field
direction. It is clear that at the pulse onset, there is charge transfer, accompanied by
spin transfer (as the cluster is spin-polarized), in the direction of the electric field.
Soon after that a spin decay for the entire cluster is established (the predominant
color in the plots is blue). For both field directions, this results in demagnetization,
which continues long after the pulse has died out (Fig. 2b). For Fe6 the effect is
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Fig. 3 Comparison of the absolute (a) and relative (i.e., per unpaired electron in the cluster) (b)
demagnetization in three Fe clusters: Fe2, Fe4, and Fe6. Panels (c) and (d) show the evolution of
the total spin of the cluster (black curve) compared to the local spin, integrated over spheres of
radius rsph = 0.5 Å (red curves) centered at the atoms (see text) and the difference of the latter.
Panels (e) and (f) display a comparison of average local spins for the two pairs of atoms in the
plane along the direction of the pulse (x-axis) for Fe4 and Fe6, respectively

very anisotropic with the cluster demagnetizing more when the E-field is along the
shortest bond in the basal plane. This anisotropy is an indication of the crucial rôle
played by the SOC in the spin dissipation. Indeed, switching off the SOC (setting
α = 0 in Eq. (16)) results in net spin conservation during and following the optical
excitation.

A further observation is that clusters of different sizes demagnetize at different
rates for the same pulse, as shown in Fig. 3. In fact, the Fe2, Fe4, and Fe6 clusters
investigated also represent atomic structures of increasing dimensionality: going
from linear (Fe2) to planar (Fe4) to full three dimensional (Fe6). All structures,
simulated in large ideally-reflecting cuboid simulation boxes, show ultrafast demag-
netization, namely, a decrease of the total spin, Sz

tot(t) =
ş

d3r mz(r, t), when excited
by a fs E-field pulse along a non-zero dimension (i.e., for Fe2 along the bond and
for Fe4 in the cluster plane). Interestingly, the long-term rate of demagnetization
increases with the cluster size (see Fig. 3a) which is suggestive of a nonlocal
mechanism (see Eq. 15). However, in the early times after the pulse, the TDSDFT
simulations show very similar relative demagnetization rate in all three clusters. This
is an indication of a common demagnetization onset mechanism, and it corroborates
the key rôle played by the SOC close to the Fe nuclei.

A spatial analysis of the spin density evolution shows that after the pulse, nearly
all the spin drop takes place in the vicinity of the atomic centers (see Fig. 3c, d) for



40 Time-Dependent Density Functional Theory for Spin Dynamics 851

Fig. 4 Time evolution of (a) the total spin, (b) the total TDSDFT energy, and (c) the total KS
orbital momentum, defined as Lz

tot(t) =
ş

d3r Lz
KS(r, t) for the Fe6 cluster excited by pulses of

different shapes (see inset of panel (a) with the corresponding color code). (Figure adapted from
Stamenova et al. 2016)

both Fe4 and Fe6. We define local atom-based spin as the integral of the spin density,
m(r, t), inside a sphere Σi centered on the i-th nucleus, Si

loc(t) =
ş

Σi
d3r m(r, t).

The total local spin is obtained by summing up over all atomic centers i. During
the pulse it appears that spin and charge rapidly spill out from the atomic centers
and occupy the interatomic regions. This is not accompanied by a total (net) spin
variation as practically no spin flipping occurs during this ultrafast excitation stage.
After this the spin starts to decay, and all the SOC-driven spin-flip events take place
in the vicinity of the atomic cores. The bipolar pulse excites a coherent antiphase
oscillation of the local spins along the direction of the pulse, which persists as all
local spins continue to decay (see Fig. 3e, f). The very high frequency oscillations
of the local spin quantities in Fig. 3 are due to sloshing spin currents and include
some minor numerical noise from the spatial integration.

The demagnetization rate depends strongly also on the shape and amplitude of
the pulse, as shown in Fig. 4. A small unipolar pulse is shown to generate very
little demagnetization (even exhibiting time intervals of small total momentum
enhancement), while bipolar pulses of increasing amplitude tend to demagnetize
the cluster more. After the pulse, the total TDSDFT energy reaches a new higher
value, which is kept constant for the rest of the simulation. This means that the
cluster remains in an excited state, since there is no energy dissipation mechanism
in the method. However, unlike the total energy, the total angular momentum is
not a constant of motion after the pulse. Figure 4d shows the rapidly oscillating
total orbital momentum of the cluster, defined as Ltot =

ş

d3r r × p. This does
not mirror the smooth decay of the total spin. The reason for that lies in the
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rotational symmetry breaking due to the superimposed ionic potentials of the six
frozen atom cores. What is seen after the pulse is a transfer of spin into the orbital
angular momentum, which in turn is not conserved and develops high frequency
oscillations due to the elastic scattering of the excited electrons onto the immobile
atomic cores. Note that the lack of total angular momentum conservation of the
valence electron subsystem is physical and it stems from their interaction with the
lattice. The TDSDFT simulations are aimed at describing the early stages of the
demagnetization process, when other relaxation mechanisms (e.g., phonons) can be
ignored.

4.2 Hydrodynamical Formulation of the Spin Continuity
Equation

In order to understand the dynamics better, it is useful to rewrite the continuity
equation, Eq. (14), in terms of the following set of hydrodynamical variables:

μ(r, t) ≡ m(r, t)
n(r, t)

and v(r, t) ≡ jp(r, t)
n(r, t)

, (17)

leading to:

D

Dt
m(r, t)+

∑

i

∇ · vi (r, t)mi (r, t) =

= ∇ ·D(r, t)+ 1

2c
m(r, t)× Beff(r, t)+ 1

4c2
〈(∇vs(r, t)×−i∇)× σ̂ 〉 (18)

where vi (r, t) and mi (r, t) are the velocity field and the magnetization density
associated to the single KS state ψKS

i (r, t) and ∇ · D(r, t) is a new spin current
flux term. Now, in addition to the spin-orbit, we have a torque due to the effective
magnetic field:

Beff(r, t) = Bs(r, t)+ 1

F̄

[∇n · ∇μ

n
+ ∇2μ

]
, (19)

where F̄ = 〈ψKS
i (r,t)∗ψKS

i 〉
n(r,t) defines an average occupation number of the KS states.

This effective field is responsible for generating a torque upon the magnetization
vector as we will see in the next sections. Furthermore it has been shown (see
Simoni et al. 2017 for details) that the spin current divergence also contributes to the
magnetization torque following an ultrafast optical excitation. It locally increases
spin non-collinearity and enables the SOC to dissipate spins more effectively in
the orbital momentum channel. Note that globally the total spin deflection from the
quantization axis, z, in these simulations is negligible.



40 Time-Dependent Density Functional Theory for Spin Dynamics 853

4.3 Identifying the Role of the Spin-Orbit Interaction

In order to quantify the effect of the SOC in the early stage of the demagnetization
process, we have investigated the spin dynamics for different values of the scaling
factor α (see Eq. (16)). Depicted in Fig. 5 is the effect on the global spin variation
trajectory from tuning α between 0 and 4. Clearly, the spin loss rate is strongly
affected by the SOC strength with the limit of α = 0 (no SOC), resulting in global
spin conservation. In panel (b) we have plotted the same spin trajectories after
removing their GS offset and scaling them by a factor 1/α2. The overlap of the
curves demonstrates that in the initial coherent stage, the spin-decay rate scales as
the square of the SOC strength.

Since a SOC scaling factor is just a theoretical tool, a number of different atomic
species have been also considered. In response to the same laser pulse, clusters
geometrically identical to Fe6 (Gutsev and Beuschlicher 2003) but composed of Co
and Ni (although this is not their GS geometry, it is chosen as to exclude structural
factors from the comparison.) demagnetize at different rates, as shown in Fig. 5. We
quantify their ionic SOC strength as

λeff =
∑

l∈occ.

nl

ntot

ż

V SO
l (r)R2

l (r)d
3r , (20)

Fig. 5 (a) Evolution of global spin expectation value for different values of the factor α =
0, 1, 2, 4 scaling the SOC term in Eq. (16). (b) Same as in panel (a) but having the GS spin
subtracted and a multiplication factor η = (αmax/α)

2. (c) TDSDFT trajectories of the variation
of Sz

tot(t) with respect of the GS spin for three different clusters: Fe6, Ni6, and Co6 (all sharing the
same Fe6 geometry) fitted to y = A(t − t0)

2 + A0 (dashed curves). (d) The fitting coefficients A

from panel (c) versus the effective atomic SOC from Eq. (20) for each material. (Figure adapted
from Stamenova et al. 2016)
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where nl are the KS state occupations with l spanning the valence states (in this
case 3s, 3p, 3d, and 4s), ntot = ∑

l∈occ. nl , Rl(r) are the radial pseudo-atomic

wavefunctions, and V SO
l (r) = 2l

2l+1

[
V

l+1/2
PP (r)− V

l−1/2
PP (r)

]
is the same object

as in Eq. 16. Those are all obtained from LSDA calculations for isolated atoms. By
fitting the first few femtoseconds of the demagnetization curve to a quadratic time
decay Sz(t) ∝ A(t − t0)

2 with t0 in the rise of the laser pulse (around 1.5 fs), we
extract the demagnetization rate A for each of the three different clusters. Such
extracted demagnetization rates show a systematic (quasi-linear) dependence on
their ionic SOC strength λ2

eff (see Fig. 5c).

4.4 Simple Model

A minimal model involving SOC and resulting in a local variation of the spin
expectation value is described by Stamenova et al. (2016):

Ĥ (t) = λL̂ · Ŝ+ Beff(t) · Ŝ , (21)

where Beff(t) represents a generic time-dependent magnetic field, Ŝ is the spin
operator, and L̂ is the orbital momentum operator. This model is designed to mimic
the local TDSDFT spin dynamics at a given spatial point, but it does not reproduce
the full ab initio simulations in all their features.

By solving the model for a simple two-level system, we observe that a temporal
change of the magnetic field, Beff(t), combined with finite SOC leads to the transfer
of part of the spin expectation value into the orbital momentum channel more
efficiently than when Beff is constant. The amount of spin lost after the action of
Beff(t) is not the same for different SOC coefficients λ, and, in particular, higher λ

values lead to faster momentum transfers, i.e., faster spin decays.
A numerical integration of the Schrödinger equation with the Hamiltonian of

Eq. (21) in the case of no SOC (i.e., λ = 0) returns, as expected, no observable spin
dynamics, if the effective magnetic field Beff(t) stays parallel to the spin expectation

value
〈
Ŝ
〉
. In contrast, when λ �= 0 and the initial state has not the maximum or

minimum jz = lz + sz, a steplike variation of Beff(t) produces a sharp variation in

the spin expectation value
〈
Ŝz

〉
(see Fig. 6). In particular, for an initial spin-up state

(sz = 1/2), we observe a decrease of
〈
Ŝz

〉
after the drop of |Beff(t)|, while an initial

spin-down state (sz = −1/2) results in an increase of the spin expectation value.
This simple model demonstrates that a change in the magnetic field Beff(t),

combined with SOC, leads to a transfer of part of the spin expectation value into
the orbital momentum more efficiently than when Beff(t) = 0. Figure 6b further
reveals that the amount of spin lost after the action of Beff(t) depends strongly on
the value of the SOC coefficient λ. In particular, larger values of λ lead to faster
spin-decay rates. Furthermore, it can be established numerically (and analytically,
see Stamenova et al. (2016)) that there is a quadratic dependence of the spin-decay
rate on the SOC strength (see Fig. 6c).
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Fig. 6 Trajectories of
〈
Ŝz

〉
under the action of the Hamiltonian of Eq. (21) in the case of (a) having

an initial spin-up or spin-down state, (b) for different values of a multiplicative factor α to the SOC
(λ→ αλ) and for an initial spin-up state, (c) the trajectories rescaled by a factor 1/α2. The shaded
area describes the temporal profile of the applied magnetic field [0, 0, Beff(t)]. The initial orbital
configuration is a linear combination of lz = 0, 1 states. (Figure adapted from Stamenova et al.
2016)

The insights drawn from the simple model map out a possible interpretation for
the ultrafast demagnetization observed in the TDSDFT simulations. An effective
magnetic field provides the connection between the light pulse and the spin
dynamics. This is Beff(r, t), identified in Eq. (19). Such field is directly coupled
to the spin density and dependents on the density gradients and hence couples
the spins with the laser-induced charge dynamics. In order to show that Beff(r, t)
initiates the spin demagnetization, as suggested by the simple model, we compare
the variation of the spin density in the (x−y) plane for the Fe6 cluster averaged over
the simulation time and the axial direction (see Fig. 7). Together with highlighting
the localized character of the demagnetization effect in small areas close to nuclei,
Fig. 7 also shows the spatial correlation between regions of high spin loss with
regions of high Beff variation.

5 Ultrafast Spin Dynamics in Bulk Materials

TDSDFT simulations may also be performed for bulk systems using the formulation
of Eq. (13), which has been implemented in the all-electron electronic structure
code ELK elk.sourceforge.net for two-component Pauli spinors, allowing
systems with non-collinear magnetism to be simulated.

The ELK basis set consists of linearized augmented plane waves (LAPW). These
decompose the system into so-called muffin-tin regions centered on each atom and
the interstitial region (IR) in between them. The calculations discussed below used
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Fig. 7 Contour plots of computed observables averaged in time (entire simulation of 30 fs) and
along the z-direction (perpendicular to the page and only within the marked spheres of radius
0.85 Å around each atom). Here we present the variation from the GS values for (a) the spin
density Sz(r) and (b) the effective magnetic field Bz

eff(t). (Figure adapted from Stamenova et al.
2016)

a 8× 8× 8 k-points grid and a timestep Δt = 0.1 au. Further computational details
can be found in references Krieger et al. (2015); Elliott et al. (2016a, b). In all cases
we begin the simulation from the GS with the global spin moment parallel to the
z-axis.

We will discuss in detail two forms of spin dynamics observed in bulk systems,
namely, ultrafast demagnetization and ultrafast spin transfer between sublattices.

5.1 Ultrafast Demagnetization of Bulk Materials

The first experimental observation of ultrafast demagnetization consisted in measur-
ing the rotation of the light polarization reflected by bulk Ni [magneto-optical Kerr
effect (MOKE)] (Beaurepaire et al. 1996; Hohlfeld et al. 1997; Scholl et al. 1997;
Koopmans et al. 2000). Such change in the MOKE signal, induced by a strong laser
pulse, was found to take place in under 100 fs. Since then, subsequent experiments
have found changes as fast as 10 s of fs and have been observed also in bulk Fe
(Carpene et al. 2008; La-O-Vorakiat et al. 2009), Co (Cinchetti et al. 2006), and Gd
(Lisowski et al. 2005; Eschenlohr et al. 2014). Thus, it is natural to ask what spin
dynamics are seen in TDDFT simulations for these systems.

In Fig. 8 we show the relative change in the global spin moment, M(t), for
bulk Fe, Ni, and Co following the application of a laser pulse (frequency 2.72 eV,
FWHM 2.5 fs, peak intensity 1015 W/cm2), also shown in the figure. The same
simulations run in the absence of SOC return no demagnetization, indicating once
again that SOC is the interaction responsible for the loss of global spin moment.
This confirms the analytic result derived in Eq. (15). Note that in Fig. 8 we plot the
absolute value M(t) = |M(t)|, which rules out any canting of the moment that
leaves M(t) unchanged but reduces Mz(t).
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Fig. 8 Demagnetization of bulk Ni, Fe, and Co. In the left-hand side plot, we show the total
magnetic moment M(t) = |M(t)| as a function of time, while in the right-hand side one, we trace
in space the vector field position of the spin current, jx . (Figure adapted from Krieger et al. (2015)
and Krieger et al. 2017)

Another interesting feature that may be seen in Fig. 8 is the separation of
timescales between the laser excitation and the demagnetization process. During
the laser pulse, electrons are excited into higher energy states, but the global spin
moment does not change significantly. It is only in the ≈10 − 20 fs following the
laser pulse peak that the demagnetization takes place. Only by utilizing such a short
laser pulse are we able to disentangle these two physical phenomena. For pulses of
longer duration, the two occur together. We will now study the EOM, Eq. (15), for
the global moment in order to explain why this time lag is present and what causes
the demagnetization.

Focusing on the z-component of Eq. (15):

∂

∂t
Mz(t) = 1

2c2

ż

d3r [∇vs(r, t)× jy(r, t)]x − [∇vs(r, t)× jx(r, t)]y , (22)

where jμ is the spin current density, defined previously, which describes the flow of
the μ spin component throughout the system. We see that the demagnetization can
only occur when the jx spin current circulates about the y-axis and/or jy circulates
around the x-axis. In Fig. 8, we plot the streamlines found by following the vector
field of jx . This allows us to visualize the flow of spin current at a particular time
during the demagnetization process. Indeed we see exactly the circulation required
by Eq. (22). From this analysis, we understand that the role of the laser pulse is to
excite the system (including changing the exchange coupling) and to cause such spin
currents to appear (note similar spin currents exist in the GS due to the spin texture
induced by the SOC). The SOC can then rotate the spin components, causing a
decrease in Mz(t) leading to the demagnetization observed. These processes operate
on different timescales, primarily dictated by the strength of the SOC, the exchange
field, and the laser pulse duration.

Ultrafast demagnetization experiments are generally performed with the ferro-
magnetic material grown on top of a conducting substrate. This allows spin current
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to transport moment away from the probed region, also leading to an ultrafast
demagnetization of this region, as in the super-diffusive spin-transport model
(Battiato et al. 2010). Due to computational restrictions on the size of supercell
possible, it is difficult to include this form of demagnetization in our TDSDFT
simulations. However, recent experiments (Razdolski et al. 2017) used an insulating
substrate to eliminate any super-diffusive mechanism, yet ultrafast demagnetization
of Ni, Fe, and Co was still observed, suggesting that the SOC-orbit mediated spin-
flips observed in our simulations have been experimentally observed.

Finally, we should comment on the fact that we purposefully used an ultrashort,
ultrastrong laser for the simulations presented. As discussed, this is to disentangle
the many physical processes involved in ultrafast demagnetization. However, if
we use laser parameters taken from experiments, we still observe significant
demagnetization, as can be seen in Krieger et al. (2017).

5.2 Optical Inter-sublattice Spin Transfer

The magnetization dynamics studied so far have all involved a decrease in the global
spin-magnetic moment driven by SOC. However, another interesting phenomenon
seen in TDSDFT calculations for systems with more than one magnetic sublattice
is an increase of the local moment, driven by spin currents transferring angular
momentum from one sublattice to another (Elliott et al. 2016b). This form of
magnetization dynamics can have a dramatic effect on the local magnetic moments,
as can be seen in Fig. 9. Here we plot the percentage change in the local spin
moment (defined as the integral of the magnetization density inside an appropriately
sized sphere around each atom) for a particular atom (Ni, Co, Mn) in three Heusler
alloys, NiMnSb, Co2MnSi, and Mn3Ga. It is clear that the local moment reacts to
the incoming laser pulse completely different in each of the three cases: it may be
strongly enhanced (Ni), relatively unchanged (Co), or completely destroyed (Mn).
Having the ability to selectively control these local magnetic moments could be
of great technological importance, particularly for magnetic storage and spintronic
devices. We now investigate the underlying physical mechanism for such inter-
sublattice spin transfer, with the goal of identifying a strategy for tailoring the
material and/or the pulse for a particular purpose.

Heusler alloys are compounds consisting of four interpenetrating fcc sublattices
with stoichiometry X2YZ (or XYZ in the case of half-Heuslers), where X and Y

�

Fig. 9 Laser-induced magnetization dynamics in Heusler alloys. The left-hand side panel presents
the relative change in local magnetic moment of the given atom within NiMnSb, Co2MnSi, and
Mn3Ga and the shape of the electric field pulse used to initiate the dynamics. We also show two
snapshots of the local spin configuration of NiMnSb at t = 0 (ground state) and t = 8 fs. Mn atoms
are in purple, Ni in green, and Sb in gray. The exact values can be deduced from the right-hand
side panels which display the dynamics of the local moment and of the interstitial region (“deloc”)
for the three studied compounds. (Figure adapted from Elliott et al. 2016b)
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are usually transition metals and Z is a main group element. We choose to illustrate
the inter-sublattice spin transfer dynamics using Heusler alloys as they exhibit a
wide range of magnetic behavior and thus can be a convenient playground for
understanding the phenomenon. As already mentioned, the three compounds we will
focus on are NiMnSb, Co2MnSi, and Mn3Ga. The first two are ferromagnets, while
Mn3Ga is a ferrimagnet with antiferromagnetic coupling between the two different
Mn sublattices. For more information on the crystal structure of these compounds,
see Elliott et al. (2016b) and references therein.

The local spin dynamics for each atom and for the interstitial region (shown
in Fig. 9) reveal why an increase or a reduction of the local magnetization was
observed. Starting with NiMnSb, the main features to observe are a large Mn
moment loss and an increase in moment for both Ni and the IR. Due to the small
initial moment on Ni, an increase of 0.7μB/f.u. due to the laser pulse manifests
itself as a huge change in the percentage moment seen in Fig. 9. A similar picture
emerges for Co2MnSi with a loss of Mn moment and a gain in the IR moment.
However in contrast to NiMnSb, there is not a large increase in Co moment. Finally,
in Mn3Ga there are two symmetry positions that the Mn atoms can occupy, labeled
as Mn(1) (Wyckoff position 2b of the I4/mmm symmetry group) and Mn(2,3) (4d).
In the ground state, Mn(1) and Mn(2,3) are coupled antiferromagnetically. The laser
pulse then strongly decreases the moment on each Mn atom. In fact, for Mn(1) this
is completely destroyed, although for less intense laser fields, it simply decreases
but does not vanish. Note that the global spin moment during this time remains
unchanged. For longer times, the spin-orbit mediated demagnetization discussed
previously may also take place. Again by using an ultrashort laser pulse (frequency
2.72 eV, FWHM 2.42 fs, peak intensity 1 × 1014 W/cm2) in these simulations, we
were able to separate the SOC-induced effects from purely optical effects, which we
wish to focus on. From these three examples, it is clear that the laser pulse induces
spin moment to flow from one sublattice to another, a phenomenon that we term as
optical inter-sublattice spin transfer.

We can make use of the TDSDFT simulation to understand in more detail the
inter-sublattice spin transfer process. In particular, we can distinguish between
majority and minority spin transfer, information not available from the magnetiza-
tion density alone. For example, consider the transfer of moment between Ni and Mn
in NiMnSb. We observed that the Ni moment increases while that of Mn decreases.
This could be explained as a transfer of majority spins from Mn to Ni. However, it
can also be explained as a transfer of minority spin from the Ni to Mn. In order to
distinguish those processes, we plot in Fig. 10 the change in the number of majority
and minority spins for each atomic specie, as defined by:

ΔN↑↓(t) = 1

2
(ΔN(t)±ΔMz(t)) , (23)

where ΔN(t) is the change in local charge and ΔMz(t) is the change in the
z-component of the local magnetic moment (the z-direction is that of the ground-
state moment). If the system remains approximately collinear during the laser pulse



40 Time-Dependent Density Functional Theory for Spin Dynamics 861

Fig. 10 The change in majority (↑) and minority (↓) local population for each atoms of the
Heusler alloys considered. The spin direction is defined from the ground-state magnetic structure.
The labels of the different atoms follow the general formula unit definition X2YZ (XYZ for half-
Heusler alloys)

and no spin-flip transitions take place, then the sum of ΔN↑↓(t) over all atoms
(and the IR) will be zero (i.e., the total number of majority/minority electrons
is conserved). Again starting with NiMnSb, we see a gain of minority electrons
on Mn, which is accompanied by a loss of minority electrons on Ni. This is a
transfer of minority electrons from Ni to Mn. Thus, we find the perhaps counter-
intuitive answer of how the Ni local moment increases. In the majority channel,
we see a further loss of Mn moment due to transfer of majority electrons from the
Mn to the IR. This picture of inter-sublattice spin transfer is further validated by
the cases of Co2MnSi and Mn3Ga. The Mn atom in Co2MnSi behaves similarly
as in NiMnSb, in that it gains minority and losses majority electrons, leading to
a loss of its moment. However, now Co loses a similar amount of majority and
minority electrons, leaving its moment unchanged. In Mn3Ga, Mn(1) and Mn(2,3)
behave opposite to each other, with Mn(1) transferring majority electrons to the two
Mn(2,3) atoms and the two Mn(2,3) atoms transferring minority electrons to Mn(1).
This causes the local moment to be reduced in magnitude at all Mn sites.

In quantum mechanics we are used to the idea of electrons transitioning from an
occupied state to an unoccupied one, due to the application of a laser pulse. When
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Fig. 11 The ground-state DOS for NiMnSb, Co2FeSi, and Mn3Ga. The solid line is the total DOS,
while the colored areas are the contributions from the d shell of the various magnetic transition
metals

considering magnets with different magnetic sublattices, for each spin channel, we
can think of transitions from states primarily located on one atom to states primarily
located on another, similar to the charge-transfer processes of molecular chemistry.
Therefore, in order to determine what transitions are possible, it is useful to consider
the GS density of states (DOS). This can only be a zero-th order approximation
to the transition energies and states, as it is known from linear-response TDDFT
(e.g., Sharma et al. 2014) that the KS response is corrected to the true response via
the Hartree-XC kernel. Furthermore, the DOS does not tell us the probability of
a particular transition. Keeping this in mind, we now ask if these inter-sublattice
transitions can be understood from the DOS.

In Fig. 11 we plot the total DOS and the d-state atom-projected DOS for the three
systems under investigation. As would be expected for magnets, we see in all cases
minority d bands above the Fermi energy, εF. This leads to a significant unoccupied
DOS, which is available to the laser-excited electrons. For example, Mn in NiMnSb
has a large moment of 3.62 μB in our GS DFT calculations, which leads to a large
density of unoccupied Mn d-states centered approximately 1 eV above εF. Ni, by
contrast, has no strong features above εF but does present occupied d-states from
0 to 3 eV below εF in both spin channels. Thus, in this simple picture of transitions
from occupied to unoccupied state, we would anticipate minority spin transfer from
Ni to Mn, as it is the transition with the highest density of both unoccupied and
occupied states. This is precisely the transition we have observed in our simulations,
demonstrating the usefulness of the DOS for interpretation of results.
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Clearly, we observe several other features in our time-dependent calculations
that lie outside the DOS picture due to many-body and nonlinear effects, but the
DOS still provides an initial interpretation tool. This is confirmed by looking at
Co2MnSi and Mn3Ga in Fig. 11. The situation for Co2MnSi is very similar to that
of NiMnSb except that there is a large number of unoccupied Co minority states
above εF. This reduces the net amount of minority electrons transferred from Co
to Mn, reducing any increase in the Co moment. The antiferromagnetic coupling in
Mn3Ga makes the DOS interpretation quite simple. On Mn(1) there are occupied
majority states and unoccupied minority ones (d5 configuration), while Mn(2) and
Mn(3) have fractional occupation for both majority and minority spins. The laser
then excites majority electrons from Mn(1) to Mn(2,3) and minority from Mn(2,3)
to Mn(1), decreasing the amount of moment on each ion. In Elliott et al. (2016b),
the dependence on the laser intensity and frequency was investigated, and the results
were found to be consistent with the DOS picture. In particular, the frequency
dependence can be inferred by observing the energy difference between the bulk
of the occupied and unoccupied DOS.

The inter-sublattice spin transfer observed in our TDSDFT simulations can now
be explained using the GS DOS, which provides a simple picture for this phe-
nomenon. Although we choose to illustrate this mechanism in Heusler compounds,
the DOS interpretation suggests that this is general to any system with inequivalent
magnetic sublattices. The strength and frequency of the transitions depend on the
material details and on the laser intensity (as nonlinear processes likely contribute).
Most importantly our predictions can be validated experimentally by using element-
specific techniques such as X-ray magnetic circular dichroism or XUV TR-MOKE.

6 Conclusion

In this chapter we have shown the most recent advances in the study of laser-
induced magnetization dynamics in both magnetic clusters and periodic solids,
showing different magnetic orders. In particular we have focused our attention
on the early dynamical evolution, namely, on the first few tens of femtoseconds
following the laser excitation. This is the timescale where the dynamics is entirely
driven by the electronic degrees of freedom and where the magnetic moment,
the exchange coupling, and the spin-orbit interaction are all fast-varying time-
dependent quantities. As such it is a regime in which models that do not explicitly
account for the electrons are incapable to make predictions.

The theory of choice in this limit is time-dependent density functional theory.
TDDFT has a rigorous foundation, which is reviewed here, and represents the only
viable approach to the dynamics. In fact, it is fully quantitative and parameter
free, but at the same time, it is computationally light enough to guarantee long
simulations for real materials. In general we have shown that the application
of an intense laser field is capable of producing ultrafast demagnetization. This,
however, takes place only in presence of spin-orbit interaction and when the
system investigated is able to sustain a local current (an atom in vacuum does not
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demagnetize). The loss of magnetization, following the laser excitation, is the result
of the angular momentum transfer between the spin and the orbital components.
Firstly, part of the spin moment is transferred to the electronic angular momentum.
This is a rapid process, whose timescale is set by the strength of the spin-orbit
interaction. As a second step, the electronic angular momentum is dissipated to the
angular momentum of the nuclei, which are described as stationary at our level of
theory.

Being a fully quantitative theory, TDDFT allows us to investigate complex
magnetic orders. For instance, we have discussed the case of antiferromagnetic
metals and shown that the laser can produce inter-lattice spin transfer. This is an
active channel for spin dynamics, which may result in an increase of one or more of
the sublattice magnetizations. In conclusion we have shown that TDDFT may be a
powerful tool for the study of ultrafast spin dynamics in complex magnetic systems.
Although in its present form the theory is non-dissipative, namely, it cannot describe
the long-time magnetization recovery, it still represents the only fully atomistic
approach to spin dynamics available. We envision that TDDFT will have a crucial
role in the understanding of complex spin phenomena, with applications to materials
science, spintronics, and quantum computing.
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Abstract

Micromagnetic modeling has recommended itself as a useful tool for the design
of magnetic nanostructures in multiple applications. The standard micromagnet-
ics based on the integration of the Landau-Lifshitz-Gilbert equation is a valid
approach at low temperatures only. In multiple recent applications such as heat-
assisted magnetic recording or ultrafast magnetic dynamics, the temperatures
often go close to the Curie temperature Tc and above. Here we review the
micromagnetic approach valid in this temperature range, based on the use
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of the Landau-Lifshitz-Bloch equation. The essential part of this approach
is the presence of the temperature-dependent longitudinal relaxation with the
characteristic time diverging at Tc. We review this approach in its classical and
quantum formulations and for one- and two-component materials. The behavior
of longitudinal relaxation time is discussed. Finally, we present examples of the
use of this micromagnetics related to the modeling of ultrafast magnetization
dynamics.

1 Introduction

Recent advances in magnetism including the design of novel nanostructured
magnetic materials, better theoretical understanding of magnetic phenomena, and
the development of nanoscale experimental techniques have driven the progress of
nanotechnology in general but specially in the data storage industry. Recently, novel
high-temperature magnetic phenomena have been discovered and attracted a lot of
researchers. One of them is the laser-induced ultrafast magnetization dynamics (see,
e.g., Beaurepaire et al. 1996; Vahaplar et al. 2009; Kirilyuk et al. 2010) where a
subpicosecond dynamics is observed when a femtosecond laser pulse is applied
to magnetic materials. Another example is the spin Seebeck effect (Uchida et al.
2008) where spin currents and spin accumulation are observed in a ferromagnet due
to a temperature gradient. Apart from their fundamental interest, these phenomena
are very appealing from technological perspectives that range from increasing the
speed of the magnetization switching to the production of spin-voltage generators.
It has been also found that a good strategy to improve the performance of hard
disk devices and magnetic random-access memories is to increase the temperature
of the magnetic thin film during the writing process. Therefore, it is necessary to
search for models that can describe the magnetic behavior in these novel high-
temperature phenomena, in which temperature is often raised up to and above the
Curie temperature Tc.

In magnetism, micromagnetic modeling is a very useful complement to exper-
imental measurements, especially for calculations of hysteresis and dynamics of
magnetic nanostructures such as magnetic thin films, dots, stripes, etc. (Brown
1963a; Fidler and Schrefl 2000; Chantrell et al. 2001). The micromagnetics is
essentially a macroscopic continuous theory. It uses a discretization of continuous
magnetization function in finite elements or finite differences. The dynamics of
each unit in standard micromagnetics is based on the integration of the classical
Landau-Lifshitz-Gilbert (LLG) equation of motion (Landau and Lifshitz 1935;
Gilbert 2004). It is essentially a zero-temperature equation, although the micro-
magnetic parameters could be taken as experimentally measured values at a given
temperature T . The temperature effects are typically included by adding random
fields acting on each discretization element with properties consistent with the
thermodynamical equilibrium (Brown 1963b; Chubykalo et al. 2003). However,
this approach is correct only for low temperatures and largely overestimates
the transition temperature Tc (Grinstein and Koch 2003), since the magnitude
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of the magnetization vector in each element is constant. At high temperatures,
high-frequency spin waves, responsible for longitudinal magnetization fluctuations
near the Curie temperature Tc, are cut, and the value of the Curie temperature is
strongly overestimated. To solve this issue, an alternative micromagnetic approach
for higher temperatures based on the Landau-Lifshitz-Bloch (LLB) equation has
been proposed (Garanin 1997; Chubykalo-Fesenko et al. 2006) where the magnitude
of the magnetization vector is not conserved at each discretization element and the
longitudinal magnetization fluctuations are introduced.

Furthermore, a complete description of the material’s magnetic behavior requires
very different spatial scales going from Ångström (like microscopic interactions at
atomic level) to macroscale (magnetic domains typically have micrometer sizes)
and also very different timescales going from femtoseconds (as in the ultrafast
magnetization dynamics) to years (thermal stability in magnetic storage media).
The ab initio models typically calculate microscopic parameters of the material,
while atomistic spin (Heisenberg) models are good to describe the phase transi-
tions. However, to model realistic devices such as sensors or magnetic recording
head performance, large-scale modeling based on the micromagnetics is used.
One way to include the effects of the microscopic properties on the magnetic
macroscopic behavior is the multiscale approach (Kazantseva et al. 2008a; Atxitia
et al. 2010b; Hinzke et al. 2015). Namely, ab initio calculations (the most widely
used formalism is density functional theory (DFT)) are used to calculate the
intrinsic parameters as magnetic moment (μ), exchange constants (J ), on-site
magnetocrystalline anisotropy (k), etc. . . ; then these parameters are used in atom-
istic classical (Heisenberg-like) models where the temperature dependence of the
equilibrium magnetization Ms(T ), anisotropy K(T ), and exchange stiffness A(T )

among other properties can be calculated; and finally the temperature dependence
of these parameters is included in the micromagnetic approach which can model the
magnetic behavior at large spatial scale (see the sketch in Fig. 1). The temperature
is an essential part of this approach, and the correct micromagnetic description is
based on the LLB equation (Kazantseva et al. 2008a).

Fig. 1 The sketch of the multiscale approach
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The micromagnetic modeling based on the LLB equation has manifested itself
as a good approach to model new phenomena such as the ultrafast magnetization
dynamics (Kazantseva et al. 2008a; Sultan et al. 2012; Atxitia et al. 2007, 2010a,
2016; Mendil et al. 2014), spin caloritronics (Hinzke and Nowak 2011; Schlickeiser
et al. 2014), and heat-assisted magnetic recording (McDaniel 2012; Greaves et al.
2015; Takano et al. 2011; Vogler et al. 2014, 2016) processes.

2 Classical Micromagnetic Models

2.1 The Classical Heisenberg (Atomistic) Modeling

The magnetic moments in the solid state can be localized or semi-localized, carried
by the conduction electrons (itinerant magnetism) like in metals. However, models
based on a classical Heisenberg Hamiltonian of localized spins are currently used
to describe the magnetic properties in both situations. Typically, the general-
ized Heisenberg Hamiltonian for a uniaxial magnet in these atomistic models is
written as

H = −
∑

i

H · μi −
∑

i

kis
2
i,z −

1

2

∑

i,j

Jij si · sj , (1)

where H is the external magnetic field, μi is the magnetic moment per atom at
site i, si = μi/μi , ki is the uniaxial atomic-site anisotropy constant, and Jij is the
exchange constant between the spins i and j . The first term in Eq. (1) corresponds
to the Zeeman energy, the second term is the on-site uniaxial magnetocrystalline
anisotropy energy (where the uniaxial axis is along the z-axis), and the last one
is the exchange energy. The exchange energy may be long-range corresponding
to the RKKY interactions and site-dependent. The dynamics of each normalized
classical atomic magnetic moment si is described using the phenomenological
Landau-Lifshitz-Gilbert (LLG) equation given by

dsi
dt
= − γ

1+ λ2 (si ×Heff,i )− γ λ

(1+ λ2)
si × (si ×Heff,i ), (2)

where γ is the gyromagnetic ratio, λ is called atomic coupling to the bath (atomistic
damping) parameter, Heff,i = −∂H/∂μi is the effective field, and H is the
Hamiltonian given by Eq. (1). Equation (2) is a deterministic equation; it means that
given the same initial conditions, one obtains always exactly the same dynamics.
However, the atomic magnetic moment in a solid follows a stochastic dynamics due
to the interaction with its surroundings. This fact is included in Eq. (2) adding a
stochastic field ζ i to the effective field Heff,i , that is,

dsi
dt
= − γ

1+ λ2
(si × (Heff,i + ζ i ))−

γ λ

(1+ λ2)
si × (si × (Heff,i + ζ i )), (3)
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where the stochastic field has the following time average properties following the
Brown’s theory for nanoparticles (Brown 1963b)

〈ζi,k〉 = 0, 〈ζi,k(0)ζi,k′(t)〉 = 2
λkBT

γμi

δkk′δ(t), k, k′ = x, y, z, (4)

where kB is the Boltzmann constant and δ is Kronecker delta symbol. This approach
is called atomistic spin dynamics (ASD) (Skubic et al. 2008; Evans et al. 2014;
Eriksson et al. 2017). The macroscopic magnetization at time t is obtained as an
average of the atomic magnetic moments over some volume V

M(t) = 1

V

N∑

i=1

μi (t), (5)

where N is the total number of atomic magnetic moments inside the volume V .
Simulations based on ASD is a powerful tool to describe the magnetic behavior

of magnetic materials. Importantly, the ASD simulations lead to a good agreement
with the experimentally measured Curie temperatures. Unfortunately, the size of a
magnetic material that can be simulated using ASD is very limited (typically up to
(20–30 nm)3 due to a large number of differential equations that must be numerically
integrated.

2.2 Classical Micromagnetic Models at Low Temperatures

A suitable approach to study the behavior of magnetic materials at large scale is
micromagnetics. It is based on the continuum approximation where the length scales
considered are large enough for the atomic structure of the material to be ignored
and small enough to resolve magnetic structures such as domain walls or vortices.
In the continuum approximation the macroscopic magnetization is assumed to be a
spatial continuous function over the material

M(r) = Msm(r), (6)

where |m(r)| = 1 and Ms is the saturation magnetization. In this approach the
energy of a uniaxial magnetic system reads (e.g., Coey 2009)

E =
ż

V

dr{−M ·H−Km2
z + A(∇m)2 − 1

2
M ·Hd}, (7)

where K is the macroscopic uniaxial anisotropy constant, A is the exchange stiffness
parameter, (∇m)2 = (∇mx)

2 + (∇my)
2 + (∇mz)

2, ∇ is the gradient operator, and
Hd is the magnetostatic field which must be calculated self-consistently.
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Micromagnetics

Atomistics

Atomic magnetic moment mi

Macrospin Mi
~3 nm

~0.3 nm

Fig. 2 Illustration of the relation between atomistic model and micromagnetics. (Reprinted from
Nieves 2015)

In order to solve micromagnetic problems numerically, the system is divided in
cells of volume Vi (typically around few nm3), and then the average magnetization
of the cell at position ri is represented by vector called macrospin (see Fig. 2),
M(ri ) = Mi = Msmi . In a coarse-grained (multiscale) approach, the mascrospin
is the average of atomic spin moments in the sense of Eq. (5). In order to choose
a suitable volume cell, it is important to take into account the domain wall width
parameter δ and the exchange length lex which are given by

δ = π

√
A

K
, lex =

√
A

M2
s

. (8)

The domain wall width parameter corresponds to the width of a Bloch wall that
is found in magnetic materials with a large magnetocrystalline anisotropy. The
exchange length is the length below which atomic exchange interactions dominate
typical magnetostatic fields, and it is proportional to the Néel domain wall width.
The discretization length must be less than the domain wall width but includes
enough atoms to be valid as the continuous approximation. The main difficulty of
micromagnetics is the correct calculation of the long-range magnetostatic fields.

The standard dynamic micromagnetics is based on the same LLG equation as
in the atomistic approach (however with more justified damping form) for the
macrospin Mi given by

dMi

dt
= − γ

1+ α2
LLG

(Mi ×Heff,i )− γαLLG

(1+ α2
LLG)Ms

Mi × (Mi ×Heff,i ), (9)

where αLLG is called the LLG damping (not to be confused with the microscopic
damping in the atomistic approach, often designated with the same letter α but called
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here λ in order to stress the difference) and Heff,i is the effective field which is
given by

Heff,i = − 1

Vi

∂E

∂Mi

= Hi + 2Kimi,z

Ms

ez + 2Ai

Ms

∇2mi +Hd,i . (10)

The temperature effects in micromagnetism are typically included in the follow-
ing way:

(i) Via temperature-dependent parameters: The parameters Ms(T ), A(T ), K(T ),
αLLG(T ) are taken at given temperature. Importantly the damping parameter
αLLG is also temperature-dependent which is frequently forgotten. As it was
mentioned in the introduction, their temperature dependence can be calculated
numerically using ASD within the multiscale approach; a detailed explanation
of this calculation can be found, for example, in Kazantseva (2008) for FePt.
They can also be obtained theoretically, for example, using the mean-field
approximation (MFA) or measured experimentally.

(ii) Via thermal field: In 1963 W.F. Brown (1963b), considering the superparam-
agnetism problem in a collection of non-interacting nanoparticles, suggested to
include thermal fluctuations in the LLG dynamical equation as stochastic fields
whose properties are defined by the equilibrium solution of the corresponding
Fokker-Planck (FP) equation. Importantly, these fields are just formal quantities
and do not have physical sense; they are used in order to produce stochastic
deviations of different magnetization trajectories from their averaged value with
correct statistical properties. In 1993 Lyberatos and Chantrell (1993) for the
first time studied the dynamics of two interacting magnetic dipoles including
these fluctuating thermal fields. This idea was further developed by many
authors (Nakatani et al. 1997; García-Palacios and Lázaro 1998; Scholz et al.
2001; Chubykalo et al. 2002). It was shown that the stochastic fields remain
uncorrelated and with the same properties for the interacting case (Chubykalo
et al. 2003). These developments lead to Langevin dynamics micromagnetics
where a fluctuating thermal field ζ i is added to the effective field given by
Eq. (10) with the following time average properties (the same as used in the
ASD dynamics)

〈ζi,k〉t = 0, 〈ζi,k(0)ζi,k′(t)〉t = 2
αLLGkBT

γMsVi

δkk′δ(t), k, k′ = x, y, z. (11)

The main feature of this approach is that the magnitude of every macrospin is
conserved in all dynamical processes, that is, |Mi | =const. However, the direct com-
parison with the ASD shows that thermal simulations of the magnetization dynamics
based on the micromagnetic LLG equation are not suitable for high temperatures
(Chubykalo-Fesenko et al. 2006). This is due to the fact that micromagnetic
simulations do not include the high-frequency spin waves, and, thus, the Curie
temperature is seriously overestimated (Grinstein and Koch 2003). Additionally, in
recent ASD simulations (Chubykalo-Fesenko et al. 2006; Kazantseva et al. 2007),
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it has been demonstrated that at high temperatures several important effects occur
which cannot be taken into account in the micromagnetic LLG approach. Namely,
during the magnetization dynamics, (i) the magnetization vector magnitude is not
conserved, (ii) longitudinal magnetization relaxation occurs with the longitudinal
relaxation time increment approaching TC (known as critical slowing down), and
(iii) at the same time the transverse relaxation time decreases (Chubykalo-Fesenko
et al. 2006). Therefore, a different micromagnetic approach is required at elevated
temperatures.

2.3 Thermal Micromagnetics at High Temperatures

In 1997 an alternative approach was suggested by D. Garanin (1997). Based
on the Fokker-Planck equation, he derived a classical macroscopic equation of
motion for the magnetization called Landau-Lifshitz-Bloch (LLB) equation. The
name was chosen in order to stress that the magnetization behavior interpolates
between the Landau-Lifshitz equation at low temperatures (micromagnetic LLG
Eq. (9)) and the well-known Bloch equation (Bloch 1946) at high temperatures. The
Bloch equation is a phenomenological equation frequently used in the nuclear spin
resonance description, for example, for protons in a water molecule. The dynamical
equation for the ensemble of paramagnetic spins involves the same precessional
term and two phenomenological relaxational parameters describing the longitudinal
relaxation (defined by the characteristic time T1) and the transverse relaxation (T2).
In the nuclear spin resonance case T2 & T1, for ferromagnetic materials of the
interest here, the situation is the opposite due to a dominant role of large exchange
interactions.

The derivation of the classical LLB assumes the classical atomistic approach
(ASD) of Sect. 2.1, only based on the Landau-Lifshitz (LL) equation instead of
the LLG (i.e., disregarding the term λ2 in Eq. (2), which anyway is small). First,
the Fokker-Planck equation corresponding to many-spin Eq. (9) was calculated
in Garanin (1997) (see also details in Atxitia 2012). Using the dynamics of the
probability function, governed by this equation and disregarding the third-order
moment distribution, one obtains an equation for thermal average of the spin
polarization, i.e., the reduced magnetization m =< si > in a paramagnetic state.
For the treatment of ferromagnet, the external field is substituted by the mean field.

The corresponding LLB equation for m has the following form (see details in
Garanin 1997 and Atxitia 2012):

dm
dt

= −γ [m×HMFA] − '‖
(

1− mm0

m2

)
m− '⊥

[m× [m×m0]]
m2 , (12)

where

m0 = L(ξ)
ξ

ξ
, ξ ≡ βμHMFA, HMFA = zJ

μ
m+H′. (13)
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Here ξ ≡ |ξ |, L (ξ) = coth (ξ)−1/ξ is the Langevin function, β = 1/kBT , kB is the
Boltzmann constant; μ is the atomic magnetic moment; z is the number of nearest
neighbors; J is the Heisenberg exchange interaction parameter; H′ contains the
external magnetic field and the nonhomogeneous part of the exchange interaction;

'‖ = -N

L(ξ)

ξL′(ξ)
, '⊥ = -N

2

(
ξ

L(ξ)
− 1

)
(14)

describe parallel and perpendicular relaxation rates, respectively; -N = 2γ λkBT /μ

is the characteristic diffusion relaxation rate or, for the thermo-activation escape
problem, the Néel attempt frequency; and L′(ξ) = dL/dξ is the derivative of the
Langevin function. This equation can be already used for modeling and in many
cases gives even a better agreement with the ASD than a more conventional LLB
equation presented below.

To put this equation in the form, similar to the LLG one, the homogeneous part
of the exchange field is assumed to be much larger than all other fields acting in the
system ([zJ/μ]m $ H ′). This leads to the conventional form of the LLB equation
which in micromagnetics is written for each discretization element (macrospin) i

dmi

dt
= −γ

[
mi ×Hi

eff

]
+γα‖

m2
i

(
mi ·Hi

eff

)
mi−γα⊥

m2
i

[
mi×

[
mi×Hi

eff

]]
, (15)

where mi = Mi/Me(0) with Me(0) = Ms(0) being the equilibrium saturation
magnetization at T = 0K . The longitudinal and transverse relaxation parameters
are

α‖ = λ
2T

3Tc

, α⊥ = λ ·
⎧
⎨

⎩

[
1− T

3Tc

]
T � Tc,

2T
3Tc

T � Tc.
(16)

Note that in the alternative representation, the magnetization can be normalized
at its value at T , i.e., using ni = Mi/Me(T ) as is typically done for the LLG
micromagnetics. This leads to the same form of the LLB equation but now for the
variable ni . The only difference is the renormalization of the damping parameters by
the factor me = Me(T )/Me(0). Since me → 0 at Tc, this form of the LLB equation
is obviously not useful for modeling near the phase transition but should be used for
the comparison with the LLG micromagnetic modeling.

In the LLB-based micromagnetic approach, the effective fields are given by

Hi
eff = H+Hi,EX +Hi,A +

⎧
⎪⎪⎨

⎪⎪⎩

1
2χ̃‖

(
1− m2

i

m2
e

)
mi T � Tc,

J0
μ

(
1− T

Tc
− 3m2

i

5

)
mi T � Tc,

(17)
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where χ̃‖ = (∂m/∂H)H→∞ is the reduced longitudinal susceptibility and J0 is the
zero Fourier component of the exchange interaction which is related to the Curie
temperature Tc in the MFA through Tc = J0/(3kB) (in the simple cubic lattice case
with nearest interactions only J0 = 6J ). The last term in Eq. (17) describes the
internal exchange field inside the macrospin. H is the applied magnetic field and
Hi,EX is exchange interaction between macrospins, and it is given by

Hi,EX = 2Ai(T )

m2
i Ms(0)

�2mi = 2Ai(T )

m2
i Ms(0))2

∑

〈i,j 〉

(
mj −mi

)
, (18)

where 〈i, j〉 means a sum over neighbors, ) is the lateral size of the micromagnetic
discretization cell, Ai(T ) is the micromagnetic exchange also called stiffness
parameter, and Hi,A is the anisotropy field given by

Hi,A = − 1

χ̃⊥
(
mi,xex +mi,yey

)
, (19)

where χ̃⊥ is the reduced transverse susceptibility. Note that the use of the transverse
susceptibility is more physically correct as that of the anisotropy (see discussion in
Garanin and Chubykalo-Fesenko 2004). However, in practice the anisotropy notion
is still used in most of cases, i.e., one assumes χ̃⊥(T ) = M2/[2K(T )].

The LLB equation contains six temperature-dependent parameters: λ(T ),
Me(T ), A(T ), K(T ), χ̃‖(T ), and χ̃⊥(T ). Typically, the parameter λ is considered
in ASD temperature independent. This however is not true in the ab initio modeling
(see also discussion in Nieves et al. 2014). In principle other parameters can be
measured experimentally. In the multiscale approach the temperature dependence of
Me(T ), A(T ) and K(T ) is calculated using ASD (Kazantseva et al. 2008a; Atxitia
et al. 2010b; Nieves et al. 2017), and the scaling with magnetization relations can be
used for the last two of them (Kazantseva 2008; Atxitia et al. 2010b; Moreno et al.
2016; Asselin et al. 2010). The parameter Me(T ) can be also obtained using the
MFA as the solution of the equation me = L(βJ0me) where L(x) = coth(x)− 1/x
is the Langevin function. The exchange parameter J0 can be calculated by first
principles or roughly estimated by MFA expression J0 = 3kBTc using experimental
Curie temperature. The reduced longitudinal susceptibility can be calculated either
by using MFA as

χ̃‖(T ) =

⎧
⎪⎨

⎪⎩

μatβL
′

1− βJ0L′
T � Tc,

μatTc

J0(T − Tc)
T � Tc,

(20)

where L′ is the derivative of the Langevin function evaluated at βJ0me, or by ASD
simulations (Hinzke et al. 2000).

The first term in Eq. (15) describes the precession of magnetization vector m
around its effective field Heff (see Fig. 3a), and the second and the third terms
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−m
→ × Heff −m
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→
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→
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→

m
→

a b c

Fig. 3 Diagram illustrating the meaning of three terms in the LLB equation: (a) precession,
(b) longitudinal dynamics, and (c) transverse dynamics. (Reprinted from Nieves 2015)

describe the longitudinal (see Fig. 3b) and the transverse (see Fig. 3c) dynamics,
respectively. Comparing the LLB equation (15) with LLG equation (9), we notice
that the former contains an extra term which describes the longitudinal relaxation,
that is, it drives the dynamics of the magnitude of m giving a more accurate
description of the magnetic dynamics at elevated temperatures. In particular this
extra term plays a crucial role in ultrafast magnetization dynamics, i.e., at the
timescale below 1 ps. At low temperatures the additional internal field in Eq. (17)
is very large (since the susceptibility is very small) and keeps the magnetization
length constant. Since the LLB equation contains the LLG one, it also describes the
damped precession which typically takes place between 0.1 and 10 ns (see Fig. 3a).

The effective field of the LLB equation given by Eq. (17) can be also obtained as

Hi
eff = −

1

Vi

∂F
∂Mi

, (21)

where F is the free energy given by

F(M, T ) = F0 +
ż

V

dr{−M ·H+ 1

2χ⊥
(M2

x +M2
y )+ A

(
�
[

M
M

])2

+ 1

8M2
e (T )χ‖

[M2 −M2
e (T )]2}, (22)

where F0 is the equilibrium free energy in the absence of anisotropy and magnetic
field, χ‖ = Ms(0)χ̃‖ and χ⊥ = Ms(0)χ̃⊥. In Kachkachi and Garanin (2001) derived
this free energy in the whole temperature range using a procedure based on the
MFA. Obviously close to the transition temperature, this functional is reduced to
the well-known Landau-Ginzburg expression. This derivation further justifies the
thermodynamic consistency of the LLB equation.

Similarly as it was done in the micromagnetic LLG equation, Garanin and
Chubykalo-Fesenko (2004) included stochastic thermal fields into the LLB equa-
tion. However, Evans et al. (2012) noticed that this approach doesn’t recover the
Boltzmann distribution close to Tc at equilibrium. In order to solve this issue, they
suggested an alternative stochastic LLB equation of the form



878 O. Chubykalo-Fesenko and P. Nieves

dmi

dt
= −γ

[
mi ×Hi

eff

]
+ γα‖

m2
i

(
mi ·Hi

eff

)
mi

− γα⊥
m2

i

[
mi ×

[
mi ×

(
Hi

eff + ζ i,⊥
)]]

+ ζ i,ad , (23)

with two thermal fields: a multiplicative transverse ζ i,⊥ and an additive longitudinal
ζ i,ad given by

〈
ζ k
i,⊥(0)ζ l

j,⊥(t)
〉
= 2γ kBT

(
α⊥ − α‖

)

Me(0)Viα
2⊥

δij δklδ(t) (24)

〈
ζ k
i,ad(0)ζ

l
j,ad(t)

〉
= 2γ kBT α‖

Me(0)Vi

δij δklδ(t), (25)

where i and j denote macrospin index and k and l denote the Cartesian components
x, y, and z. Thus in order to describe the thermal dispersion of the magnetization
trajectories, we now have a Langevin dynamics simulations based on the LLB equa-
tion. The dispersion of magnetization trajectories is very important for modeling of
magnetization dynamics under the action of thermal laser pulse (Kazantseva et al.
2008a). Note that not very close to Tc the approaches of Garanin and Chubykalo-
Fesenko (2004) and Evans et al. (2012) are indistinguishable.

The comparison of the macrospin LLB equation with direct ASD simulations
gives a very good agreement (Chubykalo-Fesenko et al. 2006; Kazantseva et al.
2008a). Note that a typical problem of the thermal micromagnetics is the presence
of finite-size effects, i.e., the dependence of the average magnetization on the
discretization size. Comparatively to the LLG approach, thermal micromagnetics
based on the LLB equation have these effects largely reduced (Atxitia et al. 2007).
This happens due to the fact that the LLB equation forces the equilibrium solution
to be Me. However, the finite-size effects are an inherent part of the thermal
micromagnetic approach and are always present (Atxitia et al. 2007). If these
effects are taken into account, the agreement between the atomistic and LLB-based
micromagnetics can be even better (Vogler et al. 2014, 2016).

3 The Quantum (Semiclassical) Landau-Lifshitz-Bloch
Equation

The above LLB equation is based on the ASD approach. There is also a quantum
derivation, which was published even earlier than the classical one by Garanin et al.
(1990) and Garanin (1991). Obviously, the quantum derivation can be made for
simplified models only. In the original derivation, this was done for an isolated spin
interacting with a phonon bath via direct and Raman processes with the Hamiltonian
presented in Fig. 4. Lately, this was also done for a spin interacting with a simple
electron bath by Nieves et al. (2014) following a simple model of Koopmans et al.
(2005) conceived for ultrafast magnetization dynamics.



41 Landau-Lifshitz-Bloch Approach for Magnetization Dynamics Close . . . 879

H  Σ Vp,q (h . S)ap
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+ aq 

∧ ∧
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Fig. 4 The sketch of the quantum model based on the spin-phonon scattering. (Reprinted from
Nieves 2015)

The derivation of the quantum LLB (qLLB) equation by Garanin (1991) is based
on a standard density matrix approach (see, e.g., Blum 1981; Garanin 2012) for
a system interacting weakly with a bath. The sketch for the spin-phonon model
is presented in Fig. 4, and the spin-electron model can be found in Nieves et al.
(2014). Namely, starting from the Schrödinger equation, one can obtain a Liouville
equation for the time evolution of the density operator ρ̂ = |!〉〈!|, where |!〉 is
the wave function of the whole system (spin and phonons or spin and electrons).
Next, the bath is assumed to be in a quasi-equilibrium meaning that at this timescale
the phonon (electron) distribution can be described by the Bose-Einstein (Fermi-
Dirac) one with a defined temperature (Nieves et al. 2014) although the temperature
is still slow varying in time. The temperature dynamics can be external, for example,
described by the two-temperature model (Atxitia et al. 2007; Nieves and Chubykalo-
Fesenko 2016; John et al. 2017; Mendil et al. 2014). Note that in the self-consistent
description, the magnetization dynamics also produces a temperature dynamics and
vice versa (Nieves et al. 2016).

Furthermore, the interactions with the bath are assumed to be small so that
they cannot cause a significant entanglement between both systems; this allows to
factorize the density operator by its spin and bath part ρ̂(t) ∼= ρ̂s(t)ρ̂

eq
b and average

over the bath variable (Garanin 2012). The following approximations are also made:
(i) the Markov or short memory approximation assuming that the spin dynamics
is slower than the phonon (electron) dynamics; (ii) the secular approximation,
which consists in neglecting the fast oscillating terms; (iii) as in the classical case,
the interactions are taken into account in the MFA, the homogeneous part of the
exchange field is considered to be much larger than all other approximations, and
close to Tc the expansion HE � (J0/μat)(me + χ̃‖h) is used.

The final formal form of the qLLB equation is the same as in the classical
case (15), the equilibrium magnetization is defined now by the Brillouin function for
the spin S: me = BS(βJ0me), and the MFA longitudinal susceptibility χ̃‖ follows
from it at T < Tc as χ̃‖ = μatβB

′
S/(1 − βB ′SJ0) where B ′S(x) = dBS/dx is
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evaluated at the equilibrium B ′S = B ′S(βJ0me). The parameters α‖ and α⊥ are
different and can be conveniently expressed in a form which is suitable for the
comparison with the classical LLB equation. Below Tc the damping parameters are
written as

α‖ = λ
2T

3Tc

2qs
sinh (2qs)

(26)

α⊥ = λ

[
tanh(qs)

qs
− 2T

3Tc

(
1− K1

2K2

)]
, (27)

where qs = 3Tcme/(2(S + 1)T ) and

λ = K2
(S + 1)

S

μat

γ kBT
. (28)

has the sense of atomistic damping (coupling to the bath) parameter. The parameters
K1 and K2 are related to the microscopic scattering probabilities (see Nieves et al.
2014).

Below Tc the effective field used in Eq. (15) is given by Eq. (17). Above Tc we
also rewrite the effective field in terms of the longitudinal susceptibility at T > Tc,
i.e., χ̃‖ = μTc/[J0(T − Tc)], and the field reads as

Heff = − 1

χ̃‖

(
1+ 3Tcm

2

5As(T − Tc)

)
m+ h ,

Tc

T − Tc

$ 1, (29)

where As = 2(S + 1)2/([S + 1]2 + S2) and h contains all other fields (Zeeman,
anisotropy, (external) inter-macrospin exchange, and magnetostatic). Note that
although χ̃‖ is divergent at Tc as it corresponds to the second-order phase transition,
the internal exchange field is the same for any Tc − ε and Tc + ε insuring that under
the integration of the LLB equation, m(t) rests continuous through the critical point.
In the region just above Tc, qs = 0 and K1 ∼= K2, so that the damping parameters
become approximately the same and equal to the one presented in Eq. (16), where
the dependence on the spin value S is included implicitly through λ (see Eq. (28)).

In the special case with S = 1/2 and pure longitudinal dynamics, the qLLB
equation is reduced (see details in Nieves et al. 2014) to the so-called self-consistent
Bloch equation (see Xu and Zhang 2012)

dm
dt
= −γm× h− m−m0

τs
, (30)

where m0 = B1/2(ξ)ξ/ξ and τs = 1/K2 the spin relaxation time. This equation
may be further simplified taking into account that the exchange field is large in
which case it is reduced to
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dm

dt
= m

τs

[
1−m coth

(
mTc

T

)]
. (31)

The above equation was used as a part of the so-called three-temperature model
(M3TM) by Koopmans et al. (2010), in which τs is related to the Elliott-Yafet
scattering probability.

4 The Two-Sublattice Landau-Lifshitz-Bloch Equation

For the treatment of a two-sublattice ferro- or ferrimagnet by Atxitia et al. (2012),
two Eq. (12) are written for each sublattice separately, and the mean field contains
inter- and intra-sublattice contributions. For the disordered case with different
concentrations of the species (such as the case of GdxCo1−x , see Fig. 5), the MFA
field reads:

HMFA
v = J0,v

μv

mv + J0,vκ

μv

mκ + hv, (32)

where J0,v = xvzJvv , J0,vκ = xκzJvκ ; z is the number of nearest neighbors
in the ordered lattice; Jvv and Jvκ are the Heisenberg intra- and intersublattice
exchange interaction parameters; xv and xκ = 1 − xv are the concentrations of
the sublattices v and κ , respectively; and hv contains the external applied and the
anisotropy fields acting on the sublattice v. With the same approximations as in
the case of the classical one sublattice LLB equation, one arrives at two coupled
LLB equations of the form Eq. (15) for each sublattice, where the effective field is
given by

Heff,v = H+HA,v + J0,vκ

μv

�κ (33)

−
[

1

-vv

(
mv −me,v

)− 1

-vκ

(|τκ | − |τe,κ |
)] mv

mv

,

Fig. 5 Sketch of a disordered
magnetic alloy from the point
of view of the atomistic
model (left panel) and the
micromagnetic LLB model
(right panel). (Reprinted from
Atxitia et al. 2012)

Atomistic description Micromagnetic

mν

mκ
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where HA,v is the anisotropy field, H is the applied field, �κ = −[mv × [mv ×
mκ ]]/m2

v , τv = (mv ·mκ)/mκ , τe,v = (me,v ·me,κ )/me,κ , and

-−1
vv =

1

χ̃v,||

(
1+ J0,vκ

μv

χ̃κ,||
)
, -−1

vκ =
|J0,vκ |
μv

. (34)

The longitudinal susceptibility can be calculated in the MFA as in Atxitia et al.
(2012)

χ̃v,|| = μκβL
′
vJ0,vκβL

′
κ + μvβL

′
v

(
1− J0,κβL

′
κ

)
(
1− J0,vβL′v

) (
1− J0,κβL′κ

)− J0,κvβL′vJ0,vκβL′κ
, (35)

where L′v = L′(ξe,v) with ξe,v = β(J0,vme,v + |J0,vκ |me,κ). The damping
parameters are

αv‖ =
2λv

βJ̃0,v,e
, αv⊥ = λv

(
1− 1

βJ̃0,v,e

)
, (36)

where J̃0,v,e = J0,v + |J0,vκ |(me,κ/me,v). Note that all the expressions above are
the same for two-sublattice ferrimagnetic and ferromagnetic alloys.

The quantum case only differs by the damping parameters which now have the
forms (see Nieves 2015):

αv‖ =
2λv

βJ̃0,v,e

(
Sv

Sv + 1

)
2qv

sinh(2qv)
, (37)

αv⊥ = λv

[
tanh(qv)

qv
− 2Sv

(Sv + 1)βJ̃0,v,e

(
1− K1,v

2K2,v

)]
, (38)

where qv = (βJ̃0,v,eme,v)/(2Sv) and λv = [βμvK2,v(Sv + 1)]/[γvSv].
In the equations above the longitudinal susceptibility χ̃v,‖ should be evaluated in

MFA using the Brillouin function.
Taking the limits Sv → ∞ and Sκ → ∞ in the quantum version, we arrive

to the classical LLB equation for disordered magnetic alloys. On the other hand,
if we take the limit xκ → 0 (i.e., the impurities are removed), then we obtain the
qLLB equation for a ferromagnet. Very recently, Vogler et al. (2018) incorporated
stochastic fluctuations to the classical two-sublattice LLB.

4.1 The Relaxation Rates

The main difference of the high-temperature micromagnetics based on the LLB
equation and the conventional micromagnetics is the temperature-dependent relax-
ation. It is defined by the two main characteristic times, obtained by the lineariza-
tion. These are the longitudinal relaxation time
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τ‖ = χ̃‖
γα‖

, (39)

which defines the speed of the change of the magnetization length and the transverse
relaxation time τ⊥, i.e., the characteristic time taken by the transverse component
of magnetization to relax to the effective field h including the external field and the
anisotropy contributions

τ⊥ = γ hme

α⊥
. (40)

The corresponding transverse relaxation below Tc may be put in the more common
form of the macroscopic LLG equation. For this instead of the normalization of
magnetization to the total spin polarization, one should use its normalization to the
saturation magnetization value, i.e., Me(T ). The resulting equation is the same LLB
one but with a different damping parameters, called here αLLG.

αLLG = α⊥
me

. (41)

Note that while both α‖ and α⊥ are continuous through Tc, τ|| and αLLG diverge at
Tc, corresponding to the critical behavior at the phase transition. At the same time
the perpendicular relaxation time goes to zero which constitutes one of the main
differences between the LLG and the LLB dynamics.

The most important manifestation of the high-temperature dynamics is the
longitudinal relaxation time. It will show itself only close to the phase transition
due to the fact that at relatively low temperatures the longitudinal susceptibility is
small. At Tc the susceptibility diverges as well as the longitudinal relaxation time.
This divergence is only visible very close to Tc so that for practical reasons the
longitudinal timescale is still at femtosecond scale for T/Tc = 0.9. However, this
timescale is now accessible with the ultrafast magnetization dynamics exited by fs
laser or THz radiation.

An example of the temperature dependence of the longitudinal relaxation time is
presented in Fig. 6. It has the following asymptotic behavior:

τ|| ∼= μat

2γ λkBTc

S + 1

S

⎧
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(42)

Note that its behavior is in agreement with the well-known relation, proposed by
Koopmans et al. (2010), that the ultrafast demagnetization time scales with the ratio
μat/Tc and proposed by Kazantseva et al. (2008b) and Ostler et al. (2012) that it
scales as a ratio μat/λ . As was pointed out elsewhere by Atxitia and Chubykalo-
Fesenko (2011) and Atxitia et al. (2014), the complete expression involves the
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Fig. 6 Longitudinal relaxation time (Eq. (39)) versus temperature using constant λ = 0.02,
Tc = 650 K, and μat = 0.5μB in the three spin cases with S = 1/2, S = 9/2, and S = ∞.
The case S = ∞ is done by taking the limit S → ∞ in Eq. (39), which is equivalent to the
classical LLB equation. (Reprinted from Nieves et al. 2014)

combination of both. The two last lines in Eq. (42) describe the effect of the critical
slowing down near the critical temperature. Note that the relaxation time is twice
large above Tc than below it. Furthermore, the relaxation time decreases with
the increase of the quantum number S. This is due to the fact that for larger S

one increases the number of scattering possibilities. Furthermore, there is also an
increase of the longitudinal relaxation time for low temperatures, visible especially
for S = 1/2. This is due to the well-known fact of the freezing of fluctuations
at low temperature in the quantum case and is reflected also in the fact that the
perpendicular damping parameter goes to zero in the quantum case (see Eq. (27)),
while it tends to a constant value in the classical case. In any case, there is an
additional temperature dependence not considered above due to the fact that λ(T )

is a function of temperature itself since it contains the scattering probabilities. This
dependence is specific for the scattering mechanism (see Nieves et al. 2014, Nieves
2015).

While in the LLB equation we use the longitudinal susceptibility at zero field
(diverging at Tc), the resulting susceptibility at constant field does not diverge. In
Fig. 7 we present the longitudinal relaxation time as a function of the temperature
in constant applied field for the two limiting cases S = 1/2 and S = ∞.
The longitudinal relaxation time was evaluated by direct integration of the qLLB
equation with initial conditions m0 − me = 0.1me. The longitudinal relaxation
time for S = 1/2 is smaller in the classical case than for the quantum one, and, as
expected, the maximum is displaced for larger values at larger fields.

For the two-sublattice case, it is also possible to analyze the relaxation rates of
the two sublattices. However, the equations are coupled and the situation depends
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Fig. 7 The in-field longitudinal relaxation time calculated via direct integration of the qLLB equa-
tion with small deviation from the equilibrium. The following parameters are used Tc = 650 K,
μat = 0.5μB , λ = 0.02, and zero anisotropy constant. (Reprinted from Nieves et al. 2014)

Fig. 8 Longitudinal relaxation time of the (a) transition metal (TM), strong intersublattice
exchange and (b) rare earth (RE), weak intersublattice exchange, evaluated for the Gd0.25Fe0.75
compound and different intersublattice strengths JTR . The parameter J1 corresponds to a typical
(relatively weak) intersublattice strength of this material (see Suarez et al. 2015 and Ostler et al.
2011 for the values). (Reprinted from Suarez et al. 2015)

strongly on the coupling strength. Typically the divergence of the longitudinal
relaxation time is suppressed by interactions (as in the case of the external field), and
individual longitudinal relaxation times simply have maximum at different critical
temperatures for each sublattice. An example of the longitudinal relaxation time for
different intersublattice exchange strengths is presented in Fig. 8. In weakly coupled
ferrimagnets, only the material with the largest exchange value slows down at the
common Curie temperature (see Suarez et al. 2015).
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If the coupling is not very strong and for relatively low temperatures, we can
estimate the longitudinal relaxation time as defined by the exchange field acting on
each sublattice as

τ ||v ≈
1

2γvλvmv,eHex
v,e

, (43)

where

Hex
v,e =

J̃0,v,e

μv

me,v, (44)

is the homogeneous exchange field evaluated at the equilibrium. Note that in this
approximation, the relaxation time is independent on the sign of the coupling
between sublattices (ferro or antiferro).

Interestingly that varying the initial temperature, the demagnetization speed of
the initially slower material may become faster than that of the high-speed material.
For example, Gd in GdFe may become faster than Fe at high initial temperatures
(Atxitia et al. 2014). The temperatures at which the longitudinal relaxation times
are maximum coincide for each sublattice in the case of strongly coupled alloys.

The extension of the two-sublattice LLB above the Curie temperature can
be found in Nieves et al. (2015) and Nieves (2015). Here the longitudinal and
the transverse damping parameters become the same and defined by the formula
(Eq. (16)) for each sublattice.

5 Examples of ModelingMagnetization Dynamics Close to
the Phase Transition

The main difference of the LLG and LLB magnetization dynamics is the presence
of the longitudinal relaxation. This relaxation manifests itself close to the Curie
temperature only and especially at picosecond-femtosecond timescale. In fact, close
to this temperature, the magnetization can be switched by a so-called linear reversal,
i.e., when the macroscopic magnetization changes its length instead of rotating the
magnetization vector as it happens at low temperatures. In the intermediate region
the reversal is so-called elliptical, i.e., the magnetization vector rotates together with
the change of its magnitude. For the analysis of elliptical and linear reversal within
the LLB model, see Kazantseva et al. (2009). The high-temperature magnetization
dynamics close to Tc is also characterized by the presence of the linear domain walls
in which the magnetization changes its length rather than rotates (see, e.g., Hinzke
et al. 2007).

To illustrate the appearance and importance of linear magnetization reversal path,
we present in Fig. 9 the modeling results for the magnetization reversal time versus
temperature for a magnetic nanoparticle with S = 1/2 (pure quantum case) and
S = ∞ (classical case) under applied field μ0Hz = −1T for two different initial
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Fig. 9 Reversal time versus temperature for a magnetic nanoparticle with magnetic moment
μ = 0.5μB (μB is the Bohr magneton), Tc = 650 K, and the coupling to the bath parameter
λ = 0.02 under applied field μ0Hz = −1T modeled with the LLB equation with S = 1/2 and
S = ∞. In the pure longitudinal dynamics, the initial magnetization is set to m = (0, 0, 0.2), and
in the longitudinal plus transverse dynamics, the initial magnetization is set to m = (0.05, 0, 0.2).
(Reprinted from Nieves et al. 2014)

conditions: (i) pure longitudinal dynamics where we put the initial magnetization
of nanoparticle parallel to the field so that it cannot precess and (ii) longitudinal
plus transverse dynamics where the initial magnetization is slightly tilted from the
field axis. We define the reversal time as time elapsed between the initial state
and the instant of time at which the magnetization begins to reverse its direction,
i.e., crosses mz = 0 point. One can observe that slightly below and above Tc, the
magnetization reversal becomes completely linear, i.e., occurs by a pure change of
the magnetization magnitude. However, at 5 degrees from Tc, the path is elliptical
and at 10 degrees, it is completely precessional.

The longitudinal relaxation especially manifests itself in the laser-induced mag-
netization dynamics which recently has become an essential part of the novel field
of opto-magnetism (Kimel et al. 2007; Kirilyuk et al. 2010). Indeed the timescale in
these experiments goes down to the femtosecond range, and the energies are such
that the electronic temperature often exceeds the Curie temperature of the materials.
One of the main acting mechanisms has a pure heat origin (see Ostler et al. 2012),
and during the femtosecond timescale, the exchange interaction energy is probed.
The modeling of the ultrafast laser-induced magnetization dynamics based on the
LLB equation has been successfully performed in Ni (Atxitia et al. 2010a), in FeNi
(Hinzke et al. 2015), Gd (Sultan et al. 2012), and FePt (Mendil et al. 2014) with a
very good agreement with experiment. For this purpose the LLB equation is coupled
with the electronic temperature of the two-temperature model assuming the electron
scattering mechanism.
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Fig. 10 (left panel) The measured Kerr angle rotation (solid line) and the modeled magnetization
dynamics (circles) for various laser fluencies F on Ni. The right panels represent experimental
(circles) and modeled (squares) timescales for demagnetization τm and recovery τE . (Reprinted
from Atxitia 2012)

The main consequence of the longitudinal relaxation is the slowing down of
the first laser-induced demagnetization timescale. An example of this is illustrated
in Fig. 10 where we present a comparison between the experiment performed in
Atxitia et al. (2010a) on Ni and the micromagnetic modeling based on the LLB
equation. The right panels represent the behavior of the demagnetization τm and
the recovery τE times as a function of the laser fluency. The slowing down of
the demagnetization timescale is the consequence of the slowing down of the
longitudinal relaxation time, while the slowing down of the recovery timescale is
the consequence of the electronic temperature dynamics. The comparison of the
experimental measurements with the modeling based on the LLB has allowed to
conclude the pure thermal origin of the laser-induced demagnetization. This was
later confirmed by atomistic modeling and experiments on different FeCoGd thin
films and dots by Ostler et al. (2012).

Another prominent example is the magnetization dynamics measured and mod-
eled in FePt thin film with a linearly polarized laser pulse by Mendil et al. (2014).
Here as the laser pulse intensity increases and the quasi-equilibrium electron
temperature approaches the Curie temperature, the slowing down of the demagne-
tization time of FePt in the picosecond timescale is observed experimentally and in
modeling. At large pulse intensity the quasi-equilibrium electron temperature stays
near Tc, and the recovery does not take place in the 100 ps timescale. The result of
the modeling is presented in Fig. 11. The experiment and LLB-based modeling with
circularly polarized laser pulse can be found in John et al. (2017). The circular
polarized light produces an additional effect based on the inverse Faraday one
(Hertel 2005; Vahaplar et al. 2012; Battiato et al. 2014). This suppresses the slowing
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Fig. 11 Magnetization
dynamics in FePt under the
linearly polarized laser pulse
obtained by the integration of
the qLLB equation with
S = 3/2 coupled with the
two-temperature model with
the parameters from Mendil
et al. (2014), Nieves (2015)
and for several laser
intensities measured in
fluence F . (Reprinted from
Nieves 2015)
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down and makes the reversal probabilities from up to down and from down to up to
become non-equal. A similar effect is produced treating the inverse Faraday effects
as an additional short timescale field (Nieves and Chubykalo-Fesenko 2016). In John
et al. (2017) the reversal probabilities were modeled within the multiscale approach
based on the DFT calculations, LLB approach, and the rate equations. The modeling
results explained the recently observed by Lambert et al. (2014) switching of FePt
granular media by circularly polarized pulses.

The two-sublattice LLB approach was successfully used to explain the tem-
perature dependence of the frequencies and damping parameter of ferro- and
antiferromagnetic modes in GdFe ferrimagnet (Schlickeiser et al. 2012) and to
explain the different demagnetization speeds in Fe and Ni in permalloy (Hinzke
et al. 2015).

Furthermore the LLB approach is currently extensively used as a framework for
modeling of heat-assisted magnetic recording (McDaniel 2012; Vogler et al. 2014,
2016). It is especially useful for a coarse-grained modeling when one magnetic grain
can be represented as the LLB macrospin (Vogler et al. 2014, 2016).

Recently several extensions of the LLB model also appeared, to mention the
introduction of the spin-torque effects into the LLB model by Schieback et al. (2009)
or Janda et al. (2017), of the colored noise (Atxitia 2012) or the self-consistent
modeling of magnetization and temperature dynamics (Nieves et al. 2016) useful
for modeling of magnetocaloric effect and magnetic hyperthermia.

6 Conclusions

The LLB approach is a valuable micromagnetic framework to model magnetization
dynamics close to Tc and in general where rapid temperature changes appear. First,
it correctly reproduces the temperature dependence of relaxational parameters and
is in agreement with atomistic modeling. Second, it has proved its viability in
modeling of several important research areas such as the heat-assisted magnetic
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recording, spin caloritronics, and ultrafast laser-induced magnetization dynamics
and was validated via the experimental measurements. It is an important part of the
multiscale framework, especially when the model should include the temperature
effects. The introduction of the quantum LLB equation allows one to pass directly
from ab initio modeling to the micromagnetic one without going through the atom-
istic part and avoiding the classical temperature dependencies of the micromagnetic
parameters as opposed to the more correct quantum dependencies. This, however,
needs future investigation on the relevant scattering mechanisms and their spin-
flip probabilities. The generalization of the LLB equation for the case of alloys
allows one to describe separately the dynamics of each species, in agreement
with experimental predictions that these dynamics are different on the ultrashort
timescale.
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Abstract

Density functional theory and its application for the simulation of magnetic
properties of condensed matter is introduced. This includes vector-spin density
functional theory for the evaluation of spin-spin interactions and relativistic
extensions to capture effects like the magnetocrystalline anisotropy. The role
of the different approximations to the exchange-correlation functional, e.g., the
local density approximation, or the generalized gradient approximation, is inves-
tigated, showing successes and limitations of the present functionals. Special
techniques to determine, e.g., the magnetic ground state or finite temperature
properties based on density functional theory are shortly discussed.
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1 Introduction

Being a material-specific theory, density functional theory (DFT) has gained enor-
mous popularity in the last few decades for the investigation of structural, electronic,
or optical properties of condensed matter and is valued as “approximate practical
method” in many other areas as well (Jones 2015). In the field of magnetism the
value of DFT calculations is widely accepted: only few input parameters have
to be known (the chemical composition and, maybe, some information on the
crystal structure) to calculate ground state properties like the magnetic order (ferro-
or antiferromagnetic, non-collinear structures etc.), spin- and orbital magnetic
moments, magnetic interaction parameters (e.g., the spin-stiffness), or the easy
axis (or plane) of magnetization. These “ab-initio” parameters can further be used
to determine properties beyond the ground state, for example spin-wave spectra
or ordering temperatures. In many cases, the results are of excellent quality, in
particular in the field of itinerant magnets DFT results usually have predictive power.

To illustrate these statements, magnetic moments and ordering temperatures of
several Co-based Heusler compounds are compiled in Table 1 (Thoene et al. 2009).
The structure of these compounds consists of four interpenetrating face-centered
cubic (fcc) lattices where the atoms of the formula Co2YZ are located. Here, Y is
another transition metal element, while Z is from the p-block of the main group.
The DFT calculations give access not only to the total magnetic moment in the
unit cell, Mtot, which is in good agreement with the experimental values, but also
to locally resolved quantities. E.g., one can see a considerable variation of the Co
moments for the listed Co2YZ structures, depending on their neighboring atoms.
With increasing total moment also the Curie-temperatures rises in the shown series,
a trend that is also confirmed experimentally.

Despite the many successes of DFT in the field of magnetism, one has to be
aware of possible complications that can arise due to the specific nature of some
materials. This can be e.g., correlation effects that are difficult to capture in DFT
calculations (Galler et al. 2015) or zero-point fluctuations that have to be accounted
for (Ibañez Azpiroz et al. 2016). However, also in these cases DFT can be used as a
starting point to explore the magnetic properties of materials.

All specific examples shown in this chapter are bulk magnets that can be
reliably calculated with different basis sets, e.g., planewaves, augmented plane

Table 1 Magnetic moment, M , in μB per site (Co or Y ) or unit cell (tot) and Curie temperature
(TC, in Kelvin) of several Heusler compounds: The moments and exchange interactions were
obtained in DFT, while TC is calculated from these DFT results in the mean-field approximation.
Experimental values are listed for comparison. (From Thoene and coworkers 2009)

Co2YZ Mcalc
Co Mcalc

Y Mcalc
tot M

exp
tot T calc

C T
exp
C

Co2TiAl 0.48 −0.08 0.85 0.74 148 134

Co2VGa 0.89 0.20 1.95 1.92 343 352

Co2MnGa 0.79 2.80 4.29 4.11 698 685

Co2FeSi 1.30 2.76 5.34 6.00 1134 1100
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waves, muffin-tin orbitals, etc. assuming three-dimensional periodicity. For other
material classes (like molecular magnets or adatoms on surfaces) other basis sets
(localized orbitals) or formalisms (Green function methods) might be better suited.
Relativistic calculations (to obtain e.g., spin-orbit coupling effects) or problems
dealing with electron-nucleus interaction might profit from an all-electron treatment
of the DFT problem, while for obtaining other quantities (spin moments, scalar
exchange interactions) a pseudopotential treatment can be sufficient. In most cases,
however, the diversity of available DFT implementations will make it easy to find a
suitable solution for a specific problem.

2 Methodological Framework

To calculate the electronic structure of an atom, a molecule or a solid, it is
necessary to solve the Schrödinger- or Dirac-equation that governs the behavior of
the electrons in the system. This behavior is encoded in the wavefunction, Ψ , that is
a complex quantity in 3N -dimensional space if N is the number of electrons. Even
for a moderate amount of particles (e.g., 26 electrons in an Fe atom) this many-
particle wavefunction is impossible to handle numerically. If spin comes into play,
or a time-dependence has to be included, the problem even worsens. Therefore, a
straightforward solution is – in most cases – out of reach.

The key idea of density functional theory is to work, instead of the many-body
wavefunction, with the density, n(r), as the basic variable. The latter can be obtained
by the former by integration over all but one spatial variables:

n(r) = N

ż

dr2 . . .

ż

drNΨ ∗(r, r2, . . . , rN)Ψ (r, r2, . . . , rN) . (1)

Surprisingly, the total energy, E, turns out to be a unique functional of this
density and this functional is stationary with respect to variations of n(r). This
theorem was worked out by Hohenberg and Kohn (1964), together with the
observation that in a non-degenerate ground state the many-body wavefunction Ψ

that describes electrons in an external potential, v(r) (caused by e.g., nuclei), is
uniquely determined by the particle density distribution n(r) (The charge density
is obtained by multiplying n with the electron’s charge −e. In atomic units this is
normalized to unity and in the following e is not written explicitly, unless in the
context of some relativistic terms.). The energy functional can be written as

E[n(r)] =
ż

v(r)n(r)dr+ F [n(r)], (2)

where the first term on the right side describes the Coulomb interaction of the
density with the external potential and the functional F captures the kinetic energy
of the electrons and their mutual Coulomb repulsion. Since Hohenberg and Kohn
could show that the density determines v(r) to within a constant, all terms in Eq. (2)
can be determined for a given n(r), provided that F is known.
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It was the achievement of Kohn and Sham (1965) to find a representation of
this functional that allowed to split it into large, known parts and a small, unknown
remainder. Their idea was to consider a fictitious system of independent electrons
that have the same density, n(r), as the true electron system: Then, the kinetic
energy, T0, and the Coulomb interaction of these electrons can be separated out:

F [n(r)] = T0[n(r)] + 1

2

ż ż

n(r)n(r′)
|r− r′| drdr′ + Exc[n(r)] (3)

and the remaining so-called exchange-correlation (XC) functional, Exc[n(r)], is just
a small correction to be determined. In reality, the movement of the electrons is
correlated due to their Coulomb interaction, not independent, and Exc has to account
for this difference. The exchange energy, arising from the fact that the density is
derived from a Slater determinant of wavefunctions that will be defined below, is
also contained in Exc.

With this decomposition, it is possible to evaluate the (large) term T0, assuming
that the fictitious independent electrons are described by wavefunctions φ so that
n(r) = ∑N

i=1 |φi(r)|2. Hereby, an Aufbau principle is used to occupy the φi ,
ensuring that the total wavefunction of the Kohn-Sham system satisfies the Pauli
principle. The kinetic energy of the electrons with the mass m is given by T0 =
− h̄2

2m

∑N
i=1 φ∗i (r)∇2φi(r)dr. Now, requiring that E[n(r)] is stationary with respect

to variations of the ground state density and requiring particle conservation, the
resulting Euler-Lagrange equation can be recast in the form of an effective single
particle Schrödinger equation, the Kohn-Sham equation:

[
− h̄2

2m
∇2 +

ż

n(r′)
|r− r′|dr′ + v(r)+ Vxc(r)

]
φi(r) = εiφi(r) . (4)

Here, the exchange correlation potential, Vxc, is the derived as δExc
δn(r) , the εi are

strictly speaking just Lagrange parameters that follow from the normalization
condition; In practice they are often used as “single particle energies” to describe
spectral properties. Equation (4) has to be solved self-consistently since it contains
the density (both explicitly and implicitly via the exchange correlation potential)
that depends on the single particle wavefunctions. Nevertheless, the numerical effort
is rather moderate, comparable to the well-known Hartree equation, i.e., it scales
normally with the third power of the system size. In particular, this is much faster
than wave-function based methods (Friesner 2005).

2.1 Vector-Spin DFT

Since the magnetic ground-state properties are uniquely determined by the many-
body wavefunction that is in turn determined by the density, in principle DFT allows
finding out the magnetic order, magnetic moments etc., provided that a method is
known to extract these properties from the density. In practice, however, it turns out
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Fe

Cr

density (PM) density (M) magnetization

Fig. 1 (110) cuts through the density and magnetization of bcc Fe and bcc Cr. The left and
middle columns show the densities in the nonmagnetic (NM) and magnetic (M) state, respectively,
where blue color indicated low density and green/yellow high density. In the right column the
magnetization is plotted, where red (blue) color encodes positive (negative) values. The plots were
obtained using the FLEUR-code for the DFT calculations (Kurz et al. 2004) and XCrysDen for
plotting (Kokalj 2003)

to be easier to extend DFT in a way that explicitly includes the spin-density, s(r), in
the formalism. This has the additional advantage that it gives a handle to calculate
not only the magnetic ground state, but also other, metastable, magnetic orders. E.g.,
it is possible to initialize a DFT calculation of body-centered cubic (bcc) Fe such
that ferromagnetic (FM), antiferromagnetic (AFM) or nonmagnetic (NM) solutions
and their relative stability are obtained. This turns out to be very useful to access the
strength of magnetic interactions in a system.

As an example, in Fig. 1 cuts through the (spin-) density of Fe and Cr are shown
in the NM state and in the magnetic ground state that is FM for Fe and AFM for Cr.
Clearly, the density alone is not very sensitive to variations of the magnetic state,
although for FM Fe a small decrease of hybridization, which is due to the spin-
splitting of the states, can be seen in the images. However, in both cases only the
spin-density gives a clear picture of the magnetic order.

The spin-dependent version of DFT works with spinor wavefunctions to define
the spin density s(r):

s(r) = 〈
φ(r)|σσσ |φ(r)

〉
; φ(r) =

(
φ↑(r)
φ↓(r)

)
. (5)

(The magnetization density is obtained by multiplying −s with the Bohr magneton,
μB = eh̄

2mc
.) Here, the Pauli matrices (underlined symbols denote 2 × 2 matrices)

are given as:

σx =
(

0 1
1 0

)
, σy =

(
0 −i

i 0

)
, σz =

(
1 0
0 −1

)
. (6)
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With this, a density matrix can be introduced that is composed of a scalar and a
vectorial part, corresponding to the particle and spin density:

n(r) = 1

2

(
n(r)I+ σσσ · s(r)) = 1

2

(
n(r)+ sz(r) sx(r)− isy(r)
sx(r)+ isy(r) n(r)− sz(r)

)
, (7)

where I denotes a 2 × 2 unit matrix. It is easy to see that the components of
the density matrix are given by nαβ(r) = φ∗α(r)φβ(r) where α, β are spin labels.
Analogously, a potential matrix, denoted as v(r), can be written in terms of a scalar
potential, v, and magnetic field, B(r):

v(r) = v(r)I− μBσσσ · B(r) . (8)

In terms of these quantities, von Barth and Hedin (1972) extended DFT to spin-
polarized systems. They derived an analog to Eq. (4) in the form:

[(
− h̄2

2m
∇2 +

ż

n(r′)
|r− r′|dr′

)
I+ v(r)+ V xc(r)

](
φ
↑
i (r)

φ
↓
i (r)

)
= εi

(
φ
↑
i (r)

φ
↓
i (r)

)
,

(9)

where V xc is now defined as the functional derivative of the exchange-correlation
energy with respect to the density matrix. If v(r) and V xc(r) are diagonal matrices,
Eq. (9) clearly decomposes into two equations of type (4) for spin-up and spin-down
wavefunctions.

Naturally the quality of the results obtained with Eq. (9) depends heavily on
the approximation for V xc. In the local density approximation (LDA) or, for the
spin-polarized case, the local spin density approximation (LSDA), the exchange
correlation energy is assumed to be of the form

ELSDA
xc =

ż

n(r)εxc
[
n↑(r), n↓(r)

]
dr, (10)

where εxc is the exchange correlation energy density of the homogeneous, spin-
polarized electron gas. Already before the formulation of DFT several approxima-
tions have been known for the exchange energy of the homogeneous electron gas,
e.g., from the Thomas-Fermi-Dirac theory (Dirac 1930) or derived from Hartree-
Fock theory (Slater 1951). In all these cases it was observed that εx ∝ [n(r)]1/3

and, surprisingly, the first LDA functionals based on this approximations performed
rather well.

Although modern exchange correlation functionals are more sophisticated, many
properties of spin-polarized DFT calculations can be studied already in the simple
LSDA form. Suppose, there is a collinear magnet with the orientation of the
magnetization in z-direction (actually, the Hamiltonian in Eq. (9) is invariant under
spin-rotations). Then, the density matrix is diagonal and V xc has only two terms:

V
↑↑
xc = δExc

δn↑↑ ∝
[
n↑↑(r)

]1/3 and V
↓↓
xc = δExc

δn↓↓ ∝
[
n↓↓(r)

]1/3. This means that Eq. (9)
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Table 2 Magnetic moments (in μB per atom) of ferromagnetic elements in the bulk. The
experimentally determined total magnetization, Mtot., consists of spin- and orbital moment
contributions. The LSDA results for Fe, Co and Ni are taken from Moruzzi et al. (1978), the GGA
values of the magnetic moments from Shallcross and coworkers (2005), the experimental values
are quoted from Trygg et al. (1995). The calculated Gd moments are from Kurz et al. (2002), the
experimental one is taken from White and coworkers (1975)

Property Source Fe (bcc) Co Ni (fcc) Gd (hcp)

Mspin LSDA 2.15 1.56 (fcc) 0.59 7.63

Mspin GGA 2.22 1.62 (fcc) 0.62 7.65

Mspin Experiment 2.13 1.52 (hcp) 0.57

Mtot. Experiment 2.21 1.66 (hcp) 0.62 7.63

consists of two equations, one for φ↑ and one for φ↓ that are identical if n↑↑ = n↓↓,
i.e., if the charge density is not spin-polarized. If a self-consistent calculation starts
from a non-magnetic density it remains in this state, even if a spin-polarized solution
gives a lower total energy. This shows that the spin-polarized version of DFT can
lead to metastable solutions and it is necessary to break the symmetry of the spin-
channels to arrive at a magnetic ground state.

Some DFT results for ferromagnetic elements are shown in Table 2, where
both the LSDA moments are listed and values obtained within the generalized
gradient approximation (GGA) to the exchange-correlation potential. Although
the more sophisticated GGA functionals usually lead to better predictions of the
atomic structure or lattice constants, the magnetic properties are in most cases not
improved (Singh and Ashkenazi 1992). Systematic studies of magnetic properties
with modern XC potentials are rather scarce, but it seems that at least in some cases
care has to be taken (Koller et al. 2011). This is not surprising, since most efforts are
devoted to improving the description of structural parameters or binding energies in
these functionals and often the performance with respect to magnetic properties is
not tested. There are developments of new functionals that can, in principle, improve
also the description of non-collinear magnetism (Eich and Gross 2013), however
with considerably increased numerical efforts.

2.2 Spin-Orbit Coupling

It was already mentioned in the last section that the Hamiltonian in Eq. (9) has
several shortcomings: Since it is derived from the Schrödinger equation, there is no
spin-dependent term in this Hamiltonian; Spin enters just through the wavefunction
and the Pauli-principle that is encoded in the exchange part of the XC potential. This
is enough to find out that Fe is ferromagnetic and has a (spin-) moment of 2.2μB, but
this moment has no preferential direction. The concept of easy and hard magnetic
directions enters only if further, spin-dependent terms are added to the Hamiltonian.
Thinking in terms of a general interaction between two classical spins, S, of the
form SνJ νν′Sν′ , where J is a 3 × 3 matrix, only the trace of J can be accessed by
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Eq. (9). This gives rise to Heisenberg-type interactions of the form Jνν′Sν · Sν′ that
are in many cases responsible for the magnetic order and, for ν = ν′, it describes
the intra-atomic exchange interaction that is responsible for the formation of the
magnetic moment.

To go beyond this description, it is necessary to start from the Dirac-equation or,
if one wants to keep two-component wavefunctions, the Pauli-equation that can be
derived from the Dirac-equation keeping terms up to second order in c, the velocity
of light. (We consider here the single-particle equations, adopting the view that the
Kohn-Sham equations are also in a single-particle form that can be extended by
relativistic terms.) The Hamiltonian of the Pauli-equation can be written as (Bethe
and Salpeter 1977):

HPauli = HNR +HSR + h̄

(2mc)2
σσσ · (∇∇∇V (r)× p)− eh̄

2mc
σσσ · B(r) . (11)

Here, HNR is the usual Schrödinger-type Hamiltonian (with the momentum operator
p(r) extended by the vector potential e

c
A(r)) and HSR contains scalar-relativistic

terms that do not contain spin-operators:

HSR = − 1

2mc2 (E + eV (r))2 + h̄2

8m2c2∇2V (r) . (12)

These are the mass-velocity correction containing the non-relativistic energy E and
the Darwin term, relevant mostly for s electrons. The last two terms in Eq. 11
represent the spin-orbit interaction and the interaction of the spin with an external
magnetic field. This last term was already included ad hoc in the potential matrix
v(r). It may seem odd that in DFT calculations the magnetic field is normally
considered via this B-field, while the mentioned vector potential contribution is
neglected. Indeed, the latter is responsible for diamagnetic effects and has been
discussed in the context of calculating NMR shielding tensors (Pickard and Mauri
2001), but requires a rather special treatment that goes beyond this introduction.

The physical interpretation of the spin-orbit coupling (SOC) term in Eq. (11) is
most easily seen in an atom, where the gradient of the central potential can be written
∇∇∇V (r) = ∂V (r)

∂r
r
r
. Then,

h̄

(2mc)2σ
σσ · (∇∇∇V (r)× p) = h̄

(2mc)2

1

r

∂V (r)

∂r
σσσ · (r× p) = ξσσσ · L, (13)

where ξ is called the SOC constant and L = r×p is the (angular) orbital momentum
operator. In this form, the SOC term resembles a coupling between spin- and orbital
momentum, although one has to keep in mind that it is rather the (orbital) motion of
the electron in a potential gradient (i.e., an electric field that is Lorentz-transformed
into a magnetic field) that couples to the spin. This also applies to a linear motion of
an electron, where the SOC term manifests in the so-called Rashba-effect (Bychkov
and Rashba 1984).
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Fig. 2 Band structure of bcc Fe without (left) and with (middle) SOC effects. The Brillouin zone
is shown on the right. (From the Bilbao Crystallographic Server, http://www.cryst.ehu.es). Left:
Majority and minority spin states are shown in black and red, respectively. The character of the
orbitals forming the bands along H3 − Γ is indicated. With SOC the spin-character of the states
is mixed and some band degeneracies are lifted. Crossings discussed in the text are marked with
green circles. The magnetization is assumed to point in y direction

Due to this coupling between the potential landscape (as, e.g., formed by the
atomic lattice in a solid) and the electron spin, the orientation of the magnetization in
the solid is no longer arbitrary but certain directions are preferred. This is one source
of magnetic anisotropy, the so-called magnetocrystalline anisotropy, that determines
the “easy axis” of magnetization. (Other sources, like the dipole-dipole interaction
are not included in the single particle equation (11) and have to be added, e.g., from
a classical calculation of the dipole sum.)

The effect of spin-orbit interaction in a magnetic system can be seen as a certain
symmetry breaking that leads not only to a magnetic anisotropy, but also other
effects like magnetostriction. This can be seen most clearly from a consideration
of the band structure in two directions that are equivalent without SOC, but get
non-equivalent when SOC is taken into account. As an example Fig. 2 shows the
band structure of bulk bcc Fe along a high-symmetry direction in reciprocal space
(Γ − H ). In this direction, without SOC, several band crossings can be detected,
e.g., between dx2−y2 states and dxy states of same and different spin. The SOC
term, Eq. (13), allows now hybridization between these states of the same spin to
form an orbital moment in the direction of magnetization (Γ − H corresponding
to y) and these states of opposite spin in Γ − H3 direction. Thus, gaps form at
different positions in the formerly equivalent directions, which leads to a symmetry
reduction from cubic to tetragonal in this case. These gap openings were recently
also seen experimentally (Młyńczak et al. 2016).

Moreover, the spin-orbit terms gives rise to a finite orbital momentum that can
be easily obtained in the vicinity of an atom ν as

Morb
ν = −μB

∑

i

〈φi |L|φi〉ν (14)

http://www.cryst.ehu.es
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where the integration is performed in a sphere around the atom. To obtain the
orbital moment in an infinite periodic solid a more involved theory is neces-
sary (Thonhauser et al. 2005). It should be noted that the orbital moments obtained
by LSDA (and also GGA) calculations are typically too small, e.g., for Fe and Co
values of 0.05 and 0.08 μB have been obtained (Beiden et al. 1998). Compared
to experimental values (i.e., the difference between total and spin-momentum in
Table 2) these values are reduced by almost 50%.

In absence of spin-flip terms (i.e., when the majority and minority band are well
separated by the exchange interaction), SOC changes the total energy of a system in
second-order perturbation theory as (van der Laan 1998):

δE =
∑

i,j

〈
φi |Hso|φj

〉 〈
φj |Hso|φi

〉

εi − εj
f (εi)

[
1− f (εj )

] ≈ −1

4
ξ Ŝ ·

[〈
L↓

〉
−
〈
L↑

〉]

(15)

where Hso is the SOC Hamiltonian, f is the Fermi function giving the occupation
of the state, Ŝ is the direction of the spin moment, and L↓(↑) is the orbital moment
of the spin-down (up) bands. If the spin-up band is completely filled, we see
that energy change, δE, is proportional to the size of the orbital moment. The
magnetocrystalline anisotropy energy (MAE), i.e., the difference of δE for two
different magnetization directions, will be proportional to the difference in the
orbital moments as first derived by Bruno (1989).

When calculating the MAE from DFT one has to keep in mind that the resulting
energy differences are often very small, for cubic metals like Fe or Ni even in
the μeV per unit cell range (see Table 3). Therefore, the numerical parameters, in
particular those determining the sampling of reciprocal space, have to be extremely
well converged (Trygg et al. 1995). To make the numerical effort tractable, often
these calculations are not performed self-consistently, but SOC is added on top of
a non- or scalar-relativistic calculation using the so-called force theorem (Weinert
et al. 1985). Although the experimental values of the MAE for the cubic elements
listed in Table 3 are hard to reproduce quantitatively, the easy axis is correctly
reproduced in LSDA (Halilov et al. 1998).

Table 3 Magnetic anisotropy energy (in μeV per atom) of the ferromagnetic elements obtained
by DFT calculations with spin-orbit (SO) coupling included as obtained by Trygg et al. (1995) [1]
and Halilov et al. (1998) [2]. In addition, the results including the orbital polarization correction
(OP) are cited from [1]. The experimental data (exp.) are quoted from both references. For the fcc
structures the anisotropy between [001] and [111] direction is given and positive values indicate
that the latter magnetization direction is preferred. The values for Co (hcp) show the energy
difference between the [0001] and [1010] direction

Element SO[1] OP[1] SO[2] exp.

Fe (bcc) –0.5 –1.8 –2.6 –1.4

Co (hcp) –29 –110 –65

Co (fcc) 0.5 2.2 2.4 1.3–1.8

Ni (fcc) –0.5 –0.5 1.0 2.7
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Table 4 Magnetic anisotropy energy (in meV per formula unit) of the L10 phases of FePt and
CoPt obtained in LSDA with spin-orbit (SO) coupling and orbital polarization (OP) by Ravindran
et al. (2001) [1], Shick and Mryasov (2003) [2] and Kota and Sakuma (2014) [3], where
perturbation theory (PT) and force theorem (FT) were used. Positive numbers indicate that
the [001] direction is preferred (relative to [100]). The experimental data (exp.) are quoted
from Ravindran et al. (2001)

Element SO[1] OP[1] SO[2] PT[3] FT[3] Exp.

FePt 2.73 2.89 2.68 2.41 1.90 0.88

CoPt 1.05 1.64 1.03 0.77 0.68 1.0–1.67

FePd 0.15 0.34 0.33 0.29 0.48–0.63

As suggested by Eq. (15), the underestimation of the orbital moments in LSDA
also leads to MAEs that are systematically too small. Techniques like the orbital
polarization correction (OP) were introduced that increase both quantities leading
to better agreement with experimental values (Trygg et al. 1995). Another way to
improve results is to tale into account strong correlation effects via the Hubbard U

approximation (LSDA+U ), as shown by Yang et al. (2001) or, for binary alloys by
Shick and Mryasov (2003). For uniaxial systems, where the energies go up to the
meV scale, the agreement is generally better as can be seen from Table 4.

Although in the examples listed above only the energies of two magnetization
directions were compared, the MAE describes more generally the dependence of
the energy on the spin orientation. In terms of the general two-spin interaction, J νν′ ,
the magnetic anisotropy can be expressed as the traceless symmetric on-site part
(ν = ν′) denoted as Kν . It is a matrix with (at most) six coefficients that can be
obtained by independent calculations.

One should keep in mind that a DFT calculation with SOC also gives rise
to interactions described by the symmetric part of the J matrix (so-called pseu-
dodipolar interactions) and the antisymmetric part of the J [Dzyaloshinskii-Moriya
interaction (Dzialoshinskii 1957)] where the strength of the latter is first order in
SOC, while the former arises in second order (Moriya 1960). Although small, these
interactions can be extracted from DFT calculations as will be outlined below.

3 Ground State Calculations

3.1 Magnetic Order

It was shown that spin-polarized versions of DFT allow calculating also metastable
magnetic (or non-magnetic) configurations and the result depends on the initial
configuration. This makes determining the magnetic ground state of a specific
system by DFT a rather challenging problem. Different strategies can be applied:
like in molecular-dynamics calculations, (ab initio) spin-dynamics allows exploring
the magnetic degrees of freedom and finding the global energy minimum that
corresponds to the ground state configuration. A different possibility is to determine
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the magnetic interactions between the atoms by DFT calculations which are then
mapped onto a model (in the simplest case a classical Heisenberg model) that is
solved analytically or numerically. In both cases a discretization of the (vector)
magnetization density in terms of magnetic moments is introduced. Assume that
at the positions of the magnetic atoms the intra-atomic exchange interaction is large
and there are robust magnetic moments that can be assigned to each lattice site,
e.g., within some sphere centered at the nucleus, ν (at a position Rν). Then the
magnetization density, m(r), can be approximated as

m(r) = Mν êν, (16)

where Mν is the magnetization and êν is the magnetization direction at that site. A
magnetic state is in this case characterized by a set of directions,

{
êν
}
, of all the

atoms in the magnetic unit cell. Of course there are the well-known ferromagnetic
(FM) and antiferromagnetic (AFM) states, but already for the latter several possible
unit cells come in mind. E.g., in an face-centered cubic (fcc) material, an AFM order
can occur for ferromagnetically ordered planes in (001), (111), or (110) directions
(type I, II or III AFM order, respectively) to name just the few possibilities that
can be realized by a Heisenberg model with nearest-neighbor (nn) and next-nearest-
neighbor (nnn) interactions.

On a simple level, one can “relax” the directions of the magnetization at the atoms
like a relaxation of the atomic structure (e.g., at a surface) is done. In the DFT self-
consistency cycle the output magnetizations

{
êout
ν

}
in general deviate from the input

values
{
êin
ν

}
. The magnetization directions change to minimize the total energy (cf.

Fig. 3). The final magnetic state, that is reached, in general depends on the starting
point of the calculation and a more elaborate technique is needed to avoid being
trapped in some local minimum of E[{êν}].

To this end one can develop an equation of motion for the magnetization of
an atom. To keep things simple it is again assumed that the magnetization stays
collinear within the vicinity of the atom. Starting from the Hamiltonian of Eq. (9)
and assuming that the external potential matrix, v(r), has been chosen to be diagonal
and the exchange-correlation potential is separated into diagonal and off-diagonal
parts, following Antropov et al. (1995, 1996) it is possible to set up a time-dependent
analog of Eq. (9):

i
dΦ

dt
= [

Hd − σσσ · B(r, t)
]
Φ where Φ =

(
φ↑(r, t)
φ↓(r, t)

)
, (17)

and Hd is the Hamiltonian that contains now only diagonal parts.
Separating the evolution of the magnetization into fast (value of the magnetiza-

tion) and slow (direction of the magnetization) degrees of freedom the fast part are
described quantum-mechanically, while the latter can be treated on a semiclassical
level. At a given time, t , the time-independent version of Eq. (17) can be solved
for a given magnetization characterized by {êν}. An equation of motion for the
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Fig. 3 Relaxation of the spin direction of a Fe atom in bulk bcc Fe calculated in a simple cubic
unit cell. The evolution of the angle ϕ between the magnetic moments of two Fe atoms is shown
as a function of the number of the self-consistency steps of the DFT calculation. Starting from a
90◦ canting of the spins, the FM ground state is reached after approx. 30 iterations. It is important
to avoid high-symmetry states (e.g., AFM) as starting points. (Adapted with permission from Kurz
et al. 2004. Copyrighted by the American Physical Society)

magnetization m(r, t) can be obtained by multiplying Eq. (17) from the left with
−μBΦ

∗σσσ and adding the complex conjugate equation. Comparing to the time
derivative of the magnetization (cf. Eq. (5)), the equation of motion reads

dm(r, t)
dt

= 2m× B+ i

2
∇(Φ∗σσσ · ∇Φ − c.c.). (18)

The second term on the right side is complicated and describes longitudinal changes
of the magnetization, which will not be considered on this level. Omitting this term,
Eq. (18) describes the precession of the magnetization direction at an atom under
the influence of the magnetic field generated by the atom itself and other atoms of
the crystal.

Equation (18) can be simplified using Eq. (16) and one can write for the evolution
of the magnetization direction in atom ν

d êν
dt

= − 2

μB
êν × Iν, (19)

where Iν = μBB. If the effect of other fields acting on a magnetization direction
has to be taken into account explicitly, they can be included in Eq. (19). E.g., for
contributions stemming from the spin-orbit interaction (magnetic anisotropy) or
dipole-dipole interaction, these fields can be added in the form I = Iν + ISO +
Id−d. More general expressions of Eq. (19), suitable for spin-dynamics with finite
temperatures included, can be found in the paper of Antropov et al. (1996). It should
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be noted that these equations are the starting point to describe many properties
beyond the ground state on an ab initio basis e.g., shown by Skubic et al. (2008).

3.2 Magnetic Interactions

Although spin-dynamic simulations are a good way to explore magnetic ground
states, they are computationally rather expensive and require additional analysis
to get insight into the interactions leading to a specific magnetic order. For an
interpretation of the results the system is usually mapped to a classical model spin
Hamiltonian, e.g.,

Hmod = −
∑

〈νν′〉
Jνν′Mν ·Mν′ +

∑

ν

MνKνMν +
∑

ν

B ·Mν, (20)

where the first term on the right side captures the Heisenberg-like (scalar, two-spin)
interactions and the sum runs over all pairs of atoms

〈
ν, ν′

〉
, the second term is the

magnetic anisotropy and the last term represents the interaction of the spins with
an external B field (if needed). As mentioned above, the magnetic moments Mν are
directly available from the DFT results and the anisotropy Kν can be obtained from
relativistic total energy calculations.

To extract the Jνν′ coefficients in Eq. (20), it is in principle possible to compare
the total energies of ferromagnetic and different antiferromagnetic states from non-
relativistic DFT calculations and fit these differences to a classical spin Hamiltonian.
As example in Fig. 4 the case of a square lattice is shown, as e.g., realized by an
Fe monolayer on a (001) oriented bcc substrate. Ferriani et al. (2007) studied this
system for Ta and W as substrate and found a transition from a FM ground state for
Ta to a c(2 × 2) AFM state for Fe/W(001). In a nearest-neighbor (nn) Heisenberg
model this transition corresponds to a sign change of the nn coupling constant J1.
Including also next-nearest-neighbor (nnn) interactions, this model also allows (for
negative J2) for another ground state, a row-wise AFM state with a p(2×1) unit cell

c(2x2) AFM

c(2x2)
AFM

p(1x2) AFM

p(1x2)
AFM

FM

J 1
(m

eV
)

J2(meV)

FM20

–20

0

20–20 0

Fig. 4 Two antiferromagnetic (AFM) and the ferromagnetic (FM) structure on a square lattice.
The magnetic unit cells are indicated by the shaded areas. The phase diagram for the classical
Heisenberg model with nearest-neighbor (nn) and next-nearest-neighbor (nnn) interaction is shown
on the right. The red dashed line indicates a phase transition as discussed in the text. (Adapted with
permission from Ferriani et al. 2007. Copyrighted by the American Physical Society)
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Fig. 5 Total energy of bcc-Eu as a function of the spin-spiral q-vector (in units of 2π
a

where a is
the lattice constant) in (110) and (100) direction calculated in the LDA+U method. The symbols
represent calculated values, the lines are a fit of E(q) =∑5

n=0 cn cos(nπq). The energy minimum
at q = (1.63, 0, 0)/a (also visualized in the inset) corresponds quite well to the experimental
ground state (Turek et al. 2003b)

as shown in Fig. 4. By calculating these three magnetic states for alloyed substrates,
TaxW1−x , one can see that from x = 1 to x = 0 J1 changes from about +20
to −20 meV while J2 remains rather constant at −5 meV. In the phase diagram in
Fig. 4 this corresponds to a change along the red dashed line and one can see that for
x = 0.5 a p(2×1) AFM structure can be expected as magnetic ground state (Ferriani
et al. 2007) (Fig. 5).

Of course, more magnetic structures can be added to the analysis and further
interactions, Ji for i > 2, can be extracted. A systematic way to obtain these J ’s
is given by the calculation of so-called spiral spin-density waves (SSDWs), general
solutions of the classical Heisenberg model. The magnetic moments in a spiral with
propagation vector q are given as:

Mν = M
(
êx cos(q · Rν)+ êy sin(q · Rν)

)
, (21)

where the unit vectors êx and êy just have to be perpendicular to each other,
otherwise their directions are (in absence of SOC) arbitrary. For simplicity it is
assumed that the size of the magnetic moment, M , is not site dependent. The
wave-length of the spin-spiral is given by λ = 2π

q
and it seems that huge

super-cells are necessary to capture these SSDWs. But using the generalized
Bloch theorem (Herring 1966; Sandratskii 1991) these magnetic structures can be
conveniently calculated in the chemical unit cell as long as no spin-orbit coupling
is considered. In this way the total energy E(q) can be calculated on a grid of
q vectors and, assuming that M remains constant, directly related to J (q) which
is the Fourier transform of the Heisenberg interaction constants in real space. By
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Fourier transformation the constants Jνν′ can thus be recovered. This procedure can
be generalized to systems with different atomic species in the unit cell, where intra-
sublattice J ’s and inter-sublattice J ’s have to be considered (Ležaić et al. 2013).

Spin-spiral structures, as given by Eq. (21), also occur as ground states in
many magnetic systems. A well-investigated system is bcc Eu, a member of the
lanthanides, where the spins are rotated between neighboring (001) planes by
47◦ (Turek et al. 2003b). DFT calculations of SSDWs with q along the (1, 0, 0)
direction indeed show a minimum of E(q) at the experimentally observed position.
Also along the (1, 1, 0) direction a local minimum is found and experiments indeed
report that under an external magnetic field such state can be realized (Millhouse
and McEwen 1973). It should be further mentioned that in these calculations the
so-called LDA+U method (Anisimov et al. 1997) was used to capture the correlated
nature of the 4f electrons in Eu.

As mentioned above, SSDWs are the general solutions of the classical
Heisenberg model (Yosida 1996). Therefore, if a system described by this model,
a procedure to find the magnetic ground state was presented. However, for a system
with spins larger than 1/2, higher order interactions are allowed that involve more
than two spins, e.g., the biquadratic interaction Bνν′(Sν · Sν′)2 or other four-spin
interactions. These terms can couple two or more spin-spirals and possibly lead to
solutions with lower energy than all SSDWs. E.g., the p(2 × 1) structure in Fig. 6

can be regarded as spin spiral with q1 =
(

0, 1
2

)
and a 90◦ rotated SSDW with

q2 =
(

1
2 , 0

)
is degenerate with this structure. A linear combination 1

2 (q1 + q2),

where the spins of neighboring atoms are 90◦ rotated to each other (see Fig. 6), is
energetically degenerate to the constituting spin spirals in the classical Heisenberg
model, but a Hamiltonian that includes the biquadratic interaction can differentiate
between the former double-q and the latter single-q structures. In a DFT calculation
it is found that indeed the double-q structure has lower total energy (Ferriani et al.
2007). This is a sign for the importance of higher-order interactions that is not
unexpected in a system with large spin moment.

p(1x2) AFM (0meV)2q (–3meV)p(2x1) AFM (0meV)

Fig. 6 The 2q structure shown in the middle is a superposition of the p(2 × 1) and p(1 × 2)
structure. Alternatively, it can be constructed by rotation of the spins in the collinear structures by
45◦ as indicated by the blue arrows. For Fe on a Ta/W-alloy substrate, the 2q structure is 3 meV
lower in energy than the two shown antiferromagnetic structures (Ferriani et al. 2007)
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All SSDWs and the AFM structures shown in Fig. 4 [that are actually spin spirals

with qc(2×2) =
(

1
2 ,

1
2

)
, qp(1×2) =

(
1
2 , 0

)
and qFM = (0, 0)] are special in the

sense that in these structures there is no torque on the magnetic moments due
to symmetry. I.e., in the DFT self-consistency cycle the spin direction does not
change in the sense described in Sect. 3.1. This is different for the spin-structures
that connect the states shown in Fig. 6. To calculate the total energy of such spin
structures correctly, constrained DFT calculations (Dederichs et al. 1984) have to be
performed, i.e., a transversal B⊥ field has to be applied that keeps the local moment
in a prescribed direction (Kurz et al. 2004). This constrained DFT scheme can also
be used to study longitudinal fluctuations of the magnetic moments, E(|M|). These
so-called fixed spin-moment calculations can be very useful to explore magnetic
phases, in particular when multiple solutions (high-spin and low-spin phases) are
present (Moruzzi et al. 1986).

It was mentioned above that SSDW calculations using the generalized Bloch
theorem can only be performed in the absence of SOC. Nevertheless, it is possible to
include SOC in first order perturbation theory to the spin-spiral calculations (Heide
et al. 2009). In this way, it is possible to access the Dzyaloshinskii-Moriya
interaction (DMI) mentioned at the end of Sect. 2.2 in a rather systematic way. This
relativistic interaction can then be added to the model Hamiltonian (20) to describe
large-scale spin structures. For example the DMI can stabilize a SSDW with unique
rotational sense (Bode et al. 2007) or it leads to chiral magnetic skyrmions in
complex superlattices with several nanometers of diameter (Dupé et al. 2016). It
can also be used as input for micromagnetic simulations of even larger systems
(see Schweflinghaus et al. (2016) for an relation of atomistic and micromagnetic
parameters).

4 Beyond the Ground State

Although a more detailed account of spin excitations and finite temperature
magnetism will follow in the next chapters, this section is intended to show the
link between non-collinear DFT calculations, as described above, and the modeling
of properties beyond the magnetic ground state. Moreover, the application range and
limitations of some simple models are indicated.

4.1 Magnetic Fluctuations

Up to now, flat spin-spirals as defined in Eq. (21) were discussed, i.e., the spins
were assumed to be rotating in the plane defined by êx and êy . These SSDWs can
be generalized to conical spin-spirals as

Mν = M
(
êx cos(q · Rν) sin(ϑ)+ êy sin(q · Rν) sin(ϑ)+ êz cos(ϑ)

)
, (22)



912 G. Bihlmayer

where 2ϑ defines the opening angle of the cone. Magnetic structures described by
Eq. (22) occur as magnetic ground states, e.g., in LaMn2Ge2 (Di Napoli et al. 2004),
or in strong magnetic fields as described by the Hamiltonian (20).

Since conical spin-spirals also resemble snap shots of a single magnon in a
ferromagnet at a fixed time, the SSDWs introduced above are sometimes called
“frozen magnons”. Calculations for different (small) q values (e.g., using the
generalized Bloch theorem) can be used to simulate the effect of temperature on
a magnetic system in the adiabatic approximation. At very low temperatures, when
magnons with long wavelengths dominate and no Stoner excitations are present,
this is a reasonable approximation. In the long wavelength limit, i.e., around q = 0,
the spin-wave dispersion behaves almost quadratically and can be described as
E(q) = Dq2. The spin stiffness, D, characterizes the magnetic properties of a
ferromagnet at low temperatures and can be calculated from SSDW calculations
directly or from the exchange coupling constants in real space. Consider e.g., the
Heisenberg term of Eq. (20) in one dimension: Then

δE(q) = E(0)− E(q) = +2M2
∑

ν>0

J0ν
(
1− cos

(
qRν

)) ≈ 2M2q2
∑

ν>0

J0νR2
ν

(23)

and D is obtained as 2M2 ∑
ν>0 J0νR2

ν . In more dimensions D is a tensorial
quantity and the exact expression depends on the crystal symmetry. Some results
of an isotropic D obtained from DFT calculations for cubic systems are given in
Table 5. For Fe and Co agreement with experimental data is reasonable, but for
Ni most methods fail to reproduce the experimental spin stiffness. More about spin-
waves can be found e.g., in the review of Staunton (1994) and in a following chapter.
Calculations of the full magnon spectra of Fe and Ni can be found e.g., in the work
of Halilov et al. (1997). The agreement with experimental spectra, even for larger q
values is quite satisfactorily, therefore these calculations can also serve as a starting
point to calculate finite temperature properties, like the Curie temperature. One has
to keep in mind, however, that for other systems it is not guaranteed that they can be
treated in such simple model.

In the discussion of spin waves so far the influence of spin-orbit coupling was
neglected. Therefore, the so obtained “spin-excitations” are always gapless while
in a system with magnetic anisotropy there is an energy to overcome for a finite

Table 5 Calculated and experimental spin-wave stiffness (D) for Fe, Co and Ni. The theoretical
values were obtained in different approximations as described by Rosengaard and Johansson
(1997) [th.(1)], Kübler (2000) [th.(2)], Shallcross and coworkers (2005) [th.(3)] and Pajda et al.
(2001) [th.(4)], experimental data were taken as cited in these references

D (meV Å2) th.(1) th.(2) th.(3) th.(4) Exp.

Fe (bcc) 247 355 322,313 250 280,314,330

Co (fcc) 502 510 480,520 663 510,580

Ni (fcc) 739 790 541,1796 756 422,550,555
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q value. Moreover, the Dzyaloshinskii-Moriya interaction leads to a finite energy
difference between clockwise and anticlockwise rotating magnons (Udvardi and
Szunyogh 2009).

4.2 Ordering Temperatures

Extending the description of finite-temperature magnetic properties of bulk fer-
romagnets to the point where transverse fluctuations finally destroy the magnetic
order, here the simplest model is presented, the so-called mean field approximation
(MFA). A selected site 0 experiences an effective field from all other atoms; At
T = 0 it is proportional to M

∑
ν �=0 J0ν = MJ0, while at T > 0 this field is

reduced by thermal fluctuation on the sites ν:

Beff =
∑

ν

J0ν〈M(Rν)〉, (24)

where the thermal average of the projection of the magnetization at site ν on
the magnetization at site 0 is denoted as 〈M(Rν)〉. In this model the temperature
where the average magnetization vanishes (for ferromagnetic systems the Curie
temperature) is given by

kBT
MFA
C = 2

3
J0M

2η, (25)

where η → 1 in the classical limit (Liechtenstein et al. 1986). In many cases the
MFA overestimates TC and other models, like the random phase approximation
(RPA) are preferable. Moreover, in lower-dimensional systems the MFA cannot
be applied, e.g., a finite the magnetic anisotropy is essential to stabilize magnetic
order in two dimensions (Bander and Mills 1988). However relativistic DFT cal-
culations provide the necessary ingredients to calculate also TC in two dimensional
systems (Udvardi and Szunyogh 2009). Also for antiferromagnets (or, generally
spin-spiral states) expressions for the ordering temperature, the Néel temperature
TN, can be derived (Turek et al. 2003b). There exist several more methods to
calculate critical temperatures from DFT results, e.g., the Monte Carlo technique
(MC) allows studying finite-temperature magnetic properties by implementation of
a Heisenberg Hamiltonian, possibly with extensions like the magnetic anisotropy
like in Eq. (20). Some applications for multi-sublattice systems are shown in the
work of Ležaić et al. (2013).

The Curie temperature of Fe, Co, Ni and Gd obtained in different approximations
with parameters from DFT calculations are presented in Table 6. Compared to RPA,
the MFA overestimates TC by 25–50% in these cases. For Fe and Co RPA gives
quite good estimates of the Curie temperature, while for Ni TC is underestimated in
both approximations. From Table 1 it can be seen that this behavior is not universal
and for some materials the MFA results compare very well with experimental data.
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Table 6 Calculated and experimental Curie temperature TC for some ferromagnetic materials.
MFA[1] and RPA data for Fe, Co and Ni taken from Pajda et al. (2001), MFA[2] results and
experimental values as quoted by Shallcross and coworkers (2005), while the MC results were
obtained by Rosengaard and Johansson (1997). Spin dynamics (SD) calculations have been
performed by Antropov (2005). Data for Gd can be found in the papers of Kurz et al. (2002)
and Turek and coworkers (2003a)

TC (K) MFA[1] MFA[2] RPA MC SD Exp.

Fe (bcc) 1414 550,1190 950 1060 1070 1044 – 1045

Co (fcc) 1645 1120,1350 1311 1080 1388 – 1393

Ni (fcc) 397 320,820 350 510 470 624 – 631

Gd (hcp) 334 293

MC simulations work better for Ni and Fe, but give a too low TC for Co. Finally,
the results of spin dynamics calculations, performed along the line sketched in
Sect. 3.1, give results comparable to MC calculations for Fe and Ni, but have the
advantage that they do not rely on a model Hamiltonian (Antropov 2005). Also in
the work of Skubic et al. (2008) it can be seen that SD and MC results for bcc Fe
are very similar.

5 Conclusion

Within this small chapter I tried to give an impression of the possibilities that
DFT calculations can give to calculate magnetic properties of elemental magnets
and some compounds, mainly focusing on bulk materials. I left out many classes
of magnetic materials, e.g., transition metal oxides, where correlation effects
complicate the picture and extensions like LDA +U (Anisimov et al. 1997) or
LDA + DMFT (Held et al. 2002) are required to capture many aspects of their
properties. Of course, there are many more magnetic properties where DFT can
be very useful for modeling, e.g., the coupling of electrons with the nuclear spin
that has been neglected here. Nevertheless, I hope that this chapter gives at least a
staring point to explore the power of ab initio methods to model magnetic systems.
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Młyńczak E, Eschbach M, Borek S, Minár J, Braun J, Aguilera I, Bihlmayer G, Döring
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Abstract

Electronic spin excitations are low-energy excitations that influence the prop-
erties of magnetic materials substantially. Two types of spin excitations can be
identified, single-particle Stoner excitations and collective spin-wave excitations.
They can be treated on the same footing within many-body perturbation theory.
In this theory, the collective spin excitations arise from the correlated motion
of electron-hole pairs with opposite spins. We present the theory in detail
and discuss several aspects of an implementation within the full-potential
linearized augmented plane-wave method. The pair propagation is described by
the transverse magnetic susceptibility, which we calculate from first principles
employing the ladder approximation for the T matrix. The four-point T matrix
is represented in a basis of Wannier functions. By using an auxiliary Wannier set
with suitable Bloch character, the magnetic response function can be evaluated
for arbitrary k points, allowing fine details of the spin-wave spectra to be studied.
The energy of the acoustic spin-wave branch should vanish in the limit k → 0,
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which is a manifestation of the Goldstone theorem. However, this condition is
often violated in the calculated acoustic magnon dispersion, which can partly
be traced back to the choice of the Green function. In fact, the numerical gap
error is considerably reduced when a renormalized Green function is used. As
an alternative simple correction scheme, we suggest an adjustment of the Kohn-
Sham exchange splitting. We present spin excitation spectra for the elementary
ferromagnets Fe, Co, and Ni as illustrative examples and compare to model
calculations of the homogeneous electron gas.

1 Introduction

Electronic spin excitations span a large range of energies, from high-energy
single-particle Stoner excitations to low-energy collective spin-wave excitations.
Therefore, they are present at all temperatures and play an important role for
the physical properties of magnetic materials. For example, the specific heat
(Doniach and Engelsberg 1966), the macroscopic magnetization (Bloch 1930),
and the magnetic susceptibility (Moriya 1985) exhibit a characteristic temperature
dependence which can be attributed to the low-energy spin waves (magnons)
with excitation energies ranging from a few meV up to a few hundreds meV. In
low-dimensional magnets, spin-wave excitations can even destroy the long-range
magnetic order completely. This happens in the absence of magnetic anisotropy at
any finite temperature (Mermin and Wagner 1966). As the temperature increases, in
addition to collective magnon modes, single-particle spin-flip processes, so-called
Stoner excitations, become increasingly important. They further contribute to the
temperature variation of the magnetization and give rise to a damping of the magnon
states.

Spin excitations play a role in many fields of fundamental and technological
interest. They can contribute to the scattering of a propagating electron or hole in a
magnetic material, leading to a renormalization of the quasiparticle band dispersion
(Hofmann et al. 2009; Schäfer et al. 2004) and reducing the inelastic mean free path
of hot electrons (Hong and Mills 1999, 2000). In magnetic recording applications,
the creation of spin waves that accompanies each switching process in the storage
medium sets physical limits on data rates and areal recording densities. A strong
damping helps in dissipating the energy contained in the spin waves. The spin wave
bus, on the other hand, utilizes spin waves as a means for information transmission
between distant nanoscale devices (Khitun and Wang 2005). The damping through
the creation of Stoner excitations is an undesirable effect in this case, limiting the
distance over which information can be transmitted. The power consumption of such
a spin wave bus is expected to be considerably lower than in charge-based devices.
Finally, it is believed that the electron-electron interaction can become attractive
through the exchange of magnons, which is a possible mechanism for the creation of
Cooper pairs in high-temperature superconductors (Dagotto 1994; Scalapino 1995).
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In quantum mechanics, the spin excited states are eigenstates of the many-body
Hamiltonian with a net spin flip with respect to the many-body ground state. The
magnetic response function or dynamical spin susceptibility, defined as a two-
particle Green function in many-body perturbation theory, exhibits resonances at
the corresponding eigenenergies. In an infinite system, these resonances – or poles
– are, in general, not discrete but form a continuous distribution when plotted over
the eigenenergy. This spectral function is given mathematically by the imaginary
part of the magnetic response function and can be measured in inelastic neutron
scattering experiments (Lowde et al. 1983) where the circularly polarized magnetic
field of an incoming neutron beam disturbs the local magnetization density of the
sample material. The magnetic response function is thus a central quantity in the
theoretical study of magnetic materials.

For a theoretical description of spin dynamics, various formalisms have been
established. Most theoretical studies to date employ the Heisenberg model, which
relies on a separation of the magnetic degrees of freedom and the fast motion of
the electrons. This model is defined in terms of exchange parameters, which can
be obtained, for example, from constrained density functional theory (Rosengaard
and Johansson 1997; Kübler 2009; Halilov et al. 1997). Spin waves with long
wavelengths can be calculated efficiently. Single-particle Stoner excitations are
neglected, though, and the linewidths of the spin-wave resonances, which are
inversely proportional to the magnon lifetimes, are inaccessible. Furthermore, the
Heisenberg model is strictly justified only for systems with localized moments,
such as systems with rare-earth magnetic ions, but not for materials which are
magnetized by the exchange-driven polarization of the spins of itinerant electrons.
While the Heisenberg model still yields reasonable results for long-wavelength
excitations in itinerant-electron magnets, results for short-wavelength excitations
are unsatisfactory. For example, the multiple branches or gaps in the magnon
dispersion of 3d ferromagnets cannot be captured (Cooke 1976).

Many-body perturbation theory (MBPT) provides a more general theoretical
framework that works for systems with localized moments and for metallic magnets
alike. Single-particle Stoner and collective spin excitations appear simultaneously
as poles in the transverse magnetic susceptibility, which can be interpreted as
describing the correlated motion of an electron-hole pair coupled by an effective
electron-electron interaction. First applications to real systems (Cooke 1973; Cooke
1976) employed a tight-binding description. Reasonable agreement with experiment
throughout the Brillouin zone was obtained for the spin-wave dispersion of 3d
ferromagnets. With a similar approach, Tang et al. (1998) examined the spin
dynamics in ultrathin ferromagnetic films on nonmagnetic substrates.

Around the turn of the millennium, the first calculations based on ab initio
electronic structure methods were carried out: Karlsson and Aryasetiawan (2000)
employed MBPT but used a local model potential with an adjustable param-
eter instead of the nonlocal electron-hole interaction. Savrasov (1998), Buczek
et al. (2009), Lounis et al. (2010), and Rousseau et al. (2012) performed calculations
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within time-dependent density functional theory (TDDFT). Kotani and van Schilf-
gaarde (2008) studied (anti-)ferromagnets based on quasiparticle self-consistent GW
calculations (Faleev et al. 2004), where the effective interaction was determined
from a magnetic sum rule. In 2010, Şaşıoğlu et al. (2010) reported a treatment
within MBPT where the screened Coulomb interaction was explicitly calculated
from the random-phase approximation (RPA) rather than using a model potential or
a parameter fixed by a sum rule. Still an ad hoc scaling of the screened interaction
was required to fulfill the Goldstone condition. Good agreement of the calculated
magnon dispersions in 3d ferromagnets with experiment was achieved in both
approaches, MBPT and TDDFT.

In the present chapter, we give a detailed presentation of the theoretical many-
body treatment of spin excitations within MBPT. We adopt a very general viewpoint
that encompasses excitations with and without a spin transfer, so neutral excita-
tions – e.g., excitons, which play an important role in optical absorption – will
appear as a special case. In Şaşıoğlu et al. (2010), a practical computational scheme
was developed to study excitation spectra of magnetic materials from first principles,
in close relation to the formalism of Aryasetiawan and Karlsson (1999). To study
collective magnon excitations, we include vertex corrections in the form of ladder
diagrams, which describe the coupling of electrons and holes with opposite spins via
the screened Coulomb interaction. In analogy to the many-body T matrix defined by
Strinati (1988) for optical absorption, we use the same term for the corresponding
quantity that appears in the Green-function formalism for the transverse magnetic
response function. In order to reduce the numerical cost for the calculation of the
four-point T matrix, we exploit a transformation to maximally localized Wannier
functions (MLWFs), which provide a more efficient basis to study local correlations
than extended Bloch states (Marzari and Vanderbilt 1997; Souza et al. 2001;
Freimuth et al. 2008). Our implementation is based on the full-potential linearized
augmented plane-wave (FLAPW) method.

Section 2 gives a detailed account of the theoretical framework. The numerical
implementation is described in Sect. 3. In particular, we discuss how the magnetic
response function can be calculated for any Bloch vector, even if this Bloch vector
is not an element of the k-point set. This allows the calculation of smooth dispersion
curves while keeping the k-point set small. Section 4 is devoted to the discussion of
the violation of the Goldstone theorem. This theorem stipulates the existence of an
acoustic magnon branch with vanishing excitation energy in the long-wavelength
limit. In numerical calculations, the excitation energy often remains finite in this
limit. We show – both numerically and mathematically – that this violation is due
to an inconsistency in the choice of the single-particle Green function. In Sect. 5,
we present illustrative magnetic excitation spectra obtained for the elementary
ferromagnets bcc Fe, fcc Co, and fcc Ni. For more practical applications of this
method, we refer the reader to Friedrich et al. (2014) and Şaşıoğlu et al. (2010,
2013). In Sect. 6, we summarize our conclusions. Unless otherwise indicated,
Hartree atomic units are used throughout.
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2 Theory

When a many-electron system is perturbed by a time-dependent external B field,
originating, for example, from a neutron beam impinging on a magnetic sample, the
system reacts by a change of the electronic density. This electronic redistribution
is different for spin-up and spin-down electrons, since the B field couples to the
electrons’ spin, and, to a first approximation, it is the spin density that changes, while
the total density remains the same. Therefore, we consider the magnetic response
function

Rij (r1t1, r2t2) = δσ i(r1t1)

δBj (r2t2)
, (1)

which gives the linear change of the spin density at the position r1 and time t1
with respect to changes in the external B field at r2 and t2. Here, σ i and Bj are
the vector components (i, j = x, y, z) of the spin density σ and the B field. We
additionally allow for i = 0 and j = 0, where σ 0 is the total electronic density and
B0 is an external scalar potential. For example, R00 = δσ 0/δB0 then corresponds
to the density response function. Equation (1) thus defines a 4×4 tensor of response
functions that are all nonzero in general.

The magnetic response function exhibits resonances (analytical poles) at the spin
excitation energies of the unperturbed many-body system, corresponding to the
eigen oscillations of the spin system. These “eigen oscillations” are, in general, not
discrete and show a spectral distribution given by the imaginary part of the magnetic
response function. In order to capture all possible oscillations of the spin system,
Eq. (1) defines a microscopic response function in the sense that the perturbing field
– and also the response of the electronic (spin) density – can have an arbitrary shape
in space. In particular, it can exhibit any wavelength down to interatomic distances.
Its determination requires an ab initio description of the electronic structure and a
high-level quantum mechanical treatment of the correlated motion of the electrons.

We employ a method based on MBPT similar to the one of Aryasetiawan
and Karlsson (1999). However, we do not employ Matsubara frequencies but a
formulation at absolute zero that yields the magnetic excitation spectra directly
for real frequencies. An implementation within an all-electron Wannier-function
formulation was published in Şaşıoğlu et al. (2010) and Friedrich et al. (2014). In
the following, we develop the theory in detail.

To simplify the notation, space and time arguments r1t1, r2t2, . . . are abbreviated
by the corresponding index 1, 2, . . . . The ground-state spin density distribution is
given by the expectation value of the spin density operator

σ i(1) =
∑

α,β

σ i
αβ〈Ψ0|ψ†

α(1)ψβ(1)|Ψ0〉 , (2)
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where ψα(1) [ψ†
α(1)] is an annihilation (creation) field operator of an electron

with spin α and σ i
αβ are the elements of the Pauli spin matrices for i = x, y, z.

The expectation value is taken with respect to the interacting many-body ground
state |Ψ0〉. For example, for the spin density in z direction, the operator is simply
ψ

†
↑(1)ψ↑(1) − ψ

†
↓(1)ψ↓(1), and the spin density is given by the difference of the

spin-up and spin-down number densities. When considering transversal spin-wave
excitations later on, the spin Pauli matrices for i = x and i = y will become
relevant, but until then the derivation is general. The case i = 0 can be taken into
account by defining σ 0

αβ = δαβ . We rewrite Eq. (2) as

σ i(1) = −i
∑

α,β

σ i
βαGαβ(11+) (3)

where 1+ = r1t1 + η with a positive infinitesimal time η and Gαβ(12) =
−i〈Ψ0|T [ψα(1)ψ

†
β(2)]|Ψ0〉 is the interacting single-particle Green function with

the time-ordering operator T (Mahan 2000), which orders the field operators
chronologically from right to left. (A factor −1 has to be multiplied for each
permutation of field operators.)

We are now in the position to prove that Rij can be written as a spin-spin
correlation function. First the Green function is expressed in the interaction picture

Gαβ(12) = −i〈Ψ I
0(∞)|U I(∞, 1)ψ I

α(1)U
I(1, 2)ψ I†

β (2)U I(2,−∞)|Ψ0〉

= −i
〈Ψ0|U I(∞, 1)ψ I

α(1)U
I(1, 2)ψ I†

β (2)U I(2,−∞)|Ψ0〉
〈Ψ0|U(∞,−∞)|Ψ0〉 , (4)

where we have assumed that t1 > t2, that the Heisenberg state |Ψ0〉 is identical to
|Ψ I

0(−∞)〉, and that |Ψ I
0(∞)〉 differs from |Ψ0〉 only by a phase factor. The time

evolution operator depends only on the time arguments and fulfills the Tomonaga-
Schwinger equation

i
∂

∂t
U I(t, t ′) = H I(t)U I(t, t ′) (5)

with the Zeeman term H I(t ′) = ∑
j,α,β σ

j
αβ

ş

Bj (1)ψ I†
α (1)ψ I

β(1)d1. Using the

solution U I(t, t ′) = T exp
[
−i

şt

t ′ H
I
j (t

′′)dt ′′
]
, one can show that

δU I(t, t ′)
δBj (3)

=
{−iU I(t, t3)σ̂

j (3)U I(t3, t
′) if t < t3 < t ′

0 otherwise
(6)

with σ̂ j (3) = ∑
α,β σ

j
αβψ

I†
α (3)ψ I

β(3). This expression replaces the corresponding

U I when Eq. (4) is differentiated. Then, transforming back to the Heisenberg picture,
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including the case t1 < t2, and inserting the result into Eqs. (1) and (3) yields the
spin-spin correlation function

Rij (12) = −i〈Ψ0|T[σ̂ i′(1)σ̂ j ′(2)]|Ψ0〉 (7)

with σ̂ i′(1) = σ̂ i (1)− σ i(1).
The reformulation with the Green function makes Eq. (3) amenable to a treatment

within MBPT. The equation of motion of the Green function, the Dyson equation,
in the presence of a B field reads

[
i
∂

∂t1
+ 1

2
∇2

r1
− V ext(r1)

]
Gαβ(12)−

[
∑

i

σ i
αβB

i(1)

]
Gαβ(12)

−
∑

γ

ż

Mαγ (13)Gγβ(32)d3 = δ(12)δαβ , (8)

from which we can directly identify the inverse of the Green function

G−1
αβ (12)=

[
i
∂

∂t1
+ 1

2
∇2

r1
− V ext(r1)

]
δ(12)δαβ−

[
∑

i

σ i
αβB

i(1)

]
δ(12)−Mαβ(12)

(9)
with the external potential V ext(r) and the delta function δ(12) = δ(r1−r2)δ(t1−t2).
We have assumed the B field to incorporate a factor geμB/2 (ge/4 in atomic units)
with the electron spin g-factor ge and the Bohr magneton μB so that B · σ̂ is the
Zeeman term of the Hamiltonian.

In solids, the orbital magnetic moment is usually strongly quenched, which is
why we neglect the coupling of the B field to the orbital motion. The mass operator

Mαβ(12) = V H(1)δ(12)δαβ +Σαβ(12) (10)

accounts for the electron-electron interaction. It embodies the Hartree potential

V H(1) =
ż

n(2)v(21)d2 = −i
∑

α

ż

Gαα(22+)v(21)d2 (11)

with the bare Coulomb interaction v(12) = δ(t1 − t2)/|r1 − r2| and the self-energy
Σαβ(12), a time-dependent nonlocal potential that incorporates all many-body
exchange and correlation effects of the electronic system. The self-energy is the
most complex quantity in Eq. (9), and its exact form is unknown. We employ the
GW approximation (Hedin 1965)

Σαβ(12) = iGαβ(12)W(1+2) , (12)
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where

W(12) = v(12)+
żż

v(13)P (34)W(42) d3 d4 (13)

is the screened interaction, which is the effective potential at 1 created by a unit
charge at 2 (first term) and the induced charge cloud forming around the unit
charge (second term). The screened interaction is a dynamical (i.e., time-dependent)
quantity, since the screening process requires the electrons to move, and this process
takes time. Equation (13) is formally exact. The approximation consists in the choice
of the polarization function, for which we use the RPA

P(12) = −i
∑

α,β

Gαβ(12)Gβα(21+) . (14)

We note that Eq. (12) is defined with the self-consistently renormalized Green
function, formally corresponding to a fully self-consistent solution of Hedin’s
equations (Hedin 1965) where the vertex function is approximated by Γ (12; 3) =
δ(12)δ(13). This will become important in Sect. 4.

The derivative of G can be related to that of G−1 by differentiating both sides of∑
γ Gαγ (13)G−1

γβ (32)d3 = δ(12)δαβ , yielding

δGαβ(12)

δBj (3)
= −

∑

γ,δ

żż

Gαγ (14)
δG−1

γ δ (45)

δBj (3)
Gδβ(52)d4 d5 . (15)

Through the derivative of Eq. (9)

δG−1
αβ (12)

δBj (3)
= −σ

j
αβδ(13)δ(12)− δMαβ(12)

δBj (3)
(16)

and Eqs. (10), (11), and (12), the right-hand side of Eq. (15) can be expressed in
terms of δG/δB, and successive insertion will lead to an infinite series expansion.
Before we do this step, we have to find a suitable expression for the second term
of δΣ/δB = i(δG/δB)W + iG(δW/δB). Differentiating Eq. (13), solving for the
derivative of W , and using Eq. (14) gives

δW(12)

δBj (3)
= −i

∑

α,β

żż

W(14)

[
δGαβ(45)

δBj (3)
Gβα(54+)+Gαβ(45)

δGβα(54+)
δBj (3)

]
W(52) d4 d5 . (17)
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(b) I = −
1 3

2 4

−1
2 4

3 −
1

2 4

31

2 4

31 3

2 4

(a) =

1

2

3δG
δB +3

2

1

σ

1

2

3

7

6

I

4

5

δG
δB

Fig. 1 Diagrammatic representations of (a) Eq. (18) and (b) Eq. (19). Successive reinsertion in
(a) produces an infinite series of diagrams for δG/δB and, hence, for R. Arrows represent the
renormalized Green function, the dotted line the bare, and the wiggly line the screened interaction.
(We use the convention that each interaction line carries a factor i.) The spin-flip operator,
mathematically described by a Pauli matrix, is shown as σ

Now, we can combine everything and obtain

δGαβ(12)

δBj (3)
=
∑

γ,δ

[
σ

j
γ δGαγ (13)Gδβ(32+) (18)

+
∑

ε,ζ

żżżż

Gαγ (14)Gδβ(52+)Iγ δ,εζ (45, 67)
δGεζ (67)

δBj (3)
d4 d5 d6 d7

⎤

⎦

with the (irreducible) interaction kernel

Iαβ,γ δ(12, 34) = i
[
W(1+2)δ(13)δ(24)δαγ δβδ − v(13)δαβδγ δδ(12)δ(3+4)

]

+Gαβ(12)
[
W(1+3)Gδγ (43+)W(42)+W(1+4)Gδγ (43+)W(32)

]
.

(19)

Equation (18) defines an infinite series expansion for δG/δB as shown diagrammat-
ically in Fig. 1a. By virtue of the Eqs. (1) and (3), a corresponding series expansion
is obtained for Rij (12).

For i = j = 0, the above formulas lead to the Bethe-Salpeter equation for optical
absorption. The case i = 0 �= j (or vice versa) describes the coupling of electronic
spin and charge. The equations simplify in the absence of spin-orbit coupling. The
Green function is then diagonal in spin space, and the inner spin summations in
Eq. (18) disappear. We now discuss some specific cases:

Nonmagnetic case: We have Gαβ(12) = δαβG(12), i.e., spin-up and spin-down
Green functions are identical. As a result, all degrees of freedom (0, x, y, and z)
decouple and R00 = Rzz and Rxx = Ryy .
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Collinear (anti-)ferromagnetism: The Green function is still diagonal in spin
space, but the two components are different, i.e., Gαβ(12) = δαβGα(12).
Then, the degrees of freedom 0 and z as well as x and y couple. In particular,
we get a coupling of the spin and charge degrees of freedom in R0z (and
Rz0). The diagonal elements R00 and Rzz are the density response function
and the longitudinal spin susceptibility, respectively. They are decoupled from
the functions Rij with i, j ∈ {x, y}, which give rise to the transverse spin
susceptibility. In the latter case, the interaction kernel reduces to the first term
I = iW .

Spin-orbit coupling: In the presence of spin-orbit coupling, the Green function
acquires spin-off-diagonal elements. Then all degrees of freedom couple in
general and all terms in Eq. (19) and all response functions defined in Eq. (1)
must be taken into account.

In the following, we restrict ourselves to the case of spin excitations in a
ferromagnet with a collinear magnetic ground state without spin-orbit coupling. For
a spin polarization along the z axis, these are generated by an oscillating magnetic
field in the xy plane. In particular, in inelastic neutron scattering experiments, the
incoming neutron beam is circularly polarized, creating a magnetic field whose y

component exhibits a phase shift of π/2 with respect to the x component (Lowde
et al. 1983).

It is instructive to discuss the coupling of the electron’s spin to the B field in
terms of semiclassical physics. Without the perturbing field, the electron spin S
precesses around the Weiss (exchange) field B0 according to the equation of motion
Ṡ = μ × B0, where μ = −geμBS/h̄ is the magnetic moment of the electron. (We
write the formulas in SI units in this paragraph.) With the majority spin pointing in
the positive z direction, the Weiss field points in the negative z direction, and ω0 =
geμBB0/h̄ is the Larmor frequency of the precession. The two possible circular
polarizations of the perturbing B field – right- and left-handed with respect to the
B0 field – are given by B±(t) = B± Re[(x̂∓ iŷ)e−iωt ], respectively. The equation of
motion in the presence of the perturbing field is Ṡ = μ×(B0+B±). If S± is defined
as the spin vector seen in the coordinate system that rotates with the B± field, we
can write Ṡ = Ṡ± − S× ω. Equating the right-hand sides of the last two equations
and inserting the formulas for μ and ω0 gives Ṡ± = μ×B± +S× (ω−ω0), which
reduces to Ṡ± = μ×B± if ω=ω0. This is the equation of motion of a spin precessing
around B±, i.e., around a direction perpendicular to B0, making it possible to flip
the spin of the electron. The frequency of this precession, the Rabi frequency, is
geμBB/h̄. The condition that ω and ω0 = geμBB0/h̄ have the same orientation is
fulfilled for the right-handed circular polarization, for which the relevant component
is B+ = Bx + iBy because Bx x̂ + By ŷ = B+(x̂ − iŷ) + B−(x̂ + iŷ) with
B− = Bx − iBy .

Therefore, we consider the transverse magnetic susceptibility

R+−(12) = δσ+(1)
δB+(2)

(20)
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in the following, where “+” and “−” refer to the Pauli matrices σ̂+ = σ̂ x+ iσ̂ y and
σ̂− = σ̂ x − iσ̂ y with the matrix representations

σ+ =
(

0 2
0 0

)
and σ− =

(
0 0
2 0

)
(21)

for the spin creation and annihilation operators. The Zeeman term of Eq. (9) can be
written as

∑

i

σ i
αβB

i(1) = 1

2

[
σ+αβB

−(1)+ σ−αβB
+(1)

]
+ σz

αβB
z(1). (22)

Because of the mixed products of the form σ+B− and σ−B+, the spin-spin
correlation function Eq. (7) becomes

R+−(12) = δσ+(1)
δB+(2)

= −i〈Ψ0|T[σ̂+(1)σ̂−(2)]|Ψ0〉 , (23)

where we have used that 〈Ψ0|σ̂+(1)|Ψ0〉 = 〈Ψ0|σ̂−(1)|Ψ0〉 = 0 in a collinear
magnetic system. This form of the spin-spin correlation function is intuitive: for
a spin in the up channel to be probed, one has to flip its spin with the operator σ̂−
before flipping it back with σ̂+. Equation (23) also explains the notation R+−.

With Eq. (22), a derivation that proceeds in analogy to above leads to

i
δG↓↑(12)

δB+(3)
= K↓↑(12, 33)+

żż

K↓↑(12, 45)W(4+5)i
δG↓↑(45)

δBj (3)
d4 d5 (24)

with the (uncorrelated) two-particle propagator

K↓↑(12, 34) = iG↓(13)G↑(42+) (25)

(G↑ = G↑↑, G↓ = G↓↓). We have used that (a) the mass operator Eq. (10) reduces
to Σ for α �= β and (b) the second term in Eq. (19) vanishes, (c) as do the last two
terms because the Green function is diagonal in spin space. Note that Eq. (24) can
be obtained from Eq. (18) by setting i = + and j = − except for an additional
factor 1/2 from Eq. (22).

Equation (24) can be written as a matrix equation if we define a generalized four-
point magnetic response function (formally giving the response of the spin density
matrix with respect to changes of a nonlocal B field). To this end, we introduce
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the auxiliary four-point magnetic response function defined by the Bethe-Salpeter
equation

R
(4)
↓↑(12, 34) = K↓↑(12, 34)+

żż

K↓↑(12, 56)W(5+6)R(4)
↓↑(56, 34)d5 d6 ,

(26)
from which we deduce

R
(4)
↓↑(12, 33) = i

δG↓↑(12)

δB+(3)
(27)

R+−(12) = −2R(4)
↓↑(11, 22) . (28)

The magnetic response function can, furthermore, be written as the sum of two terms

R+−(12) = −2K↓↑(11, 22)− 2
żżżż

K↓↑(11, 34)T↓↑(34, 56)

K↓↑(56, 22)d3 d4 d5 d6 , (29)

where the T matrix, which can be interpreted as a reducible interaction kernel,
fulfills the equation

T↓↑(12, 34) = W(1+2)δ(13)δ(24)+
żż

W(1+2)K↓↑(12, 56)T↓↑(56, 34)d5 d6 .

(30)
If we approximate the renormalized Green function in Eq. (25) by the Kohn-Sham
Green function, then the first term of Eq. (29) contains single-particle excitations
between Kohn-Sham levels from one spin channel into the other. The second term
describes the correlated motion of an electron-hole pair with opposite spins through
the T matrix Fig. 2; each ladder diagram stands for a series of scattering events. This
correlated motion is responsible for the occurrence of collective spin excitations.
The second term also renormalizes the Stoner excitations.

TDDFT (Runge and Gross 1984) is another method that allows one to calculate
the magnetic response function from first principles. In this theory, Eq. (3) is written
in terms of the Kohn-Sham Green function GKS

αβ (12) instead of Gαβ(12). This

1 3 1 3 1 3↓ 1 35↓ ↓ 1 3 1 35↓

2 4 2 4 42 ↑ 42 6↑ ↑ 442 2 6↑

= + + + ... = +T T

Fig. 2 Diagrammatic representation of the T↓↑(12, 34) matrix consisting of an infinite series of
ladder diagrams, each wiggly line (screened interaction W ) representing a “rung” of the ladder.
The indices 5 and 6 denote integration variables
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is not an approximation since the Kohn-Sham system (Kohn and Sham 1965) is
constructed to yield the exact electronic spin density of the interacting system
(provided that the exact exchange-correlation functional is employed). A derivation,
similar to the one above with Σ in Eq. (10) replaced by the exchange-correlation
potential vxc

αβ(1), then yields an expression for the magnetic response function with
the interaction kernel

IKS
αβ,γ δ(12, 34) = −i

[
v(13)δαβδγ δ + f xc

αβ,γ δ(13)
]
δ(12)δ(3+4) , (31)

where f xc
αβ,γ δ(12) = δvxc

αβ(1)/δσγ δ(2) is the exchange-correlation kernel of TDDFT.
This interaction kernel is effectively just a two-point function. Equation (26), hence,
turns into a two-point matrix equation, which makes the implementation of the
TDDFT approach much simpler and computationally less demanding. However,
there are only few approximations available for f xc

αβ,γ δ(12) to date, which, at that,
cannot be systematically improved in contrast to the electronic self-energy. The
most common approximation, the adiabatic local-density approximation, neglects
time dependence and nonlocality altogether (and also requires the spin indices to
be pairwise identical) so that f xc

αβ,βα(1) becomes a local function. Still, several
publications (Savrasov 1998; Buczek et al. 2009, 2010, 2011; Lounis et al. 2010,
2011) have demonstrated that the spin excitation spectra calculated within TDDFT
are often in good agreement to results from MBPT and to experiment.

3 Implementation

In this section, we present the basics of a numerical implementation in the SPEX

code (Friedrich et al. 2010). For more details, we refer the reader to Friedrich et al.
(2014). The four-point quantities derived in the previous section are represented
in a basis of Wannier functions. In Sect. 4, we will discuss and compare several
mean-field systems as the reference noninteracting system. In the present section,
we assume the Kohn-Sham solution (Kohn and Sham 1965) of density functional
theory (DFT) (Hohenberg and Kohn 1964) be used. The corresponding Kohn-Sham
equations are solved within the all-electron FLAPW method as implemented in the
FLEUR code (http://www.flapw.de), which allows an accurate representation of the
single-particle states ϕα

km(r), where k is the Bloch vector and m the band index.
For a practical implementation, Eq. (26) is too complex because it contains

quantities that, in general, depend on four points in space and on four time
(or frequency) arguments (three if the Hamiltonian is time independent). A first
simplification uses the fact that the spin-wave excitations are usually of low
frequency, which motivates to replace the screened interaction by its static limit, i.e.,
W(r1, r2;ω) → W(r1, r2; 0) = W(r1, r2), implying an instantaneous interaction
in time, W(r1t1, r2t2) = W(r1, r2)δ(t1 − t2). For example, the two-particle
propagator Eq. (25) then only depends on a single time (or frequency) argument
because the delta function in the previous expression (and the contraction of

http://www.flapw.de
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Eq. (28)) requires the argument pairs 12 and 34 to have the same time argument,
i.e., K↓↑(r1, r2; r3, r4; τ = t1 − t3) with t1 = t2 and t3 = t4. Equation (26) then
simplifies to

R
(4)
↓↑(r1, r2; r3, r4;ω) = K↓↑(r1, r2; r3, r4;ω)+

żż

K↓↑(r1, r2; r5, r6;ω)

W(r5, r6)R
(4)
↓↑(r5, r6; r3, r4;ω) d3r5 d3r6 (32)

in the frequency domain. We employ another approximation in that we allow
electrons (and holes) to interact with each other only when they are located on the
same atomic site, thus making use of the fact that the screened interaction is short
range in metallic systems. This on-site approximation is not strictly necessary, but
it greatly simplifies the implementation and enables fast calculations. Besides, it is
a very good approximation for the systems studied here (Müller et al. 2016).

Wannier functions (Marzari and Vanderbilt 1997) are localized functions defined
by linear combinations of the single-particle wave functions

wα
Rn(r) =

1

N

∑

k

e−ik·R ∑

m

Uα
km,nϕ

α
km(r) , (33)

where n is an index counting the Wannier functions at the atomic site R and N

is the number of k points of an Nx × Ny × Nz Monkhorst-Pack set (Monkhorst
and Pack 1976) including k = 0. The transformation matrix Uα

km,n
is determined

by minimizing the spread of the Wannier functions (Souza et al. 2001; Marzari
and Vanderbilt 1997; Freimuth et al. 2008), under the condition that the Wannier
functions are orthonormal with respect to integrations over the Nx × Ny × Nz

supercell (whereas the ϕα
km(r) are orthonormalized with respect to the unit cell).

The sum over m runs over a limited number of electronic bands (at least as many as
the number of Wannier functions).

In the frequency domain, Eq. (25) becomes

K↓↑(r1, r2; r3, r4;ω) = i

2π

ż ∞

−∞
G↓(r1, r3;ω′)G↑(r4, r2;ω′ − ω)dω′

= 1

N2

∑

k

∑

k′

occ.∑

m

unocc.∑

m′

{
ϕ
↓
km(r1)ϕ

↓∗
km(r3)ϕ

↑∗
k′m′(r2)ϕ

↑
k′m′(r4)

ω + ε
↑
k′m′ − ε

↓
km − iη

−ϕ
↓
k′m′(r1)ϕ

↓∗
k′m′(r3)ϕ

↑∗
km(r2)ϕ

↑
km(r4)

ω + ε
↑
km − ε

↓
k′m′ + iη

}
(34)

with a positive infinitesimal η, where we have used the Lehmann representation of
the noninteracting Kohn-Sham Green function
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Gα(r, r′;ω) = 1

N

∑

k

∑

m

ϕα
km(r)ϕα∗

km(r′)
ω − εαkm + iη sgn(εαkm − εF)

(35)

with the Fermi energy εF.
Each of the four vertices of K↓↑(r1, r2; r3, r4;ω) is now projected onto the

Wannier basis defined by Eq. (33), which gives

K
↓↑
Rn1Rn2,R′n3R′n4

(ω)= 1

N2

occ.∑

km

unocc.∑

k′m′

{
U
↓∗
km,n1

U
↓
km,n3

U
↑
k′m′,n2

U
↑∗
k′m′,n4

ω + ε
↑
k′m′ − ε

↓
km − iη

e−i(k′−k)(R−R′)

−U
↓∗
k′m′,n1

U
↓
k′m′,n3

U
↑
km,n2

U
↑∗
km,n4

ω + ε
↑
km − ε

↓
k′m′ + iη

ei(k′−k)(R−R′)

⎫
⎬

⎭, (36)

where the on-site approximation has been used to set R1 = R2 = R and R3 =
R4 = R′. This expression only depends on ΔR = R − R′, and a lattice Fourier
transformation yields

K↓↑
n1n2,n3n4

(q, ω) =
∑

ΔR

K
↓↑
Rn1Rn2,R−ΔRn3R−ΔRn4

(ω)e−iq·ΔR

= 1

N

∑

k

occ.∑

m

unocc.∑

m′

⎧
⎨

⎩
U
↓∗
q+km,n1

U
↓
q+km,n3

U
↑
km′,n2

U
↑∗
km′,n4

ω + ε
↑
km′ − ε

↓
q+km − iη

(37)

−U
↓∗
q+km′,n1

U
↓
q+km′,n3

U
↑
km,n2

U
↑∗
km,n4

ω + ε
↑
km − ε

↓
q+km′ + iη

⎫
⎬

⎭ .

We use the tetrahedron method (Rath and Freeman 1975) for the k summation.
From this equation, it is clear that if q and k are elements of the k-point set,

then q+ k must be an element of the set, too. The Monkhorst-Pack grid fulfills this
condition. On the other hand, this condition limits the number of q points at which a
spin excitation spectrum can be calculated to the relatively few points of the k-point
set. In order to evaluate K (and R) at an arbitrary Bloch vector q, which would
enable the calculation of smooth spin-wave dispersion curves, we have to introduce
an auxiliary set of Wannier functions with a suitable Bloch character

w̃α
Rn(r) =

1

N

∑

k

e−i(k+q)·R ∑

m

Uα
k+qm,nϕ

α
k+qm(r) , (38)

where the transformation matrices are distinguished from the ones used in Eq. (33)
by the Bloch vectors k+q, which are generally not elements of the original k-point
set. With this definition, Eq. (37) remains valid, but it has to be taken into account
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that the transformation matrices Uα
q+km,n

and Uα
km,n

now belong to two different
sets of Wannier functions.

The second quantity that we need for solving Eq. (26) is the screened interaction.
We define its Wannier representation by

W
↓↑
Rn1Rn2,Rn3Rn4

(ω)=N

N

żż

w
↓∗
Rn1

(r)w↓Rn3
(r)W(r, r′;ω)w

↑
Rn2

(r′)w↑∗Rn4
(r′)d3r d3r ′ ,

(39)

where N (N/N ) is the infinite number of unit cells (supercells). The prefactor is
required to avoid double counting because the integrations extend over the whole
infinite space. Inserting Eq. (33) gives

W
↓↑
Rn1Rn2,Rn3Rn4

(ω) = 1

N3

∑

k,k′,k′′

∑

m1,m2,m3,m4

U
↓∗
k+k′′m1,n1

U
↓
km3,n3

U
↑
k′+k′′m2,n2

U
↑∗
k′m4,n4

× 1

N

żż

ϕ
↓∗
k+k′′m1

(r)ϕ↓km3
(r)W(r, r′;ω)ϕ

↑
k′+k′′m2

(r′)

ϕ
↑∗
k′m4

(r′)d3r d3r ′ , (40)

where it has been used that W(r, r′;ω) is diagonal in k. The evaluation of the
double integral, which, together with the prefactor 1/N, is finite, is discussed
elsewhere (Friedrich et al. 2009). Since Eq. (40) is independent of R, we may write
W
↓↑
n1n2,n3n4(ω).

We are now in the position to formulate the Bethe-Salpeter equation (Eq. (32)) in
the Wannier basis

R
(4)↓↑
Rn1Rn2,R′n3R′n4

(ω) = K
↓↑
Rn1Rn2,R′n3R′n4

(ω)+
∑

R′′

∑

n5,n6,n7,n8

K
↓↑
Rn1Rn2,R′′n5R′′n6

(ω)

×W↓↑
n5n6,n7n8

(0)R(4)↓↑
R′′n7R′′n8,R′n3R′n4

(ω) . (41)

As K (and hence also R) depends only on the difference ΔR = R − R′, we can
insert the lattice Fourier transformations

K
↓↑
Rn1Rn2,R′n3R′n4

(ω) = 1

N

∑

q

eiq·(R−R′)K↓↑
n1n2,n3n4

(q, ω) , (42)

analogously for R(4), and obtain

R(4)↓↑
n1n2,n3n4

(q, ω) = K↓↑
n1n2,n3n4

(q, ω)+
∑

n5,n6,n7,n8

K↓↑
n1n2,n5n6

(q, ω)

×W↓↑
n5n6,n7n8

(0)R(4)↓↑
n7n8,n3n4

(q, ω) . (43)
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This is a matrix equation in pairs of Wannier indices. Since Wannier functions are
orthonormal, their pairs are orthonormal, too. The summations on the right-hand
side are mere matrix multiplications, and we can formally solve Eq. (43) for R(4)

R(4)↓↑(q, ω) = [1−K↓↑(q, ω)W↓↑(0)]−1K↓↑(q, ω) . (44)

Using Eq. (28), we obtain the physically relevant magnetic response function
from the matrix elements of R(4)↓↑(q, ω) by

R+−(r, r′;ω) = − 2

N

∑

q

∑

n1,n2,n3,n4

R(4)↓↑
n1n2,n3n4

(q, ω)Ω
↓↑
qn1n2(r)Ω

↓↑∗
qn3n4(r

′) . (45)

where Ω
↓↑
qn1n2(r) are the lattice Fourier transforms of the Wannier products

Ω
αβ

R,n1n2
(r) = wα

Rn1
(r)wβ∗

Rn2
(r), i.e.,

Ω
αβ
qn1n2(r) =

∑

R

Ω
αβ

Rn1n2
(r)eiq·R = 1

N

∑

k

wα
q+kn1

(r)wβ∗
kn2

(r) (46)

with the Wannier Bloch functions wα
kn(r) =

∑
m Uα

km,n
ϕα

km(r). If we use the matrix

representation of K↓↑(q, ω) in Eq. (45), we obtain the bare susceptibility, i.e., the
fictitious magnetic response function of the noninteracting reference system:

K+−(r, r′;ω) = −2K↓↑(r, r; r′, r′;ω) (47)

= − 2

N

∑

q

∑

n1,n2,n3,n4

K↓↑
n1n2,n3n4

(q, ω)Ω
↓↑
qn1n2(r)Ω

↓↑∗
qn3n4(r

′) . (48)

Of course, R+−(r, r′;ω) is still a very complex quantity: it is nonlocal in
space, it shows a frequency dependence, and it has a real and an imaginary part.
The spectrum measured in neutron scattering experiments, for example, can be
extracted from R+−(r, r′;ω) by projecting its imaginary part from left and right
to a plane wave eiq·r giving ImR+−(q, ω) (Lowde et al. 1983). Sharp peaks in this
function correspond to collective spin excitations, the spin waves, with wavevector
q and frequency ω. Plotting the respective ω values against q yields the dispersion
relation of the spin-wave mode. We note that another possibility is to perform a
normal mode analysis of the imaginary part of R+−, in matrix notation ImR+− =
(R+− − R+−†

)/(2i).

4 Goldstone Condition

The Goldstone theorem states that the spontaneously broken spin-rotation symmetry
in ferromagnetic materials leads to the appearance of a gapless magnon dispersion
curve, i.e., the excitation energy vanishes in the limit q → 0. This has a very simple
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physical explanation. The generating field is a magnetic field perpendicular to the
ferromagnetic spin alignment, and it is commensurate with the unit cell in the limit
q → 0. If the B field has a suitable shape in real space, it can act to rotate all electron
spins collectively toward the field direction, i.e., the electron spins point in the same
direction at all times. In the absence of spin-orbit coupling, this rigid rotation takes
place without a cost of energy; hence ω = 0. The pole at ω = 0 corresponds to the
long-wavelength limit of the acoustic magnon branch (Moriya 1985), identified as
the Goldstone mode.

A rigid rotation of all spins does not change any relative spin alignment. The total
energy calculated from the Heisenberg model is therefore invariant with respect to
such a rotation, and the Goldstone condition is fulfilled identically. However, in
the advanced methods based on TDDFT or MBPT, where the excitation energies
define the pole structure of a two-particle propagator, the situation is much less
transparent. We already know that the collective excitations arise from the nodes of
the denominator of Eq. (44). (There is a very similar equation in TDDFT (Buczek
et al. 2009; Lounis et al. 2010).) So, to be fulfilled, the Goldstone condition requires
KW to have an eigenvector with eigenvalue 1 in the limits q → 0 and ω → 0.
(We omit the indices in this section for simplicity.) Any numerical inaccuracy will
lead to a slight deviation of the respective eigenvalue from 1 and, as a consequence,
to a violation of the Goldstone condition. Often, this problem is circumvented by
using the Goldstone criterion to fix a free parameter of the numerical scheme, thus,
making a virtue of necessity. This free parameter has been chosen to be the effective
interaction (Kotani and van Schilfgaarde 2008; Karlsson and Aryasetiawan 2000),
the exchange-correlation kernel (Lounis et al. 2010, 2011), the bare susceptibility
(Rousseau et al. 2012), or a scaling factor for the screened Coulomb interaction
(Şaşıoğlu et al. 2010; Friedrich et al. 2014). Another possibility is an a posteriori
correction of the resulting susceptibility (Buczek 2009; Buczek et al. 2009, 2011).
However, in our case, such a pragmatic approach seems inappropriate. There is
no mistaking that W is the RPA screened interaction Eqs. (13) and (14) and K

is the two-particle propagator Eq. (25). So, strictly speaking, there is no room or
justification for introducing a free parameter. Therefore, we analyzed the problem in
more detail in Müller et al. (2016). We argued that there is an inconsistency between
the free propagator G (and, hence, K) and the screened interaction W , and it is this
inconsistency that is responsible for the Goldstone violation. In this chapter, we go
a step further and present a mathematical proof that constructing the single-particle
propagator from a self-consistent Coulomb-hole screened-exchange (COHSEX)
self-energy (Hedin 1965, 1999) should revoke the inconsistency provided that a
complete basis is used for the solution of the Bethe-Salpeter equation (Eq. (32)).
However, the Wannier basis and, in particular, the on-site approximation do not
fulfill the latter criterion so that a finite gap error must still be expected in our
approach. Nevertheless, numerical results for the bulk 3d transition metals iron,
cobalt, and nickel show that the Goldstone violation is substantially reduced if
the propagator is self-consistently renormalized with the COHSEX self-energy. In
practice, the application of the COHSEX self-energy is considerably more time-
consuming than standard LSDA calculations. Therefore, we discuss a correction
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(2016) Copyright 2016 American Physical Society)

scheme for the LSDA Green function of ferromagnetic materials, ultimately
introducing a free parameter as a pragmatic and efficient solution. We show that
the corrected LSDA magnon spectra for the 3d transition metals iron, cobalt, and
nickel are close to the results obtained from the much more expensive COHSEX
approach.

In the following, we discuss the spin-wave spectra for the elementary bulk
ferromagnets Fe, Co, and Ni with regard to the starting-point dependence of MBPT.
We refer here to the Green function used in Eqs. (14) and (25). Since a set of single-
particle states is already available from the ground-state calculation, a convenient
choice is the LSDA Green function calculated from the corresponding Kohn-Sham
wave functions and energies. We have used Wannier functions of s, p, and d

character constructed from the 18 lowest Kohn-Sham bands. The resulting spin-
wave dispersions for all three materials are shown as the blue symbols in Fig. 3,
correctly showing a quadratic behavior around the Γ point. However, they also
clearly exhibit a violation of the Goldstone theorem: the spin-wave excitation energy
does not vanish in the center of the BZ as it should.

There are a number of approximations used in our numerical approach, which
might be responsible for this violation, e.g., the on-site approximation, the incom-
pleteness of the Wannier basis, convergence issues (k-point set, basis sets, empty-
state summations), and so on. Apart from these, there is another more fundamental
inconsistency in the chosen approach, which we will investigate in the following.
This inconsistency concerns the choice of the starting point, i.e., the LSDA Green-
function propagator. Equation (44) is derived under the assumption that the Green
function be self-consistently renormalized with the GW self-energy. Only if this
condition is fulfilled do we obtain the infinite series of ladder diagrams shown in
Fig. 1. The two quantities, G and W , are thus related, and one must be chosen in
accordance with the other.

Unfortunately, fully self-consistent GW calculations for transition-metal bulk
systems are nowadays still a major challenge due to the dense k-point sets that
are needed. On a second thought, however, we should also remember the static
approximation that we have applied to W . For this reason, the proper self-energy to
be used in the framework of our theoretical approach would have to be constructed
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with the static screened interaction. An obvious choice would be the Coulomb-
hole screened-exchange (COHSEX) self-energy (Hedin 1965, 1999), in which the
dynamical W is replaced by the static W(r, r′) = W(r, r′;ω = 0). It consists of two
terms, the screened exchange (SEX) and the Coulomb-hole (COH) term. The former
corresponds to Hartree-Fock theory with the bare Coulomb interaction replaced by
W(r, r′)

Σσ
SEX(r, r′) = −nσ (r, r′)W(r, r′) (49)

with the density matrix nσ (r, r′) =∑BZ
k

∑occ
n ϕσ

kn(r)ϕ
σ∗
kn (r

′). The latter is given by

ΣCOH(r, r′) = 1

2
δ(r− r′)[W(r, r′)− v(r, r′)] , (50)

which acts as a local and spin-independent potential. It accounts for the interaction
energy of a quasiparticle with its induced (static) polarization cloud. Therefore, this
term only couples charge degrees of freedom (if spin-orbit coupling is set aside) and
does not affect the linear response of transversal spin fluctuations. Only Eq. (49),
corresponding to Eq. (12) with W(r, r′; τ + η) replaced by W(r, r′), contributes to
the right-hand side of Eq. (16) with δΣ/δG = iW(0). Obviously, this leads to the
same form of the Bethe-Salpeter equation as before.

Up to now, our argumentation was based on “theoretical consistency.” In the
following, we analyze the Goldstone criterion in a mathematical way starting
from Eq. (44) (or the more general Eq. (32)), in which all quantities are four-
point functions, and −2R(4) and −2K must be understood in the general sense
that they give the response of the magnetic density matrix m+(r, r′;ω) with
respect to changes of a nonlocal magnetic field B+(r, r′;ω) in the interacting and
noninteracting system, respectively. Conversely, the expression (−2R(4))−1Δm+
gives the perturbing field ΔB+(r, r′;ω) that would generate the change of the
magnetization Δm+(r, r;ω). For the Goldstone mode in the limit ω→ 0, we know
that a rigid rotation of the electron spins, i.e., Δm+ ∝ m, can take place even
without a perturbing field. So, we have (−2R(4))−1m = 0, and with Eq. (44) we can
write KWm = m. The eigenfunction of KW with eigenvalue 1 is, thus, revealed
to be the magnetization density (matrix). We claim that this condition is fulfilled if
COHSEX is taken for the starting point. When separating off the spin-independent
part of Eq. (49), the remaining spin-dependent part can formally be interpreted as a
nonlocal magnetic field

B(r, r′) = −1

2
W(r, r′)[n↑(r, r′)− n↓(r, r′)] = −1

2
W(r, r′)m(r, r′) . (51)

Now we use the simple fact that rigidly rotating the B field that creates the
magnetization in a noninteracting system will rotate the magnetization in the same
way, which can be expressed as
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m(r, r′) = −2
żż

K(r, r′; r′′, r′′′)B(r′′, r′′′)dr′′dr′′′ . (52)

(For the rotation to be rigid, ΔB+ ∝ B, and the corotation of B field and
magnetization requires ΔB+/B = Δm+/m.) The assertion then follows from
inserting Eq. (51) into Eq. (52).

The proof is already complete, but it is helpful to show KWm = m more
explicitly. In the limit ω → 0, the imaginary part of the two-particle propagator
Eq. (34) is zero, and we can write

K(r, r′; r′′, r′′′) = 1

N2

∑

k,k′

∑

m,m′
(f
↓
km − f

↑
k′m′)

ϕ
↓
km(r)ϕ↓∗km(r′′)ϕ↑∗k′m′(r

′)ϕ↑k′m′(r
′′′)

ε
↑
k′m′ − ε

↓
km

(53)

with the occupation numbers f σ
km. [We have used

∑occ
m

∑unocc
m′ ... =∑

m,m′ f
σ
km(1−

f σ
km′)... =

∑
m,m′ f

σ
km... .] Because of Eq. (51) the COHSEX single-particle

Hamiltonian fulfills H↓ −H↑ = Wm, which gives

żż

KWm = 1

N2

∑

k,k′

∑

m,m′
(f
↓
km − f

↑
k′m′)

ϕ
↓
km(r)〈ϕ↓km|H↓ −H↑|ϕ↑k′m′ 〉ϕ↑∗k′m′(r

′)
ε
↑
k′m′ − ε

↓
km

= 1

N

∑

k

∑

m,m′
(f
↑
km′ − f

↓
km)ϕ

↓
km(r)〈ϕ↓km|ϕ↑km′ 〉ϕ↑∗km′(r

′) = m(r, r′). (54)

That the last expression is really the spin density matrix is seen by expanding
ϕ
↑
km′(r) and ϕ

↓∗
km(r) in terms of the functions of the other spin channel

m(r, r′) = 1

N

∑

k

∑

m′
f
↑
km′ϕ

↑
km′(r)ϕ

↑∗
km′(r

′)− 1

N

∑

k

∑

m

f
↓
kmϕ

↓
km(r)ϕ↓∗km(r′)

= 1

N

∑

k

∑

m,m′
(f
↑
km′ − f

↓
km)ϕ

↓
km(r)ϕ↑∗km′(r

′)〈ϕ↓km|ϕ↑km′ 〉 . (55)

In Müller et al. (2016), we reported on spin-wave calculations based on the
COHSEX Green function. Technically, we start from the mean-field LSDA solution
and construct the LSDA Green function, the corresponding polarization function
Eq. (14), and the static screened interaction Eq. (13), from which the COHSEX self-
energy Eqs. (49) and (50) is evaluated. The latter is a Hermitian operator defining
a new mean-field system. This allows the respective single-particle equations of
motion to be solved in a similar way as the Kohn-Sham equations of DFT. To be
more precise, the single-particle equations are iteratively solved until the density is
converged. This process updates the density and, consequently, the Hartree potential
in each iteration, while the COHSEX self-energy matrix remains fixed. This
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Fig. 4 DOS spectra for bulk Fe, Co, and Ni. The Fermi level is set to zero. (Müller et al. (2016)
Copyright 2016 American Physical Society)

produces a new set of wave functions and energies that are then used to construct
a new Green function and, ultimately, a new COHSEX self-energy matrix. The
whole procedure is repeated until self-consistency is achieved. We have employed a
14× 14× 14 k-point set for these calculations.

The mean-field solution of the 3d ferromagnets bcc iron, fcc cobalt, and fcc
nickel based on the COHSEX self-energy is interesting in its own right. Figure 4
shows their densities of states (DOS) for both LSDA and COHSEX. At a first
glance, the two DOS spectra look very similar for all materials. The COHSEX self-
energy yields thus qualitatively the same correct result as LSDA: all three materials
are ferromagnetic metals. There are however small quantitative differences. The
occupied bandwidth shrinks, in particular for Co and Ni, and the spin-up and spin-
down states show a relative energetic shift toward each other. This observation
is confirmed by the exchange splittings of selected single-particle states listed in
Table 1. The COHSEX values are systematically smaller than the LSDA ones, to
the effect that the slight overestimation of the magnetic moment found in LSDA is
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Table 1 Spin magnetic moments (obtained from a projection onto Wannier orbitals) and exchange
splittings for selected states of Fe, Co, and Ni from LSDA, corrected LSDA, COHSEX, and
experiment. (Müller et al. (2016) Copyright 2016 American Physical Society)

LSDA LSDA corr. COHSEX Experiment

m(μB) Fe 2.20 2.16 2.11 2.08 (Stearns 1986;
Bonnenberg et al. 1986)

Co 1.62 1.49 1.46 1.52 (Stearns 1986;
Bonnenberg et al. 1986)

Ni 0.59 0.51 0.46 0.52 (Stearns 1986;
Bonnenberg et al. 1986)

Eex (eV) Fe Γ ′25 1.8 1.7 1.5 2.1 (Turner et al. 1984; Kisker
et al. 1985; Sakisaka et al.
1985; Santoni and Himpsel
1991)

H25 2.1 2.0 1.7 1.8 (Santoni and Himpsel
1991)

P4 1.4 1.3 1.1 1.5 (Eastman et al. 1980)

Co Γ ′12 1.7 1.3 1.1 1.1 (Himpsel and Eastman
1980)

Γ ′25 1.4 1.0 1.2 1.1 (Himpsel and Eastman
1980)

Ni L3 0.5 0.3 0.4 0.3 (Eastman et al. 1980)

X2 0.6 0.4 0.3 0.2 (Raue et al. 1984)

corrected to smaller values in COHSEX, albeit somewhat too strongly in the case of
Co and Ni. With the exception of iron, the exchange splittings are improved by the
self-consistent COHSEX calculation, most notably for Ni, whose exchange splitting
is known to be overestimated in LSDA.

Figure 3 shows the spin-wave dispersion calculated from the COHSEX Green
function as red symbols. Employing the self-consistent COHSEX mean-field
solution as starting point, in fact, decreases the gap error systematically compared
to the corresponding LSDA values. In case of bcc iron, fcc cobalt, and fcc nickel,
the error is reduced by 85%, 69%, and 79%, respectively.

The ansatz presented so far is computationally very demanding. It requires the
self-consistent calculation of the COHSEX self-energy on a fine k-point set. On the
other hand, aside from the gap error, the magnon dispersions obtained from LSDA
are very similar to the corresponding COHSEX results. This raises the question if
it is possible to correct the LSDA Green function in a simple way that respects the
Goldstone condition. In fact, this is possible.

Our approach is motivated by studying spin-wave solutions (Moriya 1985) of
the one-band Hubbard model. When solved in the Hartree-Fock approximation, we
obtain the magnetic susceptibility as a simple algebraic expression in the same form
as Eq. (44) with the W matrix replaced by the Hubbard interaction parameter U .
In the Goldstone limit, the two-particle propagator simplifies to K = m/Eex
with the site magnetization m and the exchange splitting Eex, and the Goldstone
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condition can be phrased in the form of the simple relation Um/Eex = 1. To
remain consistent, we have to evaluate K in the Hartree-Fock mean-field system,
in which case Eex = Um, and the Goldstone condition is identically fulfilled.
The simple form of the relation invites one to use one of the constituent quantities
as an adjustable parameter. The U parameter plays the role of the screened
interaction W , which is a matrix and thus cannot be corrected easily by a single
parameter. Besides, we obtain W from a many-body treatment of screening, and
it does not seem appropriate to correct it in such an ad hoc way. Second, the
magnetization m results from the self-consistent LSDA calculation and cannot be
varied straightforwardly. At last, Eex can be regarded as the energy difference
between the spin-up and spin-down electron bands, which can easily be varied
once a self-consistent LSDA solution has been found. Moreover, this correction
will specifically modify the LSDA Green function, which was our intention, while
leaving the screened interaction unchanged. The correction can be hoped to mimic
to some extent the missing renormalization in the Green function. Therefore, we
choose Eex as an adjustable parameter. To be more precise, we rigidly shift the
spin-up and spin-down states relative to each other ε

↑/↓
km → ε

↑/↓
km ± ΔEex/2 until

the Goldstone condition is fulfilled. The LSDA Green function corrected in this
way is then used to construct the two-particle propagator K . This procedure yields
magnon dispersions, which respect the Goldstone condition and are close to the
COHSEX results for the three materials as shown in Fig. 3. The relative shift in
the band energies is such that the exchange splittings decrease. For Fe, Co, and
Ni, we find ΔEex = 0.10 eV, ΔEex = 0.39 eV, and ΔEex = 0.21 eV. The
Fermi energy is adjusted accordingly so that the correction affects the ground-
state magnetic properties as well. Interestingly, the resulting magnetic moments and
exchange splittings turn out to be close to the corresponding COHSEX values listed
in Table 1. They also compare well with experiment. The proximity of COHSEX
and corrected LSDA values can be regarded as an a posteriori justification of the
correction. Among the three materials, fcc cobalt appears as a problematic case.
The gap error is largest and the COHSEX spin-wave dispersion shows an unusually
flat behavior at the Γ point. In fact, the curvature there is very small, being between
results from LSDA (small positive curvature) and PBE (small negative curvature,
not shown), indicative of a magnetic instability. This is in accordance with previous
DFT results. Janak (1978) found that there are two competing magnetic ground
states with low and high magnetic moment, and Moruzzi et al. (1986) report an
unusually strong dependence of the magnetic properties on the lattice constant.

The findings can be interpreted in a more fundamental way. Formally, the
Hamiltonian which describes the magnetic system is invariant with respect to spin
rotations, while the ferromagnetic ground state is not. This implies the existence of
a gapless excitation due to a homogeneous magnetic perturbation perpendicular to
the magnetization axis. Baym and Kadanoff (1961) and Baym (1962) formulated
a conserving and self-consistent scheme for correlation functions. The scheme was
extended by Brandt et al. (Brandt et al. 1970, 1971; Brandt 1971) to the magnetic
case. They showed that for a spin-conserving formulation of the magnetic sus-
ceptibility, which fulfills the Goldstone theorem automatically, several conditions
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have to be fulfilled. The chosen self-energy approximation is to be calculated self-
consistently with the Green function. This ensures that the single-particle states
which form the basis for the electron-hole propagator are consistent with the
applied self-energy approximation. In addition, the spin-independent interaction
that is responsible for the correlation among the electron-hole pairs with opposite
spins is required to be consistent with the self-energy as these properties are
connected via δΣ/δG = iW . If both conditions are fulfilled, the magnetic response
function will fulfill the Goldstone theorem. Then, the electron-hole pair propagator
and the screened interaction are compatible with the Ward identity ensuring spin
conservation. In particular, the correct limit q → 0 is attained.

5 Spin Excitation Spectra

In this section, we present detailed results of first-principles calculations for the
three bulk transition metals Fe, Co, and Ni. The properties of these materials are
strongly governed by the presence of the localized 3d states. It is the exchange
interaction among the 3d electrons that drives the systems into the ferromagnetic
ground state. On the other hand, the materials are metallic. The 3d states of
neighboring atoms overlap, and there is a partly filled itinerant 4s band which spans
the entire valence region and mixes with the d bands. As a consequence, Fe, Co,
and Ni show signatures of itinerant magnetism. For example, they fulfill the Stoner
criterion of ferromagnetism, and there is no order-disorder phase transition at the
Curie temperature as would be described by the Heisenberg model.

So, one would expect these bulk transition metals to show both localized and
itinerant magnetic behavior. The present formalism using MBPT is capable of
describing both types of magnetism on the same footing. The spectrum of spin
excitations in this theory is given by the imaginary part of the magnetic response
function as calculated from Eqs. (28) and (44). The poles of this function lie
infinitesimally below (above) the positive (negative) real-frequency axis, and they
come from both the two-particle propagator (bare susceptibility) in the numerator
and the roots of the denominator. In the former case, the spin excitations have a
single-particle character. These Stoner excitations can be described as excitations
of single electrons across the Fermi surface with an accompanying spin flip of the
electrons. In the latter case, the excitations are collective in nature, again with a
total spin flip of 1, and arise from superpositions of infinitely many electron-hole
pairs (single-particle excitations) coupled to each other by the exchange interaction.
These electron-hole pairs describe changes in the spin density, in which all electrons
take part collectively and which can, for example, have the form of spin waves. The
two types of excitations are just limiting cases. In general, the spin excitations have
a mixed character of single-particle and collective excitations: spin waves acquire a
finite lifetime through a coupling to Stoner excitations, and Stoner excitations lose
or gain spectral weight by a coupling to spin waves.

It is instructive to consider the model of a homogeneous electron gas with spin
polarization. The spin-up and spin-down bands have the form of free-electron bands,
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but they are shifted with respect to each other by the exchange splitting Eex, i.e.,
εσk = k2 − σEex/2. Energies and momenta are in units of the Fermi wavevector
k0 and Fermi energy ε0 = k2

0/2 of the paramagnetic system, respectively. The bare
susceptibility of this system can be calculated from Eqs. (34) and (47) in a pure
plane-wave representation. To simplify the evaluation of K↓↑, we replace −iη in
the first term by +iη, which amounts to using the corresponding retarded quantity.
This enables a straightforward integration over the occupied spin-up and spin-down
band (Moriya 1985) yielding

K+−(q, ω) = −1

4π2q

1∑

σ=−1

σ

[
1

2
(p2

σ − k2
σ )

(
ln

∣∣∣∣
pσ + kσ

pσ − kσ

∣∣∣∣+ iπ sgn(ω)θ(kσ − |pσ |)
)
−pσ kσ

]

(56)

with pσ = (ω − σq2 − Eex)/(2q), the spin-dependent Fermi wavevector kσ =
(1+σζ )1/3, the exchange splitting Eex = (1+ζ )2/3−(1−ζ )2/3, the spin polarization
ζ = M/N = (k3↑ − k3↓)/(k3↑ + k3↓), and the Heaviside function θ(x) = 1 for
x > 0 and 0 for x < 0. The factor sgn(ω) has been introduced to undo the sign
change −iη → +iη, which recovers the time-ordered two-particle propagator. All
quantities can be written in terms of a single parameter, the spin polarization ζ ∈
[0, 1].

The area where the imaginary part of K+−(q, ω) is nonzero defines the Stoner
continuum, which, by using the definition of θ , can be shown to be bounded by
the functions 2qkσ + σq2 + Eex from above and −2qkσ + σq2 + Eex from
below. Figure 5 presents a plot of− ImK+−(q, ω) together with the boundary lines
for a spin-polarized electron gas with ζ = 0.9. The imaginary part diverges for
ω = Eex = 1.32 and q → 0, because the real part of the denominator of Eq. (34)
vanishes in this limit. We also see that the Stoner continuum extends toward negative
energies. This is because, as long as ζ < 1, there can be transitions from occupied
minority to unoccupied majority bands. At ω = 0, the imaginary part of K+− is
zero for all momenta because the phase space of single-particle excitations vanishes
in this limit.

Of course, the homogeneous electron gas is a relatively crude model. The absence
of the crystal field and of atomic wave functions makes one wonder whether this
model could be just too simple. Therefore, it is interesting to compare Fig. 5a
to corresponding plots calculated with realistic wave functions and energies from
a self-consistent Kohn-Sham solution. In particular, we have calculated the bare
susceptibility from Eq. (48) and projected it onto the plane wave eiq·r from both
sides giving K+−(q, ω). A fine 20 × 20 × 20 k-point grid was employed, and the
Wannier basis was the same as in Sect. 4. We have also applied the Eex correction.
The plots for bcc Fe, fcc Co, and fcc Ni are presented in Fig. 6a–c. It is surprising
that they share a number of similarities with the plot for the homogeneous electron
gas. First, the maximum of − ImK+−(q, ω) is seen for ω ≈ Eex and q = 0. In
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Fig. 5 Imaginary part of (a) the bare [− ImK+−(q, ω)] and (b) the renormalized susceptibility
[− ImR+−(q, ω)] for the homogeneous electron gas with spin polarization ζ = 0.9; (c) is a
magnification of (b). The green solid lines show the boundaries of the Stoner continuum. In (b) and
(c), a finite imaginary frequency of, respectively, iη = i10−5 and iη = i10−7 has been employed
in order to make the magnon branch visible, which would have a vanishing (delta-like) width in
this system otherwise

contrast to before, there is no divergence because spin-up and spin-down bands
have different dispersions in a real material, and the majority bands shifted up by
Eex thus cannot coincide exactly with the minority bands, in particular, since Eex is
not a unique quantity but k dependent. Consequently, the maximum at q = 0 has
a certain width in energy. Furthermore, as before, we observe a weak intensity of
Stoner excitations for negative ω. As a qualitative difference to Fig. 5, the spectra
of Co and Ni exhibit a horizontal, nearly dispersion-less band of high intensity that
emanates from the maximum at Γ and stretches toward the X point. This feature can
be directly related to the localized nature of the single-particle states. The densities
of d states of Co and Ni show particularly sharp peaks in the majority valence and
minority conduction regions separated by 1.3 and 0.5 eV, respectively, revealing the
feature to originate from single-particle d → d transitions.

There are no clear boundary lines as for the homogeneous electron gas beyond
which the imaginary part of K+− would vanish. In fact, there can be Stoner excita-
tions for all q and ω (except for ω = 0). However, the form of − ImK+−(q, ω) is
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Fig. 6 Imaginary part of the bare susceptibility [− ImK+−(q, ω) in units of (ΩeV)−1; Ω = unit-
cell volume] for (a) bcc Fe, (b) fcc Co, and (c) fcc Ni as a function of q and ω

definitely similar. In particular, the characteristic V-shaped regions with (nearly)
no excitations above and below the maximum are present, and, instead of the
boundaries, one observes stripes of increased intensity seemingly extending from
the maximum. A pronounced one is seen in the spectrum of Ni. These stripes will
play an important role in the renormalized spectra later on. They can be understood
by realizing that the function − ImK+−(q, ω) can roughly be thought of as giving
the intersection of the valence majority states shifted upward by ω and sideways
by −q with the conduction minority states. This is illustrated in Fig. 7 where the
electronic bands are assumed to show a linear dispersion at finite q. Starting from
the (near) coincidence of the bands at q = 0 and ω = Eex, relatively large
intensities are still expected when the majority band is shifted from there in such
a way that the regions of linear dispersion remain overlapping, giving rise to the
condition of proportionality ω ∝ q and, hence, to the stripes. Here, we have assumed
that the spin-up band is filled, while the spin-down band is empty and that they
exhibit similar dispersions as is often the case in ferromagnets. Even in the case of
the highly symmetric homogeneous electron gas, whose bands exhibit a constant
curvature and no linear dispersions as in Fig. 7, the onset of the Stoner continuum at
the boundaries is quite abrupt. So, it is not surprising that real materials show more
structure there.
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Fig. 7 Illustration of the
“band overlap” leading to the
striped Stoner continuum of
Fig. 6. The red arrow denotes
the proportionality ω ∝ q
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Up to now, we have discussed the spin excitation spectrum of the fictitious
noninteracting reference system. The spectrum changes profoundly when one
introduces a finite interaction among the electrons. In the case of the homogeneous
electron gas, one would have to solve the Bethe-Salpeter equation R+−(q, ω) =
K+−(q, ω)/[1−WK↓↑(q, ω)] with K↓↑(q, ω) = −K+−(q, ω)/2 (cmp. Eq. (47))
and a so-far unknown effective interaction W . The latter is a single parameter in
this case and can be obtained conveniently from the Goldstone condition, giving
W = 1/K↓↑(0, 0) = −2/K+−(0, 0) = 3π2Eex/ζ . The spin excitation spectrum
is then given by − ImR+−(q, ω) shown in Fig. 5b for the homogeneous electron
gas. Together with the spectrum, we have plotted the boundary lines of the Stoner
continuum as solid green lines. Still, these lines separate the regions of finite
intensity from the regions of no intensity, except for the spin-wave branch, which
starts at the origin q = ω = 0 and disperses quadratically for small q according to
ω ∝ Dq2 with D = [1 − 0.4(k5↑ − k5↓)/(k2↑ − k2↓)]/ζ (Moriya 1985). For larger
q, the magnon branch deviates from the parabolic dispersion and finally enters
the Stoner continuum, where it couples to the Stoner excitations forming a broad
maximum. The magnon energies are much smaller than Eex, even for small Eex
because D ∼ Eex/12 in this limit. Therefore, we show an enlarged picture of the
magnon branch in Fig. 5c. We note that a finite (instead of infinitesimal) parameter
η = 10−5 and η = 10−7 has been employed in (b) and (c), respectively, which
leads to a corresponding finite linewidth of the magnon branch outside the Stoner
continuum.

When comparing with Fig. 5a, we observe a strong redistribution of quasiparticle
weight after solving the Bethe-Salpeter equation. In particular, the region of
maximal intensity around q = 0 now appears very shallow, and a new maximum
is found where the spin-wave branch enters the Stoner continuum. The former is a
feedback effect: the transfer of spin-up electrons into the spin-down channel leads
to a strong change in the exchange field of the interacting system, which acts against
the transfer of electrons, an effect similar to the electronic screening effect. The new
maximum comes from a resonance effect between the collective magnon and the
Stoner excitations. The amplifying effect of the resonance extends into the Stoner
excitations of negative energy (ω < 0), which now appear more intense than in
Fig. 5a. It is interesting to note that the maximum in Fig. 5a transforms continuously
into the one of (b) if one smoothly varies the parameter W from 0 to 3π2Eex/ζ .
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The spin-wave branch starts to appear for W � 0 slightly below the maximum at
ω = Eex, and as W increases, it shifts down, first with a maximum at q = 0,
then developing a minimum, until, for W = 3π2Eex/ζ , it finally has the form of
Fig. 5c. Further increasing W would shift the minimum of the magnon branch to
negative energies. This again demonstrates how sensitive the Goldstone condition is
and explains the difficulty of its fulfillment in first-principles calculations.

In Fig. 8a–c, we show the renormalized susceptibility for Fe, Co, and Ni,
again projected onto eiq·r. We have used the same scales as before to make a
direct comparison possible. Obviously, the regions around the spin-wave branch
have values exceeding the maximum of the color scale (black area). Therefore,
Fig. 8d–f presents a magnified picture with a different color scale. As with the bare
susceptibility, there are a number of similarities to Fig. 5b: a spin-wave branch is
formed by the renormalization; this branch acquires a finite lifetime broadening by
a coupling to Stoner excitations; the former intensity maximum around ω = Eex
and q = 0 has lost much of its intensity; there is a resonant enhancement of the
Stoner intensity for ω < 0. However, there are also some important differences to
the case of the homogeneous electron gas. First, the coupling to Stoner excitations
sets in much earlier, because the Stoner excitations are present at all energies.
Nevertheless, the spin-wave dispersion remains discernible to quite large momenta
and energies compared to the case of the homogeneous electron gas, indicating a
localized nature of magnetism in these materials. Especially in Ni, the magnon
branch seems to couple resonantly with the horizontal Stoner band toward the X
point. While the spin-wave branches still have an overall parabolic shape, they show
a rather irregular behavior, which can be attributed to the coupling to the Stoner
continuum. In particular, in all cases the magnon branch is affected, sometimes
interrupted, by the interaction with the striped Stoner spectrum we have discussed
before. In fact, if we magnify the corresponding region of the spectrum for Ni (see
inset in Fig. 8f), we can observe that the coupling between the magnon branch and
a line of strong Stoner intensity – we could call it a Stoner band – leads to a feature
that looks like an “avoided crossing.” In fact, this feature has a similar origin as an
avoided crossing of single-particle bands, with the difference that the two states that
interact here are not single-particle but many-body states, the collective spin-wave
excited state and a superposition of Stoner excitations, which mix and exchange
character.

Despite the multiple interactions with the Stoner background, we find that the
dispersion of the spin-wave branches is mostly isotropic in q space. The numerical
data for iron are in qualitative and also quantitative agreement with the neutron
scattering experiments of Collins et al. (1969), Mook and Nicklow (1973), and Lynn
(1975), where spin-wave energies up to 70, 118, and 110 meV were reported,
respectively; see Friedrich et al. (2014) for a comparison. In Loong et al. (1984),
spin-wave resonances up to an energy of 160 meV could be measured. However,
the latter experimental results partly disagree with the values of Mook and Nicklow
(1973), especially at the high end of the spectrum. We also find good agreement in
the case of nickel (Minkiewicz et al. 1969; Mook and Tocchetti 1979; Mook and
Paul 1985), while neutron scattering data for cobalt is scarce and limited to small
momentum transfers (Frikkee 1966; Glinka et al. 1977).
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A feature that has been discussed extensively in the literature (Cooke 1976;
Mook and Tocchetti 1979; Cooke et al. 1980, 1985; Callaway et al. 1983; Mook and
Paul 1985; Savrasov 1998; Karlsson and Aryasetiawan 2000; Şaşıoğlu et al. 2010;
Friedrich et al. 2010) is the appearance of an “optical” spin-wave branch, in addition
to the acoustic one, for example, in fcc Ni along Γ−X. The terminology is, however,
a little bit misleading, as the acoustic branch just seems to exhibit a gap at around
130 meV. The lower-energy end flattens and eventually disappears toward larger
momenta (or persists out to the zone boundary (Cooke et al. 1985; Blackman et al.
1985)), and the higher-energy end then continues to form the acoustic magnon
branch. The two ends coexist in a certain region of the reciprocal space giving a
double-peak structure in the spectra there. This indicates the existence of an optical
branch that crosses the acoustic branch and splits it into two pieces. The optical
branch has yet to be observed directly, however. (In some publications, the higher-
energy branch is denoted as the optical branch, although it does not extend to zero
momentum and finite energy as in the case of optical phonon branches.) After its
theoretical prediction (Cooke 1976), the optical branch was detected in the form
of a double peak in constant q scans in neutron scattering experiments (Mook and
Tocchetti 1979; Mook and Paul 1985). However, this feature seems to be an elusive
phenomenon, which is observed in some studies (Cooke et al. 1985; Blackman et al.
1985) but not in others (Callaway et al. 1983).

In Fig. 8f, we clearly see a gap in the acoustic branch at around 30 meV, which
arises from the coupling to Stoner excitations as we have seen before. But this gap
is located at a too low energy and too close to the Γ point to be identified as the
optical branch discussed in the literature. On the other hand, there is no gap to be
seen in Fig. 8f at around 130 meV. However, if we analyze this part of the excitation
spectrum more closely, we are able to identify two peaks, but these peaks do not
appear as separate peaks in our calculation. They form a broad peak, and only a
peak fit with Lorentzian functions reveals the existence of a lower-energy and a
high-energy branch in the respective region of momentum (Şaşıoğlu et al. 2010). In
the direction of increasing momentum, the higher-energy peak grows at the expense
of the lower-energy peak, which eventually disappears, and the higher-energy peak
then forms the magnon branch. It should be noted, however, that the double-peak
structure was observed as two separate peaks in a TDDFT study (Savrasov 1998)
and also in a calculation based on a Green-function formulation (Karlsson and
Aryasetiawan 2000). The latter study also reported a gapped magnon branch along
Γ −L in fcc Ni and a gap around halfway on the line Γ −N in bcc Fe. In fact, there
is a gap in this direction in Fig. 8d, albeit at a smaller momentum and energy than
in Karlsson and Aryasetiawan (2000). This gap can be attributed to the coupling of
the spin-wave branch with a line of increased Stoner intensity. The gapped magnon
branch has already been discussed by Blackman et al. (1985) and was observed
experimentally (Paul et al. 1988). In conclusion, it remains an open question why
the optical branch in fcc Ni appears as a well-defined feature in some calculations,
whereas, in others, it is so close to the acoustic branch that the two branches coalesce
into a broad peak.
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6 Conclusions

We have presented a theoretical method to determine the electronic spin excitations
of an interacting many-electron system from first principles. The scheme is based
on many-body perturbation theory, in which the spin excitations form the pole
structure of the magnetic response function or transverse spin susceptibility. The
poles are close to the real-frequency axis, so the imaginary part of the response
function yields the corresponding spin excitation spectrum, comprising both single-
particle Stoner and collective spin-wave excitations as well as combinations thereof.
The latter gives rise to lifetime effects and a redistribution of spectral weight. We
have described a very general theoretical derivation, in which the density response
function, which is central in describing optical absorption and excitonic effects,
appears as a special case.

With the GW approximation for the electronic self-energy, the magnetic
response function has been shown to fulfill a Bethe-Salpeter equation, which
can be solved in the basis of Wannier product functions. We have sketched a
practical implementation in the SPEX code that relies on the full-potential linearized
augmented plane-wave method. The screened interaction W is calculated within the
RPA. In metallic systems, W falls off very quickly so that we can afford to employ
an on-site approximation, i.e., an electron-hole pair is assumed to be on the same
site when interacting. In addition, we use the static limit of W for all frequencies,
so the screened interaction acts instantaneously. Our implementation allows the
magnetic response function to be calculated for arbitrary momenta, which can be
used to map the magnetic excitation spectra in very fine detail.

We have studied the long-wavelength limit of the spin-wave spectra for the
bulk 3d transition metals Fe, Co, and Ni. The long-wavelength limit is of special
interest as the Goldstone theorem demands the existence of a gapless excitation
in ferromagnetic materials (neglecting spin anisotropy). Often, this Goldstone
condition is numerically violated in practical calculations from first principles.
We can attribute a large part of this gap error to the approximation of the single-
particle Green function. For example, a natural and convenient choice would
be the LSDA Green function, which, however, introduces an inconsistency with
regard to the theoretical derivation of the Bethe-Salpeter equation. We have proved
mathematically that a gapless magnon branch requires the Green function to be
self-consistently renormalized with a suitable self-energy, e.g., the COHSEX self-
energy, the static limit of the GW approximation. It was shown numerically that the
gap error is substantially reduced when using the COHSEX Green function instead
of the LSDA one. Furthermore, the self-consistent COHSEX calculations give rise
to an overall reduction of the exchange splitting compared to LSDA, often leading to
better agreement with experiment. The spin-wave solution of the one-band Hubbard
model employing the Hartree-Fock approximation motivates a correction scheme
for the LSDA Green function, where the exchange splitting of the Kohn-Sham
system is adjusted so as to enforce the Goldstone condition. The resulting spin-
wave dispersions are closer to the corresponding COHSEX than to the original
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LSDA results. The same can be said about the magnetic moments and exchange
splittings obtained from the COHSEX and the corrected LSDA Green function,
which are found to be very similar, while the original LSDA values are a bit off.
As a result, the corrected LSDA Green function mimics that of the self-consistent
COHSEX calculation and is made to fulfill the Goldstone condition exactly, while
the numerical cost is identical to a treatment within LSDA. This opens up the
possibility of efficient first-principles MBPT calculations of spin excitations that
respect the Ward identity of spin conservation.

Spin excitation spectra of the three elementary ferromagnets bcc Fe, fcc Co, and
fcc Ni have been calculated and compared to results of model calculations using
a spin-polarized homogeneous electron gas. By this comparison, we have shown
that the bulk ferromagnets exhibit many features of itinerant-electron magnets that
cannot be described by a simple atomic arrangement of magnetic moments, such
as in the Heisenberg model. High-energy magnons are strongly damped due to
the coupling to single-particle Stoner excitations, and the spin-wave dispersion
possesses gaps along certain directions in the Brillouin zone, which can be attributed
to a coupling of the spin-wave branch with Stoner bands, lines of increased intensity
of Stoner excitations.

This coupling effect can be made responsible for the appearance of an optical
branch, in addition to the acoustic one, in bcc iron. On the other hand, we cannot
unambiguously identify an optical branch in fcc nickel along Γ − X, which has
been much discussed in the literature. While a peak fit of the calculated spin
excitation spectrum does reveal two spin-wave peaks at about the right momentum
and energy, this appears as a very subtle effect compared to the gaps discussed
before. Overall, we find a good agreement of the spin-wave dispersions to neutron
scattering experiments.

The present treatment of spin excitations within many-body perturbation theory
explicitly describes the correlated motion of an electron-hole pair. This formulation
can be straightforwardly extended to yield the dynamical longitudinal spin suscepti-
bility, including its coupling to the charge susceptibility (density response function).
Furthermore, it opens up the way for constructing a diagrammatic electronic self-
energy that describes the scattering of electrons and holes with magnons, in a
similar way as the GW approximation describes the scattering with plasmons.
Such a self-energy can be defined by the product of the Green function with the
T matrix, yielding the GT self-energy (Hertz and Edwards 1973; Edwards and
Hertz 1973). A numerical implementation (Müller 2016; Müller et al. 2019) would
be a formidable task given that the T matrix depends on four points in space.
It may be possible to combine this self-energy with GW yielding GWΓ , a self-
energy with vertex corrections. Such a self-energy could be able to describe the
quasiparticle renormalization (kinks) of electronic bands in magnetic materials due
to the scattering with spin fluctuations. It might even shed light on the coupling
mechanism in high-temperature superconductors, as it is believed that this coupling
arises from the exchange of magnons, through which the effective electron-electron
interaction can become attractive.
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Abstract

The modeling of spintronic devices is a theoretical challenge, since one has
to describe accurately both the electronic structure of the constituent materials
and their charge- and spin-transport properties. In this chapter we present the
state-of-the-art quantum transport theory appropriate for this task. The theory
is based on the so-called non-equilibrium Green’s function formalism, which is
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combined with density functional theory in order to provide a first principles
description of materials properties. This allows for the evaluation of the steady-
state charge and spin current through a quantum system at a finite applied bias
voltage between the electrodes. It also describes the spin-transfer torque that
flowing spins exert on localized magnetic moments, which is able to switch the
magnetization of a magnetic system. In this chapter the detailed discussion about
the principal methodological aspects is accompanied by the review of a number
of technologically relevant applications.

1 Introduction

In the last decades, the continuous emergence of novel functionalities and related
technologies has been a major boost for the advancement of spintronics. The current
applications in hard disk drives and magnetic random access memories rely mostly
on thin film heterostructures and exploit the magnetoresistance effect for the readout
of the magnetic state and the spin-transfer torque for switching it. The key compo-
nents that determine the functionality are typically only a few nanometers thick, so
that the electron transport properties do not obey standard Ohm-Kirchhoff’s laws,
and a quantum mechanical description is ultimately required. Furthermore, since
the device dimensions are often smaller than the electrons’ mean free path and
phase relaxation length, the coherent, phase-conserving carrier propagation governs
the charge and spin transport. As a result, the conductance is determined by the
transmission probability across a quantum mechanical scattering region as described
in the Landauer-Büttiker framework (Landauer 1957; Büttiker et al. 1985). This
requires the calculation of the wave function of the electrons, although the most
convenient way to perform simulations of realistic device setups is based on the
non-equilibrium Green’s function (NEGF) formalism.

In this chapter we describe in detail the NEGF formalism (Stefanucci and van
Leeuwen 2013; Datta 1995, 2005; Ghosh 2017), focusing on its application in
spintronics. To begin with, we present the general properties of Green’s functions
for systems at equilibrium. We then discuss open systems and the implementation of
NEGF in combination with density functional theory (DFT). This allows to present
a number of representative results for first principles NEGF+DFT calculations of
conductance, magnetoresistance, and spin-filter properties of nanoscale systems.
We then discuss the inclusion of many-electron effects in the formalism and its
application to calculate spin-transfer torques and dynamics of nanoscale devices.

2 Green’s Functions at Equilibrium

A closed quantum system with noninteracting particles is described by the real-
space one-particle Hamiltonian operator, Ĥ σ (r), where the superscript σ = ±1/2
indicates the spin index, and the vector r is the real space position. Here we assume
that the spins are collinear and that Ĥ σ (r) does not include any spin-mixing term,
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which couples up (σ = +1/2, also denoted by ↑) and down (σ = −1/2, also
denoted by ↓) spins. Non-collinear spin systems, necessary also to include the
effects of spin-orbit interactions, will be introduced in Sect. 6. The solution of the
time-independent Schrödinger equation

Ĥ σ (r) Ψ σ
n (r) = Eσ

n Ψ σ
n (r) (1)

yields the set of wave functions, {Ψ σ
n (r)}, and eigenvalues {Eσ

n } of the system,
with the integer n indexing the different eigenstates. Note that this single-particle
Hamiltonian can also include electron-electron interactions at a mean-field level, as
is the case in semi-local DFT calculations, where the Kohn-Sham (KS) Hamiltonian
is used.

The electron density, ρ(r), is obtained as ρ(r) = ∑
n,σ f σ

n |Ψ σ
n (r)|2. The sum

runs over all eigenstates of Ĥ σ , whose occupation probabilities, f σ
n = f (Eσ

n ), are
given by the Fermi-Dirac distribution:

f (E) = 1

1+ e
E−EF
kBθ

. (2)

Here kB is the Boltzmann constant, θ is the electronic temperature, and EF is the
Fermi energy.

In standard quantum transport calculations, Ψ σ (r) is expanded over a local
orbitals basis set, {Φβ(r)}, as Ψ σ (r) = ∑

β ψσ
β Φβ(r), where the integer β indexes

all the orbitals in the basis set, for a total of Nβ basis orbitals. Typically atomic-like
orbitals are used as basis orbitals, where each integer β is a collective index for the
atom index, the principal quantum number, the angular momentum quantum num-
ber, and the magnetic quantum number. In what follows we further assume that each
Φσ

β (r) is non-zero only over a confined region of space. We define the corresponding

Hamiltonian matrix, Hσ , as Hσ
αβ = 〈Φα|Ĥ σ |Φβ〉 =

ş

Φ∗α(r)Ĥ σ (r)Φβ(r)dr and the

overlap matrix, Ω , as Ωαβ =
〈
Φα|Φβ

〉 = ş

Φ∗α(r)Φβ(r)dr. With these definitions
we can rewrite the Schrödinger equation as

∑
β Hσ

αβ ψσ
β,n = Eσ

n

∑
β Ωαβ ψσ

β,n,
or in the shorter matrix notation Hσψσ

n = Eσ
n Ωψσ

n . Here ψσ
n is a vector of

dimension Nβ , normalized as ψσ
n

†Ωψσ
n = 1, and Hσ and Ω are Hermitian

matrices of dimension Nβ × Nβ . The electron density can be expressed as ρ(r) =∑
αβ,σ ρσ

αβΦ
∗
β(r)Φα(r), where we have introduced the density matrix, defined as

ρσ
αβ = ∑

n f σ
n ψσ

α,nψ
σ
β,n
∗. It can be written equivalently in the shorter matrix

notation as ρσ =∑
n f σ

n ψσ
n ψσ

n
†. The total number of electrons, Ne = N

↑
e +N

↓
e , is

then obtained from Nσ
e =

ş

ρσ (r)dr =∑
αβ ρσ

αβΩβα = Tr[ρσΩ] =∑
n f σ

n . For a
given Ne this relation implicitly determines EF.

The energy-dependent single-particle retarded Green’s function (GF), Gσ (E), is
defined as

Gσ (E) = [(E + iδ)Ω −Hσ ]−1, (3)
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where δ → 0+. If the eigenstates of Hσ are known, then it can be written in its

spectral form as Gσ (E) = ∑Nβ

n=1
1

E+iδ−Eσ
n
ψσ

n ψσ
n

†. We note that if Hσ and Ω are
both real, then also the ψσ

n can be made real, so that Gσ (E) is symmetric. We now
define the spectral function, Aσ (E), as

Aσ (E) = i
[
Gσ (E)−Gσ †

(E)
]
. (4)

By expanding Gσ (E) in its spectral form, Aσ (E) can be rewritten as

Aσ (E) = lim
δ→0+

2

Nβ∑

n=1

δ

(E − Eσ
n )

2 + δ2
ψσ

n ψσ
n

† = 2π

Nβ∑

n=1

δ(E − Eσ
n ) ψ

σ
n ψσ

n
†
,(5)

which shows that Aσ (E) has a peak at each eigenstate of Hσ and therefore
corresponds to a generalized density of states (DOS). With above relation the spin-
dependent density matrix, ρσ =∑

n f σ
n ψσ

n ψσ
n

†, can be written as

ρσ = 1

2π

ż

dE f (E) Aσ (E), (6)

where the energy integral goes from −∞ to +∞. If one defines the lesser Green’s
function, Gσ<(E), for systems in equilibrium as

Gσ<
(E) = if (E) Aσ (E), (7)

then ρσ can be rewritten as

ρσ = 1

2πi

ż

dE Gσ<
(E). (8)

In Green’s function-based numerical calculations, one therefore needs to calculate
Gσ<(E) and integrate this quantity over energies in order to then obtain the electron
density.

In this chapter the Green’s function method is combined with the KS equations of
DFT, unless explicitly stated otherwise. Therefore, following a standard practice, we
identify the single-particle Hamiltonian Ĥ σ with the KS Hamiltonian, Ĥ σ

KS, and the

corresponding eigenstates with the KS states. Ĥ σ
KS includes a single-particle kinetic

energy term, external classical potentials (such as the electron-nuclei interaction),
the Hartree term describing the classical Coulomb interaction between electrons,
and the exchange-correlation potential, which accounts for all remaining quantum
many-body contributions. Spin-transport calculations are generally performed by
using a semi-local approximation to the exchange-correlation density functional,
such as the local spin density approximation (LSDA) (von Barth and Hedin 1972).
DFT is a variational many-body theory that enables the calculation of the ground
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state observables of a system, in particular the total energy, from the charge
density, but the KS eigenvalues do not correspond to the true excitation energies.
In exact DFT the only exception is the eigenenergy of the highest occupied state,
which is equal to minus the ionization energy (Perdew and Levy 1997), although
within LSDA-DFT this relation is only approximately valid. Nevertheless, for many
systems the KS states provide a good approximate description of the electronic
structure. Typically the physical nature of the studied system, e.g., whether it is
metallic or insulating, as well as the orbital character of the valence and conduction
states, is correctly predicted, although the calculated energy gaps or bandwidths
deviate from experiments.

The quantitative shortcomings of KS-LSDA are often related to the self-
interaction error (Perdew and Zunger 1981), which tends to favor charge delo-
calization and shifts localized states to higher energies. A number of exchange-
correlation functionals to correct this error have been proposed. In quantum
transport calculations, an efficient correction is given by the so-called atomic
self-interaction correction (ASIC) (Pemmaraju et al. 2007) and by the LSDA+U
method (Himmetoglu et al. 2014). ASIC corrects the self-interaction error in an
approximate way for all occupied states, while it does not affect empty states, which
have no self-interaction. In LSDA+U a Hubbard-like U potential is applied to a
chosen subset of either atomic orbitals, typically the 3d and 4f states, or molecular
orbitals, which are expected to be localized due to strong correlation effects. This
potential discourages fractional occupations and acts differently on occupied and
unoccupied orbitals, leading to a bandgap of the order of U . The U parameter,
which describes the screened rather than the bare Coulomb interaction, is typically
fitted so to achieve a satisfactory agreement with the experimental results, although
different methods to calculate it from first principles have been proposed (for a
review see Himmetoglu et al. 2014). In case of molecules or other spacers between
metal electrodes, the effect of screening can be accounted for by using an image-
charge model (Souza et al. 2014; Pertsova et al. 2015), while for d or f orbitals in
solids several schemes based either on constrained DFT (Anisimov and Gunnarsson
1991), constrained random phase approximation (Miyake et al. 2009), and linear
response (Himmetoglu et al. 2014) have been proposed.

3 Non-equilibrium Green’s Function for Quantum Transport

The GF method described in the previous section can be naturally extended to
describe out-of-equilibrium open systems at steady state. The typical system that we
consider represents two-terminal devices at an applied bias voltage. It is subdivided
in three parts: a central scattering region, also called extended molecule (EM),
and left and right electrodes, from which electrons flow in and out (Fig. 1). We
use the convention that the z-axis is the transport direction, and we assume that
each electrode is semi-infinite and periodic away from the EM along z. The EM
and the left (right) electrodes are described by the Hamiltonian matrices Hσ

EM and
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Fig. 1 Schematic representation of the two-terminal setup used in typical quantum transport
calculations. A central scattering region, also denoted as extended molecule (EM), is joined to
the left and right leads, also denoted as electrodes. In practical quantum transport calculations, the
EM typically includes at least one unit cell of the semi-infinite periodic electrodes at each of its
ends, although in general this condition is not strictly necessary

Hσ
L(R), respectively. The coupling between the left (right) electrode and the EM

is accounted for by Hσ
LM(MR), while there is no direct coupling between the two

electrodes (Fig. 1). Due to its infinitely large size, each electrode is in local thermal
equilibrium at its own chemical potential, μL for the left electrode and μR for the
right electrode. The applied bias voltage is then defined as Vb = μL − μR. Note
that the units of Vb are in eV, and the corresponding voltage in volt, V = Vb/e, is
obtained by dividing Vb by the electron charge, e (e = −|e|). The values of μL(R)

are defined up to an arbitrary constant shift of the whole energy spectrum, and here
we implicitly define this constant by setting μL = EF+Vb/2 and μR = EF−Vb/2.

A crucial advantage of solving the transport problem by using the Green’s
function method is that the EM can be separated out from the semi-infinite leads.
Their effect on the EM is then captured via the energy-dependent retarded self-
energies of the leads, denoted as Σσ

L (E, Vb) (Σσ
R (E, Vb)) for the left (right)

electrode. In analogy to Eq. (3), this allows to write the retarded GF of the EM
at an applied bias voltage as

Gσ
EM(E, Vb) =

[
(E + iδ)ΩEM −Hσ

EM −Σσ
L (E, Vb)−Σσ

R (E, Vb)
]−1

, (9)

where ΩEM is the overlap matrix of the EM. The detailed procedure to evaluate
Σσ

L (E, Vb) = Σσ
L (E − Vb/2, 0) and Σσ

R (E, Vb) = Σσ
R (E + Vb/2, 0) goes

beyond the scope of this chapter; the established methods for their calculation are
based on either a semi-analytical expression (Rungger and Sanvito 2008) or on
iterative procedures (López Sancho et al. 1984). The leads’ self-energies, HEM,
ΩEM, and Gσ

EM, are all matrices of dimension NEM × NEM, where NEM is the
number of basis orbitals in the EM. Importantly, the self-energies are not Hermitian,
and their antihermitian parts describe the flow of electrons between EM and the
leads. To quantify these antihermitian components, one introduces the matrices
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Γ σ
L(R) = i

(
Σσ

L(R) −Σσ
L(R)

†
)

, which are positive semi-definite and represent

the energy-dependent strength of the electronic coupling of the EM to each of
the electrodes. This can be seen by writing the spectral function from Eq. (4) as
Aσ = Aσ

L + Aσ
R, with Aσ

L(R) = Gσ
EMΓ σ

L(R)G
σ
EM

†, which can be verified using
Eq. (9), and assuming that there are no fully localized states in the EM, so that
one can take δ to 0. The states of the system are therefore the sum of those coupled
to the left electrode, which determine Aσ

L, and those coupled to the right electrode,
which determine Aσ

R. In the out-of-equilibrium situation, the states coupled to the
left (right) electrode are therefore at the chemical potential μL (μR). This allows
us to generalize the lesser GF from Eq. (7) to the non-equilibrium situation as
Gσ< = ifLA

σ
L + ifRA

σ
R, where fL(R)(E, Vb) = f (E − μL(R)). If one defines

the lesser lead self-energies, Σσ
L(R)

<(E, Vb), as

Σσ
L(R)

<
(E, Vb) = ifL(R)(E, Vb)Γ

σ
L(R)(E, Vb), (10)

this lesser GF is equivalently given by

Gσ<
EM(E, Vb) = Gσ

EM(E, Vb)
[
Σσ

L
<
(E, Vb)+Σσ

R
<
(E, Vb)

]
Gσ

EM
†
(E, Vb).

(11)

The density matrix of the EM, ρσ
EM, can then be evaluated at each bias by using

Eq. (8):

ρσ
EM(Vb) = 1

2πi

ż

dE Gσ<
EM(E, Vb), (12)

where we have explicitly introduced the energy and voltage dependence of all
quantities. Furthermore, we also define the energy density matrix, Wσ , which is
required for the calculation of forces and spin currents (see Sect. 6) and which is
given by

Wσ(Vb) = 1

2πi

ż

dE E Gσ<
(E, Vb). (13)

We note that for computational efficiency the integral in the last two equations is
usually split in a part running over real energies and a part evaluated over complex
energies (Rocha et al. 2006).

When we use the DFT KS Hamiltonian for Hσ
EM, this becomes a functional

of the density, i.e., Hσ
EM(Vb) = Hσ

EM[ρ↑(Vb), ρ
↓(Vb)]. In this case ρσ (Vb) and

Hσ
EM(Vb) need to be solved self-consistently, in analogy to standard ground state

DFT calculations. This is typically achieved in an iterative procedure, where at
each iteration for a given input ρσ (Vb), one computes Hσ

EM(Vb), which is then used
to evaluate Gσ

EM and with it to obtain a new output ρσ (Vb). Self-consistency is
achieved once the difference between the input and output density matrices is below
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a given tolerance. Note that at finite Vb we do not have a variational principle for
the energy, so that at self-consistency instead of the ground state we obtain a steady
state, where the inflow of electrons equals the outflow.

Once ρσ (Vb) is calculated self-consistently, one can obtain the current across the
EM, I = I↑ + I↓, as

Iσ = G0

2e

ż

T σ (E, Vb) [fL(E, Vb)− fR(E, Vb)] dE, (14)

where G0 = 2e2/h is the quantum of conductance, h is the Planck constant, and
T σ (E, Vb) is the spin-dependent transmission coefficient. This is given by

T σ (E, Vb) = Tr
[
Γ σ

L (E, Vb)G
σ
EM

†
(E, Vb)Γ

σ
R (E, Vb)G

σ
EM(E, Vb)

]
, (15)

where “Tr” denotes the matrix trace operation. The integrand in Eq. (14) is large only
in an energy range of about±Vb/2 around EF, which is called the bias window. The
current is therefore mainly determined by the transmission integrated across this
bias window.

If periodic boundary conditions are used in the x − y plane perpendicular to the
transport direction z, then Hσ

EM, ΩEM, Gσ
EM, Gσ

EM
<, Σσ

L/R , and Γ σ
L/R acquire a

k = (
kx, ky

)
index, so that we now have Hσ

k,EM, Ωσ
k,EM, Gσ

k,EM(E, Vb),
Gσ

k,EM
<(E, Vb), Σσ

k,L/R(E, Vb), and Γ σ
k,L/R(E, Vb). The equations outlined above

are then valid for each k-point, and the total density matrix and transmission are
given by an integral over the Brillouin zone (BZ) perpendicular to the transport
direction as

ρσ
EM(E, Vb) = 1

ΩBZ

ż

ΩBZ

ρσ
k,EM(E, Vb)dkxdky (16)

and

T σ (E, Vb) = 1

ΩBZ

ż

ΩBZ

T σ
k (E, Vb)dkxdky (17)

where ΩBZ is the area of the BZ.
The method described in this section is referred to as the NEGF formalism. When

one uses the DFT KS Hamiltonian in the calculation, it is usually referred to as
the NEGF+DFT method. In the following section, we will show how NEGF+DFT
allows for the description of spin-dependent transport properties in nanoscale
devices from first principles. All results are obtained by using the Smeagol quantum
transport code (Rocha et al. 2006; Rungger and Sanvito 2008), which gets as input
the DFT Hamiltonian from the Siesta DFT code (Soler et al. 2002).
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4 Magnetoresistance and Spin Filtering

Thin film heterostructures combining magnetic and nonmagnetic materials are
the most widely used spintronic devices to date. The typical setup, called spin
valve, consists of two magnetic metals separated by one or more nonmagnetic
spacer layers, which can be insulating, semiconducting, or metallic (Fig. 2a, b, d).
For such systems the key quantity that determines the device performance is the
magnetoresistance (MR), which is defined as

MR = IP − IAP

I small
, (18)

where IP is the current for parallel (P) alignment of the magnetizations of the
electrodes, IAP is the current for antiparallel (AP) alignment, and I small is the
smaller of these two currents. The MR can be above tens of percent for metallic
junctions, as first shown by A. Fert and P. Grünberg with their independent discovery
of the giant magnetoresistance (GMR) effect (Baibich et al. 1988; Binasch et al.
1989). For insulating spacers the tunneling MR (TMR) can reach up to hundreds
or thousands of percent, as is the case for the now widely used Fe/MgO/Fe(100)
and related tunnel junctions. Notably, such huge TMR was first predicted by using
NEGF+DFT (Butler et al. 2001) and subsequently confirmed experimentally (Parkin
et al. 2004; Yuasa et al. 2004).

The general qualitative behavior of the MR for thin film stacks can be understood
by modeling the left ferromagnet/spacer and right spacer/ferromagnet interfaces in

metal metal metal metal metal metal

metalmetalmetalmetalmetalmetalmetalmetal

Fig. 2 Prototypical spintronic device setups involving various combinations of magnetic and
nonmagnetic layers, as well as metallic and insulating layers. The arrows indicate that a layer is
magnetic, and the presence of a red down arrow indicates systems used for their magnetoresistance,
obtained by reversing the magnetization direction of one of the layers. The unit cells shown
underneath each general system setup indicate atomic structures of specific examples of its
practical realization
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Fig. 3 (a) Fe band structure along the (100) direction, where the thick bands indicate states with
Δ1 symmetry; spin-polarized transmission for P (b) and AP (c) alignment of the magnetization
of the Fe electrodes in a Fe/MgO/Fe(100) junction with four MgO monolayers and resulting spin-
dependent current for P (d) and AP (e) alignment; the resulting magnetoresistance as function of
bias voltage is shown in (f). (Figure adapted from Rungger et al. 2009)

the devices of Fig. 2a, b, d as two independent scatters in series. If one assumes
symmetric interfaces and neglects interference effects across interfaces, then one
can indicate the majority (minority) spin transmission of each individual interface
as T M(E) [T m(E)]. Since spin-mixing is neglected, the P transmission can then
be approximated as T P = (T M)2 + (T m)2, while the AP transmission is T AP =
2T mT M. For systems with T M $ T m, indicating spin-filtering interfaces, one
therefore has T P $ T AP, which implies IP $ IAP and with it a very large MR.
Even though this simple model does not apply to all systems (De Teresa et al. 1999),
the general requirement for large MR is indeed that for the P alignment the current
is highly spin-polarized.

In Fig. 3b we show a representative spin-polarized transmission curve of a
Fe/MgO/Fe(100) junction as a function of the energy for the P alignment of the
magnetic electrodes (Rungger et al. 2009). In the energy range from −1 to +1 eV
around EF ones has T ↑ $ T ↓, and therefore this junction satisfies the requirement
for large MR . Here the up (down) spin transmission is the majority (minority)
transmission, so that T ↑ = T M and T ↓ = T m. The AP transmission (Fig. 3c) lies
between T ↑ and T ↓ calculated for the P alignment, in agreement to the qualitative
model explained above. The origin of the spin-filtering property of this junction
is the fact that MgO allows high transmission only for states with Δ1 symmetry
(e.g., s-states, pz-states, or dz2 -states), and these states are only found in the up-
spin spectrum of the Fe electrodes around EF (Fig. 3a). The current versus voltage
characteristic curve (I -V ) for P alignment therefore shows that I↑ $ I↓ at a
moderate bias (Fig. 3d). In contrast, for the AP alignment, both I↑ and I↓ are
very small at the same moderate bias, so that one has IP $ IAP (Fig. 3d, e) and
a very high TMR (Fig. 3f). Note that T ↓ for P alignment has a sharp peak very
close to EF due to the formation of an interface state between Fe and MgO in the
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Fig. 4 Averages over the (x, y) plane of the difference between finite-bias (Vb = 0.5 eV) and
zero-bias potential (a) and charge density (b) as function of the position along the transport
direction z in the Fe/MgO/Fe(100) junction. (Figure reproduced from Rungger et al. 2009)

down spins. With its high DOS, it leads to an increased T ↓ in a small energy range
around EF, which does however become negligible compared to T ↑ as the MgO
thickness increases beyond the four monolayers considered here. Furthermore, the
contribution of the interface states is drastically reduced when considering a small
amount of disorder at the interface, which to a first approximation is achieved
by applying a finite δ in the calculation of GEM (Eq. (9)). This leads to a further
suppression of the low bias IAP and with it an increase of the TMR. For larger Vb
the TMR decreases progressively, since at about 1 eV T ↓ becomes larger than T ↑
(Fig. 3b). We note that the DFT bandgap of MgO is smaller than the experimental
one (4.7 eV for the used LSDA vs. 7.8 eV in experiment). We can then correct
the MgO DFT gap by using ASIC to achieve a quite good agreement with the
experimental results. While ASIC changes the detailed quantitative values of the
current and TMR, it leaves the qualitative picture obtained from LSDA unaffected.
We also note that in these calculations the charge density and potential have
been computed self-consistently at finite bias, and the typically resulting potential
drop and charge polarization are shown in Fig. 4. One can see that the potential
drop is approximately linear between the two metal electrodes, so that to a first
approximation, one can also simulate the finite-bias potential non-self-consistently
by rigidly shifting it inside the metal electrodes and by applying a linear potential
ramp between them. The resulting transmission and current are similar to the ones
obtained in the self-consistent calculation.

The key requirements in order to obtain high TMR are the good crystallinity
of the interfaces and the large bandgap of the spacer. Both these requirements
are met in Fe/MgO/Fe(100) junctions, which exhibit good epitaxial growth. In
contrast, the smaller band gap of semiconducting spacers usually results in met-
al/semiconductor/metal junctions having a lower MR. For instance, in Fe/MoS2/Fe
junctions (Fig. 2b), multilayer MoS2 has a gap of about 1–2 eV, and the epitaxy
with Fe is less good. The MR is therefore reduced from thousands to a few hundred
percent (Fig. 5a), which is nevertheless still sizeable (Dolui et al. 2014). Due to
the smaller bandgap of MoS2, the decay of MR with bias is also faster, and the
MR approximately vanishes at a voltage of about 0.4 V (Fig. 5b). For metallic
spacers the assumption used in the presented NEGF calculations of a fully coherent
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current is not valid, since diffusive contributions to the electron transport become
important even for thin spacers. The evaluation of the relative contribution of
diffusive and coherent (also called ballistic) currents is an active area of theoretical
and experimental research. Using ultrashort laser pulses on Fe/Au films (Fig. 2e), it
is possible to estimate their relative contributions, and it is found that high-energy
ballistic electrons can travel for tens of nanometers and that the NEGF transmission
coefficient across the Fe/Au interface plays a determining role in the magnitude of
the currents and of their spin polarization (Alekhin et al. 2017).

The example of the Fe/MgO/Fe(100) junction has demonstrated that the key
factor to obtain a large MR is that each magnetic electrode in conjunction with the
specific spacer acts as spin filter. Such spin filters can also be obtained by placing
a ferromagnetic layer, either metallic or semiconducting, between nonmagnetic
metallic electrodes (Fig. 2c, f). For common applications the main drawback of all
known magnetic semiconductors is that they have rather low Curie temperatures
far below room temperature. Despite that, ferromagnetic semiconductors can still
be used in devices operating in cryogenic conditions. As typical example of
ferromagnetic semiconductor we consider EuO. Here there are only spin-up states
at the top of the valence band and at the bottom of the conduction band, which fix
the bandgap. In contrast, the down-spin band structure shows a much larger gap.
Consequently, in a prototypical Cu/EuO/Cu junction, the total transmission around
EF is mostly determined by T ↑ (Fig. 6), while T ↓ is much smaller (Jutong et al.
2012). EuO therefore acts as an almost perfect spin filter, where the spin polarization
of the current remains large up to high bias. Note that in these calculations the
LSDA+U is used for the Eu 4f states, since the LSDA bandgap is found to be
vanishingly small, in contrast to experimental observations (Pertsova et al. 2015).

Finally, we point out that spintronic devices can be realized also by using single
molecules or molecular layers contacted between metal electrodes. For example,
in the work by Rocha et al. (2005), a spin valve consisting of a 1,4-[3]-phenyl-
dithiolate (tricene-dithiolate) molecule between Ni electrodes is investigated by
using the NEGF method. The molecule corresponds to a nonmagnetic spacer,
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and the transmission function becomes spin-dependent as a result of the strong
electronic coupling between the molecule and the spin-polarized Ni d orbitals. The
theoretical MR reaches about 600% for a bias voltage of 0.5 V.

5 Electron Correlations Beyond Kohn-ShamDFT

The successful application of DFT+NEGF to the nanodevices presented so far relies
on the fact that the LSDA KS states return a reasonably accurate description of
the electronic structure. As we have indicated for the Fe/MgO/Fe and Cu/EuO/Cu
junctions, mean-field (MF) corrections such as the ASIC and LSDA+U can often
bring DFT results in agreement with experiments. However, there are a number of
effects, which are due to electron-electron correlations not captured by means of
any static mean-field approach. In these cases, the KS Green’s function can be used
as zeroth-order approximation within a more accurate treatment based on advanced
many-body techniques. The extension of the NEGF method to many-body systems
is formally accomplished by adding to Eqs. (9) and (11) the retarded and lesser self-
energies for the many-body (MB) electron-electron interaction, Σσ

MB and Σσ
MB

<.
Thus, one defines the MB Green’s functions as

Gσ
MB(E, Vb) =

[
(E + iδ)ΩEM −Hσ

EM −Σσ
L (E, Vb)−Σσ

R (E, Vb)

−Σσ
MB(E, Vb)

]−1
, (19)

Gσ
MB

<
(E, Vb) = Gσ

MB(E, Vb)
[
Σσ

L
<
(E, Vb)+Σσ

R
<
(E, Vb)

+Σσ
MB

<
(E, Vb)

]
Gσ

MB
†
(E, Vb). (20)
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We note that, if HEM is the KS Hamiltonian, then the contribution to the electron
correlation already accounted for at the KS level has to be subtracted out of ΣMB
and Σ<

MB. This so-called double counting correction is unfortunately unknown in
general and has to be approximated (Kotliar et al. 2006). Also other interactions,
such as the electron-phonon interaction, can be formally included by introducing
into these equations the corresponding self-energies, which just add up to the leads’
self-energies. However, we remark that a key assumption to guarantee the additive
property of the interaction self-energies with the leads’ self-energies is that these
interactions are localized in the EM.

The formal introduction of the electron-electron interaction via self-energies
in Eqs. (19) and (20) shows that the interaction effectively acts on the system as
an additional electrode. Then one can define an effective “coupling matrix” for

the interaction, Γ σ
MB(E, Vb) = i

(
Σσ

MB(E, Vb)−Σσ
MB

†(E, Vb)
)

, and express

Σσ
MB

<(E, Vb) in terms of Γ σ
MB(E, Vb) through the relation (Droghetti and Rungger

2017; Ness et al. 2010):

Σσ
MB

<
(E, Vb) = i F σ

MB(E, Vb)Γ
σ

MB(E, Vb). (21)

This has a similar structure to Eq. (10). However, we note that Fσ
MB is a NEM ×

NEM distribution matrix, which contains information about the interacting out-of-
equilibrium in- and outflow of electrons from the EM. The calculation of Fσ

MB
remains a challenge to date and is the topic of ongoing research. Only in equilibrium
(i.e., for Vb = 0) Fσ

MB becomes the Fermi-Dirac distribution.
The current can be expressed as (Droghetti and Rungger 2017; Ness et al. 2010)

Iσ = G0

2e

ż {
T σ (E, Vb) [fL(E)− fR(E)]+ Tr

[
[Fσ

MB(E, Vb)− fR(E)]

Γ σ
MB(E, Vb)G

σ
MB

†
(E, Vb)Γ

σ
R (E, Vb)G

σ
MB(E, Vb)

]}
dE. (22)

T σ (E, Vb) is the transmission coefficient defined as in Eq. (15), but here it is
computed by using the MB retarded Green’s function in Eq. (19), i.e.:

T σ (E, Vb) = Tr
[
Γ σ

L (E, Vb)G
σ
MB

†
(E, Vb)Γ

σ
R (E, Vb)G

σ
MB(E, Vb)

]
. (23)

The last term on the right-hand side of Eq. (22) accounts for the effect of the
“interaction electrode.” It is similar to the first one, but Fσ

EM(E, Vb) cannot be
brought outside the trace, and we cannot define a transmission coefficient related
to the flow of electrons from the left lead into the interaction lead and then from this
to the right lead. The first term of Eq. (22) accounts for the elastic contributions to
the current, while the second term accounts for the inelastic ones, which are often
not negligible. Γ σ

MB is usually non-zero except for a few special cases such as the so-
called irregular self-energies. These are instantaneous (local) in time self-energies,
such as the Hartree-Fock one. Γ σ

MB also vanishes for Fermi liquid systems at zero
temperature, but only at the Fermi energy. Away from it there is always a non-zero
contribution coming from the continuum of electron-hole excitations.
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To date, studies including correlation effects for spin-dependent transport beyond
NEGF+DFT are scarce and mostly limited to molecular devices and point contacts
at zero-bias (see, e.g., Jacob (2015) and references therein) rather than to solid-
state systems. In fact, although the discussion above provides the formal equations
to solve the problem, in practice the calculation of the MB retarded and lesser
self-energies within a treatable approximation is a challenging task. One possible
approach is to use the GW approximation of the many-body perturbation theory to
obtain a corresponding MB self-energy (Strange et al. 2011). A second approach
is represented by the dynamical mean-field theory (DMFT) (Kotliar et al. 2006). In
DMFT one starts by selecting a subspace of correlated orbitals in the very same
way as in LSDA+U. The effective low-energy Hamiltonian of this subspace is
projected out from the whole system and then solved by using DMFT to obtain the
corresponding MB self-energy. Finally this is projected back from the correlated
subspace to the original system. One of the strengths of DMFT is that it is not a
perturbative approach, so that both weak and strong correlations are treated on an
equal footing. However, DMFT neglects spatially nonlocal correlations.

As an example of application of NEGF+DFT+DMFT to a solid-state system, we
present results for a Cu/monolayer-Co/Cu heterostructure (Chioncel et al. 2015) in
Fig. 7. We note that to date no first principles study at finite bias has been reported
and the transport properties have been assessed by calculating only the elastic
transmission as defined in Eq. (23). DMFT significantly changes the DOS of the
Co layer when compared to KS-LSDA. The most striking effect is the narrowing
of the Co-3d states and the reduced exchange splitting, and this is reflected in
the transmission function. In fact, although its order of magnitude around EF is
approximately unchanged, the spin polarization is significantly reduced in DMFT
compared to LSDA results.

4

2

0

2

4

GGA
DMFT, T=80K
U=3eV, J=0.9eV

C
o 

D
O

S
 (

st
at

es
 p

er
 e

V
)

-10 -5 0
-2 -1 0 1 2

E-E
F

(eV)

0

0.5

1

T

Spin-up

0

0.5

1

T

GGA
DMFT

Spin-down

U=3eV, J=0.9eV, T=80K

E-E
F

(eV)

Fig. 7 (a) Density of states of the Co layer between Cu electrodes and (b) up- and (c) down-spin
transmission as function of energy. Black dashed curves (red solid lines) represent results without
(with) DMFT corrections. (Figure adapted from Chioncel et al. 2015)
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6 Finite-Bias Spin-Transfer Torque

If spin-mixing terms are present in the Hamiltonian, H↑ and H↓ are not anymore
independent of each other. The Hamiltonian matrix then needs to be rewritten in a
general non-collinear form as (Xie et al. 2016)

H = H0 ⊗ 12 +Hx ⊗ σx +Hy ⊗ σy +Hz ⊗ σz (24)

where 12 is the 2× 2 identity matrix, σx/y/z are the three 2× 2 Pauli spin matrices,
and H0/x/y/z are matrices, which are of general dimension Nβ × Nβ (for an open
system Nβ → ∞). For each pair of orbitals α and β we have a 2× 2 spin block
matrix Hαβ = H0,αβ 12 + Hαβ · σ , with Hαβ =

(
Hx,αβ,Hy,αβ,Hz,αβ

)
a vector of

three complex numbers, and σ = (
σx, σy, σz

)
a vector of the three Pauli matrices.

The self-energies, the Γ -matrices, the retarded and lesser Green’s functions, and
the density matrix are expanded in an analogous form. The equations derived in the
foregoing part of this chapter are therefore also valid for the non-collinear case, but
one needs to remove the spin index from each equation and replace the appearing
matrices with their non-collinear counterparts given in Eq. (24).

We now present the relations that allow us to evaluate the NEGF spin-transfer
torque (STT), which corresponds to the torque that the flowing electrons exert on
the local magnetic moments and which leads to current-induced time-dependent
spin dynamics. Using the Liouville equation for a general density matrix in a non-
orthogonal basis, ∂ρ/∂t = 1

ih̄

(
Ω−1Hρ − ρHΩ−1

)
, we obtain the relation:

∂ρ̄

∂t
= 1

ih̄
[H, ρ]+ 1

ih̄
[W,Ω] , (25)

where we have introduced the symmetrized density matrix:

ρ̄ = 1

2
(ρΩ +Ωρ) . (26)

Here W = 1
2

[
Ω−1Hρ + ρHΩ−1

]
, which for the steady state corresponds to

Eq. (13). The total number of electrons, Ne,tot = 2
∑Nβ

α=1 ρ̄0,αα , and the total spin,

Stot = h̄
∑Nβ

α=1 ρ̄αα , depend only on the diagonal elements of ρ̄. We introduce the
Mülliken-partitioned local charge in orbital α as qα = 2e ρ̄0,αα and the local spin
as sα = h̄ρ̄αα , so that ρ̄αα = 1

2e qα 12+ 1
h̄

sα ·σ . Note that qα and sα are always real.
Thus, from Eq. (25) we derive two equations of motion:

∂qα

∂t
= I0,α, (27)

∂sα
∂t

= TH,α + h̄

2e
Iα. (28)
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Here we have introduced the field-induced orbital torque

TH,α = 2

Nβ∑

β=1

Re
[
Hαβ × ρβα

] ; (29)

the orbital charge current, I0,α = ∑Nβ

β=1 I0,αβ ; and the orbital spin current,

Iα = ∑Nβ

β=1 Iαβ . These include the bond current between any two pairs of orbitals
α and β, Iαβ = I0αβ 12 + Iαβ · σ , for which using Eq. (25) the charge-current
component results to:

I0,αβ = 4e

h̄
Im

[
H0,αβρ0,βα −ΩαβW0,βα +Hαβ · ρβα

]
, (30)

and the spin-current component results to:

Iαβ = 4e

h̄
Im

[
Hαβρ0,βα +H0,αβρβα −ΩαβWβα

]
. (31)

Note that the orbitals α and β can be located both inside and outside of the EM, and
that Iαβ = −Iβα and I0,αβ = −I0,βα . We can interpret Eq. (27) as the change of
local charge due to in- and outflow of electrons from the orbital α, the first term in
Eq. (28) as torque leading to a spin precession around the effective field originating
from the Hamiltonian matrix and the second term as change of spin on orbital α

due to inflow and outflow of spins. In the steady state I0,α = 0 and TH,α = − h̄
2e Iα ,

so that the term in Eq. (28) proportional to Iα can be interpreted as a spin-transfer
torque from the flowing electrons to the local magnetization. We denote this STT as
TSTT,α = h̄

2e Iα . In the non-steady state, Iα can also lead to a change of magnitude
of the spin.

If we denote with A an arbitrary interface to the current flow, then the total current
across this interface, IA, is obtained by summing up the bond currents between all
the orbitals αL on the left side of this interface and the ones on the right of this
interface, αR:

IA =
∑

αL,αR

IαLαR . (32)

Charge conservation at the steady state implies that the charge current, IA,0, across
any interface A perpendicular to the transport direction must give the same value.
In fact it can be shown that the current obtained in this way is equivalent to the
NEGF current in Eq. (14). In contrast, the spin currents IA can vary for two different
interfaces A and A′, and the difference between IA and IA′ satisfies the relation:
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∑

α∈(A,A′)
TSTT,α = h̄

2e
(IA′ − IA) , (33)

where the sum on the left side of the equation runs over all orbitals enclosed between
the interfaces A and A′, so that it is equal to the total STT in the region between A

and A′. In typical MR heterostructures shown in Fig. 2a, b, d, one is interested in the
torque acting on the right magnetic electrode, TR, since it is the one that can reverse
the magnetization, while the magnetization of the left electrode is usually pinned
to one direction. TR is then proportional to the difference in the spin current deep
inside the right electrode, IR, and the one in the middle of the spacer, IM, and the
value is given by

TR = h̄

2e
(IR − IM) . (34)

Note that IR needs to be evaluated at a distance from the interface that is larger than
the transverse spin relaxation length (Slonczewski 2005).

We can also compute the local torque on each atom, where the Mülliken-
partitioned local atomic spin at an atom with integer index a is Sa = ∑

α∈a sα .
Here the sum over α runs over all orbitals that belong to atom a, and Stot =∑

a Sa .
In the steady state the STT acting on the atom, Ta , is then given by

Ta =
∑

α∈a
TSTT,α = h̄

2e

∑

α∈a
Iα. (35)

To obtain Ta we can therefore calculate directly TSTT,α = h̄
2e Iα through Eq. (31).

Note that since the spin-current can be non-zero even without applied voltage, the
torque defined in this way can be finite even at 0 bias voltage. If one wants to
calculate only the torque induced by the application of a bias voltage, one can simply
take the difference Ta(Vb)− Ta(Vb = 0).

In Haney et al. (2007) an alternative approximate procedure for the calculation
of TH ,α is outlined, where one subdivides the full non-equilibrium electron density
into a condensate part, ρcond, which gives rise to the local moments at equilibrium,
and a transport part due to the current flow, ρtr, so that ρ = ρcond + ρtr. We note
that the exact way of splitting ρ into a condensate and a transport part is rather
arbitrary, and the results can depend sensitively on this splitting, as shown in Xie
et al. (2016). In a steady-state current-carrying condition, we choose the definition
ρcond = ρEM(Vb = 0), so that ρtr(Vb) = ρEM(Vb) − ρEM(Vb = 0). Within the
LSDA, and in absence of spin-orbit interactions, we also have H[ρ]αβ ∝ ραβ , where
H[ρ]αβ denotes the spin Hamiltonian obtained for the density matrix ρ. Assuming
ρcond $ ρtr we have ∂ρcond/∂t $ ∂ρtr/∂t ≈ 0 and therefore ∂str/∂t ≈ 0, and
furthermore H [ρcond + ρtr]αβ ≈ H [ρcond]αβ + H [ρtr]αβ . With Eqs. (28) and (35),
this gives the following approximation for the STT:
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Fig. 8 Comparison of the two non-collinear STT methods (density method and spin-current
method) for the in-plane and out-of-plane torques in the right lead of an Fe/MgO/Fe(100) stack
with magnetizations set at 90◦ (see inset), as function of the applied voltage. For the in-plane
case, also the STT calculated using collinear-state transmissions, based on the equivalent-circuit
magnetic tunnel junction model of Slonczewski (2005) developed for STT by Theodonis et al.
(2006), is shown. Note that all finite-bias calculations here are not fully self-consistent, but are
instead based on a non-self-consistent finite-bias calculation, where the potential drop across the
barrier is assumed to be linear, which is a good approximation of the self-consistent potential (see
Fig. 4)

Ta ≈ ∂sa,cond

∂t
≈ 2

∑

α∈a

Nβ∑

β=1

Re
[
ρtr,βα ×H[ρcond]αβ

]
. (36)

With Eq. (36) Ta can be evaluated by first performing a zero-bias calculation to
obtain ρEM(Vb = 0) and H[ρEM(Vb = 0)]αβ and then a finite-bias calculation to
obtain ρEM(Vb).

In Fig. 8 we show an example for the bias dependence of the total STT on the
right lead of an Fe/MgO/Fe(100) magnetic tunnel junction (MTJ) calculated by the
two methods above, namely, what we call the spin-current (SC) method based on
Eq. (34) and what we denote as the density method (DM) of Eq. (36). We see a
linear bias dependence of the in-plane (damping-like) STT for |V | < 1.5 V, above
which a sharp increase is observed. The latter is due to the band edge of the Δ1
band for the minority spin in bcc Fe at about 1.5 eV above EF and the consequent
sharp increase of the current in the AP alignment of the junction at these rather high
bias voltages (see Fig. 3). The out-of-plane (field-like) torque is quadratic in this
bias range, becoming larger than the in-plane STT at high bias voltages and then
decaying sharply at around ±1.5 V. Importantly, we find an excellent agreement of
the two presented methods over the considered wide range of bias voltages. The
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results of these methods agree also very well with the Slonczewski’s equivalent-
circuit result for a symmetric MTJ, which is based on an approximate collinear
spin-current model (Theodonis et al. 2006).

7 Linear-Response Spin-Transfer Torque

If we consider the linear-response regime, where only a small bias voltage, δVb, is
applied across the junction, then the transport part of the density matrix induced by
δVb is

ρtr(δVb) ≈ ∂ρ(Vb)

∂Vb

∣∣∣∣
Vb=0

δVb. (37)

Based on this relation, and using Eq. (36), we can evaluate the so-called spin-transfer
torkance on a site a, τ a , as

τ a = δTa

δVb
≈ 2

∑

α∈a

Nβ∑

β=1

Re

[
∂ρtr,βα

∂Vb
×H[ρcond]αβ

]
. (38)

Assuming that GEM(E) and ΓL/R(E) are slowly varying functions around EF and
that the junction is approximately left-right symmetric (the two electrodes and the
interfaces), resulting in a symmetric bias drop (±Vb/2), the derivative in above
equation takes the form (in accordance with Mahfouzi and Nikolic (2013) for this
special case):

∂ρ(Vb)

∂Vb

∣∣∣∣
Vb=0

= 1

4π
GEM(EF) [ΓL(EF)− ΓR(EF)]G

†
EM(EF)

∣∣∣∣
Vb=0

. (39)

In Fig. 9 an example calculation of a linear-response torkance is shown. In this
case the electrodes are made of CuMnAs, an antiferromagnetic (AFM) material
recently proposed for spintronic applications (Wadley et al. 2013, 2016). In its
tetragonal phase, CuMnAs is a metallic AFM (TN ≈ 480 K) and can be grown
epitaxially on GaP. The general advantages of AFMs are that they are immune
to stray magnetic fields and that they are expected to have much faster switching
times compared to ferromagnets. For CuMnAs grown on GaP, the magnetization
is uniformly aligned within the individual Mn layers parallel to the interface and
alternates antiferromagnetically from layer to layer as one moves away from the
GaP interface (Fig. 9c, d). Since the spin-transport properties are dominated by the
interface magnetization, reversal of the magnetization of the right electrode leads
to a significant MR in this system (Fig. 9f). This particular equilibrium interface
spin polarization is then found to give rise to staggered spin-transfer torkance in
the AFM (Fig. 9e) (Stamenova et al. 2017), and the total torkance in the right
electrode is non-zero despite the zero total magnetic moment. The magnetic state
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Fig. 9 (a,b) Atomic structure of the CuMnAs/GaP/CuMnAs junctions; two possible terminations
of the GaP spacer are considered: GPG ending with Ga layers and PGP ending with P; (c,d)
definition of the P and AP spin states of the junction, arrows represent the spin of the corresponding
Mn layer as per diagram above; (e) the in-plane spin torkance for a 90◦ spin misalignment, i.e.,
left lead polarized along y and right lead along x; (f) energy-dependent linear-response TMR
coefficient, which here is defined as TMR(E) ≡ (TP(E)− TAP(E)) / (TP(E)+ TAP(E)). (Figure
adapted from Stamenova et al. 2017)

of such heterostructures can therefore be read using the MR and switched using
the torkance. We also note that, as shown in Fig. 9, the spin-transport properties are
found to depend sensitively on the CuMnAs termination on GaP, but the staggered
spin-transfer torkance is less sensitive to the details of the interface.

8 Time-Dependent Spin Dynamics: Current-Driven Domain
Wall Motion

So far we have considered the charge and spin transport in the steady state. Time-
dependent (TD) dynamical processes with non-collinear spin textures are typically
evaluated in a multi-scale approach, where the NEGF+DFT STT steady-state results
are used as parameters in a Landau-Lifshitz micromagnetic model (Xie et al.
2016; Ellis et al. 2017). The time evolution can in principle also be evaluated
directly within NEGF+DFT; these calculations are however computationally highly
demanding. Computations become significantly faster if instead of DFT one uses
a simplified tight-binding (TB) model, where the Hamiltonian is based on a set of
parameters instead of the fully first principles approach used in DFT. In Stamenova
et al. (2005) a so-called s−d model tight-binding Hamiltonian is used to describe a
point contact, where the spatially varying localized spins, {Sa}, are assumed to lie in
a plane and are described by a one-dimensional set of classical angular coordinates
φ = {φa}, one for each site a. The corresponding Hamiltonian operator is written as
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Ĥ (φ) =
∑

a,b

[
(Hel)ab + (Vsd(φ))ab

]
ĉ†
aĉb + Vdd (φ) , (40)

where a, b indicate the sites in the junction; Hel is a single-band TB Hamiltonian
matrix; (Vsd(φ))ab = −Jsdsa · Sb(φb)δab corresponds to an on-site repulsion
term; Sa(φa) = (sin(φa), 0, cos(φa)) are unit vectors representing the local atomic
spins of uniform magnitude, S; and sa = (0, 0, sa) = (0, 0, ρ↑aa − ρ

↓
aa)/2 is the

expectation value of the on-site itinerant spin in the case of a two-spin-channel
model (for ease of notation here and in the following, we define the spins as
dimensionless). The equation includes an inter-site classical Heisenberg spin-spin
interaction Vdd ({φa}) = −(Jdd/2)

∑
a,b Sa(φa)·Sb(φb) with only nearest neighbor

coupling. In this case the torques acting on the classical d-spins, defined through
the Hellman-Feynman theorem, have an explicit form in the direction perpendicular
to Sa , allowing for spin-rotations energetics to be calculated, including transition
barriers between different spin states in the junction. Within a NEGF steady-state
spin-transport approach, this model has provided a valuable unequivocal numerical
demonstration that the current-induced torques, which represent a special case of
current-induced forces (CIFs), are nonconservative (Stamenova et al. 2005). The
question of whether or not CIFs are conservative had been an open question in
the field of electromigration and a subject of debate in the early 2000s (see, e.g.,
Di Ventra et al. 2004).

This model has been further extended beyond the two-spin channel model to fully
non-collinear spins to investigate two almost reciprocal phenomena involving the
dynamical interaction of electron transport and the underlying spin/magnetization
texture in the time domain, i.e., the spin-motive force as a result of a domain wall
(DW) rotation (Stamenova et al. 2008) on one hand and the current-induced DW
motion (Stamenova and Sanvito 2010) on the other hand. The system of choice in
the two cases was similar – a 1D chain of a few hundred localized spins forming a
Néel-type DW. We will consider here in more detail the second case, where time-
dependent steady-state transport is achieved by a single-parameter construction of
an “ever-discharging” capacitor attached to the chain, analogous to the method of
Sánchez et al. (2006). There it is also demonstrated that the steady state obtained
in this method is equivalent to the NEGF steady state in the case where atomistic
details of the coupling to the leads are neglected (ΓL(E) = ΓR(E) = Γ ). An
example of a possible TD transport scheme based on the NEGF is presented in
McEniry et al. (2007). The s − d spin Hamiltonian is now fully non-collinear, and
the equation of motion for the localized spins reads (Stamenova and Sanvito 2010):

Ṡa = Sa

S
×
(
Jsd sa + γ S B(t)+ Jdd

∑

b

Sb + 2Jani
(
Sa · ẑ

)
ẑ

)
, (41)

where sa = Tr[ρaaσ ]/2 is the instantaneous expectation value of the on-site
itinerant spin and the electron density matrix is propagated according to a Liouville
equation, including a “bias-maintaining” empirical damping term Γb at the chain
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Fig. 10 Top panels: a schematic of the DW-containing 1D conducting chain with open boundary
conditions and the dynamic establishment of steady-state regime (showing charge and spin bond
currents at the DW center). Bottom panels: 2D contour plots (as function of time and position along
the chain) of spin-related observables as indicated. (Figure adapted from Stamenova and Sanvito
2010)

boundaries, which effectively generates a source and a drain, as illustrated in Fig. 10.
Note that the STT component of this equation, corresponding to the STT presented
in Eq. (36), is the first term in the brackets, STT = Jsd Sa × sa/S. For a suitable
choice of Γb, a steady current-carrying state is established after a short transient
time of a few tens of fs (Fig. 10b). It is found that during the steady state, the DM in
the chain is moving at a practically constant velocity. This is only gently perturbed
by the emission of spin waves (see Fig. 11). Under the steady current flow, the DW
is developing some deformation, and two comparative cases have been examined –
a very narrow and a very wide wall (on the length scale of the chain). Although the
two walls develop similar velocities for a given current flow (the wider DW being
somewhat faster) that scale linearly with the current, they undergo different levels of
deformations (Fig. 11). This can be interpreted as a result of the different balance of
current-induced torque contributions: the adiabatic STT (ASTT) and nonadiabatic
torque (NAT). The ASTT is due to the adiabatic alignment of the itinerant electron
spin to the local spin texture, and the NAT is a result of the lag in that spin alignment,
which is expected to be more pronounced in the case of abrupt spin texture variation
(e.g., a sharp DW). These are closely related to the driving mechanisms for the in-
plane STT and the out-of-plane field-like torque in the MTJs (Brataas et al. 2012).

Alternatively, the current-driven DW motion can be studied by micromagnetic
simulations based on the extended LLG equation incorporating STT terms, which
have been shown to arise from the s − d interaction by Zhang and Li (2004)
in a diffusive semiclassical spin-transport model. An analogous to Eq. (41) fully
classical atom-resolved LLG-like equation of motion, including the current-induced
torques on the spin texture derived by Zhang and Li (2004), can be considered in
the form:
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Fig. 11 (a,b) Current-driven evolution of the x-components of the local spins is shown in contour
plots and a snapshot of the domain wall (DW) spin structure at a late stage of the simulation,
comparing two DWs with different thicknesses. (c) DW velocities of the two different walls are
presented as function of time from the beginning of the simulation, and it can be seen that they
are nearly constant once steady state is established after about 0.2 ps. (d) The average velocity of
the two DWs as a function of the average steady-state current. Here a is the lattice constant of the
one-dimensional chain of atoms, zw is the width of the DW and C is the SI unit Coulomb. (Figure
adapted from Stamenova and Sanvito 2010)

Ṡa = Sa ×
[
Jdd

S

∑

b

Sb + 2Jani

S

(
Sa · ẑ

)
ẑ + α ∂tSa − bJ Sa× ∂zSa − cJ ∂zSa

]
,

(42)

where bJ is the strength of the ASTT in units of velocity, cJ is the strength of the
NAT, and α is the Gilbert damping parameter. Restricting the degrees of freedom
within the wall to two time-dependent parameters: the center and the width of the
wall, Zhang and Li (2004) show that the ASTT drives a DW widening deformation
and that the NAT is responsible for the terminal velocity. The atomistic simulations
using Eq. (42) by Stamenova and Sanvito (2010) agree qualitatively in general, for
example, the wall does not start moving with the NAT alone. Relaxing the DW
shape rigidity condition however reveals additional features of the current-driven
DW evolution. For instance, the NAT tends to give rise to the out-of-plane DW
deformation and DW precession, similarly to what has been found by the quantum-
classical steady-state simulations, comparing the thick and the thin walls (Fig. 11).
Atomistic spin dynamics combined with first principles STTs from NEGF+DFT
calculations have also recently been used to study the switching process of a free
layer in an MTJ and investigate the effects of heating on the switching times (Ellis
et al. 2017).
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9 Conclusions

The NEGF+DFT formalism is a powerful tool to extract spin-dependent transport
properties of nanoscale devices. It allows for quantitative and predictive calculations
of spin currents, magnetoresistance, and spin-transfer torque, and in particular to
evaluate the dependence of the device properties on atomic-scale features in the
structure, which are often not directly accessible in experiment. As such it is
now a well-established state-of-the-art tool for nanoscale device design. Despite
the success so far, methodological developments are ongoing, in particular for the
inclusion of strong correlation effects, of spin-phonon and spin-photon interactions,
and for the time-dependent dynamic evolution.
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Abstract

The micromagnetic model has proven to be a reliable tool for the description
of a variety of magnetic materials and systems. Classical micromagnetics
describes the equilibrium and dynamics of magnetization configuration under
the influence of magnetic fields and other material-specific energy contributions
such as the exchange interaction. With the rise of spintronics, the interaction of
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spin-polarized currents with the magnetization has gained a lot of interest. This
chapter aims to give an overview over extensions of the micromagnetic model
for the description of spintronics effects.

1 Introduction

The micromagnetic model was originally developed as an analytical tool for the
description of domain walls in ferromagnetic material (Brown 1963). In contrast
to atomistic or ab initio descriptions of magnetic systems, it follows a mean-
field-like approach where the discrete magnetic moments are approximated by a
continuous magnetization field M(x). However, in contrast to Maxwell’s equations,
the magnetization field in micromagnetics is assumed to have a constant modulus
|M| = Msm with m being a unit vector field and Ms being a material constant
called the saturation magnetization. This fundamental assumption is based on the
fact that the strong exchange interaction in ferromagnetic materials results in a near-
parallel orientation of neighboring spins. Assuming a constant spin density thus
yields a saturated field when averaging over small spin ensembles. In contrast to
the macroscopic description of the magnetization in Maxwell’s equations where the
magnetization is averaged over multiple domains, the magnetization field in micro-
magnetics spatially resolves not only domains but also the structure of domain walls.

Besides extrinsic energy contributions like the Zeeman energy due to external
fields, the micromagnetic model accounts for a number of intrinsic energy con-
tributions like the exchange energy which is the root of ferromagnetism. Since
some of the intrinsic energy contributions have a quantum mechanical origin,
micromagnetism is often referred to as semiclassical theory.

The accurate description of magnetic domains makes the micromagnetic theory
a valuable tool for the investigation of magnetic hysteresis. Since the response
time of a magnetic system is much shorter than the field evolution in typical
hard-magnetic applications, hysteretic properties are usually computed by direct
energy minimization; see, e.g., Fischbacher et al. (2017). For other purposes,
the magnetization dynamics need to be resolved, e.g., in order to investigate the
switching times in storage applications; see, e.g., Lee and Dieny (2006). The
micromagnetic model, both static and dynamic, is defined in terms of partial
differential equations and can be solved analytically only for simple limiting cases.
With the rise of high-performance computing, the numerical solution of the micro-
magnetic model has become an invaluable tool for the investigation of magnetic
systems. However, classical micromagnetics as introduced in Brown (1963) does
not describe the interaction of spin-polarized currents. These interactions that are
usually summarized as spintronics effects have recently gained a lot of interest in
the magnetic community.

This chapter is supposed to give an overview over existing extensions to the
micromagnetic model for the description of spintronics effects. It summarizes the
review article (Abert 2019) which the interested reader is referred to for a more
detailed introduction to micromagnetics, spintronics, and numerical methods.
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2 Energetics of a Ferromagnet

The total free energy of a system with respect to its magnetization is key to static
and dynamic micromagnetics. Depending on the material of the magnetic system,
the total energy is composed of multiple contributions. According to classical
electrodynamics, every magnetic body Ωm has a Zeeman energy given by

Ezee = −μ0

ż

Ωm

Msm ·Hzee dx (1)

with Hzee being the Zeeman field and μ0 being the vacuum permeability. An
essential energy contribution for micromagnetics is the exchange energy which
is responsible for ferromagnetism. As mentioned in the preceding section, the
micromagnetic assumption of a saturated magnetization field is valid only for
systems with strong local ordering forces. This requirement is met by the exchange
interaction that penalizes nonparallel alignment of neighboring spins. The exchange
energy can be derived as the continuum limit of a Heisenberg Hamiltonian
H = s1 · s2 assuming a symmetric lattice structure and is given by

Eex =
ż

Ωm

A
∑

i,j

(
∂mi

∂xj

)2

dx =
ż

Ωm

A(∇m)2 dx (2)

where A is called the exchange constant and (∇m)2 = ∑
i,j (∂mi/∂xj )

2 is to
be understood as a Frobenius inner product. Although usually derived from the
Heisenberg model, this energy expression accurately describes the exchange energy
in various materials including band magnets; see Hubert and Schäfer (1998).

Another important intrinsic energy contribution is the demagnetization energy,
also referred to as magnetostatic energy. It describes the energy of the magnetization
in its self-generated dipolar field. According to classical electrodynamics, the
demagnetization field can be expressed as negative gradient of a scalar potential
Hdem = −∇u with the potential u being the solution to the partial differential
equation

∇ · (−∇u+M) = 0 in R
3 (3)

with open boundary conditions

u(x) = O(1/|x|) for |x| → ∞, (4)

i.e., the potential decays to zero at infinite distance from the magnetic region Ωm.
The solution to this problem can be stated in terms of the integral equation

u(x) = − 1

4π

[
ż

Ωm

∇′ ·M(x′)
|x− x′| dx′ −

ż

∂Ωm

M(x′) · n
|x− x′| ds′

]
, (5)
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see Jackson (1999). The energy connected to the demagnetization field is given by

Edem = −μ0

2

ż

Ωt

M ·Hdem dx (6)

where the factor 1/2 accounts for the quadratic dependence of the energy on the
magnetization M.

Depending on the material, the magnetization preferably aligns to certain axes in
a magnetic body called easy axes. This effect originates from anisotropic spin-orbit
coupling either due to an anisotropic crystal structure or due to lattice deformation
at material interfaces; see Hubert and Schäfer (1998). In the case of a single easy
axis, this anisotropy energy is given by

Eaniu = −
ż

Ωm

[Ku1(m · eu)
2 +Ku2(m · eu)

4] dx (7)

where eu is a unit vector parallel to the easy axis and Ku1 and Ku2 are the scalar
anisotropy constants. The expression for this uniaxial anisotropy is derived in a
phenomenological fashion by considering all terms that comply with the twofold
symmetry up to fourth order in m (Brown 1963). Materials with cubic lattice
symmetry such as iron or nickel exhibit three easy axes ei which are pairwise
orthogonal ei · ej = δij . Like for the uniaxial anisotropy, the expression for the
cubic anisotropy energy is developed as series in magnetization components along
the easy axes up to sixth order

Eanic =
ż

Ω

[Kc1(m
2
1m

2
2 +m2

2m
2
3 +m2

3m
2
1)+Kc2m

2
1m

2
2m

2
3] dx (8)

where mi = ei ·m is the projection of the magnetization m on the anisotropy axis
ei . Only contributions compatible with the cubic symmetry are considered.

Both, Eqs. (7) and (8) hold for magnetic anisotropies in bulk material. If magnetic
anisotropy is caused by lattice deformation at material interfaces, the energy
depends on the magnetization configuration m at this interface only. The energy for
such a surface anisotropy is obtained by similar expressions as (7) and (8). However,
instead of integrating over the magnetic volume Ωm, the integration in this case has
to be carried out over the respective interface ∂Ωm only.

While the presented energy contributions form the basis for the description
of various system, several additional energy contributions may be required for
specific systems. Recently, antisymmetric exchange interaction has been extensively
studied, since materials with antisymmetric exchange enable the formation of stable
magnetic skyrmions (Bogdanov and Rößler 2001). Other energy contributions arise
from the existence of eddy currents (see Torres et al. 2003 and Hrkac et al. 2005),
Oersted fields (see Hertel 2001), or magnetostriction (see Fabian and Heider 1996
and Shu et al. 2004).
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3 Static Micromagnetics

Static micromagnetics deals with the investigation of stable magnetization con-
figurations. An important application area of this theory is the computation of
hysteresis loops of permanent magnets (Schrefl et al. 1994). The prerequisite for
a stable configuration is that it minimizes the energy while complying with the
micromagnetic unit-sphere constraint

minE(m) subject to |m(x)| = 1. (9)

Using a Lagrange-multiplier ansatz, this problem can be solved by minimizing

Eλ(m, λ) = E(m)+
ż

Ωm

λ(x)
(|m|2 − 1

)
dx, (10)

with respect to the magnetization m and the Lagrange-multiplier field λ. Variation
of the magnetization yields

δEλ({m, λ}, vm) ==
ż

Ωm

δE

δm
· vm dx+

ż

∂Ωm

B(m) · vm ds+ 2
ż

Ωm

λm · vm dx.

(11)

where the boundary condition B depends on the choice of energy contributions
(Abert 2019). Since this condition has to hold for arbitrary vm, the minimum-
energy magnetization has to fulfill δE/δm = −2λm which is equivalent to Brown’s
condition

δE

δm
×m = 0; (12)

see Brown (1963).
Testing (11) with functions that are defined on the boundary only v(Ωm\∂Ωm) =

0 yields the additional boundary condition

B(m) = 0. (13)

Variation of (10) with respect to the Lagrange-multiplier field λ accounts for the
micromagnetic unit-sphere constraint.

Depending on the energy contribution, the variational derivative δE/δm gives
rise to different boundary conditions B. The derivative of the Zeeman energy is
given by

δEzee

δm
= −μ0MsHzee (14)



990 C. Abert

while no boundary condition B is introduced. The derivative of the exchange energy
is given by

δEex

δm
= −2∇ · (A∇m) (15)

with the additional Neumann boundary condition B = 2A∂m/∂n = 0 that
arises through integration by parts which is necessary to transform the variational
differential to the variational derivative. Similar to the Zeeman energy, the derivative
of the demagnetization energy reads

δEdem

δm
= −μ0MsHdem (16)

with no additional boundary condition. The derivative of the uniaxial and cubic
anisotropy is defined by

δEaniu

δm
= −2Ku1eu(eu ·m)− 4Ku2eu(eu ·m)3 (17)

and

δEanic

δm
= 2Kc1

⎛

⎝
m1m

2
2 +m1m

2
3

m2m
2
3 +m2m

2
1

m3m
2
1 +m3m

2
2

⎞

⎠+ 2Kc2

⎛

⎝
m1m

2
2m

2
3

m2
1m2m

2
3

m2
1m

2
2m3

⎞

⎠ (18)

respectively.

4 Dynamic Micromagnetics

The micromagnetic theory provides models not only for the investigation of stable
magnetization configurations but also for the investigation of time- and space-
resolved magnetization dynamics. The central equation for the magnetization
dynamics is the Landau-Lifshitz equation originally introduced in Landau and
Lifshitz (1935) and reformulated as Landau-Lifshitz-Gilbert equation in Gilbert
(1955)

∂tm = −γm×Heff + αm× ∂tm (19)

where γ = μ0γe ≈ 2.2128 × 105 m/As is the reduced gyromagnetic ratio and
α > 0 is the dimensionless Gilbert damping constant. The so-called effective field
Heff accounts for all energy contributions of the magnetic system and reads

Heff = − 1

μ0Ms

δE

δm
. (20)
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(a)

H eff
m

(b)

H eff
m

(c)

H eff
m

Fig. 1 Magnetization dynamics as described by the Landau-Lifshitz-Gilbert (LLG) equation. (a)
Precessional term. (b) Dissipative term. (c) Combined motion with precessional and damping
contribution

With the choice of an appropriate Lagrangian, the LLG can be derived by variational
calculus (see Wegrowe and Ciornei 2012), which explains the variational definition
of the effective field. As for static micromagnetics, depending on the considered
energy contributions, an addition boundary condition B = 0 applies (see Sect. 3).

The semi-implicit formulation (19) introduced by Gilbert can be transformed into
an explicit form by inserting the complete right-hand side of (19) into ∂tm on the
right-hand side of (19) and applying basic vector algebra

∂tm = − γ

1+ α2 m×Heff − αγ

1+ α2 m× (m×Heff). (21)

This form is similar to the original formulation of the LLG proposed in Landau and
Lifshitz (1935). Both in the implicit Gilbert form (19) and in the explicit form (21),
the right-hand side of the LLG is composed of two terms. The first one is responsible
for a precessional motion, and the second one, called damping term, accounts for
energy dissipation due to eddy currents, lattice excitations, and other mechanisms
(see Fig. 1).

5 Spintronics in Micromagnetics

The term spintronics was coined in the 1980s with the discovery of the giant magne-
toresistance (GMR) by Fert and Grünberg and denotes spin-dependent interactions
of conducting electrons with solid-state devices. In contrast to electronics which
exploits the electron’s charge, spintronics adds extra degrees of freedom and is
believed to enable a variety of novel devices particularly in the area of storage and
sensing.

In the continuous micromagnetic theory, the spin polarization of the conducting
electrons is described by a vector field p that is bidirectionally coupled to both
the magnetization m and the charge current je. When passing magnetized regions,
the conducting electrons gain polarization depending on the charge current and
magnetization configuration. Reversely, the spin polarization affects the charge
current by introducing a magnetization-dependent resistance, e.g., GMR. Moreover,
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a spin-polarized current is able to manipulate a magnetization configuration by
exerting a torque. Depending on the origin of the spin polarization, this torque is
either referred to as spin-transfer torque or spin-orbit torque.

5.1 Spin-Transfer Torque in Multilayers

A possible device that generates and exploits spin-polarized currents is a magnetic
multilayer. Depending on the magnetization configuration in the different magnetic
layers, scattering processes produce spin-polarized currents which results in spin-
transfer torque. A typical spin-transfer torque device has two magnetic layers,
separated either with a nonmagnetic conducting layer or a tunnel junction and
contacted via nonmagnetic leads. Figure 2 illustrates the dominating scattering
processes in such a device for parallel and antiparallel magnetization configurations.

Following the electron flow, the first scattering process for any magnetization
configuration occurs at the first nonmagnetic-magnetic interface where the minority
electrons are scattered with a higher probability than the majority electrons.
Consequently the electrons entering the second magnetic layer carry the polarization
of the first magnetic layer FM1, i.e., FM1 acts as a spin filter. For the antiparallel
magnetization configuration, this means that the majority of electrons entering FM2
are polarized antiparallel to the FM2 magnetization although some of these electrons
are scattered at the interface of FM2 (see Fig. 2a). As a result, spin torque occurs in
FM2 and leads to magnetization switching if a critical current is exceeded. The
polarized electrons scattered at the FM2 interface reenter FM1 and stabilize its
magnetization.

For the parallel configuration, the situation is depicted in Fig. 2b. As for the
antiparallel configuration, FM1 acts as a spin filter which leads to a stabilization of
FM2. The minority electrons scattered at the FM2 interface reenter FM1 and exert
a torque that can switch the FM1 magnetization if a critical current is exceeded.

This torque mechanism was first predicted in Slonczewski (1996), Berkov et al.
(1993), and Waintal et al. (2000). Possible applications for this effect include

(a) NM FM1 NM FM2 NM

♦ ♦

(b) NM FM1 NM FM2 NM

♦ ♦

Fig. 2 Dominating scattering processes in multilayer structures subject to a perpendicular charge
current. FM1 and FM2 are ferromagnetic layers, while NM are nonmagnetic conducting layers.
(a) FM2 is destabilized by polarized electrons coming from FM1. FM1 is stabilized by polarized
electronics scattered back from FM2. (b) FM2 is stabilized by polarized electrons coming from
FM1. FM1 is destabilized by polarized electrons scattered back from FM2
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spin-transfer torque magnetic random-access memory (STT MRAM) as described
in Huai (2008) and Worledge et al. (2011) and spin-torque oscillators (STO) as
described in Houssameddine et al. (2007) and Kim (2012). A comprehensive
theoretical overview over spin-transfer torque is given in Ralph and Stiles (2008).

In the context of micromagnetics, the model introduced in Slonczewski (2002) is
widely used for the description of spin-transfer torque. The original model applies
to a macrospin description of the magnetic layers, i.e., every layer is described by a
single spin. One of the two magnetic layers is assumed to have a fixed magnetization
denoted as p and is called polarizing layer since it acts as a spin polarizer. The other
layer is referred to as free layer, and its magnetization m is subject to the spin torque
generated by the polarizing layer. According to the Slonczewski model, the motion
of the free-layer magnetization m is described by an extended LLG

∂tm = −γm×Heff + αm× ∂tm+ T (22)

with the torque T = Tdamp + Tfield being the sum of a so-called damping-like
torque Tdamp and a field-like torque Tfield. The model of Slonczewski defines these
contributions as

Tdamp = ηdamp(ϑ)
jeγ h̄

2eμ0Ms
m× (m× p) (23)

Tfield = ηfield(ϑ)
jeγ h̄

2eμ0Ms
m× p (24)

where ηdamp and ηfield are dimensionless functions describing the angular depen-
dence of the spin-torque efficiency with ϑ being the angle between the polarization
p and the free-layer magnetization m.

The field-like torque (24) is similar to the torque generated by an external field.
It causes a damped precessional motion of the free-layer magnetization with α

being the scaling of the damping. The damping-like torque also causes a damped
precessional motion. However, in contrast to the field-like torque, the precessional
motion scales with α, whereas the dissipative motion is independent from α. This
fact becomes apparent when considering a system with vanishing damping constant
α = 0. In this case the extended LLG reads

∂tm = −γm×
[

Heff − jeh̄

2eμ0Ms
ηfield p

]
− γm×

(
m×

[
jeh̄

2eμ0Ms
ηdamp p

])
.

(25)

For this limiting case, the precessional motion is exclusively generated by the field-
like torque, while the damping-like motion is exclusively generated by the damping-
like torque, which shows the unique features of spin-transfer torque.

In the original work by Slonczewski, the angular dependence η(ϑ) was derived
for a symmetric device, namely, a device with identical polarizing layer and free
layer, and reads
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η(ϑ) = PΓ

(Γ + 1)+ (Γ − 1) cos(ϑ)
(26)

where the dimensionless P is a measure for the polarization of the electrons and Γ

is a dimensionless parameters depending on geometry and material composition of
the complete device. Expression (26) is used for the damping-like torque as well as
for the field-like torque but requires individual parameters P and Γ for the different
torques. For the accurate description of nonsymmetric devices, a generalized model
was introduced in Xiao et al. (2005) which reads

η(ϑ) = q+

A+ B cos(ϑ)
+ q−

A− B cos(ϑ)
. (27)

As for the symmetric case, the expression is used for both the damping-like torque
and the field-like torque with a different set of dimensionless parameters q+, q−, A,
and B that depend on geometry and materials in a nontrivial fashion.

While the polarizing layer in the model of Slonczewski is generally considered to
have a fixed magnetization, the model can also be used to describe the bidirectional
coupling of two magnetic layers. This can be achieved by a second set of model
parameters and considering a second torque term with polarizing layer and free
layer interchanged (see, e.g., Rowlands and Krivorotov 2012).

Since the original model of Slonczewski uses the macrospin approach, another
generalization is required in order to account for spatially varying magnetization
configurations. Magnetic layers with small sizes below the single-domain limit
are dominated by the exchange coupling and hence are almost homogeneously
magnetized. While the macrospin approach is a valid assumption for these layers, it
fails for larger layers that exhibit magnetic domains and hence cannot be represented
by a single spin. For lateral magnetization inhomogeneities, the macrospin approach
can be generalized as depicted in Fig. 3. Instead of describing the magnetization
in both magnetic layers with a single spin, they are described with fields as
usual in micromagnetics. The Slonczewski model is then applied pointwise to
nearest sites across the interface. Perpendicular inhomogeneities are handled by
considering the spin-transfer to be a pure surface effect. That means that both the

ϑ(x)

FM1 ( p)

FM2 (m)

Fig. 3 Application of the Slonczewski model for laterally varying magnetization configurations.
The model is applied pointwise by considering the angle ϑ between the projected magnetization p
of the polarizing layer FM1 and the magnetization m in the free layer
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generation of spin polarization and the action of the spin torque are restricted to the
magnetic-nonmagnetic interfaces. While this approach provides reasonable results
for a number of applications, it neglect various diffusion processes which leads to
inaccuracies. A comprehensive overview over Slonczewski-like spin-torque models
is given in Berkov and Miltat (2008).

5.2 Spin-Transfer Torque in ContinuousMedia

The mechanism of spin-transfer torque is not restricted to magnetic multilayer
structures but also appears in continuous magnetization configurations. In this case,
magnetic domains take the place of distinct magnetic layers in the generation of
spin-transfer torque. This process is depicted in a simplified fashion in Fig. 4. The
electrons passing a magnetic domain are polarized parallel to its magnetization.
When entering a region of magnetization gradient, namely, a domain wall, they
carry this polarization in regions of nonparallel magnetization which leads to a spin
torque. This process facilitates the current driven motion of domain walls in the
direction of the electron flow. In contrast to field-driven domain wall motion, this
process allows in theory for the coherent motion of complete domain structures.
This characteristic is aimed to be exploited in the magnetic racetrack memory that
was proposed in Parkin et al. (2008).

The model of Slonczewski is obviously not suited for the description of this spin-
torque effect since it requires the existence of two distinct magnetization layers.
For the description of spin torque in continuous magnetization configurations, a
micromagnetic model was proposed in Zhang and Li (2004). This Zhang-Li model
introduces a torque term given by

T = −b m× [m× (je ·∇)m] − bξm× (je ·∇)m (28)

Fig. 4 Spin-torque mechanism in a magnetic domain wall according to the model of Zhang and
Li. The polarization of the magnetization is carried by the conducting electrons in their direction
of motion. By neglecting diffusion, the Zhang-Li models consider this spin transport only in a
local sense, i.e., depending on the local gradient of the magnetization. While the top row illustrates
an electron flow from the left to the right, the bottom row illustrates the inverse direction. The
magnetization is depicted by desaturated spins
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where the dimensionless ξ is called the degree of nonadiabacity and b is defined as

b = βμB

eMs(1+ ξ2)
(29)

with β being a dimensionless polarization rate, μB being the Bohr magneton, and e

being the elementary charge.
The Zhang-Li model describes spin-transfer torque purely in terms of local

magnetization gradients, hence neglecting any diffusion processes which would lead
to nonlocal effects. While this assumption is reasonable for materials with small
characteristic diffusion lengths, it leads to inaccurate results for other materials,
especially in the case of strongly inhomogeneous magnetization configurations.
Moreover, the Zhang-Li model is not able to describe the nonlocal effect of spin
torque in multilayers.

5.3 Spin-Diffusion

Neither the model of Slonczewski introduced in Sect. 5.1 nor the model of Zhang
and Li introduced in Sect. 5.2 provide a comprehensive description of spin torque.
Both models are restricted to certain material systems, and both models neglect
diffusion effects to a certain extent. A more general spin-torque model is the
three-dimensional generalization of the spin-diffusion model introduced in Zhang
et al. (2002). In the spin-diffusion model, the polarization of the charge current is
described by the so-called spin accumulation s. The spin accumulation describes the
deviation of a charge current’s spin polarization from the equilibrium polarization
at vanishing current. In nonmagnetic materials, the spin accumulation s equals the
polarization p. However, in magnetic materials, conducting electrons may contribute
to the total magnetization and hence have polarization p0 even at vanishing current
je = 0. The spin accumulation is then defined as s = p− p0.

Since the equilibrium spin polarization does not induce any torque on the
magnetization, the spin torque in the spin-diffusion model can be defined in terms
of the spin accumulation and reads

T = − J

h̄Ms
m× s (30)

where J denotes the coupling strength of the spin accumulation s and the magneti-
zation m. The spin accumulation itself is subject to the equation of motion

∂t s = −∇ · j̃s −
s
τsf
− J

s×m
h̄

(31)

where τsf is a material constant and denotes the spin-flip relaxation time. Moreover,
the spin-diffusion model defines a matrix-valued spin current j̃s and a vector-valued
charge current je as
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j̃s = 2C0β
μB

e
m⊗∇u− 2D0∇s (32)

je = −2C0∇u+ 2D0β
′ e

μB
(∇s)T m (33)

where u is the electric potential, μB is the Bohr magneton, and e is the elementary
charge. The remaining variables are the diffusion constant D0, the dimensionless
polarization parameter β that is a measure for the polarization properties of
magnetic materials, and C0 which is connected to the electric conductivity σ by
the relation σ = 2C0. It is important to note, that the spin accumulation is usually
not only solved in the magnetic region Ωm like the LLG, but in the complete
device region Ω which might include nonmagnetic regions. That said, all material
parameters might vary spatially and are hence described by scalar fields rather than
constants.

In order to compute the spin accumulation, the spin current needs to be computed
according to (32). However, the distribution of the electric potential u is usually not
known for a given system, and hence the definition of the electric current je needs
to be taken into account, too. If je is given, the spin current j̃s can be determined by
inserting (33) into (32) via the potential u which yields

j̃s = −
βμB

e
m⊗ je − 2D0

(
∇s− ββ ′m⊗

[
(∇s)T m

])
. (34)

Inserting into (31) yields the dynamics of the spin accumulation. The resulting
magnetization dynamics can be obtained by coupling the solution of (31) to the
solution of the extended LLG (22).

The problem with this approach, however, is the different time scales of spin-
accumulation dynamics and magnetization dynamics. In most systems the spin
accumulation relaxes two orders of magnitude faster than the magnetization (see
Zhang and Li 2004). In order to determine the magnetization dynamics, it is
hence sufficient to consider the spin accumulation s to instantaneously relax on
magnetization changes, i.e., ∂t s = 0, which simplifies (31) to

∇ · j̃s +
s
τsf
+ J

s×m
h̄

= 0 in Ω. (35)

In this quasistatic approach, the spin accumulation is obtained by the solution of a
linear partial differential equation of second order in s. Typical solutions of s for
magnetic multilayers as well as domain walls are depicted in Fig. 5. The treatment
of s in this approach becomes similar to the treatment of effective-field contributions
that exclusively depend on the magnetization rather than the time.

So far, the computation of the spin accumulation s requires the knowledge of
the charge current je. However, the charge current itself is subject to spintronics
effects, e.g., the giant magnetoresistance (GMR) effect predicts that the resistance
of a spintronics device depends on its magnetization configuration. In order to solve
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(a)

0
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(b)

0
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Fig. 5 Spatially resolved spin accumulation s for typical magnetization configurations. Only
the dominated component in shown. (a) Spin accumulation sz for magnetic multilayer with
parallel and antiparallel magnetization configuration, respectively. (b) Magnetic domain wall. The
magnetization mz is plotted against the spin accumulation sz

the spin-diffusion model in a self-consistent fashion, the source equation for the spin
current (36) needs to be complemented by a source equation for the charge current
je. Since magnetic devices usually do not contain sources of charge currents, the
source equation for je is naturally given by the continuity equation

∇ · je = 0 in Ω. (36)

The source Eqs. (36) and (35) together with the current definitions (33) and (32)
yield a coupled system of partial differential equations with the solution variables
being both the spin accumulation s and the electric potential u. For this self-
consistent approach, applying potentials and currents to a magnetic system is
implemented by boundary conditions.

5.4 Boundary Conditions for the Spin-DiffusionModel

The self-consistent spin-diffusion model is a second-order partial-differential equa-
tion in both the electric potential u and as the spin accumulation s. Hence, boundary
conditions are required in order to retrieve a unique solution. A typical multilayer
system for the application of the spin-diffusion model is depicted in Fig. 6. In order
to account for an electric current flowing perpendicular through the layer system,
appropriate boundary conditions for the electric potential u have to be defined
on the contact interfaces Γ1 and Γ2. While a Dirichlet boundary condition, e.g.,
u = u0 on Γ1, prescribes a defined potential on the respective contact interface,
a Neumann condition can be applied in order to account for a defined current
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Fig. 6 Typical circular
magnetic multilayer
consisting of two magnetic
layers FM1 and FM2,
separated by a nonmagnetic
layer NM and sandwiched by
two nonmagnetic leads with
top and bottom contacts on
the surfaces Γ1 and Γ2 NM

FM1
NM
FM2

NM

W Wm

Γ1

Γ2

inflow. For instance, setting a constant current inflow j0 on the second contact Γ2 is
achieved by requiring

je · n = −2

[
C0∇u+D0β

′ e

μB

[
(∇s)T m

]]
· n = j0 on Γ2 (37)

where n denotes the outward pointing normal to Γ2. The boundary conditions for u
are completed by requiring vanishing current inflow on all boundaries that do not
act as contacts.

The spin accumulation s, as the second solution variable, is solved with homoge-
neous Neumann boundary conditions on the complete boundary

∇s · n = 0 on ∂Ω. (38)

Inserting this condition into the definition of the spin current (34) and multiplying
with the boundary normal n yields

j̃s · n = β
μB

e
m(je · n) (39)

which is equivalent to a noflux condition on the spin current j̃s · n = 0 if the charge
current je enters the system Ω in nonmagnetic regions only. This noflux condition
itself is assumed physically reasonable for all parts of the boundary with no charge-
current flux. For the contact region on the boundary Γ1 and Γ2, the noflux condition
is considered a reasonable assumption if the thickness of the nonmagnetic lead
regions exceeds the spin-diffusion length. If this is not the case, the homogeneous
Neumann condition should be replaced by the Robin condition

∇s · n+ 1√
2D0τsf

s = 0 (40)

which takes the exponential decay of s in nonmagnetic regions into account.
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5.5 Extension to the Spin-DiffusionModel

The spin-diffusion model, introduced in the preceding sections, describes the
generation of spin currents and spin accumulation due to polarizing magnetic
materials. However, it was predicted in Dyakonov and Perel (1971) that spin
currents can also be generated in nonmagnetic materials subject to charge currents
due to spin-orbit coupling. This effect, referred to as spin-Hall effect, has its origin
in the polarization-dependent deflection of the conducting electrons either due to
material impurities as described in Hirsch (1999) or due to intrinsic asymmetries
in the material as described in Murakami et al. (2003) and Sinova et al. (2004).
While the spin-Hall effect enables the conversion from charge current into spin
currents, the spin-orbit coupling also causes the inverse spin-Hall effect that enables
the conversions of spin currents into charge currents. Both effects are schematically
visualized in Fig. 7.

The integration of these effects with the spin-diffusion model is achieved by
extending the original current definition (33) and (32) according to

j ′e,i = je,i + εijkθSH
e

μB
js,jk (41)

j ′s,ij = js,ij − εijkθSH
μB

e
je,k (42)

where index notation is used and εijk is the Levi-Civita tensor. Here, je and j̃s are

the original current definitions, and j′e and j̃
′
s are the current definitions including the

spin-orbit couplings. Inserting j′e and j̃
′
s into the source Eqs. (36) and (35) instead

of je and j̃s then yields the spin-diffusion model including spin-orbit interactions.
The dimensionless material constant θSH is called spin-Hall angle and describes the
efficiency of the current conversion.

(a)

− je

j̃↑s

(b)

j̃↑s

− je

Fig. 7 Spin current-charge current conversion due to spin-orbit torque-induced spin-dependent
deflection processes. (a) Spin-Hall effect: A nonpolarized charge current je is converted to a pure
spin current j̃s. (b) Inverse spin-Hall effect: A pure spin current j̃s is converted to a charge current je
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Another extension of the spin-diffusion model is the addition of a spin-dephasing
term, which was proposed in Akosa et al. (2015) and Haney et al. (2013). With this
term the source equation for the spin current is extended to

∂t s = −∇ · j̃s −
s
τsf
− J

s×m
h̄

− m× (s×m)

τφ
(43)

where τφ is the spin-dephasing time.

5.6 Valet-Fert Model

A related model to the spin-diffusion model introduced in the preceding sections
is the Valet-Fert diffusion model introduced in Valet and Fert (1993). While the
original model only accounts for magnetic multilayers with collinear magnetization,
a three-dimensional generalization to noncollinear configurations is provided in
Niimi et al. (2012). Like the spin-diffusion model from Sect. 5.3, the Valet-Fert
model introduces a spin accumulation s and a spin current j̃s. However, in contrast
to the spin-diffusion model, both the spin accumulation and the spin current in
magnetic materials are assumed to be collinear to the magnetization

s = s m (44)

j̃s = m⊗ js. (45)

According to (30), this definition of s would lead to vanishing spin torque.
However, in contrast to the spin-diffusion model, the Valet-Fert model allows
for discontinuities of the electric potential u and the spin accumulation s across
nonmagnetic-magnetic interfaces. These discontinuities are described by jump
conditions that explicitly depend on distinct interface properties like the spin-mixing
conductance g↑↓. Hence, a noncollinear spin accumulation can occur at interfaces
allowing for an interface-based description of spin torque. A detailed discussion of
the generalized Valet-Fert model can be found in Niimi et al. (2012).

5.7 Connecting the Spintronics Models

The preceding sections discuss several models for the description of spintronics
effects. While the Slonczewski model and the Zhang-Li model focus on spin
torque in specific systems (see Sects. 5.1 and 5.2), other models like the spin-
diffusion model introduced in Sect. 5.3 cover a variety of effects. In the following
the connections of the different models will be discussed in detail.
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5.7.1 Slonczewski Model
The Slonczewski model is a spin-torque model specifically designed for the
description of magnetic multilayer structures. While the existence of a damping-
like and a field-like torque is a rather generic assumption, the angular dependence
η introduced by Slonczewski is specific to the model. The angular dependence (26)
proposed in the original paper is derived for symmetric structures with two similar
magnetic layers, while the more general expression (27) removes this restriction.
Since the model of Slonczewski is well established for the description of magnetic
multilayers, a more general model like the spin-diffusion model is expected to
reproduce its results. In order to compare both models, two simple multilayer
systems with homogeneous magnetization configurations in the magnetic layers
are investigated with the spin-diffusion model. The first system is a symmetric
multilayer with two similar 3 nm thick magnetic layers, separated with a 2 nm
metallic spacer, with typical material parameters as given in Abert et al. (2018).
The spin accumulation s and the resulting torque for various angles between free-
layer magnetization and polarizing-layer magnetization are computed with the
spin-diffusion model. Projection of the total torque yields the angular dependence η

of the damping-like torque that is depicted in Fig. 8a. Along with the spin-diffusion
results, Fig. 8a shows a fit to the original Slonczewski-formula (26) which exhibits
perfect agreement.

The second system under consideration is an asymmetric multilayer which
differs from the symmetric system by a higher polarizing layer thickness of 5 nm. As
shown in Fig. 8b, the angular dependence of this asymmetric system is insufficiently
fitted by the original Slonczewski formula but shows excellent agreement with
the general expression (27). By reproducing the angular dependence of the spin
torque, the spin-diffusion model proves to incorporate the Slonczewski model while

(a)
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Fig. 8 Spin-torque angular dependence η as computed with the spin-diffusion model for homoge-
neous magnetization configurations in a magnetic multilayer with tilting angle ϑ . The results are
fitted with the Slonczewski formulas for symmetric and asymmetric structures, respectively. (a)
Angular dependence η for a symmetric multilayer with similar ferromagnetic layer thicknesses.
(b) Angular dependence η for an asymmetric multilayer
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having a much broader application range including further spintronics effects.
Moreover, the free parameters in the spin-diffusion model are material parameters
with physical meaning in contrast to the free parameters of the Slonczewski-model
that depend on the system as a whole in a nontrivial fashion.

5.7.2 Zhang-Li Model
Like the Slonczewski model, the Zhang-Li model discussed in Sect. 5.2 is a
specialized model that describes the effect of spin torque in specific systems. It
can be derived from the more general spin-diffusion model by neglecting diffusive
effects, i.e., by setting D0 = 0. Considering the definition of the spin current (34)
and the source equation (35), this simplification yields

−∇
(
βμB

e
m⊗ je

)
+ s

τsf
+ J

h̄
s×m = (46)

−βμB

e
(je ·∇)m+ s

τsf
− J

h̄
m× s = 0. (47)

Multiplication with m and m×m, respectively, and inserting via m× (m× s) result
in the torque

T = − J

h̄Ms
m× s (48)

= βμB

eMs

1

1+
(

h̄
J τsf

)2

(
m× [m× (je ·∇)m] + h̄

J τsf
m× (je ·∇)m

)
(49)

which exactly reproduces the spin torque of the Zhang-Li model (28) with the degree
of nonadiabacity being defined as

ξ = h̄

J τsf
. (50)

While the calculation of the spin torque requires the solution of a linear system in
the case of the spin-diffusion model, the same calculation reduces to the evaluation
of expression (49) for the Zhang-Li model. However, this simplification restricts the
application of the Zhang-Li model to systems with neglectable diffusive effects.

5.7.3 Valet-Fert Model
As discussed in Sect. 5.6, the Valet-Fert model is very similar to the spin-diffusion
model introduced in Sect. 5.3. However, while the spin-diffusion model exclusively
considers bulk material parameters for spin-transport properties, the Valet-Fert
model introduces additional interface properties. These interface properties can be
modelled in the spin-diffusion model by introducing thin effective interface layers.
The respective material parameter mappings are discussed in detail in Abert (2019).
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5.8 Beyond the Spin-DiffusionModel

The spin-diffusion model introduced in Sect. 5.3 accounts for various spintronics
effects. However, it is certainly not a complete model for spintronics. While some
spintronics effects like spin pumping, anomalous Hall effect, and inplane GMR
are in principle compatible to the spin-diffusion model and could be introduced
by suitable extensions, the main restriction of this model is its focus on diffusive
transport. An important class of spintronics devices comprises magnetic tunnel
junctions that are not well described by diffusive transport models. Various ab initio
models for the description of magnetic tunnel junctions have been proposed; see,
e.g., Mathon and Umerski (2001), Caffrey et al. (2011), and Butler et al. (2001).
Integration of ab initio models with micromagnetics has been done (see Ellis et al.
2017) but is still a subject of ongoing research, partly due to the high computational
complexity that is usually introduced by ab initio calculations.

6 Discretization

As a continuum theory, the micromagnetic model is defined in terms of partial
differential equations. While analytical solutions to these equations can be derived
for simple problem, the micromagnetic model is usually solved numerical. Suitable
numerical algorithms have to account for various challenges that are particular to
micromagnetic problems. Micromagnetic problems are multiscale problems. The
demagnetization field is a global interaction which usually implies a computational
complexity of O(n2) when implemented naively. Various efficient methods for
the demagnetization-field computation have been proposed in order to reduce the
complexity to O(n log n) or even O(n). The exchange field on the other hand
is a short-range interaction that competes with the demagnetization field. While
the computation of short-range fields is computationally cheap, the exchange field
adds a high stiffness to the problem due to its second order in space. This high
stiffness calls for stable time-integration schemes in order to solve the LLG. Another
challenge of the micromagnetic model is its high degree of nonlinearity which leads
to a complex energy landscape. This complexity leads to a high risk of missing local
energy minima when computing hysteresis properties.

Among the existing discretization strategies, the most established methods used
in micromagnetics are the finite-difference method and the finite-element method. A
major difference of these approaches is the spatial discretization which is required
to be a regular cuboid grid in the case of finite differences and may be an irregular,
usually tetrahedral, mesh in the case of finite elements (see Fig. 9).

A detailed description of classical finite-difference micromagnetics is presented
in Miltat and Donahue (2007). Several software packages implementing the finite-
difference method were developed. One of the most popular packages is the
open-source package OOMMF (see Donahue 1999), a multi-platform code running
on central processing units (CPUs). Other CPU packages include the open-source
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Fig. 9 Spatial discretization of a sphere for different numerical methods. (a) Regular cuboid grid
with 8217 cells as required for finite-difference micromagnetics. (b) Tetrahedral mesh with 7149
vertices as required for finite-element micromagnetics

software Fidimag (see Cortés-Ortuño et al. 2016) and the commercial software
MicroMagus (see Berkov and Gorn 2007). A very basic finite-difference code
written in Python was published in Abert et al. (2015).

The advent of multipurpose graphics processing units (GPGPUs) gave rise to
a new class of simulation packages that take advantage of this highly parallel
hardware. A very popular GPGPU package is MuMax3 (see Vansteenkiste et al.
2014). Alternatives are magnum.fd (see Selke et al. 2014) and the GPGPU extension
to OOMMf (see Fu et al. 2016).

On overview over classical finite-element micromagnetics is given in Schrefl
et al. (2007). Open-source finite-element packages include FinMag (see Bisotti
et al. 2018) and Magpar (see Scholz 2010). Closed-source implementations include
FEMME (see Suess and Schrefl 2018), FEELLGOOD (see Sturma et al. 2015), and
magnum.fe (see Abert et al. 2013). GPGPU implementations include Tetramag (see
Kakay et al. 2010) and Fastmag (see Chang et al. 2011).

Several of these simulation packages implement the spin-torque models of
Slonczewski as well as of Zhang and Li. However, to the knowledge of the author,
only the finite-element packages FEELLGOOD and magnum.fe implement the spin-
diffusion model introduced in Sect. 5.3. A finite-difference implementation of this
model, however, is described in García-Cervera and Wang (2007).

7 Conclusion

With the rise of high-performance computing, numerical micromagnetics has
become an important tool for the development of magnetic devices. Micromagnetic
simulations help to understand experimental measurements and guide the design of
novel devices.
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While classical micromagnetics relies on a well-approved theory that accurately
describes numerous applications, the simulation of spintronics devices still poses
challenges on the modelling procedure since various additional effects have to
be considered. Simplified models like the spin-torque models of Slonczewski or
Zhang and Li are computationally cheap and sufficiently accurate for a number
of applications. However, the more general spin-diffusion model incorporates
the simplified models and furthermore accounts for several additional spintronics
effects. The accurate description of tunnel barriers in the context of micromagnetic
simulations is still an active and important area of research.
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Abstract

This article briefly summarizes how to use standard fixed-node diffusion Monte
Carlo to obtain accurate results for materials containing d and f electrons.

1 Introduction

Quantum Monte Carlo (QMC) techniques treat electron correlation directly and to
reasonably high accuracy. Systems containing d and f electrons tend to have strong
electron correlation effects, so one might expect that QMC techniques could be
helpful to treating these systems. For the purposes of this article, we will mainly
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consider diffusion Monte Carlo (DMC), since most applications to d and f electron
systems have used that technique. For clarity, we will also focus on standard
techniques that have seen wide use. There are many variations on QMC methods
that can sometimes offer higher accuracy but are less well-explored. For details
on the methods, see the handbook article on QMC methods. The field is rather
quickly moving, so this article will focus on basic considerations when performing
calculations on these materials and some expectation for what can be achieved with
standard approaches. It is not meant to be a comprehensive summary of the literature
on this subject.

2 Technical Considerations for High Accuracy

Here we will list the current state of the art in performing these calculations to the
highest accuracy and efficiency. Some of the guidelines here are rules of thumb that
have been empirically found to work, while others are more rigorous. We will try to
be as clear as possible on the difference between these two situations.

2.1 Effective Core Potentials/Pseudopotentials

Using effective core potentials based on density functional theory is particularly
problematic for systems containing d and f electrons. Instead, high accuracy
effective potentials so far seem to be based mainly on Hartree-Fock and quantum
chemistry results. A reasonable justification for this is that the core electrons
are described reasonably well in Hartree-Fock. This is because in the core, the
electrons are at high density, in which case the terms covered exactly in Hartree-
Fock dominate (see Ceperley and Alder 1980). Ultimately, one should show
that the effective potentials reproduce high accuracy solutions of the all-electron
atom and molecules to have confidence in the effective potentials. There are
several repositories of high-quality effective core potentials designed for quantum
Monte Carlo calculations available to date, which are based on the preceding
principles. For some examples, see Burkatzki et al. (2007) and Trail and Needs
(2015).

2.2 Effective Core Potentials/Pseudopotential Projection Error

In DMC, non-local potentials lead to an additional sign problem. The projection
onto a low-energy state must then be performed approximately, leading to an addi-
tional dependence on the trial wave function beyond the fixed-node approximation.
In recent years, this error has been investigated, and it can at times be a sizable
fraction of the total error of the methods. In most cases, the projection error can
be minimized by using high-quality Jastrow factors and energy optimization of the
parameters.
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2.3 Nodal Error/Orbitals

DMC requires a trial function to determine the nodal surface. Given a Hamiltonian,
this nodal surface is one of the main approximations in the calculation. While it
is possible to use complex trial wave functions to obtain high accuracy for small
systems, for larger systems, typically a single Slater determinant is used as a trial
wave function. For systems containing d and f electrons, the electron interactions
are strong enough that they can affect the degree of hybridization in the one-particle
orbitals. For that reason, orbitals based on Hartree-Fock methods or local density
approximation are not typically optimal (see Wagner and Mitas 2007).

While direct orbital optimization is possible, it is often computationally pro-
hibitive for large systems. It has been found that orbitals from hybrid density
functionals are close to optimal (see Busemeyer et al. 2016) when compared to
direct orbital optimization. In this technique, the amount of hybridization is varied,
and a sequence of DMC calculations is performed. The orbitals that produce the
lowest DMC energies give the lowest upper bound. Some authors also perform
DFT+U calculations, but to the knowledge of this author, the relative performance
of hybrid functionals versus a +U calculation has not been systematically assessed.
Figure 1 contains the density difference between PBE0 (hybrid) and PBE orbitals for
La2CuO4. A major theme is that the total charge on the Cu atom is larger in the PBE
functional, which leads to worse nodes for the QMC calculation and significantly
higher fixed-node energy.

2.4 Finite Size Effects

As with any many-body technique, we must extrapolate to infinite size to simulate a
bulk material. There are a number of detailed papers on finite size scaling in DMC,
for example Chiesa et al. (2006).

Fig. 1 Density difference
between a Slater determinant
of hybrid PBE0 orbitals and
PBE orbitals for LaCu2O4.
The slice is through the
copper oxide plane. Red
regions indicate that PBE
orbitals have higher density in
the region, while blue means
that PBE0 has higher density
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3 What Can Be Calculated Using DMC

• Ground state properties: magnetic/nonmagnetic ground state
• Spin properties: constrain to different spin states + model fitting

3.1 Ground State Energy as a Function of Atomic Position

FN-DMC offers very high accuracy on ground state properties, including those of d
and f materials. As one can see in Fig. 2, it offers similar accuracy on those sorts of
materials as for s and p systems, with errors of a few percent on many ground state
properties.

3.2 Electronic Gap Calculation

One can consider two possible electronic gaps in interacting electronic systems. The
first is called the quasiparticle or sometimes transport gap. This is computed using
three ground state calculations of varying number of electrons:

ΔQP = E(N + 1)+ E(N − 1)− 2E(N), (1)

where N is the number of electrons in a neutral unit cell and E is the estimated
ground state energy with that number. This quantity has the advantage that it
involves only ground state calculations, so the variational principle obviously holds,
but it can have large finite size effects.

The second gap is often called the optical gap. This is computed by promoting an
electron from an unoccupied orbital to an occupied orbital. The fixed-node condition
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Fig. 2 Performance of FN-DMC on several ground state properties for a variety of materials.
(Data from Kolorenč and Mitas 2008, 2011, Santana et al. 2015, 2016, Mitra et al. 2015, Lee et al.
2004, Foyevtsova et al. 2014, Wagner and Abbamonte 2014, Zheng and Wagner 2015, Schiller
et al. 2015, Yu et al. 2015, Hood et al. 2012, Pozzo and Alfè 2008, Shin et al. 2014, and Esler et al.
2010)
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Fig. 3 Electronic gap
estimation for a variety of
correlated electron materials
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is used to prevent the system from falling into the ground state, so this can be
viewed as an approximate computation of the excited state energy of the fixed N

system. This quantity approximates the lowest energy electronic optical transition
that a material might have. It typically has smaller finite size effects and is easier to
compute than the quasiparticle gap.

Figure 3 shows gaps computed for a number of correlated electron systems.
Density functional theory calculations (DFT) in the most common PBE approx-
imation are shown for reference. Most of these gaps were computed using the
optical excitations, which match the transport gap typically to the accuracy of the
calculation. The optical and the quasiparticle gap are not guaranteed to be the same
value in general; however, they represent different physical quantities.

3.3 Nature of the Ground State

Since FN-DMC obtains tight upper bounds to the ground state energy, it can offer
higher certainty estimates of the nature of the ground state than less accurate
methods. To see why, suppose that one is interested in determining whether the
ground state has double occupancy on a given atom in the ground state or not. If it
has no double occupancy, then one might say that there are local spin moments and
some sort of magnetic behavior would be expected, while in the contrary case, there
are no local spin moments. Exactly this question has been asked about the metallic
state of VO2, which was addressed using fixed-node quantum Monte Carlo in Zheng
and Wagner (2015).

To answer this question, consider a Hamiltonian Ĥ . Divide all wave functions
(which may or may not be eigenstates) into three classes:

A: double occupancy on the transition metal atom,
B: no double occupancy on the transition metal atom, and
C: superposition of A and B.
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Fig. 4 Assignment of the
ground state class as a
function of the errors ε in the
states. In this, Δ is the correct
difference between the actual
minima of the different
classes: Δ = Emin(B)−
Emin(A) for an A ground
state
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Define the function Emin(X) as the minimum energy expectation value across all
wave functions in class X.

In a fixed-node diffusion Monte Carlo calculation, one can typically control
which class of wave function is produced using the trial function. Often several
trial wave functions from each class are tested; let the minimum fixed-node energy
for each class be EFN(A),EFN(B). One should be careful to evaluate the class
after the diffusion Monte Carlo process. If the nodal optimization is perfect, then
EFN(X) = Emin(X) for class X; however, in general EFN(X) ≥ Emin(X). The
error of a class X is εFN(X) = EFN(X)− Emin(X).

Assume without loss of generality that Emin(A) < Emin(C) < EminB. In that
case, the ground state is of class A. To decide between A and B, one evaluates

EFN(B)− EFN(A) = Emin(B)− Emin(A)+ εFN(A)− εFN(B). (2)

As one can easily see that the smaller the ε values (more accurate calculations), the
less likely a misidentification of the ground state (Fig. 4).

4 Summary

Fixed-node quantum Monte Carlo calculations offer highly accurate results for
materials containing d and f elements. Since they treat the electron correlation
explicitly and accurately, they can predict many properties of materials, some of
which are summarized in this article.
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Abstract

Finite temperature magnetic fluctuations determine a variety of properties of
magnetic materials, including their phase stability, their thermodynamic prop-
erties, and even the structure of defects formed under irradiation. A fundamental
feature of microscopic magnetic fluctuations is the directional non-collinearity
of fluctuating atomic magnetic moments, which stems from the rotational
invariance of an atomic magnetic Hamiltonian. To model the dynamics of
magnetic moments of atoms that move themselves, a fast and computationally
efficient simulation approach is required. Spin-lattice dynamics simulates atomic
movements as well as rotational and longitudinal fluctuations of atomic mag-
netic moments within a unified framework, generalizing molecular dynamics
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to magnetic materials. Collective magnetic and atomic excitations can now
be investigated on the microscopic scale, similarly to how transformations of
atomic structures can be investigated using molecular dynamics simulations. This
chapter outlines theoretical foundations and numerical algorithms of spin-lattice
dynamics and describes applications of the method.

1 Introduction

Magnetic materials play a pivotal part in modern technology; their applications
include long-term information storage, fast access memory devices, and even
quantum computing. Magnetic and mechanical properties of magnetic materials are
intimately related, in particular this applies to steels and iron alloys. For example,
ferromagnetic iron is the only element in Group 8 of the Periodic Table that
adopts the bcc crystal structure. All the other elements in the same group have hcp
crystal structure, and bcc Fe owes its stability to magnetism (Pettifor 1995). A self-
interstitial atom defect in bcc iron adopts a 〈110〉 dumbbell configuration (Fu et al.
2004), whereas in all the nonmagnetic bcc metals, a single self-interstitial defect
has the 〈111〉 symmetry (Nguyen-Manh et al. 2006; Derlet et al. 2007). At high
temperatures, bcc-fcc-bcc phase transitions in iron occur as a result of competition
between magnetic excitations and atomic vibrations (Lavrentiev et al. 2010; Ma
et al. 2017).

Neither molecular dynamics nor spin dynamics on their own can capture both
magnetic and atomic excitations. A broader mathematical simulation framework is
required to describe the dynamics of spin and lattice subsystems and their coupling.
Omelyan et al. (2001a, b, 2002) and Tsai et al. (2004, 2005) proposed models
unifying spin dynamics and molecular dynamics. We have developed their ideas
further, arriving at an algorithm suitable for simulating real materials.

Spin-lattice dynamics follows the time evolution of coupled spin and lattice
subsystems. Precession of spins and atomic motion are coupled through spin-
dependent forces and coordinate-dependent effective exchange fields. Figure 1
shows snapshots of magnetic order in iron at 0 and 300 K. The figure illustrates
an important aspect of finite temperature magnetic simulations. Magnetic moments
(which sometimes are also called atomic spins) become non-collinear due to thermal
excitation. The fact that interaction between magnetic moments depends on the
position of atoms, generates additional, spin direction dependent, forces acting
between the atoms in the material. This is how magnetic excitations affect the
dynamics and stability of atomic lattice.

In what follows, we first discuss the spin equations of motion and the notion of
spin temperature. Then, we outline theoretical foundations of spin-lattice dynamics.
We also describe a numerical integration algorithm that does not normally receive
much attention in the context of molecular dynamics but proves essential in the
framework of spin-lattice dynamics. Finally, we highlight the still outstanding scien-
tific challenges, particularly those associated with magnetic many-body interatomic
interaction potentials.
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Fig. 1 Snapshots of magnetic configurations generated using spin-lattice dynamics simulations of
iron at 0 and 300 K. Simulations were performed using spin-lattice dynamics simulation program
SPILADY (Ma et al. 2016)

2 The QuantumOrigin of Spin Dynamics

The localized nature of d and f electrons justifies the notion of an atomic magnetic
moment M or atomic spin S, where M = −gμBS, g is the electron g-factor, and
μB is the Bohr magneton. Atomic magnetic moments form due to intra-atomic
exchange interaction between the localized electrons. Interaction between magnetic
moments associated with different atoms can be understood as resulting from
the interplay between intra-atomic exchange and interatomic quantum hopping of
electrons. The quantum nature of atomic spins gives rise to their unusual properties,
for example, an atomic spin has no mass and hence has no conjugate variable. The
classical equation of motion for a spin vector is in fact the mean-field analog of the
quantum equation of motion for the spin operator, which can be derived using the
Poisson brackets approach (Ma and Dudarev 2012).

Consider an arbitrary quantum-mechanical spin Hamiltonian Ĥ. It can be
expressed as a Taylor series in the spin vector operator Ŝ as

Ĥ =
∞∑

n=0

anŜn, (1)

where tensor quantities an are the Taylor series expansion coefficients. The nth order
of operator Ŝ can be written as

Ŝn = (ÎS+ δŜ)n,

= ÎSn + nSn−1δŜ+ · · · , (2)
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where S is the expectation value of Ŝ, Î is the identity operator, and δŜ = Ŝ −
ÎS is what can be called the deviation of the operator from its expectation value.
Substituting Eq. (2) into Eq. (1), we find

Ĥ = Î
∞∑

n=0

anSn +
∞∑

n=1

annSn−1δŜ+ · · · ,

= ÎH+ ∂H

∂S
· δŜ+ · · · . (3)

The first term in (3) is the Hamiltonian function H, which is equivalent to a classical
Hamiltonian, where the spin operator Ŝ is replaced by its expectation value S.
Ignoring higher-order terms in Eq. (3), the equation of motion for a spin operator
can be derived using the Poisson brackets commutator

dŜ
dt
= i

h̄

[
Ĥ, Ŝ

]
= 1

h̄

[
Ŝ×

(
−∂H

∂S

)]
,

= 1

h̄

[
Ŝ×H

]
, (4)

where H = −∂H/∂S is the effective field acting on spin Ŝ. Since the first term in
Eq. (3) commutes with Ŝ, it gives no contribution to the equation of motion. The
first non-vanishing contribution to the right-hand side of (4) comes from the second
term in Eq. (3).

The above derivation remains valid for any spin Hamiltonian. We note that the
form of Eq. (4) is the same as that of the equation of motion for a classical spin
vector. This can be proven by evaluating expectation values of both sides of the
equation.

3 Spin Temperature Monitoring and Control

If a statistical and dynamically evolving system is in contact with another statistical,
and also dynamically evolving, system, energy flows from the hotter to the cooler
one, until they reach thermal equilibrium. There is an established procedure for
thermalizing an atomic system in a molecular dynamics simulation, which involves
putting the system in contact with a heat reservoir, represented by certain fluctuation
and dissipation terms in the classical equations of motion for the atoms. This
thermalization method is known as Langevin dynamics. The treatment of Brownian
motion is probably one of the best known examples of application of the method
(Chandrasekhar 1943; Kubo 1966). The use of Langevin dynamics for equilibrating
and thermalizing large systems of interacting atoms is a well-established part of the
molecular dynamics simulation toolkit.
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In the preceding section, we derived equations of motion for a closed system of
interacting spins. To thermalize a spin system, one can also use a special form of
Langevin dynamics, the implementation of which requires suitably modified spin
equations of motion. Langevin dynamics approach to spin dynamics was proposed
by Brown (1963). For an arbitrary Hamiltonian H ({Si}) describing N atomic spins,
the Langevin equation of motion for an atomic spin vector i can be written as

dSi

dt
= 1

h̄
[Si × (Hi + hi )− γSi × (Si ×Hi )] (5)

where Hi = −∂H/∂Si is the effective magnetic field acting on atomic spin i, γ
is a dissipation constant, and hi is a delta-correlated fluctuating vector satisfying
conditions 〈hi (t)〉 = 0 and 〈hiα(t)hjβ(t

′)〉 = μδij δαβδ(t − t ′). Subscripts α and
β refer to the Cartesian components of a vector, and parameter μ characterizes the
magnitude of thermal magnetic fluctuations.

Stochastic and dissipative forces acting together drive a dynamic system to
thermal equilibrium. Fluctuation and dissipation terms are related through the
fluctuation-dissipation theorem (Chandrasekhar 1943; Kubo 1966). The fluctuation-
dissipation relation (FDR) between the fluctuating and dissipative terms can be
obtained by mapping the Langevin equation of motion to a Fokker-Planck equation
(Zwanzig 2001; Van Kampen 2011) and identifying the asymptotic stationary
solution of that equation with the Gibbs distribution (Brown 1963; Ma and Dudarev
2011). The FDR for Eq. (5) reads μ = 2γ h̄kBT , where T is the temperature of
the heat reservoir. Without the fluctuating term, Eq. (5) reduces to the Landau-
Lifshitz equation (Landau and Lifshitz 1935; Gilbert 2004), which contains only the
dissipative term. In the asymptotic limit t → ∞, solutions of the Landau-Lifshitz
equation describe stationary spin configurations, where dSi/dt = 0. Directions
of vectors Si in a stationary spin configuration can be found by solving equations
Si ×Hi = 0, where i = 1, 2 . . . N (see Lavrentiev et al. 2011). The latter condition
has a simple meaning, namely, that in the lowest energy configuration every spin
vector Si is collinear with the exchange field Hi acting on it.

A notable feature of Eq. (5) is that the magnitude of the spin vector |Si (t)|, where
Si (t) is a solution of the equation, remains constant. This can be easily proven
by multiplying both sides of the equation by Si and noting that a vector product,
involving an arbitrary vector, is orthogonal to it. As a result, the magnitude of the
spin vector is conserved dS2

i (t)/dt = 0.
Due to the simultaneously localized and itinerant nature of electrons in a solid,

both the magnitude and direction of atomic spins are variable quantities. A revision
of Langevin spin dynamics is required to relax the constraint that the magnitude
of an evolving spin vector is a constant. Bearing in mind the Langevin treatment
of atomic dynamics, we find that longitudinal fluctuations of an atomic magnetic
moment, i.e., fluctuations of the magnitude of a spin vector, can indeed be treated
using some suitably chosen fluctuation and dissipation terms (Ma and Dudarev
2012). We write
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dSi

dt
= 1

h̄

[
Si ×

(
−∂H

∂Si

)]
− γ

∂H

∂Si

+ ξ i , (6)

= 1

h̄
[Si ×Hi]+ γHi + ξ i , (7)

where ξ i is a delta-correlated fluctuating vector satisfying conditions 〈ξ i (t)〉 = 0
and 〈ξiα(t)ξjβ(t ′)〉 = μδij δαβδ(t − t ′). The FDR can now be obtained by mapping
Eq. (6) onto a Fokker-Planck equation (Zwanzig 2001; Van Kampen 2011):

∂W

∂t
= −

∑

iα

∂

∂Siα

(AiαW)+ 1

2

∑

ijαβ

∂2

∂Siα∂Sjβ

(BiαjβW). (8)

In the above equation, Aiα = limΔt→0
1
Δt
〈Siα〉 is an effective drift coefficient,

and Biαjβ = limΔt→0
1
Δt
〈SiαSjβ〉 is an effective diffusion coefficient. According

to Eq. (6), the drift and diffusion coefficients have the form (Zwanzig 2001;
Van Kampen 2011):

Ai = 1

h̄

[
Si ×

(
−∂H

∂Si

)]
− γ

∂H

∂Si

, (9)

Biαjβ = μδij δαβ. (10)

In thermal equilibrium, the energy distribution asymptotically approaches the Gibbs
distribution W = W0 exp(−H/kBT ), where W0 is a normalization constant.
Substituting Eqs. (9) and (10), and the Gibbs distribution, into Eq. (8), one finds
that

∂W

∂t
=
(
γ − μ

2kBT

)⎡

⎣
∑

i,α

(
∂2H

∂S2
iα

− 1

kBT

(
∂H

∂Siα

)2
)⎤

⎦W. (11)

Stationary solutions of this equation corresponding to ∂W/∂t = 0 describe thermal
equilibrium. From Eq. (11) we see that the right-hand side of Eq. (11) vanishes if

μ = 2γ kBT . (12)

Surprisingly, the form of this FDR is exactly the same as that of the lattice Langevin
dynamics. The right-hand side of Eq. (11) also vanishes if

kBT =
∑

i,α

(
∂H

∂Siα

)2
/

∑

i,α

∂2H

∂S2
iα

. (13)

Equation (13) defines the dynamic spin temperature at equilibrium as a function
of microscopic dynamic variables. This resembles the well-known equipartition
principle for atoms where the lattice temperature can be estimated using the relation
3NkBT/2 = ∑

i P2
i /2m, where Pi is the momentum of atom i. Equation (13)
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has similar functionality, and it can also be used for estimating the local spin
temperature of an arbitrary spin configuration, which potentially may be very far
from equilibrium. Applying a similar procedure to Eq. (5), we find an alternative
formula for the spin temperature, which applies if the longitudinal fluctuations of
magnetic moments can be neglected (Ma et al. 2010).

kBT =
∑

i |Si ×Hi |2
2
∑

i Si ·Hi

. (14)

Here we note an alternative way of deriving Eqs. (13) and (14). If a system is
in thermal equilibrium, there is no net energy exchange with the heat reservoir,
resulting in d〈E〉/dt = 0. Since dE/dt = ∑

i (∂E/∂Si )(dSi/dt), by using
either of the two forms of Langevin equations of motion for the spins, taking the
ensemble average, and applying the FDR, we arrive at the above formulae for the
spin temperature expressed in terms of dynamic spin variables. Condition T = 0
corresponds to the lowest energy spin configuration that, according to Eq. (14),
is defined by a set of algebraic equations noted earlier in this section, namely,
Si ×Hi = 0 for i = 1, 2 . . . , N .

4 Spin-Lattice Dynamics

Interaction between atoms in a magnetic material is determined by its spin-
dependent electronic structure. A suitable mathematical framework is required to
describe the many-body phonon and magnon excitations at elevated temperature.
Conventional molecular dynamics provides a convenient starting point for the
incorporation of spin degrees of freedom in an atomistic simulation. It is possible
to reformulate molecular dynamics and spin dynamics and combine them within
a unified simulation framework. This also makes it possible to treat interaction
between the lattice and magnetic subsystems, where interatomic forces and effective
exchange fields acting on magnetic moments are related and dynamically coupled
with each other.

Consider an arbitrary coordinate and spin-dependent Hamiltonian H (R,P,S),
where R = {Ri} are the atomic coordinates, P = {Pi} are the atomic momenta, and
S = {Si} are the atomic spin vectors. The Hamilton equations of motion for a closed
system have the form (Ma et al. 2008, 2016):

dRi

dt
= ∂H

∂Pi

,

dPi

dt
= − ∂H

∂Ri

,

dSi

dt
= 1

h̄

[
Si ×

(
−∂H

∂Si

)]
. (15)
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From their appearance, these equations formally amount to no more than a combina-
tion of molecular dynamics and spin dynamics, and the only quantity that formally
unifies them is the Hamiltonian. However, there is a subtle difference between
spin-lattice dynamics defined by Eqs. (15) above and molecular dynamics or spin
dynamics treated as separate simulation methods. The force Fi = −∂H/∂Ri acting
on atom i and the effective magnetic field Hi = −∂H/∂Si acting on spin vector
i are coordinate and spin-dependent. The direction and magnitude of atomic spin
vectors Si affect the direction and magnitude of forces acting between the atoms in
a magnetic material, whereas the effective exchange field acting on spin Si depends
on atomic positions. The lattice and spin subsystems are now coupled through the
spin-orientation-dependent interatomic forces and coordinate-dependent effective
exchange fields.

Generalizing Eqs. (15) to Langevin dynamics, we write the Langevin equations
of motion for the spins and atomic coordinates and momenta as

dRi

dt
= ∂H

∂Pi

,

dPi

dt
= − ∂H

∂Ri

− γl
∂H

∂Pi

+ fi ,

dSi

dt
= 1

h̄

[
Si ×

(
−∂H

∂Si

)]
− γs

∂H

∂Si

+ ξ i , (16)

where fi and ξ i are the fluctuating components of interatomic forces and exchange
fields, respectively. They satisfy the Langevin equations conditions 〈fi (t)〉 = 0 and
〈fiα(t)fjβ(t

′)〉 = μlδij δαβδ(t − t ′) for the fluctuating components of interatomic
forces and 〈ξ i (t)〉 = 0 and 〈ξiα(t)ξjβ(t ′)〉 = μsδij δαβδ(t − t ′) for the fluctuating
exchange fields. The FDR relations for the lattice and spin subsystems read μl =
2γlkBT and μs = 2γskBT , where T is the temperature of the heat reservoir. The
dissipative constants γl and γs determine the thermalization rates, which can be
derived from experimental observations. An example of thermalization process is
given in Fig. 2. The figure shows how the spin and lattice temperatures vary in an
interacting spin-lattice dynamic system. The simulation involves 16,000 magnetic
atoms of iron. The reservoir temperature is set to 300 K. We used the values of
parameters describing ferromagnetic iron that were derived by Ma and Dudarev
(2012) and Ma et al. (2012). The different thermalization rates characterizing spin
and lattice subsystems are primarily due to the difference between the values of
dissipation constants γl and γs .

The spin-lattice dynamics simulation model can be extended to include the
treatment of conduction electrons, if we assume that there is a significant amount
of heat dissipated to the electrons. This is often the case in metals. For example, in
applications, the heat reservoir is nothing but the time-dependent evolving electron
subsystem. Its dynamic behavior is described by the heat transfer equation

Ce

dTe

dt
= ∇(κe∇Te)+Gel(Tl − Te)+Ges(Ts − Te), (17)



47 Atomistic Spin-Lattice Dynamics 1025

Fig. 2 Spin and lattice
temperatures in magnetic iron
during thermalization,
predicted by spin-lattice
dynamics simulations. The
temperature of the reservoir is
300 K. Initial temperatures of
atoms and spins are T = 0 K.
The simulation follows the
evolution of 16,000 magnetic
iron atoms, initially forming a
perfect bcc lattice
configuration
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where Ce is the electronic specific heat and κe is the coefficient of thermal
conductivity. The coupling constants describing interaction between electron and
lattice subsystems Gel and between electron and spin subsystems Ges are

Gel = 3kBγl

mΩ
(18)

Ges = kBγs

Ω
〈
∑

α

∂2H

∂S2
iα

〉 (19)

where Ω is the atomic volume. Detailed derivations of Gel and Ges are given in
Ma et al. (2012, 2016) and references therein. Equations (16) and (17) constitute
a fully self-consistent atomistic spin-lattice-electron model. In the ultrafast laser
experiments, where over a relatively short period of time only a small amount
of heat is exchanged with the environment, the spin-lattice-electron model can
be successfully applied to modelling transient processes of thermalization and
heat exchange between the three subsystems, as well as to the treatment of fast
demagnetization (Ma et al. 2016).

5 The Suzuki-Trotter Decomposition

In a dynamic simulation of the evolution of a system of atoms, a numerical
algorithm advances the state of the system as a function of time by propagating
a configuration through a sequence of finite time steps. This generates numerical
errors, for example, biased errors and truncation errors, resulting from analytical
or numerical approximations. An integration algorithm based on the Suzuki-Trotter
decomposition (STD) (Hatano and Suzuki 2005) can minimize numerical errors
over a relatively long interval of computation time due to its symplectic nature,



1026 P.-W. Ma and S. L. Dudarev

which means that the algorithm conserves the phase space volume of the system
during evolution. The STD involves breaking up an evolution operator, which
consists of several noncommutative operations, into simpler sub-evolution steps.
The second-order STD has the form

e(Â+B̂)Δt = eÂΔt/2eB̂Δt eÂΔt/2 +O(Δt3) (20)

where Â and B̂ are arbitrary operators and Δt is the time step. The above formula
describes how to decompose an operator that evolves the system over a time step,
into several simpler evolution steps, each involving the evolution of only a subset of
variables describing the microscopic configuration of the system.

Omelyan et al. (2001a, b, 2002) and Tsai et al. (2004, 2005) explored applications
of the STD to spin-lattice dynamics, and in what follows we adopt a similar
approach. Equations of motion for a spin-lattice system can be rewritten as

dx
dt
= (R+P+S)x, (21)

where x = {R,P,S} is a generalized coordinate and R, P, S are the evolution
operators acting on R, P, and S, respectively. The formal solution of Eq. (21) can be
written as

x(t +Δt) = e(R+P+S)Δtx(t). (22)

Using the STD decomposition given by Eq. (20), we write

e(R+P+S)Δt = ePΔt/2eSΔt/2eRΔteSΔt/2ePΔt/2 +O(Δt3). (23)

Reading the right-hand side of this equation from right to left, we see that the STD
decomposition rule requires that we would integrate equations for the momenta of
particles over the time interval Δt/2, then integrate equations for the spins over the
time interval Δt/2, and then integrate equations for atomic coordinates over the time
interval Δt , followed by the integration of equations for the spins over Δt/2 and
equations for the momenta over Δt/2. The order in which we integrate the equations
minimizes the number of times where forces are evaluated and significantly reduces
the time required to do a simulation. The main advantage offered by the STD (23) is
that it circumvents the need to integrate the coupled equations for the coordinates,
momenta, and spins all at the same time.

A particular subtlety associated with the presence of spin equations of motion in
Eqs. (15) is that spin dynamics involve rotations, which, as opposed to translations,
do not commute. Bearing this in mind, the evolution of the spin subsystem can be
split into a series of operations involving evolution of individual spins, namely

eSΔt = eS1Δt/2eS2Δt/2 · · · eSNΔt · · · eS2Δt/2eS1Δt/2 +O(Δt3). (24)
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Each operation of evolution of an individual spin depends on all the previous
operations, because the effective magnetic field Hi acting on spin i depends on
the entire configuration S of all the other spins. In serial programming, one only
needs to integrate the equations of motion for individual spins in a certain order,
determined by the STD decomposition (24), one equation at a time. However,
Eq. (24) prohibits performing multiple spin operations at the same time, in effect
prohibiting the parallelization of the integration algorithm.

Parallel integration of spin equations of motion is still possible if interaction
between the spins has a finite spatial extent (Ma and Woo 2009). In this case
the effective exchange field acting on a spin depends only on a finite number of
neighboring spins. The simulation cell can then be subdivided into separate spatial
regions, where spins belonging to different regions do not interact. Spins can then be
separated into noninteracting groups, and the STD can then be applied to the groups.
The integration algorithm can then be parallelized between the groups, rather than
between individual spins. An intrinsic part of an MD simulation program is the
linked cells algorithm. A linked cell is a local spatial region, ideally suited for
the parallel implementation of the STD of evolving spin operators. The parallel
implementation of spin-lattice dynamics, adopted here, relies on and benefits from
the linked cells decomposition of the simulation cell (Ma and Woo 2009).

6 Interatomic Potentials

In the sections above, we derived equations of motion and integration algorithms
for spin-lattice dynamics simulations. These simulation algorithms have now been
implemented in the form of a computer program SPILADY (Ma et al. 2016). The
outstanding scientific challenge in spin-lattice dynamics is the development of high-
fidelity interatomic potentials, suitable for modelling the microscopic dynamics of
atoms and spins in magnetic materials, composed of various chemical elements.
Similarly to the interatomic potentials used in molecular dynamics (Finnis 2003), an
interatomic potential can have any functional form and can be parameterized in an
arbitrary way, provided that it describes the physical properties that are of interest
to applications. In most cases, potentials are fitted to data derived from ab initio
calculations as well as to the data derived from experimental observations. There is
no universal potential yet available for any material that would be able to predict
energies and forces acting between the atoms in an arbitrary atomic configuration in
good agreement with ab initio calculations.

In our work, we have adopted a relatively simple functional form of the many-
body non-collinear spin-lattice potential. The potential can be derived from the
Hamiltonian of the form

H =
∑

i

P2
i

2m
+ U(R,S). (25)
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In the above Hamiltonian, the potential energy U of a system with N magnetic
atoms is written as a function of atomic coordinates and spin vectors. One can write
the energy in a Taylor series in spin variables S. Retaining only the rotationally
invariant terms, we write (Dudarev and Derlet 2007)

U(R,S) = U(0)(R)+
∑

i

U
(1)
i (R)S2

i +
∑

ij

U
(2)
ij (R)Si · Sj +

∑

i

U
(3)
i (R)S4

i + · · · .
(26)

This makes it possible to map Eq. (25) to a nonmagnetic many-body interatomic
potential complemented with a Heisenberg-Landau Hamiltonian

U = Ul(R)− 1

2

∑

ij

Jij (R)Si · Sj +
∑

i

Ai(R)S2
i +

∑

i

Bi(R)S4
i , (27)

where Jij (R) is a coordinate-dependent exchange coupling function and Ai(R)

and Bi(R) are the coordinate-dependent Landau coefficients. For the nonmagnetic
“lattice” part Ul(R) of the potential, we have adopted the embedded atom method
(EAM) (Daw and Baskes 1984) functional form and assumed that the Landau
coefficients Ai and Bi are functions of the effective electron density. This is by
no means the only way of representing the non-collinear spin-lattice potential. How-
ever, this particular functional form has at least two advantages. Firstly, it has a clear
physical meaning. The Heisenberg term describes spin-spin interactions, whereas
the Landau terms describe longitudinal fluctuations of Si . Exchange coupling and
the Landau coefficients depend on atomic coordinates, which couple the spin and
lattice subsystems through forces and effective magnetic fields. Secondly, the spin
and lattice equations of motion have a relatively simple form, which assists the
numerical implementation of the algorithm.

A remarkable property of Eq. (27) is that in the nonmagnetic limit S = 0,
the spin-lattice interaction potential reduces to a conventional molecular dynamics
many-body potential. This poses a question about the type of data required for
fitting a spin-lattice interatomic interaction potential. The above argument shows
that data on magnetic as well as on nonmagnetic atomic configurations are required,
as in potential (27) one can switch on and off the magnetic spin-dependent part.
Experimental observations do not always provide information about magnetic and
nonmagnetic properties at the same time, making ab initio calculations an invaluable
and irreplaceable source of data required for fitting spin-dependent potentials.
Also, ab initio calculations allow greater freedom for preconditioning, for example,
through the exploration of many non-collinear magnetic configurations in a variety
of atomic environments.

The functional form of the potential given by Eq. (27) does not take into account
spin-orbit coupling. Spin-orbit coupling allows the transfer of angular momentum
and energy from the spin to the lattice subsystem and vice versa. Perera et al.
(2016) proposed a phenomenological model for the magneto-crystalline anisotropy,
which models the effect of spin-orbit coupling. They add an anisotropic term to the
Hamiltonian
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Haniso = −C1

∑

i

Ki · Si − C2

∑

i

ST
i ·Λi · Si , (28)

where C1 and C2 are adjustable parameters. Ki (R) = ∂ρi(R)/∂Ri and Λi,αβ(R) =
∂2ρi(R)/∂Riα∂Riβ are the coordinate-dependent functions defining the character of
the on-site magnetic anisotropy, where ρi(R) describes the symmetry of local envi-
ronment. This approach may help treat the effect of magneto-crystalline anisotropy,
although the link between (28) and the microscopic quantum-mechanical spin-orbit
coupling Hamiltonian requires further analysis.

In the study of bcc-fcc-bcc phase transitions in pure iron (Ma et al. 2017), we
have fitted a new spin-lattice potential using ab initio data as input. The functional
form of the spin-dependent potential was assumed to be given by Eq. (27). In
the process of fitting the potential, we have generated large data sets using ab
initio calculations. The data included bcc, fcc, bct, rhombohedral, amorphous, and
various defect structures under the constraint that the system remained entirely
nonmagnetic. Using the data, we have fitted an EAM potential, which is the first
term in (27). Then, we fitted the magnetic terms, separately for bcc and fcc crystal
structures. Applying the umbrella sampling and adiabatic switching thermodynamic
integration to spin-lattice dynamics simulations, we have evaluated the difference
between the free energies of bcc and fcc phases as a function of temperature.
Each free energy difference calculation referred to a particular temperature, hence
avoiding the need to perform integration from 0 K, otherwise required in other
simulation approaches (Lavrentiev et al. 2010).

Figure 3 shows the calculated free energy difference between the fcc and bcc
phases. When the difference is positive, bcc phase is more stable, for example,
at low temperatures. Otherwise, fcc phase is more stable. The curve crosses the
horizontal axis at two points, near 1130 K and then again near 1600 K. These
points correspond to the bcc-fcc α − γ and fcc-bcc γ − δ phase transitions,
respectively. The predicted transition temperatures are close to the experimentally
observed transition temperatures Tα−γ = 1185 K and Tγ−δ = 1667 K. The minimum
free energy difference between the fcc and bcc phases is only −2 meV per atom.
Analysis given in Lavrentiev et al. (2010) and Ma et al. (2017) shows that α-
γ -δ phase transitions in magnetic iron stem from the interplay between magnetic
excitations and lattice vibrations. The free energy contribution from non-collinear
magnetic fluctuations reduces the free energy difference as temperature increases.
When the temperature is higher than the Curie temperature TC , the long-range
magnetic order vanishes although the short-range order remains (see Ma et al.
(2008) and Fig. 4).

At temperatures exceeding the Curie temperature, the contribution to entropy
from magnetic excitations is superseded by the contribution from lattice vibrations,
and it is the balance between entropy contributions to the free energy from spin and
lattice dynamics that is ultimately responsible for the occurrence of the two, α-γ and
γ -δ, rather than one, phase transitions in iron. This also illustrates the significance of
taking into account spin-lattice coupling when modelling magnetic phase transitions
in any real material.
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Fig. 3 Difference between the free energies of fcc and bcc phases of magnetic iron plotted as a
function of temperature. Calculations were performed using a spin-lattice potential, taken as a sum
of a nonmagnetic EAM potential and a Heisenberg-Landau Hamiltonian, as detailed by Eq. (27).
The minimum free energy difference between fcc and bcc phases is −2 meV per atom

Fig. 4 Time average projection of an atomic spin on a magnetization axis and spin-spin short-
range correlation functions evaluated for the first, second, . . ., fifth nearest-neighbor atoms and
plotted as functions of absolute temperature. Long-range magnetic order vanishes at the Curie
temperature TC , whereas the magnetic short-range order does not vanish even at temperatures well
above TC
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7 Outlook and Challenges

Applications of spin-lattice dynamics are still fairly sparse. The main difficulty asso-
ciated with applications of spin-lattice dynamics is that, like molecular dynamics,
spin-lattice dynamics requires a sufficiently accurate many-body spin-dependent
potential. Although spin-lattice dynamics has been applied extensively to simu-
lations of various microscopic dynamic effects in pure iron, including vacancy
migration (Wen et al. 2013), and magnetic excitations in cobalt (Beaujouan et al.
2012), there is still no spin-lattice potential suitable for simulating mechanical
deformations, magnetic fluctuations, and defect properties at the same time. There
are two main reasons why this question remains outstanding.

First, the number of degrees of freedom in spin-lattice dynamics is twice that of
molecular dynamics. In molecular dynamics, one needs to fit an interatomic interac-
tion potential to input data based on atomic configurations in 3N dimensions, where
N is the number of atoms in a simulation cell. In the case of spin-lattice dynamics,
the number of degrees of freedom is 6N because each atom is characterized by its
position as well as by the orientation and magnitude of the atomic magnetic moment.
This poses a major challenge in the context of the fitting procedure as well as data
generation and selection, since a significantly greater amount of data is required to
span the multidimensional coordinate and spin phase space.

On the other hand, pure spin dynamics on a static lattice, which is a subset
of spin-lattice dynamics, can be run as efficiently as MD. If we assume that the
exchange coupling parameters Jij are independent of atomic coordinates, the spin-
dynamics part of the integration algorithm can be used for generating detailed
information about magnetic phase transitions, as illustrated in Figs. 4 and 5.

Fig. 5 Specific heat of bcc iron evaluated using purely rotational spin dynamics with no
longitudinal fluctuations included, and Langevin spin dynamics taking longitudinal fluctuations
of magnetic moments into account (Ma and Dudarev 2012). The peaks correspond to second-order
magnetic phase transitions, where the long-range ferromagnetic order vanishes
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Fig. 6 Magnetic configuration of atoms in the vicinity of a mono-vacancy in ferromagnetic bcc
iron, derived from ab initio calculations. The simulation cell contains 53 atoms. The magnitude
of magnetic moments is greater in the first nearest-neighbor coordination shell of the vacancy,
whereas magnetic moments are suppressed in the second nearest-neighbor coordination shell.
Color refers to the magnitude of magnetic moments given by the scale bar, expressed in the Bohr
magneton units

Second, a suitable functional form of the spin-lattice potential is yet to be firmly
established. For example, if we adopt the form given by Eq. (27), we still do not
know what functional form should be used for Jij (R), Ai(R), and Bi(R). In Figs. 6
and 7, we show a vacancy and a 〈110〉 self-interstitial dumbbell configurations in bcc
ferromagnetic iron. These configurations were derived from ab initio calculations.
We see that the magnitude and direction of magnetic moments depend on the local
environment. Atoms near a defect have significantly different magnetic moments
in comparison with moments of atoms in a perfect crystal. An often used pairwise
form for Jij (R) does not fit the data for defects well, although it does fit reasonably
well the data on magnetic moments in a nearly perfect lattice. A good spin-lattice
potential should help model magnetic configurations associated with extended
defects, such as line dislocations, dislocation loops, vacancy clusters, and voids,
where ab initio calculations are still impossible or too computationally demanding.

In addition to defects, alloys present an even more challenging issue. Figure 8
shows the magnetic configuration of a FeCrNi ternary alloy. The data for the figure
were taken from Wróbel et al. (2015). Even though the alloy adopts a nearly perfect
fcc crystal structure, its magnetic configuration is fairly complex. This implies that a
spin-lattice potential must contain information about the underlying spin-dependent
electronic structure to be able to reproduce magnetic properties at a reasonable level
of accuracy.

The functional form of a spin-lattice potential should reflect the many-body
electron interactions. A recently derived tight-binding Hamiltonian (Coury et al.
2016) for non-collinear magnetic configurations is expected to provide a good
starting point for a comprehensive treatment of this problem.
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Fig. 7 A 〈110〉 self-interstitial dumbbell configuration in ferromagnetic bcc iron, predicted
by ab initio calculations. The supercell contains 129 iron atoms. The magnitude of magnetic
moments of the two atoms forming the center of the dumbbell is significantly smaller than
that of the neighboring atoms. Magnetic moments of atoms in the center of the dumbbell have
antiferromagnetic orientation with respect to the ferromagnetically ordered neighboring atoms.
Color represents the magnitude of an atomic magnetic moment, expressed in the Bohr magneton
units

Fig. 8 Magnetic
configuration of a FeCrNi fcc
alloy containing 108 atoms in
the simulation cell. The alloy
configuration consists of 58
Fe atoms (red), 16 Cr atoms
(green), and 34 Ni atoms
(blue). Color of arrows refers
to the magnitude of atomic
magnetic moments defined by
the scale bar, expressed in the
Bohr magneton units

8 Conclusion

Spin-lattice dynamics is a powerful simulation tool for studying magnetic materials
on the atomic scale. In this chapter, we have outlined the fundamental theory of
spin-lattice dynamics and algorithms suitable for its numerical implementation.
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Although there are still significant challenging issues that remain to be resolved,
the field is open for exploration. Spin-lattice dynamics can be applied to a broad
range of topics from modelling high-frequency electronic and magnetic devices to
mechanical properties of magnetic alloys.
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Abstract

This introductory chapter presents a perspective on multiscale modeling that
emphasizes the role and challenges of mesoscale methods and their impact on
understanding and predicting material properties. The predictive power of the
combined experimental, theoretical, and computational mesoscale approaches is
illustrated by a brief discussion of the phase field method and its application to
microstructure evolution. After summarizing the main ideas of each chapter in
the section, the state of the art and the future of the field are examined by asking
and answering four questions: Is the 3-D representation always necessary?, Do
mesoscale computational methods capture nonequilibrium?, To what degree are
mesoscale methods quantitative?, and Are mesoscale methods computationally
efficient?
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1 Introduction

There is a growing appreciation in recent years of the essential role that materials
phenomena at the mesoscale play in controlling bulk properties and performance
(BES 2012). This is especially true for structural materials in which microstructure
evolution informs deformation mechanisms as well as damage and failure. Increas-
ingly, advanced characterization techniques are revealing microstructural variability
and heterogeneity in materials, and theory and simulation have a difficult time
explaining these phenomena. Recent reviews of scientific opportunities at mesoscale
propose that the evolution from reductionist atomistic approaches to constructionist
mesoscale strategies is representative of a broader evolution and opportunity in
materials research (Sarrao 2015). Complementing other sections and their emphasis
on both finer and coarser length scales, this section of the Handbook of Materials
Modeling explores mesoscale materials phenomena and microstructure, revealing
novel behavior only present at the mesoscale and describing the state of the art in
modeling and computational approaches the objective of which is to explain and
predict these behaviors.

This introductory chapter starts with a perspective on multiscale modeling that
emphasizes the importance of mesoscale methods and the impact on understand-
ing and predicting material properties. As an example, the phase field method,
which is not the subject of a standalone chapter, is discussed in the context
of “atomistic to bulk” multiscale simulation studies. The introduction continues
with brief descriptions of the chapters starting with the discussion of model
frontiers spanning scales in �Chaps. 49, “Mesoscale Modeling of Dislocation-
Interactions in Multilayered Materials” by Shao, S., Zhou, C., Misra, A., � 50,
“Advances in Discrete Dislocation Dynamics Simulations” by LeSar, R. and
Capolungo, L. � 51, “Mesoscale, Microstructure-Sensitive Modeling for Interface-
Dominated, Nanostructured Materials” by Beyerlein, IJ. Multi-Physics and adaptive
physics refinement are central to �Chap. 52, “Adaptive Physics Refinement at
the Microstructure Scale” by Germann, T.C., while �Chap. 53, “Synchrotron
Capabilities to Understand Microstructure of Additively Manufactured Materials:
Challenges and Opportunities for Modeling and Simulations” by Rollett, A.D.
focuses on experimental validation at the mesoscale, with specific application
to APS experiments. �Chapter 54, “Computational Modeling of Morphology
Evolution in Metal-Based Battery Electrodes” by Srinivasan et al. emphasizes the
technological implications of mesoscale modeling using as an example the design
of Li-ion battery materials. The introductory chapter ends with a brief summary of
conclusions and ideas for future studies.

2 Perspective onMultiscale Modeling

To understand, predict, and ultimately control matter and energy at the electronic,
atomic, molecular, microstructural, and continuum levels, scientists need to inves-
tigate materials at a combination of length and time scales that are characteristic to
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relevant physical and chemical phenomena. Therefore, experimental, theoretical,
and computational methods must cover a wide range of space and time scales,
starting with the nucleus and the electronic structure of individual or clustered atoms
(Å), to nano-/microstructural features, all the way to continuum properties of the
sample (cm). Along the time scale, the investigation domain ranges from excitations
(ps) to nucleation of new phases (ns), all the way to diffusion (minutes, hours) and
aging characteristic times (months, years).

Figure 1 shows examples of applicability domains of several theoretical and
computational methods that operate at various time and length scale (Stan 2009).
Some applicability limits are rooted in the physics of the associated phenomena.
For example, density functional theory (DFT) – a quantum mechanical method – is
best suited for investigations at short times and in small volumes, where quantum
effects are prominent. Other limitations result from computational aspects such as
bandwidth (speed of communication) or available computer memory. For example,
molecular dynamics (MD) simulations can account for all atoms in a mole of matter
but the time necessary to converge to solution is unrealistic, at present time. It
is likely that in the next decades some methods will expand their investigation
domains while others will disappear. With the accelerated advancement of the-
oretical and computational methodologies and capabilities, it is conceivable that
quantum mechanical calculations will soon predict properties of polycrystalline,
multicomponent materials, at room and higher temperatures. In recent years,
considerable progress has been made in bridging mesoscale to neighboring scales
by either downscaling to atomistic simulation in materials science or upscaling
to the finite element simulations in structural engineering (Geers et al. 2010; Li
et al. 2004). For a detailed discussion of multiscale models and simulations for soft
material characterization, see Praprotnik et al. (2008).

Mesoscale interactions yield complex architectures and phenomena that serve as
the building blocks of macroscopic materials behavior. Science at the mesoscale
builds on dramatic advances at the atomistic and nanoscale that the research
community has produced in recent years and continues to produce. The mesoscale
brings profound changes, replacing the atomic granularity of matter and the
quantization of energy with continuous matter and energy thereby enabling the onset
of collective behavior, the interaction of coupled and competing degrees of freedom,
and the appearance of defects and fluctuations that alter the behavior of perfect
structures. These emergent mesoscale phenomena represent a profound challenge
for multiscale materials models. A series of articles exemplify the excitement and
challenges that exist at the mesoscale (Jonusauskas 2018; Sarrao and Crabtree 2012,
2015; Short and Yip 2015; Bowden et al. 1997).

3 The Phase Field Method

The phase field (PF) method is a powerful mesoscale simulation tool that can
predict evolution of complex three-dimensional (3-D) microstructures. Applica-
tions include important materials processes such as solidification and melting,
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Fig. 1 Multiscale theoretical and computational methods (Stan 2009)

ferroelectric and ferromagnetic phase transitions, phase-separation and precipita-
tion, martensitic transformation, and twinning. The PF method requires a good
understanding of the thermodynamics and kinetics of the system under examination
and presents several advantages over competing methods. For example, there is no
prior assumption on microstructure morphology. Also, no explicit tracking of the
location of interfaces is made, which presents computational advantages. The most
powerful feature is the ability to predict the evolution of multidimensional (2-D,
3-D) inhomogeneous and anisotropic microstructures with high computational effi-
ciency. First applications of the PF method revolved around melting/solidification
and solid-state phase transformations (Chen 2002; Moelans et al. 2008; Steinbach
2009; Steinbach 2013; Hu 2009; Karma and Rappel 1998). Recently, phase field
simulations successfully predicted microstructure evolution of irradiated materials,
including radiation-induced segregation, second-phase nucleation, void migration,
interstitial loop evolution, and grain growth (Millett and Tonks 2011a, b; Li et al.
2017; Tonks et al. 2018).

In the PF method, the evolution of the microstructure is captured using two
sets of field variables. One is the concentration field, c, that describes the spatial
distributions of conserved material components such as chemical species. The
other field variable is the order parameter field, η, which describes nonconserved
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Fig. 2 Schematic
representation of the phase
field method phase variables.
The diffuse (not sharp)
interface between phase 1 and
adjacent phases 2 and 3 is
consistent with nanoscale
observations and improves
computational efficiency

microstructural features such as crystal structures and orientations, voids or gas
bubbles, or ferromagnetic domains (Fig. 2).

In the PF method, all field variables change smoothly across the interface. There-
fore, the interfaces are diffuse (have a certain width). This is a key characteristic of
the PF method. By avoiding singularities (locations where some inverse parameters
go to infinity), the PF algorithms avoid convergence issues that are common in sharp
interface and level set approaches (Ratsch et al. 2002).

We summarize here the key components of the PF mathematical formalism. For
a detailed description, see Chen (2002) and Li et al. (2017).

The location and time dependence of the constituents are represented by a
concentration vector c(x,t), while the phases are represented by an order parameter
vector η(x,t). Here x is the spatial location vector and t is the time. The total free
energy of the system is given by:

F =
ż ′

V

[
fchem (c, η)+ fgrad (c, η)+ flr (c, η)

]
dV (1)

where V is the volume of the system, fchem the chemical free energy density,
fgrad is the gradient energy density (interfacial energy), and flr is the long-range
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interaction energy density that may include elastic energy, magneto-static energy,
etc. The evolution of concentration c is governed by the time-dependent Cahn-
Hilliard equation (Cahn 1961):

∂ci

∂t
= ∇ ·

∑
j

(
Mij∇ ∂F

∂cj

)
+ ξi i=1,2...M (compositions) (2)

The phase variable η evolves based on the Allen-Cahn equation (Cahn and Allen
1977)

∂ηk

∂t
= −Lk

∂F

∂ηk

+ ξk k=1,2...N (phases) (3)

where Mij is the chemical mobility tensor, Lk is the interface mobility, and ξ i and ξ k

are thermal fluctuations. Equations (1, 2, and 3) represent a general description of
the multicomponent, multiphase phase field model. Additional terms appear in the
equations in PF formulations for specific applications.

Application of the PF approach to microstructure evolution has attracted growing
interest because of its unique capability in predicting three-dimensional microstruc-
ture evolutions in a multicomponent and multiphase system. In the past decade, PF
simulations predicted a number of important microstructure evolution phenomena
and their subsequent impact on material thermo-mechanical properties of materials.
In 2007, Stan et al. presented, for the first time, a PF model able to simulate
the evolution of gas bubbles in an irradiated material (Stan et al. 2007). A more
sophisticated PF model for gas bubble evolution in a polycrystalline was developed
in subsequent studies (Hu et al. 2009, 2010). The approach relies on the coexistence
of two phases: matrix and gas bubbles. The gas bubbles have a complex chemical
composition that includes gas atoms and vacancies. In the initial approach, the grain
boundaries (GBs) were fixed and did not evolve with time. Shortly after, Hu and
Henager proposed a PF model that integrates elements of the kinetic Monte Carlo
(kMC) method (Opplestrup et al. 2006) to simulate the evolution of void ensembles
under irradiation (Hu 2009).

Besides predicting 3-D microstructure evolutions in a multicomponent and
multiphase system, the PF models is able to evaluate the subsequent impact of
microstructure evolution on mechanical, thermal, and magnetic properties (Klins-
mann et al. 2015; Chakraborty et al. 2016).

PF simulations of polycrystalline structures with intra-granular and inter-
granular pores or gas bubbles demonstrated the effect of inhomogeneous thermal
conductivity on the overall thermal transport (Hu 2009; Millett et al. 2008; Millett
and Tonks 2011a, b; Li et al. 2012; Chockalingam et al. 2012; Hu et al. 2015). In
this case, the output microstructure resulting from PF calculations serves as input
to calculations of thermal conductivity. Then, finite element simulations update
the temperature field and provide feedback to new PF calculations. This iterative
process can capture complex mesoscale effects and predict degradation of properties
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in severe environments at very high temperatures, some close to melting (Welland
et al. 2011].

4 Chapters in This Section

Fundamental understanding of mesoscale phenomena that influence microstructure
evolution is crucial to the discovery of new materials and can accelerate material
design. The chapters in this section summarize the status of a broad spectrum of
mesoscale research topics and provide different perspectives regarding challenges
and opportunities at mesoscale.

�Chapter 49, “Mesoscale Modeling of Dislocation-Interactions in Multilayered
Materials” by Shao, S., Zhou, C., Misra, A. focuses on interface dislocation
dynamics models for studies of ultrafine grain dynamics. The methodology relies
on the atomistically informed interface dislocation dynamics (AIDD) model that
is capable of bridging the mesoscale gap. The chapter includes a discussion
of the fundamentals of interface deformation physics at atomic scale and the
implementation into the AIDD model. To illustrate the capabilities of the AIDD
model, the authors examine multilayer materials with extremely fine interface
spacing exhibiting interface-dominated thermomechanical behaviors. Modeling and
predicting properties of such materials on the micro and continuum scales has
been challenging, with new insights recently becoming available from atomic-scale
simulations.

Continuing the discussion, (�Chap. 50, “Advances in Discrete Dislocation
Dynamics Simulations” by LeSar, R., Capolungo, L.) summarizes important, recent
contributions in the field of discrete dislocation dynamics and the impact on
dynamic loading/creep. The analysis goes from nanometers to tens of microns by
bridging discrete dislocation dynamics simulations with harmonic transition state
theory, which enables coarse graining. Advances in this methodology have taken the
field closer to predicting the mechanical response of polycrystals such as textured
crystalline aggregates with impurities.

�Chapter 51, “Mesoscale, Microstructure-Sensitive Modeling for Interface-
Dominated, Nanostructured Materials” by Beyerlein, I.J. enhances the discussion of
the mechanical response of polycrystalline metals and the importance of the under-
lying microstructure evolution and deformation mechanisms. The chapter covers
recent advancements in modeling processing-microstructure-property relationships
of polycrystalline metals. The model extensions highlighted in the chapter over-
comes several limitations of similar approaches by incorporating nonhomogeneity.
The chapter ends with recommendations for mesoscale modeling advancements as
well as improvements in computational speed.

�Chapter 52, “Adaptive Physics Refinement at the Microstructure Scale” by
Germann, T.C. focuses on long-sought goals of computational materials science and
engineering: creating a simulation framework that spans all necessary length and
time scales, providing the appropriate level of physics fidelity where needed, and
enabling the user to trade off accuracy and computational time in an optimal manner.
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After a brief review of heterogeneous multiscale methods and adaptive sampling, the
authors discuss the computational workflow, data, and runtime requirements of these
methods, as well as key enabling technologies such as task-based programming
models, heterogeneous computer architectures, database, and machine learning
algorithms.

�Chapter 53, “Synchrotron Capabilities to Understand Microstructure of Addi-
tively Manufactured Materials: Challenges and Opportunities for Modeling and
Simulations” by Rollett, A.D. introduces the reader to techniques employed to
characterize additively manufactured materials, with an emphasis on metals and
ceramics. The techniques that are discussed include micro-tomography (CT), wide
angle scattering (WAX), high energy diffraction microscopy (HEDM), residual
stress (RS), and dynamic X-ray radiography (DXR). The chapter provides insights
into both the required input for mesoscale modeling and the characterization
information that can assist mesoscale model validation.

Continuing the discussion of the impact of mesoscale models on technology,
�Chapter 54, “Computational Modeling of Morphology Evolution in Metal-Based
Battery Electrodes” by Srinivasan, V. et al. presents recent applications to lithium
ion batteries. The main mesoscale challenges in developing lithium metal battery
materials include dendritic growth, formation of dead lithium, and continuous
decomposition of electrolyte at the solid-electrolyte interphase layer. Multiscale
computational models (DFT, AIMD, kMC) capture several physical phenomena
at the lithium-electrolyte interface, including mass transport, charge balance, heat
transfer, and mechanical equilibrium. Successfully bridging these computational
techniques is key to developing precise and accurate models.

All chapters emphasize the partnership between theory, experiment, and com-
putation in understanding and predicting mesoscale phenomena. A new generation
of supercomputers with higher computational power may also help bridge the gap
between atomistic and continuum length scales by connecting with physical and
chemical models of phenomena observed at the mesoscale.

5 Conclusions and Outlook

While acknowledging the successes of the mesoscale methods in predicting
microstructure evolution and the impact on properties, a number of questions
remain. For example, is the 3-D representation always necessary? There is
no doubt that spatial distribution of mesoscale features is key to a number of
phenomena, especially heterogeneous microstructure evolution. Furthermore, we
expect that soon mesoscale computational methods will interface with 3-D material
tomography to collect input data and validation information. Therefore, the answer
is yes, multidimensionality is important.

Another question relates to the treatment of nonequilibrium processes that
require the system to overcome energy barriers. Do mesoscale computational meth-
ods capture nonequilibrium? Of course, the laws of thermodynamics are universal
and – when applied correctly – describe well both equilibrium and nonequilibrium
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processes. However, the success of the mesoscale models depends upon their ability
to account for nonequilibrium mechanisms of microstructure evolution, such as
nucleation and growth of new phases. Capturing nucleation of secondary phases is
challenging due to the small characteristic length and time scales. Often, mesoscale
methods evolve the phases using as input critical nucleus information and nucleation
rates from atomistic simulations such as DFT or MD. So again, coupling scales may
provide the optimal path forward.

To what degree are mesoscale methods quantitative? We acknowledge that sim-
ulated microstructures are not replicas of experimentally observed microstructures
but rather representations of reality. Similarly, experimental samples are not replicas
but “experimental models” of real materials. Therefore, the qualitative aspect of
mesoscale models is not negligible. In some instances, scientists qualitatively
evaluate the dominant mechanisms behind complex phenomena as a preliminary
step toward more rigorous, quantitative models and predictions. The long-term
goal of mesoscale modeling is to attain a high level of precision and accuracy in
quantitatively representing real materials.

The computational efficiency of mesoscale methods is also under debate. As
with any computational method, going beyond the limits of applicability requires
coupling with approaches that are valid at adjacent length or time scales. For
example, the spatial and temporal correlations in phase field simulations require
information exchange with atomistic and continuum methods. In addition, adaptive
time and mesh refinement can improve the precision but decrease the numerical
efficiency of solving PDF equations. Furthermore, the smallest time step and grid
size are the limiting factors. All microstructure evolution simulations require highly
scalable methods, as discussed in (�Chap. 52, “Adaptive Physics Refinement at the
Microstructure Scale” by Germann, T.).
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Abstract

Multilayer materials with extremely fine interface spacing exhibit interface-
dominated thermomechanical behaviors. Modeling and predicting properties
of such materials on the micro- and continuum scales have been challenging,
however, despite recent elucidations of the unit mechanisms from atomistic
modeling and in situ experiments. This chapter presents a mesoscale, atomisti-
cally informed interface dislocation dynamics (AIDD) model that is capable of
bridging the meso length-scale gap. The fundamentals of interface deformation
physics at atomic-scale, implementation into the AIDD model, and the capabili-
ties of the model are demonstrated and discussed.

1 Introduction

Bulk ultrafine-grained (UFG) materials are single or multiphase polycrystals with
nanoscale grain size (<1000 nm). In comparison with conventional polycrystalline
materials, UFG materials may exhibit increased strength/hardness, improved tough-
ness, reduced ductility, and enhanced diffusivity (Gleiter 1989; Suryanarayana
1995; Palumbo et al. 1990; Meyers et al. 2006). Differing from coarse-grained
polycrystalline materials, the most important structural characteristic of UFG mate-
rials is a large volume fraction of boundaries which significantly alters physical,
mechanical, and chemical properties of materials (Hall 1951; Petch 1953; Ashby
1970; Würschum et al. 2003). For example, the UFG materials virtually exhibit no
strain hardening after an initial stage of rapid strain hardening (Koch et al. 1999;
Koch 2003; Van Swygenhoven and Caro 1997; Suryanarayanan Iyer et al. 1999;
Carsley et al. 1998), because the density of dislocations saturates due to dynamic
recovery or due to the annihilation of dislocations into the grain boundaries (Valiev
et al. 2000; Jia et al. 2001; Wang et al. 2002). Besides the boundary effects, grain
size also plays a crucial role in changing the deformation mechanisms, evidenced
by the breakdown of the classical Hall-Petch (H-P) relationship at grain sizes
below approximately 100 nm (Suryanarayanan Iyer et al. 1999; Sanders et al. 1997;
Chokshi et al. 1989).

The predominant deformation mechanisms in UFG materials change from
dislocation pileups to boundary-mediated unit mechanisms with decreasing size
(Yamakov et al. 2002; Was and Foecke 1996; Sproul 1996; Barnett 1993; Phillips
et al. 2003; Tench and White 1984; Misra et al. 2008; Anderson and Li 1995).
However, the current state-of-the-art modeling methods follow the “constituent-
dominated paradigm” and neglect the defect phenomena at boundaries (Cuitiño
and Ortiz 1993; Dawson and Marin 1997; Roters et al. 2010; Tomé et al. 2011).
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This chapter introduces a mesoscale numerical approach incorporating interface
physics, the atomistically informed interface dislocation dynamics (AIDD) method,
to model and predict the deformation behavior and mechanical properties of UFG
materials.

1.1 Microstructures of UFGMaterials

Here we focus on UFG materials with laminated microstructure which can be
processed in the form of thin films via bottom-up processes such as physical vapor
deposition (PVD) (Was and Foecke 1996; Mahan 2000; Ross 1994) and electrode-
position (Ross 1994) or in the form of bulk materials via top-down processes such
as solid-state phase transformation (Lütjering et al. 2007; Callister and Rethwisch
2007), accumulative roll bonding (ARB) (Carpenter et al. 2012; Tsuji et al. 2003),
heavily drawn in situ composites (Embury 1992), or solidification (Callister and
Rethwisch 2007; Shen et al. 2005; Wang et al. 2011). Figure 1 shows typical
microstructures via these fabrication paths. In epitaxial films, solid-state phase
transformation, or eutectic solidification, energetically favorable crystallographic
orientation relationships and interface habit planes develop naturally during synthe-
sis (Was and Foecke 1996; Mahan 2000; Wang et al. 2011; Lutjering and Williams
2007). On the other hand, bulk materials via severe plastic deformation processes
often contain mechanically driven interfaces with preferred orientation relationships
in order to maintain the compatibility of plastic deformation between the adjacent
layers (Carpenter et al. 2012). For example, in Cu-Nb with the Kurdjumov-Sachs
orientation relationship, the interface habit planes are {111}Cu||{110}Nb for PVD
(Misra et al. 2005a; Li et al. 2012; Mara et al. 2008a; Lee et al. 2012) and
{338}Cu||{112}Nb or {112}Cu||{112}Nb for ARB (Beyerlein et al. 2014; Carpenter
et al. 2012; Lee et al. 2012).

1.2 Mechanical Behavior of Ultrafine Scale Materials

Unlike constituent-dominated deformation mechanisms in coarse-grained materials
(Fig. 2a), interfaces in nanolaminated structures play multiple roles in determining
mechanical properties: sources for nucleating plastic deformation carriers (disloca-
tions, phase transformation bands, twins, and shear bands) (Shao et al. 2015; Wang
et al. 2014a, 2009a; Van Swygenhoven et al. 2006; Mara et al. 2010), barriers for
impeding the propagation of these carriers (Wang et al. 2011; Misra et al. 2005a;
Li et al. 2012; Mara et al. 2008b), and preferred sites for storage, reassembly, and
reaction (that may lead to recovery) of interface defects (Han et al. 2014; Zhang
et al. 2014; Demkowicz et al. 2008a; Höchbauer et al. 2005).

Interface spacing, d (typically layer thickness, which is often smaller than grain
size), is the key microstructural parameter in determining mechanical properties of
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Fig. 1 Transmission electron microscopy (TEM) and high-resolution TEM images of microstruc-
tures of various types of UFG materials. (a) PVD Al-Nb multilayers (Fu et al. 2008), (b) ARB
Cu-Nb multilayers (Beyerlein et al. 2014), (c) wire drawn Cu-Nb nanocomposites (Sauvage et al.
2001), (d) rapid solidified Cu-Ag lamellar eutectic (Zheng et al. 2015)

laminated composites (Misra et al. 2005a, 2008). Assuming that a certain interface
acts as barrier for continuous motion of lattice dislocations, the development of
plastic deformation requires high local stresses that act on the dislocation to
overcome the barrier. Corresponding to this theoretical assumption, the dislocation
pileup based on Hall-Petch scaling law (Anderson and Li 1995; Misra et al. 1998;
Friedman and Chrzan 1998; Huang and Spaepen 2000) is applicable at d greater
than ∼100 nm, varying with properties of constituent phases. For d in the range of
approximately ∼10 to ∼100 nm, dislocation pileup on the same plane is unlikely
due to the strong repulsion among like-sign coplanar dislocations. The dominant
deformation mechanism is confined layer slip (CLS) (Phillips et al. 2003; Anderson
et al. 2003; Misra et al. 2002; Embury and Hirth 1994; Anderson et al. 1999; Freund
1990; Nix 1989) that involves propagation of single dislocation loops parallel to the
interfaces within layers. At d less than approximately 10 nm, experimental data
on a variety of metallic nanolaminates indicate that the hardness or strength of
laminated materials (Misra et al. 1998, 2002, 2005a, 2008) shows no significant
increase in the flow strength with decreasing d . This behavior has been interpreted
as a change in dominant deformation mechanism from CLS to interface crossing of
single dislocations. In this regime, interface defect contents and the structure of line
defects within interfaces strongly impact mechanical properties of UFG materials.
Therefore, in addition to the nucleation of lattice dislocations, the dynamics of
interface dislocations include (Fig. 2b) the motion of the interface dislocations
(including climb and glide), the reactions between lattice dislocation and interface
dislocations, the absorption and core spreading of lattice dislocations by interfaces
of relatively low shear strength, etc.
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Fig. 2 Schematic illustration of the transition in governing deformation mechanisms from
constituent dominated (a) to interface dominated (b) as the characteristic length scale is decreased
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1.3 Multiscale Perspective of Modeling Interface-Dominated
Mechanical Behaviors

For interface-dominated mechanical behaviors, predictive material models must
incorporate interface physics, including interface structures, unit deformation
mechanisms, and dislocation density evolution at interfaces. Such interface physics
is multiscale in nature. Atomistic modeling (top-left inset, Fig. 3) is able to elucidate
structure and properties of interfaces and the unit processes of defect-interface
interactions (Hoagland et al. 2004; Van Swygenhoven et al. 2001; Derlet and
Van Swygenhoven 2002; Yamakov et al. 2003; Shenoy et al. 1999), providing
the insight into the deformation processes, such as GB sliding/shear/migration
(Henager et al. 2004; Wang et al. 2008a, b; Demkowicz et al. 2008b; Derlet
et al. 2009), slip transmission (Sansoz and Molinari 2004; Wang and Huang
2006; Zhu et al. 2007; Afanasyev and Sansoz 2007), dislocation nucleation (Wang
et al. 2009c, d, 2010, 2012a; Wang and Beyerlein 2012; Zhang et al. 2011; Kang
et al. 2012a), etc. (bottom inset, Fig. 3). Beyond the temporal scale of several
nanoseconds, knowledge regarding interface dislocations such as climb and glide
of interface dislocations, reaction rules of interface dislocation, and evolution of
interface dislocation is necessary to predict the mechanical behavior of the UFG
materials. In this regard, atomistic modeling techniques are inadequate due to

Fig. 3 Commonly used modeling and simulation tools for studying mechanical behavior of
materials at various length scales
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their limitations in both length (nanometers) and temporal (nanoseconds) scales;
there exists a demand for models that can close gap between atomic-scale and
micro-/macroscale. Dislocation dynamics (DD) simulations (top, central-left inset,
Fig. 3), in which dislocations are the simulated entities, offer a way to extend length
and time scales beyond atomistic simulations and have the unique advantage of
exploring dislocation activities in crystalline materials. The challenge is to describe
the interactions between dislocations and interfaces. By exploiting the advantages
of DD method and coupling with atomistic-level deformation mechanisms at
boundaries, an atomistically informed interface dislocation dynamics (AIDD)
model has been developed to link the atomistic-scale physics with macroscopic
mechanical properties. The microscale grain-level crystal plasticity models (top,
central-right inset of Fig. 3) can therefore benefit from the output of the AIDD
model, including the constitutive relations, evolution rules of dislocations, etc.
These microscale models can then inform the continuum-scale models, such as
FEM and analytical constitutive models (top-right inset of Fig. 3).

This chapter reviews the fundamental aspects in developing the interface dis-
location dynamics and the capabilities of the AIDD model. Conclusions and
perspectives for future directions are presented.

2 Atomistic Information of Interface-Dominated Plasticity

Two important aspects of interface physics must be considered when describing the
mechanical behavior of interface-dominated materials, namely, interfaces (structure
and properties) and defect-interface interactions, both of which reside on the atomic
level. Recent advances on the characterization of interface structure and properties
(Kang et al. 2012a; Wang et al. 2012b, 2013, 2017; Hirth et al. 2013) as well as
the elucidation of the unit interaction mechanisms between defects and interfaces
(Wang et al. 2011; Shao et al. 2013; Demkowicz et al. 2012; Beyerlein et al. 2015)
are achieved by combining atomistic simulations with high-resolution microscopy.

2.1 Atomic Structure and Thermodynamic Properties
of Interfaces

In this section we categorize interfaces into four general types according to a
geometrical interface classification (GIC) scheme (Wang et al. 2014a) and show
that interfaces within each type share common structural as well as mechanical
characteristics (Wang et al. 2014a). Within the context of the GIC scheme, we
discuss these key interface-dominated plastic deformation mechanisms in detail.

The GIC scheme categorizes interfaces based on the atomic packing factors on
the habit planes on the interface. For detailed discussion of the GIC scheme and
information about its theoretical ground, readers are referred to ref. Wang et al.
(2014a). In GIC scheme, interfaces between crystalline phases are classified into
four mutually exclusive types according to the three geometric factors, namely,
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compact planes (CP), compact directions (CD), and interface unit cells, which are
detailed as follows:

Type I: the habit planes of both crystals coincide with the interface plane and the
CP.

Type II: at least one of the two habit planes from each crystal is non-compact;
however, the interface contains compact directions of the two crystals that are
aligned.

Type III: the interface does not match the CPs or the CDs. The unit cells, however,
are similar in that they have the same basic shape.

Type IV: the interface does not belong to Type I, Type II, or Type III.

Atomistic modeling combined with interface defect theory can be employed to
determine the characteristics of all types of interfaces, such as their structures (Kang
et al. 2012a, b; Wang et al. 2012b, 2014b; Misra et al. 2005b; Salehinia et al. 2015)
and properties (Zheng et al. 2015; Zhu et al. 2010; Wang et al. 2009e; Liu et al.
2011; Kramer and Foecke 2002; Tian and Zhang 2012). As shown in Fig. 4, the four
types of interfaces show distinct structural characteristics. In addition, interfaces that
belong to the same type show strikingly similar structural features.

Two instances of Type I interfaces, namely, the Cu-Ni (111) interface, are shown
in Fig. 4a. Indeed, the habit planes of Cu and Ni are all CPs at the interface planes;

Fig. 4 Typical examples of Type I, Type II, and Type III interfaces (Shao et al. 2018a)
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the interfaces are therefore atomically flat. Networks of misfit dislocations are visi-
ble (light blue and red-colored atoms) and accommodate the transition of lattice con-
stants, structures, and orientations (Wang et al. 2014a; Hirth et al. 2013). In general,
the particular structure of the misfit dislocation network, i.e., dislocation character
(edge, screw, or mixed), dislocation spacing, and number of dislocation sets, is
dependent on the size and shape of the natural dichromatic patterns of the two join-
ing crystals on the habit planes (Wang et al. 2013; Hirth et al. 2013) and the gamma
surface at the interface (Salehinia et al. 2015; Chen et al. 2017; Shao et al. 2014a).

Figure 4b shows two examples of Type II interfaces, namely, the Cu-Nb
{112}fcc||{112}bcc and the Cu-Ni (111) interface with 5◦ tilt about the <110>
direction. Since there is only an alignment of one CD, this type of interface is
often faceted. These facets are in fact small patches of coherent regions where the
respective habit planes of the joining crystals on the facet are CPs. The coherent
facets are typically of relatively low excess energy. As a result, Type II interface,
although comprising coherent facets separated by interfacial line defects (such
as dislocations and disconnections), is still relatively low in specific energy. The
Burgers vectors of the line defects can be parallel to and out-of-plane with respect
to the facets as well as the interface plane.

Example of Type III interfaces, Nb-NbC interfaces with and without a tilt, are
shown in Fig. 4c. Due to the presence of similar unit cells on the habit planes, this
type of interfaces may still be preferred, even in the absence of aligning CD and CP.
The non-compact habit planes are often either atomically flat (Nb-NbC interface)
with relatively high atomic packing factor or faceted with patches of flat regions
(Nb-NbC interface with tilt). In both scenarios, one or more sets of interface misfit
dislocations/disconnections (the Burgers vectors of which can be parallel or out-of-
plane with respect to the interface) separate these patches of coherent regions. Due
to the strong Nb-C bonds, the Type III (001) interfaces are energetically preferred
for Nb-NbC over other interface types.

Type IV interfaces typically constitute the general grain boundaries and are
geometrically more complex. Characters in such interfaces can be approximately
described by treating them as a superposition between small patches of interfaces of
Types I–III and periodic interface dislocations, disconnections, and/or low-energy
ledges.

One or more sets of interface line defects commonly exist on all types of interface
described above (Hirth et al. 2013). Although the net defect content obeys the
Frank-Bilby (F-B) theory, specific variations in the interface structures may be
complex and must be resolved by atomistically informed Frank-Bilby theory and
high-resolution microscopy (Wang et al. 2013; Hirth et al. 2013; Salehinia et al.
2015).

Mechanical responses (such as shear) of interfaces within each type also show
similar behaviors. The shear responses of Types I and II interfaces are summarized
in Fig. 5, using the Type I Cu-Nb Nishiyama-Wassermann (N-W, {111}fcc||{110}bcc)
interface and the Type II Kurdjumov-Sachs (K-S, {112}fcc||{112}bcc) as examples.
As shown, the shear strength of the Type I interface (Fig. 5b) is (i) significantly
lower than the theoretical shear strengths in perfect crystals of Cu and Nb and (ii)
is in-plane anisotropic. The shear mechanism for the Type I interface, as revealed
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Fig. 5 Structure, shear strengths, and shear mechanisms of Type I N-W Cu-Nb (a–c) interface and
Type II K-S interface (d, e) (Wang et al. 2014a)

by interfacial disregistry analysis (Fig. 5c), is the easy nucleation and expansion of
interface dislocations (loops) at the interface dislocation nodes or the glide of misfit
dislocations if the habit planes for both joining phases are compact/near-compact.
The in-plane, anisotropic shear resistance for the Type II interface is plotted in
Fig. 5e. As shown, the shear strength along the compact directions is relatively
low (Fig. 5d), and when shear deformation is applied along the non-compact
directions, lattice dislocations may nucleate and emit from interfaces (Fig. 4b).
Type III interfaces do not possess compact directions or compact planes; hence
they typically do not slide in response to in-plane shear load. Instead, the shear
loading is accommodated by nucleation and emission of lattice dislocations from
interfacial intrinsic dislocations. The shear response of Type IV interfaces is more
complicated due to the disordered atomic structure. At room temperature, they are
typically associated with a high shear resistance (>2.0 GPa) in concomitant to either
atomic reconstruction or the nucleation/emission of lattice dislocations.

2.2 Dislocation Nucleation at Interface

Lattice dislocations can be nucleated from interface via two distinct mechanisms,
namely, (1) creation of a complete new loop due to stress concentration and
(2) dissociation of a pre-existing misfit dislocation into a lattice dislocation half
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loop and an interfacial residual dislocation. In the first mechanism, the interfacial
dislocations typically retain their Burgers vector, unless the deposited portion of
the nucleated loop reacts with the intrinsic interface dislocations. In the second
mechanism, the Burgers vectors of the intrinsic interfacial dislocations are altered.
For instance, on a pristine K-S {111}fcc||{110}bcc interface, there are only misfit
dislocations with in-plane Burgers vectors. Therefore, lattice dislocations with out-
of-plane Burgers vectors can only be produced in full loops via stress concentration
(Fig. 5a). On the other hand, the faceted K-S {112}fcc||{112}bcc interfaces have
lattice misfit with components both inside and out of the interface plane. Under
a mechanical excitation, the intrinsic interface defects can therefore dissociate into
a lattice dislocation and an interface residual.

The theoretical model and the atomistic simulations (Zhang et al. 2011, 2012;
Wang et al. 2012b; Beyerlein et al. 2013a, b) indicated that only higher ranking slip
systems can be nucleated from the interface. Nucleation of lattice dislocations with
low-ranked or zero Schmid factors (also known as the non-Schmid effect) is not
observed. The nucleation behavior of lattice dislocations from interface, similar to
the interfaces’ shear responses, can be classified by their types (Fig. 6). On a Type

Fig. 6 Schematic illustrations and snapshots of atomistic configurations demonstrating the mech-
anisms of lattice dislocation nucleation at interfaces. Three figures, respectively, show typical
scenarios when interface dislocations lines are (a) parallel, (b) near-parallel, and (c) non-parallel
to the trace of glide planes at interface (Wang et al. 2014a; Beyerlein et al. 2013b)
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I interface (Zhang et al. 2011, 2012), there are commonly aligned traces of glide
planes and the intrinsic interfacial dislocations. Due to the low shear resistance of
interface, the local intensive shear results in the nucleation of lattice dislocations
along the lines of interface dislocations (Fig. 6a). On Type II and III interfaces
(Wang et al. 2012b, 2013), the interface dislocations may have Burgers vectors
that are out of the interface plane. Their cores are typically non-planar even though
they may have an in-plane Burgers vectors (Shao et al. 2018b). For these types
of interfaces, dissociated-based nucleation is easier when interface dislocations
are along or near-parallel (such as shown in Fig. 6a, b) to the interfacial traces
of glide planes. When this parallelism cannot be established, nodes can serve as
nucleation sites associated with the reassembly of interface dislocations around the
node (Fig. 6c).

2.3 Dislocation Transmission Across Interface

Slip transmission for dislocation across interfaces takes place, to a large degree,
depending on the structure of a given interface. For the investigation of slip
transmission, two important criteria, both geometrical and energetic, have to be
considered. Geometrically speaking, in order for transmission to happen, slip
systems of the crystals on both sides of the interface have to be well aligned to
provide an efficient slip path way. A good alignment between slip systems from
both crystals requires that their Burgers vectors are aligned and their slip planes join
at the interface. A geometrical factor, χ , that describes the alignment of these slip
system can therefore be expressed as (Werner and Prantl 1990)

χ =
〈
cos

(
π

2

θ

θc

)〉 〈
cos

(
π

2

κ

κc

)〉
, (1)

where κ is the minimum angle between their Burgers vector, θ is the minimum angle
between the intersection lines that each plane makes with the interface (Roters et al.
2010), and θc and κc are the limiting angles for κ and θ, respectively. The bracketed
<x> has value 0 when x < 0, and a value of x otherwise. Apparently, an efficient
transmission path across the interface would have χ = 1 (Beyerlein et al. 2013b).
Equation (1) also implies that when κ > κc or θ > θc, χ = 0, i.e., transmission is not
possible. Note that χ is purely a geometrical measure and is independent of local
stress. Since the Schmid factor of the outgoing slip system, mOUT, is also a limiting
geometric factor (Lee et al. 1989), Eq. (1) can be modified: χσ = χmOUT.

Energetically, easy transmission demands a low activation barrier. For instance,
a glide lattice dislocation tends to spread within interfaces with low shear strengths
(weak interfaces) and reduces its self-energy. Slip transmission would require the
dislocation to re-constrict its core, leading to a relatively high energy barrier.
Weak interfaces are therefore difficult for dislocations to pass. Conversely, stronger
interfaces offer lower resistance for dislocation passing due to the significantly less
pronounced core spreading.
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Generally, since the phases joining at the interfaces can be of different
crystal structure, orientation, elastic properties, chemistry, etc., dislocations are
energetically favored to be trapped at interfaces rather than crossing it (Wang
et al. 2008b). The complete transmission phenomenon is indeed an absorption-
nucleation-emission process (Wang and Misra 2011).

2.4 Dynamic Recovery of DislocationsWithin Interface

Remarkably, in multilayered materials fabricated via the ARB route, such as the
roll-bonded Cu-Nb, the interfaces develop well-ordered atomic structures with
preferred orientation relations, even under severe plastic strains (Beyerlein et al.
2014). In order to attain such extraordinary stability under such extreme conditions,
mechanisms must be in place for interfaces to recover from the accumulation of
damage due to the defect-interface interactions. For instance, interfacial defects
can move, annihilate, or assemble then re-emit into the joining phases (Wang et al.
2011). Relative to their reaction rates, the mobility of these defects within interfaces
are the limiting mechanism. Characteristics of an interface, such as its geometry,
defect structure, and defect content, may all lead to different levels of difficulty
for a defect to move. The interfaces with the right combinations of such attributes
that facilitate motion of defects are less susceptible to accumulation of extrinsic
interface defects, leading to a stable interface structure and orientation relation.
These interfaces are therefore referred to as kinetically stable interfaces. Conversely,
interfaces with poor defect mobility are referred to as kinetically unstable interfaces.

3 Fundamental Aspects of Interface Dislocation Dynamics

Interface-mediated plastic deformation mechanisms, as shown in Sect. 2, can be
described by the motion/reaction of line defects at/near interfaces. By incorporating
the interface physics in existing DD models, the AIDD model is developed (Wang
et al. 2014a). The essential aspects are summarized as follows:

1. The interface is modeled as a piecewise flat “slip” plane, allowing the glide
and climb motion of interface dislocations, depending on the relation between
Burgers vector and the local interface plane normal.

2. Two distinct types of dislocations are modeled – interface dislocations and lattice
dislocations. The interface dislocations include the intrinsic interface dislocations
(misfit dislocations) as well as the extrinsic interface dislocations (deposited by
lattice dislocations).

3. The evolution of dislocation aggregations inside the constitutive phases in the
UFG and at the interfaces is dependent on the dislocation activities within phases,
interfaces, and interchanges between the two. The mobility law and reaction rules
of dislocations within the constitutive phases are identical to the conventional
DD models (El-Awady et al. 2009; Ghoniem et al. 2000; Shao et al. 2014b; Hirth
et al. 1998; Zbib and Diaz de la Rubia 2002). The laws for the motion/reaction
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of the interface dislocations (e.g., drag coefficients and vacancy/interstitial
migration energies) are different from that for the lattice dislocations and are,
therefore, necessary to be calibrated using atomistic simulations/experimental
observations.

4. Interchange between the lattice and interface dislocations can happen via the
entrapment of lattice dislocation at interfaces and the nucleation/emission of
lattice dislocations from interfaces.

In this section, the implementation of such interface physics, including intrinsic
interface dislocation structure as well as the unit reaction mechanisms, in the AIDD
model is discussed in detail.

3.1 Description of Interface Structures

Structure of the intrinsic interface dislocations (misfit dislocations) can be uniquely
obtained via the atomistically informed Frank-Bilby (AIFB) theory (Wang et al.
2013; Hirth et al. 2013; Chen et al. 2017). Taking the Al-TiN interface as an
example, the crystal structures of Al and TiN are FCC and zinc blende (in which
both Ti and N atoms form FCC lattices), respectively. Experimental observations
and ab initio calculations (Xie et al. 2009; Yadav et al. 2015) revealed that
the adjoining Al and TiN have preferred orientation of <110>Al||<110>TiN on
{111}Al||{111}TiN and form a Type I interface. The lattice constants of Al and
TiN are aAl = 4.05 Å and aTiN = 4.25 Å, which corresponds to a 5% lattice
mismatch. This mismatch results in a semi-coherent interface with the spacing
between misfit dislocations of around 6 nm. Since zinc blende structure is similar
to FCC, the (111) interface between Al-TiN is geometrically similar to a (111) Cu-
Ni interface (Fig. 7a). Similarly, the Al-TiN interface is decorated with FCC and
HCP coherent patches separated by a hexagonal/triangular network of Shockley
partial dislocations (Yadav et al. 2015). The interface stacking fault energy on the
Al-TiN interface, according to first principles calculations, is above 1 J/m2 (Yadav
et al. 2015); this energy is extremely high compared to that of the Cu-Ni (111)
interface (∼0.04 J/m2). Atomistic simulations performed on (111) Cu-Ni interface
reveals that high interface stacking fault energy results in the recombination of
Shockley partial dislocations forming perfect dislocations (Fig. 7b) (Shao et al.
2013). Therefore, the misfit dislocation network of Al-TiN is modeled in AIDD
as a combination of perfect and partial dislocations (Fig. 7c) (Yadav et al. 2015).
In practice, to improve computational efficiency of AIDD, the spacing is enlarged
while preserving the geometrical feature of the dislocation network.

3.2 Dislocation Nucleation at Interface

The treatment of lattice dislocation nucleation (Fig. 8a) from interfaces is carried out
in several steps: (1) the dislocation lines are checked with respect to the traces of
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Fig. 7 Incorporating atomistic information of the Cu-Ni interface, the dislocation structure of the
Al-TiN (111) interfaces is obtained. (a) Shows the structure of Cu-Ni (111) interface obtained
from atomistic simulation, (b) shows structure of an Cu-Ni (111) interface with an augmented
interface stacking fault energy, (c) shows the dislocation structure of the Al-TiN (111) interface as
implemented in the AIDD (Shao et al. 2018a)

slip planes (faint dashed lines) for parallelism, (2) a dislocation segment of a finite
length that is parallel or near-parallel to a trace is “pulled” on to the trace and is
registered as potential dislocation nucleation sources, and (3) the nucleation is then
commenced on a fraction of the selected sources according to a global nucleation
rate shown below. The various situations in which a dislocation can be selected as a
source are shown in Fig. 8a.

The global dislocation nucleation rate in a crystalline material under stress can
be written as (Hirth and Lothe 1982):

J = VCnωn0 exp

(−�Eline + πr2bτa/2

kT

)
(2)

where V is volume of the material, ω is the frequency that an atom on the periphery
joins the critical nucleus, n0 is the instantaneous concentration of the number
of the nucleation sites for lattice dislocation identified by step (2), and Cn is a
numerical term to scale the global probability. The exponential term in Eq. 2 gives
the probability of finding a particular nucleation site in critical condition, �Eline
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Fig. 8 (a, b) Schematics of the implementation of nucleation mechanism in AIDD. (c) The
realization of slip transmission across interface via a series of nucleation events, shown by actual
snapshots of dislocation configurations from AIDD (Shao et al. 2018a)

is the change in dislocation line energy associated with the nucleation of a critical
dislocation half loop, r is the radius of a critical nucleus, and τ a is the resolved shear
stress on each of the slip systems due to the applied stress. The current version of
the AIDD model does not explicitly compute contribution of stacking fault energy to
nucleation. A nominal, uniform radius of critical nucleus is assumed. The actual size
of the nucleus can be computed from experimental observations. This nucleation
routine is performed periodically, namely, every �T = n�t (�t is the numerical
time step), a total of J�T sources are activated. The selection of the nucleation
sites to be activated is achieved by a random Monte-Carlo process (Gillespie 1976)
constrained by the relative nucleation probability per site (Fig. 8b).

Each of the potential nucleation sites can nucleate lattice dislocations with dif-
ferent Burgers vector, radius of the nucleus (half length of the interface dislocation
segment) at different local resolved shear stress. Each combination of these factors

is associated with a distinct probability, P (j)
i

(
b
(j)
i , τ

(j)
i , ri

)
:

P
(j)
i = exp

(
−�E

(j)
i + πr2

i b
(j)
i τ

(j)
i /2

kT

)
. (3)
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Variables in Eq. 3 are similar to those in Eq. 2, but they represent local
information at a particular source for a particular nucleation scenario. The Monte-
Carlo selection process (Fig. 8b) is carried out by first constructing a grand
probability interval according to Ptotal = ∑

i,j P
(j)
i and generating a random

number r̂ ∈ [0, 1). A particular nucleation scenario at a nucleation source is selected
if r̂Ptotal falls within the corresponding subinterval.

Kinematically, a lattice dislocation is nucleated by introducing a semielliptical
half loop with a designated Burgers vector on to the selected slip plane. The two
ends of the loop coincide with those of the interface dislocation source. Interface
dislocation source is now the residual dislocation, bres = bint. − b

(j)
i . Under the

drive of a sufficient resolved shear stress, the nucleated dislocation can propagate
within the grain/phase until it reaches an adjacent interface. Slip transmission can
be captured using the current nucleation scheme. Figure 8c shows the successive
snapshots of dislocation structures for nucleation of a lattice dislocation and
subsequent transmission of another lattice dislocation to the other side of the
interface.

3.3 Reaction Kinematics of DislocationsWithin Interface

Figure 9 lists typical reaction kinematics of interface dislocations that has been
implemented into the AIDD model. An interface dislocation, depending on its
Burgers vector, can glide or climb on the interface plane, i.e., when binter · n̂inter =
0, the dislocation is glissile; otherwise, it can only move by climb. If portions
of two dislocations are in close proximity and have the same Burgers vector
and opposite line sense, they annihilate (Fig. 9a). The reaction is expressed as
breact. 1 − breact. 2 = 0. The reaction between two non-opposite dislocations is still
permitted (Fig. 9b) if they are (1) critically close, (2) near-parallel line sense, and
(3) if the resulting dislocation has lower line energy, i.e.

b2
react.1 + b2

react.2 > b2
product . (4)

As a result of this reaction, two new nodes form at both ends of the newly
formed dislocation segment (junction). As discussed in Sect. 2.4, when the reactant
dislocations are of climb type, these mechanism are responsible for the dynamic
dislocation recovery at interfaces.

Near a dislocation node, more complex reactions are possible. If two dislocation
“arms” branching out from a single condensed node are attracted to each other and
satisfy Eq. (1), they react and result in an extended nodal structure comprising two
nodes and a junction (Fig. 9c). A dislocation line (represented by the two dislocation
arms colored in green in Fig. 9c) may detach from an extended node when it does
not intersect other dislocation lines topologically (i.e., its arms lie adjacent to each
other and on one side of the extended node). The result is an extended node with
the number of arms in each condensed node reduced by one. Similar to the behavior
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Fig. 9 Schematic illustration of possible reaction kinematics implemented into the AIDD

of dislocation junctions in a grain/phase (El-Awady et al. 2009; Hirth et al. 1998;
Zbib and Diaz de la Rubia 2002), the nodes can move via the zipping/unzipping
mechanism (Fig. 9e).

The reactions among interface dislocations over an extended time and loading
history may produce “debris,” in the form of small dislocation geometries, such as
dislocation loops and small extended nodes (Fig. 9f1, f3). Some small geometries
do not have long range stress field and can be eliminated to improve computational
efficiency (Fig. 9f2).

3.4 Dislocation-Interface Interactions

When lattice dislocations approach within a critical distance to a “strong” interface,
they are captured by the interface and converted to interface dislocations; their
Burgers vectors are conserved (Wang et al. 2014a; Shao et al. 2018a; Beyerlein
et al. 2013a, b). If an interface dislocation with near-parallel line sense is present, the
incoming lattice dislocation may react with it and form a new interface dislocation
(Fig. 10a, b), once the reaction leads to a lower dislocation line energy, i.e.,
b2

lattice + b2
inter > b2

result. On the other hand, when a “weak” interface with relatively
low shear strength is considered, interface dislocation loop may nucleate associated
with the localized shear in response to the stress field of the incoming lattice
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Fig. 10 Schematic illustration of lattice dislocation – interface interaction mechanisms as imple-
mented in the AIDD model

dislocation (Fig. 10c, the interface plane is color coded by absolute magnitude of
resolved shear stress).

When the interface spacing is below ∼100 nm, dislocation motion is confined
between adjacent interfaces. The CLS mechanism is modeled in AIDD (Fig. 10d)
such that if the angle between a dislocation segment and the interface is small
(θ < θc), it will be continuously deposited on the interface, and the remaining
dislocation will “thread” within the layer. Conversely, if the direction of the resolved
shear stress and the bow-out direction of the threading dislocation reverse, the
retraction of the deposited dislocations on the interfaces (extrinsic dislocations) can
be achieved.

The extrinsic dislocations create strong back stress to the threading dislocations
in their vicinity and give rise to a high strain hardening rate in the multilayered
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materials (Wang and Misra 2014). However, the hardening rate is dependent on
the localization of interfacial dislocations’ cores. Core delocalization (core-spread)
is expected to moderately relieve the back stress from the extrinsic interface
dislocations. A spread dislocation core is modeled in the AIDD by treating a
dislocation line as a set of n parallel dislocation lines distributed across a width
(w) with reduced Burgers vector (b/n). This is shown in Fig. 10e, f.

4 Applications of Atomistically Informed Interface
Dislocation Dynamics

The AIDD model has been applied to the deformation of the metallic multilayers
(Cu-Nb) and metal-ceramic multilayers (Al-TiN) (Wang et al. 2014a; Shao et al.
2018a; Huang et al. 2015). In this section, we briefly review these applications and
discuss the capabilities of the AIDD model.

4.1 Metallic Multilayers

The mechanical response of Cu-Nb multilayers has been investigated by an
AIDD simulation. In this simulation, the dimensions of the simulation box are
0.5× 0.5× 0.1 μm. Equal thickness of 50 nm has been assigned to Cu and Nb
layers. Full periodic boundary conditions are applied. As an initial condition,
dislocation loops with random Burgers vectors (obeying crystallographic relations
in Cu and Nb, respectively) were inserted in both interfaces corresponding to an
initial dislocation density of 1.8× 1015 m−2. An in-plane stretch loading is applied
to the model by prescribing ε̇xx = ε̇yy = ε̇app and σ zz = 0, where the x and y
are in-plane orthogonal directions and z is perpendicular to the interface plane. The
stress-total strain curves for Cu and Nb individual layers and the multilayer are
shown in Fig. 11a. Agreeing well with atomistic simulations (Abdolrahim et al.
2014), in AIDD, Cu layers yielded earlier than Nb layers, due to lower activation
energy barrier in Cu. After nucleation of lattice dislocations, the lattice dislocations
continued propagating similar to the Frank-Read mechanism. After continued
propagation, the portion of the dislocation loop approaching the interface eventually
was absorbed by the interface. Truncated by the absorption event, the remainders
of the dislocation loop within the layers thread within the layers following the
CLS mechanism. The gross behavior of dislocations is reflected in the evolution
of dislocation densities in Fig. 11b. Corresponding to the stress-strain curves shown
in Fig. 11a, an increase in dislocation density is first observed at a total strain of
around 0.5% and 0.8%, corresponding to the strains at which dislocations in Cu
and Nb were nucleated. The dislocation density in the two interfaces can be seen to
constantly rise after nucleation. This is due to the operation of the CLS mechanism,
where extrinsic interface dislocations are continuously deposited on to the interfaces
as the threading dislocations propagate.
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Fig. 11 Results from the AIDD simulation of Cu-Nb multilayers, including (a) the stress-strain
curves and (b) the dislocation densities for the individual layers and the composite, as well as a
snapshot of dislocation configuration during simulation (Wang et al. 2014a)

4.2 Metal-Ceramics Multilayers

Two main sources contribute to the strain hardening of the metal-ceramic multi-
layers, namely, (1) the relative slip activity between the metal and ceramic layers
and (2) the back stress imposed by the “deposited” (extrinsic) dislocations at
interfaces (Wang and Misra 2014). The effect of the first source is demonstrated
here (Shao et al. 2018a; Huang et al. 2015) using the Al-TiN as the materials of
choice. The metal layers, contrasted with the ceramic layers, typically undergo
much more extensive plastic deformation ascribed to factors including lower yield
strength, easier nucleation of dislocations, and higher dislocation mobility. In
Al layers, plastic deformation takes place following the CLS mechanism, i.e.,
threading dislocations propagate within the Al layer bound by the interfaces and
deposit extrinsic interface dislocations. In experiments, the mechanical properties
of the Al-TiN multilayers have been extensively evaluated using compressive tests
normal to the interfaces. Under this loading condition, due to the aforementioned
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incompatibility in plasticity and elastic constants, a large compressive (tensile)
stress exists in the Al (TiN) layer parallel to the interface. The strain hardening
of Al-TiN owing to the first source is ascribed to this factor, which, in turn, is
dependent on the relative slip activity between the metal and ceramic layers. Next
we study the deformation of two cases of Al-TiN: (1) no slip is allowed in TiN
layer, and (2) moderate slip activity is allowed in TiN. The elastic constants used
in the simulations are EAl = 70.7 GPa, μAl = 26.2 GPa, and νAl = 0.35 and
ETiN = 251 GPa, μTiN = 100.4 GPa, and νTiN = 0.25. The computational cell has
periodic boundary conditions in all three directions. The dimensions in x and y are
around 1 μm. In the computational cell, the Al layers have the same thickness of
35 nm.

For this demonstration, both Al and TiN layers are initially dislocation free; the
plasticity therefore initiates via the interface nucleation of dislocations. For the cases
considered, the nucleation rate for Case 1 is zero, while nucleation rate for Case 2
is non-zero but JTiN < <JAl. The mobility of dislocations in TiN is also much lower.
The results of the simulations are shown in Fig. 12. Apparently no dislocations are
present in TiN in Case 1, while a few dislocations are visible in Case 2. Dislocation
activity is observed in Al in both cases. In Case 2, the plastic deformation in TiN
layer at total strain of 5%, εTiN

p , is only about 13% of the plastic strain in Al, εAl
p .

Although this is the case, it significantly reduces the strain hardening rate (red
dashed curve in Fig. 12a). The AIDD model with the plasticity enabled in TiN
layer shows good agreement with the experiments by Bhattacharyya et al. (2011).
The stress-strain curves normalized by the measured compressive elastic moduli
of the simulations compared with the experimental results are shown in Fig. 12a.
Although the yield point shows a small difference (a parameter that can be easily
adjusted in AIDD), the simulated strain hardening rate for Case 2 approaches the
values observed in the experiments. The results also indicate that the plastic co-
deformation between the Al and TiN layers is necessary for the observed strain
hardening rate in the experiment.

5 Remarks and Perspectives

Bulk ultrafine-grained materials, notably the multilayered materials, can exhibit
a remarkable combination of thermomechanical properties, such as high yield
strength, good ductility, thermal stability, and mechanical stability at extreme
strains. All of which are ascribed to a number of unique characteristics of these
materials, namely, high density of internal surfaces (interfaces), intergrain/in-
terphase/interlayer geometrical constraints, highly regulated layer thickness, and
finely tuned interface properties (including orientation relation, atomic and defect
structure, and in-plane shear strengths).

Specifically, these extraordinary properties stem from the ability of the nanolam-
inates in regulating the behavior of glide dislocations. The interfaces serve multiple
roles to dislocations, including the sources, barriers, as well as sites for storage,
reaction, and dynamic recovery. Deep understanding toward these interface physics
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Fig. 12 Results from the
AIDD simulations of Al-TiN
multilayers: (a) stress-strain
curves with experimental
result from Bhattacharyya
et al. (2011) and (b) evolution
of plastic strains as a function
of the total strain. Snapshots
of dislocation configurations
of the two simulations are
shown in (c) for Case 1 and
(d) for Case 2 (Shao et al.
2018a)

in the recent year has been provided through an abundant collection of modeling
efforts at various length scales combined with experimental observations. The
fruition of these theoretical studies provided insights using different techniques,
including atomistic simulations (Derlet et al. 2009; Wang et al. 2008b; Wang
and Misra 2011; Hoagland et al. 2002), dislocation dynamics (Zbib et al. 1998;
Shehadeh et al. 2006; Overman et al. 2009), and crystal plasticity (Marin and
Dawson 1998; Groh et al. 2009) simulations. However, a challenge still remains
in the integration of all the discovered interface physics into a unified multiscale
model to realize predictive capability (Wang et al. 2014a, 2009b).
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Abstract

Over the past few decades, discrete dislocation dynamics, a modeling frame-
work allowing for the simulation of the collective motion and interactions of
dislocations in crystalline media, has been the subject of intense development
worldwide. In recent years, a series of novel numerical algorithms, chemo-
mechanical frameworks, and applications have been proposed. These advances
have taken the field closer to enabling predictions of the mechanical response

R. LeSar (�)
Department of Materials Science and Engineering, Iowa State University, Ames, IA, USA
e-mail: lesar@iastate.edu

L. Capolungo
Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos,
NM, USA
e-mail: laurent@lanl.gov

© Springer Nature Switzerland AG 2020
W. Andreoni, S. Yip (eds.), Handbook of Materials Modeling,
https://doi.org/10.1007/978-3-319-44677-6_85

1079

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-44677-6_85&domain=pdf
mailto:lesar@iastate.edu
mailto:laurent@lanl.gov
https://doi.org/10.1007/978-3-319-44677-6_85


1080 R. LeSar and L. Capolungo

of engineering polycrystals, e.g., textured crystalline aggregates with impurities.
Further, interesting pathways have been proposed to bridge discrete dislocation
dynamics simulations with harmonic transition state theory, thereby delineating
potential routes for performing coarse graining from the viewpoint of thermody-
namics. This chapter summarizes some of the important recent contributions in
the field of discrete dislocation dynamics.

1 Introduction

Plastic deformation in crystalline metals is generally a consequence of the collective
motion of large numbers of curvilinear defects called dislocations. The mobility
of dislocations gives rise to plastic flow at relatively low stress levels compared
to the theoretical strength. In a typical metal, dislocation densities, ρ, range from
1010 to 1015/m2, i.e., 1010–1015 m of dislocations per cubic meter of material,
values that typically increase rapidly under applied stress (or strain). Further,
dislocations form organized structures such as pile-ups, walls, and cells (typically
referred to as dislocation substructures). The topological constraints arising from
the crystallography greatly add to the complexity of describing dislocation evolution
and dynamics. More information about dislocations can be found in many places,
for example, in Bacon (1992), Hull and Bacon (2001), and Anderson et al. (2017).

The length scale of dislocation substructures is on the order of many microns,
well beyond what can be studied with atomistic-based methods like molecular
dynamics. To capture the complexity of correlated and collective dislocation motion
and interactions requires a mesoscale approach, in which both the length and time
scales are extended – in comparison to atomistic simulations – by using dislocations
as the simulated entities. In discrete dislocation dynamics simulations (DDD), the
elastic forces on dislocations are calculated, and the equations of motion are solved,
yielding a quantification of plastic strain as a function of an applied load. While
many interesting results have been found using simple two-dimensional models
(e.g., Balint et al. 2008; Quek et al. 2014; Zheng et al. 2016), the focus of this
paper will be on fully three-dimensional DDD simulations.

The purpose of this chapter is to discuss recent advances in DDD simulations, so
in Sect. 2 we give only a brief overview of the basics of dislocation simulations while
pointing out some of the limitations in the methods as usually employed. In Sect. 3,
recent advances in algorithms will be discussed, including methods to extend the
time scales (Sect. 3.1) and recent Green function methods, used to calculate the
stresses arising from the dislocations, that are solved using fast Fourier transforms
(FFT) in Sect. 3.2. Recent advances in applications of DDD are discussed in Sect. 4,
with a specific focus on polycrystalline materials in Sect. 4.1 and the coupling of
DDD with chemistry (Sect. 4.2). Improvements in models for sub-scale physics
are discussed in Sect. 5, focusing on models for transmission across boundaries
(Sect. 5.1) and kinetic models for activated processes (Sect. 5.2). A summary of the
state of the field and a discussion of what new capabilities are needed are captured
in Sect. 6.
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2 Basics of Dislocation Dynamics Simulations

DDD simulations all follow the same general procedure, as shown schematically in
Fig. 1, which indicates the types of calculations needed and the required information
at each step. Here we present the basics of what happens at each time step, with
more details available from many sources, such as (Fivel 2008a, b; Sills et al. 2016b;
LeSar 2014), recent books (Bulatov et al. 2006; Kubin 2013), and another chapter in
this Handbook �Chap. 73, “Line Dislocation Dynamics Simulations with Complex
Physics” by Sills and Aubry.

Dislocations are generally represented as a series of nodes connected by straight
lines (Kubin and Canova 1992; Devincre and Kubin 1997; Zbib et al. 2000) or
spline-fitted curves (Ghoniem et al. 2000; Wang et al. 2006), as shown in Fig. 1a.
As the dislocation network evolves, the nodes must be adjusted (referred to as
remeshing). In Fig. 1a, the red segment (connecting nodes 3 and 4) is a junction
between the dislocation connecting nodes {12345} and the dislocation connecting
nodes {7346}. More details on junctions in dislocation dynamics simulations are
described in another chapter in this Handbook �Chap. 73, “Line Dislocation
Dynamics Simulations with Complex Physics” by Sills and Aubry.

(a) Remeshing
(line discretization)

(b) Forces
calculation

(c) Velocities
calculation

(d) Plastic strain
calculation

(e) Interactions 
(junctions, …)

Mobility law: friction stress, viscous
drag, Burgers magnitude,…

Swept gliding area

Shear increment

(d) Plastic strain
calculation

(e) Interactions
(junctions, …)

Swept gliding area

Shear increment

Fig. 1 Diagram of the main stages composing the basic cycle performed at each time step in
DDD simulations. (a) Dynamic discretization of dislocation lines: the topology of the dislocation
network evolves at each time step requiring discretization to be performed dynamically. (b) Forces
calculation: the stress driving dislocation motion is evaluated from the spatial configuration of the
dislocation network. (c) Velocities calculation: once forces on dislocations have been computed,
the motion of dislocation lines can be calculated through the mobility law. (d) Plastic strain
calculation: the areas swept by dislocation motion allow for the determination of the plastic activity.
(e) Interactions: collisions between dislocations during glide are treated via topological rules. The
DDD cycle (a) to (e) is repeated until simulation is completed
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Once the dislocation network is discretized, the forces on the dislocation
segments must be calculated. These forces are determined by calculating the stress
at each segment and then applying the usual Peach-Koehler force expression
(described in Anderson et al. 2017). For each dislocation node i, the nodal force
Fi is the sum of the contributions by each segment ij connected to node i (Fig. 1a):

Fi =
∑

j

fij , (1)

in which fij is the force on segment ij acting at node i and is found by integration of
the effective force acting along the dislocation segment, as shown in Fig. 1b. More
complete details of the calculation of forces on a node are given in Bulatov and Cai
(2006).

The stresses from the dislocations are generally calculated by adding up ana-
lytical expressions that were derived assuming isotropic elasticity, e.g., as a sum
over individual straight segments (e.g., as presented in Anderson et al. 2017) or, for
curved segments, as an integral over the dislocation line (de Wit 1960; Ghoniem
and Sun 1999). In another chapter of this Handbook �Chap. 73, “Line Dislocation
Dynamics Simulations with Complex Physics” by Sills and Aubry, recent advances
for calculating stresses based on anisotropic elasticity are discussed.

A major challenge is that the stresses from a dislocation are long ranged and
special methods are needed to sum those interactions efficiently. A particularly
effective method is the fast multiple method, which has been used in both two-
dimensional simulations (Wang and LeSar 1995) and, more recently, in three
dimensions (Arsenlis et al. 2007). Another approach, called the box method (Verdier
et al. 1998), is less accurate but easier to implement and has less computational
overhead and thus likely to be more computationally efficient for small systems.
Given that the stress calculation represents the major computational burden, much
effort has been made to increase its efficiency through the use of highly parallel
computational methods, as in, for example, Arsenlis et al. (2007) and Wang et al.
(2006). An alternative approach, based on a direct fast Fourier transform (FFT)-
based integration of the Green function to calculate the stress, is described in
Sect. 3.2.

The equations of motion for the dislocations are then solved for a given time step.
At high strain rates, the full damped dynamics equations of motion are required
(Wang et al. 2007) for each node:

d
(
m0

i vi

)

dt
= Fi − γ vi , (2)

in which, for each node i, m0
i is the effective mass (which depends on the velocity

as described in Hirth et al. 1998), vi is the velocity, Fi is the force on the node from
Fig. 1a, and γ is the damping coefficient. For strain rates in the range of 104 s−1 and
below, it is usually sufficient to assume that the time to reach terminal velocity is
small relative to the time step used to solve Eq. (2) (Wang et al. 2007) and equations
assuming overdamped dynamics can be employed, with the velocity of the ith node
given by
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vi = M · Fi , (3)

in which M is the mobility tensor. Mobility laws are discussed in �Chap. 73, “Line
Dislocation Dynamics Simulations with Complex Physics” by Sills and Aubry.

The simplest approach to solve for the new nodal position (Ri) is to use a linear,
forward, Euler integration based on Eq. (3) and a time step δt :

Ri (t + δt) = Ri (t)+ vi (t)δt . (4)

The choice of time step in Eq. (4) is critical, for if the nodal displacement (ΔRi (t) =
vi (t)δt) approaches the size of the segments to which node i is connected,
instabilities can arise. One way to minimize instabilities is to use a dynamic time
step, which can be done in a number of ways. A particularly simple approach is
to prescribe the maximum distance of a nodal displacement, δRmax, calculating
the absolute value of the maximum force on a node |F |max at each time step and
setting the time step by δt = δRmax/|F |max. δRmax can be varied to achieve stable
integration of the nodal positions; however, the time steps can be very small (on
the order of 10−13 s or less) for situations in which dislocations are close together
(Wang et al. 2007).

A major issue with the simple integration scheme just described is that there is
no way to set an accuracy of the time integration. One approach to improve the time
integration and allow for longer time steps is by the use of “predictor-corrector”
methods. Predictor-corrector methods use an iterative procedure to find the change
in nodal positions. For example, the Heun’s method (used in the commonly used
DDD program ParaDiS) is a second-order accurate explicit method that uses a
forward predictor (Sills et al. 2016a):

R0(t + δt) = R0(t)+ δt v(t) , (5)

coupled with a trapezoidal method corrector,

Rj+1(t + δt) = R0(t)+ δt

2

(
v(t)+ vj (t)

)
, (6)

in which R is the nodal position, v is the nodal velocity, and the superscript j

indicates the iteration number. The error is estimated as

Eiter = ||Rj+1(t + δt)− Rj (t + δt)|| , (7)

in which ||·|| is the L2 norm. An iteration proceeds until Eiter is less than a prescribed
parameter. In Sills et al. (2016a), other, more complicated and more accurate, time
integration algorithms are discussed. The time step is dynamically chosen to control
the absolute error at each time step, with an error tolerance set by the user. Details
are provided in Sills and Cai (2014).

Sills et al. (2016a) described the effectiveness of time integration schemes in
simulations of strain hardening in samples with dislocation densities in the range of
0.5 to 3×1012 m−2. When using the Heun algorithm, the authors found that accurate
integration of the equations of motion required a range in time steps between 10−14
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and 10−11 s, with an average time step of 6.5 × 10−13 s. Such small steps limit the
utility of DDD simulations to relatively small total times, which in turn limits the use
of DDD to achieve high levels of strain when using relevant strain rates. In Sect. 3.1,
we will discuss recent progress on advanced algorithms for time integration.

In part (d) of Fig. 1 are shown the two stages for calculating the net plastic
strain after having determined the dislocation motion. First the area swept by the
dislocation is calculated, yielding the amount of shear on its slip plane, dγ s in Fig. 1.
The total plastic strain increment dεp is the projection of the shear summed over all
slip systems s.

The final step of a simulation involves the inclusion of various models that
describe sub-scale physics, i.e., physics that is inherently atomistic in nature, which
includes the formation of junctions, annihilation, and dissociation. The compu-
tational challenges include the detection of possible events and the topological
procedures needed to ensure that the correct physics is being modeled. Some
aspects of these models are discussed elsewhere in this Handbook �Chap. 73, “Line
Dislocation Dynamics Simulations with Complex Physics” by Sills and Aubry.

All three-dimensional discrete dislocation dynamics calculations involve these
basic steps. In the next section, we discuss new algorithmic developments that
extend the capabilities of DDD simulations to longer times and more complex
microstructures.

3 Recent Advances in Algorithms

The key computational challenges of discrete dislocation dynamics as usually
employed are the time it takes to calculate the stresses, the use of equations for
the stress based on isotropic elasticity, and the very small time steps needed to
resolve motion when dislocations are close together (discussed in Sect. 3.1). As
noted above, much effort has been spent developing ways to reduce the time needed
for calculating the stresses by using ways to speed up the calculation of long-range
stresses, the use of parallel computation, and, more recently, the use of GPUs.

As discussed elsewhere in this Handbook �Chap. 73, “Line Dislocation Dynam-
ics Simulations with Complex Physics” by Sills and Aubry, the inclusion of
anisotropic elasticity has been addressed by many researchers, with a number
of methods having been developed. Most of these methods, however, are com-
putationally intensive (over 200 times calculations based on isotropic elasticity)
and thus have been rarely used (Yin et al. 2010). Recent work by Aubry and
coworkers (Aubry and Arsenlis 2013) using a spherical harmonic expansion of
the Green function has led to increased efficiencies of the anisotropic calculations.
The computational expense of these methods is highly dependent on the anisotropy
factor, ranging from a 50% increase for an anisotropy factor of about 2 (aluminum)
to a factor of 60 increase for an anisotropy factor of 7.4 (iron). In Sect. 3.2, we
will discuss a new approach that reduces the excess computational burden even
further.
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3.1 Extending Time Scale

The question of finding efficient time integration schemes is recognized as a key
issue for discrete dislocation dynamics, as discussed in a series of recent papers
(Gardner et al. 2015; Sills and Cai 2014; Sills et al. 2016a). In this section, we
focus on recent work that extends the time scales to enable simulations of complex
phenomena that require long times, for example, models of work hardening that
achieve strains relevant to experiment.

As noted in Sect. 2, the time steps needed for accurate solutions to the equations
of motion in discrete dislocation dynamics calculations are typically small enough
to limit simulations to small plastic strains. The small time steps are the result of
dislocations that are sufficiently close together so that the net forces between them
are quite high and nonlinear. The motion of dislocations that are not close to other
dislocations will generally have slowly varying interactions and can be accurately
calculated with much larger time steps. The disparity of time steps suggests the
need for a method that employs time step subcycling for those dislocations that
have nearby dislocation and require small time steps.

Cai and coworkers (Sills et al. 2016a) present a specific approach for efficient
time integration that is based on the use of the ParaDiS code. ParaDiS represents
dislocations as a series of nodes connected by segments and employs the O(N) fast
multipole method (FMM) to calculate the long-ranged stress fields. In the FMM, the
net stress at a point is determined by direct sums of the pairwise stresses for nearby
dislocations and a hierarchical multipole expansion for more distant dislocations.
ParaDiS employs the Heun’s method from Eqs. (5), (6), and (7) to do the time
integration. In Sills et al. (2016a), they also examine the use of more advanced time
integration schemes, but we will restrict the discussion to results with the Heun
method.

The method of Sills et al. (2016a) is a force-based subcycling. The set of forces
on the segments are divided into groups based on the minimum distance between
the segments and their neighboring segments, as shown schematically in Fig. 2a.
The forces between all segments that lie between zero and r2 are assigned to group
2, forces for segments between r2 and r3 are in group 3, forces between segments
with distances between r3 and r4 are in group 4, and all other forces are assigned to
group 0, the global group.

Based on velocities of the segments (Eq. (3)), segments in the global group
(0) are evolved using a standard time evolution algorithm (e.g., Heun), and the
global time step is determined. For segments in other groups, a sequential splitting
method (Geiser 2009) is employed, continuing until the time integration converges.
Additional procedural and details are described in Sills et al. (2016a).

The subcycling time integration approach was tested (by comparing the calcula-
tions based on standard time integration Sills et al. 2016a) for the same simulations
of strain hardening in samples with dislocation densities in the range of 0.5 to
3 ×1012 m−2 described above. For these studies, the groups were created using
rg2 = 100b, rg3 = 600b, and rg4 = 1600b, where b is the Burgers vector. As
noted above, with the Heun algorithm and no subcycling, the average time step
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Fig. 2 (a) Schematic view of
how interaction forces are
assigned to subcycle groups
based on the minimum
distance between segments.
The dashed ovals represent
regions of constant minimum
distance from the segment
centers at distances of rg2,
rg3, and rg4. In their
approach, rg1 = 0 so the
segment’s self-interaction is
assigned to group 1. Colors
and numbers indicate the
group. (Adapted from Sills
et al. 2016a)

r2
r3

r4

was 6.6 × 10−13 s. For the same system with time subcycling, the average global
time step (with subcycling) was extended to 1.8 × 10−10 s (Sills et al. 2016a). The
consequence of the longer time step is clear: for the same clock time, the Heun
algorithm without subcycling could calculate a total strain of about 0.13%, while
with subcycling, the net strain was about 0.6%. Overall, the authors found that the
global time step was approximately a factor of 100 larger than in simulations with
no subcycling.

These advances in subcycled time integration offer new possibilities for achiev-
ing higher calculated strains in discrete dislocation dynamics simulations, which
enhances the ability to study such important phenomena as strain hardening. It
remains unproven, however, how much these methods will affect simulations at the
high dislocation densities common in well-worked metals (1015 m−2). In Sills et al.
(2016a), the reported dislocation densities (1012 m−2) were considerably smaller,
and in dense networks, the fraction of dislocations in the “global group” may be
negligible and the benefits of subcycling the time integration reduced.

3.2 Fast-Fourier TransformMethods

Stresses in a lattice can also be calculated by identifying the eigenstrains associated
with the presence of defects. From Mura (1987), an eigenstrain is a nonelastic
strain, arising from several potential effects, such as thermal expansion misfits,
phase transformations, plastic strains, or misfit strains. Eigenstresses are the self-
equilibrated internal stresses caused by the eigenstrains. Here we show how to
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calculate the stresses from a set of dislocations such as to simulate their dynamic
evolution (Bertin et al. 2015; Graham et al. 2016).

We decompose the total strain into elastic strains and eigenstrains, denoted by εeij
and ε∗ij , respectively, i.e.:

εij (r) = εeij (r)+ ε∗ij (r) . (8)

Let us denote the displacement field within the system with ui . The total strain
is given in terms of the distortions, which are the displacement gradients ui,j =
∂ui/∂xj , in which a subscript comma indicates a derivative. For example, the elastic
strain is given by the usual expression:

εeij =
1

2

(
ue
i,j + ue

j,i

)
(9)

and the total distortion can be written as

ui,j (x) = ue
i,j (r)+ u∗i,j (r) . (10)

Starting with the equation for mechanical equilibrium, σij,j = 0, it is straightfor-
ward to show that the elastic distortions are given by

ue
k,l = uk,l − u∗k,l = −Gki,l ∗ (cijmnu

∗
m,nj )− u∗k,l , (11)

in which Gkm is the elastic Green tensor (described in detail elsewhere de Wit 1960)
and g ∗ f = ş

g(x− x′)f (x′)dx′ is the convolution integral. The Fourier transform
of Eq. (11) is

ûe
k,l (k) = Ĝkicijmnkj klû

∗
m,n − û∗k,l , (12)

in which a Fourier transform of a function f is denoted by f̂ , ki is a component
of a wave vector, and cijkl are elastic constants. Ĝki is the Fourier transform of the
elastic Green tensor, whose inverse is given by de Wit (1960)

Ĝ−1
ik = cijklkj kl . (13)

Given the Fourier transform of the distortion associated with the eigenstrain, û∗m,n,
we have an algebraic expression for the elastic distortion, ûe

k,l(k), at each point in
k-space.

A fast Fourier transform (FFT) method is used to calculate û∗i,j (k) at each point
of the FFT grid (x). Equation (12) is used to evaluate ûe

k,l(k), from which ε̂ekl(k) is
determined. We take the inverse transform to find εekl(x) using Eq. (9). The stress at
each FFT grid point is



1088 R. LeSar and L. Capolungo

σij (x) = cijkl ε
e
kl (x) . (14)

Since there are no constraints on the values of cijkl , there is no extra penalty for
using the full anisotropic elastic constants in computing the stress and strain fields.

These equations are applicable for any eigenstrain or combination of eigen-
strains. The eigenstrain associated with a dislocation is the co-called plastic
distortion tensor, which is denoted by β

p
ij and is the distortion associated with the

plastic strain:

β
p
ij = u

p
i,j . (15)

β
p
ij replaces u∗i,j in Eq. (12).

The plastic distortion tensor is a direct measure of the incompatible slip caused
by a dislocation. Following Mura (1987), the distortion tensor for a straight edge
dislocation located at (x1, x2) = (0, 0) with Burgers vector along x̂1 and line
direction along x̂3 has only the 21 component that is non-zero. The distortion tensor
is

β
p

21 = b δ(x2)Θ(x1) , (16)

where Θ(x) is the Heaviside step function defined by Θ(x) = 1 for x < 0 and 0 for
x > 0 and b is the magnitude of the Burgers vector. δ(x2) is a Dirac delta function
that restricts the slip to the plane defined by x2 = 0. Thus, βp

21 describes the slip
(with magnitude b) introduced in the upper half plane by the dislocation. Similarly,
for a circular loop in the x1x2 plane with b̂ = x̂1, there is slip inside the loop but
not outside the loop – the only non-zero component of the plastic distortion tensor
is β

p

31. In all cases, a dislocation line can be identified by a discontinuous jump in
β
p
ij .

Recent papers Bertin et al. (2015) and Graham et al. (2016) have implemented
this general procedure for calculating the stresses needed for discrete dislocation
dynamics simulations. Detailed comparisons in each paper show that the stresses
arising from distributions of dislocations calculated with the FFT method agree
with those determined from standard analytical expressions (Anderson et al. 2017)
for isotropic elasticity. They also show, however, a standard problem that arises
when using Fourier transform methods with discontinuous functions (e.g., βp) –
spurious oscillations and spiking in calculated quantities. Such oscillations, often
referred to as Gibbs oscillations, occur frequently in signal processing and computer
graphics applications, and many work-arounds have been proposed, mostly focused
on smoothing the discontinuity over the Fourier grid. In Graham et al. (2016),
for example, an antialiasing method from computer graphics coupled with a low-
pass filter was shown to remove the oscillations with minimal effect on the final
calculated stresses. Bertin et al. (2015) used an approach in which the dislocation
density was spread in a three-dimensional triangular distribution over a 3× 3× 3
set of voxels, again with minimal effect on the calculated stresses. This numerical
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spreading is analogous to the spread of a dislocation near its core, though with a core
width that is related to the mesh size. More recently, replacing the Fourier transform
of the derivatives with a transform of discrete derivatives has also been successfully
employed to attenuate the Gibbs oscillations (Graham et al. 2019).

Based on the above FFT stress calculations, two approaches for using those
stresses in discrete dislocation dynamics calculations were proposed. In Graham
et al. (2016), the size of the FFT grid was set such that only one dislocation segment
was allowed in each voxel (the three-dimensional volume between grid points). This
choice limits the simulations to relatively small sizes and densities of dislocations.
The other approach assumes that many dislocations can lie in each voxel (Bertin
et al. 2015), which has some complications but enables simulations of more relevant
dislocation distributions, as will be summarized next.

The main components of the implementation of the FFT stress calculation within
a discrete dislocation dynamics framework in Bertin et al. (2015) are the following:
the distortions in Eq. (12) are replaced by the strain tensor εkl (which can be
shown to be equivalent), the plastic strain change at each time step is calculated
by measuring the area swept by the dislocation movement, and by coupling the
FFT-based approach to the discrete continuous model (DCM) (Lemarchand et al.
2001; Vattré et al. 2014a). By using the DCM, the FFT approach takes advantage
of the high computational efficiency of the FFT algorithm for calculating the
long-range forces while allowing for a discrete representation of local dislocation
interactions. The computational time associated with the new DDD-FFT approach
is significantly lower than that of other DDD approaches when large number
of dislocation segments are involved (Bertin et al. 2015). Moreover, the use of
anisotropic elasticity comes at a similar computational cost to that of an isotropic
simulation. In Sect. 4.1, this approach forms the basis of a new approach for
polycrystal plasticity based on discrete dislocation dynamics.

The promise of the FFT approach is that it scales essentially linearly with the
number of dislocation segments and, with the use of GPUs to evaluate the stresses,
is computationally very fast, such that the stress calculation no longer dominates the
time to perform a calculation. This approach opens up the possibility of extending
DDD to the high dislocation densities present in such important problems as well-
worked metals and fatigue.

4 Recent Advances in Applications

Advances in algorithms have enabled the use of DDD for a number of new
applications. One such example is the use of new time integration schemes to extend
calculations of strain hardening to longer times and, thus, larger strains, as discussed
in Sect. 3.1. Here we focus on two other examples, the first being the ability,
based on the FFT method described above, to do simulations of the deformation of
polycrystals with arbitrary grain sizes, shapes, and orientations. The second example
is the linkage between dislocation dynamics and chemistry, an important advance
for understanding the effects of chemical constituents on deformation.
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4.1 Polycrystal Plasticity

A number of studies of dislocation dynamics in polycrystalline materials have been
made using two- and three-dimensional models. For this chapter, we restrict the
discussion to simulations in three dimensions. We also focus our discussion of
calculations in three dimensions on those in which the deformation in all grains
in a polycrystalline sample is calculated, rather than in just a single, representative,
grain.

All of the studies to date using DDD to study deformation in polycrystalline
have been on model systems that do not directly reflect the grain sizes, shapes,
and orientations found in general polycrystalline materials. (For more details of
prior applications on DDD in polycrystals, see Sect. 5.1.) For example, one study
coupled finite element polycrystal plasticity with discrete dislocation dynamics
using a system of nine uniform cuboidal grains located in a plane with periodic
boundary conditions (Siška et al. 2009). Each grain was oriented along a few specific
crystal directions. Others used the same system of nine grains to study the effects
of grain size and aspect ratio on the plasticity of free-standing polycrystalline films;
however in this work all the grains had the same orientation and the boundaries
between the grains served only as stress-controlled barriers to transmission (Zhou
and LeSar 2012). Recent simulations were done on pseudo bi-crystals with varying
grain disorientation (Prasad Reddy et al. 2013) while other studies examined the
role of twins in magnesium (Fan et al. 2015a, b, 2016) and laths in iron (Chaussidon
et al. 2008). The most complete model of polycrystalline plasticity at the discrete
dislocation dynamics level was in a recent calculation in which the system was
represented with a set of equal-sized truncated-octahedral grains with random
orientations (de Sansal et al. 2010). While the grain shapes were fixed (and uniform),
the effects of the grain size and orientation on the deformation were studied. Overall,
however, all of these studies approximated the grain distributions in some way.

Modeling the deformation in polycrystalline systems can be accomplished by
coupling polycrystal plasticity calculations, in which the constraints placed on
grain evolution by their neighboring grains are directly modeled in the calculation,
with discrete dislocation dynamics simulations. The approach described here uses
an FFT-based polycrystal plasticity model linked to the FFT-based DDD model
described in Sect. 3.2.

Building on previous work (Moulinec and Suquet 1998; Michel et al. 1999),
Lebensohn (2001) and Lebensohn et al. (2012) introduced a description of crystal
plasticity based on the same basic fast Fourier transform (FFT) algorithm described
above but modified to solve an eigenstrain description of the elasticity of hetero-
geneous media (Mura 1987). The FFT approach solves for the equilibrium stress
and strains under the constraint of strain compatibility for systems with periodic
microstructures. The plasticity of the polycrystal is described by a parametrized
constitutive model, for example, an elasto-viscoplastic model in Lebensohn et al.
(2012). The computational time can be several orders of magnitude shorter for the
FFT than in the traditional finite element methods (FEM). The results of the FFT
approach have been compared in detail with similar calculations based on FEM for a
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periodic system of face-centered cubic grains (Liu et al. 2010). The final textures and
strain distributions calculated with the two methods show some differences which
are still under investigation, in which the FFT approach appears to be less dependent
on the resolution of the grids than FEM and, indeed, predicts strain gradients very
well at quite low resolution.

The challenge with polycrystalline materials is that the elastic tensor of a grain in
the system frame is different depending on the orientation of the grain. To treat such
heterogeneous elastic media, Lebensohn, following Moulinec and Suquet (1998)
and Michel et al. (1999), introduced a reference stiffness tensor Co

ijkl , with details
given in Lebensohn et al. (2012). It is relatively straightforward to show that in this
approach, the equations for the stress given in Eqs. (12) and (13) are replaced by

σ tot
ij (x) = Co

ijklεkl (x)+ τij (x)

τij (x) = δCijkl (x) εkl (x)− Cijkl (x) ε
p
kl (x) (17)

δCijkl (x) = Cijkl (x)− Co
ijkl ,

in which x is an FFT grid point, Cijkl (x) is the stiffness tensor in the grain associated
with x, and δCijkl (x) is a fourth-order tensor quantifying the deviation in the elastic
properties associated with each material point x from that of the reference medium.
Note that the solution to the equations in Eq. (17) must be solved in an iterative
fashion (Lebensohn et al. 2012).

The FFT-based dislocation dynamics approach (Bertin et al. 2015) described in
Sect. 3.2 has recently been implemented (Graham et al. 2019) within the polycrystal
plasticity method of Lebensohn et al. (2012). A three-dimensional polycrystalline
sample with random grain size shape can either be created through a Voronoi
construction or from experimentally determined microstructures. The orientation
of the grains is either set randomly or from experiment. An appropriate FFT grid
is overlaid on the 3D sample, and periodic boundary conditions are employed. The
grain in which each FFT grid point is located is determined, and the stiffness tensor
in the system frame is determined from the grain orientation. Typical simulations
are done by seeding an initial random distribution of dislocation loops on the slip
systems within each grain. For example, in the example discussed below, dislocation
loops were placed randomly on the 12 slip systems of a face-centered cubic system
within each grain, and the initial plastic strain determined by a method equivalent
to evaluating the plastic distortion tensor of Eq. (15). The DDD method described
in Sect. 3.2 (Bertin et al. 2015) was then employed, tracking the total deformation
of the system as well as the deformation in each grain. The outcome is a polycrystal
plasticity simulation package in which a constitutive model of plasticity is replaced
by the discrete dislocation dynamics approach described in Bertin et al. (2015).

An example calculation is shown in Fig. 3, in which a system of six grains of
nickel with random size, shape, and orientation is included in a periodic cube 1.5 μm
per side. The grains were created with a Voronoi construction and mapped onto the
FFT grid. A time step of 10−13 s was used. After an initial relaxation sequence
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Fig. 3 Example calculation
of a system of six grains of
nickel with random size,
shape, and orientation is
included in a periodic cube
1.5 μm per side. Shown is the
dislocation distribution after
an initial relaxation sequence
of 1000 time steps, followed
by an additional 5000 time
steps under stress. The
dislocations are shown in the
same color as the grain in
which they are located

of 1000 time steps, an additional 5000 time steps were performed. At each time
step, the iterative solution described in Eq. (17) was used to determine the stress at
each FFT grid point. Figure 3 shows the final configuration of that run, with the
dislocations shown in the same color as the grain in which they are located. In this
model, the interactions between dislocations and the interfaces are approximated
with a simple transmission model.

The combined FFT-based polycrystal plasticity/discrete dislocation dynamics
(PP/DDD) approach is, to our knowledge, the only such method available for
three-dimensional polycrystal plasticity of grains with arbitrary size, shape, and
orientation based on the DD simulation of the motion of individual dislocations.
Given the linear scaling of the FFT with the number of dislocation segments, there
are many potential applications of the PP/DDD approach to important problems
in the deformation of materials. There are, however, numerous advances in physics
that are needed for accurate polycrystal plasticity calculations, the most important of
which are the interactions of dislocations with grain boundaries, which are discussed
in Sect. 5.1.

4.2 Coupling Dislocation Dynamics with Chemistry

With the intent to develop concurrent multiscale/multiphysics modeling schemes
predicting microstructure evolution due to dislocation motion and interaction as
well as point and defect cluster rearrangements, a series of studies have focused
on coupling mean-field rate theory (MFRT) (Braislford and Bullough 1981), or one
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of its derivatives such as cluster dynamics, and DDD. In the former, one estab-
lishes continuity equations for each chemical species considered. These essentially
translate the effects of point defects and defect cluster generation, migration, and
interactions (i.e., annihilation, absorption, emission) on the local concentration of
the species of interest. As such, the treatment of dislocation/vacancy interactions has
seen a significant gain in interest over the past decade. Fundamentally, this problem
holds the key to developing predictive laws of the contribution of dislocation climb
to plasticity. In a relatively large series of experimental studies focused on the
creep response of metals, the discernment of the contribution of cross-slip and
climb to the overall creep rate has been problematic (Kombaiah and Murty 2015;
Morrow et al. 2013). More generally and as discussed in Keralavarma et al. (2012)
and Keralavarma and Benzerga (2015), the hope is to be able to perform a virtual
mapping of the prominence of specific dissipative processes (i.e., glide, cross-
slip, climb), similar to that proposed by Frost and Ashby (1982), by means of a
hybrid DDD/MFRT approach. Overall, two different types of challenges have to
be addressed. First, from the numerical standpoint, the question of time integration
is not trivial. The relative rates associated with both processes depend on stress
and temperature. Second, one must be able to quantify the two-way coupling
between the mechanical and “chemical” problem. Indeed, in the short range, the
net current of vacancies toward the dislocation leads to a change in the dislocation
geometry (i.e., creation of jogs). However, the long-range stress field inherent to the
dislocation and to the point defects necessarily modifies the kinetics of point defect
migration. Further, in the very short range, modeling of pipe diffusion requires
extraneous considerations to be detailed later in this section. Focusing first on the
physical aspects of the problem. Most proposed schemes rely on early analytical
developments proposed by Hirth and Lothe summarized in Anderson et al. (2017).
The net climb rate of a dislocation segment can be directly related to the vacancy
current into the segment. One can relate the climb rate of a unit length segment,
vclimb, to the net vacancy current (i.e., difference between the interstitial and vacancy
currents into the segment) into said segment I as follows:

vclimb = I.Ω

Lseg|b× ξ | (18)

Here Ω , b, ξ , and Lseg denote the atomic volume, Burger’s vector, the unit
tangent vector to the line, and the length of the segment considered, respectively.
To quantify the net vacancy current toward the dislocation segment, most DDD-
based studies disregard the flux of interstitials toward the dislocation (despite the
preferred attraction of those toward dislocations) and focus solely on vacancies.
One then must solve the diffusion problem formally posed by

dC

dt
= −∇ · J , (19)
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in which C denotes the spatially varying vacancy concentration. The dot product
between operator Nabla and the vacancy flux, J, denotes the divergence of the flux
vector. The latter is formally expressed as

J = −D (∇C + βC∇E) , (20)

in which D denotes the vacancy diffusivity and β = 1/kT with T the temperature
in Kelvin and k the Boltzmann constant. One notes that the flux depends on two
distinct contributions. The first term is related to the gradient of the concentration
and is purely chemical, while the second involves the interaction energy between
the defect and the surrounding microstructure, E. It is typically expressed as the
double dot product between the local elastic strain and an interaction dipole tensor d.
With this, one has E = εij dij . Unfortunately, even in the simplest case, an isolated
dislocation interacting with a cloud of vacancies with equilibrium concentration at
zero stress Ceq, there is no analytical solution to the aforementioned problem, owing
to the non-radial flux induced by the E. Thus far, two solutions have been proposed.
First, it has been suggested to simply neglect the elastic interactions between the
point defect and the dislocation. Such simplification renders the problem entirely
radial. The solution procedure then relies on determining the boundary conditions
of the problem from which the flux toward the dislocation can be found in the steady
state. The local concentration near the dislocation core is given as:

Ccore = Ceqe
βPΔV = Ceqe

FclimbβΩ

Lseg|b× ξ | , (21)

in which P denotes the hydrostatic pressure within the medium and ΔV refers to
the relaxation volume associated with the vacancy such that PΔV denotes the work
associated with the creation of a vacancy in the core of dislocation. As shown in the
rightmost part of Eq. (21), this work is balanced by the work done by the dislocation
as it climbs, in a fashion similar to that proposed by Hirth and Lothe (Anderson
et al. 2017). With the steady-state vacancy concentration, the solution to Eq. (19) is
as follows:

C(r) = Ccore + (Ceq − Ccore)
ln r

r∞
ln r

rcore

. (22)

Here r , rcore, and r∞ denote the distance from the dislocation core, the critical core
radius, and the distance from the dislocation at which the equilibrium concentration
is reached. The latter is often taken as the mean spacing between dislocations. One
notes that in all such derivations, the interaction energy between the dislocation and
the vacancy is disregarded. In any case, the current toward the dislocation is then
simply written as the integral around the core of the dislocation of the vacancy flux.
One has
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I = −2πrcoreLseg
D

Ω

∂C(r)

∂r

∣∣∣
r=rcore

(23)

This approach was used in a series of studies (Mordehai et al. 2008; Bako
et al. 2011; Danas and Deshpande 2013; Gao et al. 2017), both two and three
dimensional. Among others, a recent and particularly interesting application of this
type of approach – albeit with an improved treatment of the dynamics of vacancy
motion treated at an intermediate scale via the use of fast Fourier transform operators
– concerns the predictions of the vacancy-assisted climb in γ γ ′ Ni superalloy single
crystals. The study shows that in regimes mimicking in-service conditions (e.g.,
uniaxial stress in the order of 180 MPa and temperatures in the order of 1100 K),
dislocation climb can significantly affect the overall dissipation within the system
by providing more energetically favorable paths for dislocation to glide. While these
studies are up to now limited to relatively short time scale and idealized scenarios,
they are likely to be the bedrock for the development of temperature-sensitive
constitutive models in which the contribution of climb is not obtained by reverse
engineering parameters from experimental data.

5 Advances in Sub-scale Physics

5.1 Dislocation/Interface Interactions

As stated in the above, DDD has only recently been applied to simulate plasticity
in polycrystals (Balint et al. 2008; de Sansal et al. 2010). In these early attempts,
grain boundaries have typically been treated as impenetrable barriers to dislocation
motion. Clearly, these approaches will necessarily overpredict the generation of
“backstresses” due to dislocation pile-ups, thereby not yielding quantitative pre-
dictions of well-known effects such as the correlation between the inverse of the
square root of the grain size and the yield strength, as per the work of Hall and Petch
(Balint et al. 2008), Bauschinger phenomenon, etc. As a dislocation interacts in the
short range with a material interface, the number of potential outcomes is relatively
limited. Indeed the incoming dislocation can either be stopped near the interface,
transmitted through the interface, or absorbed. The outcome depends on the
interface character, imposed stress state, temperature, and dislocation character itself
(Froseth et al. 2004; Capolungo et al. 2007). For example, atomistic simulations
applied to hexagonal close-packed magnesium have clearly revealed that a basal
screw dislocation can transmit via cross-slip through a {101̄2} twin interface without
seeing any change in its core structure (Serra and Bacon 1995). This is not the
case if the 〈a〉 dislocation interacts with a {101̄1} twin boundary. Similarly edge
dislocations will dissociate onto the {101̄2} twin interface, leading to the generation
of interface disconnections as well as generating new segments in the twin domain.

The development of predictive approaches describing both short- and long-
range interactions between dislocations and materials interfaces is particularly
challenging. It entails that (i) the stress field within each point in the medium fully
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accounts for the effects of heterogeneous elasticity, manifesting itself through image
forces, (ii) one can assess under which stress orientation and magnitude do slip
transfer occur, (iii) a model can be developed to predict on which slip system would
transfer occur, and (iv) a predictive capability can be developed to fully account
for the dislocation core changes (i.e., dissociation, shearing, absorption) occurring
within the material interface. Further, as stated in the above (v), a material interface
can also act as a dislocation source. (iv) and (v) necessarily induce a change in
the local interface character (i.e., local misorientation, excess volume, energy).
Given the infinite number of material interfaces that can exist in polycrystals, it is
unlikely that an exact physical rendition of all these processes can be derived. “Data
mining” approaches might, however, allow for simulations of dislocation/interface
interactions to be statistically representative. This has been done to some extent to
understand grain boundary mobility (Olmsted et al. 2009) as well as to quantify the
energy barrier for dislocation transmission (Sangid et al. 2011). Despite this, several
advances have been proposed in recent years to address (i)–(iv). The intent is not to
provide an exhaustive list but rather a perspective on such a vast topic.

To address (i), both the superposition method (Weygand et al. 2002) and discrete
continuous method (DCM) have been used (Lemarchand et al. 2001; Vattré et al.
2014b). The use of the finite element method necessarily poses the question of
the mesh resolution near the material interface (Sobie et al. 2014). Interestingly,
numerical methods have been proposed to accurately compute the stress state
at interface elements (Liu et al. 2016). The DCM is rigorously derived from a
variational formulation – such that driving forces on dislocation are exactly related
to the energy gradient – and is expected to be more accurate. Further, recent develop-
ments of the fast Fourier transform-based discrete continuous approach to the case
of heterogenous elasticity should alleviate the issue of the computational burden
associated with images forces (Bertin et al. 2015; Bertin and Capolungo 2018).

Challenges (ii)–(iv) have been addressed in the case of coherent interfaces,
particularly twin boundaries in hexagonal close pack metals (Fan et al. 2015b). As
detailed in what follows, the development of such models requires considerable
input from either topological interface models (Hirth and Pond 1996) and/or
atomistic simulations. For the sake of illustration, consider the case of a basal
dislocation in hexagonal close-packed magnesium interacting in the short range with
a twin boundary on the {101̄2} plane. Seminal works (Serra and Bacon 1995; Serra
et al. 1999) have allowed one to establish a catalog of potential reactions between
glide dislocations and twin boundaries. One notes that such catalog is still evolving.
Consider the case of basal 〈a〉 dislocations. Three such type of dislocations, with
Burgers vector a1 = 1

3 [21̄1̄0], a2 = 1
3 [1̄21̄0], and a3 = 1

3 [1̄1̄20], can meet the
(01̄1̄2) twin boundary. As stated previously, the interaction between a screw a1
dislocation and the (01̄1̄2) twin boundary leads to a complete transmission into
the twin domain. As such issues (iii) and (iv) do not require any treatment – the
DDD framework can compute the driving force on each dislocation. However, (ii) is
not trivially addressed as the dislocation could continue its path on either a basal
or a prismatic system in the twin domain. To select the most likely outcome, a
local maximum dissipation rule can be introduced. The idea is simply to compute
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the product of the driving force and velocities for all nodes in contact with the
interface for each potential transfer slip system and select the system that maximizes
dissipation. In other cases, for example, a2 intersecting the same twin boundary, one
needs to further account for the dissociation of the incoming dislocation into the
sum of a twinning partial dislocation and a residual dislocation with Burgers vector

br = [2̄113]
6 . The residual dislocation can in turn be transferred into several potential

slip systems into the twin domain (i.e., pyramidal type I and II), and the maximum
dissipation criterion can be used to select the transferred slip system.

In Fan et al. (2015b), the authors used this approach to simulate the effects of
twin volume fraction on both yield strength and hardening of a system subjected
to monotonic compression. Figure 4 shows the hardening response as a function
of twin volume fraction, ft . The blue lines indicate the disconnections formed as a
result of dislocation/twin interactions.

The previous example was concerned with fully coherent interfaces (e.g., twin
boundaries) in which challenges (iii) and (iv) can be addressed relatively easily.
To increase the level of complexity and in correlation with the recent growth in
interest in nanolayered metallic composites (Misra et al. 2005), significant effort
has been placed in simulating dislocation/hetero-interface interactions. In particular,
Cu/Nb nanolayered composites, consisting of an alternating stack of Cu and Nb
layers, have been a focal point of investigation. These heterointerfaces intrinsically
contain a network of potentially mobile misfit dislocations rendering the interface
relatively weak and capable of shearing the core of an incoming dislocation from
either side of the interface (Hoagland et al. 2006). A first series of atomistically
guided simulations have been proposed whereby the shearing of the core of the
dislocation upon intersecting the hetero-interface is taken account (Sobie et al.
2014). Pragmatically, the numerical approach simply consists of removing segments
upon arriving into the interface. It has been shown that these considerations best
approximate results from atomistic simulations. Further complexity was latter added

Fig. 4 Engineering stress
strain curves of a twinned
domain as a function of twin
fraction (Reprinted from Fan
et al. 2015b)
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to predict dislocation nucleation from the hetero-interface (Wang et al. 2014).
In summary, the authors proposed an original approach whereby both interfacial
dislocations and bulk dislocations are modeled simultaneously. Further, interfacial
dislocations are allowed to both glide and climb. The climb process, necessarily
nonconservative, was further calibrated via atomistic simulations. Nucleation was
modeled by essentially letting the interfacial dislocation evolve and simultaneously
checking for the alignment of interfacial dislocation lines with potential slip
systems, for the driving force acting on said segment and for an energy-based
criterion (Frank’s rule). These models do not, however, explicitly treat the network
of misfit dislocations present at the interface such that substantial calibration
against atomistic simulations is required. To circumvent these challenges, recent
developments have expanded on the original work of Frank, Bilby, and Bollman in
order to predict exactly, and in agreement with atomistic simulations, the network
of misfit dislocations within the material interface as well as its dynamic relaxation
process and interactions with bulk dislocations (Vattré 2017; Vattré and Pan 2017).

Finally, the case of general boundaries has also received attention. However, to
date the solutions proposed do not reflect the complexity of the short-range dislo-
cation/grain boundaries interaction process. To address the barrier for propagation
across a boundary, Fan et al. (2015b) simply propose to compute the shear stress at
each dislocation in contact with the grain boundary interface and let it transmit once
a critical value is reached. The authors proposed to relate the barrier strength to the
misorientation angle across the grain boundary τc = Gbsin2(θmis), with θm denoting
the misorientation angle. Clearly such a criterion does not capture the complexity of
the process. In parallel to the aforementioned development and in the restricted case
of two-dimensional models, it has been proposed to describe the process of grain
boundary sliding by introducing interface dislocations along the grain boundaries as
well as to introduce dislocation sources at grain boundaries and triple lines (Quek
et al. 2016).

5.2 Kinetics

Over the past decade, DDD has been successfully used to, in essence, validate
reduced-order models formally relating the change in zero temperature strength of
a system to its defect content (e.g., voids, self-interstitial atom loops, precipitates,
and other dislocations) (Madec et al. 2003; Greer et al. 2008; Sobie et al. 2015).
Recently, however, focus has been placed on unraveling the linkage between both
defect content and temperature with the kinetics of slip (e.g., strain rate sensitivity),
dislocation nucleation, etc. (Geslin et al. 2017; Sobie et al. 2017a, b, c).

Fundamentally, the local activation of a dislocation-mediated dissipative process
(e.g., cross-slip, slip, nucleation) depends both on the system geometry and on the
local stress state within the activation volume associated with said process. In an
engineering material (i.e., departing from model materials), the microstructure is
formally described by the defect content (e.g., the number density of voids and
precipitates, dislocation density on each slip system) as well as by the spatial
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arrangements between defects. This complexity necessarily raises the question of
homogenization, i.e., how to derive laws predicting both the effectiveness and
the distributions of the activation of dissipative processes that are statistically
representative of bulk behavior?

At the atomistic length scale, both in the context of harmonic transition state
theory and of transition state theory in general, a series of algorithms have been
proposed to quantify both the minimum energy pathways (MEP) and prefactors
(associated with attempt frequencies and entropic contributions) for unit processes
(e.g., migration of dumbbells Marinica et al. 2011). These methods include the
nudged elastic band (NEB), Dimer, Free End NEB, activation-relaxation technique,
umbrella sampling, etc. (Jonsson et al. 1998; Henkelman and Jonsson 2000;
Mousseau and Barkema 1998; Saroukhani et al. 2016). Since their inception, MEP
search methods have been extensively and successfully used to address point and
defect cluster diffusion, dislocation nucleation from material interfaces, dislocation
precipitate interactions, etc. (Saroukhani et al. 2016; Zhu et al. 2008). In the
context of multiscale modeling and echoing the challenge stated above, the direct
application of MEP search methods in the context of atomistic simulations to derive
constitutive relationships – or at the very least to calibrate existing laws – will
in most cases be inadequate. Indeed, the volumes and geometrical configurations
accessible within atomistics do not necessarily satisfy the necessary requirements
to render predictions of MEP statistically representative.

Over the past few years, several independent efforts have been made to jointly
use DDD and MEP methods (Geslin et al. 2017; Sobie et al. 2017a, b, c). Clearly
the significant reduction in degrees of freedom associated with the use of DDD
allows one to probe MEPs in statistically representative volumes (in the order
of several μm3). Two distinct classes of problems have been addressed thus far.
First, one can study or quantify the relationship between activation barriers and
unit process as a function of geometry and imposed stresses. In this case, one can
advantageously perform a direct comparison with atomistic simulations pertaining
to smaller systems prior to using DDD to study large volumes. One notes that
particularly interesting developments to the DDD framework have been proposed
to capture core contributions to the energy landscape in accordance with atomistic
simulations (Geslin et al. 2017). Second, the question of coarse graining can be
addressed.

While several MEP approaches have been used thus far, here the focus is placed
on the NEB method. In short, NEB determines the MEP between transition states
following a steepest descent approach. To this end, starting from well-defined initial
and final configurations, a set of images are created. These formally represent an
initial guess of the trajectory of the system. One such guess can simply consist of a
linear interpolation between the initial and final configurations. The NEB algorithm
will search for the MEP by solving a modified equation of motion for each image
until convergence is reached. As such, all images are simultaneously evolved to
equilibrium under a modified force (Eq. (24)) toward a level curve on the energy
landscape. The total force on each degree of freedom i is written as (Jonsson et al.
1998)
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Fi = F s
i |‖ + FR

i |⊥, (24)

with the true force being related to the gradient of the potential energy within the
system,

FR
i = −∇V (Ri) = FPK

i . (25)

R is the 3N -dimensional vector containing the coordinates of each dislocation node.
In isotropic elastic media, the force acting on a dislocation is known in closed

form from the derivation proposed in Cai and Bulatov (2006). One notes that recent
extensions have been proposed in the case of anisotropic media (Po et al. 2018).
Finally, the discrete continuous approach – applied either in the context of finite
elements or fast Fourier transform methods – provides a direct access to the energy
and its gradient in a thermodynamically consistent fashion at any finite element node
or voxel, such that a simple interpolation procedure provides access to the force
acting on each node without need for the use of an analytically derived solution.
Regardless of the numerical approach (i.e., discrete continuous or not), the force
acting on a node is projected perpendicularly to the energy gradient:

FR
i |⊥ = FPK(Ri)− FPK(Ri) · τ̂i . (26)

A modified tangent that depends on local image energy is used (Henkelman and
Jonsson 2000) and represents a tangent to the high-dimensional energy landscape.
The spring force parallel to the tangent is defined as (Henkelman and Jonsson 2000)

F s
i |‖ = k [|Ri+1 − Ri | − |Ri − Ri−1|] τ̂i . (27)

In practice, the NEB method can be coupled to an existing DDD implementation
without an onerous numerical implementation. The DDD code naturally calculates
the true force in Eq. (24). Each image is evolved similarly to a DDD simulation,
except that forces have to be modified according to Eq. (24). The numerical
procedure to converge to the MEP is nearly identical to simulating the time evolution
of several DDD simulations simultaneously – each image influences its neighbors
via the spring force but otherwise evolves independently. Consequently, the method
can be readily parallelized with little communication overhead.

For the sake of illustration, consider the unit process associated with the
homogeneous nucleation of a dislocation in aluminum. Note here that owing to the
low stacking fault energy of the system, novel developments were proposed to fully
predict the role of dislocation cores to the nucleation process. Figure 5 shows the
initial path assumed with the nucleation of a shear loop (a) as well as the predicted
MEP (b) and (c).
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Fig. 5 Initial configurations used to simulate the homogeneous nucleation of a partial dislocation
in Al under an applied resolved shear stress of 1.6 GPA, (b) final configuration obtained, (c)
predictions of the MEP associated with the nucleation process (Reprinted from Geslin et al. 2017)

5.2.1 Application to the Case of Dislocation Nucleation
The aforementioned case of homogeneous dislocation nucleation delineates a partic-
ularly interesting illustration of the degree to which DDD can be calibrated against
atomistic simulations. Pragmatically, the authors (Geslin et al. 2017) proposed to use
a discrete continuous method, in the context of the fast Fourier transform method of
Bertin et al. (2015), allowing one to have a thermodynamically rigorous relationship
between the free energy within the system and the force acting on a dislocation
segment or node, depending on the approach chosen. With this, the free energy
within the system, Etot, can be written as

Etot = Eelastic + Ecore + Efault, (28)
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in which the subscripts “elastic,” “core,” and “fault” refer to the contributions to
the free energy of the system from the linear elastic strain field within the medium,
to the core energy of dislocations (in which linear elasticity does not hold), and to
the stacking faults within the medium, respectively. All quantities in the above are
spatially resolved. With this and in perfect analogy with Eq. (25), the force acting
on a dislocation node can be expressed as the negative of the derivative of the total
energy within the medium:

Fn = −∂Etot

∂Rn

, (29)

in which Fn is the vector force acting on node n and Rn denotes the position
vector of node n. The contribution to the total force acting on the dislocation due
to the elastic strain energy within the medium can be computed either from a direct
numerical derivative of Eelastic with respect to the position of the node or as a line
integral of the Peach-Koehler force over the segments on the left and right of node
n. One notes that the former method is naturally more computationally involved, in
that one typically uses a line integral formally expressed as

F elastic
n =

ż

Ln

s

Ln

σ.bn × ξnds +
ż

Ln+1

s

Ln+1
σ.bn+1 × ξn+1ds . (30)

Here ξn denotes the unit vector tangent to the segment bound by nodes n− 1 and n.
Similarly, Ln denotes the length of the segment bound between nodes n and n+ 1.

Following the original proposal from Clouet et al. (2009), the core energy per
unit length associated with a dislocation segment can be written as

ecore = c0 + c1α
2 + c2α

2, (31)

in which α introduces the character (i.e., line orientation) dependence of core energy
of the dislocation, α = |b.ξ |/||b||. With this, the core energy of segment bound by
nodes n− 1 and n, Ecore

n , can be written as

Ecore
n =

(
c0 + c1α

2
n + c2α

2
n

)
Ln, (32)

such that the force acting on a dislocation arising from core contributions is simply
written as the sum of the partial derivative of Ecore

n and Ecore
n+1 with regard to

the position of node n. Fortunately, in this case, one can trivially find a closed
form expression for such contributions. Finally, in the case of loop nucleation, the
contribution of the stacking fault energy due to dislocations can also be taken into
account. An approach, similar to that delineated in the above to account for core
contributions, is used to this end. The reader is referred to Geslin et al. (2017) for
more details.
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The approach summarized above shows that the core energy and stacking fault
energy contributions can be rigorously calibrated against atomistic simulations,
thereby enabling the method to quantitatively predict the activation barriers asso-
ciated with unit processes. In Geslin et al. (2017), it has been demonstrated that the
barrier associated to the nucleation of a shear loop can be predicted with similar
accuracy with atomistic of DDD approaches provided that both core and stacking
fault energy contributions are taken into account.

5.2.2 Connections toMultiscale Modeling
The connection between DDD and MEP search methods allows one to address the
key question of homogenization/coarse graining, with particular insight found in
seminal papers by McDowell (1997, 1999). Among other things, one can quantify
the role of microstructure (i.e., the number density, type, and spatial distribution of
defects) on the effective barrier associated with a unit process. Further, from such
simulations, one can produce reduced-order models introducing a mathematical
linkage between the imposed stress, microstructure, and probability distribution of
barriers.

As an example, consider a body center cubic system in which one seeks to
quantify the barrier associated with the bypassing of a distribution of < 100 >

sessile self-interstitial atom (SIA) loops, as described in Sobie et al. (2017c). Con-
sider first a model that consists of placing an isolated SIA loop within a simulation
volume and quantifying the effects of geometry on the predicted activation barriers,
which we will refer to as “unit bypass.” Periodic boundary conditions are used,
creating an array of SIA loops with a mean spacing of 117 nm. (Note that in these
simulations, neither the contributions of core energies nor those of the stacking
faults are accounted for.) From these simulations, one can extract a distribution of
potential barriers, which will be compared to a direct set of simulations in which
a dislocation travels through a network of obstacles with similar density and mean
spacing as in the unit bypass simulations. As will be detailed in what follows, these
approaches, the latter corresponding to the configuration most resembling realistic
microstructures, yield vastly different quantification of the barriers encountered by
a moving dislocation.

The activation energy for unit bypass in a linear array of SIA loops with spacing
of 117 nm was calculated as a function of interaction geometry (z/L) (i.e., the
relative position of the glide plane with respect to the loop center, in which L denotes
the size of the SIA loop) and an applied shear stress of 10 MPa. The configuration
is shown in the left panel of Fig. 6. The activation barriers associated with these
processes are shown in the left panel of Fig. 7. One sees a significant effect of the
relative position between the glide loop and the SIA loop, showing the inadequacy in
quantifying a unique barrier associated with a dislocation-mediated process. Further,
the energy shown in the left panel of Fig. 7 can be integrated as a function of
relative distance between the glide planes to generate a distribution of barriers akin
to what a dislocation would be facing in a more realistic scenario. Assuming an
equal likelihood for the relative distance (z) between the glide plane and the SIA
loops, the probability of activation barriers can be computed simply by integrating
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Fig. 6 (left) The minimum energy pathway taken by a 1/2 〈111〉 (11̄0) glide dislocation as it
overcomes a 〈001〉 SIA loop of 4.3 nm size. Periodic boundary conditions are used such that the
mean spacing between the SIA loop array is 117 nm. The red lines correspond to the dislocation
configuration as it overcomes the SIA loop. (right) The minimum energy pathway taken by a
dislocation as it overcomes an ensemble of SIA loops. The configurations in the left and right
panels have similar SIA density and mean spacing. The resolved shear stress imposed in both
cases is 10 MPa. (From Sobie et al. 2017b)
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Fig. 7 (left) Activation barrier corresponding to the bypass of a regular array of SIA loops as a
function of the ratio of the distance between the glide plane and center of the SIA loop, z, and the
SIA loop size is L. The energy obtained corresponds to configuration in the left panel of Fig. 6.
(right) The black line corresponds to the probability distribution of the activation energy for an
edge dislocation bypassing an ensemble of obstacles similar to that depicted in Fig. 6 (right). The
red line is the probability distribution obtained by integrating the activation barriers on the left
figure (corresponding to unit bypass) over −1.5 to 1.5 z/L. (From Sobie et al. 2017c)

the results shown in Fig. 6 (left) for z/L varying from −1.5 to 1.5. The resulting
distribution is shown in red in Fig. 7 (right).

The distribution of barriers from the unit bypass simulations can be compared to
simulations corresponding to the scenario depicted in Fig. 6 (right). The distribution
of barriers in Fig. 6 (right) was obtained by considering a volume containing
six randomly positioned SIA loops with a mean separation distance equal to the
linear spacing of the array of SIA loops in the previous calculation, 117 nm. The
activation energy barriers for glide were calculated for 800 simulation repetitions.
The resulting probability density function of activation barriers is shown in Fig. 7
(right panel, black line).
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The activation energy probability distribution for an ensemble of loops has fewer
defined features than the distribution obtained for unit bypass. The variation in the
connected segment lengths and relative defect geometry acts to spread the well-
defined peak seen for the unit bypass process. Furthermore, the mean activation
energy is 43.4% lower for an ensemble of defects (6.56 vs. 11.6 eV). It is clear that
the highly localized interaction between the defects and the dislocation does not
entirely characterize the energetics of the process. The change in morphology of the
extended dislocation segments neighboring the bypassed defect induces important
changes in the activation energy that cannot be captured in unit bypass simulations.

6 Summary and Conclusion

In this short summary of recent advances in the field of discrete dislocation
dynamics, a few promising developments have been presented. First, from the
computational material science viewpoint, two distinct efforts have been proposed
to limit the computational burden as well as to increase the effective time step used
to solve the dynamics problem. To this end the subcycling method, allowing in
essence the reduction of the number of force calculations to be performed within
the subcycles, and the fast Fourier transform (FFT) algorithms have been proposed.
As is often the case, these two approaches have different advantages. While the
FFT method is expected to be far less efficient for smaller dislocation densities
(e.g., on the order of 1 × 1012 m−2), the FFT-based approach, combined with
the discrete continuous method, is relatively insensitive to dislocation content and
should continue to be effective at the high dislocation densities associated with
well-worked or fatigue metals. Moreover, the FFT approach is amenable to the
treatment of plasticity in heterogeneous media (i.e., polycrystals, crystals containing
precipitates, etc.). However, FFT methods will likely break down if large strains
could be reached. Despite these key developments, state-of-the-art methods remain
confined to the realm of dynamical loading or, in the case of creep-type simulations,
to relatively limited simulation times.

A question that may arise lies in the potential of current modeling capabilities in
performing virtual characterization of statistically representative microstructures. To
this end, both finite element-based and FFT-based formalisms have been proposed
to solve the boundary value problem. One notes that the use of the discrete con-
tinuous method advantageously yields thermodynamically consistent stress fields
and driving forces acting on dislocations. Clearly, the problem of the treatment of
short-range interactions between dislocations and materials interfaces, with varying
degree of coherency, is now becoming central to future applications. In this regard,
some strategies have been proposed to accurately depict dislocation transmission,
core changes, etc. at coherent boundaries. While of great interest and appropriate in
the case of coherent twin boundaries, one relies on the development of an atomistic
simulation-based dictionary of potential reactions. Clearly, this approach is unlikely
to be applicable to general grain boundaries for which a data informatics-driven
approach is likely to yield more statistically meaningful simulations. In addition to
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treating the effects of grain sizes and texture, a solid interest has been gained in
addressing the problem of coupling with the materials chemistry. It is the authors
opinion that such a path is likely to be particularly significant as it will allow one to
depart from predictions limited to model material systems. While of interest, current
approaches are limited to consideration of the vacancy flux toward dislocations, and
a complete coupling between both the mechanical and diffusional problems has not
yet been proposed.

Finally, in another recent, and promising, advance, DDD is used to extract
activation barriers pertaining to unit processes or to sequences of unit processes.
To this end, minimum energy pathway search algorithms, originally derived in
the context of atomistic simulations, have been adapted to the DDD framework.
It has been shown that the DDD formalism can be enhanced to account for the
contribution of both dislocation cores and stacking faults enabling the reproduction
of energy barriers computed by atomistic simulations. Further, taking the exam-
ple of dislocation sweeping through a network of obstacles, the inadequacy of
extracting activation barriers from non-statistically representative simulations was
quantified. These methods open a path toward homogenization of the response of
a material from the viewpoint of the energy landscape (or barriers) to be able to
derive temperature-sensitive constitutive laws from discrete dislocation dynamics.
It must be acknowledged, however, that most DDD simulations rely on the use
of overdamped equations of motion, which calls into question the temperature
sensitivity of the simulations and, in particular, the accuracy of the prediction of
the rate of activation of cross-slip events. One could envisage the use of Langevin
dynamics to capture statistical fluctuations in the system that control the activation
of rare events.
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outperform those in use today. In this chapter, recent advancements in modeling
processing-microstructure-property relationships of nanocrystalline metals are
covered. These developments include linking mesoscopic microstructure, such
as grain (orientation, size, and shape), grain boundaries, twin boundaries, and
interface properties with the development of local stress states and deformation
mechanisms during mechanical processing or straining. Many recent examples
of these techniques are discussed, particularly those demonstrating unanticipated
couplings between size effects and texture development. The chapter concludes
with a discussion of recommended directions and associated challenges to further
advance mesoscale modeling efforts.

Keywords
Crystal plasticity · Polycrystal · Microstructure · Grain boundaries ·
Interfaces · Dislocations · Twins

1 Introduction

Many future engineering systems will rely on high-performance metals that bear
strengths and toughness values several times of those in use today. In several
situations, these superior properties will be desired in harsh environments, such as
elevated temperatures, at high rates, and under radiation. Nanolaminates, built from
stacks of crystalline layers each with nanoscale individual thickness, are proving to
exhibit many of these target properties. Examples span from nanotwinned materials,
wherein individual nanolayers alternate in orientation according to the twin-matrix
relationship and are divided by a twinned interface, to biphase nanolaminates,
in which the nanolayers differ not only in orientation but also in chemistry and
crystal structure (Dalla Torre et al. 2002; Ebrahimi et al. 1999; Hughes et al.
1986; Schuh et al. 2002; Schwaiger et al. 2003; El-Sherik et al. 1992; Xiao
et al. 2001; Godon et al. 2010; Champion et al. 2001; Chen et al. 2006; Das
et al. 2006; Khan et al. 2008; Shen et al. 1995; Youngdahl et al. 1997; Youssef
et al. 2004; Nizolek et al. 2016). Nanotwinned materials have been shown to exhibit
excellent strength and hardness, even harder than their nanocrystalline counterparts,
while exhibiting reasonable ductility (Lu et al. 2004, 2009a; Beyerlein et al. 2014),
outstanding thermal stability (Zhang et al. 2005; Anderoglu et al. 2008), electrical
conductivity (Chen et al. 2007; Zhang et al. 2007), and fatigue resistance (Pan
et al. 2013; Pan and Lu 2014). The number of superior structural properties biphase
nanolaminates is equally large, including strengths that are over five to ten times
higher and hardness values that are several orders of magnitude larger than values
expected from volume averaged properties of their constituents (Beyerlein et al.
2013a; Mara et al. 2008; Mara and Beyerlein 2014; Han et al. 2013a; Misra
et al. 2004, 2007). While the properties are clearly attractive, use of these materials
in application relies on understanding and predicting these new properties based on
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known and measureable variables, such as basic nanostructure dimensions, chemical
composition, and loading conditions, including temperature and strain rate.

All structural metals are polycrystalline, or aggregates of grains, wherein each
grain has a distinct crystallographic orientation with respect to all its nearest
neighboring grains (Barrett and Massalski 1966). In conventional polycrystalline
materials, the sizes of the individual grains have micron and submicron dimension.
In the nanostructured materials, these grains have nanoscale dimension, and hence
the density of internal boundaries, such as grain, twin, and biphase boundaries, is
unconventionally large.

Many ways are being employed to make these nanostructured materials, from
bottom-up deposition to top-down forming processes (Yasuna et al. 2000; Carpenter
et al. 2015a, b; Kikuchi et al. 1997; Nizolek et al. 2015; Beyerlein et al. 2013b, c;
Wang et al. 2013; Kang et al. 2012). As commonly expected of metals, their final
nanostructure is sensitive to the how the material was made. Quantifying both
the processing/nanostructure relationships and nanostructure-property relationships
constitutes a multiscale modeling challenge. Multiscale models for conventional
coarse-grained polycrystalline materials have been in development for several years,
but analogous versions for nanostructured aggregates require extensions to explicitly
account for the effect of internal boundaries on these relationships.

Many multiscale mechanics models for understanding and calculating the defor-
mation of polycrystalline employ a combination of crystal plasticity (CP) theory
and polycrystal modeling schemes for which there are many. CP theory relates the
distortion of a strained crystal to slip on crystallographic slip systems (Kocks et al.
1998). Polycrystal plasticity models link individual grain response predicted by CP
theory to the overall mechanical response of a polycrystalline aggregate.

These polycrystal plasticity models appear in various levels of sophistication
and computational efficiency. Among the more popular are mean-field approaches,
such as the full constraints Taylor model (1938), and self-consistent schemes
such as viscoplastic self-consistent (VPSC) and elastoplastic self-consistent (EPSC)
(Lebensohn and Tomé 1993, 1994; Lebensohn et al. 2007), which homogenize the
grain neighborhood of an individual grain. Used less often are crystal plasticity
models that spatially resolve the grain neighborhoods, which can be referred to
as 3D full-field, spatially resolved mechanics techniques. In this class, there are
two main types of mesoscale models differentiated by their solution technique: CP
finite element (FE) models (Bronkhorst et al. 1991, 1992) and Green’s function fast
Fourier transform (FFT) models (Lebensohn et al. 2004, 2011; Lieberman et al.
2016; Liu et al. 2010).

Compared to mean-field approaches, 3D full-field, spatially resolved can yield
additional information on the effects of grain-grain interactions, intragranular stress
and strain evolution, and heterogeneous onset of localization, all of which are
important for understanding and designing nanocrystalline materials, as will be
demonstrated in this chapter. They also account for local neighborhoods and spatial
resolution in the mechanical fields below the grain scale, such as stress concen-
trations at boundaries and intersections of many boundaries (e.g., triple points,
twin/grain boundary intersections). These capabilities are important for modeling
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the many boundary-driven mechanisms that are sensitive to a combination of inter-
face morphology, character, and crystal orientation, as will be shown later as well.

This chapter will cover studies that have employed and extended mesoscale
3D, full-field spatial resolved computational models to investigate processing-
microstructure relationships in boundary-dominant materials. These include exam-
ining the influence of bimetal interfaces on slip activity in adjoining grains and on
texture evolution. Also presented and discussed here are advancements made to this
type of models to include the effects of grain size and shape and layer and twin
thickness on dislocation emission and propagation.

2 Part I: Methodology

2.1 Multiscale Overview

As mentioned, a 3D spatially resolved scheme used frequently in mechanical
deformation modeling is the crystal plasticity finite element (CPFE) method. This
technique can provide predictions of not only texture evolution but also evolution of
intragrain and intergrain misorientations, grain shape, and grain boundary character
distribution.

An abbreviated review of the formulation of CPFE is provided below. Regarding
notation, vector and tensors are indicated by boldfaced characters and are not
italicized. For a second-order tensor A, the notation AT denotes its transpose, i.e.,
Aij

T = Aji for i, j = 1 . . . 3. The notation trA means its trace, while detA signifies
its determinant. The contracted product between two symmetric tensors, A and B, is
defined as: A·B. The dyadic product of any two vectors, a and b, is a second-order
tensor given by a⊗b = aibj Scalars and tensor components are italicized and not
boldfaced.

Figure 1 displays a multiscale CPFE model and the submodel components that it
links. Going from the left to right side (frames a–c), the material length increases,
and each frame represents a specific instance at which the material response is being
evaluated. At the coarsest level (frame a) is the material response of a polycrystal,
which is in the form of a granular microstructural model, by the use of the finite
element (FE) homogenization method. As a full-field model, this method fulfills
both stress equilibrium and strain compatibility conditions making it a suitable
modeling tool for capturing the interactions between the constituent grains. Each
grain in the polycrystal is represented by an element set, which discretizes a given
grain into finite elements (frame b). At this length scale, at each FE integration point,
the material constitutive response is being estimated utilizing crystal plasticity (CP)
theory. In application of CP, the model usually allows the strain to be accommodated
by the simultaneous action of crystallographic slip and deformation twinning. In
CPFE, the shear accommodated by the latter mechanism is most often modeled as
slip and is referred to as the “pseudo slip” model for twinning (Van Houtte 1978;
Kalidindi 1998).
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gg

Fig. 1 A multiscale CPFE modeling framework for the plastic deformation of polycrystals (Taken
with permission from Ardeljan et al. 2015a)

2.2 MeshingMicrostructure, Grain Boundaries, and Interfaces

It is widely recognized that modeling both grain and grain boundary evolution
during deformation is critical for understanding material response. Capturing
important neighboring grain interactions on deformation is one of the primary
reasons for choosing a full-field, spatially resolved over the less computationally
expensive mean-field approaches. However, common methods for generating 3D
microstructures have been limited in how well they can represent grain morpholo-
gies and grain boundaries. In most studies, the grains were blocks or polygons, such
as cuboids, rhombic dodecahedrons, and truncated octahedrons. Such inaccurate
representations of grain structure and grain boundaries can create numerical artifacts
in mechanics calculations of stress and strain states near microstructural boundaries
and interfaces (Ritz and Dawson 2008).

Since then, many techniques have been used to better represent microstructures
than cuboid grains. One widely used technique for generating 3D microstructures
for these codes is the Voronoi tessellation method. The technique does well in
creating a set of near-equiaxed grains. The Voronoi tessellation starts with random
grain seeds and creates polyhedral-shaped grains. This method, however, still has
its limitations. Polyhedral-shaped nonuniform grain shapes created by the Voronoi
tessellation methods are often unrealistic because rules for the organization and
geometrical constraints of the grains produced are not unique. In addition, the
grain boundaries appear as coarse disordered polygons. To produce say elongated
grains, it is possible to place these seeds far apart from each other along one
dimension in order to get elongated grains, but generally it is difficult to control
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the grain aspect ratios. Furthermore, since the grain boundary between the two
neighboring domains (grains) is created halfway between the seed points, it proves
to be challenging to acquire neighboring grains of dissimilar sizes. Grains often
do not look realistic and grain boundaries appear as very coarse polygons, and as
a result, the grain boundaries are not continuous surfaces. Finally, a characteristic
of Voronoi tessellation is perfectly planar grain boundaries, which generally are
notably different from real boundaries inferred from microstructure characterization
experiments.

In recent years, explicit meshing of the grain structure and grain boundary
surfaces and capturing their evolution with plastic strain have notably advanced the
predictive capabilities of these 3D full-field approaches. Creation of realistic grain
structures has been largely addressed with the introduction of techniques for explicit
grain structure. Gaining much use is DREAM.3D, a software that generates the 3D
synthetic voxelized microstructure and the surface meshes for the grain boundaries
(DREAM.3D Version 4.2 2013; Groeber and Jackson 2014). It overcomes many of
the limitations with the commonly used Voronoi tessellation method. The digital
microstructure generated in DREAM.3D appears far more realistic in terms of grain
morphology and grain size distribution than that generated by Voronoi tessellation
scheme in 3D.

The output from DREAM.3D can be used directly in the voxel-based CP-FFT
codes, but since meshing of grain structures is not a capability of the DREAM.3D
software, additional processing is needed so that the output can be used to create
a 3D mesh for grains and grain boundaries in CPFE. Recent work by Knezevic
et al. (2014) and Ardeljan et al. (2015a) developed an integrated tool set that takes
a grain boundary surface mesh from DREAM.3D and provides a volume mesh
for each 3D grain and its grain boundary surfaces. Before acquiring the triangular
surface mesh for each grain, it is convenient to apply a Laplacian-based smoothing
filter available in DREAM.3D. The filter smooths out and suppresses any jagged
boundaries between grains to achieve better grain structure representation. The final
polycrystalline aggregate is comprised of element sets representing individual grains
(Fig. 2a, c) and grains with conformal grain boundaries between neighboring 3D
grains (Fig. 2b, d). The conformal conditions between constituent grains mean that
neighboring grains share triangular elements at grain boundaries.

2.3 Modeling Single Crystal Constitutive Response

In order to determine the single crystal response at each integration point, a User
MATerial (UMAT) subroutine based on crystal plasticity constitutive formulation
is used in Abaqus Standard. The framework facilitates various loading conditions
from low to high level of complexity that can be applied in the form of suitable
boundary conditions. This applied load is divided into time/strain increments, where
for each one, a global stress equilibrium solution is found using a numerically
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Fig. 2 An explicit grain structure model consisting of 784 equiaxed grains generated synthetically
using DREAM.3D: (a) voxel-based model with highlighted edges, (b) triangular surface mesh.
The triangular surface mesh in (b) describes grain boundaries. (c, d) The midsection along half
the x-axis shows the internal structure of the (c) finite element-based model and (d) triangular
surface mesh. The edge length of the cube is 1000 μm, the average grain size is 135 μm, and the
total number of tetrahedral elements (type C3D4 or C3D10 in ABAQUS) in (c) is approximately
1,000,000 (Taken with permission from Knezevic et al. 2014)

iterative procedure of the finite element method. This end is achieved by solving
the nonlinear FE governing equation in its linearized form, which is given by:

⎛

⎝
ż

V

BT JBdV

⎞

⎠�U = R−
ż

V

BT σdV. (1)
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In this relation, the listed quantities are, respectively, B, the quantities are,
respectively,finite element strain-displacement matrix; J, the material Jacobian
matrix; �U, the displacement increment solution; R, the applied force vector; and
σ, the Cauchy stress tensor.

An essential part of CPFE is the crystal plasticity constitutive law that relates the
material stress to material distortion (stretch plus rotation) at each integration point
within each finite element in the model.

The total velocity gradient tensor, L, can be additively decomposed as the
following:

L = Le + Lp, (2)

where Le and Lp represent elastic and plastic velocity gradients, respectively. The
plastic part of the velocity gradient contains the contributions from both slip and
twinning via

Lp = Lsl + Ltw. (3)

The corresponding contributions to the velocity gradients, due to slip and
twinning, are further expressed as:

Lsl =∑Nsl

α γ̇ αmα
o =

∑Nsl

α γ̇ αbα
o ⊗ nα

o ,

Ltw =∑Ntw

β ḟ βSβmβ
o =∑Ntw

β ḟ βSβbβ
o ⊗ nβ

o ,
(4)

where γ̇ α stands for the shearing rate on slip system α; mα
o and mβ

o are the Schmid
tensors associated with slip system α and twin system β, respectively; and Sβ is
the characteristic twin shear for the twin system β. Finally, Nsl and Ntw represent
the total number of available slip and twinning systems, respectively. The Schmid
tensors represent the unit slip or twin system tensor, defined as the dyadic product
(⊗) between the unit Burgers direction (bo) and unit plane normal (no) vectors
of slip system α or twin system β, respectively, in the undeformed configuration
indicated by subscript “o.” The rate of change of the twin volume fraction per twin
system

(
ḟ β

)
is related to the shear rate on the twin system

(
γ̇ β

)
according to

ḟ β = γ̇ β

Sβ
. (5)

In the finite deformation formulation, an assumption is made that the deformation
gradient (F) can be multiplicatively decomposed into its elastic (Fe) and plastic (Fp)
contributions according to

F = FeFp, (6)

where the elastic component contains contributions from both elastic stretching
and lattice rotation, while the plastic component embodies contributions due to
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plastic deformation. The constitutive relationship between Fe and stress in the
crystal is obtained considering two expressions for the second Piola-Kirchhoff stress
tensor Te,

Te = CEe,Te = Fe−1 {(
detFe

)
σ
}

Fe−T

, (7)

where C is the fourth-order elasticity tensor and σ is the Cauchy stress in the crystal.
Ee, the Lagrangian finite strain tensor is related to Fe via

Ee = 1

2

{
FeT Fe − I

}
, (8)

Finally to compute stress, the evolution of Fp needs to be evaluated. It is
determined by crystallographic slip and twinning (microshear rates), and it can be
expressed in rate form using the following flow-rule relationship:

Ḟp = LpFp. (9)

Integrating Eq. (9) from t to τ = t + Δt yields

Fp (τ ) = exp
(
Lp�t

)
Fp(t). (10)

Furthermore, the exponential can be conveniently approximated and further
expanded using Eq. (3) to give

Fp (τ ) = {
I+�tLp

}
Fp(t) =

{
I+�t

(
Lsl + Ltw

)}
Fp(t), (11)

where again, I is the identity matrix.
Moreover, the previous equation can be rewritten as

Fp−1
(τ ) = Fp−1

(t)
{

I−�t
(

Lsl + Ltw
)}

. (12)

2.4 Subgrain Mechanisms: Slip Resistances

Predicting slip activity is fundamental to predicting the evolution of microstructure,
textures (the reorientations of the crystals), and material flow stress with strain.
Through Eq. (4), the theory of crystal plasticity can relate slip activity on crys-
tallographic slip and twinning systems to the distortion of a crystal. It does not,
however, include criteria for the threshold of slip. Nearly all crystal plasticity-
based constitutive models, including the three methods presented above, polycrystal
models, CPFE, and CP-FFT, require choosing a criterion for activating a slip system
in order to predict slip activity.
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According to the thermodynamics theory of slip, in the regime of strain rates,
roughly from 10−5/s to 105/s, dislocation motion is thermally activated, and
dislocations must overcome energetic barriers in order to move. For this regime,
the commonly used flow rule of viscoplasticity relating slip rate to resolved stress
has a power-law form:

γ̇ s = γ̇0

( |τ s |
τ s
c

) 1
m

sign
(
τ s
)
, γ̇ s =

⎧
⎨

⎩
γ̇0

( |τ s |
τ s
c

) 1
m

sign (τ s) if τ s > 0

0 if τ s < 0
(13)

where γ̇ s is the shear strain rate for a slip system s. The resolved shear stress is
given by τ s = σ ·ms

0, which is the tensor product of the stress σ and Schmid tensor
ms

0, and where γ̇0 is a reference slip rate (arbitrarily taken here as 0.001 s−1). In
the exponent, m denotes the strain rate sensitivity factor. This power-law form is
desirable because it provides uniqueness of solution for the active slip systems that
accommodate an imposed strain rate.

The flow rule introduces a threshold critical resolved shear stress τ s
c in order to

activate slip. It is commonly called the critical resolved shear stress (CRSS). Nearly
all CRSS models introduced over the past several decades are phenomenological.
The simplest model for the CRSS is a constant value, which does not evolve with
strain. However, for calculations of deformation behavior beyond the elastic-plastic
yield transition, it is desirable that the CRSS represent the resistance to move
dislocations, consistent with changes in subcrystalline and granular microstructure.
Most CRSS hardening models have been developed for coarse-grained polycrystals,
where in the large grains, dislocations tend to accumulate in amounts that increase
with strain and depend on strain rate and temperature (Beyerlein and Tomé 2008).
CP models that employ these hardening laws are able to predict changes in
constitutive response with temperature and strain rate.

3 Part II: Mesoscale Insights into Processing-Nanostructure-
Property Relationships

3.1 Effects of Biphase Interfaces on Texture Evolution

A promising way to make interface-dominant materials is by severe plastic defor-
mation (SPD). Over the years, many SPD techniques, such as accumulative roll
bonding (ARB), accumulative wire drawing and bundling, and equal channel
angular extrusion, have been applied to two-phase metals, such as Ag-Fe, Cu-Fe,
Ag-Ni, Zr/Nb, and Ag-Cu (Yasuna et al. 2000; Carpenter et al. 2015a, b; Kikuchi
et al. 1997; Nizolek et al. 2015).

Figure 3a illustrates the substantial microstructural evolution of a two-phase
material during the ARB process. The ARB process involves a sequence of
repeated rolling, cutting, and restacking. At the beginning of the process, the metals
are coarse-grained sheets with many crystals spanning the distance between two
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Fig. 3 (a) The severe plastic deformation process, accumulative roll bonding (ARB), used to
synthesize. (b) Photograph of the Cu/Nb nanolayered composites of controllable layer thickness.
(c) Transmission electron microcopy (TEM) micrograph displaying the planar Cu/Nb interfaces in
an h = 86 nm, 48 nm, and 9 nm composites

adjacent Cu/Nb interfaces. With further straining, the spacing h between neighbor-
ing bimetal interfaces refines, the bimetal interface density increases, and the grains
in each phase become elongated in the rolling direction and finer in the thickness
dimension. Figure 3b presents the layer refinement with increasing number of ARB
passes for a Cu/Nb composite. Eventually after several passes corresponding to an
accumulated strain of ∼10, the layer thickness is refined to submicron dimensions
and below, and a single crystal spans the layer thickness (Fig. 3c).

In a few studies, the texture evolution during the ARB refinement process of
two-phase laminates (Cu/Nb and Zr/Nb) was studied in order to assess the effect of
interfaces on slip or twin activity. Texture evolution during deformation is a result of
the activity of slip and twinning in the crystals, and any change in texture indicates
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Fig. 4 Pole figures of the deformation textures measured in the Cu and Nb phase of a layered
Cu/Nb composites with individual layer thicknesses of (a) h = 500 nm and (b) h = 30 nm. Pole
figures of the deformation textures measured in the Zr and Nb phase of a layered Zr/Nb composites
with individual layer thicknesses of h= 106 μ and h= 41 nm (Taken with permission from Nizolek
et al. (2016) and Carpenter et al. (2015a))

a change in slip or twin activity. These ARB studies used neutron diffraction to
measure the texture, as it is a bulk, nondestructive measurement texture technique
that enables measurements for layer thicknesses that span from mm to nm. For thick
layers (>10 um), the textures of the individual phases corresponded to typical rolling
textures, those expected for the phases as if they were rolled alone, as shown in
Fig. 4a. However, when the layer thickness reduced below a few microns and the
texture strongly deviated from that expected for rolled phases alone. These highly
oriented textures of the phases within the nanolayered Cu/Nb composites and Zr/Nb
composites made by ARB are shown in the form of pole figures in Fig. 4b. The
textures, particularly for the Cu and Zr phases, were strong, containing only a few
special rolling components as opposed to the several rolling components commonly
expected of rolled single-phase Cu and Zr. Evidently the deformation of the grains
and their slip activity must have been augmented by their interface.

These highly oriented textures are associated with the development of a
predominant interface with a crystallographic character ranging from {1-12}<-
111>FCC||:{112}<1-10>BCC to {-4 -4 11}<11 11 8>FCC||:{112}<1-10>BCC. The
crystal orientations correspond to common rolling components in FCC Cu, called
C and D, and in BCC Nb called I. In texture nomenclature, they are conventionally
indicated as {C:{1-12}<-111> and D:{-4 -4 11}<11 11 8> and I (I:{112}<1-10>),
given by the crystallographic plane and direction that align with the rolling plane
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Fig. 5 Ordered interfaces after extreme strains. High-resolution transmission electron microscopy
micrographs of preferred Cu/Nb interfaces: (a) {112}<111 >Cu||{112}<110> Nb and (b) {551}<10
1 1 > Cu||{112}<110 > Nb. The crystallography of the facet planes is indicated respectively (Taken
with permission from Zheng et al. 2013)

and rolling direction. Borrowing this nomenclature, these interfaces were denoted as
those ranging from C/I interfaces to D/I interfaces, indicating that the C or D rolling
components in Cu are joined to the I rolling component in Nb. The selection of these
particular Cu and Nb components is interesting since the many other stable rolling
components in Cu and Nb did not appear. Last, these interfaces were observed to
be atomically pristine and ordered (see Fig. 5), which is another observation not
expected of interfaces formed after severe plastic deformation.

To help understand the texture transition in Cu/Nb, electron backscatter diffrac-
tion (EBSD) analysis was used to locate orientations and phases within the
microstructure. The EBSD analysis revealed that the transition is coincident with
attainment of layers that are spanned by only one grain. In the coarser, micron-
layered (h= 45 μm, 20 μm, and 8 μm) ARB Cu/Nb composites, several grains still
spanned the layers. Within these composites, those Cu grains joined to the bimetal
interface, called the interface grains, had predominantly C and D orientations, and
those Nb grains had the I component Fig. 6b. The internal bulk grains away from
the interface and bounded only by grain boundaries had a typical rolling texture
Fig. 6a. This result indicates that the severe plastic straining process of ARB created
preferred C/I to D/I interfaces even in the thicker layered composites.

To date, there is no standard theory to explain the development of a preferred
texture in an interface-dominant polycrystal produced via rolling or large-strain
metal-forming processes. The texture analyses show that the crystals joined by these
interfaces correspond to well-known stable orientations in rolling. These are special
orientations in which the crystals can plastically deform with negligible lattice
reorientation. Based on this idea, the concept of orientation-stable interfaces was
proposed; that is, for other deformation modes apart from rolling, the character of
orientation-stable interfaces, the crystals on both sides are deforming yet neither
is reorienting, so the interface character is preserved. When either or both crystals
reorient, then the interface character is not plastically stable.
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Fig. 6 (a) EBSD showing the texture of interface only grains (h = 45 μ). (b) Inverse pole figures
showing the texture of the Nb phase and Cu phase in thick polycrystalline layers. (c) Inverse pole
figures showing the texture of the interface grains in the Nb phase and interface grains in the Cu
phase in thick polycrystalline layers. (d) Inverse pole figures showing the texture in the Nb phase
and Cu phase in the 200 nm layered composites (Taken with permission from Carpenter et al. 2014)

The concept of mechanical stability for an interface can be tested using CPFE.
With this technique, the structures and crystallography of the grains, grain bound-
aries, and bimetal interfaces can be directly represented in the calculation, and the
result is the spatially resolved displacement and orientation gradients at the subgrain
scale. Figure 7 shows a few example cross-sections of Cu/Nb microstructures
simulated using CPFE. The central grain pair indicated in the figure makes up
part of the interface formed between two polycrystalline layers in the simulation
volume. It is given a special Cu/Nb orientation relationship and interface plane prior
to orientation stability calculations. These deformation simulations account for the
differences in elastic anisotropy, viscoplastic flow behavior, and crystallographic
slip systems in individual crystals Cu and Nb. Some of the key assumptions made
were that the bimetal interfaces and grain boundaries are constrained to maintain
compatibility and the rolling deformation is idealized as plane strain compression.
The observation of co-deformation and no signs of interface failure support the
former assumption. The latter assumption has been shown valid for the material in
the center of the sheet away from direct contact with the rolls (Zecevic et al. 2016).

To examine plastic stability from these deformation simulations, the absolute
lattice reorientation angle from the original starting orientation is calculated and
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Fig. 7 Crystal plasticity finite element mesh models of a two-phase layered composite (a) model
of a grain structure mapped from experimental data and (b) reorientation maps of two-phase
grain structures deformed in plane strain compression. The top phase is Cu and the bottom
phase is Nb. The central embedded bicrystal outlined in yellow has a prescribed starting interface
crystallography. In (a), the crystallography corresponds to the C/I interface and in (c) the KS
interface, which is a low-energy interface characteristic of PVD Cu/Nb nanolayered composites.
The crystallographic orientations are overlaid onto the original mesh seen in (a). The deformed
mesh is not shown (Taken with permission from Mayeur et al. 2014)

mapped onto the original (undeformed) microstructure. In these maps, blue means
small amounts of lattice reorientation (<6◦), whereas yellow to orange correspond
to large reorientations (>25◦). As an example, Fig. 7b, c compares the reorientation
maps for two different interfaces (C/I and Kurdjumov-Sachs (KS) interfaces). The
C/I interface maintains good plastic stability in the polycrystalline environment,
apart from some variation in misorientation near the grain boundaries. In contrast,
the KS interface ({111}<110>Cu||{110}<111>Nb), which develops in the Cu/Nb
PVD nanolayered foils, develops relatively large and inhomogeneous reorientation
fields. This result suggests that these interfaces, once created, can remain stable, as
the layers are refined from microns to nanometers.

When the grains are bounded only by interfaces, such as in the ultrafine grain
layers (h < 2 μm), the grains become even more constrained and phase stability
compromised further. To investigate the plastic stability of the grains in this
scenario, Fig. 8 shows the calculation for the same two Cu/Nb interfaces, created by
grains lying between two adjacent interfaces, using the same color scheme for the
reorientations. For the C/I interface created in ARB, the reorientations are minimal
and homogeneous. Again, the analysis predicts that the KS interface is plastically
unstable. In fact, the CPFE bicrystal model predicts that the PVD interface reorients
toward the C/I interface after large rolling reductions, which is a testament to the
stability of the C/I interface.
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Fig. 8 Reorientation maps of bicrystals deformed in plane strain compression. The top crystal
is Cu and the bottom crystal is Nb. The starting interface orientation relationships for these
bicrystals correspond to the (a) C/I interface and (b) KS interface, which is a low-energy
interface characteristic of PVD Cu/Nb nanolayered composites. The crystallographic orientations
are overlaid onto the original mesh. The deformed mesh is not shown (Taken with permission from
Mayeur et al. 2015)

Taken together, mesoscale modeling using CPFE finds that the compatibility
constraint of code-forming layers in two-phase laminate composites can select
favored interface crystallographic characters, ones that exhibit orientation stability.
These orientation-stable interfaces persist at the interface in coarse layers and
remain dominant as layers refine to be one grain thick.

3.2 Incorporating Slip/Interface Interactions into Crystal
Plasticity Models

An important boundary/dislocation process is slip transmission. It is a mechanism
for transferring slip from the crystal on one side of the interface to the crystal on
the other side, thereby facilitating plastic deformation in polycrystalline materials.
Some grain boundaries or interfaces are more efficient than others at transferring
slip, and in this way, the type of interface that exists in the material can profoundly
affect plastic flow and ductility.

Given its importance, many experimental studies on polycrystalline metals have
studied slip transmission across grain boundaries and bimetal interfaces (Wang et al.
2008, 2012; Beyerlein et al. 2015; Hunter et al. 2018). The general consensus is that
in most cases, slip transmission across a boundary is difficult. Thus, dislocations are
not expected to freely pass from one crystal to another across an interface via any
pathway.
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Considering a two-phase crystalline material, slip transmission across a bimetal
interface is possible at the head of a pileup that has developed in a coarse-layered
composite, in which pileups tend to generate. However, if the layers are too fine
to support pileups, slip transmission is expected to occur at the very fine scales
(<10 nm) when the stresses become sufficiently high (Misra et al. 2005). In fact in
the finest of nanolayered composites, slip transmission can, therefore, play a role in
determining the strength of the composite.

There are various scenarios in which to describe slip transfer across an interface.
In coarse crystals, dislocations belonging to one slip system α in crystal A can pile
up at an interface and invoke nucleation of dislocations on another slip system β

on the other side in crystal B. Alternatively, if the crystal is too fine to develop a
pileup of dislocations, the stress field of an approaching α dislocation in crystal A
can promote nucleation of a β dislocation on the other side in crystal B. In a related
scenario, the impinging α dislocation in crystal A is first absorbed into the interface,
and then a β dislocation may emit into crystal B in order to lower interface energy.
The energetics depends largely on how the interface restructures the core of the
absorbed dislocation.

Two factors determine whether slip transmission occurs when a dislocation
intersects with an interface. One factor is geometric, having well-aligned slip planes
and slip vectors, and the other factor mechanical, possessing driving forces directed
into and out of the interface. The number of such favorable pathways across an
interface would depend on the crystallographic character (five-parameter description
including the orientation relationship and interface plane) of the interface and its
orientation with respect to the loading state. An interface character that provides a
significant barrier to slip has little to no efficient transmission pathways. In contrast,
an interface character that readily transfers slip has many favorable transmission
pathways and provides little resistance to slip.

An interface can evolve with deformation to be either more or less favorable
for slip transfer. A 3D full-field, spatially resolved CP technique is well suited for
modeling microstructure and texture evolution in two-phase materials with bimetal
interfaces, but many conventional versions do not take into account the effect that
interface/slip interactions can play in microstructural evolution.

Recently, a first attempt was made to examine the effect of slip transmission on
slip activity in the adjoining crystals and in turn the evolution of interface character
(Mayeur et al. 2015). The authors incorporated into the two-phase CPFE model,
a combined geometric and local stress criterion for slip transmission across an
interface. It was based solely on the degree of alignment of their slip planes and slip
directions on either side of the interface and whether or not the local mechanical
driving forces supported the flux into and out of the interface (Misra et al. 2004).

The CPFE model with slip transmission was applied to study the texture
evolution in Cu/Nb nanolayered composites during rolling. It was seen in studies
of texture evolution in processed nanolayers that at the finest scales (h = 20 nm
and below), texture experienced a final transition (Zheng et al. 2013). In the
Cu/Nb composites, a particularly odd interface of G/I with a {515}<1 -10 1>||
{1-2-1}<101> interface character had formed and become orientationally stable,



1128 I. J. Beyerlein and M. Knezevic

Fig. 9 Reorientation maps of
bicrystals deformed in plane
strain compression and with
slip activity controlled by slip
transmission. The top crystal
is Cu and the bottom crystal
is Nb. The starting interface
orientation relationships for
these bicrystals correspond to
the (a) C/I interface and (b)
G/I interface. The
crystallographic orientations
are overlaid onto the original
mesh. The deformed mesh is
not shown. The legend is the
same one as that shown in
Fig. 8

while the previously studied C/I interface and D/I interfaces orientationally unstable
(Zheng et al. 2013). It was anticipated that the change in slip activity in the Cu and
Nb phase may be due a transition from slip within the crystals to a prevalence of
slip transmission across the crystals as the layers became fine.

Figure 9 shows reorientation maps for the C/I and G/I interface with slip
transmission-dominated slip as calculated from the model. To see the effects of slip
transmission, these maps can be directly compared to maps in Fig. 8 calculated with
the standard CPFE and ordinary slip. In all cases, it was found that slip transmission
across the interface significantly altered slip activity. The alteration causes the C/I
interface (and D/I interface as well) to become unstable (reorientations greater than
12◦). In contrast, the G/I interface maintained its character in rolling. The results
show that the G/I interface is stable with and without slip transmission-dominated
slip, even though the slip activity in these two cases is not the same.

To summarize, the mesoscale model analysis indicates that the transition in
texture evolution to a particular stable interface was the result of slip transmission
across the interface. Slip transmission can predominant at the finest scales, and when
it does, it can affect texture evolution, producing crystalline orientations unlike those
expected when conventional slip processes are prevalent.

The slip transmission-dominated calculations assume that only slip systems
belonging to favorable slip transmission pathways are active. In actuality, the
constraint may be less severe as the interface can supply dislocations by other
means (e.g., direct nucleation at triple junctions). Coupling all relevant interface-
driven plasticity phenomena, from dislocation nucleation, annihilation, transfer,
and storage, has yet to be done. It would be a challenge especially well suited for
mesoscale modeling approaches to take.
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3.3 Nanocrystalline Materials

Nanocrystalline (NC) metals are another example of a boundary-dominant metal.
NC are polycrystalline materials that have grain sizes smaller than 100 nm and
for decades have attracted a lot of attention because of their ultrahigh strength and
hardness, being several times that of their coarse-grained counterparts (Dalla Torre
et al. 2002; Ebrahimi et al. 1999; Hughes et al. 1986; Schuh et al. 2002; Schwaiger
et al. 2003; El-Sherik et al. 1992; Xiao et al. 2001; Godon et al. 2010; Champion
et al. 2001; Chen et al. 2006; Das et al. 2006; Khan et al. 2008; Shen et al. 1995;
Youngdahl et al. 1997; Youssef et al. 2004; Nizolek et al. 2016). These experimental
reports have shown that the yield strength of NC metals increases with decreasing
grain size D for D larger than a critical size, e.g., 10 nm. Most often this size effect
on strength closely follows an empirical Hall-Petch (H-P) relationship, in which the
yield strength is inversely proportional to the square root of D. Figure 10 shows a
compilation of strength data from many studies on NC Cu and NC Ni on a H-P plot.
The variability among the studies originates from different measures of strength
used, manufacturing methods, and other microstructural features, such as texture or
variability in grain size.

NC metals are exceptionally strong because they contain an unusually high den-
sity of grain boundaries (GBs), which act as sources and sinks for dislocations and
significantly modify dislocation motion. In situ transmission electron microscopy
(TEM) and molecular dynamics (MD) studies of deformed nanocrystalline materials
have provided insight into how dislocations move within the nanograins (Kumar
et al. 2003a, b; Li et al. 2009). They suggest that the prevailing dislocation

Fig. 10 (a) Comparison of predicted yield strengths with experimental results on NC Ni from
various groups. (b) Comparison of predicted yield strengths with experimental results on NC
Cu from various groups. The dashed line represents the Hall-Petch fit to the calculated yield
strength. Experimental data were obtained by nanoindentation marked with an “I,” compression
marked with a “C” for tension marked with a “T.” (In nanoindentation tests, the yield strength was
approximated as hardness divided by 2.7)
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motions are very different than those in coarse-grained materials. First, dislocation-
dislocation interactions and dislocation accumulation seldom happen within nano-
sized grains. Second, the plastic deformation proceeds by discrete and separated
dislocation slip events, in which a dislocation originates at a grain boundary, glides
across the grain unhindered, and recovers at an opposing grain boundary.

NC materials can be made in different ways, and each can lead to different
textures. Electro- or physical vapor deposition results in a highly textured NC
material, where one set of planes is aligned along one direction and the remaining
axes are otherwise randomly oriented in the other two orthogonal directions (Meyers
et al. 2006). Plastic deformation (by shearing, rolling, or extrusion) tends to produce
even stronger textures than deposition, where the interface planes correspond to the
rolling (or shearing) plane and the two in-plane directions are highly aligned with
the rolling (or shearing) direction (Nizolek et al. 2014). On the other hand, other
methods for making NC metals, such as ball-milling and consolidation processes,
produce nearly randomly oriented textures (otherwise known as “no texture”) (Khan
et al. 2008).

Understanding the degree of coupling between texture and nanograin defor-
mation is important for interpreting reports on strength-grain size scalings in NC
materials. In most strength studies performed on the same NC material, such as
those in Fig. 10, samples with different grain sizes do not necessarily have the
same texture, or quite often, samples from different studies with the same average
grain size have different textures due to processing differences. A few recent studies,
dedicated to analyzing both texture and size scaling in NC materials, have reported
a strong texture effect. Dalla Torre et al. (2002) investigated two commercial NC
Ni samples with the same grain size (∼20 nm) and clearly demonstrated that the
strong (100) and weak (100) initial textures can result in non-negligible differences
in yield strength, ultimate tensile strength, and plastic strain. Godon et al. (2010)
studied the effect of crystallographic texture on the relationship between grain size
and flow stress in NC Ni. Their experimental results showed three distinct regimes
in the Hall-Petch plot, corresponding to samples with a (100) texture, (110) texture,
and random texture. They concluded that differences in Hall-Petch slope resulted
from differences in the deformation mechanisms induced by texture.

The physical picture provided by experiment and atomic simulation implies that
the dislocation processes in NC are closely tied to the availability of dislocation
sources in the GBs and orientation of the dislocation glide planes with respect
to the grain boundaries. On this basis, texture effects ought to be stronger in NC
metals than they are in coarse-grained (CG) metals. CP-based techniques are well
suited for assessing coupled texture and grain size effects in NC materials and
how they are coupled to determine material strength. As discussed in Sect. 2.4,
the common CRSS models for activating slip with crystal plasticity-based models,
however, apply to coarse-grained materials, and these models assume that slip
initiates and propagates homogeneously within the grains, without resolving the
individual contributions of the dislocations. The mesoscale modeling challenge,
therefore, lies in how to represent the dislocation glide processes in NC materials so
that texture/grain size influences can be properly replicated in simulation.
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Fig. 11 (a) Schematic of a dislocation source emanating from a grain boundary triple junction in
a nanograin. The grain is embedded in a polycrystal, and the grain boundary facets that it makes
with the neighboring grains give it a shape of a tetrakaidecahedron. (b) Schematic of a dislocation
source (red) at a grain boundary triple junction. The length L is the dislocation source length. The
shape of the grains is assumed to take on a regular hexagon. (c) Comparison of the probability
density distribution of CRSS in NC Cu with grains sizes of 20 nm, 100 nm, and 300 nm (Taken
with permission from Yuan et al. 2015)

Recently Yuan et al. (2015) developed a discrete-slip-crystal-plasticity-based
CPFE model in which slip occurs in discrete slip events exclusively by individual
dislocations emitted statistically from the grain boundaries. Within the model, the
shape of the nanograins is assumed to be tetrakaidecahedron, that is, a truncated
octahedron, such as the one shown in Fig. 11a. In this case, some dislocation glide
planes assume a hexagon shape, while others would adopt a pentagon shape. Within
this plane, dislocation sources are present in the grain boundary as double-pinned
dislocation segments of length L emanating from the triple junctions as illustrated
in Fig. 11b.
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Given the length L, of the double-pinned GB source, the characteristic stress to
bow out the segment to an unstable configuration is given by Foreman’s formula
(Foreman 1967):

τCRSS = μb

2πL
log

(
L

r0

)
(14)

where μ is the effective shear moduli of the crystal and r0 is the core radius of
the dislocation. Once emitted from a GB, the dislocation glides unhindered to the
opposing grain boundary producing a shear strain given by

γdiscrete = c
b

D
(15)

where c is a scaling parameter independent of grain size (c = 1.2 in their work), b
is the magnitude of the Burgers vector, and D is grain size.

These source lengths L are statistically distributed where L can be no shorter than
a dislocation core L0 and no longer than D the diameter of a grain. Combined with
the expression for the activation stress in Eq. (14) leads to a distribution for CRSS.
Figure 11c is an example of a CRSS distribution for three different grain sizes,
when L is assumed to be equal likely to lie between L0 and D. As shown, by virtue
of statistical source lengths from grain boundaries, dislocation activation becomes
harder (the statistical mean increases) and more variable (the statistical dispersion
increases) as D decreases.

Yuan et al. (2015, 2016a) applied the discrete-slip-CPFE model to study the
combined effects of grain size and texture on the strength of NC materials. As
common in CPFE simulations for coarse-grained materials, glide on multiple planes
is permitted and dictated by the current stress state in the grain, and its current
orientation and grain-grain interactions are taken into account. However, in the
discrete-slip model for nanomaterials, during deformation, for each GB junction, a
GB source is randomly assigned a τCRSS from the corresponding τCRSS distribution
(Fig. 11c). Without loss of generality, the statistical CRSS model is applied to the
case in which the GB sources are inexhaustible. After emission of a dislocation
on slip system s from a GB source, a new GB source must take its place in order
to emit another dislocation on the same slip system. After emission, a new τCRSS
is reassigned for a potential slip event. As validation, with only the core radius and
strain rate sensitivity used as material input, the model is able to reproduce the entire
stress-strain curve measured for a few grain sizes of NC Cu, as shown in Fig. 12.

The discrete-slip CPFE simulation model was employed to understand the effects
of grain size and texture on NC material strength in simulation, the deformation
was applied in one of three directions at a strain rate typical of most laboratory
studies (10−4/s). Additionally, as mentioned the reported NC studies (see Fig. 10),
the initial textures very likely vary due to differences in processing. To account
for processing-related texture effects, these simulations began with different types
of initial textures, either random or highly oriented, deposited textures. The
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Fig. 12 Comparison of
experimental and calculated
stress-strain curves for
texture-free NC Cu with
various grain sizes.
(Experiment data are taken
from Khan et al. 2008)
(Taken with permission from
Yuan et al. 2015)

orientations in the model material for the former case of a random texture were
numerically generated. For the latter case of a highly oriented texture, a set of
deposited {hkl} textures, where the {hkl} planes are aligned along the z-direction
and nearly isotropic in the x-y plane, were created. These include deposited {001},
{110}, and {111} textures.

Figure 10 presents, along with the strength data from several studies, the model
results for the 0.2% yield stress taken from the calculated stress-strain curves for
the different loading directions and initial textures (Yuan et al. 2016b). The results
bound the corresponding experimental data. The important implication is that initial
texture differences in NC samples alone can result in a significant dispersion in
strength.

The straight line that the predictions form on this plot for each initial texture
shows an emergence of a D−1/2 Hall-Petch scaling in the calculated yield strength.
The Hall-Petch relationship prevails for all initial textures and materials studied,
with the only difference being a change in the Hall-Petch slope. Further, the model
finds that the more intense the texture (more preferred orientations), the larger the
Hall-Petch slope, indicating greater strength sensitivity to grain size reduction.

A commonly used metric for relating texture intensity to the anisotropy in
strength is the Taylor factor mT . It is defined as the inverse of the average of the
(five) largest Schmid factors in each grain, which is then averaged over all grains.
It is thus a purely geometric factor that depends on loading direction and initial
texture. For instance, for the z-direction for the {111} texture, mz

T = 3.44. The
model results suggest that the H-P coefficient can be expressed as a product of a
material-dependent parameter and a geometric one, i.e., αmT , giving the following
Hall-Petch law

σ ∝ αmT D
−1/2 (D < 100 nm) (16)
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For Ni and Cu, α is, respectively, 3.22 GPa• nm1/2 and 1.14 GPa• nm1/2. If for
instance, the plastic anisotropy measure is chosen to equal the difference between
the z-direction and x-direction yield strength, ψ = |σ z−σ x|, then from Eq. (16), the
following expression for the H-P coefficient can be written

ψ = α�mT D
−1/2 (17)

where �mT =
∣∣mz

T −mx
T

∣∣ . For a purely random texture (no texture), then ΔmT

is zero and the anisotropy is zero. Otherwise, for a material with a texture, ΔmT is
nonzero. Equation (17) indicates that when the material possesses a strong texture,
the plastic anisotropy associated with a textured material can increase as the grain
size reduces. This outcome is a demonstration of a mesoscopic effect, involving an
interaction of two mesoscale microstructural features.

3.4 NanotwinnedMaterials

Nanotwinned (NT) metals are another class of boundary-dominant materials, like
NC metals. Their structure is comprised of a large density of twin boundaries,
spaced usually 5–80 nm apart. These metals have gained much attention due to
reports of excellent strength and hardnesses, four to six times higher than those of
their bulk counterparts, while exhibiting reasonable ductility (Lu et al. 2004, 2009a;
Beyerlein et al. 2014). They are also found to be harder than NC or ultrafine-grained
forms of the same material and possess outstanding thermal stability (Zhang et al.
2005, 2007; Anderoglu et al. 2008), electrical conductivity (Chen et al. 2007), and
fatigue resistance (Pan et al. 2013; Pan and Lu 2014).

Most NT materials have an FCC crystal structure, such as Cu and Ag, and
are formed by deposition techniques (e.g., electrodeposition, magnetron sputtering)
(Shen et al. 2005; You et al. 2011). The nanotwinned microstructure is comprised
of relatively large diameter D grains (1–5 μm) that are laminated with twins with
an average nanoscale thickness of λ (5–80 nm) Fig. 13). There are two types of
NT materials: columnar and equiaxed. In equiaxed NTs, the grains are randomly
oriented, while in columnar-grained NTs, the grains form as columns aligned along
the NT growth direction. They consequently have very different textures. The
TBs and {111} poles are randomly oriented in the equiaxed NTs, while they are
highly oriented in the columnar NT, being narrowly dispersed about the NT growth
direction.

It is generally known that fine nanoscale dimensions of the twin lamella give
the NT its high strength. NT materials deform by the glide of (partial or full)
dislocations within the twin lamellae on {111)<110> slip systems or on the TB
planes. The formation and glide processes are unlike those in coarser twinned
or coarse-grained materials. Many MD simulations on deformed NTs (Dao et al.
2006; Jérusalem et al. 2008; Mirkhani and Joshi 2011, 2014; Xie et al. 2015; Zhu
et al. 2011, 2015) have revealed that GBs and the GBJs, where GBs meet, are
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Fig. 13 (a) TEM images of an equiaxed Cu NT and (b) a columnar Cu NT (Taken with permission
from Lu et al. (2009b) and Zhu et al. (2015))

Fig. 14 Comparison of experimental and calculated yield strengthens for columnar-grained NT
Cu (a) under 90◦ compression and (b) under 0◦ compression. The error bars on the calculated
strengths for λ = 30 nm cover results for D = 500 nm to 3000 nm. Experimental data were taken
from various studies on Cu NT as indicated by solid symbols (Taken with permission from Yuan
et al. 2016)

the favorable dislocation nucleation sites. The motion of the dislocations that must
glide between adjacent TBs is constrained and the nanotwin thickness λ limits the
distances traveled. As with NC metals, the formation of dislocation pileups in such
a confined space is unlikely.

These mechanisms of deformation indicate that the strength of NTs would
depend on the TB spacing (or equivalently, the nanotwin thickness λ) as well as
the as-processed texture (whether {111}||NT or random). Effects of λ size and
texture are not explicitly examined in many studies. A compendium of NT strengths,
measured by indention, compression, or tension, from various studies, is given in
Fig. 14. While it appears that strength increases with decreasing λ, the data are
not sufficient to extract a well-defined λ scaling. Strengths tested normal (90◦) to
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Fig. 15 Experimental results
from You et al. and calculated
stress-strain curves for
columnar-grained NT Cu
with twin thickness
λ = 30 nm and different grain
sizes D (Taken with
permission from Yuan et al.
2016)

the TBs or parallel (0◦) to the TBs are shown in separate plots, since the strengths
in these two directions could be dissimilar. In one study, performed by You et al.
(2013), the yield strength of columnar-grained NT Cu was shown to be highly
anisotropic. When the loading orientation is perpendicular to the TBs (90◦), the
yield strength is 600 MPa, 25% higher than 0◦ (see Fig. 15). In contrast, equiaxial-
grained NT Cu exhibits near-plastic isotropy because of the randomly oriented twin
layers (Lu et al. 2009b).

Recently Yuan et al. (2016b) advanced a mesoscale CP technique to examine
the effect of NT D and λ and initial texture on NT deformation response, strength,
and strain hardening and to investigate the underlying mechanisms. CP, in general,
permits the crystalline nanostructured to be modeled closely to the experimental
one. At the highest scale is the polycrystal, an aggregate of grains of diameter D.
Every grain is laminated by multiple NTs, each separated by a (111) twin plane and
possessing the FCC twin-matrix orientation relationship. Among the grains, the NT
(111) twin planes differ in orientation with respect to the sample, according to a
specified texture, e.g., randomly in the case of no texture or highly aligned with the
growth direction in the case of columnar NTs. Figure 16 shows a CP model for a
columnar NT.

As is common with CP models, at the finest scale, within an individual lamella,
plastic deformation is mediated by dislocation motion on crystallographic planes.
For FCC crystal structure common of these NT, there are 12 possible slip systems
in FCC crystals. With respect to the {111} TBs, there are three slip systems that lie
parallel to the TB plane, denoted here as TB-parallel slip, and nine slip systems that
lie inclined to them, called TB-inclined slip.

In many CP techniques, slip on these planes is assumed to activate homoge-
neously in the crystal and the amount of slip incurred after activation is not explicitly
dependent on lamellae size. The slip model used in Yuan et al.’s CP technique (Yuan
et al. 2015) (see Sect. 3.2) was modified to account for discrete slip events, where
dislocations are emitted from grain boundaries in NT materials and both λ and D
affect the amount of slip.
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Fig. 16 (a) Schematic of a NT Cu sample with columnar grains. (b) Plane view of the NT Cu
sample. The compression perpendicular to the columnar axis is defined as 90◦ compression. (c)
A portion of a single columnar grain including twin/matrix structure. (d) {111} pole figure of
the initial texture of the columnar-grained NT Cu. This texture is used to initialize the model
microstructure prior to application of the load. (e) Schematic of a twin lamella in one grain with a
dislocation nucleating from GB on an inclined slip plane (left) and from a GBJ on a parallel slip
plane (right) (Taken with permission from Yuan et al. 2016)

Figure 16 shows the model geometry for the case of a columnar NT and, in more
detail, a schematic of an individual twin lamella that is λ thick. As shown, the cross-
section of a twin lamella is modeled as a hexagon. The grain size corresponds to the
shortest distance D between two opposing facets of the hexagon corresponding to
the grain size D. The six sides of the twin lamella are grain boundary (GB) planes.
Each lamella has six grain boundary junctions (GBJs), where two neighboring grain
boundaries meet.

As mentioned earlier, both GBs and GBJ contain sources for dislocations, which
are double-pinned source length lying in the planes or across the junctions. Using
the twin lamellae model in Fig. 16, as a GB source, source length L must lie along
the intersection line between the slip plane and the grain boundary. These GB
sources can supply dislocations on all 12 planes – the 3 TB-parallel slip systems
and 9 TB-inclined slip systems. For the TB-parallel planes, the GB source lengths
can physically range from L0 to D. For the TB-inclined planes, the GB/slip plane
intersection line is bound between the two adjacent coherent twin boundaries λ,
and thus, the possible source lengths range from L0 to λ/sinθ , where θ is the angle
between the inclined slip plane and twin plane. For the GBJ sources, the line where
two adjacent grain boundaries of the same grain meet, as shown in Fig. 16e. The
line does not intersect any TB-inclined plane and therefore are geometrically not
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permitted to emit dislocations on them. The GBJ source line does intersect one of
the TB-parallel planes. Since each end of the GBJ source length L can lie on one
side of the junction, the length L of the GBJ sources can range from L0 to D. Finally,
the stress to emit the source of L is given in Eq. (14). Statistical variation in L leads
to a statistical distribution of activation stresses.

Once emitted from the GB or GBJ source, D or λ determines the amount of slip
the dislocation delivers. The TB-parallel systems provide a shear of b/λ, and the
TB-inclined systems can shear by b/D, where b is the magnitude of Burgers vector
for the material (e.g., for Cu, b = 0.362 nm).

With the above formulation, the CP technique considers two NT length scales,
twin thickness λ and grain size D, and their size effects on two phenomena, disloca-
tion emission, and the amount of slip per emission. For demonstration the simula-
tions considered the 0.001/s room temperature, strain rate tests by You et al. (2013)
on Cu. The model NT Cu initial texture was taken from their study and corresponds
to one naturally found in most as-deposited NT materials, wherein the {111} poles
of the twin lamellae are dispersed with in 25◦ about one axis (denoted as the natural
{111} texture). Figure 15 compares the model with the stress-strain curves from You
et al. (2013) for the 0◦ and 90◦ cases. It is worth noting that apart from the nanostruc-
ture length scales and textures, the only parameters that were provided to the model
were the strain rate and power-law exponent and for Cu, the moduli, and Burgers
vector. The grain diameter and λ in the model corresponded to those in the actual
sample D= 3000 nm and λ= 30 nm. As shown, other grain diameters (D= 500 nm
and 1500 nm) were also tested to assess the effects of D in this case. The model
suggests little dependence on D, which can be anticipated, since comparatively the
very fine nanotwin thickness λ would have more impact on dislocation emission.

To further investigate processing texture effects, the calculation for NT material
with λ = 30 nm and D = 3000 nm (in Fig. 15) was repeated for a weaker texture,
i.e., no starting texture (random) or a stronger one, an ideal (111) starting texture.
Without an initial texture (i.e., random texture), the difference between the strengths
for the 90◦ and 0◦ was negligible. This result is consistent with reports on equiaxial-
grained NT Cu, which exhibits near-plastic isotropy because of the randomly
oriented twin layers (Lu et al. 2009b). In contrast, with an ideal (111) initial texture,
the plastic anisotropy is significant, with the 90◦ test being the stronger of the two,
as seen in the calculations with the natural, in experimentally measured texture, and
in the experimental mechanical tests. The results find that texture causes the 90◦ test
to have the stronger flow stress than the 0◦ test.

Based on the foregoing results, it would be expected that the same anisotropy
prevails for all values of D and λ provided the texture does not change. The effect
of NT λ was examined with the model for the three types of textures: the random
texture, the experimental (natural) texture Fig. 16d, and the ideal (111) texture. The
comparison made in Fig. 14 finds that these three sets of calculations collectively
span the values of NT strengths reported in the literature, which likewise are derived
from samples bearing one of these types of initial textures.

Several interesting implications can be made from the calculations. First, the
equiaxed NTs are the weakest and those with the ideal {111} texture NTs are
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stronger. The model results suggest that for all initial texture types, the yield
strength scales inversely with λ. Yet a cross-effect arises since texture is observed
to affect the sensitivity of strength to reductions in λ. The size effect in λ is seen
to intensify as the texture sharpens from the no-texture case (weakest effect of
size on yield strength) to the case with an ideal {111} texture (strongest effect of
size on yield strength). For instance, with the strong, highly oriented (111) texture,
the often measured 90◦ strength for columnar NTs would increase much faster
with decreasing λ than equiaxed NTs. Last, the size effect is anisotropic. The 90◦
strength has a stronger size scaling with λ than the 0◦ strength. Consequently, the
yield anisotropy for the columnar NT, defined as the difference in yield strength
between the 90 and 0◦ tests, increases as λ decreases. As a consequence, finer twin
thicknesses would lead to a higher propensity to shear band.

3.5 Nanolayered Thin Films

One popular class of interface-dominant materials are nanolayered composite thin
films. These materials have a 2D structure and are comprised of a layered stack of
dissimilar metals, wherein the individual layer thickness has nanoscale dimensions
(usually h < 100 nm), and hence the density of interfaces is unusually high
(Beyerlein et al. 2012, 2013a, d, 2015; Monclús et al. 2013). Studies on the structural
properties of nanolayered films report exceptional properties compared to those of
their constituents or volume average values of their constituents, such as strengths
that are over five to ten times higher, hardness values that are several orders of
magnitude higher, and greater microstructural stability in harsh environments, such
as irradiation, impact, or elevated temperatures (Beyerlein et al. 2013a; Mara et al.
2008; Mara and Beyerlein 2014; Han et al. 2013a; Misra et al. 2004, 2007).

As a result of the deposition technique, the films have a special microstructure
that is unlike those found in traditional polycrystalline materials and even the single-
phase nanocrystalline materials discussed earlier (Sects. 3.2 and 3.3). They are
usually made by deposition techniques, such as physical vapor deposition (PVD),
which enable fabrication of multilayers with individual layer thickness of nanoscale
dimensions, uniformly across the film (Fig. 17). Typically, one grain spans an
individual layer, but in the plane of the layer, the layers are polycrystalline. The
interface bears a certain crystallographic character, usually low in interfacial energy,
and the crystal orientations are highly aligned, giving the film a strong texture. The
interfaces tend to be atomically ordered, comprised of relatively few defects, such as
misfit dislocations, compared to grain boundaries (Beyerlein et al. 2013b, c; Wang
et al. 2013; Kang et al. 2012).

Like in conventional, coarse-grained metals, plasticity in these biphase nanolay-
ered films occurs by dislocation glide. However, the nanoscale dimensions of the
layers are close to the size of dislocations. The exceptional plastic properties of
nanolayered composites, over the coarse counterparts, are a result of the frequent
and close interactions of the dislocations with the bimetal interfaces.
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Fig. 17 (a) HR-TEM images taken of the (a) 50 nm/50 nm HCP Mg/BCC Nb. (b) Initial pole
figures of the XRD measured textures of the HCP Mg (50 nm) on the top row and Nb phase in the
bottom row. (c) Comparison of the predicted and measured stress-strain curves from micropillar
compression for the 50/50nm Mg/Nb composite (Taken with permission from Pathak et al. (2017)
and Ardeljan et al. (2018))

With crystallographic slip as the main deformation mechanism, the 2D-layered
architecture and the strong texture together alone would then be expected to result in
substantial anisotropy in strength and other deformation properties. Yet, anisotropy
in structure properties is not often studied since testing the thin film samples in
different directions is not as straightforward as it is with bulk samples. The few
studies in which anisotropy were investigated show considerable anisotropy in
yield, strain hardening, and ultimate strength (Nizolek et al. 2016; Pathak et al.
2017). Figure 17 presents results from a recent report on the anisotropy of Mg/Nb
nanolayered PVD films. From these films, micron-diameter pillars were fabricated
using a focused ion beam (FIB)-based technique and tested in compression to
obtain the composite mechanical response. Micropillar compression tests were
carried out with the compression axis either (i) normal or (ii) parallel to the Mg/Nb
interface planes. In both directions, these materials exhibited outstanding strength,
50% stronger than that of coarse-grained counterparts or a volume average of their
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strengths. The composites also exhibited anisotropy in their flow response with the
flow stress in the normal direction being 30% higher than in the parallel direction.

In general, crystal plasticity-based techniques are suitable models for calculating
the microstructural evolution (texture, layer distortion) during the deformation of
layered polycrystalline microstructures. In fact, in recent years, a few applications
of CP modeling have led to insights into texture effects. In Al-Fadhalah et al.
(2005), a two-phase VPSC model was applied to study texture evolution in rolled
PVD Cu/Nb films, showing that texture evolution at a fine scale corresponded to
maintenance of the KS orientation relationship at the Cu/Nb interface. In another
study, two-phase VPSC successfully showed that the substantial tensile anisotropy
in Cu/Nb nanolaminates was the result of the strong texture that developed during
processing (Nizolek et al. 2016). A CPFE model for Cu/Nb was used to show
that the two common interfaces found in PVD Cu/Nb films did not maintain their
crystallography under rolling (Mayeur et al. 2014; Beyerlein and Mayeur 2015).
Another Cu/Nb laminate CPFE model was employed to quantify the reductions
in micropillar compression strength of Cu/Nb nanolaminates with increases in
temperature (Monclús et al. 2013). While calculations from these CP modeling
studies explained some trends seen in experiment, predictions of the actual yield
strength and flow response were not possible. The constitutive laws traditionally
used in CP-based models consider dislocation processes in coarse-grained materials
and thus are not appropriate for processes taking place in very fine crystals of
nanoscale dimension.

In these nanolayered composites, typically with layer thicknesses h < 50 nm,
the interfaces are spaced sufficiently close, which is only one order of magnitude
than the width of the dislocation core. The interfaces confine the movement of the
dislocations, forcing them to thread through the layers, depositing in the interfaces
as they pass by. This glide mechanism that has been observed in these nanolaminates
materials and is termed confined layer slip (CLS) (Misra et al. 2005; Li et al. 2012).

Recently Ardeljan et al. (2018) proposed a CPFE-based model crystal plasticity
model with the h-dependent critical resolved shear stresses according to CLS. This
CPFE-CLS model employs the CLS model (Misra et al. 2005) to define the CRSS
for every slip system operating at a crystalline point. Following the CLS formula,
the CRSS for a slip system s is given by

τ s
CLS = τ s

0 + As μ
sbs

hs′ ln

(
chs′

bs

)
+ f sbs

hs′ (18)

The first term τ s
0 represents the sum of a friction stress and resistance from other

obstacles, which would not be significantly altered by strain. The second term comes
from the CLS mechanism and bears a ln(h)/h dependence, and results from the
resistance encountered by the dislocation as it propagates through the layer. The
last term, i.e., f sb/h′, results from the deformation of the interface caused by the
threading dislocation. Based on previous works that have applied the CLS model
to multilayers, the expected order of magnitude for τ s

0 is 10–100 MPa, for As is
10−2–10−1, and for fsb is 1–3 J/m2.
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Fig. 18 The CPFE model
meshes for (a) the 50–50 nm
Mg/Nb composite. The model
contains one layer each of Mg
and Nb. Bottom images show
zoomed-in view of the
microstructure indicating
different grain aspect ratio
(Taken with permission from
Ardeljan et al. 2018)

The key length scale introduced in the CLS-CRSS model is hs′, the distance
along the slip plane of slip system s from one interface to the next. It depends on the
orientation of the crystal with respect to the interface normal and the layer thickness
h. Consequently the CLS-CRSS embodies a dependence on texture, and the CLS-
CRSS can evolve with texture through its dependence on h′ and with deformation
of the layers through its dependence on h.

The CPFE-CLS model was applied to understand the mechanisms responsible for
the yield, strain hardening, and plastic anisotropy in the Mg/Nb composites shown
in Fig. 17c. As is common for the crystal plasticity contribution to the constitutive
law, the slip and twin families need to be specified a priori. For HCP Mg, the three
main slip modes made available for HCP Mg are basal 〈a〉 slip, prismatic 〈a〉 slip,
and pyramidal 〈c + a〉 {1122}〈1123〉 slip. For BCC Nb, the two slip modes made
available are {110}〈111〉 slip and {112}〈111〉 slip.

As discussed in Sect. 2.2, part of the effort is the explicit representation of the
microstructure in the micropillar sample. Figure 18 shows the CPFE model of the
Mg/Nb bilayer. It is divided into two equal sections/volumes that represent a layer
of the Mg bonded to a layer of Nb. As in the fabricated film, (1) both layers are
polycrystalline in plane, and one grain spans the layer thickness. (2) The grains are
nearly equiaxed with grains 50 nm thick and 100 nm wide. (3) The initial Mg and
Nb phase textures were produced by assigning orientations randomly selected from
their corresponding measured textures. (4) Mg and Nb grain pairs share a common
{0001}||{011} interface plane.

Figure 17c compares the experimental and model stress-strain curves, in which
good agreement is observed. Figure 19 shows the relative amounts of slip con-
tributed from the different modes according to the model. In the HCP Mg phase,
basal slip prevails, as is expected for pure Mg, from the many reports on the defor-
mation of coarse-grained and ultrafine pure Mg-based systems (Zhu et al. 2008).
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Fig. 19 Calculated slip activity for the 50–50 nm HCP Mg/BCC Nb composites (Taken with
permission from Ardeljan et al. 2018)

In the Nb phase, the model indicates that {112} slip dominates the slip activity
over {110} slip in both loading directions. Since the {112} and {110} slip modes
had the same CLS parameters (τ s

0 , As, fs), the higher propensity for {112} slip is a
consequence of texture.

Slip activity calculations in the Mg and Nb also provide insight into the origin
of plastic anisotropy, namely, the higher composite flow stress seen in the normal
direction than the transverse direction (Fig. 17c). Generally, Nb is the stronger
material compared to Mg. The model finds that Nb accommodates proportionally
more applied strain in the normal loading than parallel loading, which would alone
cause normal loading to give rise to a higher flow stress than parallel loading. In
addition, more 〈c + a〉 slip in the Mg phase is activated under normal loading
than under parallel loading. In Mg, pyramidal 〈c + a〉 slip has the highest CRSS
compared to prismatic and basal slip, and thus, its higher activity would explain the
larger yield in normal loading than parallel loading.
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Last, an interesting finding is the source of strain hardening. Since the texture
did not change, geometric hardening would not have contributed. Analysis of slip
activity and the deformation of the layers indicate that the strain hardening is due
to a combination of a reduction in h and change in texture. The hardening is higher
in the normal case than parallel case, since in the normal case, the reduction in h
during deformation is more severe.

4 Part III: Areas for Mesoscale Processing-Microstructure
Modeling

Thus far, this chapter has discussed the latest developments in 3D, mesoscale CP-
based modeling techniques, and some recent advancements in the ability to model
the role mesoscale microstructural features, such as grain (orientation, size, and
shape), grain boundaries, twin boundaries, and interface properties, play in the
generation of local stresses states and deformation mechanisms during mechanical
processing or straining. As is common in modeling efforts, models and their
capability to inform and predict could benefit from a number of extensions.

For the mesoscale techniques reviewed here, useful future modifications concern
the ability to model the effects of microstructure on the onset (when), formation
(where), and migration of boundaries within an explicit 3D microstructure. The list
of possible stress-induced phenomena that would introduce internal microstructural
boundaries during processing is long: nucleation and growth of voids, development
of localized slip bands and shear bands, phase transformations, recrystallization,
grain growth, and twins. Also included in this area is the need to account for
interactions between dislocations and twins with grain boundaries, interfaces, or
precipitates. The number of possible defect/interface reactions that could affect
microstructural evolution is long as well. While many of these aspects have been
studied intensively and widely using atomic-scale simulation, representing the role
of such highly resolved atomic-scale reactions into a mesoscale model is lacking.
At the same time, new strategies are needed to overcome the numerical issues
involved in dynamically creating and evolving boundaries in explicit microstructure
mesoscale models. Below we briefly describe some new and upcoming strategies
for tackling these areas.

The heterogeneous stress and microstructural states in a strained material can
lead to the dissipation of energy in the form of voids. The study of void growth in
crystals and crystalline boundaries has been an intensely studied topic in atomic-
scale simulation, discrete dislocation dynamics, phase-field, finite elements, and
continuum mechanics (Needleman 1972; Koplik and Needleman 1988; Gurson
1977; Tvergaard and Needleman 1984). Yet, among the modeling techniques
available to date, using explicit microstructural CP-based modeling in the study
of voids in 3D single crystals and polycrystals is relatively new. In single crystals,
these techniques are beginning to probe the effects of void size and orientation on
the strain to initiate void growth and on growth rates (Wan et al. 2005; Yu et al.
2010; Ha and Kim 2010; Potirniche et al. 2006; Liu et al. 2007; Han et al. 2013b;
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Yerra et al. 2010; Schacht et al. 2003; Mbiakop et al. 2015; Srivastava and
Needleman 2015; Pushkareva et al. 2016). In polycrystals, the effect of anisotropic
plasticity on void growth rates (or onset of collapse) in tension (or compression)
loading states can be accessed (Lebensohn and Cazacu 2012). Looking forward,
incorporation of voids would lead to the ability to design processes that do not
prematurely lead to failure or process-aware microstructures that postpone fracture.

Deformation twinning is another stress-induced deformation mechanism that
introduces boundaries inside crystals. The various schemes for modeling twin
reorientation reviewed here, however, were designed for mean-field techniques, and
therefore, none of them are intended to explicitly account for twin boundary forma-
tion. Up to now, advancing CP models for discrete twins with a 3D microstructure
has been hindered by the lack of 3D microstructural representation codes. Very
recently, a few microstructural models of discrete twin domains within individual
grains have been developed (Ardeljan et al. 2015b, 2017; Abdolvand and Wilkinson
2016; Cheng and Ghosh 2017). With these techniques, studies on the local stress
fields and dislocation activity around twin lamellae have shed light on the effects
of size and local grain neighborhoods on the propensity for twin growth Fig. 20.
Although the twin lamellae can be explicitly inserted, expanding the twin domain
dynamically in CPFE can be computationally intensive. CP method advancement
for growing discrete twins with a 3D microstructure has been hindered by lack of
efficient geometry and mesh manipulation tools and the fact that the mechanisms
underlying the nucleation and propagation of twin domains and the relevant driving
forces are still being studied.

Many high-performance alloys (e.g., Mg alloys, Al alloys, and superalloys)
contain multiple phases of different sizes, which introduce many heterophase

Fig. 20 Twin formation and thickening with respect to the surrounding neighboring grains in the
3D model of α-U under compression in the z-direction with (a) one 5% twin lamella and (b) one of
2% and another of 3% volume fraction. The insert shows the distributions of normalized resolved
shear stresses along the most dominant twin plane in the twin direction for the red interior grain
(Taken with permission from Ardeljan et al. 2015b)
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boundaries. For example, Inconels contain γ′, γ′′, and δ precipitates, varying in
chemical composition, size, and shape. Interactions of discrete dislocations with
precipitates have been studied via atomistic, discrete dislocation dynamics, and
phase-field methods (Beyerlein and Hunter 2016; Gao et al. 2015). With CP-based
models, the effect of precipitates is commonly represented via a change in the CRSS
(Shenoy et al. 2008; Ghorbanpour et al. 2017; Nugmanov et al. 2018; Lentz et al.
2015), which models phenomenologically the effect of precipitate size on whether
the dislocation can shear it or not. CP can also provide a way to calculate the
mechanical stress, strain, and strain rate fields within the individual crystals as a
result of elastic and slip on crystallographic slip systems in each phase as well as
the differences in deformation across the boundary. Yet to benefit the design of
advanced alloys by microstructure control, advancements in CP modeling toward
incorporating the role of dislocation/interface interactions in slip activity would be
recommended.

5 Conclusions

Over the years, mesoscale materials modeling approaches have been built to eluci-
date the role played by microstructure, e.g., grain shape, grain orientation, grain size,
internal grain boundaries, and interfaces, in processing-microstructure-property
relationships of polycrystalline materials. Many high-performance polycrystalline
materials of intense interest for future engineering applications are inherently or
microstructurally complex, warranting advancements in such mesoscale deforma-
tion models beyond the standard versions. This chapter aims to highlight the latest
developments in 3D, mesoscale CP-based modeling techniques, and the challenges
they have overcome. In particular, some recent advancements in the ability to model
the role that mesoscale microstructural features, such as grain (orientation, size,
and shape), grain boundary, and interface properties, play in the development of
local stress states and deformation mechanisms during mechanical processing or
straining are described and discussed. Examples cover studies that have employed
and extended mesoscale 3D, full-field spatial resolved computational models to
investigate processing-microstructure relationships in boundary-dominant materi-
als. These include the influence of bimetal interfaces on microstructural evolution.
Also presented and discussed are advancements made to mesoscale techniques
to study microstructure-property relationships in boundary-dominant materials.
Particular problems addressed include the effects of grain size and shape and layer
and twin thickness on dislocation emission and propagation. The chapter ends with
a discussion of possible directions and strategies future mesoscale modeling efforts
could take to advance capability and value in the design of advanced materials.
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Abstract

A long-sought goal of computational materials science and engineering has
been a simulation framework that spans all necessary length and time scales,
potentially from electronic structure to structural engineering, providing the
appropriate level of physics fidelity where needed and enabling the user to
trade off accuracy and computational time in an optimal manner. Analogous
to adaptive mesh refinement methods that dynamically (and automatically)
coarsen and refine a computational mesh based on local requirements, adaptive
physics refinement methods utilize higher-fidelity physics models as needed,
e.g., replacing a phenomenological constitutive model with a direct polycrystal
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plasticity simulation. While there have been several demonstrations of similar
concurrent multiscale methods over the past 20–30 years, only now is a more
general capability becoming viable due to advances in algorithms and computer
architectures and middleware. In this chapter, we briefly review this history,
focusing on two methods in particular: the heterogeneous multiscale method and
adaptive sampling. The computational workflow, data, and runtime requirements
of these methods are used to identify key enabling technologies that have recently
gained widespread adoption, including task-based programming models, hetero-
geneous computer architectures, database, and machine learning algorithms.

1 Introduction

Multiscale modeling techniques, in which different levels of theory are combined to
provide higher accuracy in regions where required, while utilizing more computa-
tionally efficient models elsewhere, have a long history in computational science.
Perhaps the most notable of these is the hybrid quantum mechanics/molecular
mechanics (QM/MM) method for computational chemistry (Warshel and Levitt
1976), whose developers were awarded the 2013 Nobel Prize in Chemistry for
“the development of multiscale models for complex chemical systems.” In the
1990s, similar techniques were developed and applied to solid-state materials by
coupling atomistic and finite element methods. A common prototypical application
was to fracture mechanics, combining a long-range nonlinear stress field described
by a continuum finite element model with an atomistic description of a crack tip
(Kohlhoff et al. 1991) or even extended to a third level of theory by using a tight-
binding model for bond rupture in the macroscopic, atomistic, ab initio dynamics
(MAAD) technique (Abraham et al. 1998; Broughton et al. 1999). For the reader
interested in these and related techniques, including the quasicontinuum (Tadmor
et al. 1996; Miller and Tadmor 2002) and coarse-grained molecular dynamics (Rudd
and Broughton 1998) methods, a number of comprehensive reviews exist (Lu and
Kaxiras 2005; Bernstein et al. 2009; Miller and Tadmor 2009).

2 The HeterogeneousMultiscale Method

Motivated by these and other multiscale, multiphysics approaches, E and Engquist
introduced the broader heterogeneous multiscale method (HMM) framework, in
analogy to the “homogeneous” multigrid methods in which the same physical model
is employed at different scales (Weinan and Engquist 2003a, b; Weinan et al.
2003, 2007). In most previous multiscale methods, different models are applied
to different physical regions, for instance, a molecular dynamics (MD) region and
a finite element (FE) region, with some overlap, handshaking, or bridging region
where consistency is maintained. In contrast, HMM uses detailed microscopic
models to provide the necessary closure relations for general macroscopic conser-
vation laws. As with the representative atoms (“repatoms”) of the quasicontinuum
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method, fine-scale (typically MD) models are employed for each element where a
macroscopic constitutive model may either be unknown, too expensive to evaluate,
or locally invalid, e.g., due to crystal defects or chemical reactions. In a typical
approach, a finite element or finite volume model enforces continuum conservation
laws for mass, momentum, and energy, while local MD simulations for each
element, at each time step, provide average momentum and energy fluxes as
statistical time averages, assuming a separation of scales and ergodic dynamical
behavior.

3 Scale-Bridging Strategies Using Polycrystal Plasticity
Models and Adaptive Sampling

Plastic anisotropy (i.e., a mechanical response which depends upon the orientation
of the constituent grains) is an important property that is closely tied to a polycrys-
talline material’s microstructure and determines how that material deforms under
extreme mechanical conditions. Traditionally, macroscale finite element simulations
represent this effect using (static) phenomenological plasticity models which have
been parameterized from experiments and/or a more realistic polycrystal plasticity
model, for a fixed microstructure. For scenarios involving the coupling of plastic
anisotropy with microstructure evolution, direct multiscale embedding has been
employed (e.g., Segurado et al. 2012), analogous to the original HMM approach
(Weinan et al. 2007) in which every material element resorts to a lower length-
scale calculation, every time step. However, the computational cost of such a direct
embedding becomes prohibitive as one moves from relatively simple homogeniza-
tion assumptions to models with higher physical fidelity and correspondingly higher
computational expense.

Microstructural effects can be explicitly considered in micromechanical models,
with different degrees of fidelity and numerical efficiency, using polycrystal plas-
ticity formulations. The simplest and most efficient Taylor model assumes identical
deformation throughout all single crystal grains in a representative volume element
(RVE) of the material, typically consisting of a number of grains ranging from 50
(providing a coarse representation) to 1000 (refined), and it is insensitive to the
spatial arrangement of the grains within the RVE. Given the strain of each grain
(which is known from the applied boundary conditions), the Taylor model gives
the stress response as an average of the stresses at the grain level, obtained by
solving one system of five nonlinear equations for each grain. A typical refined
Taylor computation therefore involves the solution of 1000 decoupled 5×5 systems
of nonlinear equations, requiring on the order of milliseconds on a single modern
CPU core.

This Taylor scheme, while computationally efficient, unrealistically neglects
interactions between grains. To address this limitation, more elaborate homoge-
nization schemes like the viscoplastic self-consistent (VPSC) model (Lebensohn
and Tomé 1993) have been proposed. VPSC considers every grain as an ellipsoidal
inclusion embedded in a homogenized effective medium (HEM). Like the Taylor
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model, VPSC results do not depend on the spatial arrangement of grains. The HEM
properties and the strains and stresses of the grains are not known a priori, but must
be obtained iteratively, involving a weighted average of the responses at the grain
level. A typical refined VPSC calculation involves 3–5 iterations, each requiring the
solution of 1000 coupled 10×10 systems of nonlinear equations, i.e., less than a
second on a single core.

Both the Taylor and VPSC models have an important limitation in common:
they are mean-field approaches in which the morphology of the grains is either
neglected (as in Taylor) or a simplified grain shape is assumed (ellipsoidal, as
in VPSC); and the influence of the specific neighborhood of a given grain is
either neglected (as in Taylor) or averaged out (by means of the HEM assumption,
as in VPSC). Alternatively, a full-field viscoplastic model based on Fast Fourier
Transforms (VPFFT) (Lebensohn 2001) is able to explicitly treat complex grain
morphologies and topologies, in a relatively efficient way compared with other full-
field approaches such as the crystal plasticity finite element method (CPFEM). The
VPFFT approach is based on the use of FFTs to efficiently calculate convolution
integrals between a Green’s function associated with a reference homogeneous
medium and a suitably defined polarization field. Since the polarization depends
precisely on the unknown micromechanical fields, an iterative scheme is used. All
fields are mapped onto a 3-D regular grid, typically consisting of a number of voxels
ranging from 16 × 16 × 16 (for a coarse representation) to 64 × 64 × 64 (refined)
or potentially even greater. A typical refined VPFFT calculation involves 10–20
iterations, each iteration consisting of direct and inverse FFTs calculated over the
regular grid, and the solution of one 5× 5 system of nonlinear equations per voxel,
requiring several minutes on a single processor core. This computation time can be
reduced to a few seconds at the expense of losing fidelity by using a coarse grid (see
Table 1).

To overcome the high computational cost of directly embedding such polycrystal
plasticity models, Barton et al. (2008) developed a scale-bridging methodology that
employs adaptive sampling (AS), mitigating the computational expense of direct
embedding by building a database of material response as a function of polycrystal
microstructure as a simulation proceeds. Whenever a response is needed (typically
for each material element, each time step), this database is queried, and if existing
database entries are sufficiently close to the new state, the result is interpolated
using kriging or another interpolation method. (How one defines “sufficiently close”

Table 1 Single-core CPU
time measured for different
polycrystal plasticity models
and fidelities of the
microstructure description

Mean field representation

Coarse (50 grains) Refined (1000 grains)

Taylor 1.8 ms 35 ms

VPSC 5 ms 100 ms

Full field representation

Coarse (163 grid) Refined (643 grid)

VPFFT 2.3 s 148 s
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requires uncertainty quantification analyses, as discussed below in Sect. 4.3.) The
original AS implementation was based on the relatively simple Taylor model, which
does not account for texture evolution by slip and twinning. Recently, Barton et al.
(2015) unified the VPSC model with a discrete harmonic (DH) representation of
crystallographic texture and the AS embedding strategy, integrating all three models
in the ALE3D finite element code (Noble et al. 2017). The DH-based representation
of texture and its evolution was the key to define a database that is representative
of the microstructure, is of manageable size, and can account for the rapid texture
evolution produced by deformation twinning. This implementation achieved two or
more orders of magnitude in wall-clock speedup, compared with direct interrogation
of VPSC by the finite element model.

In addition to the increased computational expense of the higher-fidelity poly-
crystal plasticity models, two additional computational considerations should be
noted. First, the increased model complexity (and reality) is associated with
an increase in the number of input parameters required to describe the mate-
rial microstructure. For instance, the recent ALE3D-AS-DH-VPSC implementa-
tion (Barton et al. 2015) just mentioned represents the material texture with a
DH expansion; adding higher-order harmonics provides an increasingly accurate
description but also introduces many more coefficients. The application of this
approach to predict texture-induced anisotropy effects on the final shape of heavily
textured Ti bars bent along different directions required a 60-dimensional input
space for a sixth-order expansion. The dimensionality is even greater for the
spatially resolved VPFFT model, so one must consider the trade-off between
accuracy and dimensionality for reduced dimensionality approximations.

This increased dimensionality is in part the original motivation and promise of
AS methods: precomputing and parameterizing a model that covers this space are
computationally prohibitive and unnecessary since, in practice, the points queried
during any particular calculation tend to fall on a low-dimensional manifold of
this many-dimensional parameter space (Barton et al. 2011). However, the input
space dimensionality introduces additional burdens on both the database lookup
and the interpolation method. In addition to these challenges for the AS layer, the
history dependence also requires that the coarse-scale model (e.g., ALE3D) tracks
the evolving microstructure at each material point.

On future exascale (and beyond) supercomputers, one may be able to afford a
spatially resolved VPFFT polycrystal plasticity model, but such calculations are
today prohibitive due to computational cost (several minutes per fine-scale model,
whereas a coarse-scale time step should ideally take no more than a few seconds)
and dimensionality challenges. As an intermediate step between the simple Taylor
model and the still-intractable VPFFT model, current state-of-the-art efforts use
the intermediate mean-field VPSC plasticity model. The single-core runtime (10–
100 ms) is roughly comparable to what we expect each VPFFT calculation to take
on an exascale-era node, and the intermediate input space dimensionality (tens of
parameters) provides a smooth migration pathway from the simple Taylor model
(with only a few parameters) to VPFFT (with hundreds to thousands of input
parameters).
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4 Recent Extensions and Applications

4.1 Spatial Adaptive Sampling

The key insight that enables adaptive sampling to offer substantial performance
gains is that during any given simulation, the fine-scale microstructure queries
follow a low-dimensional manifold of a high-dimensional input space, gradually
varying in space and time, aside from shocks and other discontinuities. This enables
a frequent reuse and interpolation of recently computed and accessed fine-scale
evaluations and kriging models. However, as just mentioned, the potentially high-
dimensional input space introduces challenges both in quickly accessing previously
computed nearby results and in developing reliable interpolation models. Instead
of interpolating over this input parameter space, another option is to interpolate
over physical space, which of course is at most three dimensional. This approach
has been proposed and successfully demonstrated in Rouet-Leduc et al. (2014) and
is illustrated in Fig. 1. In these initial demonstrations, previously computed fine-
scale results are not stored, nor are kriging interpolation models developed; instead,
at each macroscale time step, the required constitutive data is reconstructed by
interpolating an automatically determined subset of fine-scale simulations on the
d ≤ 3-dimensional subdomain. As time progresses, one can predict which fine-
scale sample points will be required, for a given target accuracy. These authors
demonstrated that spatial adaptive sampling can reduce the number of fine-scale
simulations (and thus the total computational cost) by three orders of magnitude,
compared to direct HMM.

4.2 Practical Applications to Molecular Solids

Following the move of two of the key developers of the original adaptive sampling
methodology (Arsenlis et al. 2006; Barton et al. 2008, 2011; Knap et al. 2008)

Fig. 1 Schematic illustration of the spatial adaptive sampling scheme applied to the simple
problem of elastodynamic shock propagation in one dimension. (a) Shock propagation dynamics
occurs on macroscopic space and time scales. Red dots denote representative microscopic regions
of the system, each of which is modeled by �1000 atoms of a defect-free fcc Cu crystal. (b) The
heterogeneous multiscale method (HMM) integrates conservation laws to determine the dynamical
evolution of the macroscopic fields. Constitutive data is provided by the stochastic estimates of
microscopic molecular dynamics simulations, performed on a regular grid. (c) In spatial adaptive
sampling, the location of microscopic simulations is dynamically adapted to increase the accuracy
and efficiency of the HMM simulation (Rouet-Leduc et al. 2014). Permission from Elsevier
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from Lawrence Livermore National Laboratory to the Army Research Laboratory,
it has been adopted and further developed there in recent years (Knap et al. 2015,
2016; Barnes et al. 2017a, b). Their primary application has been to model low-
velocity Taylor anvil impact tests for molecular solids, in particular energetic
materials below the threshold for chemical reactions (Barnes et al. 2017b). Their
concurrent hierarchical multiscale (HMS) scale-bridging framework combines three
loosely coupled components: a microscopic model, a macroscopic model, and
the scale-bridging “glue.” At the continuum scale, ALE3D (Noble et al. 2017)
is an arbitrary Lagrangian-Eulerian hydrodynamics code. At the fine scale, an
interface to the LAMMPS code (Plimpton 1995) has been developed that provides
on-demand calculation of material response given an arbitrary state point (e.g.,
density and internal energy). ALE3D and this LAMMPS integrated materials engine
(LIME) (Barnes et al. 2017a) are then coupled via a stand-alone evaluation module
that is responsible for collecting microscopic model evaluation requests from
the microscopic model, scheduling their evaluation given available computational
resources, and communicating their results back to the macroscopic model.

4.3 Algorithmic Challenges

Adaptive sampling methods introduce several algorithmic challenges, including
how one identifies “nearby” previous fine-scale evaluations that can be used for
interpolation, how this interpolation from the microstructure-response database is
done, and how one determines whether interpolation is sufficiently accurate, or if a
new fine- scale model evaluation must be launched.

The problem of finding neighboring points in a possibly high-dimensional space
has been intensely addressed by the computer vision community (Shakhnarovich
et al. 2006). A key decision is whether one requires an exact nearest neighbor search
or whether an approximate nearest neighbor search suffices. The original adaptive
sampling implementations stored a database of kriging models rather than the
more numerous set of fine-scale evaluation results. Consequently, an exact neighbor
search (using a metric-tree database) was used to find the (single) kriging model
whose centroid was closest to the queried point. This approach has the advantage of
enabling the reuse of kriging models that are very expensive to construct but also
introduces complications including (1) how to use new fine-scale model evaluations
to update a kriging model; (2) when to merge neighboring kriging models or, more
typically, split an overextended kriging model into two separate models; and (3) how
to smoothly switch from one kriging model to another for intermediate query points.
As a result of these complications, other difficulties due to dimensionality and
scalability, and estimates of the database size for the two approaches, more recent
efforts have evaluated an alternative implementation in which the fine-scale model
outputs are stored in the database directly, rather than the subsequent interpolation
models.

Consequently, an approximate nearest neighbor search will suffice to identify
enough neighboring points to compute an interpolated estimate. Among approxi-
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mate nearest neighbor search algorithms, locality sensitive hashing (LSH) (Andoni
and Indyk 2008) is a leading method. Despite offering good (theoretical) scaling
with dimension and data size, LSH requires many hyper-parameters to tune and is
not suited for the inhomogeneous data expected for our microstructure-response
data sets. Instead, one promising alternative approach would use a forest of
search tress, specifically either k-d trees, as implemented in the Fast Library for
Approximate Nearest Neighbors (FLANN) (Muja and Lowe 2014), or a forest
of v-p trees, as implemented in the Proximity Forest (O’Hara and Draper 2013).
Preliminary tests by our group show both methods to work well, as measured by the
fraction of exact nearest neighbors correctly identified and by the number of trees
required.

Kriging, or Gaussian process regression, models were originally designed for
geospatial interpolation and used in prior adaptive sampling work. However, kriging
scales poorly with dimensionality and will be unlikely to work as we move from
the few-dimensional input parameter space of the simpler proof-of-concept models
(Barton et al. 2008, 2011; Knap et al. 2008) toward the O(103−104)-dimensional
space of other applications. As a result, simpler local linear or quadratic interpolants,
which will work well for smooth functions such as the microstructure-response
surface, have been evaluated. Error estimates, which are provided (with some
assumptions) by kriging algorithms, can be obtained by sampling different sets of
neighbors, e.g., from differently randomized search trees.

This error estimate can then be used to decide whether the interpolation result is
sufficiently accurate to use or a new fine-scale evaluation is required. A naïve (and
common) approach is to reject the interpolated result if this error estimate exceeds a
chosen threshold. Applying such a uniform threshold at each local microstructure-
response query is well defined but not necessarily what is optimal from a global
perspective. For instance, as a material is deforming, the microstructure evolution
and shape of the material may be more (or less) sensitive to errors in the underlying
plasticity description in some regions at any given time, and thus a tighter (or
looser) error tolerance would produce the same overall response. In this global
perspective, one needs to define a metric (or metrics) to evaluate the accuracy of
a simulation, as by comparing the final material shapes resulting from a dynamic
loading experiment.

This leads to the well-defined goal of increasing the accuracy of a predicted
quantity of interest (QoI). When a computational model is used to predict a material
property or process, the QoI can be thought of as a functional of the constitutive laws
being used. In a general case, the QoI depends on a set of input parameters (e.g.,
geometry, environmental conditions, etc.) and a set of constitutive functions (e.g.,
stress-strain relationship). Optimal UQ (OUQ) strives to find the optimal bounds
on quantities of interest given the information at hand and to enable the optimal
design of computational experiments (Owhadi et al. 2013). To address model
uncertainty, Strachan et al. (2013) have recently developed a functional uncertainty
quantification (UQ) approach that enables the estimation of uncertainties in the
predictions due to the use of low-fidelity materials models. One practical use of
functional UQ has been for MD simulations performed using the Lennard-Jones
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potential, inferring thermodynamic properties corresponding to different potentials
without requiring additional simulations (Reeve and Strachan 2017).

5 Computational Requirements for Task-Based
Scale-Bridging

From a computer/computational science perspective, the exploration of dynamic,
asynchronous, concurrent approaches is critical as we move toward exascale, since
the massive concurrency involved will introduce processor performance variability,
operating system (OS) jitter, and a plethora of soft, hard, and silent errors that
will make tightly coupled bulk synchronous approaches increasingly unviable.
Instead of this traditional parallel programming approach where the programmer
is responsible for assigning equal amounts of work to each MPI process, more
loosely coupled asynchronous models where the work is overdecomposed, and the
runtime system responsible for distributing and balancing the work given task and
data dependencies, will enable a more efficient use of resources, as well as much
improved fault tolerance.

Based upon these concerns about the physics fidelity and architectural trends
toward massive concurrency, heterogeneity, and asynchronous, dynamic approaches
rather than traditional bulk synchronous parallel models, adaptive physics refine-
ment such as HMM or AS, whereby a coarse-scale simulation dynamically spawns
fine-scale simulations as needed, are attractive. This strategy is crucial for capturing
how the macroscale, bulk response is influenced by microstructural detail. Thus, in
a high strain-rate loading problem, a finite element calculation may spawn finer-
scale crystal plasticity or atomistic models as needed when the available empirical
constitutive model is inadequate. The basic workflow of such a concurrent scale-
bridging application workflow is illustrated in Fig. 2 and involves a coarse-scale
simulation, dynamically spawned fine-scale simulation tasks, a database for storing
the results of fine-scale tasks, and an adaptive sampling layer which queries the
database, interpolates results, and decides when to spawn new fine-scale tasks. This
approach to increased physics fidelity via embedded scale-bridging imposes several
requirements upon the underlying computational software stack, including task-
based programming and execution models, runtimes, and databases.

This approach has generated an increasing amount of interest in the material
mechanics community, where several groups are actively developing various related
methods, alternatively referred to as kriging, surrogate model, or metamodel
construction. In particular, computational materials programs such as Advanced
Simulation and Computing/Physics and Engineering Models (ASC/PEM),
the Materials Genome Initiative (MGI), Integrated Computational Materials
Engineering (ICME), the Advanced Manufacturing Initiative, etc. all recognize
that improving physical fidelity, rather than extending time or length scales by
brute force, is the greatest driver for increased computational power. In addition,
such concurrent scale-bridging approaches are being developed in several other
materials science contexts, not to mention other computational science domains.
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Fig. 2 Components of a scale-bridging application. A coarse-scale model runs across multiple
nodes, each utilizing adaptive sampling to either spawn fine-scale models (FSM) as needed or
interpolate previous fine-scale responses stored in a database (DB), consisting of an on-node cache
(DB$) and a distributed database

Examples include interpolation-based MD potentials (Bartók et al. 2010; Trott
et al. 2014), including a recent demonstration with on-the-fly database construction
and interpolation (Li et al. 2015) and on-the-fly kinetic Monte Carlo approaches
(Henkelman and Jónsson 2001; Trushin et al. 2005; Xu et al. 2011). As other
researchers have noted (Barton et al. 2011; Knap et al. 2015, 2016; Alowayyed et al.
2017), such methods have computational workflows that are drastically different
from traditional, tightly coupled bulk synchronous programming (BSP) approaches
to scientific computing, as we will detail below.

5.1 Workflow Requirements

The structure and workflow of one recent prototype application, the task-based
scale-bridging code (Tabasco) which was demonstrated by the Exascale Co-design
Center for Materials in Extreme Environments (ExMatEx) on the heterogeneous
Trinity supercomputer, is shown in Fig. 3. Out of the five individual components
(A-E) comprising the application, two (A and E) represent the two physics scales:
the LULESH coarse-scale (A) and VPSC fine-scale (E) codes. (LULESH Karlin
et al. (2013) is a proxy application for ALE3D, representing the basic Lagrangian
hydrodynamics computation without the full complexity of a production code.)
The remaining components (B-D) implement the heart of the adaptive sampling
approach and are what dramatically reduce the number of expensive fine-scale calls
needed during each time step.
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Fig. 3 Structure and workflow of the task-based scale-bridging code (Tabasco) prototype as
implemented on the heterogeneous Trinity supercomputer

These components each require a different number of nodes, and this node usage
can vary with time. Additionally, as shown in the diagram, each component is best
suited to a particular type of node (on Trinity, either Haswell, KNL, or burst buffer).
In addition, some components are long-lived and stateful (A-C) while others are
ephemeral and stateless – running for a short time only, returning their results
to another component, and exiting. This dynamic and asynchronous computing
approach requires a task-based programming model. We have explored a number of
such models as candidates to implement our prototype. These programming models
are responsible for allocating resources to components, scheduling and managing
the execution of tasks within components, and communicating results between
components.

In order to better understand the application flow, we will walk through the
execution of a single time step (again, refer to Fig. 3).

1. At the beginning of the time step, each mesh element of the LULESH coarse-
scale computation (A) requires a material stress to advance its state. This stress
(and other quantities, such as texture evolution parameters) must be computed
by the VPSC fine-scale component. In a brute force approach, each coarse-scale
cell would spawn a fine-scale call (E) to provide the required stress for that cell.

2. Adaptive sampling improves dramatically on the brute force approach by dynam-
ically launching a fine-scale call only for mesh elements where it is required. Due
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to the evolving nature of the physics, many previously computed fine-scale call
values continue to be useful into the future on mesh cells at a similar state in the
computation.

3. Three components (B-D) are used to implement the adaptive sampling method.
As each fine-scale request from LULESH (A) arrives, an approximate neighbor
search (B) is executed. This search, distributed and executing on many nodes
concurrently, searches a set of trees for neighbors of the query point. As the
search traverses the trees, it retrieves previously computed fine-scale results for
these neighboring points from a NoSQL – or key/value – database (C).

4. If a sufficient number of neighbor points are found, a fast interpolation (D)
can be performed in an attempt to generate a suitable approximation to the
required stress (and texture evolution). If the interpolation fails, or if there are
an insufficient number of neighbor points, a new VPSC fine-scale call (E) is
dynamically spawned.

5. If interpolation is successful, the stress is returned to the requesting LULESH
coarse-scale (A) element. If a new VPSC fine-scale call is required, its value
is similarly returned to its requesting element, and in addition it is queued for
eventual insertion into the search tree structure and database, where it can be used
for subsequent interpolation attempts. (Note that, while our adaptive sampling
approach reduces overall fine-scale calls by 90%, the remaining 10% will still
consume the lion’s share of the prototype’s execution time – especially in the case
of more complex response models like VPSC. Acceleration of these fine-scale
calls, using KNL nodes on Trinity or GPUs on Sierra, provides a performance
leveraging opportunity to substantially reduce this remaining execution time.)

6. When all requesting coarse-scale cell requests have been fulfilled, new points
queued for insertion are added to the search trees and database, coarse-scale mesh
element updates are executed, any needed coarse-scale neighbor exchanges are
performed, and the computation advances to the next time step.

The use of adaptive sampling as a scale-bridging technique presents significant
challenges in the management of computing resources, including the scheduling
of tasks performing fine-scale model evaluations and the management of the
dynamic, distributed database containing previous model evaluations. Because the
corresponding workflows are difficult to predict a priori, the ability to generate
example workflows is the first step in the characterization of more general scenarios.

5.2 Runtime Requirements

Many, if not most, of today’s scientific simulation applications are developed using
a fairly limited set of software technologies: a standard programming language such
as C, C++, or FORTRAN (possibly along with node-level acceleration APIs like
CUDA or OpenMP and solver libraries such as Trilinos), MPI for communication,
and a static scheduler, such as Slurm or Moab, to execute the computation on the
machine. Should a developer need to load balance their computation, they need to
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provide this functionality themselves. Similarly, fault tolerance requires program-
mers to periodically write data to disk (or use in-memory checkpointing Glosli
et al. 2007) for later recovery. Likewise, communication patterns are generally
fixed – dynamic communication patterns must be designed and implemented by
the programmer.

Modern runtime systems can provide much of this functionality as a collection
of independent “system services.” These services support “programming in the
large” – coupling multiple diverse components of a dynamic multiscale computation
and orchestrating its execution on the system. These services, by category of
functionality, are:

• Scheduling: concurrent, asynchronous, adaptively executing computational com-
ponents, launched on-the-fly, and exiting when complete.

• Discovery: locating system resources based on application-supplied require-
ments (e.g., provide a list of all nodes with GPU accelerators).

• Messaging: setup and teardown, on-the-fly, dynamic, adaptive communication
links between components of the calculation.

• Caching: services for temporarily storing data, perhaps in-memory, and retrieving
it from anywhere in the computation. Caching can help prevent duplicate
computation or store data to be used for recovery from faults. Caching can also
be used for communication. Instead of sending messages, processes can store
their data in the cache for retrieval by other processes.

• Fault detection: working with the application, operating system, and hardware,
detects faults in the system and provides facilities for application notification or
automated restart.

In general, there are two ways in which these services (or subsets of them) are
implemented. First, there are distributed monolithic systems that are closely tied
to a programming language or model (e.g., Charm++, X10, Chapel, CnC, or
Erlang). These systems include a runtime component that implements features of
the programming models such as scheduling, communication, data distribution,
etc. (These system-level runtimes should not be confused with low-level runtimes
provided by component-level programming languages such as CUDA or OpenMP,
which often provide the same conceptual features but at a much finer level of
granularity.) Second, there is a more loosely coupled approach that uses various
single-function software, usually open source, to build an integrated, dynamic
system. This approach is closer to what industrial developers (e.g., Netflix, Face-
book, LinkedIn, Google, etc.) use to build cloud- or web-based scalable systems.

To explore this design space, the Exascale Co-Design Center for Materials in
Extreme Environments developed a simplified CoHMM “proxy application” for
the basic HMM method (ExMatEx 2015a) and implemented it with a variety
of programming models, runtimes, and database backends (Roehm et al. 2015;
Pavel et al. 2015). As a monolithic approach, the Erlang programming language
provides the desired features in a single language and runtime system. For the fine-
scale molecular dynamics tasks, the simplified CoMD proxy was used (ExMatEx
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2015b). An alternative, cloud-based approach used a more diverse set of tools
including Apache ZooKeeper (for discovery, scheduling, and process tracking),
node.js to manage the overall execution of the code, and multiple NoSQL databases
(MongoDB, memcached, Riak, Couchbase) to cache data for fault tolerance. In
both cases, the implementations simply managed the dynamic coupling between
the coarse- and fine-scale components of CoHMM. All of the mathematical
computation was done in the component-level APIs that those components used
(e.g., MPI or OpenMP).

The 2013 Los Alamos IS&T Co-Design Summer School, comprised of six
students with backgrounds in both computer science as well as physics, refined the
CoHMM and CoMD proxy apps and used them to test a variety of runtime systems
from industry and academia. They evaluated software that acts as the “glue” between
the coarse- and fine-scale components of CoHMM, whose simplicity allowed us
to investigate a wide swath of software technologies – both monolithic and cloud
based. These evaluations focused on some of the primitive features described above:
scheduling, communication, caching, and fault tolerance. Various schedulers were
tested against how well they supported dynamic and adaptive task scheduling.

In addition, fault tolerance was implemented using two approaches. In the first,
process-level case, the runtime system detects the crash of a fine-scale CoMD
process, and the system restarts it from its initial conditions (potentially on another
node) without crashing the entire application. In the second case, an in-memory
database (again, Redis) is used to periodically cache particle positions from each
CoMD process. If the runtime system detects a crash, the CoMD process is restarted
from the conditions encapsulated in the most recently cached particle positions –
not from the initial conditions. These developments also enhanced our original test
applications; fault tolerance was added to the Erlang version, and our cloud version
now uses the proven Redis database.

5.3 Database Requirements

Achieving maximum performance for Tabasco relies on a database of fine-scale
calculations to enable multidimensional interpolation (kriging) and avoid additional,
costly, fine-scale computations. Initial explorations by Barton, Knap, and colleagues
at LLNL (Barton et al. 2008, 2011; Knap et al. 2008) used a hand-coded database to
cache fine-scale computations. Since then, distributed NoSQL databases (Sadalage
and Fowler 2012) have become ubiquitous in web and cloud applications and are
attractive (primarily the key-value store variations) based on their ease of use,
community support, and potential performance.

As with the exploration of task-based programming models and runtime sys-
tems, CoHMM has been used to explore APIs and functionality of key-value
stores. CoHMM is a tractable proxy for these explorations and matches the
algorithmic structure of the Tabasco target scale-bridging application. Keys are
formed by concatenating truncated floating point parameters from the coarse-scale
code, effectively binning the fine-scale values. Alternatively, distributed tree-based
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approximate nearest neighbor (ANN) techniques are in principle better suited to
adaptive sampling access patterns and also remain amenable to distributed database
implementations.

Multiple versions of CoHMM have been implemented, primarily using the
Redis (2018) NoSQL database. Redis was chosen for its ease of installation,
simple interface, and adequate performance. This integration of Redis into CoHMM
successfully achieved reductions on the order of 90% in the number of fine-scale
calculations. A number of issues require further exploration before committing to
any particular database: performance, non-transactional semantics, and support on
target petascale platforms.

The performance of a single-node Redis database is more than adequate for
CoHMM, where fine-scale calls take several seconds to execute, and thus the
database performance is not stressed. As we move to much faster fine-scale
calculations (on the order of 10 ms), absolute performance will become a challenge.
However, early experience indicates that many of these potential databases will
provide adequate performance for this problem. For example, a single-node Redis
database on a MacBook Pro can support about 70,000 queries per second, or about
14 μs per query. Other distributed databases (e.g., Aerospike 2017 and RAMCloud
Ousterhout et al. 2010) can support queries at rates exceeding 500,000 per second.
This throughput, though, is measured at the database server. Ultimate throughput
must account for network latency which may, over TCP/IP, be the primary bottle-
neck. RAMCloud’s use of Infiniband network technology could support very low
latencies if required but may be more difficult to use than commodity databases.
Finally, we note that actual production applications may actually employ more
accurate and costly fine-scale models, thereby reducing latency requirements on the
database. By “skeletonizing” CoHMM, replacing real coarse-scale (e.g., LULESH)
and fine-scale (e.g., CoMD, VPSC, or VPFFT) codes with tunable null-value
functions, one may experiment more broadly with database performance by dialing
up or down the costs of these fine-scale tasks.

A second potential issue with NoSQL databases is that they generally don’t
support transactional semantics but are instead “eventually consistent.” This means
that the database only guarantees that a write will eventually be readable by a client.
It is possible that a query for an in-flight write will fail. Compared to traditional,
synchronized databases, NoSQL databases are easier to implement, faster, and more
scalable because of these semantics. Eventual consistency doesn’t appear to be
a problem for our scale-bridging application. If we suffer a miss on a fine-scale
query, we can simply rerun the fine-scale computation for that query. In practice,
we haven’t noticed problems within CoHMM due to eventual consistency. However,
without a sophisticated in-band logging capability and post execution analysis, it is
difficult to calculate a miss rate. To date, no NoSQL databases provide this logging
framework.

A third and potentially serious issue is that of system support for NoSQL
databases. These databases were designed with commercial datacenters in mind
(i.e., web and cloud applications). They typically use TCP/IP for networking and are
installed into operating environments that are tolerant of diverse, and continuously
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evolving, system software. Current HPC systems typically use Infiniband for
networking and enforce a strict limitation on available system software, which may
heavily restrict the set of usable NoSQL databases and how they are used. The
ExMatEx project explored this issue in two ways. First, they successfully installed
Redis and ran CoHMM on multiple HPC platforms including LANL’s Darwin
cluster (a heterogeneous prototyping platform), LLNL’s Vulcan (IBM BlueGene/Q),
and LLNL’s Cab (Intel Xeon-based). Second, they explored possible mitigation
approaches in case the database cannot be run in a distributed fashion (e.g.,
due to lack of TCP/IP). In this case, node-local copies of the database may be
run with periodic MPI-based, cross-system merges. Another mitigation approach
may be to use an LRU eviction policy on local databases to keep their memory
requirements tractable. Such experience with a nontraditional scientific computing
use of databases in an HPC environment may influence long-term requirements for
future extreme scale systems.

In addition to reducing required computation, NoSQL databases can be used for
a number of other optimizations or additional functionality. While most NoSQL
databases run in an ephemeral, in-memory mode – they disappear at the conclusion
of a calculation – some are able to persist to NVRAM or rotational storage
(as in the use of a burst-buffer backed database on Trinity). In this case, once
fine-scale response database has been built and captured, it can then be used
subsequently on similar problems (e.g., design parameter studies for additive
manufacturing). New fine-scale calls would only be required when the current
parameter study deviates significantly from the one (or many) that preceded it
and pre-populated the microstructure-response database, which is mostly used in
a query-only mode. Second, the captured database could be used for fault tolerance.
Instead of checkpointing the problem at each time step, a persistent database could
be used to advance a restart without ever executing a single fine-scale call. The
ExMatEx project experimented with this possibility early in the project by caching
the particle positions of a long-running CoMD task, thereby enabling a restart upon
detection of a failure. Third, in situ analytics can be performed along with the
computation by concurrently accessing the database using the same task-based and
system capabilities as the computation does.

6 Future Directions

As this chapter has hopefully conveyed, there is a promising future for adaptive
physics refinement methods in materials modeling, as well as several practical tech-
nical challenges, spanning materials science, applied mathematics, and computer
science. Among these, modern machine learning techniques offer one attractive
alternative for the traditional kriging interpolation models, which as mentioned
suffer as the input parameter space dimensionality increases to hundreds, thousands,
or beyond. The increasing heterogeneity of computer architectures, both at the
processor and system scales, and asynchronous task-based programming models
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and runtimes, is both a challenge to conventional scientific software codes that
have been developed in the massively parallel era of the past 20–30 years and a
tremendous opportunity for novel approaches to scientific simulation as we enter
the exascale computing era.
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Abstract

From the perspective of modeling and simulation, additive manufacturing is an
unambiguously multiscale problem. Regardless of whether the 3D printing is
accomplished via melting, or polymerization, or with binders, the scale of the
process is submillimeter, which means that dozens to thousands of layers are
accumulated while making a part. Variations in geometry mean that the path
followed by the light or electron beam (except in the case of whole layer-
based illumination) result in highly variable time intervals between successive
overlapping heat inputs. Particularly in the case of processes that melt powders,
this can result in deviations from the expected heat input that lead to defects.
Taking microstructure to be the totality of the structure of crystal(s) and defects,
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this means that using simulation to predict microstructure requires calculations
at multiple scales: it is not feasible to simulate microstructure development at
the submillimeter scale with, e.g., grains, orientations, and pores, when the part
extends to centimeters in all dimensions. Synchrotron radiation is well suited to
probing the unit processes involved in additive manufacturing, and so a focus on
the submillimeter scale of materials processing provides a useful framework for
evaluating needs and prospects for modeling and simulation.

1 Introduction

This chapter is intended to introduce the reader to the techniques that are most
useful for characterizing additively manufactured materials and the implications of
recent results for modeling and simulation. The techniques emphasize crystalline
materials, which mean mainly metals and ceramics. Similar challenges exist
for additively manufactured polymers, and bioprinting is particularly interesting
because of the rapid development that existed at the time of writing. Although
synchrotron radiation has seen less development for these applications, it is expected
to be equally impactful in the future. The techniques that are discussed include x-ray
micro-computed tomography (xμCT), wide-angle X-ray scattering (WAXS), high-
energy diffraction microscopy (HEDM), residual stress (RS), and dynamic X-ray
radiography (DXR). The various investigations have brought, e.g., new knowledge
about unexpected precipitation behaviors in Ni-based alloys and keyhole formation
in selective laser melting systems.

Additive manufacturing (AM) covers a substantial range of technologies for
making prototypes, intermediate forms, and final parts in nearly all materials.
Several books and review articles are available that, to varying degrees, explain
how the technologies work (Gibson et al. 2010). In a simplified view, the AM field
has been moving from mainly prototyping objects with polymers to manufacturing
final parts in both polymers and metals that require only minimal finishing (Wohlers
2017). Complexity of the design and part count reduction, along with rapid
introduction to market, all favor AM methods. Focusing on metal parts, small size is
helpful because the build rate in the dominant powder bed machines is of the order of
3 mm/h, which means that tall builds have to run for a few days. Increasing the build
rate is, of course, a major thrust of the machine makers. Other technologies such as
wire feed, which is based on either electron beam or laser welding, allow much
larger parts albeit with less resolution and more significant post-processing. Binder
jet technologies avoid melting with its inevitable residual stress but require binder
removal and sintering. Other technologies are being developed such as precision
metal droplet deposition (Murr and Johnson 2017).

Simulation of such processes is self-evidently multiscale even for just the
deposition phase: metal powder bed, for example, requires melting many meters of
melt lines, each of which is of order 200× 100 μm in cross section (width× depth).
Adjacency of the melt lines allied with the melting through each layer to (at least) the
layer beneath means that the thermal history of each location requires several lines
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and layers to be simulated. Simulating the entire build sequence is also necessary,
however, for computing residual stress, distortion, as well as heat buildup that affects
the actual thermal history required for predicting microstructure. Accordingly, it is
common to consolidate the steps such that an entire layer (or set of layers) is treated
as a single thermal event. Notwithstanding these challenges, many reports of such
simulations were already available at the time of writing (e.g., Promoppatum et al.
2017). Moreover, validation is also being done at various scales demonstrating that
predicted thermal histories are feasible (e.g., Beuth and Klingbeil 2001). Residual
stress has been shown to be predictable, but thermal distortion is considered to be
more challenging for metals because the bed temperature is typically low compared
to the melting point (e.g., Szost et al. 2016; Mukherjee et al. 2016). This is in
contrast to polymer printing with powders where the effective melting temperature
is low in relation to the bed temperature such that thermal stress and distortion are
less serious.

2 Synchrotron Capabilities

As stated above, the main capabilities that are distinctive to synchrotron-based
X-rays are micro-tomography (CT), wide-angle X-ray scattering (WAXS), small-
angle X-ray scattering (SAXS), high-energy diffraction microscopy (HEDM),
residual stress (RS), and dynamic X-ray radiography (DXR). We now briefly
review their respective capabilities to inform microstructure development in additive
manufactured materials.

2.1 X-RayMicro-tomography (CT)

Computed tomography at the micron- and nanoscales is a widely used method for
the nondestructive characterization of the internal structure of materials. At coarser
scales, neutrons (e.g., Cao et al. 2016) and muons (Muon Tomography 2017) are
also useful although the author is not aware of an application as yet to AM. It is most
effective for large density contrast since it mostly depends on the Beer–Lambert law
to measure variations in absorption, aided by phase contrast to detect sharp changes
in density (Gursoy et al. 2014). The primary application to AM is for measuring
porosity where pores constitute an important defect in materials used in structural
applications (Hudák et al. 2016; Eylon and Strope 1979; Scarlett et al. 2016a, b). A
pore is a stress riser under tensile load and, above a size of about 10 μ, may act as
the source of a fatigue crack as has been documented in many reports on additively
manufactured materials (e.g., Leuders et al. 2015). Fatigue is a classic extreme value
problem in the sense that the originating defect can be traced to the largest defect
available in the material, for which there is a large literature (Weibull 1951). Here
again, synchrotron tomography is useful for providing datasets that can then be
used to perform simulations of the mechanical response at the relevant length scale
(Cunningham et al. 2017b; Kantzos et al. 2018). Figure 1 shows two views of a set
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Fig. 1 (a) Tomograph of packed Ti-6Al-4V particles with randomly assigned colors. (b) Tomo-
graph of packed Ti-6Al-4V particles (gray outlines) as in (a) with voids (pores) colored red for
emphasis

Fig. 2 Schematic diagram of
μSXCT setup at 2-BM
beamline at Argonne National
Lab’s Advanced Photon
Source

180˚

Sample on 4 -axis stage

Synchrotron 
X-Ray Beam 

Scintillator 
screen

CCD Camera

of powder particles of gas atomized Ti-6Al-4V, which is a material commonly used
in the aerospace and medical industries; the average size is about 60 μm, which
is typical of powders used in laser or electron beam powder bed machines. Panel
(a) shows the exterior surface of each particle with randomly assigned colors for
contrast; panel (b) shows each void or pore (inside a particle) colored dark red for
emphasis. With such fine powders, the sub-micrometer resolution available for high-
Z materials with synchrotron radiation is particularly helpful for resolving particles
across the full range of size.

Although X-ray micro-CT can be readily performed with laboratory systems,
synchrotron-based CT provides better resolution when the sample cross section
fits within the beam. Since the latter is typically about 2 mm across, the sample
size is quite limited; Fig. 2 provides a schematic view where it is important that
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the synchrotron X-ray beam is parallel, by contrast with most lab-based systems
that use a diverging beam to be able to illuminate larger samples. Nevertheless,
synchrotron CT has shown that porosity in metal powder bed materials has at least
main sources. These are (a) a residual porosity inherited from the powders used
(Cunningham et al. 2017a), (b) lack-of-fusion porosity that occurs when the melt
pools do not overlap sufficiently and some locations are never melted (Tang et al.
2017), and (c) keyhole porosity that arises from excessive penetration by the laser
or electron beam (Cunningham et al. 2017b). This parsing of porosity development
into distinct regimes contrasts with the more typical approach of relating it to
energy density, which is the energy deposited per unit length of weld bead: the
energy density is a continuous variable, but recent work supports the existence of
thresholds for the number density of pores. The latter also is consistent with the
concept of process windows in power-velocity space (Vasinonta et al. 2006), which
suggest that there is a range of power-velocity combinations for any given machine
and material that yield good-quality builds. The process window is typically an
elongated patch whose long dimension corresponds to a particular ratio of power
to velocity (Montgomery et al. 2015). Finally, porosity in metal powders has been
shown to be ubiquitous (Cunningham et al. 2017b) and in gas atomization at least is
a direct consequence of the impingement of high-velocity gas jets that break up the
liquid metal stream into fine droplets.

One of the attractive features of AM is the ability to print arbitrarily connected
materials over a wide range of densities relative to the material of construction.
In powder bed AM, the extensive freedom implied in this approach is constrained
by the requirement for a minimum cross section and the difficulty inherent in
overhangs, i.e., printing solid material on top of a significant area of unmelted
powder. Despite these limitations, numerous results have been published on lattice
structures, with a number of original approaches to optimization of the structures
(e.g., Calignano 2014). In a lattice, the individual struts in a lattice vary in cross
section and have partially melted powder particles attached to their surfaces. The
shrinkage associated with solidification and subsequent thermal contraction also
results in distortions of the product relative to the original design (Dunbar et al.
2016). As is well-known, the extent of this distortion depends on preheat, the so-
called support structure and many other factors. Higher preheat decreases the extent
of thermal contraction. Support structures both allow overhanging sections to be
printed and attach the part to the baseplate. Such attachment means that the part can
be heat treated on the baseplate for stress relief via creep prior to cutting through
the support structure to separate it. Synchrotron CT has also proven to be useful
for measuring the quality of lattices because it can directly measure the entire
3D structure. Bormann et al. (2013) published an elegant approach in which they
continually acquired radiographs as they heated a lattice structure printed in NiTi
used as a scaffold for tissue ingrowth. The authors found substantial deviations
of the scaffold from the intended design with more locations exhibiting excess
material than vice versa. As Khairallah et al. (2016) have pointed out, this is
unsurprising because the melting pool tends to pull particles in at its periphery
and partially melted particles are likely to be outside the target melting volume.
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Brun et al. (2013) reported a similar investigation for polycaprolactone scaffolds,
including a comparison between a conventional fabrication method and 3D printed
materials.

Carlton et al. (2016) used X-ray micro-CT with in situ tensile testing to
investigate damage and fracture in 3D printed stainless steel. They found that the
porosity distribution could have a major effect in the sense that specimens with
large and inhomogeneous pore distributions exhibited fractures that started from the
existing voids. In specimens with low void content, however, the fracture behavior
was unaffected by homogeneous distributions of small pores. Sandgren et al. (2016)
used micro-CT to study fatigue crack growth in Ti-6Al-4V that had been printed in
a powder-feed machine.

2.2 Wide-Angle X-ray Scattering (WAXS)

Cakmak et al. (2016) used wide-angle X-ray scattering at the APS to measure tex-
ture in electron beam-printed IN718, a Ni-based superalloy, which exhibited strong
fiber textures parallel to the build direction (BD). The strong fiber textures with
<100>//BD were consistent with the strongly columnar microstructures observed.
Although synchrotron-based X-rays have some advantages for texture determination
because of its penetrating power, a combination of EBSD and lab-based X-ray pole
figures are effective for most investigations.

2.3 Small-Angle X-ray Scattering (SAXS)

One notable advantage of synchrotrons is the availability of high-energy X-rays
with high intensities, which allows deep penetration and therefore substantial
volumes to be interrogated. Many alloys are heat treated, most often to develop
increased strength or to arrive at an optimum combination of strength and toughness.
Additively manufactured metals often exhibit heat treatment responses that differ
from those established for conventionally processed material. As an example, the
Ni-based alloys IN718 and IN625 are known to be hardened by such phases as
γ ′ and Laves, with carbides and the δ phase being more important for grain size
control. Zhang et al. (2017) used SAXS to study the homogenization kinetics for the
major alloying elements, i.e., Ni, Cr, Nb, and Mo. Using the characteristic streaking
patterns, they determined that most of the segregation is confined to a region within
6 nm of the center of each dendrite. Correlation analysis between the successive
SAXS images provided quantitative information about the kinetics of the diffusion-
controlled homogenization process. Similarly, Xue et al. (2015) used SAXS to
detect precipitate formation under high cooling rate conditions in Ti-48Al and an an
Al-Cu-Mg alloy. The hardening response in IN625 was further investigated by Idell
et al. (2016) and Lass et al. (2017) who used conventional methods to determine that
the δ phase was dominant from the outset. Rather than appearing heterogeneously
at grain boundaries, the δ phase precipitated throughout the material in the form of
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disc-shaped plates with a well-defined orientation relationship with the matrix. Idell
et al. (2015) performed a similar study on IN718 and noted that synchrotron-based
SAXS was again useful for measuring the progress of the precipitation process
because of the large flux and high energy of the X-rays.

2.4 High-Energy DiffractionMicroscopy (HEDM)

There are several diffraction-based techniques that use synchrotron X-rays to map
polycrystalline microstructures at various levels of resolution (Rollett and Barmak
2015). high-energy diffraction microscopy (HEDM) is one class of those techniques
that itself exists in two major variants. One of these is known as near-field HEDM
(nf-HEDM) because the detector is placed relatively close to the sample such
that the locations of diffraction spots are as sensitive to the point of origin of
the diffracted beam in the sample as it is to the diffraction order (i.e., which
crystallographic plane). The sample is rotated in front of the beam to excite a
large (at least 20) number of beams from each location; the beam is generally
planar, to limit the number of spots in each view. A simulated annealing algorithm
sifts through the potential orientations in the material to match as large a fraction
of the spots as possible and index the orientation at each point in a regular grid
(Li and Suter 2013). The far-field variant of HEDM (ff-HEDM) acquires data from a
detector whose position is far enough from the sample that Bragg rings are obvious,
which greatly facilitates indexation of orientations, but close enough such that
deviations of individual spots from the standard position give information on both
the center of mass of each diffracting grain and the (average) elastic strain (Bernier
et al. 2011). Again, the sample is rotated in front of the beam so that the spot position
varies as each grain rotates around the rotation axis. The reconstruction provides
information on each grain in a similarly nondestructive manner to nf-HEDM with
additional information about the state of elastic strain but not a 3D orientation map
(by analogy to EBSD (Schwartz et al. 2000).

Quoting from Rollett and Barmak (2015), there now exists a way to reconstruct
“the orientation map of a material from diffraction data acquired with high energy
x-rays that can penetrate the full cross-section of a sample up to about 1 millimeter
thickness. This means working with beams with energies between 10 and 100 keV
that may be focused or parallel, monochromated or broad (white) spectrum and
so on. One essential difference between such a technique and other orientation
mapping methods, e.g., EBSD (Schwartz et al. 2000), is that illumination of a
volume with many grains means it is infeasible to obtain an individual diffraction
pattern for each point. Instead, one must infer the orientation of each point by fitting
to the entire set of points in real space that have contributed to a (large) set of
diffraction patterns. To set the scene for this method, it is convenient to contrast
“far-field” from “near-field” approaches. In far-field synchrotron microscopy, the
detector is placed of order 1 m away from the sample (for energies in the range
20–100 keV) such that several Bragg rings are imaged. Orientation mapping in 3D
that distinguishes grain shapes from merely centers of mass, however, requires the
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near-field approach in which the detector (or effective imaging surface) is placed at
distances of a few millimeters from the specimen, such that many diffraction peaks
are acquired up to a high order of reflection. A flat monochromatic beam illuminates
the entire cross section of a sample, which is generally a wire no more than 1 mm
in diameter. For both ff- and nf- approaches, the sample is rotated in 1◦ (or less)
steps through a range of 180◦, and a diffractogram is acquired at each rotation
angle integrated over the interval to ensure that all points in the illuminated volume
contribute equally to the dataset as a whole. This data acquisition process results in
a large set of diffractograms for each layer, all of which contain information from
(potentially) all locations. Note that no specimen preparation is required.”

In ff-HEDM, precession of diffraction spots around the rotation axis provides
information on the center of mass of each diffracting grain. The deviation of spots
from their nominal locations on each ring provides information on elastic strain. The
reconstruction of an orientation map consists in searching orientation space for all
locations in the illuminated layer simultaneously while using the match between
simulated diffraction spots and measured spots as the measure of completeness
or confidence in the result (Bernier et al. 2011; Sharma et al. 2012a, b). For the
nf-HEDM approach, Li and Suter (2013) built upon multiple previous works to
devise an efficient, multiscale method for performing reconstructions and arriving at
a 3D orientation map as a stack of layerwise maps. This provides direct information
on grain shape but does not resolve elastic strain; the typical resolution is 0.1◦ in
orientation with 2 μm in each layer and 4 μm in the stacking direction. These limits
are determined by the detector resolution and beam thickness, respectively. A variant
of HEDM can be described as very-far-field HEDM (Lienert et al. 2011), in which a
single diffraction spot is imaged on a detector placed a few meters from the sample
such that its shape can be monitored as a function of time, temperature, loading, etc.

Recently, researchers in this area have moved to combine the far-field (ff-
HEDM) and near-field (nf-HEDM) variants of HEDM. As one example, ff-HEDM
(Bernier et al. 2011) can be performed on a 3D volume, which provides a list
of grains with their centers of mass and orientations (as well as elastic strain).
This list can then be used to “seed” the nf-HEDM reconstruction, which saves
substantial computation time because the search in orientation space is otherwise
a very time-consuming process. The nf-HEDM reconstruction then provides a
more accurate spatial map of the polycrystal microstructure. Such a map provides
the basis for instantiating full-field micro-mechanical simulations. Turner et al.
(2017) used the data from such a combined experiment (Turner et al. 2016) to
instantiate full-field finite element simulations. Comparison of the calculated elastic
strains with the measured values showed good agreement. However, they were not
able to incorporate the residual elastic strain present in the undeformed material.
Consequently, they had to compare changes in strain values using the initial
values as the reference point. Following previous efforts to incorporate residual
stresses as eigenstrains (e.g., Salvati et al. 2017), Pokharel and Lebensohn (2017)
demonstrated that it is possible to approximate the initial (residual) strain at the grain
scale via an eigenstrain calculation based on Eshelby, which is important as most
measurements of elastic strain on annealed polycrystalline materials have revealed
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appreciable levels of residual strain, e.g., Oddershede et al. (2010). Nevertheless,
the eigenstrain calculation (Pokharel and Lebensohn 2017) is only the first step
toward accommodating such residual strain (stress) conditions into simulations of
polycrystal deformation as well as the challenges of understanding their origins.
This suggests that modeling of the materials processing that precedes the production
of annealed material may be helpful for testing the various hypotheses that have been
put forward.

2.5 Residual Stress (RS)

The extensive literature on residual stress makes it clear that it is a significant issue
in welding. The main reason is that the deformation induced by the heating around
the melt pool is not fully reversible. Above a certain temperature, nearly all materials
relax such that, at the maximum temperature in the heat-affected zone of a weld, the
strain is low (relaxed) and the subsequent cooling results in thermal contraction. The
contraction is an eigenstrain that generates stress once the material has cooled below
the stress relaxation temperature, i.e., below the point where rapid creep occurs. Of
course, the magnitude of the residual stress and its tensorial character depends on
the geometry and the extent to which the material around the weld is constrained,
but this provides the basic picture. In most cases where deep penetration (with
a keyhole) is not being used. The melt pool is semicircular in cross section, and
most of the variation in stress is related to the length to width ratio (Gratzke et al.
1992). As already mentioned, additive manufacturing technologies that use selective
melting (with lasers or electron beams) are essentially micro-welding processes that
focus on melting and consolidation of powders, rather than joining. Therefore, the
issues around residual stress in AM have the same physical basis as in welding.
Significant contributions abound such as Mach et al. (2017) who have demonstrated
that synchrotron radiation can be effectively used to measure the spatial variation in
the full elastic strain tensor (from which stress can be derived).

The application to additive manufacturing arises naturally through the fact that
SLM is, to some approximation, a process that deposits successive solidified layers
of order 50 μm thick. The shrinkage associated with each layer results in a residual
stress that tends to impose a biaxial shrinkage on the part. As mentioned elsewhere,
the AM machine manufacturers typically recommend the use of preheat which is
commonly much higher in electron-beam machines than in SLM. Whitesell et al.
(2016) describe the use of high energy x-rays for residual stress measurement using
a laboratory source. Park and Okasinski (2017) discuss techniques for measuring the
elastic strains in a spatially resolved manner with synchrotron radiation. The basic
idea consists of using a slit to select in which part of the sample a diffracted beam
originates. With conical slits, a region of order 150 μm long can be isolated within
the path traversed by the input beam. Park and Okasinski (2017) report on the use
of spiral slits that give better performance despite only allowing small portions of
each Bragg ring to reach the detector. Nevertheless, the spiral slits rotate to capture
an entire Bragg ring. The authors point out that the spiral slits are particularly
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helpful for materials with crystal symmetry lower than cubic because each set of
conical slits must be constructed for the specific Bragg angles of interest. The
experiment described in this paper was on a test article, however, and no application
for additively manufactured material has yet been reported.

Mishurova et al. (2017) describe a typical test piece consisting of an arch or
bridge that was 8× 10× 20 mm in height × depth × length. The part was printed
from Ti-6Al-4V powder in an SLM machine, and measurements were made at
several locations, which meant that the spatial resolution that could be attained was
not explored although the closest spacing was 0.5 mm between beam locations.
The measurements were performed at a synchrotron in Germany with a white beam
in the energy range 10–150 keV. Their main result was that low energy densities,
implying higher speed and lower energy, resulted in significantly higher stresses
with maximum elastic strains approaching 2.10−3, which corresponds to stresses a
bit under 1 GPa. Not surprisingly, the residual strain state changed after the part was
removed from the baseplate, which reflects the removal of the constraint imposed
by the latter.

There is significant literature regarding modeling of residual stress. In its more
direct form, the thermal history is simulated by the passage of a moving heat source,
often simplified to that of a moving point source. This latter simplification has
the advantage that the analytical Rosenthal solution is available (Rosenthal 1941),
which allows for straightforward calibration against experimental data for melt pool
size (Promoppatum et al. 2018). Standard algorithms are applicable, and a wide
variety of commercially supported finite element codes are being used. Simulating
thermal distortion requires solution of the thermomechanical problem, which in
turn means that the mechanical and thermal properties of the material must be
known with sufficient accuracy up to the melting point. Heigel et al. (2015) mention
the need for a “measurement-based convection model” in order to obtain accurate
results. Since the development of thermal strains depends, as mentioned above, on
the variation in strength over temperature, another challenge is the lack of detailed
data on mechanical properties such as creep strength, Poisson ratio, modulus, etc.
close to the melting point. The assumption of a point heat source is unlikely to
be accurate, given that there is strong evidence for deep penetration (keyhole)
conditions, e.g., Trapp et al. (2017), which results in a large aspect ratio in the
melt pool and, effectively, a line heat source. There are, of course, many papers
being published that model the powder bed modeling process with varying degrees
of completeness. Lindgren et al. (2016), for example, provide a relatively complete
such example that includes residual stress calculation as well as material properties.

2.6 Dynamic X-Ray Radiography (DXR)

All processes acquire new meaning when they can be visualized directly. The
high-speed, highly localized melting and refreezing associated with selective laser
or electron beam melting used in many 3D printing machines is no exception.
Many valuable experiments have been conducted with high-speed optical imaging
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Fig. 3 Illustration of the
arrangement for passing a
high-energy X-ray beam
through a sample of order
1 mm thick with or without
powder placed on top for
experiments to investigate
selective laser melting (Zhao
et al. 2017)

systems that look down on the process (e.g., Furumoto et al. 2013). Nevertheless,
significant assumptions must be made about the temperature fields where pyrometry
is attempted and filtering of the images is typically required. The advent of direct
high-speed radiography as presented by Zhao et al. (2017) promises to transform
this area. The sample is confined between transparent carbon plates in a vacuum-
capable chamber with windows for the X-rays and a fiber-optic feedthrough for the
520 W laser; the laser system is of the same type as used in SLM machines (Fig. 3).
Using a 2× 2 mm pink X-ray beam at beamline 32ID at the APS and a high-speed
imaging system, they imaged local spot melting over a range of power levels, with
and without powder. The expulsion of powder particles was visualized along with
direct measurement of the velocities, thus illustrating the importance of gas flow
within SLM machines for limiting the redeposition of particles. The formation of the
melt pool and vapor cavities was readily apparent. Figure 4 illustrates the sequence
of events (Zhao et al. 2017) as the laser strikes, a melt pool forms, powder particles
are ejected, and finally a void is left behind as the elongated melt pool freezes. Such
a void is characteristic of end-of-track defects in welding, and it also provides a
scenario for the systematic arrays of voids that are sometimes observed in SLM
(Groeber et al. 2017). Lately, a scanning system has been added (Parab et al. 2018)
that opens up the possibility of studying a wide range of power levels and speeds
that would be relevant to the practice of SLM.

There exists a substantial literature on modeling melt pools in welding, laser
drilling, and additive manufacturing. Khairallah et al. (2016) and Tan and Shin
(2015) are two examples of large-scale multi-physics simulations that include heat
flow, fluid flow, and gas flow. Khairallah et al. (2016) specifically address the smaller
scale of selective laser melting and note the importance of surface tension (and its
temperature dependence) and recoil pressure from evaporation. Tan and Shin (2015)
emphasize the somewhat larger scale of welding and show the variety of keyhole
shapes that result from variations in power and speed. Not so well-known outside
this area is the fact that a keyhole is not necessarily a simple cylindrical depression
but adopts more complicated, elongated shapes especially at high traverse speeds.
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Fig. 4 Successive frames from an experiment in which a static laser beam impinges on a Ti-6Al-
4V sample with powder on top. A melt pool forms, powder particles are ejected from the powder
bed, liquid is ejected from the pool, and a void forms as the somewhat elongated melt pool freezes
(Zhao et al. 2017)

Notwithstanding the many contributions in this area, there are many opportunities
to explore additional aspects of melting at high speeds, particularly with respect to
the effects of powders.

2.7 Dynamic X-Ray Diffraction

Kenel et al. (2016a, b) performed high-speed diffraction experiments on Ti-48Al
at the Paul Scherrer Institute. A custom-designed support was used for the sample
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Fig. 5 Example of results from a high-speed diffraction experiment on a NiTi alloy sample that
was subjected to dynamic deformation, reproduced from Sun and Fezzaa (2016). The frame rate
was 20 kHz, and the color maps show both the shifts in Bragg angle and the loss of intensity as
deformation proceeds. More specifically, (a) shows a series of intensity traces, (b) is a color map
of intensity for frame number versus diffraction angle (binned over the same range as in (c)), and
(c) is a smoothed version of (b)

with laser heating to induce melting which approximated the conditions of SLM.
They were able to show that solidification proceeded directly to α and α2 with γ

appearing shortly thereafter. The temporal resolution was of order 10 ms, which was
sufficient for the material studied. Zhao et al. (2017) described an even higher-speed
experiment with approximately microsecond resolution on Ti-6Al-4V in which
they were able to not only measure the melting and resolidification to the high-
temperature BCC β phase with subsequent transformation to the HCP α phase but
also image the progress of the melting and freezing. Thanks to the use of sample
dimensions and a focused laser source of the same type used in SLM, they were
able to achieve similar cooling rates, etc. to those in actual additive manufacturing
machines. Kenel et al. (2017) followed this with a similar high-rate diffraction
experiment on high-rate melting and refreezing of Ti-6Al-4V. The lower frame
1 kHz rate and high-sensitivity detector used in this case allowed them to identify
the formation of the α′ martensitic phase, as well as evolution in the β phase. They
used the same support structure as in their previous experiment, however, so the
conditions were partially representative of AM. The high-speed diffraction results
reported by Zhao et al. (2017) were based on developments by Sun and Fezzaa
(2016), and Fig. 5 shows in more detail what sort of variations in diffraction can be
observed on a 20 kHz timescale.
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3 Impact onModeling and Simulation

The foremost need in modeling and simulation is for improvements in the prediction
of distortion of parts. This is not a simple task: whereas prediction of thermal
histories is reasonably straightforward, computing the actual displacements is not
reliable. Temperature fields depend primarily on the heat source(s) and the thermal
properties, which are generally well-known. Computing the resulting distortions,
however, is much more challenging because additional temperature- and strain rate-
dependent properties, such as yield strength, Poisson ratio, and creep rate, must be
well defined all the way up to the melting point. Such properties are challenging to
measure and many materials are not well characterized.

The high-speed diffraction experiments that are now feasible suggest that a
substantial forward modeling effort is needed to simulate the X-ray scattering
and move toward a more complete understanding of the dynamic microstructural
evolution. Forward modeling of diffraction is practiced in many different areas,
but the actual physics that must be included for accurate simulation of any specific
experiment depends strongly on the circumstances.

In addition, multiscale modeling of the relations between microstructure and
thermomechanical properties, as well as computer simulations of microstructure
evolution benefits from the synchrotron experimental studies. For example, X-ray
diffraction results such as atomic structure, lattice parameters, and local ordering
provide input to atomic and mesoscale modeling of microstructural features. Fur-
thermore, tomography results provide rich validation data for mesoscale simulations
of microstructure evolution.

4 Conclusions

Most of the ways in which synchrotron X-ray radiation experiments can contribute
to advancing our understanding of the additive manufacturing processes have
been explored, at least in a preliminary sense. Given the high cooling rates
found in additive manufacturing especially with SLM, there is a high likelihood
that this area of activity will continue to evolve rapidly and that synchrotron
radiation will play a major role in elucidating the scientific challenges associated
with additive manufacturing. Wide-angle and small-angle X-ray scattering have
been used to measure microstructural evolution and in particular diffusion and
precipitation processes. Dynamic X-ray radiography (DXR) has been used to image
the melting and refreezing processes directly, with complementary experiments on
high-speed diffraction. Notwithstanding the limited volumes that can be scanned,
computed tomography (CT) has made numerous contributions thanks to the high
spatial resolution available with synchrotron X-rays as well as the relatively
high throughput that is feasible. More advanced techniques such as high-energy



53 Synchrotron Capabilities to Understand Microstructure. . . 1187

diffraction microscopy look likely to make a contribution to 3D characterization of
AM materials in the near future. Synchrotron X-ray radiation experiments provide
valuable information for setting up and validating atomistic and mesoscale computer
simulations of microstructure evolution.
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Abstract

Superior energy and power density, low toxicity, and enhanced shelf life have
contributed to the popularity of lithium ion batteries as energy storage devices
in the electronics and automobile industries. However, next-generation lithium
ion batteries will require even higher energy densities to meet ever-increasing
demands for longer battery life. Owing to its extremely high theoretical spe-
cific capacity (approximately ten times larger than that of conventional anode
materials) and low electrochemical reduction potential (−3.04 V with respect
to H/H+ reference electrode), lithium metal is a highly attractive candidate as
an anode material for next-generation lithium ion batteries. However, challenges
such as dendrite growth, which can lead to short circuits or capacity loss from
electrical isolation of growths, have prevented widespread commercial use of
lithium metal electrodes. Successful commercialization will require stabilization
of lithium deposition. Devising strategies to achieve this goal will require
an understanding of the fundamental mechanisms that govern electrochemical
deposition and dendrite propagation and which span multiple length scales.
Building on experimental observations, several mathematical models have been
developed to evaluate the roles of a variety of physical phenomena (such as
electrochemical reaction, diffusion, migration, mechanical stress and strain, and
surface tension) in lithium deposition processes. The present chapter provides
an overview of these approaches for modeling lithium deposition and dendrite
growth, summarizes their findings, and discusses remaining questions and future
directions for dendrite modeling.

Keywords
Lithium metal · Lithium electrode · Lithium anode · Lithium deposition ·
Electrodeposition · Dendrite · Nucleation · Lithium ion batteries ·
Computational modeling · Liquid electrolyte · Polymer electrolyte ·
Solid-state electrolyte

1 Introduction

For the development of a sustainable economy and to minimize global warming
and solve future energy problems, significant emphasis is being given on the
implementation of renewable energy sources. Energy storage devices are of utmost
importance for achieving this reality. The intermittent renewable energy sources
require high energy density devices for storing excess energy produced at times
of low demand and supplying stored energy during times of peak consumption.
Appropriate storage devices are particularly needed to power automobiles with
nonfossil energy sources.

The scientific community has known about electrochemical cells, in which
energy can be stored in the form of chemical energy and extracted as electrical
energy (Blomgren 2017), for almost one-and-a-half centuries. However, their usage
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in commercial devices became popular only around 50 years ago with the advent of
rechargeable lead-acid batteries (Rahn 2013; Blomgren 2017). In the last quarter
of the twentieth century, the nickel-cadmium and nickel-metal hydride batteries
came to the market. These offered higher energy density than lead-acid based
chemistries (Rahn 2013), and their lower weight and toxicity made them good
options for hand-held electronic devices – the first-generation mobile phones and
laptop computers used these nickel-metal hydride-based batteries. Towards the
end of the last century, Sony revolutionized the energy storage industry with the
commercialization of the first battery based on lithium ion chemistry (Blomgren
2017). It not only contained significantly higher energy and power density, but also
demonstrated higher efficiency than the lead-acid and nickel-metal hydride based
chemistries (Rahn 2013). The enhanced shelf life, higher capacity retention over
multiple cycles, and negligible memory effect have made the lithium ion chemistry a
significantly superior option in the electronics industry. However, in the automobile
industry, the commercially available lithium ion batteries are far behind gasoline
engines in terms of energy and power density (Gallagher et al. 2014). Significant
improvements over the present-day lithium ion batteries are required for successful
electrification of the automobile industry (Gallagher et al. 2014).

1.1 Brief History and Future Directions of Lithium Ion Battery
Technology

Sony Corporation first commercialized lithium ion batteries in 1991, using a carbon-
based anode, lithium cobalt oxide cathode, and organic liquid electrolytes solvents
(Blomgren 2017). Both the cathode and anode material store lithium through an
intercalation mechanism, and the ions shuttle between the two electrodes during
the charge and discharge process. Carbon was used as the anode material due to its
low electrochemical potential (with respect to Li+/Li) and ability to store lithium
without the formation of dendrites. In the first commercially successful version,
the lithium ion chemistry was able to demonstrate an energy density of 200 Wh/l
(Blomgren 2017). This was sufficient for powering electronic devices, but not good
enough for running electric vehicles.

To reduce the cost and toxicity associated with cobalt-based cathode
materials, several other transition metals have been investigated as cathode
materials. For example, nickel-rich cathodes are being used widely for their
high capacity, and manganese-rich cathodes have also been investigated for their
high stability. Presently, certain combinations of nickel, manganese, and cobalt
(NixMnyCo(1 − x − y)) are used as lithium ion battery cathodes to combine their
intrinsic properties of high capacity, enhanced electrochemical stability, and large
electronic conductivity, respectively (Myung et al. 2017). These advanced cathode
materials are capable of demonstrating energy densities in the range of 400 Wh/l,
which are sufficient to meet the needs of short range electric vehicles (Blomgren
2017; Myung et al. 2017).
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In order to overcome the range anxiety associated with the present-day electric
vehicles, the energy density of existing lithium ion batteries must be improved. It
can be achieved in several ways, some of which are listed below:

(a) Increasing the window of operation for cell potential. This can be achieved by
charging the cell to a higher voltage and extracting some excess lithium from the
cathode (Myung et al. 2017). This has the disadvantage of disrupting the crystal
structure of the cathode material through the removal of oxygen from the lattice
sites. This irreversible change leads to high capacity only at the first cycle.

(b) Decreasing the anode potential can also lead to a larger potential window of
operation (Xu et al. 2014). Only lithium metal itself demonstrates a lower poten-
tial than graphite. Hence, a transition in the anode material, from conventional
graphite to lithium metal, is of utmost importance for increasing the energy
density of present-day electric vehicles.

(c) Increasing the specific capacity of cathode and anode active materials used in
the electrode. Due to their higher specific capacities, nickel-rich NMC and NCA
type cathode materials have been investigated thoroughly (Nitta et al. 2015;
Myung et al. 2017). From the perspective of the anode, specific capacity can be
improved by replacing graphite with either lithium, or silicon/tin (Si/Sn) based
active materials (Nitta and Yushin 2014).

(d) Adoption of “beyond lithium ion” chemistries, such as lithium-sulfur- and/or
lithium-air-based batteries (Gallagher et al. 2014). These future-generation
technologies use lithium metal as the anode material and some unconven-
tional cathode material. For example, lithium-sulfur cells use phase changing
sulfur as the cathode that can consume theoretically sixteen electrons during
a discharge process. Lithium oxygen/air batteries demonstrate almost zero
theoretical weight of the cathode, giving them an excessively high energy
density almost comparable to that of gasoline.

(e) Replacement of liquid electrolytes by solid-state ceramics- or polymer-based
electrolytes (Kerman et al. 2017). Due to the higher safety associated with
nonliquid electrolytes, they might allow the removal of certain extra safety
devices required for the liquid electrolytes. This extra space can be used for
inserting extra cells and increasing the pack level energy density. Solid-state
electrolytes can also help to accelerate the implementation of lithium metal
anodes.

1.2 LithiumMetal as the Negative Electrode

Most of the above techniques for increasing energy density involve lithium metal
as an anode, as it possesses an extremely low electrochemical potential of −3.04 V
with respect to hydrogen reference electrode, and theoretical specific capacity of
3870 mAh/g, which is almost an order-of-magnitude higher than the conventional
graphite based anodes (375 mAh/g) (Xu et al. 2014; Lin et al. 2017). It should be
noted that lithium metal anodes were actively researched in the second half of the
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last century for usage in lithium ion batteries, but did not see commercial success
due to several issues (Blomgren 2017; Cheng et al. 2017):

(a) Loss of electrolyte due to reaction with the anode surface and formation of a
solid electrolyte interface, which leads to significant capacity fade

(b) Formation of dead lithium that does not participate in the electrochemical
reaction and can potentially lead to capacity fade if excess lithium is not used

(c) Growth of dendritic protrusions that can penetrate through the separator and
short the cell

(d) Thermal runaway due to internal shorting and subsequent explosion of the cell

Nucleation and propagation of dendritic protrusions during lithium deposition
are connected to all of these problems. Significant research has been conducted to
understand and prevent these phenomena. For example, it was demonstrated that
the use of a small amount of hydrofluoric acid within the electrolyte as an additive
results in the formation of a mechanically stiff lithium-fluoride layer on top of the
metal anode, which can stabilize the metal-electrolyte interface for tens of cycles
(Takehara 1997). Later it was hypothesized that nonuniform lithium deposition at
the electrode-SEI interface and subsequent rupture of the solid electrolyte interphase
layer result in the nucleation of the lithium dendrites (Aurbach 2000). Addition
of stiff protective layers along with the separator can prevent growth of dendritic
protrusions. Some examples of such protective layers are sulfur and nitrogen co-
doped graphene (Shin et al. 2015) and alumina (Al2O3) deposited on top of lithium
(Peng et al. 2016). Covering the lithium surface with polymer networks or carbon
nano-spheres can help to minimize the nonuniform lithium deposition or SEI
formation, respectively (Zheng et al. 2014; Peng et al. 2016). There have also been
several research efforts to alter the transport properties of electrolytes (conductivity,
diffusivity, and transference number) in order to prevent the growth of lithium
dendrites. For example, plasticizers have been added within polymer electrolytes
to improve conductivity near room temperature conditions for stabilizing lithium
deposition (Khurana et al. 2014). Nanoparticles have also been added within the
liquid electrolyte to immobilize the anions and increase the lithium transference
number, which helps to maintain higher anion concentration near the anode (Lu
et al. 2012). However, to the best of the authors’ knowledge, no conclusive product
or strategy has been developed that can ensure stable deposition of lithium for
thousands of cycles with minimal capacity fade.

Next-generation polymer or solid-state ceramic electrolytes were not readily
available in the earlier efforts, but now make practical lithium metal anodes appear
to be more achievable. However, preliminary experimental studies at the lab scale
still show the formation of lithium dendrites through these nonliquid electrolytes
(Harry et al. 2016; Kerman et al. 2017). Better design of these electrolytes may be
able to stabilize the lithium deposition process.

Furthermore, different dendrite morphologies have been observed, varying
according to the type of electrolyte, operating conditions, and applied overpotential
(Harry et al. 2016; Cheng et al. 2017):
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(a) Mossy deposits form at low current densities. This is usually associated with
lithium deposition at the base of the dendrite. If the lithium deposition process
is charge-transfer controlled, moss-like deposits are expected to form (Bai et al.
2016).

(b) Needle-like protrusions, which evolve during deposition at higher rates, are
usually associated with deposition at the tip of the protrusion. In mass transfer
limited lithium deposition processes, needle-like dendrites are observed to form
(Bai et al. 2016).

(c) Tree-like dendritic growths have also been observed and are usually attributed
to the presence of surface inhomogeneity.

(d) Globular dendritic protrusions have also been reported during deposition under
the influence of mechanical stress (Harry et al. 2016).

Among all the different possible microstructures, needle-shaped dendrites
have the largest potential to penetrate through the separator, get in contact
with the cathode, and short the cell (Li et al. 2014; Bai et al. 2016). Hence,
even if dendrite growth is unavoidable, it is important to control the lithium
microstructure that evolves during the deposition process and possibly operate
the cell only under conditions in which it forms only mossy deposits. In
order to develop strategies for controlling the lithium deposition process, it
is important to understand the overall lithium dendrite nucleation and growth
mechanisms.

1.3 Mathematical Models for LithiumDendrite Nucleation
and Growth

Extensive research on electrochemical deposition of lithium and subsequent den-
drite growth over the last several decades has been able to establish correlations
between various operating conditions and dendrite microstructures (Cheng et al.
2017; Lin et al. 2017). Based on thermodynamic and kinetic understanding of the
electrochemical reduction process, it is possible to develop mathematical models
that can capture the experimental features observed during deposition of metallic
lithium (Chen et al. 2015; Wood et al. 2016). Although nucleation and growth
mechanisms may vary according to the nature of the electrode and electrolyte,
the deposition mechanism of lithium metal generally can be divided into two
parts:

(a) Nucleation of lithium
(b) Growth of dendritic protrusions

In this book chapter, different mathematical models used for predicting the
nucleation of lithium ions will be discussed in Sect. 2. Different mathematical
models to capture the growth of dendritic protrusions in contact with liquid and
nonliquid (polymer and ceramic) electrolytes will be discussed in Sects. 3 and 4,
respectively. Some unsolved questions that can help to better understand the metal
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deposition process on top of the lithium anode will be discussed in Sect. 5. Finally,
the future outlook in terms of modeling nucleation and propagation of dendrites will
be summarized in Sect. 6.

2 Dendrite NucleationModels

Classical nucleation theory (CNT) has been widely used to capture the lithium
nucleation process on top of surfaces assumed to be free of defects (Paunovic
and Schlesinger 2006). An alternative theory of instantaneous or progressive
nucleation has been developed to describe the case in which surface defects provide
nucleation sites for lithium dendrites (Paunovic and Schlesinger 2006; Stark et al.
2013).

Note that these theories were developed for liquid electrolyte systems. In the
presence of solid electrolytes, nucleation should be affected by the extra mechanical
work needed to deform the nearby electrolyte or the current collector. Under the
assumption that the current collector deforms elastically, Motoyama et al. found that
the overpotential for deposition increased almost linearly with Young’s modulus of
the current collector (Motoyama et al. 2015).

2.1 Classical Nucleation Theory

Under CNT, nucleation proceeds only when it decreases the total Gibbs free
energy of the system (Mullin 2001). Contributions to the total free energy include
electrolyte displacement, lithium deposition, and the formation of new interfaces
between the surface and electrolyte and the newly deposited lithium.

Based on these considerations, Ely and García determined (Ely and García 2013)
a critical radius above which a hemispherical lithium deposit becomes thermo-
dynamically stable and below which the nucleus should spontaneously dissolve
(Schmickler and Santos 2010). However, the deposition process also consumes
additional energy in the form of a larger overpotential (Mullin 2001; Paunovic and
Schlesinger 2006) to overcome the kinetic barrier associated with the transformation
of ionic lithium (in solution) to atomic lithium (on the substrate), along with surface
tension in the case of curved surfaces (Monroe and Newman 2003; Ely and García
2013). Using a modified Butler-Volmer equation incorporating the influence of
surface curvature (Monroe and Newman 2003) on reaction current, Ely and García
determined a kinetic critical radius at which the influences of nonnegative applied
overpotentials and surface curvature are balanced. This critical radius is inversely
proportional to the overpotential (Ely and García 2013) and usually larger than
the critical thermodynamic radius. Stable growth is expected for lithium nuclei
larger than the kinetic critical radius, although those larger than the thermodynamic
critical radius can coalesce with neighboring nuclei and become stable (Ely and
García 2013). Experiments have confirmed that size of lithium nuclei decreases with
increasing overpotential (Sano et al. 2014; Pei et al. 2017).
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2.2 Instantaneous and Progressive Nucleation of Lithium

When surface defects are present, lithium deposits initially on these defect sites
and may grow due to further deposition of metal or through coalescence with other
nearby nuclei (Paunovic and Schlesinger 2006; Stark et al. 2013). Assuming that the
rate of nuclei formation on defect sites is linear in the number of available sites, the
fast kinetics (“instantaneous nucleation”) limit suggests that almost all preexisting
active nuclei start growing simultaneously with the initiation of metal deposition
(Paunovic and Schlesinger 2006; Schmickler and Santos 2010; Stark et al. 2013).
The slow kinetics (“progressive nucleation”) limit, on the other hand, corresponds
to a gradual, approximately linear increase in the number density of nuclei over time
(Stark et al. 2013). These number densities, along with assumptions about nucleus
shape, can be used to estimate (Paunovic and Schlesinger 2006; Schmickler and
Santos 2010; Stark et al. 2013) current density and nucleus size at earlier times
where the nuclei are isolated, and later after neighboring nuclei have merged.

3 Dendrite GrowthModels: Liquid Electrolyte

Dendritic growth of existing lithium deposits in electrochemical cells using liquid
electrolyte solutions has been modeled using a variety of approaches, addressing
phenomena ranging from the atomic level to that of electrochemical cells. This
section surveys these techniques, beginning from the smallest length scale and
proceeding through successively larger length scales.

3.1 Atomic-Scale Modeling

Ozhabes, Gunceler, and Arias (Ozhabes et al. 2015) constructed a density functional
theory (DFT) model of crystalline surfaces in contact with electrolyte solution
represented by a continuum approximation and calculated surface energies and
lithium surface diffusion energy barriers for a range of SEI materials. It was found
that the spatial arrangement of compounds with small anions, particularly halides,
allowed for lower energy barriers and that for most compounds, larger energy
barriers were associated with larger surface energies (and so greater thermodynamic
stability, since dendrites increase surface area). In addition, they reported that longer
times for cells to short-circuit were correlated with larger diffusion barriers, which
are expected to prevent atoms from diffusing quickly enough to prevent dendrite
growth.

3.2 Molecular Scale Modeling

Molecular-scale models are suitable for simulating situations in which small
amounts of material are deposited. They have been used to explore the possibility
of reducing dendrite growth rates by the use of pulsed current charging.
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Mayers and coworkers created (Mayers et al. 2012) a 3D Monte Carlo (MC)
simulation of dendrite growth in a hemispherical SEI region surrounding a hemi-
spherical electrode tip. Cations diffusing within the simulation domain were allowed
to deposit, with a probability determined from free energy considerations, upon
collision with the electrode tip or with previously deposited metal atoms. Lower
reaction probability allowed cations, on average, to diffuse more deeply through the
growing coating on the electrode surface, increasing deposition density. Similarly,
short charging pulses combined with long rest periods encouraged denser dendrite
growth.

Aryanfar and coworkers constructed (Aryanfar et al. 2014) a similar 2D MC
model of dendrite growth, but with transport of lithium ions in solution determined
by a combination of diffusion and migration. Pulsed-current simulations of dendrite
growth on a planar electrode suggested that pulses of appropriate length and
separated by appropriate time intervals can reduce dendrite growth rates.

Although not modeling lithium deposition, Li and coworkers constructed (Li
et al. 2017) a 3D molecular dynamics (MD) simulation of electrolyte solution
(LiTFSI dissolved in propylene carbonate) to observe interactions among the
different species. They found that the application of pulsed electric fields influenced
the coordination of lithium ions by anions and that lithium ion diffusivity was
improved by reduced coordination. Experimental cells that were cycled with pulsed
currents showed more stable behavior and more uniform deposition relative to those
cycled under constant current conditions.

3.3 ContinuumModeling

Simulations at the continuum scale typically involve larger, faster-growing dendrites
with smooth surfaces. Models at this scale typically are formulated as partial
differential equations describing the local phenomena of interest, although Yamaki
et al. proposed (Yamaki et al. 1998) a qualitative lithium dendrite growth mechanism
based on a wide array of experimental observations, consisting of the following
steps: lithium deposits nonuniformly due to surface irregularities and nonuniform
ionic conductivity of the protective surface film. The resulting mechanical stress
drives transport of lithium atoms within the surface, which emerge as whiskers
through breaks in the film. Finally, when the whisker coverage becomes sufficiently
dense, additional lithium deposits preferentially on defects and irregularities on the
whiskers.

Liu and Lu simulated (Liu and Lu 2017) the growth of a two-dimensional
dendrite coated with a growing SEI layer. SEI thickness changed through electro-
chemical reaction and strain of the underlying surface and was reflected in resistance
contributions to the surface overpotentials used to determine reaction rates. The
electrode reaction was additionally influenced by a hydrostatic stress term related to
the surface energy and local curvature. Relatively high reaction rates at the dendrite
tip, driven by surface curvature, initially caused local SEI thinning due to expansion
of the underlying lithium region. The thinned SEI region, with a lower electrical
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resistance, in turn favored further reaction at the dendrite tip. At the base of the
dendrite, compressive stress increased SEI thickness, which slowed local lithium
deposition and created depressions relative to the surrounding material. The same
mechanisms led to dendrite formation at SEI-deficient locations in otherwise flat
electrode surfaces.

Applying dilute solution theory and the Poisson equation in a 1D model of a
symmetric cell at steady-state, but not insisting on electroneutrality, Chazalviel
observed (Chazalviel 1990) quasineutral conditions over much of the cell, but
a sharp drop in potential near the cathode, with a low concentration of cations
and a very low concentration of anions. Unlike in corresponding experiments, the
applied potential did not affect current density as current was determined almost
completely by diffusion. This discrepancy was attributed to dendrite growth, the rate
of which was expected to match the anion migration speed near the cathode, based
on dynamic simulations. This concept was further explored through simulations of
a 2D control volume, with periodic boundary conditions, moving with the tip of a
thin, straight metal dendrite growing at a steady speed. Below a critical separation
distance, the solution between dendrites was depleted of ions due to dendrite growth,
which proceeded at the expected rate matching the anion velocity. Above the critical
separation distance, it was reasoned that the growth rate would be faster than
the anion velocity, but that the presence of ions between dendrites would lead
to branched growth, in turn reducing the separation distance toward the critical
distance.

3.4 Phase Field Modeling

The dynamic models of continuum dendrite growth previously surveyed here
involve calculation of precise surface positions. However, simulation is often com-
putationally expensive for irregular interfaces (Provatas and Elder 2010; Acharya
2016). Phase field modeling can be a less expensive alternative (Chen 2002).
Rather than tracking interfaces, phase field models calculate “order parameters”
to represent phase identity, typically with one phase assigned a value of 0 and
the other assigned a value of 1 in a two-phase system. Regions with noninteger
order parameter values can be interpreted as interface regions of finite thickness.
To model electrochemical systems, phase field models are typically based on
a phenomenological free energy functional written in terms of field parameters
(Ferguson and Bazant 2012), e.g., concentration, electric potential. For an interface-
moving problem, the Cahn-Hillard equations (for variables representing conserved
quantities) and the Allen-Cahn equations (for non-conserved variables) are used to
express the relationship between field parameter values and the estimated total free
energy. Interface movement is simulated by decreasing the total free energy of the
system over time.

The application of phase field modeling to electrochemical systems is an area
of ongoing research. Guyer et al. (2004a) made one of the earliest attempts to
model electrochemical interface evolution by Allen-Cahn kinetics, in which they
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studied the charge separation on the interface and compared to the classic Gouy-
Chapman-Stern model to demonstrate effectiveness. In a subsequent paper, Guyer
et al. (2004b) further explored the kinetic behavior of a phase field model for
an electrodeposition process. As a typical solid-liquid interface problem, lithium
dendrite growth has also been extensively modeled using the phase field method.
Similarly, Cogswell (2015) investigated dendrite growth patterns by adapting the
Marcus theory of microscopic charge transfer to achieve quantitative agreement
with Faradaic reaction kinetics, fractal growth dimension, and radius of curvature
on a zinc electrode. Cogswell also indicated that small exchange current density
could reduce the growth of dendrites. To investigate electrode-electrolyte interface
evolution in a lithium ion battery, Liang et al. (2012) proposed a phase field model
in which they simplified the Allen-Cahn equation by assuming that the interface
velocity is proportional to decay in free energy. Following the same approach, Liang
et al. (Liang and Chen 2014) then studied the morphologies of lithium deposits
during cell charging processes and found that the growth of lithium deposits has a
very strong directional tendency, which can be greatly accelerated by the existence
of a large concentration gradient. García et al. (Ely et al. 2014; Jana et al. 2015)
developed a phase field model to describe the growth kinetics and distribution of
lithium electrodeposits on a graphite electrode surface and found that the rate of
electrodeposition at the tip of an isolated dendrite to be higher than that on the
surrounding electrode. Chen et al. (2015) also proposed a new phase field model
to study dendrite growth out of a surface during electrodeposition, in which they
formulated Butler-Volmer kinetics for lithium deposition using the electrochemical
potentials of each species. A very similar general phase field modeling approach
was also developed by Bazant et al. (Ferguson and Bazant 2012; Bazant 2013;
Smith and Bazant 2017), in which electrochemical processes (including generalized
Butler-Volmer kinetics) as well as generalized chemical kinetics were modeled
to provide a quantitative description of lithium iron phosphate phase transition
behavior.

The phase field method can be used to easily model complex interface shapes and
topology changes. It is particularly suited for studying phase evolution, morphology
changes, or splitting and merging of diffusion fields in electrochemical systems
(Chen 2002; Acharya 2016). It can combine a variety of physical effects into
governing equations that can be solved by straightforward numerical methods
without complicated interface handling. However, it should be recognized that the
phase field method also comes with disadvantages. Although phase field models
offer a deeper connection to fundamental thermodynamics than other modeling
methods, applying these techniques to electrochemical systems tends to involve
very stiff, high-order partial differential equations requiring small numerical time
step sizes that make it impractical to simulate realistic time intervals (Provatas
and Elder 2010). Multiscale numerical methods that can resolve the thin interfaces
inherent in phase field models while also capturing microstructure evolution on
realistic time scales are presently under development (Provatas and Elder 2010),
potentially making it possible to overcome some of the present challenges of
modeling electrochemical systems.
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3.5 Cell Level Modeling

Finally, some authors have modeled dendrite growth at the cell level. Rather than
modeling the growth of individual dendrites, they computed quantities such as
spatially varying deposition rates.

Tang and coworkers used (Tang et al. 2009) a 2D macro-homogenous model
containing a graphite negative electrode, separator, and lithium cobalt oxide positive
electrode (through a boundary condition), to investigate the possibility of nonuni-
form lithium deposition on realistically shaped anodes. As the current density at the
positive electrode interface was nonuniform, an iterative scheme was used to ensure
consistency between the cell potential and the fixed applied current at each timestep.
When positive and negative electrodes were of equal width, lithium deposition at the
end of charging was more likely near the negative electrode edge, while increasing
the negative electrode width beyond a critical distance discouraged deposition.

Wood and coworkers constructed (Wood et al. 2016) a 1D continuum-level
model of a Li-Li cell. Movement of electrode/solution interfaces was determined
by lithium dissolution and deposition rates, and the relationship between surface
overpotentials and current densities at these interfaces was given by the Butler-
Volmer equation, modified with a coefficient describing surface roughness, along
with an effective rate constant representing a weighted average of rate constants for
electrode surface areas with fast and slow kinetics. The surface morphology was
assumed to evolve with total current passed, representing the growth and merging
of neighboring lithium protrusions. A Coulombic efficiency parameter was used to
account for electrical isolation of “dead lithium” during stripping. Good agreement
between simulation results and corresponding cycling experiments was reported.

4 Impact of Mechanical Stress on Dendrite Growth:
Nonliquid Electrolytes

Liquid electrolyte solutions do not provide mechanical resistance to the formation
and propagation of dendrites. These can lead to formation of electrically isolated
dead lithium or cause catastrophic failure by internally short circuiting the cell.

Use of nonliquid electrolytes has been proposed to reduce dendrite growth by
encouraging uniform deposition on lithium metal electrodes (Monroe and Newman
2005) and eliminates the fire hazard associated with leakage of flammable liquid
electrolytes (Cheng et al. 2017). From the microstructural perspective, nonliquid
electrolytes can be divided into two categories: (a) structurally homogeneous and (b)
structurally heterogeneous electrolytes. Most electrolytes based on poly(ethylene-
oxide) (PEO) or poly (acrylonitrile) (PAN) belong to the first category, whereas
solid-state electrolytes, such as the ceramic-based Li7La3Zr2O12 (LLZO) and
Li10GeP2S12 (LGPS), which possess grain-interior/grain-boundary microstructure,
belong to the second category. Block-copolymers with nanoscale microstructural
features belong to the first category, because these heterogeneities do not impact
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the dendrite growth process (Inceoglu et al. 2014). However, micron-sized grain-
interior/grain-boundary microstructural heterogeneity found in ceramic solid-state
electrolytes can impact the lithium deposition process through current focusing at
the electrode-electrolyte interface (Kerman et al. 2017). Hence, dendrite growth
mechanisms in structurally homogeneous and heterogeneous electrolytes could
differ significantly and require separate modeling approaches.

4.1 Structurally Homogeneous Electrolytes

Nonliquid electrolytes provide mechanical resistance in the form of compressive
stress to the growth of dendritic protrusions. In addition, this compression can
change their shapes from needle-like (under liquid electrolytes) to a globular
(usually observed in homogeneous polymer electrolytes).

The magnitude of the compressive stress depends on the elastic modulus of the
electrolyte. Increasing the electrolyte modulus by even one order of magnitude
can significantly slow the growth rate of dendritic protrusions (Harry et al. 2016).
Figure 1 shows that stiff block-copolymer electrolytes (SEO, consisting of PEO
stiffened with polystyrene) with elastic modulus around 10 MPa at 90 ◦C reduce the
rate of growth of lithium protrusions relative to PEO-based electrolytes, which has
elastic modulus values near 1 MPa at elevated temperatures. It is clearly important
to incorporate mechanical stresses in models of dendrite growth into nonliquid
electrolytes.

Fig. 1 (a) Comparison between the rate of increase in height of dendritic protrusions observed
in PEO-polymer and PEO/SEO block-copolymer-based electrolytes. Use of the SEO-based block-
copolymer, with a higher elastic modulus value, resulted in significantly slower growth of the
dendritic protrusion. (b) Dendritic protrusions were observed to be globular rather than needle-like
when using high modulus polymer electrolytes. (Reproduced from Harry et al. 2016, Copyright
2016 by The Authors of Harry et al. 2016 under CC BY 4.0 terms, see http://creativecommons.
org/licenses/by/4.0/)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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One contribution of mechanical resistance to dendrite growth comes from
electrode curvature/surface tension, which can be incorporated into the Butler-
Volmer equation through its impact on the overpotential (Monroe and Newman
2003). The effect of surface curvature on dendrite growth is more prominent for
polymer electrolytes than in liquids because of higher surface energy densities
at lithium-polymer interfaces (about 1.5 J/m2) (Monroe and Newman 2003) as
compared to lithium-metal/liquid-electrolytes (about 0.1 J/m2) (Liu and Lu 2017).
The following Butler-Volmer equation was derived after incorporating the effects of
surface curvature (Monroe and Newman 2003):

iBV = i0,ref exp

(
2αcγV

rRT

)[
exp

(
αaFηs

RT

)
− exp

(
−αcFηs

RT

)]
. (1)

Here, iBV is the local reaction current density at the interface, i0, ref is the reference
exchange current density, γ represents surface energy density for the interface
between the electrode and electrolyte, V is the partial molar volume of lithium
within the electrolyte, r represents the radius of the dendritic protrusion, R indicates
the universal gas constant, T denotes temperature in Kelvin, ηs signifies the surface
overpotential, and αa and αc represent the anodic and cathodic transfer coefficients,
respectively. The surface overpotential term is expressed as ηs = φs − φe −
U0 +

(
2γV /rF

)
, where φs is the solid phase potential, φe indicates the electrolyte

phase potential, U0 is the open circuit potential of the electrode, and
(
2γV /rF

)

is the contribution of the surface curvature to the local overpotential (Monroe and
Newman 2003).

The magnitude of iBV /i0, ref as a function of the overpotential without the
curvature term (η = φs − φe − U0) is shown in Fig. 2. The dependence of

Fig. 2 Variation in reaction current density with respect to overpotential after incorporating the
effects of surface energy within the Butler-Volmer equation. (a) Impact of surface energy density
on the overall reaction current density. Increasing surface energy enhances the anodic current. (b)
Impact of protrusion size on the total reaction current density. Smaller lithium nuclei (r∼10 nm)
can easily dissolve back into the solution even under small cathodic overpotentials
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the current-overpotential curve on surface energy density is shown in panel (a);
increasing the value of γ leads to higher anodic reaction current and a decreased
cathodic current. Similarly, as demonstrated in panel (b), decreasing the radius of the
dendritic protrusion helps to increase the anodic component of the reaction current
density. Hence, the surface energy component works to stabilize the dendritic
protrusions. For high surface energies (γ∼10 J/m2), as well as extremely small
dendritic protrusions (r∼10 nm), anodic current is observed under small magnitudes
of cathodic overpotential, which can play a significant role in the stable deposition
of metals.

Furthermore, deformation of the adjacent nonliquid electrolyte was estimated to
produce a local stress-induced change in electrochemical potential (�μe−) (Monroe
and Newman 2004, 2005):

�μe−(x) = − 1
2

(
V Li + (1− tLi+) V Elec

) {
γ κ +⇀

n ·
[
⇀
n · (τLi − τElec

)]}+
+ 1

2

(
V Li − (1− tLi+) V Elec

) (
pLi + pElec

)
.

(2)

Here, V Li and V Elec represent the partial molar volumes of lithium and electrolyte

salt, γ is the surface energy, κ represents local curvature,
⇀
n indicates the normal

vector at the lithium-electrolyte interface, x denotes position on the interface, and
tLi+ stands for the lithium transference number. Also, τ represents the deviatoric
stress tensor and p indicates hydrostatic stress (both of which are influenced by
elastic modulus values), and superscripts Li and Elec correspond to the lithium metal
electrode and electrolyte, respectively. A Butler-Volmer equation incorporating the
effect of this stress-induced change as well as of curvature is given in Monroe and
Newman (2005). As discussed in the following subsections, several computational
studies have been conducted to understand the propensity of lithium dendrite growth
under the assumption of elastic or elastic-plastic deformation of the metal electrode
and solid electrolyte system.

4.1.1 Elastic Stress Evolution in LithiumMetal Electrodes
Under the assumption of linear elastic deformation of both the metal electrode and
electrolyte, Monroe and Newman solved the mechanical equilibrium equation to
estimate the magnitudes of tensile and compressive stresses within the lithium metal
and electrolyte, respectively (Monroe and Newman 2005). They concluded that
electrolytes with shear modulus values twice that of lithium may be able to stabilize
the deposition process (Monroe and Newman 2005). Following this approach, Barai
et al. investigated the importance of initial stress state at the electrode-electrolyte
interface (Barai et al. 2017a), introducing an alternative initial condition that could
describe at least two plausible physical scenarios:

(a) A lithium protrusion begins as a small imperfection on the electrode, leading to
local compressive stress upon cell assembly.
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Fig. 3 Schematic diagram demonstrating stress evolution, location of peak and valley, and ratio
of current density between them. (a) After assembly, flat lithium metal and electrolyte in a stress-
free relaxed condition. (b) During lithium deposition, new metal pushes the lithium downward
and the electrolyte upward. (c) Evolution of compressive stress within electrode, electrolyte, and
lithium dendrite nucleus. (d) Location of “peak” and “valley” for a dendritic protrusion. (e) Ratios
of reaction current densities at the peak and valley versus reduction overpotential. Points below the
solid red line correspond to stable deposition, while those above correspond to dendrite growth. The
region below the dashed red line corresponds to dissolution of the peak. Hence, it may be beneficial
to operate the cell at very small reduction overpotentials (around−10 mV) to eliminate preexisting
dendritic protrusions. (Adopted from Barai et al. 2017a; Reproduced with permission from Journal
of the Electrochemical Society 164 (2) A180 (2017), Copyright 2017, The Electrochemical Society)

(b) During lithium deposition, newly deposited metal pushes apart neighbor-
ing electrode and electrolyte, inducing local compressive stress (sketched in
Fig. 3a–c).

Under both scenarios, lithium metal, solid electrolyte, and the dendritic protrusion
experience compressive stress (Barai et al. 2017a). It should be noted that the two
studies described here assumed operation at extremely low applied current densities
and neglected the impact of concentration and potential gradients on the overall
reaction current.

The general computational framework, developed by Monroe and Newman,
assumes that the lithium nucleus appears as a small perturbation on top of the
electrode surface (Monroe and Newman 2004, 2005) (see Fig. 3d). The top of
the protrusion will be called the “peak,” (reaction current iBV, peak) and the flat
surface surrounding the protrusion will be called the “valley” (with reaction current
iBV, valley). If the reaction current at the peak is greater than that in the valley
((iBV, peak/iBV, valley) > 1), the dendritic protrusion is expected to grow. Otherwise,
for (iBV, peak/iBV, valley) < 1, stable deposition of lithium is expected to occur. Ratios
of total reaction current at the peak over that in the valley are shown in Fig. 3e.
The solid red line indicates the stability limit. Data points lying above and below
the line correspond to dendrite growth and stable deposition, respectively. In the
figure, �p and rp indicate compressive hydrostatic stress and protrusion radius. It
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is evident that increasing the magnitude of compressive stress helps to stabilize
the dendritic protrusion. The size of the protrusion has a smaller impact on the
current ratio at higher overpotentials. In this particular analysis, the magnitude of
hydrostatic stress at the peak is double that observed in the valley. Under very low
overpotentials, η < 10 mV, reaction currents at the peak and valley act in opposite
directions. This can be explained by referring to Fig. 2b, which shows that at smaller
reduction overpotentials, anodic reaction current occurs at the dendritic protrusion
while cathodic current appears at the valley. It may be beneficial to operate the cells
under these conditions to obtain very stable deposition of lithium metal.

All of the analyses previously discussed in this subsection used small-
deformation mechanics. Harry et al. collected a time series of static X-ray
microtomography images of a lithium dendrite growing into a solid electrolyte
region and calculated mechanical stresses in the electrolyte region using large-
deformation mechanics (Harry et al. 2016). Compressive stresses were found near
the protrusion tip, while tensile stresses were found at the base. As shown in
Fig. 3e, compressive force decreases the magnitude of reaction current density,
whereas tensile stress increases it. Hence, polymer electrolyte should suppress
growth at the peak and enhance growth at the base (Harry et al. 2016), consistent
with formation of globular dendrites (shown in Fig. 1b).

4.1.2 Elastic-Plastic Stress Evolution in LithiumMetal Electrode
Under the assumption of elastic deformation, cells containing stiff electrolytes
may experience very high stresses (in the range of GPa) (Monroe and Newman
2005; Barai et al. 2017a). However, stresses of this magnitude cannot be sustained
by lithium metal or solid electrolytes. Ductile materials deform plastically and
brittle electrolytes experience fracture beyond their yield and ultimate strengths,
respectively. Hence, it is very important to model elastic-plastic deformation and
rupture observed in lithium metal and electrolyte to correctly estimate stresses
acting at electrode-electrolyte interfaces.

Elastic-plastic deformation has been observed in both metallic lithium and
polyethylene oxide (PEO)-based electrolytes (Geng et al. 2002; Schultz 2002).
Plastic deformation is irreversible in nature and consumes extra energy (see
Sethuraman et al. (2010) for a similar outcome in silicon anodes). Figure 4a, b
shows the experimentally observed elastic-plastic stress-strain relations that occur
in lithium metal and PEO electrolyte. A nonlinear isotropic strain hardening law has
been applied for both materials (Barai et al. 2017b):

σy = σ0 +Hεmpl. (3)

Here, σ y is the yield stress, σ 0 is the initial yield strength, H indicates the hardening
modulus, m denotes the hardening exponent, and εpl indicates the equivalent plastic
strain. The initial yield strength, hardening modulus, and hardening exponent
are material-specific parameters. Appropriate parameter values were estimated by
fitting to experimental data (Barai et al. 2017b).
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Fig. 4 Elastic-plastic deformation observed in different materials, and the corresponding compu-
tational isotropic nonlinear hardening models and parameter values, for (a) lithium metal, and (b)
PEO. (Reproduced from Barai et al. 2017b: Barai et al., Physical Chemistry Chemical Physics
(2017) 19 20493 with permission from the Royal Society of Chemistry)

For high-modulus polymer electrolytes, plastic deformation of the lithium den-
dritic protrusions and the nearby electrolyte is possible. Plastic flow of lithium from
the protrusion peak to the surrounding valley region can lead to decreased protrusion
height. High modulus electrolytes lead to suppression of dendritic protrusions in two
different ways, as reflected in Eq. (1) (Barai et al. 2017b):

(a) The cathodic current obtained from the Butler-Volmer equation (shown by the
blue line in Fig. 5a) decreases where compressive stress becomes high.

(b) Decrease in protrusion height due to plastic deformation of lithium metal
reduces the component of reaction current induced by the concentration-
overpotential gradient (shown by the red squares in Fig. 5a).

The combined effect is denoted by the black line in Fig. 5a, which also indicates
that stable deposition of lithium may be possible if the elastic modulus of polymer
is approximately 20 times larger than that of lithium.

As shown in Fig. 5b, the rapid decrease in current ratio actually occurs at
lower, intermediate electrolyte modulus values, which lead to plastic deformation
of lithium but elastic deformation of electrolyte. Figure 5b demonstrates that
a threefold increase in the initial yield strength of present-day PEO can help
significantly in suppressing growth of protrusions (Barai et al. 2017b).

Other research groups have also studied the impact of elastic plastic deformation
of lithium metal on the growth of dendritic protrusions. The Butler-Volmer equation
was modified by incorporating surface curvature and including a model of plastic
deformation (Ferrese and Newman 2014; Jana and García 2017). The dendrite
growth process was divided into two categories (Jana and García 2017): (i) tip
controlled growth governed by concentration-overpotential limitations and (ii) base-
driven growth that occurs due to plastic deformation of lithium. It was concluded
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Fig. 5 (a) With increasing
electrolyte modulus,
mechanical stress-induced
reduction in reaction current
(blue line), as well as the drop
in protrusion height due to
plastic deformation of lithium
and corresponding impact on
reaction current (red line)
helps to stabilize the lithium
deposition process (net effect
shown by black circles). (b)
Increasing the yield strength
of present-day low modulus
polymer electrolytes can
effectively suppress the
lithium dendritic protrusions.
(Reproduced from Barai et al.
2017b: Barai et al., Physical
Chemistry Chemical Physics
(2017) 19 20493 with
permission from the Royal
Society of Chemistry)

that large hydrostatic stresses and minimal deviatoric stresses are desirable for
suppressing dendrite growth (Jana and García 2017). Simulations including a
stiff ceramic separator (with elastic modulus in the range of tens of gigapascals)
showed severe plastic deformation of metallic lithium and successful suppression of
dendritic protrusions (Ferrese et al. 2012; Ferrese and Newman 2014). It was found
that plastic deformation of lithium metal was much more important in suppressing
the growth of dendritic protrusions than was elastic deformation or the effect of
pressure on reaction kinetics (Ferrese and Newman 2014).

All three studies described here, which incorporated plastic deformation of
lithium metal, assumed small-strain and linear strain-displacement relations.
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However, significant dendrite growth will cause large deformations, violating
the usual small-displacement assumption. Hence, it will be necessary to develop
simulations that remove this constraint.

4.2 Structurally Inhomogeneous Electrolytes

There are other solid electrolytes that show microstructural heterogeneity. Mech-
anisms of lithium ion transport, plasticity, and fracture of these heterogeneous
solid electrolytes can vary significantly (Stephan and Nahm 2006; Kerman et al.
2017), resulting in dendritic protrusions with different growth mechanisms and
morphologies. Electrolytes with inhomogeneous microstructures can be broadly
divided into two subcategories: (a) solid-state electrolytes that show distinct grain-
interior/grain-boundary microstructure and (b) composite electrolytes in which a
polymer matrix is reinforced with ceramic fillers. There are few computational
studies on dendrite growth within these structurally inhomogeneous electrolytes,
which are relatively new candidates for use in lithium ion batteries.

4.2.1 Single-Ion Conducting Solid State Electrolytes
In homogeneous electrolytes (both liquid and polymers), diffusion of anions helps
lithium ions move through the electrolyte (Stephan and Nahm 2006). However, in
ceramic electrolytes, current is carried only by the lithium ions because the anions
are immobilized as part of the stable crystalline structure (Kamaya et al. 2011).
Some examples of single ion conducting electrolyte are LLZO and LGPS, which
are oxide-based and sulfide-based ceramics, respectively. However, for chemical
stability, they are often doped with other elements, such as gallium or aluminum
(Rettenwander et al. 2016). Ceramic solid-state electrolytes have extremely high
elastic modulus values, making them suitable for preventing growth of dendritic
protrusions; LGPS and LLZO have elastic modulus values of around 20 GPa
and 150 GPa (Kerman et al. 2017), respectively. However, all of the solid-state
electrolytes rupture in a brittle fashion under sufficient stress.

The impact of mechanical stress on dendrite growth was derived earlier under
the assumption of homogeneous electrolyte (Monroe and Newman 2004). This
model was modified to investigate the impact of dendrite growth within ceramic
electrolytes (Ahmad and Viswanathan 2017). Significantly decreased partial molar
volume of lithium ions within solid-state-electrolytes impacts the dendrite growth
process. It was concluded that dendritic protrusions should not grow for electrolytes
softer than lithium (Ahmad and Viswanathan 2017). Due to anisotropy in crystal
structure, mechanical stiffness tensors are typically anisotropic. It was further
concluded that the anisotropic behavior does not affect the overall regime of
stability, but rather simply shifts the stability limits (Ahmed and Viswanathan 2017).

An equilibrium-based computational model demonstrated that propagation of
slender dendritic protrusions rupturing a path through the solid-state electrolyte
is energetically favorable relative to deposition of lithium on the other side of
the electrolyte (Porz et al. 2017), which has also been supported by experimental
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observations. The brittle rupture phenomena and low magnitudes of fracture energy
were suggested as major factors contributing to the easy growth of lithium dendrites
within ceramic single ion conductors. Also, the lack of flexibility of the solid-state
electrolytes led to delamination at the electrode-electrolyte interface, which can
result in high overpotentials.

4.2.2 Composite Polymer-Ceramic Electrolytes
The standard polymer electrolytes (such as PEO) possess neither sufficiently high
conductivity nor elastic modulus values for sustained operation with lithium metal
anodes at room temperature. However, their amorphous regions conduct lithium ions
more readily than do their crystalline regions, so elevating the operating temperature
above the melting temperature improves lithium ion conduction. Alternatively,
ceramic fillers (such as micron-sized or nanometer-sized Al2O3 or SiO2) are some-
times introduced to produce polymer-ceramic composites with higher conductivity
and elastic modulus at room temperature, which inhibits the crystallization of
polymer chains (Stephan and Nahm 2006).

Some nanometer-sized filler particles, such as those composed of SiO2, form
three-dimensional networks in which anions are immobilized (Schaefer et al.
2013), increasing the transference number of the electrolyte. Tikekar and coworkers
constructed a steady-state model of a cell containing an electrolyte region for
which mechanical stress was neglected, but with a specified fraction of fixed anions
(Tikekar et al. 2014). During deposition at high current densities, they observed
steep potential changes and ion depletion near the cathode, which is thought to
drive dendrite growth. Increasing the fraction of stationary anions decreased the
electric field strength in this region, particularly at high current densities, which was
expected to promote stable electrode surfaces.

5 Questions

Even though a significant amount of modeling work has been conducted in the past
several decades to understand the mechanisms behind nucleation and growth of
lithium dendrites, present understanding is far from satisfactory. The fact that no
material or strategy has been developed that can completely stabilize the lithium
deposition process reflects this remarkable gap in knowledge. Scientists have been
able to develop continuum models that can explain the voltage and current profiles
observed during the deposition of lithium (Barton and Bockris 1962; Diggle et al.
1969; Motoyama et al. 2015; Wood et al. 2016; Pei et al. 2017). Other computational
models based on phase field and Monte Carlo techniques have also been able to
predict the evolution of dendrite morphology under different operating conditions
(Chen et al. 2015). Unfortunately, these have not led to stable deposition of lithium
on metal electrodes. It is important to ask the correct questions to make reasonable
technological progress. A few such questions that scientists should focus on for
taking the lithium metal anode technology to its next level are provided here.
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It is important to recognize that successful commercial implementation of lithium
metal anodes requires stable deposition for thousands of charge-discharge cycles.
Dendrites may not grow sufficiently large to short the cell during a single charge
step. Usually, multiple charge-discharge cycles are needed for a dendritic protrusion
to puncture through the separator and short the cell (Stone et al. 2012; Sharafi
et al. 2016). Hence, stable deposition for a single charge-discharge cycle may
not guarantee dendrite-free operation. However, a majority of the computational
studies attempt to model the growth of dendrites during a single deposition process
(Monroe and Newman 2003; Ely et al. 2014). Even if it is possible to stabilize
the deposition of lithium on top of flat surfaces, nonuniform dissolution of lithium
during discharge may lead to development of sites for dendrite growth during the
subsequent charge steps (Wood et al. 2016). Focus should be concentrated on not
only the first deposition of lithium, but also the later dissolution and plating steps.

A solid-electrolyte-interphase (SEI) develops at the lithium-electrolyte interface
as soon as the lithium metal comes in contact with the organic electrolyte. SEI
layer compositions are not known exactly (Cheng et al. 2016). The presence of
different domains, adjacent to a metal electrode, with variable lithium ion diffusivity
and conductivity can lead to nonuniform deposition at the lithium-SEI interface.
Arguments have been made that rupture of the SEI layer allows for enhanced
deposition of lithium and dendritic protrusions initiate from these regions (Aurbach
2000). On the other hand, it has also been argued that presence of mechanically stiff
lithium-fluoride within the SEI layer can stabilize the deposition process for tens of
cycles. Hence, the impact of the metal-electrolyte interphase on lithium deposition
has not been completely elucidated. How the SEI layer alters the lithium dissolution
process is also not clearly understood. Questions exist regarding how the lithium
ions and solvent molecules migrate and diffuse through the SEI layer before reacting
with the lithium electrode. Proper computational models should be developed to
reconcile the effect of the SEI layer on the lithium dendrite growth mechanism.

From an experimental perspective, it has been observed that moss-like structures
form during deposition of lithium at small current densities, whereas needle-shaped
dendrites evolve during operation at large current (Bai et al. 2016). Dendritic
microstructures obtained through computational means do not always correlate well
with the experimental observations. For example, phase-field modeling techniques
produce linear dendritic structures at low overpotential, and tree-like structures
at higher overpotentials (Chen et al. 2015). This seems not to correlate well
with experimental observations. Also, other computational methodologies have
observed formation of dead lithium even under cathodic overpotentials (Jana et al.
2015), which is very unlikely in realistic situations. Hence, future models should
focus on predicting scenarios that correlate more closely with the experimental
observations. Another important feature that has not been thoroughly investigated
is the crystal orientation of the lithium surface on which deposition occurs. Proper
first-principles-based analysis should be conducted to determine the surface energies
of different lithium crystal orientations. The propensity of dendrite formation during
deposition on different types of lithium crystal surfaces should be appropriately
elucidated.
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Limited room temperature conductivity has been a major issue preventing
widespread implementation of nonliquid electrolytes in commercial devices
(Stephan and Nahm 2006). Recent developments have yielded ceramic solid state
electrolytes with room temperature conductivity even larger than that of liquids
(Kato et al. 2016). However, there are no computational models that analyze the
growth of lithium dendrites within ceramic electrolytes. Some phenomenological
models have been developed to elucidate the higher propensity of lithium dendrite
growth within ceramic electrolytes (Porz et al. 2017). Dissolution of these dendritic
protrusions under anodic overpotential should also be thoroughly investigated.
Significant questions remain regarding the cycle performance of lithium anodes with
ceramic electrolytes, for example, on the impact of grain boundaries and surface
flaws on the overall lithium deposition-dissolution process (Kerman et al. 2017).
The abilities of polymer-based solid electrolytes to stabilize the electrochemical
deposition of lithium should also be investigated further through computational
models. Successful dendrite prevention mechanisms can come from computational
models if the physical phenomena of nucleation and growth are understood.

6 Outlook

Given the advantages of lithium metal anodes, associated with their low elec-
trochemical potential and high gravimetric capacity, next-generation lithium ion
batteries should aim to use these anode materials to increase energy density. The
largest issues with lithium metal show up in the form of dendrite growth, formation
of dead lithium, and continuous decomposition of electrolyte at the solid-electrolyte
interphase layer. Computational approaches should take a leading role in devising
strategies to solve these problems. Since the success of a computational model
depends on the detailed capabilities of the adopted theory, a good understanding
of the physico-chemical phenomena is of utmost importance for the development of
an accurate theoretical framework. Taking into consideration that several physical
phenomena can occur at the lithium-electrolyte interface, such as mass transport,
charge balance, heat transfer, and mechanical equilibrium, multiphysics compu-
tational models should be developed to successfully predict the lithium dendrite
growth process. Furthermore, the physical phenomena observed during growth of a
dendritic protrusion span multiple length scales. For example, nucleation of lithium
occurs at the nanometer level. The cathode and the anode are usually placed several
microns apart in a cell. To cause a short circuit, a dendrite likewise has to grow by
several microns to reach the cathode. To capture all the phenomena that occur over
multiple length scales, multiscale computational models should be developed.

DFT models have been widely developed and utilized to understand the behavior
of lithium and electrolyte separately, as well as at their interfaces. However, these
models are capable of predicting only local features at an atomic scale. The number
of atoms required to form a lithium dendrite nucleus is also excessively large for
prediction using the DFT and ab-initio molecular dynamic (AIMD) simulation
techniques. Hence, it is necessary to use either classical molecular dynamics
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(CMD) or Monte Carlo (MC)-based computational procedures for understanding
the physical phenomena occurring at nano-scale, with properties measured using
the AIMD procedures.

On the other hand, well-developed computational techniques exist for modeling
the various physical phenomena observed at continuum (or micron sized) length
scales. Usually these continuum models have parameters that need to be determined
from experiments or lower length scale simulations.

The majority of bulk materials appear to be homogeneous at the continuum level.
However, there may be heterogeneities at the micron or submicron length scales,
also known as the mesoscale, which are not visible in the continuum level. The
DFT/AIMD-based lower length scale simulations are also not affected by these
heterogeneities due to their localized nature and provide parameters for perfect
crystals. Realistically, these microstructural heterogeneities give rise to higher stress
concentrations or current focusing, which leads to the initiation of dendrites and
subsequent failure of cells. Successfully bridging these computational techniques
applicable at different length scales, through modeling of mesoscale phenomena, is
of utmost importance for developing accurate models. Appropriate predictions of
features observed at the mesoscale can lift the significance of computational models
to the next level. Faster supercomputers with high computational power can also
help to bridge the gap between atomistic and continuum length scales through the
modeling of physical phenomena observed at the mesoscale.
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Abstract

Materials are, by their very nature, stochastic. Modeling materials across scales
requires models that capture this inherent stochasticity. In this chapter, preceding
a section on stochastic, coarse-grained models, we examine the elements of
stochasticity and coarse-graining and the different implementations of each.
Examples of the methods are also briefly discussed.
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1 Introduction

In a letter to Max Born, Albert Einstein is famously quoted as saying, “Quantum
mechanics is certainly imposing ... but does not really bring us any closer to the
secret of the ‘old one’. I, at any rate, am convinced that He is not playing at
dice.” (Quote obtained from English translation of Born-Einstein letters (1971).)
Einstein was dissatisfied with the probabilistic nature of quantum mechanics and
spent most of his later years searching for a unified field theory that could provide
a deterministic explanation of matter. In spite of his efforts, overwhelming evidence
has been presented in favor of the probabilistic mechanics that govern atomic
processes. It is clear also that the stochasticity inherent in these atomic processes
influences material processes at larger scales.

Consider the structures and processes presented by Tadmor and Miller (2011)
in Fig. 1. These structures and processes span numerous time- and length-scales,
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Fig. 1 (a) Length-scales and (b) time-scales associated with different structures and processes.
(Used with Permission from Tadmor and Miller 2011)
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which lead to significant challenges when attempting to model specific materials
or processes. Furthermore, the inherent stochasticity of the processes leads to
significant challenges in resolving the underlying causes of the behavior. Consider
the following behaviors that are influenced by the stochasticity of their underlying
collective process:

• Fatigue crack growth: While many of the influencing factors surrounding fatigue
cracking are known, crack nucleation and propagation are collective processes
that have significant randomness and variability that complicate accurate model-
ing and prediction (Kozin and Bogdanoff 1989; Ellyin 1997; Beden et al. 2009).

• Strength at small scales: The variability of atomic structure at small scales plays
a significant role in the strength observed (Uchic et al. 2004; Packard et al. 2010;
Askari et al. 2015). Different microstructural features clearly play a role in this
variability, but quantifying the exact influence of each of these features remains
a challenge.

• Martensitic transformations: Martensitic transformations in steels and shape-
memory alloys are complex, collective processes whose crystallography and
influencing factors are fairly well understood. Nevertheless, prediction of which
regions transform, and to a lesser extent the variant to which they transform,
remains a challenge (Christian 2002; Bhattacharya 2012; Miyamoto et al. 2013).

The above and many more similar phenomena require models that can bridge
the so-called meso-scales between atomic-level structure and processes and macro-
scopic behavior. These models must account for the increased complexity and
variability of material behaviors in this range (Yip and Short 2013; Provis 2015)
and represent an area of unprecedented challenge and opportunity (Hemminger
et al. 2012). This handbook contains three other sections that are focused on
bridging this meso-scale divide. These sections include (i) Crystal Plasticity:
Atomistics to Macroscale (Cai and Ghosh), (ii) Long Timescale Atomistic Sim-
ulations: Accelerated Molecular Dynamics and Adaptive Kinetic Monte Carlo
(Perez and Uberuaga), and (iii) Modeling of Microstructure Evolution: Mesoscale
Challenges (Stan and Sarrao). Like the techniques presented in this section,
these sections also include unique and clever solutions to address the meso-scale
challenge.

In this section, we discuss meso-scale modeling approaches that coarse-grain
material phenomena. But, in contrast to many meso-scale approaches, we emphasize
the inclusion of stochasticity and its critical role in modeling different processes that
inherit from the probabilistic nature of matter.

The coarse-graining has the advantage of representing the effective behavior of
complex structures in a simpler way; individual atoms and their bonding do not need
to be explicitly considered. It also allows modeling of behavior at scales comparable
to those employed in experiments.

The stochasticity is incorporated as a result of the fact that so many collective
processes in materials appear to behave in a random or probabilistic fashion.
Furthermore, many of the processes of interest are infrequent from the perspective
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of atomic vibrations. As such, our current understanding and models struggle to
explain these processes using deterministic approaches.

In this overview chapter, we detail the coarse-graining and stochastic elements
that characterize this class of models that are able to simulate collective phenomena
at larger length-scales and on longer time-scales while still accounting for the
stochastic nature of the underlying atomic processes. These two elements can
be implemented in a variety of ways, and as such, each element is discussed
individually. This is followed by a brief summary of implementations of these
methods in the chapters included in this section of the handbook, as well as examples
available in the literature. Finally, we close with an outlook on stochastic, coarse-
grained modeling and discuss challenges and opportunities that exist.

2 Elements of Stochastic, Coarse-GrainedModels

In defining the uniqueness of these meso-scale models, we find that two components
set these models apart. These two components are stochasticity and coarse-graining.
In the following sections, we individually discuss the different ways these two
elements are often implemented in models.

2.1 Coarse-Graining

In all multi-scale modeling efforts, phenomena have to be modeled at different
scales in a manner that captures the appropriate behaviors. Coarse-graining is one
efficient way of modeling materials at larger length-scales and on longer time-scales.
In coarse-graining, atomic behaviors do not have to be considered; instead, their
local collective behavior is properly represented in the model with a reduced number
of degrees of freedom.

We note the following ways that models frequently implement coarse-graining:

1. Coarse-graining specific objects
2. Coarse-graining regions of material

2.1.1 Coarse-Graining Specific Objects
Coarse-graining is often implemented because certain material phenomena are
associated with specific structures. For example, many material processes involve
material defects, such as vacancies, solute atoms, dislocations, interfaces, etc. In
these cases, the behavior of the material is governed by the collective behavior
of the atoms in the defect. For example, one can model a dislocation as a line
defect rather than the collection of atoms that make up that defect. As such, one can
more efficiently model the collective behavior of the defect as an object rather than
modeling the individual atomic motions that make up the defect. However, in order
to properly capture the physics of the coarse-grained object, it is often necessary to
discretize the object on the coarser scale. For example, while treating dislocations
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as line defects, dislocation dynamics models usually discretize dislocation lines
by nodes or segments; each node or segment can be viewed as representing the
collective behavior of atoms making up that segment.

2.1.2 Coarse-Graining Regions of Material
In some cases, the material phenomena may not be tied to a specific structure, or
the structure may need to be subdivided. For example, in amorphous materials, it
is difficult to identify a unit structure for coarse graining. Or in larger defects like
grain boundaries or inclusions, one may wish to subdivide the defect into smaller
regions. In this case, one can simply coarse-grain a region of material.

When coarse-graining a region of material, one must understand the implications
of the length-scale selected. The challenge here is that certain processes that one
may wish to model will occur over different length-scales. For example, many
processes involve incubation, nucleation, propagation, and growth stages. The
nucleation stage can be small while the propagation and/or growth stages involve
large regions of material. Coarse-graining can involve multiple scales, but it is
usually convenient to pick a single length-scale in order to keep the model simple.
Again, the coarse-grained representation of the material may be discretized in the
model, and the discretization scheme could change during the simulation to better
capture the evolution in material property and in heterogeneous fields. In selecting
a region to model any of these processes, one must use care and ensure that the
underlying material process is satisfactorily captured; one must determine the ideal
balance between resolution and efficiency in modeling.

2.2 Stochasticity

As noted in the introduction, many material processes at the meso-scale have
collective processes that occur in a random or probabilistic manner. The randomness
could be attributed to our incomplete understanding of the physics governing
these processes, thereby causing a deterministic process to appear stochastic. The
randomness could also be attributed to the underlying probabilistic mechanics of
the atoms involved in the collective process. In either case, a stochastic approach to
modeling the collective process can both resolve the factors that influence a given
process and increase our understanding of the range of behaviors one can expect
from a model.

We note the following ways we have observed the incorporation of stochasticity
into coarse-grained models, each of which are described in more detail in the
sections that follow:

1. Random selection of events from specific probability distributions
2. Deterministic selection of events from specific probability distributions
3. Emerging applications of other methods
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2.2.1 Random Selection of Events from Specific Probability
Distributions

Random selection of events from specific probability distributions is most frequently
implemented in Monte Carlo models that utilize Maxwell-Boltzmann probability
distributions. These include both standard Monte Carlo (Rollett and Manohar 2005)
and kinetic Monte Carlo (Voter 2007) methods.

In these methods, one considers an ensemble of potential states into which the
system can evolve. The selection of any given event is accomplished by developing a
partition function based on the probability distribution function of interest. As noted,
in Monte Carlo methods, the Maxwell-Boltzmann distribution is most commonly
used, though other probability distributions can be used (Janssens et al. 2007). Once
the partition function is created, the selection of events involves random numbers.

One of the best known applications of Monte Carlo methods is to the kinetic
process of diffusion, where particle motions are modeled with a random, or
stochastic, walk. Diffusion coefficients can then be obtained from a series of
individual atomic jumps (Perondi et al. 1994).

In standard Monte Carlo, a system evolves through equilibrium (often
metastable) states, with no knowledge of the transition states separating them. For
this reason, time cannot be directly considered, although indirect conversion from
Monte Carlo steps to physical time may be attempted by comparing to a known
evolution law. While time can be difficult to access by this approach, one gains
insight into the most favorable energetic states of the system. Among the many
ways to execute this method is the Metropolis algorithm (Rollett and Manohar
2005; Janssens et al. 2007). In this algorithm, a site is selected at random, and
then the energy change, ΔE, is calculated for a state change from the starting
state to a possible ending state. A random number between 0 and 1 is then
compared to the transition probability exp (−ΔE/kBT ) based on the Maxwell-
Boltzmann distribution. In this probability, kB is the Boltzmann constant and T

is the temperature in Kelvin. If the random number is less than the transition
probability, the event is accepted; otherwise it is rejected. This process is repeated
over and over to evolve the system. There are different variants of the algorithm
for faster execution and for conserved and non-conserved quantities. This type of
algorithm has been used to study microstructure evolution extensively.

In kinetic Monte Carlo, a system evolves by consideration of the transition states
rather than the equilibrium states. For this reason, time is accessible and one gains
insight into the most likely evolution paths. This method typically follows a single
implementation and is known as the kinetic Monte Carlo algorithm (Voter 2007).
In this algorithm, a system is investigated for all the possible escape pathways that
lead out of the current state. The energy change, ΔE, of the transition state relative
to the starting state is calculated for all the possible escape pathways. The transition
rate νo exp (−ΔE/kBT ) is then calculated for each escape pathway. Note that in
contrast to the transition probabilities of standard Monte Carlo, the kinetic Monte
Carlo algorithm calculates a rate of successful transitions out of the current state
by including a prefactor νo multiplying the transition probability. The prefactor
νo is an attempt frequency that is typically of the order of the Debye frequency.
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The cumulative transition rates, proportional to the partition function, are used to
calculate the cumulative probability distribution, from which an event is selected
using a random number. The average time for any one of the events to occur is
inversely proportional to the cumulative transition rates, but since the probability
of executing one of those events in that time interval must be selected from an
exponential distribution, the elapsed time is usually selected as t = −(1/ktot) ln(r),
where ktot is the cumulative rate and r is a random number between 0 and 1.
This process is repeated over and over to allow the system to evolve by passing
through transition states. This type of algorithm is extremely useful for systems
with infrequent events.

In both of these cases, random numbers are an integral part of evolving the
systems and are used to select events whose probabilities are based on the energetics
of the processes of interest.

2.2.2 Deterministic Selection of Events from Specific Probability
Distributions

Deterministic selection of events from specific probability distributions does not
have a normal framework under which it is executed like the Monte Carlo methods
do. Instead, these approaches typically use frameworks that are unique to the model
and phenomena.

Since each implementation is unique, we briefly describe a basic approach, where
local material property values are assigned in a stochastic manner but deformation
proceeds based on a deterministic criterion. One such approach was used by
Li and Anderson (2016) and is discussed briefly in Sect. 3.2.1. As noted in the
introduction, strength at the nanoscale can be highly variable and can therefore be
better represented by a strength distribution than a single value of strength (Uchic
et al. 2004; Packard et al. 2010; Askari et al. 2015). These strength distributions can
adopt some form of a probability distribution as a function of stress. One can use
deterministic criteria such as those frequently used in crystal plasticity simulations
(Roters et al. 2010) to determine if a given region has reached the condition for
yield. But, instead of having each coarse-grained region of the model possess an
identical strength value, one can randomly assign strength values as selected from
the probability distribution of interest. Thus, strength is stochastically assigned
according to a specific probability distribution. However, it is worth noting that we
consider this approach to be deterministic selection in spite of the fact that values are
randomly assigned. This is because the evolution law is governed by a deterministic
comparison of values, and in most cases these values have been randomly assigned
at the beginning and do not change during the course of the simulation.

In this way, these models sample physically relevant probability distributions of
the property of interest. The models also select each of the events using standard
deterministic approaches, and the coarse-grained models evolve accordingly.

2.2.3 Emerging Applications of Other Methods
The Monte Carlo methods are certainly the most common implementations of
stochasticity in meso-scale models. However, the deterministic selection methods
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noted above are increasing in frequency, and there are other methods that are
more recently being used to describe the variability and randomness of different
processes.

For example, stochastic finite element analysis has been around for some time,
and one can use formulations such as polynomial chaos expansion to model the
effects of uncertainty and/or variability in model parameters (Ghanem and Spanos
1990). Multi-fractal analysis (Lebyodkin and Estrin 2005) is another technique that
uses probabilistic analysis to examine and describe collective phenomena. Random
field theory enables modeling of random nonhomogeneous material properties at the
meso-scale (Soize 2006; Guilleminot et al. 2009; Kouchmeshky and Zabaras 2010).

These are just a few examples of techniques that can describe stochastic aspects
of collective phenomena at the meso-scale. These techniques differ from the two
categories noted above for random and deterministic selection of events from
specific probability distributions. In both of the categories above, one can point to
specific, or discrete, processes that have occurred at any given step. In contrast, the
methods noted here are more in line with deterministic methods that incorporate
elements of stochasticity and do not deal with specific, or discrete, mechanisms.
While different in nature, these methods have notable attributes that make them ideal
for modeling some material behaviors and are likely to become more common.

3 Implementations of Stochastic, Coarse-GrainedModels

This section discusses different implementations of stochastic, coarse-grained
models for materials mechanics. We first provide a brief overview of the chapters
included in this section of the handbook and the manner in which each implements
the elements of stochasticity and coarse-graining. We follow up with a brief
overview of other notable examples available in the literature.

3.1 Contributions of This Section

3.1.1 Shear Transformation Zone Dynamics Modeling of Deformation
in Metallic Glasses

Metallic glasses, also known as amorphous metals, are metallic alloys that have no
long-range crystalline structure. As a result, their deformation differs significantly
from that of crystalline materials. Metallic glasses exhibit glass-like flow at high
temperatures and localized deformation, in the form of shear bands, at low tem-
peratures. The time- and length-scales associated with these behaviors make these
materials a challenge to model using atomistic methods or continuum mechanics.
In �Chap. 56, “Shear Transformation Zone Dynamics Modeling of Deformation
in Metallic Glasses” Li and Homer examine the deformation behavior of metallic
glasses using a coarse-grained, kinetic Monte Carlo algorithm. They coarse-grain
the system on regions of material, known as shear transformation zones, in which
atoms are shown to deform collectively. The kinetic Monte Carlo algorithm is used
to evolve the system, where the energetics for the Boltzmann probabilities are based
on models for the mechanics associated with shear transformation zones. In their
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work they examine the process by which shear bands form, structural factors that
influence shear banding, and the manner in which individual shear bands contribute
to the overall deformation behaviors that are observed in metallic glasses.

3.1.2 Object Kinetic Monte Carlo: A Coarse-Grained Approach
to Radiation Damage

Nuclear materials undergo complex processes as a result of the irradiation and
accompanying thermal and mechanical conditions. They experience everything
from radiation damage, void formation, fission gas generation, and swelling to
phase changes, diffusion of species, and chemical reactions with cladding materials.
Unfortunately, accurate modeling requires many of these processes to be considered
simultaneously. This results in serious challenges when selecting an appropriate
modeling technique. In �Chap. 58, “Object Kinetic Monte Carlo (OKMC): A
Coarse-Grained Approach to Radiation Damage” by Domain and Becquart examine
the radiation damage in nuclear materials using an object kinetic Monte Carlo
approach. They model different microstructural features, such as vacancies, voids,
and interstitial clusters, as objects. The kinetic Monte Carlo algorithm is then used
to control the evolution based on possible material processes. These processes
include, among others, vacancy migration and recombination, which are selected
from Boltzmann probabilities based on the respective energetics of the process.
Using this model they examine the effect of impurities on the evolution of vacancies
and ways to model these processes at different scales in combination with atomistic
and mean-field approaches.

3.1.3 Kinetic Monte Carlo Modeling of Martensitic Phase
Transformation Dynamics

Shape-memory alloys, a representative class of superelastic (pseudoelastic) mate-
rials, and other materials exhibiting martensitic phase transformations display an
interesting ability to accommodate, or impose, deformation through displacive
phase transformations. In these materials a high-temperature, austenitic, phase
exhibits a different crystal structure than a low-temperature, martensitic, phase.
Thus, when a region of the material changes phase, the surrounding material is
forced to accommodate the difference in structure, which can be significant. In
�Chap. 57, “Kinetic Monte Carlo Modeling of Martensitic Phase Transformation
Dynamics” by Chen examines the behavior of a shape-memory alloy using a coarse-
grained kinetic Monte Carlo approach. Regions of material are coarse-grained to
represent discrete regions that transform collectively. The kinetic Monte Carlo
algorithm is then used to evolve the system using Boltzmann probabilities based on
the energetics of the phase transformation and accompanying mechanics. The model
is used to examine mechanically- and thermally-driven phase transformations, along
with their accompanying hysteretic behaviors.

3.1.4 The Stochastic Nature of Deformation Twinning: Application
to HCPMaterials

Hexagonal close-packed (HCP) materials often accommodate deformation using
a combination of dislocation plasticity and deformation twinning. Dislocation
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plasticity follows well-known laws of initiation and propagation, whereas defor-
mation twinning is less well understood. For example, twin formation appears to be
random and is heterogeneous throughout the microstructure. Generating a model
that can accurately capture the conditions for nucleation, twin variant selection,
and subsequent growth of the twin is challenging. In �Chap. 59, “The Stochastic
Nature of Deformation Twinning: Application to HCP Materials” Beyerlein and
Kumar examine twinning in HCP materials using a mean-field model that tracks
coarse-grained features of a microstructure. Nucleation and growth of twins follow a
deterministic law which instigates the various processes as determined from specific
probability distributions. The model is used to show that stochastic selection of
twin variants more accurately captures experimental observations than alternative
approaches. The elements of stochasticity are important in accounting for the large
variation of features that impact twinning in HCP metals.

3.2 Contributions in the Literature

There are also many notable contributions in the literature and we wish to highlight
a few of those here.

3.2.1 Quantized Crystal Plasticity Modeling of Nanocrystalline Metals
One recent contribution focuses on dislocation plasticity in metallic alloys. Disloca-
tion plasticity involves the motion and interaction of innumerable linear defects. The
mechanics of motion of individual dislocations are well known, but the interaction
of large numbers of dislocations remains a challenge. While many methods exist,
Li and Anderson (2016) have developed a method where dislocation plasticity is
accumulated in quantized amounts. Furthermore, the evolution of the dislocation
plasticity is controlled by a deterministic evolution law, but the strengths of coarse-
grained regions in the model are assigned from specific probability distribution
functions. The model is used to capture several properties of dislocation plasticity
that are unique to nanocrystalline metals.

3.2.2 Monte Carlo Finite Element Model for Strain Energy Controlled
Microstructural Evolution

The formation and evolution of γ ′ precipitates in nickel-based superalloys is a
precipitation process that is strongly influenced by strain energy. To model the
coalescence of layers, or rafts, of the γ ′ precipitates, Gayda and Srolovitz (1989)
developed a combined Monte Carlo-finite element model to include the strain
energy in the Monte Carlo energetic calculations. Their model can account for
externally applied stresses, surface tension, misfit, elastic inhomogeneity, elastic
anisotropies, and temperature. The model shows good agreement with experimen-
tally observed microstructures.
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3.2.3 A Polynomial Chaos Expansion BasedMolecular Dynamics
Study for Probabilistic Strength Analysis of Nano-twinned
Copper

To demonstrate how polynomial chaos can be used to represent the collective
processes of interest in this section, we include this example from Mahata et al.
(2016). In their work, they construct a polynomial chaos expansion to represent the
influence of twin spacing and twin boundary width on strength in nano-twinned
structures. Results from a small number of molecular dynamics simulations are
used to construct the expansion, from which a larger variation of parameters is
considered. The polynomial chaos expansion model is able to construct robust infer-
ences of parameters that are only partially considered in the molecular dynamics
simulations. This approach demonstrates emerging opportunities to incorporate the
element of stochasticity into coarse-grained models.

3.2.4 Other Noteworthy Publications
Other noteworthy stochastic, coarse-grained models or models with similar
approaches have been published. The following list is to illustrate a diversity of
applications and methods and is not meant to be comprehensive. These include
works by Guilleminot et al. (2009), Kouchmeshky and Zabaras (2010), Talamali
et al. (2012), Soize (2012), Zhao et al. (2013), Askari et al. (2015), and Kondori
et al. (2018).

4 Outlook and Open Challenges

Scientists may one day fulfill Einstein’s wish of a unified field theory, but until that
day, we must utilize the tools that capture the stochastic nature of materials.

Incorporating the element of stochasticity in coarse-grained models enables
collective processes to be modeled in a way that captures their inherent variability,
uncertainty, and probabilistic nature. These models are an important part of multi-
scale modeling and bridge important length- and time-scales. It is expected that
these approaches will fulfill an increasing need as we improve our understanding
of quantum and atomistic processes but struggle to apply these to complex systems
at the continuum scale. This means that there are a number of open challenges and
opportunities that exist. A limited list is included here:

• There are numerous material processes that exhibit stochasticity and may benefit
from a modeling approach that accurately captures their inherent nature. A
brief list of these include fracture, fatigue crack growth, dislocation interactions
with defects, martensitic transformations in steels, and recrystallization. Each of
these processes is controlled by well-known energetic processes, but predicting
exactly what will happen remains a challenge. Stochastic modeling approaches
enable statistics and probabilities to be measured. As a result, new insight can
be gained or energetic models can be improved. Furthermore, materials often
undergo simultaneous mechanical deformation and kinetic coarsening of grains
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and precipitates, both of which are somewhat stochastic processes. Coupled
modeling of mechanical and kinetic evolution pathways will be required in order
to accurately predict material behavior in many extreme environments.

• Different material processes exhibit different collective processes and proba-
bilities that are best modeled by different approaches. One future area may
be to develop coarse-grained, physics-based formulations and determine which
modeling approaches are the most efficient or provide the most insight into a
given process.

• While stochastic, coarse-grained models are not new, their use has been limited,
and they appear to be gaining more attention as computational resources increase
in power and capability. Newer applications, like polynomial chaos expansion,
are being developed, and newer methods will certainly be discovered. The
open challenge then is to determine new methods that allow processes to be
modeled more efficiently or discover new methods that enable new material
processes to be modeled in a stochastic manner that were not previously
possible.

• One other direction that offers tremendous opportunity lies in the integration of
these types of stochastic, coarse-grained models in a materials design framework.
While the examples are focused on understanding and predicting material
response under external stimuli, the models and tools can be further integrated
or modified for materials design purposes. While uncertainty in design is
gaining increasing interest, integrating variability in design and structure with
predictive stochastic models will offer unprecedented opportunity in the design
and manufacturing of high-performance materials.

The ultimate benefit of these modeling approaches will be proven by their use
and ability to provide new insight into the materials that surround us. We hope the
chapters that follow will aid and inspire new approaches and research that keep the
community moving forward.
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Abstract

A mesoscale shear transformation zone (STZ) dynamics model is presented to
investigate the deformation behaviors of metallic glasses that span significant
time and length scales. The modeling framework involves coarse-graining STZs,
the fundamental deformation unit in metallic glasses, onto a finite element mesh
and controlling the stochastic activation of these STZs using the kinetic Monte
Carlo algorithm based on the energetics of the glass system. The combination
of these two features allows simulating diverse deformation modes of metallic
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glasses at large time and length scales while providing a microscopic view of
the process that dominates the behaviors. The adaption of the STZ dynamics
framework to treat complex phenomena is discussed, including a detailed
examination of the shear banding process, simulated contact mechanics, and
an examination of the interplay of deformation and structural evolution via the
incorporation of a free volume state variable. The chapter concludes with the
challenges and future development of the STZ dynamics model.

1 Introduction

Metallic glasses exhibit deformation behaviors that are both interesting and chal-
lenging to fully characterize. As a result, a complete understanding of this new class
of materials requires modeling techniques that can capture the relevant phenomena
at the appropriate scales (Rodney et al. 2011; Schuh et al. 2007). The amorphous
structures of metallic glasses appear deceptively homogeneous and isotropic when
investigated with conventional experimental characterization techniques; the mate-
rials don’t exhibit typical defect structures, such as dislocation, present in crystalline
alloys. Despite the lack of experimental means to directly characterize flow defects,
the state of the art in material modeling offers highly accurate methods, from density
functional theory and molecular dynamics at atomistic scales all the way up to
continuum theories for the deformation of metallic glasses and its connection with
amorphous structures.

The deformation of metallic glasses, in particular, the low-temperature shear
banding behavior is a typical multiscale phenomenon (Greer et al. 2013), occurring
over several length and time scales illustrated in Fig. 1. At the atomic scale,
the fundamental units of deformation are atomic rearrangements called shear
transformation zones (STZs) (Argon 1979). The STZs are localized both in space,
involving only a few tens of atoms, and time, spanning a few picoseconds, which
have been captured and extensively studied by atomistic simulations (Falk and
Maloney 2010; Rodney et al. 2011). The structural origin of STZs remains elusive,
and yet it is believed that the inhomogeneous atomic packing configurations in
the amorphous structure lead to a heterogeneous local inelastic response, linking
to STZs (Cheng and Ma 2011; Ma and Ding 2016). Figure 1e displays a recon-
structed atomic configuration of Zr50Cu45Al5 metallic glasses by hybrid reverse
Monte Carlo simulation, revealing a variety of packing clusters including the
ideal icosahedron, distorted icosahedron, and face-centered cubic structure. Using
molecular dynamics simulations, Ding et al. demonstrate that the regions densely
populated with unstable clusters are elastically soft and more susceptible to be STZs
(Fig. 1f). Such nanoscale inelastic heterogeneities have been recorded experimen-
tally using dynamic atomic force microscopy (Fig.1b) and nanoindentation (Fig.1c).
At the mesoscopic scale, the collective behaviors of STZs lead to various unique
deformation phenomena in amorphous materials, such as spontaneous strain local-
ization/shear banding, intermittent dynamics, and power-law distributed avalanches,
which receive considerable attention from mesoscale modeling and experiments
(Dahmen et al. 2009; Rodney et al. 2011). The connection of these deformation
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Fig. 1 Multiscale features of the deformation behaviors and structural heterogeneities in metallic
glasses. (a) The disordered atomic structure imaged by high-resolution transmission elec-
tron microscopy (HRTEM) (Ma and Zhang 2010). (b) The inelastic phase shift image of
Zr55Cu30Ni5Al10 metallic glass with a correlation length ∼5 nm using atomic force microscopy
(AFM) (Liu et al. 2011). (c) The elastic microstructure of Zr58.5Cu15.6Ni12.8Al10.3Nb2.8 metallic
glass with a characteristic length ∼100 nm characterized by dynamic modulus mapping on
nanoindentation platform (Tsai et al. 2017). (d) Intersecting shear bands under the indenter of a Zr-
based MG using scanning electron microscopy (SEM) (Su and Anand 2006). (e) The reconstructed
atomic clusters of Zr50Cu45Al5 MG by hybrid reverse Monte Carlo simulations (Hwang et al.
2012). (f) The atoms experienced shear transformation overlap on the participation ratio of soft
modes in a Cu64Zr36 MG obtained by molecular dynamics (MD) simulations (Ding et al. 2014).
(g) The simulated shear band formation of a Cu64Zr36 MG in the presence of elastic heterogeneity
using a mesoscale shear transformation zone (STZ) dynamics simulations (Wang et al. 2018). (h)
Simulated shear band pattern under indentation using a continuum model (Su and Anand 2006)

behaviors to the amorphous structure is beyond short-range orders; the atomic
heterogeneities coordinate over a larger scale, translating from the nanometer-scale
STZs to their organization into shear bands (Fig. 1g), which usually appear within a
few milliseconds and reach a length on the order of a tenth of a micrometer. Finally,
at the macroscopic scale, depending on the loading condition, either a single shear
band forms as in tension test, or several shear bands form and interact, in case of
confined plasticity as in indentation tests, as shown in Fig. 1d, h. The continuum
modeling of the deformation behavior of metallic glasses has mostly relied on a
flow rule accounting for the evolution of an internal state variable, the free volume,
proposed by Spaepen (1977), relating the plastic strain rate to the state of stress and
the history of deformation of the glass.

On the modeling front, atomistic simulations are critical in resolving the physics
and mechanics associated with individual STZ activations, the nature of STZ-STZ
interactions (Falk and Maloney 2010) as well as the incipient stage of shear band
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nucleation (Şopu et al. 2017). Unfortunately, the atomistic simulations limit in both
time and length scale to simulate the shear banding behaviors at engineering scales.
Continuum approaches, on the other hand, can model deformation at engineering
scales and provide an ideal comparison to experiments (Su and Anand 2006).
However, the presumed constitutive laws can only exhibit phenomena they have
been designed to capture, and often the deformation physics that must be introduced
is not completely understood. As a result, a mesoscale modeling technique is
an important inclusion in modeling the deformation behavior of metallic glasses
across the entire spectrum (Rodney et al. 2011), contributing toward a complete
understanding of structure-mechanical property relationships in metallic glasses
(Hufnagel et al. 2016).

Modeling the amorphous plasticity at the mesoscopic scale, one employs a
coarse-grained description of the STZs and accounts for the dynamics of these
elementary STZ processes; by averaging out atomistic effects, one can access
larger scales in the same way as dislocation dynamics describes crystal plasticity.
Rodney et al. have summarized the key ingredients of mesoscale models for
amorphous materials, which include a local activation/yield criterion of STZs, an
elastic coupling between STZ and amorphous matrix like an Eshelby inclusion,
the evolution rule of activation/yield criterion, and a dynamical rule that associates
a time scale to the STZ activations (Rodney et al. 2011). Based on the different
choices of these rules, the mesoscale models for metallic glasses fall into three
categories. First, a depinning model, developed by Vandembroucq et al. (Baret et al.
2002), employs statistical distributions of yield stresses as well as the transformation
strains for STZs, driving the evolution of STZs via internal stress arising from
the accumulation of Eshelby fields and extremal dynamics. Second, a fluidity
model, developed by Picard et al. (2002), uses a constant yield-stress criterion for
STZs and incorporates the glassy dynamics based on Maxwellian viscosity through
a distribution of characteristic transition rates. Third, an STZ dynamics model
(Bulatov and Argon 1994a; Homer and Schuh 2009; Zhao et al. 2013), which is
the focus of this chapter, uses an energy-based activation criterion for the STZs and
a kinetic Monte Carlo algorithm to evolve the system through Boltzmann statistics.

In this chapter, we discuss the development of the STZ dynamics modeling
framework and its applications in various aspects of metallic glass deformation,
detailing the techniques used to bridge the relevant time and length scales. In
addition, we examine the deformation physics elucidated by this method as well
as the mechanics associated with shear banding behaviors.

2 STZ Dynamics Modeling Framework

The mesoscale STZ dynamics model treats STZs as the elementary deformation
events, and the stochastic activation of the STZs leads to the formation of shear
bands at large time and length scales (Homer et al. 2010; Homer and Schuh 2009).
This initial development of STZ dynamics framework is inspired by the work
of Bulatov and Argon (1994a, b, c). As with Bulatov, the modeling framework
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employs two separate elements, coarse-graining and kinetic Monte Carlo (kMC)
algorithm, which individually bridge the length and the time scales associated with
deformation in metallic glasses. The coarse-graining method centers on the STZ,
which consists of a cluster of atoms that exhibit the transient shearing motion
consistently in the same manner (Maloney and Lemaître 2004, 2006; Rodney and
Schuh 2009; Srolovitz et al. 1983). Then a simulated metallic glass is represented
by a system of potential STZs. The coarse-graining enables more efficient sampling
of larger system sizes. Meanwhile, to simulate longer system times more efficiently,
the transient STZ activation is considered as a transition state between the initial
and final equilibrium configurations. Thus, transition state theory (TST) and the
kMC algorithm can be employed as long as knowledge of the energetic landscape,
including the transition states, is available.

2.1 STZ Coarse-Graining with Finite Element Mesh

The STZ coarse-graining is accomplished by replacing the cluster of atoms that
represents a potential STZ with a feature of finite element mesh, as illustrated in
Fig. 2 (Homer and Schuh 2010, 2009). In this process, three criteria are imposed
for proper representation of an STZ using a finite element mesh. First, the coarse-
grain representation should approximate the shape of an STZ, which is believed
to be roughly spherical. Second, the finite element representation of the potential
STZs should allow them to overlap, since the STZ is a transient event and the atoms
involved would never be restricted to participate in only one potential STZs. In other
words, for a given element, it can participate in multiple STZ activations. Third, the
coarse-grained STZ should accurately capture the analytical solution of an Eshelby
inclusion (Eshelby 1957). This is supported by the original STZ theory paper, in
which Argon modeled the STZ as an Eshelby inclusion (Argon 1979).

Fig. 2 Coarse-graining of an STZ (a) using features of a finite element mesh in (b) 2D or 3D.
(Figure adapted with permission from Homer and Schuh (2009, 2010))
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Fig. 3 2D coarse-graining process. (a) Representation of possible STZ definition on the triangular
mesh. (b) Irregular triangular mesh with 13-element potential STZs highlighted to show how the
individual elements in the mesh can be activated by different STZs. (c) The accuracy of STZ
coarse-graining evaluated by the strain energy difference between finite element method and the
Eshelby solution as a function of the size of the STZ (Figure adapted with permission from Homer
and Schuh (2009))

Following the three criteria, the implementation of coarse-graining STZs onto 2D
and 3D finite element meshes has been achieved (Homer and Schuh 2010, 2009). In
2D, a single STZ is represented by a node and all the surrounding elements or an
element and all the surrounding elements on an irregular triangular mesh, shown in
Fig. 3a. This representation ensures that the shapes of potential STZs are roughly
equiaxed. Furthermore, in this representation, the STZs comprise more than one
single element, so that elements in the mesh will be able to participate in multiple
STZs. As illustrated in Fig. 3b, three potential STZs, each of 13 elements, are
highlighted on an irregular triangular mesh. At any given time step, the elements
in the overlap region (between potential STZs B and C) can participate in either
event. Finally, the accuracy of the representation is evaluated by comparing to the
Eshelby solution for shearing of a long circular fiber in a matrix (plane strain). The
percent error of the calculation relative to the Eshelby solution (based on the total
system strain energy) is plotted in Fig. 3c as a function of the size of the STZ relative
to the mesh. As the results show, convergence is achieved quite rapidly, with STZs
containing 13 or more elements exhibiting about 1.5% error or less (Homer and
Schuh 2009).

In 3D, a collection of 20–30 tetrahedral elements that all share one common
node provides a consistent approximately spherical STZ, as illustrated in Fig. 2b. In
this definition, STZs may overlap. When compared with the Eshelby solution, the
quadratic tetrahedral element-based STZs are found to provide higher accuracy with
the elastic strain energy having 2% error (Homer and Schuh 2010).

The use of a finite element mesh not only enables a coarse-grained description
of STZ as a transient flow defect in metallic glasses but also provides flexibility
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for further development to incorporate emerging characteristics of STZs. First,
one might define an ensemble of STZs with different characteristic volumes. In
principle, this could be achieved based on the local size of the elements included
in each potential STZ. In this chapter, a single value of volume is assigned to all
the STZs in the mesh, but this value could vary with respect to strain rate (Harris
et al. 2016) (see Sect. 3.2). Second, the size of STZ activation volume could be
related to the level of glass relaxation and damage (Albaret et al. 2016; Boioli et al.
2017) and loading states (Fusco et al. 2010). Adaptive meshing could be used to
capture the dynamic evolution of STZ volumes. Third, the elastic response of the
system to the STZ transformation strain requires only the use of a linear elastic finite
element solver. The use of finite element mesh and finite element solver enables just
about any set of boundary conditions regularly used in finite element analysis to be
incorporated into the STZ dynamics framework.

2.2 STZ Activation Rate

To accomplish the dynamics for longer time scale, the STZ dynamics model con-
siders the coarse-grained STZ activation as a transition state between the initial and
final equilibrium configurations, as illustrated in Fig. 4a. The stochastic activation
of the STZs leads to deformation on longer timescales. The STZs are thermally
activated, and the activation rate is proportional to the Boltzmann probability that
the system overcomes the activation barrier between the initial and final equilibrium
configurations, defined as

Fig. 4 (a) Illustration of the potential energy landscape and the associated STZ configurations
at the initial state, saddle point, and final state. (b) Illustration of the traditional approach of
identifying the activated state of an STZ. (c) The energy landscape model proposed by Bulatov
and Argon (1994a). (Figure (b) and (c) reproduced with permission from Homer et al. (2010))
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ṡ = vo exp

(
−�G

kBT

)
(1)

where the prefactor νo is of the order of the Debye frequency, �G is the activation
energy barrier, T is the absolute temperature, and kB is the Boltzmann constant.

In order to calculate the activation energy barrier for a given transition, one
must have knowledge of the transition itself. A traditional approach uses the energy
change to model the activation energy, �G, by adding a barrier of fixed height, �F,
to the average of EI and EF , as illustrated in Fig. 4b. This approach satisfies detailed
balance for the reaction because a forward transition traverses the same activated
state as the reverse transition.

EI +�GI→F = EF +�GF→I (2)

with �GI→ F=(EF − EI)/2 + �F and �GF→ I = (EI − EF)/2 + �F. Unfortu-
nately, this traditional approach of calculating �G requires calculation of the energy
in the final state, which is computationally expensive for a large number of possible
transitions in metallic glasses.

Bulatov and Argon have provided an alternate formulation for �G by exploiting
the fact that the strain energy associated with shearing an STZ is a quadratic function
of the transformation strain γ 0 (Bulatov and Argon 1994a). This quadratic variation
in energy, shown as the dashed line in Fig. 4c, can predict the energy in the final state
without explicit calculation. Bulatov and Argon simply extrapolate from the initial
state, using the slope at that point, to the midpoint of the transition and then add the
fixed barrier height, �F. The energy difference between the traditional approach
and that of Bulatov and Argon is very small (Bulatov and Argon 1994a; Homer
et al. 2010). For more detailed explanation, including the requirement of detailed
balances, please refer to Homer et al. (2010).

The STZ dynamics framework uses the Bulatov and Argon model and defines
the activation energy barrier as

�G = �F − 1

2
τ · γo ·2o (3)

where the intrinsic barrier height for the reaction, �F, is biased by the local shear
stress τ, which is obtained by volume averaging the stress over the elements which
comprise each potential STZ. The activation volume, γ0 20, of the STZ is comprised
of the transformation strain increment associated with an STZ transformation, γ0,
and the volume of the STZ, 20. Argon developed a model for �F (Argon 1979),
given as

�F =
[

7− 5v

30 (1− v)
− 2 (1+ v)

9 (1− v)
β2 + 1

2γo
· τ̂

μ(T )

]
· μ(T ) · γ 2

o ·2o (4)

where the three terms in the brackets define the strain energy associated with
shearing of the STZ, the strain energy associated with a temporary dilatation of



56 Shear Transformation Zone Dynamics Modeling of Deformation . . . 1245

the STZ to allow the atoms to rearrange, and the frictional energy associated
with the free shearing of the atoms over one another. In the equation of �F, ν is
Poisson’s ratio, β is a ratio of shear to dilatation (usually taken as 1), τ̂ is the peak
interatomic shear resistance between atoms, and μ(T) is the temperature-dependent
shear modulus.

The use of Bulatov’s and Argon’s energy model allows the STZ dynamics model
to explore a large number of transitions without calculating the energy of the final
state, resulting in significant computational saving. However, a fixed activation
energy barrier would be hard to represent the complex non-equilibrium states in
metallic glasses that contain many-body interactions and strong disorder. Methods
such as the nudged-elastic band (NEB) (Boioli et al. 2017; Xu et al. 2017) or
the activation-relaxation technique (ART) (Fan et al. 2014; Malek and Mousseau
2000; Rodney and Schuh 2009) can be used in atomistic simulations to explore
the potential energy landscape and find the exact activation energy barrier from any
given equilibrium state. Widely distributed activation energies, depending largely on
the processing history, are usually obtained (Rodney and Schuh 2009; Rodney et al.
2011). These atomistic energy barrier search methods are computationally intensive
and do not readily translate into mesoscale models. The development of activation
energy functional based on the atomistic energy barriers, or their associated features,
would be beneficial to enrich the STZ dynamics model.

2.2.1 STZ Activation Rate in 2D
The expression for �G given in Eq. 3 defines the energy barrier for an STZ to
shear in one direction. Since we are interested in calculating the range of barriers
associated with shearing an STZ in any direction in space, the shear stress associated
with each unique shear direction must be identified and enumerated.

In 2D, the shear stress for each unique shear direction around a circle can be
evaluated using a Mohr’s circle construct, which gives the shear stress along any
direction of the circle as

τ = τmax sin (θ) (5)

where θ is the angle to the stress state with stress τ and which is measured relative
to the stress state with the highest principal stress. One can then integrate all shear
directions by integrating θ over the interval (0◦, 360◦). By combining Eqs. 1, 3, and
5, the integral STZ activation rate becomes

ṡ = vo

2π
· exp

(
−�F

kBT

)
·

ż 2π

0
exp

(
τmax · sin (θ) · γo ·2o

2kBT

)
dθ (6)

which evaluates to a modified Bessel function of the first kind, of order zero

ṡ = vo

2π
· exp

(
−�F

kBT

)
· Io

(
τmax · γo ·2o

2kBT

)
(7)
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This particular form of the STZ activation rate is convenient because the
analytical solution gives the rate for shearing an STZ in any direction in two
dimensions with only one function evaluation. One can then use this integral rate
in the kMC implementation to determine which STZs are likely to be activated.

2.2.2 STZ Activation Rate in 3D
The evaluation of the STZ activation rate in 3D is more complex than the 2D case
due to the larger set of possible shear planes and shear directions, as well as the need
to only evaluate unique combinations of shear planes and directions. In a generalized
form, the integral activation rate can be defined as

ṡ = vo · exp

(
−�F

kBT

)
·

ż

g

ż

∈

ż

G

exp

(
τ (σ, g) · γo ·2o

2kBT

)
dg (8)

where g is the orientation of any shear plane-shear direction combination belonging
to the set G of all unique combinations of shear planes and shear directions. The
integral is three dimensional because the specific orientation of a shear plane and
shear direction requires three parameters. The shear stress of that orientation g is
defined as τ (σ , g) to denote the fact that the triaxial stress state that exists in a
given STZ must be transformed by g to obtain the shear stress for that given shear
plane and shear direction. No analytical solution to the integral in Eq. 8 could be
found. The integral is numerically evaluated and tabulated for rapid recall during the
modeling process while maintaining an error less than 0.01%. Due to the complexity
of this calculation, the details are not discussed here but are available in (Homer and
Schuh 2010).

2.2.3 STZ Activation Rate with Excess Free Volume as a Local State
Variable

The initial implementation of the STZ dynamics framework used a fixed �F for
all STZ events. Potentially important effects related to the glass state, e.g., level
of glass relaxation and damage, have not been considered. To solve this limitation,
local state variables can be included as part of the energetics that describe STZ
activations. The purpose of the state variables is to (1) incorporate local activation
energy fluctuation that in broad agreement with the widely distributed activation
energies of metallic glass and (2) capture the evolution of the structure beyond the
redistribution of stress and strain when an STZ is activated. One could choose from
a range of state variables, such as atomic stress and strains, topological or chemical
order, free volume, and fictive temperature. In the current STZ dynamics framework,
a state variable of “free volume” has been implemented (Li et al. 2013, 2014).

The implementation of free volume is based on Argon’s original definition of the
STZ, in which he includes free volume as a state variable to capture the structural
evolution of the system. Particularly, in our adaptation of the STZ dynamics
framework, excess free volume, fv, is defined as a normalized quantity where fv = 0
corresponds to no excess free volume above the average polyhedral volume in a
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dense random hard sphere glass, while fv = 1 is an upper bound corresponding to a
state where an STZ can be activated without accumulating any extra free volume.

The excess free volume influences the energy barrier for STZ activation, and the
fixed barrier is modified as

�FSTZ (fv) = �Fshear +�Fv0 · gstz (fv) (9)

where �Fshear captures the strain energy associated with shear (not dependent upon
excess free volume) and �Fv0 captures the strain energy associated with dilatation
and friction of the atoms sliding over each other (dependent upon excess free
volume). Equation 9 essentially alters Eq. 4 by recognizing that the first term in
the bracket of Eq. 4 is only dependent on shear but not on the magnitude of excess
free volume, whereas the last two terms in the bracket of Eq. 4 are dependent upon
the magnitude of excess free volume. Furthermore, �FSTZ is smaller when greater
excess free volume exists since the STZ needs to dilate less and the friction will be
lowered. This change in the energy is captured by the function gstz, which lowers
the activation energy barrier as the excess free volume is increased.

Following a given STZ activation, the excess free volume within the activated
STZ is increased since it is believed that the atoms are not able to immediately
return to the original magnitude of excess free volume (Li et al. 2013).

In parallel to the activation of STZs, a competing process is introduced as the
diffusive rearrangement (and destruction) of excess free volume to capture the effect
of structural relaxation in metallic glasses. Following Argon’s original model, the
rate of diffusive rearrangement is given as

ṡD = (1− fv) vD exp

(
−�GD (fv)

kBT

)
(10)

where �GD(fv) is the activation energy barrier for diffusive rearrangement, which
is dependent upon the current magnitude of excess free volume. Higher excess free
volume has a lower energy barrier given that it is farther from the equilibrium state.
The quantity (1–fv) reflects a decrease of available atomic sites for free volume
diffusion as fv increases. The prefactor vD for the diffusive rearrangements is of the
order of the Debye frequency.

It is noteworthy that the implementation of excess free volume and most other
state variables at mesoscale remains phenomenological (Rodney et al. 2011).
Metallic glasses do not have structural defects found in crystalline materials, such as
dislocations and grain boundaries. The definitions of structural defects in disordered
materials are not unique and would require some phenomenological presumptions
and fitting parameters. A fundamental understanding is still lacking on the dynamics
of inherent glassy structure and its connection with the properties of glasses such as
aging or rejuvenation (Fan et al. 2017). It remains difficult to develop parameter-free
theories based on defects. Atomistic simulations and experimental measurements at
microscopic scale would advance the development of “defect”-level theories and
their implementation into the mesoscale model.
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2.3 Kinetic Monte Carlo Implementation

2.3.1 kMCwith STZ Activation
Upon calculation of the STZ activation rate, the kMC algorithm (Voter 2007) is used
to evolve a system consisting of an ensemble of STZs. In the system, each STZ
may experience different local temperature, stress state, and local state when state
variables are incorporated. The kMC algorithm proceeds according to the following
steps, which are repeated for every transition:

1. Calculate and form a list of activation rates, ṡi , for each of the i= 1, . . . , N STZs
in the ensemble, based on the current state of the system.

2. Calculate the normalized rate ηi for each STZ via dividing the individual
activation rate by the cumulative activation rate, ηi = ṡi/ṡT , for all STZs. The
sum over the normalized transition rates is equal to one, i.e.,

∑
i

ηi = 1.

3. Generate two random numbers, ξ1 and ξ2, uniformly distributed on the interval
(0, 1).

4. Update the elapsed system time with the residence time for the current configu-
ration calculated according to �t = − ln ξ1/ṡT .

5. Select a single STZ by first defining the cumulative fraction of STZ rates up

to and including the rate of STZ j by Hj =
j∑

i=1
ηi , and then use the random

number, ξ2, to find the STZ which satisfies Hk − 1 < ξ2 ≤ Hk. When listed in a
successive faction, ξ2 falls on the subinterval in the list of normalized STZ rates,
as illustrated in Fig. 5.

Fig. 5 Schematic of the
kinetic Monte Carlo STZ
selection procedure. (a) How
the random number ξ2 can be
used to select a single STZ
for activation from a list of
normalized individual STZ
rates, η1,η2, η3, . . . ,ηi. (b)
The determination of the
overlap, η′, between ξ2 and
ηj, which selects the angle of
shear of the STZ. (Figure
reproduced with permission
from Homer and Schuh
(2009))
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6. To select the angle at which to shear the STZ, we first define the value
η
′ = ξ2 − Hk − 1, which represents the magnitude by which ξ2 overlaps the

subinterval of the selected STZ, as shown in Fig. 5. The overlap, η′, is then used
to determine the integration limit and further the angle of shear in real space. The
detailed explanation of angle selection can be found in Homer and Schuh (2009)
for 2D and in Homer and Schuh (2010) for 3D.

7. Apply the appropriate transformation strain to the selected STZ.
8. Calculate the stress and strain distributions and state-variable evolution resulting

from the new configuration.

The kMC algorithm can be repeated for an arbitrary number of STZ operations
and is efficient because every iteration guarantees a transition. The stochastic nature
of the processes will produce a realistic outcome as long as the rate law of the
individual event is correct.

2.3.2 kMC Algorithmwith Competing Processes
The kMC algorithm can easily be adapted to incorporate another type of processes
competing with STZ activation to evolve the systems. For instance, after incorpo-
rating excess free volume as a state variable, a diffusive rearrangement process is
introduced in competition with STZ activation. Upon implementation, at a given
kMC step, the transition rates of diffusive rearrangement process will be included
in addition to STZ activation to make a list of activation rates in Steps 1 and 2
described in Sect. 2.3.1. In Step 5, either diffusive rearrangement or STZ activation
is selected, depending on the subinterval ξ2 falls on in the list of the normalized
transition rates. And thus, the two possible processes are exclusive; in each kMC
increment, only one of them will be selected. The addition of competing processes
is explained in more detail in (Li et al. 2013).

2.4 Summary of STZ Dynamics Framework

The STZ dynamics model simulates the stochastic activation of coarse-grained
STZs, their elastic interaction leading to organization and accumulation of STZs
forming shear bands at large time and length scales. The application of the modeling
framework requires several steps to be followed. First, a 2D or 3D finite element
mesh is defined to match the geometry of the model material being simulated.
Second, potential STZs are mapped onto the finite element mesh based on the
coarse-graining criteria discussed in Sect. 2.1. Third, a set of state variables can
be assigned on the finite element mesh, influencing the material model and kMC
algorithm, as discussed in Sect. 2.2.3. Fourth, implement the kMC algorithm and
repeat the following steps:

1. Determine which STZ should be selected for activation, and which shearing
angle should be applied, based on the current system state.
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Table 1 Material properties commonly employed by the STZ dynamics framework

Property/variable Value

Temperature-dependent shear modulus, μ(T) −0.004 [GPa K−1] × T + 37 [GPa]
Poisson’s ratio, ν 0.352
Debye temperature, θD 327 K
Fixed activation energy barrier, �F(T) 0.822 × 10−29 [J Pa−1] * μ(T)
STZ activation volume, 2o 2.0 nm3

STZ strain, γ o 0.1

2. Impose a characteristic transformation strain to the elements belonging to the
selected STZ according to the selected shearing angle.

3. Use finite element analysis to determine the response of the system to the
imposed transformation strains.

4. Update the current system state, including stress, strain, and any functional
material properties, to reflect the response to STZ activation.

These last four steps involving the kMC algorithm are repeated many times in
succession to determine the evolution of the system.

The key material properties and simulation variables used by many of the
published STZ dynamics papers are listed in Table 1. The attempt frequency νo is
taken as the Debye frequency, which can be calculated from the Debye temperature
θD. The variables μ(T), ν, and θD have values for the commonly studied Vitreloy 1
with composition Zr41.2Ti13.8Cu12.5Ni10Be22.5 and are obtained from Johnson and
Samwer (2005) and Wang et al. (2011b), respectively. Rather than using the complex
form of the fixed barrier height in Eq. 4, we reduce �F to a simple functional
form that is dependent upon the shear modulus. This functional form is also in line
with the cooperative shear model proposed by Johnson and Samwer (Johnson and
Samwer 2005). The STZ volume is in the range commonly reported in the literature
(Zink et al. 2006), and the STZ strain is equal to the commonly accepted value
(Schuh et al. 2007). This list of variables is intentionally kept short to simplify the
model and obtain an intended response.

3 Applications of STZ Dynamics Model

The STZ dynamics modeling framework provides an opportunity to study many
different aspects of metallic glass deformation. Since its original development, the
STZ dynamics framework has been adapted for different implementations, including
contact mechanics (Packard et al. 2010; Wang et al. 2015) and state-variable free
volume evolution (Li et al. 2013; Wang et al. 2015), and for metallic glass matrix
composites (Hardin and Homer 2015). In the following section, three applications
are chosen to demonstrate:
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1. The general behaviors of the STZ dynamics model and the corresponding
spatial and temporal correlation of STZ activity that underlies various modes
of deformation

2. The physics that control the low-temperature shear banding behavior and how
the strain rate influences the shear banding process

3. How nanoindentation can be studied using the STZ dynamics modeling frame-
work to gain insight into nanoscale strengthening in metallic glasses

3.1 General Behaviors and STZ Correlations

Metallic glasses exhibit a great variety of deformation behaviors, depending upon
conditions (Schuh et al. 2007). The STZ dynamics model is able to capture the
general MG behaviors, showing homogeneous deformation at high temperature and
localization deformation into the shear bands at low temperature and high stress.
A representative 2D model response is illustrated in Fig. 6a. The 3D model can
capture the general behaviors as well (for details, please refer to (Homer and Schuh
2010)).

The model response over a range of conditions is well represented by the
deformation map for simulation cells subjected to a range of applied stress at various
temperatures. An example of deformation map for the 2D model is displayed in Fig.
6b. The regions of homogeneous deformation and inhomogeneous deformation are
shaded. In addition, the steady-state strain rate is measured from each simulation,
and contours of constant strain rate are overlaid on the map for rates ranging
from 10−10 to 1 s−1. The shading inside each data point presents the strain rate
sensitivity. At high temperature, as the stress is increased, the strain rate sensitivity
decreases from unity toward zero, reflecting a transition from Newtonian flow
to non-Newtonian flow. These are the rheological behaviors that metallic glasses
exhibit at high temperature. At low temperature, when stress is low, the strain rates
are lower than 10−10 s−1, which we consider to be “elastic” deformation as the
inelastic behaviors would be too slow to be captured in experiments. When the stress
is high at low temperature, the strain rate sensitivity is extremely low; in other words,
the flow stress is nearly the same for various strain rates. This is a consequence
of the formation of shear bands, the details of which will be discussed in Sect.
3.2. The deformation map compares favorably with experimental deformation map,
in that it captures the basic features of metallic glass deformation (Schuh et al.
2007).

Underlying the diverse deformation behaviors is the different spatial and tempo-
ral correlation of STZ activity. Analysis of the 2D simulations of STZ correlations
provides significant insight, represented by the time-dependent radial distribution
functions (TRDFs), given as

g (r, j) = n (r, j)

q(r)
(11)
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Fig. 6 (a) The representative responses of the STZ dynamics model at high and low temperatures
in 2D. (b) Deformation map for Vitreloy 1 constructed from data obtained by 2D STZ dynamics
simulations. The STZ correlation behaviors represented by the TRDFs of STZ activation, where the
three behaviors and their corresponding conditions are (c) nearest-neighbor STZ activation (high
stress and low temperature), (d) independent STZ activation (high stress and high temperature),
and (e) self-STZ activation (low stress and any temperature). (Figures adapted with permission
from Homer et al. (2010); Homer and Schuh (2009))

where n(r, j) is constructed by binning the number of sequential activations as a
function of radius r and time step j and q(r) is a normalization quantity in each bin
with the size dr, defined as

q(r) =
{

1 if r ≤ 1
2πrdrρST Z

2πrdrρST Z if r > 1
2πrdrρST Z

(12)

where ρSTZ represents the overall density of STZ activations, i.e., the total number
of STZ activations per unit area. The TRDFs’ functions indicate the likelihood of
shearing an STZ at nearby position and after a certain number of steps relative to
a given STZ activation; magnitudes less than 1 are less likely to occur at a given
position and time than if it occurs randomly throughout the simulation cell, and
magnitudes greater than 1 are more likely to occur at a given position and time than
if it occurred randomly throughout the simulation cell.
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The TRDF reveals three basic types of behavior that manifest under different
combinations of applied stress and temperature as shown in Fig. 6c–e.

• Nearest-neighbor STZ activation, which is observed for simulations at low
temperature and high stress in Fig. 6c. This behavior is characterized by an
early, broad peak, spanning r = 1–5, centered between 2 and 3, indicating the
preference for nearest-neighbor activation. This correlated behavior is the source
for the shear localization that underlies the macroscopic shear bands observed in
experiments.

• Independent STZ activation, which occurs under conditions of high applied stress
and high temperatures in Fig. 6d. In this behavior, the TRDF shows no preference
for reactivation of STZs atop the first one, since g(r, j) ∼ 0 at r < 1. Furthermore,
the tendency for activation of neighboring STZs is lost; there is no longer a
discernible peak in the TRDF. There is no noticeable correlation between STZ
activations. As expected, the additional thermal energy cancels the effect of stress
concentration that might otherwise cause shear localization. Consequently, the
uncorrelated STZ activation leads to homogeneous deformation.

• Self-STZ activation, which dominates at low applied stress and any temperature.
As illustrated in Fig. 6e, the TRDF exhibits an extremely pronounced and sharp
peak at r = 0 and for early time (j < 4). The spatial extent of the peak is limited
to r ≤ 1, indicating a large preference for a second STZ activation atop the first.
The self-STZ activation is linked to the elastic regime. At low temperatures and
low stresses, there is an insufficient tendency for a single STZ to trigger nearest-
neighbor activations; thus, the most likely response of the system is for each STZ
activation to be instantaneously reversed.

The STZ dynamics model can not only capture the MG deformation behaviors
at the macroscopic level, matching the experimental behaviors, but also provide
insights at a microscopic level on how STZs interact with one another and how
their collective operation leads to the deformation on a macroscopic level. These
types of studies demonstrate the strength of a mesoscale model that successfully
coarse-grains a process and determine the transitions that control the evolution of
the system.

3.2 Shear Banding Process at Low Temperature

Among the diverse deformation modes exhibited by metallic glasses, the low-
temperature shear banding behavior is of the greatest interest. The limited ductility
due to the formation of a catastrophic shear band before failure is the pri-
mary issue that hinders the wide application of metallic glass as a structural
material (Greer et al. 2013; Schuh et al. 2007). The STZ dynamics model can
provide modeling details into the formation of the shear band, which remain
unresolved due to the difficulty in accessing the appropriate time and length scales
experimentally.
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One can study the shear localization process into one shear band in detail (Homer
2014). Snapshots of a 3D simulation cell subject to constant strain rate, uniaxial
tension test are shown in Fig. 7. Examination of the simulation results reveals five
different stages in the microscopic processes:

(I) Purely elastic, with no STZ activity
(II) STZ clustering, where correlated STZ activations lead to the formation of

clusters
(III) Growth following nucleation of a shear band, where all STZ activity transi-

tions from being distributed throughout the simulation cell to being concen-
trated in the shear band

(IV) Relaxation thickening, which is manifest by the continued thickening of the
shear band while the stress is still dropping even after it has propagated across
the simulation cell

(V) Flow thickening, which is indicated by the continued thickening of a single
shear band at a constant flow stress

Most of the plastic strain is accumulated during the sliding process, indicating
that nucleation and initial propagation of a shear band are very brief. Analysis
of a thermodynamic model also suggests a specific yield stress that is required to
nucleate a shear band, after which the shear band is allowed to grow unconstrained.

In addition to the individual shear band, the STZ dynamics model has been
adapted to investigate a collection of shear band events, which leads to the transition
in flow serration in the inhomogeneous deformation regime. An interesting defor-
mation phenomenon associated with metallic glass is that the shear band density
and degree of flow serration are highly strain rate dependent, though the yield
point of these materials is often independent of strain rate for rates up to 102 ∼
103 s−1 (Schuh et al. 2007, 2004). Low strain rates are characterized by strongly
serrated flow, meaning that strain accumulates in the material in temporal bursts
accompanied by relaxation stress drops resulting in a jagged stress-strain curve
(Dalla Torre et al. 2010; Song et al. 2008). Higher strain rates are characterized by
moderately serrated flow, and very high strain rates have little or no flow serration.
The mechanisms that underlie the transition are hypothesized to be the competition
between shear band nucleation and propagation (Schuh et al. 2004).

The STZ dynamics framework exhibits a yield point that is inherently rate
dependent. To correct for this and make the yield point rate independent, the STZ
dynamics model is extended to incorporate a strain-rate-dependent STZ volume and
activation energy, given by the following log-linear forms:

20 = −0.2log10ε̇ + 1.6
[
nm3

]

�F = −0.12log10ε̇ + 1.07945 [eV]
(13)

This parameterization of STZ volume and STZ energy barrier as a function of
strain rate is not unique but aims to capture physical mechanisms of STZs (Dubach
et al. 2009; Harris et al. 2016). The physical origin of the strain rate dependence
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Fig. 8 (a) Example simulations at various strain rates. Note the clear trend of increased shear
band density with strain rate, and the increased appearance of free STZs at higher strain rates. (b)
Stress-strain curves for the six simulations shown in (a). (c) Box plot of the average stress drop
magnitude in each simulation, arranged by strain rate. (d) The comparison of median values of the
normalized shear band nucleation rate (yellow), shear band propagation rate (blue), and shear band
sliding rate (green). (Figure reproduced with permission from Harris et al. (2016))

remains an open question, possibly contributing to the time-dependent structural
relaxation (Dubach et al. 2009) or a kinetic feature of the atomic motions associated
with an STZ.

A transition of shear band density and morphology is captured by the model
with increasing strain rate from 10−5 s−1 to 1 s−1. Figure 8a shows a group of
six simulations, one from each strain rate studied, with increasing strain rate from
left to right. Each simulation is at the final strain value of 1.9%. In general, low
strain rates result in fewer, more dominant shear bands, with very few free STZs
scattered outside the bands, while high strain rates feature larger numbers of less
dominant shear bands, with many free STZs randomly scattered outside the bands.
The corresponding stress-strain curves for these six simulations are displayed in
Fig. 8b, showing a tightly grouped yield strength around 1.72 GPa. While the yield
strengths are similar, low strain rates tend to relax more quickly after yield and have
a lower flow stress than high strain rates. Examination of the flow serration regarding
stress drop after yielding shows a negative correlation with strain rate (Fig. 8c). This
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is in line with the experimental observations: strongly serrated flow at low strain rate
and moderately serrated flow at higher strain rate.

Further study of shear band nucleation rates, propagation rates, and sliding rates
in each simulation shows a transition from propagation-dominated shear banding
at low strain rates to nucleation-dominated shear banding at high strain rates. A
summary of the different statistics and their strain rate dependence is illustrated
in Fig. 8d, where each rate has been scaled so they can be compared side by
side. The underlying cause for the flow transition is hypothesized to be a strain-
rate-dependent critical shear band nucleus size that increases with increasing strain
rate (Harris et al. 2016). This is best illustrated by examining the stages of shear
banding (ref. to Fig. 7). In the nucleation stage (II), STZs appear and begin to cluster
into shear band nuclei, which grow and proliferate in the absence of a dominant
shear band. If the strain rate is low, then a small critical nucleus size means that
the growth stage (III) is reached quickly, and one shear band rapidly propagates
across the sample and begins to dominate all plasticity in the sample. Then, in
the sliding stage (IV and V), additional plasticity is concentrated in bursts on that
dominant band. If instead the strain rate is high, then a large critical nucleus size
means that the growth stage (III) is delayed, or skipped entirely, and plasticity
continues to be accommodated by nucleation of additional shear band nuclei in
the nucleation stage (II). Then sliding stage (IV and V) occurs more gradually as
shear band nuclei begin to intersect each other, and plasticity remains relatively
diffuse.

In essence, the STZ dynamics model provides insight into the shear banding
process, contributing toward a better picture incorporating both kinetic and ther-
modynamic nucleation criteria of shear band formation. These types of studies
demonstrate the strength of mesoscale models in elucidating the micromechanics
behind the macroscopic process. Some of these features would be difficult to
observe by other techniques.

3.3 Nanoscale Strengthening Subjected to Cyclic
Nanoindentation

Metallic glasses exhibit a broad range of interesting phenomena due to the
inherently complex non-equilibrium states, one of which is that they can exhibit
nanoscale strengthening subjected to cyclic nanoindentation in the elastic regime.
This has been demonstrated in nanoindentation experiment, showing a statistical
increase in strength as a result of cyclic loading at a magnitude before the first
significant plastic event (e.g., shear band), signified by a pop-in on the load-
displacement curve (Packard et al. 2010, 2008). Interestingly, the cyclic strength-
ening can only occur if the cycling is of a sufficient magnitude, if the indenter
is actually cycled (holding a constant load of equal magnitude and time does not
lead to strengthening), and the strengthening saturates after a finite amount of
cycles.
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Fig. 9 Simulated nanoindentation results for various loading conditions. (a) Load-displacement
curves for the monotonic loading, one-cycle and five-cycle loading with the cyclic depth of 0.9 nm.
Vertical arrows indicate the points: (i) at the yield of the monotonic loading; (ii) at the reload after
the first cycle; (iii) at yield after the five-cycle loading; and (iv), (v), and (vi) at a post-yield load
of 0.1 μN for the three loading conditions. The origin of the one-cycle and five-cycle loading
curves are shifted for a clear view. The inset shows an enlarged view of load drops around (i). (b)
The snapshots display the spatial distribution of STZ strain and excess free volume fv at points
(i–vi). Black arrows denote the STZ strain accumulation at (i) and (iii). (Figure reproduced with
permission from Wang et al. (2015))

To elucidate the underlying mechanisms that cause the strengthening, the STZ
dynamics framework is adapted by including contact mechanics in the finite element
analysis solver (Packard et al. 2011, 2010). Furthermore, the model incorporates
excess free volume as a state variable, to study the interplay of glass deformation
and structural evolution under cyclic indentation tests at an experimentally relevant
time scale (Wang et al. 2015).

Results from simulations under various loading conditions are illustrated in
Fig. 9. For a clear view, the origins of the load-displacement curves with cyclic
loading are shifted to the right. In Fig. 9a, from left to right, the three curves
represent the monotonic loading, one-cycle and five-cycle loadings with the cyclic
depth of 0.9 nm, respectively. The yield point of each test is indicated by an
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arrow, identified by an applicable deviation from the elastic response. The yield
load increases with the number of cycles, and after five cycles, it is ∼ 10% higher
than that of the monotonic response, which is consistent with the nanoscale cyclic
strengthening observed experimentally. Additionally, the snapshots of the spatial
distributions of STZ strain and excess free volume at several critical moments
are displayed in Fig. 9b. The accumulation of excess free volume can be clearly
observed at (i) and (iii), indicating extensive STZ activity prior to the yield point.
The cyclic loading can lead to structural change reflected by the annihilation of
excess free volume. In a comparison of excess free volume distribution at (i) with
(iii), the cluster on the top left in (i) almost disappears after five cycles in (iii). This
decrease of excess free volume after cyclic loading gives rise to the mechanical
strengthening as a consequence of removal of mechanically weak sites.

The nanoindentation simulation has further been used to detect the cause of
nanoscale strengthening subject to cyclic loading. For instance, Fig. 10a displays the
cumulative distribution of the yield loads at ten different indentation locations for
monotonic and cyclic loadings after one, three, and five cycles, at the cyclic depths
of 0.9 nm. Notably, there exists a large distribution of yield loads for monotonic
loading, e.g., the minimum yield load is about half of the maximum one. Further,
as the number of cycles increases, the distribution curves become sharper and shift
to the right particularly at the lower tail, indicating that the “weak” samples are
strengthened during cyclic loading. Such effect could be contributed to the removal
of the residual stress (Wang et al. 2011a), structural relaxation (Pan et al. 2009),
and the arrest of the shear band (Yang et al. 2006). With excess free volume as a
state variable, the STZ dynamics simulations demonstrate that the strengthening is
directly related to the decrease of large excess free volume sites. When the loading
cycles increase from 0 (i.e., monotonic) to 5, the excess free volume is reduced
progressively, signified by a left shift of the distribution curves shown in Fig. 10b.

Fig. 10 (a) Cumulative distributions of the yield loads for monotonic loading, and various cyclic
loadings after one, three, and five cycles at the cyclic depth of 0.9 nm. (b) Cumulative distribution
curves of the excess free volume fv in a selected region for monotonic loading and various cyclic
loadings after one, three, and five cycles at the depth of 0.9 nm. (Figure adapted with permission
from Wang et al. (2015))
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The reduction of excess free volume has been ascribed to the observed cyclic
strengthening, since it results in a reduced rate of microplastic events by increasing
STZ activation energy. Additionally, the left shift becomes less pronounced after
one cycle and saturates after five cycles, which is consistent with the saturation of
the strengthening effect. Overall, the STZ dynamics simulations indicate that the
energetics and timescales of STZ activity are plausible as a mechanism to cause
structural evolution that is consistent with nanoscale strengthening.

The application of a mesoscale technique to investigate the nanomechanics of
experiments indicates the strong potential to elucidate phenomena that are difficult
to measure by experimental techniques.

4 Conclusions and Outlooks

The STZ dynamics model, combining a coarse-grained approach and the kMC
algorithm, provides a useful framework to investigate the deformation behaviors of
metallic glasses. On the one hand, the coarse-graining enables collections of atoms,
or STZs, to be tracked; on the other hand, the kMC algorithm allows the stochastic
activation of these STZs based on the energetics of the system. The combination of
these two features enables the simulation of deformation behavior at larger time and
length scales while preserving a microscopic view of the processes that dominate
deformation.

The STZ dynamics model has been used to investigate the deformation behaviors
of metallic glasses in a variety of conditions. The modeling technique captures
the overall deformation behaviors expected of metallic glasses and the underlying
spatial and temporal correlations of STZs that contribute to different deformation
modes. The mesoscale model provides details into the formation of individual shear
band and the collection of shear band events which leads to the transition of flow
serration in the inhomogeneous deformation regime. Insights into nanoindentation
experiments are possible through the contact mechanics adaptions. The interplay
of deformation and structural evolution is accessed via the incorporation of a free
volume state variable.

The STZ dynamics framework will continue to be useful in the investigation of
the mechanical behaviors of metallic glasses. Many challenges remain for further
development, which includes, among others:

• Activation energy functional: The development and implementation of activation
energy functionals that more accurately capture the nature and variability of
disordered glassy structure and the structural dynamics of metallic glasses.

• Failure mechanisms: The failure of metallic glasses involves the strain softening,
adiabatic heating, cavitation, and crack formation in shear bands. One could
incorporate heat and mass transfer constitutive relations that are capture con-
ditions leading up to failure. One could also include an additional stochastic
process for cavitation that precedes crack formation. Finally, once a crack is
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initiated, one could model the crack propagation using standard finite element
techniques.

• Adaptive coarse-graining: Since the scales of STZs and shear bands are different,
one could use adaptive meshing to optimize the simulations. Depending on the
nature of what is happening, one could coarsen or refine a mesh. For example,
after a shear band appears, one could deal with groups of STZs instead of
dealing with individual STZs. Mesh refinement/remeshing may be geometrically
challenging but can be handled in practice with the use of advanced adaptive
meshing algorithms available in finite element packages. Mesh coarsening could
also be handled but would require the knowledge of the dynamic evolution of
STZ activation volume.

• Large-scale simulations: While powerful, current implementations of the STZ
dynamics framework are limited in their ability to simulate large structure. A
parallel, distributed memory implementation of the STZ dynamics modeling
would significantly increase the size of systems that can be examined by the
technique. In particular, a different implementation might allow the use of high-
performance computing systems. Large-scale simulations would help answer
questions about shear banding phenomena beyond the initial stage of shear band
formation, which is essential to directly connect with metallic glass toughness
and failure at the macroscopic scale.

Acknowledgments LL was supported by the US Department of Energy, Office of Science, Basic
Energy Sciences (BES), by award no. DE-SC0016164. ERH was supported by the National Science
Foundation under award no. DMR-1507095.

References

Albaret T, Tanguy A, Boioli F, Rodney D (2016) Mapping between atomistic simulations and
Eshelby inclusions in the shear deformation of an amorphous silicon model. Phys Rev E
93:053002

Argon AS (1979) Plastic deformation in metallic glasses. Acta Metall 27:47–58
Baret J-C, Vandembroucq D, Roux S (2002) Extremal model for amorphous media plasticity. Phys

Rev Lett 89:195506
Boioli F, Albaret T, Rodney D (2017) Shear transformation distribution and activation in glasses at

the atomic scale. Phys Rev E 95:033005
Bulatov VV, Argon AS (1994a) A stochastic model for continuum elasto-plastic behavior. I.

Numerical approach and strain localization. Model Simul Mater Sci Eng 2:167
Bulatov VV, Argon AS (1994b) A stochastic model for continuum elasto-plastic behavior. II. A

study of the glass transition and structural relaxation. Model Simul Mater Sci Eng 2:185
Bulatov VV, Argon AS (1994c) A stochastic model for continuum elasto-plastic behavior. III.

Plasticity in ordered versus disordered solids. Model Simul Mater Sci Eng 2:203
Cheng YQ, Ma E (2011) Atomic-level structure and structure–property relationship in metallic

glasses. Prog Mater Sci 56:379–473
Dahmen KA, Ben-Zion Y, Uhl JT (2009) Micromechanical model for deformation in solids with

universal predictions for stress-strain curves and slip avalanches. Phys Rev Lett 102:175501
Dalla Torre FH, Klaumünzer D, Maaß R, Löffler JF (2010) Stick–slip behavior of serrated flow

during inhomogeneous deformation of bulk metallic glasses. Acta Mater 58:3742–3750



1262 L. Li and E. R. Homer

Ding J, Patinet S, Falk ML, Cheng Y, Ma E (2014) Soft spots and their structural signature in a
metallic glass. Proc Natl Acad Sci 111:14052–14056

Dubach A, Dalla Torre FH, Löffler JF (2009) Constitutive model for inhomogeneous flow in bulk
metallic glasses. Acta Mater 57:881–892

Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related
problems. Proc R Soc Lond A Math Phys Sci 241:376

Falk ML, Maloney CE (2010) Simulating the mechanical response of amorphous solids using
atomistic methods. Eur Phys J B 75:405–413

Fan Y, Iwashita T, Egami T (2014) How thermally activated deformation starts in metallic glass.
Nat Commun 5:5083

Fan Y, Iwashita T, Egami T (2017) Energy landscape-driven non-equilibrium evolution of inherent
structure in disordered material. Nat Commun 8:15417

Fusco C, Albaret T, Tanguy A (2010) Role of local order in the small-scale plasticity of model
amorphous materials. Phys Rev E 82:066116

Greer AL, Cheng YQ, Ma E (2013) Shear bands in metallic glasses. Mater Sci Eng 74:71–132
Hardin TJ, Homer ER (2015) Microstructural factors of strain delocalization in model metallic

glass matrix composites. Acta Mater 83:203–215
Harris MB, Watts LS, Homer ER (2016) Competition between shear band nucleation and

propagation across rate-dependent flow transitions in a model metallic glass. Acta Mater
111:273–282

Homer ER (2014) Examining the initial stages of shear localization in amorphous metals. Acta
Mater 63:44–53

Homer ER, Schuh CA (2009) Mesoscale modeling of amorphous metals by shear transformation
zone dynamics. Acta Mater 57:2823–2833

Homer ER, Schuh CA (2010) Three-dimensional shear transformation zone dynamics model for
amorphous metals. Model Simul Mater Sci Eng 18:065009

Homer ER, Rodney D, Schuh CA (2010) Kinetic Monte Carlo study of activated states and
correlated shear-transformation-zone activity during the deformation of an amorphous metal.
Phys Rev B 81:064204

Hufnagel TC, Schuh CA, Falk ML (2016) Deformation of metallic glasses: recent developments
in theory, simulations, and experiments. Acta Mater 109:375–393

Hwang J, Melgarejo ZH, Kalay YE, Kalay I, Kramer MJ, Stone DS, Voyles PM (2012)
Nanoscale structure and structural relaxation in Zr50Cu45Al5 Bulk Metallic Glass. Phys Rev
Lett 108:195505

Johnson WL, Samwer K (2005) A universal criterion for plastic yielding of metallic glasses with
a (T/Tg)2/3 temperature dependence. Phys Rev Lett 95:195501

Li L, Homer ER, Schuh CA (2013) Shear transformation zone dynamics model for metallic glasses
incorporating free volume as a state variable. Acta Mater 61:3347–3359

Li L, Wang N, Yan F (2014) Transient response in metallic glass deformation: a study based on
shear transformation zone dynamics simulations. Scr Mater 80:25–28

Liu YH et al (2011) Characterization of nanoscale mechanical heterogeneity in a metallic glass by
dynamic force microscopy. Phys Rev Lett 106:125504

Ma E, Ding J (2016) Tailoring structural inhomogeneities in metallic glasses to enable tensile
ductility at room temperature. Mater Today 19:568–579

Ma E, Zhang Z (2010) Reflections from the glass maze. Nat Mater 10:10
Malek R, Mousseau N (2000) Dynamics of Lennard-Jones clusters: a characterization of the

activation-relaxation technique. Phys Rev E 62:7723–7728
Maloney C, Lemaître A (2004) Universal breakdown of elasticity at the onset of material failure.

Phys Rev Lett 93:195501
Maloney CE, Lemaître A (2006) Amorphous systems in athermal, quasistatic shear. Phys Rev E

74:016118
Packard CE, Witmer LM, Schuh CA (2008) Hardening of a metallic glass during cyclic loading in

the elastic range. Appl Phys Lett 92:171911



56 Shear Transformation Zone Dynamics Modeling of Deformation . . . 1263

Packard CE, Homer ER, Al-Aqeeli N, Schuh CA (2010) Cyclic hardening of metallic glasses
under Hertzian contacts: Experiments and STZ dynamics simulations. Philos Mag 90:
1373–1390

Packard CE, Franke O, Homer ER, Schuh CA (2011) Nanoscale strength distribution in amorphous
versus crystalline metals. J Mater Res 25:2251–2263

Pan D, Yokoyama Y, Fujita T, Liu YH, Kohara S, Inoue A, Chen MW (2009) Correlation between
structural relaxation and shear transformation zone volume of a bulk metallic glass. Appl Phys
Lett 95:141909

Picard G, Ajdari A, Bocquet L, Lequeux F (2002) Simple model for heterogeneous flows of yield
stress fluids. Phys Rev E 66:051501

Rodney D, Schuh C (2009) Distribution of thermally activated plastic events in a flowing glass.
Phys Rev Lett 102:235503

Rodney D, Tanguy A, Vandembroucq D (2011) Modeling the mechanics of amorphous solids at
different length scale and time scale. Model Simul Mater Sci Eng 19:083001

Schuh CA, Lund AC, Nieh TG (2004) New regime of homogeneous flow in the deformation map of
metallic glasses: elevated temperature nanoindentation experiments and mechanistic modeling.
Acta Mater 52:5879–5891

Schuh CA, Hufnagel TC, Ramamurty U (2007) Mechanical behavior of amorphous alloys. Acta
Mater 55:4067–4109

Song SX, Bei H, Wadsworth J, Nieh TG (2008) Flow serration in a Zr-based bulk metallic glass in
compression at low strain rates. Intermetallics 16:813–818
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Abstract

Martensitic transformation is, on the one hand, a pervasive deformation mech-
anism in both structural and functional materials, and on the other hand, a
first-order phase transition that is diffusionless. The transformation from one
crystal structure to another takes place by a volumetric change and a large
shear. As a result, modeling of the martensitic transformation process requires
an integration of thermodynamic, kinetic, and mechanical considerations. More-
over, the transformation process is intrinsically stochastic. Not only is there
a competition between nucleation and propagation modes, but there are also
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competitions among different ways of transformation and different regions for
transformation. In this chapter, an integrated thermodynamic and Kinetic Monte
Carlo (KMC) treatment of martensitic transformation is presented. Modeling
martensitic transformation as a unit process, the free energy function for potential
transformation of each unit is determined. Stress and strain distributions are
predicted by the Finite Element method after each unit transformation and are
incorporated in the free energy function. A KMC algorithm that incorporates the
free energy function in the rate formula is invoked to select a unit to transform
and advance the time. The modeling formulation is described in detail, so is
the simulation algorithm. Examples of transformation dynamics modeled by this
method will be shown.

1 Introduction

Martensitic transformation is a solid-state, diffusionless, and displacive phase
change that typically involves conversion between different crystal structures
(Otsuka et al. 1979; Wechsler et al. 1953). It is common that the austenite phase
(which is sometimes also referred to as the parent phase) has a higher symmetry
(e.g., the most common symmetry for austenite is cubic, such as B2, D03, and L21
crystal structures), while the martensitic phase has a lower symmetry. Reversible
martensitic transformations are commonly observed in Shape Memory Alloys
(SMAs) such as Ti-Ni, Cu-Al-Ni, Ni-Mn-Ga, Co-Ni-Al, and Fe-Pd (Lagoudas
2008). SMAs can respond promptly and repeatedly to thermal, mechanical, and
combined stimuli and switch between two different shapes under thermal or
mechanical cycling (Karaca et al. 2007; Otsuka and Wayman 1998; Tadaki et al.
1988). Many ceramics also undergo martensitic transformation, such as tetragonal
to monoclinic in zirconia, cubic to tetragonal in lead titanate, and cubic to tetragonal
in cristobalite (Kriven 1995). Martensitic transformation is also an important
deformation mechanism in many structural metals, such as steels (Tao et al. 2007)
and titanium alloys (Jaworski and Ankem 2005). This chapter mainly discusses
modeling of reversible martensitic phase transformations in shape memory alloys
and ceramics, which can be adapted for irreversible transformation.

Computational models for reversible martensitic transformations are relatively
rare. There are several molecular dynamics studies (Guda Vishnu and Strachan
2012; Kastner et al. 2011; Tatar and Kazanc 2012; Zhong et al. 2012), but the
length (e.g., 10-30 nm) and time (e.g., nanoseconds) scales accessed are not
directly comparable to those (e.g., hundreds of nanometers (Ozdemir et al. 2012)
to micrometers in size and milliseconds (Juan et al. 2009) to minutes in time) in
most experiments. There are also a number of finite element (Gall et al. 2000;
Gall and Sehitoglu 1999; Lagoudas et al. 2012; Manchiraju and Anderson 2010;
Manchiraju et al. 2011; Patoor et al. 1995; Wood and Clyne 2006) and phase field
(Jin et al. 2001; Levitas et al. 2009, 2013; Mamivand et al. 2013, 2014) models,
which can incorporate larger scales but generally tend to lack connections between
simulated scales and those intrinsic to transformation. Moreover, the inherent
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variability in martensite nucleation and growth and dependence of such variability
on microstructure have rarely been taken into consideration in these prior models.

Kinetic Monte Carlo (KMC) is a stochastic modeling method widely used to
model microstructure evolution. It has also been used to simulate deformation
in amorphous solids which is treated as a stochastic sequence of local inelastic
distortions in a lattice model (Bulatov and Argon 1994a, b, c) or a continuum
model (Homer et al. 2010; Homer and Schuh 2009). Compared to shear-dominant
deformation in amorphous solids mentioned above, martensitic transformation is
subject to crystallographic and thermodynamic constraints. In this chapter, a KMC
model that treats martensitic transformations as a sequence of stochastic unit
processes (Chen and Schuh 2015) is described.

2 Model Overview

The stochastic physics-based modeling framework for reversible martensitic trans-
formation (Chen and Schuh 2015) integrates thermodynamic description of trans-
formation, kinetic Monte Carlo (KMC) treatment of phase evolution, and Finite
Element Method (FEM) modeling of stress and strain distribution. A thermo-
dynamic energy landscape description of austenitic and martensitic states which
governs the transformations is examined in Sect. 3. Section 4 describes how the
onset and progression of the transformations are controlled by KMC using a
transition-state rate equation that incorporates local thermomechanical state. KMC
modeling includes a physical timescale for transformation, enabling the exploration
of stochastic transformation dynamics. In Sect. 5, FEM modeling procedures are
provided. FEM is utilized to apply the displacive transformations and predict
mechanical state everywhere in the material, which allows the local state to
affect the transformation sequence. Section 6 discusses some considerations for
computational implementation of the model and shows some examples.

The model offers the following unique capabilities: (i) capturing transformation
stochasticity, (ii) predicting the evolution in spatial distributions of phases and
stress/strain, (iii) predicting transformation process based on energetics incor-
porating local thermomechanical states, (iv) using a physical time scale and a
microstructure length scale, and (v) predicting two-way (i.e., reversible) transfor-
mations between austenite and martensite phases.

3 Thermodynamic Energy Landscape for Martensitic
Transformation

In the following, subscripts of “A” and “M” are used to denote properties of
austenite and martensite, respectively. The Gibbs free energies GA and GM for
austenite and martensite per unit volume as a function of temperature T are
illustrated in Fig. 1a. When there is no external stress, GA = Gch

A = HA − T SA
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Fig. 1 (a) The Gibbs free energy for the austenite phase, GA, (in red) and the free energy for
the martensite phase, GM , (in blue) as a function of the temperature T. T0 denotes the equilibrium
temperature at which GA =GM . GM decreases with increasing resolved shear stress. (b) The stress-
temperature phase diagram for martensite and austenite. The insets show strain excursions as a
result of thermal cycling or mechanical cycling. (c) The energy landscape between the austenitic
state and the transformed martensitic state for three different conditions which have been marked in
both (a) and (b). Condition 1 corresponds to a high temperature and zero-stress condition; loading
from this condition leads to Condition 2 while cooling from this condition leads to Condition 3

(red line) and GM = Gch
M = HM − T SM (bold blue line), where Gch

A and
Gch

M are the chemical free energies for austenite and martensite, respectively.
The slopes of these lines are the entropy SA and SM , respectively; SA > SM and
accordingly Gch

A decreases with T more rapidly than Gch
M . Let T0 denote the

equilibrium temperature at which Gch
A,0 = Gch

M,0 and the transformation enthalpy
�H0 = HM, 0 − HA, 0 = T0(SM, 0 − SA, 0) = T0�S0, where �H0 < 0 and the
transformation entropy �S0 = SM, 0 − SA, 0 < 0. If the change in heat capacity
is assumed insignificant, �H ≈ �H0 and �S ≈ �S0. The difference in chemical
free energy at temperature T can be expressed as

�Gch = Gch
M −Gch

A = −�S0 (T − T0) (1)

when T < T0, �Gch < 0 and martensite is the thermodynamically preferred phase
(e.g., state 3 marked on the blue curve in Fig. 1a); when T > T0, �Gch > 0 and
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austenite is the stable phase (e.g., state 1 marked on the red curve in Fig. 1a). Upon
application of an external stress that leads to a resolved shear stress τ on the habit
plane (in the elastic regime before yielding), we estimate GA ≈ Gch

A and GM ≈
Gch

M − τγ0 because the elastic strain is insignificant compared to the transformation
simple shear strain γ 0. GM decreases with increasing stress, shown by the thinner
blue line in Fig. 1a.

�G = GM −GA = �Gch − τγ0 = −�S0 (T − T0)− τγ0 (2)

It is now possible to have �G < 0 and accordingly a stable martensitic state even
when T > T0 so long as τ is sufficiently high. For example, at the same temperature,
the stable phase changes from austenite (marked as state 1 in Fig. 1a) to martensite
(marked as state 2 in Fig. 1a) under finite τ . A third term, PεV , where P is the
pressure, may be introduced into Eq. (2) for transformations involving a significant
volumetric strain εV .

The effect of temperature and stress is further depicted in the stress-temperature
diagram in Fig. 1b, where the three states marked in Fig. 1a are also highlighted.
At low temperatures and high stresses, martensite is more stable, while at high
temperatures and low stresses austenite is the preferred phase. Conversions between
the two phases can be achieved by many ways of thermomechanical excursions,
such as thermal cycling under no stress, thermal cycling at a finite stress, and isother-
mal mechanical cycling. When there is no stress, transformation from austenite to
martensite under cooling is characterized by a martensitic start temperature Ms and
a martensitic finish temperature Mf , and reverse transformation from martensite to
austenite upon heating starts at the austenite start temperature As and completes at
the austenite finish temperature Af . At a constant stress, phase conversion induced
by thermal cycling is accompanied by a recoverable strain as illustrated in the
bottom inset in Fig. 1b, leading to the so-called two-way shape memory effect.
Similarly, mechanical cycling at a constant temperature leads to a phenomenon
called superelasticity, which describes the recoverability of stress-induced strain
(see the top inset in Fig. 1b) due to the reversibility of the phase conversion.

Martensitic transformation involves energy penalties, rendering the free energy
of the transformed state, GMM , different from that of the martensite phase, GM .
The difference between them corresponds to the recoverable part of the energy
penalty, which is defined as Eise, whose subscripts “ise” stand for contributions from
interfacial energy, surface energy, and elastic strain energies.

Eise = γiAi +�γsf Asf + Eel (3)

where γ i is the austenite/martensite interface energy per unit area and Ai is the
change in interfacial area density. For an austenite domain surrounded by nA and nM

austenite and martensite nearest neighbors, respectively, Ai = (nA − nM)Ab, where
Ab is the area density of each domain boundary. �γsf = γM

sf − γ A
sf is the difference

in surface energy per unit area, and multiplies the specific surface area Asf; this term
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pertains to the intersection of the phases with free surfaces and is usually considered
negligibly small (Chen and Schuh 2011). Eel is the increase in elastic strain energy
density. Let’s define

GMM = GM + Eise ≈ Gch
M − τγ0 + Eise (4)

as the free energy of a transformed martensitic state. During transformation from
the initial austenitic state with free energy GA to the transformed state with free
energy GMM , there is energy dissipation mainly resulting from the frictional work
Efr, which is irreversible and is positive in both transformation directions (Bonnot
et al. 2008; Ortín and Planes 1988; Wollants et al. 1993).

Figure 1c shows the energy landscape for transformation between the initial and
the transformed states, with an arbitrary reaction coordinate along the x-axis (which
may be viewed as transformation strain). It is constructed by imposing a kinetic
barrier with height equal to Efr above the average of GA and GMM (as demonstrated
for curve #3 in Fig. 1c). With the energy maxima corresponding to the activated
state being (GMM +GA)/2+ Efr, and further utilizing Eqs. (2) and (4), the activation
energy barriers for transformations between the two states can be written as

{
EA→MM =

[
1
2 (GMM +GA)+ Ef r

]
−GA = − 1

2�S0 (T − T0)− 1
2 τγ0 + 1

2Eise + Ef r

EMM→A =
[

1
2 (GMM +GA)+ Ef r

]
−GMM = 1

2�S0 (T − T0)+ 1
2 τγ0 − 1

2Eise + Ef r

(5)

where Efr may be treated as an intrinsic frictional resistance to transformation (i.e.,
a constant), allowing EA→ MM and EMM → A to be determined at a given time.
EA→MM

f r = EMM→A
f r = Ef r is assumed for simplicity. The energy barriers for

forward transformation (A → MM) and reverse transformation (MM → A) have
opposite trends with respect to changes in the temperature T and the stress τ .

The three curves in Fig. 1c are for the same three conditions highlighted in
Fig. 1a, b. Consider condition 1 (high temperature and zero stress) as the initial
condition (red curve). GA is much lower than GMM , and the stable state is the
austenitic state. With decreasing temperature (from condition 1 to condition 3), both
GA and GMM increase, but GA increases more rapidly than GMM . With sufficient
cooling, GA becomes higher than GMM , and the transformed state becomes the
preferred state. During cooling, EA→ MM decreases and EMM → A increases as
�S0 < 0 in Eq. (5). When EA→MM becomes sufficiently low, thermal activation may
overcome the barrier enabling transformation from the initial austenitic state to the
martensitic state. On the other hand, upon loading from condition 1 to condition 2,
GA remains nearly the same as the temperature is not changed while GMM decreases
rapidly and becomes lower than GA when the applied load is sufficiently high. A
high resolved shear stress τ also leads to a decrease in the energy barrier EA→ MM so
that transformation to the martensitic state is not only thermodynamically preferred
but also kinetically possible. On both curve #2 and curve #3 in Fig. 1c, the energy
barrier for reverse transformation, EMM → A, is very high, suggesting that reverse
transformation is possible but with a very low probability.
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In Eqs. (2), (4), and (5), the resolved shear stress τ depends on the specific habit
plane and shear direction and can be different for different martensite variants. For
ith and jth variants, Eq. (2) leads to GMj

−GMi
= (

τi − τj
)
γ0. The energy barrier

for MMi → MMj conversion may be determined in a similar manner to Eq. (5):

EMMi→MMj
= 1

2

(
τi − τj

)
γ0 + E′f r (6)

where E′f r is the frictional work associated with inter-variant conversion. By
the same token, extension to polycrystalline systems requires identification of
transformation shear planes and directions in each grain.

4 KMCModeling of Transformation Progression

KMC is an iterative modeling method. The modeling steps in each simulation
step/iteration are provided in the flow chart in Fig. 2.

In each modeling iteration, the activation rates (in 1/s) for transformations
between austenite and the ith martensite variant state are obtained by multiplying
an attempt frequency ν0 with the activation probability.

⎧
⎨

⎩
ωA→MMi

= ν0 exp
(
−EA→MMi

20

kT

)

ωMMi→A = ν0 exp
(
−EMMi→A20

kT

) (7)

where k is Boltzmann’s constant and 20 can be considered a fundamental domain
volume for a “unit” of transformation. The activation rate for inter-variant state
conversion can be calculated similarly.

ωMMi→MMj
= ν0 exp

(
−EMMi→MMj

20

kT

)
(8)

The cumulative activation rate ω is the summation of individual activation rates
of the NA austenite domains and NM martensite domains in the model system
containing NA + NM domains.

ω =
∑NA

n=1

(∑NV

i=1
ωn

A→MMi

)
+
∑NM

m=1

(
ωm

MMi→A +
∑NV−1

j=1
ωm

MMi→MMj

)

(9)

where NV is the number of martensite variants. An austenite domain may transform
to any of the NV martensite variants, while a given martensite variant may transform
to either austenite or any of the other NV -1 variants. Forward and reverse
transformations are treated “equally,” i.e., they are both permitted at any time.
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Fig. 2 Flow chart of the modeling algorithm

A uniform random number ξ1 ∈ (0 1] is used to determine the internal or
residence time.

�tint = − lnξ1

ω
(10)

In the conventional KMC algorithm, an event is carried out in each simulation
iteration and the timescale is advanced by �tint. However, �tint in some iterations
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may become extremely large. Therefore a second timescale, �text, is introduced
and is referred to as the external time scale. �text is a simulation parameter. The
magnitude of �tint relative to �text determines whether a transformation event will
occur or not in the present simulation step.

⎧
⎨

⎩

if �tint > �text : t = t +�text and no event occurs

if �tint ≤ �text : t = t +�tint and an event occurs
(11)

When �tint > �text, no event occurs and the timescale is advanced by �text. This
allows one to update the boundary conditions in a more continuous manner and also
capture the critical transformation stresses or temperatures. When �tint ≤ �text,
an event occurs and the one to be carried out is selected using the activation rate
array as is normally done in KMC. The activation rates for all possible events are
calculated using Eqs. (7-8) and are strung together to a total length ω, with each
event occupying a distance on the string equal to their individual activation rate. A
second uniform random number ξ2 ∈ (0 1] is generated, and the vector from the
origin to a distance ξ2ω along the string points at the event to be executed. After
the transformation event, time is increased by �tint and boundary conditions are
updated.

5 FEMModeling of Unit Transformation and Stress
Distribution

5.1 Boundary Conditions

To simulate stress-induced or thermally-induced transformation, the applied stress
or the temperature should change with time. They could be updated in each
simulation step using the KMC time t determined in Eq. (11). For example, an
applied uniaxial stress σ a(t) is

σa(t) = σmax − |σ̇0t − σmax | (0 ≤ t ≤ 2σmax/σ̇0) (12)

where σ̇0 is a stress ramping rate and σmax is the maximum stress on the triangular
loading curve common in experiments. Both loading and unloading segments are
considered in Eq. (12). Under thermal cycling, the temperature T first decreases at
a ramping rate Ṫ0 from an initial high temperature Ti to a low temperature Te and
then returns to Ti. The temperature is varied in each simulation step according to

T (t) = Te +
∣∣Ṫ0t + (Te − Ti)

∣∣ (0 ≤ t ≤ 2 (Ti − Te) /Ṫ0
)
. (13)

During thermal cycling, σ a can be either kept at zero, in which case thermally
induced transformations are studied, or held at a constant value, which can lead to
stress-assisted two-way shape memory effect. The transformation latent heat could
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be assumed immediately exchanged with the environment when appropriate, and in
this case the sample has a uniform temperature T everywhere.

It is desirable that the boundary conditions be kept simple. For example, when a
sample is subject to a uniaxial load, the stress at its top surface could be updated
in each simulation step according to Eq. (12) while keeping its bottom surface
constrained in the loading direction and its side surfaces free without any constraint.

5.2 Application of a Unit Transformation

Displacive martensitic transformation in a domain is implemented as a mandatory,
stress-free distortion. The system subsequently relaxes by partitioning and balancing
stresses with the surrounding region. This is analogous to the determination of
the back stress in the classical Eshelby problem demonstrated in Fig. 3a. In
the absence of an external stress, an elliptical region is subject to a mandatory
positive shear and then the system is allowed to equilibrate and relax. Positive
shear stress develops ahead of the vertices of the ellipse as these regions deform
in order to accommodate the shear in the elliptical region, while negative shear
stress (in blue) develops inside the sheared/transformed region due to the resistance
to shear in the surrounding region. Figure 3b shows the shear stress distribution
after a hexagonal region transforms when the far-field resolved shear stress is
about 270 MPa. Despite the positive far-field shear stress, the shear stress in the
transformed martensite region is negative (in blue), leading to a decrease in the
activation energy barrier for reverse transformation, EMM → A (Eq. (5)). On the
other hand, the shear stress immediately outside the transformed region is positive
and is very high, resulting in a reduced energy barrier for forward transformation,

Fig. 3 (a) Shear stress (in MPa) distribution after the system relaxes from a stress-free mandatory
shear in an elliptical region along the major axis of the ellipse in the absence of an external stress.
(b) Shear stress (in MPa) distribution after the system relaxes from transformation in a hexagonal
region at a finite external stress
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EA→ MM (Eq. (5)). In the subsequent simulation step, there will be competition
between reverse transformation of this martensite region and forward martensitic
transformation in the surrounding regions.

After each transformation event, the redistributed stresses are then used to
calculate new activation rates and the time increment in KMC. Each simulation
step ends with an updated boundary condition, and in the case of �tint ≤ �text, a
new phase configuration as well.

6 Example

6.1 Martensitic Transformation in Cu-Al-Ni SMAs

In this section, we will demonstrate the model using Cu-Al-Ni SMA as a model
material. In this material, austenite has a D03 crystal structure (see Fig. 4a) and
is often denoted as β1. The deformation gradient matrices for lattice dilation and
distortion associated with martensitic transformation from β1 to β1

′
are provided

in Eqs. (14) and (15), respectively, both of which are expressed for the martensite
coordinate system shown in blue in Fig. 4a.

F 1 =
⎡

⎣
1.062 0 0

0 1.0232 0
0 0 0.918

⎤

⎦ (14)

F 2 =
⎡

⎣
1 0 0

0.1154 1 0
0 0 1

⎤

⎦ (15)

From Eq. (14) the volumetric strain (i.e., F 1
11 ·F 1

22 ·F 1
33−1 = −0.25%) associated

with the transformation is determined to be negligibly small. On the other hand,
Eq. (15) leads to a large simple shear with a magnitude of 11.54%. Therefore, for
simplification, transformation is implemented as a simple shear γ 0 = 0.1154 on
{110} planes and along <110> directions in austenite. In Eq. (7), the transformation
unit volume 20 is taken as 6.5 nm3 and the attempt frequency ν0 is taken as
2 × 1010 s−1. In other materials where martensitic transformation also involves
large dilation and volumetric strain, the full strain tensor should be taken into
consideration.

A challenge with modeling martensitic transformation lies in the lack of informa-
tion on mechanical properties of the martensite phase. The example demonstrated
in this section assumes that elastic properties for austenite and martensite are the
same and that the model material is a two-dimensional single-crystalline solid
under a plane strain assumption. The austenite phase is an elastic solid with cubic
(nonisotropic) symmetry and therefore has three independent elastic constants: C11
= 143.1 GPa, C12 = 124.3 GPa, and C44 = 94.1 GPa (Sedlák et al. 2005), which lead
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Fig. 4 (a) The D03 crystal structure for the Cu-Al-Ni alloy. ◦ denote Al atoms, • at the edge center
and body center (1/2, 1/2, 1/2) are mostly Cu atoms and some are Al atoms, while • in the center
in each sub-unit are mostly Cu atoms and some are Ni atoms. The deformation gradient matrices
in Eqs. (14-15) are written for the i’1, i’2, i’3 martensite coordinate system. (b) Model setup in the
example. The two-dimensional sample is fixed at the bottom left corner, constrained vertically at
the bottom, and subjected to a uniaxial strain εa(t) at the top surface. Its side surfaces are free, while
its top and bottom surfaces are constrained as a plane. Each transformation domain is a hexagon
whose lines of symmetry (dashed lines) correspond to the transformation system {110} < 110>.
Each domain is meshed with 24 elements, among which the six in the center (the crosses are their
integration points) are used to calculate the average resolved shear stress for this domain

to Young’s modulus E = 27.5 GPa, the Poisson’s ratio ν = 0.4648, and the shear
modulus G = 94.1 GPa. Plasticity is not considered as martensitic transformation
usually occurs at stresses much lower than the yield stress. However, local yielding
is possible, and this effect could be an interesting direction for future extension of
the model.

6.2 Computational Considerations

Partition of the simulation cell into nonoverlapping domains is desirable as each
location in the material is associated with a phase identity at any given time.
Each domain may be further meshed with one or more elements in the FEM
implementation. The progression of the transformation is simulated as successive
transformation in different domains, and the material volume involved in each
transformation event could be allowed to vary from event to event depending
on the spatial stress distribution. In this section, the demonstrations are from a
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simple hexagonal tessellation of the material; each hexagonal domain is a phase
transformation unit, and only a single domain is involved in each transformation
event. The model setup is illustrated in Fig. 4b. Each domain is further meshed
with 24 triangular plane strain, 6-node quadratic elements, and stresses at the
three integration points inside each element are solved. Due to the noncircular
domain geometry, stress concentration develops near domain edges and corners
(see Fig. 3b). To exclude such (unphysical) stress concentration spots, only the six
elements in the center of each domain are used in the calculation of the average
resolved shear stress in a domain. With this approach, mechanical interactions
across phase boundaries can be captured by using a sufficiently small domain size; in
principle, the domain size should be much smaller than the sample and characteristic
scale of the evolving microstructure in order to accurately capture the pattern in
phase and stress evolution.

To avoid severe local distortion near or at the corners of the specimen, a top layer
and a bottom layer are prohibited from transforming. Domains in these layers are
set up as austenite initially, and their transformation rates (ωA→ MM) are assigned as
zero regardless of their local stress state. They never transform as a result, providing
both elastic accommodation and constraint for the transforming material in between
and promoting side surfaces as nucleation sites.

The stored elastic energy in the sample, Eel, in Eq. (3) is incorporated indirectly.
For example, consider a potential forward transformation in a domain that would
result in high stresses in its surroundings and therefore a very high Eel and a
high Eise. Instead of raising the energy barrier EA→ MM in Eq. (5) to hinder the
transformation, the model may allow the domain to transform. But it will likely
revert to austenite immediately because the driving force for reverse transformation
will be high and EMM → A will be low due to the resulting high local stress τ (τ is
incorporated in the evaluation of transformation energy barriers as shown in Eq. (5)).
This approach is computationally much more efficient than determining Eel for each
domain, which requires carrying out every possible transformation and calculating
the resulting change in the strain energy of the sample. Therefore, Eise for each
domain is reduced to γ iAi, the change in austenite/martensite interface energy. An
alternative approach is to evaluate Eel analytically using some kind of volumetric
average of Eshelby predictions for multiple scenarios based on neighboring phase
identities. This approach is in principal similar as the approach above but with a
modified value of γ i.

It is typical for the KMC model to get trapped in the “superbasin” composed
of many frequent events with much lower energy barriers for a large number of
iterations before the system experiences a rare process and escapes out of the
“superbasin” (Chatterjee and Voter 2010). In the present model, frequent and rapid
phase flipping may occur during transformation in either direction when there is
some sort of metastable phase configuration. It is reasonable to impose a limit NAL
on the number of attempts allowed at each stress level. A transformation event
occurs only if �tint ≤ �text and Nattempt ≤ NAL; otherwise t will be increased by
�text to increase the driving force for transformation in one direction in subsequent
steps.
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6.3 Superelasticity (Mechanically-Induced Transformation)

In this section, modeling results for transformation under a constant strain rate
are presented for the simplified case of a single martensite variant. This boundary
condition is used frequently in experimental studies that explore rate effects in
SMAs (Otsuka et al. 1976; Ueland et al. 2012; Van Humbeeck and Delaey 1981;
Yin et al. 2013) and also allows one to capture possible stress relaxation behavior.
Under a constant strain rate, the transformation should occur gradually over a period
of time because transformation strain increases with martensite fraction.

Snapshots of the phase evolution and the corresponding shear stress distribution
are shown in Fig. 5 for both the forward transformation (top two rows in Fig. 5) and
the reverse transformation (bottom two rows in Fig. 5). Martensitic transformation
starts in the center of the sample. Under a constant strain rate, formation of long
plates that span across the sample leads to a higher overall transformation strain
and more stress relaxation compared to shorter plates at corner regions that are
constrained by the buffer layers at the top and the bottom of the sample, which
may play a similar role as unfavorably oriented grains that do not transform within
the range of the applied load. The corner regions partially transformed at higher
strains (e.g., ε = 0.04-0.052) and retained some austenite until very high applied
strains. In other regions, new martensite plates formed at relatively low strains and
grew and impinged at higher strains. Formation of a martensite plate usually leads
to extensive stress relaxation. During reverse transformation, the corner regions
reverted to austenite first, and formation of austenite plates results in stress spikes.

The corresponding superelastic stress-strain curve obtained is presented in
Fig. 6a. Frequent stress fluctuations are seen during both forward and reverse
transformations in Fig. 6a showing sudden stress drops (rises) during forward
(reverse) transformation, each followed by a period of elastic loading (unloading)
with a slope parallel to that of the initial elastic loading curve. Numerous small
serrations are seen in Fig. 6b, where martensite fraction fM is plotted as a
function of strain ε. Overall, martensite fraction fM still seems linearly related to
strain ε (e.g., linear fitting of the forward transformation data in Fig. 6b yields
fM = 20.61(ε − 0.0268)), but a linear relationship is no longer accurate because
fM increases in a discontinuous manner. fM actually increases or decreases by a
small percentage at a constant ε and then pauses over a range of ε before increasing
or decreasing at another constant ε. The insets in Fig. 6b show how the overall
external stress σ changes with fM . During forward transformation, the increase in
fM always results in a decrease in σ , which subsequently increases at a constant
fM . Therefore, with increasing applied strain, strain increment is first achieved by
elastic deformation of the sample, leading to an increase in σ and a reduction in
the free energy of martensitic state, GMM . Subsequently, martensitic transformation
occurs in some regions of the sample and the resulting transformation strain
fulfills the strain increment requirement, leading to relaxation of the elastic stress
developed prior to transformation. Stress relaxation has indeed been observed in
tensile testing of small SMA microwires under a constant slow strain rate (Ueland
et al. 2012). During reverse transformation, the decrease in fM always leads to
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Fig. 5 Phase configurations (austenite in green and martensite in beige) and the corresponding
resolved shear stress distributions during forward transformations (top two rows of figures) and
reverse transformations (bottom two rows of figures) in a mechanical cycle under a constant strain
rate. The strain ε and stress σ (in MPa) values in the figure titles are uniaxial strain and stress values
for the sample. fM is the volume fraction of martensite

an increase in σ , which subsequently decreases at a constant fM . Strain reduction
is first realized by elastic unloading, which in turn raises the driving force for
reverse transformation. Eventually reverse transformation takes place, meeting the
strain reduction requirement by the recovered transformation strain. The stress rises
rapidly and then the next iteration begins.
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Fig. 6 (a) Superelastic
stress-strain curve showing
complete strain recovery after
unloading. Transformations
are accompanied by stress
fluctuations. (c) Martensite
fraction fM as a function of
strain. The insets plot fM as a
function of stress; forward
and reverse transformations
lead to load drops and
increases, respectively

6.4 Thermally-Induced Transformation

The modeling framework presented in Sects. 2, 3, 4, and 5 can also be applied to
simulate thermally-induced transformation, either in the absence of an external load
or at a constant load. The example in Fig. 7 below shows simulation results for
forward and reverse transformation in a thermal cycle when there is no applied
load. The material properties are the same as specified above in Sect. 6.1. For
simplicity, only two martensite variants with opposite transformation shear strains
are permitted. The equilibrium temperature T0 is set to 500 K. The temperature T is
set to 800 K initially and then is gradually decreased to 200 K before it is increased
back to 800 K.

The fractions of two martensite variants, f 1
M and f 2

M , are plotted as a function
of the temperature T in Fig. 7a. During cooling, f 1

M and f 2
M remain zero until T

decreases to about 300 K when f 1
M and f 2

M increase simultaneously to slightly above
0.4. The phase configurations during cooling are shown in Fig. 7b–e. It can be seen
in these figures that plates of the two martensite variants nucleate simultaneously
and grow in alternating patterns. As the two variants have opposite transformation
strains, the alternating pattern in Fig. 7b–e enables self-accommodation among
the variants and minimizes the macroscopic strain in the sample. Both variants
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Fig. 7 (a) The fractions of
martensite variant 1 and
variant 2, f 1

M and f 2
M , as a

function of temperature under
no external stress. T0 is the
equilibrium temperature
which is set as 500 K. (b–e)
Phase configurations during
cooling, showing
transformation from austenite
(in green) to martensite (the
two variants are plotted in red
and beige)

transform back to austenite upon heating and the reverse transformation is complete
at about 750 K, yielding a temperature hysteresis. Transformation temperatures and
thermal hysteresis are normally measured experimentally by Differential Scanning
Calorimetry (DSC), which however cannot predict evolution in phase configuration.
The modeling framework presented here offers a complementary method for
studying thermally-induced martensitic transformation.

7 Conclusions

This chapter presents a mesoscale kinetic Monte Carlo (KMC) model framework for
modeling the dynamics of reversible martensitic transformation in shape memory
alloys and ceramics. The model may also be adapted to study martensitic transfor-
mation in structural materials in which case incorporation of plastic deformation
mechanisms is essential. The modeling framework integrates KMC with thermo-
dynamic description of transformation and Finite Element (FEM) prediction of
mechanical states. The thermodynamic energetics governing martensite transfor-
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mations induced by temperature changes or an applied stress are examined, and
the energy landscapes for transformation states are developed. Thermodynamics
is related to kinetics through a rate equation that is commonly used to describe
thermally-activated phenomena. KMC provides FEM a new phase distribution as
well as a new timescale (and thus new boundary conditions). The thermomechanical
distribution determined from FEM in turn leads to changes in the energy landscape
for the transformation states.

Computational implementation of the model is realized and presented. Marten-
sitic transformation occurs by a mandatory displacement, which is mainly a shear,
and is modeled as a unit process that takes place in one domain at a time. After
each unit transformation event, the boundary conditions are updated according
to the new timescale and the new stress states in the sample are calculated by
FEM. The new phase configuration and stress distributions are used to determine
the activation rate for each domain based on a transition state approximation for
the energy landscape of the transformation states. The KMC algorithm is then
used to select the next domain to transform and determine the time increment.
This iterative simulation method therefore performs virtual in-situ testing under
mechanical, thermal, and combined stimuli and predicts simultaneous evolution
in phase and thermal-mechanical states in the sample using physical time and
length scales comparable to those involved in experiments. It in particular cap-
tures inherent transformation stochasticity during both nucleation and growth
stages.

The capability of the model is demonstrated by using it to simulate mechanically-
induced reversible transformation (superelasticity) and thermally-induced trans-
formation (in which case multiple variants are introduced) in plane strain two-
dimensional specimens. Although not demonstrated, the model can also easily
simulate mechanically-induced transformation followed by reverse transformation
during heating (one-way shape memory effect) as well as transformations induced
by thermal cycling at a constant stress (two-way shape memory effect). The model
predicts phase and stress evolution during the entire incubation, nucleation, and
growth process of the new phase. It also predicts (rather than enforces) both
forward and reverse transformations with a stress or temperature hysteresis and with
complete recovery. The predicted critical transformation stresses or temperatures
are related to fundamental thermodynamic properties of materials. Stress relaxation
and spikes are observed during transformations under a constant applied strain
rate.

This modeling approach could significantly augment mesoscale computational
capabilities that connect microstructures to macroscopic thermomechanical proper-
ties. The model is capable of capturing dynamic mechanical interactions between
microstructure and stochastic transformation quantitatively and addressing issues
of transformation kinematics in the presence of defects. An important direction
for future research is to elucidate various size effects and defect effects (e.g.,
grain boundary effects) on martensitic transformation utilizing the KMC modeling
method described in this chapter.
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Abstract

Object kinetic Monte Carlo (OKMC) approaches allow one to explicitly coarse
grain atomic processes to simulate the evolution with time of the system/mi-
crostructure. This class of methods is quite versatile and can be used to model
different processes where the motion of atoms in a given microstructure and
their interaction with sinks and traps of the microstructure lead to changes such
as phase transition or modification. In this chapter, the method is presented as
applied to radiation damage modeling. Along with a description of the technique,
we discuss the different pathways possible to couple OKMC with smaller- as
well as larger-scale methods and conclude with a brief enumeration of what we
believe are the issues for future development.

Abbreviations

AKMC Atomic kinetic Monte Carlo
BKL Bortz, Kalos, and Lebowitz
DFT Density functional theory
EKMC Event kinetic Monte Carlo
F/M Ferritic/martensitic
FIA Foreign interstitial atoms
FP Frenkel pair
GPU Graphics processing unit
KMC Kinetic Monte Carlo
MD Molecular dynamics
MFRT Mean field rate theory
NEB Nudged elastic band
ODS Oxide dispersion strengthened
OKMC Object kinetic Monte Carlo
PBC Periodic boundary conditions
PD Point defects
RPV Reactor pressure vessel
RTA Residence time algorithm
SFT Stacking fault tetrahedras
SIA Self-interstitial atom
ST Self-trapping
TM Trap mutation

1 Introduction

Kinetic Monte Carlo (KMC) is a family of methods based on Markov/stochastic
processes intended to simulate the time evolution of some processes occurring in
nature, typically processes that occur with a given known rate, used as inputs to the
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algorithm (Voter 2007). This method is typically applied at two scales: the atomistic
scale, where the processes that can take place are the ones atoms undergo during the
evolution of a microstructure, and the mesoscopic scales, where the microstructure
is coarse grained into objects that can evolve on a lattice or not. It is now clearly
established that high-energy particles such as the ones produced in a nuclear reaction
interact with matter and lead to nuclear reactions, displacement of atoms, as well
as ionization and excitation of atoms (Was 2017). In the case of metallic alloys,
the displacement of atoms is the main aging mechanism in irradiated components
(pressure vessel, internals, or cladding for fission reactors; divertor or blanket for
fusion reactors) as the displacements of atoms lead to the formation of point defects
(PD), the evolution of which with time will induce changes in the microstructure.
The interaction between radiation-induced point defects and solute atoms leads to
solute atoms and point defect fluxes which drive the microstructure evolution with
time and induce changes in the mechanical properties. Microstructure modeling
techniques dedicated to radiation damage studies thus focus on the evolution of
these point defects. In fact, these techniques, as applied currently, aim at modeling
the microstructure evolution under irradiation by looking at the point defect and
point defect cluster evolution and distributions. At the mesoscopic scale, the species
under consideration are defects whose atomic-level features are disregarded, except
insofar as they influence the mechanisms, whereby the defects migrate or react
between themselves and with sinks (Was 2017). The two techniques the most used
are mean field rate theory (MFRT) (Ghoniem) and object kinetic Monte Carlo
(OKMC), which is the subject of this chapter. OKMC methods sit at the center of
the microstructure multiscale modeling picture as they have links with lower-scale
methods (e.g., atomistic ones) and upper-scale ones (phase field, MFRT). Indeed,
OKMC coarse grain lower-scale atomic simulations and can be coarse grained into
MFRT or plasticity/mechanics modeling.

The chapter is structured as follows: we will start by briefly describing what is
meant by microstructure evolution under irradiation and the modeling techniques
used for that purpose. We will then present the KMC method as it is applied to
objects and describe the ingredients of the models. In the fourth section, we will
discuss different approaches to model alloys as well as ways to couple the OKMC
to lower- and higher-scale techniques. Finally, in the fifth section, we conclude by
providing what we believe are future directions and perspectives of the technique.
Some of the existing OKMC codes are briefly presented in the Appendix A.

2 Radiation Damage Evolution

2.1 Physical Processes Involved in Radiation Damage

Radiation damage is caused by high-energy particles, neutrons, or ions, penetrating
materials and interacting with their nuclei or their electrons. As mentioned briefly in
the introduction, the interaction can lead to nuclear reactions (transmutations) and
thus the formation of new elements, ionization and excitation of atoms, as well as
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atomic displacements. The first two outcomes (atom transmutation and excitation)
need to be modeled at the scale of nuclei or electrons and will thus not be discussed
here. The third one (atomic displacements) results in the creation of a large amount
of point defects, vacancies, and self-interstitial atoms (SIAs), isolated or in clusters
within displacement cascades. This is referred to as the primary damage. These point
defects are created in overconcentration and flow into the materials and interact
with each other as well as solute atoms and defects of the microstructure such
as dislocations, grain boundaries, or surfaces. The primary damage evolution into
voids and dislocation loops is the so-called matrix damage. Besides the matrix
damage, the point defect oversaturation has other consequences. First, it can lead to
a radiation-accelerated diffusion making the system return faster to its equilibrium
state. Second, because of the tendency of point defects to eliminate on sinks (e.g.,
dislocations, grain boundaries, surfaces), the concentration of PD near the sinks
is lower than the average concentration which results in concentration gradients
inducing a flow of PD.

As the microstructural changes induced by the atomic displacements result
from the evolution of the point defects that have been created, methods aiming at
modeling the microstructure evolution focus on point defect motions rather than
atoms. Different methods are available which are briefly described in the next
section.

2.2 Simulation Techniques of IrradiatedMicrostructures

The formation of the primary damage, referred to as the “source term” in mesoscale
methods such as KMC or MFRT, occurs too quickly (∼10–20 ps), and the
displacement cascade sizes are generally too small, to be observed experimentally,
but molecular dynamics (MD) simulations have proven to be a powerful tool to
model displacement cascades and investigate the creation and morphology of the
defects created, their mutual interaction, and, to some extent, i.e., at very short
times, also their evolution (Becquart et al. 2018). However, because of the short
timespan covered by MD simulations (10–20 ps for volumes large enough to
contain a few displacement cascades, i.e., of the order of tens of nanometers),
other computational tools must be used to extend the study up to the formation
of experimentally resolvable damage features. One natural way of speeding up
the calculations while keeping the information at the atomistic scale is the atomic
kinetic Monte Carlo approach (AKMC) (Becquart and Soisson 2018; Becquart and
Domain 2010). The AKMC method is based on the residence time algorithm (RTA),
also known as the BKL method (Bortz et al. 1975) (for Bortz, Kalos, and Lebowitz)
developed by Young and Elcock to model the evolution of vacancies in binary
ordered alloys (Young and Elcock 1966). This algorithm is used to evolve a set of
atoms and point defects in a simulation box by point defect jumps i, occurring with
thermally activated frequencies. AKMC simulations (see recent reviews in Becquart
and Domain 2010; Soisson et al. 2010; Becquart and Wirth 2012) have shown to
be especially useful to model systems of a few million atoms on the appropriate
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timescale, because they deal with the jumps of atoms or point defects, not the lattice
vibrations. AKMC is thus a powerful technique to study the microstructural and
microchemical evolution of alloys controlled by diffusion processes in all kinds
of conditions (e.g., thermal aging, irradiation) (Becquart and Soisson 2018). This
approach naturally takes into account the correlations between successive jumps,
inherent to the process of diffusion (Allnatt and Lidiard 2003). A consequence is
that a very large number of jumps have to be performed to model the motion of
a point defect cluster as shown, for instance, in Athènes and Bulatov (2014) in
the FeCu system. To overcome this problem, mesoscale approaches of the KMC
method, such as the OKMC, have been developed. OKMC is defined as a coarse-
grained method because atoms are not explicitly treated in contrast with atomistic
KMC. It is also based on the residence time algorithm applied this time to objects:
the microstructure is described in terms of objects which are the intrinsic defects
(vacancies and self-interstitials) or impurities and their clusters which are located
at known (and traced) positions in a simulation volume. The events are all the
possible actions that these objects can perform and the reactions that they may
undergo, such as migration (in most cases – isotropic diffusion – a random walk with
small jumps corresponding to nearest neighbor distance in the crystal), dissociation
(emission of a smaller defect from a bigger one), clustering of like defects or of
defects and impurities, and annihilation between opposite defects (self-interstitials
and vacancies). The probability for a migration event is given by the appropriate
jump frequency.

Very similar coarse-grained KMC models are the event KMC (EKMC) (Lanore
1974) which do not treat individual migration jumps explicitly and where the
evolution of the system is driven by reactions (events) between objects.

Finally note that mean field rate theory (MFRT) is another mesoscopic approach
largely used to simulate the evolution of microstructure under irradiation. MFRT
models do not deal with the explicit position of defects but with the averaged
concentration of defects in a small volume at a given position in the material. They
take into account the presence of gradients of concentration and hence, in some
sense, deal with the spatial dependence of the evolving defect distribution.

Figure 1 presents the different methods currently used to model material
microstructure evolution under irradiation. Each of the phenomena involved in the
microstructure or plasticity evolution has a characteristic time and length scale
that range from nanometers and picoseconds for the displacement cascades up to
micrometers, for the grain sizes and hours to years for the experiment duration
or the lifetime of components. Consequently one needs to choose the appropriate
modeling technique that is the most efficient or at least capable of simulating one of
these phenomena.

2.3 Microstructure Modeling by Kinetic Monte Carlo Techniques

As stated in the introduction, KMC techniques aim at modeling the behavior of point
defect and point defect clusters which, for the most common cases, migrate in the
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Fig. 1 Different methods, physical phenomena, timescales, and length scales required to model
the evolution of microstructures under radiation damage conditions

material via the jumps of point defects. We now present the method as it is applied
in AKMC, i.e., when all the atoms are explicitly taken into account, for the sake of
simplicity. For a thermally activated process such as point defect diffusion, the jump
frequency is given by:

' = νe
− Ea

kBT (1)

where ν denotes the attempt frequency and T the temperature and Ea corresponds to
the activation energy of the jump or the migration energy obtained as the difference
between the energies of the system at the saddle point and in its initial configuration.
Such a description is derived from the theory of thermally activated processes and
is justified when the thermal fluctuations are smaller than the activation energies:
kB & Ea.

According to harmonic transition state theory (Vineyard 1957), the attempt
frequency can be expressed as:

ν =
∏3N−3

j=1 νj
∏3N−4

j=1 ν∗j
(2)

In this expression νj and νj
* are the normal frequencies for vibrations at the local

minimum and saddle states, respectively, and N is the number of atoms. Typical
values for the migration of isolated point defects in metals are around 1012–1013 s−1

(∼ Debye frequency).
Knowing the frequencies of all possible defect jumps in the system, the algorithm

proceeds by choosing one of them according to its probability and evaluate the
time necessary for the jump to occur using the residence time algorithm (RTA)
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that will be described in the next section. Originally applied to the migration of
vacancies in binary alloys, the AKMC method can be applied to any point defects
as well as foreign interstitial atoms (FIA) such as C, N, He, and H (that do not need
point defects to diffuse) and substitutional solute atoms. The microstructure evolves
via elementary mechanisms, i.e., point defect jumps or solute jumps in the case of
interstitial solutes. Vacancies and self-interstitials can jump from one lattice site to
another lattice site (typically first nearest neighbor sites); solute interstitials lie on
an interstitial sublattice and jump on this sublattice. Typically one atom is assumed
to move, and the rates of possible transitions are determined from the local environ-
ment around the moving atom. During the course of the simulation, the probabilities
of all the possible jumps are calculated, and one migrating event is chosen, at each
time step, by extracting a random number, according to its probability.

3 OKMCMethod and Principles

The OKMC method proceeds as the AKMC, except that instead of making atoms
and point defects evolve individually, clusters of point defects evolve as a whole
as one single object. Figure 2 compares the two approaches, whereas the main
differences between OKMC and EKMC are represented in Figs. 3 and 4.

Diffusion can be treated as a random walk on a lattice or off lattice in OKMC
and as a direct reaction in EKMC (Fig. 3). Consequently, in OKMC, reactions are
treated when objects are below a specific interaction distance, whereas all possible
reactions are considered and computed in EKMC (Fig. 4). Schematically, in OKMC,
all events are elementary events as exposed below, whereas in EKMC they are coarse
grained in reaction events. One consequence is that 1D or anisotropic diffusion is
easy to implement in OKMC.

3.1 General Principles

The objects treated in the OKMC model have defined center-of-mass positions in
space, which can correspond to lattice sites or not, and (when they are supposed to)
they migrate. They can be point defects and point defect clusters, interacting with
solute atoms to form mixed complexes, traps that can be introduced to simulate

Fig. 2 Simple comparison between AKMC and OKMC. The arrows are the possible moves of
each square which represents, for instance, a single vacancy for AKMC and the same 6 vacancy
clusters for OKMC that can also undergo an emission event
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Fig. 3 Simple comparison
between OKMC and EKMC
for the diffusion of the small
object (the large object is
considered as immobile). In
OKMC, the reaction can
occur after a random walk of
the small object, i.e., as a
series of elementary
reactions. The only event is
the reaction of the small
object with the big one in
EKMC. (See Appendix A for
more details on the EKMC)

Fig. 4 Simple comparison between OKMC and EKMC considering only the small objects as
mobile (monovacancy in yellow and mono-SIA in blue). For OKMC the arrows represent the
different jumps and for EKMC the different reactions. (See Appendix A for more details on the
EKMC)

the effect of interstitial impurities and other objects of the microstructure such as
dislocations and grain boundaries (Fig. 5). Depending on the level of detail required,
the objects can have different shapes. For instance, they can be 3D spheres for
nanovoids, 2D platelets for SIA loops, and stacking fault tetrahedra (SFT) for the
defects found in face-centered cubic metals (Domain et al. 2004; Nandipati et al.
2015).

Each object and microstructure feature has a size, and an interaction volume
(Fig. 6), equivalent to a distance between objects that takes into account the
shape of the objects. In most cases the elastic interactions are taken into account
implicitly, and effective interaction volumes/sizes are considered that are slightly
larger than the object’s real size. Depending on the code, two objects interact
when their reaction volume overlap or when they touch each other. The interaction
volume is directly related to the object sink strength (Jansson et al. 2013) which
characterizes the interaction of migrating species with mobile or immobile features
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Fig. 5 OKMC representation of a typical microstructure under irradiation

t
d

R

Interaction between two spherical objects Interaction between a loop and a spherical object

Fig. 6 Object interaction for different shapes. Typical values for single point defects in transition
metals are R ∼ 5 Å, and the core radius of a dislocation is about 5 Å

of the microstructure (Sect. 4.5.2). Note that elastic effects can be taken into account
more specifically, as discussed in Sect. 5.

During the simulation, events can occur, whose probabilities of occurrence are
expressed in terms of frequencies (in s−1). From the set of all possible events i
of each object n among the N objects in the system, each with a known rate of
occurrence, 'n,i, a total rate, R, is computed:

R =
∑

n,i

'n,i (3)

A Monte Carlo step is initiated by selecting an event from all the events by
drawing a random number between 0 and R. The value of this number determines
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which event is selected. If more than one object can undergo the selected event, one
is chosen at random. Once the event and the corresponding object are selected, the
appropriate actions are performed to make that event occur, and the time is updated,
by adding a time increment proportional to the inverse of R.

The associated time-step length δt and average time-step length Δt is given by:

δt = − ln r

R
�t = 1

R
(4)

where r is a random number in [0,1].

3.2 Mechanisms and Events Occurring During Radiation Damage

The most common events that need to be considered in an OKMC model of
irradiation are:

• Migration, i.e., jump to a neighboring site. The defects execute random diffusion
jumps (in one, two, or three dimensions depending on the nature of the defect)
with a probability proportional to their diffusivity, which has to be known for all
mobile species.

• Recombination with objects of opposite type (i.e., SIA with vacancies) or aggre-
gation with other objects (e.g., point defect clusters and complexes including
solute atoms and FIAs).

• Dissociation/emission (when the object size is larger than 2) of one element
(e.g., a single vacancy or single SIA) from the object.

• Trapping of objects at traps to model in a simple way microstructure features
or heterogeneities such as impurities or specific solutes (e.g., carbon in steels) or
precipitates (e.g., carbides in steels).

• Annihilation at free surfaces, grain boundaries, dislocations, or other sinks.
• Trap mutation, a common event observed in metals filled with noble gas (most

often helium atoms (alpha particles) in fusion and fission conditions for structural
materials and Xe or Ar in uranium oxide fuel pellets). Helium atoms are strongly
repelled by metallic atoms and as consequence they have a propensity to form
clusters. When too many He atoms are aggregated together, the system needs
to relieve the strain created by the interstitial elements by the ejection of one or
more matrix atoms leading to the formation of one or more Frenkel pairs (FP),
i.e., vacancies and SIAs. As He binds very strongly to vacancies, the He cluster
will be trapped by the vacancy it created and will not be capable of moving. This
is thus a self-trapping (ST) event as the binding energy of the helium cluster with
the vacancy is usually quite large. If one or more vacancies are already associated
with the He cluster, the same mechanism can take place which is usually referred
to as trap mutation (TM) or loop punching, if more than one SIA is created (when
many SIAs are emitted at the same time, they are usually bound together also and
form a dislocation loop). These FP creations make He clusters and He vacancy
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Fig. 7 (a) Possible reactions at a vacancy cluster containing n vacancies. (b and c) Events (reaction
and emission) at a complex object consisting of n vacancies, m foreign interstitial atoms (FIA), or
p solute atoms (S): nV•mFIA or nV•pS

(nHe.mv) clusters be nonsaturable traps for themselves unlike what is observed
for hydrogen atoms, for instance. Self-trapping and trap mutation consist thus in
the simultaneous creation of a vacancy and a SIA; the latter remains bound to the
He clusters (De Backer et al. 2015).

Figure 7 summarizes the main different recombination and dissociation events an
object can undergo for (a) a vacancy cluster (nV), (b) a complex vacancy-FIA cluster
(nV.mFIA), and (c) a complex-solute cluster (nV.pS). This schematic graph shows
the increase in complexity when a FIA or a solute is associated to point defects and
point defect clusters and the necessity to define a much larger number of events (and
parameterize them).

The simulation of irradiation can be treated as the occurrence of external events,
which then depend upon the kind of irradiation that is simulated: to simulate electron
irradiation Frenkel pairs are introduced at random with the proper rate; for a neutron
irradiation, displacement cascade debris are introduced also at random with the
proper rate. For an ion implantation simulation, one has to take into account the
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implantation profile, and the cascade debris are thus introduced according to the
profile. All external events are characterized by rates Pm (for event m), correspond-
ing to the production rate (Pm = (number of external events/cm3/s) × (simulation
box volume)). Since each of these external events occurs at a known rate, their rates
are added to the computation of the total rate.

Jump, dissociation/emission, detrapping and trap mutation are considered as
thermally activated processes, characterized by an activation energy Ea,n,i and an
attempt frequency νn,i. Their rates, for object n and event i are obtained as:

'n,i = νn,i exp

{
−Ea,n,i

kT

}
(5)

For the object jump, the activation energy is its migration energy, Em. For the
emission from either a trap or an object, the most typical method is to take the
activation energy Ea as the sum of the binding energy, Eb, of the escaping entity
(e.g., that of a single vacancy or SIA from a cluster) and its migration energy
Em; Ea = Em + Eb. Note also that in a real diffusion event, on a real lattice, the
particle emitted has to perform several jumps to escape the source object. This
can be accounted for by placing the escaping object at a distance such that, at
the following step, both recombination with the initial object and diffusion away
are possible; thus 'n,i is only an approximation of the escaping probability. If one
wants to compare directly with rate equation models, the emitted particle is placed
at a random position in the simulation box (Stoller et al. 2008).

Trapping and annihilation of defects with opposite defects or at sinks, as well
as aggregation into larger clusters, take place spontaneously whenever the involved
objects come to a mutual distance smaller than a reaction distance, which is equal to
the sum of the capture radii associated to each of the two objects. The most typical
sinks are free surfaces, grain boundaries, and dislocation lines (segments). As a
small part of matter can be simulated using OKMC, specific shapes can be used
for the simulation box in order to reproduce experimental samples as illustrated in
Fig. 8.

Dissociation and emission events have an activation energy often taken to be
equal to the sum of the migration energy Em plus the binding energy between
the emitted defect and a cluster of the size that remains after emission, Eb. The
corresponding rate is:

'd = ν0 exp

(
−Em + Eb

kBT

)
(6)

Regarding the reaction between defects, it is generally assumed that they are
diffusion limited. That is, the reaction occurs as soon as the two objects are within a
pre-defined capture radius, but no energy barrier is associated with the reaction.
These events occur therefore only on the basis of geometrical considerations
(overlap of reaction volumes) and do not participate in defining the progressing
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Fig. 8 Specific sample shapes that can be simulated; periodic boundary conditions are applied on
blue faces and free surfaces on red faces

of time. Events of this type also include the absorption of objects by sinks (e.g.,
impurities, dislocations, grain boundaries).

Grain boundaries, which act as sink for point defects, can be simply assimilated
as free surfaces, as in Valles et al. (2017) where all the defects that reach the four
lateral surfaces of the simulation box were removed out of the box or introduced
using the average grain size method, inspired by Heinisch’s work (Heinisch and
Singh 2002) sometimes referred to as the finite PBC according to Soneda et al.
(2003): when PBC are applied, whenever a mobile object has moved a distance
larger than the average grain size, it is eliminated.

Dislocations can be introduced as segment(s) whose length is established
according to the dislocation density to be simulated. In simple models, they act as
linear sinks for point defects with a given recombination radius. Another approach
could consist in considering dislocations as traps rather than sinks for specific
objects, but this requires to then characterize the interaction mechanisms and the
associated energies. Dislocation loops can be simulated by objects of toroidal shape,
characterized by their major and minor radii and their orientation (Jansson et al.
2013).

The physical inputs of the model are thus the migration and attempt frequencies
of all the objects that can form, their interaction volume, and the dissociation
energies of all the possible objects that can be emitted.

4 Applications

4.1 Treatment of Impurities and Foreign Interstitial Atoms

One difficult issue in microstructure modeling is the comparison with experiments
as real materials are far from being perfect and even the purest materials contain
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impurities. One typical example is the long debate that existed regarding the
migration energy of the vacancy in pure Fe, where two values were proposed all
based on careful experiments. It was later shown that the highest value was the
vacancy migration energy for Fe containing a slight amount of C acting as traps
for the vacancy. Indeed, in a very pure Fe, Vehanen et al. (1982) found a vacancy
migration energy of 0.55 eV, whereas Schaefer et al., in Fe containing a slight
amount of impurities measured a value of 1.28 eV (Schaefer et al. 1977). One way to
account for these impurities is to use effective parameters. For instance, one can use
1.3 eV as the migration energy of the vacancy in “real Fe” as real Fe will contain C as
shown in an OKMC simulation of a vacancy diffusing in a pure Fe matrix (Becquart
et al. 2010) containing immobile traps representative of C atoms. However, such
an approach is quite limited as the concentration of the impurities is not taken into
account. A more realistic method consists thus in introducing traps with appropriate
binding energies and capture radius (Jansson and Malerba 2013, 2014). Note that
this approach is limited to “slow” FIAs such as C and N in Fe or W at low enough
temperatures. At temperatures where C and N can easily move or for fast-diffusing
interstitials such as He and H in Fe and W, one needs to consider them as another
object type that can move and form clusters, associated or not with point defects.
In the case of rigid lattice approaches, the interstitial species will move on specific
sublattices. The trap concentration can vary according to the aging or the dose, as
done, for example, in Castin et al. (2018) to simulate transmutation and formation
of Re in W alloys.

4.2 Taking into Account Solute Effects: “Gray Alloy” Approach
of theMicrostructure

The effect of solute atoms or alloying elements can be modeled using the so-called
“gray alloy” approach. The “gray alloy” approach consists in a homogenization
of the alloy composition. The alloy properties are described as in the case of
pure metals by diffusion coefficients and binding energies characteristic of the
alloy considered. More precisely, the migration energies, attempt frequencies, and
binding energies of point defects and point defect clusters that locally depend on the
environment (i.e., the number of solute atoms) of the moving species are considered
to be the same everywhere (the local environment is neglected), and an effective
value is considered. In this approach all the solutes can be treated in an effective
way, or one can treat one solute (usually the one with the largest impact on the
microstructure evolution) explicitly and all the other ones as part of the “gray alloy.”
A typical example is carbon in dilute Fe alloys. Because carbon interaction with
vacancies is very large, carbon is usually treated explicitly, whereas Cr or Mn and
Ni can be modeled as part of the “gray alloy.” In this approach, one can have
effective properties depending on the alloy composition. They are usually applied
to the whole simulation box; however, it is possible to use it locally to model
concentration gradients in a cellular approach of the method. The “gray alloy”
approximation has been used, for instance, to model to predict the nanostructure
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evolution under neutron irradiation in both reactor pressure vessel (RPV) and
ferritic/martensitic (F/M) steels modeled, respectively, in terms of Fe-C-MnNi and
Fe-C-Cr alloys (Chiapetto et al. 2015a, b). The effect of the substitutional solutes of
interest was translated into modified parameters for the mobility of defect clusters.
More precisely, the interstitial loop mobility was defined by an effective mobility
which depends on the solute concentration. Using this approach, the origin of low-
temperature radiation hardening (and subsequent embrittlement) was investigated,
and the results support the hypothesis that solute clusters segregate on immobile
interstitial loops, which act as heterogeneous nucleation sites for the formation of
the NiSiPCr- and MnNi-enriched cluster populations (Chiapetto et al. 2015a). It was
also shown that the introduction of Cr in F/M steels enhances recombination and
suppresses the formation of vacancy voids. These results explain the link between
the non-monotonic SIA diffusivity with %Cr and the experimentally observed
radiation-induced swelling (Chiapetto et al. 2015b).

4.3 Taking into Account Solute Effects: Beyond the “Gray Alloy”
Approach

In a “gray alloy” approach, the effect of solutes is introduced assuming that it
changes the properties of the objects. This technique is rather simple and has been
refined in a model that contains a more explicit description of solute atoms in
dilute alloys (Castin et al. 2017). In this new approach, solute atoms are explicitly
introduced in the matrix; however only single point defects are allowed to interact
with them in first approximation. Point defect clusters still assume the gray matrix,
i.e., they do not interact with the solute atoms, and their properties are effective
properties depending upon the alloy composition. When either a single vacancy or
a single SIA catches a solute atom (found within its radius of interaction), the latter
is removed from the matrix and incorporated into the objects, thereby redefined.
Another approach has been proposed (Domain et al. 2004) for low-content FeCu
alloys: in the case of objects containing both point defects and solute atoms, the
emission of either a single vacancy, a mixed vacancy-solute pair, or a single solute
can be considered. In that later case, it is the remaining object that moves away from
the emitted solute.

Solute concentration can be also accounted for using cellular KMC which seems
to be particularly adapted for alloys. This method can be seen as the coarse graining
of AKMC for solutes coupled to OKMC for defects, linked by transport coefficients.
The system is decomposed in cells, defined by a local solute concentration, and
solute exchange between neighboring cells is controlled by flux coupling with
point defects. This method has been recently applied to Cu precipitation in Fe
under thermal aging (Garnier and Nastar 2013) and spinodal decomposition in
FeCr (Dopico et al. 2015; Rodríguez-Martínez et al. 2017). With this method
direct simulation of the initiation of germination (for precipitation or spinodal
decomposition) is not treated as the initial germ is smaller than the cell size.
Possible solutions to this issue are to perform standard AKMC to initiate the
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germination and switch to cellular KMC or initially reduce the size of the cells.
The acceleration factor is found to be around two or three orders of magnitude for
the cases investigated so far.

4.4 Downscale Coarsening: Coupling the AKMCwith OKMC

The OKMC approach is sometimes used within a lower scale method as proposed
in Castin et al. (2011) and later Pannier (2017) where the AKMC is coupled
with the OKMC in the same code, thus producing a hybrid AKMC-OKMC code.
In Castin et al. (2011), the precipitation of Cu in Fe was simulated using the
following scheme: Cu clusters above 15 atoms are considered as objects, for which
migration and dissociation events are defined and have specific, size-dependent,
and thermally activated frequencies. Matching between the fully atomistic and the
coarse-grained approach is achieved by using a neural network that provides all the
necessary parameters for large Cu clusters, after a training on atomistically informed
results. The same approach has been very recently developed to model the evolution
of complex Fe alloys and more precisely the formation of solute-rich clusters
representative of RPV steels, under irradiation (Pannier 2017). In this work, it was
observed that about 80% of the jumps done in AKMC simulations of Fe alloys under
irradiation concerned quasi-immobile clusters, the motion of which does not impact
much the microstructure evolution and more precisely the formation of solute-rich
clusters. Hence, losing details concerning the description of this type of object might
not drastically change the stochastic trajectory of the simulation. As a consequence,
such large clusters have been treated as objects. In the case of pure iron, when a
group of first nearest neighbor point defects has a size (in number of point defects)
higher than the user-defined object cutoff, all these point defects are considered as
one object. The individual jump frequencies of the point defects associated to an
object are null. Frequencies for migration and emission are associated with each
object and obtained by a series of AKMC simulations. Migration is performed
by moving the whole cluster by a first nearest neighbor distance and emission by
putting the emitted point defect in a position near the object. When the size of an
object changes, the object returns to the AKMC state. This AKMC relaxation is
required because it allows the objects to return to an energetically more favorable
configuration rather than being stuck in an atypical geometry. Figure 9 illustrates
the hybrid AKMC-OKMC approach applied in Pannier (2017).

4.5 Upscale Coarsening: Using OKMC to FeedMFRT

4.5.1 Using the OKMC to Obtain the Source Term
As already mentioned in Sect. 2.2, MFRT is another possible approach widely used
to model the evolution of microstructures under irradiation. A primary difference
between the two methods is that spatial information about individual objects is
maintained in OKMC, while only spatially averaged information is used in the
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Fig. 9 Illustration of the hybrid AKMC-OKMC method, for a 9-vacancy cluster and a 7-vacancy
+ 2 solute cluster (Pannier 2017). The 9-vacancy cluster (top) or the 7-vacancy and 2-solute cluster
(bottom) are treated as single objects in the hybrid AKMC-OKMC. These two objects can then
undergo two kinds of events. They can move as a block or emit a point defect or a solute. The
emitted species are, in the next KMC step, treated in the AKMC approach. The remaining object,
depending on its size, will be treated in the OKMC or in the AKMC manner. In the latter, the point
defects and solutes will be treated individually

MFRT. Furthermore, OKMC algorithms deal with the explicit spatial dependence
of the evolving defect distribution, whereas MFRT models do not deal with the
explicit position of defects, but they deal with the averaged concentration of defects
in a small volume at a given position in the material. MFRT models do however take
into account the presence of gradients of concentration, and hence, in some sense,
the spatial dependence of the evolving defect distribution is not fully lost. The source
term however must be carefully estimated. Indeed, neutron or ion irradiations lead to
the formation of cascade debris composed of isolated defects and defect clusters in
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a confined region (of few 10 nm), and this spatial correlation has an important effect
on the long-term evolution of the microstructure (Souidi et al. 2011). As MFRT
cannot treat these spatial correlations, OKMC are often used to coarse grain the
primary damage and obtain the source term (Heinisch 1983; Becquart et al. 2010;
Adjanor et al. 2010; Jourdan and Crocombette 2012) for MFRT models.

4.5.2 Using OKMC to Evaluate Sink Strengths
The sink strength is a notion typically used in rate theory models to describe the
interaction of migrating defects with the features characterizing the microstructure
of the material (e.g., voids, dislocations, grain boundaries). The sink strength of each
type of microstructural feature is proportional to the square of the inverse of the
mean distance covered by the migrating species before it interacts with the feature,
in general by being absorbed or trapped. It is a priori a function not only of the
type, shape, orientation, size, and concentration of the sinks but also, and sometimes
crucially, of the dimensionality of the motion of the migrating species (three-
dimensional (3D) versus one-dimensional (1D) or mixed 1D/3D migrating defects).
KMC techniques have the advantage of going beyond the mean field approximation,
by explicitly and spontaneously taking into account spatial correlations between
the elements of the physical system. They implicitly reproduce, among other
phenomena, the effect of sinks or traps for migrating species, characterized by a
given geometry and spatial distribution. They can thus provide directly the sink
strengths of any microstructural features, provided, of course, that the feature is
accurately introduced in the OKMC model (Heinisch et al. 2007; Malerba et al.
2007; Jansson et al. 2013; Hou et al. 2016; Ahlgren and Bukonte 2017; Carpentier
et al. 2017).

5 Future Direction and Perspectives

Difficulties in applying the OKMC algorithm are not due to the method itself,
which is fairly straightforward. They stem from the fact that all the possible events
that each object can undergo according to a specific physical mechanism, their
probability, and their properties must be pre-defined. The key point of this method is
thus to determine the effective parameters from atomic models, for instance, as well
as all the relevant mechanisms that can happen. It is important to stress that OKMC
does not have the capability to predict structures or events that are not explicitly
included in the model (unlike ab initio, molecular dynamics (MD) simulations or
KMC methods with on-the-fly event catalog building capacity (Trochet et al. 2015;
Henkelman and Jónsson 2001).

Another issue that needs to be stressed out is that the simulations are quite
long and can last days to weeks. To parallelize efficiently the codes for complex
microstructures is a challenge which has first been tackled to independent moving
species (walkers) in an OKMC framework by Martínez et al. (2008). The same
method has been applied more recently by Martin-Bragado et al. (2015) to OKMC,
for a more realistic case of an isochronal annealing of Fe after electron irradiation.
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Indeed, this kind of experiment can be simulated with such an algorithm as the
initial distribution of point defects is homogeneous. There exists thus specific
conditions where parallelizing is efficient as shown also in Jiménez and Ortiz
(2016) where an OKMC code has been parallelized on GPU for a simple model
considering only recombination and no “particle” clustering. However, for the
time being, the efficiency of parallelizing OKMC simulations has not been proved
for realistic situations, i.e., situations where objects with very different properties
and in particular diffusion coefficients covering orders of magnitude have to be
considered. To reach meaningful irradiation doses (>0.1 dpa) with realistic fluences,
one still has to resort to homogenized rate theory methods based on the mean-
field approximation (Marian et al. 2017). Furthermore, despite being capable of
handling system sizes larger than the AKMC method, it is still difficult to model
microstructures in which low-density objects or very large objects are formed in
OKMC. At the moment, the order of magnitude of the concentration limit is around
10−15 cm−3. Below this concentration, it is once again, more efficient to turn to
MFRT techniques (Jourdan et al. 2014).

In the case of multicomponent alloys, the explicit treatment of all the solutes
that can form a wide variety of complex objects composed of point defects and
several solute types is also a challenge as the more objects, the more parameters
in the OKMC model. Furthermore, the object shapes can also have some impact
which adds another level of complexity in their treatment. These issues can benefit
from AKMC simulations that can be used to obtain laws regarding the formation
and interaction of these objects or other techniques such as the one proposed by
Bonny et al. (2017). They developed a mean field model to obtain the energetics of
point defect clusters in perfect random alloys and computed the dissociation energy
of small vacancy clusters in FeCr and FeCr-2%W alloys, considered to be model
alloys for Eurofer steels. They concluded that the dissociation energy is not expected
to vary by more than 0.1 eV in the 0–10% Cr and 0–2% W composition range and
thus that a mean field approach could be used in these situations.

The elastic effects can, in some cases, significantly bias the system evolution. An
exemplary case is the interaction of dislocation loops with the surfaces of the thin
foil samples used in TEM (Fikar et al. 2017a, b) or the interaction between point
defects and semi-coherent interfaces (Vattré et al. 2016). OKMC is well-suited to
incorporating long-range elastic interactions because the spatial location of defects
can be tracked with high accuracy. One way proposed by Hudson et al. (2005) is
to include them as a bias to the diffusive motion of mobile species. The work done
by the elastic force over the course of the anticipated jump is calculated and used
to bias the jump probability. Other, more explicit methods exist. One possibility
is to take them into account when estimating the interaction between two objects
as proposed by Mason et al. (2014) where it was shown that the experimental
microstructure obtained by irradiating an ultrahigh purity with a very low fluence
of self-ions could only be reproduced in OKMC if the elastic interactions between
loops are taken into account. Another method, proposed by Vattré et al. includes the
elastic interactions in the estimation of the activation barriers (Vattré et al. 2016).
According to Carpentier et al. (2017), the impact of the elastic interactions on the
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diffusion properties and their effect on the bias is mostly due to the anisotropy
at the saddle point position. Elastic effects due to individual defects can also be
evaluated by lower-scale methods such as MD as proposed in Chang et al. (2013,
2015) or continuous methods such as phase field (e.g., Rouchette et al. 2014). The
corresponding sink strength and bias obtained with these different methods can then
be introduced in OKMC simulations by considering, as mentioned in Sect. 3.1,
effective sizes for the objects that take into account elasticity in an effective manner.

To conclude, OKMC are versatile and powerful methods to study complex
systems with many different reactions and possibilities. The coupling between
AKMC and OKMC is one way of taking into account the details of object structure
when it matters (e.g., nuclei) as well as speeding up the evolution of large objects
by coarse graining the individual defect jumps into a collective evolution. However,
homogenization and further coarse graining is still necessary to reach the high doses
and/or low-flux characteristics of situations encountered in nuclear reactors.
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A.1 Appendix: OKMC Codes Dedicated to Radiation Damage
Studies

We now very briefly describe some of the codes developed and used for radiation
damage studies in metals.

A.1.1 JERK

The event kinetic Monte Carlo code JERK was one of the pioneering codes
developed at CEA by Lanore (1974). In this approach the lattice is ignored, and the
objects have continuous coordinates. The elementary events are binary encounters
of two objects, emissions of a mobile object from a source such as a cluster or
a surface. Probability laws are defined for each event. A typical simulation step
consists of following the evolution of the object population over a macroscopic
time interval. This is achieved by building the list of all possible events which may
happen within the time interval, processing the events in the order of increasing
delays and refreshing the event list after each event has been processed. When the
event list is exhausted, the partners that did not react are displaced according to
macroscopic diffusion laws (Barbu et al. 2005). This code has been used to model
isochronal annealing in Fe (Mason et al. 2014) and FeC (Jourdan et al. 2011).



58 Object Kinetic Monte Carlo (OKMC): A Coarse-Grained Approach . . . 1307

A.1.2 BIGMAC

The kinetic Monte-Carlo code BIGMAC was developed at Lawrence Livermore
National Laboratory by Johnson in collaboration with Caturla and Díaz de la Rubia
(Johnson et al. 1998). This code has been used by different research groups to study
many systems. BIGMAC tracks the locations of defects, impurities, and clusters
as a function of time without relying on a lattice structure (it is however possible
to modify the code to include a lattice if necessary). In addition, no hardwired
reactions are introduced in the code, thereby allowing the user to directly define
any type of system: this versatility allows the study of complex systems. The
disadvantage of this approach appears for very high doses, where large defect
clusters are formed, since it requires large memory to store the matrices for all defect
reactions.

One key feature of BIGMAC is the recent implementation of the cellular
approach (Caturla et al. 2016): the simulation box is divided into smaller boxes
(cells) with different Cr content. The alloying element is thus treated in terms of
average local concentrations, which are given (in atomic %) for each cell. Another
peculiarity of the code consists in the fact that jump probabilities for the defects
depend on the local solute concentration, as well as on the concentrations of
neighboring cells. The cellular OKMC is a priori the ideal framework to intro-
duce explicitly the dependence on local concentration of parameters that describe
stability and mobility of point defects and their clusters, making its application to
concentrated alloys such as high-Cr F/M alloys ideal.

A.1.3 Lattice Kinetic Monte Carlo (LAKIMOCA)

LAKIMOCA code is a KMC as well as a Metropolis Monte Carlo package
developed in standard C by Domain at EDF R&D in 1998. It has been exten-
sively described in Domain et al. (2004). LAKIMOCA can take into account a
large number of objects (defect clusters, solute atoms, vacancy-solute clusters,
grain boundaries, dislocations, etc.) and exists in two versions: atomistic kinetic
Monte Carlo (AKMC) or object kinetic Monte Carlo (OKMC), according to the
nature of the object considered as mobile. The code allows easy introduction of
different classes of immobile traps (mimicking trapping nano-features, as well as
dislocations) and sinks (i.e., features like dislocations and grain boundaries where
point defects and clusters can disappear), characterized by specific geometrical
shapes (spheres, infinite cylinders, surfaces, etc.). The mobile objects (or more
precisely their center of mass) are located on a lattice that can be bcc, fcc,
and hcp and can jump from one lattice site to a first neighbor lattice site. The
starting configuration can be created by the code itself with random distributions
of initial defects and/or solute atoms or can be given by the user. LAKIMOCA can
simulate damage production from electron, ion, and neutron irradiation. Neutron
irradiation is simulated by a mixed flux of Frenkel pairs and defect cascade
debris.
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A.1.4 Modular Monte Carlo (MMonCa)

MMonCa is an open-source kinetic Monte Carlo simulator developed by Bragado
(Martin-Bragado et al. 2013). It is developed in C++ and distributed mainly for
Linux (Ubuntu) sytems. MMonCa contains a Lattice KMC module, used mainly for
simulation of epitaxy, and an off-lattice Object KMC module, used for simulation of
damage irradiation in many materials. The presence of physical defects that diffuse
in space implies the need to include diffusion as a transition rate and to define
algorithms for space migration and particle interaction. The space is divided in
small prismatic elements using a tensor mesh. Space is assumed to be homogeneous
(in material, temperature, etc.) inside each small element. Each element obtains its
material definition by calling a user-defined procedure that specifies the material
structure in the simulation. In this way, very complex shapes containing different
materials can be simulated. This approach is of particular interest in the case of
concentrated alloys. Furthermore, the cellular OKMC algorithm initially developed
in BIGMAC has been introduced in MMonCa, as well.

A.1.5 KSOME

KSOME is a flexible and lattice based code patterned after the original FORTRAN
code ALSOME (Heinisch 1983) developed by Heinisch. Objects of interest include
vacancies, SIAs, interstitial impurities, and clusters of these defects. The objects are
characterized by their type, size, shape, position, and orientation (Nandipati et al.
2015).

A.1.6 McHERO

McHERO stands for Monte Carlo simulation of helium-bubble evolution and
resolutions (Takahashi et al. 2010). It is based on kinetic Monte Carlo (KMC)
techniques to simulate migration and coalescence of He bubbles and interactions
with distinct three-dimensional geometric features of the material. The kinetics of
bubble migration and coalescence include Brownian motion as well as bias-driven
migration, such as in a stress or temperature gradient. The diffusion coefficients of
helium bubbles are converted into probabilities of the occurrence of the events. The
event is in this case the diffusion of a bubble within a time step δt. The probabilities
are then summed up to find the total probability of the events. The total probability
is used to normalize the probability of each event.

A.1.7 MATEO

The hybrid atomistic/object KMC code MATEO is written in C++ and has been
developed by Castin at SCK•CEN (Castin et al. 2017). Its OKMC approach is built
upon the same philosophy and fundamental hypotheses (in terms of lattice-defect
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and microstructure description, reproduction of neutron irradiation, etc.) as the
LAKIMOCA code, but it has been refined in a model that contains a more explicit
description of solute atoms (Castin et al. 2017). Solutes are explicitly introduced
in the matrix, in an AKMC fashion, but only single point defects are allowed to
interact with them. Point defect clusters still assume the gray matrix. When either
a single vacancy or a single SIA catches a solute atom (found within its radius of
interaction), the solute atom is removed from the matrix and incorporated into the
object, which is then redefined into a new one. Finally, the solutes are reintroduced
in the atomic matrix when the carrying point defect interacts with another object,
i.e., either during a recombination event with an opposite kind of defect or merging
with another defect of the same kind. Globally, solute transport is thus implemented
in a way, which can be regarded as a compromise between providing atomistic-level
description and keeping the evolution of the predicted microstructure from the gray
alloy model.
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Abstract

Deformation twinning is an important mode of plastic deformation in hexagonal
close-packed (HCP) materials. Experimental observations indicate that these
twins occur heterogeneously across the polycrystalline microstructure during
deformation. The variation is too substantial to be authentically represented by
average values, advocating the use of statistical analyses and stochastic models
in the studies of HCP material deformation response. This chapter reviews recent
efforts to explain the origin of the stochastic nature of twinning and to analyze
and simulate deformation twinning in HCP materials from this perspective.

1 Introduction

Hexagonal close-packed (HCP) polycrystals deform by two mechanisms: the glide
of dislocations and expansion of deformation twins (Beyerlein et al. 2014; Partridge
1967; Yoo 1981; Yoo and Lee 1991). Both dislocations and twins are confined to
proceed on particular crystallographic planes and directions in a given crystal. To
deform the crystal, dislocations glide on these planes. Twins, on the other hand,
shear the atoms on these planes causing them to reposition into a configuration
that is crystallographically reoriented from the original crystal. The high-resolution
transmission electron microscopy (HR-TEM) image in Fig. 1a shows the twin-
parent relationship for

{
1012

}
tensile twin in HCP Zr and is illustrated in Fig. 1b.

Strain is imposed as the twin domain grows in size (Beyerlein and Tome 2010;
Capolungo et al. 2009; Kumar et al. 2018). Compared to slip, twins greatly affect
the mechanical response (Proust et al. 2007; Salem et al. 2006; Wang et al. 2013a;
Wronski et al. 2018), formability and ductility (Barnett 2007a, b; Kumar et al.
2017d), and failure mechanisms (Simkin et al. 2007; Yang et al. 2008; Yin et al.
2008) of HCP metals. Figure 1c presents a typical example of how twinning can
affect the mechanical response of an HCP alloy (AZ31 Mg) (Wang et al. 2013a). As
shown, many details, such as yield stress, strain hardening, and ultimate strength,
are affected by twinning.

Both mechanisms, slip and twinning, occur heterogeneously across the crystal.
Heterogeneity in slip is evident at nanometer to micron scales. Dislocations glide in
arrays within slip bands that are nanometers in thickness. As deformation proceeds,
dislocations can form patterns consisting of dislocation-rich areas separating nearly
dislocation-free areas (Agnew et al. 2002; Akhtar and Teghtsoo 1971; Bay et al.
1992; Hughes and Hansen 1997; Kuhlman-wilsdorf and Hansen 1991; Kuhlmann-
Wilsdorf 1999; Kumar and Mahesh 2012). Highly resolved microscopy techniques,



59 The Stochastic Nature of Deformation Twinning: Application to HCP Materials 1315

Illustration of twinning 
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Fig. 1 (a) High-resolution TEM image of the twin-parent orientation relationship for the {1012}
twin in HCP Zr (Morrow et al. 2014c). (b) Schematic of the shearing of atoms that form the
twinned lattice from the parent lattice. (c) Example showing the effect of deformation twinning on
the stress-strain response of HCP AZ31 Mg alloy (Wang et al. 2013a)

such as TEM, can be used to observe individual dislocations and patterns of
dislocations within deformed grains and grain boundaries.

Compared to slip, however, the heterogeneity in twinning is evident at much
larger scales, such as those of the polycrystal (Barnett et al. 2012; Beyerlein
et al. 2010; Capolungo et al. 2009; Kumar et al. 2018; Wang et al. 2013c).
The nonuniform nature of twinning can be easily recognized at the resolution of
most standard microscopy and diffraction techniques, such as EBSD and optical
microscopy. For instance, for Mg (c/a = 1.624), the twin reorientation and local
shear associated with the most common tensile twin is 86◦ and ∼13%, respectively.
Large sections of one grain can contain multiple twin domains, whereas another
grain of seemingly similar properties (size, shape, orientation) contains no twins.
Even in the same grain, the twin thickness can vary easily by two or three times.
Twins can expand into neighboring grains. At this larger polycrystal scale, the
heterogeneity in dislocation slip would not be discernable.

The widespread heterogeneity in twinning has motivated the use of statistical
analyses to understand the role of microstructure, such as grain orientation and
grain size, on twinning (Barnett et al. 2012; Beyerlein et al. 2010; Capolungo
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et al. 2009; Kumar et al. 2018; Wang et al. 2013c). The apparent sensitivity to
local heterogeneities in stress has inspired the use of in-situ testing and simulation
techniques to reveal how twin lamella form and expand within a polycrystalline
microstructure during deformation (Cheng and Ghosh 2015, 2017a, b; Hazeli et al.
2013; Khosravani et al. 2015; Morrow et al. 2014a, b, c; Wang et al. 2010a, 2011,
2012, 2013b; Wu et al. 2016). Many crystal plasticity models have advanced to
incorporate the stochasticity in twin formation and growth, finding better agreement
in stress-strain response and microscopy data than the conventional deterministic
approach for twin activation (Abdolvand et al. 2015a, b; Abdolvand and Wilkinson
2016; Ardeljan et al. 2015; Beyerlein et al. 2011, 2012; Beyerlein and Tome 2010;
Kumar et al. 2017b; Niezgoda et al. 2013, 2014).

The aim of this chapter is to summarize the recent advancements in understand-
ing the formation and growth of deformation twins and likely explanations for the
apparent stochastic nature of deformation twinning. The chapter is structured as fol-
lows. It begins with a brief review of statistical analyses of large microstructural data
sets of materials that twinned during deformation. Next, the modeling methods that
have been used to date to simulate twins in HCP polycrystals are briefly introduced.
The chapter ends with examples from these calculations and key findings on the role
of microstructure and local stresses on twin formation, propagation, and growth.

2 Twinning as a Stochastic – Sequential Process

Statistical analysis of twin and stochastic analysis of twinning dynamics can be used
as a way toward better understanding of twinning. For many decades, analyses of
microscopy data and deformation models have taken a deterministic approach to
treating deformation twinning and only recently have they incorporated stochastic
aspects, showing noticeable improvements in prediction. The statistical analyses and
companion modeling efforts will be discussed in the following sections.

2.1 Dynamic Processes of Twinning

The twinning process can be viewed broadly as taking place in three stages.
Witnessing these stages in situ is challenging, and in lieu of displaying actual
experimental images, a schematic of these stages is provided in Fig. 2, where
for simplicity only one twin in one grain is shown. Stage 1 is the creation of an
embryo (nucleation), which begins at the atomic scale. Twin nucleation models
assume that the twinning partials, needed to create a twin embryo, form directly
from the dissociation of pre-existing dislocations. The initiating dislocations may
be lattice dislocations (Capolungo and Beyerlein 2008; Cohen and Weertman 1963;
Jagannadham 1976; Mahajan and Chin 1973; Mendelson 1972; Priestner and Leslie
1965) or dislocations found in grain boundaries (Barrett and El Kadiri 2014;
Beyerlein et al. 2011, 2012; Wang et al. 2014) or moving dislocations that have
impinged on bi-phase interfaces (Beyerlein et al. 2013; Zheng et al. 2012). The
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Nucleation Propagation Growth
a b c

Fig. 2 Schematic showing three basic sequential steps involved in the formation of twin lamella
(Kumar et al. 2015). (a) Nucleation, formation of twin nuclei at a given grain boundary; (b)
propagation, propagation of a twin nucleus into the parent crystal; (c) growth, migration of the
twin boundary and thickening of the lamella

stresses needed to support these reactions are relatively high, requiring localized
stress concentrations, generated for example, at the head of dislocation pile ups.

Stages 2 and 3 involve twin growth and the migration of twin boundaries. In
stage 2, growing twin embryos, initially nanoscale to submicron in size, propagate
under stress into the grains, often spanning the entire crystal and terminating at
the other grain boundaries bounding the same grain (Beyerlein and Tome 2010;
Capolungo et al. 2009; Kumar et al. 2018; McCabe et al. 2009). In stage 3, these ter-
minated twins begin to propagate and expand. They can grow either by thickening,
so their width increases or by transmitting, a process by which a second twin forms
on the other side of the grain boundary where the first twin and grain boundary meet.

Both twin nucleation and expansion can occur only if the combination of required
stresses and sufficient density of defects are present. Both aspects, mechanical
and material in nature, can vary statistically in space and in time in a deforming
microstructure and can result in the statistical appearance of a twin or twins in a
grain.

2.2 Statistical Features of Deformation Twins

In a polycrystal, grains vary in size, crystallographic orientation, and local grain
neighborhood. Most commonly considered microstructural variables that affect the
propensity for twinning are grain orientation, grain size, and grain neighborhoods.
Using EBSD, twins of thicknesses greater than ∼10 nm can be easily seen. As
mentioned earlier, analyses of twins using EBSD data on deformed materials
typically find twin lamellae that span the grain completely and are bound by grain
boundaries.

Due to the statistical nature of twinning, in order to develop reliable statistical
correlations between twin properties and grain microstructure from EBSD data,
thousands of grains and twins would need to be analyzed. With the advent of auto-
mated EBSD techniques, a twinning microstructure that has formed in thousands of
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deformed grains can be assessed relative rapidly facilitating creation of statistically
significant data sets. With such data, statistical analyses have been carried out to
identify correlations between properties of the twinning microstructure (variant,
twin thickness) with the grain microstructure (grain size, grain orientation, and grain
neighborhood).

In recent years, statistical analyses of twins have been carried out on a number of
HCP metals, Mg, Zr, and Ti, and also Mg alloys (Barnett et al. 2012; Beyerlein et al.
2010; Capolungo et al. 2009; Ghaderi and Barnett 2011; Juan et al. 2015; Kacher
and Minor 2014; Khosravani et al. 2015; Kumar et al. 2016a, 2017c, 2018; Shi et al.
2015a, c; Tsai and Chang 2013). The general finding is that while grain size and
grain orientation can be strongly correlated with the propensity of twinning, the
correlations are not as strong as those expected from a deterministic point of view.
For instance, the following are found: (1) not all favorably oriented grains twin, (2)
some not favorably oriented grains twin, (3) only 40% of twin variants have highest
Schmid factor, (4) not all grains of the same orientation twin, (5) twinned grains
contain variable numbers of twins, (6) not all grains of the same size twin, and (7)
twins have variable thickness.

To elucidate the statistical variation in twinning grain to grain, the statistical
results of

{
1012

}
tensile twin in HCP Mg and Zr are discussed in the following

sections. The materials examined are high-purity polycrystalline Mg and Zr
with similar initial textures and, hence, similar grain misorientation distributions
(Beyerlein et al. 2010; Capolungo et al. 2009). The Mg has a strong basal texture
resulting from rolling, where most of the basal poles are aligned within 30◦ of
the normal direction of the sheet. The Zr has a similar strong basal texture, which
was developed via clock rolling rather than conventional rolling (Kaschner et al.
2006). Both materials were compressed at 10−3/s in an in-plane direction to activate{
1012

}
twinning. In order to develop a sufficient number of incipient twins in many

grains, Zr was compressed at 77 K to 10% strains, and Mg was compressed at room
temperature to 3% strain. Figure 3 shows the sample EBSD images of the twinning
microstructure of the deformed Mg and Zr. Using an automated EBSD software,
large data sets were generated by analyzing several distinct EBSD scans (Beyerlein
et al. 2010; Capolungo et al. 2009). The number of grains and twins investigated
totaled 2339 and 8550 for Mg, and 639 and 1065 for Zr.

2.3 Statistical Analysis of Crystallographic Orientation Effects

Grains are considered to be well oriented for twinning by a given twin type if they
have one or more of the six twin variants bearing a high Schmid factor (e.g., >0.33).
From a deterministic viewpoint, the twin variant in a grain most likely to form is
the one that has the highest Schmid factor. The Schmid factor (SF) of observable
twins is the most common parameter quoted in association with twinning. This
reference is especially true when discussing whether twin activation obeys an
“Schmid criterion,” that is, one that is activated by a resolved shear stress in the
twin plane and in the twinning direction (TRSS). The SF is defined as the ratio
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Fig. 3 Sample EBSD images
of deformed (a) Mg and (b)
Zr metals showing the
activation of tensile twining
(Beyerlein et al. 2010;
Capolungo et al. 2009). To
activate sufficient number of
twins, Mg and Zr samples
compressed along rolling
direction to 3% at RT and to
10% at 77 K, respectively

between the TRSS and the value of the macroscopic tensile or compressive stress.
The SF varies between −0.5 and 0.5. It provides a geometric measure of how well
a twin system is oriented with respect to an external axial stress. Twins belonging
to a given grain are classified by their variant and its rank, 1–6, in decreasing order
of their SF. If twin activation obeys a Schmid criterion based on the macroscopic
applied stress, the twin would correspond to variant 1, the variant having the highest
SF among the six in a grain. In this section, the effect of grain orientation as reflected
by its SF on twinning formation, growth, and variant selection is discussed.

Figure 4a plots the twinning frequency taken from large data sets on twinned Mg
and Zr. The analysis indicates that for both Zr and Mg, the frequency of twinning
increases with SF, which is to be expected. However low SF twins are also activated.
Figure 4c, d shows the distribution of twin variants as a function of twin SF for Mg
and Zr, respectively. The frequency of each twin variant (1–6) is ∼35.6%, 23.5%,
21.3%, 11.7%, 3.2%, and 4.6%, respectively, in Mg. Similar frequency in Zr is
∼49.8%, 20.0%, 17.9%, 8.2%, 3.3%, and 0.7%. It is surprisingly common, among
EBSD studies on twinned microstructures, to find that the twin variant selected is
not the one with the highest Schmid factor or even the second highest Schmid factor.
These low-rank SF twins have been referred to as “non-Schmid” twins. Activation
of non-Schmid twins has also been reported in other HCP metal systems, like HCP
Ti and AZ31 Mg alloy (Bieler et al. 2014; Kumar et al. 2018; Shi et al. 2015a, b;
Wang et al. 2013c).
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Fig. 4 Effect of grain orientation, as measured by the Schmid factor associated with the twin
system, on (a) twinning frequency and (b) average twin thickness of

{
1012

}
tensile twins in

deformed Mg (Beyerlein et al. 2010) and deformed Zr (Capolungo et al. 2009). (c) and (d) are
the corresponding twin variant distributions in Mg and Zr, respectively

With all else being the same, twins with high geometric SF are expected to be
thicker compared to twins with low SF. From the statistical data set, Fig. 4b shows
the distribution of twin thickness as a function of SF for Mg and Zr. Evidently, twins
with higher SF are thicker, presumably because they are better oriented for growth.

2.4 Statistical Analysis of Grain Size Effects

A common finding in many metals, not only those of HCP crystal structure, is that
polycrystals with smaller average grain sizes develop lower twin volume fractions
(Barnett et al. 2004, 2012; Beyerlein et al. 2010; Capolungo et al. 2009; Ecob and
Ralph 1983; Ghaderi and Barnett 2011; Gutierrez-Urrutia and Raabe 2012; Jain
et al. 2008; Juan et al. 2015; Kang et al. 2016; Kumar et al. 2016c, 2018; Lentz et al.
2014; Liu et al. 2015; Rahman et al. 2015; Stanford and Barnett 2008; Tsai and
Chang 2013; Wongwiwat and Murr 1978). This frequent observation has motived
the application of the Hall-Petch scaling law, originally used for slip, to twinning.
This law was first used to explain the higher yield stresses or fracture strains with
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Fig. 5 Effect of grain size on (a) twinning frequency, (b) average twin thickness and (c) average
number of twins per twinned grain of

{
1012

}
tensile twins in Mg (Beyerlein et al. 2010) and Zr

(Capolungo et al. 2009)

decreasing grain size. For twinning, it has been applied in a similar way, such as a
twinning stress that increases according 1/

√
D, where D is grain size. In nearly all

of these cases, the grain size refers to the diameter of the grain that has been cut
in the 2D scan. In this section, the grain size dependence on twin frequency from
statistically large EBSD data sets are discussed.

The variation in twinning tendency (defined as the number of twinned grains/total
number of grains) with grain size for Mg and Zr is shown in Fig. 5a. Here the
twinned grains refer to grains with at least one twin of any type. The analysis
finds that for both material systems, the propensity for twin activation increases
with increasing grain size. It is worth noting that the grain size dependence is not
monotonic: the grain size dependence is more pronounced for smaller size grains
and tends to saturate for larger grains (see Fig. 5a). The distribution of average twin
thickness as a function of grain size is shown in Fig. 5b. The grain size plays a strong
role on twin thickness in Mg, but not so in Zr. As another twinning metric, Fig. 5c
shows the effect of grain size on the formation of multiple twins in HCP Mg and Zr.
In both the materials, the number of twins per grain increases with increasing grain
size, but it is particularly striking in Zr. Taking all the data into account, it appears
that a grain of a given size in Zr accommodates more twins than grains of the same
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size in Mg. Similar twinning statistics has been studied in other HCP metals and for
other types of twins (Ghaderi and Barnett 2011; Juan et al. 2015; Lentz et al. 2015,
2016).

3 Computational ModelingMethods

3.1 Challenges in Modeling the Stochastic Twinning Process

In the foregoing section, statistical aspects of deformation twins were discussed.
The substantial spatial variability in these features, across a deformed material
grain structure, presents challenges in building both understanding and material
models for several reasons. Firstly, twins appear to form randomly as the material
is being deformed, and the origins of this stochastic behavior still need to be
fully understood. Secondly, the discrete nature of twinning makes it inherently
inhomogeneous, making the more commonly used and computationally efficient
homogenization mean-field models not readily applicable to treat materials that
undergo profuse deformation twinning. Thirdly, twin development is naturally a
multiscale process. Twins initiate at the atomic scale, form embryos at the nanoscale,
and grow to the submicron scale and can propagate across a grain and grain
structure, manifesting at the micron scale and larger. Thus, it is not readily apparent
how to apply coarse-graining modeling techniques to deformation twinning. Last,
twins do not occur in isolation but concurrently with slip. The shear for HCP metals
for the most common

{
1012

}
tensile twin is 13% for Mg. Thus, even if the entire

grain were to twin, slip would need to occur simultaneously in order to plastically
strain the material. Twin-slip interactions are just as important or arguably more
important for understanding the constitutive response of a material that deforms by
slip and twinning. These interactions cannot be fully understood by studying slip
and twinning separately.

3.2 Some Important Components for Models of Polycrystalline
Materials That Deform by Slip and Twinning

Modeling the deformation of polycrystalline materials has been accomplished via a
combination of crystal plasticity theory and polycrystal modeling schemes. Crystal
plasticity (CP) theory is used to relate the distortion of a strained crystal to slip on
crystallographic slip systems (Asaro 1983; Asaro and Lubarda 2006; Hosford 1993).
Polycrystal plasticity models then link the individual grain response predicted by CP
theory to the overall mechanical response of the polycrystalline aggregate (Asaro
1983; Canova et al. 1988; Kocks 1970; Kocks et al. 2000; Peirce et al. 1982; Roters
et al. 2010; Tome et al. 1984). These polycrystal models appear in various levels of
sophistication and computational efficiency as will be discussed shortly.

Implementing deformation twinning into a polycrystalline model would ideally
seek to include the following elements: (1) the available twin modes, (2) a model
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for activating a twin or a number of twins inside a grain, (3) a criterion for variant
selection of the activated twins, (4) a scheme for reorienting and shearing the portion
of the grain that is twinned, and (5) a criterion to grow the twin. Additional elements
include accounting for twin-slip interactions and twin-twin interactions and twin
transmission across grains. Not as many models exist that account for these other
phenomena, in spite of the fact that they are common occurrences.

3.3 Two Categories of Computational Methods for Modeling
Twins in Polycrystals

Computational crystal plasticity-based material models for the deformation of poly-
crystalline materials can generally be broken down into two categories: mean-field
models and full-field, spatially resolved models. The homogenized or mean-field
response models, such as self-consistent models, take only a statistical description
of the microstructure as input (e.g., crystallographic texture) and return a sample
scale or effective response and microstructure evolution (Kocks et al. 2000). In this
chapter, the visco-plastic self-consistent (VPSC) model is presented as an example
for homogenized models (Lebensohn and Tome 1993).

Full-field micromechanical models, such as crystal plasticity finite element
(CPFEM)- or crystal plasticity fast Fourier transform (CPFFT)-based approaches,
require as input an explicit spatially resolved description of the material structure
(e.g., grain orientation map) and return the spatially resolved material response
and local structural evolution (Abdolvand and Daymond 2013b; Abdolvand et al.
2011; Ardeljan et al. 2016; Bronkhorst et al. 1992; Delannay et al. 2006; Eisenlohr
et al. 2013; Idiart et al. 2006; Kalidindi 1998; Kanjarla et al. 2012b; Knezevic et al.
2016; Lebensohn 2001; Lebensohn et al. 2008, 2011a, b, 2012; Liu et al. 2010;
Masson et al. 2000; Michel et al. 2000, 2001; Mika and Dawson 1999; Moulinec
and Suquet 1994, 1998; Shanthraj et al. 2015; Zecevic and Knezevic 2017; Zhao
et al. 2007). The term “full-field” indicates that both long-range and short-range
grain interactions are considered, and the micromechanical fields are resolved on a
discrete grid.

3.4 Homogenized VPSCModel Framework

VPSC model describes the polycrystal as a collection of orientations (grains) each
with associated volume fraction. Each grain is regarded as a visco-plastic inclusion
embedded in, and interacting with, a “homogeneous effective medium” (HEM),
which has the average properties of the polycrystalline aggregate. The macroscopic
response of the polycrystal results from the contribution of each grain. The visco-
plastic compliance of the HEM is given by a self-consistent condition applied on the
grain averages. At the single crystal level, the strain rate is given by the individual
shear contributions of all active slip and twinning systems in the grain, as:
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Here, ms is the symmetric Schmid tensor and γ̇ s is the shear rate on system
s, γ̇0 is a normalized shear rate, n is the inverse strain-rate sensitivity, and τs is
the threshold or critical resolved shear stress required to activate system s. The
latter is evolved using a thermally activated dislocation density-based hardening
law (Beyerlein and Tome 2008). In order to avoid the further strain-rate dependence
associated with the power n in Eq. (1), γ̇0 is chosen equal to the norm of the
macroscopic strain rate

∥∥ε̇ij
∥∥. The constitutive laws relating strain-rate and stress

for a single crystal and for the aggregate are written in a linearized form as:

ε̇g = Mg : σg + ε̇
g

0
ε̇ = M : σ + ε̇0

(2)

where Mg and M are the grain and the macroscopic visco-plastic compliance
tensors. The tensors ε̇

g

0 and ε̇0 are the back-extrapolated terms for the grain and
aggregate, respectively. These variables result from the linearization of Eq. (1). The
effect of the linearization scheme on individual grain and polycrystal responses,
thus, emerges only through these two variables.

The inclusion formalism couples stress and strain-rate in the grain (σ g, ε̇g)

with the average stress and strain-rate in the effective medium
(
σ , ε̇

)
through an

interaction equation:

(
ε̇g − ε̇

) = −M̃ : (σg − σ
)

(3)

where

M̃ = neff(I − E)−1 : E : Msecant
(4)

and E is the visco-plastic Eshelby tensor, M
secant

is the macroscopic visco-plastic
compliance tensor for the secant interaction

(
ε̇0 = 0

)
, and the parameter neff “tunes”

the stiffness of the inclusion-matrix interaction: neff = 0 for a Taylor case and
neff = 1 for the stiff secant case.

3.5 Twinning in SC Approach: CGModel

An aspect of twinning that needs to be incorporated into the models is the fact
that twins are finite domains that reorient the lattice and shear portions of the
grain (usually taking on a lamellar morphology) and introduce a twin boundary.
Over the years, a number of methods have been introduced for treating the
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Fig. 6 Schematic of the composite-grain (CG) model for modeling twin reorientations within
the VPSC framework. Un-twinned grain is represented as an ellipsoidal inclusion within a
homogenous effective medium (HEM). For twinned grains, which may be comprised of one twin
variant type or multiple variants, the matrix and each twin variant is represented as separate
inclusions. As an example, “Twin-1” corresponds to two twins of the same variant, and “Twin-
2” corresponds to another twin variant, all within the same grain. Here the HEM represents the
average response of the polycrystal except the chosen grain and/or twin

reorientation that accompanies twinning: (i) predominant twin reorientation (PTR)
method (Lebensohn and Tome 1993; Tome et al. 1991) and composite-grain (CG)
method (Proust et al. 2009; Proust et al. 2007), for instance. In these schemes, the
twin phase replaces some fraction of the matrix phase, and as the volume of the twin
phase increases with strain, the volume of the matrix phase shrinks accordingly.
They generally involve splitting the original orientation (grain) into two parts, one
part that is twinned and another part that is the matrix, while preserving the original
volume fraction of the grain. For instance, in the CG method, the newly twinned
grain is split into two inclusions, a twin inclusion with the twinned volume fraction
and the remaining parent inclusion with the remaining fraction. The newly formed
twin inclusions are treated as new ellipsoidal inclusions and added to the total
number of grains in the polycrystal. As grains in these models are represented as
ellipsoidal inclusions, the new twin inclusions can be made initially flat ellipsoids
with their short axis perpendicular to the twinning plane, to reflect the lamellar
shape of newly formed twins (see Fig. 6). The twinned inclusion adopts a mirror
orientation with respect to the orientation of the parent grain, that is, characteristic
of the type of twin (Yoo 1981; Yoo and Lee 1991).

Later, a modified CG model was developed, which allows for multiple twin types
and variants to form in the same grain (Niezgoda et al. 2014). In the modified
CG model, the twin and matrix grains are treated as two noninteracting inclusions
(grains) embedded in the homogeneous effective medium. It is schematically shown
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in Fig. 6. In the figure, a grain with two types of twin variants is shown, and in this
case, un-twinned matrix grain, twin of variant 1, and twin of variant 2 are considered
separate inclusions in the effective medium. The two twins are initially given a
flat ellipsoid shape. The shortest axis of the ellipsoid is parallel to the twinning
plane normal and another of the ellipsoid axes is parallel to the twinning direction.
A similarly oriented ellipsoid is created to represent the un-twinned region of the
grain. The aspect ratios of both ellipsoids evolve with deformation. These twin
and matrix grains are characterized by independent secant compliances Msec, and
consequently no explicit twin-matrix interaction is considered when solving the self-
consistent equations. The relative fraction of each phase is updated incrementally
with deformation as the grain twins.

Once a twin has formed inside a grain, growth of this twin is determined in a
more traditional deterministic fashion within the modified CG framework. During
deformation, the twin shear rate γ̇ v is calculated for the nucleated twin or variant v
in each grain by:

γ̇ v = γ̇0

(
τv

τtwin
c

)n

(5)

Here τv and τtwin
c are the resolved shear stress on twin variant v, and critical

resolved shear stress for twin domain expansion (after nucleation).

3.6 Full-Field CPFFTModel Framework

The FFT-based crystal plasticity-based models provide spatially resolved microme-
chanical fields in the individual crystals within polycrystals. The formulation
provides an exact solution of the governing equations of equilibrium and compat-
ibility, in such a way that the final (converged) equilibrated stress and compatible
strain fields fulfill the constitutive relationship at every discrete material point.

The original FFT formulation was developed to study the local and effective
mechanical response of linear elastic (Moulinec and Suquet 1994), nonlinear
elastoplastic (Moulinec and Suquet 1994, 1998), and visco-plastic (Michel et al.
2000, 2001) composite materials. The FFT formulation was later adapted for
polycrystalline materials and permitted the study of the effective and local responses
associated with the heterogeneity in the spatial distribution of crystallography
and directional dependence of mechanical properties (Lebensohn 2001). In recent
years, this FFT formulation has been extended to different deformation regimes
like elasticity (Brenner et al. 2009), incompressible visco-plasticity (Lebensohn
2001; Lebensohn et al. 2008), dilatational visco-plasticity (Lebensohn et al. 2011b),
infinitesimal elasto-visco-plasticity (Kanjarla et al. 2012b; Lebensohn et al. 2012)
and finite elasto-visco-plasticity (Eisenlohr et al. 2013). Below the CPFFT model
that allows for the crystals to deform by infinitesimal elasto-visco-plasticity (EVP)
is briefly described and applied in later examples to study stress fluctuations in a
deformed polycrystal and local stress states generated around discrete twins.
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In the CPFFT method, the solution of an EVP problem involves the adoption of
an appropriate time discretization scheme. Using an Euler implicit time discretiza-
tion and Hooke’s law, the expression for the stress in material point x at t + �t is
given by:

σ t+�t (x) = C (x) : εe,t+�t (x) = C (x) : (εt+�t (x)− εp,t (x)− ε̇p,t+�t (x)�t
)

(6)

where σ(x) is the Cauchy stress tensor; C(x) is the elastic stiffness tensor; ε(x),
εe(x), and εp(x) are the total, elastic, and plastic strain tensors; and ε̇p(x) is the
plastic strain-rate tensor given in Eq. (1). The CPFFT model solves the equilibrium
equation along with the above constitutive equation by iteratively adjusting the
compatible strain field at every material point. The spatially resolved local response
is calculated using the convolution integral between the Green’s function associated
with the displacement field of a linear reference homogeneous medium and a
polarization field in which the heterogeneity and nonlinearity of the problem is
specified. Application of Fourier transforms reduces the convolution integrals of the
equilibrium equation in real space into simple products in Fourier space. Specifically
the FFT algorithm transforms the polarization fields of the periodic microstructures,
which are functions of the unknown strain field, into Fourier space, to obtain the
micromechanical responses in real space.

3.7 TwinningModel in CPFFT Framework

Up to now, advancing CP models for discrete twins with a 3D microstructure has
been hindered by the lack of 3D microstructural representation codes. Very recently,
a few full-field, spatially resolved polycrystal models, such as CPFFT and CPFEM,
have been advanced to include discrete twin domains within individual grains
(Abdolvand and Daymond 2013a, b; Abdolvand et al. 2011, 2015b; Abdolvand and
Wilkinson 2016; Ardeljan et al. 2015). To model the twin domain, the boundary
of the domain, the twinning orientation, and the characteristic twin shear needs to
be imposed homogeneously throughout the domain. A few examples of the local
stress fields calculated around twins in Zr and uranium (U) with these techniques
are shown in Fig. 7 (Abdolvand and Wilkinson 2016; Ardeljan et al. 2015). An
important aspect captured is the heterogeneous stress field within crystals that result
from the twin. The character, intensity, and extent of these fields depend sensitively
on the elastic and plastic properties of the material. Recently a series of studies were
undertaken to understand how response of the surrounding crystal could impact
the mesoscopic processes of twinning (Abdolvand et al. 2018; Kumar et al. 2015,
2016a, b, c, 2017b).

In this section, the recent extension of the CPFFT formulation to account for the
reorientation and twinning shear transformation in discrete regions within a crystal
is described. In this model, deformation twinning is treated as a shear transformation
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Uranium Zirconiuma b

Before twinning After twinning Before twinningRSSTW
1.00
0.92
0.83
0.75
0.67
0.58
0.50
0.42
0.33
0.25
0.17
0.08
0.00

After twinning
11

+1.643e+03
+7.000e+02
+5.833e+02
+4.667e+02
+3.500e+02
+2.333e+02
+1.167e+02
-1.526e-05
-1.167e+02
-2.333e+02
-3.500e+02
-4.667e+02
-5.833e+02
-7.000e+02

Fig. 7 Examples of recent modeling efforts in which discrete twin lamellae have been included
within a full-field spatially resolved technique. The two shown are crystal plasticity finite element
(CPFEM) models for (a) uranium (Ardeljan et al. 2015) and (b) zirconium (Abdolvand and
Wilkinson 2016)

process. Accordingly the constitutive behavior of an elastic-visco-plastic material
under an infinitesimal strain approximation with shear transformation becomes:

σt+�t (x) = C (x) : (εt+�t (x)− εp,t (x)− ε̇p,t+�t (x)�t− εtr,t (x)−�εtr,t+�t(x)
)

(7)

where εtr is the transformation strain. During the buildup of the twinning transfor-
mation, successive shear increments are imposed in the twin domain and the system
relaxed. The associated strain increments have the following relationship with the
local twin variant at point x:

�εtr (x) = mtw (x)�γ tw (x) (8)

For material points lying outside the twin domain, �εtr(x) is zero. The tensor
mtw = 1

2

(
btw ⊗ ntw + ntw ⊗ btw

)
is the Schmid tensor associated with the

twinning system, where btw and ntw are unit vectors along the twinning direction
and twin plane normal, respectively. The twinning transformation builds up in
increments, until reaching the characteristic twin shear, stw:

�γ tw (x) = stw

Ntwincr (9)

The time increment �t and the number of increments to achieve the twin
transformation Ntwincr are set sufficiently low and high, respectively, to ensure
convergence.
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4 Stochastic Twin NucleationModel

4.1 Probability Model for Critical Stresses for Twin Formation

In a few recent works (Beyerlein et al. 2011; Beyerlein and Tome 2010; Niezgoda
et al. 2014), an approach was developed to include grain boundary-induced twin
nucleation into constitutive laws for application into the mean-field crystal plasticity
models, like VPSC with a twin reorientation scheme. Unlike conventional polycrys-
tal models to date, the model they used for twin nucleation is not deterministic
but probabilistic, dictated by the likelihood of forming a twin embryo in the
grain boundaries. The approach involves incorporating two aspects of the grain
boundaries in a bulk average probabilistic sense. One aspect is a probability model
for the nucleation of twins when some numbers of grain boundary defects undergo
stress-driven transformations, which then coalesce into a single stable nucleus. It
assumes that the time scale of the transformation and subsequent coalescence is
instantaneous compared to the applied deformation and introduces a characteristic
length scale, within which a critical number of transformations occur to produce a
propagating twin. The stochastic model gives an explicit form for the probability
distribution for the critical stress values required for twin nucleation that could be
used in the VPSC model for activating twinning.

The other aspect concerns the stresses that activate twinning. These stresses are
those that are generated at grain boundaries, and these tend to deviate significantly
from the average stresses calculated in VPSC for each grain. To tackle this,
distributions of grain boundary stresses were obtained from separate full-field CP
calculations. Taken together the VPSC model simulations of deformation were
advanced to activate twinning when randomly sampled critical twin stresses were
exceeded by randomly sampled grain boundary stresses.

In this section, the model is briefly reviewed. Consider a grain within a
polycrystal as illustrated in Fig. 8. It has nf nearest neighbors and is joined to
each neighbor k (k = 1, . . . nf) by a common grain boundary facet of area Ak.
Connecting these facets is a network of triple lines and quadruple points, which
generally have an atomic structure distinct from those of the facets.

A grain boundary area Ak contains defects, or grain boundary dislocations
(GBDs), varying spatially and temporally in defect content (e.g., size of the Burgers
vector). When provided a sufficiently high stress for a GBD of a given size, GBDs
can transform into a twin embryo, a process observed in atomistic simulation to
involve the reshuffling of the atoms into the twinned structure (Wang et al. 2013b).
Neighboring smaller twin nuclei can coalesce into a larger twin embryo. If the
embryo reaches a critical size, it will propagate into the crystal (Beyerlein and Tome
2010).

According to this physical picture, forming an embryonic twin relies on the right
stress fluctuation simultaneously hitting the right-sized defect. This confluence of
events is more likely to occur in the grain boundaries, where local stress states
and defect content are high. It is usually the case that the spatial distribution of
GBDs and stresses are heterogeneous, a GBD-to-twin nucleus transformation is a
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Fig. 8 Illustration of a grain
in a polycrystal with the
neighboring grains not shown
(Beyerlein and Tome 2010).
The boundary of the grain is
comprised of a network of
facets (with area a*), triple
lines, and quadruple points

statistically occurring event, and the number of such events N is a random variable.
The number N is expected to increase as the area Ak of the facet and the magnitude
of the stresses acting on the boundary increase.

In the model, a stochastic counting process is proposed for N, i.e., {N(Ak), Ak
≥ 0}, where N(Ak) is the number of transformation events that occurred in an area
Ak. If each event is independent and identically distributed (i.i.d.), and the number
of events in nonoverlapping elements is independent (stationary increments), then
the Poisson process emerges as an appropriate model. Accordingly, the probability
that N = m defects will be transformed into a twin nucleus within a given area
Ak = a follows a Poisson distribution:

P (N = m, a) = (λa)m

m! exp (−λa) (10)

where λ is the rate of the process. The parameter λ also corresponds to the expected
number of transformation events per unit area. Another consequence of the Poisson
model is that the events are uniformly distributed over area a, and spatial separation
between transformation events is exponentially distributed. As the process is driven
by stress, the Poisson rate λ is assumed a monotonically increasing function of the
resolved shear stress (τ) on a twin system s. For convenience, the following power
law formulation is introduced:

λ (τ) = 1

a0

(
τ

τ0

)α

(11)

where a0 is a material parameter assumed to be constant, and τ0 is a characteristic
scalar stress value, which is interpreted as the stress required to dissociate, on
average, one grain boundary dislocation on area a0. Parameters a0 and τ0 are, in
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principle, functions of the defect content of the grain boundary. Therefore, they may
vary from boundary to boundary and differ, for instance, for a coherent boundary
versus an incoherent one.

To implement the above model into a computational mechanics code, the discrete
counting of the number of transformation events needs to be linked to a continuous
probability of forming a twin nucleus. To this end, a characteristic area ac is
introduced as the minimum area that can produce one twin, i.e., one characteristic
area ac produces one crystalline twin, which may have resulted from the coalescence
of n tinier twin nuclei created by n transformation events. Suppose that at least m*
distinct conversion events need to occur within ac in order to form one twin, then
the probability that at least m* events occur in ac is:

P
(
N ≥ m∗, ac

) = 1−
m∗−1∑

m=1

P(N = m, ac) (12)

Further, we assume that m* = 1, that is, at least one defect must be activated
within ac, which yields the following Weibull distribution.

P(S < τ) = P(N ≥ 1, ac) = 1− exp

(
−
(

τ

τc

)α)
(13)

Using Eqs. (12) and (13), we can redefine P(S < τ) as the probability that the
critical stress to nucleate a twin is less than or equal to τ. Here S is a random variable
that quantifies the critical nucleation strength or equivalently the stress required
to transform an appropriate number of grain boundary dislocations into twinning
dislocations.

The area ac is an important model length scale, where in all dissociation events
in ac lead to one twin. Accordingly, it sets the minimum twin spacing and the
maximum number of twin lamellae that can form from a grain boundary of area
Ak as n* = Ak/ac. The material parameter α governs the dispersion in S and is
linked to the type of defects in the grain boundary.

4.2 Statistical Representations of Grain Structures

The above model applies to twinning from one-grain boundary facet of area Ak.
Multiple grain neighbors in fact surround any given grain, and each neighbor shares
just one of the many facets that comprise a grain’s boundary.

Recall from Sect. 4.1 that in a given grain facet Ak, there are n* number
of potential sites to form a twin. Correspondingly, following Eq. (13), there is
a set of n* critical stresses Si, i = 1, . . . n*, assumed to be independent and
identically distributed. In order to assign the number of potential nucleation sites
n* for each grain, the three-dimensional grain structure is needed. At a minimum,
the microstructural parameters needed are (1) the number of neighbors (nk) or
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number of grain boundary facets of a grain and (2) the surface area of the grain
boundary facets Ak from which the twins will nucleate. These parameters depend
on the grain size distribution and the morphology of the grains in the sample and
can in principle be estimated from a combination of microscopy and some basic
stereological principles.

When the computational model is a mean-field model, like VPSC, every grain
is modeled as an ellipsoidal inclusion. Thus estimates are needed for the lattice
orientation, effective radius (or equivalently volume), and the ratio between major
and minor axes of the grains. For this purpose, the stochastic field model of
Thorvaldsen (1993) is adopted. Using simple geometric arguments, this model
develops an expression for the distribution of neighbors for a given grain and the
distribution of facet areas depending on its size, R, and shape. According to this
model, for a spherical grain with radius R, the expected number of grain neighbors
nf, E(nf), is related to the expected value of R, E(R) according to:

E (nf) = 4

(
1+ R

E(R)

)2

(14)

Given a neighboring grain with radius Rn, the contact area, Ak, is given by
(Thorvaldsen 1993):

1

Ak

= 1

π

(
1

Rn

+ 1

R

)2

(15)

To demonstrate, the mode is applied to high-purity HCP Zr. Figure 9 shows
the distribution of grain size (Capolungo et al. 2009), the predicted distribution for
the number of neighboring grains or facets, and the predicted distribution of grain
facet areas for Zr. The equivalent circle radius exhibits an approximate Rayleigh
distribution. Accordingly, the cross-sectional grain areas will be exponentially
distributed. The expected number of neighbors for this grain size distribution is 17,
indicating a wide range of grain sizes in the Zr aggregate being modeled.

4.3 Spatially Resolved Stress States in Deforming 3D Polycrystals

This critical stress τc can then be compared to the twin-plane resolved shear stress
(TRSS) for the twin variant in question. If it exceeds the TRSS, then a twin embryo
may nucleate, and if not, then the region remains un-twinned. For twinning, the
local stress state in the region in question for twinning is desired. Self-consistent
schemes can be used to calculate the local stress state in the grain. However the
formulation does not allow for calculation of the stress state in the boundaries. Also
by modeling each grain as an ellipsoid in a homogeneous medium, the scheme does
not provide a way of defining the orientation of the grain boundary with respect
to the loading direction. Full-field, spatially resolved techniques such as CPFFT
or CPFE, however, are particularly well suited for calculating stress distributions
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Fig. 9 Microstructural variations considered in the stochastic twin nucleation model: (a) grain
size, (b) number of grain boundary facets, and (c) grain boundary facet area (Niezgoda et al. 2014).
These microstructural distributions are obtained from the EBSD-based statistical analysis of pure
Zr (Capolungo et al. 2009)

within grains and in grain boundaries and triple and quadruple points. From this
model, the stress fluctuation distributions, the deviation in stress from the average
value, can be calculated and amenable for use in a mean-field technique.

Following this approach, CPFFT calculations are carried out on Zr. Several
(100) realizations of 3D grain structures of representative Zr material volumes were
performed to extract the stress fluctuations at grain boundaries (Kanjarla et al.
2012a; Niezgoda et al. 2013). The three-dimensional (3D) representative volume
elements, RVEs, were created using DREAM-3D. Each RVE contained 500 ± 50
grains with ∼5 × 105 grain boundary voxels or elements per RVE. For each
representative volume, simulations of multiple loading conditions were performed.
The deviations from the grain-averaged stress at the grain boundaries were extracted
for all representative volumes for each loading condition.

For one example RVE, Fig. 10a shows calculated stress fluctuations, defined as
deviations in the Von-Mises effective stress from the grain average stress, at 2.5%
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Fig. 10 Mechanical stress fluctuations as calculated in the CPFFT model: (a) the deviations in
the effective stress from the grain average stress. The FFT model contains 522 grains (Niezgoda
et al. 2013). (b) Distribution of the CPFFT calculated stress fluctuations from 100 different
representative volume elements like those in (a) (Niezgoda et al. 2013). (c) Separately, the
probabilistic nucleation model provides the probability distribution for the critical stress to form a
twin (Niezgoda et al. 2014)

applied strain. This result reveals significant deviations at the grain boundaries. It is
not uncommon for single grains to have regions near their boundaries that deviate
in both a highly compressive and tensile state from the grain average. Figure 10b
presents the observed deviations in the normal stress components from the grain
stress. By averaging over multiple loading conditions, the fluctuations on all three
normal components had approximately the same distribution, as did the three
shear stress components. As shown, the distributions are approximately Gaussian;
however, the extreme tails of the distributions extend significantly farther than would
be expected from a perfect Gaussian. For VPSC deformation simulations, a six-
dimensional Gaussian with a zero mean vector was used to reasonably represent the
CPFFT calculations.
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4.4 Incorporation of Statistical Stress and Strength Distributions
in HomogenizationModels

Carrying out the simulation with the probability model for twinning added, the
VPSC model needs as input the distribution for the twin nucleation stresses
and stress fluctuations. Figure 10c shows the former, the twin nucleation stress
distribution for ac = 0.01 μm2, α = 11.1, and τc = 310 MPa. The latter stress
fluctuations, just described in the prior section, are provided in Fig. 10b. In an actual
polycrystal, grain boundary misorientations are distributed, and their defect states
vary, and in deformation, both can vary in time. However, for simplicity, the same
Gaussian representation for the stress fluctuation distribution is applied for all grain
boundaries at all times during deformation.

The procedure used is described as follows. The calculation begins with a
description of the microstructure. The input texture for VPSC is constructed by
sampling 8500 grains from the EBSD maps produced by Capolungo et al. (2009).
The equivalent circle diameter from the EBSD is used to assign the weight or grain
size for each grain (Fig. 9a). For each grain, Eq. (14) is used to determine the number
of neighbors. The neighbors are randomly sampled from the input texture, and Eq.
(15) is used to assign facet areas Ak. Each facet is then divided into n* areas of
size ac. Each of these areas is a potential nucleation site for a twin of variant v. For
each site, at each strain increment, Eq. (13) is used to test for the nucleation of twin
variant v, which requires knowing the resolved shear stress τ(v) projected on the
twin variant v. To calculate τ(v), a stress fluctuation �σ is randomly sampled from
the characteristic distribution (Fig. 10) for each variant and is added to the grain
stress calculated at that strain increment. The sum is then projected onto the twin
system to compute τ(v). This procedure for nucleation is then repeated for every
twin variant at each site. In the case that multiple twin variants could nucleate from
the same site, a single variant is selected at random to propagate. Each nucleation
site is tested independently for nucleation, with no correlation with the neighboring
sites. Although nucleation could occur on more than one facet belonging to a grain,
in these example calculations, one facet for each grain is randomly chosen as the
one from which twins are allowed to grow. Using the above procedure, any variant
could nucleate, not just the one with the highest τ(v). Once a grain forms twins,
no further nucleation is allowed. Twin growth follows a deterministic stress-based
criterion, Eq. (5).

Using the above model, the deformation response of HCP Zr at three different
temperatures, liquid nitrogen (77 K), 150 K, and room temperature (300 K)
is simulated. In this calculation plastic deformation of Zr is accommodated by
prismatic <a> slip and pyramidal <c + a> slip and

{
1012

}
tensile and

{
1122

}

compression twins. The evolution of the critical resolved shear stresses for only
the slip modes follows the dislocation density-based hardening model developed
in Beyerlein and Tome (2008). The same twin nucleation stress distribution is
used at all temperatures, while the effect of temperature is included in the initial
CRSS and the dislocation density evolution rate for slip. Figure 11a compares the
model-predicted stress-strain curves at 76 K, 150 K, and 300 K under in-plane



1336 I. J. Beyerlein and M. Arul Kumar

900
a b

c

76K Experimental

150K Experimental

300K Experimental

76K VPSC

150K VPSC

300K VPSC

800

700

600

500

400

300

200

100

0 0.05 0.1 0.15

True Strain

T
ru

e 
S

tr
es

s 
(M

P
a)

0.2 0.25

1

0.8

0.2

0.15

Model Prediction

EBSD

0.1

0.05

0
0 0.1 0.2 0.3

Schmid Factor

F
re

qu
en

cy

0.4 0.5

Experimental data

Stochastic twin nucleation approach

Deterministic twin nucleation approach
0.6

0.4

0.2

0
v1 v2 v3

Twin variant

T
w

in
 n

um
be

r 
fa

rc
tio

n

v4 v5 v6

0.350.3
0

Twin Schmid factor distribution 

Twinning variant distribution 

Stress-strain response

Fig. 11 Comparison of results from the VPSC model, with the twin nucleation model incorpo-
rated, for the (a) stress-strain response, (b) twinning frequency as a function of Schmid factor, and
(c) twin number fraction for different twin variants at 10% compression. In (c), the frequency of
twin variants formed as predicted from the polycrystal VPSC model with and without the stochastic
twin model are compared. Without it, the criterion for forming a twin is deterministic. As shown,
better agreement with the EBSD data is achieved with stochastic twin formation implemented
(Niezgoda et al. 2014)

compression with the experimental curves for Zr. As shown, good agreement in the
calculated flow stresses and hardening rates for all temperatures tested is achieved.
Although not shown, the model also predicts well the experimentally observed
texture evolution (Fig. 6 of Niezgoda et al. 2014)) and twin volume fraction
evolution (Fig. 8 of (Niezgoda et al. 2014)). For completeness, the calculated twin
volume fraction at 5% and 10% compression for 76 K temperature loading is 4%
and 16%, respectively, which agrees well with the measured fraction from EBSD
images is 5% and 16%, respectively.

The importance of the stochastic twin nucleation model cannot be fully appreci-
ated from analyzing average responses. The model results can also be compared to
local, microstructure data distributions of twinning. Figure 11b compares the calcu-
lated number fraction of twins with a given Schmid factor after 10% compression at
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76 K with the experimentally measured number distribution of the observed twins
at the same strain from EBSD. Like the measurement, the calculated frequency is
also broad, including twins with high Schmid factors and with low Schmid factors
(m < 0.3). Figure 11c compares the model predicted frequency distribution of each
twin variants with that from EBSD. The model finds that the twin variant selected is
most likely (but not always) the one with the highest geometric Schmid factor and
that the grains that twin are most often (but not always) well oriented for twinning,
again, in agreement with the measurement. EBSD analysis indicates that only 50–
60% of the twins correspond to the twin variant with the highest SF, i.e., v-1, and
20% to the second highest SF variant, v-2. Remaining ∼20% of twins are the third
and fourth highest SF variants.

The model overall predicts well the macroscopic deformation response because
it predicts at the mesoscopic scale the formation of a broad range of twin variants
over a broad straining period. In contrast, the model employing a deterministic twin
nucleation approach, using a constant CRSS for all twins, predicts that ∼95% of
the twins activated are v-1 and the remaining ∼5% are v-2. Lower ranked SF twin
variants are not activated. The combined analysis of experiment and model results
provides evidence that twin formation in polycrystalline materials is stochastic.

5 Stochastic Twin GrowthModel

The earlier sections in this chapter discussed twin formation, as being derived
from reactions involving intense localized stress and dissociations of individual or
groups of discrete dislocations. The remaining sections of this chapter focus on the
thickening of the twin band. In this stage, the dimensions of the twin domain lie
above the atomic scale, being approximately submicron or micron and closer to
the dimensions of the parent grain. The stress fields surrounding twin domains of
this size range develop as a result of elastic and plastic deformation. The latter is
carried by the collective glide of dislocations and can be adequately modeled at this
scale by crystallographic slip. Accordingly, to study the effects of slip and crystal
orientation on these two stages of deformation twinning, we employ a full-field,
spatially resolved technique, the CPFFT model, which permits calculation of the
mechanical fields (stress, strain, strain rate) in the presence of discrete twin domains
within crystals. In the examples that follow, the model is applied to
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twins in HCP Mg and Zr metals. The anisotropic elastic constants (in GPa) for
Mg at room temperature are 59.75, 23.24, 21.70, 61.70, and 16.39 (Hearmon 1946;
Simmons and Wang 1971) and for Zr at 77 K are 143.50, 72.50, 65.40, 164.90, and
32.10 (Fisher and Renken 1964; Simmons and Wang 1971). Plastic deformation
is accommodated by basal <a>, prismatic <a>, and pyramidal <c + a> slip for
both HCP Mg and Zr metals. The critical resolved shear stress (CRSS) for basal,
prismatic, and pyramidal slip systems (in MPa) are 3.3, 35.7, and 86.2, respectively,
for Mg at room temperature (Beyerlein et al. 2011), and 700.0, 20.0, and 160.0,
respectively, for Zr at 77 K (Knezevic et al. 2015).
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5.1 Local Twin Boundary Stresses to Expand Twin

As mentioned earlier, twins most often nucleate at a grain boundary and propagate
across the grain until they are stopped at the opposing grain boundary. They thicken
further after having terminated at grain boundaries. Both the surrounding parent and
neighboring grains deform in order to accommodate the shear strains resulting from
the growing twin. To investigate the driving forces for twin growth, it is important to
understand the local stresses generated around the twin band. To this end, consider
a tri-crystal of three neighboring grains embedded in a polycrystal, as shown in
Fig. 12. The central grain contains the deformation twin, which spans the width
and intersects with the two neighboring crystals. The parent grain orientation is
(0◦,0◦,0◦), (Bunge convention), which corresponds to alignment of its c-axis with
the Z-direction.

Tri-crystal setup TRSS distribution after twinning 

TRSS profile along twin boundary 

a b

c

Fig. 12 CPFFT calculated twin stress distributions generated by a twin lamella in Zr (Kumar
et al. 2016a). (a) Tri-crystal setup consisting of a central grain “grain-1” containing a twin and
two neighboring grains, with the same orientation on each side. Orientations of grain-1 and grain-
2 are (0◦, 0◦, 0◦) and (0◦,30◦,0◦), respectively. (b) The twin-plane resolved shear stress (TRSS)
distribution after twinning and (c) TRSS profile along twin boundary before and after twinning
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Using CPFFT model, the stress and elastic and plastic strain tensorial fields are
calculated, and for analysis, the TRSS field is presented in Fig. 12b after twinning.
In this example, the neighboring grain orientation is (0◦, 30◦,0◦) and the material
is Zr. The stress inside the twin domain and along the lateral sides of the twins
is negative, and in the neighboring grains, it is positive. Note that before the twin
was present, the stress state was nearly uniform in the crystal, but when the twin is
present, the stress state remains homogeneous in the twin domain but has become
nonuniform, particularly in the matrix region immediately bordering twin. For more
details, the TRSS distribution along the twin after twinning is given in Fig. 12c. The
TRSS along the lateral interface of the twin band is negative, signifying that the
negative TRSS along the twin boundary acts in the anti-twinning direction and thus
serves as a resistance to further twinning. More quantitatively, a twin backstress
field can be defined as the difference in the TRSS before and after twinning. The
backstress is highest in value at each end, where the twin shear and reaction from
the neighboring grain is the greatest and decays toward the middle of the twin. The
backstress is the least at the middle of the twin. To migrate the boundaries, the
applied load would need to be increased further such that the local TRSS along
the twin becomes positive and exceeds a threshold value associated with boundary
migration.

The amount of twin backstress observed here depends on the ability of the
neighboring grain to accommodate the shear imposed by the twin. These grains
deform elastically and plastically, and in the latter case, the plastic accommodation
generally involves slip on multiple slip systems. For an HCP material, the activation
barriers for slip depend on the mode of slip and typically include basal <a> slip,
prismatic <a> slip, and pyramidal <c + a> slip. In the case of Mg, the easiest basal
<a> slip (∼3 MPa) only provides two independent slip systems. Thus, basal slip
alone would be insufficient to accommodate a general stress state, and in general
the next easiest prismatic <a> slip and/or hardest pyramidal <c+ a> slip would also
have to be activated at the twin/grain boundary junction. A neighboring grain well
oriented to accommodate the shearing action of the twin mostly with its easy slip
system would be considered a “plastically soft” neighbor. Less backstress would
result in the twin domain, particularly along the twin boundary. In contrast, a
neighboring grain that is oriented poorly for easy slip must activate relatively large
amounts of the harder slip modes in order to accommodate the shearing of the
twin. It would constitute a “plastically hard” neighbor. A higher backstress in the
twin would result and more applied load would be required to grow the twin. The
grain neighbor orientation effect could be one explanation for why in a polycrystal
some grains twin and others do not, despite being of similar size and orientation
(Beyerlein et al. 2010; Capolungo et al. 2009; Kumar et al. 2018).

5.2 Grain Neighborhood Effects on Stresses to Expand the Twin

In this section, we study the effect of neighboring grain orientation on the twin back-
stress and twin expansion. The EVP-FFT-based twinning simulations are performed
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Fig. 13 Effect of neighboring grain orientation on twin backstress (Kumar et al. 2017b).
Distribution of twin backstress in the neighboring grain orientation space in (a) Mg and (b) Zr.
The correlation between the twin backstress and the relative orientation of primary slip system in
(c) Mg and (d) Zr. In the calculations, easy basal slip systems in Mg and easy prismatic slip and
tensile twin systems in Zr are shown, and the less active systems are not shown

for 221 different grain orientations that represent the entire orientation space of
neighboring grains for a fixed parent grain orientation and twin type and variant. The
neighboring grain orientation space is represented in the φ versus φ1 plot, the two
angles denoting the in-plane rotation and c-axis misorientation, respectively (Kumar
et al. 2017b). Maps for Mg and Zr are given in Fig. 13a, b. The landscapes are very
different for these two materials. The magnitudes and anisotropy in the backstress
are much higher for Zr than Mg. In the case of Mg, the backstress is particularly low
(∼22 MPa) for the neighboring grain when the c-axis misorientation ranges from
0◦ to ∼25◦ and from ∼65◦ to 90◦, but slightly higher (∼25 MPa) for the c-axis
misorientation range from ∼25◦ to ∼65◦. In the case of Zr, the backstress is lower
(∼75 MPa) for the c-axis misorientation range from 0◦ to ∼45◦ and substantially
higher (∼105 MPa) for the c-axis misorientation range from ∼45◦ to 90◦.

Whether a grain neighbor is plastically hard and non-accommodating, leading
to a high backstress, or vice versa, plastically soft, leading to a low one depends
on the crystal’s ability to activate its easiest slip mode. For Zr, the easier modes
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are prismatic slip and tensile twinning, and these require higher CRSS values than,
say, Mg, for which the easiest one is basal slip and the CRSS value to activate it is
comparatively low. The backstress can be correlated to grain neighbor orientation
through its ability to activate its easiest slip or twin mode. A simple metric that
quantifies alignment between the twin in the parent and a given slip mode in the
neighbor is:

mrel = max ((bT .bs) (nT .ns)) (16)

where bT and nT are the Burgers vector and plane normal unit vector of the twin
and bs and ns are the Burgers vector and plane normal unit vector of different slip
systems of neighboring grain.

This relative neighboring grain orientation factor mrel ranges from 0 to 1 and
can be set as the maximum value calculated among the systems belonging to the
slip family. A high mrel means that the particular deformation mode is well aligned
with the twin and the likely one accommodating the twin shear. Similar measures
have been defined to quantify crystallographic alignment across boundaries but
for different purposes, such as slip-slip transmission (Clark et al. 1992), slip-twin
transmission (Wang et al. 2010b), and twin-twin transmissions (Kumar et al. 2016a,
2017a, c) across grain boundaries.

The relationships between mrel for the different deformation modes and the
calculated twin backstress from the CPFFT are obtained for both Mg and Zr.
For pure Mg, the relationship is studied between the twin in the parent and the
predominant basal slip mode in the neighbor. For Zr, the relationship is examined
for both prismatic slip and the tensile twin modes. It was found that the other
deformation modes are not strongly correlated with the backstress. Figure 13c shows
that for Mg, the twin backstress τB increases as mrel for basal slip decreases. In
the case of Zr, in Fig. 13d, the tensile twin mode exhibits the stronger correlation
with τB than prismatic slip. In particular, the correlation between τB and relative
orientation of neighboring grain tensile twin mTTwin is nearly linear following (see
the line in Fig. 13d):

τB = −26.63 mTTwin + 105.26 (17)

This relationship although simple can be used in mean-field polycrystal models
to indirectly account for neighborhood effects.

5.3 Incorporation of Neighborhood Effects in Homogenization
Models

To simulate the role of random neighboring grain orientations on the growth of twin
lamellae, the relationship expressed in Eq. (17) is incorporated into a larger scale,
mean-field visco-plastic self-consistent (VPSC) model. In this hybrid VPSC model
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(Kumar et al. 2017b), the twin shear rate is related to the TRSS by a power-law flow
rule, which introduces a resistance to twinning:

γ̇ v = γ̇o

(
τv

τtwin
c + τB

)n

(18)

where n = 20, γ̇o is the reference shear rate, τv is the TRSS of twin variant v
calculated in VPSC without a neighbor effect, and τB is the contribution of the
neighboring constraint to the resistance, the backstress we analyzed earlier with the
CPFFT model.

This hybrid model is applied to polycrystalline Zr. In the simulation, for every
grain, a neighboring grain orientation is randomly selected from the initial texture.
Provided the grain forms a twin, its pre-assigned neighbor orientation is used to
calculate the backstress on the twin using Eq. (17). Studies of the twin thickness
distribution can be used to observe the effects of the neighbor on the backstress.
Figure 14 compares the distribution of twin area fraction per twinned grain as a
function of twin Schmid factor with the experimental measurement (see (Capolungo
et al. 2009)). The model including grain neighborhood effects on twin growth
reduces twinning in the high Schmid factor region yet increases it in the low
Schmid factor region, providing overall better alignment with the data than the
model without the effect of backstress. We find in the model that including the
backstress neighbor effect lowers the growth rate for all twins, which is to be
expected. However, in order to form the same twin fraction to accommodate the
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applied strain as in the model without the backstress, the lower Schmid factor twins
grew to a larger volume, an interesting consequence that again, places the hybrid
model calculations in better alignment with the volume fraction of these low-rank
twins.

6 Conclusions and Outlook

Decades of reports from experimental analyses of deformed HCP materials have
undeniably demonstrated that deformation twinning is a highly heterogeneous
deformation mechanism, exhibiting significant temporal and spatial variability
across the crystalline microstructures. Yet to date the fundamental understanding
of the mechanistic origins of the statistical and stochastic nature of these types
of twins is still in development. Considering both the growing interest in HCP
materials for structural applications and the profound influence of twinning on
structural response, adopting a stochastic perspective in the studies of deformation
twinning during mechanical deformation is sensible. In attempt to evaluate progress
toward this end, this chapter reviews recent experimental analyses and modeling
efforts to describe some statistical aspects of deformation twins, correlate the more
statistically variable features of twins with parent microstructure, and propose
the mechanisms that explain the observed microstructure/twin relationships. The
contribution of grain neighborhoods to the statistical variability, as quantified by
combining experimental and modeling methods, is highlighted. In addition, recent
developments of stochastic twin nucleation and growth models are presented, with
the aim to determine how these stochastic aspects of twinning impact mechanical
behavior. The general finding is that substantial variation in twin formation, variant
selection, and size significantly impacts mechanical response, from yield and
hardening to ultimate strength. These strongly suggest that future pursuits for
stochastic approaches to understanding the mechanical response of HCP materials
that deform via twinning are worthwhile.

There are many other very important aspects of twinning that still require study
from a stochastic perspective that were not covered in this chapter. Commonly
seen in HCP materials, which twin profusely, are intragranular three-dimensional
networks of twins. Understanding on how these twin-twin junctions form and the
variation in the types of junctions that manifest would benefit from approaches
that adopt statistical descriptions and stochastic models incorporated in simulation.
It should also be noted that the mechanical properties reviewed in this work
pertained to responses obtained in simple loading states. Twinning microstructures
are, however, sensitive to deformation temperatures and imposed strain rates and
deformation histories. For instance, cyclic loading can induce phenomenon such
as detwinning, or changes in strain path can cause secondary twinning. There is
still much opportunity for investigating the stochastic aspects of these frequently
occurring twinning events.
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Abstract

This collection of papers gives an introduction and overview of recent devel-
opments in polymer/soft matter simulations. The variety of the contributions
reflects the fact that soft matter not only is based on a fast-growing body of
elementary chemical structures but even more so on the way these structures are
organized and interact with each other resulting in their specific structure/mor-
phology and function.

1 Materials Properties and Link to Statistical Mechanics

A comprehensive polymer or – better – soft materials modeling, preferentially
based on a thorough theoretical understanding of the underlying physical principles
and chemical structure, requires to consider properties and processes originating
from many connected length and time scales. Ideally that would mean a seamless
modeling strategy from quantum chemical methods all the way to macroscopic
continuum-based methodologies. Furthermore almost all experimentally available
systems are the result of a specific preparation procedure, meaning that their state
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is history dependent and thus not in thermodynamic equilibrium (in terms of the
physical definition). Systems are “stuck” in a local free energy minimum. This
requires a modified view away from the traditional structure property relationship
(SPR) toward a structure-process-property relationship (SPPR), based on insight
into processes on a molecular level. This holds even more so for all biological
systems.

Polymer/soft matter physics flourished with the development of universality and
scaling relationships for polymers in the last century by de Gennes, Edwards,
and many others (de Gennes 1979; Doi and Edwards 1986; Rubinstein and
Colby 2003; Doi 2013). That connected soft matter to the most modern statistical
physics at that time. Polymers were not only materials with interesting physical
properties, but they also became means to study modern physics. Scaling laws
provided a generic understanding of whole classes of materials and allowed a
systematic theoretical treatment. In parallel computer simulations, which focused
on such generic models, began to become more widely possible. At the same
time, chemistry similarly advanced and provided a huge wealth of new materials
with rather different properties. Mechanical, chemical, and electronic properties
and functionality can vary dramatically for different chemical species while the
generic laws still hold. A rather trivial example may illustrate this. The viscosity
η of a polymer melt follows the law η = f(T, . . . ) N3.4, N being the polymerization
index of the chains and f being a function of temperature, local chemistry, etc..
Doubling N increases the viscosity by roughly a factor of 10. This holds for all
polymers, i.e., it is universally valid. However by, e.g., changing the temperature
by a few degrees close to the glass transition temperature, η also easily changes
by a factor of 10 or more. Thus the prefactor f and the power law allow the
adjustment of materials properties to the same degree, however by different means.
It is this extreme versatility based on a combination of chemistry-specific aspects
and generic power laws that makes soft matter an ubiquitously demanded class
of materials (Potestio et al. 2014). Modern materials modeling has to take these
two adjusting screws properly into account. Needless to say, that despite all the
progress over the last years, many old and new challenges are tackled by the
community.

2 Contributions

The collection of articles in this chapter provides an overview of recent devel-
opments in different areas of computational physics and materials science of
soft matter. It covers topics from classical polymer solutions and melt materials
simulations all the way to modern data-driven approaches. While such a collection
cannot be complete, it should provide insight and guidance to further literature.

�Chapter 61, “Polymer Solutions” by B. Dünweg builds upon scaling rela-
tionships for statics and dynamics. It introduces the intuitive blob picture and
the crossover scaling concept. While being especially of interest in the context
of theoretical physics, polymer solutions play an important role in many areas of
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technology, e.g., as viscosity modifiers. After introducing the theoretical concepts,
the power of modern advanced simulation approaches is illustrated. This includes
a short discussion of the difference between simulations including explicit versus
implicit solvent. While less relevant for actual materials science problems, concepts
and technologies developed in the context of solutions form a starting point for many
applications presented in the subsequent chapters.

A special class of polymers with ample applications in science and technology
ranging from chemical industry through health care and food science, not to speak of
their biological relevance, are polyelectrolytes. In �Chap. 62, “From the Atomistic
to the Macromolecular Scale: Distinct Simulation Approaches for Polyelectrolyte
Solutions,” J. Smiatek and Ch. Holm cover the range of simulations from systems
with atomistic details to more coarse generic models allowing to study structure
formation and aggregation. Polyelectrolytes are charged macromolecules, where
charges are dissociated from (some of) the beads. They can, depending on chemistry,
either be anionic or cationic. In some special cases, one can have both types of
charges within one macromolecule. Strong polyelectrolytes are completely ionized,
while weak polyelectrolytes are only partially ionized. The degree of ionization,
e.g., depends not only on pH but also on the properties of the uncharged parts
of the molecule in between. Material properties equally depend on the long-range
properties of the electrostatic interaction, i.e., screening due to salt, etc., as well as
local chemistry-dependent aspects like poor solvent collapse or aggregation and ion
dissociation.

At the other end of classical polymer materials problems are long chain polymer
melts. �Chapter 63, “Resolving Properties of Entangled Polymers Melts Through
Atomistic Derived Coarse-Grained Models” by G. S. Grest and coworkers explain
in detail how to obtain quantitative information for the dynamics in polymer
melts by particle-based multiscale simulations. As an example, the most abundant
commodity polymer polyethylene (PE) is chosen. This is the most simple polymer –
a chain of CH2 groups – which, however, displays all the characteristics and com-
plications of conventional polymer melts. Thus it provides a perfect demonstration
case as, on the one hand, local energy barriers and interactions are well known,
making it possible to connect simulations to experiment without any free parameter.
On the other hand, very precise experiments are available. The authors in detail
explain how different levels of coarse graining affect the dynamics of the coarse-
grained model in comparison to the underlying all-atom model. While the mapping
of length scales is trivially given by the mapping procedure between all-atom and
coarse-grained beads, this is not at all the case for dynamics. Actually mapping
dynamics properties between different models is not at all trivial and still poses one
of the central questions to be solved. This is a currently highly active research topic
at the interface between applied mathematics and materials modeling. However, it
would be beyond the scope of this chapter to cover such still rather preliminary
research at this point.

So far, the chapters mentioned above described the classical approach of a
bottom-up ansatz. Starting from a detailed, eventually all-atom description, system-
atically coarse-grained models are developed and studied. A complementary way of
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incorporating specific materials properties into coarse models is given in the �Chap.
64, “Top-Down Hybrid Models of Polymers” by K. Daoulas. Within these models,
particles interact with their surrounding not in a particle-particle fashion but with
an averaged field formed by all the other surrounding particles. This can speed up
simulations dramatically; however the methodology includes several complications,
which have to be addressed carefully. In this chapter, the theoretical framework
is discussed in detail, and a solid basis for practical work is provided. Including
specific materials parameters into these rather coarse models also requires special
care. Recently these methods have found ample applications in block copolymer
systems and polymer systems with locally anisotropic morphology, such as dense
conjugated polymers studied for organics electronics.

When dealing with polymer electronics, all the above-discussed methodologies
come into play as is described in �Chap. 65, “Multiscale Concepts in Simulations
of Organic Semiconductors,” by D. Andrienko. Organic electronics, and more
specifically polymer-based electronics, play an increasingly important role in
several areas of technology and research such as in the study of organic solar
cells, organic light-emitting diodes (OLEDs), or field-effect transistors. The idea
is that using soft matter, eventually printable electronics can be developed. For
this conjugated organic compounds have to be developed, which not only provide
the appropriate intramolecular electronic properties but also form morphologies
(amorphous, liquid crystalline, or crystalline), which foster charge transport along
the backbones but equally important also between different molecules. Like for
inorganic semiconductors, doping is needed as well. Here processing becomes
especially important. For these complicated systems, a rational has to be developed
to relate device properties to chemical structure and processing history. This
cannot be accomplished by simulations alone but requires a close interaction with
experiment. The chapter explains the workflow of methodologies to be applied and
illustrates this for several examples.

So far examples have been presented, where multiscale modeling is employed in
a sequential way, i.e., full systems are studied on different levels of resolution. There
are however situations where this is not advisable. In many cases, local chemical
detail is needed in some region of space, e.g., docking of a ligand to a protein,
while further away details are not needed, and a more coarse description is sufficient
to account for, e.g., thermal fluctuations. L. Delle Site and coworkers describe the
�Chap. 66, “Adaptive Resolution Molecular Dynamics Technique” which allows
the simultaneous treatment of different resolutions in a liquid within a single
simulation setup. The class of closely related methods, named AdResS (adaptive
resolution simulation) methods, allows the simultaneous simulation of a system on
an all-atom, coarse-grained, and continuum level, while the exchange of molecules
between different regions of space is not at all restricted. The scheme allows to
couple rather different system, e.g., also the coupling of all-atom simulations to an
ideal gas, which makes true grand canonical MD simulations easily possible. After
describing the general theoretical framework, a few specific examples are given,
which illustrate how local chemistry-specific aspects and more global properties
influence each other.
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So far techniques and concepts have been discussed, which are based on physical
concepts and chemical information about the systems. In parallel computer science
over the years has developed (deep) learning methods, which are entirely based
on available data, i.e., so-called training sets. These methods turn out to be quite
successful in many areas, when it comes to the identification/description of general
properties. However the inverse design question, namely, to derive a potential energy
function from data or to design new chemicals based on “big data” remains a
formidable problem. At this point in recent years, a combination of data-driven
approaches together with physical/chemical insight has been developed, which leads
to a new area of materials simulation and materials discovery. Especially for soft
matter, this connection to simulation runs is needed, as entropy is as relevant as
energy, unlike for hard matter. T. Bereau introduces these new methodologies in
�Chap. 67, “Data-Driven Methods in Multiscale Modeling of Soft Matter.” There
he also illustrates alternative approaches of sampling in chemical space rather than
being confined to physical space of only one kind of system.

All the above chapters deal with soft materials, where thermal fluctuations lead
to spatial and temporal averaging or where the response to external driving forces
is studied. System evolution beyond thermal fluctuations is triggered by well-
defined external sources. There is, however, a rather huge class of soft matter,
whose behavior is governed by internal activity, such as bacteria, sperm, colloidal
microswimmers, and so on. They consume energy, which can be supplied by various
means and develop very interesting motion and structure patterns, especially of
interest in biological context. From a modeling point of view, this poses special
challenges as one is dealing low Reynolds number hydrodynamics of active systems,
which only rather recently also got into the focus of experiment. R.G. Winkler
and G. Gompper tackle this problem in their contribution (�Chap. 68, “Hydro-
dynamics in Motile Active Matter”), where several advanced methods to include
hydrodynamics effects in dissipative systems are introduced and applied to different
classes of microswimmers. The applications range from the study of individual
active microswimmers to collective behavior of larger flocks of swimmers.

3 Summary/Outlook

The contributions of this general chapter provide an introduction into the very
wide field of multiscale polymer/soft matter simulations and should guide to more
special and extensive literature (see, e.g., following reviews and books: Frenkel
and Smit 2001; Voth 2008; Peter and Kremer 2009; Noid 2013; Potestio et al.
2014; Schiller et al. 2018). Studies of large biomolecular systems as proteins or
assemblies of proteins are not covered but are closely connected. The same holds
for field-based approaches used in an (mainly commercial) engineering context,
such as finite element-related methods (Zheng et al. 2008; Meijer and Govaert
2003). I am sure that the described materials simulations in connection with new
advanced data-driven method as well as with links to biomolecular simulations
and quantum chemistry on one side and engineering with molecular insight on
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the other side will significantly grow and become even more important. Advanced
simulation methodologies in general and for soft matter in particular are at a point
of transition from reproducing and supporting experiment and theory under well-
defined and thus controlled conditions toward true predictive power for materials
properties and guidance of experiments. This can lead to new molecular systems,
as suggested by advanced sampling in chemical space or to new materials based on
molecular insight into specific processing conditions, which only can be acquired by
modern simulations approaches. Thus materials discovery by advanced multiscale
modeling seems in reach. This software-based development will be further seconded
by increasingly available high-performance computing (HPC) power.
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Abstract

The chapter provides a brief general introduction into the concepts of scaling,
universality, and crossover scaling, plus the blob concept that provides an
intuitive picture of crossover phenomena. We present the most important static
and dynamic scaling laws for unentangled uncharged polymer solutions, together
with their test and refinement by careful computer simulations. A hoard of
simulation methods has been developed for these systems, and these will be
briefly discussed as well.

1 Introduction

Polymers exist in a variety of states and situations. They may appear as bulk systems
or in confined geometries (like films), and they may be solid (semicrystalline,
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rubbery, or glassy) or liquid. In the liquid state, the macromolecules may form a
dense melt, or they are dissolved in a solvent of good or poor quality. Finally, for
a solution, it makes a huge difference if the molecules are charged or not; in the
former case, one has a polyelectrolyte system.

Theoretical physics is mainly interested in the universal properties of polymer
systems, i.e., those properties that do not depend on the details of the chemistry that
defines the monomer. Lots of insight has been gained by deliberately discarding
these details and rather focusing on the effects that result from the physics of
macromolecules as such. The most important aspects here are (i) connectivity, i.e.,
the macromolecular architecture, which may be linear chains, rings, stars, combs,
networks, etc. (in other words, the topology arising from bonded interactions), (ii)
nonbonded interactions (here in particular the excluded-volume interaction, solvent
quality effects, and possibly long-range electrostatics), (iii) (possibly) geometric
restrictions, and (iv) (for solutions) the dynamic coupling between the motion of
macromolecules and the flow of the surrounding solvent (the so-called “hydro-
dynamic interaction”). This is altogether the huge field of theoretical polymer
physics, for which excellent textbooks (De Gennes 1979; Doi and Edwards 1988;
Grosberg and Khokhlov 1994; Rubinstein and Colby 2003) exist. Even though
the complicated chemistry has been replaced by simplified or coarse-grained
models, understanding the physics is still a challenging and complicated problem,
which one cannot simply “solve” by straightforward pencil-and-paper analytical
theory. Rather, one has to rely on a combination of intuitive insight, theoretical
approximations, experiments in the laboratory, as well as careful numerical studies
of well-defined models.

The most successful computer models in the “universal” regime of phenomena
are (i) simple lattice models and (ii) bead-spring models in the continuum. Both
types of models can faithfully model connectivity and interactions (aspects (i)
and (ii) of the previous paragraph); however, they have different strengths and
weaknesses when it comes to further aspects. Lattice models are particularly well-
suited for Monte Carlo studies of static properties, while bead-spring models are
particularly amenable for studying the dynamics of systems with hydrodynamic
interactions and for applying molecular dynamics and similar methods, which are
much easier to parallelize than Monte Carlo algorithms.

The present chapter attempts to provide some overview of the physics (statics
and Brownian dynamics) of neutral polymer solutions in the bulk and computer
simulations that have provided confirmation and/or refinement of the underlying
ideas. For polyelectrolyte solutions and dense melts, please see the contributions by
C. Holm and G. S. Grest in this volume, respectively.

2 Scaling Laws

A good deal of theoretical polymer physics is concerned with so-called “scaling
laws.” This is a very general concept, which has proven extremely useful not only
for polymers but also, e.g., in the theory of critical phenomena or the study of
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turbulence. From an abstract point of view, scaling laws are nothing but a special
case of the general observation that the mathematical structure of a physical theory is
strongly restricted or perhaps even fully determined by the underlying symmetries.
Here we deal with a special symmetry, which is the invariance under the rescaling of
parameters. Suppose we consider a certain physical quantity Q and we are interested
in its dependence on another physical quantity P . As an example, let us think about
the dependence of the average size R of a polymer coil on the contour length L

of the (linear) molecule. Let us further assume that we pick a certain value of P ,
P = p, as the basic unit for P . Let q be the value of Q for this particular P value.
Then we may write the relation in dimensionless form:

Q

q
= F

(
P

p

)
, (1)

where F is a dimensionless function with F(1) = 1. Of course, we could also
use a different unit system, by picking a different value p′ for the P units and the
corresponding value q ′ for the Q units, such that we also have

Q

q ′
= Q

λq
= G

(
P

p′

)
, (2)

with (in general) another function G, G(1) = 1, where the rescaling factor is given
by λ = q ′/q. On the right-hand side, we can similarly introduce φ = p′/p.
Obviously φ will depend on λ, φ = φ(λ). Now, the system is scale invariant if
φ depends only on λ but not on the point from where the rescaling started (i.e., not
on p, q) and if also G = F . In other words, scale-invariant systems are those that
are characterized by a lack of intrinsic scale or those where the physics does not
provide some most natural unit system. In our polymer coil example, this means
that it does not matter how long the subchains are into which the full molecule is
decomposed (as long as these subchains are long compared to the size of a chemical
monomer and short compared to the overall contour length). Since we can combine
two rescaling transformations with factors λ and μ into a single one with factor λμ,
we have, for scale-invariant systems,

φ(λμ) = φ(λ)φ(μ) (3)

and of course φ(1) = 1. By mapping this relation onto a differential equation, it is
trivial to show that its solution is a power law:

φ(λ) = λ1/α, (4)

with an undetermined exponent α. Insertion into Eq. 2 yields

Q

λq
= F

(
P

λ1/αp

)
, (5)
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or, with x = P/p,

F(x) = λF(λ−1/αx). (6)

By picking the special value λ = xα , we see that F is also a power law:

F(x) = xα. (7)

In other words, scale invariance automatically gives rise to power laws. For our
polymer coil example, this means

R

R0
=
(

L

L0

)ν

, (8)

where R0 is the coil size for contour length L = L0 and the Flory exponent ν

depends on the physical situation. For flexible (i.e., sufficiently long) polymers in
three dimensions, ν takes the value 1/2 for random-walk (RW) statistics, while it is
roughly 0.59 for self-avoiding walk (SAW) statistics, which applies in good solvent
conditions. Finally, for a chain that forms a collapsed globule due to attractive
interactions, ν = 1/3.

It is important to realize that the exponents of scaling laws are typically universal
(and this is certainly true for ν). This is so because scale invariance means
that the system “looks the same” after proper rescaling. Now, the idea of the
renormalization group for polymers (Des Cloizeaux and Jannink 1991; Schäfer
1999) is that one should start from an original system and then subject it to a
coarse-graining procedure, where several original monomers are lumped into new
effective monomers. Iterating this, the chain more and more “forgets” its chemical
details, while only the asymptotic scale-invariant structure remains – and this is the
same for all original systems within a so-called “universality class.” For polymers,
all chains with relevant excluded-volume interactions belong to the universality
class of SAWs while those with turned-off excluded volume to the RW universality
class. For simulations, the concept of universality implies that any model can in
principle be used, as long as it falls into the universality class that one wishes to
study. This in turn means that the construction of models is mainly guided by con-
siderations of conceptual simplicity, computational efficiency, and convenience in
general.

Further important universal quantities are amplitude ratios and crossover scaling
functions. The latter will be discussed in the next section; the former are simply the
ratios of prefactors of scaling laws in dimensionless form. For example, one can
study various measures of the size of a polymer coil, i.e., the end-to-end-distance

RE ≡ 〈
R2

E

〉1/2
, the gyration radius RG ≡ 〈

R2
G

〉1/2
, and the hydrodynamic radius

RH ≡
〈
R−1

H

〉−1
, with
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R2
G = N−1

∑

i

(ri − RCM)2 , (9)

RCM = N−1
∑

i

ri , (10)

RE = rN − r1, (11)

R−1
H = N−2

∑

i �=j

∣∣ri − rj
∣∣−1

. (12)

Here N is the number of monomers of the chain, whose coordinates are denoted with
ri . In the asymptotic long-chain limit, the ratios RE/RG and RG/RH are universal
numbers, taking the values

√
6 and 8/(3

√
π) for three-dimensional RWs.

3 Crossover Scaling

There are many situations where one needs to consider the dependence of a quantity
on more than a single variable. For example, in polymer solutions, one is interested
in the dependence of the coil size on degree of polymerization N , concentration c

(total number of monomers per unit volume), and solvent quality. In such a situation,
scale invariance is expressed by a straightforward generalization of Eq. 6:

F(x1, x2, . . .) = λF(λ−1/α1x1, λ
−1/α2x2, . . .). (13)

A particularly important case occurs if there are just two arguments, in which case
we have

F(x1, x2) = x
α1
1 F(1, x−α1/α2

1 x2), (14)

such that apart from the power law x
α1
1 , we also have a dependence on the “crossover

scaling variable” xc ≡ x
−α1/α2
1 x2, while F(1, x−α1/α2

1 x2) is then called a “crossover
scaling function.” Typically the behavior becomes simple in the asymptotic limits
xc $ 1, xc & 1, where simple power laws F ∝ x

β>

1 , F ∝ x
β<

1 are recovered. In
such a case, the crossover scaling function must itself asymptotically behave like an
appropriate power law. Finally, if F describes the behavior of a universal ratio, it
must itself be universal in the limit of long chains.

4 Blobs

Crossover phenomena in polymer solutions can conveniently be described in terms
of so-called “blobs.” A blob is a portion of the polymer chain that is composed of g
monomers and has a typical extension (the “blob size”) ξ . This length scale marks



1366 B. Dünweg

the crossover between two different behaviors, and typically an energy of kBT

(thermal energy) is associated with it. The blob concept provides a nice pictorial
description of crossover phenomena and is hence a very useful tool for deriving
crossover scaling laws. The most important crossovers in the statics of polymer
solutions are those between RW and SAW behavior, driven by (i) attractive effective
interactions and (ii) concentration.

For a single isolated chain, the quality of solvent can be measured in terms of
an effective interaction energy ε(T ), which measures the temperature-dependent
degree of attraction between two monomers. At the temperature of the theta
transition (Lifshitz et al. 1978; Schäfer 1999) (T = Θ), the repulsive and attractive
parts of the interaction cancel out, such that effectively the chain behaves as a RW.
In the vicinity of T = Θ , we may write ε(T ) = ε0(1 − Θ/T ), which gives rise to
a dimensionless interaction parameter z0 = (kBT )−1ε0(1−Θ/T ). For any z0 > 0,
the chain structure is asymptotically a SAW. However, if z0 is small, the amount of
repulsion is too small to disturb the RW statistics on small length scales. This gives
rise to a thermal blob size ξT corresponding to gT monomers, of which each has a
size b, such that ξT ∼ bg

1/2
T . The number of monomer-monomer contacts within

the blob is estimated as g
1/2
T . The blob size is found by equating the total energy in

the blob with kBT , i.e., g1/2
T z0 ∼ 1, or ξT ∼ b/z0. Visualizing a very long chain as

a SAW composed of RW blobs, one finds R ∼ ξT (N/gT )
ν or

R ∼ bN1/2
(
N1/2z0

)2ν−1
, (15)

from which the relevant crossover scaling variable z = N1/2z0 is read off. For
chains that violate the condition N $ gT , Eq. 15 is generalized to

R ∼ bN1/2f (z), (16)

where the crossover scaling function f (z) behaves like f (z) ∼ z2ν−1 for z $ 1
while f (z) ∼ 1 for z& 1.

Next, let us consider the concentration-driven crossover from SAW to RW
behavior in perfectly good solvent, as a result of Flory screening of excluded-
volume interactions (De Gennes 1979; Rubinstein and Colby 2003). The overlap
concentration c0 is the concentration where an arrangement of perfectly swollen
chains is just space-filling, i.e., c0 ∼ N/R3 ∼ b−3N−(3ν−1). At concentrations
c that significantly exceed c0, the chains overlap. This gives rise to concentration
blobs of size ξc, containing gc monomers. Since on length scales below ξc there
is no overlap, the SAW structure is unperturbed in this regime. Conversely, on
scales above ξc, we have RW behavior. Therefore, ξc ∼ bgν

c and c ∼ b−3g
−(3ν−1)
c

or ξc ∼ b(b3c)−ν/(3ν−1). A long chain is then a RW composed of SAW blobs,
R ∼ ξc(N/gc)

1/2 or
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R ∼ bNν
( c

c0

)− ν−1/2
3ν−1

, (17)

from which the natural crossover scaling variable c/c0 is read off. The general-
ization in terms of a crossover scaling function is R ∼ bNνf (c/c0), where now
f (c/c0) ∼ 1 for c/c0 & 1, while for c/c0 $ 1 the power law Eq. 17 is recovered.
A solution whose monomer concentration is small but whose chains are so long that
there is nevertheless a strong overlap is called “semidilute.” The semidilute regime
ends at a concentration c00 where the blob size has shrunken to the monomer size,
such that no SAW regime is left.

In the general case, the structure is determined by the interplay between
concentration and solvent quality effects or the competition between ξT and ξc. For
the ideal picture of a semidilute solution, we have b & ξT & ξc & R. On length
scales below ξT and above ξc, we have RW behavior. This is due to attraction on
the small scales and due to Flory screening on the large scales. For length scales
between ξT and ξc, we have SAW behavior; this regime shrinks more and more
upon deteriorating the solvent quality or upon increasing the concentration. This
picture gives rise to the generic phase diagram shown in Fig. 1. For more details
on the derivation, see the textbook literature or the supplemental material of Jain
et al. (2012a). It is important to note that all universal ratios can, in the asymptotic
limit of infinite chain length, be expressed in terms of just the two crossover scaling
variables z and c/c0.

5 Dynamic Scaling

Polymer statics provides us with two important length scales, the monomer size
b and the coil size R. In case the system needs to be described in terms of
a blob picture, there may be a blob size, or possibly even more blob sizes, as
additional important length scales. In a dense melt of long chains, there may also be
entanglements, which give rise to a “tube diameter” as yet another important length
scale. In the present chapter, we will only consider non-entangled systems, where
the chains are either too short or too dilute to develop entanglements.

The idea of dynamic scaling for the Brownian motion of polymers may then
be understood as follows: For each length l, there is an associated time τ(l). This
time may be viewed as the time that a subchain of extension l (in real space, not
along the contour) needs to move diffusively by its own size. Alternatively, we
may also pick a single monomer and study the time dependence of its root mean

square displacement,
〈
(Δr)2

〉1/2
. The time τ(l) would then be given by the time that

passes until
〈
(Δr)2

〉1/2 = l. The underlying concept is here that the single-monomer
motion must be consistent with the motion of the object as a whole. Now suppose
we consider l values that are well within a regime that is bounded by two of the
important scales mentioned in the previous paragraph, with no further important
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scale in between. Then we again have a lack of a naturally provided unit system,
and this applies not only to lengths but also to times. Therefore, the dynamics in
such a regime must be described by a power law

τ(l) ∝ lz, (18)

which defines the dynamic exponent z (not to be confused with the crossover scaling
variable of the previous section!), applicable to the regime under consideration.

Let us first consider a system where no blobs occur. This can either be a dilute
solution (c & c0) or a dense melt (c $ c00). The longest relaxation time τR is
associated with the coil size:

τR ∝ Rz. (19)

Dynamic scaling then implies that the mean square displacement for times t with
τ(b)& t & τR must obey
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〈
(Δr)2

〉
∝ t2/z. (20)

Furthermore, if D denotes the center-of-mass diffusion constant of the chain as a
whole, we have DτR ∼ R2 or D ∝ R−(z−2).

For an isolated chain in solvent (dilute limit), the intra-chain hydrodynamic
interaction (i.e., the strong coupling of the monomer motion to the flow of the
surrounding solvent) gives rise to so-called Zimm dynamics (Doi and Edwards
1988). A characteristic feature of Zimm dynamics is that the diffusive behavior
of the chain is essentially that of a Stokes sphere, D ∼ (kBT )/(ηR), where η is
the solvent viscosity. More precisely, the approximate Kirkwood theory (Doi and
Edwards 1988) predicts D = (kBT )/(6πηRH ). From this, one reads off z = 3.

In case the chain is in a dense melt, the hydrodynamic interactions are screened
(more about this below). Therefore there are no hydrodynamic correlations in the
monomer displacements, and if entanglements play no role (which is the case if
the chains are not too long), then the relevant theory for the dynamics is the Rouse
model (Doi and Edwards 1988). Here one simply assumes a homogeneous viscous
background, and each monomer has a friction constant ζ . The friction coefficients
of these monomers simply add up to yield the total friction coefficient of the chain.
Therefore D = (kBT )/(Nζ). Since R ∼ bN1/2 (in a dense melt, we have RW
statistics), D ∝ R−2 or z = 4.

In a semidilute solution, the length scale that governs the crossover from Zimm
to Rouse dynamics is again the blob size ξc. Up to this length scale, one has
unscreened excluded-volume and hydrodynamic interactions, i.e., SAW statistics
and Zimm dynamics. The corresponding time scale is the blob relaxation time τξ ∼
ηξ3

c /(kBT ). The blob as a whole has a Stokes friction coefficient ∼ηξc. Computer
simulations (Ahlrichs et al. 2001) have shown that hydrodynamic interactions are
unscreened as long as the time scale is significantly below τξ , regardless of length
scales. This is reasonable, since on these short time scales, all monomers just move
with the flow, such that correlations exist even on length scales significantly beyond
ξc. Conversely, for times significantly above τξ , the blobs “feel” that they are not free
to move (or that chain-chain collisions occur). Therefore, the blobs then dampen the
hydrodynamic flow velocity u with a friction force per unit volume of (De Gennes
1976) ∼ηξcξ

−3
c u, which is a term that should be added to the Stokes equation for

u. For such a situation, the flow field generated by a point force does no longer
decay like 1/r (r: distance from the point force) but rather like exp(−r/ξH )/r ,
where the hydrodynamic screening length ξH ∼ ξc. Hydrodynamic screening is thus
understood as a randomization of hydrodynamic correlations, induced in essence by
chain-chain collisions.

It should also be mentioned that melts do not exhibit strict Rouse dynamics in the
dense limit, even if the chains are quite short. The reason is dynamic coupling of the
chain motion to the viscoelastic modes of the “matrix,” which gives rise to subtle
corrections (Farago et al. 2012a, b). Similarly, there are also subtle corrections to the
RW statistics of polymer chains in a melt (Wittmer et al. 2004). Both results have
been obtained by careful computer simulations.
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6 Simulations I: Statics

To study universal static single-chain properties, the method of choice is clearly
Monte Carlo (MC) of lattice models, where chains are simply walks on a lattice.
Mostly simple cubic lattices are studied, but other lattice structures are permitted
as well. The so-called pivot algorithm (Madras and Sokal 1988) is presently the
most efficient method known. Here one randomly selects a subchain and rotates
it by a random angle around a random axis. This is an MC trial move, which
is accepted or rejected by the standard Metropolis criterion. Presently the fastest
known implementation is that by N. Clisby (2010), where the information about
the chain conformation is stored in a somewhat unconventional manner: Firstly, one
defines a bounding box about the chain as a whole. Associated with it are global
properties like number of monomers, end-to-end vector, gyration radius, and center-
of-mass coordinate. Then one subdivides the chain into two subchains, for each of
which the analogous information is stored. This is done recursively all the way to
the monomer level, such that one obtains a binary tree. The coordinates of each
box and its contents are stored relative to the coordinates of the coarser level. This
makes it possible to move one such “container” as a whole without the need to ever
touch the data of the finer levels that it contains. Similarly, overlap checks are done
by checking the overlap between bounding boxes: If they do not overlap, then their
contents will surely not overlap either. With such tricks, it is possible to reduce the
computational complexity of one pivot move to lnN , such that very long chains are
accessible. A recent study (Clisby and Dünweg 2016) has thus been able to find
for three-dimensional SAWs: ν = 0.58759700(40), RG/RH = 1.5803940(45), and
R2

E/R2
G = 6.253531(10).

Similarly, accurate MC calculations have been able to study the Θ transition
in three dimensions (Grassberger 1997) and in particular investigate the subtle
logarithmic corrections to scaling that occur there. For this study, the so-called
“PERM” (prune-enriched Rosenbluth method) algorithm was used, where chains
are grown step by step and statistical criteria decide at each step if a chain is
terminated, continued, or even branched to generate yet another chain. In this way,
unbiased samples of long chains may be generated. Universal crossover scaling
functions for the Θ transition were studied as well (Kumar and Prakash 2003),
using the methodology of Brownian dynamics (BD; we will discuss this method
briefly below). This study emphasized the importance of appropriate extrapolation
procedures: In order to find the crossover scaling function, one should work at a
constant value of the crossover scaling variable (here z = N1/2z0) and study the
residual dependence of a universal ratio (like RG(T )/RG(T = Θ)) on the chain
length. This residual dependence is a correction to scaling; therefore the asymptotic
universal behavior is obtained after extrapolation N →∞.

The crossover scaling for Flory screening in good solvent was studied utilizing a
lattice model and MC simulation (Paul et al. 1991). However, here the model was the
so-called bond fluctuation model (Carmesin and Kremer 1988), where monomers do
not occupy single sites but rather elementary cubes, while the connecting bonds may
vary within limits. This allows to implement an MC dynamics that involves simply
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a random displacement of an elementary cube on the lattice. Indeed it was found
that a crossover from SAW to RW statistics occurs, with a crossover length scale
ξc that exhibits the concentration dependence predicted by blob theory. Later, the
same model was also used to reveal the corrections to purely Gaussian behavior in
a melt (Wittmer et al. 2004).

Finally, the double crossover that results from the competition between the theta
blobs and the Flory screening blobs has recently been studied by BD (Jain et al.
2012a). The internal blob structure could not be resolved, for lack of sufficiently
long chains; however the dependence of total chain properties like the coil size on
concentration and solvent quality was in perfect agreement with blob theory. The
same was true for dynamic properties like the diffusion constant.

7 Simulations II: Dynamics

For studies of dynamics, one needs algorithms that faithfully reproduce the motion
of the monomers, at least on the (typically long) time scales that one is interested
in. Obviously, brute-force molecular dynamics (MD) will satisfy this condition, if it
involves all particles in the system. This approach has been highly successful for the
studies of melts (see contribution by G. S. Grest in this volume) and can in principle
also be applied to the dynamics of solutions, where the hydrodynamic interactions
are taken into account by explicit solvent particles. Zimm dynamics for a single
chain could thus be successfully established (Pierleoni and Ryckaert 1992; Dünweg
and Kremer 1993). For such studies of a single macromolecule in a simulation box,
one has to take into account that the latter is typically not much larger than the
chain itself. Therefore, one has to deal with strong finite-size effects, which scale
as RG/L, where L is the linear box size. This is a direct consequence of the long-
range nature of the hydrodynamic interactions: Since the flow field generated by
a point force decays like 1/r (r: distance from the force center), the correlations
between the stochastic displacements of two distinct monomers are proportional
to the inverse interparticle distance. The theory thus provides detailed quantitative
predictions about the magnitude of such finite-size effects, and this in turn makes it
possible to quantitatively check Zimm theory even in a finite-box situation.

However, for solutions MD is nearly always unnecessarily expensive and can
rather be replaced by cheaper algorithms that simulate the solvent degrees of
freedom in a simplified fashion. The only situations where this is not true are either
fairly concentrated solutions, where the solvent contribution to the computational
effort is only moderate, or investigations of local atomistic dynamics, where local
packing and similar phenomena are of specific interest. In all other cases, the effect
of the solvent can be summarized by (i) its quality, which may be modeled by
just a suitable effective monomer-monomer interaction, and (ii) the hydrodynamic
interactions, which give rise to dynamic correlations between monomers as a result
of momentum transport through the solvent. The crucial observation is here that
the solute-solvent system is characterized by a large separation of time scales:
The slowest degree of freedom in the solvent is diffusive momentum transport,
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characterized by the “kinematic viscosity” ηkin = η/ρ, i.e., the ratio between shear
viscosity and mass density, which has the dimension of a diffusion constant. The
dimensionless “Schmidt number” Sc = ηkin/D then relates this to the diffusion
constant D of an immersed particle or, more generally, to the diffusion constant of
some immersed soft-matter object of size R. Typically, in dense fluids Sc $ 1 even
for solvent particles, due to a sizeable viscosity value-note ηkin ∝ η but D ∝ 1/η.
For large (isolated) macromolecules, the corresponding Schmidt number is yet much
larger, as Sc ∝ 1/D ∝ R. For these reasons, we may either replace the solvent by
some sort of “generalized hydrodynamics solver,” i.e., a set of more or less artificial
degrees of freedom that exhibit the correct hydrodynamic behavior on large length
and time scales, or dispose of the solvent altogether, by assuming that the flow
field follows the configuration of monomers instantaneously, such that it becomes
completely enslaved to the latter and thus no longer appears as an explicit degree of
freedom.

Let us begin with the latter approach. This is the realm of Brownian dynam-
ics (Öttinger 1995). Here one solves a discretized stochastic differential equation
for the monomer coordinates ri , using a finite time step h. The update rule can then
be written as

riα(t + h) = riα(t)+ h
∑

j

μiα,jβFjβ + kBT h
∑

j

∂μiα,jβ/∂rjβ

+√2kBT h
∑

j

σiα,jβqjβ . (21)

Here Greek letters indicate Cartesian indexes with Einstein summation convention.
Fj is the force acting on particle j , while

↔
μij is the mobility tensor that describes

the hydrodynamic correlations between the monomers i and j . Typically, the Rotne-
Prager tensor (Öttinger 1995) is used. In case one is not interested in correct solution
dynamics, one may simply turn the hydrodynamic interactions off and replace

↔
μij

with a multiple of the unit tensor. In this case, the method will produce Rouse-
like dynamics for a single-chain simulation. The last term of Eq. 21 denotes the
stochastic displacements, where qiα are random variables with

〈qiα〉 = 0 (22)
〈
qiαqjβ

〉 = δij δαβ, (23)

while the matrix σiα,jβ satisfies

∑

k

σiα,kγ σjβ,kγ = μiα,jβ . (24)

This approach was pioneered by a seminal paper nearly 40 years ago (Ermak
and McCammon 1978) and has seen many refinements since then. The main
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difficulties are the evaluation of the mobility tensor, which couples all monomers
in the system, and the calculation of a suitable square root. These problems
have remained a computational challenge for decades. Standard Ewald sums for
multichain systems (Jain et al. 2012b) have met moderate success, but only recently
has a method been published (Fiore et al. 2017) whose computational effort scales
strictly linearly with the number of involved monomers.

The generalized hydrodynamics solvers are technically much easier and also
much more easy to parallelize. They also scale linearly with the number of
monomers, however at the expense of an additional large set of explicit solvent
degrees of freedom. These solvers all include thermal fluctuations in some way or
another. This is necessary because in soft-matter physics, we are dealing with length
and time scales that are so small that fluctuations play a role. Obviously, Brownian
motion of polymer chains could not be studied if fluctuations were absent. Therefore
such methods are not fully macroscopic but are rather frequently called “mesoscale”
methods.

One can distinguish two classes of mesoscale methods, depending on the way
how thermal fluctuations are treated. The first class, which one may call “MD-like,”
are particle methods where the amount of thermal fluctuations per degree of freedom
is similar to what one would get in an MD simulation. Peculiar to these methods is
the impossibility to adjust the degree of thermal fluctuations independently of the
macroscopic fluid properties that are relevant for hydrodynamics. Conversely, in
the second class, which one may call “hydrodynamics-like,” the degree of thermal
fluctuations can be adjusted independently of the macroscopic properties. The
degree of thermal fluctuations is here a reflection of the degree of coarse-graining:
The more atomistic particles are lumped into one mesoscale degree of freedom, the
smaller is the amount of thermal fluctuations per mesoscale degree of freedom –
simply as a result of Gaussian statistics and the law of large numbers.

As this aspect is typically underemphasized in the literature, let us illustrate
this by a very simple example, a one-dimensional ideal gas, which we simulate
by MD, augmented by a Lowe-Andersen thermostat (Lowe 1999) to bring the
system to thermal equilibrium. This thermostat simply picks, from time to time,
a pair of nearby particles at random. The center-of-mass velocity of that pair
then remains unchanged, while the relative velocity is chosen at random, using
the appropriate equilibrium Maxwell-Boltzmann distribution, such that the total
momentum is conserved. The thermal (root mean square) velocity of a particle is
then (kBT /m)1/2, where m is its mass. This has macroscopic relevance, since this
is also the speed of sound. Now let us assume that we lump M adjacent particles
into a new mesoscale particle. The new system is then again an ideal gas, which
we wish to simulate with the same method. We then have two choices concerning
the question of the mass of the mesoscale particles: Either we can assign the
value Mm, which is naively the correct choice, since the bigger particle should
indeed exhibit more inertia. Moreover, the thermal velocity (i.e., the amount of
thermal fluctuations) is indeed correctly reduced by the factor M−1/2. However,
this comes at the price of also reducing the speed of sound by the same factor
– and this is a value that we would prefer to keep constant, in order to maintain
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the time-scale separation between immersed soft-matter objects and the sound
waves. Therefore one typically chooses the value m, thus keeping the macroscopic
properties intact but overestimating the degree of thermal fluctuations. In other
words, MD-like methods are typically too restrictive to permit a fully consistent
coarse-graining. This dilemma is solved by the hydrodynamics-like methods, where
thermal fluctuations are an add-on with adjustable strength to a method that would
also work in the strict macroscopic limit with no fluctuations whatsoever.

Dissipative particle dynamics (DPD) (Espanol and Warren 1995) is directly
derived from MD, which is just augmented by a momentum-conserving Langevin
thermostat. Similarly to the Lowe-Andersen method, DPD is based upon pairs of
nearby particles, which are however not chosen at random but rather considered in
their totality, at every single time step. The projection of the relative velocity onto
the interparticle axis is dampened by a Langevin friction. This is compensated by
stochastic Langevin forces on the two particles that also act along the interparticle
axis and add up to zero. The total momentum is conserved, and the fluctuation-
dissipation theorem (FDT) is satisfied. A generalized version also thermalizes the
velocity components perpendicular to the axis (Junghans et al. 2008); however, it
is presently not yet fully understood what effects the implied violation of angular-
momentum conservation has on the hydrodynamics.

Quite often, DPD simulations are run with particles that have fairly soft
interaction potentials. This is done in the spirit of coarse-graining, which in
general leads to such softening of interactions. It also has a practical implication,
since softer potentials also allow to use a larger time step. The most radical
implementation of that idea is to simply run DPD of an ideal gas as a solvent for
soft-matter objects (Smiatek et al. 2008). Using an ideal gas has a huge advantage:
The solvent degrees of freedom are reduced to their prime function, which is
to transmit momentum through the system, and the equilibrium structure of the
immersed objects is unaltered compared to immersion in vacuum. The viscosity can
nevertheless be adjusted to reflect dense-fluid conditions, by choosing a sufficiently
strong friction.

A yet simpler variant is multiparticle collision dynamics (MPCD) (Gompper
et al. 2009). Here the ideal-gas particles are sorted into cubic cells. In each cell,
the algorithm determines its local center-of-mass velocity and the relative velocities
of the particles with respect to it. The latter are then subjected to a random rotation.
This “collision step,” which conserves both the momentum and the kinetic energy,
serves to thermalize the ideal gas and is followed by a standard MD “streaming
step.”

Both DPD and MPCD are “MD-like,” with a coupling of the monomers to the
solvent that arises naturally from the setup of the respective algorithms. We will
now turn to the “hydrodynamics-like” methods.

Smoothed dissipative particle dynamics (SDPD) (Espanol and Revenga 2003)
has been developed to cure the abovementioned deficiencies of DPD. The name
suggests a closer proximity to DPD than the method actually exhibits. While DPD
comes in spirit from MD, as essentially a bottom-up approach, SDPD rather is
a top-down method: Here the starting point is smoothed particle hydrodynamics
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(SPH) (Monaghan 2005), which is nothing but a discretization of the Navier-
Stokes equations in terms of particles. This looks deceptively similar to MD but
is fundamentally different: Firstly, in MD both the equation of state and also the
transport coefficients like the viscosity are an output of the atomistic model and
must be determined by simulation. Conversely, in SPH they are input parameters.
Secondly, MD particles have as only properties their coordinates and momenta
(and possibly their orientations and angular momenta). SPH particles, on the other
hand, have additional properties “on board” that one could not even define for MD
particles because their nature is genuinely thermodynamic – volume and entropy,
which both change in the course of time as a result of the dynamics. SDPD adds
Langevin noise to the SPH equations of motion such that the FDT is satisfied.
Although the SDPD particles are thermodynamic objects, it is nevertheless possible
to simply connect a set of them via springs and thus obtain an immersed polymer
chain with the correct large-scale properties (Litvinov et al. 2008). The polymer-
solvent coupling is therefore as straightforward as for DPD and MPCD.

Instead of discretizing the Navier-Stokes equations in terms of particles, one may
also discretize them via a lattice. One therefore arrives at standard finite-difference
or finite-volume schemes (Donev et al. 2010; Balboa-Usabiaga et al. 2012). Again,
one may add thermal fluctuations to the equations to satisfy the FDT.

Finally, one may also simulate hydrodynamics via the Lattice Boltzmann (LB)
(Dünweg and Ladd 2009) method. Here one solves a linearized and fully discretized
version of the Boltzmann equation known from the kinetic theory of gases. Space
and time are discretized in terms of a lattice spacing a and time step h, respectively.
Velocity space is also discretized and reduced to a small discrete set of velocities
ci . Each lattice site contains a set of real-valued positive variables ni , which are
interpreted as the mass density corresponding to velocity ci . The mass density ρ

and the momentum density j are then obtained as zeroth and first velocity moment
of the populations:

ρ =
∑

i

ni, (25)

j =
∑

i

nici . (26)

The procedure then begins with a collision step, i.e., a rearrangement of the
populations on the site such that mass and momentum are conserved:

ni → n0
i = ni +Δi, (27)

where the “collision operator” Δi satisfies

∑

i

Δi = 0, (28)
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∑

i

Δici = 0. (29)

This is followed by a streaming to the adjacent lattice sites, such that the total
procedure can be written in terms of the Lattice Boltzmann equation (LBE):

ni(r+ cih, t + h) = ni(r, t)+Δi(r, t). (30)

This implies that the discrete velocities must be chosen commensurate with the
lattice. For example, the popular D3Q19 model (Dünweg and Ladd 2009), which
lives on the three-dimensional simple cubic lattice, involves 19 velocities, which
correspond to the 6 nearest and 12 next-nearest neighbors, plus the zero velocity.

The method involves lots of adjustable parameters, like the set of velocity shells,
associated weight coefficients, and various details of the collision operator. All
of these are tuned in order to obtain the correct Navier-Stokes behavior in the
continuum limit, which is found from the algorithm by subjecting the LBE to
an asymptotic (Chapman-Enskog) analysis. The LBE can therefore be used as a
Navier-Stokes equation solver in its own right. Thermal fluctuations are introduced
by adding a suitably chosen stochastic collision operator to Δi . For further details,
see Dünweg and Ladd (2009).

It should be emphasized that in all of the abovementioned “hydrodynamics-like”
methods, it is very important to make sure that the FDT is not only satisfied in the
asymptotic continuum limit but rather for the algorithm as such. Substantial effort
has gone into the development of methods that do satisfy this condition.

In contrast to particle methods, hybrid methods that involve MD for the polymer
chains and a lattice algorithm for the solvent need special care for the fluid-
particle coupling. A particularly simple approach is a frictional coupling (Dünweg
and Ladd 2009), where each monomer is assigned a Stokes friction coefficient.
Therefore each monomer is not only subject to the conservative forces coming
from other monomers (and possibly yet other sources) but also to a friction force
and a Langevin stochastic force. The former dampens the relative velocity of the
particle with respect to the local flow field, which is obtained via interpolation
from adjacent lattice sites. The latter is just standard Langevin noise that is needed
to satisfy the FDT. Back coupling is obtained by interpolating the thus-resulting
momentum transfer back to the lattice and enforcing momentum conservation.
Another possibility is to enforce a stick boundary condition, either on the surface
of an extended particle (Dünweg and Ladd 2009) or based upon a point-particle
picture (Usabiaga et al. 2013).

At the end of this section, we briefly wish to mention a few studies that have
focused on polymer solution dynamics. Zimm dynamics of a single chain has been
studied by BD by many authors, e.g., Fixman (1986), Liu and Dünweg (2003),
and Sunthar and Prakash (2006), where the last study also investigated the solvent
quality-driven crossover behavior. Single-chain Zimm dynamics was also studied
by LB/MD (Ahlrichs and Dünweg 1999), MPCD (Mussawisade et al. 2005), and
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SDPD (Litvinov et al. 2008). Not surprisingly, all these studies yield essentially the
same results, and it is even possible to quantitatively map them onto each other –
this has explicitly been done for LB/MD vs. pure MD (Ahlrichs and Dünweg 1999)
as well as for LB/MD vs. BD (Pham et al. 2009).

Detailed studies of the concentration-driven crossover from Zimm to Rouse
dynamics have been done by both LB/MD (Ahlrichs et al. 2001) and MPCD (Huang
et al. 2010). Both confirmed the picture of hydrodynamic screening as outlined
in Sect. 5, and the latter paper went even beyond to also study non-equilibrium
behavior.

8 Summary

Polymer solution statics and dynamics are beautiful pieces of physics where
progress has been made by analytical theory (in particular scaling considera-
tions), experiments, and computer simulations. Improved physical and mathematical
insight led to the development of computer simulation methods that went from
simple and fairly brute force to more and more sophisticated and problem-oriented,
focusing on the essence of the phenomena one wishes to study. The author hopes
that the present contribution has given the reader a glimpse on how fruitfully theory
and simulations have worked together in this field. For reasons of both space and
also expertise of the author, the present chapter has only focused on the most basic
equilibrium phenomena and completely left out the highly important field of non-
equilibrium physics, i.e., nonlinear polymer solution rheology, which would be
worth yet another chapter in this series.
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Abstract

Polyelectrolytes reveal interesting properties in solution. At short length scales,
the dissociation of counterions is heavily affected by the chemical structure of the
polyelectrolyte, the properties of the solution, and specific ion effects. At larger
length scales, the structure of polyelectrolyte solutions is dominated by long-
range interactions. In the special case of dissolved polyanions and polycations,
polyelectrolyte complexes or multilayers can form. In this review we present
distinct simulation approaches to study the corresponding effects at different
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length scales in more detail. Whereas at short length scales, atomistic molecular
dynamics simulation is often the method of choice, semi-coarse-grained and
coarse-grained models with a lower level of details reveal their benefits at larger
length scales.

1 Introduction

In accordance with the IUPAC definition, polyelectrolytes are charged macro-
molecules, in which a substantial portion of the constitutional units contains ionic or
ionizable groups, or both (McNaught and Wilkinson 1997). Strong polyelectrolytes
like DNA are completely ionized, whereas weak polyelectrolytes like polyacrylic
acid show an incomplete and pH-dependent dissociation behavior. Consequently,
the properties of polyelectrolytes are dominated by a combination of electrostatic
and molecular interactions, which heavily affect the occurring conformations and
the resulting ion dissociation behavior. In contrast to uncharged polymers, the long-
range decay of electrostatic interactions between the ionic groups impedes the
derivation of scaling relations in terms of simple mean-field approaches (de Gennes
1979; Doi and Edwards 1988; Dobrynin and Rubinstein 2005; Dobrynin 2008).
Thus, the complex interplay between the polyelectrolyte, the ions in the solution,
and the solvent reveals many interesting phenomena at different length scales, which
can be studied in more detail with the help of distinct molecular dynamics (MD)
simulation approaches in combination with appropriate models for the considered
species.

At short length scales, previous atomistic MD simulations demonstrated that the
molecular solvation behavior significantly influences the amount of ionized groups
and thus the corresponding conformation with regard to counterion condensation
effects and repulsive electrostatic interactions along the polyelectrolyte backbone
(Smiatek et al. 2014). Vice versa, the behavior of the surrounding solvent molecules
is also modified by the presence of ionic groups, which is reflected by local varia-
tions concerning the dielectric permittivity and the solvation of ions (Fahrenberger
et al. 2015a; Mukhopadhyay et al. 2012). In contrast to these local interactions,
the aggregation of polyelectrolytes becomes important at larger length scales, such
that polycations and polyanions form polyelectrolyte complexes and multilayers,
whose stability significantly depends on enthalpic and entropic contributions and the
properties of the embedded solvent molecules (Cerdà et al. 2009; Qiao et al. 2011,
2012). Also in bulk solution, molecular properties determine the configurational
behavior of the polyelectrolyte, as can be seen by the formation of polyelectrolyte
micelles, pearl-necklace structures, or the onset of microphase separation processes
between polar and apolar regions (Limbach and Holm 2003; Limbach et al. 2004;
Dormidontova et al. 1994). Thus, appropriate models with a sufficient degree of
detail are needed for reliable simulations of polyelectrolyte solutions in order to
elucidate the properties of interest.

In this chapter, we introduce several well-established approaches for the simu-
lation of polyelectrolyte systems at different length and time scales. The benefits
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and drawbacks of atomistic, semi-coarse-grained and simple coarse-grained models
are discussed, and we will present representative examples for various applications.
In the last section, we summarize the main points and address current limitations
concerning the general applicability of the methods.

2 Simulation Approaches for Polyelectrolyte Solutions
at Different Length Scales

The discussion of methods in this section follows a bottom-up approach, which
means that we start with atomistic models and the description of molecular force
fields. Hereafter, we decrease the level of resolution in terms of semi- and simple
coarse-grained approaches, which are best suited for the simulation of processes at
large length and long time scales. All models rely on the consideration of explicit
particles in combination with molecular dynamics or Monte Carlo time integration
schemes. It has to be noted that other continuum or self-consistent field approaches
can also be used, for instance, as described in Schmid (1998). Over the last years,
multiscale simulation approaches were also developed, which rely on a combined
consideration of the following methods in terms of matching and adaptive resolution
schemes. The reader is referred to Fritz et al. (2011) and Praprotnik et al. (2008) for
more details and for other contributions to this volume.

2.1 Atomistic Models: Importance of Chemical
andMolecular Details

Due to the massive increase of computational power over the last years, it is
nowadays possible to study the properties of short polyelectrolyte chains, the so-
called oligoelectrolytes, for hundreds of nanoseconds via atomistic MD simulations
in combination with accurate molecular force fields. In terms of modern force
fields, molecular properties are dictated by bonded and nonbonded interactions,
which are represented by classical potential functions in order to avoid an extremely
expensive evaluation of the electronic behavior. In more detail, standard atomistic
force fields like OPLS/AA (Jorgensen et al. 1996) include parameters for bonded,
angular, and dihedral potentials in addition to nonbonded interactions, which are
usually represented by Coulomb and Lennard-Jones contributions. In combination
with advanced electrostatics algorithms (Deserno and Holm 1998; Arnold et al.
2013) and the sophisticated use of graphics processing units (GPUs), the properties
of polyelectrolyte solutions with a dimension up to several nanometers can be
studied for hundreds of nanoseconds by standard atomistic MD approaches. Hence,
detailed information on the molecular interactions, the solvent behavior, and the
corresponding distribution functions are accessible.

As an illustrative example, the stable conformations for a sulfonated oligosul-
fonic acid with sodium counterions in water and chloroform are displayed in Fig. 1,
where more details of this system can be found in Smiatek et al. (2014). It can
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Fig. 1 Sulfonated oligosulfonic acid with nine monomers according to Np = 9 and an equivalent
number of sodium counterions (blue spheres) in water (left side) and chloroform (right side). The
solvent molecules are not shown for reasons of clarity, and the chemical structure of one monomer
is depicted in the middle

be clearly seen that the oligoelectrolyte reveals a swollen conformation in polar
solvents like water when compared with chloroform. This finding can be related
to molecular solvation effects and standard polymer theories, which distinguish
between good, poor, and theta solvents (de Gennes 1979). Thus, the average size
of the polyelectrolyte with Np monomers can be described by a power-law behavior
according to R ∼ Nν

p with the excluded-volume parameter ν, which is usually
ν = 0.588 for uncharged polymers in good solvents (Doi and Edwards 1988).
Depending on the actual value of the excluded-volume parameter, good and poor
solvents are defined by ν > 1/2 and ν < 1/2, respectively, whereas a theta solvent
is characterized by ν = 1/2. A polyelectrolyte chain at infinite dilution should scale
with ν = 1. Hence, the molecular properties of the polyelectrolyte adapt directly
to the polarity of the solvent, which is reflected by an increase or a decrease of the
solvent-accessible surface area and the size.

Interestingly, further analysis concerning atomistic models for polyelectrolytes
revealed that the counterion behavior differs significantly from standard theoretical
descriptions (Manning 1969, 1996; Deserno et al. 2000; Deserno and Holm 2001),
which highlights the benefits of atomistic MD approaches in order to verify
molecular theories and to study the corresponding deviations. As a result of these
simulations (Lund et al. 2008; Heyda and Dzubiella 2012; Smiatek et al. 2014; Batys
et al. 2017), it was found that the counterion distribution around the polyelectrolyte
can deviate from standard mean-field predictions in terms of the Poisson-Boltzmann
theory (Andelman 1995), which can be attributed to specific solvation effects and
molecular interactions (Smiatek et al. 2014). Furthermore, it was also observed
that specific ion effects (Marcus 2009; Kunz 2010; Lo Nostro and Ninham 2012)
and conformational properties of polyelectrolytes (Wohlfarth et al. 2015) influence
the corresponding counterion distribution and yield results in good agreement with
experimental data. To summarize, also atomistic simulations reveal short-range
deviations from simple mean-field theories; however, Poisson-Boltzmann theory
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and its generalizations often agree surprisingly well for global observables like the
osmotic pressure or effects that are dominated by the Coulomb interactions (Deserno
et al. 2001; Antypov et al. 2005; Antypov and Holm 2006; Lu et al. 2008).

2.2 Semi-Coarse-Grained Approaches: MARTINI Force
Fields and RefinedModels

Atomistic MD simulations mainly intend to study the properties of short oli-
goelectrolyte chains and their molecular interactions with counterions and other
components of the solution. Although also larger systems were studied, for instance,
polyelectrolyte complexes and multilayers (Farhat et al. 1999; Micciulla et al.
2014), it has to be mentioned that these simulations are very CPU-time demanding
and usually restricted to several tens of nanoseconds, such that even a reasonable
equilibration of these complex solutions is hard to achieve. In order to introduce
efficient but still accurate models for these larger systems, the use of semi-coarse-
grained approaches is highly beneficial. In general, coarse-grained approaches
intend to reduce the degrees of freedom when compared with atomistic simulations,
which results in a significant acceleration of the computation times and the
possibility of using larger time steps (Winger et al. 2009; Marrink et al. 2010).
Standard coarse-grained frameworks for polyelectrolytes and polymers include
the introduction of simple bead-spring models (Doi and Edwards 1988). Hence,
several atoms of a monomer are represented by one interaction site, the so-called
bead, while the individual beads are connected with springs, which are usually
modeled by classic harmonic or modified Finitely Extensible Nonlinear Elastic
(FENE) potentials. In contrast to the most simple coarse-grained methods, semi-
coarse-grained approaches like the MARTINI force field (Marrink and Tieleman
2013) refine these very generic models by consideration of important chemical
details. For instance, the MARTINI force field usually relies on a 4:1 mapping
scheme, such that four heavy atoms are combined into one interaction site (CG
bead) with parameterized polarity values and hydrogen bond acceptor and donor
abilities (Marrink et al. 2007). In more detail, the MARTINI CG beads can be
divided into different particle-type classes (polar (P), nonpolar (N), apolar (C), and
charged (Q) species). The subtypes within these classes are categorized due to their
ability to form hydrogen bonds (donor (d), acceptor (a), both donor and acceptor
(da), and none of them (0)) and with regard to their polarity (from 1 = low polarity
to 5 = high polarity) (Marrink et al. 2007; Marrink and Tieleman 2013). Further
subclasses were also defined to increase the local resolution (Marrink et al. 2007).
All CG beads reveal different Lennard-Jones parameters and partial charges, which
were parameterized according to partitioning coefficients for similar atomic groups
in oil/water mixtures (Marrink et al. 2007; Marrink and Tieleman 2013).

Over the last years, several MARTINI models for polymers and polyelectrolytes
were developed. Specific examples are DNA (Uusitalo et al. 2015), poly(styrene
sulfonate) (PSS) and poly(diallyldimethylammonium) (PDADMA), which were
both used for the study of polyelectrolyte complexes (Vögele et al. 2015a). The
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Fig. 2 Chemical structure of PSS (left side) and PDADMA (right side) with three monomers.
The differently shaded regions denote spherical MARTINI CG beads with particle-type classes as
defined in Marrink et al. (2007)

molecular topologies of PSS and PDADMA in terms of the MARTINI force field
and the corresponding particle types according to Marrink et al. (2007) are shown
in Fig. 2. In combination with refined polarizable water models (Yesylevskyy et al.
2010; Michalowsky et al. 2017), it was shown that MARTINI simulations are well
suited to study the properties of highly charged systems at large length and time
scales (Vögele et al. 2015a, b; Uusitalo et al. 2015).

The advantages of MARTINI models are mostly given by their flexibility and
their transferability, but it has to be noted that solvent particles indeed have to
be considered explicitly. In order to circumvent time-consuming calculations, the
matching of potential of mean forces between atomistic and coarse-grained simula-
tions provides a computationally efficient route in terms of tabulated potentials and
thus an implicit solvent approach (Brini et al. 2013; Reith et al. 2002; Li et al. 2012;
Lyubartsev and Laaksonen 1999; Savelyev and Papoian 2010; Hsu et al. 2012).
Although this method, which is also often called iterative Boltzmann inversion
technique (Reith et al. 2003), avoids time-consuming calculation of interactions
between solvent particles and between solvent and polyelectrolyte groups, it has to
be mentioned that the force-matching method is mostly applicable for homogeneous
solutions without interfaces. More refined coarse-grained models for DNA and
ionomer systems, based on the matching of ion mobilities, were published in Lu
et al. (2014), Weik et al. (2016), and Rau et al. (2017). A semi-coarse-grained
approach for the simulation of weak polyelectrolytes was recently introduced in
Landsgesell et al. (2017a, b). Furthermore, the well-known decrease of the dielectric
permittivity around charged objects and the corresponding consequences were
recently studied in coarse-grained polyelectrolyte solution via a modification of the
Maxwell equation molecular dynamics algorithm (Fahrenberger and Holm 2014;
Fahrenberger et al. 2015a, b).

In summary, refined or semi-coarse-grained models can be used for the study of
systems at intermediate length and time scales. Nevertheless, for the study of long
time-scale processes like transport behavior or the influence of hydrodynamics on
polyelectrolyte motion, the use of simple coarse-grained methods remains the most
suitable choice.
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2.3 Simple Coarse-Graining: Generic Bead-SpringModels
with Explicit Charges

In general, all simple coarse-grained models are composed of single interaction
sites, which have a lower resolution when compared with semi-coarse-grained
approaches and thus usually correspond to individual monomers or the number of
monomers within the corresponding persistence length (Doi and Edwards 1988).
All adjacent beads are connected by springs in terms of simple harmonic or FENE
potentials, which restrict the length of the bonds to the equilibrium distance in order
to avoid entanglement effects in polymer melts (Kremer and Grest 1990; Stevens
and Kremer 1993a, b). In contrast to semi-coarse-grained approaches, simple bead-
spring models do not include angular or dihedral potentials per definition, and the
corresponding nonbonded interactions are represented by simple Lennard-Jones
(LJ) and Coulomb interactions. Most often, the WCA potential, a purely repulsive
shifted and truncated version of the Lennard-Jones potential, is used to mimic hard
spheres for beads and ions (Weeks et al. 1971). In contrast to MARTINI models, the
solvent is often modeled implicitly by consideration of a global dielectric constant,
which is thus inserted into the Coulomb potential. Furthermore, the model can
be even more simplified by using a screened electrostatic potential or neglecting
Coulomb interactions all together (Hickey et al. 2012; Szuttor et al. 2017; Roy
et al. 2017). Specifically in solvents with high values of the dielectric constant, for
instance, water, electrostatic interactions between charged groups and ions dominate
only at short distances (Collins 2004). This can be mostly attributed to the low
value of the Bjerrum length at room temperature λB = e2/4πε0εrkBT with the
elementary charge e, the vacuum permittivity ε0, the dielectric constant εr , the
temperature T , and the Boltzmann constant kB . The Bjerrum length estimates the
distance where the thermal energy dominates over the electrostatic energy and
which is for water at 300 K around λB ≈ 0.7 nm corresponding to two hydration
shells (Collins 2004; Marcus and Hefter 2006). For larger and highly charged
objects like polyelectrolytes or colloidal particles, also the salt concentration plays
a significant role in order to induce a fast decay of electrostatic interactions.
Hence, by a simple linearization of the Poisson-Boltzmann equation in terms of
the Debye-Hückel approximation, the corresponding electrostatic screening length
reads λD = (εrε0kBT /(

∑
i 2z2

i e
2ρi))

1/2 with the valency zi and the ion density
ρi (Andelman 1995). With regard to this relation, one usually obtains a screening
length of λD ≈ 1 nm for water at room temperature with a salt concentration of
0.1 mol/L, which implies that the monomers are only weakly affected by the electric
field of the surrounding polyelectrolyte groups (Szuttor et al. 2017). Hence, for large
objects like λ-DNA, it is often sufficient to neglect electrostatic interactions between
the monomers, if the Debye and the Bjerrum length are significantly smaller than
the size of the polyelectrolyte in accordance with λD ≈ λB & R (Szuttor et al.
2017; Roy et al. 2017).

Most of these simple coarse-grained models are used to study the dynamics of
polyelectrolytes and other components in solution, often under the influence of
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external forces in order to induce transport processes. Recent reviews highlighted
the benefits of these models in combination with sophisticated mesoscopic simu-
lation techniques for the study of transport processes and electrokinetic effects in
microchannels (Slater et al. 2009; Pagonabarraga et al. 2010; Smiatek et al. 2012).
In more detail, mesoscopic simulation approaches induce a stochastic motion of the
solute species in the system, which is related to the behavior at long time scales.
A simple but effective and thermodynamically consistent approach is represented
by Langevin or Brownian dynamics (Kremer and Grest 1990). However, as it has
been pointed out in Dünweg (1993), momentum is not conserved in Langevin
dynamics, such that this approach cannot capture any hydrodynamical effects (Doi
and Edwards 1988; Ober and Thomas 1997; Grass et al. 2008; Frank and Winkler
2009). Most often, one is indeed specifically interested in hydrodynamic effects,
such that either the Langevin dynamics approach can be modified by introducing
the Oseen tensor (Ermak and McCammon 1978) or efficient Navier-Stokes solvers
have to be used. In terms of mesoscopic approaches, the most common techniques
are dissipative particle dynamics (DPD) (Groot and Warren 1997; Smiatek et al.
2012), coupled lattice Boltzmann/molecular dynamics (LBMD) (Dünweg and Ladd
2009) or multiparticle collision dynamics (MPCD) (Gompper et al. 2008). Previous
articles highlighted the good quantitative agreement between DPD and LBMD
simulations (Smiatek et al. 2009) and their applicability to study transport processes
in confined geometries (Smiatek and Schmid 2010, 2011; Smiatek et al. 2012; Weik
et al. 2016). In general, the use of mesoscopic simulation methods can be nowadays
regarded as a standard approach in order to study the influence of hydrodynamics in
many different research fields.

Furthermore, simple coarse-grained models were often used to validate analytical
mean-field approaches like counterion condensation theories (Deserno et al. 2000),
stretching forces on tethered polymers (Szuttor et al. 2017), electrohydrodynamic
screening effects (Grass et al. 2008), or the combined influence of electroosmotic
and electrophoretic motion (Smiatek and Schmid 2010). Interestingly, also the
influence of the solvent quality on the resulting conformations can be studied via the
use of simple approaches. In terms of experimental and atomistic simulation results,
it is known that poor solvents imply collapsed conformations, whereas good solvents
lead to a swelling of the polyelectrolyte. Hence, these findings can be transferred to
tunable attractive or repulsive interactions between the beads in order to correct
for the presence of an implicit solvent. Hence, in combination with electrostatic
interactions and attractive bead potentials, it was even possible to enforce the
occurrence of pearl-necklace polyelectrolyte structures (Dobrynin et al. 1996;
Micka et al. 1999; Limbach et al. 2002; Limbach and Holm 2003). Furthermore,
also more complicated topologies like in polymeric ionic liquids (PILs) (Mecerreyes
2011; Yuan et al. 2013) can be modeled via simple coarse-grained approaches
(Weyman et al. 2018). A simple example for a common alkylimidazolium-based
PIL and a snapshot of a system conformation are shown in Fig. 3. As can be seen
in the bottom, a simulation of 30 PIL chains with Np = 30 reveals the occurrence
of a microphase separation between polar and apolar beads. The aggregation of
apolar beads was initiated by attractive LJ interactions, which initiate the formation
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Fig. 3 Chemical structure of
a typical
alkylimidazolium-based PIL
with counterions X− (top
left). The corresponding
simple bead-spring model
with Np = 4 is shown at the
upper right part. The charged
terminal groups are shown as
red spheres and the
counterions as blue spheres.
All neutral beads have a gray
color. A snapshot of the
simulation with 30 polymers
with Np = 30 in terms of the
coarse-grained model is
shown at the bottom. Neutral
beads are colored in red,
while charged beads and
counterions are colored in
green

of apolar and polar microphases for larger side chain lengths. In summary, simple
coarse-grained polyelectrolyte models are computationally efficient and can be used
for the study of different systems at larger scales. The consideration of further details
can be simply achieved via effective generic or tunable potentials and provides
reasonable results, if the specific molecular details and processes are of minor
importance.

3 Summary and Conclusion

In this chapter, we described distinct approaches for the simulation of polyelec-
trolyte solutions at different length and time scales. For the study of fast processes
and molecular interactions at short length scales, the use of atomistic models with
regard to appropriate force fields is advised. In terms of larger length and longer time
scales, semi- and simple coarse-grained models with different levels of detail can
often be considered as the method of choice. A promising approach is the MARTINI
force field, which provides a beneficial transferability between different systems
without the need of a proper reparameterization for distinct models. Furthermore,
also tabulated potential methods as well as refined coarse-grained models were also
developed that can be interpreted as coarse-grained approaches with basic molecular
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properties. For the simulation of transport processes and hydrodynamic effects,
simple coarse-grained models in combination with mesoscopic simulation methods
are highly beneficial, which can be rationalized by the fact that polymers show a
universal scaling behavior at large scales, such that specific molecular details are of
minor importance (de Gennes 1979; Doi and Edwards 1988).

In summary, the presented methods can be used for a broad range of systems
at different time and length scales. However, which method is most appropriate
will depend crucially on the question to be answered, and one cannot give any
general advice. However, it has to be emphasized that all methods rely on crucial
approximations, and thus, if possible, one should always verify the simulation
results with experimental findings or theoretical predictions. A prominent example
are specific ion effects, which are modeled explicitly only in few atomistic MD
force fields (Fyta and Netz 2012). It is thus a challenging task to transfer this
information to coarse-grained models. Moreover, the study of apolar organic
solvents is significantly more complicated in comparison to polar solvents, due to
the fact that the Debye and the Bjerrum lengths can easily exceed the simulation
box size, which induces electrostatic correlation effects between the polyelec-
trolyte and its periodic images. These finite-size effects modify structural and
dynamic properties of the solution and are thus a crucial problem in order to
bring simulation outcomes in quantitative agreement with experimental results.
Moreover, also non-ideal effects, as they are well known for higher component
solutions (Krishnamoorthy et al. 2016), are often not correctly reproduced. In
general, all considered methods rely on potential functions to mimic the electronic
behavior. Hence, an accurate study of bond formation and cleavage processes
in combination with varying pH values of the solution is often impossible. A
promising new route is the introduction of reactive force fields (Senftle et al. 2016),
which are, although time consuming, less computationally expensive than ab initio
simulations. In accordance with the simplification of the electronic behavior, atomic
polarization effects are also usually neglected, which have nowadays become an
active field of research and model improvement (Lemkul et al. 2016; Bordin et al.
2016).

Despite their limitations, the presented methods and models are the most promis-
ing approaches for the reliable study of effects and processes in polyelectrolyte
solutions. It can be expected that new and refined approaches in combination with
longer simulation times will allow a more accurate study of these systems in the
coming years.
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Abstract

Coupled length and time scales determine the dynamic behavior of polymers
and polymer nanocomposites, thus causing their unique properties. To resolve
the properties over large time and length scales it is imperative to develop
coarse-grained models which retain atomistic specificity. Here we probe the
degree of coarse graining required to access large length and time scales and
simultaneously retain significant atomistic details. The degree of coarse graining
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in turn sets the minimum length scale instrumental in defining polymer properties
and dynamics. Using polyethylene as a model system, we probe how the scale
of coarse graining affects the measured dynamics with different number of
methylene groups per coarse-grained bead. Using these models, it is currently
possible to simulate polyethylene melts for times of order 1 millisecond. This
allows one to study a wide range of properties from chain mobility to viscoelastic
response for well-entangled polymer melts while retaining atomistic detail.

1 Introduction

Polymer properties depend on a wide range of coupled length and time scales, with
unique viscoelastic properties stemming from interactions down to the atomistic
level. The need to probe polymers across time and length scales to capture poly-
mer behavior makes probing dynamics, and particularly computational modeling,
inherently challenging. With increasing molecular weight, polymer melts become
highly entangled, and the long-time diffusive regime becomes computationally
inaccessible using atomistic simulations. While the largest length scales of polymer
dynamics are controlled by entanglements, the shortest time and length scales
required to resolve dynamic properties are not obvious. This knowledge is critical
for developing models that can transpose atomistic details into the long-time scales
needed to model long, entangled polymer chains.

One path to overcoming the computational challenge of large time and length
scales in polymers and polymer nanocomposites is to coarse grain (CG) the polymer,
reducing the number of degrees of freedom and increasing the fundamental time
scale. The effectiveness of this process depends on retaining the smallest length
scale essential to capturing the polymer dynamics. The process of coarse graining
amounts to combining groups of atoms into pseudoatom beads and determining
the bead interaction potentials. Simple models like the bead-spring model (Kremer
and Grest 1990; Grest 2016) capture the main characteristics of polymers but
disregard atomistic details. These models cannot quantitatively describe properties
like structure, local dynamics, or densities. Numerous recent studies have worked to
bridge the divide between atomistic and coarse models, developing new approaches
to drive computational studies to larger length and time scales while maintaining
relevant sub-nanometer details (Müller-Plathe 2002; Peter and Kremer 2009; Fritz
et al. 2011; Li et al. 2013). The mapping scheme which defines which atoms are
combined into a pseudoatom bead is not unique and depends on the specific system
and the local properties one wants to retain. For polystyrene (PS), for example,
there are at least seven different mapping schemes in which each PS monomer
is represented by either one or two CG beads (Karimi-Varzabeh et al. 2012). For
flexible polymers, such as polyethylene (Fukunaga et al. 2002; Padding and Briels
2002; Guerrault et al. 2004; Ashbaugh et al. 2005; Chen et al. 2006; Padding
and Briels 2011), polybutadiene (Maurel et al. 2012), poly(dimethylsiloxane), and
polyisobutylene (Maurel et al. 2015), multiple monomers are combined to form one
CG bead. However, few of these studies have explored the effect of varying the
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degree of coarse graining on the properties of polymer melts (Abrams and Kremer
2003; Harmandaris et al. 2007; Karimi-Varzabeh et al. 2012; Salerno et al. 2016a, b;
Dallavalle and van der Vegt 2017; Peters et al. 2017).

Here, using linear polyethylene as a model system, we review how the degree of
coarse graining affects the macromolecular structure and dynamics (Salerno et al.
2016a, b; Peters et al. 2017). The backbone of polyethylene (PE) consists of -CH2–
methylene groups, which are a natural coarse-graining unit. Probably the most well-
known CG model for PE is the united atom (UA) model (Siepmann et al. 1993;
Paul et al. 1995; Martin and Siepmann 1998; Nath et al. 1998), which combines
each CH2/CH3 group into one pseudoatom. The UA interaction parameters are
determined phenomenologically to reproduce physical properties such as densities
and critical temperatures. Going beyond the UA model, PE has previously been
studied using CG models with beads of λ = 3–48 methylene groups per CG bead
(Padding and Briels 2001; Fukunaga et al. 2002; Padding and Briels 2002; Guerrault
et al. 2004; Ashbaugh et al. 2005; Chen et al. 2006; Curcó and Alemán 2007;
Padding and Briels 2011). However as most of these studies used a large degree
of coarse graining (λ ∼ 20) to study dynamics, an extra constraint is needed to
prevent chains cutting through each other (Padding and Briels 2002). Here we focus
on systems with fewer methylene groups per CG bead (2 ≤ λ ≤ 6) where we could
largely (but not completely as discussed below) avoid including extra constraints to
avoid chains cutting each other.

Figure 1 illustrates how the CG models with λ = 2–6 methylene groups per
CG bead represent the underlying atomistic configuration. Though the chemical
structure of PE is simple, it is a thermoplastic material useful in many applications,
with tunable mechanical properties determined by the degree of branching. Using
these CG models, we show here that one can capture polymer chain dynamics for
long entangled polymers for time scales of order 1 ms using models that accurately
represent atomistic detail. Accessing these large length and time scales, which are
simply not accessible using fully atomistic models, allows one to measure a wide
range of properties from the single-chain dynamics to the stress relaxation function
and shear viscosity which depend on a hierarchy of length and time scales.

Fig. 1 C12H24 segment of a
PE chain represented with
degree of coarse graining
λ = 2, 3, 4, and 6 methylene
groups per CG bead. The
bead diameter corresponds to
the position of the minimum
in the nonbonded interaction
for each CG model
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2 Model andMethodology

Each of the CG potentials was derived from a fully atomistic molecular dynamics
simulation of a melt of CnH2n + 2 with n = 96 for λ = 2, 3, 4, and 6 and
n = 95 for λ = 5 (Salerno et al. 2016a, b; Peters et al. 2017). The atomistic
simulations used the all-atom optimized potentials for liquid simulations (OPLS-
AA) potential (Jorgensen et al. 1984, 1996) with modified dihedral coefficients
(Siu et al. 2012). These modified OPLS-AA parameters reproduce the experimental
static and dynamic chain properties for long alkanes better than the original OPLS-
AA parameters. Tabulated CG bond potentials UB(l) and angle potentials UA(θ )
were determined by Boltzmann inversion of the atomistic bond length and angle
distributions:

UB(l) = −kBT log

[
P(l)

l2

]

UA (θ) = −kBT log

[
P (θ)

sin θ

]
,

where l is the bond length for CG beads overlaid on the atomistic reference config-
urations and θ is the angle between CG bead triplets from the atomistic reference
configuration. These two potentials were determined at temperature T = 400 and
500 K and found to be independent of temperature (Peters et al. 2017).In the
current study, dihedral interactions were not included. However, recently Salerno
and Bernstein (2018) have shown that for differences in the end-to-end distance,
<R2> of up to 40% can occur for CG models with no dihedral interaction. This
error is a result of correlations inherent to the CG models that can be represented
as a dihedral interaction. Including a dihedral interaction in CG models of PE can
effectively correct this error in the chain stiffness.

Tabulated nonbonded potentials were calculated by a multistep iterative Boltz-
mann inversion process (Müller-Plathe 2002; Reith et al. 2003; Voth 2008). The
intermolecular radial distribution function g(r) from the atomistic simulation was
used as the target for iteration of the nonbonded potentials. The resulting potentials,
while giving excellent agreement between the CG g(r) and the target g(r), always
resulted in a pressure which was significantly larger than that of the atomistic
system. A pressure correction (Milano and Müller-Plathe 2005; Sun and Faller
2005; Wang et al. 2009) was then applied to bring the pressure of the CG and
atomistic systems into agreement. This resulted in a slight increase of the pair
correlation function in the vicinity of the first peak for the CG model compared to
the target, but this difference was found to have no effect on the chain mobility and
viscoelastic response of the system (Salerno et al. 2016a, b; Peters et al. 2017). The
resulting potentials for four values of λ at 500 K are shown in Fig. 2. Unfortunately,
these CG potentials are not necessarily transferable to other temperatures. For
example, with λ = 4 the attractive well for the CG potential developed at 500 K is
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Fig. 2 Potentials for
nonbonded interactions for
λ = 2 (red circle), 3 (purple
square), 4 (green triangle),
and 6 (blue diamond)

20% deeper compared with that developed at 400 K (Peters et al. 2017). Comparison
of these potentials with the standard Lennard-Jones (LJ) 12:6 potential, which is
often used in bead−spring models of polymers (Kremer and Grest 1990; Grest
2016), shows that these atomistically inspired CG potentials are softer with a much
shallower attractive well than the LJ 12:6 potential (Peters et al. 2017). Since PE is
locally stiff, as the degree of coarse graining increases, the methyl groups in each
CG bead take up less of the volume. As a result, the nonbonded potentials become
softer with increasing λ.

For large degrees of coarse graining, one must also include extra constraints
so that the chains cannot cut through each other (Padding and Briels 2002).
For polyethylene, even the λ=6 model has a surprisingly large equilibrium bond
distance relative to the bead diameter which allows chains to occasionally cut
through each other. Therefore, in our simulations, we added a modified soft
segmental repulsive potential (Sirk et al. 2012) to CG beads to inhibit chain crossing
for λ = 6. Complete details of the model and methodology are given in Salerno
et al. (2016a, b).

One important advantage of CG models is that by eliminating the finest degrees
of freedom, the time step in a molecular dynamics simulation is significantly larger
than for fully atomistic models. We found that one can use a time step δt= 20 fs for
λ = 4, 5, and 6 and 10 fs for λ = 3. However, for λ = 2, δt is only 4 fs, comparable
to that commonly used for atomistic (1 fs) and UA (1–2 fs) models. The reduction
in the number of degrees of freedom in a system also creates a smoother free-
energy landscape compared with fully atomistic or UA model simulations. While
strong frictional and stochastic forces can be used to slow down the dynamics of
the CG model to match those of the atomistic model (Salerno et al. 2016a, b),
one can take advantage of this increase in the local dynamics of the CG model to
simulate effectively much longer time scales (Harmandaris and Kremer 2009; Fritz
et al. 2011).While the former approach may be useful for coarse graining small
molecules, for entangled polymers which already have inherently slow dynamics,
this additional speedup for CG models is very advantageous. Combining the
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reduction in the number of atoms that one must simulate, the significant larger
simulation time steps, and the increase in the dynamics from the smoother free-
energy surface, the effective simulation time is effectively increased by at least three
orders of magnitude for λ = 4–6, allowing one to reach times scales not accessible
using fully atomistic simulations. Computationally for PE, λ= 4 and 5 are the most
efficient since λ = 6 requires the addition of an extra bead between each CG bead
to avoid chains cutting through each other. All of the simulations presented here
were performed using the Large Atomic Molecular Massively Parallel Simulator
(LAMMPS) molecular dynamics simulation code (Plimpton 1995), though any MD
software package which allows tabulated forces for bond, angle, and nonbonded
potentials could be used.

3 Results

In Salerno et al. (2016a, b), we probed the dynamics of polymers as the number of
atoms included in a CG bead is varied from λ = 2 to 6. We found that independent
of the degree of coarse graining, the static and dynamic properties are similar once
the dynamic scaling factor α and non-crossing constraint for λ = 6 are included.
Using these CG models, we have been able to reach times of order 1 ms, allowing
us to measure several quantities which can be compared directly to experiments,
including the stress relaxation function, plateau modulus, and shear viscosity. Here,
some examples of our results are presented to illustrate the power of the coarse-
graining methodology to sample times and length scales not accessible by atomistic
simulations while retaining chemical specificity.

Coarse graining reduces the number of degrees of freedom in a system, creat-
ing a smoother free-energy landscape compared with fully atomistic simulations
(Harmandaris and Kremer 2009; Fritz et al. 2011). This can be seen by measuring
the mean squared displacement (MSD) for the atomistic model of PE with n = 96
and 480 carbons to the equivalent CG model as shown in Fig. 3a. The mobility
of the chains in the CG models is clearly larger than in atomistic simulations. By
scaling the time for each of the CG models, the results fall on a single collapsed
curve for each chain length for the atomistic and CG models as shown in Fig. 3b.
Notably, a single scaling factor α is required for each λ, independent of chain length.
For T = 500 K, α varied from 6 to 9 for λ = 2–6 and increases with decreasing
temperature (Peters et al. 2017). For λ = 4, α = 6.2 for T = 500 K and increases to
∼12 at 400 K. Combining the effects of fewer interaction sites, a larger time step,
and the dynamic scaling factorα, these CG models allow one to study well-entangled
chains for long times.

Results for the MSD of the center of mass g3(t) = 〈(rcm(t) − rcm(0))2〉 and
motion of the center four beads g1(t)= 〈(ri(t)− ri(0))2〉 for chain lengths n= 1920,
2560 and 4000 for λ = 4 at 500 K are shown in Fig. 4. The experimental
entanglement length for PE is 1.1–1.2 kg/mol or n ∼ 80 (Fetters et al. 1999; Vega
et al. 2004). For n = 1920 and 2560, the MSD has reached the diffusive regime
where MSD ∼ t1. Over intermediate time scales for all three systems, the chains
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Fig. 3 (a) Mean squared displacement of the inner 24 -CH2- groups of each polymer chain at
500 K for different levels of coarse graining compared to atomistic model for n = 96 and 480.
(b) Coarse-grained MSD data scaled by dynamic rescaling factor α for n = 96–1920 compared to
atomistic simulations

show the expected t1/4 scaling predicted the tube model (de Gennes 1971; Doi and
Edwards 1986). The diffusion constant D = g3(t)/6t for t > τd is shown in Fig. 5
as a function of n. For large n, D follows a power law decay D = D1n−2.18 where
D1 = 3.08 × 10−6 m2/s. The decay of D with a power law greater than 2 for large
M is consistent with experimental results (Lodge 1999).

From the crossover time t∗e from the early time t1/2 Rouse regime to t1/4 reptation,
one can extract the tube diameter dT and the entanglement time τ e. Assuming the
distribution of segment displacement along the tube is Gaussian on the scale of
the tube diameter dT , then the entanglement time τe = 9

π
t∗e (Hou 2017). From

Fig. 4, this crossover time is t∗e ∼ 14 ns, which gives τe ∼ 40 ns. Note that in the
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Fig. 4 Mean squared
displacement of the center of
mass g3(t) (closed) and center
four CG beads g1(t) (open)
for n = 1920 (black circles),
2560 (red squares), and 4000
(green triangles) for λ = 4.
The dashed lines represent
the scaling predictions t1 for
the diffusive regime and t1/4

for the reptation regime

Fig. 5 Diffusion constant D
versus n for λ = 4 at 500 K

literature, τ eand t∗e are assumed to be the same. The MSD of the center monomers
at t∗e ,g∗1e = 2

3π d2
T gives a tube dT ∼ 4.9 nm (Hou 2017). If one neglects the 2

3π
prefactor between g∗1e and d2

T , which is often done in the literature (Hsu and Kremer
2016), then dT ∼ 2.3 nm. The latter value is in good agreement with the assumption
that d2

T = 2 R2
g (Ne) , which gives dT ∼ 2.2 nm. Neutron spin-echo experiments by

Richter et al. (1992) and Schleger et al. (1998) estimate τe ∼ 5 ns and tube diameter
d = √3dT∼= 4.35 nm or dT∼2.5 nm (Hsu and Kremer 2017). Thus the crossover
times and distances of the CG model capture the essential aspect of the polymer
motion, demonstrating that one can capture long-time and length scales with CG
models while accounting for atomistic detail.

The stress response function after a small perturbation G(t) is one of the most
important experimental measurements for polymers. For long entangled polymers,
at short times G(t) decays as the chains locally relax in response to the perturbation
like any fluid. However, for intermediate times, G(t) plateaus at Go

N= 4
5ρRT/Me

where Me is the entanglement molecular weight. This plateau region in G(t)
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Fig. 6 Stress autocorrelation
function G(t) for λ = 4 at
500 K for n = 1920 (black)
and 4000 (green). Solid lines
are fit to the
Likhtman-McLeish formula
(Likhtman and McLeish
2002)

occurs for intermediate times where the chains are assumed to move in a tube
due to entanglements from the other chains. Only after the chains have reached
the diffusive regime, does G(t) relax to zero. The relaxation modulus for each of
our CG models was measured for different chain lengths via equilibrium stress
autocorrelations. Figure 6 shows G(t) for n = 1920 and 4000 for λ = 4, where
time has been scaled by the dynamic rescaling factor α. The solid lines in Fig. 4 are
fit to the Likhtman-McLeish (LM) expression (Likhtman and McLeish 2002):

G(t) = kBT

nv

⎡

⎣1

5

Z∑

p=1

(
4μ(t)R(t)+ e−tp2/τR

)
+

N∑

p=Z+1

e−2tp2/τR

⎤

⎦

where

μ(t) = 8

π2

∞∑

q=1,odd

1

q2 exp

(
−q2t

τd

)

is the Doi-Edwards reptation stress relaxation function (Doi and Edwards
1986) with terminal relaxation time τ d and the double-reptation expression for
constraint release R(t) = μ(t) is assumed (Marrucci 1985).The key quantity in
this expression is the single-chain memory function μ(t) for the fraction of the
primitive chain which has not escaped from its original tube after a time t. The
fitting parameters are the number of entanglements per chain Z, the terminal
relaxation time τ d, and the Rouse time τR. The volume of a CH2 monomer
is v = 0.031nm3 for ρ = 0.76g/cm3. The best-fit results are Z = 23 ± 1,
τ d = (1.49 ± 0.04) × 105ns, and τR = (2.60 ± 0.16) × 104ns for n = 1920
and Z = 40 ± 1, τ d = (5.55 ± 0.09) × 105ns, and τR = (8.18 ± 0.32) × 104ns for
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n = 4000. Based on these results, the plateau modulus Ge = 4ZkBT/5nv = 2.3MPa
for n= 1920 and 1.8MPa for n= 4000; the entanglement time τ e = τR/Z2 = 49.1 ns
for n = 1920 and 51.1 ns for n = 4000, consistent with the entanglement
times extracted above from the MSD. The entanglement molecular weight
Me = n/Z × 14g/mol = 1.2kg/mol for n = 1920 and 1.4kg/mol for n = 4000,
which is consistent with experimental results for Me (Fetters et al. 1999; Vega
et al. 2004). For comparison, the longest chain system we could study using fully
atomistic simulations is n= 480, which is not long enough and cannot be simulated
long enough to observe a plateau in G(t).

Polymer entanglements can be directly determined by the primitive path analysis
(PPA), an algorithm first developed by Everaers et al. (2004) In the PPA, the chain
ends are fixed, and the intrachain excluded volume interactions are turned off while
retaining the interchain excluded volume interactions. The energy of the system is
then minimized by slowly cooling the system to T= 0. The entanglement molecular
weight Me can then be obtained from the average contour length of the primitive
path and the end-to-end distance of the chain (Everaers et al. 2004). In the standard
PPA method (Everaers et al. 2004), the chains maintain the same diameter during the
length minimization process. Alternatively one can introduce extra beads to reach
the limit of zero thickness chains (Hoy and Grest 2007). These two methods are
often referred to as thick- and thin-chain PPA, respectively. Although both methods
can give good estimates of the entanglement length in a polymer melt, the effect of
the bead size or CG level λ should be considered. In this context, it is important
to be able to represent a single reference configuration with various λ and calculate
the same primitive path length, independent of λ. We found that the thick-chain PPA
method produces results that vary by 15–20% with λ. Hence, we adopt a procedure
that is more like the thin-chain PPA method to reliably reproduce the primitive path
length and entanglement length, independent of the coarse-graining level λ.

The primitive path contour length and the resulting entanglement length were
estimated by inserting four (or nine) beads between each bead for λ = 4, setting
the bead diameters to 1.3 Å (0.65 Å) and reducing the backbone bond length at
constant tension. The primitive path contour length was computed for n = 480
for ten independent melt configurations. The primitive path length was estimated
to be 19.8 nm, with lower and upper estimates of 24 and 31 CG beads for
the entanglement length, based on the estimator proposed by Hoy et al. (2009).
These thin-chain PPA values correspond to entanglement mass Me = 1.34 and
1.74 kg/mol, somewhat higher than the estimate based on the plateau modulus.

Using non-equilibrium molecular dynamics simulations, we measured the shear
viscosity η as a function of shear rate over a wide range of shear rates from the
shear-independent regime at low shear rates to the shear-thinning regime at high
shear rates. Results for η versus scaled shear rate for n = 96 to 1920 are presented
in Salerno et al. (2016). Our results for the zero shear rate viscosity η showed
a crossover from a n1 power law for small n to n3.4 for large n at nc ∼ 250 or
molecular weight ∼ 35 kg/mol in excellent agreement with the experiment (Ferry
1980; Graessley and Edwards 1981).
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While most studies of polymer melts model a homopolymer in which all the
chains have the same length or at most a binary mixture of two lengths, experimental
systems are never uniform. They are highly dispersed with a range of chain lengths.
The standard way to characterize molar-mass dispersity is the dispersity index ÐM

defined by ÐM = Mw/Mn, where Mw is the weight average molecular weight and
Mn is the number average molecular weight. Mn is more sensitive to molecules
of low molecular mass, while Mw is more sensitive to molecules of high molecular
mass. The best case experimentally for long polymers is ÐM∼1.02 but in some cases
ÐM > 2. Even for ÐM ∼ 1.02, the ratio of the largest to shortest chain is larger than
2. How dispersity affects the chain mobility and viscoelastic response is difficult to
predict theoretically, which makes testing theoretical models challenging due to the
assumption that the system contains only uniform polymers.

Using our coarse-grained model with λ= 4, we (Peters et al. 2018) have recently
initiated a study of the effect of polydispersity on polymer chain mobility and
viscoelastic properties. We built dispersed systems of 2000 chains for ÐM = 1.02,
1.04, and 1.08 and 4000 chains for ÐM = 1.16 for highly entangled chains of
molecular weight Mw = 36 kg/mol (n = 2650 CH2 monomers or 640 CG beads).
This chain length was chosen since it is long enough for the chains to be well
entangled but short enough that the system fully relaxes on the time scales accessible
to simulations (∼600–800 μs). For short times, the monomers in the center of the
chain diffuse the same independent of the degree of dispersity. However, for longer
times, the MSD of the more dispersed samples moves faster. Unlike experiment,
simulations can be used to extract more detailed information of how the various
chain populations diffuse. For example, the average diffusion constant of all the
chains as well as the shortest and longest can be readily determined as shown in
Fig. 7. As ÐM increases, the spread in the diffusion constant increases very rapidly
with ÐM, while the average value of D increases by only a factor of 50% over this
range.

Fig. 7 Diffusion constant D
as a function of molar-mass
dispersity ÐM averaged over
all the chains (black), for the
shortest 5% of the chains
(red), and longest 5% of the
chains (blue) for n = 2560 for
λ = 4.5
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4 Conclusions

Here we probed the structure and dynamics of polymers with various numbers of
atoms included in a coarse-grained bead. We have shown that for long, entangled
polymers, independent of the degree of coarse graining, all static and dynamic
properties are essentially the same once the dynamic scaling factor α and non-
crossing constraint for λ = 6 are included. Due to the larger time step and reduced
number of degrees of freedom of the coarse-grained model as well as the smoother
free-energy surface, the coarse-grained simulations are effectively 3–4 orders of
magnitude faster than the fully atomistic model, depending on the degree of coarse
graining and the temperature. Of the five models studied, λ = 4 and 5 offer the
optimum performance since larger degrees of coarse graining require an additional
non-crossing constraint which negates the gain in effective speed due to free
pairwise interactions. This translates to simulation times of hundreds to thousands
of μs, which allows us to measure many quantities which can be compared directly
to experiments, including the stress relaxation function, plateau modulus, and shear
viscosity. With this speedup, one can readily extend the present study to longer
chains as well as short- and long-chain branching in addition to the study of
polydispersed systems.
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Abstract

We review basic conceptual and methodological aspects of a special class
of hybrid models of polymeric materials. These particle-based models are
mesoscopic descriptions, where coarse-grained “force fields” are introduced
through functionals of local order parameters. These functionals bear similarities
to free-energy models in classical density functional theory and phase-field
simulations. Introducing interactions through free-energy-like functionals allows
one to develop top-down particle-based models with desired thermodynamic
behavior in a systematic and modular way. Hybrid models serve as a framework
for efficient simulations based on standard tools such as Monte Carlo sampling
and dynamical algorithms. Thanks to their special structure, hybrid models also
provide a basis for field-theoretical methods, such as numerical self-consistent
field theory.
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1 Introduction

Investigating the mesoscopic behavior of polymeric materials with computer simu-
lations requires special techniques. Considering that the involved length scales are
at least on the order of 100 nm, these techniques must handle samples containing
thousands of long polymer chains, while circumventing the slow polymer dynamics.
Both requirements can be satisfied using drastically coarse-grained (CG) models,
where large groups of building units of the actual polymer chains are represented
by a single effective particle. Projecting a large number of microscopic states on a
single CG configuration leads to strong entropic contributions to potentials acting
between drastically CG particles. Therefore effective interactions have an explicit
free-energy character, and their strength is comparable to the thermal energy, kT .
Soft interactions and reduced amount of degrees of freedom allow for an efficient
sampling of the configuration space.

The strong thermodynamic nature of interactions in drastically CG models justi-
fies the implementation of computationally efficient soft potentials but complicates
their determination. Systematic bottom-up methods, constructing the potentials such
that the CG model reproduces physical quantities known from a more detailed
description of the system (Kremer and Müller-Plathe 2002; Noid et al. 2008),
are of limited use. Some of the reasons lie in representability and transferability
problems (Peter and Kremer 2010; Noid et al. 2008) which are amplified by
the prominent thermodynamic nature of drastically CG potentials. Tiny inac-
curacies in bottom-up determination of interactions on the level of a single
CG repeat unit change significantly phase behavior – due to chain connectiv-
ity, the impact of such inaccuracies increases proportionally to the degree of
polymerization.

Top-down development of drastically CG models presents an alternative to
bottom-up coarse-graining. Top-down approaches construct the CG model postu-
latively, building into the model “by hand” features that are necessary to reproduce
a set of known structural, dynamic, and/or thermodynamic properties. The choice
of postulated properties depends on the addressed questions, insights from fun-
damental physical principles, and/or experimental data. Top-down models first
serve as a tool for qualitative understanding and prediction of unknown properties,
based on existing limited knowledge about a system. Nevertheless, for certain
classes of materials, top-down drastically CG models can provide quantitative
predictions (Lodge 2003).

Comparing to bottom-up strategies, top-down coarse-graining is less formalized.
Intriguingly, various structural, dynamic, and thermodynamic properties in poly-
mers are frequently governed by universal laws (de Gennes 1979). These laws
account for specific material chemistry through a few characteristic parameters,
known as “invariants.” Universality plays a central role in top-down modeling,
enabling the study of polymer materials through very simple (minimal Müller et al.
2006) models, which reproduce the few required invariants. However, for many
materials (especially those characterized by complex, heterogeneous structure),
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finding universal laws is not straightforward. Moreover, universality may not be
applicable altogether because the mesoscopic behavior remains coupled (possi-
bly weakly) to microscopic features of molecular architecture and interactions.
Therefore, it is necessary to develop systematic methods for constructing top-down
models which are more complex compared to those based on simple universal laws.
It is desirable that these top-down approaches are modular, allowing one to add to
the model additional features to improve accuracy or expand the applicability range.

In this chapter, we will review the basics of top-down models developed
through a systematic and modular strategy which is gaining popularity over the
last years. The method constructs particle-based CG models in a hybrid manner,
by introducing nonbonded interactions through a functional of a few local order
parameters (collective coordinates). The functional is structurally similar to free
energies in classical density functional theory (DFT) and phase-field models
but differs conceptually, being a functional of instantaneous values of collective
coordinates. Connecting instantaneous order parameters to individual coordinates
of CG particles allows one to transform the functional into a law for nonbonded
energies or forces and employ standard simulation techniques. The strength of the
method is that the thermodynamic behavior of the model is modulated on the level
of the functional used to “template” the nonbonded interactions. The choice of an
appropriate functional is facilitated by a number of theoretical techniques including
classical DFT and self-consistent field (SCF) theory.

1.1 Ingredients of Hybrid Top-DownModels

The first step of hybrid top-down coarse-graining is to specify a scheme for
replacing groups of microscopic degrees of freedom by CG particles. The choice
of the scheme depends on the features to be included into the model. The
interactions between the CG particles are separated into bonded and nonbonded,
defined by effective Hamiltonians Hb and Hnb. Because the molecular structure is
explicitly described on particle-based level, Hb are functions of particle coordinates.
Depending on the mapping scheme, Hb is defined using either generic functions
or chemistry-specific potentials, which can be derived, e.g. from standard bottom-
up coarse-graining of single-chain atomistic configurations. By splitting the CG
interactions into bonded and nonbonded contributions, hybrid top-down models
follow the usual ansatz of coarse-graining (Peter and Kremer 2010) which assumes
that intramolecular CG potentials do not depend on the environment of the
molecules. Frequently, this assumption does not compromise the usefulness of top-
down CG models for qualitative predictions. However, a posteriori refinement of
parameters entering Hb is usually necessary for quantitative studies.

After the mapping scheme and the bonded interactions are defined, Hnb is
introduced using a functional of collective coordinates. The concept is best clarified
considering the formal statistical mechanics of hybrid models, where configura-
tional partition functions take the form:
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Z(n, V, T ) =
1

n!
ż

dR exp
[
−
∑n

i=1
βHb(Ri )−

ż

drf ({ρ̂λ(r;R1, · · · ,Rn)})
︸ ︷︷ ︸

βHnb

]
(1)

Here, without loss of generality, we consider the canonical ensemble and assume
that the polymer system contains n identical chains (extending to several chain
species, e.g., homopolymer blends, is straightforward). Nevertheless, the identical
polymers can contain several monomer species. The coordinates of CG monomers
comprising the i-th chain are denoted by Ri , and

ş

dR ≡ ş∏n
i=1 dRi indicates

integration over all possible realizations of monomer coordinates. The argument of
Hb(Ri ) emphasizes the explicit particle-based description of molecular architecture.
Expressing Hnb through a functional of local order parameters makes Eq. 1 to
appear different from the partition functions of standard CG models. For illustration
purposes, we consider the simplest case, where the functional depends only on the
set of local densities of the different monomer species, {ρ̂λ(r;R1, · · · ,Rn)} (the
index λ spans the spectrum of species present in the system). The “hats” over the
densities indicate that we are dealing with their instantaneous values and that they
are not the fundamental degrees of freedom. They are operators transforming a
configuration of coordinates R into instantaneous values of collective coordinates at
point r. To emphasize the role of ρ̂λ as operators, we write explicitly their arguments
R1, · · · ,Rn. In the following, we will omit these arguments and use the compact
notation ρ̂λ(r). Through the operators, Hnb depends implicitly on coordinates.
Therefore (Edwards 1965; Fredrickson 2006) Eq. 1 still defines a particle-based
partition function and is not a field-theoretical description.

Simulations based on models formalized through Eq. 1 require energies or forces
which are functions of monomer coordinates R. Therefore, the mathematical form
of the functional and operators must facilitate the derivation of energies or forces
from Hnb. The mathematical structure of these two ingredients determines the
simulation techniques that can be applied to the given model.

1.2 Defining Functionals

An attractive idea for constructing Hnb is to benefit from the classical DFT where
free-energy functionals are playing a central role. Classical DFT is founded upon
a theorem stating that for a system of particles (atoms or molecules) with defined
interactions, the part of the Helmholtz free energy which does not explicitly depend
on external fields (possibly acting on the system) is a unique functional of equilib-
rium local average densities, {ρ̄λ(r)}. This free-energy component, Fint({ρ̄λ(r)}),
is known as the “intrinsic Helmholtz free energy” and constitutes an inherent
property of the system. The total free energy is obtained by adding to the intrinsic
part trivial terms accounting for interactions with external fields. An analog of
this theorem was first derived in quantum mechanics considering the density of
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an interacting gas of electrons at ground state (Hohenberg and Kohn 1964) and
thermal equilibrium (kBT �= 0) (Mermin 1965). For classical systems, detailed
proofs are available in specialized reviews and textbooks; see Evans (1979), Hansen
and McDonald (2006), and Plischke and Bergersen (1994). Although the functional
of the intrinsic Helmholtz free energy formally exists, establishing this functional
from a microscopic description is a formidable task. Developing strategies for
obtaining approximate free-energy functionals is an active area of research in
modern DFT (Wu and Li 2007; Löwen 2002).

The intrinsic Helmholtz free energy from DFT can be used to define nonbonded
interactions in a hybrid model by setting Hnb equal to Fint(ρ̂λ(r)). However, there
are important subtleties. First when Fint({ρ̂λ(r)}) is used to define Hnb, density-
dependent terms associated with translational and conformational entropy must be
excluded because particle coordinates and molecular structure are explicitly present
in the model. Otherwise, entropic contributions will be double counted. Second the
intrinsic free energy of a system described by a model where Hnb is determined by
Fint({ρ̂λ(r)}) differs from the original DFT free energy Fint({ρ̄λ(r)}) (even when
redundant entropic terms are omitted). The discrepancy stems from fluctuations
captured by the partition function, Eq. 1. One consequence of the difference of
the two free energies is that the top-down model reproduces the thermodynamic
behavior corresponding to the DFT free energy only approximately.

To clarify better the origin of differences in the free energies, it is instructive
to consider a system with n interacting identical monomeric particles. Even in this
simple example, the average local equilibrium density, ρ̄(r), can be inhomogeneous;
coexisting liquid and vapor phases are an example. Assuming that for this system the
DFT free energy is known, we define a hybrid toy model with a partition function:

Z(n, V, T ) = 1

Λ3nn!
ż

dR1 · · · dRn exp
[
− βFint(ex)(ρ̂(r))

]
(2)

= 1

Λ3n!
ż

Dρ(r) exp
[
− βFint(ex)(ρ(r))

] ż

dR1 · · · dRnδ(ρ(r)− ρ̂(r))

(3)

For clarity, we include the kinetic part of the partition function (Λ is the thermal
de Broglie wavelength). The definition of Hnb is based on the excess DFT functional
βFint(ex)(ρ̂(r)), that is, the intrinsic free energy without the translational entropy
term

ş

drρ̂(r)
[
ln
(
ρ̂(r)Λ3

)− 1
]
. Equation 2 is transformed into an equivalent form

by introducing an auxiliary integration in the functional space of all possible density
distributions, as demonstrated in Eq. 3. The integration is denoted by

ş

Dρ(r) where
δ(ρ(r) − ρ̂(r)) is a δ-functional constraining the density field ρ̂(r). Because this
density field is an implicit function of coordinates, the integral

ş

dR1 · · · dRn, taken
over the coordinates of the n particles, quantifies the number of microstates with
the same density pattern, ρ(r). Hence, this conventional integration restores the
translational entropy which was omitted from Fint(ex). From Eq. 3, we obtain the
free energy of our toy model as:
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βF(n, V, T )

= − ln
( ż

Dρ(r) exp
[
− βFint(ex)(ρ(r))

] ż

dR1 · · · dRn

Λ3nn! δ(ρ(r)− ρ̂(r))
︸ ︷︷ ︸
= exp(− ş

drρ(r)[ln(ρ(r)Λ3)−1])

)

(4)

Considering that the set of possible density distributions in
ş

Dρ(r) contains the
pattern of the average density ρ̄(r), we conclude that:

βF(n, V, T ) < βFint(ex)(ρ̄(r))+
ż

drρ̄(r)
[
ln
(
ρ̄(r)Λ3

)
− 1

]

︸ ︷︷ ︸
βFint(ρ̄(r))

(5)

The free energy of the toy model equals the DFT free energy only in the case of
quenched fluctuations, where the instantaneous and the average density distributions
are equal.

Frequently it is simpler to define Hnb phenomenologically than to extract it
through formal DFT derivations. For this purpose, one can benefit from generic rela-
tionships between the mathematical structure of the functional and thermodynamics.
For example, defining Hnb through a third-order density polynom is the simplest
way to obtain models describing liquid-vapor coexistence (double-well free-energy
landscape). This feature is important for systems where free polymer surfaces
play an important role. Consequently, third-order functionals have been frequently
applied for generic modeling of polymer brushes (Soga et al. 1995), films (Müller
and Smith 2005) of melts and solutions, and amphiphilic membranes (Daoulas
and Müller 2010). Although for some actual materials third-order functionals can
approximately reproduce phase-equilibria properties (Binder et al. 2005), usually
more complicated expressions are required. A simple empirical approach is to use
higher-order polynomials, which are reminiscent of the Wohl’s expansion (Wohl
1946; Prausnitz et al. 1999) of the excess Gibbs free energy.

Currently, most hybrid models for multicomponent polymer liquids employ Hnb
which are variants of the general form:

βHnb = κρ0

2

ż

dr
(
φ̂A(r)+ φ̂B(r)− 1

)2 + χρ0

ż

dr φ̂A(r)φ̂B(r) (6)

For simplicity, Eq. 6 refers to a system with only two types of monomers, A and
B (extending to multiple components is straightforward). The operators φ̂λ(r) =
ρ̂λ(r)/ρ0 define the local volume fractions of the two monomer species (λ = A,B).
The average reference density is given by ρ0.

The two-term structure of Eq. 6 illustrates the modularity of hybrid models.
When A and B monomers are identical, the first term of βHnb describes a
homopolymer melt, where a simple equation-of-state (EOS) penalizes deviations of
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the instantaneous density from the reference value. The simple quadratic form can
be motivated by a second-order expansion of the excess free energy of a positionally
inhomogeneous homopolymer melt (Helfand 1975; Jiang et al. 2017) around a
homogeneous reference state with density ρ0. More sophisticated EOS can be
integrated into the model replacing the first term by more complex functionals. The
compressibility of the CG polymer liquid is set by the parameter κ . The second term
of βHnb describes the incompatibility of the two components. The strength of the
incompatibility is controlled by χ . This standard description can be traced back to
the lattice-based Flory-Huggins (FH) model, where the FH parameter χ is expressed
through contact energies of monomers occupying neighboring lattice points. This
expression can be also motivated assuming short-ranged pairwise interactions of
monomers in continuum space (Doi and Edwards 1986; Matsen 2006; Müller 2006).
From the standpoint of top-down modeling, the second term can be introduced as
a simple penalty of contacts between unlike monomers, without considering any
specific microscopic picture. The question of how one can determine χ to represent
a given multicomponent polymer system has attracted significant attention (Wang
2002; Schweizer and Singh 1995; Müller 2006; Schmid 2011; Müller and Binder
1995; Morse and Chung 2009) and cannot be covered in this chapter. We mention
briefly that determining χ from the “first principles” is a challenging task – being
a coarse-grained interaction parameter, χ is in fact a free energy which depends on
numerous subtle enthalpic and entropic effects present on the microscale. Within
the spirit of top-down modeling, one usually follows the pragmatic approach where
χ is considered as a phenomenological (black box) parameter, which is adjusted
until selected mesoscopic observables reproduce their counterparts in experiments
or simulations with more detailed models. Typical examples of these observables are
intrinsic interfacial width, composition of coexisting phases, and structure factors.

It is instructive to compare βHnb from Eq. 6 with the standard Flory-
Huggins-de-Gennes (de Gennes 1980) (FHG) density functional describing
homopolymer blends. In the simplest case of a symmetric binary blend of A- and
B-homopolymers, this functional takes the form:

βF({φA}) =
ż

drf (φA(r)), f (φA(r)) =
√
N̄
[
φA(r) lnφA(r)(1− φA(r))

+ ln(1− φA(r))+ χNφA(r)(1− φA(r))+ B̃(φA(r))|∇φA(r)|2
]

(7)

Eq. 7 assumes that the blend is incompressible with constant density ρ0 so
that the free-energy density, f (φA(r)), depends only on the concentration of one
component, φA(r). All length scales are expressed in units of the root-mean-
square end-to-end distance, Re, of the homopolymer chains. The invariant degree of
polymerization, N̄ , is defined such that

√
N̄ ≡ nR3

e/V , where n/V is the number

density of homopolymer chains.
√
N̄ quantifies the amount of interacting chains

threading through the volume of a test polymer coil and therefore sets the strength
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of fluctuations. Comparing Eq. 6 with the FHG functional demonstrates that βHnb is
missing the logarithmic terms which are associated with the translational entropy of
the molecules. As discussed previously, omitting the logarithmic terms is consistent
with the explicit presence of particle coordinates in the hybrid model. The nonlocal
square-gradient term in the FHG functional penalizes the formation of interfaces
and is, therefore, important for reproducing correct physics. Specifically the term
accounts for the loss of conformational entropy (Lifshitz et al. 1978) of the chains at
an A/B interface. The precise form of B̃(φA) depends on the strength of segregation
and is not essential for our discussion. Although the square-gradient term is missing
from βHnb, the hybrid model still captures the loss of conformational entropy
at interfaces because the molecular architecture is explicitly described. However,
introducing into Hnb non-locality of interactions is important for modeling systems
containing monomeric particles. Dilute films of polymer solutions are an example,
where non-locality is required to describe a phase of liquid solvent exposed to vapor.

Simple symmetry arguments are useful when developing functional-based mod-
els for materials with complex order, such as polymer liquid crystals (LC). For
uniaxial nematics, one can start from the Landau-de-Gennes expansion (de Gennes
and Prost 1995) of the free energy with respect to the local alignment tensor, Q̂(r):

βF =
ż

dr
[
A

2
Q̂(r):Q̂(r)+ B

3
(Q̂(r)·Q̂(r)):Q̂(r)+ C

4
(Q̂(r):Q̂(r))2

]
(8)

The expansion in Eq. 2 includes terms justified by general symmetry argu-
ments (de Gennes and Prost 1995) (rotational invariance of free energy). The
constants A, B, and C are unimportant for our discussion. Expressing the ten-
sorial operators Q̂(r) through coordinates and orientation vectors of CG units is
straightforward. Therefore Eq. 8 can be used to generate particle-based LC models
of polymer LC (Daoulas et al. 2012; Gemünden et al. 2013; Gemünden and
Daoulas 2015). Retaining only the quadratic term of Eq. 8 delivers the class of
Maier-Saupe models. The Landau-de-Gennes expansion can be generalized (Matteis
et al. 2008) to include additional tensorial order parameters describing, e.g. biaxial
order (Gemünden et al. 2013). We notice that the functional βF is local without
scalar combinations of gradients of Q̂(r). These terms are necessary in a continuum
description because they penalize inhomogeneities in ordering and are connected to
Frank-Oseen elastic constants. However, Eq. 8 is sufficient for constructing particle-
based models of polymer LC because non-locality is generated by explicit chain
connectivity and using density distributions, which deliver potentials with finite
range (see Sect. 1.5).

Continuum functional-based descriptions can address crystallization phenomena,
which are one of the most complex cases of material structuring. Among these
approaches, phase-field (PF) models (Boettinger et al. 2002; Bragard et al. 2002;
Gránácy et al. 2013, 2014) have been successful in describing mesoscale morpholo-
gies during polymer crystallization, including dendrites and spherulites. Free-energy
functionals in PF modeling can account for crystallization through (i) additional
phenomenological order parameters expressing the local fraction of crystalline
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phase or (ii) density-dependent terms. It remains to be explored whether some of
the available PF formalisms can provide a framework for developing particle-based
models describing polymer crystallization.

1.3 Defining Operators

Operators transforming a configuration of particle coordinates into an instantaneous
field of local order parameters are an integral part of hybrid models. They can be
defined through schemes which are either (i) particle-to-mesh (PM) or (ii) based on
density distributions.

PM schemes discretize space through a lattice (usually cubic) with Ncell nodes.
Nevertheless, the coordinates of the CG particles are still distributed in the
continuum space underlying the lattice. The operators, used to calculate at each
grid point cm instantaneous densities or orientation tensors, are defined as:

ρ̂λ(cm) = C

n∑

i=1

N∑

s=1

Π(ri (s), cm)γλ(i, s) (9)

Q̂λ(cm) = C̃

n∑

i=1

N∑

s=1

Π(ri (s), cm)qi (s)γλ(i, s) (10)

Here we assume again for simplicity that the polymer system is comprised of n

identical chains which can contain several different monomer species. The chemical
type of a CG monomer is defined through γλ(i, s). Namely, γλ(i, s) = 1 if the s-
th segment of the i-th chain is of type λ and γλ(i, s) = 0 otherwise. The function
Π(ri (s), cm) defines the rule of how particles with coordinates ri (s) are assigned
to the grid points. The lattice spacing, ΔL, and the function Π(r, c) are parts of
the model definition. As in PM methods in electrostatics (Eastwood et al. 1980),
Π(ri (s), cm) is commonly defined (Laradji et al. 1994; Müller and Smith 2005;
Daoulas and Müller 2006; Müller 2011; Detcheverry et al. 2008; Qi et al. 2013;
Milano and Kawakatsu 2009) through polynomials of dα (α = x, y, z). Here dα are
distances along the three Cartesian directions between the grid point at cm and the
position of the CG particle. A popular approach is to employ zero-order assignment
functions defined as: Π0 = 1 if |dα| ≤ ΔL/2 and Π0 = 0 otherwise. The
normalization prefactors C and C̃ depend on the system. Equation 10 demonstrates
that specifying a tensorial operator requires tensors defined on segmental level. In
particular, Eq. 10 defines a rule for calculating the local alignment tensor (cf. Eq. 8),
where qi (s) = [3ui (s) ⊗ ui (s) − I]/2 is a symmetric traceless tensor quantifying
the orientation of a characteristic unit vector ui (s) assigned to the CG monomer.
Instead of qi (s) more complex tensors, e.g. biaxial (Gemünden et al. 2013), can
be employed to define other tensorial operators. Linking to a coordinate-based
representation is not straightforward for all order parameters; PF models describing
crystallization are a typical example (Boettinger et al. 2002).
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Schemes based on density distributions define operators in continuum. This
definition retains translational invariance and isotropicity of space, which are
violated in PM schemes because of the lattice. These schemes use the same rules
(see Eqs. 9 and 10) as PM methods to express order parameters through particle
coordinates, but now the set of node vectors cm is replaced by vectors r defined
in continuum space. Instead of Π(ri (s), cm), each particle is assigned a density
distribution W(ri (s) − r). Frequently, one can give W(ri (s) − r) a qualitative
physical interpretation, assuming that this mathematical object characterizes the
distribution in space of microscopic degrees of freedom that were coarse-grained
out. Depending on the problem, the distributions W(ri (s) − r) can be isotropic
or anisotropic, and their definition is a compromise between physical insights,
simplicity of implementation, and computational efficiency.

Two popular families of isotropic distributions are Gaussian (Laradji et al. 1994;
Vettorel et al. 2010) and spherical (Müller 2011; Gemünden et al. 2013; Gemünden
and Daoulas 2015) functions. The latter are defined as W(r) = 3/(4πσ 3) if
|r| ≤ σ and W(r) = 0 otherwise. The characteristic size of the distribution,
σ , can be chosen (i) empirically (for instance, to achieve a desired amount of
interacting neighbors (Pike et al. 2009)) or (ii) to reproduce qualitatively (Vettorel
et al. 2010; Gemünden et al. 2013) the dimensions of large groups of microscopic
monomers represented by a single CG unit. Ellipsoidal distributions are frequently
chosen (Berne and Pechukas 1972; Murat and Kremer 1998; Eurich and Maass
2001) to describe anisotropic CG objects.

1.4 Defining Functionals and Parameters: Insights
fromMean Field

Field-theoretical approaches based on hybrid models are not the focus of this
chapter. Still they deserve some discussion because they often provide the first
estimates of how the form and the parameters of the functional affect the properties
of the model.

Self-consistent field (SCF) theory is a standard (Edwards 1965; Helfand 1975;
Matsen 2006; Müller 2006; Schmid 2011; Fredrickson 2006) method based on field
theory. First, the partition function of n interacting chains, Eq. 1, is transformed
into a field-theoretical representation, formalized through an equivalent partition
function of an ensemble of n independent chains in fluctuating fields. This operation
is accomplished via the Hubbard-Stratonovich transformation or a method based
on insertion of δ-functionals (cf. Eq. 3). Transforming the partition function into
a field-theoretical representation shifts the problem of describing the statistical
mechanics of mutually interacting molecules to an equally intractable problem of
functional integration over fluctuating external fields. SCF theory makes progress by
introducing a saddle point approximation for the functional integrals. This operation
is equivalent to placing the n independent chains in average fields defined through
the functional derivative of Hnb as:
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Wλ(r) = δHnb

δρ̂λ

∣∣∣∣
ρ̂λ(r)=ρ̄λ(r)

(11)

Here ρ̄λ(r) are average densities. In their turn, these average densities are
determined by the distribution of the n independent chains in the background fields
Wλ(r), which closes the self-consistency loop.

Typically the SCF formalism is solved using iterative schemes. When the model
of the chain architecture is complex, the average densities at each iteration are
calculated over single-chain conformations generated by direct stochastic sam-
pling (Marčelja 1974; Ben-Shaul et al. 1985; Avalos et al. 2004) in the background
fields Wλ(r). For certain molecular models, the chain statistics in background fields
can be obtained more efficiently. For the Gaussian connectivity model, the statistics
of chain conformations in Wλ(r) is characterized through the probability q(r, s) of
finding a monomer s at point r of space. This probability is obtained by solving
the Edwards diffusion equation (Edwards 1965; Doi and Edwards 1986). The
average densities follow from q(r, s) through a simple integral relationship. For the
Gaussian model, several efficient numerical techniques are available (Matsen 2006;
Müller 2006; Schmid 2011; Fredrickson 2006) for solving the set of SCF theory
equations (including the Edwards equation), such as spectral, pseudo-spectral, and
real-space schemes. Over the last years, there has been significant progress (Song
et al. 2009; Jiang and Chen 2013) in developing numerical methods for SCF
theory based on the wormlike chain model. In this case, the statistics of chain
conformations in mean fields follows from the Saito et al differential equation (Saito
et al. 1966).

Within SCF theory, free energies can be directly obtained, and one can estimate
the thermodynamic properties of a specific model. The accuracy of this estimate
depends on the specifics of the system because it is subjected to various approx-
imations inherent to the mean-field SCF theory, such as neglected fluctuations
and correlations. Nevertheless, the thermodynamic properties extracted from SCF
can assist top-down modeling providing guidelines for choosing parameters and
adjusting functionals. SCF results provide the basis for techniques such as the
random phase approximation (RPA) which, to some extent, takes into account
fluctuations. Structure factors of composition fluctuations in the homogeneous
phase derived from RPA are frequently employed in top-down identification of FH
parameters (cf. Sect. 1.2).

Frequently, guidelines for top-down modeling are obtained from rudimentary
mean-field approximations without engaging the complex machinery of SCF theory.
As an illustration, we consider a mixture of homopolymers belonging to several
chemical species. There are nλ chains of each homopolymer type comprised of Nλ

CG monomers. For homogeneous phases, where the composition is described by
average densities ρ̄λ, a crude mean-field expression for the Helmholtz free energy
per volume, V , is given by:
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βF

V
=
∑

λ

ρ̄λ

Nλ

[
ln

(
ρ̄λ

NλZλ

)
− 1

]
+ f [ρ̄λ] (12)

The first term of Eq. 12 is the entropy, where Zλ stands for the single-molecule
partition function of each component. In spirit of the classical FH model, this simple
mean-field approximation assumes that Zλ do not depend on composition. Hence,
only the translational entropy is present. The simple Helmholtz free energy can be
employed to estimate observables such as pressure, chemical potential of molecules,
and response functions, e.g. isothermal compressibility. Matching chemical poten-
tials in top-down models and simple mean-field expressions obtained from FH-like
free energies is often used to fix the degree of monomer incompatibility in the
former.

1.5 Simulation Techniques for Hybrid Models

Many standard simulation techniques can be straightforwardly applied to hybrid
models with PM-based definition of collective variables. In these applications, the
grid introduced for the PM definition of the operators also serves to discretize the
functional. For example, the partition function in Eq. 1 reads:

Z(n, V, T ) = 1

n!
ż

dR exp

[
−

n∑

i=1

βHb(Ri )

]
exp

[
−

Ncell∑

m=1

f ({ρ̂λ(cm)})ΔL3

︸ ︷︷ ︸
βHnb

]

(13)

where the operators ρ̂λ(cm) are defined via Eq. 9. For quadratic functionals, the
sum over grid cells defining βHnb can be rewritten (Daoulas and Müller 2006;
Müller 2011) in terms of pairwise potentials between individual particles. These
potentials are not invariant translationally. The formalism of pairwise potentials
clearly demonstrates (Müller 2011) that the functional in Eq. 13 includes self-
interactions.

Partition functions with βHnb discretized as in Eq. 13 provide a framework
for MC simulations (Laradji et al. 1994; Daoulas and Müller 2006; Müller 2011;
Detcheverry et al. 2008). Starting from an initial configuration, standard MC moves,
including random segment displacement, slithering snake, chain translation, identity
exchange, configuration bias, and chain rebridging algorithms, are used to propose
a new configuration. Based on the proposed coordinates of the CG units affected
by the MC move, new values of collective coordinates are obtained via the PM
operators. The nonbonded energy of the proposed configuration is calculated with
the discretized βHnb. After taking into account the change in the bonded energy
(through βHb), it is straightforward to formulate a Metropolis criterion for accepting
or rejecting the move.
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Calculating the changes of collective coordinates during a MC move via a lattice
“background” avoids computationally expensive neighbor lists used for nonbonded
interactions defined in continuum space. The choice of the assignment function
Π(ri (s), cm) affects the computational cost of the MC simulation. Algorithms
based on Π0 functions are the most efficient and easy to develop, because each
particle affects the values of collective coordinates at only one node. It has been
demonstrated (Müller 2011) that self-interactions are one of the factors leading
to nonuniform distribution of CG particles within one lattice cell. Π0 is an
exception because self-interactions contribute a constant energy shift which has
no effect on the density distribution within a cell (Müller 2011). Formally, the
spacing of the grid sets the smallest length scale that can be resolved by a PM
model (Daoulas and Müller 2006). Hence, quantifying properties on scales smaller
than ΔL is irrelevant for many applications. One can attempt (Detcheverry et al.
2008; Vogiatzis and Theodorou 2013) to mitigate the breaking of translational
invariance by introducing during simulations random lattice displacements. When
the displacements are subjected to a Metropolis acceptance criterion (Vogiatzis and
Theodorou 2013), the sub-grid structure of the liquid can influence the acceptance
rate. With higher-order assignment functions, a single particle contributes to the
evaluation of collective coordinates at several grid points. This reduces artifacts
related to space discretization, including pinning of interfaces in strongly segregated
systems. Nevertheless, the implementation of assignment functions higher than first
order is usually undesirable due to substantial increase in computations. One of the
exceptions are models of high-molecular-weight polymer melts where molecules
are described by chains of linked blobs. Each blob is represented by a Gaussian
density cloud distributed over a large number of lattice nodes (Zhang et al. 2013,
2014), i.e., the period of the lattice ΔL is significantly smaller than the width of
the Gaussian. Within this approach, lattice effects become negligible (Zhang et al.
2013) to an extent that one can perform MC simulations in the isobaric ensemble.

MC simulations offer an “exact” (within statistical errors) solution of the
statistical mechanics formalized through the partition function in Eq. 13. At the
same time, PM techniques provide the framework for approximate but significantly
more efficient methods closely linked to field-theoretical approaches. For instance,
the “quasi-instantaneous” field approximation presents a powerful concept realized
using single-chain-in-mean-field (SCMF) simulations (Müller and Smith 2005;
Daoulas and Müller 2006). In SCMF simulations, the instantaneous interactions
of a CG monomer with its surroundings are equivalently represented through
fields defined at each grid node as functional derivatives of βHnb with respect to
the collective degrees of freedom. Within the “quasi-instantaneous” field approx-
imation, the fields are frequently updated substituting the collective coordinates
calculated from the coordinates of the CG monomers. Between the updates, the
fields remain stationary, and the CG polymer chains evolve in them independently
typically using local MC moves. The frequent recalculation of the fields recovers
partially the correlations between monomers. In the limit where the fields follow
instantaneously the configurations of the system, the SCMF simulations become
equivalent to the MC simulations. An approach for estimating the accuracy of
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the “quasi-instantaneous” field approximation has been elaborated in Daoulas
and Müller (2006). PM methods combining particle-based representations with
field-based descriptions of interactions have been also employed in context of
dynamical algorithms, such as self-consistent Brownian dynamics (SCBD) simula-
tions (Ganesan and Pryamitsyn 2003; Narayanan et al. 2004) and particle-field MD
simulations (Milano and Kawakatsu 2009). In dynamical schemes based on hybrid
models, forces acting on a particle can be calculated by expressing derivatives of
Hnb with respect to particle coordinates through the derivatives of the weighting
function (Zhang et al. 2017). An alternative approach (Milano and Kawakatsu 2009)
is to use stencil operators (Sevink 2015) acting on densities defined on the grid
points.

With the help of operators defined through density distributions, nonbonded
interactions defined through functionals can be converted into potentials or forces
acting in continuum space. This strategy avoids the artifacts of PM schemes but
is more demanding computationally, because the interactions must be treated as
in standard simulations (including the implementation of cell lists). Quadratic
functionals are transformed into pairwise interactions by substituting the definitions
of the operators. Namely, scalar and tensorial terms can equivalently be rewritten as:

1

2

ż

drρ̂2(r) = C2

2

∑n,N

i,s=1

∑n,N

j,t=1

[
ż

drW(ri (s)− r)W(rj (t)− r)
]

︸ ︷︷ ︸
U(ri (s)−rj (t))

1

2

ż

drQ̂(r):Q̂(r) = C̃2

2

∑n,N

i,s=1

∑n,N

j,t=1

×
[

ż

drW(ri (s)− r)W(rj (t)− r)
]

qi (s):qj (t) (14)

For simplicity, we consider here the density of a single component (the subscript
λ is dropped off) and omit arithmetic as well as material-specific constant prefactors.
Only the 1/2 coefficient is retained to exclude double counting. The integral
U(ri (s)− rj (t)) can be calculated analytically for suitable choices of W(ri (s)− r)
(e.g. the spherical density distribution (Müller 2011) from Sect. 1.3) to obtain
explicit pairwise potentials. In simulations of soft matter, it is common to derive
CG potentials from overlaps of density distributions, although this approach is not
always explicitly linked to density functionals. The anisotropic potential derived
analytically from the overlap of two Gaussian ellipsoid density distributions (Berne
and Pechukas 1972) is an important example, serving as a basis for developing
the standard Gay-Berne potential (Gay and Berne 1981). Models based on overlap
of anisotropic objects have been also directly employed (Vink and Schilling 2005;
Zong et al. 2012) to study liquid crystalline mesophases. In these models, the LC
order is obtained mainly as a consequence of the excluded volume interaction. In
contrast, Eq. 14 describes a class of potentials where effects of liquid packing, deter-
mined by U(ri (s)−rj (t)), are largely (but not entirely Greco et al. 2016) decoupled
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from LC order generated by the tensorial term qi (s):qj (t). This “factorization”
offers an easier control over system thermodynamics.

With PM methods, it is straightforward to perform simulations using hybrid
models based on functionals with higher order than quadratic (Soga et al. 1995;
Daoulas and Müller 2010). However, in this case, it is challenging to use density
distributions to derive potentials because high-order polynoms lead to multibody-
overlap integrals which cannot be easily calculated analytically. This problem is
circumvented in the method of multibody dissipative particle dynamics (DPD) (Pag-
onabarraga and Frenkel 2001; Warren 2001; Trofimov et al. 2002; Español and
Warren 2017). To sketch the approach, we consider a simple system of n identical
monomeric particles. The functional of nonbonded interactions is approximately
transformed into:

βHnb =
ż

drf (ρ̂(r)) �
ż

dr
n∑

i=1

δ(r− ri )ψ(ρ̃(r)) =
n∑

i=1

ψ(ρ̃(ri )) (15)

where ψ(ρ̃(r)) has the meaning of a local free energy per particle (Pagonabarraga
and Frenkel 2001). The function ρ̃(r) is a “smeared-out” local density defined as:

ρ̃(r) =
ż

dr′
n∑

i=1

wm(|r− r′|)δ(r′ − ri ) =
n∑

i=1

wm(|r− ri |) (16)

The definition of the “smeared-out” local density is based on the concept of
density distributions. However, in multibody DPD, depending on the studied prob-
lem, different weighting functions wm are used to define the smeared-out densities
entering the different parts of ψ(ρ̃(r)). A typical example (Hömberg and Müller
2010) is free energies containing terms which account for short-range repulsions and
long-range attractions in the liquid. Differentiating the RHS of Eq. 15 with respect
to a particle coordinate, say ri , generates a force law of pairwise forces, which
makes simulations straightforward. Obtaining the multibody DPD force law through
a density functional presents a “potential-based” derivation. This feature avoids
implications related to the “No-go theorem for multibody DPD” (Warren 2013).

1.6 Outlook

Modeling polymeric materials by combining particle-based and classical density-
functional-based descriptions represents a broad field of research. By defining
interaction laws between particles through a free-energy-like functional, these
top-down methods enable one to develop systematically particle-based models
with desired thermodynamic behavior. Materials described by hybrid models can
be studied with standard simulation tools including Monte Carlo sampling and
various dynamical methods. In addition to particle-based simulations, hybrid models
provide the framework for powerful field-theoretical methods. Although hybrid
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modeling has been successful in many fundamental and application-oriented studies
of polymeric systems, the field is far from being mature.

One important methodological problem is that the properties of hybrid models
cannot be a priori determined in an entirely knowledgeable way even though the
interactions are linked to a density functional. The reason is that prior to per-
forming particle-based simulations, the thermodynamic behavior of hybrid models
is estimated using approximate mean-field methods. After an initial mean-field-
based parameterization, simple hybrid models can be improved using elementary
heuristic schemes. However, systematic strategies must be developed in order to
refine complex models.

Soft interactions in hybrid models eliminate mechanisms which are crucial for
studying polymer dynamics. Currently, there is significant interest in reintroducing
the effects of these mechanisms in a top-down fashion. For example, recover-
ing chain non-crossability is necessary to study rheological behavior. Two ideas
explored for this purpose are (i) algorithmic detection and prevention of intersection
events (Padding and Briels 2011) and (ii) phenomenological interactions (slip-
links), temporarily constraining the motion of the chain backbone (Hua and
Schieber 1998; Masubuchi et al. 2001; Likhtman 2005; Chappa et al. 2012).

Due to their specific structure, hybrid models have significant potential as
platforms for methods where a polymeric system is simultaneously described on
particle-based and field-based level. This potential of hybrid models has been
already demonstrated through concurrent coupling (Müller 2009) of a continuum
Landau-Ginzburg to a hybrid particle-based model. A popular idea is to use hybrid
models for semi-discrete representations (Kawakatsu and Kawasaki 1990; Sides
et al. 2006; Sevink et al. 2013). These approaches introduce a particle-based descrip-
tion only for some molecular species, while the remaining components are treated
on a continuum level. With hybrid models, schemes can be developed (Qi et al.
2013) where the system simultaneously contains regions described on field- and
particle-based level. These schemes are field-based analogs of adaptive resolution
simulation (AdResS) strategies (Praprotnik et al. 2007; Potestio et al. 2013), which
have become very popular in standard particle-based simulations.
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Abstract

We critically review simulation approaches developed to study organic solar
cells, light emitting diodes, and field effect transistors. Special attention is paid
to multiscale techniques. In particular, we discuss how to parametrize coarse-
grained models for morphology and charge transport simulations, to account for
finite-size effects, and to treat long-range interactions in small systems.

1 Introduction

Organic semiconductors are conjugated molecular compounds constituted of by
carbon and hydrogen atoms and heteroatoms such as nitrogen, sulfur, and oxygen.
Examples of organic semiconducting molecules are shown in Fig. 1. Conjugation is
the key feature of these materials: Connected π -orbitals with delocalized electrons
can donate or accept electrons easily, thus facilitating charge transfer reactions.
Efficient charge transfer enables charge transport on a mesoscale. In their pristine
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Fig. 1 Example of a donor-acceptor combination used in an efficient bulk heterojunction solar
cell (Fitzner et al. 2011). Host and guest materials forming an active layer of a blue phosphorescent
light emitting diode (May et al. 2012a). Self-assembling organic molecules with high charge
mobilities measured in field effect transistors (Ebata et al. 2007; Abe et al. 2015)

state, however, organic semiconductors are insulators. They become semiconducting
only upon charge injection – from electrodes, by doping, or by photoexcitation.

Besides charge carrier mobility, other relevant physical properties of organic
semiconductors are their absorption and emission spectra, ionization potential and
electron affinity, solubility, self-assembling abilities, and glass transition temper-
ature. These quantities depend on the molecular arrangement in the solid state,
which can vary from crystalline to liquid crystalline to completely amorphous.
The prime task of material design is to relate these quantities to the chemical
composition and processing conditions, hence helping to prescreen compounds prior
to their synthesis. Computer simulations can assist in finding such relationships by
providing information which is not accessible to experimental techniques.

In silico prediction of properties of organic semiconducting devices requires
multiscale approaches. Indeed, solving the time-dependent Schroedinger or the rel-
ativistic Dirac equation is computationally infeasible for an entire device. Likewise,
timescales of dynamic processes such as charge or energy transfer span several
orders of magnitude. Hence, charge/exciton kinetics cannot be treated by numerical
methods with a fixed time step. It is normally coarse-grained into a master equation,
as illustrated in Fig. 2, with rates evaluated with the help of the Fermi’s golden
rule (Athanasopoulos et al. 2007; Kirkpatrick et al. 2007; Nelson et al. 2009; Rühle
et al. 2011; Schrader et al. 2012a, b; May et al. 2012a, b; Poelking and Andrienko
2013; Poelking et al. 2013; Kordt et al. 2015a). Multiscaling is essential not only
to electronic processes, but also when addressing material processing, since self-
assembling properties of conjugated materials, especially polymers can only be
studied using coarse-grained models.

In spite of the implicit treatment of the electronic degrees of freedom, the
approach based on the master equation is still computationally demanding. Indeed,
electronic coupling elements must be evaluated for all pairs of neighboring
molecules using first principles calculations. In addition, the evaluation of the self-
consistent electrostatic and induction contributions to the free energy of localized
charges requires large interaction cutoffs. To reduce the computational overhead,
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Fig. 2 Multiscale simulations of organic semiconductors. Polarizable force-fields and electronic
properties of isolated molecules obtained from first principles are used to generate morphologies
and evaluate charge transfer rates in small systems (microscopic models). Coarse-grained models
are parametrized either by matching macroscopic observables, e.g., charge mobility, of the
microscopic and coarse-grained (lattice) models. After incorporating long-range electrostatic
effects and electrodes, the resulting analytical expressions for mobility are then used to solve
drift-diffusion equations for the entire device. Alternatively, off-lattice models can be developed
by matching distributions and correlations of site energies, electronic couplings, and positions
of molecules. The master equations for this model can be solved using the kinetic Monte Carlo
algorithm, yielding macroscopic characteristics of a device. (Reproduced with permission from
Adv. Funct. Mater. 25, 1955–1971, 2015)

we can parametrize a lattice model using the solutions to the master equation and
then apply this model to study charge/exciton dynamics in larger systems. We will
discuss this approach and its pitfalls in Sect. 2.

We can also design a stochastic model, an algorithm which generates the mor-
phologies and the rates of the master equation without computationally demanding
evaluations of electronic couplings and site energies. Together with an efficient
kinetic Monte Carlo solver, the stochastic model can be used to simulate an entire
device. Alternatively, it can be employed as an intermediate model to parameterize
the closures of drift-diffusion equations. We will review this approach in Sect. 3.

To further reduce computational costs, we can mimic a macroscopically large
system by replicating a relatively small simulation box in two or three spatial
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directions. The use of periodic boundary conditions might, however, truncate the
tails of the density of states, smoothen the free energy landscape, and artificially
increase the charge carrier mobility. These artifacts can be corrected by various
extrapolations, which will be discussed in Sect. 4.

In addition, periodic boundary conditions complicate correct treatments of long-
range Coulomb forces. To accurately evaluate the density of states, the algorithm
should be able to treat charged systems. Unlike the neutral surrounding of the
charge, the charge itself should not be periodically repeated. Approaches applicable
to partially periodic systems will be discussed in Sect. 5.

2 Regular Lattices

From the computational point of view, the most efficient device modeling is based
on the drift-diffusion equations (Knapp et al. 2010). Material properties enter
these equations through closures, such as dependencies of diffusion constants
and mobilities on charge density, temperature, and pressure. Closures provide a
link to the chemical composition and material morphology and can be measured
experimentally or computed using lower-resolution models. Lattice models are
typical minimalist models required to compute such dependencies. In these mod-
els, a regular lattice represents material morphology, charge transfer rates decay
exponentially with the intermolecular separation, and energy differences obey a
Gaussian distribution. This approach was initiated by Bässler and has been used by
several groups to understand the role of traps, finite charge carrier density, energetic
disorder, and other mesoscopic parameters on charge mobility (Pasveer et al. 2005;
Cottaar et al. 2011; van der Holst et al. 2011; Bässler 1993; Yimer et al. 2009;
Novikov et al. 1998; Freire and Tonezer 2009).

Fits of phenomenological expressions for charge carrier mobility to the kinetic
Monte Carlo simulations of lattice models are known as extended (correlated)
Gaussian disorder models, EGDM, and ECDM. These expressions depend para-
metrically on the lattice constant a, the energetic disorder σ , and a prefactor
μ0. In principle, a and σ can be evaluated in a relatively small system: a as
the mean distance between neighboring molecules and σ as the width of the
DOS that results from perturbative energy calculations. μ0 can be extracted from
charge transport simulations performed at different temperatures. This approach,
however, does not lead to reliable parameterizations (Kordt et al. 2014, 2015a).
Indeed, a multidimensional fit of simulated mobilities to the EGDM or ECDM
expressions yields a very different set of parameters: the EGDM underestimates
the energetic disorder, while the ECDM overestimates it. In both cases spatial site
energy correlations are responsible for this discrepancy. EGDM does not include
correlations and compensates for higher mobility values by reducing the energetic
disorder σ . ECDM overestimates spatial correlations and compensates this by
reducing the lattice constant (Kordt and Andrienko 2016). The discrepancy between
microscopic values and fits to EGDM and ECDM tells us that parameters of these
models do not have a clear physical interpretation. Nevertheless, they still provide
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reasonable parameterizations and can eventually be used in conjunction with drift-
diffusion equations.

A more conceptual drawback of EGDM and ECDM resides in the approxima-
tions incorporated in the rates of the master equation of the underlying lattice model,
which constrain the functional form of μ(ρ,F, T ). To avoid such constraints, we
can simply tabulate the mobility in a wide range of charge densities, temperatures,
and electric fields with the help of the microscopic model. The tabulated function
can then be used in the drift-diffusion equations solver (Kordt et al. 2015b).
Computationally, the tabulation is only feasible with the help of a stochastic model,
which we will discuss in the next section.

3 Stochastic Models

In heterogeneous organic semiconducting devices, charges are nonuniformly dis-
tributed and charge density variations span several orders of magnitude. To cover the
required density range in simulations, we need to simulate relatively large systems.
This quickly becomes computationally demanding if all rates are evaluated from
first principles (Kordt et al. 2015b). To remedy the situation, we can devise a
phenomenological algorithm to parametrize the master equation (Baumeier et al.
2012; Stenzel et al. 2014; Brereton et al. 2014; Stenzel et al. 2014).

In case of morphologies, this algorithm reproduces given correlation func-
tions, densities, and coordination numbers. For (approximately) spherically shaped
molecules, the pair correlation function, or radial distribution function, g(r),
contains the most relevant structural information. To reproduce this function
approximately, we can use a Poisson process (Baumeier et al. 2012; Kordt et al.
2014). More accurate coarse-graining techniques, such as iterative Boltzmann
inversion (Tschoep et al. 1998; Reith et al. 2003) or inverse Monte Carlo (Lyubartsev
and Laaksonen 1995; Soper 1996; Murtola et al. 2009), allow an exact reproduction
of the radial distribution function (Kordt et al. 2015a). These methods optimize a
pair interaction potential, U(r), in a way that the corresponding g(r) is reproduced.
The approach can also be applied to non-spherical molecules, by using several
interacting sites per molecule (Rühle et al. 2009).

The second ingredient of the stochastic model is the connectivity. In the atomistic
model only molecules within a certain cutoff distance are used for calculating
charge transfer rates, while the rest of the rates is set to zero. This is justified
by the fact that electronic coupling elements decrease roughly exponentially with
molecular separation (Kordt et al. 2015a). The distance that determines whether or
not two molecules are connected is given by their two closest atoms. Since this
information is not present in the coarse-grained model, the resulting probability of
two sites being connected is given by the corresponding probability extracted from
the atomistic system.

For charge transfer rates, a simple procedure can be developed by analyzing
the distributions of parameters entering the charge transfer rate. For example,
in an amorphous mesophase of the organic semiconductor Alq3, the distribution
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of electronic couplings at every particular intermolecular separation is Gaussian.
The dependence of the width and the mean of this Gaussian on intermolecular
separation can be determined from microscopic simulations. The spatial correlations
of site energies can be introduced by using a moving-average procedure. In this
approach, the site energies of the neighbors within a certain cutoff are mixed into
initially independent Gaussian site-energy distribution (Kordt and Andrienko 2016).
Electronic coupling elements can also be generated using appropriate distributions.
These distributions are, however, separation-dependent: the logarithm of squared
transfer integrals, log J 2 (which is often Gaussian distributed) depends on molecular
separation. In the stochastic model, transfer integrals are then drawn from the
distant-dependent distributions.

Stochastic models developed for amorphous mesophases of Alq3 and DCV4T
could reproduce the mobility-field and mobility-density dependencies (Baumeier
et al. 2012; Stenzel et al. 2014; Kordt et al. 2014). This indicates that they indeed
can serve as an intermediate step between the completely microscopic descriptions
and macroscopic, drift-diffusion-equation-based models. The current challenge is to
extend such models to anisotropic and heterogeneous systems.

4 Finite-Size Effects

The dependence of macroscopic observables on the system size has been experimen-
tally observed in organic semiconductors in systems with large energetic disorder or
broad density of states. For example, time-of-flight measurements of mobility are
impossible in thin organic films, where charge transport is dispersive and transients
do not have a characteristic plateau used to determine the transient time (Scher
and Montroll 1975; Borsenberger et al. 1991, 1992, 1993). Using thicker samples
normally remedies the situation.

A similar effect is also observed in simulations of small systems. It turns out that
replicating the simulation box still gives incorrect (higher) values of charge carrier
mobility (Lukyanov and Andrienko 2010). Indeed, all duplicated boxes have exactly
the same (and small) number of independent site energies. Statistical averages are
performed over this small set of site energies, and charge carriers traverse the sample
at a different (higher) temperature than in an infinitely large system. Surprisingly,
an additional averaging over different, statistically uncorrelated, but still repeated
snapshots does not help, since the origin of the problem lies in the limited number
of available for every distinct Monte Carlo simulation sites.

This type of finite-size effects becomes much smaller at higher temperatures,
since the relevant dimensionless parameter (at least in the Gaussian disorder model)
is the width of the site energy distribution σ divided by kBT . In fact, an empirical
expression, (σ/kBTND)2 = −5.7 + 1.05 lnN , can be used to estimate at what
temperature the “transition” between the dispersive and non-dispersive transport
occurs, where N is the number of the hopping sites (molecules) in the system.
This observation has been used to perform an empirical correction of finite-size
effects (Lukyanov and Andrienko 2010): Nondispersive mobilities were calculated
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for a set of temperatures above TND. Then, an explicit temperature dependence was
used to extrapolate the value of mobility to room temperature.

This method relies on an explicit knowledge of the temperature dependence of
mobility. While the exact analytical expression of this dependence is available only
for one-dimensional systems (Derrida 1983; Seki and Tachiya 2001),

μ(T ) = μ0

T 3/2
exp

[
−
( a

T

)2 −
(

b

T

)]
,

it can still be used in a three-dimensional case in a rather broad temperature range, as
was verified by performing simulations for systems of different sizes and at different
temperatures (Lukyanov and Andrienko 2010).

An alternative method is to determine the mobility as a function of the box
size. For one-dimensional systems and Gaussian DOS, the mobility is inversely
proportional to the number of visited sites N (Kordt et al. 2016),

μ(N) = μ∞
(

1+ c

N

)
.

Using this relation, it is possible to extrapolate the finite-size mobilities to its
macroscopic value μ∞.

To illustrate the relevance of such extrapolation, charge transport in the amor-
phous mesophase of Alq3 was simulated in systems of different sizes (Lukyanov
and Andrienko 2010). In a system of 512 molecules, the simulated mobility was of
the order of 10−6 cm2/Vs, while in a box of 4096 molecules, an order of magnitude
lower value was measured. Extrapolation procedure resulted in a mobility of
10−9 cm2/Vs, which is three orders of magnitude lower than the one simulated in
a small system. Note that the magnitude of the correction is very sensitive to the
value of the energetic disorder σ . While in Alq3 σ = 0.14 eV, in an amorphous
DCV4T σ = 0.25 eV, the value of mobility can be overestimated by seven(!) orders
of magnitude (Kordt et al. 2014).

5 Long-Range Interactions

An important ingredient of charge and energy transfer reactions is the free energy
difference between the final and initial states or the driving force. In organic
semiconductors this energy difference is often evaluated in a perturbative way,
starting from an isolated molecule and then calculating the electrostatic and
induction contributions of the environment. Coulomb interactions of partial charges
or higher distributed multipoles are inherently long-range and require special
summation techniques, e.g., Ewald summation, which is widely used in atomistic
molecular dynamics simulations (Ewald 1921). In this approach, the Coulomb
potential is split into two terms, one of which is converging fast in real and the
other in reciprocal space. Induction contribution can also be incorporated in such a
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scheme (Ren and Ponder 2003). While this method is well developed, it is designed
for neutral systems, whereas for charge transport, our interest lies in energies of a
localized charge interacting with the neutral environment. The presence of a charged
excitation and its polarization cloud violates the periodicity of the system, which is
essential for calculations in the reciprocal space.

A computationally more demanding solution is to evaluate electrostatic sums for
spheres centered around the charged molecule (bulk) or cylinders (slab) of radius
R. In both cases charge-quadrupole interactions scale as 1/R, making it possible
to extrapolate to R → ∞ (D’Avino et al. 2016). A more elegant solution to
this problem has been proposed by Poelking and Andrienko (2016). The nonpe-
riodic (foreground) part of the system which incorporates the charged excitation
and its induction cloud is superimposed onto a periodic, neutral background,
which is computed using the Ewald summation method. The real-space interaction
between these two regions is mediated by fields created by the background
charge distribution, including induced moments. A modified shape term (Smith
1981) is added to account for the net charge and quadrupole of the simulation
box. This term takes into account surface effects and depends on the summation
geometry.

By applying this technique to organic/organic interfaces, it has been shown
that a cutoff of 4−8 nm is sufficient to converge the energy of a periodic three-
dimensional system (Schwarze et al. 2016). For ordered interfaces, the convergence
turns out to be significantly slower: for a 12 nm thick slab, the energy is far from
converged even for the cutoff of 22 nm (Poelking and Andrienko 2016, 2015;
Poelking et al. 2014). Hence, this method should be used for two-dimensional
periodic systems or, in general, heterogeneous systems with a long-range molecular
ordering. The differences between using simulations with a cutoff and without
it are remarkable: the additional electrostatic/induction contribution can change
from 0.5 eV (10 nm cutoff) to −0.7 eV (infinite system). The correct treatment of
electrostatic can therefore reverse the role of donor and acceptor as conditioned
by gas-phase energy levels and energy levels calculated with a seemingly ample
cutoff. It also predicts that the energy profiles for electrons and holes are flat at
the organic-organic interfaces, while cutoff-based calculations lead to a significant
level bending. Finally, it allows to establish a relationship between structural
coherence and state energetics: the structural coherence is probed up to a μm

scale, hence emphasizing the role of extended crystallites (and their alignment) at
interfaces.

6 Outlook

There are still a few directions where substantial method development is required
to achieve a parameter-free modeling of realistic devices. An important step is to
explicitly include the many-body induction interactions to the solution of the master
equation. This, however, requires the reevaluation of rates at every Monte Carlo
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step and is computationally demanding. Another issue is the quantitative treatment
of excited states embedded in a heterogeneous polarizable molecular environment,
including descriptions of charge-exciton and exciton-exciton interactions. These
advancements are absolutely vital for devising accurate structure-property relation-
ships for organic semiconductors.
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Abstract

Soft matter systems display properties that span different time and length
scales. In addition, scales’ interplay is often the key to understand fundamental
mechanisms to the aim of controlling and/or designing materials with properties
on demand. On the other hand, computational soft matter is limited by compu-
tational power for both, size and time of simulation and analysis of large sets of
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data. In this perspective, computational efficiency to treat large systems on long
time scales becomes one of the main goals in constructing modern algorithms,
together with the capability of designing theoretical schemes for data analysis
capable of extracting the relevant information of interest above all the effects of
scales’ interplay. One common and recurrent feature, in such studies, is the need
to include relevant chemical details in a specific region where an event of interest
is taking place, while the environment plays simply the role of a macroscopic
thermodynamic bath that can be treatable at a coarse-grained level. Thus, an
efficient computational strategy consists in employing multiple resolution meth-
ods, which simultaneously consider models with different resolution in different
regions. This chapter provides a basic introduction to the adaptive resolution
simulation (AdResS) method and its recent extensions. This methodology is
designed with the idea of efficient computation and analysis of multiple scales
as envisaged above. We will report its basic principles and technical aspects for
the various directions along which the original idea was developed. As it will
emerge in the next sections, the basic idea of adaptive resolution, already highly
efficient in its first implementation, has now reached a high level of theoretical
solidity, being framed in different but complementary ways in physically rigorous
principles. Finally, selected applications, relevant in the field of materials science,
chemical physics, and biochemistry, are illustrated in order to show the advanced
possibilities of application of the method.

1 Adaptive Resolution Simulations

AdResS (Praprotnik et al. 2005, 2008) is a multi-resolution simulation method
that links two regions of a simulation box having different resolutions: region 1,
atomistic (AT), and region 2, coarse-grained (CG). The innovative aspect of such
a setup is that the boundary between such regions is open; thus, it allows the free
exchange of particles/molecules between the two regions. This free exchange occurs
through a coupling transition region (HY) where molecules have space-dependent
hybrid atomistic/coarse-grained resolution or intermolecular interactions. In the
original version (Praprotnik et al. 2005, 2008), the guiding principle employed
was that the coupling between two regions must be smooth enough so that the
dynamics of the atomistic and the dynamics of the coarse-grained region, through a
hybrid resolution region, would not be perturbed in a sizable way, i.e., Newton’s 3rd
law should be fulfilled. This empirical principle corresponds to a straightforward
molecular dynamics (MD) algorithm based on the interpolation of the atomistic and
coarse-grained forces. The above requirement prevents the use of an interpolation
based on a Hamiltonian (Delle Site 2007). While for most typical applications not
of a serious concern and for some even advantageous, e.g., hydrodynamics, the
desire to base such an interpolation scheme on a Hamiltonian description led to
the development of H-AdResS (Potestio et al. 2013a, b). At the cost of a weak
violation of Newton’s 3rd law, the Hamiltonian description offers some advantages,
including the option to perform adaptive Monte Carlo (MC) simulations. Recently,
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AdResS has been also extended to simulate open molecular systems within the
grand canonical ensemble by grand canonical AdResS (GC-AdResS) (Wang et al.
2012, 2013) and open boundary molecular dynamics (OBMD) (Delgado-Buscalioni
et al. 2015; Sablić et al. 2016, 2017a, b). In the following, the different adaptive
resolution approaches will be introduced, and some typical applications will be
presented.

2 Adaptive Resolution Simulations: AdResS

The original concept is based on the idea that forces between particles/molecules
should change upon variation of the molecular resolution and that this should, in
principle, not affect the intermolecular dynamics. Thus, the explicit coupling is such
that the force between two molecules α and β is computed via a space-dependent
interpolation formula and is written as

Fαβ = w(Xα)w(Xα)F
AT
αβ + [1− w(Xα)w(Xα)]FCG

αβ (1)

here, FAT
αβ is the atomistic force between the particles and FCG

αβ is the coarse-grained
force; w(x) is the interpolating function and is defined as

⎧
⎨

⎩

1 x < dAT

cos2[π/(2d�)(x − dAT )] dAT < x < dAT + d�

0 dAT + d� < x

⎫
⎬

⎭

where dAT and d� are the linear dimension of the atomistic region and hybrid
regions, respectively (see Fig. 1). The weighting function smoothly goes from
0 to 1 in the hybrid region and allows the coarse-grained particles to change their
resolution into an atomistic molecule and vice versa. A local thermostat takes care
of adsorbing and releasing the excess of heat produced by the change of resolution
(see e.g., Poblete et al. 2010). This minimal ansatz has been shown to be already
sufficient for performing accurate simulations in both the atomistic and coarse-
grained regions (see e.g., Praprotnik et al. 2007b). Other more natural choices
of coupling, e.g., through an energy, were not considered at this point. Provided
that the dynamics should be governed by intermolecular forces only, it was shown
that a spatial interpolation of any energy functional, instead of forces, leads to the
mathematical nonexistence of a global physically consistent energy in the adaptive
sense. As a consequence, any energy functional constructed on the basis of spatial
interpolation would be artificial from the physical point of view (see Eqs. 14 and 15
in Delle Site 2007). Nevertheless, relaxing the constraint on the exact conservation
of Newton’s 3rd law, energy-based algorithms, which have the technical capability
of conserving energy (a familiar concept for practitioners of MD and needed for
MC) and enable more flexibility in the choice of the standard technical setups,
can be devised. In both types of approach one needs to carefully consider the
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(a) (b)

Fig. 1 (a) Cartoon of the AdResS setup with spherical regions modeled with different levels of
resolution. In the center, there is the AT domain with the molecules surrounded by the HY and
CG domains, respectively. (b) Multiscale system of a liquid composed of tetrahedral molecules.
(Reprinted from Praprotnik et al. 2006)

meaning of global ensemble averages in order to identify realistic and artificial
results. In the next sections, we will consider these two different options. From the
basic technical point of view, they are actually more or less equivalent (Delle Site
and Praprotnik 2017). As a final general remark, it must be underlined that AdResS,
in any of its variations, turned out to be conceptually and computationally far more
robust than other similar methods (Ensing et al. 2007; Heyden et al. 2007; Mones
et al. 2015). In fact, beyond the basic coupling structure, several additional technical
aspects were also implemented and tested; relevant examples are the design of
a diffusing high-resolution region where the high resolution follows a solvated
molecule in space (Praprotnik et al. 2007a) or the design of high-resolution regions
of adjustable size (Kreis et al. 2016b), the use of the method for the calculation
of potential of mean force for the solvation of relevant biomolecules (Fiorentini
et al. 2017) or for the calculation of the chemical potential of liquids and mixtures
(Agarwal et al. 2014).

3 Grand Canonical AdResS: GC-AdResS

Further methodological developments of the initial idea based on force interpolation
led to the definition of a space-dependent thermodynamic force acting on to the
centers of mass of molecules in the hybrid region. Such a force imposes a priori
a proper thermodynamic equilibrium and a correct exchange of particles between
the AT and CG region (Poblete et al. 2010; Fritsch et al. 2012a). Later on, it has
been shown that the thermodynamic force and the work of the thermostat exactly
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give the proper chemical potential of coupling even when coarse-grained models
reproduce only density and temperature that is only macroscopic thermodynamics.
Thus, AdResS was reframed within a grand canonical-like approach (Wang et al.
2012, 2013). Finally, the coupling of the atomistic region to the rest of the system
has been rationalized in such a way that a rigorous formalization of a control error
is employed to check whether or not the textbook definition of grand canonical
system (see, e.g., the procedure in Huang 1987) is satisfied (GC-AdResS). The
corresponding formula for the control of the error opened the gate to the conceptual
embedding of GC-AdResS into the so-called Bergman-Lebowitz model of open
systems (Lebowitz and Bergmann 1957; Bergmann and Lebowitz 1955) and hence
to the definition of a Liouville equation for a system that exchanges particles with
a reservoir. This led to the physically correct definition of ensemble average time
correlation functions for open systems (Agarwal et al. 2015; Agarwal and Delle Site
2015, 2016). In this context, a surprising result of an unexpected locality in the
IR spectra of water was found (Agarwal and Delle Site 2016), which is due to
the interplay between local quantum effect and global structural properties for the
solvation of hydrophobic molecules (Agarwal et al. 2017). Another success of GC-
AdResS is its application to ionic liquids, due to the highly challenging role of
electrostatics (Krekeler and Delle Site 2017). We could show that independently
from the fact whether the coarse-grained model is charged or not, the AT region
reproduces always the results of an equivalent subregion of a large full atomistic
simulation. The absence of any atomistic degree of freedom outside the atomistic
region allowed us to confirm and quantify the structure of the cage within which
an ion rattles (Jabes et al. 2018). Here, it should be underlined that the fact that the
method applied is force-based plays no more a role for the conceptual justification
of the method, since the embedding of the algorithm into the grand canonical frame,
and its correspondence to the Bergman-Lebowitz model of open system applies
to any possible form of coupling between the AT region and the reservoir. Along
such lines, recent theoretical progress has led to the construction of a numerical
protocol for allowing the adaptive resolution simulation of molecules with electrons
where physical consistency at statistical mechanics level is strictly assured by exact
formulas of control of the approximations (Delle Site 2018). In general, AdResS
can handle systems in equilibrium and beyond, and, in the next sections, the idea of
system with open boundaries is moved even forward to a truly open systems such
as coupling to continuum or an ideal gas.

4 AdResS and Its Coupling to Continuum: Open Boundary
MD (OBMD)

Another extension of the force-based AdResS that allows for simulations of open
molecular systems that exchange mass, momentum, and energy with their surround-
ings has been coined open boundary MD (OBMD) (Delgado-Buscalioni et al. 2015;
Sablić et al. 2016, 2017a, b). The OBMD methodology, which is an offspring of
two linear-momentum-preserving methods, i.e., open MD (Flekkoy et al. 2005;
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Delgado-Buscalioni 2012) and AdResS, enables us to perform equilibrium MD
simulations in the grand canonical ensemble as well as non-equilibrium fluid flow
simulations. The flow is introduced via an external boundary condition, while the
equations of motion for the bulk remain unaltered.

In the OBMD simulations, the MD domain is typically sandwiched in between
two (auxiliary) buffer domains. The latter two act as mass reservoirs and hence
enable the former to exchange particles, momentum, and energy with its surround-
ing. Thus, the OBMD system is opened, i.e., not periodic, in the coupling direction.
Molecules freely move between the MD and buffer domains. Moreover, in the
buffers, the molecules change their resolution from the fine- (close to the MD
domain) to the coarse-grained resolution (at the outer boundaries of the simulation
box). The underlying idea of the resolution change is that AdResS allows for the
insertion of molecules of arbitrary size into the system. In the coarse-grained parts of
the buffers, relatively large molecules can thus be easily inserted due to soft effective
interactions among coarse-grained beads (Delgado-Buscalioni and Coveney 2003;
De Fabritiis et al. 2004). Then, as the molecules move toward the MD domain, they
gain the fine-grained details owing to AdResS used in the buffers. Molecules are
deleted once they leave the outer boundary of a given buffer, and new molecules are
inserted to achieve the mass balance, i.e., to have a desired average density in the
system.

The OBMD setup can be further extended to computational fluid dynamics
(CFD) description of a liquid, i.e., Navier-Stokes (NS) are used to describe the
dynamics of the liquid on the continuum scale (going beyond the particle-based
modeling of the liquid) (Delgado-Buscalioni et al. 2008, 2009). Such hybrid
MD/CFD approaches are especially useful for simulations of the transport of
nanoparticles through fluids. Simulations using MD can capture the atomistic details
of the nanoparticle-liquid interface, but due to their computational cost, they cannot
be extended, in the foreseeable future, to the macroscale regime of the full flow
field. In turn, continuum descriptions, using the NS equations may capture the
macroscale behavior of the flow, but they fail to represent accurately the flow field
at the nanoparticle surface. The hybrid approaches, on the other hand, combine the
powerful features of both descriptions, i.e., the ability to describe the macroscale
behavior of the flow as well as accurate boundary conditions around nanoparticles
(Walther et al. 2012).

While technically and (when considering the AT region as a grand ensemble)
conceptually equivalent to the force-based approach, the energy-based approach (H-
AdResS), presented in the next section, becomes particularly relevant if one wants
to perform MC adaptive resolution simulations.

5 Hamiltonian-Based AdResS: H-AdResS

The AdResS method ensures that Newton’s 3rd law is exactly satisfied everywhere
within the simulation box. As a consequence, it is impossible to interpolate the
potential energy using a position-dependent switching function and simultaneously
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preserve Newton’s 3rd Law. This, as shown in previous sections, proves not to be a
major practical problem (Wang et al. 2013). However, without a global Hamiltonian,
it is unfeasible to technically carry out NVE or MC simulations in a straightforward
way. In the Hamiltonian AdResS (H-AdResS) method (Potestio et al. 2013a, b;
Español et al. 2015), the constraint of global momentum conservation of momentum
is relaxed in order to overcome the limitations of AdResS reported above. In H-
AdResS, total energy of each molecule is expressed in terms of a position-dependent
function:

H = K + V int +
∑

α

{
λαV

AT
α + (1− λα)V

CG
α

}
(2)

where K is the (all-atom) kinetic energy of the molecules, V int is the interaction
internal to the molecules, and

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

V AT
α ≡ 1

2

N∑

β,β �=α

∑

ij

V AT (|rαi − rβj |)

V CG
α ≡ 1

2

N∑

β,β �=α

V CG(|Rα − Rβ |)

λα = λ(Rα)

As in the AdResS scheme, the switching function λ goes from 0 (purely CG)
to 1 (purely AT). The force acting on atom i in molecule α is obtained through
differentiation of the Hamiltonian in Eq. 2. In particular, differently from standard
AdResS in this case, one has a further term:

[
V AT
α − V CG

α

]∇αiλα . This term is
asymmetric and locally breaks Newton’s 3rd law. This force, which is nonzero
only in the hybrid region, is proportional to the difference between the potential
energies of a molecule in the AT and the CG representation. The effect of this term
is to push molecules into one of the two bulk regions, similar to AdResS, where
the thermodynamic force has been introduced. Formally, the solution to this is to
introduce a compensation term in such a way that

d�H(λ)

dλ

∣∣∣∣
λ=λα

=
〈[
V AT
α − V CG

α

]〉

Rα

(3)

The subscript in the average indicates that the latter has to be performed constraining
the CG site of molecule α in the position Rα . This correction leads to a position-
dependent correction term in the hybrid zone:

〈[
V AT
α − V CG

α

]〉

Rα

� 1

N

〈[
V AT − V CG

]〉

λ′
(4)

where λ′ ≡ λ(Rα) is the same for all molecules.
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Formally, this can be seen as a position-dependent compensation term to the
change in the Helmholtz free energy difference between the AT and the CG
system (Kirkwood 1935). Therefore, it is possible to calculate the compensating
function needed to restore, on average, Newton’s 3rd law by performing a Kirkwood
thermodynamic integration and add it to the Hamiltonian, so that an effective
global Hamiltonian for MD (Potestio et al. 2013a) and MC (Potestio et al. 2013b)
approaches, resulting in

�H(λ) ≡ �μ(λ) = �F(λ)

N
+ �p(λ)

ρ0
(5)

Practically, while the free energy difference between the AT and the CG description
is correctly reproduced, details of the local shape of the compensations force are
determined by a few iterations. This ensures perfectly flat density profiles. In
general, for such methods global ensemble averages must be carefully considered,
since the transition region always represents an artificial filter. Like for AdResS
this has been done in very detail for H-AdResS in a recent publication (Español
et al. 2015). The general Bergman and Lebowitz framework allows to include
H-AdResS within an overall adaptive resolution framework. As for (GC-)AdResS
(Poma and Delle Site 2010, 2011; Potestio and Delle Site 2012; Agarwal and
Delle Site 2015, 2016; Agarwal et al. 2017) also H-AdResS can be employed to put
the coarse-grained resolution in connection with a quantum path integral description
of molecules (Kreis et al. 2016a, 2017). The technical advantage in this case is that
the presence of a global Hamiltonian allows for a straightforward quantization of
the Hamiltonian in the high-resolution region. Other examples are the appropriate
treatment of electrostatic interactions in the AT and CG region (Heidari et al. 2016)
or the connection to relative entropy coarse-graining methodologies (Kreis and
Potestio 2016).

6 AdResS, GC-AdResS, and H-AdResS: Examples of
Complementary Approaches in a Unified Framework

All AdResS versions are equivalent when considering the AT region as an open
system embedded in a reservoir (Agarwal et al. 2015) and that they are equivalent
regarding the technical efficiency. Moreover, recent works (Kreis et al. 2014;
Zhu et al. 2016) show that a formal connection can be drawn between force-
based methods for dual-resolution simulations, such as AdResS, and energy-based
methods, such as H-AdResS. Specifically, in Kreis et al. (2014), it was shown
that the force-based version of the H-AdResS scheme, i.e., without the drift force,
has the same statistical properties of a H-AdResS simulation with a colored noise.
Furthermore, mathematical analysis of the asymptotic properties of the force-based
and Hamiltonian-based versions (Zhu et al. 2016) reveals that they are equivalent
under the condition of large coarse-grained region compared to the atomistic region
and (at the same time) large atomistic region compared to the hybrid region. Such



66 Adaptive Resolution Molecular Dynamics Technique 1451

connections prove the mathematical and physical solidity of the AdResS idea in
general, which accompanied to its computational efficiency makes the method
a powerful tool of simulation and analysis to address the modern challenges in
different fields of applied molecular science, as illustrated in the next section.

The AdResS development has meanwhile reached a mature stage at which we can
readily apply the methodology to tackle interesting problems in life and material
sciences. For instance, AdResS has been applied to study biomolecular systems
such as solvated proteins (Fogarty et al. 2015; Kreis et al. 2016b; Fogarty et al.
2016; Tarenzi et al. 2017) and DNA molecules (Zavadlav et al. 2015a, 2017a;
Netz et al. 2016). In those examples, we have used a 1-to-1 molecular mapping,
in which one coarse-grained bead corresponds to one atomistic water molecule. The
next stage of development has involved coupling of atomistic to supramolecular
water models such as the widely used MARTINI force-field (Marrink et al. 2004;
Marrink et al. 2007; Marrink and Tieleman 2013), where four water molecules are
represented with one coarse-grained bead (4-to-1 molecular mapping). Here, water
changes its resolution from four molecules to one coarse-grained particle and vice
versa adaptively on-the-fly (Zavadlav et al. 2014a, b, 2015b, 2016a; Nagarajan et al.
2013); see Fig. 2. To this end, we have developed a dynamic clustering algorithm
SWINGER that can concurrently assemble, disassemble, and reassemble water
bundles, consisting of several water molecules (Zavadlav et al. 2016b). Thus, it
allows for a seamless coupling between any standard atomistic and supramolec-
ular water models, e.g., dissipative particle dynamics (DPD) (Hoogerbrugge and
Koelman 1992; Español and Warren 1995), in adaptive resolution simulations
(Zavadlav and Praprotnik 2017). This multiscale approach paves the way for
efficient multiscale simulations of biomolecular systems without compromising the
accuracy of atomistic water models (Zavadlav et al. 2017b).

Fig. 2 (a) AdResS simulation of an atomistic protein in MARTINI water. (b) AdResS simulation
of an atomistic DNA molecule in MARTINI water. (Reprinted from Zavadlav et al. 2014a, 2016a)
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A recent use of AdResS, in its GC-AdResS version, as a tool to investigate the
structural locality of ionic liquids, has allowed to unambiguously conclude that
specific atom-atom electrostatic interactions do not play a role in the formation
of structures on spatial scales beyond the ion-ion distance. Such a conclusion is
rather surprising because in current literature, it is actually postulated the opposite,
although purely coarse-grained simulations (without explicit charges) had already
put the postulate in discussion (Krekeler and Delle Site 2017; Jabes et al. 2018).
The study allowed to draw a picture of the essential feature of the liquid structure
for a relevant class of ionic liquids (see Fig. 3). Further on, a particularly promising
direction to take full advantage of the coupling between models at different reso-
lution is to employ in the CG region the most computationally inexpensive model
available, relying on the fact that the compensating external field (thermodynamic
force in AdResS, free energy compensation (FEC) in H-AdResS) guarantees that
the AT region will reproduce the correct thermodynamics. The extreme case of a
model with few, simple interactions is the ideal gas, to be interpreted as a collection
of thermostatted noninteracting particles. In Kreis et al. (2015), this possibility was
explored by simulating a water system where 6526 water molecules were modeled
at the atomistic level in the high-resolution region, while in the CG region, they
were subject to no interaction other than the Langevin thermostat. The results show
that neither the structure nor the dynamics of the fluid in the AT region of the water-
ideal gas hybrid system are compromised. This can be seen from the fully atomistic
pair correlation functions and diffusion profiles of the H-AdResS simulation as
reported in Fig. 4. These RDFs and diffusion profiles are fully consistent with those
measured in completely atomistic reference simulations. Another application which
goes beyond the previous examples is the triple-scale simulation of an enzyme in
solution with a binding ligand (Fogarty et al. 2016). There the center part of the
enzyme, the ligand, and the surrounding water are treated on an all-atom level, while

Fig. 3 Cations and anions in imidazolium-based ionic liquids need only a first shell of neighboring
ions to build typical structures of the liquid. Such atomistic islands are embedded in a thermody-
namic bath without the need of explicit electrostatic interactions. This picture deviates from the
intuitive argument put forward in many papers in the field that explicit electrostatic interactions
play a key role in the formation of typical liquid structures, even at local level. (This figure is an
adaptation from Jabes et al. 2018)



66 Adaptive Resolution Molecular Dynamics Technique 1453

distance[nm]

0.0

0.5

1

1.5

2

2.5

3.0

g
(r
)

positioninx-direction[nm]

0

10

20

30

40

50

60

70

80

m
o
le
cu

le
s
p
e
rb
in

0

0.1 0.2 0.3 0.4 0.5 0.6

2 4 6 8 10 12 14 16

O-Oadaptive

O-Hadaptive

H-Hadaptive

O-Oatomistic

O-Hatomistic

H-Hatomistic

CG HY AT HY CG

H-AdResS:

t=0ps

t=40ps

t=80ps

All-atom:

t=0ps

t=40ps

t=80ps

Fig. 4 Top: RDFs for pure water and for the atomistic region of the H-AdResS water-ideal gas
with Kirkwood TI-based Gibbs FEC. Since a rigid water model is employed, all RDFs consider
only intermolecular atom pairs. Bottom: diffusion profiles in H-AdResS simulations of the water-
ideal gas system and in fully atomistic reference simulations of SPC/E water: time evolution of
the position of molecules initially located in a 1-nm-wide slab in the atomistic region, immediately
adjacent to the HY region. The y-axis is the absolute number of these molecules whose center of
mass X coordinate is in a given bin at the given time. (Figures from Kreis et al. 2015)

the water molecules further away are treated on a coarse-grained level and the rest
of the residues of the enzyme is considered on an elastic network level. Finally,
on the practical side, it must be reported that all the various method start to be
included in some of the most popular simulation codes used within the community.
In particular, AdResS, H-AdResS, and OBMD are implemented in ESPResSo++
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(Halverson et al. 2013; Guzman et al. 2017), AdResS, H-AdResS, and GC-AdResS
are implemented in GROMACS (Abraham et al. 2015; Fritsch et al. 2012a), and
H-AdResS is implemented also in LAMMPS (Plimpton 1995; Heidari et al. 2016).

7 Perspectives

By now, the general AdResS concept with its variants is well established and has
been shown to be robustly applicable to a variety of important problems. Beyond
that new developments, which require more or less effort of method development
or code adjustment open the path to new applications and opportunities. In
fact, the possibility of treating molecules with electrons would allow AdResS to
become a tool that can span all the relevant scales of molecular science up to the
fluid dynamics. In this perspective, H-AdResS has been connected to QM/MM
approaches in which a small sub-domain of the system of interest is treated at the
ab initio level, while the rest is described with a classical potential (Boereboom
et al. 2016). Furthermore, as anticipated in the section dedicated to GC-AdResS,
it has been proposed to go even beyond that and use AdResS (in any form
GC-AdResS or H-AdResS) as a physical rigorous platform for a truly grand
canonical method for molecules with electrons (Delle Site 2018). A resulting
electronic quantum mechanical AdResS approach (el-QM-AdResS) would allow
to treat local quantum events, such as conformational deformations of atomistic
structures, chemical reactions, specific solvation, and atom-atom bonding effects, to
name a few, while assuring the correct statistical mechanics electronic structure and
macroscopic thermodynamics. The coupling of any region of resolution to an ideal
gas allows the easy treatment of systems, which are driven by an external supply of
matter, such as controlled growth or structure formation.
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Abstract

As in many other scientific fields, data-driven methods are rapidly impact-
ing multiscale modeling. This chapter will illustrate some of the many ways
advanced statistical models and a data-centric perspective help augmenting
computer simulations in soft matter. A specific focus on force fields, sampling,
and simulation analysis is presented, taking advantage of machine learning, high-
throughput schemes, and Bayesian inference.

1 Introduction

Advanced statistical models are rapidly impregnating many technological and
scientific fields, from the automobile industry to robotics to particle physics. Not
only do novel data-driven methods offer new perspectives on approaching long-
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standing problems, they hold the promise of accelerating the pace of research.
Materials science is one such field, where data is likely to accelerate computational
rational design. The decisive impact of materials design in various aspects of our
society has led to large-scale strategies – among others the Materials Genome
Initiative (Jain et al. 2013). These recent efforts are already bearing fruit in various
disciplines of hard condensed matter, inorganic chemistry, and also semiconductor
physics (Curtarolo et al. 2013). Interestingly, little has happened in soft matter.

The slow development of computational materials design in soft matter likely
precisely arises from what makes these systems unique: the prominent role of
thermal fluctuations. Soft matter systems display weak characteristic energies on par
with thermal energy, kBT , leading to fascinating phenomena, such as self-assembly.
On the other hand, thermal fluctuations obscure the link between the chemistry
and materials properties, because of the complex interplay of a system with its
environment. This makes computational materials discovery for soft matter all the
more challenging (Bereau et al. 2016).

Modeling soft matter systems is traditionally approached using multiscale
simulations. They bridge the relevant length and time scales of the system:
from quantum, to classical atomistic, to coarse-grained (CG), and to continuum
resolutions. These methods are all entrenched within certain physical laws and
symmetries. They stand at odds with purely data-driven methods, which typically
contain little physics a priori but are instead mostly empirical. Can we benefit by
combining these two paradigms?

This chapter discusses recent examples that apply data-driven methods to
augment multiscale modeling in soft matter. Here, I will emphasize how advanced
statistical models can help improve existing methodologies or offer new perspec-
tives. The chapter describes efforts in building better force fields, tackling sampling
challenges, but also efficiently analyzing computer simulations. In each case,
significant progress is achieved by a variety of methods, such as machine learning
(ML), high-throughput schemes, and Bayesian inference. This chapter will assume
prior exposure to computer simulations – it is intended to help the simulator better
grasp the benefits of introducing data-driven methods in their research.

2 Force Fields

Force fields lie at the heart of classical particle-based modeling. When numerically
integrating Newton’s equations of motion, the force field dictates how particles
interact over time. As such, the force field encodes all the physics and chemistry
of the model, no less. Accuracy here is critical because it determines the aggregate
behavior of the system after heaps of integration steps. Emergent complexity arises
from countless evaluations of F = ma. In this sense, the force field links the
system’s chemical composition to its long-time properties, such as free energies or
kinetic properties. The corollary to this critical role is the attention force fields have
received in the last three to four decades (Maple et al. 1988; Halgren 1992; Halgren
and Damm 2001; Wang et al. 2001; Ponder and Case 2003; Mackerell 2004).
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Force fields map a particle configuration to interaction energies and forces,
leading to the coveted potential energy surface. The mapping ought to hit an
appropriate balance between accuracy and computational investment: the physics
should be described appropriately at small numerical cost. For instance, a simple
spring will capture the limited range of a covalent bond but will evidently fail
to describe anharmonic effects. Identifying the sweet spot depends critically on
the problem at hand. The other facet of a force field development project entails
transferability: given a parametrization among certain configurations, compounds,
and environments, to what extent can the resulting model extrapolate to scenarios
absent from the training set? In the following, we highlight recent strategies where
ML has helped improve force field accuracy and transferability.

2.1 Accuracy: Beyond Traditional Basis Sets

Traditionally, most of the functional forms commonly used in molecular mechanics
have largely been constrained by computational considerations. Among others, a
pairwise decomposition is an appealing treatment of intermolecular interactions
but fails to capture some of the many-body physics, as found, for instance, when
modeling dispersion (Tkatchenko et al. 2012). Mathematically, this is a basis set
problem: the vector space used to construct the force field fails to accurately
reproduce all aspects of the underlying potential energy surface.

A striking illustration of the basis set problem arises upon coarse-graining.
Coarse-graining reduces the representation of a molecular system by grouping
atoms into larger particles or beads. Structure-based coarse-graining aims at a
systematic derivation of CG potentials from reference atomistic simulations (Voth
2008; Peter and Kremer 2010; Noid 2013). Several methods exist to derive CG
potentials that aim at best reproducing the underlying forces or distribution func-
tions. Examples of these strategies include force matching and iterative Boltzmann
inversion. The averaging performed over the degrees of freedom that have been
coarse-grained away effectively leads to a potential of mean force (PMF). This
PMF is typically a many-body quantity. The many-body aspect holds even when
the reference simulation only relies on pairwise interactions, because of correlations
owing to the missing degrees of freedom (Rühle et al. 2009). This situation makes
the pairwise assumption even more critical in CG models, limiting an accurate
description of the structure and thermodynamics.

Unlike standard regression schemes, a machine learning (ML) algorithm does
not aim at optimally fitting parameters on a predefined basis set. It instead looks
for similarities between training points to interpolate the target property in a high-
dimensional feature space. Because the interpolation can always improve with
added training points, a specific attribute of ML is its ability to improve its accuracy
with added data. We illustrate the concept with kernel ridge regression (Rasmussen
and Williams 2006), though neural network-type architectures share a number of
aspects (see Behler 2016). Consider the regression of property p of sample x. A
kernel machine will consist of the prediction:
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p(x) =
∑

i

αiK(xi , x), (1)

where the sum runs over training samples, αi is the weight of sample i, and K(x, x′)
is the kernel between samples x and x′. The kernel consists of a similarity measure,
or covariance function, between two samples:

K(x, x′) = 〈φ(x), φ(x′)〉 = exp

(
−||x− x′||2

2σ 2

)
, (2)

where here we chose a Gaussian kernel with Euclidean distance as a measure
between two samples. This metric implies that the distance is 1 and 0 for samples
that are identical and very different, respectively. The middle part of the equation
expresses the kernel as an inner product between the two samples. While the
samples are expressed in their input space, also called “representations,” the so-
called kernel trick implicitly maps the samples via φ into an infinite-dimensional
feature space, where the interpolation between samples takes place (Schiilkopf
2001). The optimization of the weights α consists of solving Eq. 1 for the samples
in the training set, adding a regularization term λ:

α = (K + λ�)−1p, (3)

where λ is set by the amount of noise in the reference data. Interestingly, while
the basis set limits the possible accuracy of a regression problem, it is largely the
relevance of the representation that determines the accuracy of an ML model (Huang
and von Lilienfeld 2016).

There is a rapidly growing literature of studies applying machine learning to
learning chemical properties, such as atomization energies (Rupp et al. 2012;
Ramakrishnan and von Lilienfeld 2017). Adequate training can yield remarkably
accurate predictions (Faber et al. 2017). Recent studies have aimed at using ML
methods to help optimize a potential energy surface or force field (Li et al. 2017;
Huan et al. 2017). When it comes to learning forces, the intrinsic orientation
of the vector must be reproduced. Unlike scalar quantities, vectors contain three
independent components. Different strategies have been devised to tackle this issue:
the derivative of the kernel with respect to particle coordinates (Bartók et al. 2010;
Chmiela et al. 2017), local axis systems (Bereau et al. 2015), or covariant kernels
(Glielmo et al. 2017).

The use of ML potentials has mostly been applied to replace expensive ab initio
MD simulations (Li et al. 2015; Morawietz et al. 2016; Deringer and Csányi 2017),
where the computational cost difference between a single-point electronic structure
calculation and ML prediction is significant. When aiming at predicting classical
reference models however, the gain is smaller. Recent work on coarse-graining two
benzene molecules in water indicates a better reproduction of the PMF compared to
force matching (John 2016). The cost of the prediction remains significant compared
to traditional pairwise potentials, but these results provide potential avenues to break
the glass ceiling of pairwise interactions in CG potentials.
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2.2 Transferability: Across Conformations, Phases, and
Compositions

Molecular simulations often exhibit a complex relationship between model param-
eters and the resulting emergent properties. This obscures the role and impact
of force field parameters. For instance, how does the tuning of a Lennard-Jones
parameter affect a compound’s hydration free energy or a folding timescale? This
complex relationship can make force field parametrization a tedious, long, and rather
unsystematic process. Systematically understanding the relationship between force
field parameter and thermodynamic properties can help automate parametrization
methods (Stroet et al. 2017). More often than not, coarser models tend to be more
difficult to parametrize, because the missing physics require ad hoc compensations.
For instance, most biomolecular atomistic models are additive – they do not
explicitly model induction/polarization. Instead, mean-field polarization effects are
incorporated effectively by tuning the other force field terms, most importantly
Coulomb and Lennard-Jones. This typically comes at the cost of limited phase
transferability: not only will they not transfer from the gas to the condensed phase,
these models are typically state-point dependent. In other words, they are bound to
a limited range of thermodynamic parameters, such as temperature and pressure.

Enhancing the phase transferability of these models is subject to ongoing
research – a field where ML can help (Deringer and Csányi 2017) – but not
the only strategy. The obscure link between model parameters and emergent
properties leads to an unsystematic, largely empirical approach to force field
parametrization – the craftsmanship of a biomolecular modeler. As such, developing
more automated parametrization schemes offers extremely valuable perspectives:
reduced parametrization efforts would speed up and enhance the pace of research in
molecular simulations. In the following, two examples from atomistic and coarse-
grained modeling illustrate this emerging trend. They both leverage the link between
chemical properties and specific force field parameters.

High-resolution models offer a closer, more straightforward link from chemistry
to force field parameters. This has motivated the development of force fields from
first principles: Electronic structure calculations provide molecular and atomic
properties, such as atomic polarizabilities or electrostatic coefficients, used as
parameters for classical models (Van Vleet et al. 2016). This framework still
requires reference calculations for every new compound considered. One can
instead envision relying on the abovementioned use of ML to predict these
chemical properties. Such a scheme was recently introduced (Bereau et al. 2018) to
construct classical intermolecular potentials from atomic polarizabilities, multipole
electrostatic coefficients (Bereau et al. 2015), and atomic density parameters. These
parameters are fed into a physics-based model based on perturbation theory and
an overlap model at long and short ranges, respectively. They lead to a remarkably
small number of global parameters that only need tuning across organic compounds
once and for all.

Switching to a coarse-grained resolution, the transferable Martini biomolecular
force field offers a set of bead types, from which one constructs biomolecules,
from proteins to lipids to sugars (Marrink and Tieleman 2013). Charged groups
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interact through integer-charge Coulomb interactions. Otherwise, beads interact
by means of Lennard-Jones interactions, with a predefined interaction matrix that
determines the cross interactions between beads (Marrink et al. 2007). The model
aims at capturing the essential thermodynamics of partitioning of chemical groups
in different environments. In particular, it relies heavily on the water/octanol
partitioning to assign a measure of hydrophobicity to the bead. Though not readily
accessible, the water/octanol partitioning can also be predicted: ML models exist to
do just that (Tetko et al. 2001). This enables a completely automated parametrization
of Martini for small molecules, which both optimizes the mapping from atoms to
beads and assigns the most appropriate bead type to every chemical group (Bereau
and Kremer 2015). The parametrization scheme was applied to the calculation of
solvation free energies for more than 1,000 compounds, clearly illustrating the
potential benefits beyond manual parametrizations.

2.3 Example: Learning of Atomic Polarizabilities

As an illustrative example, we consider the learning of atomic polarizabilities across
small organic molecules, following Bereau et al. (2018). Atomic polarizabilities are
estimated using the Hirshfeld ratio, which consists of a spatial integral over the
electron density of an atom in a molecule, compared to the corresponding free atom.
Reference data consist of quantum chemistry calculations for thousands of isolated
small molecules. We refer the interested reader to Bereau et al. (2018) for further
technical details. The code to generate the data below can be found in a repository
online (Bereau 2018).

We build an ML model using kernel ridge regression (Eq. 1) and encode atomic
environments – the representation – using the Coulomb matrix: a pairwise matrix of
inverse distances scaled by the product of atomic numbers (Rupp et al. 2012). The
dataset is split between training and test sets to ensure out-of-sample predictions,
thereby limiting overfitting. Figure 1a shows a learning curve: the mean absolute
error (MAE) as a function of the number of atoms incorporated in the training set.
The error systematically decreases with added data. Note the power law behavior.
Figure 1b displays the correlation between predicted and reference Hirshfeld ratios
for the rightmost ML model shown in panel a. The color-coding distinguishes
between chemical elements.

3 Sampling

Sampling is the second corner stone of particle-based modeling in soft matter: teas-
ing out a representative subset of conformational space is essential to extract reliable
condensed-phase properties, from free energies to kinetics. The difficulty lies in
assessing how much sampling is good enough. Umbrella sampling simulations are
notoriously challenging, as they often hide slow conformational changes happening
on degrees of freedom orthogonal to the reaction coordinate(s) (Neale et al. 2011).
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Fig. 1 (a) Saturation curve of the mean absolute error (MAE) as a function of training set size
for Hirshfeld ratios. Note that both axes are on a log scale. (b) Correlation plot of out-of-sample
predictions of the Hirshfeld ratio, h, for the ML model with largest training set size. The different
chemical elements considered are color-coded

Unsupervised machine learning techniques may help systematically improve the
sampling of conformational space within an umbrella sampling protocol (Ferguson
et al. 2011).

The last decade has seen a significant leap forward in timescales accessible to
computer simulations. Naively, reaching longer timescales means running ever-
longer single trajectories. This bodes poorly with high-performance computer
clusters, because one cannot parallelize a trajectory in time. A recent paradigm shift
consisted in better leveraging the statistics contained in swarms of short trajectories
covering the relevant parts of conformational space. For instance, Markov state
models (MSMs) discretize the simulation trajectory in conformational space and
in time to analyze its long-time kinetics (Noé 2008; Bowman et al. 2013). This
framework has been shown to be extremely efficient in leveraging computational
resources available – from distributed computing to high-performance clusters –
even at a time when dedicated hardware has significantly pushed the state of the
art for long trajectories (Shaw et al. 2014). The surge in high-throughput short
simulations has helped approach the sampling problem more systematically: an
adaptive sampling strategy spawns new simulations from poorly populated regions
of conformational space, until convergence is found. Examples include protein-
protein interactions (Plattner et al. 2017) and intrinsically disordered proteins
(Kukharenko et al. 2016). These ideas rely on a simple concept: it is often easier
to locally equilibrate highly diverse seed conformations than waiting for a single
trajectory to cross all relevant barriers. This can be extended to a multiscale
approach, in which relevant snapshots from computationally efficient CG trajecto-
ries are backmapped to provide these seed conformations at the atomistic level. This
strategy can help cut down the computational investment of free-energy calculations
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by more than tenfold (Menichetti et al. 2017b). Analogously, a more data-driven
alternative has been proposed that tries to extrapolate possibly interesting new seed
conformations from unsupervised machine learning techniques (Chiavazzo et al.
2017).

The discussion so far has focused on sampling conformational space. Recent
developments in materials discovery are aiming at exploring chemical compound
space – the diversity of chemical compounds – to extract thermodynamic prop-
erties. From a simulation perspective, this poses significant challenges due to the
compounded issue of sampling both across conformational and chemical compound
space. While unattainable at an atomistic resolution for the foreseeable future,
coarse-graining can help address this: high-throughput coarse-grained simulations
provide an ensemble study of the PMF for the insertion of solute molecules in a
lipid bilayer. The study both predicted PMFs for more than 450,000 compounds
and identified novel linear relationships between bulk measurements and features of
the PMF (Menichetti et al. 2017a).

4 Analysis

Everything mentioned so far has focused on improving the quality of computer
simulations by improving the force field or the sampling. This section instead
consists of extracting insight or information from an existing simulation. Advanced
data-driven and statistical methodologies have helped develop more robust methods
to analyze computer simulations.

Some of the most interesting developments in the analysis of computer sim-
ulations have come from approaching the very concept of probability in a new
way. The traditional approach to probability theory – the one taught most often
at an elementary level – is so-called frequentist. It interprets probability from the
frequency or propensity of an event to occur. Complementary to this is the Bayesian
perspective: how can one infer a reasonable expectation given limited data and/or
prior belief? It offers an elegant framework to evaluate the probability of a model
M , when dealing with limited data D, as illustrated by Bayes’ theorem:

P(M|D) = P(D|M)P(M)

P (D)
, (4)

where P(M|D) and P(D|M) are coined the posterior and the likelihood, respec-
tively. Bayes’ theorem has shown extremely useful because while the posterior is
typically difficult to evaluate directly, the likelihood is often easier. In addition,
it highlights the concept of prior information by means of P(M), which encodes
external information we may already hold on the validity of a model. For instance,
physical laws and symmetries can naturally be enforced into the prior, effectively
biasing the distribution of models to those that satisfy these constraints. Several
examples illustrate the conceptual benefits of approaching a problem in a Bayesian
framework:
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• The weighted histogram method (WHAM) provides a minimum-variance esti-
mator to best estimate the density of states of a system from different simulations
(Ferrenberg and Swendsen 1989). These simulations provide complementary
information to the system by encompassing a range of temperatures or different
values of a collective variable in enhanced sampling. The likelihood incorporates
the different Boltzmann distributions, while the prior ensures the normalization
of probabilities. A derivation can be found elsewhere (Bereau et al. 2016;
Ferguson 2017).

• MSMs build a discrete propagator for the time evolution of a simulation or single-
molecule experiment (Noé 2008; Bowman et al. 2013). The simulation trajectory
or experimental time series feeds into the likelihood, while the prior incorporates
several constraints, most notably detailed balance.

• The MSM of a simulation trajectory can be further tuned to best incorporate
external kinetic information. This is useful when a model is known to yield incon-
sistent kinetics, such as most coarse-grained models. So-called biased MSMs
incorporate the coarse reference kinetic information (e.g., folding timescale or
mean first passage time) as a prior, thereby selecting more consistent probabilistic
models (Rudzinski et al. 2016). This conceptual framework was recently applied
to incorporate experimental information to atomistic simulations (Olsson et al.
2017). More generally, the blending of physics-based models with experimental
information has recently been subject to increasing interest (Perez et al. 2015,
2017).

Hidden Markov models (HMMs) add to MSMs the possibility of handling
unobserved/hidden states (Rabiner and Juang 1986). While these states are not
directly visible, the output, which is dependent on the state, is visible. One
illustrative analogy consists of a hermit stuck inside a cave: he is attempting to
forecast the weather but cannot see the sky outside. His best strategy is then to
collect indirect evidence by analyzing the state of a seaweed – probabilistically
related to the state of the weather – and thereby to infer the hidden state of the
weather. HMMs can be thought as a nonlinear filtering process and have been shown
to be useful in several studies, from the identification of liquid-ordered and liquid-
disordered domains in lipid membrane simulations (Sodt et al. 2014) to the kinetics
of protein-protein association (Plattner et al. 2017).

5 Outlook

Advanced data-driven methods and data-centric simulation protocols are rapidly
impacting the field of soft matter and are here to stay: (i) Supervised machine
learning techniques – primarily kernel methods and neural network – will likely
contribute to more accurate and transferable force fields; (ii) high-throughput
methods have already pushed the boundaries of conformational sampling and
are likely to affect the systematic screening of compounds and materials; and
(iii) Bayesian inference provides a conceptually appealing framework to combine
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simulation data and physical laws and symmetries. Another notable method of
interest is unsupervised machine learning, which looks for features/structure in
“unlabeled” datasets, such as clustering or dimensionality reduction techniques
(Fisher et al. 2014). The rapid ongoing developments of unsupervised machine
learning are likely to significantly affect computer simulations in the years to come.
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Abstract

Hydrodynamic interactions determine the individual and collective behavior of
nano- to micrometer size active objects such as swimming bacteria, sperm, algae,
and synthetic colloidal microswimmers. Based on the Navier-Stokes equations
of hydrodynamics, the major contributions to the flow field of a swimmer in a

R. G. Winkler (�) · G. Gompper
Institute for Advanced Simulation and Institute for Complex Systems, Forschungszentrum Jülich,
Jülich, Germany
e-mail: r.winkler@fz-juelich.de; g.gompper@fz-juelich.de

© Springer Nature Switzerland AG 2020
W. Andreoni, S. Yip (eds.), Handbook of Materials Modeling,
https://doi.org/10.1007/978-3-319-44677-6_35

1471

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-44677-6_35&domain=pdf
mailto:r.winkler@fz-juelich.de
mailto:g.gompper@fz-juelich.de
https://doi.org/10.1007/978-3-319-44677-6_35


1472 R. G. Winkler and G. Gompper

Newtonian fluid are presented. The propulsion of beating and rotating filaments
is shown to emerge as consequence of the distinct friction coefficients for parallel
and perpendicular motion of the filament. Hydrodynamic interactions with a wall
lead to a preferred alignment of a swimmer adjacent to a wall. Moreover, the
rotational motion of a flagellar bundle of swimming bacteria combined with the
counterrotation of the cell body leads to circular trajectories on a surface, where
the handedness depends on the wall slip. Even more, the collective behavior of
active matter is determined by hydrodynamic interactions, which is illustrated by
cilia synchronization and the squirmer model for microswimmers.

1 Introduction

Active matter, whose agents consume internal energy or extract energy from the
environment to propel themselves through a fluid, and are thus far from thermal
equilibrium, is omnipresent in nature. Examples on the microscale range from
an uncountable number of bacteria in soil or living in symbiosis with humans,
spermatozoa in their attempt to fertilize an ovum, or algae harvesting sunlight
in ponds and the ocean. Nowadays, synthetic active systems have been designed,
which are powered by phoretic processes, e.g., thermophoresis or diffusiophoresis
(Bechinger et al. 2016). In any case, the microswimmer is embedded in a fluid,
and the fluid plays a decisive role for the propulsion itself as well as the collective
behavior (Lauga and Powers 2009; Yeomans et al. 2014; Elgeti et al. 2015; Zöttl and
Stark 2016; Winkler 2016). The physics ruling swimming on the micrometer scale is
very different from that applying to swimming in the macro-world, although certain
propulsion strategies are reminiscent of those on a macro-scale – bacteria, such
as Escherichia coli, are propelled by rotating flagella, sperm perform a snakelike
motion, and algae, such as Chlamydomonas reinhardtii, apply a breaststroke-type
beating pattern. However, swimming at the micrometer scale is swimming at low-
Reynolds numbers (Purcell 1977), where viscous damping by far dominates over
inertia. Hence, swimming concepts of the high-Reynolds number macro-world are
ineffective on small scales. In the evolutionary process, microorganisms acquired
propulsion strategies, which successfully overcome and even exploit viscous drag.

Bacteria, sperm, or algae use flagella – filamentous structures protruding from
their bodies – for their propulsion (cf. Fig. 1 for an illustration). In fact, eukaryotic
flagella are very different from prokaryotic ones, which is manifested in the differing
propulsion strategies (Elgeti et al. 2015). However, in any case, the thrust force
emerges by the difference in the hydrodynamic friction of a (long) slender body
parallel and perpendicular to the body major axis. Thereby, the flow field far from
the swimmer is usually dominated by a “force dipole” and decays similarly with
distance, independent of the propulsion mechanism, since a microswimmer is force-
and torque-free. At walls, surface hydrodynamic interactions lead to a propulsion-
dependent preferred alignment of a microswimmer (Spagnolie and Lauga 2012) or
circular trajectories (Lauga et al. 2006; Di Leonardo et al. 2011; Hu et al. 2015a).
Under shear flow, the hydrodynamic force-dipole flow field substantially affects
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Fig. 1 Depiction of
microswimmers. (Left)
E. Coli, (Right)
Chlamydomonas with the cell
nucleus, and (Bottom) sperm.
The scale bar indicates the
approximate size of the
swimmers

the overall viscosity (Saintillan 2010), and for suspensions of pushers, e.g., E. coli
bacteria, “superfluidlike” behavior has been observed, where the viscous resistance
to shear vanishes (López et al. 2015).

Active matter exhibits fascinating emergent collective phenomena. In nature,
microswimmers can reach astonishing densities. Sperm cells are released by the
millions to compete in the run for the egg, and biofilms are made up of billions of
bacteria. Coordinated motion is exploited by spermatozoa of some species by self-
assembling into unique train-like aggregates of hundreds or thousands of cells and
thereby significantly increased sperm motility in a viscous environment (Sivinski
1984; Moore and Taggart 1995). Flagellated bacteria exhibit a particular mode of
motion, where they migrate collectively over surfaces and are able to form stable
aggregates, which can become highly motile (Heinrichsen 1978; Copeland and
Weibel 2009; Kearns 2010). Here, cooperativity reaches a new level, and bacteria
exhibit highly organized movements with remarkable large-scale patterns such as
networks, complex vortices, or swarms (Copeland and Weibel 2009; Wensink et al.
2012). These type of patterns are remarkably similar to patterns appearing for other
active matter systems such as schools of fish, flocks of birds, mammalian herds, or
crowds of humans (Vicsek and Zafeiris 2012; Elgeti et al. 2015; Popkin 2016).

The various aspects touched above illustrate the fundamental importance of
hydrodynamics for microscopic active matter ranging from swimming of indi-
viduals to large-scale collective migration. In the following, the low-Reynolds
number aspects relevant for microswimmers will be briefly summarized, and various
hydrodynamic phenomena will be presented.

2 Low-Reynolds Number Hydrodynamics

2.1 Equations of Motion

Typically, the dynamics of the (isothermal) incompressible fluid flow field surround-
ing a microswimmer is described by the Navier-Stokes equations
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ρ

(
∂

∂t
v + (v · ∇) v

)
= −∇p + η∇2v + f , ∇ · v = 0, (1)

where v(r, t), p(r, t), and f (r, t) are the velocity, pressure, and volume-force
density fields, respectively. At small Reynolds numbers Re = ρuL/η & 1,
where ρ is the fluid mass density, u the characteristic velocity, L the size of the
microswimmer, and η the fluid viscosity, the inertia terms on the left-hand side of
Eq. (1) can be neglected, and the equations reduce to the Stokes or creeping flow
equations

∇p(r)− η∇2v(r) = f (r) , ∇ · v = 0. (2)

For illustration, the Reynolds number in water of a swimmer of length L = 10 μm, a
velocity of u = 50μm/s, and the kinematic viscosity ν = η/ρ = 10−6m2/s is Re ≈
10−3. The Stokes equation (2) is linear and time independent. The consequences of
this intrinsic symmetry under time reversal for microswimmers undergoing periodic
shape changes were first expressed by Purcell (1977) and are now known as “scallop
theorem”, which can be stated as: if the shape changes displayed by a swimmer are
identical when viewed in reverse order (time reversal symmetry), it will generate
an oscillatory, but no directed motion (Purcell 1977; Lauga and Powers 2009;
Yeomans et al. 2014; Elgeti et al. 2015). Thus, just by opening and closing its
two shells, a mussel (scallop) cannot move forward at Re & 1. Microswimmers
developed various strategies to beat the scallop theorem. Aside from many (elastic)
degrees of freedom, they use specific propulsion mechanisms which are not time
reversible – bacteria such as E. coli are propelled by rotating helical flagella bundles,
sperm use sinusoidal bending waves propagating from head to tail, and algae, e.g.,
Chlamydomonas, use a nonreciprocal stroke pattern.

2.2 Solution of Stokes Equation

The linear Stokes equations (2) are easily solved analytically for an unbounded fluid.
The respective fluid velocity field is

v(r) =
ż

Q(r − r ′)f (r ′) d3r ′ , Qαα′(r) = 1

8πηr

[
δαα′ + rαrα′

r2

]
, (3)

where Q(r) is the well-known Oseen tensor, with the Cartesian components Qαα′
(α, α′ ∈ {x, y, z}) and r = |r| (Kim and Karrila 1991; Dhont 1996). The Oseen
tensor, also denoted as Stokeslet, shows that hydrodynamic interactions are long
ranged, with a 1/r decay like the Coulomb potential, and are anisotropic due to
the incompressibility of the fluid. The Oseen tensor is the Green’s function of the
Stokes equation (2), which is evident, when the point force f (r) = f0δ(r)e in the
direction e (|e| = 1) is inserted. Then, Eq. (3) yields
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v(r) = f0

8πηr

[
e + (r · e)r

r2

]
. (4)

The magnitude of the flow field is twice larger in the force direction than perpendic-
ular to it.

2.3 Microswimmer Flow Field

Most microswimmers move autonomously, with no external force or torque applied,
and hence the total force/torque of the swimmer on the fluid and vice versa vanishes.
In the simplest case, which actually applies to many microswimmers like bacteria,
spermatozoa, or algae, the far-field hydrodynamics (at distances from the swimmer
much larger than its size) can well be described by a force dipole (Lauga and
Powers 2009; Ishikawa 2009). This has been confirmed experimentally for E. coli
(Drescher et al. 2010, 2011) and in simulations (Hu et al. 2015b). The flow field of
Chlamydomonas is well reproduced by three Stokeslets (Drescher et al. 2010).

Mathematically, the flow field v(r−r0) of a hydrodynamic force dipole located at
r0 follows by a superposition of two Stokeslets (4) with opposite forces f 0 = ±f0e

of equal magnitude at r0 ± l/2, where l = le and l is the distance between the
Stokeslets. Taylor expansion to leading order in |l|/|r − r0| yields

v(r) = P

8πη
vFD(r) , vFD(r) = r

r3

[
−1+ 3

(r · e)2

r2

]
, (5)

where P = ±f0l is the dipole strength. Note that the flow field of a force dipole
decays as 1/r2 from the center of the dipole, faster than the force monopole or
Stokeslet Eq. (3). The flow fields of hydrodynamic dipoles are shown in Fig. 2. In
two dimensions, there are two inflow (left, right) and two outflow (top, bottom)
regions, which are separated by the separatrices z = ±√2x. In three dimensions,
the outflow region is a cone.

Two classes of dipole swimmers can be distinguished. A swimmer with its
“motor" in the back, and a passive body dragging along the surrounding fluid in
front, creates a “pusher” flow field (cf. Fig. 2 (left)). Similarly, a swimmer with its
“motor” in front, and the passive body dragging along the fluid behind, develops a
“puller” flow field. This field follows by inversion of the arrows in Fig. 2 (left), i.e.,
the flow fields of pushers and pullers look similar but with opposite flow directions.
This has important consequences for the interactions between swimmers and of
swimmers with walls, as will be explained below.

The dipolar flow field and higher-order multipoles follow by a systematic
expansion of the Oseen tensor in Eq. (3) (Kim and Karrila 1991; Pozrikidis 1992;
Spagnolie and Lauga 2012). For a sphere of radius R, the swimmer far field up to
order O(r−4) is dominated by the force dipole (FD) (Eq. (5)), source dipole (SD),
force quadrupole (FQ), source quadrupole (SQ), and rotlet dipol (RD) contributions
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0.01

0.1

1.

10.

Fig. 2 (Left) Flow lines in the far-field of a hydrodynamic force dipole (5) and (Middle) a source
dipole (7) oriented along the vertical direction. (Right) The flow field of the rotlet dipole (10)
is rotational symmetric around the horizontal axis. The white crosses and bullets indicate the
intersections of the flow lines with the plane

v(r) = κFDvFD(r)+ κSDvSD(r)+ κFQvFQ(r)+ κSQvSQ(r)

+ κRDvRD(r)+ O(r−4),
(6)

where

vSD(r) = − 1

r3

(
−ez + 3zr

r2

)
, (7)

vFQ(r) = 1

r3

[(
1− 3z2

r2

)
ez +

(
15z3

r4 − 9
z

r2

)
r

]
, (8)

vSQ(r) = 3

r4

(
5z2r

r3
− 2zez + r

r

)
, (9)

vRD(r) = 3zez × r

r5 , (10)

which decay like r−2, r−3, r−4, and r−3, respectively (Spagnolie and Lauga 2012).
Note that in Eq. (7) the swimming direction e points along the positive z-axis, i.e.,
e ≡ ez. The various factors κ account for the strength of the respective multipole,
where κFD = P/8πη, κSD = −v0R

3/2, and κSQ = 3PR3/8πη.
Aside from the force-dipole term, most relevant for microswimmer are the

source-dipole term (1/r3) due to the volume of the swimmer and the rotlet-dipole
term (1/r3), e.g., for E. coli bacteria by the opposite rotation of the cell body and
the flagella bundle.
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3 Swimming Due to Flagellar Motion

3.1 Friction of Slender Body

Many microorganisms are propelled in a fluid by beating or rotating a flagel-
lum. Thereby, a swimmer exploits the viscous frictional properties of the fluid
environment, specifically, the anisotropic friction of a slender body. The frictional
anisotropy can be demonstrated for a long and thin rod of radius R and length L.
Considering the rod as composed of a sequence of beads with no-slip boundary
conditions, the beat velocity is equal to the fluid velocity of Eq. (3). Under the
influence of an external constant force F = F e, the average velocity of a rod aligned
along the z-axis of the reference system is (Elgeti et al. 2015)

vrod = F
e + (ez · e)ez

4πηL2

ż L

2R

L− s

s
ds (11)

in the limit of a continuous rod. The lower cutoff of the integral excludes a region of
the thickness of the rod. Because (ez · e)ez is 1 and 0 for parallel and perpendicular
orientation of the force with the rod axis, respectively, evaluation of the integral and
the relation F = ζ‖v‖ + ζ⊥v⊥ yields

ζ⊥ = 2ζ‖ , ζ⊥ = 4πηL

ln(L/2R)
(12)

in the asymptotic limit of a long rod. Hence, pulling a rod along its axis is easier
than perpendicular to it. The logarithmic divergence is a result of the long-range
nature of hydrodynamic interactions between different parts of the rod. Thus,
hydrodynamic interactions reduce the friction coefficient compared to that of a rod
of hydrodynamically noninteracting beads, where ζ⊥ = ζ‖ ∼ L. Corrections of
the friction coefficients for a more precise account of hydrodynamics for a cylinder
have been calculated (Tirado et al. 1984).

3.2 Propulsion by Beating Flagella

The time-dependent shape of a sinusoidally beating flagellum with a planer beat
(xz-plane) z(x, t) and its local velocity vz(x, t) at the position x along its contour
are described by

z(x, t) = A sin(kx − wt), vz(x, t) = ∂z

∂t
= −Aω cos(kx − ωt), (13)

where A is the amplitude, ω the frequency, and k the wave number. Decomposing
the velocity v(x, t) = (0, 0, vz(x, t))T into a component parallel v‖ = (v · t)t and
perpendicular v⊥ = v−v‖ to the local tangent vector t ∼ (1, 0, Ak cos(kx − ωt))T

yields
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v‖ = − A2ωk cos2(kx − ωt)

1+ A2k2 cos2(kx − ωt)
t . (14)

The separation F = ζ‖v‖ + ζ⊥v⊥ gives the average force of the flagellum in the
swimming direction

Fz = (ζ‖ − ζ⊥)
1

L

ż

A2ωk cos2(kx − ωt)

1+ A2k2 cos2(kx − ωt)
dx, (15)

while the average force in the perpendicular direction vanishes. For small beating
amplitudes, Eq. (15) can easily be integrated, which yields the average propulsion
force

Fz = 1

2
(ζ‖ − ζ⊥)A2ωk, (16)

and the swimming velocity, vflag ≈ Fz/ζ‖, (Gray and Hancock 1955)

vflag = −1

2

(
ζ⊥
ζ‖
− 1

)
A2ωk . (17)

This simplified calculation shows several important aspects of flagellar propulsion.
First, swimming is only possible due to the frictional anisotropy, i.e., ζ‖ �= ζ⊥.
Second, for a traveling wave in the positive x-direction, the flagellum moves in
the negative x-direction, i.e., movement is opposite to the direction of the traveling
wave. Third, the swimming velocity increases linearly with the beating frequency ω

and the wave vector k but quadratically with the beating amplitude A. And finally,
the swimming velocity is independent of the fluid viscosity for a given beating
amplitude.

3.3 Propulsion by Helical Flagella

Propulsion by rotation of helical flagella can also be illustrated by resistive force
theory. Rotation of a rodlike segment in the direction v′, where v′ = |v′| = RhΩ

(cf. Fig. 3), with Rh the helix radius and Ω its rotation frequency, yields the thrust
force contribution FT and the torque Mz (Lauga and Powers 2009)

FT = (ζ‖ − ζ⊥)v′ cosϑ sinϑ ≈ (ζ‖ − ζ⊥)ϑRhΩ, Mz = ζ⊥Rhv
′ = ζ⊥R2

hΩ,

(18)

where ϑ & 1 is assumed. Hence, the relation between force, torque, and
translational and rotational velocity is
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v
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FF F
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vz
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Fig. 3 Helical segment moving in a viscous fluid. Only half of a helical pitch is shown. The drag-
based thrust force FT appears by the rotation of the red rodlike segment in the direction v′. The
orientation angle ϑ is related with the pitch angle by π/2− ϑ . (From Elgeti et al. 2015)

(
Fz

Mz

)
=
(

ζ‖ − (ζ⊥ − ζ‖)ϑRh

−(ζ⊥ − ζ‖)ϑRh ζ⊥R2
h

)(
vz

Ω

)
, (19)

with Fz = ζ‖vz in case of no helix rotation. For a spherical cell body of radius Rb

and with the assumption Rb & L, the frictional body force Fb and the body torque
Mb are

Fb = ζbvz, Mb = −ζ b
r ωb, (20)

where ζb = 6πηRb and ζ b
r = 8πηR3

b are the translation and rotational friction
coefficients. The helix is driven by a rotary motor with the frequency Ωm relative
to the body. In response, the helix and body rotate with the frequencies Ω and Ωb.
These frequencies are related by Ω + Ωb = Ωm. Since the whole bacterium is
force- and torque-free, i.e., Fz + Fb = 0 and Mz +Mb = 0, its swimming velocity
is obtained as

vz ≈ ϑ

(
ζ⊥
ζ‖
− 1

)
ζ b
r

ζ⊥Rh

Ωm. (21)

The friction coefficient ζb does not appear, since ζ‖ $ ζb (L $ Rb) is assumed.
Evidently, swimming is again – as in the sperm case – only possible due to frictional
anisotropy. Moreover, vz depends linearly on the body rotational friction coefficient.
Hence, without body, the bacterium could not swim. Due to the approximation
ϑ & 1, vz depends linearly on the orientation angle ϑ . Changing the handedness of
the helix leads to a change of the swimming direction.

Note that a helix driven by an external torque also moves forward; however, it is
not torque-free, and therefore is not an autonomous swimmer.
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3.4 Bacteria Swimming

A wide variety of bacteria exploits the propulsion strategy described in Sect. 3.3.
Different species possess various numbers and differing arrangements of flagella.
According to the arrangement, flagellated bacteria are classified as monotrichous
bacteria with a single flagellum only, lophotrichous bacteria with multiple flagella
located at a particular spot on their surface, amphitrichous bacteria with a single
flagellum on each of the two opposite ends, and peritrichous bacteria which are
covered by multiple flagella pointing in all directions. Prominent examples of
peritrichous bacteria are E. coli, Salmonella typhimurium, Rhizobium lupini, or
Proteus mirabilis, to name just a few. A flagellum is rotated by a motor complex,
which consists of several proteins, and is anchored in the bacterial cell wall
(Berg 2003). Bacteria like E. coli swim in a “run-and- tumble” motion (Berg
2003). In the “run” phase, the helical flagella are left-handed, and they rotate
counterclockwise. The flagella form a bundle, and the bacterium moves forward
in a direction determined by its long axis. At the beginning of the “tumble” phase,
a flagellum rotational direction is reverted to clockwise. The flagellum leaves the
bundle, which implies a random reorientation of the bacterium. The reversal of the
rotational direction is accompanied by a change of the helical handedness from left-
handed to right-handed, and the flagellum undergoes a polymorphic transition, i.e.,
assumes a different pitch and radius (Calladine 1975; Macnab 1977). At the end
of the tumbling phase, all flagella start to rotate again in the same counterclockwise
direction, the bundle reforms, and the bacterium returns to a directional motion. The
flagella of bacteria like Rhizobium meliloti or Rhizobium lupini are only capable of
limited polymorphic transitions, and their motors are unidirectional (Platzer et al.
1997). These bacteria modulate the rotation speed of individual motors to induce
tumbling.

Since bacterial cells are force- and torque-free, the rotational motion of the
flagellum bundle leads to a counterrotation of the cell body, i.e., swimming bacteria
possess a rotlet dipole (cf. Eq. (10)). This has consequences for their hydrodynamic
interactions, specifically with surfaces and interfaces.

The flow field of an E. coli bacterium obtained from experiment and simulations
is presented in Fig. 4. In both cases, the far field is well described by the force-dipole
field of Eq. (5) (Drescher et al. 2011; Hu et al. 2015b).

4 Surface Interaction

4.1 Dipole Swimmer Near aWall: Swimming with an Image

The swimming behavior of microorganisms is typically altered by the presence of
nearby obstacles or boundaries. In fact, most bacteria in nature live on surfaces,
e.g., in biofilms (Copeland and Weibel 2009; Spagnolie and Lauga 2012). Corre-
spondingly, attraction of such microorganisms to surfaces is of major importance
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Fig. 4 Flow field of E. coli bacteria from (left) experiment (Drescher et al. 2011) and (right)
simulations (Hu et al. 2015b). In simulations, a system with periodic boundary conditions is
considered, which yields closed flow lines in contrast to the flow lines of the experimental bulk
system. The logarithmic color scheme (right) indicates the magnitude of the flow speed scaled by
the bacterial swimming velocity. (From Drescher et al. 2011 and Hu et al. 2015b)

and determines their microbial activity. Part of the attraction originates from
hydrodynamic interactions of the swimmer with the surface. This is easily illustrated
by a force dipole in front of a (slip) surface. The flow field of such a dipole
can be obtained by the image method known from electrostatics. Considering, for
simplicity, a planar wall with slip boundary conditions (cf. Fig. 5), at z = 0, the
velocity field vFD

w,z perpendicular to the surface vanishes identically, i.e., vFD
w,z (z =

0) ≡ 0. The flow field is then given by

vFD
w (r − r0) = vFD(r − r0; e)+ vFD(r− r ′0; e′), (22)

with r0 = (x0, y0, z0), r ′0 = (x0, y0,−z0), where z0 > 0 and e′ the mirror image
of e with respect to the z = 0 plane. The dipole experiences a flow field and, hence,
a force near the surface, which is determined by the hydrodynamic interactions
between the dipole and its image. As a consequence, the dipole swimmer is moving
toward the surface with the velocity

vFD
w,z (z0) = − P

32πηz2
0

[
1− 3(e · ez)2

]
, (23)

because (e′ · ez)2 = (e · ez)2. The result shows that the hydrodynamic force decays
as a dipole flow field quadratic with the distance from the wall. The exact solution
for a no-slip wall (Berke et al. 2008) yields the same functional dependence on the
angle and the wall distance as Eq. (23), only the numerical prefactor in Eq. (23) is
smaller by a factor 2/3.

The direction of the flow field depends on the dipole moment and its orientation.
The hydrodynamic force is attractive to the wall for pusher (P > 0, sperm or
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Fig. 5 Schematic representation of a dipole swimmer (pusher) near a wall. An image dipole
ensures the correct boundary conditions at the impenetrable slip wall

bacteria) as long as cosϑ = (e · ez) < 1/
√

3. Hence, pushers aligned parallel
to the surface experience an attractive force. However, for pullers (P < 0,
Chlamydomonas) hydrodynamic interactions are repulsive when they swim parallel
to the wall, but they are attractive, when their orientation is nearly perpendicular
to the wall. Yet, the average of the wall-induced interaction over a population
of randomly oriented microorganisms is exactly equal to zero in a 3D system,
since

ş

vFD
w,z (z0) sinϑdϑ = 0. As a consequence, the surface-induced velocity (23)

alone cannot explain surface accumulation for initially randomly oriented incoming
swimming cells.

The surface-induced hydrodynamic flow field is inhomogeneous and, thus, exerts
a torque on the cell, which leads to a preferred alignment. The corresponding
rotation rate is given by (Berke et al. 2008):

Ωr(ϑ, z) = −3P cosϑ sinϑ

64πηz3

(
1+ γ 2 − 1

2(γ 2 + 1)
(1+ cos2 ϑ)

)
, (24)

where γ is the aspect ratio of the anisotropic swimmer. Since γ is typically larger
than unity, the sign of Ωr is determined by that of P and the product cosϑ sinϑ .
When 0 ≤ ϑ ≤ π/2 or π ≤ ϑ ≤ 3π/2, for a pusher the product is positive,
and the rotation is negative, leading to parallel alignment with the surface. For the
other angles, the rotation is positive, which leads to alignment too. Consequently, all
pushers are oriented parallel to a surface and are attracted by the flow field. Pullers
(P < 0) align normal to the surface. As both pushers and pullers come closer to the
surface, higher orders in the multipole expansion become important (Spagnolie and
Lauga 2012).
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4.2 Bacteria Swimming at Surfaces

As a consequence of the rotlet dipole of bacteria by counterrotation of cell body and
flagella bundle, hydrodynamic interactions lead to circular trajectories of bacteria
at surfaces (Lauga et al. 2006; Di Leonardo et al. 2011; Hu et al. 2015a). Thereby,
clockwise and counterclockwise trajectories appear, governed by the respective no-
slip or slip boundary condition (cf. Fig. 6) (Lauga et al. 2006; Di Leonardo et al.
2011; Hu et al. 2015a; Elgeti et al. 2015; Elgeti and Gompper 2016). Moreover,
the slip length determines the curvature of the circle. In qualitative agreement with
experiments and quantitative agreement with theory and simulations, the trajectory
curvature can well be described by

κ = κ∞ + κ0 − κ∞
1+ b/h

(25)

as function of the slip length b, where κ0 < 0 and κ∞ > 0 are the curvatures for
the slip lengths b = 0 (no-slip) and b = ∞ (perfect slip), respectively, and h is an
effective gap size between of the cell body and the surface (Hu et al. 2015a).

As found experimentally, the radius of the circle depends on the size of the cell
body and increases linearly with body size. This fact can be exploited to separate
cells of different sizes. As suggested by Hu et al. (2015a), a patterned surface
with alternating hydrophobic and hydrophilic stripes leads to a preferred diffusion
parallel to the stripes for radii on the order of the stripe widths, whereas for larger
radii isotropic diffusion is obtained.
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Fig. 6 (Left) Counterclockwise and clockwise circular trajectories from hydrodynamic simula-
tions of an E. coli-type bacterium swimming near homogeneous surfaces with different slip lengths
b as indicated. (Right) Effective curvatures of cells of various lengths, lb, as function of the slip
length. (From Hu et al. 2015a)
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5 Squirmer: A Generic Model of Hydrodynamic
Microswimmers

Generic models, which capture the essential swimming aspects, are crucial in
theoretical studies of microswimmers. On the one hand, they help to unravel the
relevant interaction mechanisms and, on the other hand, allow for the study of
sufficiently large number of swimmers. A prominent example is the squirmer model
(Lighthill 1952; Blake 1971). Originally, it was intended as a model for ciliated
microswimmers, such as Paramecia. Nowadays, it is considered as a generic model
for a broad class of microswimmers, ranging from diffusiophoretic particles to
biological cells and has been applied to study collective effects in bulk, at surfaces,
and in narrow slits (Ishikawa et al. 2006; Llopis and Pagonabarraga 2010; Zöttl and
Stark 2014; Theers et al. 2016).

In its simplest form, a squirmer is represented as a spherical rigid colloid with a
prescribed surface velocity. Restricting the surface velocity to be tangential, the slip
velocity on the sphere surface can be expressed in terms of derivatives of Legendre
polynomials, where the spherical squirmer is typically characterized by two modes
only accounting for its swimming velocity (B1) and its force dipole (B2) (Ishikawa
et al. 2006; Llopis and Pagonabarraga 2010). Explicitly, the leading contributions
yield the slip velocity on the colloid surface (Ishikawa et al. 2006; Llopis and
Pagonabarraga 2010; Theers et al. 2016)

vsq = (B1 sinϑ + B2 sinϑ cosϑ)eϑ = B1(sinϑ + β sinϑ cosϑ)eϑ . (26)

The parameter B1 = 2v0/3 is related to the swimming velocity, v0, and β = B2/B1
accounts for the force dipole. The angle ϑ is measured with respect to the propulsion
direction in a body-fixed reference frame. Higher-order terms can easily be taken
into account (Elgeti et al. 2015; Llopis and Pagonabarraga 2010). The term with
B2 (or β) distinguishes various propulsion patterns, namely, pushers (β < 0),
pullers (β > 0), and neutral squirmers (β = 0), corresponding, e.g., to E. coli,
Chlamydomonas, or Volvox, respectively.

The far field of a squirmer is well described by the flow fields of a force dipole
(FD), a source dipole (SD), and a source quadrupole (SQ)

v(r) = κFDvFD(r)+ κSDvSD(r)+ κSQvSQ(r)+ O(r−5), (27)

where the various terms are given in Eq. (5), (7), and (9).
The assumption of a spherical shape is adequate for swimmers like, e.g.,

Volvox; however, the shapes of other microswimmers (E. coli, Chlamydomonas,
Paramecium) are nonspherical. Here, an extension of the squirmer concept to
spheroidal objects has been proposed (Keller and Wu 1977; Theers et al. 2016).
Figure 7 depicts flow fields of a spheroidal squirmer with the aspect ratio of two
for the various kinds of dipolar terms in the laboratory and body-fixed reference
frame. The near-field modifications by the finite-size swimmer is clearly visible in
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Fig. 7 Flow streamlines of isolated spheroidal squirmers. The top row corresponds to the
laboratory reference frame and the bottom row to the body-fixed reference frame. (Left) Flow
field of a pusher (β = −3), (Middle) a neutral squirmer β = 0, and (Right) a puller (β = 3). The
magnitude of the relative velocity 3v/2v0 is color coded logarithmically. (The puller figures are
from Theers et al. 2016)

comparison with Fig. 2. Moreover, pusher and puller exhibit a stagnation point in
front or back, respectively, in the body-fixed reference frame for |β| > 1.

6 Collective Phenomena

Collective phenomena governed by hydrodynamic interactions appear on the level
of flagella or cilia as well as on the scale of the microswimmers themselves.
Examples on the flagella scale are the synchronization of flagella rotation in the
formation of bacteria bundles (Reichert and Stark 2005; Qian et al. 2009; Reigh
et al. 2012) or the development of metachronal waves in arrays of beating cilia
(Sleigh 1962; Elgeti and Gompper 2013).
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The importance of hydrodynamic interactions on the collective dynamics of
microswimmers is most easily demonstrated for squirmers. On the one hand, the
effect of the force dipole (pusher, puller, neutral squirmer) is captured, and, on the
other hand, both far- and near-field hydrodynamics is taken into account, and their
relative importance can be elucidated. In accordance with bacteria in biofilms, the
collective behavior of squirmers is either studied by strictly two-dimensional motion
with three-dimensional hydrodynamic interactions or by swimmers confined in a
narrow slit with a respective limitation of hydrodynamic interactions by the surfaces.
In the latter case, the boundary interactions play a major role (Theers et al. 2018).

6.1 Cilia Synchronization: Metachronal Waves

Propulsion of unicellular and multicellular organisms by cilia is omnipresent.
Thereby, fluid is pumped across their surface by anchored motile cilia (flagella)
(Sleigh 1962). Moreover, in higher organisms and humans, cilia are involved in
moving mucus in the lungs (Afzelius 1976), the emergence of the embryonic left-
right asymmetry (Cartwright et al. 2004), and intercellular communication (Wang
et al. 2006). Already in the 1960s, Sleigh (1962) observed that arrays of cilia beat
neither randomly nor synchronously but in a wave pattern called a metachronal
wave (MCW). Several theoretical models have been proposed to shed light onto
the metachronal coordination by hydrodynamic interactions. A model of coupled
rotating spheres placed near a no-slip wall proves useful in clarifying the diverse
types of MCWs observed in nature (Brumley et al. 2012).

Deeper insight into coordinated beating is gained by simulations of anchored
semiflexible filaments with a nonreciprocal beat, where a “trigger” mechanism
switches between the power and recovery stroke. Simulations of an array of 60×60
cilia in a 3D explicit fluid yield metachronal waves emerging autonomously, despite
the presence of significant noise (Elgeti and Gompper 2013). The beat pattern of
an individual cilium can react to the surrounding fluid flow, because the model
only imposes time-dependent curvature forces and employs geometric thresholds
for the switch between power and recovery stroke, and vice versa. Figure 8
displays the beating pattern of an individual filament with an asymmetric power and
recovery stroke. The hydrodynamically induced metachronal waves are visible in
Fig. 8 (right).

6.2 Aggregation of Squirmers

The interactions between microswimmers depend on their relative orientation.
Thereby, interactions of pushers and pullers in equivalent positions and orientations
are equal in magnitude but opposite in sign, because of the opposite sign of their
dipole strength P . Since swimmers typically meet at different relative positions and
orientations and due to the stochastic motion of many interacting objects, scattering
of microswimmers occurs, and cooperative swimming is the exception rather than
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Fig. 8 (Left) Top and side view of the beat pattern of the computational cilia model. Subsequent
conformations are equally spaced in time. The fast, planar power stroke (frames 1−5) continues
until a positive curvature threshold in the lower part of the cilium is reached. The cilium then
switches to a slow, out-of-plane recovery stroke (frames 6−17), which ends when a negative
curvature threshold is exceeded. (Right) Simulation snapshot of an array of 40 × 40 beating cilia.
Cilia are placed on a square lattice. The metachronal wave is easily recognized by the lines of fully
extended cilia during the power stroke. (From Elgeti and Gompper 2013)

the rule in dilute suspensions (Ishikawa et al. 2006; Llopis and Pagonabarraga
2010; Götze and Gompper 2010). This applies to spherical as well as spheroidal
squirmers. However, hydrodynamic interactions with confining surfaces in a slit
geometry stabilize the cooperative swimming of spheroidal pulling squirmers,
which emphasizes the relevance of hydrodynamic interactions in confinement
(Theers et al. 2016).

Self-propelled particles exhibit a strong tendency for clustering and phase sepa-
ration. The origin of this behavior is the blockage of motion when several particles
collide with each other (cf. Fig. 9). The particular (small) cluster would dissolve
after a time corresponding to the reorientation time of a swimmer. Interactions and
collisions with other particles are controlled by the density and propulsion velocity
v0. Hence, if other particles collide before the original cluster dissolved, the cluster
grows. This behavior already occurs for active Brownian particles (Bialké et al.
2012; Buttinoni et al. 2013; Redner et al. 2013; Palacci et al. 2013; Marchetti et al.
2016; Bechinger et al. 2016), i.e., for self-propelled particles with steric but without
hydrodynamic interactions. The separation into a dense solid (2D) (Bialké et al.
2012; Marchetti et al. 2016; Bechinger et al. 2016) or fluid (3D) (Wysocki et al.
2014) phase and a dilute gas phase is denoted as motility-induced phase separation
(MIPS) (Cates and Tailleur 2015). Hydrodynamic interactions strongly modify the
collective behavior.

The collective swimming patterns of spherical squirmers in 2D exhibit a strong
dependence on the sign of the force dipole (far field). Moreover, hydrodynamic
near-field effects play an important role. The phase behavior of neutral squirmers
(β = 0) with only far-field interactions is similar to that of active Brownian particles
without hydrodynamic interactions (Yoshinaga and Liverpool 2017). The additional
contribution due to hydrodynamics is an enhanced reorientation of the squirmers,
which suppresses phase separation. Squirmer ensembles in 2D without thermal
motion exhibit clustering for pullers and pushers due to near-field hydrodynamic
interactions. Neutral squirmers spontaneously develop polar order and collectively
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Fig. 9 (Left) Aggregation and cluster formation of squirmers by blockage. (Middle) Fluid phase
of spherical squirmers and (Right) cluster of spheroidal squirmers confined in a slit at the two-
dimensional packing fraction φ2D = 0.5 and the Péclet number Pe = 12. The Péclet number
is defined as Pe = v0/2bzD⊥R , where bz is the longer spheroid semiaxis and D⊥R the rotational
diffusion coefficient around the minor axis

move in a preferred direction (Kyoya et al. 2015; Yoshinaga and Liverpool 2017).
Yet polar order is destroyed by thermal fluctuations. With fluctuations, all spherical
squirmers exhibit cluster formation, however, with distinct characteristics. Here,
cluster formation is most pronounced for pullers (Alarcón et al. 2017).

The anisotropic shape of a spheroidal squirmer enhances cluster formation
compared to spherical swimmers (cf. Fig. 9) (Ginelli et al. 2010; Abkenar et al.
2013). This applies to ABPs as well as hydrodynamically coupled swimmers.
Thereby, hydrodynamic interactions suppress motility-induced phase separation
for spheres, whereas for spheroids hydrodynamic interactions enhance cluster
formation in a slit geometry (Theers et al. 2018).

7 Conclusions

Hydrodynamic interactions are essential for active matter, specifically biological
microswimmers. They are not only fundamental for the propulsion of microswim-
mers but also determine their behavior next to surfaces as well as the emergent
collective dynamics and structures. Hydrodynamic interactions imply a very rich
dynamics, which depends on the detailed swimming mechanism. For a fundamental
understanding of the fluid-mediated interactions, consideration of the dominant
multipole terms might suffice. However, the detailed collective properties depend
also on the actual near-field flow. Hence, the full flow field has to be taken into
account for a quantitative understanding of the local features of microswimmer
aggregates. As a general conclusion, hydrodynamic interactions have to be taken
into account for a qualitative and quantitative understanding of the emerging
properties of active matter.
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Abstract

Chapters in this section introduce recent advances in computational models and
numerical methods for establishing a physics-based understanding of crystal
plasticity, starting from atomistic models of dislocations, to discrete models of
dislocation line networks, to continuum descriptions of microstructure evolution.

1 Purpose of Physics-BasedModeling

The plastic deformation of crystalline materials (especially metals and alloys) is
a fundamental process that has been critically important for the technologies of
mankind for thousands of years. Understanding the process of crystal plasticity is
an essential step for addressing many of today’s technological needs, by enabling
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precise control of the deformation process and design of new materials with tailored
properties. The application areas where such an understanding has an impact include
metal forming, machining, additive manufacturing, and material design for high-
temperature components (such as turbine blades), to name a few. Crystal plasticity
also plays an important role in other processes such as ductile fracture and fatigue.

Our initial understanding of crystal plasticity came from experiments (such as
tensile and torsion tests) and phenomenological continuum theories (such as J2
plasticity theory) that are consistent with observations and symmetry requirements.
With the latest advances of experimental characterization techniques (e.g., accurate
3D representation of grain structure of a polycrystal) and computational tools
(e.g., parallel processors, GPUs), physics-based models of crystal plasticity that
account for granular, subgranular, and atomic-level processes are becoming ever
more realistic and predictive. Bridges between such models at different scales
are starting to be established. A well-connected multiscale framework for crystal
plasticity may be established in the near future. Such a framework is needed to
realize the full potential of physics-based predictive models in order to make an
impact on application areas in manufacturing and materials design.

In this section, we present ten chapters that introduce recent advances on physics-
based crystal plasticity models at different scales, starting from atomistic models of
the dislocation core, to discrete models of dislocation line networks, to continuum
descriptions of subgranular and intergranular microstructure evolution. In addition
to providing new researchers entering this field an introduction to the modeling
techniques they may want to learn, we hope that by looking at the latest advances
at crystal plasticity models at all scales, this section also helps to identify the
opportunities and the gaps in the multiscale framework that may also be useful to
an experienced researcher.

2 Multiscale Challenge of Crystal Plasticity

Under most conditions (e.g., temperature below ∼1/3 of the melting point, strain
rate below ∼105 s−1), the plastic deformations of metals and alloys are predom-
inantly carried out by the motion of dislocations, which are line defects in the
crystal (Hull and Bacon 2011; Cai and Nix 2016; Anderson et al. 2017). This is
why dislocations feature prominently in physics-based models of crystal plasticity.
At the lower limit of the length scales of interest here, the electronic structure
in the atomistic region around the dislocation core determines the energetics and
mobility of the dislocation. At the upper limit of the length scale, engineering
materials are usually available in the form of a polycrystal, consisting of many grains
whose size and orientation distributions (i.e., texture) influence the overall response
of the material. Establishing a quantitative understanding of crystal plasticity
is challenging because of the wide range of length scales (and an even wider
range of time scales) between these two limits, as shown in Fig. 1. No single
theoretical/computational model can cover the entire range of the relevant length
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Fig. 1 Schematics of crystal plasticity models at different length and time scales and the
relationship between different chapters in this section

and time scales, which is why different models have been developed and ultimately
need to be connected to reach a comprehensive understanding of crystal plasticity.

The chapters in this section progress generally from smaller to larger length and
time scales as shown in Fig. 1. In �Chap. 70, “Ab Initio Models of Dislocations”
(by E. Clouet), we start with ab initio models of the dislocation core. These are
atomistic models that also account for the quantum mechanics of electrons based
on the density functional theory. In the multiscale hierarchy here, these models are
the most accurate and contain the fewest of empirical parameters, but their high
computational cost limits them to very small material volumes typically containing
at most a few hundred atoms. As a result, boundary conditions are important con-
siderations for the successful applications of such models. A significant emphasis
of Chap. 2 is on periodic boundary conditions (PBC). Chapter 2 discusses how key
dislocation properties such as core structure, core energy, and Peierls stress (i.e., the
critical stress required to move a dislocation at zero temperature) can be predicted
by ab initio models under PBC. These properties can be used to construct functions
that describe forces on and mobility of dislocations that can be used in higher-scale
dislocation dynamics (DD) models (Chap. 4).

In �Chap. 71, “Modeling the Thermally Activated Mobility of Dislocations
at the Atomic Scale” (by L. Proville and D. Rodney), we introduce atomistic
models of dislocations in which interatomic interactions are described by empirical
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potentials. The simplification (i.e., removal of quantum mechanics of the electrons)
allows such models to handle much larger material volumes, containing millions of
atoms. This allows molecular dynamics (MD) simulations of the motion of fairly
long dislocation lines (e.g., 100 Burgers vectors in length) over time scales of
nanoseconds, so that mobility (a key input to DD models, Chap. 5) of fast moving
dislocations (e.g., those in face-centered cubic metals) at finite temperature can
be directly extracted. However, in materials with high Peierls stress (e.g., screw
dislocations in body-centered cubic metals), dislocation motion can be thermally
activated, and dislocation velocity would be too slow to be observable by direct MD
simulations. Chapter 3 presents computational methods based on the transition state
theory to determine the dislocation mobility in these circumstances. It also discusses
how to incorporate quantum corrections (due to the zero-point motion of the nuclei)
to the predicted dislocation mobility.

In �Chap. 72, “Dislocation Analysis Tool for Atomistic Simulations” (by
A. Stukowski), we introduce methods which convert atomistic descriptions of
dislocations into line descriptions in the discrete dislocation dynamics (DDD)
model (which is the subject of Chap. 5). Doing so leads to a tremendous reduction
in the number of degrees of freedom, so that DDD models can deal with much
larger material volumes, e.g., with sizes exceeding 10 μm. Chapter 3 introduces the
dislocation extraction algorithm (DXA), which automatically identifies dislocations
in an atomistic simulation snapshot and determines their Burgers vectors. This
capability not only facilitates the visualization of atomistic simulations of crystal
plasticity but also opens the exciting possibility of one-to-one comparisons between
MD and DDD simulations of the same dislocation ensemble. This would allow
higher-scale models (such as DDD) to be benchmarked against more fundamental,
lower-scale models (such as MD), thus strengthening the multiscale hierarchy of
crystal plasticity.

In �Chap. 73, “Line Dislocation Dynamics Simulations with Complex Physics”
(by R. B. Sills and S. Aubry), we present recent advances in discrete disloca-
tion dynamics (DDD) models, which take core energy and mobility inputs from
atomistic models and predict single crystal stress-strain relations that can be used
in continuum plasticity models at even higher scales. Chapter 5 focuses on the
recent developments of DDD models on the more “complex” physical aspects
of dislocation processes relevant to crystal plasticity. These include, for example,
elastic anisotropy, nonlinear mobility laws, and interactions with solutes, vacancies,
precipitates, and grain boundaries.

While DDD models have the potential to link fundamental dislocation processes
with plastic deformation behavior of single crystals and to predict spontaneous
pattern formation in the dislocation microstructure, currently DDD models are
still very much limited in the amount of strain they can reach (e.g., about a few
percent) under work-hardening conditions. It is possible that directly connecting
DDD models with continuum crystal plasticity models may still be impractical
(or uneconomical) in the near future, and another model may be needed to bridge
the two.
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In �Chap. 74, “Continuum Dislocation Dynamics: Classical Theory and Con-
temporary Models” (by A. El-Azab and G. Po), we present the continuum disloca-
tion dynamics (CDD) model that is motivated by this need. The degrees of freedom
in the CDD model are (smooth) fields (e.g., dislocation densities) represented on
a volumetric grid. The grid sizes (e.g., 30 nm) are typically larger than minimum
segment lengths in DDD models. The explicit network structure in the DDD
model is “smeared out” and replaced by density variations in space, so that the
CDD model can be considered as the result of “coarse-graining” the DDD model.
The main challenge in CDD models is to decide which degrees of freedom (i.e.,
microstructural information beyond total density) should be kept after the coarse-
graining and what their equations of motion should be. At present, multiple CDD
formulations exist in the literature, and a number of them are discussed in Chap. 6.
It is exciting to see that some of the 3D CDD formulations are already able to
generate dislocation density patterns that are similar to experimental observations.
Establishing a closer comparison between DDD and CDD models (e.g., through a
systematic process of coarse-graining) appears to be a promising and important task
for establishing a robust multiscale hierarchy of crystal plasticity models.

The next few chapters from 7 to 11 have a major focus on higher length scales,
those corresponding to single and polycrystals in the microstructure. They propose
alternative approaches for solving crystal plasticity problems in polycrystalline
microstructures, overcoming some of the bottlenecks that jeopardize their use in
complex applications. While a quantitative connection with the more fundamental,
dislocation-based models is still lacking, impressive progress has been made over
the last decade in crystal plasticity models in terms of numerical efficiency and the
ability to model realistic microstructures.

In �Chap. 75, “Connecting Lower and Higher Scales in Crystal Plasticity
Modeling” (by D. L. McDowell) a generalized description of crystalline plasticity is
proposed to encompass a spectrum of models that address various phenomena asso-
ciated with dislocation evolution in crystals across a range of length and time scales.
The evolution processes involve dislocation nucleation, generation, migration,
interaction, trapping, and annihilation in crystals and polycrystals. Starting from
coarse-grained atomistics, the models described include microscopic phase-field
models, field dislocation models, discrete dislocation dynamics, statistical contin-
uum dislocation models, mesoscale generalized continuum models categorized as
gradients, micropolar or micromorphic types, all the way up to local continuum
plasticity of polycrystalline aggregates. Furthermore the concepts of concurrent and
hierarchical multiscale modeling in spatial and temporal domains are discussed.
The chapter concludes with a summary of the challenging and long-standing gaps
in hierarchical modeling of crystalline plasticity models, including quantification
of coarse-graining and model reduction errors and uncertainty quantification of
individual models, domain decomposition, as well as various two-scale transitions.

In �Chap. 76, “Developing Virtual Microstructures and Statistically Equivalent
Representative Volume Elements for Polycrystalline Materials” (by S. Ghosh and
M. Groeber), the development of computational methods for simulating statistically
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equivalent virtual microstructures of materials with complex heterogeneities is
discussed. Specifically, the methods focus on polycrystalline metallic materials
containing localized features such as annealing twins, particulates or precipitates,
and subgrain-scale precipitates. The materials discussed include alloys of titanium,
magnesium, and aluminum, as well as nickel-based superalloys. Data from image
analysis and characterization are used to construct 3D statistical distribution and
correlation functions. This serves as input to the virtual microstructure generation
process. The methods accommodate computational approaches that infer 3D statisti-
cal descriptors and functions from 2D observations and surface data from stereology
and other optimization-based projection techniques. The chapter introduces the soft-
ware package DREAM.3D that is widely used for generating virtual microstructures
of polycrystalline materials. A host of newly developed methods for incorporating
twins, particles, and subgrain-scale phases in polycrystalline microstructures are
further discussed. Finally the concept of the microstructure-based SERVE or
M-SERVE, in which morphological and crystallographic characteristics of the
microstructure are determinants of the statistically equivalent representative volume
element, is introduced.

In �Chap. 77, “Polycrystal Plasticity Models Based on Green’s Functions:
Mean-Field Self-Consistent and Full-Field Fast Fourier Transform Formulations”
(by R. Lebensohn), two Green’s function-based crystal plasticity methodologies
for predicting microstructure-property relations in polycrystalline aggregates are
discussed: The mean-field viscoplastic self-consistent (VPSC) method and the full-
field viscoplastic fast Fourier transform method (VPFFT). These formulations are
based on the Green’s function solution of the PDEs governing the micromechanical
response of polycrystals. The heterogeneity is related to the inherent directional
properties of grains along different crystal directions and crystallographic orienta-
tions of each grain in the aggregate. The VPSC formulation uses a linearization
assumption of the behavior of single crystals and utilizes Fourier transforms in an
ellipsoidal domain of the Green’s function for an infinite medium with homogenous
properties. The VPFFT method evaluates convolution integrals over periodic unit
cells using the Green’s function for a periodic medium and a polarization term con-
taining all the information on the heterogeneity and nonlinearity of the crystalline
material behavior. The chapter delineates the similarities and differences of both the
crystal plasticity formulations and cross-validates their predictions.

In �Chap. 78, “Computationally Efficient Crystal Plasticity Simulations Using
Spectral Databases” (by S. R. Kalidindi, A. Gupta and E. Popova), a spectral
approach to crystal plasticity solutions is presented. The spectral database approach
is able to significantly enhance the computational efficiency of the crystal plasticity
framework. Important variables from crystal plasticity computations are accessed
directly from precomputed spectral databases based on discrete Fourier transform
(DFT). The chapter discusses the DFT database generation process for deviatoric
stresses, lattice spins, and strain-hardening rates using Taylor-type crystal plasticity
models. Studies are performed on Taylor-type simulations for FCC and BCC
materials, yield surface evaluation, property closures, as well as forming limit
diagrams. They show considerable computational speedup due to reduced level of
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computing with this approach. The extension of the spectral database framework to
crystal plasticity FEM simulations is also discussed. The advantages of using the
spectral crystal plasticity method with graphics processing unit (GPU) computing
are predicted.

In �Chap. 79, “Advances in Computational Mechanics to Address Challenges in
Crystal Plasticity FEM” (by S. Ghosh), novel methods and algorithms in computa-
tional mechanics are discussed for facilitating robust and efficient crystal plasticity
finite element (CPFE) modeling of deformation and failure in metals and alloys.
Image-based CPFE models incorporate characteristic microstructural features, as
well as underlying physical mechanisms. A number of challenges arise when using
CPFE models for modeling deformation mechanisms in complex microstructures,
especially those involving phenomena like localization, twinning, crack propaga-
tion, fatigue, etc. This chapter examines three challenges that commonly persist
with conventional CPFEM and offers remedies for overcoming them. The three
problems include element stabilization to overcome plastic incompressibility due
to volumetric locking of tetrahedral elements in CPFE analyses, time-domain
subcycling to account for disparate deformation rates in modeling localization
phenomena like discrete twin evolution in CPFEM, and wavelet-induced adaptive
hierarchical CPFEM for enhanced efficiency. The chapter ends with a discussion of
multi-time scaling issues in fatigue problems.
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Abstract

This chapter reviews the different methodological aspects of the ab initio
modeling of dislocations. Such simulations are now frequently used to study the
dislocation core, i.e., the region in the immediate vicinity of the line defect where
the crystal is so strongly distorted that an atomic description is needed. This core
region controls some dislocation fundamental properties, like their ability to glide
in different crystallographic planes. Ab initio calculations based on the density
functional theory offer a predictive way to model this core region. Because
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dislocations break the periodicity of the crystal and induce long-range elastic
fields, several specific approaches relying on different boundary conditions have
been developed to allow for the atomistic modeling of these defects in simulation
cells having a size compatible with ab initio calculations. We describe these
different approaches which can be used to study dislocations with ab initio
calculations and introduce the different analyses which are currently performed
to characterize the core structure, before discussing how meaningful energy
properties can be extracted from such simulations.

1 Introduction

Dislocations are line defects which control the development of the plastic defor-
mation in crystals. These defects induce a long-range stress field, which is well
described by elasticity, and dislocation elasticity theory offers a powerful framework
to model dislocations and their interaction with their surrounding environment
(Hirth and Lothe 1982; Bacon et al. 1980). But some of their fundamental properties,
like their glide plane and their mobility, highly depend on their core, i.e., the
region in the immediate vicinity of the defect where the perturbation of the crystal
is too important to be described by elasticity. The modeling of this core region
necessitates an atomic description, and atomistic simulations have thus become a
valuable tool to study dislocation properties. Among such simulations, ab initio
calculations based on the density functional theory (DFT), as they rely on an
electronic description of the atomic bonding, appear as the most accurate and
predictive. But as these calculations are still limited in the size of the system they can
handle, typically at most a few hundred atoms, the ab initio modeling of dislocations
need special attention. Specific methodologies have been therefore developed to
study dislocation core properties with ab initio calculations. The purpose of this
chapter is to review the different modeling approaches for the ab initio study of
dislocations, starting from a quick overview of DFT formalism, before describing
more thoroughly boundary conditions specific to dislocation models, then the
analysis of the atomic structure in the dislocation core and finally the extraction
of meaningful energy properties. Beyond the examples illustrated in this chapter,
results which have been obtained from such ab initio studies for the dislocation core
properties in different metals and semiconductors can be found in the recent review
of Rodney et al. (2017).

2 Ab Initio Calculations

Ab initio calculations describe the bonding between atoms, thanks to the resolutions
of the Schrödinger equation for the electrons of the system. These are first-principles
approaches as they do not use any experimental data and allows the modeling of
atomic interaction only from the atomic number and other fundamental quantities.
Compared to empirical interatomic potentials, such approaches are completely
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transferable, without any parameterization depending on the environment under
study, but at the expense of a much higher CPU time. Although ab initio in
nature and usually very accurate, these approaches nevertheless rely on different
approximations, the validity of which needs generally to be assessed.

The most fundamental approximation is the Born-Oppenheimer approximation.
As atom nuclei have a much higher mass than electrons, one can assume that
the electrons are always equilibrated with respect to the positions of the nuclei
which are considered as immobile. The resolution of the Schrödinger equation
for the electrons therefore leads to the energy of the system as a function of the
atomic positions. Knowing this function and also its first derivatives, i.e., the atomic
forces, standard algorithms of atomic simulations can then be used. For the ab initio
modeling of dislocations, this is usually restricted to molecular statics, including
energy barrier calculations, because of the high CPU burden of the energy and force
calculation.

Most ab initio calculations of dislocations are relying on the density functional
theory (DFT). This makes use of the Hohenberg and Kohn (1964) theorem showing
that the ground-state energy is the minimum of a functional depending only on the
electronic density. This dramatically simplifies the problem as the electronic density
depends only on the position, whereas the many-electron wave function entering
Schrödinger equation is a function depending on the 3N electron coordinates, with
N the number of electrons in the system. The Kohn and Sham (1965) approach
allows then a practical implementation, where the Schrödinger equation is solved for
an equivalent system of noninteracting electrons. This necessitates the definition of
an unknown contribution to the Hamiltonian, the exchange and correlation potential.
Most of dislocation calculations are performed with the local density (LDA) or
the generalized gradient (GGA) approximations, assuming that this contribution
depends only locally on the electronic density or also its gradient.

For dislocation calculations, it is enough to consider that only the electrons of
the outer shells participate to the atomic bonding. Electrons of the inner shells
are not sensitive to the atom environment and can be assumed to have the same
ground state as for the isolated atom. Kohn-Sham equations are then solved only
for valence electrons. One can further reduce the CPU overhead by replacing with a
pseudopotential the interaction potential of the valence electrons with the ionic core.
This pseudopotential aims to reduce the strong oscillations of the electronic wave
functions close to the dislocation core, because the description of these oscillations
necessitates a large basis set, while still leading to the correct wave functions outside
this core region. Different pseudoization schemes, norm-conserving or ultrasoft
pseudopotentials as well as the projected augmented wave (PAW) method, are
available.

Ab initio codes used for dislocations are relying on Born-von Karman periodic
boundary conditions to model the solid, whatever the boundary conditions used to
incorporate a dislocation in the simulation cell (Sect. 3). Electronic wave functions
are thus a superposition of Bloch waves with wavevectors spanning the first
Brillouin zone. Integration in the reciprocal space is performed on a regular grid
sampling the first Brillouin zone, using smearing functions to broaden the electronic
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density of states. Different basis sets can be used to describe the Bloch waves, with
plane waves being the most popular choice for dislocations.

Ab initio approaches devoted to the study of dislocations are thus not specific:
they are making use of standard DFT implementations which are now current
modeling tools in solid-state physics. Feature specific to dislocation modeling, as
described in the next section, is the necessity to use a supercell large enough to let
the dislocation core adopt its fully relaxed configuration, with boundary conditions
compatible with the long-range distortion induced by the defect. A high accuracy is
also generally needed for such calculations as the energy variations involved by the
dislocation core are usually small. For instance, the Peierls energy barrier opposing
the glide of 1/2 〈111〉 screw dislocations in BCC transition metals does not exceed
100 meV/b, where b, the norm of the Burgers vector, corresponds to the height of
the simulation cell necessary to model such a dislocation.

3 Boundary Conditions

The ab initio modeling of dislocations needs special care in the way the boundary
conditions are handled. First, a dislocation creates a long-range elastic field which
needs to be taken into account. Second, it is not possible to include a single
dislocation in a simulation box with full periodic boundary conditions which usually
constitute the paradigm in the modeling of bulk materials: the dislocation opens a
displacement discontinuity, and another defect is needed to close the discontinuity
and allow for periodicity. As a result, different boundary conditions compatible with
ab initio calculations have been developed to model dislocations.

All approaches enforce periodicity in the direction of the dislocation line. In pure
metals, one usually uses the shortest periodicity vector to define the dimension of
the simulation cell in this direction, thus modeling an infinite straight dislocation.
But this size needs to be increased if one wants to introduce a solute atom on the
dislocation line, so as to minimize the interaction of the solute atom with its periodic
images and truly study the interaction of the dislocation with a single foreign
atom. A larger size is also needed to model a kinked dislocation. This is usually
possible only in covalent crystals where the atomic bonds are highly directional,
leading to abrupt kinks experiencing a non-negligible energy barrier when migrating
along the dislocation line. In metallic systems with less directional atomic bonding,
kinks are usually spread over a larger distance and are highly mobile, making it
hard to stabilize them in a simulation cell whose size is compatible with ab initio
calculations.

3.1 Cluster Approach

The easiest way to model a dislocation is to use an infinite cylinder whose axis
coincides with the dislocation line. Periodicity is enforced only along the dislocation
line. The dislocation is created by displacing all atoms according to the Volterra
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Fig. 1 Boundary conditions
used to model an isolated
straight dislocation in the
cluster approach. The outer
boundary is either (a) rigid or
(b) flexible and controlled by
lattice Green’s functions or
by coupling with an empirical
potential (2)

a b

(1)

d

(1)
(2)

(3)

solution given by anisotropic elasticity theory for the dislocation displacement field
(Stroh 1958, 1962). Atoms at the cylinder surface (region 2 in Fig. 1a) are kept fixed
in their initial positions, and only atoms inside the cylinder are relaxed. One thus
models an isolated dislocation in an infinite continuum.

But this modeling approach has severe drawbacks. The elastic solution used to
fix the atoms at the boundary is only approximate as it relies on linear elasticity, thus
neglecting crystal anharmonicity which can be strong close to the dislocation line.
Moreover, the Volterra elastic solution, used to fix the atoms at the boundary, only
corresponds to the long-range elastic field of the dislocation. Close to the dislocation
line some additional contributions, the dislocation core field, need to be accounted
for (Eshelby et al. 1953). A spreading of the dislocation core can be the reason
for the existence of such a core field, but even dislocations with a compact core,
like 〈111〉 screw dislocations in BCC metals, possess a non-negligible core field.
Although this core field decays more rapidly than the Volterra elastic field, the
size of the simulation boxes that can be handled by ab initio calculations is never
large enough to neglect it. The rigid boundary conditions do not allow the correct
development of this core field and thus perturb the relaxation of the dislocation core.

The fixed atomic positions imposed at the boundary also prevent use of this
method to determine the lattice friction opposing dislocation motion. If the dislo-
cation moves during the simulation, this boundary condition will not be compatible
anymore with the new dislocation position. This induces indeed a back-stress
opposing the dislocation motion. As a result, any simulation relying on this
boundary condition will overestimate the dislocation Peierls stress, which is the
minimum stress necessary to move the dislocation at 0 K.

3.2 Flexible Boundary Conditions

To remove the artifacts induced by the rigid boundary conditions, dislocation
modeling with flexible boundary conditions has been developed. The proposed
method relies either on the use of the lattice Green’s function (Sinclair et al. 1978;
Woodward 2005) or on the coupling with an empirical potential (Liu et al. 2007;
Chen et al. 2008).
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The lattice Green’s function Gij (r) expresses, in the crystal harmonic approxi-
mation, the displacement u induced on an atom in position r by a force F acting on
an atom at origin (We use the Einstein implicit summation convention on repeated
indexes appearing in all expressions.):

ui(r) = Gij (r)Fj . (1)

This lattice Green’s function can be obtained by inversion of the force-constant
matrices of the perfect crystal (Yasi et al. 2012; Tan and Trinkle 2016) or can be
tabulated from direct calculations in a perfect lattice (Sinclair et al. 1978; Rao et al.
1998). In the long-range limit, Gij (r) converges to the elastic Green’s function given
by anisotropic elasticity theory.

Flexible boundary conditions based on lattice Green’s functions still make use of
a cylinder geometry to model a single dislocation, but three zones are now defined
(Fig. 1b). Atoms in the inner zone (1) are relaxed with the ab initio code until the
forces acting on them are smaller than a fixed threshold, while atoms in zones (2)
and (3) are kept fixed. At the end of this step, atomic forces have appeared in
zone (2), because the dislocation elastic field deviates from the Volterra solution
used as an initial guess. The lattice Green’s function is then used to displace atoms
in all three zones according to Eq. 1 using all atomic forces in zone (2). This leads
to the cancelation of forces in zone (2) but makes new forces appear in zone (1).
The procedure is thus iterated until all forces in zones (1) and (2) are null. This
self-consistent cycle is necessary because the lattice Green’s function of the perfect
crystal only approximates the linear response of the dislocated crystal. Atoms in
zone (3) serve as a buffer to prevent any perturbation by the external boundary of
forces building in zone (2). As shown by Segall et al. (2003), this buffer region
may need to be quite large in metals to obtain negligible perturbations in the inner
regions. This can be minimized by removing the surfaces delineating zone (3)
and using periodic boundary conditions in all directions. Interface defects are then
present at the boundary between two periodic simulations cells. But these defects
lead to a smaller perturbation of the electronic density than the vacuum layer of
the surfaces (Woodward 2005). One thus perfectly models an isolated dislocation
in an infinite crystal taking full account of the dislocation core field. It is possible
to study dislocation cores with a reduced number of atoms in the simulation cell, a
size usually compatible with ab initio calculations.

A similar approach relies on the coupling of the ab initio calculations with
an empirical potential (Liu et al. 2007; Chen et al. 2008). The simulation cell
is still divided in three regions (Fig. 1b). Ab initio calculations are performed
only for a smaller simulation cell corresponding to regions (1) and (2). Atoms in
regions (2) and (3) are relaxed according to the forces calculated with the empirical
potential, whereas atoms in region (1) are relaxed according to ab initio forces plus
a correction to withdraw the perturbation caused by the external boundary of the ab
initio box. The buffer region (2) has been added to the original approach (Choly
et al. 2005) to minimize this correction by protecting atoms from the external
boundary. To operate, this method needs therefore an empirical potential which
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perfectly reproduces the lattice parameters given by ab initio calculations, which
can generally be done by rescaling the distances. Besides, the potential has also
to match as best as possible the ab initio linear response, i.e., at least the elastic
constants and, ideally, the whole phonon spectrum.

As it will be discussed in the last section, the main drawback of this ab
initio dislocation model using flexible boundaries arises from the difficulty of
extracting dislocation energy. The problem may be actually less sensitive with
the second approach relying on a coupling with an empirical potential where an
energy formulation exists. In this case, one can obtain a reasonable estimation
of the dislocation energy provided the potential gives an accurate description of
the boundary energy compared to the ab initio calculations. While these flexible
boundaries truly allow the modeling of an isolated dislocation, thus predicting its
core structure and its evolution under an applied stress without any a priori artifact
induced by the small size of the simulation cell inherent to ab initio calculations,
the approach is still under active development to also provide information on the
dislocation energy.

3.3 Periodic Boundary Conditions

To get rid of the external boundary and to use periodic boundary conditions in
all three directions without the introduction of a defective interface, one needs to
introduce in the simulation cell a dislocation dipole, i.e., two dislocations with
opposite Burgers vectors. One thus models a 2D periodic array of dislocations
(Fig. 2).

Several arrangements of dislocation arrays can be though off, but they are
not all equivalent. Among all of them, the ones which are quadrupolar display
strong advantages. A periodic array is quadrupolar, if the vector d linking the two
dislocations of opposite signs is equal to 1/2 (u1 + u2), where u1 and u2 are the
periodicity vectors of the simulation cell (Fig. 2). This ensures that every dislocation
is a symmetry center of the array: fixing, as a convention, the origin at a dislocation
center, if a dislocation b is located at the position r, there will also be a dislocation
b in −r. The stress created by these two dislocations will cancel to first order at
the origin, thanks to the symmetry property of the Volterra elastic field. (σV(−r) =
−σV(r) with σV the Volterra stress field of a single dislocation.) As a consequence,
this quadrupolar periodic array minimizes the elastic interaction between the
dislocations and hence the Peach-Koehler force acting on each dislocation because
of the image dislocations associated with periodic boundaries. It is the best-suited
periodic array to extract dislocation core properties from ab initio calculations.

Linear elasticity is still used to build the initial configuration, displacing all atoms
according to the superposition of the displacement fields created by each dislocation
composing the periodic array. The summation on periodic images can be either
performed in reciprocal space (Daw 2006) or in direct space after regularization
of the conditionally convergent sums (Cai et al. 2003). The crystal orientation
used in such elastic calculations should be chosen so as to fix the displacement
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Fig. 2 Simulation of a dislocation dipole with periodic boundary conditions, using a quadrupolar
arrangement. The dipole is defined by its Burgers vector b, the dipole vector d joining the two
dislocation centers, and the cut vector A, with the corresponding discontinuity surface indicated by
a double black line. u1 and u2 are the periodicity vectors of the simulation cell perpendicular to the
dislocation line. The example on the right corresponds to the simulation cell used for the modeling
of the 1/2 〈111〉 screw dislocation in bcc iron. The dislocation core structures are shown through
their differential displacement maps and their density (cf. Fig. 3a for a details)

discontinuity exactly in between the two dislocations composing the dipole, thus
preventing the propagation of this discontinuity to infinity. The cut vector A defining
this discontinuity (Fig. 2) is therefore given by A = l× d, where l is the line vector
of the dislocations and d the vector joining the centers of the +b dislocation to
the −b one. If the scalar product A.b is non-null, i.e., if the dislocation dipole
has an edge component and the displacement discontinuity does not coincide with
the dislocation glide plane, it is also necessary to insert atoms into or delete them
from the original lattice at the discontinuity location, thus following the Volterra
operation.

A homogeneous strain needs also to be applied to accommodate the plastic strain
created by the dipole (Daw 2006; Cai et al. 2003) and ensure that the average
stress in the simulation cell is null. This can be easily demonstrated by considering
the variation of the elastic energy when a homogeneous strain εij is applied to a
simulation cell containing a dislocation dipole defined by its Burgers vector b and
its cut vector A

ΔE(ε) = 1

2
S Cijkl εij εkl + Cijkl bi Aj εkl,
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where energies are defined per dislocation unit length and have been thus normalized
by the height of the simulation cell in the direction of the dislocation line. S is the
area of the simulation cell perpendicular to this direction and Cijkl are the elastic
constants. The average stress existing in the simulation cell is then given by

σij = 1

S

∂ΔE

∂εij
= Cijkl

(
εkl − ε0

kl

)
, (2)

with the plastic strain defined by

ε0
kl = −

biAj + bjAi

2S
. (3)

One thus sees that the stress given by Eq. 2 is null when the applied strain εij is
equal to the plastic strain ε0

ij . When this applied strain is different, a Peach-Koehler
force acting on the dislocations may exist. This allows studying properties of the
dislocation core under an applied stress, to determine its Peierls stress, for instance.
Finally, when a stress variation is observed in ab initio calculations, Eq. 2 allows to
deduce the plastic strain from this stress, and thus the dislocations’ relative positions
via the cut vector A (Eq. 3). For instance, the trajectories of the screw dislocations
gliding between two neighboring Peierls valleys have been determined, thanks to
this method in HCP Zr (Chaari et al. 2014) and in BCC transition metals (Dezerald
et al. 2016).

With these periodic boundary conditions, all the excess energy contained in the
simulation cell is due to the dislocations. As it will be shown in the last section,
elasticity theory can be used to isolate the contribution of a single dislocation. These
periodic boundary conditions offer thus a convenient way to extract dislocation
energy from ab initio calculations. But the dislocation core structure, and hence the
associated excess energy, can be perturbed by the presence of the periodic images. In
practice, one will therefore need to check how sensitive are the obtained dislocation
properties with the size of the simulation cell.

4 Dislocation Core Structures

Different representations can be used to image and analyze the relaxed dislocation
core structure obtained by atomic simulations. This allows, for instance, highlight-
ing a spreading of or a dissociation of the dislocation.

4.1 Differential Displacement Maps

Differential displacement maps were introduced by Vitek et al. (1970). Two
examples are shown in Fig. 3 for a screw dislocation in a body-centered cubic
(bcc) crystal and a hexagonal close-packed (hcp) crystal. In these maps, the crystal
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is projected in the plane perpendicular to the dislocation line, using for atomic
columns the positions in the perfect crystal. The differential displacement caused
by the dislocation is calculated by considering the difference between the vector
connecting two neighbor atoms in the relaxed dislocated crystal and the same
connecting vector in the perfect crystal. One then plots the projection of this
differential displacement along the direction of the Burgers vector with an arrow
pointing from one atomic column to the other, centered in the middle of the two
columns and with an amplitude proportional to the differential displacement. As the
arrows are proportional to the displacement difference, they are a representation of
the discrete derivative of the displacement field, i.e., of the strain created by the
dislocation.

The differential displacement map of the 1/2 〈111〉 screw dislocation in bcc Fe
shown in Fig. 3a highlights the compactness and the threefold symmetry of the
core. Arrows have been normalized so that an arrow linking the centers of two
atomic columns corresponds to a differential displacement of b/3. One can thus
draw Burgers circuits on this map and obtain the norm of the Burgers vector of
the enclosed dislocation by summing arrows. The only non-null Burgers vector
is obtained for circuits containing the dislocation center indicated by a cross, in
particular for the triangle connecting the three central [111] atomic rows, with a
norm equal to b. The dislocation is thus well localized.
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(a) bcc Fe: b = 1/2〈111〉
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0]

[0001]

[12
−

10]

−0.2  0  0.2
a ρb

(b) hcp Zr: b = 1/3〈1210〉

Fig. 3 Core structure of a b screw dislocation (a) in bcc iron (Dezerald et al. 2016) and (b) in hcp
zirconium (Clouet et al. 2015). In these projections perpendicular to the dislocation line, atoms are
sketched by symbols with a colour depending on their (a) (111) and (b) (12̄10) plane in the original
perfect crystal. In (b), different symbols are used for atoms depending on their neighbourhood in
the dislocated crystal, i.e. close to the perfect hcp crystal (circles) or to the unrelaxed prismatic
stacking fault (squares). The arrows between atomic columns are proportional to the differential
displacement created by the dislocation in the direction of the Burgers vector. The colour map
show the dislocation density ρb normalized by the lattice parameter (Nye tensor). The center of the
dislocation is indicated by a + cross. The × crosses in (b) correspond to the positions of the partial
dislocations deduced from the disregistry in Fig. 4
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The picture is quite different for the 1/3 〈12̄10〉 screw dislocation in hcp
Zr shown in Fig. 3b. The differential displacement map shows a non-isotropic
distribution with a spreading of the dislocation core in the (101̄0) prismatic plane.
The normalization here ensures that the maximal arrows correspond to a b/2
differential displacement. The presence of a ribbon with arrows having almost
the same length therefore corresponds to a b/2 prismatic stacking fault which is
known to be stable in this transition metal. The differential displacement map thus
clearly evidences the dissociation of the screw dislocation in two 1/6 〈12̄10〉 partial
dislocations separated by a prismatic stacking fault.

4.2 Dislocation Density

Another visualization method proposed by Hartley and Mishin (2005) consists of
extracting the Nye tensor from the relaxed atomic structure, thus giving a measure
of the dislocation density. The component αjk of the Nye tensor corresponds to the
density of dislocations with a line direction along ek and a Burgers vector along ej .
If A is a surface element of normal n, the dislocation content of line defects along n
intersecting A is given by the surface integral

b =
ż

A

α · n dS.

We only give here the salient points of the method to extract the Nye tensor from
atomic simulations, and the reader is referred to the original publication for the
practical implementation.

The first step is to define the elastic distortion, i.e., the gradient of the elastic
displacement, at each atomic position. Note that this differs from the gradient of
the total displacement. One cannot simply compare the atomic positions after and
before the introduction of the dislocation to obtain this elastic distortion, but one
needs to find for each position the closest undistorted environment corresponding
to a zero-stress state. This is performed by comparing, for each atom, the positions
of its nearest neighbors in the dislocated relaxed crystal with the ones in a perfect
crystal. Knowing the two sets of neighbor positions, each bond in the dislocated
crystal, defined by its vector P(γ ), is identified with the corresponding Q(β) bond
in the perfect crystal, which is the perfect bond leading to the smallest angle Φ(γβ)

between the vectors P(γ ) and Q(β). Only the bonds which are not too much distorted
and for which the angle Φ(γβ) is smaller than a chosen threshold are kept. The elastic
distortion F e is then locally defined through the relation P

(γ )

i = F e
ij Q

(β)
j . This

cannot be satisfied for each set of associated bond (γ β) as the system of equations
is overdetermined and the matrix F e is obtained by the pseudo-inverse method, i.e.,
a least-square fitting. The Nye tensor α is then defined through the curl of the inverse
transpose of the distortion, α = −∇ × (+F e)−1, using finite differences between
neighbor atoms for derivation. This defines the Nye tensor on a set of discrete points,
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generally atomic positions, which can be then interpolated with cubic splines or
Fourier series, or smeared with Gaussian-like spreading functions.

The dislocation density obtained for the 1/2 〈111〉 screw dislocation in bcc
Fe (Fig. 3a) illustrates the compactness of the core: the distribution has only one
peak. On the other hand, the dislocation distribution for the 1/3 〈12̄10〉 screw
dislocation in hcp Zr (Fig. 3b) shows two well-separated peaks which correspond
to the two partial dislocations. To obtain the Nye tensor in this latter case, the
neighborhood of each atom in the dislocated crystal is compared not only to the
two different neighborhoods existing in the perfect hcp crystal but also to the ones
of the unrelaxed prismatic stacking fault, to identify the closer reference from which
the elastic distortion is calculated.

4.3 Disregistry

The extraction of the disregistry offers another way to characterize the dislocation
core structure, particularly convenient when the core is planar. The disregistry is
the difference of displacement induced by the dislocation between the plane just
above and the one just below the dislocation glide plane. It is thus obtained from the
relaxed configuration through

D(x) = u+(x)− u−(x),

where u+(x) and u−(x) are the displacements of the atoms belonging, respectively,
to the upper and lower planes and located at the position x in the direction
perpendicular to the dislocation line. This disregistry varies from 0 for x → −∞
to b for x → ∞, thus corresponding to the dislocation glide plane being locally
sheared by one Burgers vector b. The dislocation center xD is defined by D(xD) =
b/2. The disregistry derivative, ρ(x) = ∂D(x)/∂x, corresponds to the dislocation
density in the glide plane. If the cut plane used to introduce the dislocation in the
simulation cell does not correspond to its glide plane, it is necessary to define
the atomic displacement in the 0 to b interval. This can be done as the Burgers
vector b of a perfect dislocation is a periodicity vector of the lattice and adding a
displacement nb (n ∈ Z) to an atom does not change the configuration.

Peierls and Nabarro built a model that leads to a simple analytical expression of
the disregistry (Lu 2005). According to this model, the disregistry is given by

D(x) = b

π

[
arctan

(
x − xD

ζ

)
+ π

2

]
,

where xD is the dislocation position and ζ its spreading in the glide plane. For
simplicity, we consider scalar quantities by projecting the displacement in the
direction of the Burgers vector. Fitting of these two parameters to the data extracted
from the atomistic simulations allows thus defining the dislocation position and
characterizing the spreading of its core.
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For dissociated dislocations, the disregistry is the sum of the contributions of the
two partial dislocations, i.e.,, assuming that each partial dislocation has the same
Burgers vector b/2 and the same spreading ζ :

D(x) = b

2π

[
arctan

(
x − xD − d/2

ζ

)
+ arctan

(
x − xD + d/2

ζ

)
+ π

]
,

where d is the dissociation distance. As shown in Fig. 4 for the 1/3 〈12̄10〉 screw
dislocation in hcp Zr, such an analytical expression generally perfectly describes
the disregistry extracted from the atomic simulations. One can also notice that
the positions in the glide plane of the partial dislocations deduced from the
disregistry agree which what can be inferred from the differential displacement
and the Nye tensor maps (Fig. 3b). Some consequences of the periodic boundary
conditions used to model this dislocation are visible on these disregistry plots. The
dislocation density slightly depends, through the dissociation distance d and the
partial spreading ζ , on the simulation cell, not only its size but also its shape.
One also sees that the density of the periodic dislocation arrays (solid line in
Fig. 4), obtained by summation of the contributions of the periodic images in the
glide plane, slightly differs from the one of the isolated dislocation (dashed line in

 0

 0.1

 0.2

−10 0 10

d

ζζρ /
(x

) 
/ b

x − xD :  position in habit plane  (Å)

Periodic
Isolated

 0
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6 × 8  (192 atoms)
7 × 7  (196 atoms)
6 × 6  (144 atoms)

Fig. 4 Disregistry D(x) created by a 1/3 〈12̄10〉 screw dislocation in its (101̄0) prismatic glide
plane in hcp Zr, and corresponding dislocation density ρ(x) = ∂D(x)/∂x. Symbols correspond
to ab initio calculations and lines to the fit of the Peierls-Nabarro model, considering periodicity
or not (straight and dashed lines respectively). Results are shown for different n × m periodic
arrangements corresponding to the periodicity vectors u1 = n/2 [101̄0] and u2 = m [0001] (see
Clouet 2012 for details). For clarity, disregistries D(x) have been shifted by 0.2 between different
data sets. The obtained dissociation distance d and spreading ζ of the partial dislocations are
indicated for the 6× 8 periodic array whose core structure is shown in Fig. 3b
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Fig. 4), especially in the distribution tail. Flexible boundary conditions, as discussed
in Sect. 3.2, have been developed to solve such limitations of periodic boundary
conditions.

5 Dislocation Energy

Ab initio calculations give access to the dislocation core energy and its variations.
This core energy is the part of the dislocation excess energy which arises from
the strong perturbation of the atomic interactions in the immediate vicinity of the
dislocation line and which cannot be described by linear elasticity. Contrary to the
dislocation elastic energy, this is an intrinsic property which only depends on the
dislocation and not on the surrounding environment. When several configurations
exist for the same dislocation, this core energy controls their relative stability. Its
variations with the position of the dislocation in the crystal lattice is at the origin of
the lattice friction opposing dislocation glide.

5.1 Core Energy

Among the different boundary conditions introduced in Sect. 3 to model a disloca-
tion at an atomic scale, only periodic boundary conditions allow for an unambiguous
determination of the dislocation core energy with ab initio calculations. This is a
consequence of the energy formulation inherent to ab initio calculations. Because of
the non-locality of the electronic energy, which contains a contribution which needs
to be evaluated in reciprocal space, one cannot easily partition the excess energy of
the simulation cell between the dislocation and the external boundary contributions
when a defective boundary has been introduced like in cluster approaches using
either fixed (Sect. 3.1) or flexible boundaries (Sect. 3.2). Ab initio methods to project
the energy on atoms have been proposed: they theoretically allow for such a partition
but the application to the calculation of a dislocation core energy still remains
to be done. Even if the absolute value of the core energy appears difficult to
determine with cluster approaches, methods to estimate its variation are nevertheless
possible. One can, for instance, calculate the difference of core energy between
two configurations of the same dislocations by simply considering the difference
of ab initio total energies. But such an approach assumes that the contribution of
the external boundary will cancel in the difference, an assumption which may be
hard to validate. Variation of the dislocation energy with its position in the crystal
lattice can also be estimated by considering the work of the atomic forces during the
motion (Swinburne and Kermode 2017).

On the other hand, with periodic boundary conditions, all the excess energy arises
from the dislocations. This excess energy ΔE is defined as the energy difference per
unit of height between the supercell with and without the dislocation dipole. If atoms
have been removed or inserted during the creation of the dipole, the energy of the
perfect supercell needs to be normalized by the correct number of atoms. It is given
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by the sum of the core energy Ecore of the two dislocations, of the elastic energy
Eelas

dipole of the dipole contained in the supercell and of its elastic interaction with its
periodic images:

ΔE = 2Ecore + Eelas
dipole +

1

2

∑

n,m

Eelas
inter(nu1 +m u2). (4)

The factor 1/2 appears in front of this last contribution as only one half of the
interaction is attributed to each interacting dipole. When partitioning the excess
energy into a core and an elastic contribution, it is necessary to introduce a cutoff
distance to isolate the dislocation cores. Close to the dislocation lines, strains
are much too high to be described by linear elasticity. As a consequence, elastic
fields diverge at the origin, and one needs to exclude the core region from the
elastic description. The elastic contribution to the excess energy is thus obtained by
integrating the elastic energy density on the whole supercell except two cylinders of
radius rc which isolate this elastic divergence. The core energy corresponds to the
excess energy contained in these cylinders. The total excess energy ΔE does not
depend on the choice for this core radius, but the partition between a core and an
elastic contribution depends on rc.

The elastic energy of the dipole and its interaction with its periodic images can
be computed by considering the Volterra elastic field created by the dislocations.
This calculation can be performed either in reciprocal space (Daw 2006) or in direct
space using classical results of dislocation elastic theory (Bacon et al. 1980). In this
last case, one uses the decomposition of Eq. (4), with the contribution of the dipole
contained in the supercell and its interaction with the periodic images calculated
separately. The dipole elastic energy is obtained by the volume integral:

Eelas
dipole =

1

2

żżż

V

(
σ

(1)
ij + σ

(2)
ij

) (
ε
(1)
ij + ε

(2)
ij

)
dV ,

where σ (n) and ε(n) are the stress and strain created by the dislocation n. This is
transformed into a surface integral, thanks to Gauss’ theorem:

Eelas
dipole =

1

2

żż

S

(
σ

(1)
ij + σ

(2)
ij

) (
u
(1)
i + u

(2)
i

)
dSj ,

with u(n) the displacement field associated with dislocation n. The integration
surface is composed of the two cylinders S

(1)
c and S

(2)
c of radii rc removing the

elastic divergence at the dislocation cores, and of the two surfaces S0− and S0+
removing the displacement discontinuity along the dislocation cut (Fig. 5). The
integration on both core cylinders leads to the same contribution

Eelas
c (φ) = 1

2

żż

S
(1)
c

σ
(1)
ij u

(1)
i dSj = 1

2

żż

S
(2)
c

σ
(2)
ij u

(2)
i dSj . (5)
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Fig. 5 Definition of the
contour surface used to
calculate the elastic energy of
a dislocation dipole

This contributions of the core tractions to the elastic energy (Clouet 2009) should
not be forgotten as it ensures that the elastic energy is a state variable compatible
with the work of the Peach-Koehler forces. Besides, in ab initio calculations where
the distance d between the two dipole dislocations is small, this can lead to a non-
negligible contribution compared to the one associated with the integral along the
cut surface, even for a screw orientation. The elastic energy of the dislocation dipole
is then

Eelas
dipole = 2Eelas

c (φ)+ biK
0
ij bj ln

(
d

rc

)
, (6)

where the tensor K0 defined by Stroh (1958, 1962) only depends on the elastic
constants. The total elastic energy is finally obtained by adding the interaction of
the dipole with its periodic images. But, one should realize that the summation
on periodic images appearing in Eq. (4) is only conditionally convergent: it can be
regularized with the method of Cai et al. (2003).

As shown in Fig. 6 for the 1/2 〈111〉 screw dislocation in bcc iron, once this
elastic energy is subtracted from the dislocation excess energy given by ab initio
calculations, one obtains a constant core energy which does not depend on the size
of the supercell. Some slight variations of the core energy are nevertheless still
observed with the type of periodic arrangement used for the atomic simulations.
These variations arise because only the Volerra elastic field has been considered
in the calculation of the elastic energy. Dislocations also cause a core elastic field,
which decays more rapidly than the Volterra elastic field. Because of the small size
of the supercell used in ab initio calculations, this core field may also lead to an
elastic interaction between the different dislocations composing the periodic array.
This contribution to the elastic energy can be computed to improve the convergence
of core energies (Clouet et al. 2009). A quadrupolar periodic arrangement minimizes
this contribution of the core field. This is why such an arrangement is preferred
when periodic boundary conditions are used. The neglect of anharmonic effects in
the calculation of the elastic energy can also be a reason for the variation of the
core energy with the supercell. Knowing higher-order elastic constants, one can
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Fig. 6 Decomposition of the
excess energy ΔE of a
1/2 〈111〉 screw dislocation
dipole in bcc Fe in an elastic
contribution Eelas and a core
energy Ecore, using a core
radius rc = b/2. Different
symbols correspond to
different periodic
arrangements (see Clouet
et al. 2009 for details)
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use nonlinear elasticity theory in principle to calculate more precisely this elastic
contribution (Teodosiu 1982). But this leads to much cumbersome calculations.
In practice, as anharmonicity is important only close to the dislocation core, the
consideration of the dislocation core field offers a way to incorporate anharmonic
effects while still relying on linear elasticity.

5.2 Peierls Energy Barrier

The Peierls energy is the energy barrier opposing dislocation glide. It corresponds to
a variation of the dislocation core energy as the elastic energy is not dependent upon
the dislocation position in the crystal lattice. It can be calculated by finding the
minimum energy path linking two neighboring stable positions of the dislocation
using either constrained minimization or nudged elastic band (NEB) calculations
(Henkelman et al. 2000).

With periodic boundary conditions, the Peierls energy is directly obtained by
considering a path where both dislocations composing the dipole are displaced
by one Peierls valley in the same direction. If the two dislocations are moved
simultaneously along the path, their separation distance does not vary, and the
elastic energy is constant. This ensures that the energy variation given by the
constrained minimization or the NEB calculations directly corresponds to the Peierls
energy. However, this is possible only if crystal symmetry ensures that the path
is symmetrical as the two dislocations are traversing their Peierls barriers in the
opposite direction. This is the case, for instance, for the 1/2 〈111〉 screw dislocation
in a bcc lattice gliding in a {110} plane (Fig. 7a).

If the path is not symmetrical, either because of the lack of crystal symmetries
or because of an applied stress, it is not possible anymore to move both dislocations
simultaneously in the same direction. One needs either to move them in opposite
directions or to keep one dislocation fixed when the second one is moving. As
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Fig. 7 Peierls barrier of a 1/2 〈111〉 screw dislocation in bcc Mo. (a) The energy variation ΔE is
shown as a function of the reaction coordinate ζ , and (b) the enthalpy variation ΔH as a function
of the dislocation position xD normalized by the distance λP between two Peierls valleys (see
Dezerald et al. 2014, 2016 for details). For the Peierls barriers under stress (b), only one half
of the barrier has been computed, with one dislocation of the dipole being displaced while the
second one remains fixed. The open symbol is the enthalpy variation in the middle of the pathway
(xD/λP = 1/2) before correcting for the variation of the elastic interaction energy for the τ = 0
calculation

a consequence, the separation distance, and thus the elastic interaction energy, is
varying along the path. One can calculate this variation of the elastic energy and
subtract it from the excess energy in order to obtain the Peierls energy. To be able
to perform this elastic calculation, one needs first to determine the exact dislocation
position xD for each reaction coordinate ζ along the path. This can be done using the
dislocation disregistry (cf. Sect. 4.3) if the motion is planar or by fitting the atomic
displacements with the Volterra elastic solution. As the stress is directly linked to
the applied strain and the dislocation positions (Eqs. 2 and 3), one can also use the
stress variation observed along the dislocation path to determine the dislocations
position. The example of Fig. 7b shows that, with this correction for the variation
of the elastic energy, the same Peierls energy is obtained under zero applied stress
when one dislocation is fixed or when both dislocations are moved (Fig. 7a).

5.3 Peierls Stress

The Peierls stress is the applied resolved shear stress necessary to cancel the
Peierls barrier so that the dislocations can glide freely without the need of thermal
activation, i.e., the stress necessary to move the dislocation at 0 K. For an applied
stress τ , the Peierls barrier is given by the enthalpy variation

ΔHP(xD, τ ) = ΔEP(xD)− τbxD,

which corresponds to the Peierls energy barrier plus the work of the applied
stress when the dislocation has glided a distance xD. The Peierls stress is thus
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the maximum applied stress τ for which the function ΔHP(xD, τ ) goes through a
maximum in the range 0≤xD≤λP. If one assumes that the energy barrier ΔEP(xD)

does not depend on the applied stress τ , it is given by

τP = 1

b
Max

(
∂ΔEP

∂xD

)
. (7)

The Peierls stress can thus be theoretically obtained from the calculation of the
Peierls energy barrier under zero applied stress. But, the evaluation of the derivative
in Eq. 7 requires to know the variation of the energy as a function of the dislocation
position and not only of the reaction coordinate. In practice, the obtained value for
τP will sensitively vary with the method chosen to estimate the dislocation position
along the path.

One can also directly calculate with ab initio calculations the Peierls barrier under
an applied stress so as to estimate at which stress the barrier cancels (Fig. 7). In
such calculations, one does not really apply a stress but a strain corresponding to
the target stress (Eq. 2). With periodic boundary conditions, as the distance between
the two dislocation is varying, the applied stress is also varying along the path.
Equations (2) and (3) show that the stress variation is directly proportional to the
dislocation displacement and to the inverse of the surface S of the simulation cell
perpendicular to the dislocation line. If only one dislocation is moving along the
path, this stress variation therefore does not exceed

δτ = μ
bλP

S
,

where μ is the shear modulus in the dislocation glide plane.
If one is only interested in the calculation of the Peierls stress and not in the

variation of the Peierls barrier with the applied stress, one can simply perform
static relaxation of a dislocation under an applied stress to see at which applied
stress the dislocation glides by at least one Peierls valley. With periodic boundary
conditions one still needs to take into account the variation of the elastic interaction
and of the applied stress when the dislocation is moving to interpret the results.
On the other hand, no such artifact exists with a cluster approach using flexible
boundary conditions which truly models a single isolated dislocation under an
applied stress. Straining homogeneously the simulation cell to obtain the targeted
applied stress, the Peierls stress is defined as the stress for which the dislocation
cannot be stabilized anymore and escapes from the cluster. If one is only interested
in the evolution of the dislocation core structure under an applied stress and on the
determination of the Peierls stress, this cluster approach therefore appears as the
method of choice. Nevertheless, whatever the boundary conditions, determination
of the Peierls stress by such an instability condition of the dislocation core under an
applied stress necessitates a strict threshold criterion on the atomic forces to obtain
a meaningful value.
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6 Conclusions

Dislocation core properties can now be routinely studied with ab initio calculations,
thanks to the different methodological developments summarized in this chapter.
This usually necessitates a coupling between atomistic model and elasticity the-
ory, for which different already available tools can be used: see, for instance,
D. R. Trinkle website (http://dtrinkle.matse.illinois.edu) for an implementation of
the lattice Greens functions or the Babel package (http://emmanuel.clouet.free.fr/
Programs/Babel) for handling dislocations in atomistic simulation cells and elastic
energy calculations. Useful information on the dislocation core structure are thus
obtained. Such calculations can, for instance, characterize possible dissociation or
spreading of the core, or evidence the existence of several stable configurations for
the same dislocation. One gets access to the different energy barriers opposing
the dislocation motion and to their variation with the applied stress. It is also
possible to study how these core properties are altered by the interaction with solute
atoms.

Because of the limited size that can be handled by ab initio calculations, such
studies are usually limited to the study of straight dislocation, and only few
ab initio calculations have considered until now the presence of kinks on the
dislocation lines. Upscaling modeling approaches, relying, for instance, to the line
tension approximation to describe kink nucleation, are therefore needed to go from
these fundamental core properties determined at 0 K with ab initio calculations
to dislocation mobility laws at finite temperature. Larger atomistic simulations
are also possible using empirical potentials to describe atomic interactions. These
simulations allow studying more complex situations and simulating different dis-
location mechanisms, like glide, cross-slip and interaction with other elements of
the microstructure, without assuming a priori the elementary mechanism. In such
a context, ab initio calculations are useful to validate and also help the develop-
ment of empirical potentials which correctly reproduce dislocation fundamental
properties.
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Abstract

We review in this chapter how to model the mobility of isolated dislocations at
the atomic scale when glide requires to overcome energy barriers and is thermally
activated, as is typically the case in body-centered cubic metals. We first recall
the boundary and loading conditions used to model an isolated dislocation. We
then detail a static approach based on the Transition State Theory parameterized
on atomistic calculations to predict dislocation mobility. Finally, we address the
low-temperature regime and explain how to include quantum corrections to the
dislocation mobility law.
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1 Introduction

Dislocations are set in motion under the action of an applied resolved shear stress. In
absence of obstacles, that is, if the crystal is locally free of crystalline defects such
as other dislocations, precipitates, or grain boundaries, the dislocation may reach a
steady-state velocity if the applied stress is constant. In this stationary state, the work
of the applied stress, which drives dislocation motion, is balanced by the energy lost
to the surrounding crystal as heat (Leibfried 1950; Nadgornyi 1988). The mobility
law, i.e., the relation between the applied resolved shear stress and the steady-state
velocity, is one of the most fundamental ingredients of all dislocation dynamics
theory (Suzuki et al. 1991; Cai and Bulatov 2004; Bulatov and Cai 2006). This
relation has been measured experimentally (Johnston and Gilman 1959; Caillard
2010; Nosenko et al. 2011), but there is also an intense research activity to predict
the mobility law from elementary dislocation properties (Koizumi et al. 2002).
Such models must necessarily include the atomic structure of the dislocation core
because the velocity reached by a dislocation at a given stress is intimately related
to how its core interacts with the surrounding crystal. In the present chapter, we will
discuss how to measure and predict a dislocation mobility law using atomic-scale
simulations.

The mobility law concerns the motion of isolated dislocations gliding freely
between obstacles. It should not be confused with the long timescale average
velocity vd , as estimated from Orowan’s law ε̇p = ρmbvd , where ε̇p is the applied
strain rate, ρm the density of mobile dislocations, and b the Burgers vector. Indeed,
a dislocation meets numerous obstacles during its glide in a crystal and undergoes
a stop-and-go motion, spending long periods of time immobile in contact with
obstacles before unpinning and traveling rapidly to the next obstacle. The average
velocity vd = ε̇p/ρmb, which includes both the pinned and unpinned regimes,
can therefore be significantly smaller than the unpinned velocity between obstacles,
which is the object of the mobility law. Predicting the average dislocation velocity
requires large-scale models, such as discrete dislocation dynamics simulations, to
account for the collective interactions between dislocations and between disloca-
tions and the other elements of the microstructure (Bulatov and Cai 2006; Kubin
2013). In contrast, in the present chapter, we consider the kinematic response of an
isolated dislocation, which can be studied in simulation cells compatible with the
size limit inherent to atomic-scale calculations.

The dislocation mobility has two very distinct regimes, depending on whether
the applied stress is below or above the Peierls stress, the intrinsic resistance of the
crystal against dislocation motion. If the applied stress is below the Peierls stress,
the dislocation cannot glide without the help of thermal fluctuations and jumps
between equilibrium positions by a thermally activated process (Caillard and Martin
2003). The resulting dislocation velocity is then thermally activated and depends
exponentially on the temperature and the applied stress. As a result, the dislocation
kinetics is too slow to be modeled by direct molecular dynamics (MD) simulations,
except at high applied stresses close to the Peierls stress or high temperatures
(Marian et al. 2004; Chaussidon et al. 2006; Gilbert et al. 2011). It can however
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be approximated using the transition state theory (TST) parameterized on atomistic
static calculations. This is typically the case of a/2〈111〉 screw dislocations in body-
centered cubic (BCC) metals, like Mo, Ta, or W, which will be discussed in the
present chapter.

In the second regime, the applied stress is larger than the Peierls stress. This is
typically the case of face-centered cubic (FCC) metals, like Al, Cu, and Ni, where
the Peierls stress of the conventional a/2〈110〉 dislocations is very small, a few tens
of MPa at most. In any practical condition of deformation at finite strain rates, the
applied stress is then much larger than the Peierls stress. In this stress regime, the
dislocation velocity is large enough to be measured directly by MD simulations
(Gumbsch and Gao 1999; Rodney and Martin 2000; Bhate et al. 2002; Olmsted
et al. 2005; Mordehai et al. 2003; Oren et al. 2017). At stresses slightly greater than
the Peierls stress, the dislocation velocity is limited by the rate at which atomic and
electronic vibrations can dissipate the heat produced by the work of the applied
stress. In MD simulations where only atomic vibrations are accounted for, the
velocity increases linearly with the ratio τ/T where τ is the applied stress and T the
temperature, as expected from theoretical analysis of phonon damping (Leibfried
1950; Alshits 1992). At higher stresses, the dislocation velocity enters a relativistic
regime and approaches asymptotically the shear wave speed. Finally, supersonic
and transonic velocities may be reached at even higher stresses in conditions akin
to shocks. We will not discuss these results further, but rather refer the reader, for
example, to the recent work of Oren et al. (2017) and references therein for more
details.

In the present chapter, we present how to predict the dislocation velocity using
atomistic simulations in the thermally activated regime where the applied stress is
below the Peierls stress. Because of the requirements in terms of space scale of
these simulations, we will use atomistic simulations based on empirical potentials
of the embedded atom method (EAM) type. In Sect. 2, we present how to set up a
simulation cell to model an isolated dislocation. In Sects. 3, 4, and 5, we use BCC
metals to illustrate how dislocation mobility can be modeled using the transition
state theory, both in the high-temperature regime of classical dynamics and at lower
temperatures where quantum zero-point energy vibrations can affect the motion of
dislocations.

2 Construction of the Simulation Cell

There are two main types of boundary conditions adapted to the study of dislocation
mobility: periodic or slab conditions. In the former case, a dipole of dislocations of
opposite Burgers vectors is introduced in the cell to produce a zero global Burgers
vector, which is the condition to apply periodic boundary conditions in all three
directions of space. The dislocations of the dipole interact with one another, as
well as with their periodic images. The elastic part of these interactions can be
corrected, as detailed in Chapter AB - initio models of dislocations, yielding well-
defined dislocation core energies even in small simulation cells. Periodic boundary



1528 L. Proville and D. Rodney

 z = [110]
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y = [111]
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Fig. 1 Simulation cell construction for a a/2[111](110) screw dislocation in a BCC crystal: (a)
Perfect crystal simulation cell. (b) Simulation cell with free surfaces orthogonal to the Z direction
(not relaxed). (c) Relaxed simulation cell after introduction of a screw dislocation. Atomic colors
are fixed according to the potential energy deviations δi from the perfect crystal cohesive energy
(see text)

conditions have been used to study dislocation glide in FCC crystals above the
Peierls stress (Mordehai et al. 2003; Oren et al. 2017). One difficulty is that under
the action of an applied shear stress, the two dislocations of the dipole move in
opposite directions. Their relative distance and mutual interactions vary with time.
As a consequence, the velocity of the dislocations vary periodically as they cross
the simulation cell (Oren et al. 2017).

The second option is to use a slab geometry with a single dislocation in the cell.
An example is shown in Fig. 1 for a screw dislocation in a BCC crystal and in Fig. 2
for an edge dislocation in a FCC crystal. The detailed methodology to construct a
slab geometry is described in earlier works (Rodney and Martin 2000; Patinet and
Proville 2008; Bacon et al. 2008; Rodney and Proville 2009). The simulation cell is
oriented such that the dislocation glide plane is horizontal. In case of a BCC crystal,
the crystal orientation is [112] along the X axis, [111] along the Y axis, and [110]
along the Z axis. In case of a FCC crystal, we have [112] along the X axis, [110]
along the Y axis, and [111] along the Z axis. The Burgers vector b = a

2 [110] in
the BCC crystal and b = a

2 [111] in the FCC crystal corresponds either to the line
direction of the screw dislocation or the glide direction of the edge dislocation. Here,
a is the lattice parameter of the perfect lattice.
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Starting from a perfect crystal, two free surfaces are created in the direction
perpendicular to the glide plane. A dislocation is then introduced by displacing all
atoms according to the corresponding isotropic elastic solution (Hirth and Lothe
1982). The anisotropic solution can also be used but is not necessary because the
energy in the cell is relaxed after introduction of the dislocation and this relaxation
recovers the anisotropy. In order to model an infinite glide plane, periodic boundary
conditions are imposed along both the X and Y directions. When a screw dislocation
is considered (Fig. 1), an additional shift of half a Burgers vector is introduced in
the Y direction (Rodney 2004; Bacon et al. 2008) in order to account for the plastic
strain associated with the dislocation and to reconnect the left- and right-Y surfaces.
The simulation cell is therefore not rectangular. In the case of an edge dislocation,
a half crystal plane orthogonal to the Y direction is added to form a step, as shown
in Fig. 2. This step is pushed in the simulation cell when the elastic displacements
are applied to form the extra half plane of the edge dislocation. The size of the
simulation cell is then increased by half a Burgers vector in the Y direction, again in
order to account for the plastic strain of the dislocation (Rodney and Martin 2000;
Bacon et al. 2008).

Because of the non-zero Burgers vector in the cell, periodic boundary conditions
cannot be applied in the Z direction. Instead, two surfaces are created, forming a
slab as shown in Figs. 1 and 2. The simplest solution is to consider free surfaces
in this direction, but there are other possibilities, such as fully or semirigid

a b

Fig. 2 Simulation cell construction for a a/2[110](111) edge dislocation in a FCC crystal: (a)
Perfect crystal simulation cell with one half plane removed (not relaxed). (b) Relaxed simulation
cell after the introduction of an edge dislocation. Atomic colors are fixed according to the potential
energy deviations from the perfect crystal cohesive energy
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boundary conditions, as well as two-dimensional dynamics (Rodney and Martin
2000; Osetsky and Bacon 2003; Bacon et al. 2008). In case of free surfaces, a
constant external shear stress τxz for the edge dislocation and τyz for the screw
dislocation may be applied by adding external forces to the atoms near the top and
bottom surfaces (usually within the cut-off radius of the interatomic potential). The
external force is±Sτ/Nsurf where Nsurf is the number of atoms in the surface of area
S, so that the total applied force is balanced between the upper and lower surfaces.
We note that in case of an edge dislocation, the number of atoms in the top and
bottom surfaces is not the same because of the extra half plane of the dislocation.
Combinations of surface tractions parallel and perpendicular to the surfaces can be
used to produce more complex stress tensors, including for instance, non-resolved
components (Barvinschi et al. 2014).

After application of the initial displacement field, the atomic positions are relaxed
through standard energy minimization algorithms, such as the conjugate gradient or
damped dynamics, until typically the maximum atomic force component is below
10−4 eV/Å. As expected for FCC crystals, because of the existence of a stable
stacking fault, the dislocation core splits in two partial dislocations separated by
a stacking fault, the width of which depends on the stacking fault energy, the elastic
constants, and the lattice parameter (Hirth and Lothe 1982). This is clearly seen in
Fig. 2, where the atoms are colored according to their potential energy deviation
from the cohesive energy of the perfect crystal. If the atom index is noted i and E0

i

is the reference energy, then with Ei the potential energy of atom i in the deformed
cell, the potential energy deviation is Δi = Ei −E0

i . In the case where no impurity
is present in the crystal, E0

i is simply the crystal cohesive energy per atom, Ecoh.
In order to avoid spurious interactions with the periodic images, the dimension

along the glide direction must be large enough (Proville and Patinet 2010). By
increasing gradually the applied stress and relaxing the atomic positions, the
dislocation starts to glide when the stress reaches a threshold, which corresponds
to the dislocation Peierls stress. In the case where an impurity is situated close to
the glide plane of the dislocation (as shown in Fig. 3), the stress threshold is larger
than the Peierls stress, which is representative of solid solution hardening (Proville
and Patinet 2010).

3 Kink-Pair Mechanism

When the applied resolved shear stress is below the Peierls stress, the dislocation
has stable positions in its glide plane and moves at low temperature from one
stable position to the next by a thermally activated process. The stable positions,
called Peierls valleys, usually correspond to the dislocation aligned along a low-
index crystallographic direction. The archetype is the screw dislocation in BCC
metals (Dorn and Rajnak 1964; Guyot and Dorn 1967; Caillard and Martin 2003),
where the dislocation line aligns with the dense 〈111〉 direction of its Burgers vector.
The dislocation is then in a minimum-energy configuration separated from the next
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Fig. 3 Snapshots of the crossing process for an a/2[110](111) edge dislocation in a FCC Al
crystal with a single substitutional Mg impurity situated in the first crystal plane beneath the
dislocation glide plane. Atomic colors are fixed according to the potential energy deviations from
the perfect crystal cohesive energy
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Fig. 4 (a) Activation enthalpy for kink-pair formation on a screw dislocation in an EAM model of
BCC α-iron (Gordon et al. 2011) computed with nudged elastic band (NEB) method (Henkelman
et al. 2000). (b) Profile of the dislocation in different NEB images showing the nucleation and
expansion of a kink pair

equilibrium configuration by an energy barrier, called the Peierls barrier. To glide,
the dislocation needs to jump to the next Peierls valley by a thermally activated
process, which involves the nucleation of a short and localized segment in the
next Peierls valley. This segment is bordered by two kinks, i.e., short dislocation
segments that connect the dislocation between Peierls valleys. Once nucleated, this
kink pair expands under the effect of the external stress, thereby progressively
transferring the rest of the dislocation in the new Peierls valley.

This process can be computed at the atomic scale as illustrated in Fig. 4. Two
configurations are generated with the dislocation in successive Peierls valleys.
The nudged elastic band (NEB) method (Henkelman et al. 2000) is then used to
identify the minimum energy path (MEP) between these configurations. The NEB
method requires an initial path which must break the translational symmetry along
the dislocation line to relax toward a MEP that reproduces the nucleation and
propagation of a kink pair. Otherwise, the NEB method will converge to a high-
energy path where the dislocation remains straight during the transition between
Peierls valleys. To construct the intermediate states along the initial NEB path,
atomic coordinates from the initial and final configurations are combined along the
dislocation line. More precisely, the atomic coordinates are taken from the initial
configuration except in a central region, whose width increases with the NEB image
index. In this central region, the atomic coordinates are taken from the final state.
A large number of NEB images allows to determine precisely the MEP. Examples
under two different applied stresses are shown in Fig. 4a for a screw dislocation in
a BCC iron model. The successive NEB images correspond to dislocation profiles,
which are presented in Fig. 4b. As can be seen, the dislocation changes Peierls valley
by the expected kink-pair mechanism. These dislocation profiles were obtained
from the atomistic configurations by weighting the atomic positions with the atomic
potential energy deviations, Δi :
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XD = 1∑
i Δi

∑

i

xiΔi (1)

YD = 1∑
i Δi

∑

i

yiΔi

ZD = 1∑
i Δi

∑

i

ziΔi.

For a screw dislocation with a Burgers vector along Y axis, the dislocation position
along the X and Z axis is expressed by (XD , ZD), while for an edge dislocation
with same Burgers vector, the position along the Y and Z axis is expressed by (YD ,
ZD). Then to determine the position of a dislocation segment, the computation of
the position is performed within slices of crystal perpendicular to the dislocation
line (see Landeiro Dos Reis et al. (2017) for more details). The dislocation
position can be obtained from other considerations detailed in the literature (see,
for instance, (Gröger and Vitek 2015; Dezerald et al. 2016) and Refs. therein), but
the main advantages of the above definition are the following: (i) its simplicity when
interatomic potentials are used and (ii) it can be generalized to other crystal defects,
such as vacancies and interstitial atoms, using all three equations above to fully
determine the defect position in the three dimensions of space. In the case of a
long dislocation as in Fig. 4, the dislocation profile was obtained by computing the
dislocation position in slices in direction Y (the dislocation line direction) of width
equal to the Burgers vector.

In case of a BCC screw dislocation, the migration barrier of the kinks along
the dislocation line (called secondary Peierls barrier) is negligible, and the kink
motion under stress is not thermally activated. The controlling process is then the
nucleation of the initial unstable kink pair. The situation is different for instance in
semiconductors, where the secondary Peierls valley is large and the diffusion of the
kinks along the dislocation may be the controlling process (Hirth and Lothe 1982),
depending on the temperature and the applied stress. We will however consider here
only the case of BCC screw dislocations. At higher temperatures, in the so-called
athermal regime, the thermal energy becomes large enough that dislocation motion
is no longer thermally activated and resembles that observed in FCC metals.

As seen in Fig. 4a, the enthalpy barrier against kink-pair formation decreases with
increasing applied shear stress due to the contribution of the work of the applied
stress, which tilts the potential energy landscape. The stress at which the barrier
disappears corresponds to the Peierls stress, above which dislocation motion is no
longer thermally activated. This stress is obviously the same as the critical stress
above which a stress-controlled enthalpy minimization does not find an equilibrium
configuration but glides continuously in the simulation cell during the enthalpy
minimization.

It has long been recognized that measurements of the Peierls stress from
atomistic models systematically overestimate experimental data. This discrepancy
was first reported by Basinski et al. (1971) in their early calculations in BCC



1534 L. Proville and D. Rodney

sodium modeled with an interatomic pair potential. But the same effect has since
been repeatedly reported in BCC metals using more advanced energetic models,
including EAM potentials (Wen and Ngan 2000; Chaussidon et al. 2006; Gordon
et al. 2010), bond-order potentials (Gröger and Vitek 2008; Mrovec et al. 2011;
Chen et al. 2013), and even ab initio density functional theory (DFT) (Woodward
and Rao 2002; Ventelon and Willaime 2007; Ventelon et al. 2013; Weinberger et al.
2013). It was shown (Proville et al. 2012; Barvinschi et al. 2014) that the difference
between experimental and simulated Peierls stresses is in part due to a quantum
effect arising from the zero-point motion of the atoms near the dislocation core. This
macroscopic quantum effect had so far been systematically discarded in atomistic
simulations. However, such effect is expected even in heavy metals like Fe, because
the Debye temperature, below which quantum effects in the vibrational modes of
the system appear, is high (470 K in Fe) and the experiments to measure the Peierls
stress were performed at very low temperatures, 4 K or less (Kuramoto et al. 1979;
Brunner and Diehl 1992), well below the Debye temperature.

In contrast with glide above the Peierls stress, the thermally activated glide of
dislocations below the Peierls stress cannot be studied using MD because the rate
of kink-pair nucleation decreases exponentially rapidly when the stress decreases
below the Peierls stress and the dislocation becomes immobile on MD timescales.
On the other hand, the thermally activated nucleation of kink pairs can be modeled
using the harmonic transition state theory (TST) (Benderskii et al. 1994). Moreover,
this theory, which is the subject of the next section, can be written in a quantum form
which allows to include zero-point energy corrections at low temperatures (Proville
et al. 2012). Unlike in classical mechanics, quantum systems constantly fluctuate
around their lowest energy state due to the Heisenberg uncertainty principle. The
existence of non-zero minimum energy for a particle in a potential well V (x) =
mω2

0/2x2 which is zero at the minimum position x = 0 can be demonstrated as
follows. The Heisenberg uncertainty imposes that the fluctuations of the momentum
δp > h̄/2δx which leads to a total energy E = p2/2m+ V (x) > [(h̄/2δx)2/2m+
V (δx)] which once minimized against δx yields δx2 = h̄/2mω0 and therefore E >

h̄ω0/2. Even though in a classical scheme the total energy is zero when both x = 0
and p = 0, the quantum fluctuations impose that the total energy cannot be less than
h̄ω0/2 which is called the zero-point energy. Within Einstein’s model of crystals
(Ashcroft and Mermin 1976), ω0 represents the Debye frequency, of the order of
ω0 ≈ 60 THz in Fe. This yields a zero-point energy per atom of 227 K, below which
quantum fluctuations cannot be ignored.

4 Harmonic Transition State Theory

We consider a BCC crystal at low temperature where dislocation glide is thermally
activated. Assuming that the plastic deformation is controlled by the glide of screw
dislocations and not by their interactions with the microstructure, the mobility law
equals the average velocity, and the plastic strain rate is given by Orowan law:
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ε̇p = ρmbvd (2)

where ρm is the density of mobile screw dislocations, b the Burgers vector, and
vd the screw dislocation mobility law. Dislocation glide being controlled by the
formation of kink pairs between nearest Peierls valleys, the dislocation velocity is
expressed as vd = dΓ where d is the distance between Peierls valleys and Γ the
kink-pair nucleation rate. According to the classical TST (Miller 1975), the rate Γ

for a three-dimensional system made of N atoms of equal mass m is expressed as
an integral over phase space:

Γ = Z−1
r

ż 3N∏

i=1

dXidPi

h3N δ((X− Xs).ds)
|P.ds |
m

θ(P.ds) exp{[−βH(P,X)]}, (3)

where thick symbols stand for 3N-dimensional vectors, β ≡ 1/kBT , and h is
Planck’s constant. X is the configuration position with Xs the transition state, i.e., the
unstable dislocation configuration between Peierls valleys. ds is the corresponding
unstable eigenmode, i.e., the direction in configuration space from Xs where the
energy has a negative curvature. This direction is perpendicular to the dividing
surface, which separates at Xs the basins of attraction of the initial and final
configurations, i.e., the dislocation in two successive Peierls valleys. The Dirac
function term, δ((X− Xs).ds), therefore limits the configuration integral to the
dividing surface. P is the momentum, and the Heaviside function term θ(P.ds)

ensures that the integration in momentum space is performed in the half-space
toward the product, i.e., the dislocation in the next Peierls valley. H(P,X) is
the Hamiltonian of the system to which the work of applied stress is properly
substracted. Finally, Zr is the reactant partition function, that is, the harmonic
partition function of the crystal with the dislocation at the bottom in its Peierls
valley. The three free translational modes of the system have no contribution to
the rate Γ since they equally contribute to Zr and to the numerator in Eq. 3. They
are omitted in the following.

To introduce the harmonic approximation, we use a normal mode representation
(q,p) computed at the saddle state, instead of the cartesian coordinates (X,P). The
unstable mode is placed at the end of the mode list, i.e., s = 3N − 3. If we note λν

the eigenvalue of mode ν, the kink-pair nucleation rate is then written as

Γ = Zr
−1

ż

dqsdps

h

ps

m
θ(ps)δ(qs)

3N−4∏

ν=1

dqνdpν

h3N−4

exp

{[
−β

(
Hkp +

3N−3∑

ν=1

[ p
2
ν

2m
+ λν

q2
ν

2
]
)]}

, (4)

where Hkp is the activation enthalpy for kink-pair formation (the enthalpy difference
between saddle and initial states), function of the applied shear stress τyz.
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In BCC crystals, in the stress regime considered here, the secondary Peierls
barrier is absent. As a result, there is no resistance for kink motion along the
dislocation line, resulting in a Goldstone mode of zero eigenvalue. The latter,
assumed to correspond to ν = 1, can be integrated out (it corresponds to
the Gaussian integration of a kinetic energy term 1/h

ş

dqdp exp
(−βp2/2m

) =
Ld

√
2πmkT /h), yielding:

Γ = Ld

√
2πmkT

hZr

ż

dqsdps

h

ps

m
θ(ps)δ(qs)

3N−4∏

ν=2

dqνdpν

h3N−5

exp

{[
−β

(
Hkp +

3N−4∑

ν=2

[ p
2
ν

2m
+ λν

q2
ν

2
]
)]}

. (5)

Note that the dislocation length Ld now appears explicitly in the nucleation rate as
a result of the integration of the Goldstone mode. This length dependence of the
dislocation velocity has been measured experimentally by in situ TEM (Caillard
2010).

At low temperature, quantum mechanics must be accounted for. Since the normal
modes are independent of one another, each stable mode (for ν = 2 to 3N−4) yields

in Eq. 5 the partition function of a quantum harmonic oscillator [2 sinh
(

h̄β
2 ων

)
]−1,

where ων = √
λν/m is the angular frequency of mode ν. Similarly, the partition

function in the stable reactant state Zr can be treated harmonically, yielding Zr =∏3N−3
μ=1 [2 sinh

(
h̄β
2 Ωμ

)
]−1, with {Ωμ} the angular frequencies associated with the

reactant state. The nucleation rate is then expressed as

Γ =
Ld

√
2πmkT

∏3N−3
μ=1 [2 sinh

(
h̄β
2 Ωμ

)
]

h
∏3N−4

ν=2 [2 sinh
(

h̄β
2 ων

)
]

I, (6)

where the integral I is defined by

I =
ż

dqsdps

h

ps

m
θ(ps)δ(qs) exp

{[
−β

(
p2
s

2m
+Hkp + λs

q2
s

2

)]}
. (7)

This integral over the qs coordinate of the unstable mode is replaced (Benderskii

et al. 1994) by the crossing rate of the parabolic barrier Hkp + λs
q2
s

2 , which yields

I = 1

h

ż

dE W(E) exp{(−βE)}, (8)

where W the transmission coefficient for a parabolic barrier (Landau and Lifshitz
1981), given by W(E) = [1 + exp

{
(2π(Hkp − E)/h̄ωs)

}]−1 and ωs = √−λs/m.
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After simplication, the integral becomes:

I = kT

h

h̄βωs/2

sin (h̄βωs/2)
e−βHkp . (9)

Within the harmonic TST, the rate of kink-pair formation is therefore expressed
as

Γ = Ld

√
2πm

kT

h̄βωs/2

sin (h̄βωs/2)

(
kT

h

)2
∏3N−3

μ=1 [2 sinh
(

h̄β
2 Ωμ

)
]

∏3N−4
ν=2 [2 sinh

(
h̄β
2 ων

)
]
e−βHkp . (10)

Combining this equation with Eq. 2, we can therefore express the plastic strain
rate as a quantum thermally activated Orowan law. We note that at high temperature
when β = 1/kBT → 0, the sin and sinh terms become equivalent to their arguments
and Eq. 2 can be simplified. The well-known TST expression characteristic of the
classical regime is then recovered (Vineyard 1957):

ΓC = Ld

√
2πm

kT

∏3N−3
μ=1 Ωμ

∏3N−4
ν=2 ων

e−βHkp , (11)

where the pre-exponential factor involves the Goldstone mode and the ratio of the
product of the eigenfrequencies in the initial and activated states. In experimental
conditions, the plastic strain rate ε̇p is constant and so is the density of mobile
dislocations, ρd , at least to a first-order approximation. For a given temperature,
Orowan equation (Eq. 2) is therefore solved self-consistently, finding the appropriate
applied stress τyz, which sets the saddle state and thus sets Hkp, ωs , {ων} and {Ωμ},
and produces the kink-pair nucleation rate, which satisfies Orowan’s equation.

It is well-known (Benderskii et al. 1994; Gillan 1987) that Eq. 9 diverges at a
critical temperature Ttun = h̄ωs/2πk, which marks the onset of deep quantum
tunneling. The above harmonic theory is thus valid only above Ttun, but for iron,
this temperature is small, typically below 10 K. Below Ttun, nonlinear effects must
be accounted for, which is the subject of the instanton theory developed by Miller
(1975). The most important contribution of quantum mechanics comes from the
crystal partition functions that appear in the pre-exponential factor in Eq. 10. This
quantum correction has some similarities with the heat capacity deviation from the
Dulong-Petit law (see textbooks as Ashcroft and Mermin 1976).

5 Numerical Implementation

Computing Eq. 10 requires to evaluate the eigenfrequencies of the system and
therefore requires to diagonalize the Hessian matrix. The latter can be obtained
analytically if the interatomic potential is itself analytical. Otherwise, the Hessian
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matrix coefficients are obtained through the calculation of the first derivative of the
forces under a finite displacement of each atom in the three directions of space.
When atom i is displaced in direction di , the force field must be computed for each
neighbor j , in each direction dj . Denoting by Fdj ,j , the force exerted on atom j in
direction dj , and by Xdi,i , the displacement of atom i in direction di , the coefficient
of the Hessian matrix situated at row i + Nat(di − 1) and column j + Nat(dj − 1)
is given by

Hi+Nat(di−1),j+Nat(dj−1) = − 1√
mimj

δFdj ,j

δXdi,i

, (12)

where mi and mj are the masses of atoms i and j , respectively. Displacements Xdi,i

are typically one hundredth of an Angström. The exact diagonalization of the matrix
H can be performed using the linear algebra package LAPACK (Anderson et al.
1999). Different diagonalization methods can be used for small simulation cells,
with a number of atoms typically Nat < 10,000. However treating larger systems
requires the use of a distributed memory algorithm because the Hessian matrix
size overpasses the capabilities of serial processors. In this case, we employed
ScaLAPACK parallel routines.

The result of the calculations is shown in Fig. 5 for two EAM models of α-iron.
We compare here the quantum (Eq. 10) and classical (Eq. 11) TST expressions. We
see that in both cases, the classical expression strongly overestimates experimental
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model for iron (Proville et al. 2012)
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data because of a rapid increase of the flow stress at low temperatures, while
the quantum law does not show this rapid increase and is much closer to the
experimental data, particularly in the case of the EAM potential developed by
Gordon et al. (2011).

To evaluate the importance of the quantum correction, the zero-point energy of
the crystal can be computed along the MEP from the Hessian diagonalization of
each NEB image. If the 3N eigenvalues of H are denoted by λu, the zero-point
energy of the system is evaluated through the harmonic approximation as

UZP = h̄

2

3N∑

u=1

√
λu, (13)

where the unstable mode for which λu < 0 is excluded from the summation. The
amplitude of the associated imaginary frequencies remains negligible in comparison
to the variations of the zero-point energy along the MEP. The latter is reported in
Fig. 6a for a straight screw dislocation as a function of its position in the crystal.

According to the quantum harmonic theory employed here, one can expect
that the crystal quantum fluctuations are large enough to reduce the effect of the
Peierls barriers the dislocations have to overcome. Figure 6a shows the case of
a screw dislocation in α-Fe. We see that the variation of the zero-point energy
is opposite to that of the Peierls barrier and is approximately half its amplitude
with the present interatomic potential (Proville et al. 2012). In absence of thermal
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effects, the decrease of the Peierls stress by quantum fluctuations can therefore be
understood from the consideration that the total energy of the system is composed
of the sum of (i) the potential energy which is computed from the EAM interaction
potential and (ii) the zero-point energy, which is itself the result of a combination
between kinetic and vibrational energies. The zero-point energy variation has been
computed in various FCC crystals following the same method (Landeiro Dos Reis
et al. 2017). Figure 6b shows the example of an edge dislocation crossing an Mg
solute in a FCC crystal of Al (see Fig. 3a–e). The impurity is located below the
glide plane in a region of attraction and therefore induces a negative variation of the
potential energy. We see in this example that the variation of the zero-point energy is
again opposite to the potential energy and therefore decreases the attraction between
the dislocation and the Mg solute, although the effect is not as marked as for the
BCC screw dislocation. In all cases considered so far, the variation of the zero-point
energy was opposite to the potential energy and therefore systematically decreases
the energy barrier.

To gain some insight into the zero-point energy variation along the MEP
of dislocations, we tested the approximation, which consists in computing the
eigenfrequencies from the on-site frequencies of each atom with the other atoms
frozen, that is, from the diagonal elements of the Hessian matrix only. The solid
is then modeled as an assembly of independent oscillators, which corresponds to
an Einstein approximation. The corresponding zero-point energy variation is shown
in orange in Fig. 6 and closely follows the full calculation in both BCC and FCC
crystals (Landeiro Dos Reis et al. 2017). This very good agreement between the
Einstein approximation and the exact zero-point energy calculation shows that the
main quantum contribution comes from vibrational modes with short wavelengths,
since the acoustic modes are not included in the Einstein approximation.

6 Conclusion

The thermally activated mobility of dislocations can be studied at the atomic
scale in model crystals with the help of the transition state theory to predict
the dislocation jump rate. All the parameters of the model can be derived from
the atomic scale, demonstrating the feasibility of a multi-scale modeling with no
adjustable parameter. Comparison with experimental deformation tests in BCC Fe
shows that the predictions established from the present method are satisfactory,
provided that the quantum effect due to zero-point energy fluctuations is taken
into account at low temperatures. To that purpose, we have employed a harmonic
approximation. Both the TST and the harmonic approximation are the purpose of
constant improvements (Mills et al. 1995), but these developments imply in general
a much heavier computational load, which is difficult to apply to systems including
thousands of atoms as is typical in simulation cells with dislocations. In pure BCC
crystals where the Peierls landscape is the main barrier impeding screw dislocation
glide, we have found that the zero-point energy variation is negative and therefore
eases the motion of the dislocation. In FCC solid solutions, the interaction between
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dislocations and solute atoms is the main barrier and can be either attractive or
repulsive. However, the zero-point energy variation is systematically opposite to that
of the potential energy and therefore always eases dislocation glide. The magnitude
of the effect however depends on the case considered. Such a systematic observation
through atomic simulations allows us to expect that the softening effect due to zero-
point energy fluctuations is ubiquitous, although such a conclusion should require
more theoretical investigations.

Based on the developments presented here, we believe that the present atomic-
scale solid-state theory is getting close to establish predictions conforming to the
experimental deformation tests performed in model materials as pure BCC crystals.
However many challenges still remain to be faced, and questions remain to be
addressed, as, for instance:

(i) We have used the simplest approximation (harmonic TST) but more accurate
rate theories, which in particular include anharmonicity, should be tested
(Saroukhani and Warner 2017).

(ii) Can we obtain more quantitative estimates of the zero-point energy using
ab initio calculations? The accuracy of Einstein approximation allows to
significantly reduce the computational cost, but computing force derivatives
requires a precision higher than usual.

(iii) Ab initio calculations are still too computationally demanding to model kinked
dislocations, but we should popularize the use of higher-scale models, like the
line tension model (Dezerald et al. 2015), to predict dislocation mobility based
on quantitative ab initio data.

(iv) In the particular case of BCC crystals, non-Schmid effects are known to
significantly affect dislocation mobility (Dezerald et al. 2016), and we should
in particular include the effect of non-glide components of the stress tensor
(Barvinschi et al. 2014; Cereceda et al. 2016), which are unavoidable in
experimental conditions of uniaxial tensile tests.

(v) The case of high-secondary Peierls valleys as in semiconductors or ceramics
should also be investigated.

Acknowledgments DR acknowledges support from LABEX iMUST (ANR-10-LABX-0064) of
Université de Lyon (program “Investissements d’Avenir”, ANR-11-IDEX-0007).
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Abstract

Precise analysis and meaningful visualization of dislocation structures in molec-
ular dynamics simulations are important steps toward physical insights. This
chapter provides an introduction to the dislocation extraction algorithm (DXA),
which is a computational method for identifying and quantifying dislocations in
atomistic crystal models. It builds a bridge between the atomistic world of crystal
defects and the discrete line picture of classical dislocation theory.

1 Introduction

Dislocations have two sides: On one hand, they are commonly viewed in dislocation
theory as discrete line objects, which possess a characteristic topological charge –
the Burgers vector – and which can glide through a crystal to produce plasticity or
participate in various kinds of reactions. On the other hand, they constitute a partic-
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Fig. 1 In this section a computer algorithm is introduced that can convert an atomistic crystal
model (left) to a discrete line representation of the contained dislocation defects (right)

ular kind of irregularity in the otherwise regular arrangement of atoms in the crystal
lattice. Boundaries of extra planes of atoms are what we call edge dislocations,
and screw dislocations denote helical distortions of atomic planes. Thus, to fully
grasp the phenomenon of crystal dislocations, we must consider – and somehow
unify – two complementary pictures: the explicit one (discrete line objects) and
the implicit one (glitches in the lattice arrangement). Both pictures are extensively
used by different modeling strategies, with discrete dislocation dynamics (DDD)
and molecular dynamics (MD) being the most prominent ones to represent the two
dislocation descriptions. This section will introduce ways to unify these seemingly
disparate pictures of the same physical phenomenon and to accomplish a conversion
between them (Fig. 1). Given the atomic positions in a crystal containing dislo-
cation defects, we want to reconstruct the geometry of the one-dimensional lines
these dislocations can be described as mathematically. The computational method
introduced here to solve this problem has practical relevance for the modelling of
dislocations at multiple length scales as it builds a bridge between the atomistic
world and the mesoscale and, at the same time, provides a powerful analysis tool
for MD simulations that greatly helps to understand dislocation processes.

2 Burgers Circuit Method

As an introductory example for the connection between dislocation line theory and
atomistic crystal defects, we take a look at the classical Burgers circuit construction
(Frank 1951), which is the canonical method (Bulatov and Cai 2006) already
proposed in the 1950s to discriminate dislocations from other crystal defects and to
determine their Burgers vectors. In the formulation employed here, a Burgers circuit
C is a path in the dislocated crystal consisting of a sequence of atom-to-atom steps
(line elements Δx), as shown in Fig. 2a. The circuit is closed, thus

∑
C Δx = 0.

We assume that there exists a mapping Δx → Δx′ that translates each
line element of the path to a corresponding image, Δx′, in a perfect crystal
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a b

Fig. 2 Burgers circuit method to identify a dislocation. A closed circuit around the dislocation is
translated from (a) the dislocated crystal to (b) the perfect reference crystal. The closure failure b
is called the Burgers vector of the dislocation

lattice (Fig. 2b). Summing these transformed line elements algebraically along the
associated path, C′, gives the true Burgers vector of the dislocation enclosed by C:

b = −
∑

C′
Δx′. (1)

The Burgers vector b is the closure failure of the path after transferring it to the
perfect reference crystal.

Note that the Burgers circuit procedure is typically performed by hand to
analyze two-dimensional crystal images obtained from high-resolution microscopy
or atomistic computer simulations. Human intuition and cognitive capabilities are
required to spot irregularities in the crystal lattice that are potential dislocation
defects and to apply the Burgers circuit test to them. Automating these steps poses
a challenge when developing a computational dislocation identification method for
three-dimensional atomistic crystal models.

The Burgers circuit procedure represented by Eq. 1 above is the discrete analogue
of an equation used in continuum mechanics to define the Burgers vector of a
Volterra dislocation:

b = −
ż

C

(Fe)−1dx. (2)

Here, C denotes any contour enclosing the mathematical dislocation line, and
(Fe)−1 denotes the inverse of the elastic deformation gradient. This second-rank
tensor acts on the infinitesimal line element dx and transforms it from the dislocated
crystal configuration to an ideal, elastically unstrained reference configuration. This
mapping is analogous to the explicit translation of atomic steps we did in the discrete
formulation of the Burgers circuit procedure.

Notably, the resulting vector b stays the same if we change the original circuit
C, as long as it still encloses the same dislocation. On the other hand, if b = 0, we
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a b

Fig. 3 Schematic depiction of the dislocation finding approach described in the text. (a) The given
domain contains a set of dislocations with unknown positions. The parameter dmin denotes the
lower bound for the separation distance between dislocations, which is on the order of one atomic
lattice spacing and corresponds to the dislocation core diameter. (b) The domain is tessellated by a
grid of Burgers circuits of diameter dmin. Circuits highlighted in blue exhibit a closure failure and
are marked as containing a dislocation

know that the Burgers circuit did not enclose any defect with dislocation character.
Here, however, we are deliberately ignoring the possibility that the circuit encloses
multiple dislocations whose Burgers vectors cancel. One may thus ask, in the
absence of a priori knowledge of the spatial distribution of dislocations in a given
crystal, how can we – or rather a computer algorithm – construct the circuit C such
that it encloses exactly one of the dislocations?

This general situation is depicted schematically in Fig. 3a: A set of dislocations
with unknown positions which we would like to determine is distributed across a
given continuum domain. It is safe to assume that any distribution of dislocations
is such that one can specify a lower-bound dmin for the separation distance between
any two distinct dislocations. In reality, this lower bound is given by the interatomic
spacing in the crystal lattice, because that is also the minimum distance when the
cores of two nearby dislocations necessarily start to overlap; hence they can no
longer be treated as distinct defects. As shown in Fig. 3b, it is possible to construct a
large number of non-overlapping circuits, each having size dmin, to completely cover
the entire domain. By virtue of our construction, each circuit can contain at most one
dislocation, and we effectively excluded the possibility of “missing” dislocations.
The Burgers circuit test tells us which of the circuits contain a dislocation, and since
their diameters are small, we can pinpoint the dislocations’ positions with great
precision (on the order of dmin) using this method.

3 Simple Algorithm for Finding Dislocations in Atomistic
Crystals

The approach outlined above can be translated into a simple computer algorithm
to detect and find all dislocations in an atomistic crystal (Stukowski 2014). We
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a b c

Fig. 4 (a) Input atomic positions. (b) Tessellation of the input domain into triangular circuits using
the Delaunay construction. (c) Burgers circuit test, performed on each Delaunay triangle, reveals
exactly one cell that contains the dislocation

assume that the crystal to be analyzed is specified as a set of atomic coordinates {xi}
as depicted in Fig. 4a. The Delaunay construction is used to tessellate the crystal
domain into a set of triangles (Fig. 4b). The elements of the triangulation are space-
filling and non-overlapping, and we can regard them as small, elementary Burgers
circuits, which will allow us to find and locate all dislocations contained in the
atomistic crystal.

Since every edge of a triangle abc of the Delaunay tessellation represents an
atom-to-atom step, we can apply the discrete version of the Burgers circuit method
to calculate the per-triangle closure failure babc = Δx′ab + Δx′bc + Δx′ca after
mapping each edge vector Δxij = xj − xi connecting two successive atoms i and j

to its corresponding ideal vector Δx′ij in a perfect reference crystal lattice. Triangle
circuits with closure failure babc �= 0 are marked as containing a dislocation, as
shown in Fig. 4c.

There are different ways to accomplish the mapping of interatomic vectors from
the dislocated crystal to the virtual reference lattice, Δxij → Δx′ij . In cases where
the orientation of the dislocated crystal in the simulation coordinate system is
known a priori, we can simply pick the vector Δx′ij from a prescribed set of ideal
lattice vectors taking the one that is closest to the elastically distorted vector Δxij

(Stukowski 2014). In more general situations, a structure identification method such
as common neighbor analysis (CNA) (Honeycutt and Andersen 1987; Faken and
Jonsson 1994) or polyhedral template matching (PTM) (Larsen et al. 2016) must be
used to first determine the local lattice orientation and then map atomic neighbor
vectors to corresponding ideal lattice directions.

So far, we have considered only two-dimensional crystals where dislocations are
point-like object in the plane. How does this approach extend to three-dimensional
crystals containing linear dislocations? Here, the Delaunay tessellation of the
atomistic model consists of tetrahedral cells, each being bordered by four triangular
facets (Fig. 5). In the three-dimensional version of the algorithm, the closure failure
babc must be computed for every triangular facet of the tetrahedral Delaunay cells.
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Fig. 5 (a) A tetrahedral cell of the three-dimensional Delaunay tessellation, which is spanned
by four vertex atoms. A dislocation line enters and exits through the triangular facets of the cell.
The algorithm described in the text identifies such facets using the Burgers circuit test. (b) Linear
defects with dislocation character lead to “chains” of dislocated Delaunay cells, which may form
junctions in three-dimensions as exemplarily shown here

If babc �= 0, a facet is marked as being intersected by a dislocation line. Since
dislocations cannot end within an otherwise perfect crystal, because of the Burgers
vector conservation law, a line entering a Delaunay cell through one of its triangular
facets must exit the cell again through one of its other three facets. Accordingly, the
dislocation can be viewed as a line piercing through a sequence of triangular facets
and tetrahedral cells as illustrated by Fig. 5b.

4 Dislocation Extraction Algorithm (DXA)

So far we have deliberately ignored several important aspects that can play a role
in more general situations. First and foremost, crystal dislocations have a finite
core size (Fig. 6a). That means they are not mathematically thin, one-dimensional
objects but rather tubelike objects spread over a certain space region. The core region
typically extends over more than one interatomic spacing and is thus covering more
than one Delaunay triangle element. In order to capture such dislocations, larger
Burgers circuits are necessary to fully enclose the core (which is represented by a
connected set of Delaunay elements that have been marked as “bad”; see Fig. 6b).

Secondly, dislocations may dissociate into partial dislocations. If we want to
identify partial dislocations individually, e.g., Shockley partials in fcc crystals, using
the Burgers circuit procedure, we have to take special provisions, as the circuit
enclosing the dislocation necessarily passes through the adjacent stacking fault
defect (Fig. 6c). Only if we map the atomic step leading through that stacking fault
plane to the correct fractional lattice vector, we will obtain the right (fractional)
Burgers vector of the partial dislocation.

Finally, crystals often contain other defects in addition to dislocations. A general
dislocation identification algorithm must therefore be able to deal with non-
dislocation irregularities such as free surfaces, point defects, grain boundaries, other



72 Dislocation Analysis Tool for Atomistic Simulations 1551

a

++

b c

Fig. 6 (a) Dislocation with an extended core. Atoms that are part of the core (darker color) can
be identified using a structural characterization technique such as common neighbor analysis. (b)
Bad tessellation elements, for which no unambiguous mapping to the perfect reference lattice is
possible, have been marked with a gray color. (c) Schematic depiction of a dissociated dislocation.
Identification of the two partial dislocations requires Burgers circuits passing through the stacking
fault

types of interfaces, and even disclinations in a robust way. And, as mentioned
before, the crystal orientation and crystal structure may not be known in advance
and can vary across space and time. The algorithm needs to adapt to these situations
appropriately.

In order to address these challenges, a computer algorithm named the dislocation
extraction algorithm (DXA) (Stukowski et al. 2012; Stukowski and Albe 2010) has
been devised on the basis of the fundamental ideas described in the preceding
sections. The DXA is capable of building a discretized line representation of all
dislocations contained in a given atomistic crystal model (Fig. 1). The generated
representation of dislocation lines found in the crystal is very similar to those
employed by dislocation dynamics simulation models. The DXA is available as
part of the OVITO (Stukowski 2010) data analysis and visualization software for
atomistic simulations.

The DXA proceeds in several steps, starting with the atomic input coordinates, to
arrive at the final line representation of the dislocations. Here is a synopsis of these
processing steps, which are described in more detail in Stukowski et al. (2012):

1. The three-dimensional Delaunay tessellation is computed.
2. Atoms in the input crystal are identified that form a perfect crystal lattice.

For this, the common neighbor analysis (CNA) method is used, which
allows to identify common lattice types such as fcc, bcc, hcp, and diamond.
The information is also used to determine local lattice orientations and map
atom-to-atom vectors in the Delaunay tessellation to the ad hoc reference lattice.

3. Elements in the Delaunay tessellation are flagged as “bad” crystal regions if
they contain disordered atomic arrangements. This includes the dislocation cores,
where the atomic structure deviates considerably from one of the perfect crystals,
but also other types of defects (Fig. 6b).

4. The separating surface between the “good” and the “bad” crystal regions in the
Delaunay tessellation, the so-called interface mesh, is generated (see Fig. 7).
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Fig. 7 Illustration of the interface mesh constructed by the DXA to enclose all defect atoms of
a dislocation core. The algorithm uses an “elastic” Burgers circuit (red) that is moving on the
interface mesh to sweep the dislocation line. While this circuit is being advanced in a stepwise
fashion, triangle by triangle, a continuous line representation of the dislocation defect is produced
(green)

5. The algorithm then generates a large number of trial circuits on the interface
mesh until it encounters a first circuit that fully encloses a dislocation. This is
detected by computing the Burgers sum (Eq. 1). The maximum size of the trial
circuits is bounded by a user parameter controlling how wide dislocation cores
may be for the algorithm to detect them.

6. The first circuit is subsequently used to discover the rest of the current dislocation
line. This happens by advancing the circuit on the interface mesh and sweeping
along the dislocation line as depicted in Fig. 7.

7. During this sweeping phase, a one-dimensional line representation of the dislo-
cation is generated by computing the new center of mass of the circuit every time
it is advanced along the boundary of the dislocation core. Here, a circuit can be
pictured as a rubber band tightly wrapped around the dislocation’s core. As the
circuit moves along the dislocation segment, it may need to locally expand to
sweep over wider sections of the core, e.g., kinks or jogs. To prevent the circuit
from sweeping past dislocation junctions or interfaces, again a limit is imposed
on the circuit length.

8. As a last step, a post-processing of the discretized dislocation lines is performed
to reduce the number of sampling points.

The sweeping of dislocation lines, performed in steps 6 and 7 of the algorithm, in
fact happens simultaneously on all segments of a dislocation network as depicted in
Fig. 8. The initial seed circuits, constructed at the slimmest spots of the dislocation
segments, split into pairs of circuits, each sweeping along the cores’ surfaces in
opposite directions. During this sweeping process, the upper limit for each circuit’s
maximum length is continuously raised, letting the circuits approach closer and
closer to the dislocation junctions, which typically exhibit a wider cross section than
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Fig. 8 Schematic depiction of the DXA line tracing process for a network of dislocations. All
dislocation arms are simultaneously swept by pairs of Burgers circuits advancing on the core’s
surface in opposite directions (cf. Fig. 7). At junctions, the inbound circuits from different arms
meet, and the algorithm outputs a nodal point to connect all lines traced by these circuits

Fig. 9 Left: Molecular dynamics simulation of dislocation-based single crystal plasticity (Zepeda-
Ruiz et al. 2017). The piece of tantalum crystal (33 million atoms) is being deformed under uniaxial
compression. Common neighbor analysis filtering (Stukowski 2012) of the atomic coordinates
reveals a high density of defects in the bcc lattice (inset). Right: After processing with the DXA,
non-dislocation defects such as vacancies have been filtered out. The resulting line representation
allows measuring dislocation densities and studying dislocation processes in great detail. Green
and magenta lines represent 1

2 〈111〉 and 〈100〉 dislocations, respectively

the dislocation arms. At some point, the converging circuits all meet in a junction,
and the algorithm links up their corresponding line ends at a nodal point.

5 Use Cases of the DXA

The DXA can serve as a measurement tool to quantify the density of dislocations in
molecular dynamics simulations, thanks to the conversion of the identified defects
to a mathematical line representation (Fig. 9). The average dislocation density in a
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Fig. 10 Analysis of a complex dislocation junction in fcc Al that has formed through a reaction of
two 1

2 〈110〉 dislocation loops on intersecting glide planes. Left: Atomic input configuration with
applied CNA filtering to highlight stacking fault atoms (red) and defect core atoms (gray). Center:
Visualization of the interface mesh, the intermediate structure constructed by the DXA to enclose
the defect cores. Right: Output dislocation lines and Burgers vector labeling generated by the DXA

crystal, ρ, is simply computed from the integral line length divided by the simulation
box volume (see, e.g., Zepeda-Ruiz et al. 2017). The generated description of
the dislocation geometry may also be used, for instance, to measure the size of
the plastic zone in nanoindentation simulations (Gao et al. 2015; Voyiadjis and
Yaghoobi 2015; Remington et al. 2014; Yaghoobi and Voyiadjis 2016; Alhafez et al.
2016; Alabd Alhafez et al. 2017) or to obtain local dislocation densities. Since the
DXA does not only yield the shape but also the Burgers vector of each dislocation
segment, the total (or statistical) density as well as the geometrically necessary
density of dislocations (GND) are accessible via the DXA.

Another typical use case of the DXA is detailed analyses of dislocation reactions
in molecular dynamics and statics simulations (e.g., Zhang et al. 2017). These
reactions include the formation and nucleation of new dislocations at other defects,
e.g., free surfaces (Trushin et al. 2016), grain boundaries (Stukowski et al. 2010),
crack tips (Vatne et al. 2013), or pores (Ruestes et al. 2014) in a material. Here,
the DXA can generate a precise labeling of dislocations forming complex network
configurations as demonstrated in Fig. 10.

6 Current Limitations of the DXA

While the DXA represents a great improvement over conventional, atom-based
analysis techniques such as the CNA, it still has certain limitations that one should
be aware of when using this analysis tool. This section provides a roundup of key
issues that need to be taken into account while working with the DXA and its output.
Note, however, that the DXA is the subject of ongoing research seeking to improve
the algorithm and overcome some of the issues mentioned here.

Accuracy and ambiguity of dislocation representations In general, given an
atomistic crystal configuration, the representation of the contained defects in
terms of a set of discrete dislocation lines is not uniquely defined. For instance,
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dislocations in fcc crystals typically dissociate into pairs of partial dislocations
(see upper left corner in Fig. 10). If the separation distance between such two
partials becomes very small (on the order of 1–2 interatomic spacings), it is up
to the algorithm to decide whether this particular atomistic configuration is better
represented by a single dislocation line or two partials. The algorithm’s choice is
based on its particular notion of the dislocation core (in DXA terminology termed
the “bad” crystal region, following Frank 1951). If the two dislocation core regions
overlap, the algorithm is only able to construct a single Burgers circuit enclosing
both defects. As a result, the two dislocations are fused into a single discrete
dislocation line in the DXA’s output representation. On the other hand, if the two
cores are separated by just some “good” crystal region in between, then the DXA
generates Burgers circuits around each of the individual partials, and two separate
lines will be generated in the output. Thus, some “good” crystal atoms are required
in between the two dislocations to separate them, cf. Figs. 6c and 10. A second type
of ambiguity arises for very short dislocation segments and at dislocation junctions.
Figure 11 depicts a detail of a dislocation network where four arms merge into a
junction (a “4-junction”). However, they do not meet exactly in one point, and due
to this slight dissociation of the junction, there is freedom of whether to describe
this configuration as two separate 3-junctions instead, which are connected by an
additional short dislocation segment. Which topology the DXA prefers depends
on minutiae of the core morphology at this junction. As the four inbound Burgers
circuits approach the junction, the upper limit on the circuits’ lengths is continuously
raised, letting the circuits stretch and advance further into the junction step by step.
Simultaneously, the algorithm tries to generate an additional seed circuit around the
core of the dissociated junction, i.e., in the inner area that has not been swept by the
existing circuits yet. If the algorithm succeeds in spawning another Burgers circuit
for the connecting segment before the existing circuits have met in the junction, then
a topology with two 3-junctions results. Otherwise, the algorithm yields a single 4-
junction. Effectively, the outcome is determined by the ratio of the core diameter of
the dissociation segment and its length.

Supported crystal structures The DXA relies on an ad hoc mapping being
established between the dislocated crystal and a corresponding ideal reference
crystal lattice. This mapping is accomplished by means of an atomic structure
identification method (Stukowski 2012), which maps the nearest neighbor vectors
of each identified input atom to corresponding ideal lattice directions. The current
implementation of the DXA uses the common neighbor analysis (CNA) method
(Honeycutt and Andersen 1987) as a subroutine for this step, and it is thus currently
limited to bcc, fcc, and hcp crystals and, thanks to a recent extension of the CNA
method (Maras et al. 2016), also cubic and hexagonal diamond structures. Since the
chemical types of atoms are not relevant to the DXA itself, crystalline compounds
with a sub-lattice matching one of these supported structure types can also be
processed by feeding only atoms from a sub-lattice to the algorithm. It is expected
that future implementations of the DXA will employ new structure identification
techniques other than the CNA in order to support a wider range of crystal structures.
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Fig. 11 At slightly dissociated dislocation junctions like the one shown here, an ambiguity arises
of whether to connect all arms at a single node or instead create two nodes that are connected by a
short extra segment

In principle, any computational method that establishes a local mapping between
atomic neighbor vectors and the ideal reference lattice can serve as foundation for
the dislocation detection part of the DXA.

Glide plane identification The DXA yields the geometric shape of a dislocation
as well as its Burgers vector. This information alone, however, is not sufficient to
identify the glide plane the dislocation is moving on. Thus, the DXA falls short of
answering the question of active slip systems in a deforming crystal. In certain cases,
however, one can use heuristic criteria to guess the glide planes of dislocations. For
Shockley partials in fcc crystals, a dislocation’s Burgers vector uniquely determines
its glide plane, and no other information is needed. In other cases, if a dislocation
has an edge component (is not pure screw), its glide plane can be determined from
the Burgers vector and the line direction. In general, however, it is important to
recognize that the glide plane of a dislocation is a dynamic property and requires
the analysis of the dislocation’s path it takes through the crystal, which is beyond
the DXA’s capabilities (see next item).

Tracking dislocations through time and space It is important to note that the
DXA operates on instantaneous snapshots of an atomistic crystal and builds a line
model of the dislocations at certain simulation times. In other words, it is a static
analysis method, not a kinematic one. Since dislocations are not physical objects
(see our introductory discussion), they do not possess unique identities that would
allow to track them over time. This makes it difficult to automatically correlate
successive snapshots of the evolving dislocation configuration as dislocations can
move arbitrary distances between MD simulation snapshots, undergo reactions,
and appear newly via nucleation and disappear via absorption or annihilation
processes. In particular, the DXA cannot directly deliver dislocation velocity
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information, because tracking of dislocations would require additional heuristics
to link dislocations in successive DXA snapshots.
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Abstract

Discrete dislocation dynamics (DDD) simulations provide a technique for exam-
ining the effects of fundamental dislocation physics on the plastic response of
crystalline solids. Many DDD simulations focus on relatively “simple” materials
and loading conditions, such as glide-motion-dominated plasticity of pure cubic
crystals. The goal of this chapter is to provide an overview of the more “complex”
physical aspects of dislocation-mediated plasticity in the context of DDD. We
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consider both physics that are intrinsic to the crystal lattice (elastic anisotropy,
nonlinear drag, and low crystallographic symmetry) and extrinsic physics that are
due to defects other than dislocations (solutes, vacancies, precipitates, and grain
boundaries). For each of these classes of physics, we first discuss the conditions
under which they are relevant, followed by an examination of the fundamental
ways in which the behaviors of dislocations are affected by the physics, and
finally a presentation of the methods that have been developed for incorporating
the physics in DDD. We end the chapter by discussing three example simulations
where complex physics are consequential.

1 Introduction

Plastic, or permanent, deformation in crystalline materials is often due to the motion
of defects called dislocations. Dislocations are line defects – taking the shape of
lines as they weave their way through a crystal – and their motion causes the two
halves of a crystal on either side of the dislocation to shift relative to each other,
thereby permanently changing the crystal’s shape. Dislocations are characterized by
the direction and magnitude of the shift they induce, known as the Burgers vector,
b. They have long-range stress fields that cause two dislocations to interact with
each other at a distance. Dislocations can also interact over very short distances
and combine together to form new dislocation lines. Depending on the material,
load state, and environmental conditions, dislocation motion is usually anisotropic,
with a few preferred crystallographic directions of motion. In order to understand
dislocation-mediated plasticity, we need an approach that can combine all of these
aspects of dislocation physics into a versatile computational framework; this is
precisely what is accomplished with discrete dislocation dynamics (DDD).

Using DDD, we study plasticity in crystalline materials by simulating the motion
of individual dislocation lines in space and time. Usually the length scale of these
simulations is on the order of several microns at the so-called mesoscale. At this
length scale, we treat crystalline defects such as dislocations, precipitates, or grain
boundaries as specialized objects embedded in an elastic medium. Treating the
defects explicitly in this manner allows for their connection to mechanical properties
to be accurately captured. However, unlike with atomic-scale simulations where
the properties of defects are inherited from the governing interatomic interactions,
the properties of defects at the mesoscale must be directly incorporated into the
model framework. For example, the types of interactions between dislocations and
precipitates must be defined and explicitly incorporated into the code. The benefit of
the mesoscale approach is efficiency; while mesoscale simulations are lower fidelity
than atomic-scale simulations, they can access length and time scales more relevant
to experiments and applications. Most atomistic simulations examine the behavior
of just one or a few dislocations, whereas DDD simulations may consider many
thousands of dislocation lines.

For pure face-centered cubic (FCC) and body-centered cubic (BCC) metals,
the physical models and algorithms used in DDD simulations are fairly well
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established. This includes computation of dislocation-dislocation interaction forces
using isotropic linear elasticity (Sect. 2.1), linear mobility laws for determining
dislocation velocities (Sect. 2.2), and rules for junction formation (Sect. 2.3). These
methods are well developed and thoroughly documented in a number of review
papers, chapters, and textbooks (Tang 2005; Van der Giessen and Needleman 2005;
Zbib and Khraishi 2005; Bulatov and Cai 2006; Arsenlis et al. 2007; Sills et al.
2016). However, most engineering materials are not pure FCC and BCC metals;
most have comparatively complex physics governing their plastic response, and it is
the study of these materials that is the focus of this chapter.

The goal of this chapter is to summarize and present methods for incorporating
complex physics into a three-dimensional DDD simulation. This will necessarily
involve some discussion of dislocation physics and strengthening mechanisms;
however for more thorough treatments, readers are encouraged to study the works
of Hirth and Lothe (1992), Hull and Bacon (2011), Argon (2008), and Kubin
(2013). Our primary aim is threefold: (1) inform the reader of physics relevant to
a broad range of materials and applications, (2) discuss methods and algorithms
for incorporating these physics into a DDD simulation, and (3) provide several
examples where complex physics are important. A key point emphasized throughout
is that the material system and application of interest will motivate the relevant
physics. Since DDD is a mesoscopic method, the physics of interest must be
explicitly added into a simulation, and this usually requires significant time and
effort; it is important to scope out the problem appropriately from the get-go to
avoid wasted time.

The balance of the chapter is organized as follows. We will first concisely
summarize basic DDD methods – those applied to “simple” materials. We will
then discuss the ways in which additional physics may be incorporated into a DDD
simulation. The bulk of the chapter focuses on discussing the different types of
“complex” physics, divided into two categories: intrinsic physics, meaning physics
intrinsic to the underlying crystal lattice, and extrinsic physics or physics that are
due to crystal defects other than dislocations. Finally, we provide a few examples
before concluding the chapter.

2 Basic Physics

2.1 Driving Forces

In discrete dislocation dynamics, the dislocation structure can be discretized
and represented by a network of dislocation segments connected at nodes. The
dislocation line network evolves under the influence of driving forces acting on each
segment. In an infinite medium, the origin of these driving forces is threefold:

1. The force due to the external applied stress σ ext. This is given by the Peach-
Koehler formula for the force per unit length on a dislocation with Burgers vector
b and line direction ξ :
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F = (σ ext · b)× ξ . (1)

2. The elastic force due to the stress fields of the rest of the dislocation network.
Computation of this force is the most expensive aspect of the DDD method.
Arsenlis et al. (2007) showed that in isotropic elasticity the elastic force can be
computed analytically.

3. The dislocation self-force acting on a segment. This is caused by the Peach-
Koehler force from the segment’s own stress field. This self-force is perpen-
dicular to the segment and tends to rotate the segment away from high-energy
orientations. When an orientation-independent core energy is added, the self-
force acquires a longitudinal component, which tends to shorten the segment.

The expressions used for elastic force computation apply strictly to an infinite,
homogeneous medium. When determining the interaction forces in heterogeneous
materials, such as multi-materials, multiphase metals, or materials containing
precipitates or solutes (see Sects. 3.2.1 and 3.2.3), additional driving forces are
needed to account for the presence of interfaces or boundaries between the different
material domains. These forces are known as image forces and are necessary to
ensure that the boundary conditions between the different regions of the domain
are properly enforced. Similarly, in domains containing free surfaces (e.g., half-
spaces, thin films (Weinberger et al. 2009b), and cylinders (Weinberger and Cai
2007; Weinberger et al. 2009a), or for arbitrary geometries (Van der Giessen
and Needleman 1995; Lubarda et al. 1993; Crone et al. 2014)), image forces
are necessary to ensure that free surfaces are traction-free. Lastly, in anisotropic,
polycrystalline materials (as most are, see Sects. 3.1.1 and 3.2.4), image forces arise
to enforce compatibility between the grains. In all of these cases, a boundary value
problem can be defined to determine the image forces and can be solved using a
numerical technique (such as the finite element method).

2.2 Mobility Laws

In DDD, we typically assume overdamped dynamics such that the inertia of the
dislocation lines can be neglected. This leads to equations of motion of the form

F drive
i + F

drag
i (vi ) = 0, (2)

where F drive
i is the total driving force acting on dislocation node/segment i, F

drag
i is

the total drag force resisting its motion, and vi is the velocity of the node/segment.
Since the drag force depends on the velocity, Eq. (2) relates the driving force to the
dislocation velocity. Many sources of drag may exist in a crystalline solid arising
from the intrinsic properties of the crystal lattice (e.g., phonon dispersion) or from
extrinsic features of the solid, such as solute atoms (see Sect. 3.2.1).
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The response of dislocation lines to the driving force F drive
i is defined by the

dislocation mobility function that may depend on crystal type, local stress state,
and temperature, as well as on the dislocation’s geometry (e.g., Burgers vector,
glide plane, segment orientation). Although in general dislocation mobility laws
are nonlinear, simpler linear mobility laws have been proposed for BCC (Arsenlis
et al. 2007) and FCC (Cai and Bulatov 2004) crystals.

Assuming that Eq. (2) can be solved explicitly for the velocity, we typically
express the mobility law as

vi =Mi (Fi
drive), (3)

where Mi is a generally nonlinear vector function. When the mobility function is
linear, Eq. (3) simplifies to

vi = M i · Fi
drive (4)

where M is a 3× 3 matrix (its dependence on external conditions and the geometry
of the system is omitted in Eq. (4)).

In principle, molecular dynamics (MD) simulations can supply mobility M
functions for any point x on a dislocation line taking into account the glide and climb
(refer to Sect. 3.2.2) of dislocations of arbitrary orientation (character). However,
in practice, MD dislocation mobility data is available only for a limited set of
dislocation characters and straining conditions. Commonly, mobility simulations
are conducted only for pure edge and pure screw dislocations in a few specific slip
planes (see, e.g., Groh et al. 2009 and Gilbert et al. 2011). Given mobility data
obtained from either MD simulations or experiments, interpolation and extrapola-
tion must be used to complete a dislocation mobility function for DDD simulations
over the rest of orientation and velocity space.

Two families of drag functions – planar and pencil-glide mobility laws – are often
used in DDD simulations depending on the crystal structure of the material, with
the difference between them being how screw dislocations are treated. In planar
mobility laws, the velocity of a screw dislocation is constrained to remain in its
glide plane until a cross-slip operation occurs. This approach is suitable when cross-
slip is a thermally activated, rare event, typically handled in DDD using a Monte
Carlo implementation (Kubin et al. 1992). In pencil-glide mobility laws, screw
dislocations are able to move freely in any plane that contains their dislocation line,
and the notion of a glide plane becomes ambiguous. Two orthogonal glide directions
(both orthogonal to the dislocation line) need to be defined to compute the screw
mobility. For instance, in BCC crystals at elevated temperatures, dislocations are
observed to follow a pencil-glide-type behavior, and the two glide directions are
usually a nonlinear function of projection of the velocity along the {110} and the
{112} family planes. In both the planar and pencil-glide approach, an edge mobility
is defined for motion in the plane containing the Burgers vector and the dislocation
line (the glide plane) and for motion out of this plane (climb).
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2.3 Junctions

When two dislocation lines come into contact with each other, they are able to
combine together and react to form a new dislocation called a junction dislocation.
Not all dislocation intersections result in junction formation; the junction reaction
only proceeds if the formation of the junction results in a reduction of the system’s
energy. In DDD, a number of algorithms have been developed to test for this
condition (i.e., a junction formation operator) (Weygand et al. 2002; Schwarz 2003;
Bulatov and Cai 2006). One example is the principle of maximum dissipation
(Bulatov and Cai 2006; Arsenlis et al. 2007), which says that a junction should only
be formed if doing so maximizes the dissipation rate, given by the sum of the dot
products between the force and velocity vectors of each the dislocation segments.
And finally, in materials with low crystallographic symmetry (e.g., hexagonal close-
packed materials), junctions may form with “large” Burgers vectors, and these
junctions may then subsequently “splinter” apart into a new pair of dislocation lines.
We will discuss this mechanism in Sect. 3.1.3 and provide an example of junction
splintering in Sect. 4.2.

3 Complex Physics

The incorporation of complex physics into DDD simulations typically manifests
itself in two ways: (1) a change in the driving forces on the dislocation lines and/or
(2) a change in the rules governing how dislocation lines can move through the
simulation cell. Some physics require changes to both.

In the following we will go through examples of complex physics associated with
dislocation-mediated plasticity. Our primary focus is on examples that have already
been the subject of DDD studies. Each example begins with a Background section
where the physics of interest are discussed in the greater context of crystal plasticity,
followed by a Nature of the Physics section where the basic physics relevant to
dislocation dynamics are presented, and an Incorporation in DDD section where
specific algorithms and formulations are discussed.

3.1 Intrinsic Physics

3.1.1 Anisotropic Elastic Media

Background
DDD simulations often assume isotropic elasticity to compute stresses at points in
the simulation volume and forces between dislocations. Strictly speaking, however,
essentially all crystalline materials exhibit some degree of elastic anisotropy. The
strength of the deviation from isotropy – typically expressed in terms of the
anisotropy ratio, with a value of 1 indicating perfect isotropy – is dictated by the
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crystal structure and the nature of the interactions between the atoms. Under the
normal range of temperature and pressure, many materials have an anisotropy ratio
that is not too far from 1. In cubic crystals, the anisotropy ratio is often defined as
A = 2C44

C11−C12
where C11, C12, and C44 are the cubic elastic constants. For some

materials, using isotropic theory might be appropriate (Rhee et al. 2001); however
this assumption is not always valid. For example, aluminum is very nearly isotropic
with A = 1.21 at room temperature (Hirth and Lothe 1992), whereas at elevated
temperatures around 1200 K, α-Fe is highly anisotropic with A = 7.4 (Fitzgerald
et al. 2012).

Nature of the Physics
Two features of dislocation physics can be strongly impacted by elastic anisotropy:
dislocation line tension and elastic interactions between dislocations. A disloca-
tion’s line tension controls how it bows out in response to an applied stress and
is dictated by the orientation dependence of the elastic energy (screw vs. edge).
Strong anisotropy can cause large elastic energy differences between edge and
screw dislocations, causing the line tension to vary dramatically with character
angle. For example, dislocation loops in α-Fe exhibit sharp corners, a feature that
cannot be captured using isotropic elasticity theory (Aubry et al. 2011). The elastic
interactions between two dislocations, which dictate the strength of attraction or
repulsion between them, are also affected by elastic anisotropy. One example is
junction formation; dislocation junctions only form if the two lines are attracted to
each other (see Sect. 2.3).

Incorporation in DDD
In dislocation dynamics simulations, the stress at a point due to a dislocation
segment and the interaction force between a pair of segments can be defined using
linear elasticity. Its definition is based on the derivatives of the Green’s function.
While the Green’s function is known analytically for isotropic media, no closed-
form expression exists for anisotropic media. Hence, analytical stress and force
expressions cannot be derived for anisotropic media, and instead they must be
evaluated numerically for a given dislocation configuration.

In Rhee et al. (2001) and Yin et al. (2010), several approaches were explored
for simulating anisotropic elastic media. In Yin et al. (2010), the authors show that
the Willis-Steeds-Lothe expression (Hirth and Lothe 1992) is more computationally
efficient than Brown’s formula (Hirth and Lothe 1992) and that the matrix formalism
is only slightly faster than the integral formalism. However, they also found that
computing interaction forces in anisotropic elasticity was 220 times more computa-
tionally expensive than in isotropic elasticity. This fact motivated the development of
a different approach by Aubry and Arsenlis (2013), where the spherical harmonics
expansion of the derivative of the Green’s function is derived. The advantage of
writing the stress and the force expressions in terms of an expansion in spherical
harmonics is that some integration can be carried out analytically, leading to
improved efficiency. Within this approach, the accuracy and the computational
cost of the calculations can be controlled by selecting the order of the expansion.
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The cost of this method depends on the anisotropy ratio. For a small anisotropy
ratio (less than 2, as with aluminum), the computational cost only increases by
about 50% relative to isotropic elasticity. The higher the anisotropy ratio, the
more expensive the method becomes. For instance, for α-Fe at high temperature
with an anisotropy ratio of 7.4, anisotropic simulations are about 60 times more
expensive.

3.1.2 Nonlinear Lattice Drag

Background
Most of the time in DDD simulations, the velocity of a dislocation segment is
assumed to be linearly related to the total driving force, i.e., the mobility law
is linear as in Eq. (4). For many materials and many states of stress, this is a
good approximation. However, under some conditions, nonlinear drag effects may
become important. For example, it has been shown using MD simulations that
in pure FCC (Olmsted et al. 2005; Marian and Caro 2006) and BCC (Barton
et al. 2011) metals the force-velocity relation can be highly nonlinear at elevated
stresses (�100 MPa). The physics governing these nonlinearities is complex and not
entirely understood. Nonlinear drag effects can also be relevant when accounting for
extrinsic sources of drag (like solute drag, see Sect. 3.2.1).

Nature of the Physics
A schematic showing different types of nonlinear mobility laws is presented in
Fig. 1. In pure crystals, nonlinear drag is often due to non-phononic dissipative
effects, such as radiative dissipation (Marian and Caro 2006). Oftentimes these
non-phononic effects result in plateaus in the force-velocity relation, i.e., regions
where the velocity becomes nearly independent of the force (Olmsted et al. 2005;

Fig. 1 Schematic showing
nonlinear mobility laws
representing different drag
mechanisms including linear
drag, nonlinear lattice drag
with velocity plateaus, solute
friction (see Sect. 3.2.1), and
kink-pair nucleation-limited
motion
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Marian and Caro 2006). Also, when the primary mechanism of dislocation motion is
kink-pair nucleation and migration, as with BCC metals at low temperatures, a
nonlinear mobility can result (Gilbert et al. 2011).

Incorporation in DDD
Some closed-form nonlinear mobility laws have been implemented in DDD sim-
ulations (Po et al. 2016). However, because of the fact that we often determine
nonlinear dislocation mobility laws using numerical data from MD, we rarely have
a closed-form mobility law which can be explicitly solved for the velocity. This
means that there are (at least) two issues that make usage of nonlinear mobility laws
difficult: (1) interpolation of numerical MD data and (2) solution of an implicit,
nonlinear system of equations. For example, cubic splines may be used to provide a
continuous mobility function and Newton’s method applied to iteratively solve the
resulting nonlinear system. While neither of these issues is insurmountable, together
they can make large-scale DDD simulations difficult. We recommend that nonlinear
mobility laws are employed only if absolutely necessary.

3.1.3 Low-SymmetryMaterials

Background
The DDD method has predominantly been developed to evaluate the plastic
behavior of cubic metals (e.g., FCC and BCC). These materials exhibit a high
degree of crystalline symmetry, so that only a single class of Burgers vector is active
( 1

2 〈1 1 0〉 for FCC and 1
2 〈1 1 1〉 for BCC). In order to consider crystals with relatively

lower symmetry, such as the hexagonal close-packed (HCP), rhombohedral, or
tetragonal crystal structures, additional physics are necessary to address the fact
that more than one class of Burgers vector may be active.

Nature of the Physics
In low-symmetry materials, some energetically favorable dislocation reactions lead
to the formation of “composite” dislocations with Burgers vectors larger than the
unit vectors of the crystal’s lattice. In HCP crystals, such as magnesium or titanium,
these large Burgers vectors have been associated with low ductility (Agnew et al.
2002; Wu and Curtin 2015). Formation of these composite Burgers vectors may
not result in the greatest energy reduction for the system, however. It may be
possible for the composite Burgers vectors to decompose into a new pair of dis-
location lines that lead to a further energy reduction. This feature of low-symmetry
materials motivates the need for new topological processes not necessary for cubic
crystals.

Incorporation in DDD
When the interaction force between the component dislocations that make up the
composite dislocation is repulsive, the DDD algorithm should allow the splitting of
the composite dislocation into its components. An additional topological operator,
called “splintering,” is needed to allow for the dissociation of composite dislocations
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into two component dislocations when appropriate (Aubry et al. 2016). This
operator behaves very similarly to the junction operator discussed in Sect. 2.3; an
energy-based criterion is used to decide when and how it is appropriate to “splinter”
a composite dislocation. An application of the splintering topological operation is
shown in Sect. 4.2.

3.2 Extrinsic Physics

3.2.1 Solute Interactions

Background
We denote as “solutes” in a crystal the atoms that are different from those of the
base lattice. They can exist as substitutional solutes occupying lattice sites of the
base crystal or as interstitial solutes residing in lattice interstitial sites. The combined
lattice-solute system is called a solid solution. Solid solutions arise in many settings.
One example is alloying, the process of mixing multiple chemical species together
in a crystalline solid. Most alloys are comprised of a base crystal with a few weight
percent of an additional element mixed in, often in the form of a substitutional solid
solution (Reed-Hill and Abbaschian 1992).

Forming a solid solution alters the behavior of the material in many ways. Our
main focus here is on how solute atoms interact with dislocations to change their
behavior, thereby altering the plastic response of a material – this phenomenon
is often referred to as solid solution strengthening. Our key objective in studying
solid solutions with DDD is to understand the major effects solute atoms have
on the response of dislocation ensembles and the resulting impact on mechanical
properties.

Nature of the Physics
Because solute atoms have a misfit in the parent lattice, they are commonly treated
as misfitting Eshelby inclusions (Cai et al. 2014). As such, they have stress fields
– both as a result of their misfit and the fact that they locally modify the modulus
of the material – and can interact with dislocations through Peach-Koehler forces.
Solutes are also able to interact with dislocations through interactions with the
dislocation core (Medvedeva et al. 2005; Ventelon et al. 2015). Typically, the misfit
effect is considered to be the dominant interaction mechanism (Argon 2008). As a
consequence of this misfit, solutes tend to segregate around (predominantly edge)
dislocations and form so-called Cottrell atmospheres.

The behavior of solid solution systems can be split into two categories based
on the relative mobilities of the dislocations and solutes, as shown in Fig. 2. In the
immobile solute case shown in Fig. 2a, the dislocations in a material are much more
mobile than the solutes. In this case the solute population can often be treated as
randomly distributed, and dislocation lines encounter each solute one by one as
they move through the solid. Dislocation interactions with stationary solute atoms
are usually considered to be thermally activated (Argon 2008). In contrast, in the
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Fig. 2 Schematics showing dislocation-solute interactions when (a) solutes are immobile and
(b, c) solutes are mobile. (a) A dislocation line gliding through a field of stationary solutes. (b)
A Cottrell atmosphere exerting a drag force on an edge dislocation gliding with velocity v. (c) A
shear dislocation loop expanding under an applied stress with Cottrell atmospheres dragging the
edge components

mobile solute case, the mobility of the solutes is greater than or comparable to that
of the dislocations; Cottrell atmospheres are able to move with and exert drag forces
on their dislocations. Figure 2 shows a schematic of a dragging Cottrell atmosphere
with (b) a straight edge dislocation and (c) an expanding shear loop. The mobile
solute regime is commonly referred to as the dynamic strain aging regime and
is most relevant at elevated temperatures and with interstitial solutes, since solute
diffusivities are largest under these conditions.

A number of solute effects on the properties of dislocations have been identified,
including reduction in dislocation mobility (solute drag) (Cottrell and Jaswon 1949;
Sills and Cai 2016; Varvenne et al. 2017), alteration of dislocation stress fields
(Sofronis and Birnbaum 1994; Chateau et al. 2002; Cai et al. 2014), modification of
the cross-slip rate (Wen et al. 2007; Nöhring and Curtin 2017), and reduction of line
tension (Kirchheim 2007; Delafosse 2012; Sills and Cai 2018). Of these effects, the
most significant is solute drag, which is our major focus here.

Incorporation in DDD
One approach for incorporating solutes in a DDD simulation is to treat them as
discrete solute objects. These solute objects can occupy predefined lattice positions
set by the type of solid solution, with each having its own misfit-dependent stress
field. They interact with dislocation segments through their stress fields, leading
to solute drag forces. Mobile solutes can be accounted for using kinetic Monte
Carlo methods, according to which solutes move by hopping between lattice sites
with a rate set by the activation energy for diffusion of the solutes. This approach
has been used to study solute impacts on junction formation and dissolution
(Chen et al. 2008). The discrete solute approach is limited, however, by the large
number of solutes contained within even a relatively small volume of material; the
computational cost of the solutes can very quickly supersede that of the dislocations.

A less accurate but much more efficient approach is to incorporate solute drag
into the mobility law. With immobile solutes, this is often accomplished by imposing
a so-called friction stress, τf , on the dislocations. In this model, a dislocation



1570 R. B. Sills and S. Aubry

segment is pinned by solutes and rendered immobile until the net driving force
per unit length exceeds τf b (see Fig. 1). The magnitude of the friction stress is
dependent upon the materials composing the solid solution, the solute concentration,
the temperature, and the character of the dislocation line and can be determined
with atomistic simulations (Olmsted et al. 2005). Friction stress models have been
utilized by a number of researchers to incorporate solute drag effects (e.g., Monnet
and Devincre 2006).

When the solutes are mobile, a friction stress model is inadequate. In this case,
the effect of the dislocation velocity on the concentration field of solutes (Cottrell
atmosphere) around the dislocation must be considered and the resulting drag
forces computed. A nonlinear mobility law that incorporates these effects has been
proposed on the basis of continuum theory calculations (Sills and Cai 2016); further
research is necessary to better understand solute drag by mobile solutes.

3.2.2 Vacancy Interactions

Background
Vacancies are main crystal lattice sites where an atom is missing. Vacancies are
always present in crystalline solids because they increase the entropy of the solid,
with the vacancy concentration typically increasing with temperature. In fact,
for a given material at a given temperature, there is a well-defined equilibrium
concentration of vacancies. Many settings exist, however, where the vacancy
concentration exceeds this equilibrium value. In these cases, the solid is said to
be supersaturated with vacancies. Common examples include quenching from an
elevated temperature and irradiation-damaged materials.

Although solute atoms and vacancies are both point defects, they interact with
dislocations in very different ways. Vacancies primarily interact with dislocations
by promoting climb motion, or motion out of the glide plane. In contrast to solutes,
vacancies actually enhance dislocation mobility. In order for dislocation climb to
have a significant impact on plasticity, the time scale of climb motion must be
of the same order of magnitude as the time scale of interest. Hence, climb is
typically a concern at elevated temperatures where vacancy diffusivities are large
(and concentrations are higher) and/or when a material is under sustained load for
an extended period of time (e.g., creep loading).

Nature of the Physics
As shown in Fig. 3a, in order for a non-screw dislocation line to move out of its
glide plane (climb), vacancies or self-interstitials need to diffuse into or out of the
dislocation core (depending on the climb direction). Mathematically, we define the
climb velocity as the velocity component orthogonal to the glide plane, i.e., vcl =
v · (ξ × b/be), where be is the magnitude of the edge component of the Burgers
vector b and ξ is the dislocation line direction. The fundamental problem at hand is
to determine the climb velocity for a given climb force, fcl = f · (ξ × b/be), and
vacancy concentration; this is akin to determining the “climb mobility law.”
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Vacancies can induce climb motion at a given point on a dislocation line by
diffusing toward or away from the dislocation either through the bulk of the crystal
or through the core of the climbing dislocation line. The latter is commonly referred
to as pipe diffusion and is typically considered to be much more rapid than bulk
diffusion (Hirth and Lothe 1992). In general, the climb velocity is related to the total
vacancy flux into or away from the dislocation line per unit length, I , according to
the relation (Hirth and Lothe 1992)

vcl = IΩ

be
, (5)

where Ω is the volume per atom. Determining this vacancy flux requires solving a
coupled pipe-bulk diffusion problem. The problem is further complicated by the fact
that dislocations act as sources and/or sinks for vacancies; one climbing dislocation
line may act as a vacancy source for another climbing (sink) dislocation line as
shown in Fig. 3b.

In order to determine the climb velocity, the climb force acting on the dislocation
line must interact in some way with the vacancy concentration field, c(x). This is
usually accomplished by assuming that the vacancies and the dislocation line are in
chemical equilibrium, leading to the relation cd = c0 exp [−fclΩ/(bekBT )] (Hirth
and Lothe 1992) where c0 is the equilibrium vacancy concentration, cd is the
concentration at the dislocation (on the surface of a tube of radius rd centered on
the dislocation line), T is the absolute temperature, and kB is Boltzmann’s constant.
This relation represents the coupling between the dislocation microstructure and the
vacancy concentration field. Finally, we note that a dislocation may have a nonzero
climb velocity even when the stress state is zero if the vacancy concentration in the
solid is not at equilibrium, as shown in Fig. 3c. In this case, we call the effective

vcl

Vacancy

vcl
vcl

b

vcl
Vacancies

vcl

a b c

Fig. 3 Schematics showing dislocation-vacancy interactions resulting in dislocations climbing
with velocity vcl . (a) Edge dislocations climbing with velocity “upward” by consuming vacancies
and “downward” by emitting vacancies. (b) A pair of collapsing prismatic dislocation loops, with
one loop emitting and the other absorbing vacancies. (c) A shear dislocation loop climbing out of
its glide plane in the presence of a supersaturation of vacancies that produces osmotic forces
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(thermodynamic) force exerted by the super- or subsaturated solid on the climbing
dislocation line an osmotic force.

Incorporation in DDD
While the physics governing vacancy-dislocation interactions are fairly complex,
the overall process of computing the climb velocity is fairly straightforward:
determine the vacancy flux I at each point on the dislocation lines while enforcing
the local equilibrium condition for cd , and then compute the climb velocity with
Eq. (5). All of the below approaches compute I while assuming that the vacancy
concentration field rapidly goes to steady state as the dislocation microstructure
evolves.

The simplest approach is to neglect pipe diffusion and determine the vacancy
flux by solving the steady-state bulk diffusion equation: *2c(x) = 0. In the
earliest DDD implementations, the analytical solution for a straight, infinitely
long edge dislocation in a cylinder of radius r∞ was employed (Mordehai et al.
2008). This solution is readily linearized, giving an expression of the form vcl =
Mcl(fcl + fos), where Mcl(θ) and fos(θ) are the character-angle-dependent climb
mobility and osmotic force, respectively (Bakó et al. 2011). In this approach, the
dislocation lines are uncoupled from each other. In order to properly solve the
diffusion equation, however, all of the sources and sinks (climbing dislocation
lines) in the domain need to be coupled together. Obtaining such a solution
is complex but can be accomplished readily using the Green’s-function-based
approach recently developed by Gu et al. (2015). In their method, the climb
velocity for each dislocation segment can be determined by solving a coupled linear
system.

Finally, none of these approaches account for pipe diffusion. Gao et al. (2011)
implemented a pipe-diffusion-only climb model, finding that the climb velocity is
proportional to the concentration gradient along the dislocation line. Recently, Niu
et al. (2017) have derived a coupled pipe-bulk diffusion model by considering the
micromechanics of vacancy diffusion, finding that the pipe contribution to the climb
velocity is proportional to the second derivative of the core concentration field.

3.2.3 Precipitate Interactions

Background
Precipitates are particles of a secondary phase embedded in a crystalline matrix.
They come in many shapes and sizes, depending on how they are formed, the
crystal structures involved, and the thermal and deformation history of the material.
In many instances, they are intentionally introduced into a material in order to
strengthen it, an approach that is called precipitation strengthening. Usually these
precipitates are formed by first “solutionizing” an alloy by holding it at an elevated
temperature and then subsequently “aging” it at a reduced temperature. During the
aging process, solute atoms diffuse together and nucleate precipitates, which then
continue to grow. Often, the properties and spatial distribution of the precipitates
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change as they are aged. In other instances, precipitate formation is undesirable
and can result in degraded mechanical properties. Finally, we can also think of
voids, which can form during solidification, or gas-filled bubbles, which arise in
radiation environments, as precipitates with a modulus of zero. Typically, voids
and bubbles adversely affect mechanical properties. Whether favorable or not, the
predominant way that precipitates alter a material’s mechanical properties is through
their interactions with dislocations. This makes DDD a valuable tool for studying
precipitation-driven phenomena.

Nature of the Physics
The mechanical properties of a precipitate-containing material are controlled by
two things: the properties of the individual precipitates and their spatial distribution
in the material. While individual precipitates are relatively well-understood, their
distributions in space are difficult to characterize. Most often it is assumed that
precipitates are randomly distributed; however some researchers have developed
more sophisticated techniques for constructing realistic precipitate distributions
(Mohles and Fruhstorfer 2002). It is also important to note that precipitates usually
have a distribution of sizes as well. Some analytical models exist for incorporating
a size distribution (Mohles 2004), or experimentally measured size distributions can
be used (e.g., Boyd and Nicholson 1971).

Precipitates can interact with dislocations via both long-range and short-range
mechanisms. We denote long-range interactions as those that do not require contact
with a precipitate to act on the dislocation. Two types of long-range interactions
exist. The first is due to the lattice mismatch of coherent precipitates, which gives
rise to a lattice-mismatch stress field in both the precipitate and the matrix. The
second type of long-range interaction exists if the elastic constants of the precipitate
are different from those of the matrix; the resulting modulus mismatch gives
rise to an additional stress field. Eshelby developed a mathematical procedure for
computing the stress field of a precipitate with a lattice and/or modulus mismatch
using elasticity theory (Eshelby 1961). Note that the stress field of a precipitate
typically scales as 1/r3, in comparison to the (longer range) 1/r fields of the
dislocation lines themselves.

Short-range interactions are present while a dislocation is in contact with
and/or penetrating a precipitate. These interactions result from the resistance of a
precipitate as a dislocation transmits into it. This transmission can only occur if
the precipitate is coherent or semi-coherent. If a dislocation transmits all the way
through a precipitate, we say that the precipitate was “cut” by the dislocation.
We note that if a dislocation is unable to penetrate and cut a precipitate, it can
still bypass the precipitate by bowing out and forming a dislocation (Orowan)
loop around it. A number of mechanisms can give rise to contact interactions
including stacking fault, modulus, or core energy differences between the precipitate
and matrix, the formation of a step at the precipitate’s surface, the disruption of
superlattice ordering, and reactions with misfit dislocations (Argon 2008). Since
these interactions occur over a very short length scale, they are dictated by nonlinear
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interatomic interactions, making them difficult to characterize with continuum
models. Atomistic simulations are currently the most accurate way to characterize
the dislocation-precipitate cutting process (e.g., Singh and Warner 2013 or Monnet
2015).

Incorporation in DDD
Precipitates are usually introduced into DDD as special objects that affect both the
driving forces and mobility laws of the dislocation lines, with the specific details
being dependent upon the properties of each precipitate. Typically the long-range
interactions affect the driving forces, and the short-range interactions modify the
mobility law.

In terms of long-range force calculation, the lattice-mismatch stress field is
significantly easier to compute than the modulus-mismatch stress field. To compute
the lattice-mismatch field of a single precipitate, all we need to know is the
magnitude and character of the mismatch (expressed in terms of an eigenstrain
tensor (Mura 1987)) and the size and shape of the precipitate. For many lattice
mismatches and precipitate geometries, analytical solutions exist for the lattice-
mismatch field. The total lattice-mismatch field is simply the superposition of the
field from each precipitate in the problem domain. The resulting driving force can
be computed using the Peach-Koehler formula.

When a modulus mismatch is present, the story is quite different. The modulus-
mismatch field of a precipitate is dependent upon the type and magnitude of
the modulus mismatch, the precipitate shape, and the stress field exerted on the
precipitate by the applied stress and every other object in the domain, including all
dislocation lines and all other precipitates. Calculating the modulus-mismatch field
usually requires a numerical approach. Researchers have developed finite element
(Shin et al. 2003; Munday et al. 2015) and boundary element (Takahashi and
Ghoniem 2008) methods for computing the modulus-mismatch field (which is often
referred to as the “image” field). Computation of this field is often expensive and
time-consuming. For this reason, many researchers simply neglect the influence of
a modulus mismatch in DDD simulations.

Short-range interactions are usually incorporated into the mobility law. Three
different approaches have been used. For impenetrable precipitates, dislocation
segments are simply pinned with their velocity set to zero at the surface of the
precipitates (Mohles 2003; Queyreau et al. 2010). Given the complex nature of
precipitate cutting discussed above, penetrable precipitates are more difficult to
model. A commonly used approach is to impose a “friction stress,” similar to
the solute drag-induced friction stress discussed in Sect. 3.2.1, on any dislocation
segments that penetrate precipitates (Mohles 2001; Rao et al. 2004; Monnet 2006).
The magnitude of the friction stress should depend on the physical processes
associated with precipitate cutting and could be selected on the basis of atomic
simulations. And finally, Monnet (2015) has recently developed a more rigorous
method for incorporating atomistic results into DDD while accounting for thermally
activated cutting processes.
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3.2.4 Grain Boundaries

Background
Nearly all DDD studies focus on single crystalline materials, despite the fact that
most engineering materials are polycrystalline and grain boundaries are known to
influence plastic behavior. The primary reason that grain boundaries are neglected
is their complexity; many different types of grain boundaries exist, and they can
interact with dislocations in numerous ways. Given that so few researchers have
focused their studies on grain boundaries, we will only present a brief sketch of
their consideration in the context of DDD.

Nature of the Physics
Grain boundaries are usually characterized by the amount and type of misorientation
between the two grains forming them; the grains can be twisted with respect to
each other, tilted with respect to each other, or a combination of both. Furthermore,
depending on the misorientation, there may be a set of coincidence sites where
the two crystals share a lattice site, or there may be no shared sites at all. In the
former case, the grain boundaries are referred to as singular boundaries because
they have lower energies than more general boundaries without coincidence sites.
Singular boundaries are interesting because they can be described in terms of a
set of grain boundary dislocations whose Burgers vectors are dictated by the so-
called displacement shift complete (DSC) lattice of the boundary. Some of these
grain boundary dislocations may be mobile within the boundary. When a bulk
lattice dislocation encounters a singular grain boundary, it may absorb into the
boundary and disassociate into grain boundary dislocations (such that the Burgers
vector is conserved). Or the inverse can happen, with grain boundary dislocations
transferring into the bulk. In general, it is difficult to quantify the probability
for dislocation absorption/emission into/out of a grain boundary, and typically
atomistic simulations are necessary to analyze a particular grain boundary of interest
(de Koning et al. 2003; Sangid et al. 2011; Spearot and Sangid 2014). In the
simplest case, transmission into/across a grain boundary is impossible, which leads
to dislocation pileups forming on either side of the boundary. See Cai and Nix (2016)
for a more detailed discussion on grain boundaries.

Incorporation in DDD
The key rules governing dislocation-grain boundary interactions that must be
considered for DDD simulations are as follows: (1) criteria for transmission of
a bulk dislocation into a grain boundary, (2) criteria for emission of a grain
boundary dislocation into the bulk, and (3) selection of the particular bulk/grain
boundary dislocation topology (Burgers vectors, glide planes, etc.) associated with
a transmission/emission event. Also, if grain boundary dislocations are glissile,
mobility laws must be defined for their motion within the boundary. Strength criteria
have been employed by a number of authors to model transmission/emission (Fan
et al. 2012; Zhou and LeSar 2012), such that a dislocation may only transmit/emit if
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the local shear stress exceeds some minimum. Typically this strength is dictated
by the amount of misorientation, and an infinite strength corresponds to an
impenetrable grain boundary. Selection of the associated topology is trickier,
because the DSC lattice typically has smaller Burgers vectors than the bulk lattice
(Cai and Nix 2016), meaning a bulk dislocation has many possible disassociated
forms. Criteria have been developed based on energy/dissipation rate considerations
similar to those used for junction formation and splintering (see Sects. 2.3 and 3.1.3)
(Fan et al. 2012, 2015).

4 Examples

4.1 Orowan Looping AroundMisfitting Platelet Precipitates

Depending upon the heat treatment and alloy composition, aluminum-copper alloys
form four different platelet-shaped precipitates. θ ′ precipitates are arguably the most
important. These precipitates are Al2O compounds, reside in {001} planes, and are
coherent with the FCC Al matrix. However, the lattice mismatch on the faces of
the precipitate is different from the mismatch around the rim, leading to a non-
dilatational eigenstrain (Biswas et al. 2011). This mismatch makes it difficult for
dislocations to transmit into and cut the precipitates. To study Orowan looping
around these precipitates, we treat them as impenetrable ellipsoids with two major
axes, setting a node’s velocity to zero upon contact with the precipitate surface. The
lattice-mismatch stress field is pre-computed numerically on a nonuniform grid and
then interpolated for Peach-Koehler force calculation (Sills 2016). For simplicity,
we neglect the modulus-mismatch field. We compute the shear stress necessary for
Orowan looping by starting with a straight edge dislocation and incrementing the
applied stress until Orowan looping occurs. An infinite array of parallel, ellipsoidal
precipitates with major diameters of 4000 Å and aspect ratios of 30 is considered.

Figure 4a shows the critical dislocation configuration just below the looping
stress. The misfit shear stress field is shown as well. Figure 4b shows how the
looping stress varies with the spacing between the precipitates. We also show
results without a lattice-mismatch field. The lattice-mismatch field is shown not to
significantly influence the results, when the dislocation approaches the precipitate
array both from the right and from the left.

4.2 Junction Splintering in HCPMetals

Discrete dislocation dynamics simulations can add some insights into mechanisms
of formation and dissociation of <c + a> dislocations in HCP metals. We consider
here the behavior of two reacting <c + a> dislocations. Taking into account the
symmetry of the HCP lattice, there are eight distinct types of binary reactions
between two <c + a> dislocations (Aubry et al. 2016). Out of those, only four
are elastically attractive, and of those four, two reactions lead to the formation of
composite dislocations.
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Fig. 4 Orowan looping results for θ ′ precipitates in aluminum-copper. (a) Cross section of a
precipitate array at the midplane showing the dislocation configuration just below the Orowan
looping stress. The color map shows the lattice-mismatch shear stress field in MPa. (b) The shear
stress necessary for an edge dislocation to Orowan loop as a function of separation distance. L is the
separation distance between precipitates and d is their major diameter. The results with and without
a lattice-mismatch field are shown. With a mismatch field, we show results when the dislocation
approaches from the right and from the left. (Figure adapted from Sills 2016 with permission)

Initial configuration No dissociation Dissociation allowed

a b c

Fig. 5 DDD simulation of junction formation and splintering between two <c+a>-type dis-
locations. (a) Initial configuration, (b) resultant configuration when no composite dislocation
dissociation (splintering) occurs, and (c) resultant configuration when dissociation of composite
dislocations is allowed. Colors denote Burgers vector types: orange = <c+a>, blue = <a>, green =
<c>, red = <2a>. (Figure adapted from Aubry et al. 2016 with permission)

Let us analyze a specific example. Consider two parent dislocations with Burgers
vectors b1 = 1/3[1̄1̄23] and b2 = 1/3[1̄1̄23̄]. The Burgers vector of the
intermediate product dislocation formed after their reaction is bip = 2

3 [1̄1̄20]. Since
bip is twice the Burgers vector of a primary <a> dislocation b, the junction should
further dissociate into two <a> dislocations. The expected total dislocation reaction
can be written as

b1 + b2 → bip → b + b.

In Fig. 5a, we consider the collision of two <c+a> dislocations with Burgers
vectors b1 set on the pyramidal plane (011̄1) and b2 set on the prismatic plane
(11̄00). Both parent dislocations form a 40◦ angle with respect to the junction axis in
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their initial orientations. The incidence angle between the intersecting dislocations
is such that the dislocation lines are attracted to each other, causing them to react
and form a <2a> junction product in the manner shown in Fig. 5b. The resulting
<2a> junction dislocation is contained in the same prismatic plane as one of the
parents. We then allow the junction to disassociate (splinter) into two <a> primary
dislocations. Note that the nodes bounding the junction are then able to split further,
leading to a pair of <c> dislocation segments as shown in Fig. 5c. A large-scale study
on the effects of junction dissociation on the stress-strain curve was conducted by
Aubry et al. (2016).

5 Conclusions

In this chapter, we have shown that discrete dislocation dynamics is a diverse,
powerful tool for studying dislocation microstructure evolution and the plastic
response of materials. However, it is clear that engineering materials are complex
and that the inclusion of all relevant physics can be a daunting task. Indeed, many
of the DDD algorithms that have been developed are simple and approximate, if
only to render them tractable. A DDD formulation with “all of the physics” is
simply not practical. As materials modeling continues to mature as a field and our
understanding of these physics grows, DDD codes will be expected to incorporate
more and more complexity. This will make it even more important that researchers
“keep their eyes on the prize” and remember what it is that they are trying to achieve
through DDD in the first place.
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Abstract

The continuum theory of dislocation fields is discussed in this chapter with an
emphasis on the formulations relevant to infinitesimal deformation of single crys-
tals. Both the classical and contemporary developments are concisely outlined.
The classical theory of dislocation fields is introduced first for static and dynamic
dislocation configurations, followed by a brief discussion of the shortcomings of
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the classical theory in predicting plasticity of crystals. In this regard, the lack
of connection between the evolution of the dislocation field and internal stress
state of the crystal is particularly highlighted. The more recent phenomenological
and statistically-based formalisms of continuum dislocation dynamics are then
introduced. As discussed in the pertinent sections, these formalisms properly
connect the evolution of the dislocation fields with the internal stress state in
and thus offer frameworks for predicting the plastic behavior of crystals.

1 Introduction

The interpretation of plastic deformation of metals in terms of dislocation motion
(Orowan 1934; Polanyi 1934; Taylor 1934), together with the subsequent imaging
of crystal dislocations by electron microscopy, marked the beginning of the
dislocation-based theory of plasticity (Hirth 1985; Hirsch et al. 2006). Since then,
the theory has been instrumental in rationalizing many aspects of metal plasticity
in terms of the elementary properties of dislocations (Hirth and Lothe 1982; Argon
2008; Kubin 2013). Such a fundamental understanding has permeated through the
field of continuum plasticity up to phenomenological theories developed and used
at the scale of engineering components (McDowell 2010; Roters et al. 2010).

Despite the fact that most mechanisms of plasticity are known at the single-
dislocation level, several features of plastic deformation related to the collective
behavior of dislocations have remained hard to understand and predict, such as
the phenomena of strain localization, hardening, self-organization, and patterning.
Such phenomena were first investigated by simple models such as those devel-
oped by Walgraef and Aifantis (1988), before the method of discrete dislocation
dynamics simulation was introduced (Lepinoux and Kubin 1987; Ghoniem and
Amodeo 1988), eventually leading to elaborate density-based continuum dislocation
dynamics approaches; see Sect. 3. The latter theories build upon early attempts to
model plasticity through a density-type representation of dislocations, based on the
dislocation density tensor introduced by Nye (1953) and Kröner (1981).

The method of discrete dislocation dynamics simulation tracks the trajectory of
an ensemble of dislocations evolving under the influence of external stress and their
mutual interactions (Kubin 2013; Bulatov and Cai 2006). A typical strain-controlled
simulation provides the average dislocation density and stress evolution as a
function of imposed strain. The dislocation density corresponding to a given Burgers
vector or a slip system can also be determined from the simulation. The method thus
provides full diagnostics of dislocation processes during evolution, including cross
slip and dislocation annihilation and junction formation. Density-based models of
dislocation dynamics, which are termed continuum dislocation dynamics (CDD) in
the sequel, have the same goal of tracking the dislocation density evolution and
all internal fields. Early relevant formulations used a density tensor to represent
dislocations (Mura 1987). However, because this tensor represents a coarse-grained
geometric representation of dislocations of all Burgers vectors, it was not possible to
close the evolution problem properly and solve it to find the elastic and plastic fields
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as a function of the imposed load boundary conditions. More recent theories provide
closure approximations which allow the numerical implementation of continuum
dislocation-based plasticity (Groma 1997; El-Azab 2000; Acharya 2001; Acharya
and Roy 2006; Hochrainer et al. 2009; Xia and El-Azab 2015a). The progress made
in the field prospects the possibility that continuum dislocation dynamics can be
a viable approach to tackling the problem of self-organization of dislocations and
crystal plasticity at the mesoscale (Xia and El-Azab 2015a, b).

This chapter provides a review of CDD approaches to plastic deformation of
crystals. Both classical and contemporary models and theories are briefly discussed
with a special focus on those falling within the realm of infinitesimal deformation
kinematics of crystals. Following this introduction, the classical continuum theory
of dislocations is introduced in Sect. 2, and its limitations are discussed. Section 3
introduces the recent attempts at overcoming these limitations.

2 Classical Theory of Dislocation Fields

The equations describing crystal deformation, continuum representation of dis-
locations, and stress fields, along with relevant constitutive relationships, are
summarized in this section. In presenting these equations, we adopt the algebra
and calculus of Cartesian tensors and denote by boldface symbols that tensors of
all orders and adopt the index notation convention for their components (Lubarda
2002). Unless stated otherwise, all field variables are considered to be dependent on
the spatial position vector x = xiei and time t .

In this chapter we use the following notation. The gradient operator ∇ ≡
ei∂i(·) ≡ ei∂(·)/∂xi applied to a scalar function, f (x), a vector field w(x),
and a second-order tensor field T(x) yields a vector, a second-order tensor, and
a third-order tensor, respectively. In this notation ei , i = 1, 2, 3, refer to the
base vectors of the Cartesian coordinate system. Throughout this chapter, a left
convention is adopted for the gradient operator. We thus have ∇f = ∂if ei =
f,iei , ∇w = ei∂i(wj ej ) = ∂iwjeiej = wj,ieiej , and ∇T = ei∂i(Tjkej ek) =
∂iTjkeiej ek = Tjk,ieiej ek . This notation also defines the comma convention for
partial differentiation with respect to spatial coordinates. Finally, the summation
over a repeated index is implied. The left convention for the gradient operator
implies that the differential change of the function f , vector w, and tensor T
over a spatial distance dx is given by df = dx · ∇f , dw = dx · ∇w, and
dT = dx · ∇T, respectively. Component-wise, these differential quantities are
expressed in the forms df = f,idxi , dwj = wj,idxi , and dTjk = Tjk,idxi .
Moreover, the curls of a vector field w and a second-order tensor field T are defined
by ∇ × w = eijk∂jwkei = eijkwk,jei and ∇ × T = eijk∂jTkleiel = eijkTkl,j eiel ,
where eikl are the components of the antisymmetric permutation tensor. As with the
gradient and curl operators, we adopt a left convention of the divergence operator.
The divergence of a vector field w is given by ∇ · w = ∂iwi = wi,i and that of a
second-order tensor T by ∇ · T = ∂iTikek = Tik,iek .
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2.1 Distortion of Dislocated Crystals

As developed in its time-independent form by Kröner (1981) and in its dynamic
version by Mura (1963, 1987), Kosevich (1979), and Kossecka and de Wit (1977a,
b), the classical theory of dislocation fields aims to determine the elastic state of a
crystal containing a prescribed defect distribution. At infinitesimal deformation, the
kinematic basis of the theory consists in the additive split of the gradient of the total
displacement field ut within the crystal, also known as total distortion β t, which
includes the following contributions:

β t = ∇ut = β◦ + βe + βp. (1)

Here βp is the plastic distortion introduced into a crystal by the creation and
motion of dislocations, while βe is the elastic distortion generated by them, which
is associated with the incompatibility of the plastic distortion, as we shall see in
this section (Kröner 1981, 1995, 1996; Kosevich 1962, 1965, 1979; Mura 1963,
1968, 1969; Kossecka 1974, 1975; Kossecka and de Wit 1977a, b). In Eq. (1), we
have included the distortion β◦ induced by the loading system through mechanical
boundary conditions. In component form, Eq. (1) reads β t

ij = β◦ij+βe
ij+β

p
ij . Both β◦

and βe result in dragging the lattice along into an atomically distorted configuration
fixed by the plastic distortion, βp, and the applied boundary traction (Kröner 1981).
Being elastic in nature, they are associated with internal stresses σ ◦ = c : β◦ and
σ = c : βe, respectively, so that the total stress within the crystal is

σ t = σ ◦ + σ . (2)

The distortion β◦ is compatible, i.e., it can be expressed as the gradient of a
displacement vector u◦. That is

β◦ = ∇u◦ , (3)

which in component form reads β◦ij = ∂iu
◦
j . Equations (1) and (3) imply that the

sum β = βe + βp is a compatible distortion field derivable from a displacement
field, which is denoted by u. The differential form of the compatibility conditions
for the distortion fields β◦ and β can be stated as follows:

∇ × β◦ = ∇ × ∇u◦ = 0 and ∇ × β = ∇ × ∇u = 0, (4)

or alternatively

∮

C
du◦ = 0 and

∮

C
du = 0, (5)
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where ∇ × (·) = ei × ∂i(·) is the curl operator and C is any closed curve within the
(continuum) crystal. The compatibility conditions (4) follow from the orthogonality
of the curl and gradient operators, while the form (5) can be reached from (4) by
exploiting Stokes theorem. Introduction of this theorem is left for later after the
dislocation density tensor and its areal integral are introduced. Selecting the applied
traction to be zero implies that the corresponding stress, σ ◦, and elastic distortion
β◦ are also zero. In such case, the total stress σ t reduces to σ , the total distortion β t

reduces to β = βe + βp, and the displacement ut reduces to u. The condition (4)
may then be rewritten in the form

∇ × ∇u = ∇ × β = ∇ × (βe + βp) = 0. (6)

For dynamical problems, the crystal velocity field u̇ is the time derivative of the
displacement:

u̇ = ∂tu, (7)

where ∂t (·) = ∂(·)/∂t . In this case, it can be easily verified that

∇u̇ = β̇, (8)

meaning that the rate of the total distortion is given by the gradient of the crystal
velocity field.

2.2 Tensor Fields of Dislocations

A number of tensor fields connected with dislocations and their motion are now
introduced. These include the dislocation density tensor field, the dislocation flux
tensor field, and the dislocation velocity and movement tensor fields.

2.2.1 The Dislocation Density Tensor Field
Equation (6) can be rearranged in the form

∇ × βe = −∇ × βp. (9)

The curl of a distortion field measures its incompatibility. Equation (9) implies that
the distortions βe and βp either are simultaneously compatible or have nontrivial
curl and are thus simultaneously incompatible. The same equation also implies
that the measures of incompatibility of the elastic and plastic distortion are equal
and opposite. The dislocation density tensor α is introduced here as that measure.
According to Mura (1963, 1968, 1969) and Kossecka and de Wit (1977a, b), α is
given by

α = ∇ × βe = −∇ × βp. (10)
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In component form, this reads αij = eikl∂kβ
e
lj = eiklβ

e
lj,k or αij = −eikl∂kβ

p
lj =

−eiklβ
p
lj,k . The dislocation density tensor is a field that depends on position x, and its

component αij is defined as the xj component of the sum of the Burgers vector of all
dislocation lines that intersect a unit area normal to the xi direction, or, alternatively,
it is the sum of xj components of the Burgers vectors times the projected line length
in the xi direction of all dislocations per unit volume. Since the curl of a field is
divergence-free, then

∇ · α = 0, (11)

where∇·(·) = ei ·∂i(·) denotes the divergence operator. In component form, Eq. (11)
reads ∂iαij = αij,i = 0. This equation is known as the condition of the conservation
of the Burgers vector. When this condition is applied to a dislocation line, it simply
means that the line cannot end within the crystal.

The interpretation of the dislocation density tensor in terms of crystal dislocations
is important in connecting the continuum theory of dislocation fields and the theory
for line dislocations. For a family of dislocations of number ρs crossing unit area
perpendicular to their common line vector ξ s and having Burgers vector bs at a point
in the crystal, the dislocation density tensor is given by

αs = ρsξ s ⊗ bs, (12)

where for two vectors a and b, a ⊗ b = aibj eiej denotes their tensor product. In
component form, the last equation reads αs

ij = ρsξ s
i b

s
j . When multiple families

of dislocations are present, the overall dislocation density tensor is the sum of
contributions of such families. That is, α =∑

s αs.
By taking the dot product of equation (10) with an oriented area element dS =

ndS = nidSei , with n being the unit normal, and integrating that product over an
open surface S bounded by a contour C, it can be shown that

ż

S
n · αdS = −

ż

S
n · ∇ × βpdS = −

∮

C
d� · βp = bC. (13)

In the above, Stokes theorem has been used to convert the areal integral over S to a
line integral over the bounding contour C. In the above, n, the normal to S, and the
directed length element � along C are defined such that if S shrinks to a small flat
element, � circles C around its normal in a right-hand screw sense. In component
form, Eq. (13) reads

ż

S
niαijdS = −

ż

S
nieiklβ

p
lj,kdS = −

∮

C
β

p
ijd�i = bC

j . (14)
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The vector bC = bC
j ej is the resultant Burgers vector of all dislocations piercing S

in all directions and contained within C. This vector can be expressed in terms of
the elastic distortion by replacing ∇ × βp with −∇ × βe in Eq. (13).

ż

S
n · αdS =

ż

S
n · ∇ × βedS =

∮

C
d� · βe = bC. (15)

It can be shown that the second integral in Eq. (5) is satisfied by subtracting Eq. (13)
from Eq. (15) and substituting βe + βp = ∇u. Equations (10) and (13) are, respec-
tively, known as the differential and integral forms of the incompatibility law. It is
obvious that, for a given state of deformation, bC vanishes for an arbitrary contour
C if the plastic distortion is curl-free everywhere in the crystal. A uniform plastic
distortion satisfies that criterion, in which case it is called a compatible plastic distor-
tion. Such a distortion can be associated with a displacement field satisfying Eq. (5).

2.2.2 The Dislocation Velocity Tensor Field
Per Eq. (12), the dislocation density tensor α represents the dislocation state
corresponding to the prescribed plastic distortion in the crystal. According to the
latter equation, it is possible for the dislocation density tensor to vanish at a point
if equal numbers of dislocations of opposite line direction and same Burgers vector
pass through that point. From the point of view of plastic deformation, however,
all mobile dislocations contribute to the deformation of the crystal regardless of
their line direction. As such, to completely characterize moving dislocations and
hence the deformation process, different tensors must be introduced that account for
the direction of motion of dislocations. One such tensor is the dislocation velocity
tensor V, which accounts for the velocity v of dislocation lines, in addition to their
line direction and Burgers vector. Generally, the velocity of a moving dislocation
varies from one point to another along its line L. For a family of dislocations of
number ρs crossing a unit area perpendicular to their common line vector ξ s and
having Burgers vector bs at a point in the crystal, Mura (1968, 1969) introduced the
dislocation velocity tensor of third rank in the form

Vs = ρsvs ⊗ ξ s ⊗ bs. (16)

In component form, the last equation reads Vijk = ρsvs
i ξ

s
j b

s
k . When multiple

families of dislocations are present, the total dislocation velocity tensor V is given by
the sum of the partial tensors, V =∑

s Vs. It is obvious that, when two dislocation
families of opposite direction pass at a point, their velocity tensors add together and
not cancel each other as do their dislocation density tensors, since the velocities
of dislocations of opposite line directions at a point are also opposite. It should be
noticed that Vmmk = 0 since the motion of a dislocation along its line direction is
physically insignificant.



1590 A. El-Azab and G. Po

2.2.3 The DislocationMovement Tensor Field
The definition of the dislocation movement tensor was given by Eisenberg (1990).
Here, this tensor is defined in a slightly different way taking into consideration
that it is path dependent and as such can be defined in an incremental sense. The
incremental change of the dislocation movement tensor is denoted by dX. For a
family of dislocations ρs with line tangent ξ s and Burgers vector bs, this differential
tensor is given by

dXs = dAs ⊗ bs, (17)

where dA is an incremental second-order tensor defined by the outer product of
the differential vector distance traversed by dislocations in their glide planes with
the oriented dislocation density, ρsξ s. In component form, Eq. (17) reads dXs

ijk =
dAs

ij b
s
k . When multiple families of dislocations are present, dX = ∑

s dXs. It is
clear that

V = Ẋ = ∂tX, (18)

or Ẋijk = Vijk . The dislocation movement tensor can thus be obtained from the
velocity tensor by a path-dependent integration.

The dislocation velocity and movement tensors carry the overall character of
dislocations in terms of their density, line direction, Burgers vector, and velocity
vector. Therefore, the velocity tensor can be used to determine the rate of plastic
distortion in the crystal containing moving dislocations. Similarly, the incremental
change in the dislocation movement tensor can be used to determine the incremental
change in the plastic distortion tensor.

2.2.4 The Dislocation Flux Tensor Field
A definition of the dislocation flux tensor is given by Kosevich (1979) who wrote
Eq. (8) in the form

β̇ = ∂t∇u = β̇
e + β̇

p
. (19)

He then defined the difference β̇
e− ∂t∇u to be the second-order tensor J and called

it the dislocation flux or current tensor. From the last equations, J = −β̇
p
. In the

current presentation, the dislocation flux tensor is defined by

J = β̇
p
, (20)

so that (19) is written as

β̇ = β̇
e + J. (21)
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By taking the curl of the last equation and using the definition of the dislocation
density tensor in (9), one reaches

α̇ +∇ × J = 0. (22)

In component form, Eq. (22) read: αij + eikl∂kJlj = 0. It represents the continuity
equation for the dislocation density tensor in a medium undergoing time-dependent
plastic distortion. It will be shown later that it can be recast in the form of a transport
equation for dislocations. From the definition of the dislocation velocity tensor, it
can be verified that the rate of plastic distortion tensor is given by

β̇
p
ij = −eimnVmnj . (23)

2.3 Dynamics of Dislocated Crystals

The classical development presented so far assumes that the plastic distortion βp and
its time rate of change can be introduced arbitrarily, and it is required to determine
the displacement, elastic distortion, and internal stress fields. This problem is known
as the internal stress or incompatibility problem. We continue to present this theory
with no regard to the externally imposed stresses as their effect can be simply added
to the solution of the incompatibility problem itself.

The elastic distortion βe is related to the internal stress field by Hooke’s law for
linearly elastic crystals, which is written in the form

σ = c : βe, (24)

which, in component form, reads σij = cijklβ
e
kl , with c being the fourth-rank

elasticity tensor of the crystal. The stress field must satisfy Cauchy’s equation of
motion which is written as

∇ · σ = ρü, (25)

or σij,j = ρüi , where ρ is the mass density of the crystal. For simplicity, we
consider the medium to be infinitely extended so that no boundary conditions are
included at this stage. Upon using βe = β − βp and β = ∇u into the equation of
motion above, the latter can be rearranged in the form

∇ · (c : ∇u)− ρü = ∇ · (c : βp) . (26)

or in component form (cijklul,ki − ρüj = cijklβ
p
kl,i ). Solution of the equation of

motion can be obtained using the Green function technique. Omitting details, the
solution for the displacement field is given by Mura (1987),
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by

un(x, t) = −
ż

cijklGjn,i(R, T )β
p
kl(x

′, t ′)dx′3dt ′, (27)

and the total distortion tensor by

βmn(x, t) =
ż

cijklGjn,i(R, T )epmkαpl(x′, t ′)dx′3dt ′

−
ż

ρĠln(R, T )Jml(x′, t ′)dx′3dt ′ + β
p
mn(x, t), (28)

where G(R, T ) is the Green function (tensor), R = x − x′, T = t − t ′, and the
integrals are carried out over the entire space and time from −∞ to t . The elastic
distortion tensor is given by βe = β − βp, and it yields the internal stress via
Hooke’s law σij (x, t) = cijklβ

e
kl(x, t). This completes the solution for the internal

stress problem once the dislocation density and flux tensors are prescribed. It can
be easily shown that the above results can be specialized to the case of stationary
dislocation system.

2.4 Summary of the ContinuumDislocation Dynamics Problem

Based on the theory developed in the previous sections, the fields and field equations
of continuum dislocation dynamics are summarized as follows:

• The dislocation field. The dynamic dislocation field is described by the density
tensor α and flux tensor J or α and the velocity tensor V. The density tensor α

and the flux tensor J are given in terms of the plastic distortion and its time rate
of change:

{
α = −∇ × βp,

J = β̇
p
.

(29)

These two fields, respectively, satisfy the gauge and continuity conditions

{
∇ · α = 0,

α̇ + ∇ × J = 0.
(30)

• The distortion fields. The total distortion β is given by the gradient of the
displacement field

β = ∇u = βe + βp. (31)



74 Continuum Dislocation Dynamics: Classical Theory and Contemporary Models 1593

The total distortion satisfies the compatibility condition

∇ × β = 0, (32)

and the continuity condition

β̇ = ∇∂tu = ∇u̇. (33)

• The displacement and stress fields. The internal stress field is related to the elastic
distortion β by Hooke’s law

σ = c : βe. (34)

Therefore the displacement field satisfies Cauchy’s equation of motion:

ρü = ∇ · σ = ∇ · [c : (∇u− βp)] (35)

The system of Eqs. (29) through (35) is valid for dynamic problems involving
continuously distributed dislocations, and it can be solved provided that the plastic
distortion βp and its rate β̇

p
are prescribed. For a given system of dislocations,

the evolution of the dislocation configuration and the plastic distortion can be
computed once the dislocation motion is connected with the internal stress field.
This closure is missing in the classical theory of dislocation fields. The stumbling
block here is the fact that the dislocation density tensor α does not provide sufficient
information to determine the rate β̇

p
, which is necessary to evolve the dislocation

configuration in time. In fact, the tensor α measures only the so-called geometrically
necessary dislocations, while β̇

p
depends in general also on the statistically stored

dislocation density within a certain material volume. By contrast, in the discrete
dislocation dynamics method, all dislocations are fully resolved (in other words they
are all geometrically necessary at the length scale of observation), and therefore the
evolution of plastic distortion can be determined without complications. The recent
continuum dislocation dynamics theories discussed in Sect. 3 achieve this closure of
the governing equations and thus qualify as crystal plasticity theories as well.

2.5 The Discrete Dislocation Line

The theory presented above can be specialized to discrete dislocation lines. The
results can be found in the works by Kosevich (1979), Mura (1987), and Kossecka
and de Wit (1977a, b) for the dynamic case and by Kröner (1981) for the static
case. Here we summarize the final results for the dynamic case. The term discrete
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dislocation line is used here to represent a single curved dislocation with both ends
at infinity, a dislocation line closed on itself, a dislocation network with no free ends
in the bulk of the crystal, or a combination of such configurations. The collection of
all points on the discrete line will be denoted by L(t), implying that the dislocation
line changes its position and length as a function of time. The first quantity of
interest for the discrete dislocation line is the dislocation density tensor field, which
is given by

αpl(x, t) =
ż

S(t)

epmkδ,m(R)bldS
′
k =

∮

L(t)

δ(R)bld�
′
p = δp(L)bl. (36)

where, as previously defined, R = x−x′, S(t) is the defect surface which is bounded
by the dislocation line L(t) and d�′ is a vector line element at x′. The defect surface
S(t) is the surface of discontinuity of the displacement field. For a glide dislocation
loop on a specific crystallographic plane, this surface is enclosed by the loop itself.
The function δp(L) = ∮

L(t)
δ(R)d�′p is a vector Dirac delta function on the line

L(t). Next, the dislocation flux tensor is defined by

Jkl(x, t) =
∮

L(t)

epmkδ(R)blv
′
m(x′, t)d�′p, (37)

where vm is the mth component of the dislocation velocity at x′. The plastic
distortion in the case of a discrete dislocation is not a continuous function of space as
it was assumed in the case of continuously distributed dislocations. It is the singular
part of the total distortion, and it represents a deformation field that is localized on
the defect surface S(t). It is identically zero everywhere else. Its increment or time
rate of change, however, is localized on the dislocation line itself as in (37). This
plastic distortion field is given by

βP
kl (x, t) = −

ż

S(t)

δ(R)bldS
′
k = −δk(S )bl, (38)

where δk(S ) is a vector Dirac delta function of the surface S. The elastic distortion
for the discrete dislocation line is given by

βmn(x, t) =
ż

dt ′
∮

L(t ′)

[
epmkcijklGjn,i(R, T )+ ρĠln(R, T )v′k(x′)

]
bld�

′
p,

(39)

and the stress field is given via Hooke’s law. The static solution for the incompati-
bility problem can be obtained by dropping the inertia term in Cauchy’s equation of
motion and continuing the development in essentially the same way. Such solutions
are available in the work of de Wit (1970, 1973).
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3 Recent ContinuumDislocation Theories

3.1 2D Statistical Theory of Dislocations

Groma (1997) and Groma et al. (2003) pioneered the adoption of the concepts of sta-
tistical mechanics to modeling simple, many-dislocation systems, thus developing
a first density-based model of dislocation transport in single slip. The dislocation-
dislocation correlation was used to account for the impact of dislocation density
fluctuations on the internal driving force of dislocations (Zaiser et al. 2001). Further
elaboration of the theory and generalization to multislip case was done by Yefimov
et al. (2004a, b) and Yefimov and van der Giessen (2004, 2005). Assuming N

infinitely long edge dislocations with Burgers vector b distributed in a plane normal
to their line direction, the fundamental evolution equation of discrete dislocation
dynamics is

vi = MFi
PK = Mbτi

effv̂
i , τ i

eff = τ i
ext +

N∑

j �=i

τ ij (ri − rj ) , i, j = 1, . . . , N.

(40)
In the above, v is the dislocation velocity with unit direction v̂, M is the dislocation
mobility, FPK is the Peach-Koehler force, and τeff is the effective resolved shear
stress on the glide plane. The latter stress is split into two parts, the external stress,
τext, and the collective stress resulting from interaction with all other dislocations,
τ ij (ri − rj ). A density-based form of the evolution Eq. (40) comes in the form of
a pair of transport equations for the density of positively and negatively oriented
dislocations, ρ+ and ρ−; see Groma (1997) for details. These transport equations
have the form

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂ρ+(r,t)
∂t

+Mb ∂
∂r

∫ {ρ++(r, r′, t)− ρ+−(r, r′, t)}τ(r− r′)d2r′

+Mb ∂
∂r ρ+(r, t)τext(r, t) = 0,

∂ρ−(r,t)
∂t

+Mb ∂
∂r

∫ {ρ−−(r, r′, t)− ρ−+(r, r′, t)}τ(r− r′)d2r′

+Mb ∂
∂r ρ−(r, t)τext(r, t) = 0.

(41)

In the above, ρ++(r, r), ρ+−(r, r′), ρ−−(r, r′), and ρ−+(r, r′) are pair densities,
which are cast in terms of the dislocation correlations, dss′(r, r′), as follows:

ρss′(r, r′) = ρs(r)ρs′(r
′)
(
1+ dss′(r, r′)

)
. (42)

Using these correlations and skipping details, the transport equations can be
conveniently rewritten in the form

{
∂ρ(r,t)

∂t
+Mb ∂

∂r κ{τint + τext − τs} = f (ρ, κ, · · · ),
∂κ(r,t)

∂t
+Mb ∂

∂r ρ{τint + τext − τs} = 0,
(43)
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where ρ = ρ+ + ρ− and κ = ρ+ − ρ− and

τint(r) =
ż

κ(r′)τ (r−r′)d2r′ , τs(r) = −
ż

κ(r′)d t(r−r′)τ (r−r′)d2r′, (44)

with the total correlation, d t(r− r′), expressed in the form

d t(r− r′) = [2d++(r− r)+ d+−(r− r)+ d+−(r′ − r)]/4. (45)

In the above, τint is the long-range stress, and τs is called the back stress. It is due
to the dislocation correlation. Finally, the function f (ρ, κ, · · · ) accounts for the
nucleation and annihilation of dislocations. Assuming that the correlation is short-
ranged and considering an isotropic elastic medium, the back stress can be written
as

τs(r) = μb

2π(1− ν)ρ(r)
D

∂κ

∂r
, (46)

where μ is the shear modulus, ν is Poisson’s ratio, and D is a dimensionless
constant.

The transport equations are solved in conjunction with crystal mechanics equa-
tions as shown by Yefimov et al. (2004a, b) and Yefimov and van der Giessen (2004,
2005). In order to do so, the long-range and external stresses are lumped together as
the internal stress, which is found by solving the stress boundary value problem:

{
∇ · σ = 0 , stress equilibrium,

σ = c : εe = c : (ε − εp) , Hooke’s law,
(47)

subject to the appropriate traction and/or displacement boundary conditions. In the
above, ε, εe, and εp are the total, elastic, and plastic strain tensors, respectively. The
plastic strain itself is given by

εp =
ż

ε̇p(t ′)dt ′ , ε̇p = γ̇ (S+ S̃). (48)

where S = s ⊗ m is the Schmidt tensor and S̃ is its transpose, with s and m being
the unit slip and unit normal vectors, respectively. The plastic shear rate is given in
terms of the dislocation transport rate by

γ̇ = ρbv = ρbMb(τRSS − τs) , τRSS = σ : S. (49)

Initial conditions for the dislocation field and the plastic strain are required. The
transport equations depend on time explicitly. The mechanics equations depend on
time implicitly via εp(t).
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Various aspects of this theory have been recently revisited by Valdenaire et al.
(2016). Kooiman (2015) on the other hand has developed a more formal coarse-
graining procedure of dislocation dynamics of simple, edge-on configurations like
the ones treated by Groma (1997) using the General Equation for Non-equilibrium
Reversible-Irreversible Coupling (GENERIC) framework (Öttinger 2005).

3.2 Field DislocationMechanics Theory

Field dislocation mechanics (FDM) is the continuum theory of dislocations devel-
oped by Acharya and coworkers (Acharya 2001, 2003, 2004; Roy and Acharya
2005). FDM was formulated with the objective of reconciling conventional plastic-
ity and the elastic theory of continuously distributed dislocations (ECDD) of Willis
(1967) and Mura (1987). FDM allows to solve dislocation evolution problems in the
fully nonlinear elastoplastic settings. In its early formulation, FDM was intended
as a microscopic theory within the finite-deformation kinematics framework, with
dislocation density tensors of individual slip systems as primary state variables of
the theory. Similar to conventional continuum plasticity, in FDM, the free energy
depends only on elastic strains, with no explicit dependence on the dislocation
density. Therefore, the theory entails neither higher-order stresses nor a back stress
in the expression for average dislocation velocity/plastic strain rate. Subsequent
development introduced a new framework named phenomenological mesoscopic
field dislocation mechanics (PMFDM) (Acharya and Roy 2006; Roy and Acharya
2006; Acharya 2011), which results from a space-time averaging of the equations
of FDM, together with additional phenomenological closure equations. In contrast
to FDM, PMFDM is a mesoscale theory, and as such the only microstructural state
variable is the average dislocation density tensor field α. We shall sketch here a
compact summary of PMFDM, limiting our attention to the small deformation case
for simplicity.

In broad strokes, the objective of PMFDM simulations is to determine the
displacement field u in a certain domain Ω subject to standard displacement/traction
boundary conditions while concurrently evolving the average dislocation density
field α subject to dislocation flux boundary conditions. Clearly, the internal stress
state is controlled by both the boundary loads and the dislocation density field,
and the internal flux of dislocations is driven by the local stress and determines
the plastic strain rate.

In PMFDM, a single time step comprises the following three phases:

1. The dislocation density tensor is evolved in time by solving the following IBVP:

⎧
⎪⎪⎨

⎪⎪⎩

α̇ = −curl(α × v+ Lp)+ s in Ω

α(v · n) = φ on ∂inΩ

α(x, 0) = α◦(x) in Ω, at t = 0

(50)
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Here v is the average dislocation velocity, Lp is the rate of plastic flow carried
by the statistically stored dislocations, and s is the dislocation nucleation rate.
These three quantities are prescribed phenomenologically to provide closure
equations to PMFDM. The quantity φ represents a prescribed flux on the inflow
boundary ∂inΩ , while α◦(x) is the initial condition for the dislocation density.
The IBVP (50) is implemented numerically using the so-called Galerkin least-
squares (GLS) method. More details on boundary conditions are discussed in
Acharya and Roy (2006).

2. Next, two auxiliary fields are determined, namely, the tensor field χ and the
vector field z. These two fields are introduced by the orthogonal decomposition
of the elastic distortion into a compatible part ∇ (u− z) and an incompatible
part χ :

βe = ∇ (u− z)+ χ . (51)

The field χ is determined directly from the dislocation density tensor α by
solving the following BVP, say, using least-squares finite element method
(LSFEM):

⎧
⎪⎪⎨

⎪⎪⎩

∇ × χ = α in Ω ,

∇ · χ = 0 in Ω ,

n · χ = 0 on ∂Ω .

(52)

The vector field z is updated in time using its rate ż, which in turn is found from
the solution of the following elliptic BVP:

⎧
⎪⎪⎨

⎪⎪⎩

∇ · ∇ż = ∇ · (α × v+ Lp) in Ω

n · ∇ż = n · (α × v+ Lp) on ∂Ω

ż = ż◦ (arbitrary value) at one point in Ω.

(53)

3. Finally, the displacement field is found by a Galerkin FEM implementation of
the following BVP:

⎧
⎪⎪⎨

⎪⎪⎩

∇ · {C : [∇ (u− z)+ χ ]} = 0 in Ω

σn = t on ∂tΩ

u = u on ∂uΩ

(54)

Recent applications of PMFDM include a study of multicrystalline thin films
carried out by Puri et al. (2011). In this study, the mechanical response was
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Fig. 1 Thin film with four grains used in the PMFDM simulations of Puri et al. (2011). (a)
Stress-strain curves for penetrable and impenetrable grain boundaries. (b) Norm of α for different
combinations of layer passivation and grain boundary penetrability

analyzed as a function of several parameters including the film thickness, presence
of a surface passivation layer, and use of different types of dislocation flux jump
conditions to mimic penetrable and impenetrable boundaries. The model predicts
that the accumulation of polar dislocations along passivated layers results in a
relatively (a) stiffer mechanical response, (b) thickness dependence of stress-strain
response, and (c) significant Bauschinger effect in passivated films as compared to
unpassivated films, as shown in Fig. 1.

Note that in FDM the dislocation density tensor α ultimately controls its own
evolution through the phenomenological closure equation (50). Phenomenological
closure equations were also adopted by Sethna and coworkers (Limkumnerd and
Sethna 2006; Chen et al. 2010), who introduced a minimal continuum dislocation
theory where the evolution of plastic distortion is determined by the traceless portion
of the dislocation density as β̇p

ij = vaρaij−1/3δij vaρakk , where ρijk = β
p
ik,j−β

p
jk,i

is simply the Nye tensor expressed as a skew-symmetric tensor of rank three and va
is a phenomenological dislocation velocity depending on ρaij itself.
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3.3 3D Higher-Dimensional Theory

Hochrainer and coworkers (Hochrainer et al. 2007; Sandfeld et al. 2010) developed
a continuum theory of dislocations designed specifically to overcome the so-called
problem of kinematic closure, that is, the problem of defining a set of kinematic
variables possessing a sufficient amount of information to determine plastic strain
rate and their own kinematic evolution. The theory enjoys kinematic closure in a
higher-dimensional configuration space defined by both position and orientation
coordinates, hence the name higher-dimensional continuum dislocation dynamics
(hdCDD). To illustrate the main ideas, let us consider the two-dimensional case of
dislocations with the same Burgers vector b moving on a specific glide plane. Let
ρII (x, ϕ) be the density of dislocations which at the point x = (x1, x2) on the plane
has a line direction forming an angle ϕ with the Burgers vector. hdCDD defines the
generalized line direction as the vector field L(x, ϕ) = [cosϕ, sinϕ, k(x, ϕ)]T
whose last component is the local line curvature k(x, ϕ). The density ρII (x, ϕ) and
the curvature k(x, ϕ) are the two fundamental fields of hdCDD. Based on these two
fields, the dislocation density tensor of second-order αII is defined as

αII (x, ϕ) = ρII (x, ϕ)L(x, ϕ)⊗ b . (55)

Because dislocations cannot end within the crystal, this quantity must be divergence-
free in the configuration space, which implies the condition

cosϕ∂x1ρ
II + sinϕ∂x2ρ

II + ∂ϕ(ρ
II k) = 0 . (56)

Next, consider the generalized velocity vector

V II (x, ϕ) = [v(x, ϕ) sinϕ,−v(x, ϕ) cos ϕ, ϑ(x, ϕ)]T . (57)

The first two components of V II represent a velocity field v(x, ϕ) =
v(x, ϕ)[sinϕ,− cos ϕ] which is orthogonal to the line direction [cosϕ, sinϕ] in
the glide plane, while the last component is the rotational velocity of the dislocation
line. With the understanding that the velocity fields v(x, ϕ) and ϑ(x, ϕ) are assigned
by constitutive laws, it can be shown that the exact time evolution law for αII is

α̇II (x, ϕ) = −∇ ×
[
V II (x, ϕ)× αII (x, ϕ)

]
(58)

Translated in terms of evolution equations for the scalar fields ρ and k, Eq. (58)
reads:

{
ρ̇II = −∇ · (ρIIv)+ ∂ϕ (∇Lv)+ ρII vk

k̇ = −vk2 − ∇L∇Lv + ∇V k
(59)
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In Eq. (59) ∇· indicates the standard spatial divergence, while ∇X indicates the
projection of the generalized gradient along direction X. Note that the coupling
between ρ and k implies the necessity to have curvature as an independent field.

Because all its field equations are defined in the higher-dimensional space (x, ϕ),
the numerical implementation of hdCDD has proved to be rather prohibitive. For this
reason, subsequent development was aimed at deriving simplified theories based on
purely spatial field variables (Hochrainer et al. 2009, 2014; Sandfeld et al. 2011;
Hochrainer 2015). The field variables of the simplified theories are the coefficients
of the Fourier expansion of the dislocation density and curvature density fields of
hdCDD. For example, the zeroth- and first-order coefficients in the expansion of
ρ(x, ϕ) are the total scalar dislocation density ρt and the geometrically necessary
dislocation density vector κ(x), respectively:

ρt (x) =
ż 2π

0
ρ(x, ϕ) dϕ κ(x) =

ż 2π

0
ρ(x, ϕ)

[
cosϕ
sinϕ

]
dϕ . (60)

From κ(x), the classical Nye tensor is simply recovered as α = κ(x) ⊗ b.
Moreover, under the assumption that scalar dislocation velocity and curvature fields
are independent of orientation, averaging of the hdCDD evolution Eq. (59) over ϕ

yields the following evolution laws for ρt and κ :

{
ρ̇t = −∇ · (vκ⊥)+ vρtk

κ̇ = −∇ × (ρtvn)
(61)

Here n is the glide plane normal, κ⊥ = κ × n, and k is the average curvature.
Unfortunately, an evolution law for k cannot be expressed in terms of the fields
ρt and κ alone. In fact, the order of truncation of the Fourier expansion defines
a hierarchy of theories where the evolution of lower-order Fourier coefficients
depends on the values of higher-order ones. Therefore, in contrast to hdCDD,
simplified theories lack intrinsic kinematic closure, and phenomenological closure
approximations must be introduced at each order. The simplest theory, called
CDD(1), is obtained when a phenomenological evolution equation for the average
curvature k is used together with Eq. (61). A detailed comparison of possible closure
equations is discussed by Monavari et al. (2014). This theory was recently applied
to study the formation of dislocation patterns by Sandfeld and Zaiser (2015), who
found a relationship between the applied stress and the pattern wavelength which is
consistent with the principle of similitude, as shown in Fig. 2. Interestingly, in this
two-dimensional model, patterns emerge without the cross-slip mechanism.

Despite its importance, it should be remarked that kinematics is only one aspect
of the closure problem of CDD discussed in Sect. 2.4. Arguably, the most critical
aspect of the closure problem concerns the derivation of the velocity fields in terms
of the state variables. Although this process can be cast in a thermodynamically
consistent formalism (Acharya 2004; Hochrainer 2016), currently the choice of the
thermodynamic potentials remains largely phenomenological.
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Fig. 2 Relations between the applied stress τext, the patterning length Λ, and saturated dislocation
density ρt . The evolution of dislocation density patterns in A and B shows a map of the density ρt

at different levels of τext. Plot (A) corresponds to a shear stress τext = 170 MPa; the plot (B) is at
τext = 560 MPa. (From Sandfeld and Zaiser 2015)

3.4 3DModel with a Vector Density Representation

A 3D model of continuum dislocation dynamics was developed by Xia and El-
Azab (2015a, b) and Xia et al. (2016). Based on small deformation kinematics, the
model considers a vector representation of the dislocation density for the individual
slip systems, which are governed by transport-reaction equations derived from the
second of Eq. (30) in a few steps: first, that equation is specialized for individual
slip systems by adding reaction terms at the level of slip system that cancel one
another upon addition and, second, dropping the Burgers vectors from the result.
Considering only cross slip as a source terms at slip system level and omitting
details, the dislocation transport-reaction equations has the form

ρ̇l = ∇ × (vl × ρl )+ ρ̇cs
l∗→l − ρ̇cs

l→l∗ (62)

where ρl and vl are the dislocation density velocity vectors on slip system l,
respectively, and ρ̇cs

l∗→l and ρ̇cs
l→l∗ are the cross-slip rates from l∗ to l and from

l to l∗. In the above, l = 1, . . . , N where N is the total number of slip systems and
l∗ is the cross slip system for system l. The above system of equations requires the
velocity fields vl for all l and the cross-slip rates to be solved. The velocity fields
are found in terms of the local Peach-Koehler, Fl,PK , via a mobility law

vl = MFl,PK = Mbτl v̂l (63)
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Fig. 3 (a) The 5 μm cube used for the simulation at 0.5% strain, with active cross slip. Colors
represent the dislocation density and highlight the 3D cell structure. (b) Dislocation structure on a
(001) slice. (From Xia et al. 2016)

in which M is the dislocation mobility, τl is the resolved shear stress on slip systems
l, and v̂l = Fl,PK/|Fl,PK | is the unit direction of the velocity. The mobility equation
is coupled to the crystal mechanics equations via an eigenstrain problem similar to
that summarized in Eq. (47) through (49). Namely, the velocity is found from the
stress solution, while the stress boundary value problem is solved by updating the
eigenstrain from the dislocation motion via Orowan’s law. The cross-slip rate is
assumed to have the form

ρ̇cs
l→l∗ = ṗcs

l→l∗ρl‖b, (64)

where ṗcs
l→l∗ is the cross-slip probability rate and ρl‖b is the screw dislocation

density. It is important to mention here that the cross-slip rate term is localized
in the screw direction only. Xia et al. (2016) has obtained cross-slip rates for an
fcc crystal from dislocation dynamics simulations and implemented this rate into
the coupled dislocation transport/stress solution outlined above. Figure 3 shows the
results of a uniaxial tension simulation in a Cu single crystal. It was found that three-
dimensional cell patterns the qualitatively resemble those observed by transmission
electron microscopy were obtained when cross slip is activated.

4 Summary

The basic concepts of the classical theory of dislocation fields were summarized in
this chapter. Of particular interest here is the linking of the dislocation content with
the incompatibility of the elastic and plastic distortion fields, which is accomplished
by the definition of the dislocation density tensor. Such a tensor was defined on a
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purely kinematical basis in the work of Kröner (1981) and de Wit (1970, 1973).
Mura (1987) and Kosevich (1979) on the other hand tried to link that tensor to
actual crystal dislocations by defining the plastic stain rates in terms of dislocation
motion. However, that connection was left incomplete in the classical theory, and
as such the theory did not materialize into a framework for predicting plasticity
of crystals. Realizing the lack of ability to predict plasticity, and motivated by the
method of dislocation dynamics simulation (Kubin 2013; Bulatov and Cai 2006),
where the dislocation motion is connected with the internal stress, several authors
started to develop predictive continuum dislocation approaches that overcome this
shortcoming. The field dislocation mechanics (Acharya 2001, 2003, 2004) is one
such approach in which the definition of the dislocation density is linked to the
incompatibility equation much as in the classical theory. For other models the
need was realized to separate dislocations based on their slip systems and a more
detailed description of the transport of dislocations has been used accordingly as
in the 2D statistical theory, 3D higher-dimensional theory, and the 3D model with
vector representation of the dislocation density. All such approaches are under
active development at present time. This development is focused upon three aspects:
improving the representation of dislocation mechanisms such as cross slip, junction
formation, and annihilation reactions into the transport equations, accounting for
long-range stress fluctuations and dislocation-dislocation correlations, and improv-
ing the numerical coupling of the transport description of dislocations with crystal
mechanics.
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Abstract

Metallic materials have a hierarchy of structures ranging in scale from nm
to mm. We generalize the notion of crystalline plasticity models to include a
range of model constructs that address phenomena associated with evolution
of dislocations in crystals across a range of length and timescales. These
model constructs range from coarse-grained atomistics, microscopic phase field
models, and dislocation field models, to discrete dislocation dynamics, statistical
continuum dislocation models, and on up to mesoscale generalized continuum
models of gradient, micropolar, or micromorphic type, as well as local continuum
crystal plasticity that can be applied over many grains. Key phenomena are
introduced and mapped onto the capabilities of various scale-specific model
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constructs for dislocation plasticity. We discuss concurrent and hierarchical
multiscale model transitions in space and time and summarize key challenges
in closing.

1 Introduction: Material Structure Hierarchy and Associated
Models

Metal plasticity is fundamentally associated with processes of nucleation, genera-
tion, migration, interaction, trapping, and annihilation of dislocations in crystals and
polycrystals (McDowell 2008, 2010). Hierarchy of material structure is prevalent in
engineering alloys. Figure 1 depicts five levels of structure hierarchy, ranging from
the discrete atomic structure of lattices and interfaces (atomistics), to migration and
interaction of dislocation line segments (discrete dislocations), to collective pattern
formation of dislocations (substructure), to heterogeneous plastic flow within sets
of grains/phases (polycrystal plasticity), and finally up to the scale of engineering
applications where underlying structure is “smeared” by considering a macroscopic
set of properties or responses. The minimum length scale typical of each of these
levels is also shown in Fig. 1 and ranges from interatomic spacing to mean free path

Fig. 1 Hierarchy of length scales in metal plasticity ranging from atomic (resolution of dislo-
cation cores), to configurations of dislocations, patterning at the mesoscale, and up to multiple
grains/phases at the scale of structural applications. Various classes of crystalline plasticity model
constructs appear along the top, superimposed on range of associated material structure hierarchy.
Certain properties/responses computed using DFT or atomistics shown at far upper left can upscale
directly to inform higher length scale models at right



75 Connecting Lower and Higher Scales in Crystal Plasticity Modeling 1611

for dislocations, to grain size, and on up to characteristic dimensions of components
or structures. Of course, the associated issue of relative timescales of interest for
processes at each level of structure hierarchy is implicit in the dynamic to thermo-
dynamic transition indicated from left to right in Fig. 1, ranging from fs to years.

Models of dislocation plasticity are necessary to characterize properties/re-
sponses of interest over a wide range of length scales. Goals of this range of
model constructs may differ according to the scales addressed. Model constructs
addressing phenomena corresponding to scales to the right in Fig. 1 are typically
of substantially reduced order and reflect cooperative thermodynamics and kinetics
of dislocated crystals. On the other hand, discrete models that apply to scales at
the left in Fig. 1 are either fully dynamical or employ some kind of overdamped
dynamical scheme, tracking locations of individual defects. Degrees-of-freedom
(DOF) necessary to characterize the structure of a fixed volume of material decrease
from left to right in Fig. 1. Certain continuum theories are exceptions that bridge
to small length scales but potentially retain access to longer timescales relevant
to thermally activated dislocation interactions and migration. Examples include
microscopic phase field (MPF) models and field dislocation mechanics (FDM)
descriptions. FDM descriptions often share common elements with statistical con-
tinuum dislocation (SCD) models, namely, incompatibility mechanics based on the
net dislocation density tensor, differing mainly in the manner in which distributions
of dislocations are tracked. Only atomistic and coarse-grained atomistic approaches
commonly address dislocations as naturally emergent line defects in the lattice.
With the exception of atomistics (MS or MD), coarse-grained atomistics, or the
application of MPF or FDM models with near atomic resolution, all other models
introduce primitive representations of dislocations.

2 Hierarchical and Concurrent Multiscale Modeling
of Dislocations

For the present purposes, we define multiscale modeling as the practice of build-
ing and exercising models for a set of physical processes that operate over a
range of length and/or time scales, regardless of the form of linkage between
models expressed at various levels of fidelity or resolution. We may distinguish
between coarse-graining and model reduction approaches to multiscale/multires-
olution modeling. Here we adopt the most common definition in the discrete
particle/molecular modeling communities: coarse-graining reduces the number of
model degrees of freedom via simplifications that retain the underlying nature of
the original description but average over space and/or time. For example, a model
might replace a large number of atoms in a molecular system using a simplified
representation while retaining information related to bonding. On the other hand,
model reduction (sometimes referred to as model order reduction) seeks to reduce
model complexity/fidelity by reducing the model’s associated state space dimension
or degrees of freedom, offering an approximation to the original model. The key
difference is that model form often changes in model reduction, whereas model
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form is essentially invariant in coarse-graining. Suffice it to say that most models
presented in Fig. 1 involve model reduction rather than coarse-graining; this greatly
complicates pursuit of concurrent multiscale modeling approaches, discussed later
in this section.

Fully concurrent models seek to simultaneously pursue solutions of models
framed at different spatial resolution and corresponding model fidelity (Ghosh et al.
2001, 2007; Kouznetsova et al. 2004). The simulations carried out at different scales
are coupled and interact in two-way fashion. They are by nature temporally synchro-
nized, in that the time/strain step is limited by the most demanding resolution of any
domain, typically that of highest fidelity and/or resolution. Concurrent models have
at least two further classifications: (i) domain decomposition and (ii) multiresolution
and/or multifidelity models exercised within or over the same spatial domain. In
domain decomposition, a coarse-grained or reduced order model representation is
employed over part of a spatial domain, with an abutting high fidelity representation
over the remainder. For example, we may require high resolution and fidelity
near an interface or a crack tip, with low fidelity and/or resolution elsewhere. For
purposes of modeling dislocations, we will consider that fully concurrent models
require exchange/transport of dislocations between the two domains; weaker forms
of concurrency might consider dislocation migration in only one domain.

Hierarchical multiscale models are of one-way character, typically informing
parameters of models at the next successive length scale of modeling within the
hierarchy shown in Fig. 1. As shown to far left in Fig. 1, there are some exceptions.
Certain properties computed using DFT or atomistics can upscale hierarchically to
inform models at various length scales, even up the to the grain scale. Examples
include elastic lattice constants, interface energy, generalized stacking fault energy
(SFE), and effects of the dislocation core structure and constriction on stress-state
dependent yielding.

3 Challenges of Dislocation Field Problems:
Length and Timescale Transitions

Dislocation field problems in mechanics are particularly demanding for multiscale
models, owing to the complexity of the physics (e.g., dislocation core effects, long
range dislocation interactions, and short range shielding interactions). Progress has
been slow and elusive on concurrent models in this regard, and no satisfactory
concurrent multiscale models exist that bridge length scales from dislocation cores
(order of nm) to dislocation substructures (hundreds of nm) to typical laboratory
specimens (μm to mm).

There are also substantial challenges in timescaling. Short range lattice relaxation
occurs on the order of tens of ps in a MD simulation. Approaches have been
introduced to improve time scaling of both direct type (Kim et al. 2014; Binder
et al. 2015) or statistical coarse-graining of short range interactions in cross
slip of dislocations (cf. Deng and El-Azab 2010). At low applied stress levels,
thermally activated bypass of larger obstacles or a field of obstacles with high
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activation volume (much larger than scales of atomistic unit processes) requires
coordinated thermal fluctuations having low probability of successful attempts.
Activation entropy associated with dislocation nucleation and bypass phenomena
has been largely neglected. Some works (Nguyen et al. 2011; Ryu et al. 2011;
Saroukhani et al. 2016) have considered the limitations of harmonic transition
state theory (HTST), since it does not represent anharmonic entropic effects at
finite temperature, including temperature-dependence of the elastic shear modulus
(thermal softening), thermal expansion, and other surface energies (e.g., stacking
fault energy) that relate to dislocation nucleation and bypass.

4 Status of Models at Various Levels of Hierarchy

4.1 Concurrent Multiscale ModelingMethods from Atomistic
to Continuum (QC, CADD, and CAC)

Large scale direct MD simulations of dislocations are highly intensive (e.g., 500
million atom simulations of a slab of Cu by Buehler et al. 2005) and are limited
to short times and high strain rates. Historically, concurrent schemes for bridging
atomistic and continuum methods in problems involving dislocation activity have
employed spatial domain decomposition; fully resolved atomistic models (far left
in Fig. 1) are desired in a subdomain near a crack tip or a grain boundary interface,
for example, and coarse-grained or reduced order descriptions are used elsewhere.
A number of these methods have been compared by Tadmor and Miller (2011).

We focus here on methods that admit moving dislocations in both fully resolved
and coarse-grained or continuum regions, as well as two-way exchange of dislo-
cations between the two regions. Clearly, the value of methods that bridge from
atomistic to continuum descriptions is their strong predictive character (limited by
the uncertainty in the interatomic potential and scale linking algorithms) compared
to mesoscale strategies. One of the most widely cited atomistic-continuum multi-
scaling approaches is the Quasicontinuum (QC) method (Tadmor et al. 1996a, b;
Shenoy et al. 1998, 1999; Miller et al. 1998a, b; Knap and Ortiz 2001; Tadmor
and Miller 2011). QC accomplishes atomistic coarse-graining by linking lattice
site positions to a reduced set of representative atoms, introducing summation
rules that allow reduction of cost of ensemble sampling for force or energy, and
schemes for adaptation that facilitate fully resolved atomistic simulation in regions
of high local deformation (e.g., interfaces, crack tips, dislocations) but coarse-
grain away from these evolving regions to minimize the degrees of freedom.
In its earliest and perhaps most commonly used form, termed “local” QC, the
coarse-grained continuum region makes use of a Cauchy-Born assumption of
an affine deformation within each region of interpolation between representative
atoms that define elements. Accordingly, it offers a precise description of the
underlying interatomic hyperelastic potential even in continuum regions, subject to
coarse-graining error for inhomogeneous deformation. QC requires either a priori
assignment of fully atomistic and coarse-grained regions for dislocation migration
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or adaptation/reassignment of associated atoms and nodes to reach a fully atomistic
description near dislocations (Shenoy et al. 1999) or interfaces.

Most applications in modeling dislocations have employed quasi-static QC
methods based on energy minimization. A fully nonlocal or cluster QC version was
developed (Knap and Ortiz 2001) to minimize ghost forces in coarse-graining, with
extensions to energy-based rather than force-based cluster sampling schemes (Eidel
and Stukowski 2009. Kwon et al. (2009) have introduced higher order adaptive
QC schemes to improve description of large scale inhomogeneous deformation as
might occur in coarse-grained regions away from dislocations. QC has been applied
to quantify lattice dislocation interactions with grain boundaries (Shimokawa et al.
2007; Yu and Wang 2012, 2014). Recent advances have sought to increase efficiency
while handling arbitrary fields of dislocations (Amelang et al. 2013, 2015), as
well as development of a fully nonlocal, energy-based QC method by Amelang
et al. (2015). This approach has been extended recently to consider automatically
adaptive modeling of fully nonlocal QC to model dislocations moving through a
lattice (Tembhekar et al. 2017). A meshless QC method based on local maximum-
entropy interpolation has been developed (Kochmann and Venturini 2014) that
improves efficiency of model adaptation near regions of fully atomistic resolution
to capture dislocations.

The Coupled Atomistic Discrete Dislocation (CADD) method introduced
originally by Shilkrot et al. (2002a, b, 2004) with subsequent advances and
applications (Shiari et al. 2005; Dewald and Curtin 2007a, b, 2011) employs domain
decomposition with a continuum discrete dislocation representation away from the
grain boundary, admitting two-way exchange of dislocations between this remote
region and a fully atomistically resolved domain near the grain boundary. This kind
of formulation is quite useful in studies of crack tip and interface plasticity that
extends the fields to long range. It is considered fully concurrent in that dislocations
can move from the atomistic to continuum regions and vice versa. With a focus
on capturing the interaction stress fields of dislocations at long range, Dewald and
Curtin (2007a, b) employed CADD to analyze dislocation pile-up interactions with
grain boundaries.

Unlike QC, CADD uses a different elastic energy function in the remote
regions – these regions are subjected to reduced order continuum models rather
than atomistic coarse-graining. Accordingly, in addition to model reduction error,
interpretation of temperature differs in the two regions and there is impedance to
wave propagation at the atomistic-continuum interface. Impedance effects can be
minimized by employing damping heuristics (Qu et al. 2005) but are inevitable
in the absence of statistical coarse-graining. Initial implementations of CADD
have focused on 2D problems by virtue of complexities in addressing dislocation
transfer across interfaces. Progress has been achieved on passing general 3D mixed
character dislocations between atomistic and continuum regions (Cho et al. 2015);
Pavia and Curtin (2015) have advanced parallel algorithms for 3D CADD that
enhance scalability at high accuracy for appropriate problems with long range fields,
including Langevin graded stadium damping to eliminate spurious wave reflections
and interface forces.
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The concurrent atomistic-continuum (CAC) method was developed as an out-
growth of atomistic field theory (Chen 2009), with a local density function used
to connect this continuum theory to atomistics via multiscale balance equations.
The CAC method is a 3D integral finite element approach to solve the governing
field equations for coarse-grained atomistics that admits description of dislocation
nucleation and migration with or without adaptive coarse-graining (Xiong et al.
2011, 2012a, b, 2015). Dislocations can be modeled throughout the entire domain,
whether at full atomistic resolution or coarse-grained. This sets it apart from
methods that require full atomistic resolution at the dislocation core. While QC
typically seeks the most accurate and efficient solution to dislocation plasticity via
adaptive remeshing of the domain near dislocations to full atomistic resolution,
CAC can resolve full atomistics if necessary near interfaces or crack tips, but
allows dislocations to nucleate, multiply, migrate, and interact even in the coarse-
grained regions along interfaces between elements, introducing the option to
coarse-grain dislocation fields over larger scales. Like QC, CAC employs the same
interatomic potential even in coarse-grained regions where dislocations evolve and
interact. Such coarse-graining in CAC introduces systematic error, for example, in
representation of dislocation core structures and short range interactions, which can
be quantified and balanced with the high computational demands of remeshing,
according to the purposes of the mesoscale modeling.

CAC employs either a quasi-static implementation enforcing quenched dynamics
at each time step with periodic energy minimization applied every 50–100 time
steps (Xu et al. 2015, 2016), or a true dynamic (full inertial effects that can address
phonon interactions with wavelengths above the element size, cf. Xiong et al.
2014a, b, 2015, Pluchino et al. 2016) implementation, based on an extension of the
lattice statistical mechanics approaches of Irving and Kirkwood (Kirkwood 1946;
Irving and Kirkwood 1950). The quasi-static implementation is considered useful
for modeling reaction pathways for thermally activated dislocation processes in a
manner that is not overdriven, as typical of MD simulations. Finite temperature
applications to date have assumed isothermal conditions or dynamic behavior with-
out a thermostat. Finite temperature formulations for quasi-static (near equilibrium)
and nonequilibrium dynamic conditions or heat transport via modes other than
phonons remain to be fully developed (cf. QC advances by Marian et al. 2010).

Similar to CADD and static QC, the quasi-static version of CAC is useful
for modeling phenomena such as detailed reactions of successive pile-up dislo-
cations with interfaces, with the additional advantage of accessing large volumes
that approach scales of TEM thin foils and nonperiodic boundary conditions
(e.g., traction free surfaces), cf. Xu et al. 2017.

4.2 Microscopic Phase Field (MPF) Models

Continuum microscopic phase field (MPF) models (Wang et al. 2001; Shen and
Wang 2003; Wang and Li 2010; Shen et al. 2014) hold significant promise to bridge
from first principles and atomistic modeling to describe partial dislocations and deal
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with time dependent deformation phenomena in continuum theory in a way that
is not limited to the time step size of atomistic simulations. MPF models can be
regarded as an application of phase field theory at or near atomic scale of refinement,
including diffuse interface theory and gradient terms specific to that scale. MPF
has spatial resolution at the core scale, similar to the Peierls model (Peierls 1940),
and admits conveyance of information regarding core size, energy and interactions
(Chen et al. 2014). Therefore, MPF is framed at a length scale that can resolve
individual dislocation cores (i.e., dissociated partial dislocations) via the generalized
stacking fault energy function, representing dislocations using eigenstrain methods.
It can address limited numbers of dislocations with near atomic scale fidelity. It can
directly employ inputs from ab initio and atomistic modeling regarding physical
properties, surface energies, and elastic constants, and has the ability to predict
fundamental properties of individual defects or small sets of defects, including
formation energy, size, structure, saddle point configuration of the reaction pathway,
and activation energy of defect nuclei, and the micromechanisms involved (Wang
and Li 2010).

When used in conjunction with transition state theory or other appropriate long
time kinetics, including diffusive phenomena, continuum phase field theory offers
the potential to bridge to long time scales. This is quite useful in predictive compu-
tational materials science to support design of interfaces, microstructures, etc. MPF
serves to bridge from atomistic modeling of generalized stacking fault energy to
describe partial dislocations in a higher scale continuum theory (Wang and Li 2010).

4.3 Field DislocationMechanics (FDM)

Field dislocation mechanics applies to a theoretical continuum framework that
incorporates incompatibility of elastic and plastic deformation as an explicit part
of the field equations. Focus is placed on the incompatible part of the plastic
distortion that establishes the excess dislocation density tensors. Accordingly, it
offers a continuum coarse-graining methodology for incompatibility mechanics by
changing the characteristic size of the Burgers circuit (e.g., integration point area
through which dislocations cut). The theoretical construct of FDM was formalized
by Acharya and co-workers over a decade ago (Acharya 2001, 2003; Acharya
et al. 2006, 2008; Roy and Acharya 2006; Roy et al. 2007), providing common
ground for treating incompatibilities with higher scale theories such as SCD and
GC. Hence, FDM serves as a theoretical construct to consider the effect of size of
Burgers circuit on response. Typically based on small strain/distortion assumptions
to facilitate solution strategies, this class of theory explicitly incorporates lattice
closure relations on incompatibility expressed either in terms of a single dislocation
(e.g., approaching atomic scale, cf. Zhang 2015; Hartley and Mishin 2005; Mendis
et al. 2006), or in terms of the Nye tensor (Nye 1953) evaluated over a finite Burgers
circuit for a large number of dislocations (analogous to second gradient plasticity).
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4.4 Discrete Dislocation Dynamics (DDD) Models

Discrete dislocation dynamics (DDD) implementations employ continuum linear
elasticity solutions for dislocations to compute long range, nonlocal elastic inter-
actions, representing the positions and velocities of all dislocations by discretizing
the dislocation lines into a piecewise series of curves or segments (Lepinoux and
Kubin 1987; Gulluoglu et al. 1989; Amodeo and Ghoniem 1988, 1990; Ghoniem
2005). DDD methods typically assume a simple form of dislocation force-velocity
relationship (mobility) for screw and edge components of dislocations and do not
explicitly distinguish partial dislocations. The influence of nonlinear dislocation
core effects (which are outside the singular theory of linear elasticity) on short range
dislocation interactions has been effectively addressed by non-singular formulations
of DDD (Cai et al. 2006) that can replicate the influence of core spreading and
attenuation of interaction energies. These approaches can be hierarchically informed
using atomistic simulations (Martınez et al. 2008; Groh et al. 2009; Rudd et al.
2014).

The DDD method has received significant investment and is maturing as a tool
for discrete dislocation simulations (e.g., ParaDiS code, Arsenlis et al. 2007, Tang
et al. 2011; and the microMegas code, Devincre et al. 2011), including massive
parallelization (Wang et al. 2006), fast multipole methods to address long range
stress field interactions of segments, along with mesh adaptivity to segment the
evolving dislocation lines, and employment of maximum power dissipation to assess
dislocation junction node dissociation. Sills et al. (2016) have introduced advanced
time integration algorithms for DDD simulations. More efficient FFT formulations
of DDD have recently been advanced that offer improved efficiency and scalabilty
(cf. Bertin et al. 2015). While DDD has been extensively applied to the problem of
dislocation pattern formation and workhardening in single crystals under periodic
boundary conditions, recent applications have considered the complexity of cyclic
loading (Hussein and El-Awady 2016) for up to 80 cycles, including the role of
dislocation cell walls.

DDD modeling approaches for finite size specimens have been advanced to
consider size effects, influence of free surfaces and image forces, intermittent/jerky
flow behavior, and source limitation/starvation phenomena at submicron to micron
scale specimens (Van der Giessen and Needleman 1995; Guruprasad and Benzerga
2008; Akarapu et al. 2010). Recent advances have considered highly parallel
finite element or boundary element method implementations for arbitrary finite
geometries (Crone et al. 2014) and for considering elastically anisotropic crystals
(Liu et al. 2016), including associated fast multipole expansions for long range
interactions (Yin et al. 2012). DDD has proven extremely useful as a means to
model dislocation plasticity in confined geometries such as constrained thin films,
multilayers, micropillars, and nanoindentation to provide key physical insights
into scale dependent dislocation phenomena and interactions with surfaces and
interfaces (cf. Zbib et al. 2011) including cases where kinetics dominates elastic
interactions (Ryu et al. 2013).
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As a reduced order model, DDD shares certain challenges with other continuum
formulations, including construction of high angle grain boundaries and treatment of
dislocation slip transfer reactions with interfaces. Representation of solute distribu-
tion, associated dislocation core interactions, and drag effects, as in dynamic strain
aging, is challenging with DDD and may require two-way multiscale concurrency in
cases where timescales of atomic level processes cannot be separated from scales of
dislocation migration. Dislocation interactions with point defects (Cai et al. 2014)
or interactions with diffusive vacancies at large strain or under cyclic loading at
finite temperature require extension of the framework that may vary according to
modeler preference and are in early stages of development, whether involving DDD
or atomistic methods that separate timescales to inform DDD (e.g., Keralavarma
and Benzerga 2015; Baker and Curtin 2016; Matveev et al. 2016).

Certain thermally activated unit processes such as dislocation cross slip have
been incorporated heuristically in DDD (cf. Groh and Zbib 2009; Groh et al. 2009;
Deng and El-Azab 2010; Kang et al. 2014; Xia and El-Azab 2015; Xia et al. 2016;
Hussein and El-Awady 2016). However, just as in coarse-grained atomistics, the
ability to model coordinated thermally activated processes involving substantial
activation volume (e.g., >1000 b3) is limited.

In terms of two-scale transitions to the continuum crystal plasticity level, the
kinematics of DDD are logically addressed by concurrent schemes advanced by
Zbib and coworkers (Zbib and Diaz de la Rubia 2002; Zbib et al. 2002; 2011),
including coupling with FE methods for addressing finite geometries and considera-
tion of free surfaces (Khraishi and Zbib 2002). DDD has been used to hierarchically
inform GC or LC crystal plasticity formulations (cf. Zbib et al. 1998, 2002; Zbib
and Diaz de la Rubia 2002; Wallin et al. 2008, Groh et al. 2009). Accounting
for continuum lattice rotation in DDD is nontrivial and of multiscale character,
requiring an assignment of a volume element for this purpose in multiscale strategies
(Zbib and Diaz de la Rubia 2002; Zbib et al. 2002. DDD has also been applied
to initial-boundary value problems on finite domains using implementations that
couple with the finite element method to model responses of structures and devices
(Yasin et al. 2001; Zbib et al. 2011). Groh and Zbib (2009) provide an overview
of hierarchical versus concurrent coupling methods between DDD and continuum
crystal plasticity.

4.5 Statistical ContinuumDislocation (SCD) Models

Statistical continuum dislocation models are a class of reduced order continuum
descriptions in the spirit of DDD that formulate the governing equations in a manner
that pertains to a statistical population/distribution of dislocations (cf. Groma 1997,
2010; Groma et al. 2003; Arsenlis and Parks 1999, 2002; El-Azab 2000, 2006;
Zaiser 2001; LeSar and Rickman 2004; El-Azab et al. 2007; Hochrainer et al.
2007, 2014; Hochrainer 2015; Deng and El-Azab 2010; Ispanovity et al. 2010;
Sandfeld et al. 2011; Xia and El-Azab 2015; Kapetanou et al. 2015; Groma et al.
2015, 2016; Xia et al. 2016; Monavari et al. 2016). These models employ averaging
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procedures based on the statistical mechanics of interacting many-body systems,
recognizing that the Nye tensor employed in FDM and numerous GC theories
typically offer a description of only geometrically necessary dislocation (GND)
density in an averaged sense over all the line directions in a volume element (or
Burgers circuit) and not the overall dislocation population and are therefore limited
in nature. Statistical descriptions of dislocation densities and fluxes are nontrivial,
as pointed out by Sandfeld et al. (2011). Limitations naturally arise associated with
averaging assumptions that are made. The description of dislocations goes beyond
that of the classical dislocation density tensor (e.g., El-Azab 2000; Hochrainer et al.
2007) to provide more statistical information. In some cases, the total dislocation
density is also tracked (i.e., statistically stored content as well as GND density) to
convey more information. In its 3D implementation (cf. Xia and El-Azab 2015),
distributions of the dislocation segments of edge and screw character are each
tracked at each integration point, along with mobility-dependent migration with
wait times at barriers. Appropriate boundary conditions are necessary as in DDD
for finite domains and free surfaces.

SCD models ostensibly bridge between DDD and GC models in appearance
but have strong connectivity to the governing equations of FDM, also considering
statistical moments of dislocation ensembles and their interactions. Like FDM,
SCD can resolve to the nanoscale, and like GC it can bridge upward to express
incompatibility mechanics at scales of hundreds of nm. A principal advantage of
SCD is its potential to shed light on scaling relations for dislocation substructure
formation and to explore sensitivity of these relations to various physical parameters
and mechanisms. Xia and El-Azab (2015) predicted arrangements of dislocations
into cell structures by treating plastic deformation as an eigenstrain field, solving
an incremental elastic boundary value problem for slip system driving forces and
transport of dislocation densities, similar in nature to FDM models. Cross slip
has been admitted at the unit process level of junction bypass (Xia and El-Azab
2015; Xia et al. 2016) and was found to play a key role in describing formation of
dislocation cell structures, as was also found using DDD by Hussein and El-Awady
(2016).

4.6 Generalized Continua (GC) Crystal Plasticity Models

Generalized continua (GC) crystal plasticity models introduce dependence on
specific dislocation configurations necessary to accommodate compatible imposed
strain, as reflected through scale-dependent incompatibility of the elastic and plastic
deformation gradients. GC models for dislocation plasticity are necessarily of
reduced order compared to the preceding frameworks. They augment strength-
ening due to overall dislocation density with dislocation configuration dependent
strengthening expressed by dependence on the GND density, invoking a range of
model assumptions in this regard. Advanced GC theories for dislocations in a lattice
typically associate higher order stress quantities that conjugate with evolution of
generalized kinematical variables to contribute to dissipation. They are intended to
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apply to length scales well above the average spacing of dislocations and to initial-
boundary value problems with scales that are typically on the order of 500 nm
and above. Because they are reduced order continuum formulations and typically
require introduction of normalizing characteristic length scale(s), most GC models
do not offer predictive character in the same sense as DDD, FDM, and SCD
models, requiring more model assumptions, phenomenology, increased number of
parameters, and influence of associated calibration schemes. Still, they have value
since they are highly amenable to efficient finite element implementation and can
span upwards through modeling at the length scale of polycrystals. GC models
are extensions of classical local crystal (LC) plasticity models that include various
nonlocal approximations to incorporate effects of size and dislocation configuration.
Due to space limitations and extensive coverage elsewhere, LC models (cf. Asaro
1983) are not discussed here.

GC crystal plasticity models of strain or slip gradient (Busso et al. 2000; Gurtin
2002; Evers et al. 2004; Cheong et al. 2005; Bayley et al. 2006; Gurtin and Anand
2007; Abu Al-Rub et al. 2007; Viatkina et al. 2007; Gerken and Dawson 2008;
Dunne et al. 2012), micropolar (Forest et al. 2000; Forest and Sievert 2003; Mayeur
and McDowell 2011, 2013, 2014, 2015) and micromorphic (Aslan et al. 2011;
Cordero et al. 2010, 2013) types have advanced substantially over the past 15 years,
to the point where they are viable and efficient reduced order alternatives to DDD
or SCD for modeling mechanical response of domains with scales on the order
of μm to tens or hundreds of μm, including polycrystals. These models employ
the phenomenological notion of so-called “characteristic length scale” parameters
that normalize gradient or nonlocal terms to capture size effects. These length
scale parameters do not represent physical characteristic lengths but depend to
varying degree on the initial conditions, boundary conditions, and level of inelastic
deformation (Voyiadjis and Abu Al-Rub 2005).

Second gradient (plastic strain gradient or slip gradient) crystal plasticity models
regularize the influence of strain gradients on the material workhardening behavior
(Busso et al. 2000; Gurtin 2002; Evers et al. 2004; Cheong et al. 2005; Bayley et al.
2006; Gurtin and Anand 2007; Abu Al-Rub et al. 2007; Viatkina et al. 2007; Gerken
and Dawson 2008; Dunne et al. 2012). Back stress arises naturally in such models as
a manifestation of GND gradients and manifest specimen size and boundary effects.
As a further extension, Hurtado and Ortiz (2013) have offered a novel GC crystal
plasticity framework that includes both energy created by surface steps and self-
energy of dislocations based on slip gradients (GNDs) that is able to capture the
significant influence of free surfaces on the stress-strain behavior of micropillars in
compression.

Recent developments have cast GC crystal plasticity models into forms that
express sensitivity to multiphase microstructures and complex dislocation mech-
anisms (cf. Keshavarz and Ghosh 2013; Ghosh et al. 2016a, b; Shahba and
Ghosh 2016), along with sophisticated mechanistic evolution equations at the slip
system level and associated calibration schemes. It is very difficult to incorporate
comparable levels of key dislocation mechanisms and material structure hierarchy in
the other model constructs shown in Fig. 1 for complex alloy systems. For example,
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Keshavarz and Ghosh (2015) proposed a hierarchical GC crystal plasticity for Ni-
base superalloys. Ghosh et al. (2016b) introduced a parametrically homogenized GC
crystal plasticity model for γ-γ′ Ni-base superalloys that addresses transitions across
three scales: subgrain precipitates and dislocation-precipitate interactions, grain
level response, and collective polycrystal behavior with realistic 3D microstructures.

The extension of GC crystal plasticity to model submicron scale processes
involving dislocation substructure and slip transfer at grain boundaries is still
in early stages (Bieler et al. 2009). Microstructure-sensitive GC models that
incorporate evolving dislocation density at the slip system level as internal variables
(cf. Raabe et al. 2001; Ma et al. 2006; Roters et al. 2010; Dunne et al. 2012;
Keshavarz and Ghosh 2013; Mayeur and McDowell 2013, 2014, 2015; Shahba and
Ghosh 2016) offer enhanced correlative capabilities for complex loading conditions
in many cases at the scale of individual grains. Still, the experimentally observed
number of activated slip systems at the subgrain scale is typically limited compared
to simulations using most mesoscopic crystal plasticity models of GC and LC
type (Lloyd 2010; Buchheit et al. 2005); this is an issue that requires increased
focus on slip system hardening relations and more intimate connection to in situ
experimental data such as EBSD and digital image correlation measurements of
surface deformation.

5 Summary and Challenges

Some of the more challenging and longstanding mesoscale gaps for the hierarchy of
crystalline plasticity models listed in Fig. 1 include:

• Distinguishing dislocation nucleation and growth processes.
• Initial conditions and evolving structure of interfaces.
• Slip transfer at interfaces, including interface evolution and damage.
• Quantifying coarse-graining and model reduction errors.
• Uncertainty quantification of individual models, domain decomposition, and

various two-scale transitions.
• Modeling dislocations in multicomponent material systems (cf. Rao et al. 2017),

including appropriate interatomic potentials for atomistic methods that include
uncertainty quantification.

• Improving fidelity and accuracy of simulation of local states of slip system
activation and degree of slip within individual grains to support material fatigue,
fracture, and ductility assessments.

• Coupling dislocation structure and behavior with point defect interactions,
including climb, strain aging, and hydrogen, interstitial, and vacancy interactions.

• Timescaling across a spectrum of thermally activated processes involving a range
of activation volumes.

In spite of significant limitations in timescaling and incorporation of finite
temperature effects, atomistic coarse-graining methods have more predictive
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character than other scale transition schemes to support understanding and design
of new material systems and microstructures affected by dislocation phenomena.
DDD and SCD models hold great promise to predict scale-dependent dislocation
strengthening, but at present are subject to greater uncertainty in addressing
realistic dislocation microstructure effects such as grain or phase boundaries,
crystal anisotropy, etc. at substantial strain levels. Higher length scale models
(e.g., GC or LC) and associated scale transition schemes are appropriate more for
systems having rather well-established understanding of dislocation mechanisms.
The concern for GC and LC crystal plasticity models is their lack of predictive
support for discovery and design of new alloy systems that do not have an
established knowledge base. To some extent, DDD also relies on the prior
knowledge base for materials (witness the large number of applications to pure
metals in the literature), as well as uncertain information from atomistic models
to inform parameters and algorithmic choices.
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twins, particulates or precipitates, and subgrain phases are the focus of this
discussion. The methods use data from characterization methods to provide 3D
statistical distribution and correlation functions that serve as inputs to the virtual
microstructure generation process. Computational methods infer 3D statistical
descriptors from 2D surface data and use stereology or other optimization-
based projection techniques for 2D to 3D development. The chapter reviews the
DREAM.3D software package and discusses newly developed methods to incor-
porate twins, particles, and subgrain-scale phases. Finally, the microstructure-
based SERVE is introduced in the realm of establishing microstructure-property
relations.

1 Introduction

The recent years have seen an increasing trend in the use of microstructure-based
mechanistic models for predicting material deformation and extreme behavior like
fracture and fatigue response. A primal need in the development of image-based
micromechanical models is the creation of representative 3D virtual models of
the microstructures. An obvious path is by direct image reconstruction from 3D
experimental data on sample volumes of the microstructure. Such experimental
data may be extracted from electron backscatter diffraction (EBSD) or scanning
electron microscopy (SEM) images of serial-sectioning samples (Groeber et al.
2006) or from various computed tomography techniques (Turner et al. 2017).
Deterministic models of the microstructure, representing the exact data from
experiments (Bhandari et al. 2007), however, are not necessarily best suited for
micromechanical simulations, since the microstructure itself may have significant
spatial variations.

A less direct but effective approach is to represent structure through the use
of tools that generate statistical distribution functions equivalent to desired sets
obtained from experimental observations. These “statistically equivalent” virtual
microstructures must capture the statistics of characteristic variables, such as
grain shape and size, crystallographic orientations, and misorientations and their
correlations (Groeber et al. 2008a, b). The approach generally entails quantifi-
cation of experimental data followed by microstructure generation that statisti-
cally match material measurements to a predetermined degree of accuracy. It is
capable of limiting the need for abundant data collection, as well as supple-
menting information when direct 3D data is unavailable. Furthermore it enables
the incorporation of microstructural statistics in higher length-scale constitutive
relations for microstructure-property relations. Finally, the ability to generate virtual
microstructural instantiations allows for virtual design or sampling of the potential
microstructural space, driving toward tailoring materials structure.

Creating statistically “accurate” material instantiations for many engineering
materials is still in its infancy with many gaps and opportunities. Recent efforts,
centered around integrated computational materials engineering (ICME) and the
materials genome initiative (MGI), assume at their core that both the material
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structure and functionality of materials can be captured in a digital environment.
It is imperative to the success of these initiatives that the materials community
develop methodologies for creating digital analogues to real materials. In practice,
it is common to generate performance models with limited amount of microstruc-
tural information. Typically, simple geometric shapes or tessellations are used to
represent microstructures with consideration of lower moments such as average
values. The use of such lower moments is often inadequate for accurate prediction
of many properties of interest, such as fatigue, fracture, creep, etc. Higher statistical
moments of the microstructural distributions, depicting extreme values, are needed
for these predictions. While 3D data collection plays a critical role, especially
when extreme properties are of interest, 3D experimental methods alone are often
not adequate for this framework. Many microstructural arrangements must be
interrogated for probabilistic understanding of the relation between microstructure
and these properties. To facilitate this, experimental data should be coupled with
characterization methods to provide 3D statistical distribution and correlation
functions that serve as the inputs to the synthetic microstructure generation process.
An additional incentive in this development is to infer 3D statistical descriptors from
2D observations and surface data through the use of stereology or other projection
techniques. This is particularly relevant due to the fact that 3D experimental
techniques remain unavailable or prohibitively expensive to a large portion of the
materials community.

Various methods have been proposed in the literature for generating polycrys-
talline or polyphase microstructures, e.g., in Sundararaghavan and Zabaras (2005),
Kumar et al. (2016), Rollett et al. (2007), Saylor et al. (2004), Guo et al. (2014), Jiao
et al. (2007, 2013) and Hasanabadi et al. (2016). In Sundararaghavan and Zabaras
(2005), reconstruction of 3D microstructures is solved as a pattern recognition
problem, where a microstructure database is used with limited statistical information
available from planar images. Microstructures are represented in the form of
undirected probabilistic graphs or Markov random fields for computing probability
distribution of statistically similar microstructures in Kumar et al. (2016). In Rollett
et al. (2007), a 3D grain-structure generation method is based on statistical data
gathered from sections on different planes with assigned orientations. Statisti-
cally representative polycrystalline microstructures are computationally simulated
in Saylor et al. (2004) from geometric and crystallographic observations from
orthogonal sections. Maps on the orthogonal planes characterize the sizes, shapes,
and orientations of grains, and a voxel-based tessellation technique is subsequently
used to generate the microstructure. A dilation-erosion method is developed in Guo
et al. (2014) for stochastic reconstruction of 3D duplex stainless steel microstructure
containing percolating filamentary ferrite phase from 2D optical micrographs. In
Jiao et al. (2007), the authors have concluded that the two-point correlation function
space of a statistically homogeneous material can be expressed through a map,
constructed on a selected set of bases of the function space. A procedure to model
and predict microstructure evolution of lead-tin alloys has been developed using
the two-point correlation function associated with different phases in Jiao et al.
(2013). A method for 3D microstructure reconstruction from two-point correlation
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functions of 2D cross sections using conditional probability theorems and a phase-
recovery algorithm is developed in Hasanabadi et al. (2016). The n-point correlation
functions have been further used in Tewari et al. (2004) and Niezgoda et al. (2010) to
reconstruct the microstructure and obtain homogenized properties. Recent work by
the author’s group combines optimization tools like Genetic Algorithms (Goldberg
1989) with stereology-based projection techniques to develop 3D microstructures
from 2D data (Pinz et al. 2018; Tu et al. 2019).

Direct numerical simulations (DNS) of large microstructural regions can be com-
putationally prohibitive. To negotiate this, representative computational domains
must be optimally defined for evaluating effective properties without having to solve
large microstructural regions. This has led to the concept of a representative volume
element (RVE), which is foundational to computational estimates of structure-
property relations. Originally introduced in Hill (1963) as a microstructural sub-
domain that is representative of the entire microstructure in an average sense,
the RVE definition has undergone variations (Ostoja-Starzewski 2006; Torquato
2002; Pyrz 2006). For microstructures with nonuniformly dispersed heterogeneities,
the statistically equivalent RVE or SERVE has been defined in Swaminathan
et al. (2006), Swaminathan and Ghosh (2006) and McDowell et al. (2011) as
the smallest microstructural domain, for which statistical distribution functions of
morphological parameters, as well as material properties, converge to those for the
entire microstructure. Based on the convergence property in focus, the SERVE
can be classified into two categories, viz., (i) the microstructure-based SERVE
or M-SERVE, in which morphological and crystallographic characteristics of the
microstructure are the sole determinants of the representative volume, and (ii)
the property-based SERVE or P-SERVE that are determined from convergence of
selected material properties.

This chapter is aimed at discussing methods of generating 3D statistically
equivalent virtual microstructures and M-SERVEs of structural materials that are
characterized by polycrystalline and/or polyphase microstructures. It begins with a
description of the open-source software package DREAM.3D, which is a popular,
user-friendly standardized code for generating synthetic material instantiations.
Subsequently some recent developments in modeling polyphase materials and
polycrystalline materials, containing heterogeneities such as micro-twins and par-
ticulates, are discussed.

2 Creating Statistically Equivalent Virtual Polycrystalline
Microstructures Using DREAM.3D

DREAM.3D is an open-source software package focused on creating a high-level
programming environment to process, segment, quantify, represent, and manipulate
digital microstructure data. A central goal of DREAM.3D is to enable the translation
of microstructure quantification to a digital basis with easy-to-use software tools.
The DREAM.3D environment is constructed to allow independently developed
filters and plug-ins to interface with one another, enabling small research groups,
government laboratories, start-up companies, and major industrial corporations to
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collaborate and leverage each other’s work. While DREAM.3D is a general suite
of microstructure processing tools, one of the most common uses of the software is
generating virtual material volumes for input into simulations of various types. This
can readily be seen by viewing the references to the original publication introducing
DREAM.3D (Groeber and Jackson 2014). The latest release of DREAM.3D can be
downloaded from the website given in Jackson (2018).

Synthetic builders generally consist of two major processes, viz., generating
features and spatial arrangements within a computational volume. Features may
be generated by sampling the size, shape, and morphological and crystallographic
orientation distributions observed by some experimental technique. Next, the
features are placed in the volume with specific focus on the local neighborhoods
of features. The sampling procedure, as well as the constraints used to place the
features in the volume, is briefly described here. More detailed descriptions of the
synthetic generation procedure can be found in Groeber et al. (2008a, b).

2.1 Representative Feature Generation

Idealized geometric objects have distributions of size, shape, and morphological
orientation equivalent to those observed in the experimental volume, representing
grains. In this representation, each feature is modeled as a geometric object (i.e.,
ellipsoid, super-ellipsoid, cube-octahedron, etc.) with a volume (V), a set of aspect
ratios (b/a, c/a), and a morphological orientation (φ1, Φ, φ2) corresponding to the
orientation of the major principal axes (a,b,c) relative to the global axes. First
the experimental feature volume distribution is sampled, which is represented by
the cumulative distribution function (CDF) fit to the experimental data. Many
investigations have shown the feature volume distribution to be well represented
within 1 → 2 standard deviations of the mean, by a log-normal distribution (Zhang
et al. 2004; Groeber et al. 2008b). It has been shown in Donegan et al. (2013)
that grain size distributions tend to deviate from log-normal near the tails of the
distribution. This can be accounted for by sampling from a piecewise distribution
using a different form near the tails. Features are sampled until the total volume of all
features generated is slightly larger than the volume of the synthetic microstructural
model (typically around 10% larger). Additional volume is needed because some
features may lie partially outside the domain or overlap other features. If the volume
being generated is to have periodic boundaries, then additional volume is not needed
because the portion of the features that fall outside of the domain will be placed on
the opposite side. Subsequent to the volume assignment, feature shapes are assigned
in conformity with CDFs of the aspect ratios (b/a, c/a). The corresponding CDFs are
represented in terms of a beta distribution, due to its bounds of [0,1]. Additionally,
the shape distributions are treated as a function of grain size by assigning unique
shape distribution functions to discretely binned volume ranges of grain size. The
morphological orientation of each feature is defined by a set of rotations (φ1, Φ, φ2)
needed to transform the global coordinates (X,Y,Z) onto the principal axes of
the feature (X’, Y’, Z’). The orientation space is discretized into cubic bins, and
the density in each bin represents the fraction of grains with that morphological
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orientation. Ellipsoidal orientations are created and assigned based on sampling this
probability density function (PDF), similar to the size and shape distributions. The
output of this process is a set of geometric objects, representative of the features
having statistically equivalent volume, aspect ratio, and morphological orientations
as the experimental reference data.

2.2 Feature Placement

Spatial arrangement of features in a microstructure and their subsequent interactions
drive local material response that can manifest in macroscopic heterogeneity. After
generating a set of geometric objects, it is important that the placement of the
features captures the local microstructural discontinuities. There are multiple issues
to consider when packing the features. The density of the objects, represented by
the features, is one of the largest factors in developing the packing algorithm.
For example, features representing particles of a low volume fraction phase will
certainly be placed differently than features representing grains in a fully dense
polycrystalline material. In the fully dense grain, for example, care must be taken to
pack the volume as densely as possible, but minimize overlap between features in
order to retain each feature’s prescribed shape. In both cases, the local neighborhood
of the feature (i.e., neighboring features) must also be addressed during placement.
The low volume fraction particles should be spaced equivalently to the experimen-
tal/reference data, and the densely packed grains should neighbor grains of sizes,
shapes, and orientations similar to those seen in the experimental/reference data.

Alternative viable options for feature packing have been discussed in Groeber
et al. (2008a) and Saylor et al. (2004). The approach used in DREAM.3D is a hybrid
of methods in these references. The set of voxelized features are initially randomly
placed in the volume. The features are then moved and swapped while enforcing
constraints such as overlap or gap limits, number of neighboring features, size dis-
tributions of neighboring features etc. This approach generally yields near-optimal
space filling through the overlap/gap limits and produces realistic neighborhoods
by requiring local grain arrangements to match experimentally obtained metrics.
The number of constraints affects the feasibility of finding a globally optimum
arrangement. All clusters of unassigned voxels, corresponding to morphological
incompatibility of features, are filled by a pseudo-grain coarsening process. A
constrained Voronoi tessellation method discussed in Groeber et al. (2008b) is
implemented to replace the voxelized representation of the grain aggregates by a
solid-body surface representation of the grain boundaries.

A final step in the generation procedure is the assignment of crystallographic
orientations to the placed features. The process of assigning crystallographic ori-
entations is similar to the morphological orientation assignment process previously
described, though they do not affect the grain morphology. Rotations transform the
global coordinate axes to the crystal coordinate system, rather than the principal axes
of the grain. Orientations are swapped and replaced while optimizing comparison to
the experimental orientation and misorientation distributions.
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2.3 Generating Statistically Equivalent 3D Virtual
Microstructures

An example, demonstrating the use of the DREAM.3D software for microstructural
characterization and 3D virtual microstructure reconstruction of a titanium alloy
Ti-7Al, is shown in Fig. 1. This material has a predominantly hcp crystallographic
structure (Pilchak 2013). A surface scan of the electron backscattered diffraction
(EBSD) maps of the Ti-7Al alloy is shown in Fig. 1a. The morphological and crys-
tallographic orientation, misorientation, and micro-texture distribution data from
EBSD scans are input into the DREAM.3D software. The simulated statistically
equivalent microstructure of dimensions 300×300×300 μm containing 515 grains
is shown in Fig. 1b with colors representing the < c >-axis misorientation with
neighboring grains. The simulated pole figures are compared with those from EBSD
data in Fig. 1c. Furthermore the probability density functions of misorientation and
grain size are compared with those from EBSD maps in Fig. 1d, e respectively. Good
agreement is generally seen between the simulated and experimental probability
density functions.

3 Beyond DREAM.3D: Creating Statistically Equivalent RVEs
of Polycrystalline and PolyphaseMicrostructures

While the DREAM.3D software is capable of generating virtual polycrystalline
microstructures and SERVEs for various metals and alloys, incorporation of more
complex microstructural features is still in nascent stages. Such features include
those contained in polyphase and polycrystalline microstructures, e.g., annealing
twins or particles and precipitates inside grains. This section will summarize a
suite of algorithms that have been developed for creating M-SERVEs of complex
polycrystalline and polyphase microstructures belonging to three distinct categories.
These are:

1. Polycrystalline microstructures with localized features like annealing Σ3 twin
boundaries, shown in Fig. 2a;

2. Multiphase microstructures like subgrain γ − γ ′ microstructure of Ni-based
superalloys, shown in Fig. 7a;

3. Polycrystalline microstructures with dispersed precipitates and particles, e.g., for
Al 7075-T6, shown in Fig. 10a.

3.1 Polycrystalline Microstructures with Annealing Twin
Boundaries

Figure 2a shows EBSD images of a set of parallel sections of the superalloy René-
88 DT microstructure, obtained by wire electrical discharge machining (EDM) of
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Fig. 1 (a) EBSD scan of Ti-7AL; (b) statistically equivalent 300 × 300 × 300 μm virtual
microstructure containing 515 grains and showing the color plot of < c >-axis misorientation;
comparison of (c) orientation distribution, (d) misorientation distribution, and (e) grain size
distribution of the simulated microstructure with those from the EBSD data
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Fig. 2 (a) Serial sectioned EBSD images, (b) computer-assembled sections of EBSD images
manifesting polycrystalline microstructure including twins, and (c) polycrystalline microstructure
of parent grains only after removing twins, for the Ni-based superalloy René88-DT

a 10 × 5 × 1 mm sample (Lenthe 2017). The 3D assembly and microstructure
reconstruction are performed in the DREAM.3D software using (i) slice registration
and alignment, (ii) voxel level cleanup, (iii) feature segmentation, and (iv) artifact
removal as detailed in Bagri et al. (2018). Twin-related domains are grouped
with a 5◦ tolerance on both the disorientation axis and the disorientation angle.
The resulting stacked and assembled 3D polycrystalline microstructure containing
annealing twins is shown in Fig. 2b, where the grains are segmented with a 2◦
tolerance. The ensemble contains 440 twins in 300 parent grains for a total of 740
twins and grains. The polycrystalline microstructure is dominated by large aspect
ratio, annealing Σ3 twins that have a 60◦ misorientation angle about the < 111 >

crystal lattice axis. Details on the reconstruction of M-SERVEs are given in Bagri
et al. (2018).

The following steps are executed in sequence to generate statistically equivalent
volumes of twinned polycrystalline microstructures from scanned EBSD images.

1. Process the EBSD section data and construct the digitally assembled polycrys-
talline ensemble including twins;

2. Identify and remove twins from the digitally assembled microstructure to
manifest the parent grains shown in Fig. 2c;

3. Extract the statistics of parent grains from the EBSD data;
4. Create statistically equivalent virtual parent grain microstructures from the 3D

EBSD data;
5. Extract correlation statistics of twins with respect to parent grains from the EBSD

data in the digitally assembled microstructure;
6. Insert twins in the parent microstructure to match statistical correlations.

The DREAM.3D software (Groeber and Jackson 2014) is employed in steps
1–4 to create the digital polycrystalline ensembles from EBSD data in Fig. 2d:
remove twins in Fig. 2c and subsequently extract statistics of the parent grains.
The statistics of characteristic features in the twin-free parent grains in Fig. 2c,
including probability distributions of grain size, orientation, and misorientation
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Fig. 3 (a) Schematic of twins and parent grain and (b) statistics of grain size distribution after
removing twins

angle, are acquired following (Groeber et al. 2008a, b). The probability density
distribution of grain size is shown in Fig. 3b. For instances where only 2D EBSD are
available, methods of estimating 3D grain sizes from 2D surface data, e.g., through
the stereology relation d3D ∼ 4/πd2D (Groeber et al. 2008a), may be used.

In step 5, sample statistics are extracted from the EBSD data to generate
probability distribution and correlation functions of twins with respect to parent
grains. These are subsequently used to insert twins in the parent microstructure.
A schematic representing the relation of a twin with the parent grain is shown
in Fig. 3a. Statistical analysis shows the parent grain size d, number of twins in
parent grain n, minimum distance x of the twin from the parent grain centroid,
and the twin thickness t are strongly correlated. The joint probability distribution
of the correlation between twins and parent grains is expressed through a function
P0(d, n, t, x). The correlation statistics and joint probability distributions are shown
in Fig. 4.

The algorithm to insert twins in the parent grain microstructure consists of the
following steps.
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Fig. 4 Correlation statistics from the EBSD data: (a) joint probability density distribution of the
parent grain size and number of twins and (b) conditional probability density distribution of twin
thickness

1. Use the joint probability distribution of parent grain size and number of twins
P1(d, n) =

ş ş

P0(d, n, t, x) dt dx and the conditional probability distributions
of both twin distance from parent centroid P2(x|d = D,n = N) and twin
thickness P3(t |d = D,n = N) for twin insertion.

2. Determine the number of twins, twin thickness, and the twin distance from parent
centroid using a Monte Carlo-based acceptance-rejection scheme.

3. Locate the (111) plane at a distance x from the parent centroid.
4. Identify voxels that are at a distance t

2 from the mid-thickness (111) plane.
5. Calculate the rotation matrix from the rotation matrices of the parent grain and

the twin with respect to parent, i.e., R = RparentRtwin
6. Determine Euler angles of the twin, and reassign them to voxels of the twin.

The four-dimensional probability distribution P0(d, n, t, x) requires a very large
number of grains. Hence, a marginal probability function is used, when a smaller
set of statistical information is available. In step 1, the joint probability density
distribution, e.g., in Fig. 4a, is used for parent grain and number of twins per
parent, while the conditional probability distributions are used for the twin thickness
(Fig. 4b) and twin distance from the parent centroid. With this assumption, the four-
dimensional distribution space is approximated as:

P0(d, n, t, x) ≈ P1(d, n)P2(x|d = D,n = N)P3(t |d = D,n = N) (1)

This approximation is valid for any parent grain size and associated twins, where
the twin size and distance from the parent centroid are uncorrelated. When inserting
the coherent twins, they must be placed with the proper orientation relationship
to the parent. The twin boundary plane orientation in the specimen frame ms is
first determined using the crystallographic orientation vector of the parent grain as
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Fig. 5 (a) Simulated 3D statistically equivalent polycrystalline microstructure (3D-SEVPM) with
twins inserted in the parent grains and (b) comparison of the cumulative distribution function of
twin distance d from parent centroid in the EBSD scan and 3D-SEVPM of size 250 μm

ms = Rparentmp, where Rparent and mp = (111) are the parent grain rotation matrix
and grain boundary plane orientation vector in the crystal coordinates, respectively.
Subsequently, the plane is located at a previously selected distance x from the parent
centroid. The grain boundary plane will pass through the point xp = xc + x ms‖ms‖ .
Here, xp is the position vector of a point in the grain boundary, xc is the position
vector of the parent grain centroid, and ‖ms‖ is the norm of the grain boundary
normal. The rotation matrix of the twin in the specimen frame R is obtained from
the rotation matrix of parent grain Rparent and the rotation matrix of the twin with
respect to parent grain Rtwin as R = RParentRtwin. Using the components of R, the
Euler angles of twins are expressed as:

φ1 = tan−1(−R13

R23
), Φ = cos−1(R33), φ2 = tan−1(

R31

R32
) (2)

Repeating steps 1–6, the set of twins are inserted into the parent grain microstruc-
ture.

3.1.1 An Example of ValidatedM-SERVE Generation
The algorithm is used with EBSD data in Alam et al. (2016) for validating the virtual
microstructure generation process. The statistics shown, e.g., in Fig. 4 are used to
insert twins in the parent grain microstructure. A 250× 250× 250 μm 3D-SEVPM
consisting a total of 1700 parent and twins is shown in Fig. 5a. The cumulative
distribution function of the twin distance d from parent centroid for this 3D-SEVPM
is compared with that from the EBSD scan in Fig. 5b.

Studies in Bagri et al. (2018) have shown that the 3D-SEVPM converges to
the M-SERVE at 150 μm, which corresponds to approximately 400 grains and
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Fig. 6 Probability distribution of (a, b) misorientation angle and (c, d) twin thickness from the
EBSD data and the M-SERVE, respectively

twins. Comparison of the M-SERVE statistics with the EBSD data is made through
a few probability distributions. The distribution of the global misorientation and
twin thickness is compared in Fig. 6. The prominent peak in misorientation angle
distribution at 60◦ indicates the presence of twins in the microstructure. A good
agreement is obtained for all the distribution plots. This is a step in validating the
virtual microstructure generation method. In both the EBSD data and M-SERVE,
about 40% of the parent grains are seen to remain untwinned.

3.2 Two-PhaseMicrostructures Underlying Polycrystalline
Grains

Polycrystalline nickel-based superalloys like René-88 DT have an underlying
subgrain-scale two-phase microstructure consisting of a dispersion of γ and γ ′
precipitates, as shown in Fig. 7a. Subgrain-scale morphological characteristics like
volume fraction, mean size, and channel-width or spacing of γ ′ precipitates have
a major effect on their mechanical properties (Unocic et al. 2011). Modeling
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Fig. 7 (a) Scanning electron microscope image of a microstructural section of René-88 DT
acquired by FIB serial sectioning, (b) segmented SEM image after thresholding and despeckling,
and (c) spurious connectivity from serial sectioning after segmentation

their mechanical and physical behavior requires robust representation of these
morphological features in the M-SERVE. Many approaches have been employed
to include precipitate structure in performance simulations, e.g., Pollock and Argon
(1992), Nouailhas and Cailletaud (1996), Busso et al. (2000), Fromm et al. (2012),
Parthasarathy et al. (2004) and Keshavarz and Ghosh (2015).

This section discusses a methodology developed in Pinz et al. (2018) for
generating M-SERVEs of two-phase γ−γ ′ microstructures from 2D microstructural
scans of 3D data, using the following steps.

1. FIB-SEM serial sectioning: Acquisition of high-fidelity 3D γ − γ ′ microstruc-
tural data necessitates a high-throughput automated serial-sectioning process
coupled with high-resolution SEM data extraction.

2. Image processing and data cleanup: Cleanup and subsequent segmentation of γ
and γ ′ phases generate a reference 3D voxelization of the microstructure.

3. Feature extraction and statistical characterization: Parametrization and statis-
tical characterization of the γ ′ precipitate morphology and designation of the
relative precipitate positions are needed for establishing spatial distributions.

4. Statistically equivalent microstructural reconstruction: Optimally minimum
microstructures are generated with morphological and spatial statistics equivalent
to those of the large-imaged microstructures.

3.2.1 Data Extraction with 3D FIB Serial Sectioning and SEM-Based
Imaging

Recent advances in tomographic methods, e.g., in Uchic et al. (2006), and Echlin
et al. (2014) and image processing tools have greatly increased the accessibility of
3D data sets for a variety of materials. Microstructural data used for the generation
of the polyphase M-SERVE is obtained from Lenthe (2017), where a FIB is used to
expose parallel layers of the material that are imaged with a SEM. A sample section
is shown in Fig. 7a. The in-plane resolution is 2.5 nm per pixel with 20 nm between
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the slices. The sections are aligned via a convolution method to reduce the effects of
instrumental drift. The contrast difference between the γ and γ ′ phases is not large
enough to allow for robust automatic segmentation of the SEM images (Pollock and
Tin 2006) and can require extensive cleanup.

3.2.2 Image Segmentation
The FIB-SEM technique in Lenthe (2017) is used to collect 180 gray-scale images,
each with a size of 1996× 1596 pixels. The resultant image stack yields a 3× 4×
5 μm volume. An automated image segmentation process begins with local noise
reduction followed by image sharpening to enhance the contrast between the phases.
The sharpened image stack is segmented with a minimum entropy threshold (Li and
Lee 1993) as shown in Fig. 7b. Sections are interpolated between extracted images in
all three directions. The interaction volume of the SEM causes spurious connectivity
between the precipitates as shown in Fig. 7c. A watershed segmentation procedure
(Meyer 1994) is used to separate the conjoined precipitates using a gradient field
given as:

G(i, j, k) = Bint(i, j, k)

∑Nx
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(3)
where ī, j̄ , k̄ are dummy indices, Nx , Ny , and Nz are the number of voxels in
the x, y, z directions, respectively, and Nslice is the total number of slices after
interpolation. Dint is a map from each voxel to the value of its distance to the nearest
boundary in the plane, and Bint is a binarized map relative to Dint. The latter is an
indicator function of whether a voxel (i, j, k) is in a precipitate or not. The standard
deviation σ of the Gaussian blur is set to 1

10 th of the mean particle radius. This
gradient field is chosen to reduce disconnected over-segmentation by the watershed
algorithm. The purpose of the 3D Gaussian blur is to mitigate effects from the
voxelization of the precipitate edges. After application to the initially connected
inclusions, the watershed segmentation algorithm produces a final binary voxelized
map Bfinal that contains approximately 6000 contiguous precipitates.

3.2.3 Mapping Precipitate Domain to a 3D Parametric FunctionModel
Homogenized constitutive models require the precipitate morphology to be
described by a parametrized function with a finite number of parameters and
coefficients. These parameters may be calibrated from the actual surface profiles by
optimization. The chosen parametric function for surface representation represents
a generalized super-ellipsoid (GSE), delineated as:

(
x̄

a

)N1

+
(
ȳ

b

)N2

+
(
z̄

c

)N3

= 1 (4)
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The position vector x̄(= x̄, ȳ, z̄) corresponds to the location of a GSE surface point
xp(= xp, yp, zp) relative to its centroid x0(= x0, y0, z0) in its principal coordinate
system represented by the Euler angles (φ1, Φ, φ2). The relative coordinates are
expressed as {x̄} = [R]

{
xp − x0

}
, where [R] is the rotation matrix for the

precipitate coordinate system. In Eq. (4) a, b, c correspond to the principal axis
lengths of the super-ellipsoid, and N1, N2, N3 are exponents representing the
shape. The parametrized function in Eq. (4) entails evaluation of the parameter set
Ypar ∈ {x0, y0, z0, N1, N2, N3, a, b, c, φ1, Φ, φ2}. The parameters are calibrated
by solving an optimization problem that minimizes the orthogonal distance between
m surface points of a precipitate and the parametrized surface as:

Minimize
Ypar

m∑

i=1

D2
i =

m∑

i=1

‖xi − (xp)i‖2 =
m∑

i=1

{
xi − (xp)i

}2

+ {
yi − (yp)i

}2 + {
zi − (zp)i

}2 (5a)

subject to the constraint that each point i belongs to the GSE surface
(
x̄i

a

)N1

+
(
ȳi

b

)N2

+
(
z̄i

c

)N3

= 1 ∀ i ∈ [1,m] (5b)

The variable Di corresponds to the absolute Euclidean distance between a surface
point on the precipitate at coordinates (xi = (xi, yi, zi)) for a point i and its
conjugate surface point (xp)i = (xp)i, (yp)i, (zp)i on the parametrized GSE in
the current iterate.

3.2.4 Validation of Precipitate Mapping and Reconstruction
Distributions of morphological parameters of the precipitates generated are used to
validate the effectiveness of the parametrization.

I. Dice Index: The Dice index (DI) is used as a goodness-of-fit metric to compare
the orthogonal distance minimization (ODM) algorithm with an alternate moment-
based algorithm proposed in MacSleyne et al. (2009). DI is defined as the volume
of overlap between two objects (the actual precipitate and the GSE) divided by the
composite volume of the union of the two objects as: DI = VFIB∩VGSE

VFIB∪VGSE
. It ranges

from 0 corresponding to no overlap to 1 for perfect intersection. In Fig. 8a, the
distribution of DI is compared for GSE’s generated by alternate methods. “FULL”
corresponds to N1 �= N2 �= N3, while “REDUCED” has N = N1 = N2 = N3.

II. Size, Shape, and Orientation Distributions: The distributions of the major,
minor, and intermediate axes a, c, and b, respectively, represent the size and aspect
ratio of the precipitate. Figure 8b compares the distribution of the shape parameter
N obtained in the ODM algorithm to a log-normal distribution representation of the
same by the maximum likelihood estimation (MLE). Orientations of the GSEs by
the ODM algorithm with reduced shape parameters are used to generate equivalent
orientation distribution functions using spherical harmonics for crystallographic
texture.
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Fig. 8 Probability distribution of (a) the DI for equivalent ellipsoids generated by alternative
methods and (b) shape parameters in the ODM algorithm and MLE shifted log-normal distribution

3.2.5 Statistically Equivalent Microstructure by Dispersing
Precipitates

A set of precipitates with representative morphological parameters are generated
to yield a desired volume fraction. A placement algorithm that involves random
allocation with local perturbation to avoid precipitate overlap, as well as microstruc-
tural shuffling through an energy minimization scheme for positional stability, is
implemented. This method is iteratively continued with precipitate size scaling until
the experimental volume fraction is attained.

An optimization schedule is executed to minimize the difference in the two-point
correlation function S2 for the experimental microstructure and the 3D statistically
equivalent virtual microstructures (3D-SEVMs). The two-point correlation function
S2 is a statistically convergent measure of the microstructural heterogeneity in
Tewari et al. (2004) and Jiao et al. (2007). For isotropic distributions, it can be
approximated by a closed-form solution as:

S2(r) = Vf
2 + Vf (1− Vf )e

−r
r0

sin
(

2πr
a0

)

2πr
a0

(6)

where Vf represents the volume fraction of precipitates and a0 and r0 are calibrated
parameters. A genetic algorithms (GA)-based optimization (Goldberg 1989) is used
to minimize the difference in the S2 function. The fitness function is expressed as:

FFS2 =
(
ao − a

target
o

a
target
o

)2

+
(
ro − r

target
o

r
target
o

)2

(7)
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Fig. 9 (a) Reconstructed 3D-SEVMs with 10, 50, 100, and 200 precipitates; (b) cumulative
distribution function of distance to precipitate surface, generated from experimental data and 3D-
SEVM; and (c) median and 96th percentile expected KS test statistic with 10, 50, 100, and 200
precipitates

Figure 9a shows examples of the reconstructed 3D-SEVMs for Np = 10, 50, 100,
and 200 precipitates. Validation tests of 3D-SEVMs are conducted by comparing
morphological metrics that are not optimized during the reconstruction process.
One relevant metric for plastic deformation is the distance to precipitate surface
(DPS) distribution. Figure 9b shows a cumulative distribution function of DPS for
experimental and 3D-SEVM volumes, exhibiting good agreement. Figure 9c plots
the Kolmogorov-Smirnov (KS) test (Massey 1951) statistic between the 3D-SEVM
with Np= 10, 50, 100, and 200 precipitates and the FIB-SEM microstructural data.
Both the median and an upper bound of the sampling error with frequency of 0.96
are plotted in this figure. The 3D-SEVM with 200 precipitates is sufficient for
convergence, and hence this is the designated M-SERVE as detailed in Pinz et al.
(2018).

3.3 Polycrystalline Microstructures with Dispersed Precipitates

Many engineering alloys have precipitates or particles dispersed in their
polycrystalline microstructure. For example, the 7000-series aluminum alloys,
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Fig. 10 Inverse pole figure maps of EBSD data and SEM images of TD/ND plane of the Al7075-
T651 sample containing particles in polycrystalline microstructure; (b) DREAM.3D reconstructed
392-grain virtual microstructure; comparing statistical distributions of the virtual grain morphology
with EBSD data for (c) grain size, (d) aspect ratio c/b

e.g., Al 7075-T6, contain iron-rich or magnesium-rich precipitates in the aluminum
matrix, as shown in Fig. 10a. Various models have been proposed for microstructure
generation of porous materials and particle-reinforced metals, e.g., in Baniassadi
et al. (2011), Rollett et al. (2006) and Guo et al. (2014). Following developments
in the previous sections, this section discusses a method for constructing 3D virtual
microstructures from 2D micrographs, accounting for grain and particle shape
distributions, spatial arrangements of precipitates, as well as precipitate-grain spatial
correlations. Stereological concepts are numerically implemented into a genetic
algorithm (GA)-based optimization framework as detailed in Tu et al. (2019).

3.3.1 Stereological Reconstruction of the Grain Microstructure
Figure 10a shows a representative EBSD scan of a cross section from an aluminum
alloy (7075-T6). Crystallographic orientation and misorientation distributions, as
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Fig. 11 Comparing crystallographic distributions of the virtual grain with EBSD data for (a)
orientation distribution (pole figures) and (b) misorientation distribution

well as morphological distributions, e.g., grain size, aspect ratio distributions, are
extracted from these scans. Stereological estimations of 3D size and aspect ratio
distributions are made from 2D surface data following (Underwood 1972), and
the 3D microstructure is constructed by DREAM.3D using these distributions.
Figures 10 and 11 compare the morphological and crystallographic statistics of a
392-grain virtual microstructure with those from EBSD data.

3.3.2 Mapping Distributions of Precipitates to Parametrized GSEs
SEM images of precipitates are mapped to distributions of 3D generalized super-
ellipsoids (GSEs), similar to Sect. 3.3. Image processing of the SEM images
includes contrast enhancement (adaptive histogram equalization), binarization (gray
level thresholding), and noise removal (Wiener filtering). The SEM particle contours
on the 2D surface are fitted to generalized super-ellipse using the 2D version of
Eq. (5). The microstructures show precipitate clustering along the rolling direction
(RD) (Rollett et al. 2007). The isotropic two-point correlation function or radial
distribution function in Jiao et al. (2007) and Wang et al. (2016) is unable to charac-
terize this directional clustering. The two-point correlation analysis of precipitates in
the RD/ND plane in Fig. 12a shows a clear trend of directional clustering along the
RD direction. Furthermore, the precipitate-grain spatial correlation is represented by
the conditional probability distribution of the minimum distance to grain boundaries
for a given precipitate size. Fracture toughness of aluminum alloys is sensitive to the
closeness of precipitates to grain boundaries (Cai et al. 2007), which is obtained by
overlaying the EBSD and SEM 2D data sets. Figure 12b manifests the clustering of
precipitates of various sizes near grain boundaries.

3.3.3 GA-Based Stereological Mapping from 2D to 3DMicrostructures
A genetic algorithm (GA)-based optimization method (Goldberg 1989) is used
to search for parameters of the 3D precipitate distributions, by minimizing the
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Fig. 12 (a) Anisotropic two-point correlation function for precipitates and (b) conditional
probability distribution of the distance to grain boundaries and precipitate size in the RD/ND plane

difference in cumulative distribution functions (CDFs) of 2D statistics of the virtual
and experimental microstructures, using the equation:

Minimize
Xk

1

Ndescriptor

Ndescriptor∑

k=1

1

N
(k)
bin

N
(k)
bin∑

i=1

∣∣∣CDF
experimental
i − CDF virtual

i

∣∣∣ (8)

where Ndescriptor corresponds to the number of descriptors, e.g., precipitate size,
aspect ratio, shape parameter, and principal axes orientation. Xk stores the 3D
shape distribution parameters for the k-th descriptor, and N

(k)
bin is the number of bins

allocated to represent the cumulative distribution of descriptor k. Candidate sets of
3D super-ellipsoid semiaxis length (a, b, c), shape parameter (n), and principal axes
orientation (α, β, γ ) distribution parameters are stored in the array X. For every
candidate set, representative 2D orthogonal sections are derived statistically from
3D virtual microstructures and compared with the EBSD surface image data. Sub-
sequently, the parameters of the sectioned super-ellipses are solved with the method
of undetermined coefficients. With known statistics of the virtually sectioned super-
ellipses and experimental surface data, individual fitnesses are calculated from the
minimization problem involving crossover and mutation operations.

3.3.4 Planting Precipitates in the DREAM.3D-Generated Grain
Microstructure

The 3D super-ellipsoidal precipitates are now spatially dispersed in the 3D parent
polycrystalline matrix. The dispersion of precipitate centroids is optimized by
the GA methodology such that the anisotropic S2 function and precipitate-grain
spatial correlations of the sections match the experimental distributions. The fitness
function of the optimization process is written as:
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Minimize
C

1

Ndescriptor

Ndescriptor∑

k=1
⎧
⎪⎨

⎪⎩
1

Nsection

Nsection∑

m=1

1

N
(k)
bin ∗M

(k)
bin

N
(k)
bin∑

j

M
(k)
bin∑

i

∣∣∣CDF virtual
ij − CDF

experimental
ij

∣∣∣

⎫
⎪⎬

⎪⎭
(9)

where C is the centroidal coordinates of precipitates, Ndescriptor is the number of

descriptors, Nsection is the number of sections, and N
(k)
bin and M

(k)
bin are the number of

bins used for the cumulative distribution function of a descriptor k.
The resulting two-phase reconstructed microstructure is shown in Fig. 13b.

Figure 13b shows that the precipitates cluster along the RD (x-axis) in good agree-
ment with the experimentally obtained microstructural distribution. Quantitative
comparison of virtual and experimental microstructures in Fig. 14 shows good
match of the 2D precipitate-precipitate and precipitate-grain boundary correlations.

3.3.5 Convergence of theM-SERVE
The convergence of various microstructural descriptors is studied for assessing
the M-SERVE size. The descriptors include grain morphology, grain crystal-
lography, particle morphology, and particle-grain spatial correlation. The errors
in these distributions are estimated by the Kolmogorov-Smirnov test. From the
M-SERVE convergence characteristics in Fig. 15 for two-point and precipitate-grain
correlations, it is found that the M-SERVE size is controlled by precipitate-grain
correlations. It converges for approximately 450 grains with 4500 precipitates.

Fig. 13 Representation of the of reconstructed two-phase microstructure with (a) precipitates only
and (b) precipitates embedded in Al polycrystalline microstructure with grain boundaries
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Fig. 14 Convergence of 2D statistics of particle descriptors to the experimental data: (a) particle-
particle near neighbor distance with respect to the RDND plane data, (b) particle minimum distance
to GB in (RDND)
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Fig. 15 Convergence of M-SERVE with respect to (a) 3D particle two-point correlation function
and (b) 3D distance to grain boundary-precipitate size joint distribution

4 Conclusions

This chapter discusses the development of computational methods for simulating
statistically equivalent virtual microstructures of materials with complex hetero-
geneities. The methods consider polycrystalline materials containing localized
features such as annealing twins, particulates or precipitates, and subgrain-scale
precipitates in their polycrystalline structure. Data from image analysis and charac-
terization are used to construct 3D statistical distribution and correlation functions.
This serves as input to the virtual microstructure generation process. 3D experimen-
tal data extraction techniques are sometimes unavailable or prohibitively expensive
to generate. Consequently, the methods accommodate computational approaches
that infer 3D statistical descriptors and functions from 2D observations and surface
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data, from stereology and other optimization-based projection techniques. The chap-
ter introduces the open-source software package DREAM.3D that is now widely
used for generating virtual microstructures of polycrystalline materials. It then goes
beyond DREAM.3D into more newly developed methods for incorporating twins,
particles, and subgrain-scale phases in polycrystalline microstructures. Finally the
concept of the microstructure-based SERVE or M-SERVE, in which morphological
and crystallographic characteristics of the microstructure are determinants of the
statistically equivalent representative volume element, is introduced.
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Abstract

In this chapter, we review two crystal plasticity methodologies based on Green’s
functions for the prediction of microstructure-property relations in polycrys-
talline aggregates. The first, known as the viscoplastic self-consistent (VPSC)
formulation, is a mean-field theory. The second, known as the viscoplastic
fast Fourier transform-based (VPFFT) formulation, is a full-field method. The
assumptions and main equations of these Green’s function-based crystal plas-
ticity formulations are presented using a unified notation, pointing out their
similarities and differences and cross-validating their predictions.
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1 Introduction

An accurate prediction of the mechanical behavior of polycrystalline aggregates
undergoing plastic deformation based on their evolving microstructure and the
directional properties and substructure of their constituent single crystal grains is
indispensable to establish physically based relationships between microstructure
and properties of this ubiquitous class of materials.

On the one hand, advances in the theories linking microstructures and properties
of heterogeneous materials, in particular approaches based on Green’s functions,
have enabled the development of very accurate mean-field models for the prediction
of the effective plastic response of statistically defined classes of polycrystalline
aggregates. On the other hand, novel and very efficient full-field approaches
also based on Green’s function formalism have been proposed and applied to
the prediction of the actual micromechanical fields developing inside the grains
of polycrystalline unit cells with specific microstructures. In this chapter, the
assumptions and main equations of these Green’s function-based crystal plasticity
formulations are presented using a unified notation, pointing out their similarities
and differences and cross-validating their predictions.

Concerning mean-field approximations, the computation of effective mechanical
response and texture evolution of polycrystalline materials using homogenization
approaches has a long tradition (e.g., Sachs 1928; Taylor 1938). Presently, self-
consistent approximations are extensively used to deal with this problem. The
one-site viscoplastic (VP) self-consistent (SC) theory of polycrystal deformation
can be traced back to the works of Molinari et al. (1987), who established an
homogenization procedure based on an iterative method involving the computation
of integrals in ellipsoidal domains of the infinite medium Green’s function, cus-
tomarily used in the solution of the partial derivative equations (PDEs) governing
the micromechanical response of heterogeneous materials, and Lebensohn and
Tomé (1993), who implemented numerically this formulation to fully account for
polycrystal anisotropy, developing the first version of the VPSC code. Since its
inception, the VPSC code has experienced several improvements and extensions,
e.g., Wenk et al. 1997 (recrystallization), Lebensohn and Canova 1997 (two-site
VPSC approximation for two-phase polycrystals), Lebensohn et al. 1998 (VPSC
modeling of lamellar structures), Lebensohn et al. 2007 (second-order lineariza-
tion), Proust et al. 2007 (improved VPSC modeling of twinning), Beyerlein and
Tomé 2008 (dislocation density-based hardening models), Lebensohn et al. 2011
(dilatational VPSC for porous polycrystals), Lebensohn et al. 2016 (lattice rotation
rate fluctuation calculation), Wen et al. 2016 (improved hardening laws for strain
path changes), Zecevic et al. 2017 (VPSC prediction of intragranular misorientation
evolution), etc., and it is nowadays extensively used to simulate plastic deformation
of polycrystalline aggregates and for interpretation of experimental evidence on
metals, minerals, and polymers. (Access to the VPSC code can be obtained from the
author by email request.) Moreover, beyond applications involving single material
point calculations, VPSC has been adapted to account for microstructural effects
in multiscale calculations by either coupling it directly with finite elements (FE)
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(e.g., Tomé et al. 2001; Segurado et al. 2012; Knezevic et al. 2013; Barton et al.
2015) or using VPSC in combination with uniaxial experiments to fit anisotropic
yield functions for subsequent use in the FE analysis (e.g., Plunkett et al. 2006;
Nixon et al. 2010; Knezevic et al. 2013). These new multiscale developments greatly
expanded the scope of applications of the model.

The self-consistent theory is one of the most commonly used homogenization
methods to estimate the mechanical response behavior of polycrystals and was
originally proposed by Hershey (1954) for linear elastic materials. For nonlinear
aggregates (as those formed by grains deforming in the VP regime), several SC
approximations that were subsequently proposed differ in the procedure used to
linearize the nonlinear mechanical behavior at grain level, but eventually all of
them end up making use of the original linear SC theory. Among the nonlinear
SC formulations, we can mention the secant (Hill 1965; Hutchinson 1976), the
tangent (Molinari et al. 1987; Lebensohn and Tomé 1993), and the affine (Masson
et al. 2000) approximations. All these are first-order SC approximations, since they
are based on linearization schemes that, at grain level, make use of information
on field averages only, disregarding higher-order statistical information inside
the grains. However, the above assumption may be questionable, especially for
materials having strong directionality and/or large variations in local properties, as
in the case of low rate-sensitivity materials, aggregates made of highly anisotropic
grains, voided and/or multiphase polycrystals. In all those cases, strong deformation
gradients are likely to develop inside grains because of differences in properties with
neighboring crystals.

To overcome the above limitations, more accurate nonlinear homogenization
methods were developed by Ponte Castañeda and collaborators, using linearization
schemes at grain level that also incorporate accessible information on the second
moments of the stress field distributions in the grains. These more elaborate
SC formulations are based on the concept of linear comparison material, which
express the effective potential of the nonlinear VP polycrystal in terms of that
of a linearly viscous aggregate with properties that are determined from suitably
designed variational principles. Among these improved linearization schemes, the
second-order method, proposed for nonlinear composites (Ponte Castañeda 2002),
later extended to VP polycrystals (Liu and Ponte Castañeda 2004) and implemented
in the VPSC code (Lebensohn et al. 2007), uses the SC approximation for a general
class of linearly viscous polycrystals, having a nonvanishing strain rate at zero
stress, to generate the most accurate SC estimates for VP polycrystals.

Until recently, another limitation of the VPSC formulation was that only the aver-
age values of the micromechanical fields inside the single crystal grains were used
to update the microstructure as deformation proceeded. In particular, the average
lattice rotation calculated for each grain was applied to update its average orientation
after each deformation increment, and therefore the evolution of deformation texture
was based on these average orientation updates. This approximation, which neglects
the progressive buildup of intragranular misorientation, has two deleterious effects
on the quality of the predicted texture and microstructure evolution. First, the
predicted deformation textures are systematically sharper than the experimental



1660 R. A. Lebensohn

textures. Second, since intragranular misorientation is not accounted for, phenomena
like grain size reduction by grain fragmentation and other important mechanisms
affecting microstructure evolution that are driven in part by local lattice misori-
entation, like recovery and recrystallization, cannot be predicted based on strictly
micromechanical considerations. Below it is reported how the numerically tractable
problem of estimating average fluctuations of the stress field distribution inside
each grain – already implemented in the VPSC code as part of the second-order
linearization procedure – can also be used to calculate the corresponding second
moments of the lattice rotation rate field in each grain.

In what concerns full-field approaches, crystal plasticity finite element (CPFE)
implementations have been extensively applied to obtain solutions for the plas-
tic deformation of polycrystalline materials with intracrystalline resolution (e.g.,
Becker 1991; Mika and Dawson 1998; Delaire et al. 2001; Barbe et al. 2001;
Raabe et al. 2001; Delannay et al. 2006; Musienko et al. 2007; Roters et al. 2010;
Cruzado et al. 2015; Cheng and Ghosh 2015; Quey et al. 2015, etc.). However, the
large number of degrees of freedom required by such FE calculations limits the
size of the microstructures that can be simulated by these methods. Conceived as
a very efficient alternative to FE methods, a numerical formulation based on the
use of the efficient fast Fourier transform (FFT) algorithm to compute convolution
integrals over the entire periodic unit cell involving the periodic Green’s function
was originally proposed by Moulinec and Suquet (1994) for the prediction of the
micromechanical behavior of heterogeneous materials. The latter includes both
composites (e.g., Moulinec and Suquet 1998; Eyre and Milton 1999; Michel et al.
2000; Idiart et al. 2006; Brisard and Dormieux 2010; Willot 2015, etc.), in which the
source of heterogeneity is related to the spatial distribution of phases with different
mechanical properties, and polycrystals (e.g., Lebensohn 2001; Lebensohn et al.
2005, 2008, 2012, 2013; Brenner et al. 2009; Grennerat et al. 2012; Eisenlohr et al.
2013; Lebensohn and Needleman 2016, etc.), in which the heterogeneity is related
to the spatial distribution of crystals with directional mechanical properties.

2 Models

2.1 VPSCModel

The self-consistent formulation consists in representing a polycrystal by means
of weighted, ellipsoidal, statistically representative (SR) grains. Each of these
SR grains represents the average behavior of all the grains with a particular
crystallographic orientation and morphology but different environments. These SR
grains should be regarded as representing the behavior of mechanical phases, i.e.,
all the single crystals with a given orientation (r) belong to mechanical phase
(r) and are represented by SR grain (r). Note the difference between mechanical
phases, which differ from each other only in terms of crystallographic orientation
and/or morphology, and actual phases differing from each other in crystallographic
structure and/or composition. In what follows, SR grain (r) and mechanical phase
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(r) will be used interchangeably. Each representative grain will be treated as an
ellipsoidal viscoplastic inclusion embedded in an effective viscoplastic medium.
Plastic deformation in the inclusion is accommodated by dislocation slip activated
by a resolved shear stress.

2.1.1 Local Constitutive Behavior and Homogenization
Let us consider a macroscopic velocity gradient Vi, j applied to a polycrystalline
aggregate, which can be decomposed into an average symmetric strain rate
Ėij = 1

2

(
Vi,j + Vj,i

)
and an average antisymmetric rotation rate 2̇ij =

1
2

(
Vi,j − Vj,i

)
and that the plastic component of the deformation is much

larger than the elastic part such that the latter can be neglected and the flow is
incompressible. Under these assumptions, we can use small-strain kinematics to
express the constitutive behavior as a relation between Cauchy stress and velocity
gradient in the current configuration. Once the local velocity gradient field is
obtained, the evolution of microstructure and micromechanical variables can be
calculated by integrating the velocity gradient field in small time increments to
explicitly update the current configuration of the material. Under this kinematic
framework, the viscoplastic constitutive behavior at each material point x can be
phenomenologically described by means of the following nonlinear, rate-sensitive
equation:

ε̇ (x) =
∑

k

mk (x) γ̇k (x) = γ̇o

∑

k

mk (x)

(∣∣mk(x) : σ′(x)∣∣
τk

o(x)

)n

× sgn
(

mk (x) : σ′ (x)
)

(1)

where τk
o is the threshold resolved shear stress of slip system (k); mk

ij =
1
2

(
nk

i bk
j + nk

j bk
i

)
is the symmetric Schmid tensor associated with slip system (k),

where nk and bk are the normal and Burgers vector direction of such slip system;
and ε̇ and σ′ are the deviatoric strain rate and stress. The local shear rate on slip
system (k), γ̇k, is given by:

γ̇k(x) = γ̇o

(∣∣τk(x)
∣∣

τk
o(x)

)n

× sgn
(
τk(x)

)
= γ̇o

(∣∣mk(x) : σ′(x)∣∣
τk

o(x)

)n

× sgn
(

mk(x) : σ′(x)
)

(2)

where τk is the resolved shear stress on slip system (k), γ̇o is a normalization factor,
and the stress exponent n is the inverse of the rate-sensitivity. If the shear rates are
known, the lattice rotation rate or plastic spin associated with slip activity at single
crystal material point x is given by:
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−ω̇p (x) = −
∑

k

αk (x) γ̇k (x) (3)

where αk
ij = 1

2

(
nk

i bk
j − nk

j bk
i

)
is the antisymmetric Schmid tensor. Note that

although Eqs. (1), (2), and (3) can be used to deal with crystal deforming by slip and
twinning, in the examples that follows (in the context of both homogenization and
full-field approaches), we will only consider crystal deformation by slip. In this way
we avoid the additional complication of having to deal with twinning reorientation.

Let us assume that the following linear relations, which are approximations of
the actual nonlinear relations, Eqs. (1) and (2), hold for the SR grain (r), i.e., for
x ∈ 2(r):

ε̇ (x) = M(r) : σ′ (x)+ ε̇o (r) (4)

γ̇k (x) = ηk(r) τk (x)+ ġok(r) (5)

where the moduli M(r) and ε̇o (r) are the compliance and back-extrapolated strain
rate (strain rate under zero stress) of grain (r), respectively, and ηk(r) and ġok(r) are
the slip-level compliance and back-extrapolated shear rate, respectively. Depending
on the linearization assumption, the above moduli can be chosen differently. For
example, under the first-order affine linearization, the moduli are given by:

M(r) = nγ̇o

∑

k

mk(r) ⊗ mk(r)

τ
k(r)
o

(
mk(r) : σ′(r)

τ
k(r)
o

)n−1

and ε̇o(r) = (1− n) ε̇(r)

(6)

ηk(r) = n
γ̇o

τ
k(r)
o

(
τk(r)

τ
k(r)
o

)n−1

and ġok(r) = (1− n) γ̇k(r) (7)

where index (r) indicates average (first moment) of the field over SR grain (r).
Following Hill (1965) and Hutchinson (1976), let us express the homogenized
behavior of a linear heterogeneous medium whose local behavior is described by
Eq. (4) assuming an analogous linear relation at the effective medium (macroscopic)
level:

Ė = M : �′ + Ėo (8)

where Ė and �′ are the overall (macroscopic) deviatoric strain rate and stress
tensors and M and Ėo are, respectively, the viscoplastic compliance and back-
extrapolated term of an a priori unknown homogeneous equivalent medium (HEM).
The procedure followed to obtain this homogenized response is the linear self-
consistent method. The problem underlying the self-consistent method is that of an
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inhomogeneous domain (r) of moduli M(r)and ε̇o(r), embedded in an infinite medium
of moduli M and Ėo. Invoking the concept of the equivalent inclusion (Mura 1987),
the local constitutive behavior in domain (r) can be rewritten as:

ε̇ (x) = M : σ′ (x)+ Ėo + ε̇∗ (x) (9)

where ε̇∗ (x) is an eigen-strain-rate field, which follows from replacing the inho-
mogeneity by an equivalent inclusion. Rearranging and subtracting Eq. (8) from
Eq. (9) gives:

σ̃′ (x) = L :
(˜̇ε (x)− ε̇∗ (x)

)
(10)

The symbol “∼” denotes local deviations from macroscopic values of the cor-

responding magnitudes, and L = M
−1

. Combining Eq. (10) with the equilibrium
condition gives:

σij,j (x) = σ̃ij,j (x) = σ̃′ij,j (x)+ σ̃m
,i (x) (11)

where σij and σm are the Cauchy stress tensor and the mean stress, respectively.
Using the relation ˜̇εij (x) = 1

2

(
ṽi,j (x)+ ṽj,i (x)

)
between the strain-rate and velocity

gradient deviations, and adding the incompressibility condition associated with
plastic deformation, we obtain:

∣∣∣∣∣
Lijkl ṽk,lj (x)+ σ̃m

,i (x)+ φij,j (x) = 0
ṽk,k (x) = 0

(12)

where:

ϕij (x) = −Lijklε̇
∗
kl (x) (13)

is a heterogeneity or polarization field, and its divergence fi(x) = ϕij, j(x) is an
(artificial) external volumetric force field applied to the material. System (12)
consists of four differential equations with four unknowns: three are the components
of velocity deviation vector ṽi (x), and one is the mean stress deviation σ̃m (x).
A system of N linear differential equations with N unknown functions and a
polarization term can be solved using Green’s function method. Let us call Gkm(x)
and Hm(x) Green’s functions associated with ṽi (x) and σ̃m (x), respectively,
which solve the auxiliary problem of a unitary volumetric force, with a single
nonvanishing m-component:

∣∣∣∣
Lijkl Gkm,lj

(
x− x′

)+ Hm,i
(
x− x′

)+ δim δ
(
x− x′

) = 0
Gkm,k

(
x− x′

) = 0
(14)
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Fig. 1 Schematic illustration of Green’s function associated with the displacement field of an
elastic infinite medium. Gkm(x − x′) is the component of the displacement in the xk-direction at
point x when a unit external force in the xm-direction is applied at point x′. Red arrows indicate
displacement vectors at point x in reaction to external forces applied at different points x′ indicated
by black, green, and blue arrows

Green’s function Gkm(x − x′) is the local deviation in displacement (or velocity)
component in the xk-direction at point x when a unit body force in the xm-direction
is applied at point x′ in an infinitely extended material. In the incompressible case of
Eq. (14), Hm(x − x′) is the corresponding response in mean stress. For illustration,
Fig. 1 shows a schematic explanation of Green’s function of the displacement field
Gkm(x − x′) for an infinite (compressible) elastic medium.

Once the solution of Eq. (14) is obtained, the solution for the velocity field is
given by the convolution integral:

ṽk (x) =
ż

R3

Gki
(
x− x′

)
fi
(
x′
)

dx′ =
ż

R3

Gki
(
x− x′

)
ϕij,j

(
x′
)

dx′ (15)

System (14) can be solved using Fourier transforms. Expressing Green’s func-
tions in terms of their inverse Fourier transforms, the differential system (14) can be
transformed into an algebraic system:
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∣∣∣∣
αj αl Lijkl k2Ĝkm (ξ)+ αi ikĤm (ξ) = δim

αk k2Ĝkm (ξ) = 0
(16)

where k and α are the modulus and the unit vector associated with a point of Fourier
space ξ = kα, respectively. Solving system (16) (see Lebensohn et al. 2007) one
obtains:

k2Ĝij (ξ) = A−1
ij (α) (17)

where A′ik (α) = αj αl Lijkl and

A (α) =

∣∣∣∣∣∣∣∣

A′11 A′12 A′13 α1

A′21 A′22 A′23 α2

A′31 A′32 A′33 α3

α1 α2 α3 0

∣∣∣∣∣∣∣∣
(18)

Knowing Green’s function expression in Fourier space, we can write the
solution of the eigen-strain-rate problem using convolution integrals. Taking partial
derivatives to Eq. (15) and after some manipulation (see Lebensohn et al. 2007;
Mura 1987), we obtain:

ṽk,l (x) =
ż

R3

Gki,jl
(
x− x′

)
ϕij

(
x′
)

dx′ (19)

The integral Eq. (19) provides an exact implicit solution to the problem.
Furthermore, it is known from Eshelby’s elastic inclusion formalism that if the
eigen-strain is uniform over an ellipsoidal domain where the stiffness tensor is
uniform, then the stress and strain are constant over the domain of the inclusion
(r). The latter suggests the use of an a priori unknown constant polarization within
the volume 2 of the ellipsoidal inclusion. This allows us to average the local field
(19) over the domain 2 and obtain an average strain rate inside the inclusion of the
form:

ṽ(r)
k,l = Tklij Lijmn ε̇∗(r)mn (20)

where Tklij is an integral of Green’s function over domain 2. For an ellipsoidal
inclusion of radii (a,b,c) (see Berveiller et al. 1987; Lebensohn et al. 2007 for
details), Tklij can be reduced to:

Tklij = abc

4π

2π
ż

0

π
ż

0

αj αl A−1
ki (α)

[ρ (α)]3 sin θ dθ dϕ (21)
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where ρ(α) = [ (aα1)2 + (bα2)2 + (cα3)2]1/2. The symmetric and antisymmetric
Eshelby tensors (functions of L and the shape of the ellipsoidal inclusion, represent-
ing the morphology of the SR grains) are defined as:

Sijkl = 1

4

(
Tijmn + Tjimn + Tijnm + Tjinm

)
Lmnkl (22a)

3ijkl = 1

4

(
Tijmn − Tjimn + Tijnm − Tjinm

)
Lmnkl (22b)

Taking symmetric and antisymmetric components to Eq. (19) and using Eqs.
(22), we obtain the average strain-rate and rotation rate deviations in the ellipsoidal
domain:

˜̇ε(r) = S : ε̇∗(r) (23)

˜̇ω(r) = � : ε̇∗(r) = � : S−1 : ˜̇ε(r) (24)

where ˜̇ε(r) = Ė − ε̇(r) and ˜̇ω(r) = �̇ − ω̇(r) are deviations of the average strain
rate and rotation rate inside the inclusion, with respect to the corresponding overall
magnitudes, and ε̇∗(r) is the average eigen-strain rate in the inclusion. Therefore, the
lattice rotation rate field is given by:

ω̇ (x) = �̇+ ˜̇ω(r) − ω̇p (x) (25)

2.1.2 Interaction and Localization Equations
Taking volume averages over the domain of the inclusion on both sides of Eq. (10)
gives:

σ̃′(r) = L :
(˜̇ε(r) − ε̇∗(r)

)
(26)

Replacing the eigen-strain rate given by Eq. (23) into Eq. (26), we obtain the
interaction equation:

˜̇ε(r) = −M̃ : σ̃′(r) (27)

where the interaction tensor is given by:

M̃ = (I− S)−1 : S : M (28)
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Replacing the constitutive relations of the inclusion and the effective medium in
the interaction equation and after some manipulation, one can write the following
localization equation:

σ′(r) = B(r) : �′ + b(r) (29)

where the localization tensors are defined as:

B(r) =
(

M(r) + M̃
)−1 :

(
M+ M̃

)
and b(r) =

(
M(r) + M̃

)-1 :
(

Ėo − ε̇o(r)
)

(30)

2.1.3 Self-Consistent Equations
The derivation presented in the previous sections solves the problem of an equivalent
inclusion embedded in an effective medium. In this section, we use the previous
result to construct a polycrystal model, consisting in regarding each SR grain (r) as
an inclusion embedded in an effective medium that represents the polycrystal. The
properties of such medium are not known a priori but have to be found through an
iterative procedure. Replacing the stress localization equation (Eq. 29) in the local
constitutive equation (Eq. 4) averaged over the SR grain (r), we obtain:

ε̇(r) = M(r) : B(r) : � +M(r) : b(r) + ε̇o(r) (31)

Taking volumetric average to Eq. (31), enforcing the condition that the average of
the strain rates over the aggregate has to coincide with the macroscopic quantities,
i.e.:

Ė =
〈
ε̇(r)

〉
(32)

(where the brackets “〈〉” denote average over the SR grains, weighted by the
associated volume fraction), and using the macroscopic constitutive relation (Eq. 8),
we obtain the following self-consistent equations for the HEM’s compliance and
back-extrapolated term:

M =
〈
M(r) : B(r)

〉
(33)

Ėo =
〈
M(r) : b(r) + ε̇o(r)

〉
(34)

2.1.4 Fluctuations Calculation
The methodology to obtain average fluctuations of the stress distributions in homo-
geneous domains of heterogeneous media was originally derived by Bobeth and
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Diener (1987), Kreher (1990), and Parton and Buryachenko (1990) for composites
and extended by Lebensohn et al. (2007) for polycrystals. The effective stress
potential UT of a linearly viscous polycrystal described by Eq. (8) may be written
in the form (Laws 1973):

UT = 1

2
M :: (�′ ⊗�′

)+ Ėo : �′ + 1

2
G (35)

where G is the power under zero applied stress. Let us rewrite the self-consistent
expression for M and Ėo (Eqs. 33 and 34) as:

M =
〈
M(r) : B(r)

〉
=
∑

r

c(r) M(r) : B(r) (36)

Ėo =
〈
M(r) : b(r) + ε̇o (r)

〉
=
∑

r

c(r)
(

M(r) : b(r) + ε̇o (r)
)

(37)

where c(r) is the volume fraction associated with SR grain (r). The corresponding
expression for G is:

G =
∑

r

c(r) ε̇o (r) : b(r) (38)

The second moment of the stress field over a SR grain (r) of this polycrystal is a
fourth-rank tensor given by:

〈
σ′ ⊗ σ′

〉(r) = 2

c(r)
∂UT

∂M(r)
(39)

Replacing Eqs. (35), (36), (37), and (38) in (39), we obtain:

〈
σ′ ⊗ σ′

〉(r) = 1

c(r)
∂M

∂M(r)
:: (�′ ⊗�′

)+ 1

c(r)
∂Ėo

∂M(r)
: �′ + 1

c(r)
∂G

∂M(r)
(40)

The algorithmic expressions to calculate the partial derivatives on the right-
hand side are given in Lebensohn et al. (2007). These average stress fluctuations
in the grains are necessary for (a) the formulation of the more accurate second-
order approximation (Liu and Ponte Castañeda 2004) to linearize the behavior
of the SR grains (see Lebensohn et al. 2007 for details of its implementation
in VPSC) and (b) the calculation based on strictly micromechanical arguments
of intragranular misorientations, for further improved prediction of microstructure
evolution (Lebensohn et al. 2016). In connection with the latter, the second moment
of the plastic spin field in SR grain (r) is given by:
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〈
ω̇p ⊗ ω̇p〉(r) =

〈(
∑

k

αk (x) γ̇k (x)

)
⊗
(
∑

k

αk (x) γ̇k (x)

)〉(r)

(41)

Assuming crystal orientation is uniform inside grain (r):

〈
ω̇p ⊗ ω̇p〉(r) =

∑

k,k′

(
αk(r) ⊗ αk′(r)

) 〈
γ̇k γ̇k′

〉(r)
(42)

Using the linearized expression for the shear rates (Eq. 5), the above can be
expressed in terms of the second moment of the stress field 〈σ′ ⊗ σ′〉(r) (Eq. 40) as
(Lebensohn et al. 2016):

〈
ω̇p ⊗ ω̇p〉(r) =

⎧
⎨

⎩
∑

k,k′

(
ηk(r)ηk′(r)

) (
αk(r) ⊗ αk′(r)

)
⊗
(

mk(r) ⊗mk′(r)
)
⎫
⎬

⎭ : :
〈
σ′ ⊗ σ′

〉(r)

+
⎧
⎨

⎩
∑

k,k′

(
αk(r)⊗αk′(r)

)
⊗
[(

ηk(r)ġok′(r)
)

mk(r)+
(
ηk′(r)ġok(r)

)
mk′(r)

]
⎫
⎬

⎭:
〈
σ′
〉(r)

+
∑

k,k′

(
αk(r) ⊗ αk′(r)

) (
ġok(r)ġok′(r)

)

(43)

For spherical inclusions/equiaxed SR grains, � = 0 ⇒ ˜̇ω(r) = 0 (see Eq. 24),
and, therefore:

〈ω̇⊗ ω̇〉(r) = 〈
ω̇p ⊗ ω̇p〉(r) (44)

The covariance of the lattice rotation rate fluctuations is obtained as:

〈(
ω̇− 〈ω̇〉(r)

)
⊗
(
ω̇− 〈ω̇〉(r)

)〉(r) = 〈ω̇⊗ ω̇〉(r) − 〈ω̇〉(r) ⊗ 〈ω̇〉(r) (45)

Representing the antisymmetric rotation rate tensors as the corresponding
pseudo-vectors, the above covariance can be expressed as a symmetric matrix.
Diagonalization of such covariance matrix gives an orthonormal basis of
eigenvectors (ν1, ν2, ν3) and three associated eigenvalues: 2̇

(r)
1 ≥ 2̇

(r)
2 ≥ 2̇

(r)
3 .

The square root of these eigenvalues:

SD(r)
i (ω̇) =

√
2̇

(r)
i (i = 1, 2, 3) (46)

are measures of the standard deviation of the rotation rate distribution along the
rotation axes given by the corresponding eigenvectors. A scalar magnitude of the
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rate at which intragranular orientations are spreading is given by the geometric mean
of these SDs:

SD(r) (ω̇) = 3
√

SD(r)
1 (ω̇)× SD(r)

2 (ω̇)× SD(r)
3 (ω̇) (47)

2.1.5 Numerical Implementation
To illustrate the practical use of the VPSC formulation, we describe here the steps
required to predict the local and overall viscoplastic response of a polycrystal.
Figure 2 shows the corresponding flow chart. Starting for convenience with an initial
Taylor guess, i.e., ε̇(r) = Ė, for all grains, we solve the following nonlinear equation
to get σ′(r):

Ė = γ̇o

∑

k

mk(r)

⎛

⎝

∣∣∣mk(r) : σ′(r)
∣∣∣

τ
k(r)
o

⎞

⎠
n

× sgn
(

mk(r) : σ′(r)
)

(48)

Fig. 2 Flow chart of the numerical implementation of the VPSC formulation to predict
microstructure evolution. The red arrows correspond to the two iterative loops necessary to satisfy
self-consistency of the macroscopic moduli and the grain stresses
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and we use an appropriate first-order linearization scheme to obtain initial values
of M(r) and ε̇o(r), for each SR grain (r). Next, initial guesses for the macroscopic
moduli M and Ėo are obtained (usually as simple averages of the local moduli).
With them and the applied strain rate, the initial guess for the macroscopic stress
�′ can be obtained, while the Eshelby tensors S and � can be calculated using
the macroscopic moduli and the ellipsoidal shape of the SR grains, by means
of the procedure described in Sect. 2.1.1. Subsequently, the interaction tensor M̃
(Eq. 28), and the localization tensors B(r) and b(r) (Eq. 30), can be calculated as well.
With these tensors, new estimates of M and Ėo are obtained, by solving iteratively
the self-consistent equations (Eqs. 33 and 34). After achieving convergence on the
macroscopic moduli (and, consequently, also on the macroscopic stress and the
interaction and localization tensors), a new estimation of the grain stresses can be
obtained, using the localization relation (Eq. 29). If the recalculated grain stresses
are different (within certain tolerance) from the input values, a new iteration should
be started, until convergence is reached. When the iterative procedure is completed
and the grain stresses have converged, the average shear rates on each slip system
are obtained using Eq. (2), and the lattice rotation rates associated with each SR
grain can be calculated with the latter and Eqs. (3) and (24) and (25) averaged over
the domain of each grain (r). With these rates, the above numerical scheme can be
used to predict microstructure evolution, by applying viscoplastic deformation to
the polycrystal in incremental steps. The latter is done explicitly, assuming constant
rates during a time interval �t (such that Ė �t corresponds to a macroscopic strain
increment of 1%) and using (a) lattice rotation rates (Eq. 25) (times �t) to update
crystallographic orientation of each SR grain (r) (this can be done using the average
values of the latter or accounting for average rotation rate fluctuations, Zecevic et al.

2017), (b) the strain rates Ė− ˜̇ε(r) and rigid body rotation rates �̇+ ˜̇ω(r)
(times �t)

to update the shape and orientation of the ellipsoid representing each SR grain (r)
(or, for a more efficient computation, the fluctuation terms can be neglected, keeping
track of the average stretching of the grains only), and (c) the shear rates (times �t)
to update the critical stress of the deformation systems due to strain hardening, after
each deformation increment.

2.2 VPFFTModel

The FFT-based full-field formulation for viscoplastic polycrystals is conceived for
periodic unit cells, provides an “exact” solution (within the limitations imposed
by the unavoidable discretization of the problem and the iterative character of
the numerical algorithm, see below) of the governing equations, and has better
numerical performance than a standard FE calculation for the same purpose and
resolution. It was originally developed (Moulinec and Suquet 1994, 1998; Michel
et al. 2000) as a fast algorithm to compute the elastic and elastoplastic effective and
local response of composites and later adapted (Lebensohn 2001; Lebensohn et al.
2008) to deal with the viscoplastic deformation of polycrystals.
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Briefly, the viscoplastic FFT-based formulation consists in iteratively adjusting
a compatible strain-rate field, related with an equilibrated stress field through a
constitutive potential, such that the average of local work-rates is minimized. The
method is based on the fact that the local mechanical response of a heterogeneous
medium can be calculated as a convolution integral between Green’s functions
associated with appropriate fields of a linear reference homogeneous medium
and the actual heterogeneity field. For a periodic medium, the use can be made
of the Fourier transform to reduce convolution integrals in real space to simple
products in Fourier space. Thus, the FFT algorithm can be utilized to transform
the heterogeneity field into Fourier space and, in turn, to get the mechanical fields
by transforming that product back to real space. However, the actual heterogeneity
field depends precisely on the a priori unknown mechanical fields. Therefore, an
iterative scheme has to be implemented to obtain, upon convergence, a compatible
strain-rate field and a stress field in equilibrium.

2.2.1 Periodic Unit Cell: Green FunctionMethod
A periodic unit cell representing the polycrystal is discretized into N1 × N2 × N3
Fourier points. This discretization determines a regular grid in the Cartesian space
{ xd} and a corresponding grid in Fourier space { ξd}. Velocities and tractions along
the boundary of the unit cell are left undetermined. A velocity gradient Vi, j (which
can be decomposed into a symmetric strain rate and an antisymmetric rotation rate:
Vi,j = Ėij + 2̇ij) is imposed to the unit cell. The local strain-rate field is a function
of the local velocity field, i.e., ε̇ij (vk (x)), and can be split into its average and a
fluctuation term: ε̇ij (vk (x)) = Ėij + ˜̇εij (ṽk (x)), where vi (x) = Ėijxj + ṽi (x).
By imposing periodic boundary conditions, the velocity fluctuation field ṽk (x) is
assumed to be periodic across the boundary of the unit cell, while the traction
field is antiperiodic, to meet equilibrium on the boundary between contiguous
unit cells.

The local constitutive relation between the strain rate ε̇ij (x) and the deviatoric
stress σ′ij (x) is given by the same rate-sensitivity relation used within the VPSC
framework (Eq. 1). Let us choose a fourth-order tensor Lo to be the stiffness of a
linear reference medium (the choice Lo of can be quite arbitrary, but the speed of
convergence of the method will depend on this choice) and define the polarization
field ϕij(x) (c.f. Eq. 13) as:

ϕij (x) = σ̃′ij (x)− Lo
ijkl

˜̇εkl (x) (49)

Then, the Cauchy stress deviation can be written as:

σ̃ij (x) = Lo
ijkl
˜̇εkl (x)+ ϕij (x)+ σ̃m (x) δij (50)

Combining Eq. (50) with the equilibrium
(
σij,j (x) = σ̃ij,j (x) = 0

)
, the incom-

pressibility condition, and the relation: ˜̇εij (x) = 1
2

(
ṽi,j (x)+ ṽj,i (x)

)
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∣∣∣∣∣
Lo

ijklṽk,lj (x)+ σ̃m
,i (x)+ ϕij,j (x) = 0

ṽk,k (x) = 0
(51)

This system of differential equations is formally equivalent to system (12).
However, both systems actually differ in that (a) the HEM’s stiffness modulus L
of Eq. (12) is replaced in Eq. (51) by the stiffness of a linear reference medium
Lo and (b) the polarization field in Eq. (51) has in general nonvanishing values
throughout the unit cell and is periodic (owing to the unit cell’s periodicity), while
the polarization field in Eq. (12) vanishes outside the domain of the inclusion. The
auxiliary system involving periodic Green functions is then given by (c.f. Eq. 18):

∣∣∣∣∣
Lo

ijkl Gkm,lj
(
x− x′

)+ Hm,i
(
x− x′

)+ δim δ
(
x− x′

) = 0

Gkm,k
(
x− x′

) = 0
(52)

After some manipulation, the convolution integral that gives the velocity gradient
deviation field is:

ṽi,j (x) =
ż

R3

Gik,jl
(
x− x′

)
ϕkl

(
x′
)

dx′ (53)

Convolution integrals in direct space are simply products in Fourier space:

ˆ̃vi,j (ξ) = '̂ijkl (ξ) ϕ̂kl (ξ) (54)

where the symbol “∧” indicates a Fourier transform. The Green operator in Eq.
(54) is defined as 'ijkl = Gik, jl. The tensors Ĝij(ξ) and '̂ijkl(ξ) can be calculated by
taking Fourier transform to system (52):

∣∣∣∣∣
ξlξj Lo

ijklĜkm(ξ)+ iξiĤm(ξ) = δim

ξkĜkm(ξ) = 0
(55)

Defining the 3 × 3 matrix A′ik (ξ) = ξlξjLo
ijkl, and the 4 × 4 matrix A(ξ):

A (ξ) =

∣∣∣∣∣∣∣∣

A′11 A′12 A′13 ξ1

A′21 A′22 A′23 ξ2

A′31 A′32 A′33 ξ3

ξ1 ξ2 ξ3 0

∣∣∣∣∣∣∣∣
(56)

we obtain from Eq. (57) (c.f. Eqs. 17–18):

Ĝij (ξ) = A−1
ij (i, j = 1, 3) and '̂ijkl (ξ) = −ξjξlĜik (ξ) (57)
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2.2.2 FFT-Based Algorithm
Assigning initial guess values to the strain-rate field in the regular grid { xd} (e.g.,
˜̇εo
ij

(
xd
) = 0 ⇒ ε̇o

ij

(
xd
) = Ėij) and computing the corresponding stress field σ′oij

(
xd
)

from the local constitutive relation (Eq. 1), which requires to know the initial values
of the critical stresses τs

o

(
xd
)

(these can be assumed, e.g., to have an uniform value
∀xd, adjusted to reproduce the initial macroscopic yield stress of the polycrystal) and
the Schmid tensors ms

ij

(
xd
)
, e.g., from an orientation image, in which the image’s

pixels coincide with the Fourier grid), allow us to obtain an initial guess for the
polarization field in direct space ϕo

ij

(
xd
)

(Eq. 49), which in turn can be Fourier-

transformed to obtain ϕ̂o
ij

(
ξd
)

. Furthermore, assuming that λo
ij

(
xd
) = σo

ij

(
xd
)

is

the initial guess for a field of Lagrange multipliers associated with the compatibility
constraints, the iterative procedure based on augmented Lagrangians proposed by
Michel et al. (2000) reads as follows. With the polarization field after iteration
n being known, the n + 1-th iteration starts by computing the new guess for the
kinematically admissible strain-rate deviation field:

ˆ̃d
n+1

ij

(
ξd
)
= −'̂

sym
ijkl

(
ξd
)

φ̂n
kl

(
ξd
)
, ∀ξd �= 0; and ˆ̃d

n+1

ij (0) = 0 (58)

where '̂
sym
ijkl is the Green operator, appropriately symmetrized. The corresponding

field in real space is thus obtained by application of the inverse FFT, i.e.:

d̃n+1
ij

(
xd
)
= fft−1

{ ˆ̃d
n+1

ij

(
ξd
)}

(59)

and the new guess for the deviatoric stress field is calculated from (omitting
subindices):

σ′n+1 (xd
)+ Lo : γ̇o

∑
k

mk
(
xd
)
( ∣∣∣mk

(
xd):σ′n+1(xd)

∣∣∣
τk(xd)

)n

× sgn
(

mk
(
xd
) : σ′n+1 (xd

)) = λn (xd
)+ Lo :

(
Ė+ d̃n+1

(
xd
))

(60)

The iteration is completed with the calculation of the new guess of the Lagrange
multiplier field:

λn+1
(

xd
)
= λn

(
xd
)
+ Lo :

(˜̇εn+1
(

xd
)
− d̃n+1

(
xd
))

(61)

Equations (61) and (62) guarantee the convergence of ε̇
(
xd
)

(i.e., the strain-
rate field related with the stress through the constitutive equation) toward d(xd)
(i.e., the kinematically admissible strain-rate field) to fulfill compatibility and the
Lagrange multiplier field λ(xd) toward the stress field σ′(xd) to fulfill equilibrium.
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Upon convergence, the microstructure can be updated using an explicit scheme (see
Lebensohn et al. 2008 for details).

3 Results

3.1 Validation of the Full-Field Formulation
Using an Analytical Result

Let us consider a model polycrystal consisting of columnar orthorhombic grains
with symmetry axes aligned with the x3 axis, such that, when loaded in antiplane
mode with shearing direction along x3, the only two slip systems that can be
activated in the grains are those defined by the following Schmid tensors:

ms = (e1 ⊗ e3 + e3 ⊗ e1) /2 , mh = (e2 ⊗ e3 + e3 ⊗ e2) /2 (62)

where {e1, e2, e3} is an orthonormal basis of crystallographic axes and “s” and “h”
stand for soft and hard slip systems, respectively. If we further consider that e3
lies parallel to x3, and the material is incompressible, the problem becomes two-
dimensional (2-D). The local stress and strain rate are characterized by 2-D vectors
with components σ13 and σ23 and e3 and ε̇23 (denoted hereafter σ1 and σ2 and ε̇1
and ε̇2, respectively) and the viscous stiffness tensor L = 2μ, by a 2-D symmetric
second-order tensor with diagonal components 2μ1313 and 2μ2323 and off-diagonal
components 2μ1323 (denoted 2μ11, 2μ22, and 2μ12, respectively). In addition, let us
assume that the constituent grains exhibit a linear response:

ε̇ (x) = L−1 : σ (x) =
(

1

τs
o

ms ⊗ms + 1

τh
o

mh ⊗mh
)
: σ (x) (63)

with τs
o and τh

o being the viscosities of the soft and hard slip systems
(
τs

o < τh
o

)
. It

can be shown that the behavior of such polycrystal is characterized by an effective

2-D viscous stiffness tensor L = 2μ such that Ė = L
−1 : � (where * and Ė are the

2-D effective stress and strain rate, respectively), such that (Dykhne 1970):

det (μ) = μ11 × μ22 − μ2
12 = τs

o × τh
o (64)

In the particular case of an isotropic 2-D polycrystal, μ11 = μ22 (= μ) and
μ12 = 0, so that the effective shear modulus becomes:

μ =
√

τs
o × τh

o (65)
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Fig. 3 (a) Two-dimensional two-phase isotropic unit cell undergoing antiplane deformation.
VPFFT results of (b) relative activity field of the soft slip system. (c, d) Shear components 13
and 23 of the strain rate

Note that the above result is independent of the 2-D microstructure as far as
it remains isotropic. This analytical result can be used for validating the VPFFT
formulation. Let us consider the periodic 2-D two-phase composite shown in Fig. 3a
(Lebensohn et al. 2005), whose unit cell consists of four square grains, with the
crystallographic orientations of the two pairs of opposite grains (i.e., each pair
shearing only the central vertex) being characterized by angles +45 and −45◦,
respectively (note that the orientation of each 2-D crystal is fully characterized by
the angle between the crystal direction e1 and the sample direction x1).

The antiplane deformation of this unit cell for an applied strain rate of the form
Ė = (

Ė13, 0
)

was solved numerically using different discretizations: 64, 128,
256, and 512 Fourier points along each direction (i.e., 1024, 4096, 16384, 65536
Fourier points per grain), for a contrast of τh

o/τ
s
o = 25, which gives theoretical

polycrystal viscosity of μ/τs
o = 5. Figure 4 shows the relative deviations of the
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Fig. 4 Relative deviations
from the theoretical (th) value(
μ/τs

o = 5
)

of the
polycrystal’s viscosity
predicted with the present
formulation (FFT) for
different grid refinements, in
the case 2-D antiplane
deformation of the isotropic
unit cell of Fig. 3a, consisting
of grains having linear
behavior (Eq. 63) with
τh

o/τ
s
o = 25

polycrystal viscosities calculated with the VPFFT model from the theoretical value,
as the number of iterations of the VPFFT method increases. It is seen that (a) the
convergence of μFFT toward its theoretical value is rather good, although it saturates
at different levels, depending on the number of discretization points used, and (b)
the precision of the FFT solution can be increased by refining appropriately the
Fourier grid. This is due to the fact that a more refined grid provides a higher spatial
resolution to represent the strong gradients and jumps of the local fields, localized
at grain boundaries (see Fig. 3c, d).

3.2 Validation of Mean-Field Formulations Using Full-Field
Computations

In this section, we analyze the orientation dependence of the lattice rotation rate
distributions given by Eqs. (45), (46), and (47) for the cases of axisymmetric
deformation of fcc and bcc polycrystals (Lebensohn et al. 2016).

First, the statistical parameters describing the lattice rotation rate distributions
predicted with VPSC are validated by comparison with corresponding full-field
predictions obtained with the VPFFT model for the case of asymmetric tension of
an fcc polycrystal with random texture and equiaxed grains.

Figure 5a shows VPSC predictions of the per-grain rotation rate averages and
standard deviations normalized by ω̇ = 〈

ω̇(r)
〉
, corresponding to an fcc polycrystal

made of 400 randomly oriented spherical grains deforming by {111}<110> slip
and stress exponent n = 10, deformed axisymmetrically in tension at an applied
strain rate of 1 s−1. Figure 5b compares the same statistical parameters obtained
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Fig. 5 VPSC (left) and VPFFT (right) predictions of per-grain (a, b) rotation rate averages and
(c, d) geometric mean standard deviations, for the case of tensile deformation of an fcc polycrystal
made of 400 randomly oriented spherical/equiaxed grains deforming by {111}<110>

by sampling and ensemble averaging VPFFT predictions of the rotation rate fields,
calculated for 50 different periodic Voronoi unit cell realizations, made of the same
400 orientations randomly assigned to the Voronoi grains, with identical constitutive
behavior and applied boundary conditions.

The comparison between the VPSC predictions and the corresponding full-field
statistics shows reasonable agreement. Both models predict very similar orientation
dependence of the average rotation rates and, most importantly, of the average
dispersions, with maximum near <112>, which incidentally coincides with the
predominant recrystallization texture component of an fcc material after being
heavily deformed in tension. The minor differences between VPSC and VPFFT
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predictions can be ascribed to two reasons. (1) The unavoidable adoption of a
linearization scheme in VPSC, affine in this case. As discussed above, this implies
an approximation of the actual nonlinear response of the material, which the
VPFFT solutions strictly account for. In the present case of relatively mild single
crystal anisotropy and nonlinearity, the results of the first-order affine linearization
match reasonable well the reference full-field solutions. Materials with higher local
mechanical contrast would require the use of second-order linearization, for more
accurate results. (2) The imperfect statistical representation of the distributions
obtained by ensemble averaging of VPFFT solutions.

4 Summary and Further Reading

In this chapter, we have reviewed two crystal plasticity methodologies for the predic-
tion of microstructure-property relations in polycrystalline aggregates. The mean-
field VPSC and the full-field VPFFT formulations rely on Green’s function-based
solution of the PDEs governing the micromechanical response of polycrystals –
a class of heterogeneous materials, in which the heterogeneity is related to the
inherent directional properties of single crystal grains with respect to mechanical
solicitation along different crystal directions and the different crystallographic
orientations of each of these grains in the aggregate. The non-space-resolved VPSC
formulation is based on a certain linearization assumption for the behavior of the
single crystal grains, along with the integration – utilizing Fourier transforms – in an
ellipsoidal domain of the Green’s function for an infinite medium with homogenous
properties and an iterative procedure to adjust the properties of this HEM. The
space-resolved VPFFT method is based on the evaluation of convolution integrals
over the entire periodic unit cell, between the Green’s function for a periodic
medium and a polarization term containing all the information on the heterogeneity
and nonlinearity of the crystalline material’s behavior. The numerical evaluation of
such convolutions is performed in Fourier space and anti-transformed to Cartesian
space by means of the efficient FFT algorithm. Both Green’s function-based crystal
plasticity formulations were presented using a unified notation, pointing out their
similarities and differences and cross-validating their predictions.

The VPSC formulation has been extensively applied to predict microstructure-
property relationships, including texture-induced anisotropy and microstructure
evolution, both in stand-alone, single material point calculations and as part of
multiscale frameworks, coupling the homogenization-based model with FE codes.
Presenting these applications is beyond the scope of this chapter, but a list of stand-
alone applications of VPSC to metals, minerals, and polymers can be found in
Lebensohn et al. (2007), and the different multiscale strategies are discussed in,
e.g., Tomé et al. (2001), Plunkett et al. (2006), Nixon et al. (2010), Segurado et al.
(2012), and Barton et al. (2015).
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Beyond the rigid-viscoplastic regime in which this chapter has been focused,
the FFT-based formulation has been implemented for other deformation regimes,
including polycrystal elasticity (Brenner et al. 2009), dilatational viscoplasticity
(Lebensohn et al. 2013), and elasto-viscoplasticity (EVPFFT) (Lebensohn et al.
2012; Grennerat et al. 2012, for small strains; Eisenlohr et al. 2013, for finite
strains). In particular, the standard EVPFFT formulation based on local plasticity
was recently extended to consider strain-gradient and high-order plasticity theories,
including field dislocation mechanics (FDM), by Berbenni et al. (2014), Brenner
et al. (2014), and Lebensohn and Needleman (2016), etc.
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sample. As such, they present an important avenue for improving the fidelity
of multiscale modeling and simulation for a variety of phenomena involving
plastic deformations in crystalline materials. However, crystal plasticity models
are extremely computationally expensive, limiting their adoption by materials
development community and manufacturing industries. In this chapter, a spectral
database approach is presented to carry out the computations involved in the
crystal plasticity framework in a highly efficient manner. In this approach,
the important variables of interest from crystal plasticity computations can be
stored in precomputed databases based on discrete Fourier transforms (DFTs).
Although the database generation requires one-time high computational cost,
it dramatically reduces the computational cost in all subsequent computations.
Several case studies illustrating the benefits of this approach are presented in this
chapter.

1 Introduction

Modern manufacturing industry relies heavily on metal forming processes, which
form the backbone of today’s manufacturing world. Globally, hundreds of million
tons of metals are subjected to metal forming processes every year. In metal forming
processes (examples include rolling, extrusion, forging, deep drawing, and die
forming), the products are shaped and often strengthened by plastic deformation.
Plasticity also influences material failure (e.g., necking and fracture, fatigue).
Consequently, a deeper understanding of plastic deformation in metals and alloys
is central to efforts aimed at improving the manufacturing processes for optimizing
the cost and the performance of the finished product.

Plasticity describes the deformation of a (solid) material undergoing nonre-
versible changes of shape in response to applied forces (Lubliner 2008). Most
commercially used metals and alloys exhibit polycrystalline microstructures (mate-
rial structure at the mesoscale) that are composed of numerous grains (individual
crystals). In such materials, plastic deformation occurs predominantly by dislocation
glide on specific crystallographic planes (typically close-packed planes) in specific
crystallographic directions (typically close-packed directions) (Callister 2007).
Consequently, the details of the material microstructure (such as the distribution
of grain orientations, also referred as the crystallographic texture) play an important
role in plasticity (Barlat 2007).

Most simulations of metal forming employ phenomenological descriptions of
the constitutive laws controlling the macroscale (effective) elastic-plastic response
of polycrystalline materials. These models are based on discrete macroscopic
experimental observations and the assumption of material homogeneity. Although
such models require relatively short computation times due to which they are the
preferred choice for industrial process simulations, they are often not able to capture
accurately the evolving anisotropy and properties (i.e., mechanical performance)
of the finished product. For example, when it comes to processes involving ultra-
thin sheet metals (few grains in the thickness), phenomenological models often
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fail to capture material response accurately as these sheet metals present a strong
heterogeneity of deformation during processing (Adzima et al. 2017). In such
situations, it is essential to employ more physics-based descriptions of the material
constitutive laws. For crystalline solids, these can be expressed in the form of crystal
plasticity theories (Adams et al. 2013). A salient feature of these models is that they
aim to express the constitutive relations of the material starting from the description
of the key physical mechanisms at the single crystal scale. These constitutive
relations account for the relevant microstructural mechanisms at this scale, such as
slip on specific crystallographic planes and directions, the lattice rotation, and the
dislocation motion and multiplication in the description of the strain hardening. The
behavior at the macroscale is then subsequently derived from that of the constituent
single crystals via suitable scale-transition schemes. Such micromechanical mod-
eling approaches have demonstrated significant improvements in the predictions of
the concomitant anisotropic mechanical response in polycrystalline materials and
the evolution of the underlying texture in finite plastic deformation (e.g., Asaro and
Needleman 1985; Kalidindi et al. 1992).

The transition from the response of single crystals to the overall (effective)
response of the polycrystalline aggregate is usually accomplished using a suitable
homogenization scheme. The commonly employed homogenization schemes can
be classified based on the assumptions made with regards to the local interactions
between grains, such as Taylor-type (also known as full constraints) (Taylor 1938),
relaxed constraints (Kocks and Mecking 2003), LAMEL (Van Houtte et al. 2005),
self-consistent (Molinari et al. 1987; Lebensohn et al. 2004; Lebensohn et al. 2007),
and crystal plasticity finite element (Needleman et al. 1985; Kalidindi et al. 1992;
Kalidindi and Anand 1994; Bachu and Kalidindi 1998; Kalidindi and Schoenfeld
2000; Raabe et al. 2005) models. The simplest and the most widely used approach
is the Taylor-type model. In this method, the applied velocity gradient tensor at the
microscale is assumed to be the same as the one applied at the macroscale (on the
polycrystal). The macroscopic stress is obtained as a volume average over the entire
polycrystalline aggregate. The Taylor-type model usually provides good predictions
of the overall anisotropic stress-strain response and the averaged texture evolution
for single-phase, high stacking faulty energy, cubic metals (Bronkhorst et al. 1992).
However, it usually lacks good predictions at the scale of individual crystals and
it fails to capture the development of heterogeneities within the grains (Kalidindi
et al. 2004; Van Houtte et al. 2005). Crystal plasticity finite element method (called
CPFEM) is a powerful modeling tool for a wide range of mechanical problems
that take into account the local interactions between all grains in the sample. This
approach uses the finite element (FE) method to find the response of the polycrystal
by placing a finite element mesh over the grains such that each element represents
one grain or a part of the grain (Roters et al. 2010).

The use of crystal plasticity models is extremely computationally expensive and
has not been adopted broadly by the advanced materials development community.
Even when the constitutive equations are developed and implemented efficiently, the
time integration of the highly nonlinear single crystal response demands high com-
putational resources. Consequently, in recent years, much attention has been devoted
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to the development of novel techniques that reduce the computational cost involved,
without significant loss of accuracy. The explored strategies have included both
efficient numerical schemes and high-performance computing hardware (Knezevic
and Kalidindi 2017). In the field of crystal plasticity modeling, these have included
the Bunge–Esling approach (Bunge and Esling 1984; Kalidindi and Duvvuru 2005),
Fourier transform (FFT)-based formulations (Lebensohn 2001; Lebensohn et al.
2008), Newton–Krylov method in place of the Newton–Raphson (NR) method
for solving sets of highly nonlinear crystal plasticity equations (Chockalingam
et al. 2013), and the database approaches which rely primarily on databases of
precomputed solutions either in the form of Fourier (spectral) coefficients of the
generalized spherical harmonics (GSH) (Kalidindi et al. 2006) or discrete Fourier
transforms (DFTs) (Knezevic et al. 2008a; Knezevic and Savage 2014; Alharbi
and Kalidindi 2015; Zecevic et al. 2015a). Among these, the database approaches
have demonstrated the most dramatic reduction in the computational cost without
any significant loss of accuracy. This is mainly because the database approaches
retrieve the solutions to the single crystal constitutive equations from the precom-
puted databases instead of computing them directly (e.g., using the iterative NR
method).

In this chapter, the DFTs-based database approach to speeding up the conven-
tional crystal plasticity computations is presented and demonstrated using several
exemplar case studies. More specifically, a database is designed and utilized to
efficiently reproduce the solutions for the crystal plasticity constitutive descriptions.
The versatility of this approach is demonstrated through a broad range of applica-
tions.

2 Crystal Plasticity Framework

In this section, the main details of rigid-viscoplastic crystal plasticity framework
(Asaro and Needleman 1985) used in the Chapter are presented. Plastic deformation
is assumed to be only due to the slip on the crystallographic slip systems. The
velocity gradient, L, at the single crystal scale can be expressed as

L = W∗ + LP, LP =
∑

α
γ̇ αmα ⊗ nα (1)

where W∗ is the lattice spin tensor, LP is the plastic velocity gradient tensor, γ̇α is
the shearing rate on the slip system α, and mα and nα denote the slip direction and
the slip plane normal of the slip system α, respectively, in the current configuration.
The mα and nα are related to their counterparts mα

0 and nα
0 , expressed in the isoclinic

relaxed configuration by the lattice rotation tensor R∗ as, mα = R∗.mα
0 and nα =

R∗.nα
0 (Gupta et al. 2018). In the rate dependent formulation (Pan and Rice 1983),

the shearing rate on each slip system depends on the resolved shear stress, τα, and
the slip resistance, sα, of that slip system α. It can be expressed in a power-law
relationship as (Kalidindi et al. 1992):
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γ̇ α = γ̇0

∣∣∣∣
τα

sα

∣∣∣∣

1
m

sgn
(
τα
)
, τα = σ′ · Pα (2)

where γ̇0 is the reference value of the shearing rate, m is the strain rate sensitivity
parameter, σ

′
is the deviatoric part of the Cauchy stress tensor, and Pα is the

symmetric part of the Schmid tensor mα ⊗ nα given by

Pα = 0.5
(
mα ⊗ nα + nα ⊗mα

)
(3)

Using Eqs. (1) and (3) stretching tensor D (the symmetric part of L) is
expressed as

D =
∑

α
γ̇ αPα (4)

The evolution of the slip resistance can be described by a saturation-type law as
follows:

ṡα = h0

(
1− sα

ss

)a ∑
β
| γ̇ β | (5)

where h0, ss, and a denote the slip hardening parameters. Finally, the lattice spin
tensor W∗ (and the related lattice rotation tensor, R∗ ) in the crystalline region is
given by:

W∗ = Ṙ∗R∗T = W−Wp, Wp =
∑

α
0.5γ̇ α

(
mα ⊗ nα − nα ⊗mα

)
(6)

where W is the applied spin tensor, and Wp is the plastic spin tensor.

3 Spectral Databases for Crystal Plasticity Computations
in Cubic Metals

The crystal plasticity framework described in the previous section demands signifi-
cant computational resources. The numerically stiff behavior of the crystal plasticity
constitutive equations is a direct consequence of the fact that most metals have
a very weak dependence on strain rate at room temperature, demanding the use
of a small value for the strain rate sensitivity parameter in the flow rule (see
Eq. (2)). Consequently, one typically needs several iterations to arrive at an
acceptable solution. Additionally, the constitutive equations need to be solved
several times in most crystal plasticity simulations. For example, the implementation
of the crystal plasticity equations in a finite element tool requires solving the set of
stiff constitutive equations for every crystal orientation at every integration point
at every trial strain increment in the simulations. Consequently, the use of crystal
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plasticity models for simulating practical engineering problems requires extremely
high computational effort.

A spectral database approach (Knezevic et al. 2008a; Knezevic and Savage
2014; Alharbi and Kalidindi 2015; Zecevic et al. 2015a) has been developed for
speeding up the crystal plasticity constitutive calculations. The main idea of this
new approach is based on building a database of Fourier coefficients (based on
DFTs) that efficiently capture the main solutions of the crystal plasticity constitutive
formulations. As mentioned earlier, we intend to use such a database in performing
all calculations in a multiscale crystal plasticity simulation, avoiding the need to
solve directly the crystal plasticity equations.

The new database approach seeks compact representations for the following three
functions corresponding to the main variables in the crystal plasticity solutions: (i)
the deviatoric stress tensor σ ′(g,L), (ii) the plastic spin tensor Wp(g, L), and (iii)
the total shear rate

∑
α|γ̇ α| (g,L), where g denotes the crystal lattice orientation

represented using Bunge–Euler angles, and L is the traceless applied velocity
gradient tensor. However, the space of L (i.e., the set of all possible values assigned
to L) is unwieldy and needs to be suitably parametrized. We seek parametrization
of the velocity gradient as (Van Houtte 1994):

L = D+W, D = ε̇D0,D0 =
∑3

j=1
Dje

p
j ⊗ e

p
j , ε̇ = ‖D‖ (7)

D1 =
√

2

3
cos

(
θ − π

3

)
, D2 =

√
2

3
cos

(
θ + π

3

)
, D3 = −

√
2

3
cos (θ)

(8)

where
{
e
p
j , j = 1, 2, 3

}
denotes the principal frame of the stretching tensor D,

and {Dj, j = 1, 2, 3} are the components of a diagonal and traceless D0. It should
be noted that none of the functions of interest identified above are dependent on W
(can be seen from the constitutive model described in Sect. 2). As a result of the
above parametrization, the functions of interest can then be expressed in terms of({

e
p
j

}
, θ, ε̇

)
instead of L. For example, the function of interest for the deviatoric

stress tensor can be expressed as σ′
(
g,
{
e
p
j

}
, θ, ε̇

)
.

One approach to reducing the number of independent variables in the functions
is to select a specific reference frame where the components of the tensors will
be described. For example, we could decide that the function will be described
in the principal frame of D. Making this choice implies that we would have to
use a suitable coordinate transformation law to recover the values of the function
of interest in a different reference frame (such as the sample reference frame).
Selecting the principal frame of D as the reference frame also implies that the crystal
lattice orientation has to be defined with respect to this frame (note that g denotes the
crystal lattice orientation with respect to the sample reference frame). Let gp denote
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the crystal orientation with respect to the principal frame of D (defined by
{
e
p
j

}
).

With the choices made above, the functions of interest can now be expressed over
(gp, θ , ε̇). As an example, the expected functional dependence of the components

of the deviatoric stress tensor in the
{
e
p
j

}
reference frame can be expressed as

σ′ij (gp, θ, ε̇). The central significance of the rationale described above is that
the number of independent input parameters for the functions of interest has been
reduced from 11 to 5. More importantly, of the five independent input parameters,
four are angles (three for gp and one for θ ). This is very significant because the
angular variables have naturally periodic domains (often expressed as [0, 2π )) and
are ideally suited for DFT representations. It is also pointed that although ε̇ is not
defined on a bounded space, it will not present a hurdle for our application, as we
will be able to express the dependence of the functions of interest on this variable in
explicit (i.e., analytical) forms.

The orientation variable gp is most conveniently described by a set of three
Bunge–Euler angles denoted as (ϕ1,#, ϕ2). Since each of this variable is an angle,
the natural domain for the orientation can be expressed in the most general case as
(ϕ1ε [0, 2π), #ε [0, 2π), ϕ2ε [0, 2π )). Although the crystal and sample symmetries
generally identify as significantly smaller space as the fundamental zone (i.e., the
set of all distinct crystal orientations), it is most convenient to stay with the full
orientation space identified above to take advantage of the fact that this space is
naturally periodic and therefore once again ideally suited for DFT representations.
For the variable θ , we can identify periodic domain as θ ε [0, 2π /3) (see Fig.1).

The DFT representations of the functions of interest mentioned above are
expressed as:

Fig. 1 Variation of
components D1, D2 and D3 as
a function of θ
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Wp
rutq = ε̇

1
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σ′rutq = s ε̇m
1

Nϕ1 NϕNϕ2Nθ
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k=0

Nϕ−1∑
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2πikr
Nϕ1 e
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(10)

(
∑

α

∣∣γ̇α
∣∣
)

rutq

= ε̇
1

Nϕ1 NϕNϕ2Nθ
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l=0
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m=0
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n=0
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Nϕ1 e

2πilu
Nϕ e

2πimt
Nϕ2 e

2πinq
Nθ

(11)

In Eqs. (9), (10), and (11), r, u, t, and q enumerate the grid points in the
orientation space (domain of gp or (ϕ1,#, ϕ2)) and the θ space (describing
the deformation mode), respectively, while Nϕ1 , Nϕ, Nϕ2 , and Nθ represent the
corresponding total number of grid points in the same spaces. In other words, the
variables r, u, t, and q take positive integer values. The sets of Fourier coefficients
Bklmn, Cklmn, Gklmn are generally referred to as the DFTs and constitute the spectral
databases needed for facilitating the fast crystal plasticity solutions described here.
Equations (9), (10), and (11) are given for three components (Wp

12, Wp

13, Wp

23) of
plastic spin tensor, six components (σ′11, σ′22, σ′33, σ′12, σ′13, σ′23) of deviatoric
stress tensor, and total shear rate, respectively. Note also that Eqs. (9), (10), and
(11) have explicitly accounted for the dependence of the different functions on the
variable ε̇, which can be derived directly from the crystal plasticity theory presented
earlier in Sect. 2. As a result, the DFT representations in these equations involve only
a four-dimensional space. To incorporate hardening, slip resistance s is included in
Eq. (10) for calculation of the deviatoric stress, with the assumption s = sα (i.e., the
slip resistance is same for all the slip systems within a grain but varies from grain-
to-grain). At the beginning of the time integration, the slip resistance is generally
assigned the same initial value for all the grains. For subsequent time steps, the total
shear rate calculated from Eq. (11) is used in Eq. (5) to update the slip resistance
(sα) which determines the amount of strain hardening on slip system α for the next
strain increment. An important consequence of this strategy is that the database of
Fourier coefficients established in Eqs. (9), (10), and (11) is completely independent
of the values of the hardening parameters. In fact, the Fourier coefficients are also
independent of the exact form of the hardening equation as long as we make the
assumption that all the slip systems exhibit the same slip resistance.

In order to build the spectral databases, we need to sample the functions of
interest on a uniform grid in their domains. This sampling can be accomplished
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by carrying out the crystal plasticity computations for the selected inputs using
the model presented in Sect. 2. This does entail a significant computational cost.
However, the main benefit of the approach presented here is that building the
database constitutes a one-time cost, i.e., there is no need to rebuild this database
because the database designed here is applicable to any fcc crystal subjected to any
deformation path and exhibiting a broad range of hardening responses. In order
to compute the DFTs, we need to sample the functions of interest on a uniform
grid in 4-D (defined by (ϕ1,#, ϕ2, θ )). One has to decide on the resolution of the
sampling grid. Obviously, finer grids will result in higher accuracy but can increase
the (one-time) computational cost of generating the database. Furthermore, below a
certain level of discretization, one would expect that there would be no new peaks
in the frequency spectrum of the function of the interest, especially for the physics-
based functions of interest identified above (i.e., these are expected to vary smoothly
over their domain spaces). Multiple trials have shown that the crystal plasticity
spectral databases produced with the one-degree grid discretization (Gupta et al.
2018) provide excellent results. Although there is an additional computation cost in
calculating the database on the finer one-degree grid, it should be remembered that
it is only a one-time expense. The periodic domain of independent variables on 4-D
grid is chosen as (ϕ1ε [0, 2π), #ε [0, 2π), ϕ2ε [0, 2π)), θ ε [0, 2π /3 ); thus, for
one-degree discretization, it means that total simulations required to generate initial
data for building database are 360 x 360 x 360 x 120 ≈ 6x109 simulations. This is a
huge number of simulations, which will require significant computational resources
and time even if simulations are run in parallel. We, therefore, explore ideas that can
reduce the total number of required simulations.

The number of simulations required for generating DFT database can be reduced
by taking advantage of the symmetry relations for cubic crystals (Adams et al. 2013)
and the mirror symmetry evident within the periodic domain of θ (refer Fig.1).
Simulations using Taylor-type model are done only for orientations in FZ3 (3 times
fundamental zone of cubic crystals), and symmetry relations are used to fill up entire
grid for generating DFTs. FZ3 is defined as (Adams et al. 2013)

FZ3 =
{
g = (ϕ1,#,ϕ2)

∣∣∣∣∣

(
0 ≤ ϕ1 < 2π, 0 ≤ # < π

2 , 0 ≤ ϕ2 < π
2

)
(
0 ≤ ϕ1 < π, # = π

2 , 0 ≤ ϕ2 < π
2

)
∣∣∣∣∣

}

(12)

For the chosen one-degree grid, middle of the bin is chosen to be grid point.
That is, grid points are 0.5, 1.5, 2.5, and so on; therefore, single point sim-
ulations using Taylor-type model were done to get initial data for grid points
spaced in one degree increments over the space (ϕ1ε [0.5, 359.5], #ε [0.5, 89.5],
ϕ2ε [0.5, 89.5]), θ ε [0.5, 59.5]. Therefore, total number of simulations required
reduces to 360 × 90 × 90 × 60 ≈ 2 × 108, which is only 3% of the simulations
required for the total periodic 4-D grid identified earlier.

The parameters for conventional crystal plasticity model for these simulations
were chosen as: slip hardening parameter (ho) = 0, initial slip resistance (so) =
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100 MPa, reference value of the shearing rate (γ̇o) = 0.001/s, rate-sensitivity (m)=
0.01, strain rate (ε̇ )= 0.001. As noted earlier, the functions of interest were sampled
for the input values selected on a uniform grid by performing these simulations.
While generating the database hardening variable s is kept constant and established
Fourier coefficients database is independent of the values of the strain hardening
parameters in Eq. (5).

Simulation results corresponding to each orientation in FZ3 will have to be
assigned (copied) to fifteen other orientations which are equivalent to it before
carrying out the DFTs. This is because there are sixteen equivalent orientations
in the periodic grid; eight of these are obtained from crystal lattice symme-
try operations and another eight directly from the definitions of the Bunge-
Euler angles. The definitions of the Bunge-Euler angles require that locations
(ϕ1,#, ϕ2) and (ϕ1 + π , 2π − #, ϕ2 + π ) correspond to the exact same crystal
lattice orientation for crystals of any symmetry. Furthermore, consideration of
eight of the lattice symmetry operations associated with a cubic crystal lattice
(e.g., face-centered cubic (fcc), body-centered cubic (bcc)) requires that locations
corresponding to (ϕ1 + π , π − #, 2π − ϕ2), (ϕ1 + π , π − #, π − ϕ2),
(ϕ1 + π , π − #, π/2 − ϕ2), (ϕ1 + π , π − #, 3π/2 − ϕ2), (ϕ1,#, ϕ2 + π /2),
(ϕ1,#, ϕ2 + π ) and (ϕ1,#, ϕ2 + 3π /2) also correspond to the exact same crystal
lattice orientation defined by (ϕ1,#, ϕ2) (Adams et al. 2013). For deformation
mode angle θ , mirror symmetry of periodic domain is used to fill the remaining
grid (f (θ ) = f (120 − θ )). Thus, after considering above symmetry relations,
we can fill up entire 4-D periodic grid of size 360 x 360 x 360 x 120 for all
functions of interest. Since 4-D matrices for doing DFTs are large, it requires a
large amount of computer memory (RAM) ∼ 128 GB to calculate DFTs and to
perform further operations on them such as sorting. DFTs for each output variable
(i.e., the functions of interest in crystal plasticity computations identified earlier)
are converted from a 4-D matrix to a vector and stored in descending order of
their magnitude with corresponding frequencies in a separate matrix. It should be
noted that for each output variable, the size of the vector containing all DFTs is
5,598,720,000 (= 360 × 360 × 360 × 120) which requires ∼ 40 GB storage
space. Therefore, these DFTs are sorted in descending order of magnitude, and
only a reasonable number of the dominant DFTs are stored for further use. As
an example, the reduced database for one output variable containing a vector of
50,000 DFTs requires ∼ 700 KB storage space. In producing such a compact set,
we have also taken advantage of the fact that about half of the DFTs are complex
conjugates of the other half for all real-valued functions. Considering the size of
matrices and memory requirement, it is recommended to do all the steps together
starting from populating the 4-D periodic grid from single point simulation data
to storing sorted set of dominant DFTs. After obtaining the simulation data from
conventional crystal plasticity model, it took a computational time of ∼70 h on a
2 GHz clock speed machine with a memory (RAM) of ∼ 128 GB to generate the
complete DFT database for all output variables of interest (a total of ten). From
the computed DFTs, the DFTs of interest defined in Eqs. (9), 10), and (11) are
extracted.
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Note that the DFTs were generated independently for all six components of the
deviatoric stress, even though one of the components is redundant. For example,
one of the components can be computed using the relation σ′33 = −

(
σ′11 + σ′22

)
to

ensure that the trace of deviatoric stress tensor is zero. Our trials have shown that the
strategy of building the database only for the five independent components and then
computing the sixth component by setting the trace of the tensor to zero resulted in
a larger error for σ′33. This was a consequence of the addition of the truncation errors
for σ′11 and σ′22, in computing σ′33 = −

(
σ′11 + σ′22

)
. A better strategy is to establish

an independent database for σ′33 (Knezevic et al. 2009; Alharbi and Kalidindi 2015).
For imposing the condition that the trace of the deviatoric stress tensor has to be
zero, the hydrostatic part was subtracted from each of the normal stress components,
after computing the full tensor using the spectral database. This approach produced
much more accurate predictions of the entire deviatoric stress tensor, as will be
evident from the results presented later.

For the estimation of the function values at points other than the grid points,
there exist several methods that utilize the DFT representations of the function. All
of these approaches implicitly assume that the original grid employed in computing
the DFTs is sufficiently refined to capture all of the important frequencies embedded
in the function of interest and perform some sort of an interpolation with global
support. One approach is the spectral interpolation approach (Knezevic et al. 2009;
Alharbi and Kalidindi 2015), where the DFTs are suitably padded to recover the
function values on any finer grid on the same domain (Knezevic et al. 2008a).
This methodology is known to be insensitive to the phenomenon of aliasing, which
arises when trying to recover function values at locations other than those originally
sampled. The DFT corresponding to the finer grid can then be used to compute
efficiently an interpolated value of the function at any of the grid points on the
finer grid. However, it was observed that spectral interpolation introduced certain
rounding errors, which can be eliminated by the use of trigonometric interpolation,
which is a continuous interpolation scheme (Zecevic et al. 2015a). Using the
trigonometric interpolation scheme resulted in excellent accuracy of the crystal
plasticity computations, as demonstrated in recent studies (Zecevic et al. 2015a;
Gupta et al. 2018). The details of this interpolation scheme are presented next.

The main functions of crystal plasticity solutions are recovered as continuous
functions of orientation and deformation mode from spectral DFT database with
trigonometric interpolation using Inverse Discrete Fourier Transforms (IDFTs)
equations in principal frame of D, given by (Zecevic et al. 2015a):

Wp
(
gp, θ

) = ε̇
1

Nϕ1NϕNϕ2Nθ

⎡

⎢⎣

Nϕ1
2∑

k=−Nϕ1
2 +1

Nϕ
2∑

l=−Nϕ
2 +1

Nϕ2
2∑

m=−Nϕ2
2 +1

Nθ
2∑

n=−Nθ
2 +1

Bklmne
2πikϕ1
Lϕ1 e

2πilϕ
Lϕ e

2πimϕ2
Lϕ2 e

2πinθ
Lθ

⎤

⎥⎦

(13)
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σ′
(
gp, θ

) = sε̇m
1

Nϕ1NϕNϕ2Nθ

⎡

⎢⎣

Nϕ1
2∑

k=−Nϕ1
2 +1

Nϕ
2∑

l=−Nϕ
2 +1

Nϕ2
2∑

m=−Nϕ2
2 +1

Nθ
2∑

n=−Nθ
2 +1

Cklmne
2πikϕ1
Lϕ1 e

2πilϕ
Lϕ e

2πimϕ2
Lϕ2 e

2πinθ
Lθ

⎤

⎥⎦

(14)

∑

α

| γ̇ α | (gp, θ
) = ε̇

1

Nϕ1NϕNϕ2Nθ

⎡

⎢⎣

Nϕ1
2∑

k=−Nϕ1
2 +1

Nϕ
2∑

l=−Nϕ
2 +1

Nϕ2
2∑

m=−Nϕ2
2 +1

Nθ
2∑

n=−Nθ
2 +1

Gklmne
2πikϕ1
Lϕ1 e

2πilϕ
Lϕ e

2πimϕ2
Lϕ2 e

2πinθ
Lθ

⎤

⎥⎦

(15)

where Nϕ1 , Nϕ,Nϕ2 , Nθ are the total number of grid points and Lϕ1, Lϕ, Lϕ2 , Lθ

represent the domain of variables in the orientation space (gp or (ϕ1,#, ϕ2)) and
the deformation mode space (θ ). For one-degree grid, Nϕ1 = Nϕ = Nϕ2 = 360,
Nθ = 120 and Lϕ1 = Lϕ = Lϕ2 = 360, Lθ = 120, since the periodic domain of
variables considered are ϕ1ε [0, 360o), #ε [0, 360o), ϕ2ε [0, 360o), θ ε [0, 120o ).
When retrieving Fourier coefficients (Bklmn, Cklmn, Gklmn) referred as DFTs for use
in above equations to reconstruct values of above functions, we use only dominant
DFTs and also take advantage of the fact that about half of the DFTs are complex
conjugates of other half for all real valued functions. In the DFT-based spectral
approach used to solve the crystal plasticity constitutive equations, only a small
number of terms in the DFT (called dominant DFTs) are required to reconstruct
directly the solutions for the main functions of the conventional crystal plasticity
theory for any given crystal orientation and under any applied deformation mode.
The use of small number of dominant DFTs speeds up crystal plasticity calculations
by about two orders of magnitude without significantly compromising accuracy
(Knezevic et al. 2009). Even with using one-degree grid discretization as in case
study presented here (Gupta et al. 2018), the cost of recovering the solutions
from database is roughly the same as the three-degree grid database (Knezevic
et al. 2009), which is about two orders of magnitude faster than the conventional
computations.

Once the spectral database is developed, it can be used for various applications
as described in Sects. 4 and 6. Given a set of crystal orientations, an initial value of
slip resistance per crystal orientation, hardening parameters, and an imposed value
of the strain rate tensor, we can use Eqs. (13), (14), and (15) to compute required
microscale quantities (i.e., grain scale stress, grain spin, and shearing rates on slip
systems). A desired deformation process can be simulated by applying a suitable
sequence of strain increment steps. The computed spin tensor for each crystal is
used to update its lattice orientation. The updated set of crystal lattice orientations
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are then used to define the starting conditions for the next strain increment. Total
shear rate is used to update the slip resistance using Eq. (5) for the next strain
increment. For the polycrystalline response (i.e., macroscale quantities such as the
homogenized stress–strain response and texture), the Taylor model is used, in which
the applied strain rate tensor at the grain level is assumed to be the same as the one
applied at the polycrystal level. The macroscopic stress for the polycrystal is then
obtained by volume averaging the stresses inside the polycrystal.

4 Application of Spectral Databases for Crystal Plasticity
Computations of Cubic Metals

4.1 Taylor-Type Crystal Plasticity Simulations Using Spectral
Database

In this section, case study of Taylor-type crystal plasticity simulations using
spectral database built in Sect. 3 is presented. Uniaxial tension simulations were
performed, and the hardening parameters were taken from Kalidindi et al. (1992)
and correspond to oxygen-free high conductivity (OFHC) copper: h0 = 180 MPa,
ss = 148 MPa, a = 2.25, s0 = 16 MPa, and m = 0.01. The polycrystal was
assumed to consist of 1000 FCC single crystals possessing a random initial texture.
A comparative analysis of results predicted by the one-degree and three-degree grid
databases is also performed.

The results of uniaxial tension simulations are presented in Fig. 2. The averaged
polycrystal responses are plotted in this figure as macroscale deviatoric stress-
strain curves. Deformed textures (pole figures) obtained using conventional crystal
plasticity Taylor-type model (CP) and DFT database (SCP) show an excellent
agreement. Comparison of deviatoric stress-strain curves of CP and SCP using one-
degree grid and three-degree grid show that one-degree grid provides more accurate
predictions. It should be noted that simulations are rigid-viscoplastic. For SCP
model, 500 dominant DFTs were chosen for deviatoric stress components (Cklmn)
and total shear rate (Gklmn) and 2000 dominant DFTs for plastic spin components
(Bklmn) with a strain step of 0.06.

Computational cost of DFT database approach improved by two orders of mag-
nitude compared to conventional crystal plasticity simulation without significantly
compromising accuracy. It should be noted that we can further improve the accuracy
of SCP model by using more number of dominant DFTs, but then computational
cost will be higher. The number of dominant DFTs chosen here represents a
compromise between computational time and accuracy.

4.2 Fast Computation of Yield Surfaces Using Spectral Databases

In this section, a new method for the fast computation of the yield surface in the
five-dimensional deviatoric stress space is described using the DFT-based databases.
Since the computational cost of delineation of the anisotropic yield surface in stress
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database against corresponding predictions from conventional CP Taylor-type model for uniaxial
tension simulation of OFHC Copper: (a) pole figures of deformed texture and (b) different
components (sigma 11 and sigma 33) of deviatoric stress vs. strain curves
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space using crystal plasticity is very high, the spectral database approach can be
used to tackle this problem.

The orientation distribution function (ODF), denoted as f (g), reflects the nor-
malized probability density associated with occurrence of the crystallographic
orientation, g, in the sample. ODF is formally defined as

f (g)dg = Ng±dg/2

N
,

ż

FZ

f (g)dg = 1 (16)

where N is the total number of orientations measured in the sample, Ng ± dg/2 is the
number of orientations that lie within an invariant measure, dg, centered about the
orientation, g, and FZ denotes the fundamental zone of distinct Bunge-Euler angles.
The invariant measure is then defined as:

dg = sinϕ dϕ1dϕdϕ2 (17)

In this work, it is convenient to establish the DFT representation for texture as
(Kalidindi et al. 2009):

∼
Fklm =

∑Nϕ1−1

b1=0

∑Nϕ−1

b2=0

∑Nϕ2−1

b3=0
fb1b2b3 sinϕb2e

−2πikb1
Nϕ1 e

−2πilb2
Nϕ e

−2πimb3
Nϕ2

(18)

where Nϕ1 x Nϕx Nϕ2 represents a uniform discretization of three-dimensional
Bunge-Euler space, (b1, b2, b3) enumerate the grid points, and fb1b2b3 denotes the
value of the ODF at the grid point.

In the Taylor model (Taylor 1938), the macroscopic deviatoric stress tensor,σ′, is
given by the volume averaged value of the local stress tensors in the constituent crys-
tals of the polycrystalline aggregate. The volume-averaged value can be efficiently
evaluated using Eqs. (10) and (18) and the orthogonal properties of the spectral
representations. It can be shown that

σ′q = s ε̇m
1

Nϕ1 NϕNϕ2Nθ

∑
k

∑
l

∑
m

∑
n

∼
FklmCklmn e

2πinq
Nθ (19)

where σ′ denotes the volume averaged deviatoric stress tensor evaluated on a
uniform grid in θ , with the grid points enumerated by q. Equation (19) is used to
establish the points on the yield surface corresponding to a particular principal frame
of D. However, to establish the complete yield surface in the sample reference frame,
one needs to explore the space of all possible principal frames. Thus, the space of all
possible principal frames can be identified using a set of Euler angles, analogous to
the Bunge-Euler angles used in the definition of the crystal lattice orientation. The
spectral representations of the ODF and the stress functions do not implicitly assume
any sample symmetry, and consequently, the yield surface can be constructed for
any texture in the sample, without the need to invoke any simplifying assumptions
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Fig. 3 (a) Three-dimensional projection of the yield surface computed using the DFT-based
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locus for the same material comparing the spectral approach with the conventional Taylor-type
model

of sample symmetry. It should be noted that since only a limited number of the Cklmn

transforms need to be accounted in evaluating Eq. (19), this leads to very efficient
computations.

The results of the successfully implemented spectral method to construct the
complete five-dimensional yield surface for BCC polycrystalline material are
presented in Fig. 3. A set of 1000 discrete crystal orientations with random texture is
used in the simulations. The time required for computing the entire five-dimensional
yield surface (involving computations of the values of 7,200,000 stress tensors) was
only 170 s. Figure 3a represents a selected projection of the five-dimensional yield
surface computed here for IF-steel using 500 dominant DFTs. In order to check
the accuracy of the yield surface, we compare in Fig. 3b the (σ11, σ22) section
of the IF-steel yield surface computed using 500 dominant DFTs against the one
computed using the conventional approach. The DFT-based computations are in
excellent agreement with the conventional computations (Al-Harbi et al. 2010).

4.3 Plastic Closures Using Spectral Databases

Property closures delineate the complete set of all theoretically achievable combina-
tions of selected effective anisotropic properties in a given material system and for
a selected homogenization theory and are of great interest in optimizing the perfor-
mance of engineering components. In general, these are very difficult to compute as
they aim to map the complete space of theoretically feasible microstructures in the
given material system into the property space of interest. Clearly, the availability
of theoretically predicted closures for elastic-plastic properties of polycrystalline
materials is of tremendous value in the design and development of new materials
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with enhanced properties or performance characteristics. The complete space of
all theoretically feasible microstructure distribution functions is identified as a
microstructure hull, which for the first-order statistics in polycrystalline microstruc-
tures essentially constitutes a texture hull that is conveniently expressed using
Fourier representations. First-order property closures in polycrystalline materials
are essentially obtained by mapping the texture hulls into the selected property
spaces.

The typical plastic properties of interest such as the tensile yield strength are
defined in the stress space. The challenge consists in identifying an imposed
deformation mode (i.e., stretching tensor, D) that corresponds to the stress state.
As an example, consider the computation of the uniaxial yield strength of the
polycrystal. Since most crystal plasticity models (Kalidindi et al. 1992) take the
imposed deformation as the input and predict the corresponding stress states, it
becomes necessary to guess the deformation mode that would result in a uniaxial
stress state. Without the assumption of orthorhombic sample symmetry, this search
has to take place on at least a four-dimensional surface (equivalent to establishing
the yield surface in five-dimensional stress space). However, with the assumption of
orthorhombic sample symmetry, the search can be restricted to a single parameter
space.

This case study demonstrates how the spectral methods can be utilized for the fast
computation of the yield surface to produce a class of plastic property closures that
include cubic-triclinic textures (Al-Harbi et al. 2010). It should be emphasized that
the highly efficient computation of the yield surface using the spectral databases
described in Sect 4.2 allows us to establish these plastic property closures. The
methodology used here for building the first-order plastic closures follows the
genetic-like algorithms described in Ref. (Knezevic et al. 2008b). The property
combinations of interest were first evaluated for a set of crystal orientations that are
uniformly distributed over the entire FZ. Then, weighted combinations of crystal
orientations located on the boundary were used to expand the property closure. The
process was repeated until the closure did not expand any more.

Since the property closures denote potential design spaces, it is important
to ascertain how the cubic-triclinic closures expand the available design space.
Therefore, in this case study, we computed the example plastic property closures
based on the full-constraints Taylor model for both FCC copper and BCC IF-steel.
Figure 4 shows the first-order closures delineating all of the feasible combinations of
the normalized yield strengths in the sample e1 and e2 directions (i.e., σy1 and σy2)
for copper and IF-steel computed assuming both orthorhombic and triclinic sample
symmetries. Figure 4 clearly indicates that some combinations of σy1 and σy2 cannot
be attained with the cubic-orthorhombic textures. Comparison of the closures in
Fig. 4a and b reveals that the difference between the cubic-orthorhombic and the
cubic-triclinic property closures is considerably larger for FCC metals compared to
BCC metals. This observation is attributed to the availability of the higher number of
slip systems in the BCC metals (48 slip systems in BCC compared to only 12 in the
FCC crystals). The higher number of slip systems is expected to lower the degree
of anisotropy in the response of the bcc metals and should therefore reduce the
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difference between cubic-orthorhombic and cubic-triclinic closures for these metals
compared to the FCC metals.

4.4 Crystal Plasticity Based Forming Limit Diagram Predictions
Using a Spectral Database

Accurate prediction of localized necking in thin metal sheets continues to represent
a major challenge in the design of sheet metal forming of structural components. The
onset of localized necking represents the ultimate deformation state that a stretched
metal sheet can undergo, since this phenomenon is often precursor to material
failure. The most common representation of this limit of material formability, under
a variety of plane stress conditions (relevant to sheet forming), is through the
concept of forming limit diagram (FLD). Since the experimental determination
of FLDs has proven to be both expensive and difficult, considerable effort has
been expended to develop reliable theoretical and/or numerical predictions. Such
approaches require the use of a suitable constitutive framework to describe the
evolution of the material state, in conjunction with an instability criterion, to
predict the onset of plastic flow localization. A numerical tool has been developed
recently (Gupta et al. 2018) for a fast and robust prediction of the forming
limit diagrams (FLDs) for thin polycrystalline metal sheets using a Taylor-type
(full constraints) crystal plasticity model. The occurrence of localized necking
is predicted by the initial imperfection approach, which is based on the well-
known Marciniak- Kuczynski (M-K) model (Marciniak et al. 1973; Marciniak and
Kuczynski 1979). Recently, several multiscale models employing crystal plasticity
constitutive descriptions have been coupled with the M–K analysis in order to
predict localized necking and the associated FLDs. The solutions to the highly
nonlinear crystal plasticity constitutive equations involved in these computations
are known to be computationally very expensive. This presents a major impediment
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to the wider adoption of crystal plasticity theories in the computation of FLDs. In
this work, this limitation is addressed by using spectral database approach based on
DFTs.

A rigid-viscoplastic framework was employed to model the mechanical behavior
at the single crystal scale. Furthermore, we have restricted our attention to FCC
crystals and employed Taylor-type scale-transition scheme in order to compute
the overall mechanical behavior of the polycrystalline aggregate. This case study
demonstrates the application of the DFT spectral database strategy to predict local-
ized necking and the associated FLDs of thin metal sheets, represented as spectral
crystal plasticity FLD (SCP-FLD). This new tool is validated by comparing the
predicted SCP-FLDs with the predictions from conventional methods, represented
as CP-FLD.

The M–K analysis is based on the assumption of a preexisting initial geometric
imperfection in the form of a narrow band (also known as groove) across the width
of the metal sheet. During the deformation, more plastic deformation occurs in
the band, eventually leading to localized thinning in the band. FLD is predicted
using M-K method in conjunction with spectral crystal plasticity by applying
polycrystal model to two polycrystalline aggregates, representing the band and the
homogeneous zone. For details of algorithm to predict FLD and other numerical
aspects involved in this study, readers should refer to Gupta et al. (2018).

The spectral DFT database of one-degree grid is used with the SCP model
for the FLD predictions (SCP-FLD). These predictions are compared in Fig. 5
with the FLDs predicted using conventional crystal plasticity model (CP-FLD).
For both simulations, we have fixed the initial imperfection factor to 0.99. The
polycrystals used in these simulations are made of 1000 FCC single crystals
possessing initial random texture for Fig. 5a and initial textured material for Fig. 5b.
In general, a textured material exhibits more anisotropic behavior. The initial texture
corresponding to a textured material used in Fig. 5b corresponds to the texture
predicted by a Taylor-type model after a plane strain compression (PSC) to a true
strain of −0.5. The SCP parameters used for the FLD predictions are 500 dominant
DFTs for deviatoric stress components and total shear rate and 2000 dominant DFTs
for plastic spin components. By analyzing Fig. 5, we can easily see that the results
obtained by both models (namely the SCP-FLD and CP-FLD) match very well and
are indeed independent of the initial texture. The computational time (CPU time)
required for predicting FLD reduces dramatically when using SCP model, resulting
in about 96% savings.

5 Implementation of Spectral Databases in Finite Element
Models

The case studies discussed so far used Taylor-type models, where a uniform
deformation gradient is assumed for all grains. Crystal plasticity finite element
models (CPFEM) would highly benefit from DFT databases, since computational
time presents a significant constraint for CPFEM. This section explains how the
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Fig. 5 Predicted FLDs using conventional crystal plasticity model (CP-FLD) and spectral crys-
tal plasticity model using DFT database (SCP-FLD) for the following hardening parameters:
h0 = 500 MPa, ss = 230 MPa, a = 2.8, s0 = 50 MPa and m = 0.01 and polycrystal consisting
of 1000 single crystals corresponding to (a) random initial texture, (b) textured material (texture
corresponding to plane strain compression to a true strain of −0.5 on the initially random texture
using a Taylor-type model)

crystal plasticity DFT databases can be integrated with the commercial finite
element package ABAQUS through a user materials subroutine (UMAT). To use the
new spectral database scheme in the FE analysis, two tasks must be accomplished.
Both of these developments have been discussed in Alharbi and Kalidindi (2015)
and are summarized next.

5.1 Including Elastic Deformation in the DFT Database Approach

The crystal plasticity calculations using spectral databases need to be extended from
rigid-viscoplastic behavior to elastic-viscoplastic deformation. Although the elastic
deformation in most metals subjected to finite plastic deformation is indeed very
small and can be neglected, it is essential to include elasticity for implementing
crystal plasticity computations with most commercial FE codes. This is mainly
because most FE simulation tools, such as ABAQUS, provide the total deformation
gradient at each integration point as an input to the user-defined material constitutive
response (through subroutines such as UMAT in ABAQUS) and expect to be
returned the full stress tensor (not just the deviatoric stress tensor).

The following constitutive relations are used to include the elastic deformation
with the spectral crystal plasticity approach described in the previous section:

σ∇∗ = L̃ D∗ (20)

where D∗ is the elastic stretching tensor, L̃ is the fourth-rank elasticity tensor, and
σ∇∗ is the Jaumann rate of the Cauchy stress based on the axes that spin together
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with the lattice and is defined as:

σ∇∗ = σ̇−W∗σ+ σW∗ (21)

In order to use the above relations, the total stretching tensor D (symmetric part
of the velocity gradient tensor) needs to be decomposed into elastic and plastic
parts. This decomposition must be accomplished such that the deviatoric stresses
computed from both the crystal plasticity DFT databases (see Eq. (10), denoted here
as σ′DFT(Dp)) and the above Jaumann rate relations (denoted as σ′Jmn(D∗, W∗,�t))
are equal to each other within an acceptable tolerance. The following modified
Newton-Raphson scheme has been developed to accomplish this decomposition:

[
D′∗

]
n+1 =

[
D′∗

]
n
− λ [J]−1

n [Err]n (22)

Err = σ′DFT (Dp
)− σ′Jmn (D∗,W∗,�t

)
(23)

J = ∂Err
∂D′∗

= −∂σ′DFT
(Dp)

∂Dp
− ∂σ′Jmn

(D∗,W∗,)t)

∂D∗
(24)

The subscripts n and n + 1 in Eq. (22) correspond to the estimates of D′∗ at
n and n + 1 iterations, respectively, and the scalar parameter λ is selected such
that the magnitude of the step correction ‖�D′∗‖ = ‖[D′∗]n+1− [D′∗]n‖ ≤ η εyield,
where εyield denotes the magnitude of the total strain at yielding and η is a numerical
constant taken as 0.1.

5.2 Computation of the Jacobian

The implementation of UMAT in ABAQUS (ABAQUS 2010) requires the compu-
tation of the Jacobian defined as

J = ∂�σ

∂�ε
≡ ∂σ

∂Et

(25)

where �σ and �ε are the increments in the stress and strain tensors in a given
time increment, respectively, and Et is the relative strain tensor in the same time
increment. The Jacobian matrix of Eq. (25) is used in the Newton-Raphson iterative
method for revising the estimated displacements such that the corresponding
stresses are likely to better satisfy the principle of virtual work at the end of the
increment. It should be noted that the Jacobian matrix plays an important role in the
rate of convergence of the solution to the global equilibrium equations but has no
effect on the accuracy of the solution. The following analytical expression for the
Jacobian is developed:
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Fig. 6 Comparison of the predicted stress-strain curves and texture from the SD-CPFEM against
the corresponding results from the conventional CPFEM for plane strain compression followed by
simple shear deformation of OFHC copper: (a) mesh after plane strain compression, (b) mesh after
simple shear deformation, (c) stress-strain curves, (d) pole figures after plane strain compression,
(e) pole figures after simple shear deformation

J = ∂σ

∂Et

= ∂σ′

∂Et

+ I⊗ ∂p

∂Et

= ∂σ′

∂D′
∂D′

∂Et

+ I⊗ ∂p

∂Et

(26)

with

∂σ′

∂D′
=
[
l+ ∂σ′

∂Dp

∂D′∗

∂σ′

]−1
∂σ′

∂Dp
(27)

where p denotes the pressure, and I and l are the second-rank and fourth-rank
identity tensors, respectively. The term in Eq. (27) that requires long computations
is ∂σ′

∂Dp . It should be noted that, in any time step in the simulation, the term ∂σ′
∂Dp will

be already calculated as a part of the iteration scheme to decompose the stretching
tensor into elastic and plastic part (see Eq. (24)). Consequently, there is tremendous
computational advantage in formulating the Jacobian computation as described in
this section.
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Table 1 Elastic and plastic parameters of the OFHC copper used in the case study (Kalidindi
et al. 1992)

C11 (MPa) C12 (MPa) C44 (MPa) m so (MPa) ho (MPa) ss (MPa) a

168,400 121,400 75,400 0.01 16 180 148 2.25

6 Case Study of Spectral Database Application to CPFEM:
Plane Strain Compression Followed by Simple Shear

In order to demonstrate the viability and computational advantages of the spectral
CPFEM (SD-CPFEM), we present case study of simulations performed using
spectral database and classical CPFEM models. The predictions from the two
approaches are produced using the commercial FE package ABAQUS (ABAQUS
2010) and specially developed user material subroutines (described in Ref. (Alharbi
and Kalidindi 2015)). To validate the SD-CPFEM for the case of nonproportional
loading, we simulated a plane strain compression followed by simple shear of a
FCC polycrystalline OFHC copper. The FE model consisted of 500 C3D8 elements
with one crystal orientation per integration point. The initial texture is assumed to
be random. Four thousand different crystal orientations with random texture were
randomly assigned to each integration point inside each element. The first step in
this simulation involved an imposed displacement boundary condition on the top
surface of the model, which resulted in a 35% reduction in height corresponding
to an axial true strain of about −0.4. All faces of the sample are constrained to
remain planar in this step. In the second step, an imposed simple shear deformation
is applied up to a shear strain of γ = 0.5 as shown in Fig. 6a and b. The elastic
and plastic parameters of the OFHC copper used in this case study are shown in
Table 1.

The stress-strain response from the SD-CPFEM is compared against the corre-
sponding predictions from the classical CPFEM in Fig. 6c. The predicted textures
from the two approaches after each deformation step are shown in Fig. 6 (d) and (e).
It can be seen that the predictions from the spectral database approach matched very
well with the corresponding predictions from the classical CPFEM at a dramatically
reduced computation cost. This prediction took 6380 s for the classical CPFEM and
only 527 s for the SD-CPFEM when using 500 DFTs for the stress, the shearing
rate, and the lattice spin components. Examples of other case studies such as the
simulation of extrusion and rolling process using the spectral database approach can
be found in recent literature (Zecevic et al. 2015b).

7 Conclusions and Future Outlook

In this chapter, readers were introduced to recently developed spectral approach to
crystal plasticity framework, where important variables of interest from crystal plas-
ticity computations can be accessed directly from precomputed spectral database



1708 S. R. Kalidindi et al.

based on discrete Fourier transform (DFT). The generation of databases requires
one-time high computational cost, and once generated they can be used for wide
variety of applications as demonstrated by various case studies discussed in this
chapter.

The chapter provided details of DFT database generation for the deviatoric
stresses, the lattice spins, and the strain hardening rates using Taylor-type crystal
plasticity model. These variables depend on the crystal lattice orientations and
deformation mode angle and database built for one-degree grid spacing in this
4-D grid gives very accurate results. Trigonometric interpolation can be used to
obtain values for points other than grid points. The case studies using spectral
database for FCC and BCC materials of Taylor-type simulations, computation of
yield surface, property closures, and forming limit diagrams revealed tremendous
savings in the computational time compared to conventional approaches based on
crystal plasticity. The extension of the spectral database framework to do CPFEM
simulations was also discussed with a case study that also shows a remarkable
reduction in the computational time.

The computational benefit of spectral DFT database in speeding up crystal
plasticity calculations is clearly evident from case studies discussed here. Further,
it has been demonstrated in (Knezevic and Savage 2014) that there can be a
further gain in the computational speed of doing crystal plasticity computations
using spectral DFT database, if the computations are performed on a specialized
computer hardware that utilizes graphics-processing units (GPU). Therefore, there
is clear potential of further speeding up calculation using database if calculations are
performed on advanced hybrid CPU–GPU computational platforms. The spectral
database framework presented in this chapter will also be helpful to the manufac-
turing industry for performing multiscale simulations of forming operations where
computational speed of crystal plasticity models is usually the bottleneck. Proper
utilization of these toolsets can lead to accelerated insertion of new and improved
materials into practice saving millions of dollars.
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However, they face severe challenges when modeling complex microstructures
undergoing extreme phenomena. This chapter examines a few challenges of
conventional CPFEM and proposes remedies through advanced methods of
computational mechanics. The methods discussed include element stabilization,
multi-time-domain subcycling, and efficiency enhancement through adaptivity.
It demonstrates the need for such numerical advances and the advantages
gained. It provides motivation for looking beyond the available tools and making
fundamental advances in field of computational mechanics that can benefit
predictive modeling.

1 Introduction

Structural materials, like metals and alloys, are often characterized by microstruc-
tural heterogeneities in the form of nonuniform grain distributions, multi-colony
sites, or polyphase aggregates in a polycrystalline ensemble. Morphological and
crystallographic characteristics of microstructures strongly govern their mechanical
behavior and failure response. For example, disparities in grain size, crystallo-
graphic orientations, micro-texture, and slip system resistance cause large stress
concentrations and grain boundary dislocation pileups, leading to localized plastic
flow and crack nucleation in Ti alloys (Sinha et al. 2006). Robust predictive models
of deformation and failure, incorporating microstructural features and physical
mechanisms, are necessary for effective material simulation and design.

The recent years have seen a surge in the use of image-based computational
micro-mechanics models for predicting microstructure-property relationships. For
polycrystalline microstructures undergoing large plastic deformation, image-based
computational modeling entails determining micromechanical solution fields in
statistically equivalent representative volume elements (SERVEs) of the material
microstructure by executing computational methods like the finite element method
(FEM), boundary element method (BEM), or fast Fourier transform (FFT) method.
A SERVE is an optimally small computational domain that is created to capture the
statistics of characteristic morphological and crystallographic variables in experi-
mentally obtained electron backscattered diffraction (EBSD) or scanning electron
microscopy (SEM) images. Methods of generating SERVEs are discussed in a
previous chapter (by Ghosh and Groeber) of this handbook. The SERVE creation
is generally followed by conforming mesh generation through discretization of
the microstructure into simple geometric elements. Figure 1 shows a 3D SERVE
constructed from a 2D EBSD scan of a Ti-7Al specimen and strain evolution in the
image-based crystal plasticity finite element analysis.

A majority of the computational models for polycrystalline microstructures
undergoing large plastic deformation implement crystal plasticity constitutive mod-
els. Crystal plasticity finite element models, e.g., in Pierce et al. (1983), Busso
et al. (2000), Staroselsky and Anand (2003), Matous and Maniatty (2004), Bridier
et al. (2009), Roters et al. (2010a, b), Hasija et al. (2003), Deka et al. (2006),
Venkataramani et al. (2007), Anahid et al. (2011), Meissonnier et al. (2001), Dunne
et al. (2012), and Kalidindi and Schoenfeld (2000), generally incorporate these
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Fig. 1 (a) EBSD scan of the alloy Ti-7Al, (b) 529-grain 3D SERVE of dimension 300 μm showing
< c >-axis misorientation and pole figures comparing SERVE data to EBSD, (c) contour plot of
plastic strain at 20% strain with an applied compressive strain rate of 104 s−1

constitutive models in conventional finite element analysis codes like ABAQUS,
LS-DYNA, etc. for full field analysis of short- and long-range evolution of state
variables. Image-based CPFEM, in which microstructural SERVEs are modeled
for predicting complex deformation mechanisms including crack nucleation, twin
propagation, etc., are discussed in Thomas et al. (2012), Shahba and Ghosh (2016),
Cheng and Ghosh (2015, 2017), and Ozturk et al. (2017).

A number of challenges arise when using CPFEM for modeling deformation
mechanisms in complex microstructures, especially those involving phenomena like
localization, twinning, crack propagation, fatigue, etc. Special methods in advanced
computational mechanics should be developed to overcome these challenges and
render robust predictive tools. This chapter begins with a brief description of
CPFEM formulations, crystal plasticity constitutive relations, and their implemen-
tation. Subsequently, it examines three challenges that commonly persist with
conventional CPFEM and offers remedies for overcoming them.

• Element Stabilization: Plastic incompressibility causes volumetric locking of
commonly used tetrahedral elements in CPFE analyses. Special element tech-
nology should be developed for stabilizing spurious modes in these elements.
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• Time-Domain Subcycling for Disparate Deformation Rates: Modeling local-
ization phenomena, e.g., discrete twin evolution, in CPFEM often has low
computational efficiency due to very fine simulation time steps. This is a
major bottleneck in predicting rapidly evolving twin bands. A multi-time-
domain subcycling algorithm can improve computational efficiency through the
introduction of complementary sub-domains with selective fine and coarse time
stepping.

• Enhanced Efficiency with Adaptive CPFEM: Conventional 3D CPFEM with
high-resolution mesh can be computationally prohibitive, especially with algo-
rithms for solving complex constitutive models. Increased efficiency can com-
promise accuracy due to the use of coarse mesh and simplified computational
domains. Hierarchical adaptive methods in CPFEM are capable of providing a
solution to this shortcoming.

2 Crystal Plasticity FE Formulation and SolutionMethods

Finite deformation, crystal plasticity finite element models typically invoke an
incremental solution method, where the time (or equivalent loading) domain is
discretized into finite number of steps. In an updated Lagrangian formulation (Bathe
2006) for a body under quasi-static conditions, the principle of virtual work for an
increment transcending discrete temporal points t and t +�t is written as:

ż

Ωt

δEt+)t
t : St+)t

t dΩ = Rext t+)t

(1)

where Ωt ⊂ R3 is the computational domain at time t and Et+)t
t and St+)t

t

correspond to the Green-Lagrange strain and the second Piola-Kirchhoff (PK) stress
tensors, respectively, with respect to the reference configuration at time t . The weak
form at time t +)t requires the following relations:
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In these relations, σ is the Cauchy stress, u is the displacement, b is the body force
per unit volume, δu is a displacement variation, F is the deformation gradient, and
J is its determinant or Jacobian. All quantities in Eqs. (2) are at time t + )t and
referred to the configuration at time t . The second Piola-Kirchhoff (PK) stress and
the Green-Lagrange strain are, respectively, decomposed as:

St+)t
t = σ t +)St and Et+)t

t = )Et = )et ()u)+)ηt ()u) (3)

where )St denotes the increment of second PK stress from time t to t + )t and
the Green-Lagrange strain tensor is decomposed into a linear part )et ()u) =
1
2

[(
∂)u
∂xt

)T + ∂)u
∂xt

]
and a nonlinear part given as )ηt ()u) = 1

2

(
∂)u
∂xt

)T
∂)u
∂xt .

Substituting the strain decomposition, the incremental crystal plasticity constitutive
relation )St = C

t (u) : )Et (u) ≈ C
t (u) : )et (u), and the relation δEt ≈ δet in

Eq. (1), the linearized weak form is written as:

ż

Ωt

δe : Ct (u) · )e(u)dΩ +
ż

Ωt

δη : σ t dΩ = Rext t+)t −
ż

Ωt

δe : σ t dΩ (4)

where C
t is the local material tangent stiffness matrix. The nonlinear weak form

in Eq. (4) is solved by using an iterative scheme such as the Newton-Raphson
method (Bathe 2006). In the i-th Newton-Raphson iteration, the spatially discretized
linearized Eq. (4) is written as:

Ki
tu = bt+)t − Ri

t where )ui+1 = )ui + u = )ui + u (5)

where Ki
t is the global tangent stiffness matrix, )ui+1 = )ui + u is the

displacement update, and bt+)t −Ri
t is the residual force vector for every iteration.

These are, respectively, expressed as:

Ki
t =

ż

Ωt

BT
C

t,iBdΩ +
ż

Ωt

BT
NLσ t,iBNLdΩ , Ri

t =
ż

Ωt

BT σ t,idΩ

bt+)t =
ż

Ωt

NT ft+)t dΩ +
ż

Γ t

NT t t+)t dΓ

where C
t,i is the elastoplastic tangent stiffness matrix in the i-th iteration; B and

BNL are the linear and nonlinear strain-displacement matrices, respectively; and N
is the matrix of shape functions. The Newton-Raphson iterations continue till the
residual bt+)t − Ri

t reaches a predetermined tolerance.
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2.1 Crystal Plasticity Constitutive Models

Crystal plasticity constitutive models account for dislocation glide on crystal-
lographic slip systems. A significant body of work exists on micromechanical
modeling using crystal plasticity models due to glide on slip systems, using,
e.g., power law description (Pierce et al. 1983; Asaro and Needleman 1985), the
thermally activated theory of plastic flow (Kocks et al. 1975), or the dislocation
density-based models (Roters et al. 2010a, b). While computational mechanics
advances are in general independent of the constitutive relations used, a crystal
plasticity constitutive model for hcp materials developed in Cheng and Ghosh (2015,
2017) is summarized here.

2.1.1 Kinematic Relations, Flow Rule, and Slip System Resistances
The deformation gradient at time t admits a multiplicative decomposition into
elastic and plastic components as:

Ft
0 = FeFp where det Fe > 0 and det Fp = 1 (6)

where Fe accounts for elastic stretching and rigid-body rotation of the crystal lattice,
while Fp corresponds to the incompressible plastic flow due to slip. The second
Piola-Kirchoff stress is expressed in terms of the elastic Green-Lagrange strain

tensor Ee
(
= 1

2

(
FeT Fe − I

))
as:

S = C
e : Ee (7)

where C
e is a fourth-order anisotropic elasticity tensor. The evolution of plastic

deformation is expressed in terms of plastic velocity gradient Lp as:

Lp = ḞpFp−1 =
Nslip∑

α=1

γ̇ αsα0 where sα0 = mα
0 ⊗ nα

0 (8)

Here γ̇ α is the slip rate on a slip system α, Nslip is the total number of slip systems,
and the Schmid tensor sα0 associated with α-th slip system is expressed in terms of
the slip direction mα

0 and slip plane normal nα
0 in the reference configuration. The

dislocation glide-based slip rate on the slip system α is described in Pierce et al.
(1983) and Cheng and Ghosh (2015, 2017) using a power law as:

γ̇ α = γ̇ α
0

∣∣∣∣
τα − sαa

sα∗

∣∣∣∣

1
m

sign(τα − sαa ) (9)

where γ̇ α
0 is a reference slip rate for slip system α and m is the exponent representing

strain-rate sensitivity. The resolved shear stress on slip system α is expressed as
τα = FeT FeS : sα0 . The athermal shear resistance sαa is due to the interaction of
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the stress field between parallel dislocation lines and from grain boundaries, and
the thermal shear resistance sα∗ is due to local repelling obstacles, such as forest
dislocations and dislocation jogs.

Two types of dislocations are considered in the evolution of athermal sαa and
thermal sα∗ shear resistances. These are (i) statistically stored dislocations (SSDs)
associated with the homogeneous components of plastic flow characterized by
vanishing net Burgers vector and (ii) geometrically necessary dislocations (GNDs)
corresponding to stored polarized dislocation densities. GND accumulation is
necessary for accommodating crystal lattice curvatures in single crystal bending
or near-grain boundaries of polycrystalline aggregates. The athermal and thermal
hardening rates due to the evolution of SSDs are given as:

ṡαa,SSD =
N∑

β=1

hαβ
a |γ̇ βsin(n0

α, t0
β)| and ṡα∗,SSD =

N∑

β=1

h
αβ∗ |γ̇ βcos(n0

α, t0
β)|

(10)

where t0
β is the dislocation line tangent vector for edge dislocation on the slip plane

β and the coefficient matrices h
αβ
a and h

αβ∗ represent the hardening of athermal and
thermal shear resistances on the slip system α due to activity on slip system β,
respectively. The GND contributions to the slip system hardening are derived from
two sources, viz., (i) dislocation components ρα

GND,P parallel to the slip plane α that
cause hardening due to the athermal shear resistance sαa and (ii) forest dislocation
components ρα

GND,F , which contribute to hardening due to thermal shear resistance
sα∗ as:

sαa,GND = c1Gb
√
ρα
P,GND and sα∗,GND =

Qslip

c2c3b2

√
ρα
F,GND (11)

where G is the shear modulus, Qα
slip is the effective activation energy for dislocation

slip, and c1, c2, c3 are constants representing the passing stress, jump-width, and
obstacle-width, respectively. GND accumulation can be measured in terms of the
curl of the plastic deformation gradient per unit area in the reference configuration,
which corresponds to the Nye’s dislocation density tensor Λ = −(∇X × FpT

)T

(Anahid et al. 2011). The Nye’s tensor is related to the GND density components on
each slip system as (Cheng and Ghosh 2017):

Λ =
nslip∑

α=1

ρα
GND,sb0

α ⊗m0
α + ρα

GND,etb0
α ⊗ t0

α + ρα
GND,enb0

α ⊗ n0
α (12)

where ρGND,s , ρGND,et , and ρGND,en are the GND density components with screw,
in-slip-plane edge, and normal-to-slip-plane edge characteristics, per unit volume
in the reference configuration and bα

0 is the Burgers vector for a slip system α.
For hcp crystals, there are more slip systems than the number of components in
Λ, and hence ρGND,s , ρGND,et , and ρGND,en are obtained by solving a constrained
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minimization problem of minimizing the L2 norm of the GND densities subject
to the constraint Eq. (12) (Anahid et al. 2011). Screw and edge GND components
ρGND,s , ρGND,et , and ρGND,en on each slip system contribute, respectively, to the
parallel (ρα

GND,P ) and forest (ρα
GND,F ) components of GNDs. The total athermal

and thermal resistances are expressed as the sum of a part related to the evolving
dislocation structure and another related to defects such as Peierls resistance,
impurities, and point defects, as:

sαa = sαa,0 +
√
(sαa,SSD)2 + (sαa,GND)2 and sα∗ = sα∗,0 +

√
(sα∗,SSD)2 + (sα∗,GND)2

(13)

where sαa,0 and sα∗,0 are initial resistances, independent of the dislocation structure.

2.1.2 Numerical Implementation of Crystal Plasticity Constitutive
Model

The numerical time integration algorithm integrates the set of coupled differential
equations in the nonlocal constitutive model using the following steps (details
provided in Cheng and Ghosh 2015, 2017):

Step A: Update stresses, plastic strains, and all state variables, keeping the non-
local GND density and twin variables fixed, with known values of deformation
variables at time t , as well as a given deformation gradient F(t +)t);

Step B: Update the GND densities and their rates of hardening by evaluating
∇X × FpT , using values in adjacent elements.

An implicit update algorithm is implemented in step A with update in step B
(Cheng and Ghosh 2015, 2017). For step A, the algorithm assumes that the primary
unknown variable is the second Piola-Kirchhoff stress S and seeks its solution from
a set of six nonlinear equations by a Newton-Raphson iterative solver while updating
other deformation and state variables.

S(t +)t) = Str −
Ntot∑

α=1

)γ α
(
S(t +)t), sαa (t +)t), sα∗ (t +)t)

)
Bα (14)

where Ntot is the total number of slip systems and Bα is defined as:

Bα = C :
[

1

2

(
A(t +)t)sα0 + sα0 A(t +)t)

)]
(15)

with A(t+)t) = Fp−T
(t)FT (t+)t)F(t+)t)Fp−1

(t). The trial stress is expressed
as Str = C : 1

2 (A(t +)t)− I). In the iterative solution of Eq. (14), a residual is
defined for i-th iteration the as:

G(Si (t +)t)) = Si (t +)t)− Str +
∑

α=1

)γ αBα (16)
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the i + 1-th iteration update to S is obtained as:

Si+1(t +)t) = Si (t +)t)− ∂G
∂S

∣∣∣∣
−1

i

G(Si (t +)t)) (17)

In this update procedure for S(t + )t), the slip system resistances are held fixed.
After convergence, the increment of shear resistances from SSDs are updated using
Eqs. (10). The next step B computes the GND densities and associated hardening
increments. A nonlocal, invoking the element gradient operator is implemented to
evaluate Λ. The gradient operator is calculated from nodal values using element
shape functions. A super-convergent patch recovery (SPR) method is implemented
to evaluate the nodal values of Fp from Gauss quadrature points to evaluate
∇X × FpT at quadrature points. Evolution of plastic strain in image-based CPFEM
simulations of a SERVE is shown in Fig. 1c.

3 Stabilization of Four-Noded Tetrahedral Elements for
CPFEM

Polycrystalline microstructures of metals and alloys often have sharp and tortuous
grain boundaries and multiple grain junctions. Discretization, conforming to these
domains in 3D, is conveniently accomplished using four-noded tetrahedral or TET4
elements. However, it has been observed, e.g., in Matous and Maniatty (2004),
Gee et al. (2009), and de Souza Neto et al. (2005), that these elements suffer
from severe volumetric locking when simulating incompressible materials. Crystal
plasticity constitutive models exhibit near isochoric plastic flow (det Fp = 1)
and large volumetric strains in TET4 elements. High stresses induce high spurious
dilatational energy and considerable error due to element locking. This is attributed
to low incompressibility constraint ratio, defined as the ratio of number of degrees
of freedom to the number of incompressibility constraints in the FE mesh.

A number of methods have been proposed for the stabilization of volumetric
locking in TET4 elements (Gee et al. 2009; de Souza Neto et al. 2005; Dohrmann
et al. 2000; Nguyen-Thoi et al. 2009). A key idea in these methods is to associate
nodal points with patches corresponding to an assembly of surrounding sub-
elements and subsequently to selectively integrate the dilatational and deviatoric
parts of the FE weak form over these patches. This process reduces the incom-
pressibility constraint ratio. However, these methods are not effective for anisotropic
CPFE formulations for which the stress or the elastoplastic tangent stiffness tensor
cannot be split into volumetric and deviatoric components. A finite deformation ele-
ment formulation with a F-bar patch method has been introduced in de Souza Neto
et al. (2005), while mixed elements have been proposed in Matous and Maniatty
(2004) with augmentation strain fields in conjunction with a linearly interpolated
pressure field.
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Based on developments in Cheng et al. (2016), this section discusses three
locking-free stabilized finite element formulations for CPFE analysis. They include
a node-based uniform strain (NUS) element, a locally integrated B-bar (LIB)-based
element, and a F-bar patch (FP)-based element.

3.1 Node-Based Uniform Strain and Locally Integrated B-Bar
Elements

The node-based uniform strain (NUS) formulation, introduced in Dohrmann et al.
(2000), assigns a patch of sub-elements Ω̂s =∑Ns

i=1 αi
s Ωi

s to a node s in the finite
element mesh as shown in Fig. 2a. Here Ns is the number of TET4 elements attached
to a node s, Ωi

s is the volume contribution of the i-th element to the patch Ω̂s , and
αi
s is a scalar weighting factor. Within each patch, the strain increment ês is uniform

and obtained by weighted averaging from surrounding elements as:

Both evol and edev

are constants in sub-
tetrahedron Wi.s

evol  is constant over patch

edev  is constant over TET4 element

Node Edge of triangular element

Patch of elements

a b

c

Fig. 2 (a) 2D nodal patch in the NUS method, (b) nodal patch with strain distributions in the LIB
method, and (c) patch of elements in the F-bar patch method
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ês =
Ns∑

i=1

wiei,s =
Ns∑

i=1

wiBi,t)qt = B̂
s )q̂s (18)

wi is a relative volume-based weight for element i and )q̂s is the nodal dis-

placement vector. B̂
s,t

is a strain-displacement matrix associated with the patch
s, obtained by weighted assembling Bi,t from surrounding elements. The NUS
formulation yields a constant tangent modulus and stress over the patch s, and one-
point numerical integration is sufficient. However, this element can exhibit spurious
zero or low-energy modes, causing large element distortion (Gee et al. 2009).

To overcome shortcomings of the NUS element for CPFE analysis with
anisotropic elastoplastic stiffness matrix, a locally integrated B-bar (LIB) element is
proposed in Cheng et al. (2016). This method alleviates volumetric locking without
introducing spurious zero-energy modes. The strain increment is decomposed into
volumetric and deviatoric parts by splitting the gradient matrix as e = evol+ edev =
Bvol)q + Bdev)q. For reduced constraints, only the volumetric part of the strain
increment evol is assumed to be uniform inside the patch for each node s. The
uniform volumetric strain increment ês,vol is obtained as:

ês,vol =
Ns∑

i=1

wiei,vol =
Ns∑

i=1

wiBi,vol)qi = B̄s,vol)q̂s (19)

B̄
s,vol

is the volumetric part of the gradient matrix associated with a patch s. It
is assembled from the Bi,vol matrices of the surrounding elements with weights
wi . The deviatoric part of the strain increment edev is constant in each of the
contributing TET4 elements. This yields separate distributions of the volumetric and
deviatoric strain increments over the domain, as illustrated in Fig. 2b. Each TET4
element is divided into four sub-domains of equal volume. Within each sub-domain,
the volumetric and deviatoric parts of the strain increment are constant. The LIB
element selectively reduces the volumetric strain components over the patch and
keeps the deviatoric strain components unchanged.

3.2 F-Bar Patch-Based (FP) Element

The F-bar patch (FP) formulation (de Souza Neto et al. 2005) has been shown
to alleviate volumetric locking without introducing spurious zero-energy modes.
The F-bar patch method modifies the deformation gradient for weak enforcement
of incompressibility in the element, rather than point-wise enforcement. The
deformation gradient is decomposed into isochoric and volumetric components as:

F = FisoFvol where Fiso = (detF)−
1
3 F and Fvol = (detF)

1
3 I (20)
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Incompressibility in constitutive relations is enforced over a patch of elements,
rather than in each element. This requires that elements in the mesh be assigned
to non-overlapping patches as illustrated in Fig. 2c. For a patch P of a set of
elements, with deformed and undeformed volumes Ω

t+)t
patch and Ω0

patch, respectively,
the deformation gradient in element K ∈P is modified as:

F̄K =
⎡

⎣ Ω
t+)t
patch

Ω0
patch detFK

⎤

⎦

1
3

FK (21)

3.3 Performance of TET4 Element Stabilization in CPFEM

The performance of the locally integrated B-bar (LIB) element and the F-bar patch
element with a patch size of 8 tetrahedrons (FP8) has been studied in Cheng et al.
(2016) for CPFEM analysis of polycrystalline materials. Simulation results for a
bicrystal compression test and a polycrystalline bending test of the hcp magnesium
alloy AZ31 are compared with those for the standard TET4 element. The reference
solution is for simulations with the B-bar stabilized eight-noded hexahedral element.

• Bicrystal compression test: A bicrystal of dimensions of 10 × 10 × 10 μm
is simulated under uniaxial compression using the standard TET4, LIB, and
FP8 elements in CPFEM. Material constitutive models are given in Cheng
and Ghosh (2015). The grain boundary is characterized by crystal orientations,
which have Euler angles [0◦, 0◦, 0◦] and [0◦, 90◦, 0◦] in the ZXZ convention
for crystals 1 and 2, respectively, as shown in Fig. 3a. Displacement boundary
conditions are applied on the top surface. A reference solution of the loading
direction stress σzz for CPFE analysis with hexahedral elements with B-bar
stabilization is shown in Fig. 3b. Results using the standard, LIB and FP8 TET4
elements are shown in Fig. 3c, e, respectively. Non-smooth distribution of the
local stress with high stress concentration is observed at the grain boundary
using standard TET4 element, compared to other stabilized elements. The stress
error is evaluated as the L2 norm of the difference with the reference solution

as ‖e‖L2 =
[
ş

Ω

(
σij−σ

ref
ij

)(
σij−σ

ref
ij

)
dΩ

] 1
2

(
ş

Ω
σij σij dΩ)

1
2

. The corresponding error plots for

different elements with increasing mesh densities are shown in Fig. 4a. The
average convergence rate for LIB and FP8 elements is 0.75. For CPFE analysis,
these elements exhibit similar results with much smaller errors compared to the
standard TET4 element. The evolution of hydrostatic stress at the grain boundary
with increasing strain is plotted in Fig. 4b. Unrealistically large stresses are
observed with conventional TET4 elements, while the LIB and FP8 elements
produce results that are consistent with the stabilized hexahedral element.

• Micro-twin nucleation in polycrystalline magnesium alloy: CPFE simula-
tions are conducted for twin nucleation using a microstructural model of the
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Fig. 3 (a) Boundary conditions and crystallographic orientations in the bicrystal compression test;
distribution of loading direction stress at 5% strain using simulation results of (b) eight-noded
B-bar hexagonal elements with a mesh of 18,081 nodes, (c) standard TET4 element, (d) LIB
element, and (e) FP8 element, all with a mesh of 11,862 nodes

polycrystalline Mg alloy AZ31 shown in Fig. 5a. The 40×40×40 μm statistically
equivalent virtual microstructure with 103 grains of average size of 10 μm is
developed from electron backscattered diffraction data. The microstructure is
discretized into 113,425 TET4 elements. Displacement boundary conditions
are applied at a rate of 0.004 μm/s on the two surfaces in Y-direction, which
bend the microstructure about the X-axis on Y-Z plane. Details of the twin
nucleation model are given in Sect. 4.1. The GND density contour plots in
Fig. 5b, c show highest GND concentrations close to grain boundaries. The
conventional TET4 element shows a much stiffer response in Fig. 6b compared
to the other elements. The FP8 element shows a slightly lower level of lock-
ing than LIB elements due to a lower constraint ratio. The twin nucleation
predictions in Fig. 6a show a much earlier twin nucleation time (97 s) with
the TET4 elements in comparison with the LIB element (160 s) and FP8
element (180 s).

In summary, both the LIB and FP elements stabilize the local stresses and GND
distributions in CPFE analyses and converge to the reference solution. The FP
element is capable of providing slightly better results than the LIB element for an
optimal patch size. A study on computational efficiency in Cheng et al. (2016) have
shown that the FP element outperforms the LIB element with a considerably lower
simulation time. From accuracy and efficiency considerations, the FP element is
deemed more suitable for stabilized CPFE analysis.
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Fig. 4 (a) Stress error plot with increasing degrees of freedom and (b) evolution of maximum
hydrostatic stress with strain for different element formulations

4 Multi-Time-Domain Subcycling for Discrete Twin
Evolution

Deformation twinning is a critical deformation mechanism that causes change in
lattice orientations with localized deformation inside thin twin bands. Twinning
can induce characteristic features like plastic anisotropy, tension-compression
asymmetry, and local softening in the material response. Many crystal plasticity-
based twinning models adopt a twin volume fraction approach that treats twin



79 Advances in Computational Mechanics to Address Challenges in . . . 1725

Z

a

b c

X
Y

X

GND

Uy = f(z)

2E+14
1.5E+14
1E+14
5E+13
1E+13

Y

Fig. 5 Schematic of the polycrystalline AZ31 SERVE showing the applied boundary conditions;
GND densities distribution after 500s using: (b) TET4 and (c) FP8 elements

evolution in the same way as slip (Staroselsky and Anand 2003; Izadbakhsh et al.
2011; Zhang and Joshi 2012). These approaches do not account for deformation
heterogeneity within discrete twins. Explicit twin formation models within the
CPFE framework have been proposed based on phenomenological twin formation
criteria and adaptive mesh generation methods in Abdolvand and Daymond (2013)
and Knezevic et al. (2016). Explicit twinning models hold promise, provided the
physics of twin nucleation, propagation, and interactions are correctly accounted for.
The author has recently implemented an image-based crystal plasticity FE model
with discrete twin evolution in Cheng and Ghosh (2017) and Cheng et al. (2018) to
study deformation and twinning mechanisms in polycrystalline microstructures of
Mg alloys.

A major difficulty with image-based CPFE simulations of polycrystalline
microstructures delineating explicit twin formation is the high demands on
computing time. This is attributed to the discrepant deformation rates between the
domains of rapidly evolving twins and the surrounding crystalline matrix. The high
rates of twin evolution in localized bands lead to numerical instability with the stiff
nonlinear crystal plasticity constitutive equations, requiring very fine simulation
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Fig. 6 (a) Micro-twin dissociation distance as a function of loading time and (b) loading direction
stress at a material point with loading time

time steps. A quantitative study on the critical time step size required for numerical
stability for a CPFE simulation of a Mg alloy with evolving explicit twins has been
conducted in Ghosh and Cheng (2018). The study shows that while 97% of elements
require a minimum time step size of �t = 10 s, only 3% of the elements located in
localized twin bands require a significantly smaller time step of �t = 0.0391 s. The
reduction in time step size corresponds to a factor of ∼255. Requiring all elements
in the computational domain to be integrated with the smaller step size can cause a
huge loss of efficiency and could potentially be computationally intractable. While
single time step methods to accelerate slip-based crystal plasticity models have
been proposed, e.g., in Roters et al. (2010a), they are insufficient for twin evolution
models.
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4.1 Crystal Plasticity Constitutive Models with Twinning

The crystal plasticity constitutive models in Sect. 2.1 are extended in this section to
account for both dislocation glide and twinning on crystallographic slip and twin
systems. Twinning reorients the crystallographic lattice symmetrically by reflection
across a mirror or twin plane in the reference configuration. In the twinned regions,
plastic flow takes place by gliding of twin partial dislocations on twin planes, as
well as by dislocation glide. The plastic velocity gradient in twinned region is
subsequently expressed as:

Lp = ḞpFp−1 =
Ntwin∑

β=1

γ̇
β
twsβ0,tw+

Nslip∑

α=1

˙̃γ α s̃α0,slip where sβ0,tw = mβ
0,tw⊗nβ

0,tw (22)

γ̇
β
tw is the shearing rate on a twin system β, ˙̃γ α is the slip rate in the reorientated slip

system α, Ntwin is the number of twin systems, mβ
0,tw is the twin shearing direction

vector, and nβ
0,tw is the twin plane normal in the reference configuration. Dislocation

slip in the twinned volume occurs on a slip plane ñα
0,slip in the direction m̃α

0,slip,
with mirror symmetry to the directions nα

0,slip and mα
0,slip in the matrix region. Twin

nucleation and propagation models, developed in Cheng and Ghosh (2015, 2017)
for hcp materials, are summarized here.

• Twin nucleation: The twin nucleation model is based on the elastic dislocation
theory of twin nucleation by non-planar dissociation of a sessile pyramidal
〈c + a〉 dislocation. Three simultaneous conditions should be satisfied for the
dissociation process to spontaneously occur and form a stable twin nucleus.
They are (i) dissociation condition, Eini ≥ Etw(d = 0) + Er ; (ii) irreversibility
condition, Eini > EF (d = ds, τtw); and (iii) reliability condition, ds > 2r0.
Here Eini is the initial system energy prior to dissociation, corresponding to the
dislocation line self-energy of sessile pyramidal 〈c + a〉 dislocations, Etw is the
self-energy of the twinning dislocation loop, Er is the self-energy of stair-rod
dislocations, and EF is the post-dissociation total system energy. The distance
d is the separation distance between two partial dislocations and ds is the stable
separation distance. Detailed description of the various energies and other critical
parameters in the twin nucleation model are provided in Cheng and Ghosh (2015,
2017).

• Explicit twin propagation: Twin propagation involves two motions, viz., twin
elongation by rapid gliding of twin partial dislocations on twin planes and twin
thickening by migrating twin boundaries from the current twin planes to every
other

{
101̄2

}
twin plane (Keshavarz and Ghosh 2013, 2015). Gliding of twin

partial dislocations occurs by a mixed shear-shuffle process, for which twin
propagation is deemed as thermal activation process. The velocity of twin partial
dislocation on a twin plane is expressed as:
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vglide = fshuffleλshear

[
exp

(
−)F − τAP btw

KBT

)]
(23)

where fshuffle is the shuffling frequency, λshear is the shear distance, btw repre-
sents the Burgers vector on a twin system, τ is the effective resolved shear stress

on the twin plane, and AP is the shearing area. The term exp
(
−)F−τAP btw

KBT

)
is

the probability of gliding with an internal energy barrier)F . The twin boundary
migrates when the twin partial dislocation glides on the adjacent twin plane.

A stimulated slip model is used to model thickening of twins. It assumes the
existence of immobile lattice dislocations, which penetrate multiple twin planes.
The velocity of twin partial dislocations crossing twin planes has been derived as:

vthick = dtw

)ttw
= dtwPpromoterρtotltwvglide (24)

where dtw denotes the distance between twin planes, )ttw is the average time
required to meet a promoter, Ppromoter is the fraction of dislocations that act as
promoters, ρtot is the total dislocation density, and vglide and ltw are, respectively, the
velocity and length of moving dislocations. The time-averaged, twin system plastic
shear rate in Eq. (22) due to twinning is obtained from the Orowan equation as:

γ̇tw = ρtwbtwvglide = γ̇0,tw exp

(
−)F − τAP btw

KBT

)
(25)

where γ̇0,tw = ρtwbtwfshuffleλshear and ρtw is the density of twin partial disloca-
tions. For

{
101̄2

}
twin in Mg, γ max

tw = 0.1289. In simulations, the shear on a twin
system quickly reaches this upper bound once an integration point is twinned.

The complex interaction between dislocations and twin boundaries is modeled
by the evolution of a slip/twin system resistance in which Eq. (25) is reduced to a
conventional shear resistance-based power law model as:

γ̇tw = γ̇0,tw

∣∣∣∣
τ

stw

∣∣∣∣

)F
KBT

sign (τ ) (26)

For a twin system α, the rate of shear resistance is expressed as ṡαtw =
Nslip∑
β=1

hαβ | ˙̃γ β |,
where the hardening matrix hαβ quantifies hardening due to dislocation slip in the
twinned regions. Implementation of twin evolution in the CPFEM framework is
discussed in Cheng and Ghosh (2017) and Cheng et al. (2018).
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4.2 Adaptive Subcycling for Accelerated CPFEM

An adaptive multi-time-domain subcycling algorithm is developed in Cheng and
Ghosh (2017) and Ghosh and Cheng (2018) to avert the low efficiency due to
minimum critical time step requirements, by activating a differential temporal
resolution in the computational domain. The algorithm partitions the microstructural
domain into sub-domains that are classified as critical (high strain rate) and
noncritical (low-strain rate). For optimal efficiency, time integration in each sub-
domain is conducted with its own independent time step, as determined from
stability and accuracy criteria. For a twinned microstructure, regions of twin bands
are solved with fine time steps, while the remaining regions use coarse time steps.
A schematic layout of the algorithm is shown in Fig. 7. With a known state at
time t , the integration algorithm for the time increment t to t + )t solves the
noncritical sub-domain problem using the coarsest possible time increment )t

and the critical sub-domain problem using fine time steps )τ & )t . To achieve
global equilibrium for the computational domain, the different sub-domains are
coupled, and residuals at the interfaces of discrepant time steps in the assembled
sub-domains are minimized using a predictor-corrector scheme. The subcycling
algorithm evaluates displacement correctors by equilibrating nodal residual forces
since displacement fields at nodal points of adjacent sub-domains will not satisfy
compatibility in general. Decomposition of the computational domain necessitates
the evaluation of critical time steps for each element. With known state variables at
time t , the critical time increment in each element is estimated from convergence of
time integration of the constitutive model. If the time integration fails to converge,
a scaled reduction of the original time increment is made. The essential steps in a
staggered algorithm for evolving twins are given next and detailed in Cheng and
Ghosh (2017) and Ghosh and Cheng (2018).

Fig. 7 Schematic of the subcycling algorithm showing partitioning and equilibrating domains
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Fig. 8 (a) A pure Mg single crystal computational model subjected to constant strain rate, uniaxial
loading, (b) simulated twins, and (c) Lagrangian strain Eyy at 1% strain, using the subcycling-
induced CPFE model with a time step )t = 10 s

1. At time t compute trial displacements and partition coarse and fine sub-domains;
2. Solve the coarse sub-domains with the larger time increment )t ;
3. Solve the fine sub-domains with scaled time increments )τi ;
4. From the coarse and fine sub-domain residuals, obtain displacement corrector;
5. Check for equilibrium, update twin domains, and nucleate new twins.

Two factors affect the computational speedup with the subcycling method. They
are (i) the ratio of degrees of freedom (DOF) in fine timescale sub-domain to the

DOF of entire domain, i.e., NF

N total , and (ii) the ratio of fine time step )τ to coarse

time step )t , i.e., )τ
)t

. In Ghosh and Cheng (2018) it is shown that )t
)τ

and N total

NF

are the key factors in reducing the number of operations. Higher acceleration rates
can be achieved by the subcycling method if the deformation is localized in smaller
regions and if deformation rates exhibit more heterogeneity. The effectiveness of
the twin evolution algorithm with subcycling is tested for single and polycrystalline
microstructures.

• Deformation-Induced Twin Evolution in Single Crystal Mg: A single crystal
simulation of pure Mg is conducted in Cheng and Ghosh (2017) to validate the
subcycling-accelerated CPFE model for discrete twin evolution. The microstruc-
ture, shown in Fig. 8a, has a dimension of 20 × 10 × 10 μm with an Euler
angle orientation of [0◦, 5◦, 0◦] in the ZXZ convention. It is discretized into
67,418 TET4 (FP8) elements with 13,021 nodes. The calibrated constitutive
parameters for CPFE analysis are provided in Cheng and Ghosh (2017). A
uniaxial, constant strain rate of 1 × 10−4 is applied in a compressive manner
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on the top surface, which causes the formation of
{
101̄2

}
tension twins. The 5◦

tilt in the crystal orientation makes the Schmid factor of twin variant 1 to be
highest among all 6 twin variants. Thus only twin variant 1 is formed during
simulations.

The evolved discrete twins and Lagrangian strain distribution at 1% strain
are shown in Fig. 8b, c, respectively. The [0◦, 5◦, 0◦] orientation causes the(
1̄102

) [
11̄01

]
twin variant to have the highest Schmid factor. The only exception is

that a
(
101̄2

) [
1̄011

]
twin variant (variant 4 of the extension twin systems) occurs at

the upper left corner of the model due to the local stress state. The localized strain
distribution is caused by easy gliding of twins. Approximately 3.6 times speedup is
achieved with subcycling without any loss of accuracy.

• Twin Evolution in Polycrystalline RVE: An image-based RVE of the Mg
alloy AZ31 containing 620 grains of average grain size of 32 μm in a 300 ×
300 × 300 μm box is shown in Fig. 9a. A uniaxial, compressive strain rate of
1 × 10−3 s−1 is applied normal to transverse direction (TD) surface. The figure
shows texture with the propagation of twin bands, where the lattice in the twinned
region is reorientated by nearly 86◦. The volume-averaged stress-strain response
from CPFE simulations are compared with experimental results from Beyerlein
et al. (2011) in Fig. 9b. The CPFE simulation with subcycling algorithm has
a speedup by a factor of 6. In summary, the multi-time-domain subcycling
enhanced CPFEM is highly effective for predicting nucleation and propagation
of explicit twins in single crystal and polycrystalline microstructures of metals
and alloys.

5 Adaptive Hierarchical CPFEMwith EnhancedWavelet Basis

Image-based CPFE modeling of polycrystalline materials, e.g., in Roters et al.
(2010b), Meissonnier et al. (2001) and Cheng and Ghosh (2017) often requires
very high 3D resolution for accurate representation of realistic microstructures. This
can incur prohibitively high computational costs in simulating deformation leading
to localized phenomena like fatigue failure or deformation twin evolution. A few
alternative computational methods have emerged to efficiency-related shortcomings
of CPFEM. The elastic-viscoplastic self-consistent models in Lebensohn and Tome
(1994) treat grains as embedded inclusions in a homogeneous medium and avoid the
need to represent stress heterogeneity inside each grain. The fast Fourier transfor-
mation (FFT)-based methods in Moulinec and Suquet (1998) and Lebensohn et al.
(2012), and discussed in another chapter of this part, are very efficient, especially for
large regular sampling grid simulations with periodicity. The use of FFT methods for
discontinuous or high gradient fields can however lead to truncation errors due to the
Gibbs phenomenon, propagating from the discontinuity. Regularization methods are
being applied to correct this effect, e.g., in Gottlieb et al. (1992). These approaches
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Fig. 9 (a) Texture evolution with deformation in contour plots of the angles between the [0001]
lattice axis in each grain and the ND direction (Z-axis) at 2% strain and (b) volume-averaged
stress-strain response compared with experimental results in Beyerlein et al. (2011)

can also have suboptimal convergence rates due to nonconforming sampling grids
that require a large number of degrees of freedom. The present section however
seeks an adaptive enrichment method for optimally augment the efficiency of
CPFEM while retaining accuracy.

A wavelet-basis enhanced adaptive hierarchical CPFEM has been developed in
Azdoud and Ghosh (2017) and Azdoud et al. (2017) to improve computational
efficiency and accuracy of FE analyses of polycrystalline microstructures. The
method adaptively creates an optimal discretization space conforming to the
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solution profile by projecting the solution onto a set of scaling and multi-resolution
wavelet basis functions. The multi-resolution property is particularly advantageous
for approximating a field using a minimal set of wavelet basis functions. The second
generation family of wavelets (Sweldens 1998) is used to generate hierarchical
shape functions using the so-called lifting scheme. Given the scaling functions
at a coarse and fine scale, the lifting scheme defines a set of wavelet functions
that complement the coarser set of interpolation functions to uniquely project any
function decomposed on a finer set. Complex irregular meshes are easily constructed
for these wavelet bases, which make them ideal candidates for enrichment functions
in the wavelet-enhanced hierarchical FEM. A summary of the methods and results
from Azdoud and Ghosh (2017) and Azdoud et al. (2017) are presented here.

5.1 Wavelets for Optimal Enrichment Basis Functions

Wavelet basis functions span the space of square integrable functions L2(R) through
translation and dilation of the scaling function ϕ(x), which satisfies the refinement
condition ϕ(x) = ∑Nfilt

k=1 hkϕ(x)(2x − k). Parameters hk and Nfilt characterize the
wavelet basis and correspond to the components of a low-pass filter. These functions
can be used for optimal multi-resolution hierarchical enrichment, conforming to
the solution estimate ũ profile. Properties that render them ideal for multi-scale
enrichment (Azdoud and Ghosh 2017; Azdoud et al. 2017) are:

• Compact support: Wavelet functions have compact support. Solutions in wavelet
bases do not exhibit spurious instabilities, such as the Gibbs phenomena.

• Multi-resolution: Wavelet bases have multi-resolution characteristics that repre-
sent the differences between hierarchical scales. Wavelet functions with the Reisz
basis property avoid aliasing by ensuring completeness of each scale.

• Compatibility with FE discretization: Second-generation wavelet functions
(Sweldens 1998) can be constructed from any irregular hierarchical FE mesh.

• Vanishing moments: The integral of wavelet functions over any domain is zero.
Thus a small coefficient has negligible contribution to the solution.

The lifting scheme creates wavelets for the hierarchical FE shape functions. A
lazy wavelet ϕ̃l−1

β is first created from hierarchical shape functions, followed by
transformation through the lifting scheme by adding vanishing moments to yield:

ϕl−1
β (x) = ϕ̃l−1

β (x)−
R∑

λ

aλN
l−1
λ (x) (27)

Here l denotes the scale, Nl−1
λ is a standard FE shape function at scale l − 1

and coefficient aλ is chosen from the condition:
ş

Ω
ϕl−1
β (x)dΩ = 0 ∀β ∈

[1, p(l)]. Each scale of wavelets represents a Reisz basis in Ω . Adding Nl−1
λ
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extends the compact support of the wavelet function ϕl−1
β to the whole domain,

i.e.,
⋃p(l)

β supp(ϕl−1
β ) = Ω . The lifting scheme with R = 2 is sufficient for all the

above properties.

5.2 Adaptive Solution Enhancement withWavelet Basis
Functions

The hierarchical wavelet-enhancement is based on the finite deformation crystal
plasticity FE formulation summarized in Sect. 2. The solution in the Newton-
Raphson algorithm corresponds to the i-th iterative correction u of the displacement
increment )ui in a time step between t and t + �t . In the proposed algorithm
(Azdoud et al. 2017), an adaptive enhancement is made to the first iterate of the
solution, i.e., �ui=1 = u. It is premised upon finding an optimal discretization
space V h(t)(Ω) for u = �ui=1 that will reduce the discretization error to within a
prescribed tolerance. Assume that the approximate solution uh at time t has been
evaluated on the discretized space V h(t)(Ω) ⊂ V (Ω) as:

uh(x) =
m∑

α

uh
αNα(x)+

menr(t)∑

β

wh
βϕ

(t)
β (x) ∀x ∈ Ω (28)

The standard finite element basis Nα corresponds to the approximation of u in the
original coarse FE discretization space at time t0 with m as the number of nodes in
this mesh. The adaptive method introduces a set of enrichment functions {ϕ}menr in
the hierarchy, which expand the discretization space V h(Ω) to an enriched space
V henr(Ω) ⊃ V h(Ω). menr corresponds to the number of additional enrichment
nodes that are hierarchically added to the initial number m. Assume that the set
{φ}n is an arbitrarily large (n → ∞) and sufficient set of multi-scale hierarchical
enrichment functions for the coarse discretization space {N}m. The functions in the
set {φ}n are the standard C0 hierarchical FEM shape functions obtained by uniform
subdivision of the coarse mesh. For the increment �t ∈ t → t + �t , the adaptive
method finds an optimal set {ϕ}menr (t+�t) ⊂ {φ}n such that:

‖u−uhenr ‖≤ε where uhenr (x)=
m∑

α

uhenr
α Nα(x)+

menr (t+�t)∑

β

whenr

β ϕt+�t
β (x) ∀x∈Ω

(29)
An iterative error estimation-solution enrichment algorithm is implemented with
iteration steps denoted by k. The resulting algorithm for a time step from t → t+�t

has two iterative loops, viz., (i) iterations for the first estimate of u, in which
the enrichment functions {ϕ}menr(t+�t) are sought, and (ii) the Newton-Raphson
iterations for the constitutive update. The adaptive iterative scheme for an iteration
step (k + 1) to determine {ϕ}menr(t+�t) is presented in Azdoud et al. (2017).
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5.3 Results with Adaptive CPFEM for Polycrystals

The effectiveness of the adaptive, wavelet-enhanced hierarchical CPFE model is
examined in this example. A polycrystalline microstructure of the hcp Ti6242
alloy, containing 208 grains in a computational microstructure of dimensions
124×124×124 μm is simulated under uniaxial displacement conditions. The z-axis
misorientation distribution is shown in Fig. 10a. The loading is applied uniformly on
the top surface (z = 124 μm) with a displacement ramp from uz = 0 to uz = 3 μm,
while the surface (z = 0) is constrained with ux = uy = uz = 0. The transversely

Fig. 10 (a) A 208 grain polycrystalline microstructure showing z-axis misorientation distribution,
(b) node enrichment positions, where the black spheres, red cubes, and green octahedra denote the
enrichment scales 1, 2, and 3, respectively, and (c) contour plot of error el(%) for the wavelet
adapted model with 42,000 enrichment DoFs
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Fig. 11 (a) Log-log plot of the L2 norm of displacement error as a function of DoF and (b)
evolution of the number of ũ∗ enrichment functions as a function of the number of iterations

elastic stiffness coefficients and crystal plasticity parameters are given in Azdoud
and Ghosh (2017) and Azdoud et al. (2017).

For the elasticity problem only, the wavelet adaptivity admits three scales of
enrichment. The coarse-scale solution uh is computed on a mesh composed of
Ne = 9485 tetrahedral elements with Nn = 1,778 nodes. The mesh for the fine-
scale reference FE solution uf , as well as the adapted FE model with three scales of
enrichment, both have Ne = 4,856,320 tetrahedral elements and Nn = 821,569
nodes. A total of 14,000 enrichment functions are used, with 5568 functions at
scale 1, 6730 functions at scale 2, and 1702 functions at scale 3. In Fig. 10b, nodal
positions of the 14,000 enriched function {ϕ}menr are predominantly in regions
of large error near highly misoriented grain boundaries. Figure 10c shows the

magnitude of the displacement error el =
√

(uhenr−uf )T (uhenr−uf )

(uf )T (uf )
× 100(%) for

the adapted solution uhenr . The convergence rate of the solution with the adaptive
hierarchical FE method is compared to that of a uniformly enriched FE method
in Fig. 11a. The average convergence rate for the adaptive method is ∼O(N−1.22)

compared to ∼O(N−0.99) for the standard FEM. The evolution of the number of
enrichment functions with the number of iterations is depicted in Fig. 11b for a
tolerance ε = 0.002. Convergence is generally reached in under five iterations. The
CPU time for different simulations show a significant gain in efficiency with reduced
error for the adaptive method in comparison with a uniformly refined mesh.

For crystal plasticity simulations, convergence rates of the wavelet-enriched
adaptive method are compared with that for the uniformly refined hierarchical FEM
solutions in Fig. 12a, b. The convergence rates are calculated from displacement
and stress errors. The adaptive method converges faster than the uniformly refined
hierarchical FEM simulations. For the adaptive method, the convergence rate is
∼O(N−1.509) for the displacement norm and ∼O(N−0.861) for the stress norm,
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Fig. 12 Log-log plot of convergence rates of (a) displacement error euf , (b) stress error eσ f as a
function of degrees of freedom at the end of simulation

while those for the uniformly refined model are ∼O(N−1.179) and ∼O(N−0.733),
respectively. In conclusion, the proposed adaptive wavelet enrichment method is
robust with reduced computational costs while preserving the accuracy of local
fields. It is very efficient when a conforming mesh cannot be obtained, such as for
heterogeneous materials.

6 Conclusions

This chapter emphasizes the need to explore novel methods and algorithms in
computational mechanics to facilitate robust and efficient crystal plasticity FE-
based modeling of deformation and failure in metals and alloys. Image-based
CPFE models incorporate characteristic microstructural features, as well as under-
lying physical mechanisms. The claim for such innovative developments is made
through three challenging problems that are often bottlenecks in crystal plasticity
modeling of extreme mechanisms such as twinning and localization. Remedies to
these challenges are developed through methods of element stabilization, multi-
time-domain subcycling, and efficiency enhancement through wavelet enhanced
hierarchical adaptivity. Many other opportunities exist in the crystal plasticity FE
modeling arena. For example, when modeling fatigue failure, it is necessary to
conduct simulations for a large number of cycles with a high time resolution to
reach local states of crack nucleation and growth. A powerful, multi-resolution
wavelet transformation induced multi-time scaling (WATMUS) algorithm has been
developed in Chakraborty and Ghosh (2013) and Joseph et al. (2010) for accelerated
cyclic simulations. The WATMUS methodology introduces wavelet decomposition
of displacements and all associated variables in the finite element formulation to
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decouple the response into a monotonic cycle-scale behavior and oscillatory fine
timescale behavior. In conclusion, this chapter provides motivation to look beyond
available tools and make fundamental advances for effective predictive capabilities.
Many of these codes will be hosted at the JHU Software Hub cited in Ghosh (2018).
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Abstract

Recent years have seen the explosion of a field of research now commonly
termed “materials informatics.” Though the roots of this research can be traced
back to the early 1970s, and mostly driven by the chemistry community, the
last 20 years have seen the pioneering and then systematic application of
deterministic or stochastic methods based on large data collections to design or
discover novel materials, where the materials data themselves are the outcome
of calculations, or exploit these in synergy with experimental databases. This
chapter aims to provide an overview of some of the most successful and
exciting efforts worldwide in this area, with a focus on materials science and
condensed-matter physics, but also including notable contributions in chemistry
and molecular science. Contributions can be broadly assigned to two different
areas: efforts dedicated to producing and/or storing curated or raw computational
or experimental data and associated materials properties, and machine-learning
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efforts dedicated to leveraging those data to bypass the need of expensive, and
typically first-principles, calculations. Both hold great promise in our quest to
understand, predict, and design the properties of novel materials.

1 Introduction

Adamson and Bush (1973, 1974) noted how “some chemical information systems
hold property data as well as structure diagrams in machine-readable forms,”
and suggested that “if structure-property relationships could be investigated easily
within chemical information systems, then the usefulness of the systems would
be considerably increased.” In 1980, Marvin Cohen and collaborators (�Chap. 3,
“Modeling Solids and Its Impact on Science and Technology”) were able to show
that computational condensed-matter physics and materials science had reached
the capability to predict materials properties entirely from first-principles, i.e.,
without any experimental input. The roots of what is happening today are all
here: calculations can predict materials data, and this materials data can be used to
predict materials properties, which is almost a revolution. For all good revolutions,
a cadre of revolutionaries is needed. I will list three in the vanguard that I found
inspiring. Franceschetti and Zunger (1999) introduced the materials community to
the concept of inverse design – by capturing a structure-property relationship in
a model (something that had been done for quite some time, e.g., using cluster,
Ising, or Heisenberg expansions to predict the energetics of alloys, or the phase
transitions of magnetic materials), it becomes possible to focus on the inverse
design problem – rather than predicting the properties of a structure, search for the
structure that could deliver a target property. Jóhannesson et al. (2002) showed how
first-principles calculations can be executed reliably in a high-throughput manner,
allowing to explore and identify novel and promising metal alloys. Curtarolo et al.
(2003) showed how one can leverage the calculation of large sets of first-principles
materials data to extract heuristic rules that could then be applied to, e.g., crystal
structure prediction. Therefore, inverse design, high-throughput, and data mining
all make their appearance in the materials world.

The unsung heroes of this revolution are, of course, the computer codes that make
it all possible. The calculation of complex materials properties from first-principles
required, and requires, efforts that span decades and involved dedicated individuals
and groups, albeit rewarded by the enormous impact that these tools have on the
community. (Nature identified, in 2014, 12 papers dedicated to density-functional
theory among the 100 most-cited papers ever in the field of science, engineering, and
medicine/life sciences (Van Noorden et al. 2014).) Without these computer codes, it
would not have been possible to translate the pioneering ideas mentioned earlier into
an industrial revolution of computing farms incessantly and inexorably extending
and refining databases of calculated materials properties, and of intelligent computer
agents condensing that knowledge in parametric and nonparametric forms to predict
even more, or even less expensively, the properties. Given the exponential growth
of throughput capacity for the past 30 years, doubling every 14 months, the future
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seems exceedingly predictable – less hype than reality, materials informatics is here
to stay.

2 Contributed Chapters to “Materials Informatics”

Contributions presented in this chapter offer broad vistas for the field and highlight
some of the most relevant efforts in producing, collecting, and curating computa-
tional data; in collecting and curating experimental data; and in leveraging either
resource with machine learning.

Some of the early efforts in calculating and providing large amounts of com-
putational data for materials, alluded to in the Introduction, are represented by the
Materials Project (https://materialsproject.org/), based at LLNL; by the AFLOW
consortium (http://aflowlib.org/), based at Duke University; by the Open Quantum
Materials Database (OQMD, http://oqmd.org/), based at Northwestern University;
by the Computational Materials Repository (CMR, https://cmr.fysik.dtu.dk/), based
at DTU; and by the Materials Cloud (https://www.materialscloud.org/), based at
EPFL and CSCS. All these are discussed in this section, and several are aggregated
in the NoMaD repository (https://nomad-repository.eu/), based at the Fritz Haber
Institute (for an overview, including chemical and molecular repositories, see the
contribution in �Chap. 88, “Machine Learning and Big-Data in Computational
Chemistry”). All these repositories support an open-access model to the data,
although the complexity of bulk retrieval may vary. Notable, in this respect, has been
the creation of the OptiMaDe consortium (http://www.optimade.org), collecting
all the above players, with the stated goal of making all the materials databases
interoperational by developing a common REST API.

Of course, the field of materials repositories predates computational efforts, and
a long-term visionary effort has been in place for decades to curate experimental
structures and properties into the Pauling File (http://paulingfile.com/), together
with its recent web frontend (https://mpds.io/). The Pauling File is also notable
for having collected through the years an extensive and standardized dictionary
of materials properties (http://paulingfile.com/index.php?p=physical%20properties)
that could be very helpful for the ontologies being developed nowadays, spear-
headed by the European Materials Modelling Council (https://emmc.info/) and the
RDA Task Group for Semantic Assets for Materials Science. The Inorganic Crystal
Structure Database (ICSD, http://www2.fiz-karlsruhe.de/icsd_home.html) provides
also an extensive database of materials’ structures, and has been used extensively
as a starting point for the calculations in the Materials Project, AFLOW, and
OQMD. At variance with these two previous efforts, where data are licensed, the
Crystallography Open Database (COD, http://www.crystallography.net/cod/) is an
open-access collection of crystal structures of organic, inorganic, and metal-organic
compounds and minerals, freely accessible.

The effort to drive thousands of calculations (or even millions, as is the case
of AFLOW) has had a second major benefit – i.e., it has driven the develop-
ment of the infrastructure needed to execute, run, and monitor calculations in
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http://www2.fiz-karlsruhe.de/icsd_home.html
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fully automatic ways – this is implemented with different levels of complex-
ity in ASE (https://wiki.fysik.dtu.dk/ase/), AiiDA (http://www.aiida.net), Atomate
(https://atomate.org), AFLOWπ (http://aflowlib.org/src/aflowpi/), or Abipy (https://
github.com/abinit/abipy), to name a few starting with A. Such capabilities will
make it increasingly straightforward for other computational modeling groups or
experimental teams to rapidly benefit from the usage of complex electronic-structure
codes, with modeling services even available freely when open-source codes are
used (e.g., the model of the Work section of the Materials Cloud).

Python has also emerged as the de facto standard for all these projects and has
been adopted by the community following the early efforts of ASE and PyMatGen
(http://pymatgen.org/) that have now become power tools for the analysis of the
materials data produced by the simulations, leading to the automatic construction of
complex materials relationships, such as phase or Pourbaix diagrams.

Several efforts are showcased here, with an extensive description of the com-
putational infrastructure being developed in the Materials Project (�Chap. 81,
“The Materials Project: Accelerating Materials Design Through Theory-Driven
Data and Tools”), in the AFLOW consortium (�Chap. 82, “The AFLOW Fleet
for Materials Discovery”), and in the Swiss and European Centres MARVEL
(http://nccr-marvel.ch) and MaX (http://www.max-centre.eu/) through the AiiDA
materials’ informatics framework and the Materials Cloud dissemination platform
(�Chap. 83, “Open-Science Platform for Computational Materials Science: AiiDA
and the Materials Cloud”).

The curation of experimental datasets is discussed in the two contribution from
the Pauling File (�Chap. 84, “The PAULING FILE Project and Materials Platform
for Data Science: From Big Data Toward Materials Genome”) and COD (�Chap.
85, “Crystallography Open Database (COD)”), that often, together with ICSD and
the chemistry databases, provide the starting point, the verification step, and the
variety that is needed for the discovery or prediction projects.

Last, and most excitedly, the wealth of information becoming available makes it
possible to data mine the current resources, to uncover unexpected correlations, or
to provide novel suggestions for optimal materials, but especially to short-circuit the
entire expensive electronic-structure framework by machine learning the simple or
complex properties – from potential energy surfaces to NMR chemical shifts – that
would otherwise be obtained with calculations that are several orders of magnitude
more expensive. It can be envisioned that even the most expensive quantum
chemistry and wave function methods in electronic-structure – providing the highest
degree of reliability and predictive accuracy – could powerfully provide the baseline
for machine learning, thus reaching what has been up to now the impossible dream
of modeling complex properties or materials in complex environments with full
quantum-mechanical accuracy.

The field is here extensively represented by contributions spanning the world of
materials and of molecules, and bridging them. In �Chap. 86, “Quantum Machine
Learning in Chemistry and Materials,” the fundamental mathematical formulations
of quantum machine learning (i.e., of models which can be used in the context
of quantum-mechanical training and testing data) are discussed, highlighting also
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http://aflowlib.org/src/aflowpi/
https://github.com/abinit/abipy
https://github.com/abinit/abipy
http://pymatgen.org/
http://nccr-marvel.ch
http://www.max-centre.eu/


80 Materials Informatics: Overview 1747

how up to now the primary focus has been on ground-state or local minimum
properties, rather than more challenging excited states or properties that depend
in an ill-conditioned manner on atomic coordinates. In �Chap. 87, “Machine
Learning of Atomic-Scale Properties Based on Physical Principles,” a mathematical
framework is presented, based on the concept of the atomic density, for building
descriptors of atomic environments that preserve the geometric symmetries and
chemically sensible limits. Coupled with kernel regression, this allows the fitting
of complex models of physical properties on the atomic scale, both scalars such
as interatomic potentials (force fields) and tensors such as multipole moments and
quantum mechanical operators. In �Chap. 88, “Machine Learning and Big-Data
in Computational Chemistry”, a broad perspective on current efforts in machine
learning, and materials screening and discovery, is provided. Notably, it also
underscores how computational modeling is becoming increasingly a high-velocity
and high-volume field, but where variety is somewhat lacking, leading to the need
to address heterogeneous, unstructured data to recover variety.

3 Final Concluding Remarks

Some considerations on data production, collection, and exploitation are then
warranted. One might go as far as highlighting first a core difference in the world of
data, and identify three broad data categories:

• Social data (harvested, most often in uncontrolled conditions)
• Experimental data (harvested, in largely controlled conditions)
• Computational data (generated, in controlled conditions)

The fact that in computational science the data are calculated, under controlled
conditions, reminds us of a core difference with respect to other fields – i.e., putting
squarely at the center of this effort the codes and workflows of different codes that
are able to produce automatically, and on-demand, the desired quantity. And each
of these quantities has its own pedigree – how expensive it is to calculate, how
much intermediate data are needed; the balance between the cost of calculating and
the cost of storing being property and material specific. But, of course, one needs
data to begin with, and so right now there is a healthy and biodiverse ecosystem of
curated, raw, and aggregated data that explore all the different models – all probably
needed, and all useful in different ways. If one wanted a simplification, one could
say that the most pressing needs in computational sciences are those of having the
following:

1. Highly curated data (fully verified, with standardized protocols)
2. Data on demand (the capability of calculating new data on an automatic request)

The interplay of theory, algorithms, and workflows that are able to deliver
these goals are able to produce the vast trove of simple or complex materials’
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properties that can then be data mined or machine learned – these not only are great
accelerators, but promise to direct searches in directions that would not have been
intuitive to soft-matter intelligence.

These considerations bring us to underscore the power that machine learning
will have in materials research. Here, three easy predictions are made. First, the
emergence of parametric and non-parametric models, such as neural network and
Gaussian approximation potentials, has delivered the remarkable recognition that
it is possible to reproduce with great accuracy and at costs that are reduced by 4–
5 orders of magnitude of the potential energy surfaces of materials (Behler and
Parrinello 2007; Bartók et al. 2010; Li et al. 2015). This has, and will have, a
revolutionary impact in those fields where deterministic or stochastic sampling
of materials relies on length and time scales a few orders of magnitude larger
than current capabilities, and with an accuracy that only first-principles methods
can deliver. This is very much the domain of metals’ plasticity, or nucleation and
growth – both fields underpin all our efforts in understanding and engineering
synthesis and manufacturing of advanced materials – from vapor-liquid-solid
growth of nanostructures to fast precipitation in additive manufacturing. Second, the
capability to machine-learn properties that are very expensive to calculate – from
thermodynamics with chemical accuracy to magnetic spectroscopies or transport
properties – will provide a great accelerator in the direct, high-throughput discovery
or the inverse design of materials. Last, harvesting and correlations can take place in
the social domain – natural language processing aims to identify properties or even
chatter in the editorial or social world – and in the experimental domain, so one
can easily envision an ever-growing effort to leverage heterogeneous information
from these domains, and combine with homogenous (but systematically biased,
in mysterious ways) computed data to aim for that elusive, but most desirable,
breakthrough of a novel material able to contribute, hopefully, to the growth and
well-being of our society.

Acknowledgments We acknowledge support from the Swiss National Foundation, through its
National Center of Competence in Research MARVEL, for Computational Design and Discovery
of Novel Materials (2014–2018, 2018–2022), and the European Commission, through its Centre
of Excellence MaX, for Materials Design at the Exascale (2015–2018, 2018–2021).

References

Adamson GW, Bush JA (1973) A method for the automatic classification of chemical structures.
Inform Stor Retr 9:561

Adamson GW, Bush JA (1974) Method for relating the structure and properties of chemical
compounds. Nature 248:406

Bartók AP, Payne MC, Kondor R, Csányi G (2010) Gaussian approximation potentials: the
accuracy of quantum mechanics, without the electrons. Phys Rev Lett 104:136403

Behler J, Parrinello M (2007) Generalized neural-network representation of high-dimensional
potential-energy surfaces. Phys Rev Lett 98:146401

Curtarolo S, Morgan D, Persson K, Rodgers J, Ceder G (2003) Predicting crystal structures with
data Mining of Quantum Calculations. Phys Rev Lett 91:135503



80 Materials Informatics: Overview 1749

Franceschetti A, Zunger A (1999) The inverse band structure problem: find the atomic configura-
tion with given electronic properties. Nature 402:60

Jóhannesson GH, Bligaard T, Ruban AV, Skriver HL, Jacobsen KW, Nørskov JK (2002) Combined
electronic structure and evolutionary search approach to materials design. Phys Rev Lett
88:255506

Li Z, Kermode JR, De Vita A (2015) Molecular dynamics with on-the-Fly machine learning of
quantum-mechanical forces. Phys Rev Lett 114:096405

Van Noorden R, Maher B, Nuzzo R (2014) The top 100 papers. Nature 514:550



81TheMaterials Project: Accelerating
Materials Design Through Theory-Driven
Data and Tools

Anubhav Jain, Joseph Montoya, Shyam Dwaraknath, Nils
E. R. Zimmermann, John Dagdelen, Matthew Horton, Patrick Huck,
Donny Winston, Shreyas Cholia, Shyue Ping Ong,
and Kristin Persson

Contents

1 History and Overview of the Materials Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1752
2 Underlying Theoretical Formalism and Development of

Materials Design “Apps” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1756
2.1 Theoretical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1756
2.2 “Apps” for Data Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1758

3 Computation Infrastructure and Software Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1761
3.1 Computing Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1762
3.2 Choice of Database Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1762
3.3 Software Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1763

4 User Applications of the Materials Project to Research and
Design Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1768
4.1 Phase Diagrams and Compound Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1768
4.2 Crystal Structure Analysis, 2D Materials, and Machine Learning . . . . . . . . . . . . . . . . 1769
4.3 Screening Materials for Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1771

5 Outreach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1773
6 Future of Materials Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1774

6.1 Data Set Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1774
6.2 Beyond Simulations: Community-Contributed Materials Data . . . . . . . . . . . . . . . . . . 1775

A. Jain (�) · J. Montoya · S. Dwaraknath · N. E. R. Zimmermann · M. Horton · P. Huck ·
D. Winston · S. Cholia
Lawrence Berkeley National Laboratory, Berkeley, CA, USA
e-mail: ajain@lbl.gov; montoyjh@lbl.gov; shyamd@lbl.gov; nerz@lbl.gov; mkhorton@lbl.gov;
phuck@lbl.gov; dwinston@lbl.gov; scholia@lbl.gov

J. Dagdelen · S. P. Ong
University of California, Berkeley, CA, USA
e-mail: jdagdelen@berkeley.edu; ongsp@eng.ucsd.edu

K. Persson
Lawrence Berkeley National Laboratory, Berkeley, CA, USA

University of California, Berkeley, CA, USA
e-mail: kapersson@lbl.gov

© Springer Nature Switzerland AG 2020
W. Andreoni, S. Yip (eds.), Handbook of Materials Modeling,
https://doi.org/10.1007/978-3-319-44677-6_60

1751

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-44677-6_60&domain=pdf
mailto:ajain@lbl.gov
mailto:montoyjh@lbl.gov
mailto:shyamd@lbl.gov
mailto:nerz@lbl.gov
mailto:mkhorton@lbl.gov
mailto:phuck@lbl.gov
mailto:dwinston@lbl.gov
mailto:scholia@lbl.gov
mailto:jdagdelen@berkeley.edu
mailto:ongsp@eng.ucsd.edu
mailto:kapersson@lbl.gov
https://doi.org/10.1007/978-3-319-44677-6_60


1752 A. Jain et al.

6.3 MPCite: Citing Materials Data in Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1775

6.4 Data Analytics and Materials Design Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 1777

6.5 Concluding Thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1779

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1780

Abstract

The Materials Project (MP) is a community resource for theory-based data,
web-based materials analysis tools, and software for performing and analyzing
calculations. The MP database includes a variety of computed properties such
as crystal structure, energy, electronic band structure, and elastic tensors for
tens of thousands of inorganic compounds. At the time of writing, over 40,000
users have registered for the MP database. These users interact with this data
either through the MP web site (https://www.materialsproject.org) or through
a REpresentational State Transfer (REST) application programming interface
(API). MP also develops or contributes to several open-source software libraries
to help set up, automate, analyze, and extract insight from calculation results.
Furthermore, MP is developing tools to help researchers share their data (both
computational and experimental) through its platform. The ultimate goal of these
efforts is to accelerate materials design and education by providing new data
and software tools to the research community. In this chapter, we review the
history, theoretical methods, impact (including user-led research studies), and
future goals for the Materials Project.

1 History and Overview of theMaterials Project

Materials scientists and engineers have always depended on materials property data
to inform, guide, and explain research and development. Traditionally, such data
originated almost solely from experimental studies. In the past 10–15 years, it has
become possible to rapidly generate reliable materials data using scalable computer
simulations of the fundamental equations of physics such as the Schrödinger
equation. This paradigm shift was induced by a combination of theoretical advances,
most notably the development of density functional theory (DFT), algorithmic
improvements, and low-cost computing.

The Materials Project (MP, or “The Project”) was founded in 2011 as a
collaborative effort to leverage ongoing advances in theory and computing to
accelerate the research and design of new materials. The Project rests on a
comprehensive database of predicted properties of materials that is the result of
executing millions of DFT simulations on supercomputing resources. At the time of
writing, this database includes >69,000 inorganic materials with crystal structures
and total energies, >57,000 materials with electronic band structures, >48,000 with
electronic transport properties (Fig. 1) (Ricci et al. 2017), >30,000 with XANES
k-edge spectra (Dozier et al. 2017), >15,000 with conversion battery properties,
>6000 with elastic tensors (de Jong et al. 2015a), >3,000 with intercalation battery

https://www.materialsproject.org
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Fig. 1 Example of a large electronic transport data set in MP generated through computations.
Each point represents one compound, with Seebeck coefficient versus electron conductivity
(divided by τ ) plotted. The color represents the thermoelectric power factor (S2σ ), and the point
size is proportional to the bandgap (Ricci et al. 2017). This data set is available through the
MPContribs platform (see Sect. 6.2) at: https://materialsproject.org/mpcontribs/boltztrap

properties, >1,000 with piezoelectric tensors (de Jong et al. 2015b), >1,000 with
dielectric tensors (Petousis et al. 2017), and > 1000 elemental surface energies (Tran
et al. 2016). This database is continually expanding with more materials and more
properties (see Fig. 2 for an example of properties listed in the current iteration).

The Project launched its publicly accessible web site in October 2011 and has
since grown into a multi-institution collaboration as part of the US Department of
Energy Office of Basic Energy Sciences (BES). The web site provides access to
the database as well as applications (or “apps”) that combine and visually present
the data for specific analyses such as phase diagram generation or battery electrode
evaluation. The MP web site hosts more than 40,000 registered users worldwide
consisting of a diverse set of researchers and students from academia, industry,
and educational institutions (Figs. 3 and 4). The diversity of the audience base
highlights the usefulness of a theory-based materials database across the spectrum
of education, research, and development activities.

Apart from the core data and web site, MP helps develop and maintain a set
of open-source software libraries for setting up, executing, analyzing, and deriving
insights from calculations. These libraries, which include pymatgen (Ong et al.
2013), custodian, FireWorks (Jain et al. 2015), and atomate (Mathew et al. 2017),

https://materialsproject.org/mpcontribs/boltztrap
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Fig. 3 Total number of registered users since release of the MP web site and fraction of users
belonging to various institution types

Fig. 4 Amount of Materials Project user sessions by city for the month of October 2017. Sessions
originated in 112 countries, 36 of which totaled >100 sessions
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have been used by hundreds of researchers worldwide. The newest additions to
MP allow users to suggest compounds for computation as well as contribute their
own data (theoretical or experimental) to the database. Furthermore, MP hosts
educational workshops focused on its online and programmatic infrastructure, and
the MP web site has become an integral teaching tool in several materials science
courses.

As the state of the art in theory and computing are bound to change, the
specifics of MP’s data, scope, capabilities, and infrastructure will no doubt change
as well. Nevertheless, this chapter summarizes the current state of the Materials
Project.

2 Underlying Theoretical Formalism and Development of
Materials Design “Apps”

2.1 Theoretical Methods

The Materials Project’s core data set consists of results obtained from density
functional theory (DFT) calculations on a library of inorganic compounds. DFT
is well suited for creating a database of materials properties because it has fewer
parameters that require tuning for different materials systems and because the
computational cost for small- to medium-sized (approximately 300 atoms or less)
systems is manageable. DFT methods have become standardized to a large extent
such that various software implementations with slightly different parameters (e.g.,
pseudopotentials) produce very similar results (Lejaeghere et al. 2016).

Nevertheless, selecting a robust set of parameters for high-throughput computa-
tions is still not trivial. It is important to emphasize there is currently no perfect
DFT functional as they are all approximations to the complete set of physics
that define materials phenomena. For example, strongly correlated systems remain
challenging. It is typically possible to treat even complex systems with specialized
methods in single studies. However, when constructing a large database with many
compounds, such specialized treatment is difficult to achieve practically and would
also lead to inconsistent and often incompatible results between various compounds.
Additionally, one must more carefully balance computational costs with expected
information gain. Whereas a single study may not be noticeably impacted if its
calculations are over-converged numerically and use 50% more computing power
than necessary, such a situation would severely slow down a high-throughput
database project such as MP that consumes tens of millions of CPU hours of
computing per year. Thus, MP must make practical compromises that try to maintain
the accuracy of a specialized, precise calculation while being completely automatic
and computationally efficient and maintaining clarity and consistency of procedure
with other calculations.

One of the approaches used by the Materials Project to achieve this balance is to
split materials into two classes and apply a different DFT functional to model each



81 The Materials Project: Accelerating Materials Design Through . . . 1757

class. The first class of compounds are transition metal oxides and sulfides. Standard
DFT functionals such as the local density approximation (LDA) (Kohn and Sham
1965) and the generalized gradient approximation (GGA) (Perdew et al. 1996) are
not accurate for these compounds due to more pronounced self-interaction error
as well as errors in orbital occupation from lack of derivative discontinuity (Zhou
et al. 2004; Cococcioni and de Gironcoli 2005). One computationally efficient way
to treat these compounds is with the GGA+U framework, in which a Hubbard-like
correction is applied to localized d orbitals. The specific U corrections are fitted to
formation energy data as described previously (Wang et al. 2006). It is important to
note that these same U values may not be optimal for accurately representing other
properties such as the electronic band structure. The second class of compounds
encompasses all other systems and is treated with the standard GGA-PBE functional
(Perdew et al. 1996).

By allowing different compounds to be treated with two different functionals, it
is possible to enhance accuracy of the resulting database compared to using only
a single functional such as GGA for the entire database. However, one must then
additionally design a scheme to mix results (e.g., total energies) obtained from
different methods since these results are not directly compatible. In the Materials
Project, these adjustments between results from different functionals are made by
benchmarking to experimental formation enthalpy data (Jain et al. 2011b). Figure 5
depicts the effects of one instance of this by presenting Fe-P-O phase diagrams
using the GGA only, GGA+U only, and mixed GGA and GGA+U total energies.
Only the version of the diagram that uses two different functionals (with the mixing
adjustment applied) reproduces all known stable phases in this system.

Another practical measure taken by the Materials Project pertains to molecular
systems. Although molecular systems and solids can be modeled within the same
density functional theory framework (e.g., PBE-GGA with plane-wave basis sets),
computed reaction energies that include both molecules and solids typically exhibit
high errors because self-interaction errors differ significantly between systems char-
acterized by local (e.g., molecules or highly correlated systems) and nonlocal (e.g.,
metals) electrons (Grindy et al. 2013; Perdew et al. 1998). Similarly, intermolecular
interactions present in gases, 2D materials, and liquids that are not well described by
pure GGA functionals present further challenges for constructing a comprehensive
thermodynamic framework derived from DFT that avoids such systematic errors.

Rather than calculating the liquid/gas energies directly, MP adjusts the energies
of several elements that are liquid or gaseous at room temperature based on
experimental reaction enthalpies such as the oxidation of metals (Wang et al. 2006).
All of the following compounds have adjusted energies to better reproduce reaction
energies with solid phases: O2, N2, Cl2, F2, and H2.

Finally, we mention that MP also adjusts certain numerical parameters based
on the type of compound. For example, MP uses a denser k-point mesh when
calculating metals (as determined from an initial, loose k-point mesh calculation)
versus semiconductors and insulators. In addition, the numerical tolerances used by
the Materials Project have been growing more precise over time. The parameters
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Fig. 5 Fe-P-O ternary phase diagrams built using total energy calculations from (a) only GGA,
(b) only GGA+U, and (c) mixing GGA and GGA+U functionals. Only the mixed phase diagram
reproduces all known phases as stable on the phase diagram. (Reprinted figure with permission
from Jain et al. (2011b). Copyright 2011 by the American Physical Society)

used for each calculation are available via the Materials Project web site, and
the most current description of parameter settings is provided at https://www.
materialsproject.org/docs/calculations.

2.2 “Apps” for Data Exploration

Much of the value of the MP data set comes from secondary analyses that are
performed on top of the raw data. These secondary analyses often combine multiple
data points and can take the form of common diagrams used in materials science
(e.g., phase stability diagrams or Pourbaix diagrams), application-specific materials
design tools (e.g., evaluating MP compounds as battery electrodes), or simply as
additional information (e.g., reporting potential substrates that might form coherent

https://www.materialsproject.org/docs/calculations
https://www.materialsproject.org/docs/calculations
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lattices with a target material). Such tools are vital for helping users extract as much
value as possible from the data sets.

The Materials Project develops the methodologies to perform many such sec-
ondary analyses and releases them both as open-source software implementations
(through the pymatgen (Ong et al. 2013) package) and as web applications
(“apps”). Apps provide a visual, user-friendly interface to these powerful and often
complex analysis routines. In the following example, we describe the underlying
methodology as well as the accompanying app for generating and manipulating
phase diagrams.

2.2.1 Phase Diagram App
Phase diagrams have multiple applications in materials science. Traditional phase
diagrams generated from experiments show not only stable phases but also delineate
solubility limits and temperature dependence. In contrast, because MP currently
only models materials at zero temperature and pressure and does not model
solubility limits, the resulting phase diagrams might be more accurately referred to
as phase stability diagrams (we use the terms interchangeably here). Nevertheless,
such phase stability diagrams show the stable phases in a given chemical system
as well as the relevant phase equilibria at various compositional ratios. One major
application of such phase diagrams is to serve as a “reality check” for new
hypothetical materials. If the energy of that proposed material is low enough to
be on or nearly on the phase stability diagram, there is a higher probability that the
material will be stable enough to be synthesized in the lab (Sun et al. 2016). Phase
stability diagrams are also useful for identifying possible decomposition products
that might compete with a target phase.

Generating such computational phase diagrams requires knowledge of the
formation energies of all possible materials within a chemical system. For example,
calculating a ternary phase diagram requires knowledge of the formation energies of
all the relevant unary, binary, and ternary phases in that system. For a typical ternary
system, calculating the energy for all known phases would require several dozen
calculations. However, because the MP database already contains precomputed
energies for most known inorganic compounds, one can now avoid running all these
simulations and directly create reasonably complete phase diagrams using the MP
data set.

Mathematically, the set of stable points on a phase diagram can be determined
using the convex hull construction, which is a method of finding the minima as a
function of n degrees of freedom (Barber et al. 1996). By calculating the convex hull
for the total energies of various calculated DFT energies, globally stable structures
can be found as well as the various tie-lines that connect stable phases. The convex
hull construction can be used to construct phase diagrams for an arbitrary number
of components.

Many known compounds are not thermodynamically stable, i.e., they do not
appear on phase stability diagrams (Sun et al. 2016). An additional metric is
then necessary to distinguish the degree of metastability for these compounds.
The construction of a convex hull provides an envelope of stability. Compounds
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on the convex hull are stable, while compounds above the hull in energy are
metastable. The energetic distance to the hull at the composition is thus a quan-
tifiable metric and directly related to the metastability of that compound. A lower
energy above the hull is typically desirable for synthesis because it implies less
of an energy penalty to form the target compound compared to the known stable
phase. Many of the known metastable compounds in the Materials Project are
within 15 meV/atom of the hull, but depending on chemistry can extend past
60 meV/atom above the hull (Sun et al. 2016). While this analysis focuses on the
metastability of known compounds, there is still work needed to quantify the limits
of metastability.

Thus far we have described the formalism for closed systems, i.e., ones in which
the stoichiometric ratio of elements is fixed, but the same formalism can be equally
applied to open systems in which one or more elements are held at a fixed chemical
potential rather than held to a fixed amount. For example, experiments may be
carried out in air, which essentially serves as an infinite reservoir of atmospheric
elements such as oxygen and nitrogen at particular chemical potentials. The same
experiment under flowing argon gas would still represent an open system, but one
in which the chemical potentials of those elements are greatly reduced. Thus, in
environments that are open to a particular element, the relevant control variable is
the chemical potential of that element (μi) rather than its compositional value. The
chemical potential is then treated as an external variable to obtain a grand potential
phase diagram.

Users of MP need not be familiar with all the methodological details (Ong et al.
2008) of computational phase diagram construction to generate and use them. The
MP web site allows users to simply type (or click on a visual periodic table) the
elements for the system they are interested in. This will generate a phase diagram
that will graphically display the phase diagram as well as a list of stable and
metastable/unstable materials. Figure 6 shows a screenshot of the MP phase diagram
app for a grand potential phase diagram for Li-Fe-P-O with an oxygen potential of
−5.288 eV. Note that since the oxygen composition is prescribed by the potential, it
doesn’t exist as a degree of freedom in the phase diagram, collapsing the quaternary
phase diagram into a ternary phase diagram (with a slider for controlling the oxygen
chemical potential).

Other apps similarly make available powerful underlying methodologies to a
broad audience. For example, similar to the grand potential phase diagram, Pourbaix
diagrams are projections of global stability into potential-pH space to model
electrochemical stability. A methodology for calculating such diagrams by utilizing
experimentally measured free energies of aqueous ions and the calculated DFT
energies for solid phases available in the Materials Project was previously developed
(Persson et al. 2012). This methodology was incorporated into a “Pourbaix app”
that allows users to simply select the chemical system of interest, elemental ratio,
and concentration of ions in order to generate a familiar Pourbaix diagram that
leverages the MP data set and that can be visually and interactively explored by
the user. In addition, the stability of individual materials relative to the most stable
decomposition product may be generated as a heatmap overlaid on the Pourbaix
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Fig. 6 The Li-Fe-P-O ternary grand potential phase diagram open to oxygen as generated by the
Materials Project’s “phase diagram” app

diagram, providing users with a tool to estimate metastability under aqueous
conditions (Singh et al. 2017).

3 Computation Infrastructure and Software Tools

Developing and maintaining calculation databases such as the Materials Project
requires considerable attention to computing and software infrastructure. At the
time of this writing, the Materials Project is the result of over one million individual
calculations that represent over 100 million central processing unit (CPU) hours of
computing time invested. Setting up, executing, analyzing, and managing all these
calculations are far from straightforward. Here, we describe the infrastructure of the
Materials Project at the time of this writing. However, we note that the economics
of computing as well as the optimal choice of software libraries can change very
quickly. The Materials Project infrastructure is therefore constantly evolving to
apply the latest developments and best practices in computer science and software
engineering to the field of materials science.
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3.1 Computing Resources

The Materials Project (MP) has employed high-performance computing (HPC)
resources at the US National Energy Research Scientific Computing Center
(NERSC) and elsewhere, consuming over 100 million of CPU hours to date.
Many-task computing workflows (Raicu et al. 2008) are increasingly using HPC
environments because these resources typically offer the potential for large amounts
of total computing time, good hardware specifications (e.g., moderate to high
memory), and adequate storage. However, HPC environments present several
challenges for running high-throughput calculations because these environments
were originally designed to serve the needs of a small number of large, highly
parallel applications that run for predictable times and perform all input/output to
disk. In contrast, high-throughput calculations are typically extremely numerous
and limited in achievable parallelism and require unpredictable, often very long
total run times. In addition, they are often more suited to management by
external services rather than solely through flat files on disk. To overcome these
challenges, the Materials Project has developed a software library for running high-
throughput calculations called “FireWorks” (Jain et al. 2015) that solves many of
the computing challenges associated with running high-throughput jobs on HPC
resources.

3.2 Choice of Database Software

Many portions of a high-throughput calculation workflow require efficient storage,
retrieval, and search of information, including:

• Managing the state of high-throughput calculations
• Storage of the raw calculation results, and
• A searchable set of processed data for data dissemination and analysis

The Materials Project has chosen to use a not-only-SQL (NoSQL) “document
store” (Cattell 2011), MongoDB, as its main database technology for these tasks
(raw output files are also preserved). We note that this represents a shift from a
other SQL-based data management strategies used previously in high-throughput
computational materials science (Jain et al. 2011a). This decision was made
primarily because MongoDB accommodates both the data heterogeneity and rapid
pace of data model development required by the Materials Project. For example,
unlike typical SQL relational database management systems (RDBMS) such as
MySQL and PostgreSQL, MongoDB does not require a pre-designed, normalized
schema between all data types at the beginning of the project. The types of data
being stored continually evolve as we add new types of calculations into the project.
By choosing MongoDB, MP can adapt quickly to these changes with small changes
in application code instead of refactoring complex relational schemata.
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Among document-oriented datastores, MongoDB is notable for its simple but
powerful query language, ease of administration, and good performance on read-
heavy workloads where most of the commonly accessed data (the so-called
working set) can fit into memory. Its relative weaknesses for linking disparate data
(database “joins”) and write-heavy workloads are a reasonable trade-off for MP. A
productivity benefit of MongoDB is that both the query language and the native data
model are JavaScript Object Notation (JSON) (Bray 2017), which is the standard
data format for modern web applications and easily represented and manipulated as
native data types in the Python programming language (Van Rossum et al. 2007) in
which our other software libraries are written. Thus, users familiar with Python and
in particular its “dict” object can adapt quickly to understanding and developing data
models with MongoDB. Our experience is that these aspects have allowed many
more members of our team to collaborate on database development compared to
our historical use of RDBMS in which only one or two members of the team were
familiar enough with the system to make changes. More details on our experiences
and challenges encountered in deploying a centralized datastore of this type within
a scientific HPC ecosystem are described in Gunter et al. (2012).

3.3 Software Stack

3.3.1 Software to Perform and Analyze DFT Calculations
At the time of this writing, the Materials Project primarily uses density functional
theory as implemented by the Vienna Ab Initio Simulation Package (VASP) (Kresse
and Hafner 1994; Kresse and Furthmüller 1996). However, it is likely that other
software packages such as ABINIT (Gonze et al. 2016) will play a larger role in
MP in the future. Regardless of the choice of DFT implementation, the procedure
for performing calculations involves many steps outside the core simulation. These
steps include:

• Setting up the geometry for the material or system of interest
• Defining a workflow of calculations to compute the properties of interest
• Executing the calculations and correcting possible errors
• Analyzing, storing, and organizing the output data

The Materials Project has developed a comprehensive suite of software tools to
accelerate and assist in these steps (see Fig. 7 for an overview).

Most of the compounds currently in the Materials Project use bulk crystal
structure geometries as reported in the Inorganic Crystal Structure Database (ICSD)
(Belsky et al. 2002). However, the computation of many properties requires per-
forming algorithmic operations on these geometries. Examples include determining
an appropriate ordered cell for sites with partial occupancies, creating appropriate
slabs for surface calculations, and performing a series lattice deformations for
computing elastic tensors. We have implemented routines for such geometry modi-
fications in Python as part of the pymatgen (Ong et al. 2013) open-source software
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Fig. 7 Various steps involved in data generation and analysis along with the relevant software
stack for the Materials Project infrastructure

library. In many cases, these routines are directly implemented in pymatgen,
whereas in others we provide an object-oriented Python wrapper to libraries released
by the community such as spglib (Togo 2018) and enumlib (Hart and Forcade 2008).
We note that the growth of web-based collaboration presents the opportunity for
another method of generating new compounds: crowdsourced user suggestions. In
this method, crystal structures designed by the user community (either offline or
through Materials Project tools) are used as starting points for the calculation with
the results reported back to the community. In its first three years of operation,
this “MPComplete” service has been employed by over 800 unique users and has
resulted in over 8,300 new materials added to MP’s public database.

Depending on the property to be studied, a DFT “calculation” may in fact involve
a series of individual computations that require data passing and modifications
of geometry or input settings between computations. The set of calculations
required for obtaining a desired output property, along with the dependencies and
data passing requirements between these calculations, define a “workflow.” The
Materials Project has developed two software libraries in the Python programming
language to manage such workflows. The first library, called “FireWorks” (Jain
et al. 2015), is a general-purpose workflow library. FireWorks does not contain
any materials science or DFT-specific code. Its scope is to provide a framework
for users to define arbitrary sequences of calculations, store them in a database,
execute them on various types of computing resource, and manage the status of
potentially millions of workflows across systems. Thus, FireWorks is compatible
with a broad class of scientific computing workflows (although it is best suited for
high-throughput applications) and is frequently used outside the field of materials
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science. The second library for workflow creation, “atomate” (Mathew et al. 2017),
contains specific materials science workflows implemented in FireWorks and using
pymatgen as a base library. The atomate package can be thought of as providing
a library of materials science workflow implementations (e.g., standard workflows
for electronic band structure, elastic properties, and piezoelectric, dielectric, and
ferroelectric properties). Atomate users can specify an input geometry for a
material and the desired workflow type, and atomate will provide a FireWorks-
based implementation of that workflow that is ready to execute at supercomputing
centers. Furthermore, atomate leverages the pymatgen library to automatically
parse calculation outputs and create a database of materials properties that can
be queried by the user. Various features in FireWorks and atomate allow for
customization of behavior to specific situations, from low-level issues (such as
interacting with various queueing systems) to high-level issues (such as running the
same workflow with multiple DFT functional choices). Calculation workflows can
also automatically adapt their procedure for later calculations based on the results
obtained from earlier calculations.

When executing the calculation, it is possible to encounter various errors relating
to calculation convergence. The Materials Project has developed a type of job
wrapper to simulation software (e.g., VASP Kresse and Hafner 1994; Kresse and
Furthmüller 1996 or QChem Kong et al. 2000) called “custodian” (Ong et al. 2014)
that automatically monitors the output files of the calculation and automatically fixes
errors (by stopping the job, changing the input files, and restarting the job) according
to a set of rules. The custodian software can also be used to automate linear
sequences of calculations (e.g., a convergence protocol that tightens numerical
parameters until no change in output is achieved).

Once the calculation is executed, the results are parsed and stored in various
database collections. Raw data is parsed by pymatgen as a component of atomate
workflows. We note that pymatgen can parse output files (into structured data or
as Python objects with callable functions) and can also perform high-level data
analyses such as phase diagram creation or plotting. Separately, we employ code
called “builders” that collect, reorganize, and post-process raw data into separate
database collections that are more amenable to analysis than raw data collections.
For example, a builder might collect together all calculated results on a single
material to build a single summary report (a “material” document) for that com-
pound. A builder might also collect together information from multiple compounds,
perform an analysis, and store the results in a database. In service of such processes,
we develop and use lightweight libraries to automate, simplify, and ultimately
streamline the process of creating MongoDB databases. Our general “builder” code
could be useful to any project that needs to perform extract-transform-load (ETL)
operations with MongoDB. For example, they can be run in parallel without explicit
coding of parallelism by the author. This allows CPU-intensive transformations of
the data to run much faster on multi-core machines, which includes most modern
hardware (integration with the Message Passing Interface (MPI) standard to enable
parallelization across supercomputing resources is in development). Furthermore,
facilities in our code for incremental building allow successive builds of source
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MongoDB collection(s) to only operate on the records added since the last build,
which can save significant amounts of computation time. Overall, the builder
framework allows for efficient generation and reliable updating of multiple database
collections that are tailored for different types of query and usage patterns.

3.3.2 Software for Data Dissemination: TheWeb Interface and
RESTful API

The Materials Project places a strong emphasis on user experience, user interface
design, and ensuring that data is efficiently disseminated so that a wide variety
of users are able to apply the data for research, development, and education
(Jain et al. 2016b). To this end, we have built an interactive web portal (https://
www.materialsproject.org) focusing on the scientist as the end user. This web
portal is built using the mature Django web framework (Dja 2015) due to its
clean separation of front-end views from the back-end business logic. Django is
written in the Python programming language, which eases integration with the
pymatgen library and the growing scientific software ecosystem in Python. Django
also provides a clear structure for organizing a so-called project into “apps,”
which maps well to our various interactive views across materials data such as
compositional phase diagrams, Pourbaix diagrams, or domain-specific applications
such as battery electrode searching. Additionally, Django features robust tools for
user management, simplifying procedures for authentication (who someone is) and
authorization (what a known someone can access/do). These tools are used, for
example, to provide prepublication “sandboxes” for certain user groups within
which to explore and perform analyses across private data sets prior to public
release.

In order to tighten feedback loops for users searching data and using various
functionalities that may not be applicable to all users, we organize our front-
end code to asynchronously load both data and additional code using standard
Asynchronous JavaScript And XML (AJAX) and Asynchronous Module Definition
(AMD) protocols. Our choices of specific libraries for the web interface continue
to evolve as trade-offs between established best practices (that are attractive for
a system intended for continuous and reproducible use over many years) and
emerging standards (that simplify ongoing maintenance and adding features).

Although many exploratory research studies are well suited to a graphical
interface such as the one described above, other studies require programmatic access
to this database. With this in mind, we have chosen to expose our data through an
application programming interface (API) called the Materials API (MAPI) (Ong
2015). MAPI allows users to develop computer programs that can query, process,
and download Materials Project data through a well-defined interface. To date, the
MAPI has served more than 100 million requests for materials data for over 1500
distinct users.

APIs are used extensively throughout technology and software development.
They serve to clearly and explicitly define a protocol for communicating with a
piece of software or other system that is accessed programmatically. At the time of
this writing, the most common framework for APIs that operate over the Internet

https://www.materialsproject.org
https://www.materialsproject.org
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https://www.materialsproject.org/rest/v2/materials/Fe2O3/vasp/energy

Identifier, typically a
formula (“Fe2O3”), id
(“mp-1234”) or chemical
system (“Li-Fe-O”)

Request
type

Data type
(vasp, exp,
etc.)

PropertyPreamble

Fig. 8 An example of the URL structure for the Materials API. (Reprinted from Ong (2015) with
permission from Elsevier)

is REpresentational State Transfer (most commonly referred to as REST). The
most simple use case for REST APIs is to map web uniform resource identifiers
(URIs) to data (similar to how a computer’s file system maps data to directories and
filenames). In RESTful systems, information is organized into resources, each of
which is uniquely identified via a uniform resource identifier (URI). In the case of
Materials Project, each document or object (such as a computational task, crystal
structure, or materials property) is represented by a URI (see Fig. 8 for an example)
and an HTTP verb that can act on that object (GET, POST, PUT, DELETE, etc.).
In most cases, this action returns structured data that represents the object, e.g., in
the JavaScript Object Notation (JSON) format. For example, to request energy data
(as calculated using VASP) on all Fe2O3 compounds in the Materials Project
database, the URL shown in Fig. 8 could be constructed according to the protocol
specified in the MAPI. We note that since MAPI is a RESTful system, users can
interact with the MP database regardless of their computer system or programming
language (as long as it supports basic HTTP requests.)

REST APIs allow for more powerful behavior to be seamlessly integrated
alongside such basic information retrieval. For example, unique strings of characters
associated with specific users (called API keys) can be used to manage access to
resources. This is done by implementing the API in such a way that requires users
to include their API keys in requests they make to the system and then implementing
controls on the back end of the system to handle permissions and activity logging.
RESTful APIs can also accept filtering parameters or other variables within requests
to give users greater control over what they send or receive from a database.
Moreover, URLs can be linked to more than just static resources; they can also point
to back-end functions that enable interaction between a user program and MP. An
example might be linking a URL such as “https://www.materialsproject.org/rest/
v1/materials/snl/submit” to a function registering a request to compute a desired
structure embedded in an http POST parameter.

Use of such an API offers a number of advantages. First, users do not have to be
concerned with the actual architecture of the database they are interacting with or
the details of its implementation since the API serves as a kind of “middleman” in

https://www.materialsproject.org/rest/v1/materials/snl/submit
https://www.materialsproject.org/rest/v1/materials/snl/submit
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the process. From a user’s perspective, the procedure to interact with the database
is consistent over time, freeing the development team to make back-end changes
without impacting the user’s mode of interaction with the data. In addition, access
to the database is system-agnostic. Anyone can develop an application in whatever
environment they wish on top of the API with the confidence that it will be
compatible with the MP database. Moreover, the data that users receive is always
up-to-date, with no extra effort on their part, and the capabilities of the API can be
seamlessly improved over time to give users access to even more powerful queries
and analyses without creating new procedures for their use.

Although RESTful APIs can be intimidating to novices, they can be made more
user-friendly by making the URL scheme explorable and hiding complexity through
intermediate software layers. For example, a high-level Python interface to the
MAPI called the MPRester is provided in the pymatgen (Ong et al. 2013) code
base that allows users to obtain properties like crystal structure or electronic band
structure using Python functions rather than explicit HTTP requests. We note that,
whenever possible, the main Materials Project web site front end also avoids direct
database queries and uses MAPI to query and access data in a way that is more
maintainable and less prone to failure than custom interactions with the back-end
software.

4 User Applications of theMaterials Project to Research and
Design Problems

Since its release, users of the Materials Project have used its data and tools in several
hundred research studies (as highlighted in a previous review Jain et al. 2016a).
In this section, we describe several recent examples and outline general strategies
that have emerged in the literature for screening and designing materials for
specific applications. While several of these studies involve active MP collaborators
(Dagdelen et al. 2017; Yan et al. 2017; Chen et al. 2016; Zimmermann et al. 2017),
a large fraction of the most recent studies that we found through a Web of Science
search are from users that are not involved in Materials Project (Sendek et al. 2017;
Shi et al. 2017; Ashton et al. 2017; Cheon et al. 2017; Choudhary et al. 2017; Lau
et al. 2017; Shandiz and Gauvin 2016). This latter class of users perhaps most clearly
demonstrates that it is possible to accelerate the research and design of new materials
by generating and sharing materials information with the research community.

4.1 Phase Diagrams and Compound Stability

In studies that aim to improve our understanding based on experimental evidence
or to synthesize new materials for a given application (Bayliss et al. 2014;
Krishnamoorthy et al. 2015; Martinolich and Neilson 2014), generating phase
equilibrium data is among the most frequently used MP capabilities . For example,
Bayliss et al. conducted a study on a sodium-doped strontium silicate material
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that had been claimed to feature remarkably high oxide ion conduction (Bayliss
et al. 2014). By combining experiments (neutron powder diffraction, two-point
AC impedance spectroscopy, time-of-flight secondary ion mass spectrometry) and
DFT calculations, they could show that the conductivity was lower than previously
reported and that the high energetic cost of oxygen vacancy formation was the
underlying reason. Data from MP was used to cross-check the study’s results for
the DFT-PBEsol-derived major limiting phases of the SrSiO3 decomposition.

Shi and co-workers (Shi et al. 2017) employed a high-throughput DFT screening
approach for stable delafossite and related layered phases of composition ABX2,
where A and B are any elements from the periodic table and X a chalcogen (O, S,
Se, and Te). From the initial materials set of 15,624 compounds, 285 were found to
be within 50 meV/atom from the convex hull. While the majority of these structures
are contained within the Materials Project database, the authors highlight that 79
of these stable systems are absent. This underscores that crystal structure databases
such as MP still have considerable growth potential in terms of compound com-
pleteness and highlights the role that user-based compound submissions (through
the MPComplete service, cf., Sect. 6.1) could play in extending such databases.

A similar example is the work by Krishnamoorthy et al. (2015), who used a high-
throughput DFT-based screening to identify lead-free germanium iodide perovskites
that could be used for light harvesting. The researchers computed the PBE bandgaps
of 360 AMX3 compositions, uncovering 9 interesting candidates. MP phase equi-
librium data were used to further reduce the list by requiring that the materials be
thermodynamically stable against decomposition to simpler binary phases. Three
materials were left from the computational screening, RbSnBr3, CsSnBr3, and
CsGeI3, of which the latter was successfully synthesized and characterized. We
refer the interested reader to a previous review article Jain et al. (2016b) for further
examples of experimental studies conducted using MP-calculated phase diagrams.

4.2 Crystal Structure Analysis, 2DMaterials, andMachine
Learning

The large corpus of data available in the Materials Project can serve as a test bed for
the development of new algorithms for processing of crystallographic data. This is
the case for Ashton and co-workers (Ashton et al. 2017) who developed a topology-
scaling algorithm to identify the dimensionality of a given crystal structure. They
used the algorithm to search the MP database for materials that could be prospective
2D materials; 826 stable layered materials were identified, of which 680 were
predicted to be feasible 2D material candidates based on the calculated exfoliation
energy.

Similarly, Cheon and co-workers (Cheon et al. 2017) present an algorithm
that can identify the dimensionality of weakly bonded subcomponents of a three-
dimensional crystal structure. They apply this algorithm to >50,000 MP materials
and identify 1,173 two-dimensional layered materials as well as 487 weakly bonded
one-dimensional molecular chains, representing an order of magnitude increase
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in the number of identified materials. Furthermore, 325 of these materials were
suggested to be piezoelectric monolayers.

Interestingly, by specifically exploiting a weakness in typical DFT calculations
that the dispersion forces are not well accounted for and thus lattice parameters
of layered materials are often significantly inaccurate, Choudhary and co-workers
(Choudhary et al. 2017) were able to identify two-dimensional material candidates.
To this end, the authors required that the deviation between lattice constants from
experiments and (mainly) MP database be ≥5%. In order to validate their approach,
the authors used an accepted criterion based on the exfoliation energy and found
that 88.9% of their predictions met this test.

Many structure-property relationships that form the basis of design rules in
materials science are based on information pertaining to the local coordination
environment. Therefore, it is highly desirable to have tools that effectively and
efficiently identify basic local structural motifs such tetrahedra, octahedra, bcc,
fcc, and hcp environments. Zimmermann et al. provided classification criteria for
these motifs that are based on local structure order parameters, which were used
to automatically identify these motifs in the entire Materials Project database.
Additionally, these tools may also lead the way to alternative structure matching
avenues (Zimmermann et al. 2017).

The abundance of data in the Materials Project also provides an opportunity to
develop new machine learning (ML) techniques for modeling materials properties
and for better understanding structure-property relationships. One such example of
this appears in work from Faber et al. (2015) aimed at developing representations
of periodic systems adaptable to ML models. In this study, 4000 structures from
the Materials Project were used to evaluate the generalization error in the predicted
formation energy based on three different crystal structure representation schemes
and using kernel ridge regression, revealing that a sine matrix approach intended to
simulate an infinite Coulomb sum was superior in its efficiency and accuracy.

Similarly, de Jong et al. (2016) demonstrated a machine learning approach to
predicting elastic moduli of k-nary compounds that was effective over a highly
diverse set of chemistries. More specifically, this study used gradient boosting
machine local polynomial regression (GBM-Locfit) over the MP elastic tensor
data set to determine a set of relevant descriptors and to derive elastic modulus
predictions. Ultimately, this model was leveraged to estimate the Vickers hard-
ness of the entire MP materials library, enabling a rapid search for superhard
materials.

In most cases, easily retrievable or computable data such as the space group,
composition, and the density are used in order to predict more complex properties
such as the formation energy or the elastic tensor. Shandiz and Gauvin pursued the
inverse route (Shandiz and Gauvin 2016): the authors conducted a classification
study of 339 materials from the MP database that are potential Li-ion silicate
cathodes (general composition: Li-Si-(Mn, Fe, Co)-O). In particular, they tested
whether or not they could predict the crystal system (monoclinic, orthorhombic,
or triclinic) based on features that were derived from both the input crystal structure
and DFT outputs: the unit cell volume, the bandgap, the number of sites in the unit
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cell, the formation energy, and the energy above the convex hull. Pair correlation
plots of these features indicated that there was no exploitable direct correlation
between any of the features and the crystal system. Decision tree-based methods
(random forest and extremely randomized trees) were shown to yield prediction
accuracies of up to 75%, and these methods performed better than linear and
shrinkage discriminant analysis, respectively, artificial neural networks, support
vector machines, and k-nearest neighbor classification.

4.3 ScreeningMaterials for Applications

Perhaps the most consistent materials screening strategy that has emerged from the
data on the Materials Project is that of filtering materials on successively tighter
criteria appropriate to a given application space. In this approach, a filter common to
most applications is typically on stability via ΔEhull, which can provide an indicator
of whether a compound will be experimentally feasible. As illustrated in Fig. 9,
successive filters in turn reduce the number of materials to be considered until it
reaches a tractable quantity for follow-up with either more sophisticated calculations
or for experimental inquiry.

This was the approach taken by Sendek and co-workers (Sendek et al. 2017) who
searched for new candidate materials that could be used as solid-state electrolytes
for lithium-ion batteries. The authors screened 12,831 Li-containing compounds
from the Materials Project to filter those with high structural and chemical stability,
low electronic conductivity, and low cost, thus, eliminating 92.2% of their initial

Fig. 9 The “funnel” approach to materials screening through successive criterion filtering as
applied to designing materials for solar fuel photoelectrocatalysis by Yan et al. (2017). Such
approaches start with a large list of potential candidate materials and use a series of criteria
(generally of increasing cost or complexity) to reduce the space of possibilities. (Reproduced from
Yan et al. (2017); copyright 2017 National Academy of Sciences)
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materials. Subsequently, an ionic conductivity classification model, which was
trained on 40 crystal structures and associated measurements from literature,
reduced the list of interesting candidates down to only 21 materials. In the latter step,
the consideration of a multi-descriptor model over single-descriptor functions was
critical to achieve predictive power. Many of the remaining 21 materials have not yet
been studied experimentally, which hence offers new opportunities for experimental
electrolyte research.

Identifying structurally similar compounds for the purpose of screening
structure-sensitive properties and classifying materials has also begun to emerge as a
screening strategy and design paradigm. Dagdelen and co-workers (Dagdelen et al.
2017) demonstrate such a screening procedure for predicting new auxetic materials
(compounds with negative Poisson’s ratios). The authors systematically screened
the entire MP database via the Materials Project’s REST API and compared each
structure to α−cristobalite SiO2, one of the only inorganic crystalline materials
previously known to exhibit a negative homogeneous Poisson’s ratio. By coupling
pymatgen’s structure matching algorithm (which can match structures within a user-
defined tolerance irregardless of crystal setting, supercell size, or composition) with
more conventional screening strategies, 30 likely candidates were gleaned from
over 65,000 structures. The full elastic tensor of each candidate was then calculated
and their Poisson’s ratios subsequently derived. Of these 30 structures, 3 were found
to be homogeneously auxetic, and an additional 9 were found to exhibit near-zero
homogeneous Poisson’s ratio, with experimental confirmation ongoing.

An example of in silico screening with the Materials Project that has led to
experimentally confirmed materials discovery was presented by Lau et al. (2017).
These authors searched for promising chemical looping air separation (CLAS) mate-
rials in the MP database through successive criterion filtering (“funnel” approach).
Specifically, the applied search filters included (i) restricting binary and ternary
compounds, (ii) identifying compounds that can undergo oxidation reactions (at this
step, the phase diagram app was employed), and (iii) restricting the temperature and
oxygen partial pressure ranges in which the oxidation reactions would be carried
out to sensible limits. The approach resulted in 5,501 tentative compounds and
20,861 relevant redox reactions. Since the reduction enthalpy and the gravimetric
O2 capacity (Fig. 10) did not reveal any exploitable trends, the authors had to
employ a more heuristic route to reduce the candidate list. First, they required the
reaction complexity and the total number of phases present in the reactions to be
minimal, yielding 292 materials. Second, they decreased the number further to 108
by excluding compounds with expensive and toxic materials as well as reactions
that involved non-oxides after reduction. From the remaining materials, they picked
the ABO3 perovskites because of their flexibility in oxygen stoichiometry without
large structure changes and the ease of synthesizing perovskites in general. They
subsequently synthesized and characterized SrFeO3−δ , which has emerged as a
promising CLAS candidate due to its thermodynamic and excellent cycling stability
as well as its resistance to carbonation over the temperatures of operation (Lau et al.
2017). Further examples of compound discovery with the Materials Project can be
found in prior reviews (Hautier et al. 2012; Jain et al. 2016c).
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Fig. 10 An example of
materials screening for
chemical looping air
separation application using
MP data. Each data point
represents a reduction
reaction for each distinct
compound with the largest
μO2 . The predicted reduction
temperature at
pO2 = 2.1× 104 Pa for each
reaction is plotted against
ΔHreduction (upper) and O2
gravimetric capacity (lower).
(Reproduced (Adapted or in
part) from Lau et al. (2017)
with permission of The Royal
Society of Chemistry)

5 Outreach

Starting in 2016, the Materials Project has held annual workshops that have hosted
more than 100 attendees from around the world. The workshops cover use of the
Materials Project web site as well its software stack for performing and analyzing
high-throughput calculations. Tutorials for the workshop utilized Jupyter (Ragan-
Kelley et al. 2014) notebooks, which are a form of computer document that
mixes formatted text, editable code, and interactive plots to illustrate a procedure.
Participants were given the option to install the various codes to their own systems
or to interact with a pre-installed environment configured using JupyterHub and
Docker Swarm. The latter option allowed participants to focus on learning to use
the software stack and left the details of individualized setup for later. All tutorials
and course materials from these workshops are available online (Mathew et al. 2016;
Winston et al. 2017).

Apart from the annual workshops, the Materials Project interacts with
users in various ways. For example, MP has created YouTube videos with
tutorials on all aspects of the web site, its various apps, and use of the API,
which have had a total of over 30,000 views at the time of this writing.
The Materials Project web site maintains a general-purpose discussion board
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(https://discuss.materialsproject.org/) that has over 100 monthly active users, over
400 posts, and nearly 200 “likes” (whereby users quickly mark the helpfulness of
posts) as of this writing. Finally, the MP software stack contains dedicated Google
groups and Github issue pages where users and developers of the software can ask
questions or get advice on software usage; hundreds of tickets have been resolved
thus far.

6 Future of Materials Project

The advances in electronic structure theory, numerical algorithms, computing
hardware, and software that have converged to make it possible to develop electronic
structure databases are truly stunning. By leveraging these advancements, the Mate-
rials Project has computed millions of materials properties (e.g., electronic band
structure, thermodynamic properties, mechanical properties, dielectric properties)
across tens of thousands of materials, organized that information into searchable
databases, and built rich web applications around the data in a way that would not
have been possible a decade ago. The future efforts of the Materials Project will
concentrate on further empowering the tens of thousands of scientists who design
and develop new materials. Here, we describe some possible future developments
to enhance property coverage, improve community data import capabilities, and
provide an online materials design environment that leverages modern data analytics
techniques.

6.1 Data Set Expansion

The Materials Project is continually generating new materials data at a rate of
several tens of million CPU hours per year to expand the scope of its database. In
the future, the Materials Project will expand in both breadth and depth: a greater
variety of materials systems will be investigated, and more information will be
calculated about individual materials. In terms of breadth, the Materials Project will
expand to more completely encompass crystals with site disorder, i.e., partial site
occupancies. The Materials Project will also continue its efforts and partnerships
to expand its offerings of data on molecular, i.e., nonperiodic, systems. Finally, the
Materials Project expects to play a more active role in not only computationally
characterizing known materials but aiding experimentalists in the search for new
materials yet to be discovered. In terms of depth, the Materials Project is expanding
its library of computational workflows so that more information is available for each
material in the database. Active areas of effort include phonon calculations and finite
temperature properties, interfaces, spectroscopy, defects, and mapping relations
between mechanical, thermal, and electrical effects. Furthermore, the Materials
Project will leverage new advances in DFT functionals that make it possible to
improve accuracy while still being computationally efficient for high-throughput
computation.

https://discuss.materialsproject.org/
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This data set expansion will require orders of magnitude more computing
resources than is currently employed. The Materials Project will continue to use
“crowdsourcing,” i.e., using input from the user community, as a method to prioritize
various aspects of data set expansion. For example, the MPComplete service
of Materials Project already allows users to both suggest new compounds for
calculation and vote on compounds on which to prioritize more computationally
expensive workflows. MPComplete then automatically integrates the results of each
calculation with MP’s core data set.

6.2 Beyond Simulations: Community-ContributedMaterials Data

MP has become a worldwide resource for the materials sciences community, with
over 40,000 users who rely on the portal as a trusted source to accelerate their
research. This presents an opportunity to broaden the scope of MP’s mission
to also include assisting researchers disseminate their own data sets (whether
computational or experimental) to the larger community of materials scientists.
Thus, MP would serve not only as a hub for centrally generated computational
data but would also host and distribute a variety of data sets generated by
research groups worldwide. This will also give users of MP a more holistic picture
of a compound because they would be presented with both computational and
experimental information from a variety of techniques.

For this purpose, we soft-released our general contribution framework, MPCon-
tribs (Huck 2016b; Huck et al. 2015a, b, 2016), as a sustainable solution for
well-curated data management, organization, and dissemination in the context
of MP. Data as contributed through this framework as well as provenance and
citation information for the contributors can be viewed on the MP web site.
Early adopters are experimenting with MPContribs as a potential dissemina-
tion and hosting platform for their data, expanding the scope of data available
through MP.

About a dozen early adopters have released landing pages to their contributed
data sets on https://materialsproject.org/mpcontribs. Figure 11 highlights the land-
ing pages for external studies of MnO2 phase selection, GLLB-SC bandgaps, dilute
solute diffusion, and Fe-V-Co magnetic thin films. The last of these is based on data
measured at the Advanced Light Source at Lawrence Berkeley National Laboratory,
whereas the others are computationally derived. These landing pages can serve as
interactive versions of the accompanying journal publications and allow research
studies to be more easily reproduced and expanded upon.

6.3 MPCite: CitingMaterials Data in Publications

The US Department of Energy Office of Scientific and Technical Information
(OSTI) (Elliot et al. 2016) provides the E-Link service, which allows researchers to
submit information about OSTI products (in form of XML meta-data records) and

https://materialsproject.org/mpcontribs
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Fig. 11 Examples of four different landing pages (representing different types of user-generated
data sets) submitted to MPContribs

retrieve persistent digital object identifiers (DOIs) to identify it on the World Wide
Web. DOIs are most commonly used for referencing and locating journal papers
because they provide a unique URL linking to the journal’s online landing page with
more information about the publication. Our open-source software MPCite (Huck
2016a) enables the continuous request, validation, and dissemination of DOIs for all
MP compounds. MPCite can also be employed for the assignment of DOIs to non-
core database entries such as theoretical and experimental data contributed through
MPContribs or user-generated analyses or structural data.
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6.4 Data Analytics andMaterials Design Environment

The Materials Project aims to not only generate raw data but also to empower
users to make the best use of that data. For example, as described previously, we
have found that many scientific studies conducted by users employ the “apps”
built around the data such as phase diagram plots. As new data capabilities are
established, we will continue to build additional apps to enable users to bridge
the gap between a simple list of materials data and incorporating that data into a
scientific analysis.

The Materials Project will also place additional emphasis on helping users
transform underlying data assets into new insights about structure-property rela-
tionships. In particular, new capabilities will allow users to formulate complex
queries using visual interfaces and perform interactive data analysis and real-time
filtering. Users will be able to rapidly iterate on materials design exploration with
guidance provided by machine learning algorithms as well as traditional theory
calculations. The four components of this vision for a materials design platform
are Query, Process, Visualize, and Model/Compute (see Fig. 12). Next, we discuss
these components in detail.

Query Today, the Materials Project provides a visual web-based search interface to
its underlying databases that is optimal for identifying a set of materials matching a
series of constraints. However, many users require more sophisticated data pipelines
in which one can visually add or remove filters and inspect the results at multiple
points in the analysis or merge results from independent query streams. Such
functionality is already possible for those that are capable of writing computer
programs to fetch Materials Project data through MAPI, but remains difficult for
others. New techniques of allowing users to fetch and interact with the data will be
developed in the future so that one is able to call up exactly the desired data using a
visual query interface.

Process Once a user has compiled a data set of interest through the query tools, the
Materials Project will make it easy for users to add descriptors/features to the data
in a way that aids visualization, interpretation, and model building. We envision
a system whereby a user can bring up any set of results (e.g., 100 materials of
interest) and, by clicking a button, can rapidly generate a library of descriptors
such as average electronegativity, local environment type, or polyhedral connection
type for every material in the data set. Users will be able to use these descriptors
to explore potential structure-property relationships through both conventional
data analysis (e.g., visualization, statistical reports) and data mining and machine
learning approaches.

Visualize New software libraries and web frameworks such as Dash by Plotly and
Crossfilter are making it easier than ever to produce high-quality charts on the web
that can be interactively explored and manipulated. Such libraries can enable users
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Fig. 12 Four steps in data exploration and modeling for which MP is currently developing new
features to assist the user. For a detailed description of these steps, see the main text
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to perform a greater fraction of their data exploration on the MP web site itself. As
a simple example, a user may decide to produce a standard X-Y scatterplot between
two user-chosen properties of interest that additionally allows hovering over specific
points to display details of that material. A more complex example would be to
include tools for interactive filtering of the data set, with each modification or
addition of a filter displaying live histogram charts of the distribution of various
materials properties for the materials remaining in the data set. This will allow users
to obtain immediate feedback on the distribution of various properties in their data
set and visualize how various constraints and filters change this distribution.

Model/Compute After data preparation and exploration, the next step is to take
action on the data. One possible action is to produce a model describing the
various relationships between materials properties. For example, one may attempt
to build a model that relates a structural descriptor such as local environment and a
compositional descriptor such as redox active species to a computed output such as
battery voltage. Machine learning models are an interesting way forward because,
once trained and validated, they can be used to obtain nearly instantaneous feedback
on how materials might behave even before any simulations are performed. Thus,
such models can serve as surrogates for more complex and time-consuming physics
simulations for qualitative estimation and ranking purposes. One can also imagine
using these models to guide decisions regarding the computation of new materials.

With these elements in place, a single interactive web session would allow a user
to perform sophisticated queries on the data set, automatically generate descriptors
that could be useful in forming structure-property relationships, visually explore
(and, if necessary, further refine) the data set, produce models that describe the
data, and use those models to drive further computations. Indeed, many of these
elements are present on the Materials Project today. For example, for materials
in which elastic moduli are not yet computed, users can instantaneously obtain an
estimate based on machine learning models (de Jong et al. 2016) as well as upvote
the full computation based on density functional theory. In the future, this type of
mixed usage of both data mining and conventional theory models will become more
prevalent and increasingly natural to users.

6.5 Concluding Thoughts

Ab initio simulations have long been powerful tools for understanding and designing
materials. With advances in high-throughput computing, it is now possible to create
libraries of simulation results that can produce information on materials at a rate far
surpassing that possible in the past. Furthermore, advances in software frameworks
and web technologies have enabled the dissemination of these results in a barrier-
free fashion to thousands of researchers worldwide. The Materials Project is an
effort to make use of these advancements to build a valuable resource of materials
data as well as software tools that transform the way materials are designed. In
addition, the Materials Project aims to make computational materials science a more
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collaborative process through the development of open-source software and through
feedback from experimental groups.

It is an exciting time for theory – never before has there been so much materials
data available or the potential of computation to make an impact in materials design
higher. Experimentalists and theorists alike have been able to use the Materials
Project to conduct scientific and industrial studies in a way that bridges traditional
knowledge gaps. These use cases are likely an early sign of a future in which
theoretical techniques and large materials databases will be increasingly influential
and help to create a new materials design paradigm.
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The traditional paradigm for materials discovery has been recently expanded
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the development and the deployment of new technologies, the AFLOW Fleet
for computational materials design automates high-throughput first-principles
calculations and provides tools for data verification and dissemination for a
broad community of users. AFLOW incorporates different computational mod-
ules to robustly determine thermodynamic stability, electronic band structures,
vibrational dispersions, thermomechanical properties, and more. The AFLOW

data repository is publicly accessible online at aflow.org, with more than 1.8
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million materials entries and a panoply of queryable computed properties. Tools
to programmatically search and process the data, as well as to perform online
machine learning predictions, are also available.

1 Introduction

The AFLOW Fleet is an integrated software infrastructure for automated materials
design (Curtarolo et al. 2013) centered around the Automatic Flow (AFLOW) (Cur-
tarolo et al. 2012a) framework for computational materials science. It features
multiple scientific software packages, including the AFLOW high-throughput frame-

K. Yang
Department of NanoEngineering, University of California San Diego, La Jolla, CA, USA

Center for Materials Genomics, Duke University, Durham, NC, USA

P. D’Amico
CNR-NANO Research Center S3, Modena, Italy

Dipartimento di Fisica, Informatica e Matematica, Universitá di Modena and Reggio Emilia,
Modena, Italy

A. Calzolari
Center for Materials Genomics, Duke University, Durham, NC, USA

CNR-NANO Research Center S3, Modena, Italy

Department of Physics and Department of Chemistry, University of North Texas, Denton,
TX, USA

M. Costa
Brazilian Nanotechnology National Laboratory (LNNano), CNPEM, Campinas, Brazil

R. De Gennaro
Dipartimento di Fisica, Universit‘a di Roma Tor Vergata, Roma, Italy

M. Buongiorno Nardelli
Department of Physics and Department of Chemistry, University of North Texas, Denton,
TX, USA

Center for Materials Genomics, Duke University, Durham, NC, USA
e-mail: Marco.BuongiornoNardelli@unt.edu

M. Fornari
Center for Materials Genomics, Duke University, Durham, NC, USA

Department of Physics and Science of Advanced Materials Program, Central Michigan
University, Mount Pleasant, MI, USA
e-mail: forna1m@cmich.edu

S. Curtarolo (�)
Center for Materials Genomics, Duke University, Durham, NC, USA

Department of Mechanical Engineering and Materials Science, Duke University, Durham,
NC, USA

Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin-Dahlem, Germany
e-mail: stefano@duke.edu

mailto:Marco.BuongiornoNardelli@unt.edu
mailto:forna1m@cmich.edu
mailto:stefano@duke.edu


82 The AFLOW Fleet for Materials Discovery 1789

work, the AFLOWπ (Supka et al. 2017) medium-throughput framework, and the
PAOFLOW (Buongiorno Nardelli et al. 2017) utility for electronic structure analysis,
along with the AFLOW.org data repository (Curtarolo et al. 2012b), its associated
representational state transfer application programming interface (REST-API)) (Tay-
lor et al. 2014), and the AFLUX Search-API (Rose et al. 2017). These elements
are well integrated with one another: a Python+JSON (JavaScript Object Notation)
interface connects AFLOW, AFLOWπ , and PAOFLOW; and all software packages
access the AFLOW.org repository via the REST-API and the Search-API.

Similar infrastructure has been developed by initiatives such as the Materials
Project (Jain et al. 2013), NoMaD (Scheffler et al. 2014), OQMD (Saal et al. 2013),
the Computational Materials Repository (Landis et al. 2012), and AiiDA (Pizzi
et al. 2016). The Materials Project uses the pymatgen (Ong et al. 2013) Python-
language data generation software infrastructure, and their repository is available
at materialsproject.org. The Novel Materials Discovery (NoMaD) Labo-
ratory maintains an aggregate repository available at nomad-repository.eu,
incorporating data generated by other frameworks including AFLOW. The Open
Quantum Materials Database (OQMD) (Saal et al. 2013) uses tools such as qmpy
to generate their database, which can be accessed at oqmd.org. The Atomic
Simulation Environment (ASE) (Bahn and Jacobsen 2002) is used to generate the
Computational Materials Repository, available at cmr.fysik.dtu.dk. The ASE

scripting interface is also used by the Automated Interactive Infrastructure and
Database (AiiDA) framework available at aiida.net, which revolves around
relational databases for its overall design and data storage. Additional materi-
als design utilities include the High-Throughput-Toolkit (HTTK) and the asso-
ciated Open Materials Database, httk.openmaterialsdb.se, as well as
the Materials Mine database available at www.materials-mine.com, while
computationally predicted crystal structures can be obtained from the Theoretical
Crystallography Open Database at www.crystallography.net/tcod/.

The AFLOW Fleet employs density functional theory (DFT) to perform the
quantum mechanical calculations required to obtain materials properties from first
principles. These DFT calculations are carried out by external software packages,
namely, the Vienna Ab initio Simulation Package (VASP) (Kresse and Hafner 1993;
Kresse and Furthmüller 1996) in the case of AFLOW and QUANTUM ESPRESSO

(Giannozzi et al. 2009, 2017) in the case of AFLOWπ . Results are stored in the
AFLOW.org repository (Curtarolo et al. 2012b) and made freely available online via
the aflow.org web portal, which is programmatically accessible and searchable
via the AFLOW Data REST-API (Taylor et al. 2014) and AFLUX Search-API (Rose
et al. 2017), respectively. The repository currently contains calculated properties
for over 1.8 million materials entries, including both experimentally observed and
theoretically predicted structures, and new results are continuously being added.
This AFLOW data is successfully applied to (i) formulate descriptors for the
formation of disordered materials such as metallic glasses (Perim et al. 2016), (ii)
find new magnetic materials (Sanvito et al. 2017) and superalloys (Nyshadham et al.
2017), (iii) generate phase diagrams for alloy systems (Barzilai et al. 2016, 2017a;
Lederer et al. 2018) and identify new ordered compounds (Levy et al. 2010a, b, c;
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Barzilai et al. 2017b), and (iv) train machine learning models to identify potential
superconductors (Isayev et al. 2015) and predict electronic and thermomechanical
properties (Isayev et al. 2017).

2 AFLOW: Efficient Data Generation

The AFLOW framework for computational materials science automates the full
workflow for materials properties calculations (Curtarolo et al. 2012a). Using
a standard set of calculation parameters (Calderon et al. 2015), input files are
automatically generated for the VASP (Kresse and Hafner 1993; Kresse and Furth-
müller 1996) DFT software package with projector-augmented-wave pseudopo-
tentials (Blöchl 1994) and the PBE parameterization of the generalized gradient
approximation to the exchange-correlation functional (Perdew et al. 1996). Calcu-
lations are monitored as they run to detect and correct for errors without the need
for any user intervention. Useful materials data is then extracted and processed for
dissemination through the AFLOW.org repository. The entire framework is written
in the C++ programming language (more than 400,000 highly integrated lines,
as of version 3.1.153), providing a robust platform for continuous infrastructure
development with reliable high performance.

2.1 AFLOW: AutomatedWorkflows

AFLOW offers several automated workflows, each dedicated to a specific type
of characterization yielding a set materials properties. For electronic properties,
AFLOW performs four DFT calculations: two rounds of geometry relaxation (stage
name: “RELAX”) using the VASP conjugate gradient optimization algorithm, a static
run (i.e., fixed geometry; stage name: “STATIC”) with a denser k-point mesh to
obtain an accurate density of states, and a band structure calculation (stage name:
“BANDS”) following the AFLOW Standard path through the high-symmetry k-points
in the Brillouin zone (Setyawan and Curtarolo 2010).

Other workflows in AFLOW manage ensembles of DFT calculations, all offering
the same automated error-correction procedures for high-throughput processing.
For thermal and elastic properties, the Debye-Grüneisen model (Automatic GIBBS

Library, AGL) (Toher et al. 2014) is combined with the Automatic Elasticity Library
(AEL) (Toher et al. 2017) as described in Sect. 2.6. A more accurate thermal
characterization can be resolved with the finite displacement method for phonon
calculations (Automatic Phonon Library, APL) (Nath et al. 2016) and its associated
extensions, i.e., the quasi-harmonic approximation (QHA-APL) (Nath et al. 2016) and
Automatic Anharmonic Phonon Library (AAPL) (Plata et al. 2017), as described
in Sect. 2.7. AFLOW also extends beyond ideal crystalline materials characteriza-
tion, offering modules to investigate off-stoichiometric materials (AFLOW-POCC,
Sect. 2.5) (Yang et al. 2016) and to predict metallic glass formation as a function
of composition (Perim et al. 2016).
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2.2 AFLOW: Prototype Library

The AFLOW framework uses decorated crystal structure prototypes for materials
discovery (Mehl et al. 2017). Structural prototypes are specific arrangements of
atoms which are commonly observed in nature, such as the rock salt, zinc blende,
and wurtzite structures. The atomic sites in these prototypes are populated with
different elemental species to generate materials structures, for which the properties
and thermodynamic stability are then obtained from DFT calculations. An extensive
list of the structural prototypes included in AFLOW has been published in Mehl et al.
(2017) and is available online at http://aflow.org/CrystalDatabase.

Pages within the website display a curated list of data for each structural
prototype, including materials exhibiting this structure, various symmetry descrip-
tions, the primitive and atomic basis vectors, and original references where the
structure was observed. Accompanying these descriptions is an interactive Jmol
visualization of the prototype, as described in Sect. 2.8. The page also contains a
prototype generator, where the structural degree(s) of freedom and atomic species
are defined to create new materials by leveraging the AFLOW prototypes module.
This generates the corresponding input file for one of many ab initio software
packages, including VASP (Kresse and Hafner 1993; Kresse and Furthmüller 1996),
QUANTUM ESPRESSO (Giannozzi et al. 2009, 2017), ABINIT (Gonze et al. 2002),
and FHI-AIMS (Blum et al. 2009).

2.3 AFLOW-SYM: Symmetry Analyzer

The AFLOW framework automatically analyzes the symmetry of materials structures
and returns a complete symmetry description. To address numerical tolerance
issues, AFLOW employs an atom mapping procedure that is reliable even for
non-orthogonal unit cells and uses an adaptive tolerance scheme to ensure sym-
metry results are commensurate with crystallographic principles (see Fig. 1). These
routines—referred to as AFLOW-SYM (Hicks et al. 2018)—are robust and have been
used to successfully determine the symmetry properties of over 1.8 million materials
in the AFLOW repository.

Structural isometries are identified by determining the set of symmetry operators
that lead to isomorphic mappings between the original and transformed atoms. The
structure exhibits symmetry under a particular operation if the set of closest mapping
distances are all below a tolerance threshold ε0. Periodic boundary conditions
introduce complexity for finding the minimum mapping vector, necessitating the
exploration of neighboring cells. This is achieved via the method of images through
either (i) a unit cell expansion, yielding the globally optimal distance or (ii) a
bring-in-cell method (generally performed in fractional coordinates) that reduces
each component of the distance vector independently. While computationally
inexpensive compared to the unit cell expansion, the bring-in-cell method is only
exact for orthogonal lattices (i.e., described by a diagonal metric tensor), since it
does not consider overlap between lattice vectors (see Fig. 1a). To safely exploit
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Fig. 1 Visualization of tolerance-sphere warping and adaptive tolerance method. (a) Illus-
tration of the warping of space when transforming from cartesian to fractional coordinates in the
general case. (b) Spectrum of space groups identified by AFLOW-SYM with different tolerance
choices

the bring-in-cell approach, AFLOW-SYM employs a heuristic maximum tolerance
εmax based on the maximum lattice skewness with a threshold which guarantees
consistent and accurate results (Hicks et al. 2018).

Given a particular tolerance value, different symmetry operations can be realized
in or excluded from the description of a crystal. Figure 1b highlights how the
tolerance value affects the possible space groups for AgBr (ICSD #56551 with a
reported space group #11). The neighboring space group regions are consistent
with non-isomorphic subgroup relations, namely, between space groups #59 and
#11 and between #225 and #166. However, a gap or “confusion” tolerance region
occurs between space groups #59 and #166 (with no direct subgroup relations).
The problematic regions stem from noise in the structural data, impeding the
identification of operations consistent with symmetry principles. This problem is
solved by using a radial tolerance scan extending from the input tolerance ε0. Given
a change in tolerance, the algorithm recalculates and verifies all symmetry properties
until a globally consistent description is identified.

AFLOW-SYM is compatible with many established ab initio input files, including
those for VASP (Kresse and Furthmüller 1996), QUANTUM ESPRESSO (Giannozzi
et al. 2009, 2017), ABINIT (Gonze et al. 2002), and FHI-AIMS (Blum et al. 2009).
From the structural information, AFLOW-SYM delivers the symmetries of the lattice,
crystal (lattice+ atoms), reciprocal lattice, superlattice (equally decorated sites),
and crystal-spin (lattice+ atoms+magnetic moment). This affords a multitude of
symmetry descriptions to be presented, such as the space group number/symbol(s),
Pearson symbol, point group symbol(s), Wyckoff positions, and Bravais lattice
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type/variation (Setyawan and Curtarolo 2010). Moreover, the operators of the
different symmetry groups—including the point groups, factor groups, space group,
and site symmetries—are provided to users in rotation matrix, axis-angle, matrix
generator, and quaternion representations for easy manipulation. All symmetry
functions support the option to output in JSON format. This allows AFLOW-SYM to
be leveraged from other programming languages such as Java, Go, Ruby, Julia, and
Python—facilitating the incorporation of AFLOW-SYM into numerous applications
and workflows.

2.4 AFLOW-CHULL: Convex Hull Analysis

Structure and energy data from the AFLOW.org repository are used to resolve
the low-temperature/low-pressure thermodynamic stability of compound systems.
For a given stoichiometry, the AFLOW.org repository provides the DFT energies
of various crystal polymorphs. By exploring representative structures over the
full range of stoichiometries, AFLOW-CHULL (Oses et al. 2018) constructs the
minimum energy surface, i.e., the lower-half convex hull (Barber et al. 1996),
defining thermodynamic stability for the system (at zero temperature and pressure).
Structures on the hull are thermodynamically stable (ground state), while those
far from the hull will decompose into a combination of stable phases, dictating
synthesizability at these conditions. Any analysis of the hull requires sufficient
statistics to ensure convergence, i.e., enough representative structures have been
included in the alloy system calculations such that any additional entries are not
expected to change the minimum energy surface.

The geometric construction offers several key properties critical for synthesiz-
ability. For a specific composition, the energetic distance to the hull quantifies the
energy released during the decomposition, while the ground state phases defining
the tie-line/facet below the compound are the products of the reaction. The distance
from the hull also measures the “severity” of instability, i.e., structures near the
hull may stabilize at higher temperatures or pressures. Similarly, a robust stability
criterion can be quantified for ground state phases by removing the phase from
the set and measuring the distance of the compound from the new hull. The
larger the distance, the less likely the ground state phase will become unstable
at higher temperatures/pressures (Sanvito et al. 2017). The generalized tie-lines
(facet ridges) dictate which phases can coexist in equilibrium and play a role in
determining the feasibility of synthesis/treatment techniques, such as precipitation
hardening (Nyshadham et al. 2017).

Given a compound system, AFLOW-CHULL automatically queries the AFLOW.org
database, constructs the hull, calculates the aforementioned properties, and delivers
the information in one of the following formats: PDF, plaintext, and JSON. AFLOW-

CHULL can also visualize the 2D and 3D hulls, as illustrated in Fig. 2. In the case
of the PDF output format, hyperlinks are included to allow for additional queries
of the full properties set offered through the AFLOW.org repository. Links are also
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Fig. 2 Example convex hull illustrations offered by AFLOW. (a) 2D convex hull of the CuZr
system generated automatically by AFLOW. (b) 3D convex hull of the CuMnZn system presented
through the AFLOW-CHULL application online: http://aflow.org/aflow-chull

added connecting the hull visualization to relevant properties for easy navigation of
the full PDF document.

A separate online application, available at aflow.org/aflow-chull, has
been created to showcase the results of AFLOW-CHULL and provides interactive
binary and ternary convex hull visualizations. The application consists of four
components: the periodic table, visualization viewport, selected entries list, and the
comparison page. The periodic table component is the entry point of the application
and provides the interface to search for convex hulls of different alloy systems.
Elements within the periodic table respond when selected to display information
to the user. As a selection is made, the color of each border will change to green,
yellow, and red based on hull reliability. A reliability threshold of 200 compounds
for a binary hull has been heuristically defined. Selections highlighted in green are
well above this threshold, while those in yellow/red are near/below the cutoff.

When a hull is selected, the application transitions to the visualization viewport
component. Depending on the number of elements selected, a 2D plot (binary) or
3D plot (ternary) will appear. Each plot is interactive, allowing points to be selected,
where each point represents an entry in the AFLOW repository. Information for each
point is displayed in the selected entries list component, which is accessible through
the navigation bar. Selected hulls will appear on the comparison page as a grid of
cards, and selected points are highlighted across all hulls containing those entries.

2.5 AFLOW-POCC: Partial Occupations

The AFLOW Partial Occupation module (AFLOW-POCC) (Yang et al. 2016) mod-
els configurational and structural disorder including substitutions, vacancies, and

http://aflow.org/aflow-chull
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Fig. 3 Structure enumeration for off-stoichiometric materials modeling. For the off-
stoichiometric material ZnS0.25Se0.75, a superlattice of size n = 4 accommodates the stoichiometry
exactly. By considering all possibilities of decorated supercells and eliminating duplicates by
UFF energies, seven structures are identified as unique. These representative structures are fully
characterized by AFLOW and VASP and are ensemble-averaged to resolve the system-wide
properties

random lattice site occupation, by generating a set of representative configurations.
First, a supercell size is determined that accommodates the fractional stoichiometry
to within a user-defined tolerance. Given the supercell size, n, superlattices are
generated using Hermite Normal Form matrices (Hart and Forcade 2008), which
are then decorated in accordance with the stoichiometry to generate all possible
configurations, as illustrated in Fig. 3. Duplicate configurations are rapidly identified
and eliminated by estimating the energy of each structure using the Universal
Force Field (UFF) model (Rappe et al. 1992). The properties of the remaining
unique configurations are calculated with DFT, and ensemble-averaged to resolve
system-wide properties of the disordered material. The ensemble-average employs
a Boltzmann distribution weight which is a function of a disorder parameter
(temperature), energy relative to the ground state configuration, and degeneracy as
determined by the UFF model. Ensemble-average properties include the electronic
band gap, density of states, and magnetic moment.

2.6 AEL and AGL: Thermomechanical Properties

The AFLOW Automatic Elasticity Library (AFLOW-AEL Toher et al. 2017) and
the AFLOW Automatic GIBBS Library (AFLOW-AGL Toher et al. 2014) modules
determine thermomechanical materials properties from calculations of strained
primitive cells. These methods are generally computationally less costly than the
phonon (APL and AAPL) calculations described in Sect. 2.7, although APL and
AAPL generally give more quantitatively accurate results, particularly for properties
where anharmonic effects are important. AEL and AGL have been combined into a
single automated workflow, which has been used to calculate the thermomechanical
properties for over 5000 materials in the AFLOW repository.

The AEL module applies a set of independent normal and shear strains to the
primitive cell of a material (de Jong et al. 2015; Toher et al. 2017) as depicted in
Fig. 4a and uses DFT to calculate the resulting stress tensors. This set of strain-stress
data is used to generate the elastic stiffness tensor, i.e., the elastic constants:
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written in the 6 × 6 Voigt notation using the mapping (Poirier 2000): 11 .→ 1,
22 .→ 2, 33 .→ 3, 23 .→ 4, 13 .→ 5, 12 .→ 6. These elastic constants are combined
to calculate the bulk, B, and shear, G, elastic moduli in the Voigt, Reuss, and Voigt-
Reuss-Hill (VRH, BVRH and GVRH) approximations. The Poisson ratio ν is then
given by:

ν = 3BVRH − 2GVRH

6BVRH + 2GVRH
. (2)

The AGL module is based on the GIBBS (Blanco et al. 1996, 2004) quasi-harmonic
Debye-Grüneisen model and calculates the energy as a function of volume, E(V ),
for a set of isotropically compressed and expanded strains of the primitive cell, as
illustrated in Fig. 4b. The E(V ) data are fitted by either a numerical polynomial or
an empirical equation of state to obtain the adiabatic bulk modulus BS(V ), as shown
in Fig. 4c. The Debye temperature θD(V ) as a function of volume is then calculated
using the expression:
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θD = h̄
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M
, (3)

where n is the number of atoms per unit cell, M is the unit cell mass, and f (ν) is a
function of the Poisson ratio ν:
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where ν can be obtained from Eq. 2 using AEL or set directly by the user. The
vibrational contribution to the free energy, Fvib, is given by:

Fvib(θD; T )=nkBT

[
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+3 log
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(
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T

)]
, (5)

where D(θD/T ) is the Debye integral:

D (θD/T ) = 3

(
T

θD

)3 ż θD/T

0

x3

ex − 1
dx. (6)

The Gibbs free energy is obtained from:

G(V ;p, T ) = EDFT(V )+ Fvib(θD(V ); T )+ pV. (7)

The volume which minimizes G(V ;p, T ) at a given pressure p and temperature T

is the equilibrium volume Veq, which is used to evaluate θD(Veq) and the Grüneisen
parameter γ as defined by:

γ = −∂ log(θD(V ))

∂ logV
. (8)

Finally, θD and γ are used to calculate other thermal properties including CV, Cp,
αV, and κL (Toher et al. 2014; Blanco et al. 2004).

2.7 AFLOW-APL: Phonons

The AFLOW Automatic Phonon Library (AFLOW-APL) (Curtarolo et al. 2012a)
calculates the harmonic vibrational properties of a crystal using the finite dis-
placement method. Computed properties include the phonon dispersion and density
of states, vibrational entropy (Svib), and the heat capacity (at constant volume,
CV) as a function of temperature. These features are determined through an
analysis of the phonon modes, accessed through the Interatomic Force Constants
(IFCs) (Maradudin et al. 1971). To first approximation, the harmonic (second-order)
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IFC Ci,j ;α,β is the negative of the force exerted in the α direction on the atom i when
the atom j is displaced in the β direction, with all other atoms maintaining their
equilibrium position. To determine the forces, the atoms of the structure (supercell)
are individually perturbed as illustrated in Fig. 4d. The forces are obtained with
DFT from the derivative of the total energy using the Hellmann-Feynman theorem.
Supercells are used to sufficiently capture/isolate the impact of the distortion on
the structure; distortions on small cells create forces on all atoms as well as their
periodic images.

Given an input structure, AFLOW creates the full set of distorted supercell
structures for the calculation of the forces. To minimize the number of expensive
DFT calculations (primary computational bottleneck), AFLOW-SYM (see Sect. 2.3)
is employed to determine which distortions are symmetrically equivalent using the
site symmetry. Only inequivalent distortions are applied and explicitly calculated.
Symmetry is then used to appropriately construct the IFC matrix, from which
the dynamical matrix is constructed and the phonon modes, energies, and group
velocities are derived.

APL has been extended to include the calculation of quasi-harmonic (quasi-
harmonic approximation APL, QHA-APL Nath et al. 2016, 2017) and anharmonic
(Automatic Anharmonic Phonon Library, AAPL Plata et al. 2017) effects in order
to obtain properties such as the heat capacity at constant pressure Cp, coefficient of
volumetric thermal expansion αV, and lattice thermal conductivity κL.

QHA-APL performs harmonic APL calculations at multiple different volumes and
extracts the Grüneisen parameter from the change of the phonon frequencies with
respect to volume:

γi = − V

ωi

∂ωi

∂V
. (9)

The Grüneisen parameter can be used in combination with harmonic properties such
as CV to calculate Cp, αV (Nath et al. 2016), and κL (Nath et al. 2017).

AAPL obtains the third-order anharmonic IFCs by distorting two atoms in a
supercell structure at a time as depicted in Fig. 4e and then calculating the change
in forces on the other atoms (Plata et al. 2017). These IFCs are used to calculate
the three-phonon scattering rates, and thus the scattering time and mean free
displacement. These quantities are combined with the group velocities obtained
from harmonic APL to solve the Boltzmann transport equation and calculate κL with
quantitative accuracy (Plata et al. 2017).

2.8 AFLOW: Visualization Tools

AFLOW leverages a panoply of visualization tools for materials data, including
standard software such as gnuplot, latex, and xmgrace for plots of phonon
dispersions, electronic band structures, electronic density of states, and convex hull
visualization. These plots are served publicly through the AFLOW.org repository.
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Fig. 5 Side-by-size visualization of the crystal structure and Brillouin zone using
Jmol. The structure highlighted is Ag3KS2 (ICSD #73581): http://aflow.org/material.php?id=
Ag6K2S4_ICSD_73581. The AFLOW Standard path of high-symmetry k-points is illustrated in
the Brillouin zone (Setyawan and Curtarolo 2010)

To visualize crystal structures, AFLOW employs the Jmol software, which has
incorporated substantial functionality for AFLOW-specific application. The JSmol
branch of the software powers the online crystal structure visualizations in the
AFLOW.org repository entry pages and AFLOW Prototype Library pages. With
its recently added POSCAR reader, JSmol provides an assortment of capabilities
ranging from different view perspectives, supercell expansions, and varying unit cell
representations. A similar visualization application showing the AFLOW Standard
high-symmetry paths in the Brillouin zone (Setyawan and Curtarolo 2010) is
currently being incorporated, as illustrated in Fig. 5. Additionally, the Jmol desktop
client offers a specialized macro (aflow) for visualization of alloy systems, which
leverages the AFLUX Search-API.

3 AFLOWπ : Minimalist High-Throughput

The AFLOWπ (Supka et al. 2017) framework has been originally implemented
as a minimalist software to perform verification tasks (see Sect. 5.7) on data
published on AFLOW.org. By design, AFLOWπ is easy to install and to extend to
a variety of electronic structure codes (currently only the QUANTUM ESPRESSO

(Giannozzi et al. 2009, 2017) DFT package is implemented). AFLOWπ builds on
the versatility of Python, providing a module to prepare, run, and analyze large
sets of first-principles calculations and includes tools for the automatic projection
on pseudo-atomic orbitals (PAO; see Sect. 4) and the self-consistent calculation of
Hubbard U corrections within the Agapito, Curtarolo and Buongiorno Nardelli
(ACBN0) approach (Agapito et al. 2015; Andrade et al. 2015). In addition,
workflows for the calculation of elastic constants, diffusive transport coefficients,
optical spectra, and phonon dispersions with DFT+U (see Fig. 6a for assessing the

http://aflow.org/material.php?id=Ag6K2S4_ICSD_73581
http://aflow.org/material.php?id=Ag6K2S4_ICSD_73581
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Fig. 6 Vibrational spectrum calculated with AFLOWπ and AFLOW-APL (left) and elec-
tronic properties computed with PAOFLOW (right). (a) Phonon dispersion of CaF2 calculated
with APL (Plata et al. 2017), using the ACBN0 method as implemented within AFLOWπ (green
lines). The results obtained using PBE are shown by the broken orange lines for comparison.
The blue triangles and red unfilled squares represent neutron scattering data from Schmalzl et al.
(2003) and Elcombe and Pryor (1970), respectively, while the purple diamonds represent Raman
and infrared data from Kaiser et al. (1962). (b) Electronic band structure, spin Hall conductivity
(SHC), and (c) spin texture of the nodal line and Weyl points in HfC, as calculated using the
PAOFLOW utility

effect of the Hubbard U corrections on the phonon dispersion calculated using APL)
are included. When possible, AFLOWπ exploits the tight-binding hamiltonians as in
D’Amico et al. (2016). Calculation results can be easily packaged and prepared for
incorporation into the AFLOW.org data repository (see Sect. 5).
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4 PAOFLOW: Fast Characterization

PAOFLOW (Buongiorno Nardelli et al. 2017) is a stand-alone tool to efficiently
post-process standard DFT pseudo-potential plane-wave calculations to gener-
ate tight-binding (TB) Hamiltonians which faithfully reproduce the calculated
electronic structure (eigenvalues and eigenvectors) with arbitrary precision in
reciprocal space (Agapito et al. 2013, 2016a, b) (see Fig. 6b for PAOFLOW generated
band structure for HfC (ICSD #169399, space group #187, AFLOW prototype:
AB_hP2_187_d_a)). By exploiting the simplicity of the TB formalism and the
efficiency of fast Fourier transforms, PAOFLOW interpolates the band structure
and computes the matrix elements of the momentum operator, pm,n. These are
used to improve the quality of integrated quantities such as the density of states
(adaptive smearing), to compute electronic transport coefficients within the constant
relaxation time approximation, and to compute the dielectric constants (D’Amico
et al. 2016). In addition, the pm,n matrix elements facilitate the calculation of
the Berry curvature and related properties (anomalous Hall conductivity, spin Hall
conductivity (see Fig. 6b), magnetic circular dichroism, spin circular dichroism; see
spin texture of the nodal line and Weyl points in HfC shown in Fig. 6c). Starting
from a well-interpolated band structure, it is also possible to compute topological
invariants.

Because of the local representation of the electronic structure provided by
the PAOFLOW software, surface-projected band structure and Landauer ballistic
transport are also computable within PAOFLOW.

The software is implemented in Python, is portable and easy to install, and is
parallel by design (on both CPUs and GPUs). PAOFLOW is also an integral part of
the AFLOWπ framework.

5 AFLOW: Data Repository

The AFLOW data repository (Curtarolo et al. 2012b) contains the calculated prop-
erties for over 1.8 million materials entries, obtained using the AFLOW framework.
These properties are available through the aflow.org web portal, which includes
online search/sort and data analysis applications. The repository is programmat-
ically accessible through the AFLOW Data REST-API (Taylor et al. 2014) and the
AFLUX Search-API (Rose et al. 2017).

5.1 AFLOW:Web Portal

The AFLOW repository (Curtarolo et al. 2012b) is available online via the
aflow.org web portal (Fig. 7a). It contains multiple online applications for
data access, processing, and visualization, including the advanced “MendeLIB”
search application at http://aflow.org/advanced.php which facilitates
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Fig. 7 AFLOW web portal and data repository. (a) Online applications and documentation are
accessible via the “Apps and Docs” set of buttons surrounded by the dashed red rectangle. (b)
The advanced search application can be used to search for specific compositions and also includes
property search filters, as highlighted by the dashed red rectangle. (c) The AFLOW data repository
is organized into project, set (i.e., alloy system), and calculation (i.e., materials entry) layers

searching for materials entries with filters for elemental composition and
calculated properties (see Fig. 7b), the interactive convex hull application at
http://aflow.org/aflow-chull (see Sect. 2.4), the online machine
learning model at http://aflow.org/aflow-ml (see Sect. 5.2), and the
AFLOW online tool at http://aflow.org/aflow_online.html which
gives access to AFLOW crystal structure analysis and processing functions. These
applications and more are accessible from the main aflow.org web page, via the
“Apps and Docs” set of buttons highlighted by the dashed red rectangle in Fig. 7a.
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5.2 AFLOW-ML: Online Machine Learning

The AFLOW machine learning (AFLOW-ML) online application provides a user
interface to leverage machine learning models trained on AFLOW data. It accepts
a standard structure file (POSCAR or QE) and outputs predictions for properties
such as the band gap, elastic moduli, heat capacity, Debye temperature, vibrational
free energy, and thermal expansion coefficient. Additionally, structures within the
AFLOW repository can be imported via the sidebar. This application provides an
accessible medium to retrieve machine learning predictions without the need to
install a software library or machine learning package.

Currently, AFLOW-ML supports two different machine learning models. The first
model, property-labeled materials fragments (Isayev et al. 2017), plmf, has been
trained using data from the AFLOW repository and predicts properties such as the
electronic band gap, specific heat capacities, and bulk/shear moduli. The second
method is the molar fraction descriptor model (Legrain et al. 2017), mfd, which
predicts vibrational properties such as vibrational free energy and entropy and is
based only on the chemical composition of the material.

The AFLOW-ML API (Gossett et al. 2018) offers programmatic access to the
AFLOW-ML online application and provides a simplified abstraction that facili-
tates leveraging powerful machine learning models. This distills the prediction
process down to its essence: from a structure file, return a prediction. Using
the API is a two-step process: first a structure file, in POSCAR 5 format (struc-
ture input for version 5 of VASP), is posted (i.e., uploaded) to the endpoint
/<model>/prediction on the aflow.org server using standard HTTP
libraries or dedicated programs such curl or wget, where <model> specifies
the machine learning model to use in the prediction (current options: plmf and
mfd). When a prediction is submitted, a JSON response object is returned that
includes a task id. The results of the prediction are then retrieved from the
/prediction/result/ endpoint on the aflow.org server by appending
the task id to the end of the URL, i.e., /prediction/result/{id}/. This
endpoint monitors the prediction task and responds with a JSON object that details
its status. When complete, the endpoint responds with the results of the prediction,
represented as a JSON object containing a key-value pair for each predicted
property.

5.3 AFLOW: Database Organization

The AFLOW data repository (Curtarolo et al. 2012b) is organized into project, set,
and calculation layers as illustrated in Fig. 7c. At the project layer, the calculations
are divided into different catalogs based on the origin and composition of the entries
(Taylor et al. 2014; Rose et al. 2017). Within each catalog, entries are grouped into
sets based on shared lattice type or alloy system. The entries within each set contain
the results of DFT calculated properties for particular structures.
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The AFLOW-ICSD catalog contains the DFT calculated properties for over 57,000
experimentally observed materials listed in the Inorganic Crystal Structure Database
(ICSD) (Bergerhoff et al. 1983; Karen and Hellenbrandt 2002). Internally, this
catalog is organized by lattice type and then by individual materials entry. Since the
materials in this catalog are already known to exist, the primary interest is in accu-
rately calculating electronic structure and thermomechanical properties. Therefore,
calculations for this catalog are generally performed using the Hubbard U correction
to the DFT exchange-correlation functional (Liechtenstein et al. 1995; Dudarev
et al. 1998) where appropriate, using a set of standardized U values (Calderon
et al. 2015). Within this catalog, entries are grouped by Bravais lattice type into 14
sets: “BCC”, “BCT”, “CUB”, “FCC”, “HEX’”, “MCL”’, “MCLC”’, “ORC”’, “ORCC”’,
“ORCF”’, “ORCI”’, “RHL”’, “TET”’ and “TRI”’. The name of each materials entry is
generated using the format <composition>_ICSD_<ICSD number>.

The entries in the other catalogs, such as “LIB1,” “LIB2,” and “LIB3”, are
generated by decorating crystal structure prototypes to predict new hypothetical
compounds and contain unary, binary, and ternary materials, respectively. Addi-
tional catalogs, “LIB4,” “LIB5,” and “LIB6,” are currently being generated for
quaternary, quinary, and hexenary materials. Within each catalog, the entries are
grouped by element and exchange-correlation functional in the case of “LIB1” and
by alloy system in the cases of “LIB2” and “LIB3.” “LIB1” contains a total of 3068
entries, while “LIB2” currently has 329,192 entries and “LIB3” has over 1.4 million.
Within each alloy system, the individual materials entries are named according to
the relevant crystal prototype. For these catalogs, the emphasis is on the discovery of
new thermodynamically stable or metastable materials and on their use to generate
the thermodynamic density of states for the prediction of the formation of disordered
materials such as metallic glasses (Perim et al. 2016) or high-entropy alloys (Lederer
et al. 2018). Therefore, calculations in these catalogs are performed using the
GGA-PBE exchange-correlation functional (Perdew et al. 1996) without Hubbard
U corrections (Calderon et al. 2015) so as to produce consistent energy differences,
enabling the calculation of accurate formation enthalpies.

5.4 AFLOW: Database Properties

Materials properties within the AFLOW repository (Curtarolo et al. 2012b) are
indexed as keyword-value pairs which are programmatically accessible via the
AFLOW Data REST-API (Taylor et al. 2014) and programmatically searchable via
the AFLUX Search-API (Rose et al. 2017). Search filters for these properties are
also available in the advanced search application of the aflow.org web portal
as highlighted by the dashed red rectangle in Fig. 7b, where they are grouped into
chemistry (e.g., chemical species, stoichiometry), crystal (e.g., space group, Bravais
lattice type), electronic (e.g., band gaps), thermodynamic (energetic and thermal
properties, e.g., formation enthalpies and Debye temperatures), magnetic, scintil-
lation, mechanical (elastic moduli and pressure-related properties), and calculation
(e.g., k-point mesh, AFLOW version) parameters. In total there are in excess of 170
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Fig. 8 Example band structure and density of states images automatically generated
and served through the AFLOW.org data repository. The structure highlighted is AlCo2Fe
(ICSD #57607): http://aflow.org/material.php?id=Al1Co2Fe1_ICSD_57607. The results of the
spin-polarized calculation are differentiated by color on the band structure plot (black/red for
majority/minority spin) and sign on the density of states plot (positive/negative for majority/minor-
ity spin). The band structure is calculated following the AFLOW Standard path of high-symmetry
k-points (Setyawan and Curtarolo 2010)

million individual materials properties indexed in the AFLOW database (∼100 per
materials entry). Lists of the keywords corresponding to the materials properties are
provided in Taylor et al. (2014), Rose et al. (2017), and Toher et al. (2017).

Systems for which the “STATIC” and “BANDS” calculations have been performed
are supplemented with automatically generated images of the density of states,
projected density of states, and band structure. Both low (PNG)- and high (EPS)-
quality variants of the images are available for download. An example band structure
and density of states image is displayed in Fig. 8.

5.5 AFLOW: Data REST-API

The full data set generated by the high-throughput AFLOW process (Curtarolo
et al. 2012b) is backed by a disk store of (at this time) over 12 TB of input
criteria, calculated results, and derivative output. The backing store is exposed via
the AFLOW Data REST-API (Curtarolo et al. 2012b) in a hierarchical organization.
This direct exposure of our results not only grants the end user a high degree of
utility via direct access, but, more importantly, guarantees data provenance that
promotes reproducibility. The hierarchy of the AFLOW Data REST-API categorizes
this abundance of information into meaningful high-level classifications allowing

http://aflow.org/material.php?id=Al1Co2Fe1_ICSD_57607
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for exploration of self-similar materials that are related by stoichiometric and/or
crystallographic properties. Once a selection of materials has been determined, the
full range of available properties and procedural data are retrievable.

The organizational hierarchy of both the underlying data store and the REST-

API is project dependent, as described in Sect. 5.3. Each project is equivalent
to one of the catalogs listed in Sect. 5.3 and in the REST-API is denoted by
the project layers “ICSD_WEB,” “LIB1_RAW,” “LIB2_RAW,” and “LIB3_RAW.”
Each project layer contains multiple set layers, which correspond to specific
alloy systems in the case of “LIB1_RAW,” “LIB2_RAW,” and “LIB3_RAW.”
For instance, http://aflowlib.duke.edu/AFLOWDATA/LIB2_RAW/
exposes the set layer for binary entries, where each set corresponds to different
binary alloy systems, allowing for pairwise atomic species examination. Within
each set is the entry layer, consisting of decorated structural prototypes which
provide stoichiometric and structural variation for each alloy system. Each
entry contains the calculated results for a particular structure and composition,
organized as keyword-value pairs. The calculated values of thermodynamical,
mechanical, electronic, magnetic, chemical, and crystallographic properties
can be directly accessed by querying a Uniform Resource Identifier (URI) of
the form <server>/<project>/<set>/<entry>/?<keyword>, where
<server> is http://aflowlib.duke.edu/AFLOWDATA, <project> is
the appropriate project layer, <set> is the alloy system, <entry> is the structural
prototype, and <keyword> corresponds to the materials property of interest. A
full description of the REST-API keywords is provided in Taylor et al. (2014), along
with additions in the appendices of Rose et al. (2017) and Toher et al. (2017).

The ability to explore related entries predicated on a multitude of properties
leads directly to novel materials discovery and use. The AFLOW Data REST-API

disseminates our methods and results, without restriction, to a global research
audience in order to promote scientific and engineering advancement.

5.6 AFLUX: Search-API

The Automatic Flow of LUX or AFLUX Search-API (Rose et al. 2017) is a human
usable remote data search API. LUX is designed to be a domain agnostic solution to
the outstanding problem of programmatically searching remote data that typically
is either exposed via a capriciously limited utility or requires a-priori knowledge
of the internal organization of the remote repository. The LUX query concept
flattens the exposed data, while simultaneously providing arbitrarily complex query
capability, allowing an end user full freedom in constraining the requested data. LUX

is designed to operate in the nearly ubiquitous web URI context while minimizing
any potentially conflicting interactions with existing URI functionality.

AFLUX is the domain-specific implementation of LUX and is available at the
<AFLUX-URI>: http://aflowlib.duke.edu/search/API/?. At this
time, the AFLUX API freely exposes over 180 million keyword-value properties
without any requirements or restrictions on the end user. Specific properties and
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compositions can be searched for by appending the appropriate keywords to the
<AFLUX-URI>. Search results can be restricted by including specific values or
value ranges in parentheses after the appropriate keyword. For example, a search
can be restricted to entries that contain both of the elements Na and Cl, and
have a calculated electronic band gap in excess of 1.0eV, by including the search
parameters species(Na,Cl),Egap(1.0*) in the query part of the URI. In
LUX, “,” corresponds to the logical AND operator, and “*” is the loose operator
which extends the search to entries in a specified value range. If no parameters
are provided for a particular keyword, then the values of that property are returned
for all entries which satisfy the remaining search criteria. A full list of all LUX

logical operators can be found in Rose et al. (2017), along with descriptions of their
functionality and appropriate usage.

In addition to materials properties keywords, LUX also accepts directives,
which behave as pseudo property keywords. They are used to provide additional
information on LUX usage and control the format and quantity of the returned
data. Note that any directives included in a search query must come after all of the
materials properties keywords. In particular, the schema directive can be used to
retrieve the most current and canonical list of keywords using the AFLUX summons:
<AFLUX-URI>schema,format(json).

5.7 AFLOW: Data Quality Control

Data quality control, including validation of methodologies and verification of
calculated data, is vital when constructing large databases such as the AFLOW

repository (Curtarolo et al. 2012b) in order to guarantee the reliability of the results.
Methodological validation involves quantifying the accuracy of calculation models
with respect to experiment, while data verification includes checking the robustness
of calculation parameters and the satisfaction of convergence criteria.

Physical models incorporated into the AFLOW framework are validated by com-
parison to benchmark sets of experimental data. This helps determine the predictive
accuracy of the methods for real materials, as well as the regimes in which they are
reliable. For example, the AEL and AGL modules were validated by comparison to
a benchmark set of ∼75 experimentally well-characterized compounds of various
structural types (Toher et al. 2014, 2017), and the accuracy was quantified by the
Pearson and Spearman correlations and the root-mean-square deviations. Similar
validation analyses were performed for the QHA-APL (Nath et al. 2016, 2017) and
AAPL methods (Plata et al. 2017), as well as the property labeled materials fragments
machine learning model (Isayev et al. 2017).

The AFLOW-POCC methodology has been validated by comparing the band gap
as a function of composition for ZnS1−xSex and MgxZn1−xO, and the magnetic
moment per atom as a function of composition for Fe1−xCux , to experimental values
(Yang et al. 2016).

The ACBN0 functional (Agapito et al. 2015), implemented in AFLOWπ (see
Sect. 3) and PAOFLOW (see Sect. 4), has been validated by comparing the lattice
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parameters, bulk moduli, electronic band gaps, phonon modes, high-frequency
dielectric constants, and Born effective changes it produces to the experimentally
measured values for the Zn and Cd chalcogenides (Gopal et al. 2015).

The convergence of both the charge density optimization and the ionic
structural relaxation are automatically verified for all AFLOW calculations prior
to incorporation into the data repository. This includes, for example, checking
that the charge density has converged in accordance with the AFLOW Standard
settings (Calderon et al. 2015) and verifying the relaxation of the cell size
and shape by ensuring that all elements of the stress tensor are less than
10kB. The convergence level for any individual calculation can be verified
by querying appropriate keywords for the stress tensor: stress_tensor,
Pulay stress: Pulay_stress, residual external pressure on the relaxed cell:
pressure_residual, and the δE value for the final electronic convergence
step: delta_electronic_energy_convergence, using the AFLOW Data
REST-API (Taylor et al. 2014) or the AFLUX Search-API (Rose et al. 2017). Initial
calculation parameters can similarly be obtained using the appropriate keywords,
such as the k-point grid, kpoints, or the electronic energy convergence threshold,
delta_electronic_energy_threshold.

Conclusion

The AFLOW Fleet for computational materials design automates first-principles
calculations of materials properties. AFLOW incorporates a wide range of different
modules, including applications for symmetry and thermodynamic stability anal-
ysis, generation of ordered and disordered materials structures, and calculation
of thermomechanical properties, in a single integrated framework. AFLOWπ is a
versatile minimalist framework that includes tools for projection onto pseudo-
atomic orbitals (PAO) and the self-consistent calculation of Hubbard U corrections
using ACBN0. PAOFLOW generates tight-binding Hamiltonians which reproduce
the electronic structure calculated using first-principles methods, facilitating the
rapid calculation of electronic and magnetic properties such as transport coef-
ficients and the Berry curvature. All results are stored in, and disseminated
through, the AFLOW data repository, which is available online at aflow.org
and is programmatically accessible via the AFLOW Data REST-API and the AFLUX

Search-API.
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Abstract

We discuss here our vision for an Open-Science platform for computational
materials science. Such a platform needs to rely on three pillars, consisting of
(1) open data generation tools (including the simulation codes, the scientific
workflows, and the infrastructure for automation and provenance tracking), (2)
an open integration platform where these tools interact in an easily accessible
way and computations are coordinated by automated workflows, and (3) support
for seamless code and data sharing through portals that are FAIR-compliant and
compatible with data management plans. As a practical implementation, we show
how such a platform can be achieved in a few examples and focusing in particular
on the combination of the AiiDA infrastructure and the Materials Cloud web
portal.

1 Introduction

In the field of atomistic materials science, computer simulations have become a
key ingredient in materials design. The availability of accurate codes based on
density-functional theory (DFT) and beyond-DFT methods and the ever-increasing
speed of supercomputers make computational materials science more accessible.
Indeed, computations have developed into an essential component to complement
experiments in the study and optimization of materials properties. The current
relevance of these techniques is also demonstrated by the fact that 12 out of the
top-100 most-cited papers in the whole scientific literature are about DFT-related
methods (Van Noorden et al. 2014). As a consequence, many groups have started
computing materials properties for large sets of known and unknown materials,
often starting from databases of crystal structures like the ICSD (Belsky et al. 2002),
the COD (Gražulis et al. 2012), and the Pauling File (Villars et al. 2004). Many of
these computed materials properties are available online; some of these portals are
also described in this handbook and include the Materials Project (Jain et al. 2011),
AFLOWlib (Curtarolo et al. 2012), OQMD (Saal et al. 2013), Nomad (The Nomad
Repository 2018), and the CMR (Landis et al. 2012).

Furthermore, large sets of computations are nowadays being used as training
data to predict materials properties more efficiently using machine-learning tech-
niques (Ramakrishnan et al. 2014; Dragoni et al. 2018). In general, however, it is
essential to have enough information on the data, including how it was generated
(i.e., its provenance), which physical and numerical parameters were used, and in
general be able to reproduce the results to validate them. This is even more important
for machine-learning, where accurate predictions are possible only if the quality of
the data used to train the algorithms is known and consistent across datapoints.

In addition to this, the availability of open data is beneficial to boost research
and discovery because datasets can be repurposed for new studies and analyses
not considered by the original authors. In principle, recording data with its full
provenance and sharing it should be much easier for computer simulations with
respect to, e.g., experiments. However, in practice there are a number of aspects that
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hinder automatic computation of materials properties, calculation reproducibility,
dissemination of data provenance, and sharing of open research data. In this chapter,
we discuss our vision of a platform for Open Science that can lower these barriers,
and we review the challenges that need to be addressed. We also present the two
software infrastructures AiiDA (Pizzi et al. 2016) and Materials Cloud (Materials
Cloud 2017) and show examples of how their combination makes it possible to
create a fruitful Open Science ecosystem.

1.1 The Pillars of an Open-Science Platform

Before starting, we want to define the term Open-Science platform (OSP) and how
it is used in this chapter. With Open Science, we refer to a combination of open tools
and data that make it possible to run simulations and then share and reuse the results
without barriers, with the aim to accelerate scientific discovery. While open data is
definitely an essential ingredient of an OSP, we believe that the platform must have
a strong focus on the tools to generate and share the data. Moreover, it should be
composed by modular components, so as to cover a multitude of use-cases and to
encourage researchers to use and expand it with contributions.

We think that an OSP should be based around the three following pillars: (1)
open data generation tools, including open simulation codes, an open architecture to
manage simulations, and open workflows to steer them; (2) an integration platform
that makes these tools accessible and available in the form of automated solutions,
not only to experienced computational researchers but also to experimentalists,
students, or the industry; and (3) support for seamless data sharing through portals
that make data not only findable (e.g., via DOIs) and openly available, but also
interoperable and reusable, encouraging the use of open data and code licenses.

Moreover, in our vision an OSP should also include the availability of open
libraries of curated input data, often needed for simulations (like crystal structures
or pseudopotentials) and that can enable the creation of automated workflows, as
well as of open learning and educational resources to ease the introduction of young
researchers to the field.

2 Open Science Pillar 1: Open Data Generation

2.1 Open Simulation Tools

The first requirement to be able to generate data within an OSP is the availability of
open simulation codes. In the field of materials science (and limiting to atomistic
simulations using density-functional theory only), a number of open codes are
available thanks to the developments that have happened in the past few decades.
These include Quantum ESPRESSO (Giannozzi et al. 2017), SIESTA (Soler et al.
2002), YAMBO (Marini et al. 2009), FLEUR (Blügel and Bihlmayer 2006),
CP2K (Hutter et al. 2014), and ABINIT (Gonze et al. 2016) just to mention a few.
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This open licensing model makes the codes accessible to everybody. Moreover,
it becomes possible to build simulation services on top of them that can also be
beneficial to the code themselves, as these services can become financing channels
for the code development.

There are also other codes that are widespread in the community and have
commercial licenses, like, for instance, VASP (Kresse and Furthmüller 1996) or
CASTEP (Clark et al. 2005). These might have benefits in term of additional
features implemented, speed, robustness, more widespread adoption, or stronger
user support (the latter is often very valued outside academia in industrial research
and development environments). The challenge for an OSP becomes then to be
able to integrate also these non-open tools while abiding by their license terms.
Models can be devised that are beneficial both for the commercial codes and for
the platform. An example could be to provide open interfaces and plugins for the
codes to enable or facilitate their integration in the OSP, while keeping a commercial
license for the codes. The latter can also benefit from this model because having
interfaces ready can facilitate the code adoption by OSP users.

2.2 The ADESModel and the Implementation in AiiDA

In recent years, many research projects used a high-throughput computing (HTC)
approach to scan hundreds of thousands of different systems and identify those with
optimal materials properties. For this kind of projects, it is unrealistic to run all the
simulations manually and even more to control the sequence of calculations needed
to compute a given materials property. Tools are hence needed to help manage and
store simulations, search through them, and at the same time steer their execution
when calculation dependencies exist. Our experience showed that these tools can
easily grow in complexity if they need to be reusable and modular. Therefore, there
is a need to collect and develop them in an organized architecture.

In Pizzi et al. (2016), a model for such a computational science architecture to
manage calculations and workflows has been discussed, based on the four ADES
pillars of automation, data, environment, and sharing. These are at the foundation of
AiiDA, a python platform introduced in the same paper. Here, we briefly describe
the ADES model and how AiiDA implements its four pillars, and later we discuss
why an ADES-compliant architecture is essential within an OSP.

The first ADES pillar, Automation, involves all those software components that
aim at solving the issue of managing large numbers of HTC runs on supercomputers.
AiiDA, in order to be independent of the supercomputer details, implements plugin
interfaces to control the connection, transfer files, and execute commands (e.g., via
SSH) or to interact with job schedulers. These plugins are used by a daemon that
runs in the background and is responsible for creating new calculation inputs and
uploading them to the supercomputers, submitting new simulations and managing
their lifecycle on a job scheduler, and retrieving and parsing results when they finish.

The second ADES pillar, Data, is then needed to store and preserve all the
generated data in a reproducible and searchable way. AiiDA uses a provenance
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model based on directed acyclic graphs to keep track of all inputs and outputs
and of the logical relationships between different calculations. The provenance is
tracked automatically by AiiDA (see also Sect. 2.3) and can be browsed at any time
to understand how data were generated or calculations were run. An example of
a provenance graph as tracked by AiiDA is shown in Fig. 1. Moreover, it is also
important to have the possibility to analyze results efficiently. To this aim, AiiDA
stores the provenance graph in a database, whose schema is optimized to ensure that
typical queries run fast.

The third ADES pillar, Environment, focuses on two aspects. The first consists in
ensuring that AiiDA is simple to use and provides users with an effective research
environment to help and facilitate them in their work. This happens thanks to
user APIs and command-line tools that simplify the execution of typical tasks
(management of computational resources and codes, inspection of calculation inputs
and results, data analytics) and by extensive documentation of these features.
Moreover, AiiDA provides a transparent access to the database that does not
require knowledge of SQL or similar database languages, to perform queries and
data analytics. This is implemented both via the use of object-relational mapping
(ORM) classes to access directly the data stored in the database and via the
QueryBuilder class to enable users to perform generic queries on the AiiDA
graph by using standard python syntax, independent of the database backend. The
other defining aspect of the environment pillar is the possibility to implement
and manage complex, nested scientific workflows. These are a core ingredient of
an OSP (see also Sect. 3.1) and are needed since the vast majority of materials
properties are computed by a sequence of different calculations with nontrivial logic
to control the choice of physical and numerical parameters, the dependencies, and
the convergence loops and to perform error recovery. This logic is known to expe-
rienced computational scientists; encoding it in workflows not only simplifies the
management of simulations when they must be repeated many times with different
input choices but also enables automated computation of materials properties. The
latter aspect is extremely beneficial first because these automatic workflows can
be handed over to, e.g., experimentalists that can use them to quickly evaluate the
properties they are interested to but also because it becomes possible to recompute
the properties with different approximations or different codes for verification and
validation purposes, to contribute to existing databases by adding new materials
with their properties, and to validate the correctness of these new contributions
automatically.

Finally, Sharing focuses on creating a social ecosystem to encourage data and
workflows reuse and accelerate research discoveries. AiiDA can export all data
stored, including the whole provenance graph and not only inputs and outputs.
This information can be then imported in another AiiDA instance and used for
new simulations or for further data analytics. AiiDA adopts common formats for
typical data structures (like crystal structures, electronic bands, molecular-dynamics
trajectories, . . . ) that are independent of the simulation codes. Thanks to the
automatic tracking of the provenance, moreover, these can be converted in any other
standard format at any time, as we discuss with an example in Sect. 4.3.
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Fig. 1 The provenance graph for the band structure of a 2D material (PtSe2) from Mounet et al.
(2018). AiiDA automatically records the provenance and can display it in graphical form with
the verdi graph generate command. Here, calculations are shown as orange rectangles
and data as ellipses. The codes used (binaries with their location, libraries) are also recorded
in the provenance graph (green diamonds). We have highlighted with colors some specific data
types: pseudopotentials in gray, the final band structure in blue, and crystal structures in purple.
Data nodes in white are other input parameters for the calculations (e.g., k-point grids or input
keywords). The graph makes it apparent that the final band structure for the 2D material was
obtained starting from an initial 3D structure, in this case from the Crystallography Open Database
(COD) (top purple node), first via a set of filtering steps, then via a Quantum ESPRESSO
relaxation, followed by the geometrical exfoliation and a final relaxation and band structure
calculation for the 2D structure
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2.3 ADES in Open Science

We believe that one of the most effective approaches in the implementation of
the ADES model, especially in the context of an OSP, is to couple automation
and data storage. More specifically, AiiDA requires that all information needed to
generate the calculation inputs is stored in the database even before the calculation
is launched. The daemon is then responsible to create the actual input files, using
only information already present in the database.

This coupling comes at a small cost for the researchers when new calculations
are generated, as they must provide inputs using the AiiDA data structures and
run them through the daemon (even if the additional barrier can be lowered by
simplifying the user interface, as prescribed by the environment pillar). On the
other hand, this approach ensures that common data structures are easily reusable
even in different codes and that all calculations are reproducible and the provenance
metadata is always correct. In fact, if the user had to add provenance information
only after the execution of thousands of simulations, it would be a huge and tedious
work, especially if calculations are not homogeneous. For this reason, in most cases
researchers end up not adding complete provenance information to their data, unless
strictly necessary. Moreover, this approach is error-prone as, e.g., the wrong inputs
could be assigned to a given calculation.

The coupling of automation and data, simplified in a proper environment, is then
strengthened (especially in view of our discussion on Open Science) by the sharing
capabilities of data, provenance, and workflows. In the next sections, we will show
with a number of examples how an ADES tool becomes an essential ingredient of
an OSP and completes it when coupled with additional services.

3 Open Science Pillar 2: Making It Accessible

3.1 Not Only Data: Sharing of Workflows and Plugins

Sharing research data is one of the components of Open Science, as it allows other
researchers to reproduce and reuse the results, perform new data analytics, and start
new research using the data published. Hence, data sharing in an open and reusable
format is essential. To this aim, recently, in the materials science community, a
number of sharing portals have appeared, some of which are also discussed in this
Handbook, like the Materials Project, AFLOWlib, OQMD, Nomad, and the CMR.

We emphasize, however, that sharing should not only be made easy and with
appropriate open licenses, but also it is essential that the data is distributed together
with sufficient metadata information to understand it and how it was generated. If
simulations are run with an ADES tool like AiiDA that tracks data provenance, this
aspect is simply addressed by always sharing data together with the corresponding
provenance. Furthermore, data and metadata should be shared in a standard format.
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Defining standard formats is a community effort and cannot be done by a single
research group. Nevertheless, automatic provenance tracking makes it possible to
export data after its generation in any other format, as discussed in Sect. 4.3, and
hence any future standard can also be supported with very limited effort.

However, we believe that Open Science cannot be limited to open data sharing,
as reproducibility is hindered if the tools used to generate the data are not available.
These tools include the quantum simulation packages to compute materials prop-
erties as discussed already in Sect. 2.1 but also the pre- and post-processing tools
to analyze the data and more generally the scientific workflows to obtain a set of
materials properties from an initial minimal input, like a crystal structure. These
are composed of a number of components: the infrastructure to run the workflows
(like AiiDA), the plugins to interface AiiDA with the various codes adopted, and
the logic that encodes the scientist’s knowledge on the choice of numerical and
physical parameters, on how to perform the sequence of calculations, and on how
to deal with potential errors or convergence issues. Only if all these components
are openly available, we can truly speak of reproducible Open Science. Indeed, we
emphasize here that the availability of the provenance graph for a given dataset
like the one shown in Fig. 1 is extremely useful but often allows only to reproduce
that single result. In many cases, however, the graph is not enough to understand
the sophisticated workflow logic used to select input data (like cutoffs or numerical
parameters) or to filter relevant results (e.g., in a high-throughput study).

The challenge for Open Science, encoded in the second pillar discussed in
Sect. 1.1, consists then in ensuring that all these components can be shared and
reused with limited effort, that they can be interoperable and used together, and
that contributions to them by third-parties with extensions or improvements are
encouraged.

3.2 Encouraging Contributions

An OSP should be general and support a variety of simulation codes, data types, and
workflows. Clearly, maintaining and supporting this ecosystem cannot be sustained
by a single group, in particular for plugins to support specific simulation codes,
because writing them requires in-depth knowledge of the code and of its typical
usage patterns. Even more, this is true for workflows that are both coupled to the
codes used and to the specific research field or topic.

As a consequence, in AiiDA we opted for a plugin interface. The main
infrastructure, “AiiDA core,” only contains the main logic that is independent of
the codes, like dealing with external supercomputers, storing data and provenance
in a database, or querying it. All the tools specific to codes, data, and workflows
are implemented as plugins in independent repositories. A design based on plugins
is essential, but an effective implementation can facilitate their installation and
encourage contributions. For instance, in earlier versions of AiiDA, plugins had
to be contributed to the code repository of AiiDA. Since version 0.9, the AiiDA
plugin infrastructure has been improved: these can now be developed in independent
repositories, and final users can easily choose which plugins to install. Once
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installed, AiiDA automatically detects and uses them. The advantage is twofold:
first, it encourages researchers to contribute their own code, as they do not lose
control over it but maintain full authorship and can even decide a custom licensing
scheme. Most importantly, if plugins live in different repositories, their development
can occur independently without having to tie and synchronize their releases (e.g., if
one code just needs a bugfix while another one is in the process of a big refactoring
and is not ready for a new release).

During the design and improvement of the plugin interface, the AiiDA team soon
recognized the need of a centralized repository to list existing plugins. In fact, in
the past few years, it occurred that more than one researcher started to develop
a plugin for the same code, driven by their needs. As a result, two very similar
but essentially incompatible plugins were released. This results in work duplication
with the additional risk that both plugins miss some important feature present in the
other one. As a consequence, users that are faced with the choice of a plugin might
get confused. Moreover, having multiple, slightly different formats also hinders
sharing and reusability. To address this issue, the AiiDA plugin registry (AiiDA
Team 2017a) has been created (see also Fig. 2), consisting in a centralized list of
existing plugins, brief notes on how to use them, and links to their code repository
and documentation. The plugin code is not copied or duplicated. Instead, the registry
acts merely as an index to facilitate the discovery of existing plugins. Anybody can
register a new plugin, and developers are encouraged to do so in the very early stages
of development. Besides allowing them to reserve the plugin name (that needs to be
unique among all plugins and should not be changed over time), this policy also
reduces the risk that multiple researchers start independently to develop plugins for
the same code. To describe the readiness of plugins, a “state” flag mentions if the
plugin is stable and ready for production, under development, or only registered.
Finally, a “plugin-template” repository is also provided (and is also available on the
plugin registry) that can be copied and modified to start developing a new plugin
very easily. To prove the effectiveness of this approach, we note that just 1 year
after the creation of the registry, 22 different plugins are already available, including
plugins for widespread simulation codes like Quantum ESPRESSO, VASP, CP2K,
FLEUR, SIESTA, and YAMBO. Moreover, more than half of them provide detailed
documentation websites, also in this case facilitated by the backbone documentation
structure provided by the plugin template.

Finally, also in the spirit of facilitating usage and contributions and of increas-
ing interoperability, AiiDA has been integrated and made compatible with other
libraries and tools written in python that is becoming an extremely popular program-
ming language in the materials science community. For instance, AiiDA can import
and export structures between its internal format and the format of ASE (Larsen
et al. 2017) and pymatgen (Ong et al. 2013), so that functionality present in
these two libraries (crystal structure manipulation, comparison, processing) can
be seamlessly integrated in any AiiDA workflow. Similarly, crystal symmetry can
be analyzed using spglib (Togo and Tanaka 2018), and high-symmetry k-points
in the Brillouin zone (together with suggested paths for band structures) can be
automatically obtained via seekpath (Hinuma et al. 2017) and directly used as input
to calculations.
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3.3 Documentation, Tutorials, and Open Learning Resources

The availability of open codes and tools for data generation and analysis is, as
described in the previous section, an essential aspect of Open Science. If, however,
these tools are not straightforward to use, their adoption is strongly hindered. We
believe therefore that it is essential to invest resources in lowering the barrier
for users. To achieve this goal, it is needed to have well-written and extensive
documentation for the codes, describing how to install them and how to specify
their inputs. In our experience, it is important to ensure that the documentation
is easily searchable and indexed in web engines. Moreover, it is very effective to
provide quick-start guides, example scripts or input files that can be copied and
adapted by users, and a “cookbook” of useful recipes that are typically repeated by
many users, like how to achieve a particular task or how to troubleshoot potential
problems. In our experience, we found the use of a notebook-like format particularly
effective (in particular with the use of jupyter, that we describe in more detail in
Sect. 4.4 with some examples of its use in the Materials Cloud platform). On top
of this, documentation specifically designed for developers is greatly useful for
contributors to understand the code and be able to independently add new features
and is therefore another tool to encourage contributions to the platform (as discussed
in Sect. 3.2).

However, documentation alone (while essential) can easily become overwhelm-
ing for large codes and therefore might not lower enough the entrance barrier. Also
tutorials and schools are extremely powerful tools for code dissemination. These
events put researchers in direct contact with the developers of the tools, helping
in creating a network and direct communication channels. The advantage is on
both sides: users can get direct benefit by faster and more effective learning, and
developers can profit from these events to know how their software is used, to collect
useful feedback on common use-cases and to understand how to improve the code
usability.

Finally, we also believe that it is important to provide access to educational
resources like recordings of lectures, tutorials, and schools that cover both the basics
of the science of the field as well as the code usage and applications. These resources
should be disseminated in an open format, providing access to all students and
young researchers. An example of this is shown in Sect. 4.4, where we discuss the
learn section of Materials Cloud, a hub for educational videos and resources in the
field of materials science.

3.4 Virtual Machines and the QuantumMobile

Researchers often have a specific problem to address and look for a software that
can solve it. A good documentation and effective tutorials can help convince them
of the functionality of the code, and jupyter notebooks can facilitate its use, but
the main initial barrier of installation and configuration remains. Unfortunately, the
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potential issues that the users can experience are quite varied, are very dependent
on their computer configuration, and are often related to code dependencies (need
for C/fortran libraries, specific compilers or python packages; operating system
incompatibilities; conflicts between multiple library versions; . . . ). If the installation
turns out to be too complex, the researchers might be discouraged (especially if they
are not certain that the code can help them). The situation can be further complicated
by the need of using more than on tool at the same time and making them interact.

To address this barrier, we suggest a few different approaches to reduce and
almost remove the time required to start using a software (or a collection of
softwares).

The simplest solution that does not require setting up any online server is the
creation of virtual machines with useful software preinstalled. The distribution is
very simple, consisting in sharing a single file (typically of a few GB in size) with
the virtual machine image. Once this file is obtained, by just running the virtual
machine, users find all codes preinstalled and preconfigured and can directly start
to run simulations. A practical example of this is the Quantum Mobile (AiiDA
Team 2017b) virtual machine. It contains a number of simulation codes preinstalled
(including Quantum ESPRESSO, FLEUR, SIESTA, Yambo, CP2K, Wannier90) as
well as AiiDA, preconfigured to run these codes within the virtual machine and
coming already with a database preconfigured. This setup is ideal for education in
computational materials science classrooms, where students can focus directly on
the problem at hand and on understanding the results. This has been already proven
in the 2018 “Molecular and Materials Modelling” course at ETH Zürich, in which
the Quantum Mobile has been used as the platform to run the simulations, only after
less than 4 months after its first release.

For larger simulations, running within the virtual machine is not ideal or even
possible because of CPU or memory limitations, but researchers can still use it
by configuring AiiDA to connect to the supercomputers they have access to. An
alternative virtualization solution includes the use of Docker that can be thought
as a tool to create lightweight virtual machines, where the Linux kernel and some
resources are shared and not emulated. AiiDA now comes with a Docker image
preconfigured, and this has pushed also many of the codes mentioned before to
provide their own Docker images. The Docker setup provides a very similar level
of containerization and code setup reproducibility of a virtual machine and is
much more lightweight (for instance, in terms of disk usage when multiple similar
machines are executed). Therefore, it is suited for tasks where many equivalent
systems need to be automatically created. A typical use-case is in continuous testing
platforms. On the other hand, however, it is worth noting that the use of Docker
images is less indicated for educational purposes with respect to virtual machines.
In fact, virtual machines are (still at the time of writing) much easier to start up
without advanced knowledge of computer administration and of Docker and its
related technologies. Additionally, a virtual machine provides seamless access to
GUI applications (like text editors or file browsers), while with Docker one would
need to access the instance through the command line, creating a potential additional
barrier for students.
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3.5 Supercomputer Centers

A second approach to facilitate users in the adoption of codes is to deploy them
in supercomputer centers where the simulations are run. Already now most high-
performance computing (HPC) centers have an application support team that
compiles various versions of the codes used by their users and provides them as
modules. The same could be done for tools to manage simulations like AiiDA.
This might require, however, that these centers transition from a classical model
of HPC providers to more general service providers for, e.g., virtual machines,
database services, or long-term storage. A number of centers (like, in Europe, the
Swiss CSCS, the Italian CINECA, or the German JSC) are already in the process
of providing these new services and working together to federate access to them;
we expect that this trend will be followed by even more centers in the next few
years.

4 Open Science Pillar 3: Seamless Data Sharing and
Preservation

4.1 DataManagement Plans and FAIR Compliance

In the first phases of research, offline tools and codes are typically used to
perform and organize research, as the data generated can be large and is typically
confidential. However, when data must be shared, as described in the third pillar of
an OSP described in Sect. 1.1, it becomes essential to employ suitably designed
web portals. In addition to this, currently many funding agencies require to
comply with data management plans (DMPs) for data dissemination and long-
term preservation. Ideally, data should be compatible with the FAIR principles
of sharing (Wilkinson et al. 2016) that require data to be findable, accessible,
interoperable, and reusable. Findability can be achieved only if research data is
associated with persistent handles like DOIs to make it citable. Free portals exists,
like Zenodo (2018), that assign DOIs to datasets obtained from research projects
and also guarantee long-term preservation. However, while files generated by the
different codes can be uploaded on these services, this would still require that
another researcher has a compatible software installed in order to open and analyze
the results in the format uploaded by the original author. To remove this barrier, web
portals need therefore to address also the other FAIR aspects to become effective
OSPs.

In the next few sections, we show examples of how the goals of being DMP
and FAIR-compliant can be conveniently achieved using a combination of suitable
web portals together with an ADES tool like AiiDA to manage simulations
and track provenance. We discuss in particular the integration of AiiDA with
the Theoretical Crystallography Open Database (TCOD) in Sect. 4.3 that proves
how the automatic tracking of data provenance makes it possible to tag results
with standard metadata automatically and after the simulations have run; and the
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Materials Cloud portal (Sect. 4.4) that provides tools encompassing all steps of
computational research, from learning to generating data and curating the results,
to finally publishing and sharing results, while being fully compliant with the FAIR
principles.

4.2 Interoperability Between Different Databases: The
OPTiMaDe API

Even if automated provenance tracking allows to store a posteriori the metadata
information in any format, as we discuss in the next section, it is still extremely
valuable that standards are defined. This, in fact, would allow easy interoperability
between different existing databases. A community effort in the direction of
database and web-portal interoperability is happening in the OPTiMaDe consortium
that is working toward the definition of a common API specification to be imple-
mented by the different partners. Many of the large databases in the community are
already part of this consortium (including Materials Cloud that has the _mcloud_
prefix assigned to it). In the current version (0.9.5), OPTiMaDe already defines
a REST API format that makes it possible to query, with the same format, for
the existence of crystal structures in different databases, with common filters like
number of atoms, presence or absence of a chemical element, as well as supporting
database-specific fields.

4.3 Automatic a Posteriori Metadata Tagging: AiiDA and TCOD
Integration

Ontologies and other standards for metadata tagging and sharing of research results
in materials science are currently being discussed in the community, like, e.g.,
the TCOD dictionaries (Gražulis et al. 2014) and the Nomad metadata (Nomad
Meta Info 2018), even if there is not an established standard yet. For this reason,
it is difficult to enforce a given ontology. The lack of a single standard format
in the community, however, is not a major issue if simulations are run with
automatic provenance-tracking tools. Indeed, tracking of provenance (if complete
and automatic) allows users, a posteriori, i.e., after all simulations have run, to
convert the provenance information in any other format by just implementing a
converter. An example of this is shown in Merkys et al. (2017), where methods and
codes have been presented to convert the provenance as tracked by AiiDA to the
format defined by the TCOD ontology. In this work the authors show in particular
how Quantum ESPRESSO simulations managed via AiiDA are automatically
tagged with metadata using to the TCOD ontology, with no user input required.
Moreover, the implementation is modular and additional plugins can be developed
to support other simulation tools or other metadata formats.
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4.4 Materials Cloud

In Sect. 2 we have described how AiiDA addresses the challenges of data generation
in an OSP, in Sect. 3 we have outlined how to make Open Science accessible, and
in Sect. 4.1 we have emphasized how web portals tailored to comply with the FAIR
principles are an essential ingredient to achieve seamless sharing.

For this reason, Materials Cloud has been designed, implemented, and deployed.
It is a web portal for materials science that is coupled to AiiDA and, in combination
with it, addresses all three OSP pillars introduced in Sect. 1.1. Materials Cloud
is composed of different sections that aim at assisting researchers during the full
lifecycle of a scientific project.

The first section, Learn, contains educational material like videos of schools,
tutorials, and lectures in the field of materials science, together with the correspond-
ing material to assist learning (like slides and exercises). The learn section uses the
SlideShot technology, a software platform that makes it possible to show the video
feed of the speaker together with the slides in high resolution, allowing viewers
to quickly seek through the video via the slides thumbnails. This is coupled with a
standard hardware setup to perform recordings and then import them into SlideShot.

The Work section then focuses on the task of data generation. This section
addresses in particular the second pillar of Open Science to make the simulation
tools available in the form of automated solutions, removing access barriers and
making them available not only to experienced computational researchers but also
to experimentalists or to students. Besides providing links to download various
versions of the Quantum Mobile virtual machine (see Sect. 3.4), it provides access to
computational tools with two different approaches, suitable for different use-cases
that we briefly discuss here. The first approach of the work section of Materials
Cloud is to provide a set of online tools to perform fast analysis of data, directly
from the web browser, similar in the spirit to, e.g., the many tools of the Bilbao
Crystallographic Server (Aroyo et al. 2011). This is particularly suited for computa-
tions that can run in real time (i.e., with a running time of up to a few seconds) and
that can benefit from a graphical web interface. An example is seekpath (Hinuma
et al. 2017), a tool that, given an input structure, computes a standardized primitive
unit cell according to the standard definitions in the crystallography literature, like in
the International Tables of Crystallography (Shmueli 2010) and in Parthé and Gelato
(1984). The tool then returns also the labels of high-symmetry points in the Brillouin
zone together with a suggested path for the computation of band structures. The only
required input, in this case, is a crystal structure (accepted in a number of common
formats) and, optionally, a few numerical parameters; interactivity happens mainly
via to interactive 3D visualizers for the crystal structure and the Brillouin zone.

The second and more flexible approach for data generation in the Materials Cloud
is based on the jupyter interface. Jupyter is a notebook-like web front end that allows
to run any python code (and also supports many other programming languages)
subdivided in cells with inputs and outputs. This is a very flexible interface, and in
Materials Cloud it is further powered by the AppMode plugin that by default hides
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Fig. 3 Three screenshots of the jupyter interface of the Materials Cloud. Pages are customized
with the AppMode plugin, to make the appearance very similar to a standard web page. (a) Home
page, with the top panel with main tools to manage Materials Cloud applications, to show a
terminal or to show the control panel. On the top, a “Edit app” button allows to go back to the
standard jupyter notebook interface. (b) Application manager that allows to select existing apps
from the Materials Cloud app registry and make them appear in the home page. (c) One of the apps
to setup a new computer (in this case, the Piz Daint supercomputer at the Swiss Supercomputer
Centre) with just a few clicks

the cells and just shows the outputs (including widgets like buttons, text boxes, and
drop-down lists) in a format that resembles a standard interactive web page. The
jupyter interface of the Materials Cloud is shown Fig. 3, providing a home page
where contributed apps can be added directly via the web interface (panels a and
b). Apps can be provided by anyone and just need to be registered in the Materials
Cloud App registry. Users are provided with a working space already preconfigured
with AiiDA and codes, removing any setup time. Additional configuration (e.g.,
setting up AiiDA to interact with custom computational clusters) is significantly
simplified by apps with simple GUIs (see Fig. 3c). The only disadvantage of this
section is that it requires a user login, because users can access a full computer with
unrestricted access to code execution and internet access, but on the other hand, it
is the ideal platform to create custom fully automated workflow solutions for the
computation of materials properties.

Once the data has been generated (locally with AiiDA on in the jupyter section),
it can be displayed in the two sections Discover (for curated data) and Explore
(for the “raw” data as generated via AiiDA). The first section can be used by a
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researcher to provide an accessible interface to understand a project and present its
results with dynamic data filtering, as well as interactive views of the figures shown
in the corresponding papers. Data can be linked to the corresponding AiiDA nodes
in the explore section. In the latter, data is visualized together with its provenance
(browsable via an interactive graph to inspect the calculation that generated it or
to find out by which calculations it was used as input). Calculations are always
displayed together with their full set of inputs and outputs that can also be directly
viewed or downloaded. Materials Cloud has been designed as an extension of
AiiDA so that, if the simulations are run with AiiDA, the explore section is filled in
automatically by just importing an AiiDA export file. To make an analogy: AiiDA
is a tool used to manage simulations and provenance locally on a computer and can
be compared to Git, used locally for the organization and tracking of the history of
files and source codes. Then, the Materials Cloud explore section plays the role of
GitHub, GitLab, or similar web services, providing web browsing of the content of
repositories and acting as a central server for sharing.

Finally, Materials Cloud has a fifth section, Archive, for the long-term storage
and dissemination of research results. A DOI is assigned automatically to each
submitted entry, and standardized metadata are exposed in the XML Open Archives
Initiative Protocol for Metadata Harvesting (OAI-PMH) format (XML OAI-PMH
2018). Each entry can contain files with research results and can be linked to the
corresponding discover and explore sections. An example screenshot of an entry of
the Materials Cloud Archive is shown in Fig. 4.

By coupling the different sections, Materials Cloud realizes a FAIR-compliant
platform as discussed in Sect. 4.1. In fact, the DOIs assigned to published research
data in the archive section achieve findability. At the same time, if the data has
been generated with AiiDA, each entry can be linked to a curated discover section
and to an explore section, making it possible to visualize inputs and outputs of
calculations and more generally to explore the data provenance. This real-time web
interface makes data accessible (second FAIR pillar) and does not create any barrier
due to authentication or to software installation. Interoperability (third FAIR pillar)
is achieved since data that is common to different codes (e.g., crystal structures,
electronic and phonon bands or k−point sets) are stored in a code-independent
format and the outputs of a calculation can be used as the inputs for a different
code. Finally, reusability (fourth FAIR pillar) is guaranteed by the possibility of
getting all inputs and outputs of calculations and reproduce them, coupled with the
large selection of licenses that the users can choose (with encouragement for those
allowing for reuse, like the Creative Commons ones).

5 Examples of Open-Science Research Using AiiDA and the
Materials Cloud

To better explain the ideas and tools described in the previous sections, we briefly
discuss here two scientific projects, managed with AiiDA and hosted on the
Materials Cloud, that demonstrate the concepts of an OSP discussed here.
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Fig. 4 An entry of the Materials Cloud Archive, in this case version 1 of the SSSP pseudopotential
library (Prandini et al. 2018a). Each entry, beside typical metadata like authors, affiliations, and a
description, can also contain a number of files that are preserved in the long term. Moreover, entries
can have direct link to respective discover or explore sections, where data is directly visualizable
in the web browser. Materials Cloud assigns each entry a DOI (the prefix of Materials Cloud is
10.24435) and requires authors to choose a license

5.1 The SSSP Pseudopotential Library

The Standard Solid State Pseudopotentials (SSSP) (Prandini et al. 2018b) library
provides a curated selection of pseudopotentials for plane-wave density-functional
theory (DFT) codes (in UPF format). SSSP is composed of two sublibraries,
optimized, respectively, for precision and efficiency by means of a number of
convergence studies on elemental solids, for various relevant physical properties
including zone-boundary phonons, cohesive energy, pressure, and band structure.
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Fig. 5 Screenshots of the discover section for the exfoliable 2D materials section. (a) One of the
three selection pages, allowing to select a 2D material based on its binding energy and the change
in interlayer distance in the bulk when computed with a DFT energy functional including or not
including van der Waals force contributions. Other selection views include a periodic table and a
detailed table. (b) Top part of the detail view for one of the materials (in this case, PtSe2). The
view includes an interactive structure 3D visualizer, as well as the main properties computed for
this material. (c) Another portion of the detail view showing the electronic band structure of PtSe2.
The plot is interactive and zoomable, and the default path (here Γ−M−K−Γ ) can be changed
by the user. Both here and in panel b, the small AiiDA icons are links that bring the user to the
corresponding explore section, to browse the provenance of the corresponding data (the provenance
of the band structure is the one shown in Fig. 1)

The pseudopotential library is available on the Materials Cloud Archive (Prandini
et al. 2018a); see also Fig. 4.

In the respective discover section, a periodic table uses a color legend to indicate
the optimal pseudopotential for each element and indicates the suggested cutoff
values. Clicking on an element shows a detailed view containing all convergence
studies and plots (equations of states, band structures, bands chessboards) for all
the pseudopotentials compared in the study. Datapoints in the interactive plots are
clickable and bring the user to the explore section, with browsable provenance for
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all data. Simulations were run using Quantum ESPRESSO and managed by AiiDA
that also tracked the provenance.

5.2 The Exfoliable 2DMaterials Database

In Mounet et al. (2018), the authors performed a high-throughput search of novel
two-dimensional (2D) materials by screening the ICSD and the COD databases.
Starting from over 100,000 unique bulk experimentally known materials, they could
first detect with a geometrical algorithm the ∼6000 that are composed by layers
and then refine this list with DFT binding-energy calculations (using Quantum
ESPRESSO and managed by AiiDA) to only include those held together by weak
forces. With this approach they could identify a set of about 1800 potentially or eas-
ily exfoliable 2D materials. Furthermore, a subset of 254 materials (easily exfoliable
with up to 6 atoms per unit cell) has been extensively studied to compute relevant
electronic, vibrational, and magnetic properties. These results and calculations are
available on the Materials Cloud Archive (Mounet et al. 2017). Also in this case,
the archive section is coupled to a curated discover page (Fig. 5). In the filtering
page, a 2D structure can be selected via a table, by selecting elements in a periodic
table or by picking a material from a binding-energy plot. After having selected
the material, a detailed view is presented, showing data and results that include the
binding energy of the 2D layer, the interlayer distance computed with different van
der Waals functionals, the magnetic ground state (also including antiferromagnetism
in larger supercells), the electronic band structure, and the phonons. These were
computed with the correct 2D physics that properly considers electrostatic screening
in low-dimensional systems, reproducing correctly the behavior of longitudinal and
transverse optical phonons near Γ (Sohier et al. 2017). Final results (plot and
numerical values) are accompanied by small AiiDA icons, as shown in Fig. 5b, c.
These are links to the corresponding explore page, where users can check how the
results have been computed by browsing their AiiDA provenance.

6 Conclusions

In this chapter we have introduced our vision for an Open-Science platform. Such a
platform should rest on three main pillars, namely: open data generation tools, open
integration platform, and seamless data sharing. We have discussed the challenges
set up by these requirements, and we have shown how a combination of the AiiDA
code and the Materials Cloud platform can achieve the goals defined by these three
pillars. These aspects have furthermore been demonstrated with two examples of
projects that used the two tools, namely, the SSSP pseudopotential library and the
database of exfoliable 2D materials. Indeed, if simulations are run with AiiDA, the
generated data is reproducible and its provenance (i.e., how it was generated) is
automatically tracked and stored. AiiDA also helps creating and steering automatic
workflows for the calculation of materials properties. Combined with the Materials
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Cloud work section (and in particular with the jupyter subsection), advanced
workflows can be exposed with an intuitive and easy interface, minimizing the
barrier to access and use them. The other sections of Materials Cloud, furthermore,
enable sharing of computed data in a FAIR-compliant format. DOIs are assigned
to data entries (that are preserved in the long term) to make them findable, as
required by data management plans. These entries, moreover, are made accessible
by a tight coupling with interactive views to present curated data. The latter is linked
to browsable graphs to access and explore the data provenance automatically tracked
by AiiDA as well as the raw input and output files. AiiDA and Materials Cloud,
therefore, implement our Open-Science vision with the aim of making science
accessible to everybody and of encouraging reuse of results to promote and support
scientific discovery.
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diagrams. On top of that, the powerful online retrieval software is introduced,
called MPDS, the Materials Platform for Data Science. The practical recipes
of storage, exchange, and analysis of the large amounts of materials data are
given. The focus is made on the modern information technologies and software
engineering. As a result, from the large heterogeneous data, holistic conclusions
about the entire set of known materials are drawn. They can be regarded as a
guideline for the systematic large-scale predictions.

1 Introduction

The PAULING FILE project is the materials database with nearly 25 years history,
grouping crystallographic data, phase diagrams, and physical properties of inorganic
crystalline substances under the same frame. Its focus is put on the experimental
observations. Each individual crystal structure, phase diagram, or physical property
originates from a particular peer-reviewed publication. The world’s scientific
literature in materials science, engineering, physics, and inorganic chemistry is
covered from 1891 to the present date. The Materials Platform for Data Science
is an online edition of the PAULING FILE project, created in 2016. It presents
all the PAULING FILE data in two online interfaces: graphical user interface
and application programming interface. The former is intended for the materials
scientists; the latter is intended for the software engineers and data scientists. An
intersection of the research interests of these groups falls into the scope of the novel
discipline of materials informatics.

2 Materials Big Data and the PAULING FILE Project

2.1 Modern Challenges Ahead of theMaterials Community

Counterintuitively, empirical traditions are widespread in the fundamental science
and particularly in materials science. The pioneer in chemoinformatics, Peter
Murray-Rust (Cambridge, UK), called the materials science as one of the most
conservative precise disciplines, the least transparent and open to collaboration
and crowd-sourcing, compared to the other sciences, as biochemistry, astronomy,
mathematics, and computer and environmental sciences (Murray-Rust 2013) – not
counting paywalls. Interesting to note, the field of materials informatics is less
established and younger, compared to chemo- and bioinformatics (Gasteiger and
Engel 2003, here informatics assumes an information exchange). Among the novel
distributed computing projects, where anyone may volunteer computing time from
their personal computers to a specific cause, only a very little part is concerned
with materials science. The following not exhaustive explanation can be given.
Materials science and engineering are maximally tightly bound to the industries,
e.g., aerospace, automotive, electronics, military industry, etc. Considerable part of
materials research and development is privately funded. A know-how in materials
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science costs on average higher, than in other precise disciplines. These costs
can be compared to high energy physics or astronomy. However an influence of
such know-hows on the technological progress is also higher, and the lag between
investment and innovation is relatively moderate (about 15 years or less, Obama
2011). Further, due to its widespread and extreme complexity, materials science
is also very segmented (“feudal”). Consequently, the level of competition is very
high, both in academia and industry (government grants, staff positions, etc.). In
terms of complexity, even mastering the basic formalism of the modern solid-state
physics presents a nontrivial task. The multidisciplinary specialists are generally
rare in materials science. These reasons may give an idea, why the materials science
community is inherently very conservative.

Moreover, until the recent years the culture of sharing the basic research
outcome (e.g., raw measurement or simulation logs, in contrast to the articles)
was totally absent and sometimes even tabooed in materials science. Concerning
the publications, still there is no way to obtain scientific information in machine-
readable format from journals for further reuse and repurposing. However with the
technical progress the modern academics are sinking in the “ocean of data.” Today
there is a common complaint that researchers are publishing too much and too fast.
To estimate this growth, it is wrong to cite the growth of academic databases, as
no database captures everything. The bibliometric analysts from the Max Planck
Society and Swiss Federal Institute of Technology (Bornmann and Mutz 2015)
estimated that the global scientific output roughly doubles every 9 years. Moreover,
with the increase in popularity of the modern data-intensive approaches, commonly
denoted as “materials design” or “materials genome,” there is an evidence that the
amount of raw big data in materials science generated by experiments or simulations
will continue to grow exponentially. Speaking about the big data, the computer
science community has appropriately defined this phenomenon as the data amounts
governed by four metrics: volume, velocity, variety, and veracity. In materials
science volume refers to the big sizes, exceeding personal computer facilities,
and velocity refers to harnessing real-time data acquisition (e.g., from dynamics
experiments). Variety is concerned with the fact that the data takes all forms in
materials science, ranging from discrete numerical values to qualitative descriptions
of materials behavior and imaging data. Veracity acknowledges the practical reality
about uncertainties and a lot of “missing” data (Rajan 2015). Nowadays is the
epoch of big data in materials science. Yet in this epoch of big data, materials
science is still not doing enough to encourage and enable the sharing, analysis,
and interpretation of the vast swatches of data that researchers are collecting.
The traditional means of exchange of scientific information in materials science
community are deeply imperfect. In such conditions a natural diversity appears,
with the principles of the natural selection guiding the shape of the cutting-edge
research. And in the last several years with the high penetration of the Internet and
modern information technologies, the situation has started to change slowly. Here
the ability to digest information, drawing the correct conclusions, is crucial. This
is where the data science tools (e.g., machine learning) need to be linked to the
foundations of materials science: theory, modeling, and experiments. The aim is to
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make the laboratories for generating the new information and not just repositories
for retrieving the known or expected information (Ghiringhelli et al. 2017).

2.2 PAULING FILE Background

There are a number of initiatives in the world trying to overcome the above-
mentioned challenges in materials science (Pizzi et al. 2016). The main idea is
either to systematically collect the materials data or generate and process them in
a high-throughput manner. One of the notable initiatives is the PAULING FILE
project, launched in 1995. Its main focus is put on the critical evaluation of the
published experimental materials data. Historically, it was a joint venture of the
Japan Science and Technology Corporation, Material Phases Data System company
in Switzerland, and the University of Tokyo, RACE. Now it is managed solely by the
Swiss company. Three steps were planned from the beginning. The first goal was to
create and maintain a comprehensive database for inorganic crystalline substances,
covering crystallographic data, diffraction patterns, intrinsic physical properties,
and phase diagrams. The data should be checked with the extreme care. The term
“inorganic substances” was defined as compounds containing no C-H bonds. In
parallel to the database creation, the second goal was to develop an appropriate
retrieval software to make the data accessible in a single-user interface. In longer
term, as the third goal, the new tools for materials design should be created, to search
the database for correlations automatically. This is known as intelligent design of
the new inorganic materials with predefined intrinsic physical properties. The pilot
version PAULING FILE Binaries Edition was released as a desktop software in
2002. Now the selected parts of the PAULING FILE data are included in several
printed, offline and online products. Today the PAULING FILE project is quite well-
known. There are already thousands of publications referring it. Its foundations,
database design, and data-centric observations are published (e.g., Villars 2004;
Villars et al. 2008; Xu et al. 2011; Kong et al. 2012; Villars and Iwata 2013 etc.). The
recent implementation of the PAULING FILE retrieval software and the materials
design tools is an online product called Materials Platform for Data Science.

Now a minimum of required definitions must be given. A database is a collection
of interrelated stored data that serves the needs of the multiple users. In the so-called
relational paradigm, these stored data are organized in the tables. The motivations
for using databases rather than files include greater availability to a diverse set of
users, integration of data for easier access to and updating of complex transactions,
and less redundancy of data. A database management system (DBMS) is a
generalized software for manipulating the databases. A DBMS supports a logical
view (database schema), physical view (access methods, data clustering), data
definition and manipulation language, and utilities, such as transaction management
and concurrency control, data integrity, crash recovery, and security (Teorey et al.
2005). For example, Oracle is used as an internal DBMS for PAULING FILE. The
PAULING FILE database has the following structure. The standard unit of data is
called an entry. All the entries are subdivided into three kinds: crystalline structures,
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physical properties, and phase diagrams. They are called S-, P-, and C-entries,
correspondingly. Entries have persistent identifiers, analogous to digital object
identifiers (DOIs), e.g., S377634, P600028, and C100027. Another dimension of the
PAULING FILE data is the distinct phases. The three kinds of entries are interlinked
via the distinct materials phases they belong. A tremendous work has been done
by PAULING FILE editors in the past 25 years to manually distinguish more than
150,000 inorganic materials phases, appearing in the world scientific literature. Each
phase has a unique combination of (a) chemical formula and (b) modification. These
are defined using the structure prototype, Pearson symbol, and space group. Each
phase has an integer identifier called phase id. In the next three sections, each of the
entry types (S-, P-, and C) together with their interlinkage will be covered in details.

2.3 Physical Properties

The P-entries of PAULING FILE include the experimental and to a limited extent
simulated data for a broad range of intrinsic physical properties of inorganic
compounds in the solid, crystalline state. The considered physical properties belong
to one of the following seven general domains: (a) electronic and electrical
properties, (b) optical properties, (c) magnetic properties, (d) mechanical properties,
(e) phase transitions, (f ) superconductivity, and (g) thermal and thermodynamic
properties. The taxonomy consists of three levels: the mentioned general domains,
sub-domains, and the particular physical properties. For instance, the domain
“electronic and electrical properties” contains the sub-domain “electron energy band
structure,” which in turn contains the “Fermi energy” property, etc. Currently there
are about 100 sub-domains and nearly 2000 particular physical properties. The
taxonomy was compiled by Fritz Hulliger (Swiss Federal Institute of Technology
in Zurich, Switzerland), Roman Gladyshevskii (Ivan Franko National University of
Lviv, Ukraine), and Karin Cenzual (University of Geneva, Switzerland). To a certain
degree, it reflects the development of the solid-state physics during the last century.

The physical properties are stored in four different ways: numerical values,
figure descriptions, property classes (such as ferromagnet, piezoelectric, etc.),
and indications of existence of the particular data in a source publication, e.g.,
different spectra. The symbols for the most common physical properties have been
standardized, mainly based on the CRC Handbook of Chemistry and Physics (Lide
1997–1998). The numerical values are stored in the published units and converted
to the standard SI units. For certain properties at the atomic level, other units such
as eV or μB are used. Properties expressed with respect to a defined quantity
of substance (per kg, per mole) are converted to per atom-gram. Each numerical
property value is accompanied by information about the experimental conditions
for the particular measurement. A great flexibility is provided via the links to the
reference tables. Thanks to that, the new properties may be selected, and their
symbols, units, and ranges of magnitude can be controlled.

All the data are taken from the primary literature. Each P-entry corresponds
to a particular data source and can contain several numerical values, figure
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descriptions, and keywords. For an investigation of a compound through a
temperature- or pressure-induced structural phase transition, there will be two
P-entries, for instance, one for the room-temperature modification and one for the
low-temperature modification. By default, ferroelectric transitions are assumed
to be accompanied by structural changes and will justify the creation of two
P-entries, whereas magnetic, electric, or superconducting transitions are not. Data
for the phases with a certain homogeneity range are grouped under a representative
chemical formula. The actual composition for a particular measurement, when
differing from the composition representing the P-entry, is specified among the
parameters. As for the crystal structure part, there will be three database entries for
a continuous solid solution between two ternary compounds: one for each ternary
boundary compositions and a third one grouping samples containing four chemical
elements. Some simulated data from the ab initio calculations are also included, in
particular energy band structures, but focus is on experimentally measured data and
values directly derived from measurements.

In addition to the physical properties (in the form of numerical values, figure
descriptions, or keywords), and compulsory items such as the chemical formula,
large amounts of information concerning the sample preparation and experimental
conditions are stored. The following database fields may be present in a physical
properties P-entry: (a) compound, such as chemical system, published chemical
formula (investigated samples), representative standardized chemical formula, mod-
ification; (b) bibliographic data, such as reference, authors, language, title etc.;
(c) preparation, such as starting materials and method of synthesis; (d) sample
description, such as form, chemical analysis, stability with respect to temperature,
pressure, and composition, elastic behavior, density, color, chemical reactivity; (e)
crystallographic data, such as structure prototype, space group, and cell parameters.

The PAULING FILE data are checked for consistency using the original
software package ESDD (evaluation, standardization, derived data), containing
more than 100 different modules (Cenzual et al. 2000). The checking is carried
out progressively level by level, also on the individual database fields. These
include formatting of numerical values, units and symbols for physical properties,
Hermann-Mauguin symbols, Pearson symbols, consistency of journal code, year
and volume, pages for literature references, formatting of chemical formulae,
usual order of magnitude, spelling, etc. Consistency checks within the individual
datasets include atom coordinates, Wyckoff letters, site multiplicity, comparison
of chemical elements in chemical system, chemical formula, and comparison of
computed and published values. Further quantities for checking are cell volume,
density, absorption coefficient, interplanar spacings, Pearson symbol, space group,
cell parameters, refined composition, chemical formula, units, symbols for phys-
ical properties, Bravais lattice, diffraction conditions, site symmetry, anisotropic
displacement parameters, and so on. Special checking of the crystallographic data
includes comparison of the interatomic distances with the sum of the atomic
radii, comparison of interatomic distances within chemical units, checks on charge
balance, search for missed symmetry elements, and comparison with the type-
defining entry (cell parameter ratios, atom coordinates). Consistency checks within
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the entire database include comparison of densities, comparison of cell parameter
ratios for isotypic compounds, check for compulsory data, check of database links,
and so forth. Wherever possible, misprints detected in the original publications are
corrected. Since editing mistakes can never be completely avoided, all modifications
of the originally published data and interpretations of ambiguous data are stored
in remarks. The ESDD software further computes the following parameters: at.%
of the different elements, molar mass, refined composition and formula, computed
density, interplanar spacings from functions of Bragg angle, equivalent isotropic
displacement parameters, linear absorption coefficient, Miller indices referring to
the published space group setting. It converts compositions expressed in wt.% to
at.% and values expressed in various published units to standard units, including
units per mole or wt.% to units per gram-atom, respecting the number of significant
digits. As seen, an extreme care is taken to provide maximal quality of the
stored data.

2.4 Crystalline Structures

Currently, PAULING FILE contains more than 350,000 crystalline structure
S-entries. The minimal requirement for an S-entry in the PAULING FILE is a
complete set of published cell parameters, assigned to a compound of well-defined
composition. Whenever the published data are available, the crystallographic
data also include atom coordinates, displacement parameters, and experimental
diffraction lines and are accompanied by information concerning preparation,
experimental conditions, characteristics of the sample, phase transitions, and
dependence of the cell parameters on temperature, pressure, and composition.
In order to give an approximate idea of the actual structure, a complete set of atom
coordinates and site occupancies is proposed for S-entries where a prototype could
be assigned. The crystallographic data are stored as published but also have been
standardized according to the method proposed by Parthé and Gelato, using the
program STRUCTURE TIDY (Gelato and Parthé 1987). When relevant, they are
further adjusted so that the data for isotypic S-entries can be directly compared.
Derived data include atomic environments of the individual atomic sites, based on
the maximum gap method (Brunner and Schwarzenbach 1971; Daams et al. 1992),
and the Niggli-reduced cell. The S-entries are checked for inconsistencies within
the S-entry and by comparing different S-entries, using the program package ESDD
mentioned in the previous section. For 5% of the S-entries, one or more misprints in
the published crystallographic data are detected and corrected. Warnings concerning
remaining short interatomic distances, deviations from the nominal composition,
etc. are added in remarks. SI units are used everywhere, and the crystallographic
terms follow the recommendations by the International Union of Crystallography.

Similarly to the physical properties, all the data are extracted from the primary
literature. When available, supplementary materials deposited as CIF files or in
the other formats are used as data source. Approximately 10% of the processed
documents exist in an original version (e.g., Russian) and a translated version
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(English); duplicates are avoided, and both references are stored. Crystallographic
data, simulated by the ab initio calculations or optimized by the other methods, are
only considered being confirmed by experimental observations. Distinct S-entries
are created for all the complete refinements reported in a particular paper. For cell
parameters without published atom coordinates, an S-entry is prepared for each
chemical system and crystal structure. For example, for a continuous solid solution
between two ternary compounds, there will be three S-entries: one for each ternary
boundary composition and one for the quaternary system. The latter may contain
a remark describing the composition dependence of the cell parameters. For the
choice of the retrievable cell parameters, preference is given to values determined
under ambient conditions.

All the S-entries are subdivided into different categories, according to the
level of investigation: complete structure determined, coordinates of non-H atoms
determined, cell parameters determined and prototype with fixed coordinates
assigned, cell parameters determined and prototype assigned, only cell parameters
determined, etc. In addition to the crystallographic data, large amounts of infor-
mation concerning the sample preparation and experimental investigation are also
included in the PAULING FILE. Basic data are stored as published (for rapid
comparison with the original paper) and standardized (for efficient data checking
and retrieval and for a homogeneous presentation). The following database fields
may be present in a crystal structure S-entry: (a) classification, such as chemical
system, published and standardized chemical formula, modification, colloquial
name, structure prototype, Pearson symbol, space group number, Wyckoff sequence,
mass per formula unit, computed density, level of structural investigation etc.;
(b) bibliographic data, such as reference, authors, language, title; (c) published
and standardized crystallographic data, including detailed information on the atom
coordinates, etc. and transformation from published to standardized data; (d)
Niggli-reduced cell, including transformation from published to Niggli-reduced
cell; (e) isotropic, anisotropic displacement parameters; ( f ) published diffraction
lines, Bragg angle or equivalent parameter, interplanar spacing, intensity, Miller
indices, radiation, and remarks; (g) preparation, such as starting materials (purity,
form), method of synthesis, etc.; (h) mineral name, and locality; (i) compound
description, such as chemical analysis, stability, color, sample form, chemical
reactivity, measured density, etc.; ( j) determination of cell parameters and structure
determination, such as sample, experimental method, radiation, and conditions; (k)
figure descriptions, such as number in the original publication, title, parameters, and
ranges; and, finally, (l) editor’s or general remarks.

As said, each S-entry gets the structure prototype assigned. The structure
prototype is a well-known concept in inorganic chemistry, where a large number of
compounds often crystallize with very similar atom arrangements. The compilation
Strukturbericht (Ewald and Hermann 1931) started already in the beginning for
the twentieth century to classify crystal structures into prototypes, named by
codes such as A2, B2, or G1. Though these notations are still in use, structure
prototypes are nowadays generally referred to by the name of the compound for
which this particular atom arrangement was first identified. The PAULING FILE
uses a longer notation, which includes also the Pearson symbol (a lowercase
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letter for the crystal system, an uppercase letter for the Bravais lattice, sum of
multiplicities of all, fully or partially occupied atom sites) and the number of
the space group from the International Tables for Crystallography (Hahn 1983).
All datasets with the published atomic coordinates are classified into the structure
prototypes. Each structure prototype is defined based on the first experimentally
determined compound with the respective geometrical arrangement of atoms within
the unit cell. More than 36,000 different structure prototypes have been identified
and assigned to the S-entries. When not published, the editor also assigns the space
group setting of the published cell parameters.

There exist an infinite number of ways to select the crystallographic data (cell
parameters, space group setting, representative atomic coordinates) that define a
crystal structure. The number remains high even when the basic rules recommended
by the International Tables for Crystallography (Hahn 1983) are respected, due to
the allowed symmetry operations such as permutations, origin shifts, etc. It follows
that even identical or very similar atom arrangements may not be recognized as
such. The classification of crystal structures into structure prototypes is largely
facilitated by the use of standardized crystallographic data. The crystallographic
data in the PAULING FILE are stored as published but also standardized. This
second representation of the same data is such that compounds crystallizing with
the same prototype (isotypic compounds) can be directly compared. It is prepared
in a three-step procedure. First, the published data are checked for the presence
of overlooked symmetry elements and, if found, converted into a space group of
higher symmetry. Second, the resulting data are standardized with the program
STRUCTURE TIDY. Third, the resulting data are compared with the standardized
data of the type-defining database entry (Villars et al. 2018).

The atomic environments, also called coordination polyhedra, are defined for
each S-entry using the method of Brunner and Schwarzenbach (Brunner 1971;
Daams et al. 1992). One hundred different polyhedral types have been identified
in the PAULING FILE data. In most structures, the coordination numbers vary from
1 to 22. It should be noted that this purely geometrical approach was developed
for the intermetallic compounds and does not distinguish bonding types. As a
consequence, the selected atomic environment may include both cations and anions.
However, the method is simple to apply and useful in the majority of cases. Also,
this approach offers an additional possibility to check the crystal structure data
for geometrical correctness. The atomic environments can be used as the second
independent structure classification. For instance, one can easily find geometrically
similar prototypes. Notably, the PAULING FILE database supports geometrical
restraint criteria for retrieval. That is, one may request information for the crystal
structures containing, e.g., tetrahedra and octahedra.

2.5 Phase Diagrams and Distinct Phases

The phase diagram section of the PAULING FILE contains temperature-
composition phase diagrams for binary systems, as well as the horizontal and
vertical sections and liquidus or solidus projections for ternary, quaternary, and
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other high-order systems. Both experimentally determined and calculated diagrams
are processed. Primary literature is considered in the first priority. Also the diagrams
from a few well-known compilations, such as the compendium of binary phase
diagrams (Massalski et al. 1990) and the series of books on ternary phase diagrams
(Petzow and Effenberg 1988–1995), have been included. All the diagrams have
been converted to at.% and ◦C and redrawn in a single scale, so that the different
reports for the same chemical systems can easily be compared. Single-phase
fields are colored in blue and three-phase fields in yellow. The phases identified
on the diagrams are named according to the PAULING FILE conventions, but
also the original names are stored. Each phase diagram is linked to a C-entry,
which usually contains the following database fields: (a) classification, such as
chemical system and type of the diagram; (b) investigation, such as experimental
or calculation technique, APDIC standardization; (c) bibliographic data, such as
reference, authors, affiliation, language, and title; (d) original diagram details, such
as figure number in the publication, borders, scales, sizes, etc.; (e) redrawn diagram
details, such as concentration range, temperature, and conversion of concentration;
and ( f ) list of the phases present on the diagram, standardized phase name, name
used in the original publication, structure prototype assigned by the editor, structural
information given in the original publication, and link to a representative crystal
structure S-entry. For binary systems also the temperature and reaction type for the
upper and (or) lower limit of existence of the phase are stored.

The physical property, crystal structure, and phase diagram entries are related via
the distinct phases concept. At the database level, all three different types of data
(P-, S-, and C-entries) are linked to the distinct phases table. To prepare this table,
each chemical system has been evaluated. For example, the three major distinct
phases reported for TiO2 crystal (rutile, anatase, and brookite) are separated with
respect to the temperature or pressure. Then the reported physical properties or
crystalline structures of TiO2 are associated only with the corresponding distinct
phase. Finally, each C-entry (phase diagram) is formed by a particular set of the
known distinct phases. Thus the unique interlinkage of data is achieved. A certain
number of characteristics, attributed to the phases (compound classes, mineral
names, etc.), are stored in the distinct phases table. Each distinct phase obtains
a unique name containing a representative chemical formula, when necessary
followed by a specification such as “ht,” “rt,” “cub,” etc. There are the following
special cases. First, the phases that crystallize in the same structure prototype,
but are separated by a two-phase region in phase diagrams, are distinguished. The
same is true for the temperature- or pressure-induced isostructural phase transitions
where a discontinuity in the cell parameters is reported. Second, the structures with
different degrees of ordering have in some cases been considered separately, in
others not, depending on the possibility to assign unambiguously one or the other
modification. Structure refinements considering, for instance, split atom positions
are often grouped under the parent prototype. Third, the structure proposals, stated
to be incorrect in the later literature, have been grouped under a single phase
in agreement with the more recent reports. That is, e.g., an S-entry reporting a
hexagonal cell may in such a case be grouped under an orthorhombic phase. Fourth,
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the definition of a structure prototype used here suggests that a continuous solid
solution may smoothly shift from one prototype to another. Refinements considering
one or the other prototype are then grouped together. Fifth, the physical properties
reported ignoring the crystal structure, and in principle referring to ambient
conditions, are assigned to the “rt” modification, or, if the temperature dependence
is not known, to the most commonly observed modification. Sixth, by default
the paraelectric-ferroelectric phase transitions are assumed to be accompanied by
a structural transition, and different phases are considered above and below the
transition temperature. On the contrary, magnetic ordering is assumed not to modify
the nuclear structure to a significant extent, therefore not leading to the new phases.
Still there exist the chemical systems that are little explored, so that the reports in
the literature are contradictory. The phase assignment becomes here very difficult,
and the list of distinct phases will sometimes contain more phases than there exist
in reality. It should be noted that there is a certain amount of subjectivity when
assigning a phase identifier. Nevertheless, this approach represents a substantial
advantage.

2.6 Applications

Thanks to the large amount of information stored in dozens of tables and hundreds of
distinct database fields, the PAULING FILE offers almost unlimited possibilities for
retrieval. It can of course be used for all kinds of trivial search, based on the chemical
system, or literature data, but also much, much more. The conversion to standard
units facilitates the search for properties within a particular numerical range, and the
assignment of distinct phases plays an essential role, making it possible to combine
searches on data stored in the three parts of the database: crystal structures, phase
diagrams, and physical properties. The hundreds of interconnected database fields
can be used to create different products. The PAULING FILE data are included in
various printed products, as well as offline and online software, such as desktop
catalogs, simulation environments, materials investigation toolkits, etc. Some of
these products contain only structure data, others phase diagrams and crystallo-
graphic data, and others the three groups of data. Following the preference of the
producers, some products contain only the published cell parameters, others only
the standardized cell parameters, and yet others both published and standardized
crystallographic data. Some of the products are limited to the PAULING FILE data,
whereas others also contain data from other sources.

The Materials Platform for Data Science (MPDS) is a recent online infras-
tructure, presenting all the three parts of the PAULING FILE data. It contains
nearly 70,000 phase diagrams, over 350,000 crystalline structures, and nearly
700,000 physical property entries. About 300,000 scientific publications in materials
science, chemistry, and physics serve as source for these data. About 80% of
the data can be requested remotely in a mass manner (via the so-called MPDS
application programming interface) in a developer-friendly format, ready for any
external modern data-intensive applications. Next sections give an overview of this
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PAULING FILE implementation, its technical details and usage scenarios, as well
as ongoing work in this field in general.

3 Materials Genome andMaterials Platform for Data Science

3.1 Materials Genome Background

The concept of materials genome was taken from bioinformatics, referring to the
Human Genome Project, publicly funded initiative started in 1990 and successfully
ended in 2003 (Schmutz et al. 2004). In June 2011 the US President announced the
multiagency Materials Genome Initiative to help US businesses and universities to
discover, develop, and deploy new materials twice as fast, at a fraction of the cost. In
2012, Materials Genome Initiative commitments include $12 million of research at
the Department of Energy and $17 million in materials research at the Department
of Defense. To the end of 2014 several dozens of universities were participating.
The oldest and, probably, the most recognized participant is the Materials Project,
an undertaking of the groups of Gerbrand Ceder and Kristin Persson (Lawrence
Berkeley National Laboratory). The Materials Project team had identified hundreds
of new compounds, several of which now function as lithium battery electrode
materials. The software toolkit for materials design, development of the Materials
Project, simplifying routine computational tasks, is actively used by about 100
scientists in different organizations around the world, and approximately every
second user contributes in the open-source code. Additionally, there exists an open
database, prepared using this toolkit (approx. 100,000 compounds). Importantly,
the Materials Project team on a half consists of the experimental scientists, who
deal with lab synthesis. This leads to an incredibly strong collaboration of theory,
modeling, software development, and experiment.

The first European counterpart of the Materials Project was the NoMaD Project,
started in 2013 from the collaboration of Fritz Haber Institute (FHI) of the Max
Planck Society, Berlin, and Humboldt University of Berlin (HU) with the aim to
create an international ab initio materials science data repository. In the end of
2014, the first version of NoMaD user interface was publicly launched, and in 2015
NoMaD Project was successfully funded by European Union’s infrastructure call
for Centers of Excellence (CoE) in computational sciences. As of 2017, the NoMaD
data repository contains more than three million ab initio simulation files (more than
10 Tb disk space on estimate), contributed by the community and taken from the
other repositories. In total, more than ten data formats for all the major well-known
quantum simulation packages are supported. Based on these data volumes, the
online materials science encyclopedia and the software analytics toolkit are publicly
released. A possible disadvantage of NoMaD is the focus on the community’s data
centralization, which is currently not very well accepted in the materials science
community.

Speaking about the publicly funded projects of materials genome, an ongoing
commercial activity should also be mentioned. The notable product with the long
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history (since 1998) is MedeA scientific software environment (Christensen et al.
2017), which presents one of the most advanced and sophisticated simulation
desktop toolkits. The MedeA employs computational workflows and allows to
manage high-throughput database-driven simulations. Also there are two prominent
materials informatics startups in the San Francisco Bay Area, USA: Exabyte and
Citrine. The focus of the Exabyte software platform is the high-throughput ab initio
simulations of the materials, performed in the cloud, i.e., at the commodity hardware
cluster infrastructure, rented at one of the public vendors. As a simulation engine,
the well-known VASP package is employed. In two recent years the team was able to
perform a comparative analysis of about a thousand different materials by utilizing
extensive on-demand scalability of the developed cloud platform (Bazhirov et al.
2017). The total costs of the runs ended up not exceeding a few thousand US dollars.
The Citrine’s online data platform is called Citrination (O’Mara et al. 2016). It was
launched in 2015 and now houses over several millions of data points. So far the
platform has received various contributions from about 2000 different institutions
worldwide, including universities, government laboratories, and companies. The
disposed data are completely free and opened. Citrine itself contributes to its
platform, searching and disposing the datasets from the opened online sources. The
platform provides a free mass access interface for all its data. Citrine also claims
to develop the artificial intelligence-based tools that enable new insights from the
collected materials data.

It is seen that all the abovementioned initiatives have one main feature in com-
mon, namely, they build their own software infrastructures to process information
efficiently and tackle the challenge of materials big data. They also develop the
novel data-intensive analysis methods. The development of such tooling is mostly
conducted within the open-source paradigm. This means, the program code of the
complex tools is provided for free, and anyone can adopt it for own aims. This
has a strong rationale. After a certain complexity threshold, the software product
becomes practically unusable, because only a very limited group of professionals
are able to deal with it. Often such people are not motivated by money, but they can
be attracted by chances and challenges of the possible technological breakthrough.
Thus, open-sourcing the parts of the code is great advertising, which allows to attract
such talents that could hardly financially be attracted. If the code is popular enough
for the outside contributions, a force multiplier is created that helps to get more work
done faster and cheaper. More contributors mean more use cases being explored and,
finally, the more robust software. Importantly, the user community must be grown
around the open-source tooling. Normally such community is fairly amorphous
and requires guidance and patronage. The expenses for the development are well
covered by the talented contributions from outside, reputation and acknowledgment,
which, in turn, can be converted to the other means of profit. It is also planned to
open-source the certain parts of the software of Materials Platform for Data Science.
And a part of the PAULING FILE data is now already opened online under the
Creative Commons Attribution 4.0 International license. These are (a) all entries
found by keywords “cell parameters – temperature diagrams” and “cell parameters –
pressure diagrams,” (b) all data for compounds containing both Ag and K, and (c)
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all data for binary compounds of oxygen. In total, (a–c) present quite a rich dataset,
suitable for educational data-mining purposes.

3.2 Development of the PAULING FILEMaterials Infrastructure

As of today, materials informatics is a collection of recipes taken from computer
science and adopted for the modern materials science. The main difficulty is
purely technical from an academic point of view – how to handle materials big
data efficiently. Here some recipes are discussed. All they were considered while
development and maintenance of the PAULING FILE online retrieval software –
MPDS (Materials Platform for Data Science).

One of the possible ways to tackle complexity is the unified modeling lan-
guage (UML), general-purpose, developmental, modeling language for software
engineering (see e.g., Miles and Hamilton 2008). From a bird’s eye view, UML
is a convention of drawing concepts in a human-understandable manner. Although
it cannot be interpreted by a computer, UML provides formal description of the
problematic field, which is then much easier to encode in a computer programming
language. Another UML advantage is its standardization and high popularity in the
field of software engineering (suited for collaborative work). The concepts in UML
must be related with the defined relationship types.

The PAULING FILE concepts as implemented in the MPDS platform are
represented in Fig. 1, with the very short UML legend at the bottom. Notably,
UML provides a clear formal way to understand, how a certain problem domain
is organized. Namely, it is seen at Fig. 1 that (a) any data-mining tool (e.g.,
visualization) is based on the MPDS PAULING FILE data; (b) data are subdivided
into three parts: crystalline structure part (S), physical properties part (P), and phase
diagrams part (C); (c) each part is represented by entries; and (d) each entry is
concerned with the relevant phase and scientific publication. Also, there are users
with the different data access permissions. Thus, the UML presents the important
guideline for the further development.

The MPDS is an online software, working according to a client-server architec-
ture. There are many advantages of the online products over the offline products:
absence of installation, cross platform operation, no special requirements to the
client PC, transparent updates, enhanced security and reliability, and more. With
the ubiquitous penetration of the Internet and the wide availability of the server
resources, the online model becomes clearly preferable. The details are presented
in Fig. 2.

Generally, the World Wide Web is based on the idea of interconnection. Indeed,
in a modern environment no isolated software per se makes sense, and each
application communicates with the others. In order to provide fast and efficient
interaction experience and not to develop a new access interface for each case, the
application programming interfaces (APIs) are commonly used. The API regulates
communications between any kind of the software (be it a complex of data-mining
programs, simulation platform, or any other big data consumer). The main idea is
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Fig. 1 UML diagram for PAULING FILE concepts, as implemented in the MPDS

that the functionalities are collected in a single place and exposed (encapsulated) via
the online API. The APIs in the online medium normally adhere to the principle of
representational state transfer or REST (Fielding 2000). The REST presents guiding
constraints for client-server software architecture and could be called as meta-API.
It is also employed for the MPDS API (see Fig. 2), which presents all the PAULING
FILE data in a developer-friendly, machine-readable way, using the opened formats,
such as CIF, JSON, and MIF (see below). Importantly, the API is not only how the
clients communicate with the server. In a wider sense, online API is a software
architecture, declaring the way of all the communications. This way the audience
is not bound to the existing human-oriented graphical user interfaces (irrespective
of their convenience) and able to use the service provider maximally efficient for
their aims.

Nevertheless, much attention at the MPDS is given to its graphical user interface.
The search input field allows to type different combinations of basic search terms
seamlessly at once, so that they are correctly recognized and the matching entries are
shown. The algorithm, responsible for treatment of such seamless searches, works
as follows. First, the stop-words (“the,” “and,” “about,” etc.) are filtered. Then,
the words are checked to belong to the one-term categories: chemical formulae,
chemical elements, and crystalline lattices. These categories cannot contain more
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Fig. 2 Client-server architecture of the MPDS

than a single word. The found words are interpreted and excluded. Then, the
remaining words are checked to belong to the materials classes and physical
property categories. The matches of the longest combinations of words are checked
in the beginning, and then the shorter combinations are checked. Unrecognized
words are marked as “ignored.”

From the very beginning of MPDS development performance of all the sub-
systems was a cornerstone. This is especially important for the centralized online
software, when the server is a single point of failure. Generally, for any online
project it is always recommended to focus on the operation speed. It should be
noted that the software designed for 5 simultaneous users differs considerably
from that designed for 50 or 500 simultaneous users. There are two approaches
to scaling the performance: vertical and horizontal (Michael et al. 2007). Vertical
scaling means the more powerful server is deployed with the increased loads, but
the software architecture remains the same. This solution is a quick and efficient,
although limited. First, the more powerful, the more expensive is the server, and
the dependence is not linear. Second, there is a limit of computational capacity per
a single server. And the database performance is normally saturated much lower
this limit. So for a database after a certain tolerance vertical scaling makes no
sense. The solution in this situation is the horizontal scaling, when the software
architecture is changed in such a way to distribute the increased loads evenly
among the server cluster, consisting of inexpensive commodity hardware. The idea
is that the new replicas with the MPDS software are added to the server cluster by
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simple quick copying. A new replica joins the server cluster and starts accepting
the incoming HTTP requests. Furthermore, if a replica fails by whatever reason,
it can be automatically replaced by a new one. This way the server cluster stays
highly available, and even the huge loads cannot influence the performance, since
more cheap replicas could be added. However while the server price remains under
control, the development is complex and requires time.

3.3 Storage and Exchange of Materials Data

Similar to any other scientific data, materials data are commonly stored in the
files and databases. The files usually present raw data (simulation or measurement
logs, compressed archives, etc.) Reusable processed data are normally stored in the
databases. It should be noted although that such subdivision is very conditional,
moreover a file could be a database and vice versa (e.g., HDF5 container, SQLite,
etc.). A database model is a type of data model that defines the logical structure
of a database and fundamentally determines in which manner data can be stored,
organized, and manipulated.

The MPDS employs several database models, in particular, relational and
semantic graph model. Additionally, the document-oriented model is used as an
intermediate step while preparing data. In the document-oriented model each PAUL-
ING FILE entry is treated as a document. Such documents may have varying number
of properties and are all stored in a single giant database table. All the document
properties are searchable. The model is implemented using the PostgreSQL DBMS.
Being very simple, this model allows unique flexibility (single table, arbitrary data
queries). The cost of such flexibility is very low access speed. Being inappropriate
for production, it suits very well for development. Being robust and mature, the
relational model is a core of the MPDS production system. It is also supported by the
PostgreSQL DBMS, in addition to the intermediate document-oriented model. The
standard data manipulation language within the relational model is called structured
query language (SQL) and based upon the relational algebra. Eventually, the single
table from the document-oriented model is taken, refined, and split into many
simpler tables related to each other. This process is called normalization (Teorey
et al. 2005). This way much greater access speed is achieved. The refined table
structure is however tightly bound to the chosen usage scenario and does not provide
extra flexibility.

The disadvantage of the relational model is that the data must obey the strict rules,
defined as the database schema. Normally, these rules do not imply an existence of
other terms at the database level outside an application business logic. However,
the expert systems and artificial intelligence applications must act in an opened
world, making inferences and determining new facts, basing on the newly collected
information. Their databases must be able to include the new terms and to follow
the new logic dynamically and therefore do not fit into the traditional relational
paradigm. Usually, such databases employ the so-called semantic Web approach
(DuCharme 2013). The data in such model are represented as a graph. Such graph
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is comprised by a set of statements in the form “subject-property-object,” called
triples. Using the semantic graph database model, the unprecedentedly flexible and
expressive queries on top of the knowledge graph become possible. The MPDS
currently uses the semantic graphs only indirectly, complementary to the relational
model; however much wider adoption of this model is planned. As a back end for
the semantic graph model, the Virtuoso DBMS is employed.

As mentioned, the development of the single data exchange format in materials
science is an extremely complex task. Nowadays computer science suggests a very
convenient paradigm, when a specific information container is accompanied with
the rules definition, i.e., an automatic validation tooling. There are various examples
following this idea: SQL and schemata for the relational databases, A-Box and
T-Box for the semantic graphs, XML and XSD for the machine-readable data
transfer and markup, JSON and schemata for the human-readable data transfer, etc.
In this respect, two successful achievements in developing the common exchange
format in materials science should be mentioned: Crystallographic Information File
(Hall et al. 1991) and Materials and Physical Information File (Michel and Meredig
2016). Both of them are supported at the MPDS and partially at the other mentioned
materials informatics infrastructures.

The Crystallographic Information File (CIF) was established in the 1990s by the
International Union of Crystallography (IUCR). CIF is based on a text container
called STAR (Self-Defining Text Archive and Retrieval), where the physical
properties, obtained, e.g., as a result of X-ray diffraction or theoretical modeling,
are labeled by the standard tags. The standard tags determine the parameters of the
unit cell, symmetry, atomic positions, relevant scientific publication metadata, etc.
These tags are defined in the external CIF dictionaries (cf. XSD schemata for the
XML documents), so it is possible to validate a CIF file against a CIF dictionary
and even to infer the new physical properties from those available. The difference
is that the CIF format allows the arbitrary tags. They are ignored by CIF parser
but later can become the part of standard CIF dictionaries, according to IUCR.
Furthermore, CIF format supports the relational data model, so one can refer to
the specific atom in the crystalline structure by its identifier. The drawback is the
absence of a convenient multilevel hierarchy support, so here the STAR container
concedes to XML. CIF format is used for the online crystal structure visualization
at the MPDS, and no other proprietary or self-made formats are employed. Only the
Web browser is needed for visualization, and no plugins, applets, or other software
is required. Normally, structure rendering is done on the GPU (i.e., graphical card).
However, if the GPU is outdated or not available, rendering is done on the CPU
(central processor). In this case the quality of rendering is reduced. The total size
of the code served online for the rendering is only about 150 Kb, and after the code
is loaded, no further Internet connection is required. The CIF visualization at the
MPDS is based on the open-source technologies.

The JSON format is simpler, more flexible, and more permissive. Historically, it
is much more common for the software development than a narrow-purpose CIF.
The container of the Materials and Physical Information File (MIF), introduced
by a Citrine startup, is built on top of JSON, taking all its advantages. JSON
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also provides its own schema approach, used for validation, documentation, and
interaction control, i.e., a contract for the JSON data required by a given application,
and how that data can be modified. JSON schemata for all types of the PAULING
FILE data, including MIF specifications, were developed in 2016 and now are
publicly available. The JSON format, including MIF, is the most widely adopted
within the mentioned materials infrastructures.

3.4 Computer-Assisted Data Analysis

Undoubtedly plotting and visualizations are extremely helpful for data analysis. One
of the interesting plotting features of the MPDS is the semantic graphs of terms.
Generally, all the MPDS data are a giant semantic graph of the structured knowledge
in materials science, accumulated by the humankind. Unfortunately, no human
being may observe this graph as a whole. The online interactive visualizations
attempt to show only tiny portions of a giant MPDS semantic graph, related to
the particular user’s input, in a very simplified form. Fortunately, modern semantic
technologies (DuCharme 2013) are able to comprehend a giant MPDS graph all
at once. This is the planned direction of the MPDS platform development in
future. Another type of visualizations, the dynamically rendered phase diagrams
(C-entries), displayed online at the MPDS, are fully digitized, programmatically
drawn plots. The rendering engine works in all the modern Web browsers, requires
no plugins, and is based on the open-source Web technologies. The phases at the
phase diagram are associated with the parametric equations in the form x = x(t),
y= y(t), 0 <= t <= 1, where x stands for the composition and y for the temperature.

Recently the MPDS has launched the first version of its machine-learning
predictions. To demonstrate some practical usage scenarios of the materials data-
mining using MPDS API, a relatively unsophisticated yet powerful predictive
machine-learning algorithm, the decision tree regression, was chosen. A decision
tree is a statistical model, which describes the data going from the observations
about some item (e.g., a crystalline structure) to the conclusions about the item’s
target value (e.g., a corresponding physical property). The MPDS data contain
crystal structures with the corresponding physical properties, so it is feasible to train
a model on this dataset. The following physical properties were chosen: isothermal
bulk modulus, enthalpy of formation, heat capacity at constant pressure, and melting
temperature. Multiple decision trees were built by repeatedly resampling training
data with replacement and voting for the trees yielding a consensus prediction.
This algorithm is known as a “random forest” regressor. The “random forest” is
a statistical estimator that fits a number of classifying decision trees on various
subsamples of the dataset and use averaging to improve the predictive accuracy
(Breiman 2001). Its presently used state-of-the-art open-source implementation is
very efficient and takes seconds to train a model from MPDS data on an average
desktop PC (McKinney 2010).

The evaluation process was repeated at least 30 times to achieve a statistical
reliability. The results of a randomly chosen evaluation process are shown in Fig. 3.
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Fig. 3 Formation enthalpy, kJ g-at.−1: predicted versus factual values; mean absolute error is
42 kJ g-at.−1, comparable with the results of the ab initio simulations

The prediction quality is acceptable and on average may even compete with the
ab initio simulation results. The difference is that the simulation normally requires
hours or days of computation time, whereas the machine-learning model yields the
results in milliseconds on the same hardware. Another difference is that the ab
initio simulations in practice require careful fine-tuning of the method, whereas the
chosen method of machine learning is a black box, where no initial setup is needed.
The disadvantage of the machine-learning model is that no physical meaning of
predictions is implied. The underlying complex physical phenomena, as well as the
lack of training data, may lead to the poor prediction quality. The size of the training
dataset should not be necessarily huge, but there is some minimal threshold. For
example, predictions using the smaller dataset of the open MPDS data demonstrate
worse quality. Here it is important to note that nowadays more accurate machine-
learning techniques exist, such as deep learning neural networks, and the quality of
predictions may be further increased.

In the search for the new technological opportunities in the materials data
mining, the end point of the route is the artificial intelligence techniques. This is
an understandable fact, since the more sophisticated technology, the more similar
its intellectual output to the human’s one. Historically, there are two approaches
to the construction of the intelligent agents (Jones 2008): statistic (“bottom-up” or
connectionist) and deterministic (“top-down” or symbolic). The statistic approach
is known as “machine learning,” i.e., the machine is expected to discover the world
on its own, as the humans do. The deterministic approach is known as “inference
engine,” i.e., the facts are prepared in advance and considered logically. This
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approach will be shortly reviewed below. The so-called ontologies are employed.
The language for ontology expression is called OWL (ontology Web language)
and based on the logical calculus, used in mathematics, philosophy, linguistics,
and computer science (Baader et al. 2007). Applied to materials science, the
ontologies are almost unknown, although this term appears in the publications last
two decades from time to time. Conceptually, the ontologies and databases look
similar. A database consists of the schema and data (i.e., arrangement of tables
plus their content). An ontology consists of the axioms and facts (called T-Box
and A-Box). There is however an important difference compared to databases.
A database schema acts as constraints on structure of data, whereas ontology
axioms act as implications or inference rules. The logical expressiveness of the
ontology axioms can be much higher (richer) than any database schema. Currently
the schema of the MPDS platform database is quite carefully tuned to meet the
designed usage scenarios. On the other hand, this is also a potential limitation. Being
highly optimized to satisfy online searches, the MPDS platform database does not
however perform very well for nonstandard complex queries and hierarchical data
manipulations. In this sense, the ontologies fit the MPDS data model very well.
Nonetheless, currently the most important drawback of the ontologies compared to
the databases is that the performance cannot be unfortunately even theoretically
guaranteed, as the OWL logical calculus is extremely complex mathematically.
Apparently, all the successful production deployments of the ontologies somehow
overpass this limitation (Cuel and Young 2015). Notably, the ontologies per se do
not present much practical sense. In fact, they are just logical constructions attached
to the data. Only the whole set of accessory technologies and implementations
(called the semantic web stack) is able potentially to shed more light to the laws
of nature, enclosed in the materials data.

3.5 Data-Centric Observations

Following Dmitri Mendeleev and Lothar Meyer, who observed periodical patterns
in the properties of the chemical elements in the 1860s, one may try to find
similar patterns in the whole range of the known materials and make a step
toward hypothetical periodic table of materials. Based on the observations across
the PAULING FILE database, the 12 empirical principles were formulated (Villars
1995; Villars et al. 2008; Villars and Iwata 2013). These principles can be called the
cornerstones of nature, and all they can be explained using the modern electronic
structure theory. They define (a) the compound formation, (b) the ordering of
chemical elements within a structure prototype, and (c) the linkage between the
position of a chemical element in the periodic table and its occupied sites in the
structure prototype.

First, compound formation: the atomic size, electrochemical, valence-electron,
and cohesion energy factors are governing compound formation. For example,
one can observe that about 30% of all chemical element combinations form no
compounds within the binary, ternary, and quaternary systems.
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Second, correlation of the number of chemical elements and atomic environment
type: the maximal diversity of the atomic environments is achieved within the binary
and ternary inorganic compounds. The quaternary, quinary, and other higher-order
compounds strongly prefer the atomic environment types with the low coordination
number. One may also call this observation as a surprising reduction of geometrical
diversity with the increasing element count.

Third, active concentration ranges: there is the systematic occurrence of daltonide
inorganic phases for binary, ternary, and quaternary inorganic systems within the
certain rather limited (active) concentration ranges.

Fourth, stoichiometric ratio condition: there are highly preferred stoichiometric
ratios for the vast majority of daltonide compounds.

Fifth, compound simplicity: the vast majority of the inorganic compounds have
on average only ten atoms per unit cell, thus showing only three or fewer atomic
environment types within the crystal structures. One may note here that the nature
indeed prefers simplicity.

Sixth, compound symmetry: 10% of the space groups cover nearly 70% of the
inorganic compounds. The most frequent 11 space groups are 12, 62, 63, 139, 166,
191, 194, 216, 221, 225, and 227. As seen, the high symmetry is preferred.

Seventh, atomic environments arrangement: 18 out of about 100 possible atomic
environment types are highly preferred and were found for 90% of all the PAULING
FILE compounds. In particular, the most frequent types of polyhedra are tetrahe-
dron, octahedron, cube, tri-capped trigonal prism, four-capped trigonal prism, icosa-
hedron, cubooctahedron, bi-capped pentagonal pyramid, and anti-cubooctahedron.

Eighth, chemical element ordering tendency: only about 30 structure prototypes
have more than 1000 representatives, and the 1000 most populous prototypes and
their representatives cover the majority of the crystalline structures of the PAULING
FILE.

Ninth, correlation of the structure prototype and the periodic system: the vast
majority of the crystalline structures show a very strict regularity between the
position of the chemical element in the periodic system and its Wyckoff position
occupation. This is confirmed on an example of the 1000 most populous prototypes.

Tenth, linking of structure and stability: the atomic size, electrochemical,
valence-electron, and atomic number factors determine the crystalline structures
of the intermetallic compounds. Again, this is applicable to binary, ternary, and
quaternary systems. One may reveal clear patterns for, e.g., former versus non-
former systems, iso-stoichiometric structure stability maps, and complete solid
solubility between binary compounds within the same prototype.

Eleventh, generalized atomic environment type stability: using the periodic
number (from Lothar Meyer’s periodic table), one may subdivide different atomic
environment types into distinct stability domains. It was found that the chemical
elements with the periodic number more than 54 control the atomic environment
types, independently of whether they act as the central or coordinating atoms.
Thus, there exists a clear separation between the possible and impossible atomic
environment types. Interestingly, the diversity of atomic environment types is very
much reduced for quaternaries, as compared to binaries and ternaries.
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Twelfth, complete solid solution stability: the atomic size, electrochemical, and
valence-electron factors control solid solubility. For example, in a ternary system,
where two of the binary boundary systems have the same structure prototype, one
may predict whether a complete or limited solid solution is formed. Similarly,
for a given chemical element, either a limited or extended solid solubility can be
predicted.

As seen, all intrinsic physical properties of a single-phase inorganic solid are
strongly linked to its crystal structure, emphasizing the importance of the crystal
structure classification. And the 12 principles outlined above can only be discov-
ered by the examination of a large amount of critically evaluated experimentally
determined data. They ultimately lead to the restraints, which are a requirement for
the development of a practicable and trustworthy computational materials design
approach.

3.6 Applications

A trustworthy linkage between the published experimental inorganic solids and
the high-throughput DFT calculations opens the new perspectives of the database-
driven, data-intensive research and discovery of the new materials. At the moment
two such high-throughput computational initiatives in China and Switzerland are
starting to employ the MPDS API with the PAULING FILE data.

The majority of nowadays’ practical materials science problems (clean energy
sources, energy storage, superconductivity, etc.) are concerned with the big amounts
of the complex knowledge to be assimilated, if not by the gifted humans then by the
artificial intelligence agents. With the progress of the neuroscience and medicine,
shedding the light on the nature of the human brain, new powerful computer science
techniques emerge and later find their application in materials science. However,
development of the complex tools in a closed (proprietary) environment is extremely
difficult and even inefficient. This is why an academic tradition of openness and
free exchange of the ideas realizes in an open-source strategy, showcasing the
economically advantageous altruism.

4 Summary

The PAULING FILE, a unique and probably the oldest effort on organizing
the materials data, was reviewed. Starting from the foundations of materials
science, such as the taxonomy of physical properties, concepts of the structure
prototypes, phases, phase diagrams, etc., it spans to the modern data-intensive
science, employing the novel data storage and analysis techniques and providing
high-quality materials insights, as implemented in the MPDS online platform.
This is important while the efficient and quick knowledge exchange in materials
science is obstructed, ahead of today’s big data challenge. The other efforts and
their contributions to the materials informatics are also noted. An importance of
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fostering the emerging ecosystem of today’s materials informatics is emphasized. It
is based on the standards of JSON, MIF, and CIF, supporting the databases, virtual
laboratories, connected with the online REST APIs, which tend to become the
software infrastructure backbones. A conceptual UML modeling of the PAULING
FILE at the highly abstraction level was showcased. Three types of the PAULING
FILE scientific data are highly interlinked, therefore, inseparable within the MPDS
online platform. The rich data structure assumes combination of storage approaches,
in order to benefit of their advantages and mitigate deficiencies at the same
time. Exploring the large amounts of different materials data, a holistic view on
inorganic substances may be presented. Coupled with the high-throughput ab initio
simulations, it can provide a key to the discovery of materials genome, playing a role
of periodic table for entire set of materials. There are certain hopes for the artificial
intelligence techniques, automatically generating the new materials discovery ideas,
and, citing Linus Pauling, the best way to have a good idea is to have lots of ideas.
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Abstract

The Crystallography Open Database (COD, http://crystallography.net/) is as of
the time of writing the largest open-access collection of mineral, metal organic,
organometallic, and small organic crystal structures, excluding biomolecules that
are stored separately in the Protein Data Bank (http://wwpdb.org/). Unlike other
existing chemical crystal structure databases, the COD is fully open – all its
structures may be downloaded, used, and re-disseminated without restriction,
along with the results derived from them. Currently, the COD contains >385,000
records and is growing constantly, encompassing most structures published in
peer-reviewed academic press and donations by individual researchers. This
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article describes how data are organized in the COD and how the database can
be queried, downloaded, and processed for various purposes.

1 Introduction

X-ray crystallography is an extremely powerful method for determining inner
structure of the condensed matter. Soon after the discovery of X-rays (Röntgen
1896) and the first records of their diffraction on crystalline samples (Friedrich
et al. 1912a, b), the number of structures determined by this technique started
to grow. An explanation of the X-ray scattering using first principles (Bragg and
Bragg 1913; Bragg 1913) allowed determination of structural models for a vast
variety of solid materials in a uniform way, from simple inorganics to very large
biomolecules. As more and more crystal structures were appearing, it became
evident that the numbers (such as crystal unit cell parameters, atomic coordinates) in
their descriptions, made uniform by the availability of the common scattering theory,
possess a great value themselves and efforts to collect them systematically were
started. The first collections were in paper form (Hermann and Ewald 1931; IUCr
2017c; Kitaigorodsky 1955), and numeric data were accompanying crystallographic
publications in journals dedicated for this field from the very first publications (for
instance, in the Acta Crystallographica journal started by the IUCr in 1948 (Clews
and Cochran 1948).

Growing availability and power of electronic computers allowed crystallogra-
phers to use them for structure determination and prompted the idea that crystal
structure data can also be handled automatically (Brown and McMahon 2002). A
first dedicated crystallographic database, the CSD, was established by the CCDC in
1965 (Groom and Allen 2014) to collect structures of small organic molecules and
embraced computer-assisted methods for information storage and retrieval (Allen
et al. 1979). Data about inorganic crystals (Kaduk 2002), alloys (White et al. 2002)
and powder diffraction data (Kabekkodu et al. 2002) were historically kept in
separate archives. Today, we have a whole range of databases, differing by their
scope, size and licensing model, covering various aspects of crystallographic data
(Table 1).

As seen in from the Table 1, various licensing models were employed to support
operations of the databases. About a third of all resources, and some of the oldest
and the largest ones, use a subscription-based model, where a user of these databases
must agree to a license and is restricted with respect of what he or she may do
with the data obtained from the resource. As long as the main vehicle of database
dissemination were paper editions or magnetic tape reels that could be used only
in computer centers, such situation seemed fairly acceptable. In the epoch of
ubiquitous computer access and with the advent of the Internet, however, researchers
expressed concerns that certain licensing clauses are overly restrictive. So, the
restriction to disseminate derived results was mentioned as an impediment for
scientific work (Baldi et al. 2011; Andronico et al. 2011). As a result, several modern
databases were created anew, following an open-access dissemination model, and
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in certain cases can be used in situations where licensing requirements are too
restricting (Sadowski and Baldi 2013). Among them, the Crystallography Open
Database (COD) is currently the largest and the oldest open resource of small
molecule crystal structures, providing access to data in mineralogy and chemical
crystallography and placing all its collection in public domain.

2 A Short History of COD

The COD project started as a community initiative, when crystallographers on the
SDPD (Structure Determination by Powder Diffraction) discussed possible modes
of crystallographic data dissemination. It was 2003, computers were becoming
cheap, Internet connections widely available and free/libre open source software
(F/LOSS) ubiquitous. Armel Le Bail raised a question whether it is possible to
build an entirely open and free for everyone to use crystallographic database by
joining community efforts. Answering that question, Michael Berndt (1964–2003)
listed three conditions that were necessary and sufficient for community resource
creation and curation: “A small team of engaged scientists with some experience
in database and software design to coordinate the project; the authors (i.e., the
scientific community = you) who provide the project with database entries /. . . /; free
software (a) for maintaining the database, (b) for data evaluation and calculation
of derived data.” With this plan in mind, the COD project started and turned out
to be a viable alternative to the top-down, heavy-funded database projects. From
2003 to 2007, the COD database master copy was maintained by Armel Le Bail
at the Le Mans University in France. In 2007 its collection of 50,000 records
was ported to the Institute of Biotechnology in Vilnius, Lithuania, the software
development for the COD, and database maintenance was continued. When the
Institute of Biotechnology was merged with the Vilnius University in 2011, the
COD development continued by the joint team from the Vilnius University Institute
of Biotechnology and the Faculty of Mathematics and Informatics.

Despite the several transfers of maintainership, the COD is governed by an
international COD Advisory Board (AB), listed on the COD Web site and operating
via the mailing list. The COD AB establishes the COD data management policies
and sets inclusion criteria for the COD data. In this way, a continuity of database
quality is maintained.

During the period of 10 years since 2007, the COD was growing constantly and
attained >385,000 records in 2017 (Fig. 1). This was possible with the introduction
of the new data deposition Web site (Fig. 2) that allowed both manual and automatic
uploads of data to the COD and after development of automated data collection and
deposition software that deposits available structures to the COD automatically. This
automation in turn is highly facilitated by the introduction of the Crystallographic
Interchange Framework (CIF) (Hall et al. 1991; IUCr 2017b). The CIF framework
was initially used to facilitate crystallographic paper publication and to reduce
typing errors in data by providing automated means of crystallographic data
processing (Brown and McMahon 2002). Introduction of electronic data handling
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Fig. 2 The Crystallography Open Database Web site

in the publication process significantly reduced typing errors in data publication,
a significant step towards reliable data reuse. Not only that: availability of crystal
structure descriptions in a standardized, machine readable form as supplementary
material for scientific publications greatly facilitated reuse of that data. As a result
the COD data acquisition subsystem can ingest automatically all necessary values
and formulate structure description records, using information publicly available
with the IUCr publications and from journals of some other publishers that make
the necessary information publicly available. The same CIF framework makes
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it possible for the COD to present all its data collection in a widely accepted,
standardized form, so that researchers can use the same software to process the
COD CIFs as for the outputs of structure determination programs or from journal
Web pages.

The data collection procedure conducted by the COD is not completely straight-
forward, though. Virtually all structures, even though represented in standard
CIF format next to the publications, lack essential metadata such as publication
bibliography; sometimes computed items such as cell volumes or space group
names are missing or presented in a non-standardized form. Such information is
automatically inserted by the COD data processing pipeline (Gražulis et al. 2009).
Moreover, a non-negligible part of supplementary files, although it does contain
necessary data in a form similar to the CIF, does not strictly follow the CIF syntax.
Since the number of such cases was too large to be corrected manually, an error-
correcting CIF parser was implemented (Merkys et al. 2016). The same procedure
is followed when data is deposited by researchers into the COD using the Web
deposition interface (Gražulis et al. 2012). In this way the COD ensures that all
structure descriptions that enter its collection are syntactically correct, i.e., conform
to the syntax defined by the IUCr (2017a).

With this setup, the COD is ready to grow further, to provide open access to
crystal structure data for researchers and all interested parties, and to evolve to
meet challenges of the new millennium. Computing landscape changes rapidly,
with new techniques, languages, formats and protocols coming and going every day,
and computer architectures changing fast enough so that any reasonable scientific
archive must outlive many generations of computer software and hardware. The
basic principles of the COD design and the successful operation of the COD for
more than a decade hint that the methods chosen by the COD founders were sound
and that the COD will successfully evolve into the future.

3 Scope and Contents of the COD

The COD collects machine-readable descriptions of crystal structures for inorganic
compounds, minerals, small organic molecules, metal-organic and organometallic
compounds. Proteins, nucleic acids and their complexes, glycoproteins and the
like are as a rule excluded from the COD, since they are systematically collected
in an open-access database, the Protein Data Bank (PDB) (Berman et al. 2012).
Most of the “small molecule” structures in the COD are refined using assumption
of independent atom parameters (using full-matrix least squares refinement), and
a spherical atom model. This makes the COD suitable, for example, to generate
restraints on molecular geometries and to refine larger molecules or molecular
assemblies (Long et al. 2017a, b). We must note, however, that this assumption
does not necessarily hold for all COD entries. For larger entries, or when disorder is
present, restraints can be put the by authors on the thermal displacement parameters.
For structures solved using powder diffraction techniques, restraints on bond lengths
and angles can be also used. Finally, some structures in the COD are solved by
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hybrid methods, using powder diffraction to carry out Rietveld refinement and
to use DFT to further refine atomic parameters; some structures are reported
entirely based on DFT calculations. Obviously, determining bond length and angle
parameters from restrained structures would result in circular reasoning, since the
same restraints were already used during the structure refinement process. Thus,
the user is advised to inspect structure determination parameters and to select those
structures that are suitable for his or her work.

4 CODData Semantics and Selection

To facilitate structure selection, the COD maintains a set of flags that describe
experimental and refinement techniques used for structure determination. In
the COD SQL table, the “method” column of the ‘data‘ table describes
the experimental technique which can be “single crystal”, “powder
diffraction” or “theoretical”. If the value of this column is NULL,
the method is most probably single crystal diffraction. Unfortunately, in many
structures the most popular method, “single crystal”, is not mentioned
explicitly, so this assumption is a certain guess; but the structures solved by
“powder diffraction” or “theoretical” methods are usually marked
more accurately and are less numerous, so the guess should be reasonably safe.
Structures marked as “theoretical” are in fact solved by DFT computations
without using any structure-specific experimental data. These structures are of
course more appropriate to a different database, the TCOD, which is dedicated to
theoretical structures, and are in fact also most likely deposited there. They ended
up in the COD since they were provided as supplementary material to some papers
and were not marked as being theoretical and only later data curation revealed their
determination method. Several important theoretical structures, e.g., from the DFT
method error estimate studies (Lejaeghere et al. 2014), were deposited to the COD
before the TCOD was fully operational but were deemed important enough so that
permanent storage in a database for these data records is necessary. Since the COD
policy is not to delete any records, so that once assigned COD IDs remain stable,
the policy of the COD is to mark its entries with appropriate flags, but not to remove
them.

Further the COD database tables contain several fields describing experimental
techniques, taken from the IUCr Core CIF dictionary. The “radiation”,
“radType” and “radSymbol” columns of the “data” table are derived
directly from the CIF data items _diffrn_radiation_probe,
_diffrn_radiation_type and _diffrn_radiation_xray_symbol,
respectively. These data items allow distinguishing between structures obtained
from X-ray, neutron and electron diffraction data (the “radiation” column can
have values “x-ray”, “neutron” or “electron” for the respective radiation
types). Again, like with the “single crystal” value, the most popular
radiation type, “x-ray”, is often not marked and thus represented as a NULL
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value. We can expect that authors are more attentive when they submit a structure
made by a less common method, but certain caution is of course appropriate.

When selecting records from the COD, one must keep in mind certain book-
keeping data items. Certain structures are deposited to the COD that are deliberately
worse than the best possible interpretation; this is usually done in publications to
demonstrate that the main interpretation of data offered by authors is correct or
indeed the best one. COD policy is to include such structures (so that the paper
claims can be easily verified) but to mark them as “suboptimal.” In COD CIFs,
such structures are marked with _cod_suboptimal_structure yes and
_cod_related_optimal_struct data items, and in the COD ‘data‘ table
it has a non-NULL value in the “optimal” column pointing the related optimal
structure. Unless explicit comparison of suboptimal and optimal structures is sought,
only structures with NULL “optimal” values should be selected.

Another issue is structures that contain known problems. Again, the COD
policy is not to remove such structures, once they were included in the COD, but
to flag them appropriately. This flag is recorded in the COD database ‘data‘
table “status” column. Possible values for this column are “warnings”,
“errors”, and “retracted”. The “warnings” level indicates that the
structure might be after all correct but there are strange features, unusual description,
or wrong metadata in it. The “errors” mark structures that either have been
proven wrong by subsequent published observations, authors’ corrigenda or contain
serious data consistency problems that prevent correct interpretation of the structure.
In all cases, _cod_error_description gives a human readable description
of the problem. Finally, the “retracted” in the “status” column indicates
that the structure was retracted and should not be used under any circumstances.
The reasons for retraction may vary, but usually this flag indicates very serious
problems up to the outright scientific fraud, as was the case discovered in one
IUCr investigation (Harrison et al. 2010); in such cases, the original publications
are retracted as well.

The last thing to take care about is the presence of duplicated entries in the COD.
Unfortunately, due to less stringent admission procedures in the earliest days of
the COD, or due to programming or data encoding errors, sometimes the same
structure is deposited more than once to the COD. Once again, when such situation
is detected, neither entry is removed from the COD; instead, one entry, usually the
most complete one, is declared to be the “main” entry describing this structure, and
the others are marked as “duplicates” using the _cod_duplicate_entry data
item. If the main entry is missing some information that is present in the duplicates,
this information is merged into the main entry and committed as a new revision.
Duplicate entries are marked by a non-NULL “duplicateof” column in the
‘data‘ table. Thus, to select only those entries that are not marked as duplicates,
one needs to select entries that have “duplicateof” column set to NULL.

It must be noted that only technical duplicates are flagged as such in the COD,
i.e., only structures that are originating from the same original description and from
the same publication. Two structures of the same compound reported in different
publications are not considered duplicates and are stored as different COD records.
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Even when the same data file is published as supplementary material to two different
publications, it is deposited under two different COD identifiers. The rationale
here is that a COD record reports an instance of the crystal structure solution
reported somewhere, and all such cases must be represented in the database. Further
reduction of the multiple records is the responsibility of the COD user, and, indeed,
different tasks will require different uniqueness criteria – in some cases these will
be based in chemical identity, in other cases on crystal structure identity, and the
COD must provide sufficient data for all such queries.

Collecting all above considerations into one SQL query, we can select all non-
retracted experimental structures that are not marked as duplicates and have atomic
coordinates with a query displayed in Listing 1; the query there reports number of
such entries in the current COD SQL database and can be used for further narrowing
down the selection based on crystal parameters.

Listing 1 Number of non-retracted experimental structures with coordinates in the COD that are
not marked as duplicates

#!/bin/bash

mysql -h sql.crystallography.net cod -u cod_reader -t -e \
’select count(*), current_timestamp() from data
where duplicateof is null

and flags like "%has coordinates%"
and (status is null or status != "retracted")
and (method is null or method != "theoretical")’

+----------+---------------------+
| count(*) | current_timestamp() |
+----------+---------------------+
| 383573 | 2017-12-04 14:07:01 |
+----------+---------------------+

5 Accessing the COD

5.1 Web Access to the COD

The COD offers several methods to access its structure collection. The one that
requires least effort to learn is probably to use query forms (see Fig. 3). Multiple
parameters can be specified, most of which should be self-explanatory; their exact
meaning, however, is the same as in the RESTful query fields and can be looked up
in the Table 2.

Results from a Web query are displayed in a separate browser page as a HTML
table (Fig. 4); in addition to that, options are provided to download the list of
resulting structures as a list of COD identifiers, download URLs or as a CSV format
table. For a small number of hits, a ZIP archive of all found CIFs is offered, but for
a larger number of structures (typically more than several thousands), this option is
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Fig. 3 The Web query form of the Crystallography Open Database

Table 2 RESTful interface search parameters and their descriptions

Parameter Description

format The format in which the results will be returned

formula The empirical chemical formula of the crystal. Chemical element
symbols in the formula must be ordered according to the Hill notation
and separated by a space symbol, i.e., “C8 H10 N4 O2”

el1, el2, . . . , el8 Chemical element symbols that must appear in the chemical formula

nel1, nel2, . . . , nel4 Chemical element symbols that must not appear in the chemical
formula

strictmin, strictmax The minimum/maximum number of distinct chemical elements that
must appear in the chemical formula

amin, amax The minimum/maximum value of the lattice parameter a

bmin, bmax The minimum/maximum value of the lattice parameter b

cmin, cmax The minimum/maximum value of the lattice parameter c

minZ, maxZ The minimum/maximum Z value of the lattice

year The year of publication of the crystal structure

not available in order to avoid excessive stress on the COD servers, and instead a
user is advised to download the COD structures in full and pick the desired CIFs
using the COD identifier list resulting from the search.

5.2 Using the RESTful Interfaces

The COD offers a RESTful interface that allows one to retrieve information about
COD entries based on certain criteria as well as the crystal structure files themselves.
The REST (REpresentational State Transfer) is an architectural style of network-
based programs that was outlined in the doctoral dissertation of Roy Fielding (2000).
The main ideas of this architecture relevant for the COD are to use a client-



1874 S. Gražulis et al.

Fig. 4 An example result page from a Crystallography Open Database Web query

server design (the COD server serves multiple clients), to make the COD server
stateless as much as possible (thus the same request to the COD server should yield
identical results if repeated several times), to use standard connections based on
HTTP protocol and stable Web URIs, and to use standard formats (CIF, HTML)
to exchange information. An interface based on the ideas of REST, a so-called
RESTful interface, has the benefit of not requiring a specialized client program
since the queries can be executed by any piece of software capable of resolving
URIs including, but not limited to, most Internet browsers.

COD RESTful search query URIs adhere to the HTTP GET query format
taking http://www.crystallography.net/cod/result as the basis URI. For example, a
query that returns a list of COD IDs associated with structures that contain the
Li and O atoms and were published in 2017 would take a form of: http://www.
crystallography.net/cod/result?el1=Li&el2=O&year=2017&format=lst

As mentioned above, specialized software is not required, but it can, however,
ease the construction of the query strings. An example of the same request rewritten
to use the cURL program is given in Listing 2.

Listing 2 Querying the RESTful interface using cURL

#!/bin/bash

curl ’http://www.crystallography.net/cod/result’ \
-d ’el1=Li’ \
-d ’el2=O’ \
-d ’year=2017’ \
-d ’format=lst’

http://www.crystallography.net/cod/result
http://www.crystallography.net/cod/result?el1=Li&el2=O&year=2017&format=lst
http://www.crystallography.net/cod/result?el1=Li&el2=O&year=2017&format=lst
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Several more examples of COD RESTful interface queries using cURL are given
in listings Listings 3, 4, 5, and 6. Description of the used query parameters is given
in Table 2. The full list of supported parameters and formats can be acquired at
http://wiki.crystallography.net/RESTful_API/.

Listing 3 Count of structures that contain Fe atoms, but no O atoms

#!/bin/bash

curl ’http://www.crystallography.net/cod/result’ \
-d ’el1=Fe’ \
-d ’nel1=O’ \
-d ’format=count’

Listing 4 Information about entries that contain only Fe and N atoms in JSON format

#!/bin/bash

curl ’http://www.crystallography.net/cod/result’ \
-d ’el1=Fe’ \
-d ’el2=N’ \
-d ’strictmin=2’ \
-d ’strictmax=2’ \
-d ’format=json’

Listing 5 Text file with URLs of entries that have the “C O2” chemical formula

#!/bin/bash

curl ’http://www.crystallography.net/cod/result’ \
-d ’formula’=’C O2’
-d ’format=urls’

Listing 6 ZIP archive containing CIF files of entries that have cell length between 30 Å and
35 Å and Z number between 3 and 4

curl ’http://www.crystallography.net/cod/result’ \
-d ’amin=30&amax=35’ \
-d ’bmin=30&bmax=35’ \
-d ’cmin=30&cmax=35’ \
-d ’minZ=3&maxZ=4’ \
-d ’format=zip’

5.3 Querying SQL Database

SQL (Structure Query Language) is arguably the most powerful method of interro-
gating relational databases and offers more features than the COD Web page or even

http://wiki.crystallography.net/RESTful_API/
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than the COD RESTful interface. The Crystallography Open Database offers a read-
only access to its data tables so that SQL queries can be carried out by user or by
third-party software. Covering SQL language syntax and its use is beyond the scope
of this chapter, but numerous textbooks and on-line references of SQL exist, as well
as excellent documentation of several F/LOSS implementations of SQL (MySQL is
one of them). In this text we provide just a few examples that demonstrate how SQL
queries can be used for querying the COD out of the box.

The COD SQL tables are constructed automatically from the COD CIF collec-
tion. Tables are updated by the post-commit hooks of the Subversion repository; thus
the SQL tables should be always in sync with the CIF collection. In the COD, the
dataflow is always from CIFs to the SQL database; thus all changes in tables must be
first recorded and versioned in the main repository. Thus, MySQL acts essentially
as a fast search cache for the COD, making use of index tables and query optimizer.
The COD MySQL ‘data‘ table contains also the “svnrevision” column that
records Subversion revision from which each row is produced. In addition to that,
all COD MySQL tables are dumped nightly in text form and committed to the
same Subversion repository as the CIF collection. These archives provide means
to reproduce queries that were run some time ago, should this necessity arise for
scientific computation reproducibility.

The simplest query counts number of records in the current revision of the COD
(Listing 7). A more elaborate form of this query which filters structures that are
usually unwanted is provided in the Listing 1. Further examples (Listings 8, 9,
and 10) demonstrate how various chemical features can be queried. Specifically,
the Listing 9 shows how the COD MySQL server can be queried using regular
expressions, an extension of the SQL language. These queries permit selections
based on atom chemical types, among other possibilities.

Listing 7 Number of entries in the COD

#!/bin/bash

mysql -h sql.crystallography.net cod -u cod_reader -t -e \
’select count(*), current_timestamp() from data’

+----------+---------------------+
| count(*) | current_timestamp() |
+----------+---------------------+
| 387948 | 2017-12-04 14:07:02 |
+----------+---------------------+

Listing 8 DOIs and publication years of structures of cucurbituril

#!/bin/bash

mysql -h sql.crystallography.net cod -u cod_reader -t -e \
’select file, doi, year from data
where chemname like "%cucurbituril%"’
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+---------+---------------------------+------+
| file | doi | year |
+---------+---------------------------+------+
| 2200062 | 10.1107/S1600536800019498 | 2001 |
| 4320271 | 10.1021/ic015520p | 2001 |
| 4320272 | 10.1021/ic015520p | 2001 |
| 4320689 | 10.1021/ic010362n | 2001 |
| 4320690 | 10.1021/ic010362n | 2001 |
| 4508668 | 10.1021/cg060062m | 2006 |
| 4508669 | 10.1021/cg060062m | 2006 |
+---------+---------------------------+------+

Listing 9 Number of hydrocarbons

#!/bin/bash

mysql -h sql.crystallography.net cod -u cod_reader -t -e \
’select count(*), current_timestamp() from data
where formula regexp
"- C[[:digit:]]* H[[:digit:]]* -"’

+----------+---------------------+
| count(*) | current_timestamp() |
+----------+---------------------+
| 1250 | 2017-12-04 14:07:02 |
+----------+---------------------+

Listing 10 Five most voluminous MOFs

#!/bin/bash

mysql -h sql.crystallography.net cod -u cod_reader -t -e \
’select file, chemname, vol from data
where chemname like "%MOF%"
order by vol desc
limit 5’

+---------+-------------+--------+
| file | chemname | vol |
+---------+-------------+--------+
| 4111295 | mesoMOF-1 | 122163 |
| 1519417 | Y-ftw-MOF-3 | 111361 |
| 1519416 | Y-ftw-MOF-2 | 64231 |
| 7032763 | MOF-205-NO2 | 27851 |
| 7032762 | MOF-205-NH2 | 27846 |
+---------+-------------+--------+
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6 COD Applications

Even though the COD is not as large as some older crystallographic databases, it has
numerous applications due to its open nature. One immediate possibility where the
COD excels is teaching. Using the COD one can give students some real-life data
search and crystallographic applications, illustrate structures of various compounds,
and provide insights into modern chemical research areas (Gražulis et al. 2015).
Advantages of the COD are its extremely rapid release cycle (the database is updated
daily), permissive license that allows students to download arbitrary parts or even
the whole database to their computers, and its availability on the Internet where it
can be accessed from or outside the classroom.

Another widely accepted application of the COD is its use for material identi-
fication with the help of powder diffraction method and search-match procedure.
Largest diffractometer vendors (among them Bruker, PANalytical, Rigaku) have
adapted the COD collection for their software and ship it with their equipment,
providing regular updates on the COD Web site or on their own pages. Since
the COD is an open database, these updates are free of charge for the end users.
The COD has currently accumulated enough mineral structures so that it can be
used for the SOLSA project (http://solsa-mining.eu), where the database is used,
together with other information sources, as a tool for material identification and
data dissemination.

In bioinformatics and drug design, the COD is used as a source of open data for
restraint libraries (Long et al. 2017a, b). It is also used in DataWarrior (Sander et al.
2015) as one of the sources of chemical information and in the OpenMolecules
Web site (http://www.openmolecules.org/). Software testing benefits from large
collection of COD data, where different cases need to be examined and data needs
to be stored in regression tests. Finally, the COD is used in fundamental research to
answer different questions about matter (see, e.g., recent works on MOFs (First and
Floudas 2013), hydrogen storage (Breternitz and Gregory 2015), or characterization
of 2D materials (Mounet et al. 2018).

7 Conclusions

The more than decade-long history of the COD has demonstrated that it is possible
to build a lasting, high-quality scientific database using an open-access licensing
model. At its current state, the COD is useful for a range of academic and industrial
applications. Most importantly, this open database provides everyone with the
access to knowledge in its own field of small molecule crystallography. At the same
time, there are a lot of obvious improvements that can be done. Clearly the COD
needs a more comprehensive data collection. More community organization effort
should be done, to involve more people in data correction, collection, and ensuring
quality of the COD records. More links with the rest of the Internet data resources
should be made, integrating the COD more closely into the Linked Open Data

http://solsa-mining.eu
http://www.openmolecules.org/


85 Crystallography Open Database (COD) 1879

Cloud. None of these tasks seems to be outside the reach of current possibilities,
and so one can expect that in due time, the COD is expanded to include all these
features.
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Within the past few years, we have witnessed the rising of quantum machine
learning (QML) models which infer electronic properties of molecules and
materials, rather than solving approximations to the electronic Schrödinger
equation. The increasing availability of large quantum mechanics reference
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datasets has enabled these developments. We review the basic theories and
key ingredients of popular QML models such as choice of regressor, data
of varying trustworthiness, the role of the representation, and the effect of
training set selection. Throughout we emphasize the indispensable role of
learning curves when it comes to the comparative assessment of different QML
models.

1 Introduction

Society is becoming increasingly aware of its desperate need for new molecules
and materials, be it new antibiotics or efficient energy storage and conversion
materials. Unfortunately, chemical compounds reside in, or rather hide among, an
unfathomably huge number of possibilities, also known as chemical compound
space (CCS). CCS is the set of stable compounds which can be obtained through
all combinations of chemical elements and interatomic distances. For medium-sized
drug-like molecules, CCS is believed to exceed 1060 (Kirkpatrick and Ellis 2004).
Exploration in CCS and locating the “optimal” compounds are thus an extremely
difficult, if not impossible, task. Typically, one needs to constrain the search domain
in CCS and obtain certain pertinent properties of compounds within the subspace
and then choose the compounds with properties which come closest to some preset
criteria as potential candidates for subsequent updating or validation. Of course, one
can conduct experiments for each compound. Alternatively, one can also attempt to
estimate its properties using modern atomistic simulation tools which, within one
approximation or the other, attempt to solve Schrödinger’s equation on a modern
powerful computer.

The latter approach is practically more favorable and referred as high-throughput
(HT) computational screening (Greeley et al. 2006). In spite of its popularity,
it is inherently limited by the computational power accessible considering that
(1) the number of possible compounds is much larger than what HT typically
is capable of dealing with (∼103) and (2) often very time-consuming explicitly
electron correlated methods are necessary to reach chemical accuracy (1 kcal/mol
for energies), with computational cost often scaling as O(N6) (N being the number
of electrons, a measure of the system size). Computationally more efficient methods
generally suffer from rather weak predictive power. They range from force fields
and semiempirical molecular orbital methods, density functional theory (DFT)
methods to so-called linear scaling methods which assume locality by virtue of
fragments or localized orbitals (Kitaura et al. 1999). It remains an outstanding
challenge within conventional computational chemistry that efficiency and accuracy
apparently cannot coexist.

To tackle this issue, Rupp et al. (2012) introduced a machine learning (ML)
Ansatz in 2012, capable of predicting atomization energies of out-of-sample
molecules fast and accurately for the first time. By now many subsequent studies
showed that ML models enable fast and yet arbitrarily accurate prediction for any
quantum-mechanical property. This is no “free lunch”; however, the price to pay
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consists of the acquisition of a set of pre-calculated training datasets which must be
sufficiently representative and dense.

So what is machine learning? It is a field of computer science that gives
computers the ability to learn without being explicitly programmed (Samuel 2000).
Among the broad categories of ML tasks, we focus on a type called supervised
learning with continuous output, which infers a function from labeled training data.
Putting it formally, given a set of N training examples of the form {(x1,y1), (x2,y2),
· · · , (xN ,yN )} with xi and yi being, respectively, the input (the representation)
and output (the label) of example i, a ML algorithm models the implicit function
f which maps input space X to label space Y . The trained model can then be
applied to predict y for a new input x (belonging to the so-called test set) absent
in the training examples. For quantum chemistry problems, the input of QML
(also called representation) is usually a vector/matrix/tensor directly obtained from
composition and geometry {ZI , RI} of the compound, while the label could be any
electronic property of the system, notably the energy. The function f is implicitly
encoded in terms of the nonrelativistic Schrödinger equation (SE) within the Born-
Oppenheimer approximation, ĤΨ = EΨ , whose exact solution is unavailable for
all but the smallest and simplest systems. To generate training data, methods with
varied degrees of approximation have to be used instead, such as the aforementioned
DFT, QMC, etc.

Given a specific pair of X and Y , there are multiple strategies to learn the implicit
function f : X → Y . Some of the most popular ones are artificial neural network
(ANN, including its various derivatives, such as convolutional neural network) and
kernel ridge regression (KRR, or more generally Gaussian process regression).

Based on a recent benchmark paper (Faber et al. 2017), KRR and ANN are
competitive in terms of performance. KRR, however, has the great advantage of
simplicity in interpretation and ease in training, provided an efficient representation
is used. Within this chapter, we therefore focus on KRR or Gaussian processes
exclusively (see Sect. 2 for more details.).

Often, each training example is represented by a pair (xi, yi). However, multiple
{yj }i can also be used, e.g., when multiple labels are available for the same
molecule, possibly resulting from different levels of theory. The latter situation can
be very useful for obtaining highly accurate QML models with scarcely available
accurate training data and coarse data being easy to obtain. Multi-fidelity methods
take care of such cases and will be discussed in Sect. 3.

Once the suitable QML model is selected, be it either in terms of ANN, KRR,
or in terms of a multi-fidelity approach, two additional key factors will have a
strong impact on the performance: The material representation and the selection
procedure of the training set. The representation of any compound should essentially
result from a bijective map which uses as input the same information which is
also used in the electronic Hamiltonian of the system, i.e., compositional and
structural information {ZI ,RI} as well as electron number. The representation
is then typically formatted into a vector which can easily be processed by the
computer. Some characteristic representations, introduced in the literature, are
described in Sect. 4, where we will see how the performance of QML models can be
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enhanced dramatically by accounting for more of the underlying physics. In Sect. 5,
further improvements in QML performance are discussed resulting from rational
training set selection, rather than from random sampling.

Having introduced the basics of ML, we are motivated to point out two aspects
of ML that may not be obvious for better interpretation of how ML works: (1) ML
is an inductive approach based on rigorous implementation of inductive reasoning
and it does not require any a priori knowledge about the aforementioned implicit
function f (see Sect. 2), though some insight of what f may look like is invaluable
for rational design of representation (see Sect. 4); (2) ML is of interpolative nature,
that is, to make reasonable prediction, the new input must fall into the interpolating
regime. Furthermore, as more training examples are added to the interpolating
regime, the performance of the ML model can be systematically improved for a
quantified representation (see Sect. 4).

2 Gaussian Process Regression

In this section, we discuss the basic idea of data-driven prediction of labels: the
Gaussian process regression (GPR). In the case of a global representation (i.e., the
representation of any compound as a single vector, see Sect. 4 for more details),
the corresponding QML model takes the same form as in kernel ridge regression
(KRR), also termed the global model. GPR is more general than KRR in the sense
that GPR is equally applicable to local representations (i.e., the representation of
any compound as a 2D array, with each atom in its environment represented by a
single vector, see Sect. 4 for more details). Local GPR models can still successfully
be applied when it comes to the prediction of extensive properties (e.g., total energy,
isotropic polarizability, etc.) which profit from nearsightedness. The locality can be
exploited for the generation of scalable GPR-based QML models which can be used
to estimate extensive properties of very large systems.

2.1 The Global Model

Here we review the Bayesian analysis of the nonlinear regression model (Rasmussen
and Williams 2006) with Gaussian noise ε:

y = φ(x)/w+ ε, (1)

where x ∈ X is the representation, w is a vector of weights, and φ(x) is the
basis function (or kernel) which maps a D-dimensional input vector x into an
N dimensional feature space. This is the space into which the input vector is
mapped, e.g., for an input vector x1 = (x11, x12) with D = 2, its feature space
could be φ(x1) = (x2

11, x11x22, x22x11, x
2
22) with N = 4. y is the label, i.e., the

observed property of target compounds. We further assume that the noise ε follows
an independent, identically distributed (iid) Gaussian distribution with zero mean
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and variance λ, i.e., ε ∼ N(0, λ), which gives rise to the probability density of the
observations given the parameters w, or the likelihood:

p(y|X,w) =
n∏

i=1

N(φ(xi )
/w, λI) = N(φ(X)/w, λI), (2)

where φ(X) is the aggregation of columns φ(x) for all cases in the training set. Now
we put a zero mean Gaussian prior with covariance matrix Σp over w to express our
beliefs about the parameters before we look at the observations, i.e., w ∼ N(0, *p).
Together with Bayes’ rule

p(w|y,X) = p(y|X,w)p(w)

p(y|X)
(3)

p(y|X) =
ż

p(y|X,w)p(w)dw, (4)

distribution of w can be updated as

p(w|X, y) ∼ N(w̄ = λ−1A−1φ(X)y, A−1) (5)

where A = λ−1φ(X)φ(X)/ + *−1
p . The updated w is called the posterior with

mean w̄. Thus, similar to Eq. (4), the predictive distribution for y∗ = f (x∗) is

p(y∗|x∗,X, y) =
ż

p(y∗|x∗,w)p(w|X, y)dw. (6)

Substituting Eqs. (2) and (5) into Eq. (6),

p(y∗|x∗,X, y) = N(λ−1φ(x∗)/A−1φ(X)y, φ(x∗)/A−1φ(x∗)), (7)

which can be further simplified to p(y∗|x∗,X, y) = N(ȳ∗, λ̄) with ȳ∗ and λ̄ being,
respectively,

ȳ∗ = K(x∗, X)(K(X,X)+ λI)−1y, (8)

λ̄ = K(x∗, x∗)−K(x∗,X)(K(X,X)+ λI)−1K(X, x∗), (9)

where I is the identity matrix and K(X,X) = φ′(X)/φ′(X) (φ′(X) = *
1/2
p φ(X))

is the kernel matrix (also called covariance matrix, abbreviated as Cov). It’s not
necessary to know φ explicitly; their existence is sufficient. Given a Gaussian
basis function, i.e., φ′(x) = exp

(−(x − x0)
2/(2l2)

)
with x0 and l being some

fixed parameters, it can be easily shown that the (i, j)-th element of kernel
matrix K is
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k(xi , xj ) = exp

(
−1

2

||xi − xj ||22
σ 2

)
, (10)

where || · ||p is the Lp norm and σ is the kernel width determining the characteristic
length scale of the problem. Note that we have avoided the infeasible computation
of feature vectors of infinite size by using some kernel function k. This is also called
the kernel trick. Other kernels can be used just as well, e.g., the Laplacian kernel,

k(xi , xj ) = exp
(
−||xi−xj ||1

σ

)
.

Rewriting Eq. 8, we arrive at a more concise expression in matrix form,

y∗ = K(X∗,X)c, (11)

where c is the regression coefficient vector,

c = (K(X,X)+ λI)−1y. (12)

Note that this expression can also be obtained by minimizing the cost function
C(w) = 1

2

∑
i (yi − w/φ(xi ))

2 + λ
2 ||w||22 with respect to w

Note that L2 regularization is used, together with a regularization parameter
λ acting as a weight to balance minimizing the sum of squared error (SSE) and
limiting the complexity of the model. This eventually leads to a model called kernel
ridge regression (KRR) model.

All variants of these global models, however, suffer from the scalability problem
for extensive properties of the system such as energy, i.e., the prediction error
grows systematically with respect to query system size (predicted estimates will
tend toward the mean of the training data while extensive properties grow). This
limitation is due to the interpolative nature of global ML models, that is, the
predicted query systems and their properties must lie within the domain of training
data.

2.2 The Local Version

The scalability problem can be overcome by working with local, e.g., atomic,
representations. This relies on the idea that one can decompose a global extensive
property of the system into local contributions. Among the many ways to partition
systems into building blocks, we select the atom-in-molecule (AIM) idea, put forth
many years ago by Bader (1990). For the total energy (E) of the system, it is usually
expressed as a sum over atomic energies (e):

E =
∑

I

eI =
∑

I

ż

ΩI

〈Ψ |Ĥ |Ψ 〉d3r (13)

where ΩI is the atomic basin determined by the zero-flux condition of the electron
density,
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∇ρ(rs) · n(rs) = 0, for every point rs on the surface S(rs) (14)

where n(rs) is the unit vector normal to the surface at rs. The advantage of using
Bader’s scheme is that the total energy is exactly recovered and that, at least in
principle, it includes all short- and long-ranged bonding, i.e., covalent as well as
non-covalent (e.g., van der Waals interaction, Coulomb interaction, etc.). Further-
more, due to nearsightedness of atoms in electronic system (Prodan and Kohn 2005),
atoms with similar local chemical environments contribute a similar amount of
energy to the total energy. Using the notion of alchemical derivatives, this effect,
a.k.a. chemical transferability, has recently been demonstrated numerically (Fias
et al. 2017). Thus it is possible to learn effective atomic energies based on a
representation of the local atoms. Unfortunately, the explicit calculation of local
atoms is computationally involved (the location of the zero-flux plane is challenging
for large molecules), making this approach less favorable. Instead, we can also
assume that the aforementioned Bayesian model is applicable to atomic energies
as well, i.e.,

eI = φ(xI )/w+ ε (15)

where xI is an atomic representation of atom I in a molecule. By summing up terms
on both sides in Eq. 15, we have

E =
∑

I

φ(xI )/w+ ε. (16)

Following Bartók et al. (2010), the covariance of the total energies of two com-
pounds can be expressed as

Kij = Cov(Ei, Ej ) = Cov

(
∑

I

eIi ,
∑

J

eJj

)
=
∑

I

∑

J

Cov
(
eIi , e

J
j

)

=
∑

I

∑

J

k
(

xI
i , xJ

j

)
(17)

where I and J run over all the respective atomic indices in molecule i and j and
where xI

i is the representation of atom I in molecule i.
By inserting Eq. (17) in Eq. (11), we arrive at the formula for the energy

prediction of a molecule ∗ out-of-sample:

E∗ =
∑

i

ci
∑

I∈i

∑

J∈∗
k
(

xI
i , xJ∗

)
(18)

where ci =∑
j ([K + λI ]−1)ijEj . This equation can be rearranged:
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E∗ =
∑

J∈∗

∑

i

ci
∑

I∈i
k
(

xI
i , xJ∗

)
=

∑

J∈∗
eJ∗ , (19)

where the atomic contribution of atom J to the total energy can be decomposed into
a linear combination of contributions from each training compound i, weighted by
its regression coefficient,

eJ∗ =
∑

i

ci ẽ
J∗i . (20)

The “basis function” ẽJ∗i in this expansion simply consists of the sum over kernel
similarities between atom J and atoms I ∈ i, where the contribution of atom I

grows with its similarity to atom J :

ẽJ∗i =
∑

I

k
(

xI
i , xJ∗

)
. (21)

We note in passing that the value of the covariance matrix element (i.e., Eq. (17))
increases when the size of either system i or j grows, indicating that the scalability
issue can be effectively resolved.

2.3 Hyper-Parameters

Within the framework of GPR or KRR, there are two sets of parameters: (1)
parameters that are determined via training, i.e., the coefficients c (see Eq. (12)),
whose number grows with the training data, and (2) hyper-parameter whose value
is set before the learning process begins, i.e., the kernel width σ in Eq. (11) and λ in
Eq. (2).

As defined in Sect. 2.1, λ measures the level of noise in the training data in GPR.
Thus, if the training data is noise free, λ can be safely set to zero or a value extremely
close to zero (e.g., 1 × 10−10) to reach optimal performance. This is generally true
for datasets obtained by typical quantum chemical calculations, and the resulting
training error is (almost) zero. Whenever there is noise in the data (e.g., from
experimental measurements), the best λ corresponds to some finite value depending
on the noise level. The same holds for the training error. In terms of KRR, λ seems
to have a completely different meaning at first glance: the regularization parameter
determining the complexity of the model. In essence, they amount to the same, i.e.,
a minute or zero λ corresponds to the perfectly interpolating model which connects
every single point in the training data, thus representing the most faithful model
for the specific problem at hand. One potential risk is poor generalization to new
input data (test data), as there could be “overfitting” scenarios for training sets. A
finite λ assumes some noise in the training data, and the model can only account for
this in an averaged way; thus the model complexity is simplified to some extend by
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lowering the magnitude of parameters w so as to minimize the cost function C(w).
Meanwhile, some finite training error is introduced. To recap, the balance between
SSE and regularization is vital and reflected by a proper choice of λ.

Unlike λ, the optimal value of σ (σopt) is more dataset specific. Roughly
speaking, it is a measure of the diversity of the dataset and controls the similarity
(covariance matrix element) of two systems. Typically σopt gets larger when the
training data expands into a larger domain. The meaning of σ can be elaborated by
considering two extremes: (1) when σ approaches zero, the training data will be
reproduced exactly, i.e., ci = yi , with high error for test data, i.e., with deviation to
mean, and (2) when σ is infinity, all kernel matrix elements will tend toward one, i.e.,
a singular matrix, resulting in large errors in both training and test. Thus, the optimal
σ can be interpreted as a coordinate scaling factor to render the kernel matrix well-
conditioned. For example, Ramakrishnan and von Lilienfeld (2015) selected the
lower bound of the kernel matrix elements to be 0.5. For a Gaussian kernel, this
implies that Kmin = exp

(
−D2

max/2σ 2
opt

)
≈ 0.5, or σopt ≈ Dmax/

√
2 ln 2, where

Dmax is the largest distance matrix element of the training data. Following the same
reasoning, σopt can be set to Dmax/ ln 2 for a Laplacian kernel.

The above heuristics are very helpful to quickly identify reasonable initial
guesses for hyper-parameters for a new dataset. Subsequently, the optimal values
of the hyper-parameters should be fine-tuned through k-fold cross-validation (CV).
The idea is to first split the training set into k smaller sets, and (1) for each of the
k subsets, a model is trained using the remaining k − 1 subsets as training data; the
resulting model is tested on the remaining part of the data to calculate the predictive
error); this step yields k predictions, one for each fold. (2) The overall error reported
by k-fold cross-validation is then the average of the above k values. The optimal
parameters will correspond to the ones minimizing the overall error. This approach
can become computationally demanding when k and the training set size are large.
But it is of major advantage in problem such as inverse inference where the number
of samples is very small, and its systematic applications minimize the likelihood of
statistical artifacts.

2.4 Learning Curves

To assess the predictive performance of a ML model, we need to know not only the
prediction error (ε, which can be characterized by the mean absolute error (MAE)
or root mean squared error (RMSE) of prediction) for a specific training set but also
predictive errors for varied sizes of training sets. Therefore, we can monitor how
much progress we have achieved after some incremental changes to the training set
size (N ) so as to extrapolate to see how much more training data is needed to reach
a desirable accuracy. The plot of ε versus N relationship is called the learning curve
(LC), and examples are shown in Fig. 1 (note that only test error, i.e., MAE for the
prediction of new data in test set, is shown; training errors are always zero or minute
for noise-free training data).
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Fig. 1 Three representative
learning curves with
distinguished relative
performance

Multiple factors control the shape of learning curve, one of which is the choice
of representation. If the representation cannot uniquely encode the molecule, i.e.,
there may exist cases that two different molecules share the same input vector xi but
with different molecular properties, then it causes ambiguity to the ML algorithm
(see more details in Sect. 4.1) and may consequently lead to no learning at all, as
illustrated by the dashed curve in Fig. 1, with distinguishable flattening out behavior
at larger training set sizes, resulting in poor ML performance.

In the case of a unique representation, according to Fasshauer and McCourt
(2016), it can be proved that for kernel-based approximation, when the training set
size N is sufficiently large, the predictive error is proportional to the so-called “fill
distance” or mesh norm hX, defined as

hX = sup
x∈2

min
xj∈X

||x− xj ||2 (22)

where “sup” stands for the supremum (or the least upper bound) of a subset, x is
again the representation of any training instance as an element of the training set
X, and Ω represents the domain of studied systems (i.e., potential energy surface
domain for chemistry problems). Clearly from the definition, fill distance describes
the geometric relation of the set X to the domain 2 and quantifies how densely X
covers 2. Furthermore, fill distance intrinsically contains a dimension dependence
d, that is, hX scales roughly as N−1/d if x are uniform or random grid points in a d

dimensional space.
Apart from the exponent, there should also be a prefactor; thus the leading term

of the overall predictive error can be described as b ∗ N−a/d , where a in the
exponent is a constant. Therefore, to visualize the error vs. N , a log-log scale is
the most convenient for which the learning curve can be represented by a linear
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relationship: log(ε) ≈ log(b) − a
d

log(N); thus a/d quantifies the rate of learning,
while the prefactor log(b) is the vertical offset of the learning curve. Through a
series of numerical calculations of learning a 1D Gaussian function as well as
ground state properties of molecules with steadily improving physics encoded in
the representation, it has been found (Huang and von Lilienfeld 2016) that the
offset log(b) is a measure of target property similarity, which is defined as the
deviation of proposed model (corresponding to the representation used) from the
true model (Huang and von Lilienfeld 2016). While, in general, we do not know the
true function (machine learning would be meaningless if we did), we often do have
considerable knowledge about relative target similarity of different representations.

Applying the findings above to chemistry problems, we can thus obtain some
insight in how learning curves will behave. Several observations can be explained:
First, the learning rate would be almost a constant or changes very little when
different unique representations are used, as the rate depends primarily on the
domain spanned by molecules considered in the potential energy surface. Secondly,
for a series of isomers, it is much easier to learn their properties in their relaxed
equilibrium state than in a distorted geometry.

The limitation that the learning rate will not change much for random sampling
with unique representations seems to be a big obstacle toward more efficient ML
predictions, meaning that developing better representation (to lower the offset) can
become very difficult even if substantial effort has been invested. However, is it
possible to break this curse, reaching an improved learning curve as illustrated by
the pink line in Fig. 1? We believe that this should be possible. Note how the linear
(log-log) learning curve is obtained for statistical models. This implies that there
must be “redundancy” in the training data; and if we were able to remove those
redundancies a priori, we might very be able to boost the performance and observe
superior LCs, such as the pink line in Fig. 1 with large learning rates. In such a case,
statistics is unlikely to hold, and the LC may be just a monotonically decreasing
function, possibly also just a damped oscillator, rather than a line. Strategies for
rational sampling will be elaborated in detail in Sect. 5.

3 Multilevel Learning

By default, we assume for each xi ∈ X, there exists one corresponding yi ∈ Y in
the training examples. It makes perfect sense if Y is easy to compute, i.e., in the
circumstance that a relatively low accuracy of Y suffices (e.g., PBE with a medium-
sized basis set). It is also possible that a highly accurate reference data is required
(e.g., CCSD(T) calculations with a large basis set) so as to achieve highly reliable
predictions. Unfortunately, we can only afford few highly accurate x and y’s for
training considering the great computational burden. In this situation, one can take
great advantage of the y’s with lower levels of accuracy which are much easier to
obtain. Models which shine in this kind of scenario are called multi-fidelity, where
reference data based on a high (low) level of theory is said to have high (low) fidelity.
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The nature of this approach is to explore and exploit the inherent correlation among
datasets with different fidelities. Here we employ Gaussian process as introduced
in Sect. 2 to explain the main concepts and mathematical structure of multilevel
learning.

3.1 Multi-fidelity

For the sake of clarity and simplicity, we focus only on two levels of fidelity, the
mathematical formulation stated below can be easily generalized to more fidelities.
We consider two datasets with different level of fidelity: {X, y(1)} (in which the
pairs of data are (x1, y

(1)
1 ), (x2, y

(1)
2 ), . . . ) and {X, y(2)}, where y(2) has a higher

level of fidelity. The number of data points in the two sets is, respectively, N1 and
N2 and N1 > N2, reflecting the fact that high-fidelity data are scarce. We consider
the following autoregressive model proposed by Kennedy and O’Hagan (2000):

y(2) = ρy(1) + δ(2) (23)

where y(1) and δ(2) are two independent Gaussian processes, i.e.,

y(1) ∼ N(0,K1(X,X)) = N(0,Cov(y(1), y(1))) = N(0,K1) (24)

δ(2) ∼ N(0,K2(X,X) = N(0,Cov(δ(2), δ(2))) = N(0,K2). (25)

That y(1) and δ(2) are independent (notated as y(1) ⊥ δ(2)) indicates that the mean of
y(1)δ(2) satisfies E[y(1)δ(2)] = E[y(1)]E[δ(2)], and thus the covariance between y(1)

and δ(2) is zero, i.e., Cov(y(1), δ(2)) = E[y(1)δ(2)] − E[y(1)]E[δ(2)] = 0. Therefore,
y(2) is also a Gaussian process with mean 0 and covariance:

Cov(y(2), y(2)) = K22 = Cov(ρy(1) + δ(2), ρy(1) + δ(2)) (26)

= ρ2Cov(y(1), y(1))+ Cov(δ(2), δ(2)) = ρ2K1 +K2 (27)

that is, y(2) ∼ N(0, ρ2K1 +K2).
The most important term in multi-fidelity theory is the covariance between y(1)

and y(2), which represents the inherent correlation between datasets with different
levels of fidelity and is derived as Cov(y(1), y(2)) = K12 = ρCov(X,X) = ρK1
due to the same independence restriction. Now the multi-fidelity structure can be
written in the following compact form of a multivariate Gaussian process:

(
y(1)

y(2)

)
∼ N

(
0,

(
K11 K12

K21 K22

))
, (28)

where K11 = K1, K22 �= K2,K12 = K21 due to symmetry. The importance of ρ

is quite evident from the term K12; specifically, when ρ = 0, the high-fidelity and
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low-fidelity models are completely decoupled, and there will be no improvements
of the prediction at all by combining the two models.

The next step is to make prediction of y(2)∗ given the corresponding input vector
x∗, two levels of training data {X, y(1)} and {X, y(2)}. To this end, we first write
down the following joint density:

⎛

⎝
y(2)∗
y(1)

y(2)

⎞

⎠ ∼ N

⎛

⎝0,

⎛

⎝
K∗∗ K∗1 K∗2

K1∗ K11 K22

K2∗ K21 K22

⎞

⎠

⎞

⎠ , (29)

where K∗∗ = ρ2K∗
1 + K∗

2 , K∗1 = ρK∗
1 with K∗

1 = K1(X∗,X∗) = Cov(y(1)∗ , y(1)∗ )

and K∗
2 = K2(X∗,X∗) = Cov(δ(2)∗ , δ

(2)∗ ); then following similar procedures as in

Sect. 2.1, the final predictive distribution of y(2)∗ |X∗,X, y(1), y(2) is again a Gaussian
N(ȳ(2)∗ ,Var), where

ȳ(2)∗ = K∗K−1Y, Var = K∗K/∗ −K∗K−1K/∗ , (30)

Y =
(

y(1)

y(2)

)
, K∗ =

(
K∗1 K∗2

)
, K =

(
K11 K12

K21 K22

)
. (31)

We note in passing that since there are two correlation functions K1 and K2, two
sets of hyper-parameters regarding the kernel width and an extra scaling parameter
ρ have to be optimized following the similar approach as explained in Sect. 2.4.
This algorithm has already successfully been applied to the prediction of band gaps
of elpasolite compounds with high accuracy (Pilania et al. 2017). But it can be
naturally extended to other properties. So far, not much work has been done using
this algorithm; its potential to tackle complicated chemical problems has yet to be
unraveled by future work.

3.2 Δ-Machine Learning

A naive version of multi-fidelity learning is the so-called �-machine learning
model. Its performance is useful for the prediction of various molecular prop-
erties (Ramakrishnan et al. 2015a). In this model, N1 is equal to N2, the low-
and high-fidelity models are, respectively, called baseline and target. The baseline
property (y(b)) is associated with baseline geometry as encoded in its representation
(x(b)), and target property y(t) is associated with target geometry x(t), respectively.
The workhorse of this model is

y(t)∗ = y(b)∗ +
N∑

i=1

cik(x(b)∗ , x(b)
i ) (32)
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Note that we did not use the target geometry at all for the reason that (1) it is
expensive to calculate and (2) it is not necessary for the test molecules.

The Δ-ML model has been shown to be capable of yielding highly accurate
results for energies if a proper baseline model is used. Other properties can also
be predicted with much higher precision compared to traditional single fidelity
model (Ramakrishnan et al. 2015a). What is more, this approach can save substantial
computational time. However, the Δ-machine learning model is not fully consistent
with the multi-fidelity model. The closest scenario is that we set K1 = K2 when
evaluating kernel functions in Eq. (31), but this will result in something still quite
different. There are further issues one would like to resolve, including that (i) the
coupling between different fidelities is not clear and that the correlation is rather
naively accounted for through the Δ of the properties from two levels, assuming
a smooth transition from one property surface (e.g., potential energy surface) from
one level of theory to another. This is questionable and may fail terribly in some
cases; (ii) it requires the same amount of data for both levels, which can be
circumvented by building recursive versions.

4 Representation

The problem of how to represent a molecule or material has been a topic dating back
to many decades ago, and the wealth of information (and opinions) about this subject
is well manifested by the collection of descriptors compiled in Todeschini and
Consonni’s Handbook of molecular descriptors (Todeschini and Consonni 2008).
According to these authors, the molecular descriptor is defined as “the final result
of a logic and mathematical procedure which transforms chemical information
encoded within a symbolic representation of a molecule into a useful number or the
result of some standardized experiment.” While the majority of these descriptors are
graph-based and used for quantitative structure and activity relationships (QSAR)
applications (typically producing rather rough correlation between properties and
descriptor), our focus is on QML models, i.e., physics-based, systematic, and
universal predictions of well-defined quantum-mechanical observables, such as the
energy von Lilienfeld (2018). Thus, to better distinguish the methods reviewed
here-within from QSAR, we prefer to use the term “representation” rather than
“molecular descriptor.” Quantum mechanics offers a very specific recipe in this
regard: A chemical system is defined by its Hamiltonian which is obtained from
elemental composition, geometry, and electron number exclusively. As such, it is
straightforward to define the necessary ingredients for a representation: It should
be some vector (or fingerprint) which encodes the compositional and structural
information of a given neutral compound.

4.1 The Essentials of a Good Representation

There are countless ways to encode a compound into a vector, but what represen-
tation can be regarded as “good”? Practically, a good representation should lead to
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a decent learning curve, i.e., error steadily decreases as a function of training set
size. Conceptually, it should fulfill several criteria, including primarily uniqueness
(non-ambiguity), compactness, and being size-extensive (von Lilienfeld et al. 2015).

Uniqueness (or being nonambiguous) is indispensable for ML models. We con-
sider a representation to be unique if there is no pair of molecules that produces the
same representation. Lack of uniqueness would result in serious consequences, such
as ceasing to learn at an early stage or no learning at all from the very beginning. The
underlying origin is not hard to comprehend. Consider two representation vectors
x1 and x2 for two compounds associated with their respective properties y1 and y2.
Now suppose x1 = x2 while y1 �= y2 (no degeneracy is assumed). One extreme case
is that only these two points are used when training the ML model; obviously we
will encounter a singular kernel matrix with all elements being 1; huge prediction
errors will result, and basically there is no learning. Even if molecules like these
are not chosen for training, it should be clear that such a representation introduces
a severe and systematic bias. Furthermore, when trying to predict y1 and y2 after
training, the estimate will be the same as the input to the machine is the same. The
resulting test error is therefore directly proportional to their property difference.

The compactness requires atom index permutation and rotational and transla-
tional invariance, i.e., all redundant degrees of freedom of the system should be
removed as much as possible while retaining the uniqueness. This can lead to a
more robust representation, meaning (1) the size of training set needed may be
significantly reduced and (2) the dimension of the representation vector (thus the
size) is minimized, a virtue which becomes important when the necessary training
set size becomes large.

Being size-extensive is crucial for prediction of extensive properties, among
which the most important is the energy. This leads to the so-called atomic repre-
sentation or local representation of an atom in a compound. The local unit atom can
also consist of bonds, functional groups, or even larger fragments of the compound.
As pointed out in Sect. 2.2, this type of representation is the crucial stepping
stone for building scalable machine learning models. Even intensive properties
such as HOMO-LUMO gap, which typically do not scale with system size, can
be modeled within the framework of atomic representations, as illustrated using the
Re-Match metric (De et al. 2016). For specific problems, such as force predictions,
an analytic form of representation is desirable for analysis and rapid evaluation and
for subsequent differentiation (with respect to nuclear charges and coordinates) so
as to account for response properties.

4.2 Rational Design

It is not obvious how to obtain an optimal representation. In order to obtain a
good representation, one has to gain intensive knowledge about the system and
structure-property relationship. The use of simplified approximations to solutions
of Schrödinger’s equation is particularly powerful. The most approximative, yet
atomistic, models of SE are universal force fields (FF) which typically reproduce
the essential physics for certain system classes, such as bioorganic molecules,
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reasonably well. Namely, the atom-pairwise two-body interactions in force fields
typically decay as 1/Rn (R being the internuclear distance and n being some
integer), while 3- and 4-body parts behave as periodic functions of angle and
dihedral angle (modern force field approaches also include 2- to (n − 1)-body
interaction in n-body interactions). FFs are essentially a special case of the more
general many-body expansion (MBE) in interatomic contributions, i.e., an extensive
property of the system (e.g., total energy) is expanded in a series of many-body
terms, namely, 1-, 2- and 3-body terms, · · · , i.e.,

E({RI }) =
[Z]∑

I

E(1)(RI )+
[Z]∑

J>I

E(2)(RIJ )+
[Z]∑

K>J>I

E(3)(RIJ , RIK, θIJK)+ · · ·
(33)

where E(n) is the n-body interaction energy, RIJ is the interatomic distance between
atom I and J , and θIJK is the angle spanned by two vectors RIJ and RIK . Other
important properties can also be expressed in a similar fashion.

By utilizing the basic variables in MBE, including distance, angles, and dihedral
angles in their correct physics-based functional form (e.g., the aforementioned 1/Rn

dependence of 2-body interaction strength), one can already build some highly
efficient representations such as BAML and SLATM (vide infra). This recipe relies
heavily on preconceived knowledge about the physical nature of the problem.

4.3 Numerical Optimization

It is possible that for some systems and properties, one does not know which
features are of primary importance. And it is not an option to try all features one-
by-one considering that there are so many possibilities. In such a situation, the
least absolute shrinkage and selection operator (LASSO) can offer suitable relief.
LASSO is basically a regression analysis method. Consider a simple linear model:
the property of a system is a linear functions of its features, i.e., y = Xc, where X
is a matrix with each of the N rows being the descriptor vector xi of length D for
each training data points, c is the D-dimensional vector of coefficients, and y is the
vector of training properties with the i-th property being yi . Our task is to find the
tuple of features that yields the smallest sum of squared error: ||y− Xc||22. Within
LASSO, it is equivalent to a convex optimization problem, i.e.,

argmin
c∈IRD

||y− Xc||22 + λ||c||1 (34)

where the use of L1 norm of regularization term is pivotal, i.e., smaller L1 norm can
be obtained when larger λ is used, thereby purging features of lesser importance.
This approach has been exemplified for the prediction of relative crystal phase
stabilities (rock-salt vs. zinc-blende) in a series of binary solids (Ghiringhelli et al.
2015). Unfortunately, this approach is limited in that it works best for rather low-
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dimensional problems. Already for typical organic molecules, the problem becomes
rapidly intractable due to coupling of different degrees of freedom. Under such
circumstances, it appears to be more effective to adhere to the aforementioned
rational design based heuristics, as manifested by the fact that almost all of the
ad hoc representations in the literature are based on manual encoding.

4.4 An Overview of Selected Representations

Over the years, numerous molecular representations have been developed by several
research groups working on QML. It’s not our focus to enumerate all of them but to
list and categorize the popular ones. Two categories are proposed; one is based on
many-body expansions in vectorial or tensorial form, such as Coulomb matrix (CM),
Bag of Bonds (BoB), Bond, Angle-based Machine Learning (BAML), Spectrum
of London and Axilrod-Teller-Muto potential (SLATM), and the alchemical and
structural radial distribution-based representation introduced by Faber, Christensen,
Huang, and von Lilienfeld (FCHL). The other category is an electron density model-
based representation called smooth overlap of atomic positions (SOAP).

4.4.1 Many-Body Potential-Based Representation
The Coulomb matrix (CM) representation was first proposed in the seminal paper
by Rupp et al. (2012). It is a square atom-by-atom matrix with off diagonal
elements corresponding to the nuclear Coulomb repulsion between atoms, i.e.,
CMIJ = ZIZJ /RIJ for atom index I �= J . Diagonal elements approximate
the electronic potential energy of the free atom, which is encoded as −0.5Z2.4

I .
To enforce invariance of atom indexing, one can sort the atom numbering such
that the sum of L2 and L1 norm of each row of the Coulomb matrix descends
monotonically in magnitude. Symmetrical atoms will result in the same magnitude.
A slight improvement over the original CM can be achieved by varying the power
low of RIJ (Huang and von Lilienfeld 2016). Best performance is found for an
exponent of 6, reminiscent of the leading order term in the dissociative tail of
London dispersion interactions. Thus, the resulting representation is also known
as London matrix (LM). The superiority of LM is attributed to a more realistic
trade-off between the description of more localized covalent bonding and long-range
intramolecular non-covalent interactions (Huang and von Lilienfeld 2016).

In spite of the great virtue of uniqueness encoded in CM, it generally suffers
from a high offset of learning curve (see Fig. 3). In contrast, the bag-of-bond (BoB)
representation (Hansen et al. 2015), a bagged (vectorial) stripped down version of
the CM, turns out to result in learning curves with lower offset than CM (see Fig. 3).
The BoB representation is a 1-D array, constructed as the concatenation of a series of
bags (1-D arrays as well); each corresponds to a specific type of atomic pair, e.g., all
C-O pairs (covalently and non-covalently bonded) in the molecule are grouped into
the bag labeled as CO, similarly for all other combinations of elemental pairs. Each
bag thus includes a set of nuclear Coulomb repulsion values. Each bag is then sorted
in descending order. In cases that the same type of bag for two molecules has not the
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Fig. 2 Two-body interaction is not enough to capture the physics of a pair of homometric
molecules. In the figure, the energy of the two molecules is approximated as summation of LJ
potentials with (dashed lines) or without three-body ATM potentials (solid line) and plotted as a
function of f , the scaling factor of all coordinates of the two molecules. LJ and ATM stand for
Lennard-Jones and Axilrod-Teller-Muto vdW potential, respectively. The letters s and l label the
two existing different bond lengths, standing for “short” and “long.” The atom represented by a
yellow-filled circle with cross means out of plane

same size, the smaller bag is padded with zeros. Through bagging the performance
is improved in comparison to the CM matrix. But inevitably, crucial higher-order
information, such as the angular part, is missing. Due to its exclusive reliance on
sorted two-body terms, BoB is not a unique representation, as also manifested by
the deterioration of its slope in the learning curve for large training set sizes (see
Fig. 3). This loss of information can also be illustrated for a pair of homometric
molecules (same atom types, same set of interatomic distances) as displayed in
Fig. 2. If we make a plot of the potential energy (approximated as a sum of Lennard-
Jones potentials) curve of both planar and tetrahedral molecules as a function of
the scaling factor f of all coordinates, we will end up with the same curve due
to a spurious degeneracy imposed by lack of uniqueness. The BoB representation
would not distinguish between these two molecules. Only after addition of higher-
order many-body potential terms (e.g., the 3-body Axilrod-Teller-Muto potential),
the spurious degeneracy is lifted.

Based on this simple example, an important lesson learned is that collective
effects which go beyond pairwise potentials are of vital importance for the accurate
modeling of fundamental properties such as energies. While adhering to the ideas
of bagging for efficiency, a representation consisting of extended bags can be
constructed; each may contain interatomic interaction potentials up to three- and
four-body terms. BAML was formulated in this way, where (1) all pairwise nuclear
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Fig. 3 Comparison of the learning curves for different representations for three typical datasets
(QM7b (Rupp et al. 2012), QM9 (Ramakrishnan et al. 2014; Ruddigkeit et al. 2012), and 6k
isomers from QM9). Note that the size and composition for molecules in all the three datasets
are comparable, i.e., the dimensionality d’s of these systems is similar; hence almost the same
learning rates are observed for all representations with no (or less) suffer from uniqueness issue.
For QM7b dataset, a much lower offset is shown as the relevant molecules are much more relaxed
than those in QM9 and 6k isomers; thus given any representation, its target similarity is larger for
this dataset compared to others

repulsions are replaced by Morse/Lennard-Jones potentials for bonded/nonbonded
atoms, respectively, and (2) the inclusion of three- and four-body interactions of
covalently bonded atoms is achieved using periodic angular and torsional terms,
with their functional form and parameters extracted from the universal force field
(UFF) (Huang and von Lilienfeld 2016; Rappe et al. 1992). BAML achieves a
noticeable boost of performance when compared to BoB or CM. Interestingly, the
performance is systematically improving upon inclusion of higher and higher-order
many-body terms, as the proposed energy model is getting more and more realistic,
i.e., increasing similarity to target. Meanwhile and not surprisingly, the uniqueness
issue, existing in two-body representations such as BoB, is also resolved (see Fig. 3).
The main drawback of BAML, however, is that it requires pre-existing force fields,
implying a severe bias when it comes to new elements or bonding scenarios. It
would therefore be desirable to identify a representation which is more compact and
ab initio in nature.

The so-called SLATM representation (Huang and von Lilienfeld 2017) enjoys
all these attributes. It has two variants: a local and a global one. The basic idea
of SLATM is to represent an atom indexed I in a molecule by accounting for all
possible interactions between atom I and its neighboring atoms through many-body
potential terms multiplied by a normalized Gaussian distribution centered on the
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relevant variable (distance or angle). So far, one-, two-, and three-body terms have
been considered. The one-body term is simply represented by the nuclear charge,
while the two-body part is expressed as

1

2
ZI

∑

J �=I

ZJ δ(r− RIJ )g(r) (35)

where δ(·) is set to normalized Gaussian function δ(x) = 1
σ
√

2π
e−x2

and g(r) is
a distance-dependent scaling function, capturing the locality of chemical bond and
chosen to correspond to the leading order term in the dissociative tail of the London
potential g(R) = 1

R6 . The three-body distribution reads

1

3
ZI

∑

J �=K �=I

ZJZKδ(θ − θIJK)h(θ,RIJ ,RIK) (36)

where θ is the angle spanned by vector RIJ and RIK (i.e.,θIJK ) and treated
as a variable. h(θ,RIJ ,RIK) is the three-body contribution depending on both
internuclear distance and angle and is chosen in form to model the Axilrod and
Teller (1943) and Muto (1943) vdW potential:

h(θ,RIJ ,RIK) = 1+ cos θ cos θJKI cos θKIJ

(RIJRIKRKJ )3 (37)

Now we can build the atomic version aSLATM for an atom I through concatenation
of all the different many-body potential spectra involving atom I as displayed in
Eqs. (35) and (36). As for the global version SLATM, it simply corresponds to the
sum of the atomic spectra.

SLATM and aSLATM outperforms all other representations discussed so far, as
evidenced by learning curves shown in Fig. 3. This outstanding performance is due
to several aspects: (1) almost all the essential physics in the systems is covered,
including the locality of chemical bonds as well as many-body dispersion; (2) the
inclusion of 3-body terms significantly improves the learning; and (3) the spectral
distribution of radial and angular feature now circumvents the problem of sorting
within each feature bag, allowing for a more precise match of atomic environments.

Most recently, the FCHL representation has been introduced (Faber et al.
2018). It amounts to a radial distribution in elemental and structural degrees of
freedom. The configurational degrees of freedom are expanded up to three-body
interactions. Four-body interactions were tested but did not result in any additional
improvements. For known datasets, FCHL-based QML models reach unprecedented
predictive power and even outperform aSLATM and SOAP (see below). In the case
of the QM9 dataset, for example, FCHL-based models of atomization energies reach
chemical accuracy after training on merely ∼1’000 molecules.
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4.4.2 Density Expansion-Based Representation
Within the smooth overlap of atomic positions (SOAP) (Bartók et al. 2013) idea of a
representation, an atom I in a molecule is represented as the local density of atoms
around I . Specifically, it is represented by a sum of Gaussian functions with variance
σ 2 within the environment (including the central atom I and its neighboring atoms
Q’s), with the Gaussian functions centered on Q’s and I :

ρI (r) =
∑

Q

exp

(
− (r− RQ)2

2σ 2

)
(38)

where r is the vector from the central atom I to any point in space, while RQ

is the vector from atom I to its neighbor Q. The overlap of ρI and ρJ then can
be used to calculate a similarity between atoms I and J . However, this similarity
is not rotationally invariant. To overcome this, we can integrate out the rotational
degrees of freedom for all three-dimensional rotations R̂, and thus the SOAP kernel
is defined:

k̃(I, J ) =
ż

dR̂

∣∣∣∣
ż

drρI (r)ρJ (R̂r)

∣∣∣∣
2

, (39)

To enforce the self-similarity to be normalized, the final SOAP similarity measure
takes the form of

k(I, J ) = k̃(I, J )√
k̃(I, I )k̃(J, J )

(40)

The integration in Eq. (39) can be carried out by first expanding ρI (r) in Eq. (38)
in terms of a set of basis functions composed of orthogonal radial functions and
spherical harmonics and then collecting the elements in the rotationally invariant
power spectrum, based on which k can be easily calculated. The interested reader is
referred to Bartók et al. (2013).

SOAP has been used extensively and successfully to model systems such as
silicon bulk or water clusters, each separately with many configurations. These
elemental or binary systems are relatively simple as the diversity of chemistries
encoded by the atomic environments is rather limited. A direct application of SOAP
to molecules where there are substantially more possible atomic environments,
however, yields learning curves with rather large offsets. This is not such a surprise,
as essentially the capability of atomic densities to differentiate between different
atom pairs, atom triples, and so on is not so great. This shortcoming remains
even if one treats different atom pairs as different variables, as was adopted
in De et al. (2016); averaging out all rotational degrees of freedom might also
impede the learning progress due to loss of relevant information. To amend some
of these problems, a special kernel, the RE-Match kernel (De et al. 2016), was
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introduced. And most recently, combining SOAP with a multi-kernel expansion
enabled additional improvements in predictive power (Bartók et al. 2017).

5 Training Set Selection

The last section of this chapter deals with the question of how to select training sets.
The selection procedure can have a severe effect on the performance. The predictive
accuracy appears to be very sensitive on how we sample the training molecules
for any given representation (or better ones). Training set selection can actually
be divided into two parts: (1) How to create training set. The general principle is
that the training set should be representative, i.e., it follows the same distribution
as all possible test molecules in terms of input and output. This will formally
prevent extrapolation and thereby minimize prediction errors. (2) How to optimize
the training set composition.

The majority of algorithms in literature deal with (2) assuming the existence of
some large dataset (or a dataset trivial to generate) from which one can draw using
algorithms such as ensemble learning, genetic evolution, or other “active learning”-
based procedures (Podryabinkin and Shapeev 2017). All of these methods have in
common that they select the training set from a given set of configurations based
only on the unlabeled data. This is particularly useful for “learning on the fly”-based
ab initio molecular dynamics simulations Csányi et al. (2004), where expensive
quantum-mechanical calculation is carried out only when the configurations are
sufficiently “new.”

Step 1 stands out as a challenging task and few algorithms are competent. The
most ideal approach is of course an algorithm that can do both parts within one step;
the only competent method we know is the “amons” approach. We will elaborate on
all these concepts below.

5.1 Genetic Optimization

To the best of our knowledge, the first application of a GA for generation and study
of optimal training set compositions for QML model was published in Browning
et al. (2017). The central idea of this approach is outlined as follows. For a given set
(S0) containing overall N molecules, the GA procedure consists of three consecutive
steps to obtain the “near-optimal” subset of molecules from S0 for training the ML
model (Browning et al. 2017): (a) Randomly choose N1 molecules as a trial training
set s1; repeat M times. This forms a population of training sets, termed the parent
population and labeled as ŝ(1) = {s1, s2, . . . , sM }. (b) An ML model is trained on
each si and then tested on a fixed set of out-of-sample molecules, resulting in a
mean prediction error ei , which is assigned to si as a measure of how fit si is as the
“near-optimal” training set and dubbed “fitness.” Therefore, the smaller ei is, the
larger the fitness is. (c) ŝ(1) is consecutively evolved through selection (to determine
which si’s in ŝ(1) should remain in the population to produce a temporarily refined
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smaller set t̂ (1); a set si with larger fitness means higher probability to be kept in
t̂ (1)), crossover (to update ŝ(1) from t̂ (1) and the new ŝ is labeled as ŝ(2) with each set
si in ŝ(2) obtained through mixing the molecules from two si’s in t̂ (1)), and mutation
(to change molecules in some si’s in ŝ(2) randomly to promote diversity in ŝ(2), e.g.,
replace -CH2- fragment by -NH- for some molecule. (d) Go to step (b) and repeat
the process until there is no more change in the population and the fitness ceases to
improve . We label the final updated trial training set as ŝ.

It’s obvious that the molecules in ŝ should be able to represent all the typical
chemistry in all molecules in S0, such as linear, ring, cage-like structure, and typical
hybridization states (sp, sp2, sp3) if they are abundant in S0. Once trained on ŝ,
the ML model is guaranteed to yield typically significantly better results as the
fitness is constantly increasing. This is not useful since the GA “tried” this already;
the usefulness has to be assessed by the generalizability of ŝ as training set to
test on a new set of molecules is not seen in S0. Indeed, as shown in Browning
et al. (2017), significant improvements in offsets can be obtained when compared
to random sampling. While the remaining out-of-sample error is still substantial,
this is not surprising due to the use of less advantageous representations. One of
the key findings in this study were that upon genetic optimization, (i) the distance
distributions between training molecules were shifted outward and (ii) the property
distributions of training molecules were fattened.

5.2 Amons

We note that the naive application of active learning algorithms will still result
in QML models which suffer from lack of transferability, in particular when it
comes to the prediction of larger compounds or molecules containing chemistries
not present in the training set. Due to the size of chemical compound space,
this issue still imposes a severe limitation for the general applicability of QML.
These problems can, at least partially, be overcome by exploring and exploiting the
locality of an atom in molecule (Huang and von Lilienfeld 2017), resulting from the
nearsightedness principle in electronic systems (Prodan and Kohn 2005; Fias et al.
2017).

We consider a valence saturated query molecule for illustration, for which we
try to build an “ideal” training set. As is well known, any atom I (let us assume a
sp3 hybridized C) in the molecule is characterized by itself and its local chemical
environment. To a first-order approximation, we may consider its coordination
number (CN for short) to be a distinguishing measure of its atomic environment,
and we can roughly say that any other carbon atom with a coordination number of
4 is similar to atom I , as their valence hybridization states are all sp3. Another
carbon atom with CN = 3 in hybridization state of sp2 would be significantly
different compared to atom I . It is clear, however, that CN as an identifier of
atomic environment type is not enough: An sp3 hybridized C atom in methane
molecule (hereafter we term it as a genuine C-sp3 environment) is almost purely
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Fig. 4 Comparison of the
learning curves obtained for
one molecule (see the inset)
from random selection of
training set and amons,
respectively. For each red
scatter point, errors were
averaged over 100 random
samplings

covalently bonded to its neighbors, while in CH3OH, noticeable contributions from
ionic configurations appear in the valence bond wavefunction due to the significant
electronegativity difference between C and O atoms. Thus one would expect
very different atomic properties for the sp3-C atoms in these two environments
as manifested, for instance, in their atomic energy, charge, or 13C-NMR shift.
Alternatively, we can say that oxygen as a neighboring atom to I has perturbed
the ideal sp3 hybridized C to a much larger extent in CH3OH than the H atom has in
methane. To account for these differences, we can simply include fragments which
contain I as well as all its neighbors. Thus we can obtain a set of fragments, for
each of which the bond path between I and any other atom is 1.

Extending this kind of reasoning to the second neighbor shell, we can add new
atoms with a bond path of 2 relative to atom I in order to account for further,
albeit weaker, perturbation to atom I . As such, we can gradually increase the
size of included fragments (characterized by the number of heavy atoms) until
we believe that all effects on atom I have been accommodated. The set of unique
fragments can then be used as a training set for a fragment-based QML model.
Note that we saturate all fragments by hydrogen atoms. These fragments can be
regarded as effective quasi-atoms which are defined as atom in molecule, or “am-
on.” Since amons repeat throughout chemical space, they can be seen as the “words”
of chemistry (target molecules being “sentences”) or as “DNA” of chemistry (target
molecules being genes and properties their function). Given the complete set of
amons, any specific, substantially larger, query molecule can be queried. Used in
conjunction with an atomic representation such as aSLATM or FCHL, amons enable
a kind of chemical extrapolation which holds great promise to more faithfully and
more efficiently explore vast domain chemical space (Huang and von Lilienfeld
2017).

To demonstrate the power of amons, we show the example of predicting the
potential energy of a molecule present as an inset in Fig. 4. With amons as the
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training set, chemical accuracy (1 kcal/mol) is reached after training on only 40
amons (with amons being not larger than 6 heavy atoms). Sampling amons at
random, the slope of the learning curve is substantially worse.

6 Conclusion

We have discussed primarily the basic mathematical formulations of all typical
ingredients of quantum machine learning (QML) models which can be used in
the context of quantum-mechanical training and testing data. We explained and
reviewed why ML models can be fast and accurate when predicting quantum-
mechanical observables for out-of-sample compounds. It is the authors’ opinion that
QML can be seen as a very promising approach, enabling the exploration of systems
and problems which hitherto were not amenable to traditional computational
chemistry methods.

In spite of the significant progress made within the last few years, the field QML
is still very much in a stage of infancy. This should be clear when considering
that the properties that have been explored so far are rather limited and relatively
fundamental. The primary focus has been on ground state or local minimum
properties. Application to excited states still remains a challenge (Ramakrishnan
et al. 2015b), just as well as conductivity, magnetic properties, or phase transitions.
We believe that new and efficient representations will have to be developed which
properly account for all the relevant degrees of freedom at hand.
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Abstract

We briefly summarize the kernel regression approach, as used recently in
materials modeling, to fitting functions, particularly potential energy surfaces,
and highlight how the linear algebra framework can be used to both predict and

M. Ceriotti · M. J. Willatt
Laboratory of Computational Science and Modelling, Institute of Materials, École Polytechnique
Fédérale de Lausanne, Lausanne, Switzerland
e-mail: michele.ceriotti@epfl.ch

G. Csányi (�)
Engineering Laboratory, University of Cambridge, Cambridge, UK
e-mail: gc121@cam.ac.uk

© Springer Nature Switzerland AG 2020
W. Andreoni, S. Yip (eds.), Handbook of Materials Modeling,
https://doi.org/10.1007/978-3-319-44677-6_68

1911

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-44677-6_68&domain=pdf
mailto:michele.ceriotti@epfl.ch
mailto:gc121@cam.ac.uk
https://doi.org/10.1007/978-3-319-44677-6_68


1912 M. Ceriotti et al.

train from linear functionals of the potential energy, such as the total energy
and atomic forces. We then give a detailed account of the smooth overlap of
atomic position (SOAP) descriptor and kernel, showing how it arises from an
abstract representation of smooth atomic densities and how it is related to several
popular density-based descriptors of atomic structure. We also discuss recent
generalizations that allow fine control of correlations between different atomic
species, prediction, and fitting of tensorial properties and also how to construct
structural kernels – applicable to comparing entire molecules or periodic systems
– that go beyond an additive combination of local environments.

1 Introduction

There has been a surge of activity during the last couple of years in applying
machine learning methods to materials and molecular modeling problems that was
largely fueled by the evident success of these techniques in what can loosely be
called artificial intelligence. These successes have followed from the collective
experience that the scientific community has gained in fitting high volumes of data
with very complex functional forms that involve a large number of free parameters
while still keeping control of the regularity and thus avoiding catastrophic over-
fitting. In the context of molecular modeling, empirical fitting of potential energy
surfaces has of course been used for many decades. Indeed it is generally held that
this is the only practical way to simulate very large systems (many thousands of
atoms) over long time scales (millions of time steps) (Finnis 2004).

Traditionally, when fitting empirical models of atomic interactions, regularity
was ensured by writing functional forms that are expressed in terms of one-
dimensional functions, e.g., pair potentials, spherically symmetric atomic electron
densities, bond orders (as a function of number of neighbors), etc. Such functions
are easy to inspect visually to ensure that they are physically and chemically
meaningful, e.g., that pair potentials go to zero at large distances and are strongly
repulsive at close approach, that atomic electron densities are decreasing with
distance, that electron density embedding functions are convex, etc. Moreover,
these natural properties are easy to build into the one-dimensional functional forms
or enforced as constraints in the parameter optimization. It is widely held that
employing such “physically meaningful” functional forms is the key to achieving
good transferability of the empirical models (Brenner 2000).

It is also recognized, however, that the limited functional forms that can be built
from these one-dimensional functions ultimately limit the accuracy that these empir-
ical models can achieve. In trying to replace them by high-dimensional fits using
much more flexible functional forms, two things immediately have to change. The
first is the target data. When fitting only a few parameters, it is natural to demand that
important observables that are deemed to be central to the scientific questions being
addressed are reproduced correctly, and it is easiest to do this if they are part of the
fit, e.g., melting points and other phase boundaries, radial distribution functions, etc.
But in the case of very many parameters, their optimization also takes a significant
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number of evaluations, and it becomes impractical to use complex observables as
targets. Moreover, there is a drive toward using a “first principles” approach, i.e.,
that the potentials should actually reproduce the real Born-Oppenheimer potential
energy surface with sufficient accuracy and therefore the scientifically relevant
observables also. So it is natural to take as target data values of the potential
energy surface, as computed by the electronic structure method of choice. The large
number of free parameters can then easily be counterbalanced by a large amount of
calculated input data.

The second thing that has to change is how the smooth physically meaningful
behavior of the potential is controlled. It is not practical to inspect manually
high-dimensional functions to ensure that their predictions are physically and
chemically meaningful for all possible configurations. Therefore it becomes even
more important to build into the functional forms as much prior information as
possible about limiting behavior and regularity (the technical word for the kind
of smoothness we are interested in). Reviewing the recent work, this paper sets out
an example framework for how to do this. The key goals are to create functional
forms that preserve the (i) invariance of the properties over permutation of like
atoms, (ii) invariance of scalar and covariance of tensorial properties with three-
dimensional rotations, and (iii) continuity and regularity with respect to changes in
atomic coordinates, including compact support of atomic interactions by including
finite cutoffs.

Evidence is accumulating showing that enforcing these physically motivated
properties strictly is enormously beneficial, and several of the most successful
machine learning schemes for atomic-scale systems are built around symmetry
arguments. One possible approach is to describe the system in terms of internal
coordinates that satisfy automatically rotational invariance and then symmetrize
explicitly the vector of descriptors or the functional relation between the descriptors
and the properties. Permutationally invariant polynomials are an example that has
been very effective to model the potential energy surfaces of small molecules (see,
e.g., the work of Braams and Bowman 2009). Sorting the descriptors according
to interatomic distances has also been used as a way of obtaining permutation
invariance at the cost of introducing derivative discontinuities (Rupp et al. 2012;
Faber et al. 2015; Zhang et al. 2018). Another possibility, which we will focus on in
this paper, starts from a representation of each structure in terms of atomic densities
– which are naturally invariant to atom permutations – and then builds a descriptor
that is further invariant to translations and rotations also.

Either way, once an appropriate description of each structure has been obtained,
further regularization can be achieved at the level of the regression scheme. To this
end, two prominent techniques are the use of artificial neural networks and kernel
ridge regression (Bishop 2016). We use the latter formalism here, and many further
details about these techniques can be found in the rest of this volume. The kernel
approach starts with the definition of a kernel function, which will be combined with
a set of representative atomic configurations to construct basis functions for the fit.
It is a scalar function – at least when learning scalar quantities – with two input
arguments and in the present case two atomic structures. Its value should quantify
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the similarity of the atomic configurations represented by its two arguments, and
it can (but does not have to) be defined starting from their associated descriptors.
The value should be the largest when its two arguments are equal (or equivalent up
to symmetry operations) and smallest for maximally different configurations. The
degree to which the kernel is able to capture the variation of the function when
varying the atomic configuration will determine how efficient the fit is. The better
the correspondence, the fewer basis functions that are needed to achieve a given
accuracy of fit.

2 Kernel Fitting

We start by giving a concise account of the kernel regression fitting approach, for
more details see Bishop (2016), Rasmussen and Williams (2006), and Schölkopf
and Smola (2002). A function defined on an atomic structure is represented as a
linear sum over kernel basis functions,

f (A) =
∑

B∈M
xBK(A,B), (1)

where the sum runs over a representative set of configurations M , selected from the
total set N of input configurations. The set of coefficients, combined into a vector x,
are determined by solving the linear system that is obtained when the available data
(e.g., values of the target function evaluated for a set of structures) are substituted
into Eq. (1). In the simplest case, there is one input data value corresponding to
each atomic configuration. Let y be the vector of all available input data and K
be the kernel matrix with rows and columns corresponding to atomic structures, so
that the element of K with row and column corresponding to structures A and B,
respectively, is K(A,B). The fit is then obtained by solving a linear system in the
least squares sense, i.e., minimizing the quadratic loss function:

�(x) = ‖Kx− y‖2. (2)

The textbook case is when the set of all configurations for which we have target data
available is used in its entirety as the representative set (i.e., N = M), K is square,
and as long as it is invertible, the optimal solution is:

x = K−1y. (3)

In practice, for large data sets, using all the configurations in the data set as
representatives is unnecessary. In this case, M ⊂ N , the solution is given by the
pseudoinverse,

xM = (KMNKNM)−1KMNyN, (4)
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where we used subscripts to emphasize the set that the vector elements correspond
to, e.g., y ≡ yN is the data vector with one element for each input data structure
and x ≡ xM is the vector of coefficients, one for each representative configuration.
The subscripts on the kernel matrix denote array slices, i.e., KMN = K/NM is the
rectangular matrix whose elements correspond to the kernel values between the
representative configurations and the input configurations.

Using a representative set much smaller than the total number of structures has
significant advantages in terms of computational cost, often with no reduction in
fitting accuracy. The training cost is dominated by computing the pseudoinverse,
which scales as O(NM2), which is linear in the size of the training data, N ,
evaluating the model scales as O(M), now independent of the size of the training
data. These cost scalings are analogous to those of artificial neural networks with a
fixed number of nodes.

While the above solutions are formally correct, it is widely recognized that they
lead to numerical instability and overfitting, i.e., they are solutions that attempt to
maximize the fit to the input data, even when this might not be desirable, which is
almost always the case. At first sight, this might sound surprising, since electronic
structure calculations can be made deterministic, with precise convergence behavior
in terms of its parameters, such as k-point sampling, SCF tolerance, etc. However,
practical calculations are never converged to machine precision, and the resulting
inconsistencies between the potential energy values for different configurations are
not something that is desirable to propagate to a fitted potential energy surface.
The magnitude of such inconsistencies can be easily assessed before the fit is made.
Previous experience (Szlachta et al. 2014; Dragoni et al. 2018) suggests that in large
databases for materials applications, the error due to k-point sampling is dominant
and difficult to reduce below a meV/atom due to the associated computational
cost.

In case we are fitting a potential energy surface with a representation that does
not characterize the atomic positions of the whole system completely due to, e.g.,
a finite cutoff, or some other choices made to gain computational efficiency, the fit
is not expected to be exact, irrespective of the amount of input data. Sometimes,
such model error can also be assessed a priori, e.g., in the case of a finite cutoff by
measuring the contribution made to forces on an atom by other atoms beyond the
cutoff (Bernstein et al. 2009; Deringer and Csányi 2017; Fujikake et al. 2018).

These two considerations suggest that allowing some “looseness” in the linear
system might be beneficial, because it can be exploited to allow smaller linear
coefficients, making the fit more regular and thus better at extrapolation. We collect
the errors we expect in the fit of each target data value on the diagonal of an N ×N

matrix, �. The common procedure to regularizing the problem is due to Tikhonov
et al. (1995). Specifically, in “kernel ridge regression” (and the equivalent “Gaussian
process regression,” a Bayesian view of the same), the Tikhonov matrix is chosen
to be the kernel matrix between the M representative points, KMM . With highly
regular (“smooth”) kernel functions, this regularization leads to smooth fits, and the
sizes of the elements of � control the trade-off between the accuracy of the fit and
smoothness. The corresponding solutions are
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x = (K+�)−1y. (5)

for the square problem, and

xM = (KMM +KMN�−1KNM)−1KMN�−1yN, (6)

for the rectangular problem, where we again emphasized the index sets. This
solution is equivalent to minimizing

‖Kx− y‖2
�−1 + ‖x‖2

K, (7)

which shows that the inverse of the tolerances in � are equivalent to weights on the
different data points.

With the solution of the linear system in hand, the value of the fitted function for
a new structure C can be written as

f (C) = KCMxM. (8)

Note that the KCM slice is just a vector, with elements given by the kernel between
the new structure C and the structures in the representative set M .

2.1 Selection of a Representative Set

Next we describe some ways to choose the set of representative environments over
which the sum in Eq. (1) is taken. This can be done by simple random sampling,
but we find it advantageous to use this freedom to optimize interpolation accuracy.
Among the many strategies that have been proposed to this end (Hartigan and Wong
1979; Prabhakaran et al. 2012), we discuss two that have been used successfully
in this context. One approach to this is to maximize the dissimilarity between the
elements of the representative set. A greedy algorithm to select the configurations
for the representative set is “farthest point sampling,” in which we start with a
randomly selected structure and then iteratively pick as the next structure the one
which is farthest away from any of the structures already in the set (Gonzalez 1985;
Ceriotti et al. 2013; Bartók et al. 2017). The distance between two structures is
measured in the “kernel metric,” defined as (Schölkopf and Smola 2002):

d2(A,B) = K(A,A)+K(B,B)− 2K(A,B). (9)

This algorithm performed well for selecting molecules in regression tasks, enabling
the significant reduction of the data set sizes for a given level of accuracy (De et al.
2016).

Another technique that has been successfully used is based on matrix factoriza-
tion, which is particularly appealing when the kernel function is linear or a low-order
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polynomial of the descriptor vector. Consider the matrix of descriptor vectors, D, in
which each row is the descriptor vector of an input atomic configuration, such that
a linear kernel is K = DD/. We are looking to select rows, many fewer than the
total number, which span as much of the space as all rows span. This is a problem
of matrix representation, specifically that the representative set should serve as a
low-rank approximation of K and/or D. One solution to this is called CUR matrix
decomposition (Mahoney and Drineas 2009), which can be applied to either K or
D, the latter being much cheaper if the length of the descriptor vectors is less than
the number of data points.

To determine the optimal set of representative configurations, we start with a
singular value decomposition of D,

D = USV /. (10)

For each data point, a leverage score is calculated, essentially the weight that the
top singular vectors have on that configuration.

πA = 1

k

k∑

ξ=1

(
u
ξ

A

)2
(11)

where u
ξ

A is the element of the ξ -th left singular vector that corresponds to structure
A. The sum runs over the first k singular vectors, e.g., k = 20 is typical. The
configuration A is included in the representative set with a probability that is
proportional to its leverage score, πA. A deterministic variant is to select one
structure A at a time – the one with the highest leverage score – delete the associated
row from the descriptor matrix, and orthogonalize the remaining rows of D relative
to it. The next data point can then be selected repeating the same procedure on the
now smaller descriptor matrix (Imbalzano et al. 2018).

Note that in the Gaussian process literature, using a subset of the data to construct
the basis is called sparsification (Quinonero-Candela and Rasmussen 2005; Snelson
and Ghahramani 2006), even though the approximation relies on a low-rank matrix
reconstruction rather than the kernel matrix being sparse.

2.2 Linear Combination of Kernels

When fitting interatomic potentials for materials, a model is constructed for the
atomic energy, sometimes called the “site energy.” This is both for computational
efficiency and to reduce the complexity of the functional relation between structures
and properties: each atomic energy is only a function of a limited number of degrees
of freedom corresponding to the coordinates of the neighboring atoms and can
therefore be evaluated independently from any other atomic energy. In fact this
is the defining characteristic of an interatomic potential, in contrast to a quantum
mechanical model that explicitly includes delocalized electrons. Going from atomic
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energies to the total energy is trivial, the latter being the sum of the former. However,
going in the other direction is not unambiguous. The total energy can be calculated
from a quantum mechanical model, but the atomic energies are not defined uniquely,
and it becomes part of the fitting task to find the best possible separation of the
total energy into atomic energies. Treating these two transformations on the same
footing helps. Suppose we want to predict the sum of function values for two (or
more) configurations. For the simple case of the sum of two energies for structures
A and B, the prediction is, trivially, just the sum of the individual function value
predictions, e.g.:

Etot = E(A)+ E(B) = KAMxM +KBMxM. (12)

If we define a new “sum-kernel” to be the sum of kernel values between a number
of new configurations and the representative set, the expression for the above total
energy prediction takes the same form as the prediction of the individual function
values. For some set I of new configurations, let

*KM =
∑

A∈I
KAM, (13)

where *KM is the vector of sum-kernel values, each element of which is the sum
of the kernel between all the configurations in I and a given configuration in the
representative set M . The predicted total energy of the configurations in I is then

Etot = *KMxM. (14)

This same sum-kernel can be used to fit the model to sum data, rather than
to individual function values. This is critical for the case of fitting interatomic
potentials for materials systems, since only total energies, and not the atomic
energies themselves, are available from electronic structure calculations. At the
same time, in order to enforce a finite short range in the interatomic potential,
we must express the potential as an atomic energy. Using the sum-kernel, this is
straightforward, the original functional form in (1) can be retained, and then we
now minimize:

‖*Kx− Etot‖2, (15)

where *K is a matrix containing the sum-kernel values for all configurations in
the input database and the representative set and the vector Etot is the collection of
corresponding total energy data.
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2.3 Derivatives

The explicit analytic functional form of Eq. (1) leads to analytic derivatives with
respect to the atomic coordinates, e.g., forces in the case of fitting an energy.
Considering for the moment the simpler case in which we are computing the
derivatives of an atom-centered quantity f (A), we define ∇A as the vector of
derivatives with respect to all the atomic coordinates in structure A. We use the

notation
←−∇ to indicate a derivative operator that applies to the first argument of

the kernel and
−→∇ to indicate a derivative that applies to the second argument. The

derivatives of f (A) are nonzero only for atoms that belong to the structure A and
are then given by differentiating Eq. (1):

∇Af (A) =
∑

B∈M
xB
←−∇AK(A,B) = K∇AMxM, (16)

where we introduced the notation K∇AM to indicate the matrix that contains the
derivatives of the kernels relative to all the relevant atomic coordinates. Similarly
to the case of sums above, the gradient of the kernel function can also be used for
fitting the model not to target values, but to gradient data (Solak et al. 2003). This is
especially useful when the target represents a potential energy surface. When using
typical electronic structure methods, the cost of computing the gradient with respect
to all atomic positions is only a little bit more than the cost of computing the energy
but yields much more information, 3n pieces of data for an n-atom structure. There
are two approaches one can take to incorporate gradient information. In the first
one, used in Bartók et al. (2010) and subsequent work of that group (Bartók et al.
2013a, 2017; Szlachta et al. 2014; Bartók and Csányi 2015; Deringer and Csányi
2017; John and Csányi 2017; Fujikake et al. 2018; Dragoni et al. 2018; Deringer
et al. 2018; Caro et al. 2018; Rowe et al. 2018; Nguyen et al. 2018), the functional
form for the energy is again retained to be the same as in Eq. (1). The corresponding
loss function is

‖K∇NMxM − y∇N‖2, (17)

where y∇N refers to the concatenated vector of gradients on all atoms in the set of
input structures and K∇NM to the corresponding matrix of kernel derivatives. The
form of the solution for the coefficients is unchanged from (5) or (6) with K∇NM

taking the role of KNM .
In the second approach, used recently in Chmiela et al. (2017), derivatives of the

kernel are the basis functions in the functional form of the fit,

f (A) =
∑

B∈M
x∇B · −→∇BK(A,B), (18)
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where x∇B contains one weight for each of the derivatives relative to the atoms in
structure B. The number of basis functions and corresponding coefficients is now
much larger, 3nM , for n-atom structures. Since the model is fitted to the derivatives,
given by gradients of (18), the loss is

‖K∇N∇Mx∇M − y∇N‖2, (19)

the target properties can be computed as

f (A) = KA∇Mx∇M, (20)

and their derivatives as

∇Af (A) = K∇A∇Mx∇M. (21)

The original motivation for this approach is apparent from Eq. (19) in which the
matrix can be understood as a kernel directly between atomic forces (and in case of
M = N , between the input data forces).

Both approaches constitute valid ways of learning a function from data rep-
resenting its gradients, differing only in the choice of the kernel basis. The
kernel-derivative basis functions could also be used in conjunction with a reduced
representative set, and it is not yet clear which approach is better or indeed a
combination: one could choose different basis functions (kernels or their derivatives)
depending on the amount and kind of data available and on the size and choice of
the representative set.

2.4 Learning from Linear Functionals

We can combine the sum-kernel and the derivative kernel naturally and write a single
least squares problem for the coefficients in (1) that is solved to fit an interatomic
potential to all available total energy, force, and virial stress data (the only condition
being that the input data has to be expressible as a linear operation on function
values). We define y as the vector with L components containing all the input data:
all total energies, forces, and virial stress components in the training database, y′
as the vector with N components containing the unknown atomic energies of the N

atomic environments in the database, and L̂ as the linear differential operator of size

L × N which connects y with y′ such that y′ = L̂
/

y (note that the definition of L̂
we use here is the transpose of that in Bartók and Csányi 2015). The least squares
problem is now to minimize:

‖L̂Kx− y‖2, (22)

and the expression for the coefficients is given by:



87 Machine Learning of Atomic-Scale Properties Based on Physical Principles 1921

x = [
KMM + (L̂KNM)/�−1L̂KNM

]−1
(L̂KNM)/�−1y. (23)

It is instructive to write down the above matrices for the simple case when the
system consists of just two atoms, A and B, with position vectors rA, rB , target
total energy E, and target forces fA ≡ (fAx, fAy, fAz) and fB ≡ (fBx, fBy, fBz).
The data vector is then given by

y = [E fAx fAy fAz fBx fBy fBz]/. (24)

The aim of the fit is to determine two unknown atomic energy functions εA and εB
as a function of the atomic environments centered around the two atoms, A and B,
respectively. The total energy is their sum, E = εA + εB , and the forces need to
include the cross terms,

fA = ∂εA

∂rA
+ ∂εB

∂rA
,

fB = ∂εA

∂rB
+ ∂εB

∂rB
.

(25)

The representative set in this case consists of the same two atoms, so N = M , and
the kernel matrix is square,

K =
[
K(A,A) K(A,B)

K(B,A) K(B,B)

]
, (26)

and the linear operator L̂ is a 7× 2 matrix and is given by

L̂ =
⎡

⎢⎣
1 1←−∇ rA
←−∇ rA←−∇ rB
←−∇ rB

⎤

⎥⎦ , (27)

so the L̂K matrix to be substituted into Eq. (23) is

L̂K =
⎡

⎢⎣
K(A,A)+K(A,B) K(B,A)+K(B,B)←−∇ rAK(A,A)+←−∇ rAK(B,A)

←−∇ rAK(A,B)+←−∇ rAK(B,B)←−∇ rBK(A,A)+←−∇ rBK(B,A)
←−∇ rBK(A,B)+←−∇ rBK(B,B)

⎤

⎥⎦ (28)

Note that terms such as
←−∇ rAK(B,B) or

←−∇ rAK(A,B) are not zero because atom
A is present in the environment B of atom B, and so K(B,A), and also K(B,B)

depend on rA explicitly.
Using the approach of Chmiela et al. (2017) for the dimer, the kernel matrix is

6× 6 and is given by:
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K∇A∇B =
[←−∇ rA

−→∇ rAK(A,A)
←−∇ rA

−→∇ rBK(A,B)←−∇ rB
−→∇ rAK(B,A)

←−∇ rB
−→∇ rBK(B,B)

]
. (29)

In practice it is always worth using all available data, even though once the fit is
converged in the limit of infinite amount of data, the information from derivatives
(forces) is the same as from energies. With finite amount of data, however, choosing
the weights corresponding to energies and forces via the diagonal regulariser allows
control of the fit, in the sense of its relative accuracy in reproducing energies and
forces.

3 Density-Based Representations and Kernels

Having summarized the algorithms that can be used to perform kernel ridge
regression using atomic-scale properties and their derivatives as inputs, we now
proceed to describe a framework for defining physics-based descriptors of local
atomic environments and the kernels built from them. In kernel ridge regression,
the descriptors do not necessarily need to be expressed explicitly but can also be
defined implicitly by means of the kernel function K(A,B) that corresponds to
the scalar product of descriptor vectors that span a (possibly infinite-dimensional)
Hilbert space (Schölkopf and Smola 2002). Vectors |A〉 in this “reproducing kernel
Hilbert space” do correspond to atomic structures, and one can write formally
K(A,B) ≡ 〈A|B〉 even if the kernel might be computed without ever determining
the vectors explicitly.

The reader trained in quantum mechanics will recognize an isomorphism
between descriptors and the state vectors on one hand and kernels and expectation
values on the other. This analogy suggests that it may be beneficial to formulate
atomic-scale descriptors using a formalism that mimics Dirac notation. Whereas in
a quantum mechanical setting the physical symmetries of the problem are built into
the Hamiltonian, in a machine learning setting, they are more conveniently included
in the representation itself that should be made invariant to basic symmetries such
as atom labeling, rigid translations, and rotations. In this section we show how
starting from these intuitions one can build a very abstract description of a molecular
structure that is naturally invariant with respect to the physical symmetries, based
on a representation of the atom density.

Translational and rotational symmetries can be included by decomposing the
structure into a collection of local environments and by explicit symmetrization
over the SO(3) group. This construction is reminiscent of methods that have been
applied to the comparison of solid objects (Kazhdan et al. 2003) and leads naturally
to the SOAP descriptor and kernel (Bartók et al. 2013b) and to several other
popular choices of density-based descriptors – from Behler-Parrinello symmetry
functions (Behler and Parrinello 2007) to voxel density descriptors (Kajita et al.
2017) to the binning of the pair correlation function (Schütt et al. 2014) – that
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can be regarded as different projections of the same smooth atomic amplitude.
A peculiarity of the SOAP framework is that it allows one to explicitly compute
the descriptors whose scalar product constitutes the kernel function, which allows
one to go back and forth between a kernel and a descriptor language. The atomic
environmental descriptors can then be modified to generate nonlinear kernels, as
well as combined into global structural kernels. We will briefly discuss different
possible approaches to the latter, either by simple linear combination of the local
descriptors, or by a more sophisticated procedure that takes into account the most
effective matching between pairs of environments in the two structures that are being
compared.

3.1 A Dirac Notation for Structural Descriptors

Let us introduce an abstract notation to describe atomistic structures in terms of the
positions and chemical nature of the atoms that compose them. Taking inspiration
from Dirac notation for quantum mechanical states, we associate a ket |A〉with each
configuration. Let us start with a simple example to see how such a formalism can
be introduced and used. Much like in the case of quantum states, we can define a
concrete representation of the ket associated with a structure in terms of positions
and chemical species, e.g.:

〈r|A〉 =
∑

i

gi(r− ri ) |αi〉, (30)

where the position of each atom is represented by a smooth density gi (that
in principle could depend on the nuclear charge and the position of atom i)
and the kets |αi〉 contain the information on the nuclear charge of each atom.

The Dirac notation lends itself naturally to the definition of overlap kernels
between structures, 〈A|B〉. To compute such an integral, one can use the position
representation and assume that the kets associated with different elements are
orthonormal:

〈A|B〉 =
ż

dr 〈A|r〉 〈r|B〉

=
∑

ij

ż

dr gA
i (r− rAi )

0gB
j (r− rBj )

〈
αA
i

∣∣∣αB
j

〉

=
∑

α

∑

i,j∈{α}

ż

dr gA
i (r− rAi )

0gB
j (r− rBj ).

(31)

This density-based representation would not be in itself very useful, as the kernel
is not invariant to relative rotations of the structures, and not even to the absolute
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position of the two structures in space, or their periodic representation. Nevertheless,
it can be taken as the starting point to introduce many of the most successful feature
descriptors that have been used in the recent years for machine learning of materials
and molecules. To see how, one can take inspiration from linear-scaling electronic
structure methods and the nearsightedness principle for electronic matter (Yang
1991; Galli and Parrinello 1992; Goedecker 1999; Prodan and Kohn 2005). We then
shift the attention from the description of complete structures to that of spherical
atomic environments that one can conveniently center on top of each atom. This
is also consistent with the atom-centered potentials that have been discussed in
the previous section as an obvious application of this framework. We will use the
notation

∣∣Xj

〉
to indicate an environment centered around the j -th atom in a structure

and express it in the position representation as:

〈
r
∣∣Xj

〉 =
∑

i

fc(rij )gij (r− rij ) |αi〉 (32)

where fc(rij ) is a cutoff function that restricts the environment to a spherical region
centered on the atom for the sake of computational efficiency and/or localization of
the density information. The atom-centered smoothing functions are typically taken
to be uniform-width Gaussians, but it would be easy to generalize the expression to
include a dependency on the atomic species and/or the distance of an atom from the
center of the environment, which could be used to, e.g., reduce the resolution of the
descriptor at the periphery of the environment or adapt the smoothing length scale
to each atomic species.

Note that one could also combine the density contributions from atoms of the
same species into a species-dependent atomic amplitude,

〈
αr
∣∣Xj

〉 = ψα
Xj

(r) =
∑

i∈α
fc(rij )gij (r− rij ), (33)

and then write

〈
r
∣∣Xj

〉 =
∑

α

ψα
Xj

(r) |α〉. (34)

This notation is very useful to reveal how different descriptors can be seen as
alternative representations of the same abstract ket. For instance, one can expand
the atom density in orthogonal radial functions Rn(r) and spherical harmonics. The
coefficients in such an expansion can be written as

〈
αnlm

∣∣Xj

〉 =
ż

dr 〈nlm|r〉 〈αr
∣∣Xj

〉

=
ż

drdr̂ r2Rn(r)Y
l
m(r̂)ψα

Xj
(r r̂).

(35)
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As another example, Behler-Parrinello atom-centered symmetry functions that
have been used in the construction of artificial neural network-based interatomic
potentials for materials (Behler and Parrinello 2007; Eshet et al. 2012; Morawietz
et al. 2016; Cheng et al. 2016) and molecules (Smith et al. 2017) can be written by
setting the basis functions to be delta distributions gij (r − rij ) = δ(r − rij ) and
averaging the atom density with an appropriate pair weighting function G2, e.g.:

〈
αβG2

∣∣Xj

〉 = 〈
α
∣∣αj

〉 ż
drG2(r)

〈
βr
∣∣Xj

〉

= δαj α

∑

i∈{β}
fc(rij )G2(rij )

(36)

The basis functions of the spectral neighbor analysis potential (Thompson et al.
2015) also start with the same density and expands it in hyperspherical harmonics
as introduced in Bartók et al. (2010).

3.2 Smooth Overlap of Atomic Positions

It is clear that a density-based representation such as Eq. (32) is invariant to
translations of the entire structure, but not to rotations that would change the
orientation of the atomic neighbor amplitude. This reflects the fact that scalar
products of the form

〈
Xj

∣∣Xk

〉
depend on the relative orientation of the environments

being compared. In the smooth overlap of atomic positions (SOAP) framework, we
define a symmetrized version of the overlap kernel, using the Haar integral (Haar
1933) of the rotation group:

K(ν)(Xj ,Xk) =
ż

dR̂
∣∣〈Xj

∣∣R
〉 |Xk〉

∣∣ν =
〈
Xj

(ν)
∣∣∣Xk

(ν)
〉

(37)

where the integral is performed over all possible rotation matrices. If the base
kernel is raised to the ν-th power, the average preserves information on the
correlations between atoms up to the (ν + 1)-th order (Glielmo et al. 2018). As
we will show below, a crucial feature of the SOAP framework is that an explicit
expression for the symmetrized descriptor vectors

∣∣Xj
(ν)
〉

can be given, which is
quite manageable for ν = 1, 2, but becomes increasingly cumbersome for higher ν.
An effective description of higher-order interactions that does not increase too much
the complexity of the analytical evaluation of (37) can be obtained by manipulating
the ν = 2 kernel, e.g., by taking a nonlinear function of it. In practice it has been
found that raising it to a power ζ and normalizing it to 1:

〈
Xj

(2)
∣∣∣Xk

(2)
〉

ζ
=

〈
Xj

(2)
∣∣Xk

(2)〉ζ
√〈

Xj
(2)
∣∣Xj

(2)〉ζ 〈Xk
(2)
∣∣Xk

(2)〉ζ
(38)
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are sufficient to include many-body contributions in the final kernel.
Using the Dirac notation, it is easy to see how one can give an explicit

representation of the SO(3) symmetrized ket for the case with ν = 1, 2. Using
a spherical harmonics expansion of

∣∣Xj

〉
, it is very natural to perform the rotational

average analytically by introducing the Wigner matrix associated with the rotation:
〈lm| R̂ ∣∣l′m′

〉 = δll′Dl
mm′(R̂)

ż

dR̂
∑

αnlm

〈
Xj

∣∣αnlm
〉 〈αnlm| R̂ |Xk〉=

∑

αnlmm′

〈
Xj

∣∣αnlm
〉 〈
αnlm′

∣∣Xk

〉 ż
dR̂ Dl

mm′(R̂)

(39)

which simplifies greatly due to the properties of the Wigner matrices. Only the
term with l = 0 survives, which makes it possible to write explicitly the ν = 1
symmetrized SOAP descriptors in terms of the spherical harmonics coefficients

〈
αn

∣∣∣Xk
(1)
〉
=
√

8π2 〈αn00|Xk〉, (40)

which corresponds to the simple kernel

〈
Xj

(1)
∣∣∣Xk

(1)
〉
=
∑

αn

〈
Xj

(1)
∣∣∣αn

〉 〈
αn

∣∣∣Xk
(1)
〉
. (41)

A position representation of the ν = 1 descriptor
〈
r
∣∣Xk

(1)〉 yields naturally the
rotational average of 〈r|Xk〉. This can be seen by expressing K(1)(Xj ,Xk) in a
position basis

〈
αXj

(1)
∣∣∣αXk

(1)
〉
=

ż

dR̂
ż

drψα
Xj

(r)ψα
Xk

(R̂r)

= 32π3
ż

dr r2ψ̄α
Xj

(r)ψ̄α
Xk

(r)

(42)

where we have defined the rotationally average atom density:

ψ̄α
Xj

(r) = 1

4π

ż

dr̂ψα
Xj

(r r̂) = 1√
32πr3

〈
αr

∣∣∣Xj
(1)
〉
, (43)

which is thus closely related to the pair correlation function around the tagged
atom. Similar descriptors have been used for machine learning of molecules and
materials (Schütt et al. 2014; Faber et al. 2015), revealing once more the intimate
relationships between different atom density-based descriptors.

The ν = 1 descriptor integrates away all angular correlations and therefore does
not provide a unique representation of an environment. The descriptors with ν = 2
provide information on three-body correlations and can also be obtained relatively
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easily in closed form. The Haar integral now contains the product of two Wigner
matrices. Exploiting their orthogonality relations, one obtains

ż

dR̂

∣∣∣∣∣
∑

αnlm

〈
Xj

∣∣αnlm
〉 〈αnlm| R̂ |Xk〉

∣∣∣∣∣

2

=
∑

αnα′n′l

〈
Xj

(2)
∣∣∣αnα′n′l

〉 〈
αnα′n′l

∣∣∣Xk
(2)
〉

(44)
where the ν = 2 symmetrized SOAP descriptors read

〈
αnα′n′l

∣∣∣Xj
(2)
〉
=
√

8π2

2l + 1

∑

m

〈
Xj

∣∣αnlm
〉 〈
α′n′lm

∣∣Xj

〉
. (45)

This notation corresponds to the power spectrum components introduced in Bartók
et al. (2013b) and De et al. (2016),

〈
αnα′n′l

∣∣Xj
(2)〉 ≡ pαα′

nn′l (Xj ). Note also that,
while the representation of the symmetrized kets in terms of the nlm expansion
is very convenient, it is not the only possibility. Similar to Eq. (43), an explicit
position representation can be obtained for

〈
αr1α

′r2
∣∣Xk

(2)〉 that provides a complete
representation of the three-body rotationally invariant correlations. The three-body
symmetry functions of the Behler-Parrinello kind can be seen as projections of this
representation, similar to the case of two-body functions in Eq. (36).

The case of ν = 3 leads to an explicit representation of the ket that is proportional
to the bispectrum of the environment (Bartók et al. 2013b)

〈
α1n1l1α2n2l2αnl

∣∣∣Xj
(3)
〉
∝

∑

mm1m2

〈
Xj

∣∣αnlm
〉

× 〈
α1n1l1m1

∣∣Xj

〉 〈
α2n2l2m2

∣∣Xj

〉 〈l1 m1 l2 m2|l m〉.
(46)

While the dimensionality of this descriptor makes it impractical unless somehow
sparsified, it does give direct access to higher-order correlations. An interesting
detail is that

∣∣Xj
(3)〉, contrary to the ν = 1, 2 cases, is not invariant to mirror

symmetry, which makes it capable of distinguishing enantiomers.
Finally, one should note that the normalization of the kernel Eq. (38) can be

achieved by normalizing the SOAP vector, so that an explicit representation of the
normalized descriptor is possible. While in principle one could write out an explicit
representation that yields the kernel for ζ > 1, it would contain an exponentially
increasing number of terms. As in the case of

∣∣Xj
(3)〉, this only makes sense if

combined with a sparsification procedure.

3.3 λ-SOAP: Symmetry-Adapted Gaussian Process Regression

When building a machine learning model for a tensorial property T, one should
consider that the target is not invariant under the action of a symmetry operation
(e.g., a rotation) but transforms covariantly. The most effective strategy to encode
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the appropriate covariance properties in the model involves the decomposition of the
tensor into its irreducible spherical components, i.e., combinations of the elements
of the tensor that transform as the spherical harmonics of order λ (Varshalovich et al.
1988). For these irreducible components,

Tλμ(R̂Xj ) =
∑

μ′
Dλ

μμ′(R̂)Tλμ′(Xj ) (47)

As shown in Glielmo et al. (2017) for the case of vectors and in Grisafi et al.
(2018) for tensors of arbitrary order, one has to consider a matrix-valued kernel
that describes the geometric relationship between the different components of Tλ,
which can be obtained by including an additional Wigner matrix Dλ

μμ′(R̂) in the
Haar integral

〈
X (ν)

j,λμ

∣∣∣X (ν)

k,λμ′
〉
=

ż

dR̂ Dλ
μμ′(R̂)

∣∣〈Xj

∣∣R
〉 |Xk〉

∣∣ν . (48)

For the case with ν = 2, the symmetrized kets can be written explicitly based on a
αnlm expansion of the atom density:

〈
αnlα′n′l′

∣∣∣X (2)
j,λμ

〉
=
√

8π2

2l + 1

∑

mm′

〈
Xj

∣∣αnlm
〉

× 〈
α′n′l′m′

∣∣Xj

〉 〈
l m l′ −m′

∣∣λ −μ
〉

(49)

We write Eq. (49) in this form because it is somewhat symmetric, but the properties
of the CG coefficients require that m′ = m+ μ, so the expression can be evaluated
with a single sum. Furthermore, the expression evaluates to 0 whenever

∣∣l − l′
∣∣ < λ,

which reduces the number of elements that must be evaluated and stored and makes
it clear that Eq. (49) reduces to the scalar SOAP Eq. (45) when λ = 0.

When using a linear model, each of the symmetry-adapted descriptors Eq. (49)
can be used to represent tensorial components that transform as Yλ

μ . Linearity, in
this case, is necessary for preserving the symmetry properties of the λ-SOAP. A

nonlinear model, however, can be obtained by scaling each
〈
αnlα′n′l′

∣∣∣X (2)
j,λμ

〉
by a

(in principle different) nonlinear function of some λ = 0 descriptors. In the kernel
language, a high-order version of the λ-SOAP kernel can be introduced with an
expression analogous to (38):

〈
X (2)

j,λμ

∣∣∣X (2)
k,λμ′

〉

ζ
=

〈
X (2)

j,λμ

∣∣∣X (2)
k,λμ′

〉 〈
Xj

(2)
∣∣Xk

(2)〉
ζ−1∥∥∥

〈
X (2)

j,λμ

∣∣∣X (2)
j,λμ/

〉∥∥∥
F

∥∥∥
〈
X (2)

k,λμ

∣∣∣X (2)
k,λμ/

〉∥∥∥
F

, (50)
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where ‖·‖F indicates the Frobenius norm and
〈
Xj

(2)
∣∣Xk

(2)〉
ζ−1 is a (scalar) SOAP

kernel. This second term makes the overall kernel nonlinear, without affecting the
symmetry properties of the overall tensorial kernel.

3.4 Kernel Operators and Descriptor Optimization

Provided one takes a long-range environmental cutoff and chooses a kernel that
can represent high orders of many-body interactions, a density-based representation
of atomic structures should provide a complete description of any atomic structure
and – given a sufficiently complete training set – predict any atomistic property with
arbitrary accuracy. In practice, obviously, the accuracy of a model depends on the
details of the representation, which is why different descriptors or kernels provide
different levels of accuracy for the same training and test set (Faber et al. 2017). The
performance of a set of descriptors can be improved by modifying them so that they
represent more efficiently the relations between structure and properties.

The relation between structures, properties, and kernels can be encoded in a
Hermitian operator Ŵ bracketed between the translationally invariant environmental
kets:

〈
Xj

∣∣Xk

〉
Ŵ
≡ 〈

Xj

∣∣W
〉 |Xk〉. (51)

When the kernel is averaged over rotations to obtain the SOAP kernel and the
associated descriptors,

〈
Xj

(ν)
∣∣∣Xk

(ν)
〉

Ŵ
=

ż

dR̂
∣∣∣
〈
Xj

∣∣W
〉
R̂ |Xk〉

∣∣∣
p

(52)

it becomes clear that if we want to be able to write the “operator-adapted” SO(3)
descriptors explicitly, the operator Ŵ must commute with rotations. This additional
requirement means that the most general form of Ŵ , written in the {|αnlm〉} basis,
is

〈αnlm|W 〉 ∣∣α′n′l′m′〉 = δll′δmm′Ŵαα′nn′ll′ . (53)

This operator can be used, for instance, to scale the density as a function of
distance or to introduce an “alchemical kernel” that couples the descriptors asso-
ciated with different elements and in principle to realize an even more subtle
tuning of the SOAP descriptors, in which radial, angular, and alchemical chan-
nels are mixed to provide a more efficient representation of complex chemical
environments.
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3.5 Computing SOAP Descriptors Efficiently

A practical calculation of both scalar and tensorial ν = 2 SOAP descriptors〈
αnlα′n′l′

∣∣∣X (2)
j,λμ

〉
requires the evaluation of the expansion coefficients

〈
αnlm

∣∣Xj

〉
.

Let us start with the atom density written in the position representation, according
to Eq. (35), and consider the case in which ψα

X (r) is written as a superposition
of spherical Gaussian functions of width σ placed at the positions of the atoms
of type α. Then, the spherical harmonic projection in Eq. (35) can be carried out
analytically, leading to:

〈
αnlm

∣∣Xj

〉 =
∑

i∈α
Ylm(r̂ij ) e

− r2
ij

2σ2 ×

×
ż ∞

0
dr r2 Rn(r)e

− r2

2σ2 ιl

( rrij
σ 2

)
(54)

where the sum runs over all neighboring atoms of type α and ιl indicates a modified
spherical Bessel function of the first kind. It is convenient to choose a form for the
orthogonal radial basis functions Rn(r) that makes it possible to perform the radial
integration analytically.

One possible choice starts by using Gaussian type orbitals as non-orthogonal
primitive functions R̃k(r)

R̃k(r) = Nk rk exp

{
−1

2

(
r

σk

)2
}
, (55)

where Nk is a normalization factor, such that
ş∞

0 drr2R̃2
k (r) = 1. The set of

Gaussian widths {σk} can be chosen to span effectively the radial interval involved
in the environment definition. Assuming that the smooth cutoff function approaches
one at a distance rcut − δrcut, one could take σk = (rcut − δrcut)max(

√
k, 1)/nmax

that gives functions that are peaked at equally spaced positions in the range between
0 and rcut − δrcut.

While the R̃k(r) are not themselves orthogonal, they can be used to write
orthogonal basis functions Rn(r) = ∑

k S
−1/2
nk R̃k(r), where the overlap matrix

Skk′ =
ş

drr2R̃k(r)R̃k′(r) can be computed analytically. The full decomposition of
the translationally invariant environmental ket can then be obtained without recourse
to numerical integration.

Once the spherical decomposition of the atomic density has been obtained, the
coefficients can be combined to give the SOAP descriptors of orders 1 and 2.
Particularly in the presence of many different chemical species, the number of
components can become enormous. Ignoring for simplicity a few symmetries,
and the fact that if all species do not appear in every environment, it is possible
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to store a sparse representation of the descriptor, the power spectrum contains a
number of components of the order of n2

speciesn
2
maxlmax, which can easily reach

into the tens of thousands. In the case of the tensorial λ-SOAP, the number
increases further to λ2n2

speciesn
2
maxlmax. It is however not necessary to compute

and store all of these descriptors: each of them, or any linear combination,
is a spherical invariant (covariant) description of the environment and can be
used separately as a descriptor. This can be exploited to reduce dramatically
the computational cost and the memory footprint of a SOAP calculation, deter-
mining a low-rank approximation of the descriptor. One can use dimensionality
reduction techniques similar to those discussed in Sect. 2.1 to identify the most
suitable reference structures. As shown in Imbalzano et al. (2018), both CUR
decomposition and a greedy selection strategy based on farthest point sampling
make it possible to reduce by more than 95% the number of SOAP descriptors
that are needed to predict the energy of small organic molecules with chemical
accuracy.

3.6 Back to the Structures

Whenever one is interested in computing properties that are associated to individual
atoms (for instance, their NMR chemical shieldings or the forces), one can use
directly the descriptors corresponding to each environment or the kernel between
two environments, as the basis for a linear or nonlinear regression model. As
discussed in Sect. 2, it is often the case that one is interested in using as structure
labels some properties that are instead associated with the entirety of a structure,
e.g., its cohesive energy, its dielectric constant, etc. In these cases a ridge regression
model should be used that is based on “global” kernels between the structures,
K(A,B), rather than those between individual atom-centered environments. This
is reflected in how the kernels between environments should be combined to give
a kernel that is suitable to represent the relation between local environments and
the overall property of a structure. When the target property can be seen as an
additive combination of local, atom-centered contributions, the most natural (and
straightforward) choice, that is consistent with Eq. (13), is

K(A,B) =
∑

j∈A,k∈B
K(Xj ,Xk). (56)

It is worth stressing that in the case where the environment kernel is a linear kernel
based on SOAP descriptors, this sum-kernel can be written in terms of a global
descriptor associated with the entire structure,

K(A,B) =
〈
A(ν)

∣∣∣B(ν)
〉
, (57)
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where we introduced
∣∣∣A(ν)

〉
=

∑

j∈A

∣∣∣Xj
(ν)
〉
. (58)

An alternative way to combine the information from individual environments in a
symmetrized global kernel corresponds to averaging the Fourier coefficients of each
environment,

〈αnlm|A〉 =
∑

j∈A

〈
αnlm

∣∣Xj

〉
(59)

and then taking the Haar integral of the resulting sum. For instance, for ν = 2,

〈
αnα′n′l

∣∣∣Ā(2)
〉
=
∑

m

〈αnlm|A〉 〈A∣∣α′n′lm〉. (60)

The form Eq. (56) is more general, and one can readily introduce nonlinear
kernels such as

〈
Xj

(ν)
∣∣Xk

(ν)
〉
ζ

for which an explicit expression for the descriptors
would be too cumbersome. Equation (56) also suggests that the combination of
environment kernels could be generalized by introducing a weighting matrix

KW(A,B) =
∑

j∈A,k∈B
Wjk(A,B)K(Xj ,Xk). (61)

One could, for instance, determine the importance of each environment within a
structure and set Wjk(A,B) = wj(A)wk(B). Alternatively, one can use techniques
from optimal transport theory (Cuturi 2013) to define an entropy-regularized
matching (REMatch) procedure (De et al. 2016), in which Wjk is a doubly
stochastic matrix that matches the most similar environments in the two structures,
disregarding the environmental kernels between very dissimilar environments

W(A,B) = argmin
W∈U(NA,NB)

∑

jk

Wjk

[
d2(Xj ,Xk)+ γ lnWjk

]
, (62)

where d2 indicates the kernel-induced squared distance Eq. (9). The parameter γ

weights the entropy regularization and makes it possible to interpolate between strict
matching of the most similar pairs of environments (γ → 0) to an average kernel
that weights all pairs equally (γ → ∞). Although this construction complicates
considerably the combination of local kernels, it provides a strategy to introduce
an element of non-locality in the comparison between structures. Given the cost of
computing the REMatch kernel and the fact that it prevents using some sparsification
strategies that act at the level of individual environments, this method should be used
when the target property is expected to exhibit very strong nonadditive behavior,
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e.g., when just one portion of the system is involved, for instance, when determining
the activity of a drug molecule, a problem for which REMatch has been shown to
improve dramatically the accuracy of the ML model (Bartók et al. 2017).

3.7 Multi-kernel Learning

We have shown that SOAP descriptors can be seen as just one possible embodiment
of a general class of rotationally symmetrized density-based descriptors that also
encompasses other popular descriptors for atomic-scale machine learning, and that
can be tuned to a great extent, e.g., by changing the way different components
are weighted. The fact that different descriptors can be computed within the same
formalism does not imply they are fully equivalent: each expression or kernel
emphasizes different components of the structure/property relations. For instance,
kernels with varying radial scaling or cutoff distance focus the machine learning
model on short-, mid-, or long-range interactions. It is then natural to consider
whether a better overall model can be constructed by combining descriptors that
are associated with different cutoff distances or different levels of body order
expansions. This can be achieved by a weighted combination of kernels of the form

Ktot(A,B) =
∑

ℵ
wℵKℵ(A,B), (63)

where each Kℵ corresponds to a distinct model.
This is equivalent to an additive model for a property, similar to the construction

of an atom-centered decomposition of the total energy in Eq. (12). In this case,
instead, the property y associated with each structure is written as the sum of
contributions yℵ(A) that are associated with the various kernels Kℵ

y(A) =
∑

ℵ
yℵ(A) =

∑

ℵ,B
xBwℵKℵ(A,B) (64)

where xB are the kernel regression weights for each of the representative structures
B. The weights wℵ correspond to the estimated contribution that each model will
give to the final property and can be obtained by cross-validation or by physical
intuition. For instance, in the case of multiple radial cutoffs, it is found that much
smaller weights should be associated with long-range kernels, consistent with the
fact that distant interactions contribute a small (although often physically relevant)
contribution to the total energy (Bartók et al. 2017). It should also be noted that,
provided that the descriptors corresponding to the kernels are linearly independent,
Eq. (63) effectively corresponds to a feature space of increased dimensionality,
obtained by concatenating the descriptors that are – implicitly or explicitly –
associated with each kernel.
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4 Conclusions

We have laid out a mathematical framework, based on the concept of the atomic
density, for building descriptors of atomic environments that preserve the geometric
symmetries and chemically sensible limits. Coupled with kernel regression, this
allows the fitting of complex models of physical properties on the atomic scale,
both scalars like interatomic potentials (force fields) and tensors such as multipole
moments and quantum mechanical operators. We discuss in general terms how
kernel regression can be extended to include a sparse selection of reference
structures and to predict and learn from linear functionals of the target property.
To leverage the many formal similarities between kernel regression and quantum
mechanics, we use a Dirac bra-ket notation to formulate the main results concerning
the SOAP descriptors. This notation also helps in making apparent the relationship
between SOAP descriptors and other popular density-based approaches to represent
atomic structures. The framework can be extended and tuned in many different
ways to incorporate insight about the relations between properties, structures, and
descriptors. With physical principles such as symmetry and nearsightedness of
interactions at its core, we believe this formulation is ideally suited to provide a
unified framework to machine learn atomic-scale properties.

Nomenclature

A An item – structure, or atomic environment for which one wants
to predict a property

K(A,B) The kernel function computed between items A and B
N Number of input structures in the training set
M Number of structures in the representative set
x The vector of KRR weights, also written as xM ; the weight

associated with a structure B is indicated as xB
y The vector containing the values of the target property, also written

as yN . yB indicates the value for the item B
K Kernel matrix
KMN Slice of the kernel matrix K, corresponding to rows in set M and

columns in set N
*K Sum-kernel, defined as the sum of the regular kernel over a set of

configurations←−∇ Derivative operator applying to the first argument of the kernel
matrix−→∇ Derivative operator applying to the second argument of the kernel
matrix

K∇AB Derivative of the kernel matrix, applying to its first argument, with
respect to the coordinates of atoms in structure A, with structure
B as its second argument
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L̂ Linear operator connecting the observed values y with the unob-
served atomic energies y′

|A〉 An abstract vector that describes the input A
〈A|B〉 The scalar product between the features associated with A and B.

Could be either an explicit scalar product, or an abstract notation
equivalent to K(A,B)

gi(r) A smooth function – typically a Gaussian that is used to represent
the density associated with atom i

|α〉 An abstract vector that represents the chemical species α

r Position in 3D Cartesian coordinates.
r The modulus of the vector r
r̂ The unit vector r/r
ri Position of the i-th atom.
rij Displacement vector ri − rj between the i-th and j -th atoms
ψα
Xj

(r) The atom density of species α centered around the j -th atom

Y l
m(r̂) The l, m-th spherical harmonic

Rn(r) The n-th orthogonal radial basis function∣∣Xj
(ν)
〉

The spherically-averaged SOAP descriptor of order ν〈
Xj

(ν)
∣∣Xk

(ν)
〉
ζ

The normalized SOAP kernel of order ν and nonlinear exponent
ζ .

Dl
mm′(R̂) The Wigner rotation matrix associated with the rotation R̂〈

αnα′n′l
∣∣Xj

(2)〉 The radial/spherical representation of the SOAP ν = 2 vector,
corresponding to the power spectrum between species α and α′

〈l1 m1 l2 m2|l m〉 A Clebsch-Gordan coefficient
Tλμ The μ-th component of the irreducible spherical component of

order λ for the tensorial quantity T∣∣∣X (ν)
j,λμ

〉
The λ-SOAP descriptor of order ν, corresponding to the irre-

ducible spherical component λμ centered on atom j〈
Xj

∣∣Xk

〉
Ŵ

A kernel transformed by the Hermitian operator Ŵ
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Abstract

Experimental chemistry and the younger discipline of computational chemistry
have always aspired to increase data volume, velocity, and variety. The recent
software developments in machine learning, databases and automation and
hardware advances in fast co-processors, networking, and storage have boosted
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automation and digitization. Computational chemistry is seemingly on the verge
of a big-data revolution.

In this chapter, we discuss how many of these data-driven paradigms are
part of long-term trend and data have long been at the heart of many chemical
problems. Historical repositories of chemical data where the modern chemin-
formatician can mine high value curated training data are reviewed. Modern
automation tools and datasets available for high-data computational chemistry
are described. Current applications of computer-driven discovery of molecu-
lar materials in optoelectronics (photovoltaics and light-emitting diodes) and
electrical energy storage are discussed. Finally, the impact of machine learning
approaches to computational chemistry areas of structure-property relationships
and chemical space, with an emphasis on generative models, are analyzed.

1 Introduction

Chemistry has been a big-data enterprise for multiple decades. Long before the term
was popularized, chemists strived to wield chemical datasets whose volume, variety,
and velocity exceeded the ability of tools available to them. For one, chemists have
long struggled to address the immensity of chemical space. Since the arrival of
computers, chemists have been creators and early adopters of digital technologies
for the storage, processing, and retrieval of chemical data. Along those same lines,
the advent of the Internet set off a new era of accelerating knowledge creation and
sharing in the chemical sciences.

In fields such consumer analytics, advertising, transportation, healthcare or
finance, the clearest gains from big-data, and machine learning approaches have
come from subareas that combine as many favorable features as possible: data
is inexpensive to generate, digital in origin or easy to digitize, highly organized
and consistent, and extremely abundant. While abundant, chemical data tends to be
expensive to generate, heterogeneous, hand-made, and sparse. Chemical data entry
and curation is generally done manually; these tasks require significant expertise
because of the heterogeneous sources and reporting criteria, and the technical
complexity of chemical reports. In recent years, as chemical instruments, such as
microscopes or spectrometers, produce digitized data, very large datasets can be
generated by a single device. This very much opens the door to leverage local big
data, but one still faces similar barriers when attempting to consolidate results from
different groups or apparatuses.

Computational chemistry approaches share a series of features that make them
very amenable to this data-driven paradigm and are proving to be the perfect testing
ground for realizing the big-data vision in chemistry. The output of computational
chemistry software is digitized from beginning to end. Even if it relies on custom-
formatted input and output files, automating the creation and processing of these
files is a simple task. Computational results are replicable to floating point precision
when using the same computer code, and with extreme accuracy even among differ-
ent programs as long as they use the same underlying algorithms. Because compute
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is essentially a commodity, results can be generated in arbitrary amounts with linear
scaling in cost – or even sublinear, thanks to machine learning approaches. Finally,
there is a well-understood tradeoff between computational cost and accuracy that
can be leveraged through data-driven techniques.

In this chapter, we will analyze how computational chemistry has embraced big-
data for accelerated discovery of much needed new molecules and how these newly
generated datasets have allowed to apply, and develop, machine learning techniques
that make them even more powerful.

2 Repositories of Chemical Data

The initial development of big-data approaches in chemistry was historically
focused on consolidating, curating, and indexing literature and empirical data.
Tackling these tasks was one of the first applications of computers in chemistry and
remains a key driver in the development of new computational tools for chemistry.

The Chemical Abstracts Service (CAS) was created in 1907 to keep complete
records of the chemical literature and reported substances, following the idea
of previous abstracts journals in Europe such as Chemisches Zentralblatt and
nineteenth-century compilations such as Beilsteins Handbuch der organischen
Chemie, Gmelins Handbuch der anorganischen Chemie, or the Merck Index. It
contained over 12,000 indices in its first year, its one millionth record in 1937.
CAS historically relied on thousands of volunteers to create abstracts and index
information for each paper – not that far from today’s Mechanical Turks at
Amazon – and slowly phased them out between the late sixties and the nineties.
In addition, CAS employed hundreds of staff members by the 1950s, underscoring
both the great value of big data to chemistry and the great cost of getting that same
data into neatly formatted into useable form.

The adoption of digital computers for chemical applications in the late 1960s
initiated the digitization of chemical big data by facilitating the storage, entry, and
very importantly querying of chemical databanks. CAS computer-based Chemical
Registry System, like the Beilstein Registry Number before it, assigns unique
individual arbitrary numbers to chemicals. It debuted internally in 1964 and was
progressively updated and expanded, making the basis for increasingly modern
querying and retrieval tools, using command-line and graphical interfaces to retrieve
data from local or online records. With around three million records and growing at
hundreds of thousands per year in the mid-seventies, the registry grew exponentially
to its 30 millionth chemical substances in 2007, 50 millionth in 2009, and 100
millionth in 2015. Competing commercial efforts that also build on older academic
work are Elservier’s Reaxys (Beilstein and Gmelin) and Thomson-Reuters, now
Clarivate.

In 1965, the Kennard group at Cambridge University started collecting published
crystallographic data for small molecules. This effort grew into what is known as
the Cambridge Structural Database, which now hosts nearly one million curated
entries from x-ray and neutron diffraction analyses (Groom et al. 2016). Also in the
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late 1960s, joint efforts between Brookhaven National Laboratory and Texas A&M
University initiated what would become the Protein Data Bank, a repository for
three-dimensional structural data of large biological molecules, such as proteins and
nucleic acids, and now holds over 120,000 entries (Berman et al. 2000; Bernstein
et al. 1978; Meyer 1997).

Other repositories of experimental crystallographic information (Bruno et al.
2017) are the Crystallography Open Database (COD) (Gražulis et al. 2009, 2012),
which stores user-submitted data; the Inorganic Crystal Structure Database, pro-
duced cooperatively by FIZ Karlsruhe and NIST that stores crystal structures of
inorganic solids (Belsky et al. 2002); and the International Centre for Diffraction
Data (ICDD) that stores powder diffraction patterns (Faber et al. 2002).

The rise of the Internet sparked the launch of other big-data repositories and the
expansion of online availability of existing ones both in chemistry and materials.
The Registry of Research Data Repositories aggregates lists of multiple repositories
and datasets along many scientific disciplines including chemistry and materials
science (Pampel et al. 2013).

The National Institute of Standards and Technology has hosted the NIST
Chemistry WebBook since the 1996 (Linstrom and Mallard 2001), a compendium
of mostly spectroscopic and thermodynamic data originally compiled in handbooks
and tables. In addition, the nearly 200 Standard Reference Data sets include other
data of interest to chemists. NIST 101 (III 1999) in particular contains calculated
data quantum chemical data for about 1800 gas-phase atoms and small molecules
and tools for comparing experimental and computational ideal-gas thermochemical
properties.

Since patents and patent applications are open, they are a big-data, information-
rich asset. Patent documents, however, tend to be only text-based or image-based,
and their digitization into a format that is useable for data-driven approaches is
a standing challenge. The European, United States, Japanese Patent Offices, and
the World Intellectual Property Organization can be accessed and queried online,
but they are not systematically annotated. The US Patent and Trademark Office,
through their Complex Work Unit program, made available digital representation of
molecules in patent applications, easing the data-processing pipelines.

In the open-data arena, NextMoveSoftware released close to million chemical
reactions, extracted by means of automated text mining of the relevant experimental
sections reported in patents, covering the period between 1976 and 2013. SCRIPDB
contains curated syntheses, chemicals, and reactions from the patent literature, col-
lected from CWU files coming from granted US patents (Heifets and Jurisica 2012).

SureChem is another molecule database, open-sourced in 2012 to SureChemBL.
It used by IBM’s Strategic IP Insight Platform and initially released more than two
million chemical structures extracted from about 4.7 million patents (1976–2000,
only text) and subsequently extended to include patents published up to the end
of 2010 and chemical structures were additionally derived from US CWUs and
images (2001–2010) (Papadatos et al. 2016). UniChem attempts to unify and cross
reference these multiple databases (Chambers et al. 2013).
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ChemSpider is a database of chemicals with more than 60 million entries from
over 480 data sources. Originally a private enterprise, it was acquired by the Royal
Society of Chemistry (RSC) in 2009. It includes a crowd-sourced component, but
only limited downloads are available (Pence and Williams 2010).

Because of the large size of the set of possible small organic molecules with
biological activity, the large number and diversity of biological targets, the high
dimension of many biological assays and measurements and the high value of
healthcare applications, cheminformatics, biological chemistry, and drug discovery
applications are key target for big data applications in chemistry. Toxicological
information of drugs and chemicals are also interesting biological interactions that
are recorded in several publicly available databases.

The National Center for Biotechnology Information (NCBI), part of the United
States National Library of Medicine (NLM) from the National Institutes of Health
(NIH), hosts multiple datasets and informatics tools in biotechnology. Of particular
interest in chemistry is PubChem, a database of molecules and their activities against
biological assays. Initiated in 2004, it now aggregates over 540 sources, over 90
million compounds, and 233 million bioactivity results for nearly 2.5 million of
those. As a federally sponsored service, PubChem has been seen to be in conflict
with for-profit repositories such as CAS (Kaiser 2005).

ChemBL is an open database that contains binding, functional, and ADMET
(absorption, distribution, metabolism, excretion) measurements for drug-like bio-
logically active compounds, with nearly 15 million bioactivity measurements for
more than 1 million compounds and 11,500 protein targets (Gaulton et al. 2012).
DrugBank is a web-accessible cheminformatics database and service combining
structural and biological target data for drug molecules. The database contains in
excess of 9000 small molecule drugs, 3000 FDA-approved drugs, and data for nearly
17,000 drug-target associations (Wishart et al. 2006, 2018). The database for Chem-
ical Entities of Biological Interest follows a similar focus as well (Degtyarenko et al.
2008).

The PDBbind database matches published affinity constants from the literature
for the ligand-protein systems whose 3D structures are stored in PDB, undergoing
periodic updates (Liu et al. 2015; Wang et al. 2004). BindingDB (Chen et al.
2001; Gilson et al. 2016) and AffinDB (Block et al. 2006) also aim to fulfill
a similar task. The comparative Toxicogenomics Database is a volunteer-based
genomic resource devoted to toxicologically relevant genes and proteins and their
interactions with chemicals and toxins (Davis et al. 2017; Mattingly et al. 2003).
MACiE contains enzyme reaction mechanisms focused on the evolution of enzyme
catalytic mechanisms and the classification with respect to chemical mechanism
(Holliday et al. 2005).

These services are big-data pioneers in chemistry and highlight both the early
understanding of how chemistry is a high-dimensional, sparse-data arena where
big-data approaches can create great value, as well as the high cost of gathering
and curating chemical data. For machine learning applications, these repositories
provide extremely valuable labeled data.
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3 Big Computational Chemistry

The field of computational chemistry quickly followed the deployment of the
first digital computers and has grown at a fast pace, matching developments in
algorithms and hardware and also contributing its own. Oftentimes, the chemical
calculations carried out will push the hardware available to run them: running in
parallel over many cores in supercomputers, using large amounts of memory or
storage.

In that sense, judging by the volume and velocity of the output data they produce,
and by the strain on hardware requirements, computational chemistry calculations
have been big-data all along, essentially as big as the available resources allowed
and have been drivers of big-data technologies.

In this chapter, we will focus on applications of computational chemistry that
combine volume and velocity with also high variety because of a large degree
of granularity. These are the cases of (i) distributive computing, where small
calculation payloads are distributed to a large grid of small computers, and after
computation, the results are consolidated and processed, and (ii) high-throughput
virtual screening, where many thousands of candidate molecules or materials are
calculated individually in an automated fashion and a data-driven search for the
most performant candidate materials is carried out.

3.1 Automation and Databases in Computational Chemistry

Many tools have been developed to automate the creation, submission, transferring,
processing, parsing, storage, and querying of computational chemistry data. One
of the most venerable web-based examples is the Basis Set Exchange, originally
assembled at the Environmental Molecular Sciences Laboratory, where a myriad
of curated basis sets for most of the periodic table are available for download in
multiple formats (Feller 1996; Schuchardt et al. 2007).

Close to half dozen platforms exist with a similar philosophy towards achieving
some or all the following: automation of materials science and solid-state electronic
structure calculations; data processing and analysis of those calculations; and
centralized, web-accessible repositories of the output of these calculations for
virtual discovery and machine learning purposes. The multiple solutions offer
somewhat overlapping functionality, generally in the materials space, and have been
reviewed recently (Lin 2015).

The Electronic Structure Project (Klintenberg et al. 2002; Ortiz et al. 2009)
utilized the structural data from the ICSD to screen for novel inorganic materials.

The Computational Materials Repository (Landis et al. 2012) proposes an
integrated software solution for computer-driven materials design. It is part of
the ecosystem of the Quantum Materials Informatics Project that also includes
the Atomic Simulation Environment, a python library for working on atomistic
simulations (Hjorth Larsen et al. 2017).
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AFLOW is an automatic framework for high-throughput materials discov-
ery (Calderon et al. 2015; Curtarolo et al. 2012a), and the matching repository
Aflowlib.org hosts and serves the results of those calculations to the public
(Curtarolo et al. 2012b). It now contains 1,748,704 material compounds – with over
173,121,696 calculated properties.

The Python Materials Genomics (pymatgen) is an open-source python library for
materials for the analysis of solid-state DFT calculations (Ong et al. 2013) which
also has a matching Materials Application Programming Interface (Ong et al. 2015)
to interact with the Materials Project, a large-scale database of materials calculations
(Jain et al. 2013). Other computational tools in this ecosystem include tools such as
Custodian for error handling, Fireworks for workflow management. The Materials
Project tools and data have been used in over 100 published papers, and nearly 200
by its creators.

The Open Quantum Materials Database (OQMD) is a fully open project that
hosts over 400,000 DFT energy calculations of compounds from the ICSD and
also for hypothetical compounds, potentially uncovering valid, but yet to synthesize
chemistries (Kirklin et al. 2015).

AiiDA (Pizzi et al. 2016) is a flexible and scalable informatics’ infrastructure for
simulations, data, and workflows with a heavy focus on plane-wave DFT calcula-
tions of materials and much attention to data provenance (Merkys et al. 2017).

The Novel Materials Discovery repository was established to host, organize, and
share materials data in a pipeline-agnostic way (Goldsmith 2016) and hosts over
44 million open access user-submitted total-energy calculations from a variety of
computer codes.

The ioChem-BD Platform provides a similar solution with an emphasis on
molecular data (Álvarez-Moreno et al. 2015). Several toolkits address the simulation
and role of defects, such as MAST (Mayeshiba et al. 2017), PyDII (Ding et al.
2015), and others (Goyal et al. 2017). PyChemia is a python library for automatize
atomistic simulations, with a focus on materials and interfaces to some DFT codes
and data mining functionality.

Multiples datasets of computational chemistry results aimed purely at generating
diverse training data exist. QM9 contains B3LYP/6–31 G(2df,p) results for 134k
stable small organic molecules made up of CHONF, including harmonic frequencies
(Ramakrishnan et al. 2014). PubChemQC is a recent attempt to create training
data for machine learning approaches that calculated the ground-state electronic
structures of three million molecules based on density functional theory (DFT) at
the B3LYP/6-31G* level and 10 lowest excited states of over two million molecules
at TD-DFT/B3LYP/6–31 + G* level of theory (Nakata and Shimazaki 2017). ANI-
1 contains energies and DFT-level properties for 20 million conformations for over
50,000 small organic molecules distorted along normal modes (Smith et al. 2017).
Ab initio molecular dynamics are also available: 5,000 frames at 500 K at the PBE
level of theory for 113 structural isomers of C7O2H10 and hundreds of thousands
frames for 8 small organic molecules (Chmiela et al. 2017; Schütt et al. 2017).

A large number of internal tools for data processing have grown into open
libraries that are available for data analysis of calculation outputs: the python-based
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cclib for parsing and interpreting the results of computational chemistry packages
(O’boyle et al. 2008); ESTEST, a free framework for the comparison, validation and
sharing of quantum chemical calculation outputs (Yuan and Gygi 2010); ORBKIT,
also python-based library for postprocessing of quantum chemical wavefunction
outputs from multiple codes; (Hermann et al. 2016); and PyGlobal, spreadsheet-
oriented output postprocessing tool for DFT calculations (Nath et al. 2016). Other
tools are also available for input generation and pipelining calculations, such as
JACOB (Waller et al. 2013) a framework for computational chemistry aimed at
enterprise application, PyADF for scripting multiscale quantum chemistry using the
ADF package (Jacob et al. 2011).

This ample landscape suggests that increasing both the velocity and volume of
quantum chemical calculations is of great interest. These increases, however, come
with a tradeoff in the variety of the applications. Because of the added complexity,
most of these rarely see adoption outside the groups or consortia that created them
(Thygesen and Jacobsen 2016).

3.2 High-Throughput Virtual Screening

As computational methods become more accurate and computing hardware more
affordable, the possibility of automatically prescreening compounds virtually before
synthesis grows more promising. Various teams have used HTVS for discovery of
many inorganic materials. These are treated in depth in other chapters of this book.
Here, the focus will be on organic molecular materials in the domains of organic
optoelectronics for light-energy interconversion (photovoltaics and light emitting
diodes) and for electrical energy storage (Pyzer-Knapp et al. 2015).

3.2.1 Optoelectronics
Merging concepts from both the volunteer, distributive computing efforts and the
HTVS vision, lies the Clear Energy Project (CEP). Since its inception around
2006 and throughout two phases, this project ran on IBM World Community Grid,
where volunteers donated computer time to virtually screen p-type, and later n-type,
organic photovoltaic oligomers.

CEP tackled many of the challenges for automated virtual testing of chemical
compounds: programmatic generation of candidate molecules, automation of the
quantum chemical calculation, data storage, and analysis.

Combining a pool of 20 fragments through covalent linking at active sites
and also by forming fused rings adjacent to these labeled reactive atoms, the
CEP molecular generation processed went up to tetramers and produced over
two million candidates that were screened exhaustively. The quantum chemical
calculations carried out included multiple DFT functionals and amount to the
largest computational chemistry project to that date. The candidate tetramers were
assessed using the Scharber model for photovoltaic efficiency, assuming fullerenes
as electron acceptors and both raw and empirically calibrated donor energy levels.
The statistical analysis of the large dataset produced afforded correlations for the
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most and least promising fragments and fragment combinations (Hachmann et al.
2011, 2014; Olivares-Amaya et al. 2011).

The CEP, because of the large theoretical dataset, and the existence of numerous
independent experimental results in the area of OPV has proven a testing ground
for novel approaches to materials discovery. A probabilistic kernel-based calibration
scheme to improve theoretical gas-phase results and to capture the bulk effects using
a collection of experimental results from the literature (Lopez et al. 2016) improved
the predictive performance of DFT calculations (Pyzer-Knapp et al. 2016).

A later subproject has focused on the virtual screening of over 50,000 non-
fullerene electron acceptors from the combination of over 100 common organic
moieties. Time-dependent density functional theory calculations were also carried
out for elected lead compounds. Diketopyrrolopyrroles and quinoidal thiophene
derivatives showed good promise and were proposed for additional study (Lopez
et al. 2017).

At a less gargantuan scale, other works also addressed screening over bulk
heterojunction solar cell components, such as combinatorial band-gap design
strategy over 780 different copolymer donor materials (Shin et al. 2014).

Some works have addressed virtual discovery of molecules for other classes of
solar cells, such as TiO2-based dye-sensitized solar cells, optimizing over common
dyes (Martsinovich and Troisi 2011) and also over porphyrins (Ørnsø et al. 2014).

A successful example of blending computational chemistry with deep learning
for applied materials discovery has been reported in the area of thermally activated
delayed fluorescence (TADF) organic light-emitting diodes (Gómez-Bombarelli
et al. 2016). Using custom software that mimics cross-coupling reactions on existing
staring materials, a database spanning nearly two million feasible compounds was
created from over two hundred starting donor and acceptor fragments. The TADF
character of the compounds, as well as their color, was estimated using accurate,
empirically calibrated TD-DFT calculations. For accelerated results, the candidates
were screened through a neural network, using topological fingerprints as features.
The leading compounds with the most promising predicted chemical properties were
assessed by a team of experts who synthesized and tested the consensus champion
compounds. These were then tested in optoelectronic devices, where they matched
the performance of human-generated champion compounds (Fig. 1).

3.2.2 Electrolytes and Energy Storage
Energy storage is one of the most active areas of materials science and engineering,
given the strong demand in both lightweight, high-energy density applications such
as mobile phones or transportation and static, low-cost, grid-scale storage.

Flow batteries are large, static batteries where liquid electrolytes are stored in
tanks and circulated across an electrochemical cell when charging or discharging.
Although they show somewhat inferior energy densities compared to solid-state
batteries such as lithium-ion, flow batteries are potentially a much better solution to
grid-scale electrical storage because of the lower cost and use of earth-abundant and
cheap electrolyte materials. The independent scaling of power (depending on effects
such as the kinetics of the electrochemical reaction and the electrode surface area)
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Fig. 1 Overview of TADF OLED chemical space. Red dots represent overlap with previous
experimental reports in the literature, orange triangles correspond to theoretical leads, cyan squares
represent experimentally confirmed theoretical leads. The log-density of molecular candidates as
a function of singlet-triplet gap and oscillator strength of shown. The dashed lines follow iso-
contours of estimated rate of delayed fluorescence

and energy (related to the total size of the tanks, the concentration of the electrolyte
in solution, and the degree of ionization of the electrolyte) allows more flexible
engineering for flow-battery solutions. Using water as solvent further reduces the
installation costs and increases the operational safety. Because they can be sources
from oil and from sustainable biomatter, the great design flexibility of organic
molecules, and their promising performance, organic electrolytes for flow batteries
are heavily considered contestants (Kowalski et al. 2016; Leung et al. 2017; Wei
et al. 2017).

High-throughput simulation, particularly when coupled with experimental
follow-on, has become a powerful tool in the discovery of electrolyte materials
for organic flow batteries. The report of an efficient, metal-free, low-cost flow
battery design using acidic aqueous solutions of anthraquinone disulfonate and
bromine/hydrobromic acid leveraged thousands of DFT calculations of potential
quinone molecules to optimize reduction potential of the negolyte and its aqueous
solubility (Huskinson et al. 2014). The careful analysis of the theoretical predictions
allowed to identify useful design rules and structure-property relationships over the
domain of benzo-, naphto-, and anthraquinones bearing any of 13 functional groups
(Er et al. 2015). Other high-volume calculations of bio-inspired thiophenoquinone
derivatives also identified potentially useful electrolytes for flow batteries (Pineda
Flores et al. 2015).

The Electrolyte Genome project used the Materials Project backbone to perform
high-throughput calculations on a set of nearly 5000 molecules derived mostly from
quinoxaline and anthraquinone, thiane, thiophene, and bipyridine derivatives (Qu
et al. 2015). Special attention was paid to error handling and estimation of redox
potentials, ion pair dissociation, and complex salt formation. A detailed analysis of
nearly 1400 quinoxalines for nonaqueous flow batteries estimating redox potentials,
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solvation energies, and structural changes was also reported (Cheng et al. 2015), as
well as over 4000 five- or six-membered rings with one or two functional groups
attached (Pelzer et al. 2017).

Somewhat smaller scale virtual searches have also been reported. Starting from
experimentally reported molecules available in PubChem, and down-selecting man-
ually to 315 after deploying a neural network, improved experimental performance
was observed for a quinoxaline derivative (Park et al. 2015, 2016).

The chemical stability of organic molecules for electrochemical applications,
which impact battery shelf-life and long-term cyclability, is one of the standing
issues of virtual discovery applications. For this purpose, the first and second reduc-
tion and oxidation of organic solvents for lithium-ion batteries have been analyzed
using DFT (Borodin et al. 2015). Similarly, bio-inspired alloxazine electrolytes have
been shown experimentally to provide excellent stability in alkaline aqueous flow
batteries, by including stability criteria in the virtual search, in addition to redox and
solubility requirements (Lin et al. 2016).

Smaller approaches with less focus on automation and extreme throughput have
been reported, focusing on aspects such as low Li+ binding affinity over 32 organic
molecules (Park et al. 2011), 15 counterions for magnesium electrolytes (Qu et al.
2017), redox-switchable polymer-based membranes (Ward et al. 2017), or tuning
the reduction potential of organic molecules to optimize the combination of small
redox active molecules with conducting polymers (Araujo et al. 2017).

HTVS has also been applied for materials related to other electrochemical
applications such as double layer capacitors (Schütter et al. 2016) or other green-
chemistry applications such as switchable-hydrophilicity solvents (R. Vanderveen
et al. 2015).

4 AppliedMachine Learning for Accelerated Discovery

As is the case in many other areas, machine learning applications to chemistry
are not a novel enterprise (Pierce and Hohne 1986). As is also the case in many
other applications, the combination of deep learning algorithms with larger datasets
and specialized computing hardware has resulted in many effective applications of
machine learning for chemistry.

4.1 Quantitative Structure-Property Relationships

Most applications of machine learning to computational chemistry applications
are related to building fast statistical proxies to expensive calculations on three-
dimensional atomic arrangements or chemical graphs. This is, in a sense, building
quantitative structure-property relationships trained either on molecular structures
or on 3D geometries, often generated on-the-fly using molecular mechanics.
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Other chapters in this same publication give a thorough review of many recent
contributions to this area, so only a brief overview will be provided. Readers are
encouraged to explore further in this same book.

The idea of using neural network models to interpolate over potential energy
surfaces goes back to the 1990s (Blank et al. 1995). Very early contemporary works
applying machine learning to computational chemistry are those by Behler where
neural networks were used for molecular dynamics simulations and other PES
exploration techniques (Behler 2011b, a; Behler et al. 2007; Behler and Parrinello
2007). These and many other applications of neural-networks, mostly to bulk and
heterogenous systems, have been reviewed recently (Behler 2017).

Another line of application of machine learning techniques to computational
chemistry, with a heavier focus on molecules, rather than bulk materials initially
leveraged kernel methods, with emphasis on mapping 3D coordinates (Rupp et al.
2012; Schütt et al. 2017) or electronic densities (Brockherde et al. 2017; Snyder
et al. 2012) to properties. These approaches are well covered in other chapters of
this publication.

One of the most important issues in predictions based on molecular structures is
the choice of features to represent molecules. Chemists tend to think of molecules
as undirected graphs, with atoms in the nodes and bonds in the edges, and some
additional considerations for stereochemistry. In quantum chemistry, molecules are
three-dimensional arrangements of atoms that correspond to a local minimum in the
potential energy hypersurface. For multiple decades, cheminformatics applications,
mostly in pharma and drug discovery, have created descriptive, rich features
for machine learning over both graphs: pharmacophore fingerprints, topological
fingerprints, and also 3D conformations.

Recent applications of machine learning to molecules in chemistry have focused
on QSPR over quantum-chemical properties and placed their focus on more
information-rich features. The Coulomb matrix, for instance, is a permutation-
dependent symmetry invariant modified distance matrix. Contemporary highly
powerful neural network approaches also leverage 3D information (Gilmer et al.
2017; Lubbers et al. 2017; Schütt et al. 2017). In the case of molecules whose 3D
structure is unknown, which is generally the case when carrying out predictions,
these features are calculated from guess geometries calculated on the fly at the
molecular mechanics level of theory. Molecular mechanics methods, through the
underlying force fields, are heavily parametrized, generally on quantum chemical
calculations but eventually on the experimental data used to parametrize those too.
Therefore, the machine learning methods applied over these features are heavily
supervised, with their inputs essentially embedding quantitatively a large amount of
prior chemical knowledge and hand-tuning.

Learning on graphs presents a very unique set of challenges, because of
graph-isomorphism. Machine learning approaches over graph structures have much
interest beyond chemistry, such as in networks of any kind in transportation,
databases, telecommunications. Whereas extended connectivity circular fingerprints
address graph isomorphism, the process of encoding the graph, hashing, muddles
chemical information and can lead to different chemical substructures activating the



88 Machine Learning and Big-Data in Computational Chemistry 1951

same feature. Neural fingerprints, a differentiable deep-learning extension of ECFP,
have recently been proposed as a more flexible and learnable alternative (Duvenaud
et al. 2015). These continuous counterparts of topological fingerprints and derivative
graph convolutions for chemistry (Kearnes et al. 2016) have proven to outperform
some traditional cheminformatics descriptors from QSPR, particularly for larger
datasets, and open a new avenue for molecular screening.

4.2 Searching and Optimizing in Chemical Space

An interesting subset of applications of machine learning to the computational
chemistry/cheminformatics community is moving in the discrete, high-dimensional
space spanned by all possible molecules, or by a relevant subset, such as the small
organic molecules with aromatic rings, or similar subsets of interest.

Chemical space is extremely large, with estimates ranging by many orders
or magnitude, from 1023 to 1060. Rule-based efforts to enumerate molecules,
exhaustively for small compounds and culling nonpractical but formally valid and
even potentially stable molecules, have been reported as follows: GDB-11 lists 26.4
million small organic molecules of up to 11 atoms of C, N, O, and F (Fink and
Reymond 2007); GDB-13 enumerates 978 billion molecules with up to up to 13
atoms of C, N, O, S, and Cl (Blum and Reymond 2009); and GDB-17 contains
166.4 billion molecules of up to 17 atoms of C, N, O, S, and halogens (Ruddigkeit
et al. 2012). Extrapolating from those sets, the size of drug-like chemical space has
been extrapolated to 1033 (Polishchuk et al. 2013).

In addition to the size of the space, molecules are discrete graphs and rules
exist regarding the types and degrees of connectivity that are allowed. Even
further, molecules that are formally valid may still be chemically unstable at the
temperatures, pressures, and timescales of interest. Hence, performing local, or
even more challenging global, optimization is of big interest in materials and drug
design and also a great challenge. The Chemical Space Project leverages the GDB
databases to develop visualization and exploration tools, with a focus on drug
candidate molecules (Reymond 2015).

Custom molecular libraries have proven a very effective way of navigating
chemical space, as the human-driven design allows to embed rules and chemical
requirements that are hard to capture without strong supervision, particularly
regarding synthetic accessibility of molecules. This success is reflected in the ease
of experimental applicability of the examples in the previous section.

Multiple machine-learning approaches to this area suggest that the large existing
datasets of chemical reactions from the patent literature (Lowe 2012) or from com-
mercial databases can be leveraged to automatically construct reactivity prediction
tools for organic synthesis reactions and retrosynthetic analysis software. Recent
examples include prediction the outcome of chemical reaction from fingerprints
of the reactants after training on rule-generated examples (Wei et al. 2016) and
selection of the major product by ranking a self-generated list of candidates (Coley
et al. 2017a; Jin et al. 2017). Sequence-to-sequence models following approaches
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to machine translation (Fooshee et al. 2018; Schwaller et al. 2018) or similarity
searches (Coley et al. 2017b) have proven effective at automatically predicting
organic synthesis reactions in an automatic, data-driven way. Even more promising
results have been obtained from larger, better-curated datasets (Segler et al. 2017;
Segler and Waller 2017a, b).

A well-understood approach to chemical optimization are genetic-algorithms,
where mutations from a hand-prepared list of chemical transformations and stochas-
tically applied to starting molecules, and the resulting compounds, if the show
improvement in a desired property, are kept for further evolution. Because they rely
on hand-picked mutations and hyperparameters, and oftentimes also on manually
tuned tradeoffs between target properties, these approaches involve a certain degree
of chemical intuition. By compounding mutations that may be allowed individually
but not in combination, the molecules generated tend to be quite complex. These
types of genetic approaches have been used to navigate chemical space (van Deursen
and Reymond 2007; Virshup et al. 2013) and to optimize multiple classes of
molecules, such as organic light-emitting diodes (Rupakheti et al. 2016; Shu and
Levine 2015), organic photovoltaics (Kanal and Hutchison 2017), diamondoids
(Teunissen et al. 2017), visible chromophores with high hyperpolarizability (Elward
and Rinderspacher 2015), or small molecules with high electrical dipole (Rupakheti
et al. 2015).

4.3 Generative Models

Generative models are machine learning models that aim to produce natural-
seeming data that capture the intrinsic statistical properties of the training popu-
lations. They can be trained in an unsupervised way and thus are not inhered by the
need for labeled data. Given the large size of chemical space, and the very abundant
number of chemicals known (see Sect. 2) numbering around 100 million known
compounds, unsupervised deep learning models based on existing molecules have
been assessed recently.

One of the most basic examples of generative models in chemistry has been the
use of recurrent neural networks (RNN) to predict the next character of the SMILES
representation of molecules. By feeding n characters to the network to predict the
n+ 1th, RNNs have proven very powerful at generating valid – if nonsensical – text
(Karpathy 2015). A simple and comprehensive string representation of molecules
that is human readable and can be stored a single string exists: the simplified
molecular-input line-entry system (SMILES) (Weininger 1988). SMILES contain
the full molecular connectivity using a series of rules and a canonicalization
procedure. The same principles shown for text have proven to work well for
generating molecules through their string-based SMILES representation. Additional
work has been directed towards generating molecules for generating leads that
capture the statistical behavior of the training data (Bjerrum 2017; Ertl et al. 2017;
Gupta et al. 2018). A further step involves evolutionary refinement of the molecule
pool to bias the set towards a given property (Olivecrona et al. 2017).
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Autoencoders are deep learning models that are trained to reproduce a high-
dimensional input, subjecting it to a low-dimension information bottleneck. Some
of the thorniest issues in molecular design emerge from the discrete nature of
molecules and the extremely large size of the search domain. Hence, this low-
dimension, real-valued, decodable embedding would potentially allow to apply
gradient-based optimization algorithms to molecular optimization. A further
improvement is the use of a variational autoencoder, where random noise is added
to the encoding step, which results in more continuous coverage in the latent space
and fewer dead areas that do not correspond to valid decoded points.

As discussed above, there are available strategies for using chemical graphs as
inputs for machine learning systems. However, deep learning tools that efficiently
write chemical graphs are still an open problem. Neural networks architectures
have been shown to efficiently write text and images, and hence, the first report
(Gómez-Bombarelli et al. 2018) of variational autoencoders (VAE) for chemical
discovery used a string-based chemical representation. This work showed how a
VAE can accurately reconstruct molecules from a continuous real-valued array
representation. Even further, it explored how transformations in the latent space,
particularly molecular optimization with respect to properties of interest, can be
carried out. This application was particularly efficient in the case of jointly trained
VAE plus predictor systems, where the deep learning system was simultaneously
trained as an unsupervised generator and a supervised predictor. In this case, the
latent space is topologically shaped by chemical property (Fig. 2).

The original VAE model suffers from several flaws, generally related to its
ability to write out molecules, particularly the string output is probabilistic. Because
of the string representation used, and its need for internal consistency and even
arithmetic (opening and closing rings and branches), the VAE models produce many
invalid molecules, in more than one sense. On the one hand, syntax errors result in
strings that are invalid as SMILES and do not correspond to an actual chemical
graph (cycles that open but do not close, parenthesis that open but do not close,
representing unfinished branches, etc.), a similar type of failure is to write complete
graphs that are not chemically valid graph (generally related to valences and the
octet rule: carbon atoms with valence higher than five, oxygen atoms with valence
three, etc.). A different type of writeout failure is molecules that are formally and
chemically valid, but when re-encoded, do not correspond to the original point
in the latent space: the stochastic text generation strays away from the original
point.

A number of works are rapidly expanding this area, addressing these performance
issues, and exploring further avenues for deep generative models in chemistry
(Blaschke et al. 2018; Xu et al. 2017). These include using a series of grammar
rules for SMILES as the output of the decoder (Kusner et al. 2017), active
learning over the validity of the output (Janz et al. 2017), performing constrained
Bayesian optimization to avoid exploring dead areas of the latent space (Griffiths
and Hernández-Lobato 2017), performing local optimization near encoded latent
points (Mueller et al. 2017), combining an additional RNN to generate higher-
quality outputs through reinforcement learning (Jaques et al. 2016).
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Fig. 2 Diagram of a Variational Autoencoder with joint property prediction: an encoder neural
network takes in the string repetition of a molecule and converts it into a real-valued array that can
be decoded back into a string through decoded neural network. By training jointly with a property
prediction network, the latent space can be navigated for property optimization

Further improvements and applications towards generating DNA (Killoran et al.
2017) and protein sequences (Sinai et al. 2017) have been reported, as well as
adversarial approaches with the ability to apply bias towards desired properties
(Guimaraes et al. 2017; Sanchez-Lengeling et al. 2017).

5 Conclusions

Machine learning and data-driven application have taken computational chemistry
by storm. Tasks that have been deemed holy grails for decades seem closer than
ever thanks to deep learning approaches: affordable computational predictions that
match or surpass experimental accuracy, computerized retrosynthesis that can beat
humans, etc.
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Chemistry in general and computational chemistry, in particular, have long
strived with high-volume, high-velocity, and high-variety data. The pain points are
dissimilar however. In computational chemistry, the acquisition velocity is less and
less of a bottleneck. Experimentally they are many more constraints on the pace and
reproducibility, and they come at a much larger cost. Computational chemistry, on
the other hand, has shown difficulty addressing variety: as parametrization increases
the transferability and the trust in the predictive power decrease.

The more digitized and automated it is, the more experimental chemistry assim-
ilates to computational chemistry, and hence the easiest to leverage these extremely
promising data-driven tools. For a broader impact, and if computational chemistry is
truly a sandbox and an accelerator for ideas that will ultimately change experimental
chemistry, more focus is needed on addressing heterogeneous, unstructured data.
Unsupervised machine learning and transfer learning are promising tools for this
task.
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regions of material, 1227
relaxation modulus, 1405
shear transformation zone dynamics

modeling, metallic glasses,
1230–1231

specific objects, 1226
strain energy controlled microstructural

evolution, Monte Carlo-finite
element model for, 1232

top-down development of, 1412
Coarse-grained (CG) potentials, 1461, 1462
Coarse graining, 811

of shear transformation zone, 1241
Coherent control, 470
Collective variables (CVs), 566, 598,

623, 632
choice of, 582–583

Collinear (anti-)ferromagnetism, 928

Common neighbor analysis (CNA) method,
1551, 1555

Complete basis set limit, 457–461
Composite-grain (CG) method, 1324–1326
Composite dislocation, 1567
Compressed sensing (CS) approach, 65
Computational chemistry approaches, 1940
Computational fluid dynamics (CFD), 1448
Computational Materials Repository

(CMR), 1745
Computational materials science

Big data, 53
development of research paradigms, 51
machine-learning approaches, 61–63
NOMAD Center of Excellence, 54
open access of data, 54
subgroup discovery, 63–65
4 V challenge, 50

Computer-assisted data analysis, 1855
Concentration field, 1042
Concurrent atomistic-continuum (CAC)

method, 1615
Concurrent multiscale methods, 687
Condensed matter physics (CMP), 23
Condensed-phase systems, 261
Conditional probability density, 551
Conductor-like screening model

(COSMO), 236
Configurational entropy, 196
Confined layer slip (CLS), 1052
Confined systems

GW approximation, 316–319
GW-BSE and TDDFT, 319–321
Γ and self consistency, 325–329
numerical convergence, 321–322
numerical validation, 322–324
physical properties of, 314

Constant prefactor, 733
Constrained density functional theory

(CDFT), 233
Continuum dislocation dynamics (CDD),

1499, 1584, 1592
discrete dislocation line, 1593–1594
dislocation density tensor field,

1587–1589
dislocation flux tensor field, 1590–1591
dislocation movement tensor field, 1590
dislocation velocity tensor field, 1589
distortion of dislocated crystals,

1586–1587
dynamics of dislocated crystals,

1591–1592
FDM theory, 1597–1599
3D higher-dimensional theory, 1600–1602
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3D model, vector density representation,
1602–1603

2D statistical theory of dislocations,
1595–1597

Continuum finite element (FE)
simulations, 806

Continuum modeling of deformation, 1239
Conventional first-order Langevin dynamics

(CFOLD), 546, 547, 558
Conventional shear resistance-based power law

model, 1728
Cooperatively rearranging regions

(CRR), 196
Cost-effective accurate force fields, 828
Coulomb code, 444
Coulomb-hole-screened-exchange (COHSEX),

321, 322
self-energy, 936, 938–941, 951

Coulomb interaction, 136, 346, 350, 436, 446,
897, 898, 1385, 1437

Coulomb matrix (CM), 1464, 1899,
1901, 1950

Coulomb potential, 236, 316, 503
Coulomb systems, 441
Coupled atomistic discrete dislocation

(CADD) method, 1614
Coupled cluster and quantum chemical theories

complete basis set limit, 457–461
quantum chemical wave function theories,

454–457
reduced-scaling approximations, 462–463
thermodynamic limit, 461–462

Coupled cluster singles and doubles (CCSD),
456, 462

Coupled continuum-atomistic methods,
temporal acceleration and spatial
coarse-graining, see Spatial coarse
graining

Coupled electron-nuclear dynamics, 78–83
Coupled fermion-boson systems, 367
Coupled-trajectory mixed quantum-classical

(CT-MQC) scheme, 101–106
Coupling dislocation dynamics with chemistry,

1092–1095
CPFE-CLS model, 1142
Cross-slip, 1563
Crystal graph, 60
Crystallographic databases, 1865
Crystallographic Information File, 1854
Crystallographic Interchange Framework

(CIF), 1867, 1869, 1871, 1875, 1876
Crystallographic texture, 1686
Crystallography Open Database (COD),

1745, 1942

advantages of, 1878
applications, 1878
basic principles, of COD design, 1869
data semantics and selection, 1870–1872
growth of, 1868
history of, 1867–1869
querying SQL database, 1875–1877
RESTful interfaces, 1873, 1873
scope and contents of, 1869–1870
Web access, 1872–1873
Web site, 1868

Crystal plasticity, 1114, 1496
computation of yield surface, 1697
constitutive law, 1118
CPFE modeling (see Crystal plasticity

finite element (CPFE) modeling)
finite element mesh models, 1125
forming limit diagram, 1702–1704
framework, 1688–1689
models, 1113
property closures, 1701
schematics of, 1497
slip/interface interactions, 1126
spectral database approach, 1689–1697
Taylor-type, 1697–1698
theory, 1322

Crystal plasticity finite element, 1323
implementations, 1660
modeling, 1501

Crystal plasticity finite element method
(CPFEM), 1156, 1687, 1714

kinematic relations, flow rule and slip
system resistances, 1716–1718

4-noded tetrahedral elements, stabilization
of (see Four-noded tetrahedral
elements (TET4), CPFEM)

numerical implementation, of crystal
plasticity constitutive model,
1718–1719

polycrystalline RVE, twin evolution in,
1731–1732

single crystal Mg, twin evolution in, 1730
subcycling algorithm, 1729
twin nucleation, 1727
twin propagation, 1727
with enhanced wavelet basis (see

Waveletbasis enhanced adaptive
hierarchical CPFEM)

Cu-Al-Ni shape memory alloys, 1275–1276
Cu/Ni interface, 1056
Curie temperature, 868, 871, 888, 896,

912–914, 1029, 1030
CUR matrix decomposition, 1917
Current induced forces (CIFs), 978
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D
Database management system (DBMS), 1840
Data-driven materials science, 16, 17
Data-driven methods, in multiscale modeling

analysis, 1466–1467
force fields, 1460–1465
sampling, 1464

Data management plans (DMPs),
1825–1826

Davidson method, 703
Debye frequency, 1534
Debye-Hückel approximation, 1387
Deformation behavior, in metallic glasses

multiscale features and structural
heterogeneities, 1239

shear transformation zone (STZ) dynamics
model, 1251–1253

Deformation twinning, 1145
challenges in modeling, 1322
composite-grain (CG) method, 1325
dynamic process, 1316–1317
full-field CPFFT model, 1326–1327
full-field micro-mechanical models, 1323
grain size effects, 1320–1321
mean-field response models, 1323
polycrystalline model, 1323
Schmid criterion, 1318
statistical features of, 1317–1319
stochastic twin nucleation model, 1329
twinning model in CPFFT framework,

1327–1329
visco-plastic self-consistent (VPSC) model,

1323–1324
See also Stochastic twin nucleation model

Degrees of freedom (DOF), 1611,
1730, 1735

Delaunay construction, 1549
Delaunay tessellation, 1549–1551
Δ-Machine learning, 1895
Dendrite, 1195, 1197, 1198, 1200, 1201,

1203–1208, 1210, 1213–1215
Density-based representations and kernels

Dirac notation for structural descriptors,
1923–1925

kernel operators and descriptor
optimization, 1929

multi-kernel learning, 1933
SOAP, 1925–1931

Density-density response function, 87
Density functional approximations

gaps of solids, 219
ground-state DFT, 215
meta-GGA, 217
range-separated hybrids, 218

RPA-type functionals, 216
strong correlation, 220
weak interactions, 217

Density-functional perturbation theory
(DFPT), 347

Density functional theory (DFT), 17, 42,
124, 127, 143, 209, 221, 314, 324,
327, 347, 356, 419, 429, 454, 457,
500, 502, 516, 555, 636, 697, 828,
838, 839, 869, 896, 897, 931, 963,
964, 969, 1013, 1041, 1413–1416,
1504–1506, 1534, 1752, 1756, 1757,
1759, 1763–1766, 1769, 1770, 1789,
1814, 1830, 1884

calculation, 260, 896
classical, 1414
failure of, 220
ground-state, 215
ground state calculations (see Ground state

calculations, DFT)
magnetic fluctuations, 911–913
ordering temperatures, 913–914
range separation in, 269
spin-orbit coupling, 901–905
vector-spin, 898–901

Density method (DM), 975
Density of states (DOS), 356, 862, 960
Depinning model, 1240
Deviatoric stress tensor, 1690
DFT, see Density functional theory (DFT)
Diabatic states, 229
Diabatization procedure, 232
Diagrammatic Monte Carlo and GW

approximation
hydrogen chain (see Hydrogen chain)
Jellium model (see Jellium model)

Diagrammatic perturbation theory, 384–391
Dice index (DI), 1646
Diffusion Monte Carlo (DMC), 1010

electronic gap calculation, 1012
FN-DMC, 1012, 1013
ground state energy, 1012
ground state, nature of, 1013
nodal surface, 1011
non-local potentials, 1010

Digital object identifiers (DOIs), 1776
Dilation-erosion method, 1633
Dipole-dipole correlation function, 652
Dirac-equation, 902
Dirac-Frenkel variational principle, 482
Dirac function, 1535
Dirac notation, 1923–1925
Directed acyclic graphs, 1817
Direct numerical simulations (DNS), 1634
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Direct random phase approximation (dRPA),
527, 534

Discrete continuous method (DCM), 1096
Discrete dislocation dynamics (DDD),

1546, 1560
Discrete dislocation dynamics (DDD) model,

1498, 1617–1618
Discrete dislocation dynamics (DDD)

simulations
advances in algorithms, 1084–1089
advances in applications, 1089–1095
basics, 1081–1084
elastic forces, 1080
in sub-scale physics, 1095–1105
stages, 1081

Discrete dislocation line, 1593–1594
Discrete Fourier transforms (DFTs),

1500, 1688
Discrete-slip-crystal-plasticity, 1131
Dislocation(s), 1127, 1131, 1137

climb, 1570
definition, 1080
density tensor field, 1587–1589
flux tensor field, 1590–1591
line tension, 1565
mobility of, 1080
mobility law, 1563
movement tensor field, 1590
nucleation, 1058, 1101
self-force, 1562
substructures, 1080
velocity tensor field, 1589

Dislocation dynamics (DD)
models, 1497

Dislocation dynamics (DD)
simulations, 1055

Dislocation dynamics theory, 1526
Dislocation energy, ab initio modeling of

dislocations, 1516
core energy, 1516–1519
Peierls energy barrier, 1519–1520
Peierls stress, 1520–1521

Dislocation extraction algorithm (DXA),
1498, 1550

accuracy and ambiguity of dislocation
representations, 1554–1555

complex dislocation junction, 1554
density of dislocations, 1553, 1554
glide plane identification, 1556
line tracing process, 1553
steps, 1551
supported crystal structures, 1555–1556
tracking dislocations, time and

space, 1556

Dislocation mobility, atomic scale
applied stress, 1527
harmonic transition state theory, 1534–1537
kink pair mechanism, 1530–1534
numerical implementation, 1537–1540
Peierls stress, 1526
simulation cell construction, 1527–1531

Disregistry, 1514–1516
Dissipative particle dynamics (DPD), 1374,

1425, 1451
Domain decomposition, 1612
Domain wall (DW) rotation, 978
DREAM.3D, 1500, 1634

feature placement, 1636
generated grain microstructure, 1651
polycrystalline and polyphase

microstructures, 1637–1652
representative feature generation,

1635–1636
statistically equivalent 3D virtual

microstructures generation, 1637
Drude approach, 26
Drude particles, 238
DrugBank, 1943
Dynamic(s), 297–299, 306

disorder, 239
micromagnetics, 990–991
X-ray diffraction, 1184–1185

Dynamical crossover, 186
Dynamical heterogeneities, 189
Dynamical mean-field theory (DMFT), 399,

412, 413, 971
Green’s functions and electronic structure,

400–402
Hamiltonian-based impurity solvers, 408
Kadanoff-Baym equations, 404–405
Keldysh formalism, 402–403
models, 400
Mott insulators, photo-doping in,

410–412
QMC, 408
quenches and thermalization, 410
self-consistent mapping, impurity model,

405–407
strong-coupling expansions, 407
time independent perturbation, 409
time-periodic perturbations, 409
weak-coupling expansions, 407

Dynamical quantities, 775
Dynamic X-ray radiography (DXR),

1182–1184
Dyson equation, 316, 317, 347, 349, 403, 404,

406, 437, 439, 445, 448, 925
Dzyaloshinsky-Moriya interaction, 709
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E
Edwards diffusion equation, 1421
Ehrenfest dynamics, 95–98
Eigen oscillations, 923
Eigensolvers, subspace filtering, 507–509
Eigenvalue equation, 320
Eigenvalue matrix, 508
Einstein approximation, 1540, 1541
Einstein’s model of crystals, 1534
Elastic anisotropy, 1564
Elastic deformation, 1251
Elastic-viscoplastic deformation, 1704
Elasto-visco-plasticity (EVP), 1326
Electric and magnetic fields, 154–157
Electrodeposition, 1203
Electrolyte genome project, 1948
Electron affinity (EA), 325, 326, 516, 518
Electron back-scattered diffraction (EBSD),

1123, 1124, 1632, 1712, 1713
Electron beam powder bed, 1176
Electron-boson interactions, 368, 372, 373
Electron density, 349
Electronic band theory of crystalline solids, 25
Electronic coupling, 230
Electronic gap calculation

optical gap, 1012
quasiparticle gap, 1012

Electronic structure problem
Chebyshev filters, 509–512
Kohn-Sham equation, 502–504
real-space approach, 505–507
subspace filtering, eigensolvers, 507–509
subspace iteration, filtering, 513–514

Electronic Structure Project, 1944
Electronic wave function, 561
Electron-phonon matrix element, 347
Electron-plasmon coupling effects, 350
Electron repulsion integrals (ERIs), 525–527,

529–532
Electron transport, 39
Elementary excitation model, 24, 31
Element stabilization, in CPFEM, 1722–1726
Elliott-Yafet mechanism, 844
Embedded atom method (EAM), 820,

1028–1030, 1527, 1538
Empirical Hall–Petch (H–P) relationship, 1129
Empirical pseudopotential method (EPM), 27
Energetic(s)

disorder, 245–246
of ferromagnet, 987–988

Energy conversion at interfaces, 40–42
Energy distribution curves (EDCs), 360
Energy landscape, 1270, 1282
Energy storage, 1947

Enhanced sampling, 495, 496, 632
applications and extensions, 628–631
coarse-graining, 631
collective variable based, 623–624
phase space, 622
variational principle, 624–625

Enthalpy barrier, 1533
Entropic effects, 828
Environment, 1817
Equation of motion, 907
Equation-of-state (EOS), 1416
Eshelby inclusion, 1241
Eshelby tensors, 1666
ESTEST, 1946
Euler-Lagrange equation, 898
Excess energy, 1516
Exchange-correlation (XC) energy, 214
Exchange-correlation (XC) functional, 898
Exchange-correlation (XC) potential, 846
Exchange interaction, 896, 897, 902, 904, 906
Exfoliable 2D materials database, 1832
Explicit environment models, 237
Extended correlated disorder model (ECDM),

1434, 1435
Extended Gaussian disorder model (EGDM),

1434, 1435
Extended molecule (EM), 961, 962, 970, 972
External virtual work, 1715
Extract-transform-load (ETL) operations, 1765
Eyring-Kramers laws, 785–791, 798

F
Faber, Christensen, Huang, and von Lilienfeld

(FCHL), 1902
Face-centered cubic (FCC) crystal, 1530

edge dislocation in, 1528, 1529, 1531
FAIR, 1825–1826

accessible, 55
FAIR guiding principles, 55
findable, 55
interoperable, 55–58
re-usable, 58–59
sharing, 1825

Falikov-Kimball model, 406
Fast Fourier transform (FFT), 531, 532

based approach, 1323
methods, 1086–1089, 1712, 1731

F-bar patch-based (FP) element, 1721
Femtomagnetism, 842
Fermi-Dirac distribution, 347, 959, 970
Fermi energy, 933
Fermi function, 401, 904
Fermi level, 172
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Fermi momentum, 436
Fermi’s golden rule, 295
Fermi-surface, 443
Fermion-boson Hamiltonian, 371
Ferromagnetic (FM), 906, 908

energetics of, 987–988
FIB-SEM technique, 1645
Field dislocation mechanics (FDM),

1597–1599, 1616
Finite element method (FEM), 1712
Finite element modeling, 1273–1275
Finitely extensible nonlinear elastic (FENE)

potentials, 1387
FireWorks, 1764, 1765
First-principles calculations, 16
Fixed node diffusion Monte Carlo

(FN-DMC), 429
Fixed spin-moment calculations, 911
Fleming-Viot particle process, 784, 794
Flexible boundary conditions, 1507–1509
Floquet-engineering, 209, 399
Floquet Hamiltonian, 409
Floquet theory, 298
Flory-Huggins (FH) model, 1417
Fluctuation-dissipation relation (FDR), 1021,

1022, 1024
Fluctuation–dissipation theorem (FDT),

1374–1376
Fluidity model, 1240
Fokker-Planck equation, 549–551, 554–556,

1021, 1022
Force-decomposition approaches, 746
Force fields (FF), 636, 774, 1897

accuracy, 1461–1462
atomic polarizabilities, learning of, 1464
potential energy surface, 1461
transferability, 1463–1464

Forming limit diagram (FLD), 1702
Fourier coefficients, 485, 1690
Fourier transform, 91, 401, 560, 933, 934
Four-noded tetrahedral elements (TET4),

CPFEM, 1719–1720
bicrystal compression test, 1722
F-bar patch-based element, 1721
node-based uniform strain and locally

integrated B-bar elements,
1720–1721

polycrystalline magnesium alloy, micro-
twin nucleation in, 1722–1726

Fröhlich coupling, 353, 359
constant, 353

Fröhlich interaction, 358
Fröhlich matrix, 353
Fragment orbital (FO) approach, 232

Free electron gas (FEG) model, 26
Free energy, 574

calculations, 628, 632
density, 1417

Free energy landscapes, 622, 632
high-dimensional, 630

Frenkel Pairs, 1297
Frenkel variational principle of quantum

mechanics, 86
Full configuration interaction (FCI), 455
Full-configuration interaction QMC

(FCIQMC), 130
Full-field micro-mechanical models, 1323
Full multiple spawning (FMS), 106–109
Full-potential linearized augmented-plane-

wave (FLAPW), 922, 931
Fundamental zone, 1691

G
Galerkin least squares (GLS), 1598
Gaussian connectivity model, 1421
Gaussian and plane-wave (GPW) method,

530–534
Gaussian disorder model (GDM), 240, 246
Gaussian distribution, 1434, 1886, 1901
Gaussian functions, 109
Gaussian kernel, 1891
Gaussian process, 1894, 1917
Gaussian process regression (GPR), 697, 1886

global model, 1886–1888
hyper-parameters, 1890–1891
learning curves, 1891–1893
local version, 1888–1890

Gaussian statistics, 1373
Gelman-Rubin convergence, 784, 794
Generalized Boltzmann distribution, 547
Generalized continua (GC) crystal plasticity

models, 1619–1621
Generalized gradient approximation (GGA),

215, 218, 219, 323, 901, 904, 1505,
1757, 1758

Generalized gradient model (GGA), 525, 535,
538, 539

Generalized Kadanoff-Baym ansatz
(GKBA), 404

Generalized Kohn-Sham (GKS) gap, 219
Generalized super-ellipsoid (GSE), 1645
Genetic algorithm (GA)-based optimization

method, 1650
Geodesic nudged elastic band (GNEB)

method, 709
Geometrical interface classification (GIC)

scheme, 1055
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Geometrically necessary dislocations (GNDs),
1717–1719, 1723

Giant magnetoresistance (GMR) effect,
965, 997

Gibbs distribution, 1021, 1022
Gibbs free energy, 1268, 1416
Gibbs phenomenon, 1731, 1733
Glass transition temperature, 186
Global learning, 62
Goldstone theorem, 922, 935, 937, 942,

943, 951
Gradient data, 1919
Grain boundary(ies), 1115–1117, 1299
Grain boundary dislocations (GBDs),

1329, 1575
Grain size, 1320
Grand canonical AdResS (GC-AdResS),

1446–1447, 1451, 1454
Graphical processing units (GPUs), 110, 533,

1383, 1501
Green-Lagrange strain tensor, 1714, 1716
Green’s function (GF), 209, 210, 316, 344,

346–349, 445, 925, 932, 1474,
1500, 1508

at equilibrium, 958–961
Green’s function Monte Carlo (GFMC), 130
Grey alloy approach, 1300
Ground-state AFQMC methods, see Auxiliary-

field quantum Monte Carlo
(AFQMC) method

Ground state calculations, DFT
magnetic interactions, 908–911
magnetic order, 905–908

Ground-state (GS) density functional
theory, 844

GW approximation, 295, 316–318, 925, 952
levels of self consistency, 318–319
vertex approximations, 318

GW-BSE
calculations, 330, 331
convergence issues, 321
error of, 333
mean error of, 333
mixed GW-BSE predictions, 330, 331
and TDDFT, 319–321, 331
theoretical accuracy, 321

H
Haar integral, 1927, 1932
Hall-Petch plot, 1130
Hamiltonian, 429

formulation, 807–808
function, 477

gauge, 177
matrix, 501, 507, 959, 972, 973
operator, 958

Hamiltonian-based AdResS (H-AdResS),
1449–1450, 1452, 1454

Hamilton-Jacobi-Bellman (HJB) equation, 476
Hamilton-Jacobi-like equation, 96
Hard-spheres (HS) systems, 190
Harmonic approximation, 809–810, 816
Harmonic transition state theory, 693, 696,

700, 705, 708, 710, 776, 786, 790,
795, 1292

Hartree equation, 898
Hartree-Fock-Bogoliubov (HFB) form, 129
Hartree-Fock calculation, 215
Hartree-Fock density matrix, 529
Hartree-Fock (HF) exchange, 215
Hartree-Fock methods, 263, 1011
Hartree-Fock (HF) solution, 127
Hartree-Fock theory, 208, 454, 938
Hartree potential, 503, 506, 846, 925
Hedin-Baym equations, 346
Hedin’s equations, 926
Heisenberg equation of motion, 845, 847
Heisenberg model, 431, 906, 909, 910, 921,

936, 943, 952
Heisenberg uncertainty principle, 1534
Helmholtz free energy, 810, 1414, 1421, 1422
Hessian matrix, 548, 702, 1538
Heterogeneous multiscale method

(HMM), 1158
framework, 1154–1155

Heusler alloys, 859
Hexagonal boron-nitride (hBN), 308
Hexagonal close packed (HCP) materials,

1231, 1314
Hexamer cluster, 643
Hidden Markov models (HMMs), 1467
Hierarchical multiscale models, 1612
High energy diffraction microscopy (HEDM),

1179–1181
Higher-dimensional continuum dislocation

dynamics (hdCDD), 1600, 1601
Higher order interactions, 910
Highest occupied molecular orbital (HOMO),

324, 328, 518
High-performance computing (HPC),

1762, 1825
High-temperature molecular dynamics, 722
High-throughput (HT) computational

screening, 1884
High-throughput computing (HTC), 1816
High-Throughput-Toolkit (HTTK), 1789
Hilbert space, 1922
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Hirshfeld density partitioning, 233
Hirshfeld ratio, 1464
Hohenberg-Kohn (HK) theorem, 83, 86, 847
Homogeneous electron gas (HEG), 350, 358,

943–948, 952
Homogenized effective medium

(HEM), 1155
Hooke’s law, 1591–1594
Host-guest interaction energy, 247
Hot-QC, 806, 807, 811–815

temporal acceleration in, 819–821
transitions in, 817

Hubbard-Stratonovich (HS) transformation,
130–133

Hubbard model, 400, 406, 409, 411, 412
Hund’s coupling, 837, 839
Hybrid inorganic/organic systems

(HIOS), 262
Hybrid OpenMP/MPI scheme, 532
Hybrid SpecTAD, 758–759
Hybrid top-down models, polymers

bonded interactions, 1413
EOS, 1416
FH model, 1422
Flory-Huggins-de-Gennes (FHG) density

functional, 1417
Flory-Huggins model, 1417
intrinsic Helmholtz free energy, 1414
mapping scheme, 1413
multicomponent polymer liquids, 1416
operators, 1419–1420
particle-based LC models, 1418
partition function, 1415
PF modeling, 1418
RPA, 1421
SCF theory, 1420
simulation techniques for, 1422–1425

Hydrodynamic microswimmers, squirmer,
1484–1485

Hydrodynamic screening, 1369
Hydrogen chain, 446

BDMC results, convergence of, 449–450
Hamiltonian and diagrammatic

representation, 446–448
Pauli exclusion principle, 448–449

Hyperdynamics, 748–749, 795–797, 807,
817–819

Hyper-QC, 807, 819–821

I
Image dependent pair potential (IDPP) method,

694, 697
Image forces, 1562

Implicit environment models, 236
Incoherent control, 470
Independent STZ activation, 1253
Infrequent events, 807, 815–816
Inorganic Crystal Structure Database (ICSD),

1745, 1763
Integrated computational materials engineering

(ICME), 1632
Interacting atoms model, 24, 31
Interaction energies, 643
Interatomic potentials, 496, 1027–1029
Interface dislocation dynamics

dislocation-interface interactions, 1066
dislocation nucleation, 1062
interface structure, 1062
reaction kinematics, 1065

Interface-dominated mechanical
behaviors, 1054

Interface-dominated plasticity
atomic structure and thermodynamic

properties, 1055
dislocation nucleation, 1058
dislocation transmission, 1060
dynamic recovery, 1061

Interfaces for energy conversion, 40–43
Interface spacing, 1051
International Union of Crystallography

(IUCR), 1854
Interpolation formula, 1445
Intramolecular vibrational redistribution

(IVR), 470
Intrinsic Helmholtz free energy, 1414
Inverse problems, 45
Inverse spectroscopy, 470
IoChem-BD Platform, 1945
Ionization, 294–296, 298, 299, 301,

304, 307
Ionization potential (IP), 326, 327, 517, 518
Iterated perturbation theory (IPT), 407
Iterative Boltzmann inversion

technique, 1386

J
Jacobian computation, 1705–1706
Jastrow factor, 422, 423, 425, 429
Jaumann rate, 1704
JavaScript Object Notation (JSON), 1763
Jellium model, 26, 438–439

dielectric response, 439–441
ground-state properties, 442–444
practical implementation, 444–446

Junction dislocation, 1564
Jupyter, 1823, 1827–1828
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K
Kadanoff-Baym equations (KBE), 385–389
Kadanoff-Baym formulation, 298
Kaggle, 54
Kauzmann temperature, 195
Kernel fitting, 1914–1916

derivatives, 1919–1920
linear combination of kernels, 1917
linear functionals, 1920–1922
representative set, selection of, 1916–1917

Kernel matrix, 1921
Kernel metric, 1916
Kernel ridge regression (KRR), 1885–1886,

1888, 1915
Kernel trick, 1462, 1888
Kerr angle rotation, 888
Kinetic Activation-Relaxation Technique

(k-ART), 723
Kinetically constrained models, 192, 197
Kinetic bottlenecks, 622, 632
Kinetic energy, 898
Kinetic fragility, 186
Kinetic Monte Carlo (KMC), 686, 751,

807, 826
algorithm, 1228, 1230, 1231

Kinetic Monte Carlo (KMC) method, 241
definition, 717
limitations, 717
off-lattice or adaptive, 717

Kinetic Monte Carlo (kMC) model/modeling,
777–778, 781, 786, 1267

transformation progression, 1271–1273
Kinetic rate calculations, 632

free-energy flooding for, 628–629
King-Smith and Vanderbilt formula,

163–168
Kink pair mechanism, 1530–1534
Kirkwood theory, 1369
Kohn-Sham density, 524
Kohn–Sham DFT (KS-DFT), 263
Kohn-Sham (KS) equation, 214, 500–505, 513,

898, 1505
Kohn-Sham Green function, 930, 932
Kohn-Sham Hamiltonian, 484
Kohn-Sham orbitals, 846
Kohn-Sham (KS) potential, 483
Kohn-Sham (KS) system, 298, 299,

846, 847
Koopman’s theorem, 209
Kramers-Kronig relation, 441
KSOME, 1308
Kubo-Martin-Schwinger (KMS) boundary

conditions, 377, 378, 384
Kullbach-Leiber (KL) divergence, 624

Kurdjumov-Sachs (KS) interfaces, 1125
Kurdjumov-Sachs orientation

relationship, 1051

L
Lagrangian formulation, 1714
Lagrangian matrix, 529
LAKIMOCA code, 1309
Lanczos method, 512
Landauer-Büttiker framework, 958
Landau-Lifshitz-Bloch (LLB) equation, 840,

869, 874, 875, 877, 888
effective field of, 877
FePt, 888, 889
Langevin dynamics simulations, 878
qLLB, 878–881, 889
reversal time vs. temperature, 887
two-sublattice, 881–886

Landau-Lifshitz equation, 710, 1021
Landau-Lifshitz-Gilbert (LLG) equation, 843,

868, 870, 872, 877, 990
Langevin dynamics, 571, 775, 778, 785, 786,

878, 1020, 1022, 1024
first-order, 546, 547
second order, 557

Langevin dynamics equations (LDE), 547
Langevin equation of motion, 1021, 1024
Langevin function, 875, 876
Langevin stochastic force, 1376
Langreth rules, 391
Large Atomic Molecular Massive Parallel

Simulator (LAMMPS), 1402
Laser, 296, 299, 305, 307, 308

powder bed, 1176
Lattice-based classification, 723
Lattice Boltzmann equation (LBE), 1376
Lattice Boltzmann (LB) method, 1375
Lattice dislocations, 1058, 1065, 1066
LAttice KInetic MOnte CArlo

(LAKIMOCA), 1307
Lattice models, 1362
Least absolute shrinkage and selection operator

(LASSO), 1898
Least squares finite element method

(LSFEM), 1598
Lennard–Jones potential, 278
Leverage score, 1917
Lifetime broadening, 948
Lifting scheme, 1733
Light-matter interactions, 209
Likhtman-McLeish (LM) expression, 1405
Limited memory Broyden-Fletcher-Goldfarb-

Shanno (L-BFGS), 696, 697
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Linear Hermitian operator, 474
Linearized augmented-plane-waves

(LAPW), 855
Linear-response TDDFT (LR-TDDFT), 87–89

auxiliary many-electron wave function, 92
KS representation of, 91
matrix elements in, 90–91
MBPT response function, 91
nonadiabatic coupling vectors, 92–93
nuclear forces, 94
practical, 89
surface hopping, 99–100

Line-integral nudged elastic band (LI-NEB)
method, 706

Liouville equation, 879, 972
Liquid crystals (LC), 1418
Liquid electrolyte, 1195–1197, 1199,

1200, 1204
Lithium anode, 1199
Lithium deposition, 1197–1199, 1201, 1202,

1204, 1208, 1211, 1214
Lithium electrode, 1203, 1214
Lithium ion batteries, 1195–1197, 1215
Lithium metal, 1196, 1197, 1207–1211,

1213–1215
Local density, 1425
Local density approximation (LDA), 130, 135,

215, 219–221, 315, 320, 323, 325,
329, 331, 332, 334, 900, 1757

Local harmonic (LH) approximation, 809, 812
Local hyperdynamics (LHD), 765–767
Localization/delocalization, 244–245
Localized-electron model, 343–345
Localized necking, 1702
Locally integrated B-bar (LIB) element, 1721
Local spin density approximation (LSDA),

900, 901, 904, 960, 968, 969
Lolid-state electrolyte, 1196
London matrix (LM), 1899
Long-time scale methods, 687
Low-barrier problem, 733, 826
Low-energy electron-diffraction (LEED), 296
Lowest unoccupied molecular orbital (LUMO),

324, 328, 518
Low-Reynolds number hydrodynamics

equations of motion, 1473
microswimmer flow field, 1475–1476
Stokes equation, solution of, 1474–1475

M
Machine learning (ML), 10, 12,

1461–1464, 1770
approaches, 61–63

aspects, 1886
chemical space, 1951–1952
definition, 1885
generative models, 1952–1954
QML (see Quantum machine learning

(QML))
quantitative structure-property

relationships, 1949–1951
supervised learning, 1885

MACiE, 1943
Macrospin, 872, 876
Magnetic anisotropy, 838, 903–905, 907, 908,

912, 913, 988
Magnetic moment, 896
Magnetic response function, 921–923,

929–931, 935, 943, 951
Magnetic transition, saddle points, 708

curved space, mode following in, 710
geodesic CI-NEB method, 708–709

Magnetic tunnel junction (MTJ), 975,
979, 980

Magnetism, 9, 837
Magnetization theory, 171–172

bounded sample, magnetization of,
174–175

ground-state projector, 172–174
insulators and metals, 177–178
unbounded crystalline sample,

magnetization of, 175–176
Magnetocrystalline anisotropy energy (MAE),

903, 904
Magneto-optical Kerr effect (MOKE)

signal, 856
Magnetoresistance (MR)

definition, 965
and spin-filtering, 965–969

Magnetostatic(s), 838
energy, 987

Many-body dispersion (MBD) approach
models, 265

Many-body (MB) electron-electron
interaction, 969

Many-body expansion (MBE), 1898
Many-body Green’s functions, 376–378
Many-body perturbation theory (MBPT), 90,

275, 346, 367, 921–923, 931, 936,
937, 943, 952

and implementation, 315–321
Many-body potential energy functions (PEFs)

accuracy, 640
vs. ALMO EDA, 640, 642
baseline polarizable model, 640
Born-Oppenheimer potential energy

surface of water, 651–653
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Many-body potential energy functions (PEFs)
(cont.)

energetics ofwater clusters, liquid water
and ice, 643

root-mean-square-deviation, 640
water molecule, 638, 639

Many-body spin excitations, in ferromagnets
Goldstone condition, 935–943
implementation, 931–935
spin excitation spectra, 943–950
theory, 923–931

Marciniak-Kuczynski (M-K) analysis, 1703
Marciniak-Kuczynski (M-K) model, 1702
Marcus theory, 228–231
Markov chain, 556
Markovian process, 572
Markov process, 777
Markov state models (MSMs), 1465, 1467
Martensitic transformation

Cu-Al-Ni SMA, 1275
thermodynamic energy, 1267–1271

Martini biomolecular force field, 1463
MARTINI force fields, 1385–1386, 1389
Martin-Schwinger hierarchy, 380, 383
Master equation, 549, 551
MATEO, 1308–1309
Materials API (MAPI), 1766, 1768
Materials Cloud, 1829

exfoliable 2D materials database, 1832
jupyter interface, 1827–1828
learn, 1827
SSSP pseudopotential library, 1830–1832
work, 1827

Materials genome initiative (MGI), 38, 1460,
1632, 1848

Materials informatics, 1745–1747
Materials Platform for Data Science (MPDS)

applications, 1859
client-server architecture of, 1852
computer-assisted data analysis, 1855–1857
data-centric observations, 1857–1859
and materials genome, 1848–1850
PAULING FILE materials infrastructure,

development of, 1850–1853
storage and exchange of materials data,

1853–1855
Materials Project (MP), 1745

community-contributed materials
data, 1775

computing resources, 1762
crystal structure analysis, 2D materials and

machine learning, 1769–1771
data analytics and materials design

environment, 1777–1779

database software, 1762–1763
data set expansion, 1774
history, 1752–1753
MPCite, 1775
phase diagram app, 1759–1761
phase diagrams and compound

stability, 1768
registered users, 1755
screening materials for applications,

1771–1773
software and DFT calculations, 1763–1766
theoretical methods, 1756–1758
user sessions, 1755
web interface and RESTful API,

1766–1768
Matrix damage, 1290
Matrix factorization, 1916
Matsubara formalism, 403
MaX, 1746
Maximally localized Wannier functions

(MLWFs), 922
Maximum entropy (max-ent), 807, 822
Maxwell–Boltzmann distribution, 1373
Maxwell-Boltzmann probability

distributions, 1228
Maxwell’s equations, 986
McHERO, 1308
Mean absolute deviation (MAD), 532
Mean-absolute error (MAE), 1464
Mean-field approximation (MFA), 873, 876,

879, 882, 913
Mean field corrections, 969
Mean field rate theory (MFRT), 1291, 1302
Mean-field response models, 1323
Mean-field spin-glass models, 196
Mean squared displacement (MSD), 1402,

1403, 1406, 1407
Mechanical stability, 1124
MedeA, 1849
Melt pool, 1181–1184
Mesoscale, 1560

methods, 1373
phenomena, 1045
science, 11

Mesoscale model, 1240, 1253, 1260
for amorphous materials, 1240
analysis, 1128

Mesoscopic theory, 194
Message passing interface (MPI), 1765
Meta-GGA, 217
Metachronal waves (MCWs), 1486
Metadynamics, 495, 496, 566

advantage of, 567
bias exchange, 586
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direct, 568
infrequent, 582
multiple-walkers algorithms, 584
non-tempered form of, 566
one-dimensional potential, 568
parallel-bias, 587
parallel tempering, 585
rare events, 567
reweighting operation in, 579
well-tempered, 576, 581

Metastable states, 622, 629, 630, 632, 775,
780–783, 799–801

Metropolis algorithm, 1228
Micro-Hartree accuracy, 528
Micromagnetics

discretization, 1004–1005
dynamic, 990–991
spintronics in, 986–1004, 1006
static, 989–990

Microscopic phase field (MPF) models,
1615–1616

Microstructure, 1115–1116
evolution, 1042
mapping, 1180

Microstructure-based SERVE
(M-SERVE), 1634

convergence, 1652, 1653
generation, 1642

Microswimmers, 1359
flow field, 1475, 1476
squirmer, 1484–1485

Micro-tomography, 1175–1178
Migdal approximation, 346, 347, 349, 351
Minimum energy path (MEP), 694–697, 699,

701, 705, 709, 710, 1532, 1539
Minimum mode following (MMF), 702–704,

711, 720
Mixed estimator for energy, 421
Mobility law, 1526
Mode-coupling equations, 190
Mode-coupling-theory (MCT), 18, 185, 190

failures and successes of, 193
quantitative vs qualitative, 192
replica method, 200

Modeling of solids
electronic, optical and structural properties,

25–29
elementary excitation model, 24
emergence, 31–34
empirical and ab initio theory, 23–24
interacting atoms model, 24
surfaces,interfaces and nanoscience, 29

Model order reduction, 1611
Modern theory of orbital magnetization, 18

Modern theory of polarization, 18
Modular Monte Carlo (MMonCa), 1308
Mohr’s circle construct, 1245
Molecular dynamics (MD), 44, 632, 808,

817–819, 1371
AdResS method (see Adaptive resolution

simulation (AdResS) method)
simulation, 536, 684, 1041, 1238, 1382,

1383, 1385, 1498
Molecular orbitals (MOs), 127, 525
Molecules, 294, 295, 297, 301–304, 307, 309
Møller–Plesset correlation energy, 275
Møller–Plesset perturbation theory, 457
MongoDB, 1763, 1765
Monotonic algorithm, 478
Monte Carlo (MC), 421–422

efficiency, 536
NpT-MC simulations, 537, 538
sampling, 130, 524
selection process, 1065

Monte Carlo with adsorbing Markov chains
(MCAMC), 730

Motility-induced phase separation
(MIPS), 1487

Mott insulators, photo-doping, 410–411
antiferromagnetic correlations, charge

dynamics with, 412
doublon-hole recombination, 411
Fermi liquid, 412
thermalization of small gap, 411

MP2, see Second-order Møller-Plesset
perturbation theory (MP2)

MP2-based molecular dynamics, 495
MPCite, 1776
Multibody dissipative particle dynamics, 1425
Multi-configuration time-dependent Hartree-

Fock (MCTDHF), 482
Multi-fidelity, 1894
Multi-kernel learning, 1933
Multi-level learning, 1893–1894

Δ-machine learning, 1895
multi-fidelity, 1894

Multi–particle collision dynamics (MPCD),
1374, 1376

Multi-scale methods, 9, 811, 822
Multi-scale modeling, 1040

CADD method, 1614
concurrent atomistic-continuum (CAC)

method, 1615
concurrent models, 1612
definition, 1611
hierarchical, 1612
quasicontinuum method, 1613
techniques, 1154
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N
Nanocrystalline (NC) materials, 1129
Nanoindentation, 814, 820, 1257
Nanolayered composite thin films,

1139–1144
Nanotwinned (NT) metals, 1134–1139
Navier–Stokes equations, 1375, 1473
Nb-NbC interfaces, 1057
Nearest-neighbor STZ activation, 1253
Neural fingerprints, 1951
Neural network potentials (NNPs), 496, 662

high dimensional, 665–669
Neural networks (NNs), 60, 662, 663
Neutron scattering, 921, 928, 948, 950, 952
Newton-Raphson iterative method,

1705, 1715
Newton’s equation of motion, 691
Newton’s Third Law, 1449, 1450
NextMoveSoftware, 1942
n-grams approach, 54
NIST Chemistry WebBook, 1942
Node-based uniform strain (NUS),

1720–1721
NOMAD Center of Excellence, 51
NoMaD Project, 1848
NoMaD repository, 1745
Non-adiabatic processes, 76
Non-adiabatic torques (NAT), 979, 980
Non-crossing approximation (NCA), 408
Non-equilibrium dynamical mean-field theory,

see Dynamical mean-field theory
(DMFT)

Non-equilibrium Green’s function (NEGF),
367, 368

electron correlations, Kohn-Sham DFT,
969–971

finite bias spin transfer torque,
972–976

Hamiltonian structure, 371–373
linear response spin transfer torque,

976–977
magnetoresistance and spin-filtering,

965–969
operator correlators, 373–376
perturbation expansion, 378–380
for quantum transport, 961–964
theory, 297
time-dependent observables, 368–371
time dependent spin dynamics, 977

Nonlinear dislocation mobility law, 1567
Nonlinear eigenvalue problem, 503
Non-linear kernels, 1932
Nonlinear lattice drag, 1566–1567
Nonlinear subspace iteration algorithm, 514

Non-linear susceptibilities, 193
Non-Markovian process, 571
Non-proportional loading, 1707
Non-Schmid effect, 1059
Normalized inverse participation ratio (NIPR)

analysis, 244
Novel Materials Discovery (NoMaD)

Laboratory, 1789
Nucleation, 196, 1197–1199, 1213

rate, 1536
Nudged elastic band (NEB), 750

calculations, 1519
method, 686, 1245, 1532

Nye tensor, 1513, 1515

O
Object kinetic Monte Carlo (OKMC) method

BIGMAC, 1307
coupling with AKMC, 1302–1303
definition, 1291
difficulties in, 1304
vs. event kinetic Monte Carlo method,

1293–1294
grey alloy approach, 1300–1301
impurities and foreign interstitial atoms,

1299–1300
JERK, 1306
KSOME, 1308
LAKIMOCA code, 1307
MATEO, 1308–1309
McHERO, 1308
mechanisms and events during radiation

damage, 1296–1299
MMonCa, 1308
principles, 1293–1296
sink strength, 1304
solute effects, 1301
source term estimation, 1303

Object-relational mapping (ORM), 1817
Office of Scientific and Technical Information

(OSTI), 1775
Off-lattice KMC approach

geometric classification, 726–727
topological classification, 725

Off-lattice KMC methods, 717–719
applications, 734–735

Ontology web language (OWL), 1857
Open boundary conditions (OBCs), 172, 173
Open boundary molecular dynamics (OBMD),

1447–1448, 1454
Open quantum materials database (OQMD),

1745, 1789, 1945
Open Science, 1819
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Open-Science platform (OSP), 1815
ADES model (see ADES model)
AiiDA (see AiiDA)
data management plans and FAIR

compliance, 1825–1826
documentation, tutorials and open learning

resources, 1823
Materials Cloud (see Materials Cloud)
open simulation tools, 1815
OPTiMaDe API, 1826
sharing of workflows and plugins,

1819–1820
supercomputer centres, 1825
virtual machines and Quantum Mobile,

1823–1824
Optical absorption, 922, 927, 951
OPTiMaDe consortium, 1745, 1826
Optimal control theory (OCT), 473

control inputs/control functions, 474
control parameters, 474
cost function, 475
dynamical law, 473
dynamic programming, 476
moderate intensity, 475
optimal control problem, 475
performance measure, 474
Pontryagin’s minimum principle, 476–477
QOCT (see Quantum OCT (QOCT))

Optimized effective potential (OEP)
methods, 219

Orbital Hessian matrix, 529
Orbital momentum, 903
ORBKIT, 1946
Ordered and disordered water forms, 612–615
Order parameter field, 1042
Organic semiconductors, multiscale

simulations, 1433
finite-size effects, 1436–1437
long-range interactions, 1437–1438
physical properties of, 1432
regular lattices, 1434–1435
in silico prediction of properties, 1432
stochastic models, 1435–1436

Orientation distribution function (ODF), 1699
Orientation-stable interfaces, 1123
Orientation tensors, 1419
Orowan looping, 1576
Orowan’s equation, 1537, 1728
Orowan’s law, 1526, 1534, 1537, 1538
Orthogonal distance minimization (ODM)

algorithm, 1646
Oseen tensor, 1474
Out-of-equilibrium physics, 368
Overfitting, 674–675

P
PAD, see Photoelectron angular distribution

(PAD)
PAOFLOW, 1801
ParaDiS, 1085
Parallel implementation, RI-GPW methods,

532–534
Parallel replica

decorrelation step, 791
dephasing step, 791
for discrete-time Markov process, 793
generalized parallel replica dynamics, 794
parallel step, 792

Parallel replica dynamics (PRD), 747, 751–754
ParSplice, 760–761
PRH, 754
ReplicaTAD, 755
SLPRD, 764

Parallel replica hyperdynamics (PRH), 754
Parallel replica TAD (ReplicaTAD), 755
Parallel tempering metadynamics

(PTmetaD), 585
Parallel trajectory splicing (ParSplice),

760–761, 769, 770, 794–795
Partial normalization condition (PNC), 80, 81
2-Particle density matrix (2-PDM), 529
Particle-swap algorithms, 197
Particle-to-mesh (PM), 1419
Path-integral molecular dynamics

(PIMD), 651
Pauli-equation, 902
Pauli exclusion principle, 124, 448–449
Pauli matrices, 899, 929
Pauling File, 1745, 1746
PAULING FILE project, 1840–1841

applications, 1847–1848
crystalline structures, 1843–1845
materials infrastructure, 1850
modern challenges, 1838–1840
phase diagrams and distinct phases,

1845–1847
physical properties, 1841–1843

Pauli Principle, 27
PDBbind database, 1943
Peach-Koehler force, 1509, 1511, 1518, 1595
Peach-Koehler formula, 1561
Peierls barrier, 1532, 1536, 1539
Peierls energy barrier, 1506, 1519–1520
Peierls-Nabarro model, 1515
Peierls stress, 1498, 1520–1521, 1526–1528,

1530, 1533, 1534, 1540
Peierls substitution, 400
Peierls valley, 1530, 1532, 1533, 1535, 1541
Pencil-glide mobility law, 1563
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Periodic boundary conditions (PBC), 526, 536,
1434, 1497, 1509–1511, 1516, 1529

Periodicity, 1506
Permutation Invariant Vector (PIV), 608
Perron cluster cluster analysis (PCCA), 770
Perron-Frobenius theorem, 602
Phase averages, 811, 816–819
Phase field (PF) method, 1041
Phase-field (PF) models, 1418
Phase nucleation, 1267
Phase transformation, 1185
Phenomenological mesoscopic field dislocation

mechanics (PMFDM), 1597, 1598
Phosphorescent light emitting diode, 1432
Photoelectric effect, 24
Photo-electrochemical cells, 40
Photoelectron angular distribution (PAD),

295, 296
Photoelectron spectroscopy (PES), 293,

294, 296
ARPES, 308–309
atoms and molecules, 301–304
crystal surfaces, 304–305
finite systems, 294
infinitely periodic systems, 294
real-time TDDFT, 298–300
time-resolved, 306, 307
ultraviolet, 294

Photoemission, 295
atoms and molecules, 301–304
crystal surfaces, 304–305

Photoemission spectroscopy, satellites
electron spectral function, 347–349
emergence of, 342
hybrid plasmon-phonon satellites, 360–361
plasmon satellites, 349–352, 354–357
polaron satellites, 352–354, 357

Pivot algorithm, 1370
Planar mobility law, 1563
Planck constant, 964
Plasmon satellites, 349–352

hybrid plasmon-phonon satellites, 360–361
in metals and semiconductors, 354–357

Plasticity, 1560
Plastic property closures, 1700–1702
Plastic spin tensor, 1689, 1690
Plastic velocity gradient, 1727
Point defects, 1289
Point-to-set length, 198
Poisson-Boltzmann equation, 1387
Poisson-Boltzmann theory, 1384
Poisson brackets approach, 1019
Poisson’s equation, 154, 503, 506
Poisson’s ratio, 1596

Polarizable continuum model (PCM), 236
Polarization theory, 157–160

vs. current, 162–163
first-principle infrared spectra, 170–171
King-Smith and Vanderbilt formula,

163–168
quantum, 160–161
single-point Berry phase, 169–170
Wannier functions, 168–169

Polaron satellites, 352–354
in doped semiconductors, 357–359
hybrid plasmon-phonon satellites, 360–361

Polycrystal, 1114
interface-dominant, 1123
plasticity, 1090–1092
plasticity models, 1155–1157
voids, 1144

Polycrystalline microstructures
stereological reconstruction, 1649
two-phase microstructures underlying,

1643–1644
with annealing twin boundaries, 1637–1643
with dispersed precipitates, 1648–1652

Poly(diallyldimethylammonium) (PDADMA),
1385, 1386

Polyelectrolytes, 1357
Polyelectrolyte solutions

atomistic models, 1383–1385
generic bead-spring models, explicit

charges, 1387–1389
MARTINI force fields and refined models,

1385–1386
Polyethylene (PE), 1399, 1400, 1402
Polymer electrolyte, 1197, 1205, 1206,

1211, 1213
Polymeric ionic liquids (PILs), 1388, 1389
Polymer melts, 1357
Polymer/soft matter physics, 1355–1359
Polymer solutions, 1356

blobs, 1365–1367
crossover scaling, 1365
dynamics, 1371–1377
dynamic scaling, 1367–1369
scaling laws, 1362–1365
statics, 1370–1371

Polystyrene (PS), 1398
Poly(styrene sulfonate) (PSS), 1385, 1386
Pontryagin’s minimum principle,

476–477, 479
Porosity, 1177
PostgreSQL DBMS, 1853
Potential energy functions (PEFs), 637
Potential energy surface (PES), 77, 79, 81, 84,

662, 747, 749, 750, 815, 818
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Potential of mean force (PMF), 806, 812, 1461,
1462, 1466

Pourbaix diagram, 1760, 1761
Power law, 1368
Prandtl-Tomlinson model, 821
Precipitation strengthening, 1572
Predictor-corrector methods, 1083
Primitive path analysis (PPA), 1406
Principle of optimality, 476
Probability density function (PDF), 133
Projection Monte Carlo, 426–427
Property-based SERVE

(P-SERVE), 1634
Protein Data Bank, 1942
Provenance graph, 1817
Prune-enriched Rosenbluth method (PERM)

algorithm, 1370
Pseudodipolar interactions, 905
Pseudoization schemes, 1505
Pseudopotential(s), 1505

library, 1830–1832
theory, 500

Pseudopotential algorithm for real-space
electronic calculations (PARSEC),
502, 514

PubChem, 1943
Pump-probe PES, see Photoelectron

spectroscopy (PES)
PyGlobal, 1946
PyMatGen, 1746
Python, 1746

materials genomics, 1945
Python-language data generation, 1789

Q
QM/MM simulation, 249
Quadrupolar periodic arrangement, 1518
Quantitative structure and activity relationships

(QSAR), 1896
Quantum chemical wave function theories,

454–457
Quantum chemistry (QC), 127, 128
Quantum-electrodynamical density-functional

approach (QEDFT), 209
Quantum harmonic theory, 1539
Quantum Landau-Lifshitz-Bloch (qLLB)

equation, 878–881, 889
Quantum machine learning (QML)

amons, 1905–1907
density expansion based representation,

1903–1904
essentials of representation, 1896
genetic optimization, 1904–1905

GPR (see Gaussian process regression
(GPR))

many-body potential based representation,
1899–1902

multi-level learning, 1893–1895
numerical optimization, 1898–1899
rational design, 1897

Quantum Materials Informatics
Project, 1944

Quantum MC (QMC) methods, 129
Quantum Mobile, 1823–1824
Quantum Monte Carlo (QMC), 408, 410,

838, 1009
Born-Oppenheimer approximation, 419
effective core potentials, 419–420
effective interactions and models,

430–431
finite size effects, 428, 1011
first principles Hamiltonian, 418–419
fixed node/sign control errors, 428
Hilbert space, 418
methods, 462
nodal error/orbitals, 1011
projection Monte Carlo, 426–427
pseudopotential projection error, 1010
time step errors, 427–428
trial functions (see Trial functions)
useful mathematical relationships,

420–421
variational Monte Carlo, 425

Quantum OCT (QOCT)
with multi-component Hartree-Fock, 482
with TDDFT, 483–486

Quantum rings, 480–482
Quantum tunneling, 706–708
Quasi-continuum (QC)

cluster-QC, 806
hot-QC (see Hot-QC)
method, 1613

Quasi-harmonic (QH) approximation, 809
Quasi-static distribution (QSD)

formalization, 826
Quasi-stationary distribution (QSD), 778

convergence time, 783–784
definition, 778
overdamped Langevin process, 780
properties, 779

Quasiparticles, 325, 1012

R
Rabi frequency, 928
Radial distribution functions (RDFs),

536, 538
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Radiation damage
microstructure modelling, 1291–1293
physical process, 1289
simulation techniques of irradiated

microstructures, 1290–1292
Random phase approximation (RPA), 216,

264, 265, 347, 436, 913, 922,
926, 1421

implementation and performance,
530–534

nuclear gradients and stress tensor,
528–530

theory, 525–528
Random pinning, 198
Random–walk (RW), 1364, 1366,

1369, 1371
Rare event dynamics, 685
Rare events simulations, 495
Rashba-effect, 902
Reaction coordinate, 229
Real-space approach, 505–507
Real-space methods, 494
Recurrent neural networks (RNN), 1952
Regression coefficient vector, 1888
Regular lattices, 1434–1435
REMatch procedure, 1932
Repatoms, see Representative atoms

(repatoms)
Representative atoms (repatoms),

812–814, 820
Representative volume element (RVE),

1155, 1634
Representational state transfer

REST-API, 1789
Residual stress, 1181–1182
Resolution of the identity (RI)

approximation, 526–527
dRPA correlation energy method, 527
GPW method, 530–534
RI-MP2, analytic derivatives for,

528–530
RI-MP2 method, 527

RESTful interfaces, 1873, 1873
RGWBS software, 322
Ridge tracking nudged elastic band

(RT-NEB), 705
Rigid-viscoplastic framework, 1703
Rigid-viscoplastic simulation, 1697
Root mean square deviation

(RMSD), 532
Rotne–Prager tensor, 1372
RPA-based molecular dynamics, 494
Runge-Gross (RG) theorem, 84, 85,

845, 846

S
Saddle point searches, energy surface

CI-NEB (see Climbing-image nudged
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for magnetic transitions (see Magnetic
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for quantum tunneling, 706–708
transition rates, estimation of, 691–694

Scaling laws, 1362–1365
Scanning electron microscopy (SEM), 1712
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jellium model (see Jellium model)
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Self interstitial atom (SIA) loops, 1103
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Semiconducting colloidal nanocrystals, 43–44
SERVE classification, 1634
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model
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description, 1238
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TDDFT, see Time-dependent density-

functional theory (TDDFT)
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Time-dependent spin-density functional theory
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Time to solution (TTS), 501
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Trajectory-based quantum-classical
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coupled-trajectory mixed quantum-classical
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Transient effects, 368
Transient non-thermal dynamics, 398
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Transition rate, 815–817
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807, 816–820, 828, 1241, 1527,
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Transverse direction (TD) surface, 1731
Transverse magnetic susceptibility, 928
Trap mutation (TM), 1296
Trial functions
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Jastrow factor, 423
multiple Slater determinants, 424
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product states, 424
Troullier-Martins pseudopotentials, 506
Tunneling MR (TMR), 965, 966
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models, 1342–1344
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Twin nucleation model, 1316, 1727
2D materials, 1832
2D statistical theory of dislocations,

1595–1597
Two-step relaxation, 188
Two-sublattice Landau-Lifshitz-Bloch
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effective field, 881
relaxation rates, 882–886
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of small magnetic clusters, 848–856

Ultrafast spin dynamics
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models of, 843–844
TDSDFT (see Time-dependent spin-density

functional theory (TDSDFT))
Ultrafine-grained (UFG) materials, 1051
Ultrasoft pseudopotentials, 1505
Umklapp processes, 347
Underfitting, 674–675
Unified modeling language (UML), 1850
Uniform resource identifiers (URIs), 1767
United atom (UA) model, 1399, 1401
Unit process, 1282
User materials subroutine (UMAT), 1704
U.S. National Energy Research Scientific

Computing Center (NERSC), 1762

V
Vacancy migration energy, 1300
Valet-Fert diffusion model, 1001, 1003
Validation set, 674–675
van der Waals density functional

(vdW-DF), 277
van der Waals (vdW) interactions, 217

applicability in material modelling, 284
characteristics, 260
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coarse-graining of response functions, 272
harmonic oscillator model of polarizability,

267–269
many-body dispersion, 282

in materials, 261
nonlocal, 276
overview of existing, 263
pairwise interatomic models, 278
random-phase approximation, 273
range separation, density functional

theory, 269
response functions and polarizability, 266
truncation of many-body expansion, 273
types of materials, 285

Variational autoencoder, 1953
Variational Monte Carlo, 425
Variational principle, 623, 632

applications, 625
enhanced sampling, 624–625

Variational quantum Monte Carlo
approach, 561

4 V challenge, 50
Vector-spin DFT, 898
Verlet dynamics algorithm, 696
Vibrational sum-frequency generation (vSFG)

spectrum, 652
Vienna Ab initio Simulation Package

(VASP), 1789
Virtuoso DBMS, 1854
Viscoplastic Fast Fourier Transform-based

(VPFFT) formulation, 1671
FFT-based algorithm, 1674–1675
Green functions, 1672–1674
validation, 1675–1677

Viscoplastic fast Fourier transform
method, 1500

Viscoplastic model based on fast Fourier
transforms, 1156

Viscoplastic self-consistent (VPSC)
formulation, 1658

constitutive behavior and
homogenization, 1661

fluctuations calculation, 1667–1670
interaction and localization equations,

1666–1667
limitations, 1659
numerical implementation, 1670–1671
self-consistent equations, 1667
statistically-representative grains,

1660–1666
validarion, 1677–1679

Viscoplastic self-consistent (VPSC)
method, 1500

Viscoplastic self-consistent (VPSC) model,
1155, 1323

Vogel-Fulcher-Tamman (VFT) law, 186
Volkov waves, 302, 303, 305
Volterra dislocation, 1547
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Volterra elastic field, 1507, 1509, 1517
Volterra equations, 404
Volterra solution, 1508

W
Wannier function, 161, 168–169, 923,

931–935, 937
Wannier representation, 934
Water, 534

poly(a)morphism, 607–610
simulations, 495, 496
structural properties of liquid water,

536–539
vdW interactions, 535

Wave function theory (WFT), 636
Wavelet-basis enhanced adaptive hierarchical

CPFEM, 1731
adaptive solution enhancement, 1734
compact support, 1733
FE discretization, compatibility with, 1733
multi-resolution, 1733
for polycrystals, 1735–1737
vanishing moments, 1733

Wavelet transformation induced multi-time
scaling (WATMUS), 1737

Wavevectors, 1505
Weighted histogram method (WHAM), 1467
Wick’s theorem, 378, 380–384, 407

Wide angle scattering, 1178
Wigner-Keck-Eyring (WKE) dynamics,

691, 699
Wigner matrix, 1926
Wigner phase-space density, 401
Wigner transform, 401
WO3, 42
Workflows, 1815

and plugins, 1819–1820
scientific, 1817

X
X-ray crystallography, 1864
X-ray photoemission spectrum (XPS), 356

Y
Yield-stress criterion, 1240
Yield surface, 1697–1700
Yukawa code, 444, 446

Z
Zeeman interaction, 847
Zero Schmid factors, 1059
Zhang-Li model, 996, 1003
Zimm dynamics, 1369, 1371, 1376
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