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Abstract. On the one hand, pesticides may be absorbed into the body orally,
dermally, ocularly and by inhalation and the human exposure may be dietary,
recreational and/or occupational where toxicity could be acute or chronic. On
the other hand, the environmental fate and toxicity of the pesticide is contingent
on the physico-chemical characteristics of pesticide, the soil composition and
adsorption. Human toxicity is also dependent on the exposure time and indi-
vidual’s susceptibility. Therefore, this work will focus on the development of an
Artificial Intelligence based diagnosis support system to assess the pesticide
toxicological risk to humanoid, built under a formal framework based on Logic
Programming to knowledge representation and reasoning, complemented with
an approach to computing grounded on Artificial Neural Networks. The pro-
posed solution is unique in itself, once it caters for the explicit treatment of
incomplete, unknown, or even self-contradictory information, either in terms of
a qualitative or quantitative setting.
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1 Introduction

Pesticides are extensively used in agriculture aiming at the control of weeds or plant
diseases, which may remain in residual amounts in fruits, vegetables, grains, and water,
just to name a few. They stand for xenobiotic compounds for living organisms, and
their toxicity is not due to a single molecular event or interaction, but rather to a set of
occurrences, starting with pesticide exposure and reaching a point of highest devel-
opment with the expression of one or more toxic endpoints. These happenings include
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adsorption, distribution, biotransformation, distribution of metabolites, interaction with
cellular macromolecules and excretion [1]. Biotransformation may result in the for-
mation of less toxic and/or more toxic metabolites, while the various other processes
determine the balance between toxic and a nontoxic upcoming [2]. Pesticides can be
absorbed by oral, dermal, nasal and/or ocular exposure. Human exposure can be dietary
recreational and/or occupational, and toxicity could be acute or chronic. Aggregate
exposure and risk assessment involve multiple pathways and routes, including the
potential for pesticide residues in food and drinking water, as well as in residues from
pesticide use in residential and non-occupational environments [3]. To ensure the safety
of the food supply for human consumption, Maximum Contaminant Levels (MCLs) sets
the legal limits for the amount of pesticides allowed in food and drinking water. This is
related with Acceptable Daily Intake (ADI), defined as the amount of a chemical that
can be consumed safely every day [4].

Pesticide environmental fate and toxicity depends on the physical and chemical
characteristics of pesticide, the soil composition, soil adsorption, and pesticide residues
found in different soil compartments. The human hazard is determined by the pesticide
properties, exposure time and the individual’s susceptibility, affecting the magnitude of
these processes and the final fate and toxicity of pesticide [5]. Indeed, agricultural
pesticides are incorporated into the organism by different routes which can be stored
and distributed in different tissues, leading to an internal concentration that can induce
alterations, adverse effects and/or diseases. Often, the human exposure to pesticides
was evaluated only by human biomonitoring, i.e., measuring levels in matrixes such as
blood and urine. However, the concentration measured might not relate to toxic
effect [5, 6].

Recent works established pesticide impact and toxicity based on chemical prop-
erties, environmental fate and exposure considerations [7–9]. However, those
methodologies for problem solving are not able to deal with incomplete data, infor-
mation or knowledge. Indeed, for the development of intelligent decision support
systems aimed at integrated pesticide toxicological risk assessment, it is necessary to
consider different conditions with intricate relations among them. Thus, the present
work reports the founding of a computational framework that uses knowledge repre-
sentation and reasoning techniques to set the structure of the information and the
associate inference mechanisms, i.e., it will be centered on a Proof Theoretical
approach to Logic Programming (LP) [10], complemented with a computational
framework based on Artificial Neural Networks (ANNs) [11].

2 Knowledge Representation and Reasoning

Many approaches to knowledge representation and reasoning have been proposed
using the Logic Programming (LP) epitome, namely in the area of Model Theory [12,
13], and Proof Theory [10, 14]. In the present work the Proof Theoretical approach in
terms of an extension to the LP language is followed. An Extended Logic Program is a
finite set of clauses, given in the form:
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where “?” is a domain atom denoting falsity, the pi, qj, and p are classical ground
literals, i.e., either positive atoms or atoms preceded by the classical negation sign :
[10], that stands for a strong declaration that speaks for itself, and not denotes negation-
by- failure, or in other words, a flop in proving a given statement, once it was not
declared explicitly. Under this formalism, every program is associated with a set of
abducibles [12, 13], given here in the form of exceptions to the extensions of the
predicates that make the program, i.e., clauses of the form:

exceptionp1 � � � exceptionpj 0� j� kð Þ; being k an integer numberð Þ
that stand for information or knowledge that cannot be ruled out. On the other hand,
clauses of the type:

? p1; � � � ; pn; not q1; � � � ; not qmð Þ n;m� 0ð Þ
also named invariants or restrictions to complain with the universe of discourse, set the
context under which it may be understood. The term scoringvalue stands for the relative
weight of the extension of a specific predicate with respect to the extensions of peers
ones that make the inclusive or global program.

In order to evaluate the knowledge that may be associated to a logic program, an
assessment of the Quality-of-Information (QoI), given by a truth-value in the interval
0; . . .; 1, that branches from the extensions of the predicates that make a program,
inclusive in dynamic environments, is set [15, 16]. On the other hand, a measure of
one’s confidence that the argument values or attributes of the terms that make the
extension of a given predicate, with relation to their domains, fit into a given interval, is
also considered, and labeled as Degree of Confidence (DoC) [17]. The DoC is eval-
uated as described in [17] and computed using DoC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Dl2
p

, where Dl stands for
the argument interval length, which was set to the interval 0, …, 1. Thus, the universe
of discourse is engendered according to the information presented in the extensions of
such predicates, according to productions of the type:

predicatei �
[

1� i�m

clausej QoIx1 ;DoCx1ð Þ; � � � ; QoIxm ;DoCxmð Þð Þ :: QoIi :: DoCi ð1Þ
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where [ and m stand, respectively, for set union and the cardinality of the extension of
predicatei. QoIi and DoCi stand for themselves.

3 Case Study

In order to develop a predictive model to assess the pesticides toxicological risk a
knowledge database was set, and built around the pesticides records of the National
Pesticide Information Center [18]. For each pesticide it was considered information
regarding environmental fate, human exposure and toxicity (i.e., acute and chronic)
both in qualitative and quantitative terms. This section demonstrates how the infor-
mation comes together and how it is processed.

3.1 Qualitative Data Pre-processing

Aiming at the quantification of the qualitative information and in order to make easy
the understanding of the process, it was decided to put it in a graphical form. Taking as
an example a set of 3 (three) issues regarding a particular subject (where the possible
alternatives are none, low, moderate, high and very high), a unitary radius circle split
into 3 (three) slices is itemized (Fig. 1). The marks in the axis correspond to each of the
possible choices. If the answer to issue 1 is high the area correspondent is p� 0:752=3,
i.e., 0:19p (Fig. 1(a)). Assuming that in the issue 2 are chosen the alternatives high and
very high, the correspondent area ranges in the interval p� 0:752=3 � � � p� 12=3, i.e.,
0:19p � � � 0:33p (Fig. 1(b)). Finally, in issue 3 if no alternative is ticked, all the
hypotheses should be considered and the area varies in the interval 0 � � � p� 12=3, i.e.,
0 � � � 0:33p (Fig. 1(c)). The total area is the sum of the partial ones and is set in the
interval 0:38p � � � 0:85p (Fig. 1(d)). The normalized area is the ratio between the area of
the figure and the area of the unitary radius circle. Thus, the quantitative value
regarding the subject in analysis is set to the interval 0:38 � � � 0:85.

3.2 A Logic Programming Approach to Data Processing

It is now possible to build up a knowledge database given in terms of the extensions of
the relations (or tables) depicted in Fig. 2, which denote a situation where one has to

Fig. 1. A view of the qualitative evaluation process.
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manage information in order to evaluate the Pesticide Toxicological Risk. Under this
scenario some incomplete and/or default data is present. For instance, in the former
case the ADI is unknown (depicted by the symbol ⊥), while the Acute Toxicity for
Mice/Rats is not conclusive (Slightly/Moderate).

The Human Exposure table is populated with 0 (zero) that stands for absence, 1
(one) that denotes food or drinking water only (in dietary column), and dermal or
inhalation exposure only (in occupational column), and 2 (two) stand for simultaneous
exposition. The issues presented in Environmental Fate table are populated with ab-
sence, low, medium, high and very high, while the columns of Acute and Chronic
Toxicity tables are filled with absence, slightly, medium, high and very high. In order to
quantify the information present in these tables the procedures already described above
were followed.

Applying the algorithm presented in [17] to the table or relation’s fields that make
the knowledge base for Pesticide Toxicological Risk Assessment (Fig. 2), and looking
to the DoCs values obtained as described in [17], it is possible to set the arguments of
the predicate toxicological risk assessment (tra) referred to below, whose extensions
denote the objective function with respect to the problem under analyze:

Fig. 2. A fragment of the knowledge base for Toxicological Risk Assessment.
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tra : AcceptableDailyIntake;MaximumContaminationLevel;EnvironmentalFate;Acute

Toxicity;ChronicToxicity;DietaryHumanExposure;OccupationalExposure ! 0; 1f g

where 0 (zero) and 1 (one) denote, respectively, the truth values false and true.
The algorithm presented in [17] encompasses different phases. In the former one the

clauses or terms that make extension of the predicate under study are established. In the
subsequent stage the arguments of each clause are set as continuous intervals. In a third
step the boundaries of the attributes intervals are set in the interval [0, 1] according to a
normalization process given by the expression ðY � YminÞ=ðYmax � YminÞ, where the Ys
stand for themselves. Finally, the DoC is evaluated as described in Sect. 2.

Exemplifying the application of the algorithm presented in [17], in relation to the
term (clause) that presents the feature vector ADI = 0.01, MCL = ⊥, EF = 0.28,
AT = [0.64, 0.81], CT = [0.04, 0.06], DHE = 1, OE = 2, one may have:
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4 Artificial Neural Networks

On the one hand, ANNs denote a set of connectionist models inspired in the behaviour
of the human brain. In particular, the MultiLayer Perceptron (MLP) model stands for
the most popular ANN architecture, where neurons are grouped in layers and only
forward connections are set [19]. This provides a powerful base-learner with some
advantages with respect to other approaches (e.g., adaptability, robustness, flexibility,
nonlinear mapping and noise tolerance), a reason why they are increasingly used in
data mining, namely due to its good behaviour in terms of predictive knowledge [20].
The interest in MLPs was stimulated by the advent of the Backpropagation algorithm
in 1986, and since then several fast gradient based variants have been proposed (e.g.,
RPROP) [21]. Yet, these training algorithms minimize an error function by tuning the
modifiable parameters of a fixed architecture, which needs to be set a priori. The MLP
performance will be sensitive to this choice, i.e., a small network will provide limited
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learning capabilities, while a large one will induce generalization loss (i.e., over fitting).
MLP is molded on three or more layers of artificial neurons, including an input layer,
an output layer and a number of hidden layers with a certain number of active neurons.
In addition, there is also a bias, which is only connected to neurons in the hidden and
output layers [19]. The correct design of the MLP topology is a complex and crucial
task, commonly addressed by trial-and-error procedures (e.g., exploring different
number of hidden nodes), in a blind search strategy, which only goes through a small
set of possible configurations. More elaborated methods have also been proposed, such
as pruning [22] and constructive [23] algorithms, although these perform hill-climbing
and are thus prone to local minima [11]. The number of nodes in the input layer sets the
number of independent variables, and the number of nodes in the output layer denotes
the number of dependent ones [19].

On the other hand, the framework presented previously shows how the information
comes together and how it is processed. In this section, a data mining approach to deal
with the processed information is considered. A hybrid computing approach was set to
model the universe of discourse, where the computational part is based on ANNs,
whose behavior was referred to above, and used not only to structure data but also to
capture the problem(s) objective function’s nature (i.e., the relationships between
inputs and outputs) [24, 25].

Figure 3 shows a case being submitted to the Pesticide Toxicological Risk
Assessment model. The normalized values of the interval boundaries and its QoI’s and
DoC’s stand for the inputs to the ANN. The output is given in terms of Pesticide
Toxicological Risk evaluation and the degree of confidence that one has on such a
happening. In this study 142 pesticides were considered (i.e., one hundred and forty
two terms or clauses of the extension of predicate tra). To implement the evaluation
mechanisms and to test the model, ten folds cross validation were applied [19]. The
back propagation algorithm was used in the learning process of the MLP. As the output
function in the pre-processing layer it was used the identity one, while in the other
layers we considered the sigmoid.

A common tool to evaluate the results presented by the classification models is the
coincidence matrix, a matrix of size L � L, where L denotes the number of possible
classes. This matrix is created by matching the predicted and target values. L was set to
2 (two) in the present case. Table 1 presents the coincidence matrix of the ANN model,
where the values presented denote the average of 25 (twenty five) experiments.
A glance at Table 1 shows that the model accuracy was 93.7 % (133 instances cor-
rectly classified in 142). Therefore, the predictions made by the ANN model are sat-
isfactory, attaining accuracies higher than 90 %.

Based on coincidence matrix it is possible to compute sensitivity, specificity,
Positive Predictive Value (PPV) and Negative Predictive Value (NPV) of the classifier.
Briefly, sensitivity evaluates the proportion of true positives that are correctly identified
as such, while specificity translates the proportion of true negatives that are correctly
identified. PPV stands for the proportion of cases with positive results which are
correctly classified while NPV is the proportion of cases with negative results which are
successfully labeled. The values obtained for sensitivity, specificity, PPV and NPV
were 94.7 %, 91.5 %, 95.7 % and 89.6 %, respectively. On the one hand, the proposed
model correctly identified 94.7 % of the positive cases, i.e., pesticides with potential
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toxicological risk. On the other hand, it also classified appropriately 91.5 % of the
negative cases, i.e., pesticides with low toxicological risk.

The present model, beyond to consider the pesticide chemical properties, enables
the integration of Acute and Chronic Toxicity data with other factors such as Envi-
ronmental Fate and Human Exposure, being therefore assertive in the prediction of
Pesticide Toxicological Risk. Thus, it is our claim that the proposed model is able to
evaluate the Toxicological Risk properly and can be a major contribution to achieve
high levels regarding public health protection and environmental sustainability.

Table 1. The coincidence matrix for ANN model.

Target Predictive
True (1) False (0)

True (1) 91 4
False (0) 5 42
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Fig. 3. The ANN topology
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The LP approach to data processing presented in this work is a generic one, and
therefore may be applied in different grounds. Indeed, some interesting results have
been obtained, namely in the fields of Education [26, 27], pharmacological properties
of Essential Oils evaluation [28, 29], and Health [30, 31].

5 Conclusions

The proposed approach is able to give an adequate response to the need for a good
response to predict the toxicological risk of pesticide exposure. Nevertheless, it can be
considered a hard task since it is necessary to consider different variables and/or
conditions with complex relations entwined among them, where the data may be
incomplete, self-contradictory, and even unknown. In order to overcome these diffi-
culties this work presents the founding of a hybrid computing approach that uses a
powerful knowledge representation and reasoning mechanism to set the structure of the
information, complemented with a computational framework based on ANNs, which
have been selected due to their proper dynamics, like adaptability, robustness, and
flexibility. This approach not only allows evaluating the pesticide toxicological risk,
but it also permits the estimation of the degree-of-confidence that one has on such a
happening. In fact, this is one of the added values of this approach that arises from the
complementarily between Logic Programming (for knowledge representation and
reasoning) and the computing process based on ANNs. The present model is a generic
one, susceptive of application in different arenas. A possible limitation on its use is not
on the model in itself, but on the unavailability of data, information or knowledge; but,
even in these situations, once it has the capacity to handle incomplete data, information
or knowledge, either in its qualitative or quantitative form, its usefulness is assured.
Future developments of the model should include the biotransformation pathways and
routes of exposure, and consider the contact time and the individual’s susceptibility.
Furthermore, this problem might be approached using others computational frame-
works like Case Based Reasoning [27], Genetic Programming [14], or Particle Swarm
[32], just to name a few.
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