
Chapter 6
Forces

Abstract After reading this chapter, you will be able to add forces to lattice
Boltzmann simulations while retaining their accuracy. You will know how a forcing
scheme can be derived by including forces in the derivation of the lattice Boltzmann
equation, though you will also know that there are a number of other forcing
schemes available. You will understand how to investigate forcing models and
their errors through the Chapman-Enskog analysis, and how initial and boundary
conditions can be affected by the presence of forces.

Forces play an important role in many hydrodynamic problems (Sect. 6.1). There-
fore, a proper discussion of force implementation in the LB algorithm is essential.
Section 6.2 contains quick start instructions to implement an LB algorithm with
forces. In Sect. 6.3 we show how to extend the force-free LBE derivation (i.e.
the LBE derived in Chap. 3) to also reproduce a macroscopic body force at the
hydrodynamic level. This derivation is based on the same discretisation steps
(velocity followed by space-time) that are also used for the force-free LBE.
Section 6.4 contains an overview of existing forcing schemes and a discussion
of their differences and similarities. We will see that many of those schemes are
equivalent if higher-order terms are neglected. In Sect. 6.5 we extend the Chapman-
Enskog analysis to situations with forces to point out the detailed links between the
LBE and the macroscopic PDEs it approximates. Furthermore, we investigate the
errors associated with the selected forcing schemes. We analyse the influence of
the forcing term on simulation initialisation and two types of boundary conditions
in Sect. 6.6. In particular, we show how the bounce-back and the non-equilibrium
bounce-back methods account for the presence of a force. Finally, in Sect. 6.7 we
use a simple Poiseuille flow to demonstrate the previous theoretical elements in
benchmark simulations.
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232 6 Forces

6.1 Motivation and Background

Forces play a central role in many hydrodynamic problems. A prominent example
is the gravitational acceleration g which can be cast into a force density Fg by
multiplying it with the fluid density �:

Fg D �g: (6.1)

In fact, in hydrodynamics we will mostly encounter force densities rather than
forces since the momentum equation is a PDE for the momentum density. Forces
are obtained by integrating surface stresses or bulk force densities. Mathematically,
a force (density) is a momentum (density) source term, as can be seen from the
Cauchy equation in (1.57).

Gravity leads to a number of effects which LBM can successfully simulate. If
two fluids with different densities are mixed or if the temperature in a fluid is non-
homogeneous, density gradients in the gravitational field lead to buoyancy effects
and phenomena like the Rayleigh-Bénard instability [1] (cf. Sect. 8.4.1) or the
Rayleigh-Taylor instability [2]. In the Rayleigh-Bénard instability, which is essential
in studies of heat transfer, convection patterns developwhen warmed fluid rises from
a hot surface and falls after cooling. The Rayleigh-Taylor instability can occur when
a layer of denser fluid descends as lower-density fluid below it rises. Gravity waves
at a free water surface are another example [3].

Apart from gravity [4], there are several other physical problems where forces
are important. Fluids in rotating reference frames are subject to radial and Coriolis
forces [5–7]. Charged or magnetic particles immersed in a fluid exert forces on
each other, and they may also be forced by external electromagnetic fields. This
is particularly important for modelling the effects of external electric fields on
regions of unbalanced charges (the electrical double layer, EDL) in electrolytes near
a charged solid surface or liquid-liquid interface [8–11].

In incompressible flows, the driving mechanism of the pressure gradient field
may be equivalently described by any divergence-free body force [12]. There
exist cases where the problem physics specify pressure gradients, but where it is
convenient to replace these with forces [12–14]. One reason for this is that the
LB method may lose accuracy when solving pressure fields due to compressibility
errors (cf. Sect. 4.5). While this change is possible in arbitrarily complex flow
geometries, the task of finding an equivalent driving force field is only trivial in
periodic flow configurations. This is often explored in LB simulations of porous
media flows [14].

We will see in Chap. 9 that forces are also commonly used to model multi-
phase or multi-component flows, although a mathematical description of these
phenomena is usually based on the stress tensor. Furthermore, some algorithms
for fluid-structure interactions, e.g. the immersed boundary method, rely on forces
mimicking boundary conditions. We will discuss this in Sect. 11.4.
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6.2 LBM with Forces in a Nutshell

We summarise the most important information about the implementation of forces
in the bulk LBM and what a complete time step with forces looks like.

Assuming the BGK collision operator, we can write the order of operations in a
single time step including forces, also illustrated in Fig. 6.1, in the following way:

1. Determine the force density F for the time step (e.g. gravity).
2. Compute the fluid density and velocity from
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3. Compute the equilibrium populations f eqi .�;u/ to construct the collision operator
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4. If desired, output the macroscopic quantities. If required, the deviatoric stress is
calculated as
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where the source Si and forcing Fi terms are related as Si D .1 � 1
2�

/Fi

Fig. 6.1 An overview of one cycle of the LB algorithm, considering forces but not boundary
conditions. The light grey box shows the optional output sub-step
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6. Apply collision and source to find the post-collision populations:

f ?
i D fi C .˝i C Si/�t: (6.6)

7. Propagate populations.
8. Increment the time step and go back to step 1.

There are a few important remarks:

• The form of the force F depends on the underlying physics and is not itself given
by the LB algorithm. Gravity is the simplest example.

• The velocity u in (6.2) contains the so-called half-force correction. This veloc-
ity u enters the equilibrium distributions and is also the macroscopic fluid
velocity solving the Navier-Stokes equation. Using the bare velocity u? DP

i fici=� would lead to first-order rather than second-order space-time accuracy
(Sect. 6.3.2). The velocity u can be interpreted as the average velocity during the
time step, i.e. the average of pre- and post-collision values.

• The forcing scheme presented here is based on a Hermite expansion (Sect. 6.3.1)
and is the same as proposed by Guo et al. [15]. There are alternative ways to
include forces, as discussed in Sect. 6.4.

• Any cyclic permutation of the above steps is permitted, as long as the simulation
is properly initialised.

6.3 Discretisation

In Chap. 3 we have shown how to derive the LBE from the continuous Boltzmann
equation in the absence of forces. Here we will revisit that derivation from Sect. 3.4
and Sect. 3.5, now highlighting the required steps to include forces. The two
main steps are the discretisation in velocity space (Sect. 6.3.1) and the space-time
discretisation (Sect. 6.3.2).

6.3.1 Discretisation in Velocity Space

Let us briefly recall the velocity space discretisation of the (force-free) Boltzmann
equation as explained in Sect. 3.4. The objective was to reduce the continuous
velocity space � to a finite set of discrete velocities ci while preserving the model’s
ability to capture the desired macroscopic physics via velocity moments.

A natural and systematic approach is to represent the equilibrium distribution
function f eq as a truncated Hermite expansion. This permits an exact evaluation of
macroscopic quantities (e.g. density and velocity) through a Gauss-Hermite quadra-
ture. This procedure led to two important results: (i) a polynomial representation
of f eq in velocity space (cf. Sect. 3.4.5) and (ii) the description of particles’ motion
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through a discrete velocity set (cf. Sect. 3.4.7). The question we aim to answer here
is: what is the equivalent polynomial representation in velocity space of the forcing
term in the Boltzmann equation? The following explanation is based on [16, 17].

Let us recall the continuous Boltzmann equation with a forcing term:
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D ˝.f /: (6.7)

Our goal is to find the discrete velocity structure of the forcing term F˛ which aligns
with the velocity space discretisation of f eq in Sect. 3.4.5. An evident problem is that
F˛, contrarily to f eq, does not appear as isolated term in (6.7). Rather, to deal with
F˛ we have to discretise the full term F˛

�

@f
@�˛

. Its discretisation in velocity space is
simple if we keep the following two mathematical results in mind:

1. The Hermite series expansion of the distribution function f .�/ is

f .x; �; t/ � !.�/

NX

nD0

1

nŠ
a.n/.x; t/ � H.n/.�/: (6.8)

2. The derivative property of Hermite polynomials reads
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With their help we can rewrite the Hermite expansion of f .� i/ as follows:
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This representation allows us to simplify the forcing contribution in (6.7):
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(6.11)

The discretisation in velocity space can now be performed directly, by replacing
the continuous � by a discrete set of ci. We rescale the velocities according to
ci D �i=

p
3 and then renormalise the result by the lattice weights wi. Recalling

Sect. 3.4.5, this is similar to what we did in the construction of f eq. Based on this
procedure, the discrete form of the forcing term becomes:

Fi.x; t/ D � wi
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3ci

; (6.12)
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with the right-hand side given in (6.11). This way, we can write the discrete velocity
Boltzmann equation with a forcing term similarly to (3.58):

@tfi C ci˛@˛fi D ˝i C Fi; i D 0; : : : ; q � 1: (6.13)

The truncation of the forcing term up to second velocity order (N D 2),
corresponding to the expansion of f eq, reads
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Its first three velocity moments are

X

i

Fi D 0; (6.15a)
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Fici˛ D F˛; (6.15b)

X

i

Fici˛ciˇ D F˛uˇ C u˛Fˇ: (6.15c)

Exercise 6.1 Write down the explicit form of the forcing term Fi in (6.14) for the
velocity sets D1Q3 (cf. Table 3.2) and D2Q9 (cf. Table 3.3). Compare the results
obtained for Fi with the structure of f eqi expressed by (3.64) and (3.65), respectively.

The zeroth-ordermoment, (6.15a), denotes a mass source; it is zero in the present
situation. The first-order moment, (6.15b), is a momentum source; it appears as a
body force in the NSE. Finally, the second-order moment, (6.15c), is an energy
source describing the power flux the body force exerts on the fluid [18].

The role of the second-order moment, (6.15c), is subtle. Its appearance, at
first glance, may seem surprising as LBM is typically built upon an isothermal
assumption. However, the (weakly) compressible regime reproduced by LBM with
standard equilibrium still preserves a (weak) link to energy transport, although an
isothermal one [19]. The purpose of (6.15c) is simply to remove the undesirable
footprint left by this connection on the momentum equations. Otherwise, a spurious
term, given by F˛uˇ C u˛Fˇ, appears at the viscous stress level [15, 18, 20]. We
explain this error source in more depth in Sect. 6.5.1.
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On the other hand, in the incompressible regime the energy transport is totally
decoupled from the momentum equation [21, 22]. As pointed out in Sect. 4.3.2,
for steady problems the LBM with the incompressible equilibrium can reproduce
the true incompressible NSE. Therefore, the cancelling of errors with link to
compressibility is not required in this case, where we would expect the conditionP

i Fici˛ciˇ D 0 instead. According to the force discretisation process above, this
is equivalent to saying that Fi should be expanded only up to first order in velocity
space:

Fi D wi
ci˛

c2
s

F˛: (6.16)

This duality in the expansion order of Fi is explained in more detail in [5, 23].

6.3.2 Discretisation in Space and Time

We discussed the space-time discretisation of the force-free Boltzmann equation in
Sect. 3.5. The idea was to replace the continuous space and time derivatives in the
discrete-velocity Boltzmann equation, (6.13), by difference operators with discrete
space and time steps (�x and �t). In the standard LBM, these discretisation steps
are linked to the velocity space discretisation to ensure that populations fi, travelling
with discrete velocities ci, always reach neighbouring lattice sites within one time
step �t.

We seek a similar result in the presence of forces. The task consists of two
parts [24–26]:

1. Advection, the left-hand side of (6.13), is identical to the force-free case
(cf. Sect. 3.5). By applying the method of characteristics, i.e. defining fi D
fi.x.�/; t.�//, where � parametrises a trajectory in space and time, the propagation
step is exact, without any approximation:

Z tC�t

t

dfi
d�

d� D fi.x C ci�t; t C �t/ � fi.x; t/: (6.17)

2. The only approximation appears in the treatment of the right-hand side of (6.13),
collision, which now includes the forcing term Fi:

Z tC�t

t
.˝i C Fi/ d�: (6.18)

We can evaluate this integral in different ways [26]. We will now discuss two
approximations, as already described for the force-free case in Sect. 3.5.
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6.3.2.1 First-Order Integration

The least accurate procedure employs a rectangular discretisation. Here, the integral
of collision and forcing terms is approximated by just one point:

Z tC�t

t
.˝i C Fi/ d� D �

˝i.x; t/ C Fi.x; t/
�

�t C O.�t2/: (6.19)

Using this first-order approximation and the BGK collision operator, the LBE with
a force assumes a form where all terms on the right-hand side are evaluated at .x; t/:

fi.x C ci�t; t C �t/ � fi.x; t/ D ��t

�

�
fi � f eqi

�C Fi�t: (6.20)

Apart from the inclusion of Fi�t in (6.20), everything else is exactly as the unforced
case in Chap. 3.

While being fully explicit, this scheme is only first-order accurate in time. In
the absence of forces, this is not harmful since we can still obtain second-order
accuracy providing the �t=2 shift is considered in the viscosity-relaxation relation
[26]: � D c2

s .� � �t
2

/ instead of � D c2
s� . The reason for this accuracy improvement

is that both the “physical” viscous term and its leading-order error have the same
functional form; the latter can be absorbed as a “physical” contribution by redefining
the viscosity.

This “trick” does not work in the presence of forces, though. Hence, the first-
order accuracy inevitably leads to macroscopic solutions corrupted by discrete
lattice artefacts [4, 15]. We show their mathematical form in Sect. 6.5.1 and illustrate
their quantitative effects in Sect. 6.7. We can eliminate these undesired artefacts by
employing a second-order space-time discretisation.

6.3.2.2 Second-Order Integration

The trapezoidal discretisation is more accurate than the rectangular discretisation:
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(6.21)

However, we obtain second-order accuracy at the expense of a time-implicit scheme.
Fortunately, this is not a problem since, as explained in Sect. 3.5, we can recover the
explicit form by introducing a smart change of variables [19, 27]:

Nfi D fi � .˝i C Fi/�t

2
: (6.22)
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Using (6.22) and some simple algebra, the LBE for Nfi takes the familiar form

Nfi.x C ci�t; t C �t/ � Nfi.x; t/ D �
˝i.x; t/ C Fi.x; t/

�
�t: (6.23)

With the BGK collision operator this simplifies to

Nfi.x C ci�t; t C �t/ � Nfi.x; t/ D � �t
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�Nfi � f eqi � �Fi

	
(6.24)

where, once again, all terms on the right-hand side are given at .x; t/. The extension
to other collision operators is straightforward (Sect. 10.5).

The second-order accurate discretisation of the LBGK equation with
forcing term reads
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N�
�Nfi � f eqi

	
C
�

1 � �t

2 N�
�

Fi�t

(6.25)

with a redefined relaxation parameter N� D � C �t=2. Based on the new
variable Nfi, the leading macroscopic moments are
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(6.26c)

In most cases, the notation of the redefined variables is dropped for conve-
nience and fi and � are written instead of Nfi and N� . The equilibrium populations
f eqi have the same functional form as before. However, the velocity entering
f eqi .�;u/ is now given by (6.26b). The redefinition of the velocity in (6.26b)
can be interpreted as averaging the velocity before and after forcing [29, 30].
If Fi is chosen to incorporate non-zero mass sources in addition to forces, the
density entering f eqi .�;u/ must also be redefined according to (6.26a) [28].
Sometimes, for convenience, the outcome from the space-time discretisation
of the forcing term, as given in (6.25), is shortened to a source term Si notation,
with the two related as Si D .1 � 1

2�
/Fi.
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Equation (6.26b) can lead to difficulties when F depends on u, e.g. in Brinkman
models [31–34] or Coriolis forces [5–7, 35]. Such a velocity-dependent force leads
to an implicit form of (6.26b) in u. For linear relations,F / u, and other analytically
invertible dependencies we can easily solve (6.26b) for u, e.g. [5, 31]. In more
general cases, however, u has to be found numerically, e.g. [7, 35].

6.4 Alternative Forcing Schemes

In Sect. 6.3, we have shown how the forcing scheme can be constructed through a
systematic procedure consistent with the overall LBE. However, there is a flood of
articles about other LB forcing schemes.

This section aims at clarifying differences and similarities among some of the
most popular forcing schemes. After recollecting important consequences of the
presence of a force in Sect. 6.4.1, we show a few alternative forcing schemes in
Sect. 6.4.2. We focus on results rather than on those lengthy calculations that can
be found in the cited literature. The articles by Guo et al. [15] and Huang et al. [36]
provide derivations and more detailed discussions. Also helpful in this context is
the work by Ginzburg et al. [37] that discusses different, yet equivalent, ways of
introducing the force in the LB equation.

6.4.1 General Observations

Based on the second-order velocity and space-time discretisations, the LBE with a
force can be expressed as

fi.x C ci�t; t C �t/ � fi.x; t/ D �
˝i.x; t/ C Si.x; t/

�
�t (6.27)

where ˝i is the BGK collision operator and Si D .1 � 1
2�

/Fi denotes a source, with
the forcing Fi given by (6.14). Guo et al. [15] derived the same result following an
approach different from that in Sect. 6.3. Therefore, this scheme is often called Guo
forcing.

It is important that the fluid velocity in the presence of a force is redefined to
guarantee the second-order space-time accuracy (Sect. 6.3.2):

u D 1

�

X

i

ci fi C F�t

2�
: (6.28)

This velocity also enters the equilibrium populations f eqi D f eqi .�;u/ and therefore
the BGK collision operator ˝i D �. fi � f eqi /=� . Thus we can say that the fluid
velocity in (6.28) and the equilibrium velocity ueq (i.e. the velocity entering f eqi )
are the same for Guo forcing.
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The complexity in the LB literature is caused by the fact that there exist different
force algorithms that decompose ˝i and Si differently but lead to essentially the
same results on the Navier-Stokes level. To generalise the forcing method, let us
write

ueq D 1

�

X

i

fici C A
F�t

�
(6.29)

for the equilibrium velocity. A is a model-dependent parameter. For Guo forcing,
we already know that A D 1

2
. Deviating from this value means that the collision

operator ˝i is modified. In turn, also the source term Si has to be redefined to keep
the sum ˝i C Si unchanged, at least to leading order.

Naively we can expect that we cannot distinguish forcing schemes macroscop-
ically as long as the sum ˝i C Si is the same, no matter which individual forms
˝i and Si assume. In fact, there exist several forcing schemes for which ˝i C Si

nearly has the same form as Guo forcing, only up to deviations of order F2 or u3.
Therefore, all those methods can be considered equivalent as long as F and u are
sufficiently small, which cannot always be guaranteed. Furthermore, there are other
forcing schemes that result in different behaviour on the F and u2 orders (or even
worse); those methods are generally less accurate and should be avoided.

6.4.2 Forcing Schemes

Each different LB forcing scheme has a different set of expressions for A in (6.29)
and the source term Si. But not all of the proposed methods lead to acceptable
hydrodynamicbehaviour. In the followingwe collect a few selected forcing schemes
that do recover the correct macroscopic behaviour. Table 6.1 provides a summary.

The fluid velocity needs to assume the form in (6.28), independently of the
chosen forcing scheme. This is a pure consequence of the second-order time
integration and not affected by details of the forcing scheme.

Table 6.1 Overview of accurate forcing schemes and how they modify the collision operator in
(6.27), both directly and through the equilibrium velocity defined in (6.29). In any case the fluid
velocity must obey (6.28) to ensure second-order time accuracy
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Shan and Chen [38] ��t 0
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� F
Kupershtokh et al. [40] 0 f eqi .�; u? C 	u/ � f eqi .�; u?/
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All forcing schemes in Table 6.1 are equivalent up to terms of order F2 or u3

[36].1 In the limit of small Mach number and small forces, all these methods yield
basically the same results. The situation is different for multi-phase flows where
forces in the vicinity of fluid-fluid interfaces can become large so that terms / F2

(and also / r2F) are important.2 We will not discuss the choice of the forcing
scheme in the context of multi-phase flows here and refer to Sect. 9.3.2 and [36, 41]
instead.

6.4.2.1 Guo et al. (2002)

This method is the same as derived in Sect. 6.3. Based on the Chapman-Enskog
analysis, Guo et al. [15] performed a thorough analysis of the lattice effects in the
presence of a force. In their article, which is an extension of previous work by Ladd
and Verberg [20], the parameters assume the values A D 1=2 and Si D .1 � 1

2�
/Fi

with Fi as in (6.14). Guo et al. [15] showed that these choices remove undesired
derivatives in the continuity and momentum equation due to time discretisation
artefacts (cf. Sect. 6.3.2). In particular, A D 0 would lead to a term / r � F in the
continuity equation and another term / r � .uF C Fu/ in the momentum equation
(cf. Sect. 6.5.2).

6.4.2.2 Shan and Chen (1993, 1994)

Shan and Chen [38] proposed A D �=�t and Si D 0. Although their motivation
was the simulation of multi-phase fluids (cf. Chap. 9), Shan and Chen’s method is
applicable to single-phase fluids as well.

6.4.2.3 He et al. (1998)

The essential idea of He et al. [39] was to approximate the forcing term in the kinetic
equation by assuming a situation close to equilibrium:

F � r cf � F � r cf
eq D �F � c � u

c2
s

f eq: (6.30)

1Showing that these forcing schemes are equivalent to leading order is straightforward but involves
lengthy calculations. We will not delve into details here and refer to [36] for a more qualitative
analysis.
2Also in Brinkman and Coriolis force models, where F / u, the error term / r2F is important
[33, 34].
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In the end this leads to A D 1
2
and

Si D
�

1 � �t

2�

�
f eqi

�

ci � u
c2
s

� F: (6.31)

6.4.2.4 Kupershtokh (2004)

Kupershtokh [42] proposed a simple forcing method based on kinetic theory, the
so-called exact difference method. The idea is to include the force density F in such
a way that it merely shifts fi in velocity space. As a consequence, A D 0 and

Si D f eqi .�;u? C 	u/ � f eqi .�;u?/ (6.32)

where u? D P
i fici=� and 	u D F�t=�. This essentially means that the

equilibrium for a velocity u? is directly replaced by the equilibrium for a velocity
u? C 	u. In particular, this scheme ensures that an equilibrium distribution remains
in equilibrium upon the action of the force, independently of the chosen value of � .

6.4.2.5 Other, Less Accurate Approaches

There exist several other forcing schemes in the LB literature. Guo et al. [15]
reviewed a series of approaches [4, 16, 43, 44] and showed that all of them lead to
certain unphysical terms in the continuity or momentum equations of the weakly
compressible NSE. In other words, those forcing schemes have additional error
terms which are more significant than u3 or F2.

However, the situation changes when modelling steady incompressible hydrody-
namics. In this case, the most accurate forcing scheme is no longer Guo’s [15], but
the scheme proposed by Buick and Greated [4]. We will discuss the reason for this
variation in Sect. 6.5.2; see also [5, 23].

Finally, we would like to emphasise that under some circumstances some of
these models may still be appropriate choices, for example if the force density F
is constant. We illustrate this case in Sect. 6.7 through a numerical example. Still,
we strongly recommend to implement one of the generally more accurate models
mentioned above since they are usually more accurate when boundary conditions
are involved. We will demonstrate this analytically in Sect. 6.6 and numerically in
Sect. 6.7.

Concluding, there exist several different forcing schemes. Many of these
schemes (i.e. Guo, Shan-Chen, He, Kupershtokh) are equivalent up to higher-
order terms (u3 or F2). Their differences are negligible as long as forces and
their gradients are small (e.g. in the case of gravity). Other forcing schemes,
however, lead to additional error terms on the Navier-Stokes level.
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6.5 Chapman-Enskog and Error Analysis in the Presence
of Forces

We look at the macroscopic behaviour of forces in the LBE. First we revisit the
Chapman-Enskog analysis (cf. Sect. 4.1) and extend it to situations with forces
(Sect. 6.5.1). Based on this analysis, we discuss the structure of errors created at
hydrodynamic level due to incorrectly chosen LB force models (Sect. 6.5.2).

6.5.1 Chapman-Enskog Analysis with Forces

The Chapman-Enskog analysis (Sect. 4.1) reveals the consistency between the
mesoscopic LBM and the macroscopic NSE. We will now extend the Chapman-
Enskog analysis to situations with forces.

Historically, the Chapman-Enskog analysis applied to the forced LBM was
pioneered in [45, 46]. Later, a number of authors [16, 20, 39, 42, 44] extended
its formulation to include second-order terms, as given by (6.14). A subsequent
improvement [4, 15] showed the necessity of correcting discrete lattice effects.
These effects can be corrected in an a priori fashion through a systematic second-
order discretisation of the LBE (Sect. 6.3.2) [24–26]. Even today, the study of a
“clean” inclusion of forces in the LBE remains an active research topic involving, for
example, perturbation (Chapman-Enskog) analyses [5, 23, 28, 29] or exact solutions
of the LBE [32–34, 47].

The Chapman-Enskog analysis of the forced LBE is similar to the force-free
case in Sect. 4.1. The difference is that now we are working with (6.25) as evolution
equation, together with (6.26) for the velocity moments. Hence, the first question
we need to answer is: what should be the expansion order of the forcing term Fi?

In order to be consistent with the remaining terms in the LBE, the forcing
term must scale as Fi D O.
/ [4]. Therefore, we should at least have
Fi D 
F.1/

i .

Considering Fi D 
F.1/
i , which is a valid assumption for most hydrodynamic

problems,3 the familiar steps from Sect. 4.1 lead to a hierarchy of 
-perturbed

3In certain cases, the forcing term requires a higher-order expansion. For example, for certain
axisymmetric LB models [48, 49], the formal expansion of the forcing term is Fi D 
F.1/

i C
2F.2/
i .
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equations, similar to (4.9a) and (4.9b), now with a force term:

O.
/ W
�
@

.1/
t C ci˛@.1/

˛

	
f eqi �

�
1 � �t

2�

�
F.1/

i D �1

�
f .1/
i ;

(6.33a)

O.
2/ W @
.2/
t f eqi C

�
@

.1/
t C ci˛@.1/

˛

	�
1 � �t

2�

��
f .1/
i C �t

2
F.1/

i

�
D �1

�
f .2/
i :

(6.33b)

In the presence of an external force, the hydrodynamic moments are no longer
conserved. This leads to a redefinition of the solvability conditions for mass and
momentum:

X

i

f neqi D ��t

2

X

i

F.1/
i ; (6.34a)

X

i

cif
neq
i D ��t

2

X

i

ciF
.1/
i : (6.34b)

Likewise, the extension to “strengthened” order-by-order solvability conditions
reads

X

i

f .1/
i D ��t

2

X

i

F.1/
i and

X

i

f .k/
i D 0; (6.35a)

X

i

cif
.1/
i D ��t

2

X

i

ciF
.1/
i and

X

i

cif
.k/
i D 0 (6.35b)

with k � 2, [5, 37], which results from F.1/
i � O.
/, only affecting f .1/

i and not
higher 
 scales.

In order to proceed, we require the functional form of Fi. We continue with the
specific form in (6.14) whose moments are given in (6.15). In particular, there are
no mass sources, i.e. the right-hand sides in (6.34a) and (6.35a) vanish.

By taking the zeroth and first moments of (6.33a), we obtain at O.
/:

@
.1/
t � C @.1/

� .�u�/ D 0; (6.36a)

@
.1/
t .�u˛/ C @

.1/

ˇ ˘
eq
˛ˇ D F˛: (6.36b)
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Here, ˘
eq
˛ˇ D P

i ci˛ciˇf eqi D �u˛uˇ C �c2
sı˛ˇ , according to (4.11a). Similarly, by

taking the zeroth and first moments of (6.33b), we obtain at O.
2/:

@
.2/
t � D 0; (6.37a)

@
.2/
t .�u˛/ C @

.1/

ˇ

�
1 � �t

2�

�
˘

.1/

˛ˇ D 0: (6.37b)

By combining the mass and momentum equations in (6.36) and (6.37), respectively,
we obtain

�

@

.1/
t C 
2@

.2/
t

	
� C 
@.1/

� .�u� / D 0; (6.38a)

�

@

.1/
t C 
2@

.2/
t

	
.�u˛/ C 
@

.1/

ˇ ˘
eq
˛ˇ D 
F.1/

˛ � 
2@
.1/

ˇ

�
1 � �t

2�

�
˘

.1/

˛ˇ : (6.38b)

To close the moment system in (6.38), we require an expression of ˘
.1/

˛ˇ in terms
of known quantities. We can achieve this by taking the second moment of (6.33a),

@
.1/
t ˘

eq
˛ˇ C @.1/

� ˘
eq
˛ˇ� �

�
1 � �t

2�

�X

i

F.1/
i ci˛ciˇ D �1

�
˘

.1/

˛ˇ : (6.39)

Here we have used the identity

˘
.1/

˛ˇ D
X

i

f .1/
i ci˛ciˇ C �t

2

X

i

F.1/
i ci˛ciˇ (6.40)

that can be deduced by applying the Chapman-Enskog decomposition to (6.26c).
˘

.1/

˛ˇ is the contribution responsible for the viscous stress at macroscopic level.

Therefore, the role of
P

i F.1/
i ci˛ciˇ is to remove spurious forcing terms possibly

appearing in ˘
.1/

˛ˇ so that its form is the same as for the force-free case (cf. (4.15)):

˘
.1/

˛ˇ D ��c2
s�
�
@

.1/

ˇ u˛ C @.1/
˛ uˇ

	
C O.u3/: (6.41)

Therefore, the viscous stress is still given by �˛ˇ D �
�
1 � �t

2�

	
˘

.1/

˛ˇ , just as in the

force-free case, (4.14).
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Finally, we can re-assemble @t D 
@
.1/
t C 
2@

.2/
t and use ˘

eq
˛ˇ and ˘

.1/

˛ˇ to obtain

from (6.38) the correct form (up to O.u3/ error terms) of the unsteady NSE with
forcing term:

@t� C @�.�u� / D 0; (6.42a)

@t.�u˛/ C @ˇ

�
�u˛uˇ C �c2

sı˛ˇ

	
D @ˇ

h
�
�
@ˇu˛ C @˛uˇ

�iC F˛: (6.42b)

As usual, the dynamic shear and bulk viscosities are � D �c2
s .� � �t

2
/ and �B D

2�=3, respectively (cf. Sect. 4.1).

6.5.2 Errors Caused by an Incorrect Force Model

Now that we know how to perform the Chapman-Enskog analysis with forces,
we can evaluate whether the selected forcing scheme introduces errors in the
recovered hydrodynamic model. According to Sect. 6.3, the formulation of the
force model comprises two steps: (i) velocity space discretisation and (ii) space-
time discretisation. Each of these steps comes with different error sources in case
we do not deal with them properly.

6.5.2.1 Discretisation of Velocity Space: The Issue of Unsteady
and Steady Cases

We can recognise the impact of an incorrect velocity space discretisation by
distinguishing between unsteady and steady phenomena.

In unsteady state, the term @
.1/
t ˘

eq
˛ˇ contains the contribution F˛uˇ C u˛Fˇ (see

Exercise 6.2 below). This contribution can be exactly cancelled by
P

i Fici˛ciˇ ,
providing the force term Fi is expanded up to the second velocity order as shown
in (6.14) [15, 20]. This way, we can correctly recover the unsteady NSE with force,
(6.42).

Exercise 6.2 Show that

@
.1/
t ˘

eq
˛ˇ D @

.1/
t

�
�u˛uˇ C �c2

sı˛ˇ

	

D �@.1/
�

�
�u˛uˇu�

� � c2
s

�
u˛@

.1/

ˇ � C uˇ@.1/
˛ �

	

� c2
sı˛ˇ@.1/

� .�u� / C F.1/
˛ uˇ C u˛F.1/

ˇ :

(6.43)

Hint: apply the procedure outlined in Appendix A.2.2, including a forcing term.
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In steady state, however, the term @
.1/
t ˘

eq
˛ˇ is immaterial (cf. Sect. 4.2.3). Hence,

we could expect that the contribution F˛uˇ C u˛Fˇ no longer exists. This is not
absolutely true, though.

On the one hand, when using the standard equilibrium, an identical term is
retrieved due to the requirement that the shear stress depends on the gradients of
the velocity u rather than on the gradients of the momentum �u. Consequently, to
cancel that term,

P
i Fici˛ciˇ is still required as a correction.

On the other hand, with the incompressible LB equilibrium, the steady incom-
pressible NSE is recovered with no spurious terms as discussed in Sect. 4.3. Hence,
unlike the previous cases, here we must set

P
i Fici˛ciˇ D 0, i.e. Fi must be

expanded only to the first velocity order. A second-order expansion of Fi would
lead to an incorrect steady incompressible NSE affected by the divergence of
F˛uˇ C u˛Fˇ . We will illustrate this issue in Sect. 6.7 through numerical examples.
A more detailed explanation of this subtle point can be found in [5, 23].

6.5.2.2 Discretisation of Space and Time: The Issue of Discrete Lattice
Effects

We can understand the effect of an inaccurate space-time discretisation on the
forcing term by repeating the Chapman-Enskog analysis, but this time with a first-
order time integration scheme (cf. Sect. 6.3.1).

Let us assume a time-dependent process and a forcing term with second-order
velocity discretisation, (6.14). It can be shown, see e.g. [4, 15], that the macroscopic
equations reproduced in this case have the following incorrect form:

@t� C @�.�u� / D ��t

2
@� F� ;

@t.�u˛/ C @ˇ

�
�u˛uˇ C �c2

sı˛ˇ

	
D @ˇ

h
�
�
@ˇu˛ C @˛uˇ

�iC F˛

� �t

2

h
@tF˛ C @ˇ

�
u˛Fˇ C F˛uˇ

�i
:

(6.44)

The difference between (6.44) and the “true” NSE with a force, (6.42), lies in the
addedO.�t/ error terms [4, 15]. They are called discrete lattice artefacts since they
act on the same scale as the viscous term � � O.�t/. Thereby, they corrupt the
macroscopic equations below the truncation error O.�t2/. These discrete artefacts
lead to inconsistencies in the macroscopic equations for both mass and momentum.
Therefore discrete lattice artefacts are more problematical than an incorrect velocity
space discretisation which “only” corrupts the momentum equation.
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6.6 Boundary and Initial Conditions with Forces

So far we have limited the discussion about forces to the bulk solution. In Chap. 5
we have already discussed the topic of initial and boundary conditions, but without
including the effect of forces. We will now point out the required modifications of
initial (Sect. 6.6.1) and boundary conditions (Sect. 6.6.2) due to the presence of
forces.

6.6.1 Initial Conditions

Initial conditions are necessary for time-dependent problems. But even steady flows
must be subject to a proper initialisation. Otherwise, initial errors may be conserved
during the simulation and contaminate the steady-state solution. In Sect. 5.5 we
discussed two ways of initialising LB simulations. Let us revisit them and work out
the necessary modifications when forces are present.

The simplest strategy is to initiate the populations with their equilibrium state,
fi.x; t D 0/ D f eqi

�
�0.x/;u0.x/

�
, where �0 and u0 refer to known initial density

and velocity fields. We know from Sect. 6.3.2 that for problems with forces the
macroscopic velocity is computed from �u D P

i fici C �t
2
F. Therefore, to set an

initial velocity u0 consistent with the force field, we take [50]

fi.x; t D 0/ D f eqi

�
�0.x/; Nu0.x/

�
; Nu0 D u0 � F�t

2�0

: (6.45)

Obviously, for low-order forcing schemes, where the macroscopic velocity is
computed from �u D P

i fici, the equilibrium initialisation is the same as in the
force-free case, i.e. Nu0 D u0.

As discussed in Sect. 5.5, a more accurate initialisation consists of adding
the non-equilibrium populations f neqi to f eqi . Given that the leading order of f neqi ,

i.e. f .1/
i , depends on F, cf. (6.33a), the non-equilibrium term added to (6.45) must

be redefined [5, 51]:

f neqi � �wi�

c2
s

�Qi˛ˇ@˛uˇ � wi�t

2c2
s

 
ci˛F˛ C Qi˛ˇ

2c2
s

�
u˛Fˇ C F˛uˇ

�
!

(6.46)

where Qi˛ˇ D ci˛ciˇ � c2
sı˛ˇ .

6.6.2 Boundary Conditions

Forces may also affect the operation of boundary conditions (cf. Sect. 5.2.4). We
will discuss the consequences for both bounce-back and non-equilibrium bounce-
back.
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6.6.2.1 Bounce-Back

Although the principle of the bounce-back rule is not changed by the inclusion of
forces, its accuracy does depend on the force implementation. If we do not work
with the second-order space-time discretisation of the LBE, the macroscopic laws
established by the bounce-back rule will be affected by discrete lattice artefacts. We
demonstrate this issue by looking at a simple example: a hydrostatic equilibrium
where a constant force (e.g. gravity) is balanced by a pressure gradient.

We choose the second-order space-time discretisation for the bulk dynamics
(cf. (6.25)). Also, let us consider a time-independent process: @tfi D 0. Then, the
Chapman-Enskog analysis yields up to O.
/4:

f .1/
i D ��ci˛@.1/

˛ f eqi C
�

� � �t

2

�
F.1/

i : (6.47)

Given that we are interested in the hydrostatic solution, i.e. u D 0, the equilibrium
reduces to f eqi D wi� and the forcing term to Fi D wici � F=c2

s . Inserting f eqi and Fi

into (6.47), we get f .1/
i D ��wici˛@

.1/
˛ � C .� � �t=2/ci˛F˛=c2

s . The macroscopic
behaviour of the populations for this hydrostatic problem is completely determined
by fi D f eqi C 
f .1/

i , without any approximation [4, 29].
The next step is transferring these results to the bounce-back formula applied at a

resting wall, i.e. fNi D f ?
i (cf. (5.24)). This way, one can describe the closure relation

of the bounce-back rule in the form of a Chapman-Enskog decomposition:

f eqNi C 
f .1/

Ni D f eqi C
�

1 � �t

�

�

f .1/

i C
�

� � �t

2

�
�t
F.1/

i : (6.48)

After substituting the content of f eqi , f .1/
i and F.1/

i into (6.48) and undertaking some
algebraic simplifications, we arrive at the hydrostatic solution established by the
bounce-back rule at boundary node xb:

�
� � �t

2

� �
c2
s@˛� � F˛

	ˇ̌
ˇ̌
xb

D 0: (6.49)

The first factor in (6.49) is positive due to the stability requirement � > �t
2

(cf. Sect. 4.4) and can be cancelled. Hence, we conclude that the LBE with the
bounce-back rule is exact for the hydrostatic pressure solution where we expect the
balance c2

s@˛� D F˛.
But does the correct hydrostatic balance also hold for a first-order space-time

discretisation of the force? Based on the bulk analysis presented in Sect. 6.5.2, we
might conclude that nothing changes because bulk errors have the form of force

4Equation (6.47) results from omitting the time derivatives in equation (6.33a) based on the
Chapman-Enskog analysis for steady flows discussed in Sect. 4.2.3.
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derivatives which in turn vanish for a constant body force. However, the closure in
the bounce-back boundary conditions can retain discrete lattice artefacts even for a
constant force, as shown in Exercise 6.3. More details can be found in [29, 34].

Exercise 6.3 Repeat the Chapman-Enskog analysis for a first-order time discretisa-
tion of the LBE. Show that the hydrostatic balance established by the bounce-back
rule at boundary node xb is then incorrectly predicted as

�
� � �t

2

� �
c2
s@˛� � F˛

	ˇ̌
ˇ̌
xb

D �t

2
F˛.xb/:

6.6.2.2 Non-equilibrium Bounce-Back

The fundamental principle of the wet-node technique is that boundary nodes follow
the same rules as bulk nodes. Hence, to be consistent with the bulk, the algorithm
for boundary nodes needs to be reformulated to account for the presence of a force
as well. We demonstrate this for the non-equilibrium bounce-back (NEBB) method
[52].

As we have seen in Sect. 5.3.4, wet boundary nodes must satisfy the macroscopic
laws of bulk nodes through the velocity moments. Therefore, the first-order moment
for the momentum is modified by the presence of a force when we use the second-
order space-time discretisation in (6.26b). This leads to a number of changes in the
NEBB algorithm.

Consider the top wall depicted in Fig. 5.21. As in Sect. 5.3.4, we will work in
dimensional notation, which is noted by the presence of the particle velocity c that
in lattice units is c D 1. The determination of the unknown wall density for the
force-free case in (5.31) now changes to

�w D
X

i

fi D f0 C f1 C f2 C f3 C f5 C f6„ ƒ‚ …
known

C f4 C f7 C f8„ ƒ‚ …
unknown

;

�wuw
y D

X

i

ficiy C �t

2

X

i

Ficiy D c .f2 C f5 C f6/„ ƒ‚ …
known

� c .f4 C f7 C f8/„ ƒ‚ …
unknown

CFw
y �t

2
;

(6.50)

where index w refers to the macroscopic fluid properties evaluated at the wall, where
wet boundary nodes lie. By combining these two equations we get

�w D c

c C uw
y

 
f0 C f1 C f3 C 2 .f2 C f5 C f6/ C Fw

y �t

2c

!
: (6.51)

The unknown boundary populations still have to be determined by the bounce-
back of their non-equilibrium components, i.e. (5.42). Yet, compared to the
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force-free case, now it is necessary to consider both tangential and normal momen-
tum corrections N˛ . The reason for that will become clear shortly. For now, let us
consider the top wall in Fig. 5.21 and write the bounce-back of the non-equilibrium
populations as5

f neq4 D f neq2 � Ny;

f neq7 D f neq5 � Nx � Ny;

f neq8 D f neq6 C Nx � Ny:

9
>>>=

>>>;
H)

8
ˆ̂̂
<

ˆ̂̂
:

f4 D f2 C �
f eq4 � f eq2

� � Ny;

f7 D f5 C �
f eq7 � f eq5

� � Nx � Ny;

f8 D f6 C �
f eq8 � f eq6

�C Nx � Ny:

(6.52)

Using the known equilibrium distributions, we get

f4 D f2 � 2�wuw
y

3c
� Ny;

f7 D f5 � �w

6c
.uw

x C uw
y / � Nx � Ny;

f8 D f6 � �w

6c
.�uw

x C uw
y / C Nx � Ny:

(6.53)

We compute Nx by resorting to the first-order velocity moment along the
boundary tangential direction:

�wuw
x D

X

i

ficix C �t

2

X

i

Ficix

D c . f1 C f5 C f8/ � c . f3 C f6 C f7/ C Fw
x �t

2

D c . f1 � f3/ � c . f7 � f5/ C c . f8 � f6/ C Fw
x �t

2

D c . f1 � f3/ C �wuw
x

3
C 2cNx C Fw

x �t

2
:

(6.54)

This gives

Nx D �1

2
. f1 � f3/ C �wuw

x

3c
� Fw

x �t

4c
: (6.55)

5The sign convention for the normal momentum correction is in line with the tangential case, cf.
(5.43). If n and t denote the wall normal and the wall tangential vectors and if their positive sign
coincides with the positive sign of the Cartesian axis, then the normal and tangential momentum
corrections appear in the algorithm as f

neq
Ni

.xB; t/ D f
neq
i .xB; t/ � .n � ci/Nn � .t � ci/Nt.
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Similarly, we compute Ny based on the first-order velocity moment along the
boundary normal direction:

�wuw
y D

X

i

ficiy C �t

2

X

i

Ficiy

D c .f2 C f5 C f6/ � c .f4 C f7 C f8/ C Fw
y �t

2

D c .f2 � f4/ � c .f7 � f5/ C c .f6 � f8/ C Fw
y �t

2

D �wuw
y

3
C 3cNy C Fw

y �t

2
:

(6.56)

We obtain

Ny D �Fw
y �t

6c
: (6.57)

Clearly, the normal momentum correction Ny is only relevant when forces are
included.

In the end, the NEBB prescribes the unknown populations with forces, here for
a top wall:

f4 D f2 � 2�wuw
y

3c
C Fw

y �t

6c
;

f7 D f5 C 1

2
.f1 � f3/ � �wuw

x

2c
� �wuw

y

6c
C Fw

x �t

4c
C Fw

y �t

6c
;

f8 D f6 � 1

2
.f1 � f3/ C �wuw

x

2c
� �wuw

y

6c
� Fw

x �t

4c
C Fw

y �t

6c
:

(6.58)

The extension of (6.58) to other boundary orientations is straightforward (cf.
Exercise 6.4).

The necessity of including force corrections in the NEBB method has been
recognised in a number of works, e.g. [53–55]. These terms prevent the appearance
of discrete lattice artefacts in the macroscopic laws of wet boundary nodes.
However, those errors terms are proportional to r � F. Hence, they will only be
macroscopically visible for spatially varying force fields. We will demonstrate this
numerically in Sect. 6.7.
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Exercise 6.4 Show that the Dirichlet velocity condition prescribed with the NEBB
method at a left boundary takes the following form in the presence of a force F D
.Fx; Fy/:

� D c

c � uw
x

�
f0 C f2 C f4 C 2 .f3 C f6 C f7/ � Fw

x �t

2c

�
;

f1 D f3 C 2�wuw
x

3c
� Fw

x �t

6c
;

f5 D f7 � 1

2
.f2 � f4/ C �wuw

y

2c
C �wuw

x

6c
� Fw

x �t

6c
� Fw

y �t

4c
;

f8 D f6 C 1

2
.f2 � f4/ � �wuw

y

2c
C �wuw

x

6c
� Fw

x �t

6c
C Fw

y �t

4c
:

(6.59)

6.7 Benchmark Problems

So far we have limited the discussion about forces in the LBE to theoretical analyses.
While this helps us understanding basic features underlying LB forcing schemes,
we have yet to see actual effects on LB simulations. The goal of this section,
therefore, is to illustrate the true impact of the force inclusion, particularly when an
incorrect force model is adopted. We will compare four possible forcing strategies
(summarised in Table 6.2).

The alternative forcing schemes presented in Sect. 6.4 can be considered
equivalent to scheme IV in Table 6.2. Although they behave differently at higher
orders, these differences are not relevant for the examples that will follow.

6.7.1 Problem Description

We consider a 2D Poiseuille channel flow driven by a combined pressure gradient
@p=@x and body force Fx:

��
@ux

@y
D @p

@x
� Fx: (6.60)

Table 6.2 LB forcing schemes tested in Sect. 6.7. They have different velocity or space-time
discretisation orders

Scheme Velocity order Space-time order Examples of references

I 1st [(6.16)] 1st [(6.20)] [43, 56–60]

II 2st [(6.14)] 1st [(6.20)] [16, 18, 20, 44, 48, 61]

III 1st [(6.16)] 2st [(6.25)] [4, 23, 37, 45, 46, 62]

IV 2st [(6.14)] 2st [(6.25)] [15, 25, 28, 51, 63, 64]
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The velocity solution is

ux.y/ D 1

2��

�
@p

@x
� Fx

�"
y2 �

�
H

2

�2
#

(6.61)

where the no-slip condition (ux D 0) holds at bottom/top walls (y D ˙H=2) as
shown in Fig. 1.1b.

6.7.2 Numerical Procedure

For the bulk nodes we use the BGK collision operator with the incompressible
equilibrium from Sect. 4.3.2.We will make some comments about the application of
the standard (compressible) equilibrium later. We consider and individually discuss
two different wall boundary schemes: the bounce-back and the non-equilibrium
bounce-back (NEBB) methods.

The simulations are initialised by setting fi.x; t D 0/ D f eqi .� D 1;u D 0/ as
explained in Sect. 6.6.1; they are stopped when the velocity ux reaches the steady-
state criterion L2 � 10�10 between 100 consecutive time steps (cf. Sect. 4.5.2). The
channel domain is discretised using Nx � Ny D 5 � 5 grid nodes. We evaluate the
LB results for each of the four strategies presented in Table 6.2 and compare them
with the analytical solution in (6.61) through the L2 error norm.

6.7.3 Constant Force

Let us start by considering the simplest case: a purely force-driven Poiseuille
flow (@p=@x D 0). We use periodic boundary conditions for the inlet and outlet
(cf. Sect. 5.3.1) and the force magnitude is Fx D 10�3 (in simulation units).

Since the force is uniform, any possible bulk error caused by an incorrect forcing
scheme vanishes (cf. Sect. 6.5.2). However, boundaries can still lead to errors
(cf. Sect. 6.6.2).

6.7.3.1 Bounce-Back

The errors for the LBGK model with bounce-back walls for several � values are
summarised in Table 6.3. The velocity discretisation of the force plays no role in
this case. Differences exist in the space-time discretisation, though. While both
strategies are able to reproduce the parabolic solution exactly, this happens at
different values of � . The reason is that spatial discretisation errors are cancelled for
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Table 6.3 L2 errors for Poiseuille flow with constant force and bounce-back at the walls (LBGK,
grid resolution of Nx �Ny D 5�5). Results are identical for standard and incompressible equilibria


u [%]

�=�t Schemes I and II Schemes III and IV

0.6 5.91 5.18

0.8 5.04 2.85p
3=16 C 1=2 D 0:933 3.16 2.04�10�12

1.0 1.82 1.82p
13=64 C 5=8 D 1:076 1.42�10�12 4.20

1.2 3.72 8.83

1.4 11.60 18.17

specific values of � , depending on the discretisation order of the force scheme [20,
43, 62, 65].

6.7.3.2 Non-equilibrium Bounce-Back

The NEBB method reproduces the dynamical rules of the bulk solution at boundary
nodes. Consequently, for a constant force, the errors discussed in Sect. 6.5.2 vanish.
This makes the NEBB method exact for the parabolic velocity solution in (6.61),
regardless the forcing scheme employed.

6.7.4 Constant Force and Pressure Gradient

Let us now increase the complexity of the previous exercise by considering the
simultaneous presence of a constant force and pressure gradient. In terms of imple-
mentation, the only modification concerns the inlet and outlet boundaries which
are now modelled with pressure periodic boundary conditions (cf. Sect. 5.3.2). The
relative fraction of the pressure gradient and the force density has no impact on the
velocity solution of an incompressible flow, providing their combined effect is kept
fixed. Without loss of generality, the overall magnitude is

�
Fx � @p=@x

� D 2 � 10�3

(in simulation units), where we consider a 50/50 contribution from each term.
Similarly to the previous case, a constant force leads to vanishing force errors in

the bulk, regardless the forcing strategy adopted (cf. Sect. 6.5.2). Yet, the closure
relations at boundaries established by the bounce-back rule can differ, depending on
the forcing scheme adopted.
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Table 6.4 L2 errors for Poiseuille flow with constant force and pressure gradient, bounce-back at
the walls and pressure periodic conditions at inlet/outlet (LBGK, grid resolution of Nx�Ny D 5�5,
incompressible equilibrium)


u (%)

�=�t Schemes I and II Schemes III and IV

0.6 5.55 5.18

0.8 3.94 2.85p
3=16 C 1=2 D 0:933 1.58 1.37�10�11

1.0 5.78�10�13 1.82p
13=64 C 5=8 D 1:076 2.10 4.20

1.2 6.27 8.83

1.4 14.89 18.17

6.7.4.1 Bounce-Back

Table 6.4 summaries the errors obtained with bounce-back. While the velocity
discretisation order plays no role, the space-time discretisation is important.

In fact, we see that only the second-order space-time discretisation guarantees
that the force-driven solution is unchanged when adding the pressure gradient. This
follows from comparing Table 6.3 and Table 6.4: solutions are exactly equivalent for
any � value in that case. From a physical point of view, this result is expected since
a constant force and a constant pressure gradient are equivalent in incompressible
hydrodynamics.

However, this physical equivalence can be violated numerically when a less
accurate space-time force discretisation is adopted.According to Table 6.4, the value
where the solution becomes exact, � D �t, now differs from the pure force-driven
case where � D .

p
13=64 C 5=8/�t gives the exact solution.

6.7.4.2 Non-equilibrium Bounce-Back

Similarly to the purely force-driven case in Sect. 6.7.3, no force errors occur for a
constant force. The explanation is the same as before.

6.7.5 Linear Force and Pressure Gradient

Finally, let us address the most interesting case in this exercise: the modelling
of a spatially varying force. The force increases linearly along the streamwise
direction, but the total contribution remains constant so that the overall magnitude
remains locally

�
Fx � @p=@x

� D 2 � 10�3 (in simulation units), with a 50/50 local
contribution from each term. That means the slope of variation of each term is equal,
but with different signs. More details about this test case are described in [23].
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Compared to the last two cases, the key difference is that the body force is
inhomogeneous now. Thus, the force bulk errors in Sect. 6.5.2 do not vanish any
more. Both bulk and boundary errors can now interfere with the LB solution in
case of an incorrect force implementation. This case allows us to identify the most
accurate LB forcing scheme for steady incompressible flow problems.

6.7.5.1 Bounce-Back

According to Table 6.5, the first-order space-time discretisation never reaches the
exact solution, regardless of the � value. This is due to the non-vanishing bulk errors
given by (6.44). However, also the velocity discretisation affects the bulk error. As
outlined in Sect. 6.3 and Sect. 6.5.2, the correct modelling of steady incompressible
hydrodynamicswith a body force requires a first-order velocity discretisation of the
forcing term. This is confirmed in Table 6.5 where only scheme III can reproduce
the exact solution.

The reason for the exact solution only occurring for � D .
p

3=16 C 1=2/�t
is the �-dependence of the bounce-back scheme. As explained in Sect. 5.3.3 and
Sect. 5.4.1, only this value of � locates the wall exactly halfway between nodes in a
parabolic flow profile.

6.7.5.2 Non-equilibrium Bounce-Back

The NEBB method leads to essentially the same results as the bounce-back scheme;
compare Table 6.5 and Table 6.6. Once again, a bulk error can corrupt the LB
solutions if the velocity and space-time discretisations are not properly handled. To
reproduce steady incompressible hydrodynamics exactly, scheme III is necessary
(cf. Table 6.6). Here the exact solution is reproduced for any value of � because:
(i) scheme III leads to a velocity solution in bulk free from errors (cf. Sect. 6.5.2)

Table 6.5 L2 errors for Poiseuille flow with linear force and pressure gradient, bounce-back at the
walls and pressure periodic conditions at inlet/outlet (LBGK, grid resolution of Nx � Ny D 5 � 5,
incompressible equilibrium)


u (%)

�=�t Scheme I Scheme II Scheme III Scheme IV

0.6 6:10 5:44 5.18 5:07

0.8 4:12 3:84 2.85 2:74p
3=16 C 1=2 D 0:933 1:70 1:48 8.46�10�15 0:12

1.0 0:51 0:51 1.82 1:94p
13=64 C 5=8 D 1:076 2:00 2:21 5.47 4:32

1.2 6:19 6:39 8.83 8:96

1.4 14:81 15:03 18.17 18:32
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Table 6.6 L2 errors for Poiseuille flow with linear force and pressure gradient, non-equilibrium
bounce-back at the walls and pressure periodic conditions at inlet/outlet (LBGK, grid resolution of
Nx � Ny D 5 � 5, incompressible equilibrium)


u (%)

�=�t Scheme I Scheme II Scheme III Scheme IV

0.6 0.19 0.27 8.60�10�14 0.05

0.8 0.42 0.41 4.41�10�15 0.07p
3=16 C 1=2 0.63 0.63 1.24�10�14 0.07

1.0 0.74 0.74 1.32�10�14 0.07p
13=64 C 5=8 0.87 0.87 1.24�10�14 0.07

1.2 1.08 1.08 2.39�10�14 0.07

1.4 1.42 1.42 1.55�10�14 0.07

and (ii) the NEBB scheme accommodates this solution at the wall in an exact and
�-independent way (cf. Sect. 6.6.2).

6.7.6 Role of Compressibility

The previous exercises used the incompressible equilibrium that allows for the exact
description of steady incompressible flows (cf. Sect. 4.3.2). This explains why all
test cases could reach an exact solution, providing the correct forcing scheme is
chosen.

On the other hand, the standard equilibrium recovers the compressible NSE
which approximates incompressible hydrodynamics in the limit of slow flows and
small density (pressure) variations [4]. Associated with this are compressibility
errors, as discussed in Sect. 4.5.4.

Compared to the discrete lattice artefacts, coming from the incorrect force
modelling, and/or the velocity slip, created by the bounce-back boundary scheme,
the compressibility errors typically have a secondary impact [4]. Still, they always
contaminate the solutions. In this case, they preclude exact results even when the
above error sources are corrected. This issue will be illustrated below, by repeating
the previous exercises with the standard (compressible) equilibrium. As we shall
see, although compressibility errors may obscure the clear identification of the force
discretisation artefacts, the trends of the incompressible equilibrium remain. But this
time, the lowest minimum in L2, for a spatially varying force, is found in the forcing
scheme with the second-order discretisation in velocity space (cf. Sect. 6.5.2),
although differences are very small.



260 6 Forces

6.7.6.1 Constant Force

The first test case was the purely force-driven Poiseuille flow. Since no pressure
variations occur in this setup, we have identical results for both the incompressible
and the standard equilibria.

6.7.6.2 Constant Force and Pressure Gradient

The second test case considered the simultaneous presence of a constant force
and pressure gradient. As pressure varies here, the LB solution now contains
compressibility errors.

The effect of the velocity discretisation order remains negligible, although
machine accuracy is never reached. This is in contrast to the incompressible case.
Once again, the space-time discretisation has the largest effect, as shown in Fig. 6.2.

Using bounce-back boundaries (Fig. 6.2a), the first-order space-time discretisa-
tion features the L2 minimum at � D �t, while for the second-order discretisation
it is at � D .

p
13=64 C 5=8/�t. This behaviour is similar to the incompressible

case, Table 6.4, except that now the minimum does not correspond to the exact
solution. The same kind of qualitative results occur when the NEBBmethod is used,
yet without showing any clear minimum (cf. Fig. 6.2b). Obviously the NEBB has
superior accuracy when the compressible equilibrium is used.

Fig. 6.2 L2 errors for Poiseuille flow with constant force and pressure gradient, periodic condi-
tions at inlet/outlet (LBGK, grid resolution of Nx � Ny D 5 � 5, compressible equilibrium). (a)
Bounce-back. (b) Non-equilibrium bounce-back
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6.7.6.3 Linear Force and Pressure Gradient

The third test case was a linearly varying body force and an according pressure
gradient. In addition to the bulk errors caused by force artefacts, the pressure
(density) variation also introduces compressibility errors.

While the order of the velocity discretisation has a slightly larger effect than
in the previous problem, the LB solution is dominated by compressibility errors.
In fact, using bounce-back, the second-order velocity discretisation is only more
accurate for small values of � (cf. Fig. 6.3a). With the NEBB method, the second-
order velocity discretisation is more accurate for all values of � (cf. Fig. 6.3b). Yet,
the accuracy improvement due to a second-order velocity discretisation is marginal
and not comparable to the incompressible case. Once again, the accuracy of the LB
solution depends mostly on the space-time discretisation as shown in Fig. 6.3.

The conclusions are similar to those of the case with constant force and pressure
gradient. The second-order space-time discretisation leads to minimum L2 values.
Still, due to the non-trivial interplay of force and compressibility errors, the second-
order space-time discretisation does not perform better in the full range of � , which
is particularly noticeable for the bounce-backmethod. Generally, the NEBB method
has smaller errors for the problem considered in this section.

Fig. 6.3 L2 errors for Poiseuille flow with linear force and pressure gradient, pressure periodic
conditions at inlet/outlet (LBGK, grid resolution of Nx � Ny D 5 � 5, compressible equilibrium).
(a) Bounce-back. (b) Non-equilibrium bounce-back
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