
Chapter 2
Numerical Methods for Fluids

Abstract After reading this chapter, you will have insight into a number of other
fluid simulation methods and their advantages and disadvantages. These methods
are divided into two categories. First, conventional numerical methods based on
discretising the equations of fluid mechanics, such as finite difference, finite volume,
and finite element methods. Second, methods that are based on microscopic,
mesoscopic, or macroscopic particles, such as molecular dynamics, lattice gas
models, and multi-particle collision dynamics. You will know where the particle-
based lattice Boltzmann method fits in the landscape of fluid simulation methods,
and you will have an understanding of the advantages and disadvantages of the
lattice Boltzmann method compared to other methods.

While the equations of fluid mechanics described in Sect. 1.1 may look relatively
simple, the behaviour of their solutions is so complex that analytical flow solutions
are only available in certain limits and for a small number of geometries. In
particular, the equations’ non-linearity and the presence of boundary conditions
of complex shape make it extremely difficult or even impossible to find analytical
solutions. In most cases, we have to solve the equations numerically on a computer
to find the flow field. The field of computational fluid dynamics (CFD) started soon
after the advent of electronic computers, although numerical solution of difficult
equations is a much older topic.1

At this point, a wide variety of methods for finding fluid flow solutions have
been invented. Some of these methods are general-purpose methods, usable for any
partial difference equation (PDE), which have been applied to fluids with minor
adaptations. Other methods are more tailored for finding fluid flow solutions.

While the lattice Boltzmann method is the topic of this book, it is simply one
of the many, many methods available today. Each of these methods has its own
advantages and disadvantages, and the LB method is no exception. Therefore, this
chapter briefly covers the most similar methods and relevant alternatives to LB, in
order to give some perspective on where LB fits in the wider landscape of methods,
and to give some idea of the cases for which LB can be better than other methods.

1Before electronic computers, numerical solutions were performed manually by people whose job
title was “computer”!
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32 2 Numerical Methods for Fluids

One concept that we will be referring to often in this chapter is order of
accuracy, which will be covered in more depth in Sect. 4.5.1. It is tied to
truncation errors, i.e. the inherent errors when solving a PDE numerically.
A numerical solution is always an approximation of the “true” solution, and
typically deviates from it by truncation error terms proportional to resolution
parameters like the time step �t and spatial step �x. For example, one
particular numerical method could deviate from the “true” solution by terms
O.�t2/ C O.�x4/, so that as the resolution is made finer the deviation would
decrease with the second power of �t and the fourth power of �x. This
method is said to have a second order accuracy in time, and a fourth order
accuracy in space. Section 2.1.1 shows where the truncation error comes from
in the case of finite difference approximations.

Section 2.1 covers “conventional” Navier-Stokes solvers, i.e. “top-down” meth-
ods where the macroscopic fluid equations are directly discretised and solved by
the aforementioned general-purpose methods. Section 2.2 covers particle-based
methods, typically “bottom-up” methods based on microscopic or mesoscopic
fluid descriptions. The LB method falls into the latter category. In Sect. 2.3 we
summarise the two main categories of methods, and in Sect. 2.4 we explain where
the lattice Boltzmann method fits in and give a brief overview of its advantages and
disadvantages.

2.1 Conventional Navier-Stokes Solvers

Conventional numerical methods work by taking the equation (or coupled system of
equations) of interest and directly solving them by a particular method of approx-
imation. In the case of CFD, the basic equations to be solved are the continuity
equation and the Navier-Stokes equation (or their incompressible counterparts).
Additional equations, such as an energy equation and an equation of state, may
augment these; the choice of such additional equations depends on the physics to be
simulated and the approximations used.

The derivatives in these equations are always discretised in some form so
that the equations may be solved approximately on a computer. One simple
example is the Euler approximation of a time derivative. By definition, a
variable’s derivative is its slope over an infinitesimal interval �t, and this can

(continued)
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be approximated using a finite interval �t as

@y.t/

@t
D lim

�t!0

y.t C �t/ � y.t/

�t
� y.t C �t/ � y.t/

�t
: (2.1)

Unsurprisingly, the accuracy of this approximation increases as �t is made
smaller and thus closer to its infinitesimal ideal. Additionally, the accuracy
depends on the solution itself; as a rule of thumb, a rapidly varying solution
requires a smaller value of �t to reach a good level of accuracy than a slowly
varying solution does.

Example 2.1 The forward Euler method can be used to find a numerical solution
to simple equations. Consider the equation @y.t/=@t D �y.t/, with y.0/ D 1. If
we did not know already that the answer is y.t/ D e�t we might want to solve it
step-by-step for discrete time steps tn D n�t as

ynC1 D yn C �t
@y

@t

ˇ
ˇ
ˇ
ˇ
yDyn

D .1 � �t/yn: (2.2)

Here, yn is the numerical approximation to y.tn/. In this way, we would find y1 D
.1 � �t/y0 D .1 � �t/, y2 D .1 � �t/y1, and so forth. The resulting solutions for
various values of �t are shown in Fig. 2.1.

Exercise 2.1 Write a script implementing (2.2) from t D 0 to t D 3. Try out
different values of �t and show that the difference between the numerical solution
ykjtkD3 and the analytical solution y.3/ D e�3 varies linearly with �t.

While the forward Euler method is the simplest and fastest method to step
the solution forward in time, other methods such as the implicit backward Euler

Fig. 2.1 Comparison of the analytical solution of @y.t/=@t D �y.t/ to forward Euler solutions
with different values of �t
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method or Runge-Kutta methods beat it in stability and/or accuracy [1].2 Typically,
conventional methods for unsteady (i.e. time-dependent) CFD can use any of these
methods in order to determine the solution at the next time step from the solution at
the current time step.

However, these conventional CFD methods are distinguished by the approach
they use to discretise the solution, i.e. how they use a finite set of numbers
to represent the solution in continuous physical space. All these methods must
represent the solution variables, such as fluid velocity u and pressure p, in such
a way that their spatial derivatives can be found throughout the entire domain.

For many if not most conventional methods, this process of discretisation leads
to matrix equations Ax D b, where A is a sparse matrix that relates the unknown
discretised solution variables in the vector x, and b represents the influence of
boundary conditions and source terms. Solving such matrix equations by inverting
A to find x is a linear algebra problem that lies at the heart of these methods, and
finding efficient solution methods for such problems has been the topic of much
research. Another common challenge of conventional incompressible Navier-Stokes
solvers is to obtain a solution for the pressure Poisson equation.

In the following sections we will take a brief look at the basics of some of these
methods, namely the finite difference, finite volume, and finite element methods.
We will not cover the boundary-element method (BEM) [2], which is often used for
creeping flows in complex geometries, or spectral methods for fluid dynamics [3].

2.1.1 Finite Difference Method

In the finite difference (FD) method, physical space is divided into a regular grid of
nodes. In one dimension, these nodes are placed at the position xj D j�x. On each
of these nodes, the solution variables are represented by a number; for a general
quantity �.x/, the exact solution �.xj/ is approximated by a discretised counterpart,
denoted as �j.

2.1.1.1 Finite Difference Approximations of Derivatives

At the base of the finite difference method, derivatives of � are approximated
by linear combinations (“finite differences”) of �j. To find these differences, we

2Stability and accuracy, especially in terms of the lattice Boltzmann method, are later covered in
more detail in Sects. 4.4 and 4.5, respectively.



2.1 Conventional Navier-Stokes Solvers 35

Fig. 2.2 Approximations of the derivative of sin.x/ at x D 1, with �x D 0:5

consider the Taylor series of �.x/ about xj:

�.xj C n�x/ D �.xj/ C .n�x/
@�.xj/
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:

(2.3)

From this we can find three simple approximations for the first-order derivative,
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�x
: (2.4)

These three approximations are called the forward difference,3 the central differ-
ence, and the backward difference approximations, respectively.

Exercise 2.2 Prove that the four approximations in (2.4) are valid by letting e.g.
�jC1 ! �.xjC1/ and inserting (2.3), and show that the truncation error of the
forward and backward difference approximations areO.�x/while that of the central
difference approximation is O.�x2/.

The comparison in Fig. 2.2 indicates that central differences approximate the first
derivative better, which is typically true and which can also be seen from its smaller
O.�x2/ truncation error.

We can also find an approximation for the second-order derivative with a O.�x2/

truncation error:

@2�

@x2

ˇ
ˇ
ˇ
ˇ
ˇ
xj

� �jC1 � 2�j C �j�1

�x
: (2.5)

3The forward difference approximation corresponds to the forward Euler approximation for time
discretisation, shown in (2.1).
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From any such given finite difference scheme, it is possible to insert the Taylor
expansion in order to determine not only what the scheme approximates, but also
the truncation error of the approximation. This is detailed further in Sect. 4.5.1.

Example 2.2 A finite difference approximation of the heat equation @T=@t D
�@2T=@x2, where T.x; t/ is the temperature and � is the thermal diffusivity, is

TnC1
j � Tn

j

�t
D �

Tn
jC1 � 2Tn

j C Tn
j�1

�x2
: (2.6)

Here the superscripts indicate the time step and the subscripts the spatial position,
e.g. T.xj; tn/ � Tn

j . We have used the forward Euler approximation from (2.1) to
discretise the time derivative and (2.5) for the spatial second derivative. If we know
the value of the solution at every point xj at time tn, along with the values at the edges
of the system at all times, we can from these values determine the temperature at
tnC1 for every point.

2.1.1.2 Finite Difference Methods for CFD

The finite difference method is simple in principle; just take a set of equations and
replace the derivatives by finite difference approximations. However, this simple
approach is often not sufficient in practice, and special techniques may be required
for the set of equations in question. We will now touch on some problems and
techniques of finding FD solutions of the Navier-Stokes equation, all of which
are covered in more depth in the straightforward finite difference CFD book by
Patankar [4].

We found above that the central difference scheme for first derivatives is typically
more accurate than forward or backward schemes. However, in the advection term
@.�u˛uˇ/=@xˇ, information comes only from the opposite direction of the fluid flow,
i.e. upstream or upwind.4 Since the central difference scheme looks both upwind and
downwind, it is possible to improve on it by using an upwind scheme, where either
a forward or a backward scheme is used depending on the direction of fluid flow.

An issue requiring special treatment is the problem of checkerboard instabilities,
where patterns of alternatingly high and low values emerge, patterns which in 2D
are reminiscent of the black-and-white pattern on a checkerboard. A 1D example is
shown in Fig. 2.3. In short, the reason behind this pattern is that a central difference
scheme would report the first derivative as being zero, so that the rapidly varying
field is felt as being uniform. Thus, there is nothing to stop the pattern from
emerging.

A remedy to this problem is using a staggered grid as shown in Fig. 2.4, where
different grids of nodes are used for different variables. These different grids are

4As a practical example, a deer can smell a hunter who is upwind of it, since the wind blows the
hunter’s scent towards the deer.
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Fig. 2.3 A one-dimensional “checkerboard” field around xk

Fig. 2.4 A cutout of a staggered grid, where ux and uy are each stored in their own shifted grid of
nodes

shifted relative to each other. Thus, when evaluating e.g. @ux=@x in one of the p
nodes or @p=@x in one of the ux nodes, we can use a central difference scheme
where only adjacent nodes are used, instead of having to skip a central node like the
central difference scheme in (2.4) implies. Thus, a field like that shown in Fig. 2.3
is no longer felt as being uniform, and checkerboard instabilities cannot emerge.

The Navier-Stokes equation is nonlinear because of its advection term. Nonlinear
equations are typically handled by iterating a series of “guesses” for the nonlinear
quantity. This is additionally complicated by having to couple a simultaneous set
of equations. In the classic FD algorithms for incompressible flow called SIMPLE
and SIMPLER, guesses for the pressure field and the velocity field are coupled and
successively iterated using equations tailored for the purpose. More information on
these somewhat complex algorithms can be found elsewhere [4].

2.1.1.3 Advantages and Disadvantages

The crowning advantage of the finite difference method is that it is really
quite simple in principle. For a number of simple equations it is not that much

(continued)
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more difficult in practice, though some care must be taken in order to maintain
stability and consistency [1].

However, fluids are governed by a complex set of coupled equations that
contain several variables. Therefore, a number of special techniques need to
be applied in order to use the FDmethod for CFD, which increases the amount
of understanding and effort required to implement a FD CFD solver. Still,
the FD method can be simple and effective compared to other conventional
methods [5].

There are certain numerical weaknesses inherent to FD CFD. Unless
special care is taken, the scheme is not conservative, meaning that the
numerical errors cause the conservation of quantities like mass, momentum,
and energy to not be perfectly respected [5]. Additionally, advective FD
schemes are subject to false diffusion, where numerical errors cause the
advected quantity to be diffused even in pure-advection cases that should have
no diffusion [4]. Finally, since the FD method is based on a regular grid it has
issues with complex geometries that do not conform to the grid itself [5]. (FD
on irregular grids is in principle possible, but in practice it is hardly used [5].)
The latter point is possibly the most important reason why other CFDmethods
have become more popular.

2.1.2 Finite Volume Method

In the finite volume (FV) method, space does not need to be divided into a regular
grid. Instead, we subdivide the simulated volume V into many smaller volumes
Vi, which may have different sizes and shapes to each other.5 This allows for a
better representation of complex geometries than e.g. the finite difference method,
as illustrated in Fig. 2.5. In the middle of each finite volumeVi, there is a node where
each solution variable �.x/ is represented by its approximate average value N�i within
that volume.

2.1.2.1 Finite Volume Approximation of Conservation Equations

The FVmethod is not as general as the FDmethodwhich can in principle be used for
any equation. Rather, the FV method is designed to solve conservation equations,

5We here use the term “volume” in a general sense, where a 2D volume is an area and a 1D volume
is a line segment.
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Fig. 2.5 Simple finite difference and finite volume discretisations of the volume inside a circular
surface. The effective surface in each case is shown as black dashed lines, and interior nodes as
white circles. To the right, the dotted lines show the finite volumes’ interior edges

the type of equations which we typically find in e.g. fluid mechanics.6 The FV
method is conservative by design, which means that e.g. mass and momentum will
always be conserved perfectly, unlike in the FD method.

To show the general principle of how FV approximates a conservation equation,
we start with a steady advection-diffusion equation for a general quantity �.x; t/,

r � �

��u
� D r � .Dr�/ C Q; (2.7)

where the density � and the flow field u are assumed known, D is a diffusion
coefficient for �, and Q is a source term. By integrating this equation over the entire
volume V and applying the divergence theorem, we get

Z

S
.��u/ � dA D

Z

S
.Dr�/ � dA C

Z

V
Q dV; (2.8)

where S is the surface of the volume V and dA is an infinitesimal surface normal
element. The concept of the divergence theorem is as central to the FV method as
it is for conservation equations in general: Sources and sinks of a quantity within a
volume are balanced by that quantity’s flux across the volume’s boundaries.

6That is not to say that the FV method is limited to conservation equations; it can also be used to
solve more general hyperbolic problems [6].
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This integral over the entire volume can be split up as a sum of integrals over the
finite volumes Vi and their surfaces Si,7 and each such integral can be written as

X

sj2Si

"
Z

sj

.��u/ � dA
#

D
X

sj2Si

"
Z

sj

.Dr�/ � dA
#

C Vi NQi: (2.9)

Here, we have additionally split up the integrals over the surface Si as a sum over
its component surface segments sj,8 and the volume integral is replaced with the
integrand’s average value NQi times the volume Vi.

Equation (2.9) is still exact; no approximations have been made as long as the
finite volumes fVig together perfectly fill out the total volume V . However, as � and
r� are not known on the surfaces Sj, the surface integrals must be related to the
volume averages N�i. Using linear interpolation, this can be done in a simple way
that leads to second-order accuracy [5]. Starting with the values of N�i of the two
volumes adjacent to the surface sj, � can be linearly interpolated between the two
volumes’ nodes so that each node point xi has its corresponding volume’s value of
�.xi/ D N�i. At the point where the straight line between the two nodes crosses the
surface sj, we can find the linearly interpolated values of � and .r�/ � dA. These
values can then be applied to the entire surface in the surface integral.

Higher-order accuracy can be achieved by estimating the values of � and r� at
more points on the surface, such as the surface edges which can be determined by
interpolation from all the adjacent volumes [5]. Additionally, the interpolation of
values on the surface may use node values from further-away volumes [5, 7].

2.1.2.2 Finite Volume Methods for CFD

While the basic formulations of finite volume and finite difference methods are
different, CFD using FV methods bear many similarities to finite difference CFD,
which is discussed in Sect. 2.1.1.2. For instance, for higher-order interpolation
schemes, it is still generally a good idea to use more points in the upwind direction
than in the downwind direction [5, 7]. Additionally, the iterative finite difference
SIMPLE and SIMPLER schemes for CFD [4] and their descendants may also be
adapted for finite volume simulations [7].

One difference is that the staggered grids generally used in FD CFD become
too cumbersome to use for the irregular volumes typically used in FV CFD. While
the issue of checkerboard instabilities is also present in the FV method for non-
staggered grids, this is dealt with by the use of schemes that use more than two node
values to approximate the first derivative at a point [7].

7For the internal surfaces between adjacent finite volumes, the surface integrals from the two
volumes will cancel each other.
8In Fig. 2.5, Si is the triangular surface around each volume, and sj represents the straight-line faces
of these triangles.
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2.1.2.3 Advantages and Disadvantages

While finite volume methods are formulated differently to finite difference
methods, the two methods are comparable in their relative simplicity. The
FV method has some additional advantages, however. The control volume
formulation makes it fundamentally conservative; e.g. mass and momentum
will be conserved throughout the entire domain in a closed system. Addi-
tionally, the FV method is very appropriate for use with irregular grids, which
means that complex geometries can be captured well (the grid is adapted to
the geometry), and it is straightforward to “spend” more resolution on critical
regions in the simulation by making the grid finer in these regions.

The downside of irregular grids is that making appropriate grids for
complex geometries is itself a fairly complex problem; indeed, it is an
entire field of study by itself. Additionally, higher-order FV methods are
not straightforward to deal with, in particular in three dimensions and for
irregular grids [5]. While FV is not as general a method as FD in terms of
what equations it can solve, this is typically not an issue for the equations
encountered in CFD.

2.1.3 Finite Element Methods

In finite element methods (FEM), PDEs are solved using an integral form known
as the weak form, where the PDE itself is multiplied with a weight function w.x/

and integrated over the domain of interest. For example, the Helmholtz equation
r2� C k2� D 0 (a steady-state wave equation for wavenumber k, further explained
in Sect. 12.1.4) in 1D becomes

Z

w.x/
@2�.x/

@x2
dx C k2

Z

w.x/�.x/ dx D 0: (2.10)

Generally, an unstructured grid can be used with FEM, with a discretised solution
variable �i represented at each grid corner node xi. Between the grid corners, the
variable �.x/ is interpolated using basis functions �i.x/ fulfilling certain conditions,
i.e.

�.x/ �
X

i

�i�i.x/; for f�ig such that �.xi/ D �i;
X

i

�i.x/ D 1 (2.11)

in our 1D example. The simplest 1D basis functions are linear functions such that
�i.xi/ D 1, �i.xj¤i/ D 0, and are non-zero only in the interval .xi�1; xiC1/. However,
a large variety of basis functions that are not linear (e.g. quadratic and cubic ones)
are also available, and the order of accuracy is typically tied to the order of the basis
functions.
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Usually, the basis functions themselves are chosen as weighting functions,
w.x/ D �i.x/. This leads to a system of equations, one for each unknown value
�i. Through the integrals, each value of �i in our 1D example is related with �i�1

and �iC1, assuming linear basis functions.

The main advantage of FEM is that it is mathematically well-equipped for
unstructured grids and for increasing the order of accuracy through higher-
order basis functions (though these also require more unknowns �i). These
grids can be dynamically altered to compensate for moving geometry, as in
the case of simulating a car crash. One disadvantage of FEM is that, like
FD methods, it is not conservative by default like FV methods are. Another
disadvantage is its complexity compared to FD and FVmethods. For instance,
the integrals become tricky to solve on general unstructured grids. And as with
FD and FV methods, solving the complexNavier-Stokes system of equations
is not straightforward; see e.g. [8] for more on CFD with the FEM. The
checkerboard instabilities described in Sect. 2.1.1.2 may appear here also
unless special care is taken to deal with these [9].

2.2 Particle-Based Solvers

Particle-based solvers are not based on directly discretising the equations of fluid
mechanics, and they thus take an approach distinctly different to that of the
conventional solvers of the previous section. Instead, these methods represent the
fluid using particles. Depending on the method, a particle may represent e.g. an
atom, a molecule, a collection of molecules, or a portion of the macroscopic fluid.
Thus, while conventional Navier-Stokes solvers take an entirely macroscopic view
of a fluid, particle-based methods usually take a microscopic or mesoscopic view.

In this section we briefly present six different particle-based methods, ordered
roughly frommicroscopic, via mesoscopic, to macroscopic.Methods that are related
to or viable alternatives to the lattice Boltzmannmethod are described in more detail.

2.2.1 Molecular Dynamics

Molecular dynamics (MD) is at its heart a fundamentally simple microscopic
method which tracks the position of particles that typically represent atoms or
molecules. These particles interact through intermolecular forces f ij.t/ which are
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chosen to reproduce the actual physical forces as closely as possible.9 Knowing the
total force f i.t/ on the ith particle from all other particles, we know its acceleration
as per Newton’s second law:

d2xi

dt2
D f i

mi
D 1

mi

X

j¤i

f ij: (2.12)

The particle position xi can then be updated numerically by integrating Newton’s
equation of motion. While there are many such integrator algorithms, a particularly
simple and effective one is the Verlet algorithm [10],

xi.t C �t/ D 2xi.t/ � xi.t � �t/ C f i.t/

mi
�t2: (2.13)

This scheme uses the current and previous position of a particle to find its next
position. The Verlet scheme can also be equivalently expressed to use the particle’s
velocity instead of its previous position [10].

Exercise 2.3 Using Taylor expansion as in (2.3), show that the truncation error of
the Verlet algorithm in (2.13) is O.�t4/.

However, while MD is a great method for simulating microscale phenomena
like chemical reactions, protein folding and phase changes, a numerical method
that tracks individual molecules is far too detailed to be used for macroscopic
phenomena—consider that a single gram of water contains over 1022 molecules.
Therefore,MD is highly impractical as a Navier-Stokes solver, andmore appropriate
methods should be chosen for this application. More on MD and its applications can
be found elsewhere [10–12].

2.2.2 Lattice Gas Models

Lattice gas models were first introduced in 1973 by Hardy, Pomeau, and de Pazzis
as an extremely simple model of 2D gas dynamics [13]. Their particular model
was subsequently named the HPP model after its inventors. In this model, fictitious
particles exist on a square lattice where they stream forwards and collide in a
manner that respects conservation of mass and momentum, much in the same way
as molecules in a real gas. As the HPP lattice was square, each node had four
neighbours and each particle had one of the four possible velocities ci that would
bring a particle to a neighbouring node in one time step.

9This straightforward force approach scales with the number N of particles as O.N2/, though more
efficient approaches that scale as O.N/ also exist [10].
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However, it was not until 1986 that Frisch, Hasslacher, and Pomeau published
a lattice gas model that could actually be used to simulate fluids [14]. Their model
was also named after its inventors as the FHP model. The difference to the original
HPP model is small, but significant: Instead of the square lattice and four velocities
of the HPP model, the FHP model had a triangular lattice and six velocities ci.
This change turned out to give the model sufficient lattice isotropy to perform fluid
simulations [15–17].

Lattice gas models are especially interesting in the context of the lattice
Boltzmann method, as the LBM grew out of lattice gas models. Indeed,
early LB articles are difficult to read without knowledge of lattice gases, as
these articles use much of the same formalism and methods.

2.2.2.1 Algorithm

Only up to one particle of a certain velocity can be present in a node at any time.
Whether or not a particle of velocity ci exists at the lattice node at x at time t is
expressed by the occupation number ni.x; t/, where the index i refers to the velocity
ci. This occupation number ni is a Boolean variable with possible values of 0 and 1,
representing the absence and presence of a particle, respectively.

This occupation number can be directly used to determine macroscopic observ-
ables: The mass density and momentum density in a node can be expressed as [16]

�.x; t/ D m

v0

X

i

ni.x; t/; �u.x; t/ D m

v0

X

i

cini.x; t/; (2.14)

respectively, where m is the mass of a particle and v0 is the volume covered by the
node.

There are two rules that determine the time evolution of a lattice gas. The first
rule is collision, where particles that meet in a node may be redistributed in a way
that conserves the mass and momentum in the node. Generally, collisions can be
mathematically expressed as

n?
i .x; t/ D ni.x; t/ C ˝i.x; t/; (2.15)

where n?
i is the post-collision occupation number and ˝i 2 f�1; 0; 1g is a collision

operator that may redistribute particles in a node, based on all occupation numbers
fnig in that node [15]. Collisions must conserve mass (

P

i ˝i.x; t/ D 0) and
momentum (

P

i ci˝i.x; t/ D 0).
Which collisions may occur (i.e. the dependence of ˝i on fnig) varies between

different formulations of lattice gases, but in any case this is cumbersome to express
mathematically [16, 17]. Rather, we represent graphically the two types of collisions
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(a) (b)

(c)

Fig. 2.6 Rules of the original FHP lattice gas model: collision and streaming. (a) Two-particle
collision; the resolution is chosen randomly from the two options. (b) Three-particle collision. (c)
Streaming

in the original FHP model [14] in Fig. 2.6. Figure 2.6a shows the two possible
resolutions between head-on collisions of two particles, which are chosen randomly
with equal probability. Figure 2.6b shows the resolution of a three-particle collision:
When three particles meet with equal angles between each other, they are turned
back to where they came from.

Exercise 2.4

(a) Show that the macroscopic quantities of (2.14) are preserved by these collisions.
(b) Show that there is another possible resolution for both the two-particle collision

and the three-particle collision.

The second rule of a lattice gas is streaming: after collisions, particles move from
their current node to a neighbouring node in their direction of velocity, as shown in
Fig. 2.6c. The particle velocities ci are such that particles move exactly from one
node to another from one time step to the next. For the FHP model, which has
six velocities of equal magnitude, we have jcij D �x=�t, �x being the distance
between nodes and �t being the time step. Thus, the streaming can be expressed
mathematically as

ni.x C ci�t/ D n?
i .x; t/: (2.16)

Both rules can be combined into a single equation:

ni.x C ci�t; t C �t/ D ni.x; t/ C ˝i.x; t/: (2.17)



46 2 Numerical Methods for Fluids

In addition to the HPP and FHP models, there is a number of more complex
lattice gas models. Their various features include rest particles with zero velocity,
additional collisions, and additional higher-speed particles [16, 17]. However, all of
these can be expressed mathematically through (2.17); the difference between them
lies in the velocities ci and the rules of the collision operator˝i. All of these models
which fulfil certain requirements on lattice isotropy (e.g., FHP fulfils them while
HPP does not) can be used for fluid simulations [17].

2.2.2.2 Advantages and Disadvantages

One of the touted advantages of lattice gas models was that the occupation numbers
ni are Boolean variables (particles are either there or not there), so that collisions are
in a sense perfect: The roundoff error inherent in the floating-point operations used
in other CFD methods do not affect lattice gas models [15]. Additionally, lattice
gases can be massively parallelised [15].

However, a downside of these collisions is that they get out of hand for larger
number of velocities. For example, for the three-dimensional lattice gas with 24
velocities [15, 17], there are 224 � 16:8 � 106 possible states in a node. The
resolution of any collision in this model was typically determined by lookup in a
huge table made by a dedicated program [15].

The FHP model additionally has problems with isotropy of the Navier-Stokes
equations, which can only disappear in the limit of low Mach numbers, i.e. for a
quasi-incompressible flow [15]. Additionally, lattice gases struggled to reach as high
Reynolds numbers as comparable CFD methods [15].

The major issue with lattice gases, however, was statistical noise. Like real
gases, lattice gases are teeming with activity at the microscopic level. Even for
a gas at equilibrium, when we make a control volume smaller and smaller, the
density (mass per volume) inside it will fluctuate more and more strongly with
time: Molecules continually move in and out, and the law of large numbers
applies less for smaller volumes. This is also the case with lattice gases, where
the macroscopic values from (2.14) will fluctuate even for a lattice gas at
equilibrium.

In one sense, it may be an advantage that lattice gases can qualitatively
capture the thermal fluctuations of a real gas [16]. But if the goal is to
simulate a macroscopic fluid, these fluctuations are a nuisance. For that
reason, lattice gas simulations would typically report density and fluid
velocity found through averaging in space and/or time (i.e. over several
neighbouring nodes and/or several adjacent time steps), and even averaging
over multiple ensembles (i.e. macroscopically similar but microscopically
different realisations of the system) [16], though this could only reduce the
problem and some noise would always remain.
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The problem of statistical noise was more completely dealt with by the invention
of the lattice Boltzmann method in the late 1980s [18–20]. This method was first
introduced by tracking the occupation number’s expectation value fi D hnii rather
than the occupation number itself, thus eliminating the statistical noise. This was the
original method of deriving the LBM, and it was not fully understood how to derive
it from the kinetic theory of gases presented in Sect. 1.3 until the mid-90s [21]. This
more modern approach of derivation is the one that we will follow in Chap. 3.

2.2.3 Dissipative Particle Dynamics

Dissipative particle dynamics (DPD) is, like the LBM, a relatively new mesoscopic
method for fluid flows. Originally proposed by Hoogerbrugge and Koelman [22]
in 1992, it was later put on a proper statistical mechanical basis [23]. DPD can be
considered a coarse-grained MD method that allows for the simulation of larger
length and time scales than molecular dynamics (cf. Sect. 2.2.1) and avoids the
lattice-related artefacts of lattice gases. Being a fully Lagrangian scheme without an
underlying lattice, DPD is intrinsically Galilean invariant and isotropic.

In the following, we will summarise the essential ideas of DPD, as described in
a recent review article by Liu et al. [24]. We will not cover smoothed dissipative
particle dynamics (SDPD) [25] that is a special case of smoothed-particle hydrody-
namics rather than an extension of DPD.

The basis of DPD are particles of mass m that represent clusters of molecules.
These particles interact via three different forces: conservative (C), dissipative (D)
and random (R). Unlike forces in MD, the conservative forces in DPD are soft,
which allows larger time steps. The dissipative forces mimic viscous friction in the
fluid, while random forces act as thermostat. All these forces describe additive pair
interactions between particles (obeying Newton’s third law), hence DPD conserves
momentum. In fact, DPD is often referred to as a momentum-conserving thermostat
for MD. The total force on particle i can be written as sum of all forces due to the
presence of other particles j and external forces f ext:

f i D f ext C
X

j6Di

f ij D f ext C
X

j6Di

�

fCij C fDij C fRij
�

: (2.18)

All interactions have a finite radial range with a cutoff radius rc. Details of the
radial dependence of the forces are discussed in [24]. Like in MD, a crucial
aspect of the DPD algorithm is the time integration of the particle positions and
velocities. Typical employed methods are a modified velocity-Verlet [26] or a leap-
frog algorithm [27].

DPD obeys a fluctuation-dissipation theorem (if the radial weight functions are
properly chosen) [23] and is particularly suited for hydrodynamics of complex fluids
at the mesoscale with finite Knudsen number. Typical applications are suspended
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polymers or biological cells, but also multiphase flows in complex geometries. Solid
boundaries are typically modelled as frozen DPD particles, while immersed soft
structures (e.g. polymers) are often described by particles connected with elastic
springs. Similarly to other mesoscopic methods, it is relatively easy to include
additional physics, for instance the equation of state of multiphase fluids.

A disadvantage of DPD is that it contains a large number of parameters that have
to be selected carefully. The choice of the radial weight functions is delicate and
affects the emergent hydrodynamic behaviour. For example, to reach a realistically
large viscosity, it is necessary to increase the cutoff distance rc which in turn leads
to more expensive simulations.

2.2.4 Multi-particle Collision Dynamics

In 1999, Malevanets and Kapral [28, 29] introduced the multi-particle collision
(MPC) dynamics, which has since become a popular method in the soft matter
community. The paradigm of MPC is to coarse-grain the physical system as much
as possible while still resolving the essential features of the underlying problem.

Although MPC is nothing more than a modification of direct simulation Monte
Carlo (DSMC, cf. Sect. 2.2.5) [30], we discuss both methods separately as they
are normally used for completely different applications. In particular, MPC is
commonly employed for systems with a small mean free path, while DSMC allows
the simulation of rarefied gases with a large mean free path.

MPC is a method of choice for complex systems where both hydrodynamic
interactions and thermal fluctuations are relevant. Due to its particle-based nature,
it is relatively easy to implement coupled systems of solvent and solutes. Therefore,
MPC is most suitable and often employed for the modelling of colloids, polymers,
vesicles and biological cells in equilibrium and external flow fields. MPC particu-
larly shows its strengths for systems with Reynolds and Péclet numbers between 0.1
and 10 and for applications where consistent thermodynamics is required and where
the macroscopic transport coefficients (viscosity, thermal diffusivity, self-diffusion
coefficient) have to be accurately known [31].

There exist also MPC extensions for non-ideal [32], multicomponent [33] and
viscoelastic fluids [34]. We refer to [31, 35] for thorough reviews and to [36] for a
recent overview.

2.2.4.1 Algorithm

The essential features of the MPC algorithm are: (i) alternating streaming and
collision steps, (ii) local conservation of mass, momentum and, unlike standard
LBM schemes, energy, (iii) isotropic discretisation. The last two properties ensure
that MPC can be used as a viable Navier-Stokes solver.
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The basic MPC setup comprises a large number of point-like particles with
mass m. These particles can either be fluid or immersed (e.g. colloidal) particles.
This feature allows a treatment of solvent and solutes on an equal footing. For
example, immersed particles can be directly coupled by letting them participate
in the collision and streaming steps [37]. This approach has been successfully
employed in numerous colloid and polymer simulations (see [31] and references
therein).

During propagation, space and velocity are continuous and the particles move
along straight lines for one time step �t:

xi.t C �t/ D xi.t/ C ci.t/�t; (2.19)

where xi and ci are particle position and velocity. After propagation, particles
collide. How the collision step looks like in detail depends on the chosen MPC
algorithm. Generally, each particle-based algorithm with local mass and momentum
conservation and anH-theorem (analogous to that described in Sect. 1.3.6) is called
a multi-particle collision algorithm.

One special case is the so-called stochastic rotation dynamics (SRD) algorithm.
During collision, all particles are sorted into cells of a usually regular cubic lattice
with lattice constant�x. On average, there are Nc particles in each cell. The velocity
vi of each particle i in one cell is decomposed into the average cell velocity Nv (as
given by the average velocity of all particles in that cell) and the relative velocity ıvi.
The relative velocities are then rotated in space to give the post-collision velocities

v?
i D Nv C Rıvi (2.20)

where R is a suitable rotation matrix. In 2D, velocities are rotated by ˙˛ where ˛

is a fixed angle and the sign is randomly chosen. In 3D, the rotation is defined by a
fixed angle ˛ and a random rotation axis. Rotations are the same for all particles in
a given cell but statistically independent for different cells. Apart from this rotation,
there is no direct interaction between particles. In particular, particles can penetrate
each other, which makes a collision detection unnecessary. It can be shown that the
resulting equilibrium velocity distribution is Maxwellian.

It should be noted that the originally proposed SRD algorithm [28, 29] violated
Galilean invariance. This problem, which was particularly important for small
time steps (i.e. a small mean free path), could be corrected by shifting the lattice
by a random distance d 2 Œ��x=2; C�x=2� before each collision step [38].
Furthermore, SRD does not generally conserve angular momentum; a problem that
can be avoided as reviewed in [31].

Other collision models than SRD are available. For example, the Anderson
thermostat (MPC-AT) [30, 39] is used to produce new particle velocities according
to the canonical ensemble rather than merely rotating the existing velocity vectors
in space. As noted earlier, DSMC is another MPC-like method that only differs in
terms of the particle collisions.
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It is also possible to implement a repulsion force between colloids and solvent
particles [29] in order to keep the fluid outside the colloids. This, however, requires
relatively large repulsion forces and therefore small time steps. Additional coupling
approaches are reviewed in [31]. Slip [40] and no-slip boundary conditions [36] are
available as well.

2.2.4.2 Advantages and Disadvantages

All MPC algorithms locally conserve mass and momentum10 and have an H-
theorem which makes them unconditionally stable [28]. Due to its locality the MPC
algorithm is straightforward to implement and to use, computationally efficient and
easy to parallelise. MPC has been successfully ported to GPUs with a performance
gain of up to two orders of magnitude [36]. But due to its strong artificial
compressibility, MPC is not well suited for the simulation of Stokes flow (Re ! 0)
or compressible hydrodynamics [31].

Both hydrodynamics and thermal fluctuations are consistently taken into account.
For example, interfacial fluctuations in binary fluids are accurately captured. The
hydrodynamic interactions can be switched off [41], which makes it possible to
study their relevance. However, it is recommended to use other methods like
Langevin or Brownian Dynamics if hydrodynamics is not desired [31]. When
hydrodynamics is included, it allows for larger time steps than in MD-like methods.
Therefore longer time intervals can be simulated with MPC [31].

Compared to LBM, MPC naturally provides thermal fluctuations, which can be
an advantage. Yet, for systems where those fluctuations are not required or even
distracting, MPC is not an ideal numerical method. Conventional Navier-Stokes
solvers or the LBM are more favorable in those situations [31].

As MPC is a particle-based method, immersed objects such as colloids or
polymers can be implemented in a relatively straightforward fashion. This makes
MPC particularly suitable for the simulation of soft matter systems. Additionally,
the transport coefficients (viscosity, thermal diffusivity, self-diffusion coefficient)
can be accurately predicted as function of the simulation parameters [31, 38, 42–
44]. On the other hand, it is not a simple task to impose hydrodynamic boundary
conditions, especially for the pressure. Furthermore, the discussions in [36] show
that no-slip boundary conditions and forcing are not as well under control as for
LBM. Multicomponent fluids and also surfactants can be simulated within the MPC
framework [33]. However, the LBM seems to be more mature due to the larger
number of works published.

10Most of them also conserve energy.
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2.2.5 Direct Simulation Monte Carlo

The direct simulation Monte Carlo (DSMC) method was pioneered by Bird [45] in
the 1960s. While its initial popularity was slowed down by limitations in computer
technology, DSMC is currently considered a primary method to solve realistic
problems in high Knudsen number flows. Typical applications range from spacecraft
technology to microsystems. More details on DSMC can be found in dedicated
books [46, 47] and review articles [48–50].

DSMC is a particle method based on kinetic theory, where flow solutions are
obtained through the collisions of model particles. MPC (cf. Sect. 2.2.4) can be
considered DSMC with a modified particle collision procedure [30]. Since DSMC
is more than 30 years older thanMPC and used for different applications, we provide
a short independent overview of DSMC here.

Rather than seeking solutions of the governing mathematical model, e.g. the
Boltzmann equation, DSMC incorporates the physics of the problem directly
into the simulation procedure. Although this change in paradigm at first raised
doubts on whether DSMC solutions were indeed solutions of the Boltzmann
equation [51], modern studies have shown that the DSMC method is a sound
physical simulation model capable of describing physical effects, even beyond the
Boltzmann formulation [49, 50].

Fundamentally, DSMC simulations track a large number of statistically rep-
resentative particles. While the position and velocity of particles is resolved
deterministically during motion, particle collisions are approximated by proba-
bilistic, phenomenological models. These models enforce conservation of mass,
momentum and energy to machine accuracy.

The DSMC algorithm has four primary steps [49]:

1. Move particles, complying with the prescribed boundary conditions.
2. Index and cross-reference the particles. The particles are labelled inside the

computational domain as a pre-requisite for the next two steps.
3. Simulate collisions. Pairs of particles are randomly selected to collide according

to a given collisional model. (It is this probabilistic process of determining
collisions that sets DSMC apart from deterministic simulation procedures such
as MD.) This separates DSMC fromMPC; the latter handling the collision of all
particles in a cell simultaneously.

4. Sample the flow field. Within predefined cells, compute macroscopic quantities
based on the positions and velocities of particles in the cell. This averaged data
is typically not necessary for the rest of the simulation and is only used as output
information.

DSMC is an explicit and time-marching technique. Depending on the sample
size and the averaging procedure, it may produce statistically accurate results. The
statistical error in a DSMC solution is inversely proportional to

p
N, N being the

number of simulation particles [49]. On the other hand, the computational cost is
proportional to N. The main drawback of DSMC is therefore the high computational
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demand of problems requiring a large N. This explains why DSMC is mostly used
for dilute gases, where its accuracy/efficiency characteristics have no competitor.
Nevertheless, the continuous improvement in computational resources is expected to
expand the range of physical applications for DSMC simulations in the near future.

2.2.6 Smoothed-Particle Hydrodynamics

SPH was invented in the 1970s to deal with the particular challenges of 3D
astrophysics. Since then it has been used in a large number of applications, in recent
years also computer graphics where it can simulate convincing fluid flow relatively
cheaply. Several books have been written on SPH, such as a mathematically rigorous
introduction by Violeau [52] and a more practical introduction by Liu and Liu [53]
on which the rest of our description will be based.

At the base of SPH is an interpolation scheme which uses point particles that
influence their vicinity. For instance, any quantity � at point x can be approximated
as a sum over all particles, with each particle j positioned at xj:

�.x/ D
X

j

mj

�j
�jW.jx � xjj; hj/: (2.21)

Here, mj is the particle’s mass, �j is the density at xj, �j is the particle’s value of �,
and W.jx � xjj; hj/ is a kernel function with characteristic size hj which defines the
region of influence of particle j.11 Thus, SPH particles can be seen as overlapping
blobs, and the sum of these blobs at x determines �.x/. For instance, the density �i

at particle i can be found by setting �.xi/ D �.xi/, so that

�i D
X

j

mj

�j
�jW.jxi � xjj; hj/ D

X

j

mjW.jxi � xjj; hj/: (2.22)

The formulation of SPH and its adaptive resolution gives it a great advantage
when dealing with large unbounded domains with huge density variations, such as
in astrophysics. It can also deal with extreme problems with large deformations,
such as explosions and high-velocity impacts, where more traditional methods may
struggle. The particle formulation of SPH also allows for perfect conservation of
mass and momentum.

On the downside, SPH has problems with accuracy, and it is not quite simple
to deal with boundary conditions. Additionally, the formulation of SPH makes it

11While the kernel function can be e.g. Gaussian, it is advantageous to choose kernels that are zero
for jx�xjj > h, so that only particles in the vicinity of x need be included in the sum. Additionally,
the fact that hj can be particle-specific and varying allows adaptive resolution.
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difficult to mathematically prove that the numerical method is consistent with the
equations of the hydrodynamics that it is meant to simulate.

2.3 Summary

In this chapter, we have looked at various numerical methods for fluids in two main
categories: Conventional methods, and particle-based methods.

Conventional methods are generic numerical methods, applied to solving the
equations of fluid mechanics. These methods represent the fluid variables (such as
velocity and pressure) as values at various points (nodes) throughout the domain.
The interpretation of these node values varies. In the finite difference (FD) method,
the idea of a continuous field is dropped in favour of a field defined only on a square
grid of nodes. In the finite volume (FV) method, a node value represent the average
of the fluid variables in a small volume around the node. In the finite element (FE)
method, the continuous field is approximated by a kind of interpolation of the node
values. These methods have in common that the node values are used to approximate
the derivatives in the partial derivative equations in question.

While these general numerical methods are reasonably simple in principle
(FE being somewhat more complex than FD or FV), they are complicated by
the inherent difficulties of the equations of fluid mechanics. These represent a
nonlinear, simultaneous system of equations where the solutions can behave in
a very intricate way, especially in cases like turbulence or flows in complex
geometries. Additionally, the pressure is implicit in the incompressible Navier-
Stokes simulations. Such difficulties have caused the development of somewhat
complex iterative algorithms such as SIMPLE and SIMPLER [4]. One troublesome
issue that emerges is that of checkerboard instabilities, as described in Sect. 2.1.1.2,
which can be dealt with by staggered grids or asymmetric schemes, both of which
add complexity.

FD, FV, and FE simulations ultimately end up being expressed as matrix
equations. Solving these equations efficiently is a pure linear algebra problemwhich
is nevertheless important for these methods, and many different solution methods
have been developed. Another complex mathematical problem that emerges when
using irregular grids in FV and FE simulations is building this grid automatically
for a given geometry, and this has also been a topic of extensive studies [54].

All in all, conventional methods have been thoroughly explored in the past
decades, and are currently considered workhorse methods in CFD. Though it is
possible to implement methods of higher order, in practice nearly all production
flow solvers are second-order accurate [55].

Particle-based methods typically do not attempt to solve the equations of fluid
mechanics directly, unlike conventional methods. Instead, they represent the fluid
through particles, which themselves may represent atoms, molecules, collections or
distributions of molecules, or portions of the macroscopic fluid. These methods are



54 2 Numerical Methods for Fluids

quite varied, and are often tailored to a particular problem.12 It is therefore difficult
to give a general summary of these methods as a whole.

However, it can be said that it can be difficult to relate the dynamics of
some particle-based methods, such as smoothed-particle hydrodynamics, to a
macroscopic description of the fluid. This makes it difficult to quantify generally
the accuracy of these methods. Additionally, it must be said that the microscopic
particle-based CFD methods are typically not appropriate for CFD. Even the lattice
gas models described in Sect. 2.2.2, which were originally intended for flow
simulations, had major problems with noise from fluctuations in the microscopic
particle populations. For that reason, lattice gases were largely abandoned in favour
of the very similar lattice Boltzmann method, which instead took a mesoscopic
approach that eliminated this noise.

All in all, different solvers have different advantages and disadvantages, and
different types of fluid simulations pose different demands on a solver. For
that reason, it is generally agreed (e.g. [5, 15, 56, 57]) that there is no one
method which is generally superior to all others.

2.4 Outlook: Why Lattice Boltzmann?

While we will not describe the lattice Boltzmann method in detail until Chap. 3, we
will here compare it in general terms to the other methods of this chapter.

The lattice Boltzmann method (LBM) originally grew out of the lattice gas
models described in Sect. 2.2.2. While lattice gases track the behaviour of concrete
particles, the LBM instead tracks the distribution of such particles. It can be debated
whether the LBM should be called a particle-based method when it only tracks
particle distributions instead of the particles themselves, but it is clear that it has
much in common with many of the methods described in Sect. 2.2.

The LBM has a strong physical basis, namely the Boltzmann equation described
in Sect. 1.3.4. Well-established methods exist to link its dynamics to the macro-
scopic conservation equations of fluids.13 It can thus be found that the “standard”
LBM is a second-order accurate solver for the weakly compressible Navier-Stokes
equation; this is detailed in Sect. 4.5.5. The “weak compressibility” refers to errors
that become relevant as Ma ! 1 (cf. Sect. 4.1).

12For instance, molecular dynamics is tailored to simulating phenomena on an atomic and
molecular level, and smoothed-particle hydrodynamics was invented to deal with the largely empty
domains of astrophysical CFD.
13The most common such method is covered in Sect. 4.1, with a number of alternative methods
referenced in Sect. 4.2.5.
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The LBM gains a major advantage from being based on the Boltzmann equation
rather than the equations of fluid mechanics: It becomes much simpler to imple-
ment than conventional methods. However, there is a corresponding disadvantage:
understanding and adapting the LBM typically requires some knowledge about the
Boltzmann equation, in addition to knowledge about fluid mechanics.

In conventional methods, much of the complexity lies in determining derivative
approximations non-locally from adjacent nodes. In particular, it is difficult to
discretise the non-linear advection term u�ru. In contrast, the detail in the LBM lies
in the particle description within the nodes themselves, causing that “non-linearity
is local, non-locality is linear”14: interactions between nodes are entirely linear,
while the method’s non-linearity enters in a local collision process within each node.
This property makes the LBM very amenable to high-performance computing on
parallel architectures, including GPUs. Coupled with the method’s simplicity, this
means that parallelised LB simulations can be tailor-made for a particular case more
quickly than simulations using a conventional method [15].

A number of publications have compared the LBM to other methods (e.g. [15,
56–59]). From these comparisons, some takeaway messages about the LBM’s
advantages (C) and disadvantages (�) can be found for a number of topics:

Simplicity and Efficiency

C For solving the incompressible Navier-Stokes equation, the LBM is similar to
pseudocompressible methods, which gain simplicity and scalability by allowing
artificial compressibility [56].

C Like pseudocompressible methods, the LBM does not involve the Poisson
equation [56] which can be difficult to solve due to its non-locality.

C The heaviest computations in the LBM are local, i.e. restricted to within nodes,
further improving its amenability to parallelisation [15].

� LBM is memory-intensive. Propagating populations requires a large number
of memory access events. As we will see in Sect. 13.3.2, these are a major
bottleneck of LB computations.

� The LBM, being inherently time-dependent, is not particularly efficient for
simulating steady flows [57].

Geometry

C The LBM is well suited to simulating mass-conserving flows in complex
geometries such as porous media [15, 56, 59].

C Moving boundaries that conserve mass can be implemented particularly well in
the LBM [56], making it an attractive method for soft matter simulations [59].

Multiphase and Multicomponent Flows

C There is a wide range of multiphase and multicomponent methods available for
the LBM [56].

14This concise description is attributed to Sauro Succi.



56 2 Numerical Methods for Fluids

C Coupled with the LBM’s advantages in complex geometries, this means that it
is well suited to simulating multiphase and multicomponent flows in complex
geometries [15].

� As in other lattice-based methods, there are spurious currents near fluid-fluid
interfaces (cf. Sect. 9.4.1).

� According to [56], no multiphase or multicomponentmethods for the LBM have
capitalised well on its kinetic origins, meaning that these methods are not very
different from those in conventional CFD.

� The range of viscosities and densities are somewhat limited in multiphase and
multicomponent simulations [56].

Thermal Effects

C Thermal fluctuations, which originate on the microscale but are averaged out
on the macroscale, can be incorporated into the LBM mesoscopically. We will
not discuss fluctuations in this book. Instead, the interested reader should refer to
[60–62] for ideal and to [63, 64] for non-ideal systems with thermal fluctuations.

� Energy-conserving (thermal) simulations are not straightforward in the LBM
[15, 56]. We come back to this topic in Sect. 8.4.

Sound and Compressibility

C As the LBM is a (weakly) compressible Navier-Stokes solver, it may be
well-suited for simulating situations where sound and flow interact, such as
aeroacoustic sound generation [65].

� The LBM is not appropriate for directly simulating long-range propagation of
sound at realistic viscosities [56, 65].

� The LBM may not be appropriate for simulating strongly compressible (i.e.
transonic and supersonic) flows [15, 56].

Other Points

C The LBM is appropriate for simulating mesoscopic physics that are hard to
describe macroscopically [15].

While the lattice Boltzmann method has many advantages, it is, like all other
numerical methods for fluids, not well suited for all possible applications. However,
the LBM is a relatively young method, and it is still evolving at a quick pace,
meaning that the range of problems to which it can be applied well is still increasing.
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