
Chapter 11
Boundary Conditions for Fluid-Structure
Interaction

Abstract After reading this chapter, you will have insight into a large number of
more complex lattice Boltzmann boundary conditions, including advanced bounce-
back methods, ghost methods, and immersed boundary methods. These boundary
conditions will allow you to simulate things like curved boundaries, flows in media
with sub-grid porosity, rigid but moveable objects immersed in the fluid, and even
flows with deformable objects such as red blood cells.

Boundary conditions play a paramount role in hydrodynamics. Chapter 5 concerns
itself with the definition and conceptual introduction of boundary conditions, and it
provides an overview of boundary conditions for relatively simple solid geometries,
flow inlets and outlets and periodic systems. Here, we turn our attention to resting
and moving boundaries with complex shapes (Sect. 11.1). It is nearly impossible
to give an exhaustive overview of all available boundary conditions for fluid-
structure interaction in the LBM. We will therefore focus on the most prominent
examples: bounce-back methods in Sect. 11.2, extrapolation methods in Sect. 11.3
and immersed-boundary methods in Sect. 11.4. We provide a list of comparative
benchmark studies and an overview of the strengths and weaknesses of the discussed
boundary conditions in Sect. 11.5.

11.1 Motivation

Many works about boundary conditions in the LBM assume flat, resting and rigid
boundaries. We have reviewed a selection of those methods in Chap. 5. But our
experience tells us that only a small number of boundaries in fluid dynamics obey
these assumptions. In reality, most boundaries are curved, some can move and others
are deformable. Prominent examples are porous media, curved surfaces of cars and
planes in aerodynamics, suspensions (e.g. clay, slurries) or deformable objects (e.g.
cells, wings, compliant containers). Analytical solutions are often impossible to
obtain, which makes computer simulations an indispensible tool. This challenge
led to a remarkable variety of proposed methods to model complex boundaries in
LB simulations.
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434 11 Boundary Conditions for Fluid-Structure Interaction

Fig. 11.1 Unstructured and structured meshes. The same boundary problem (solid black circles
connected with thick lines) can be treated by, for example, an unstructured (left) or structured
(right) approach. The former requires remeshing if the boundary moves, the latter leads to
interpolations or extrapolations near the boundary

In order to accurately describe a complex domain, there are essentially two
options (Fig. 11.1). The first approach is to formulate the problem in a coordinate
system which fits the shape of the boundary. This leads to curvilinear or body-
fitted meshes where the boundary treatment itself is trivial. However, this way
we lose the advantages of the simple cartesian grid. For example, if the boundary
shape changes in time, the curvilinear coordinate system also changes or remeshing
becomes necessary. This can be a challenging and time-consuming task [1]. The
alternative is to retain the cartesian structure of the bulk geometry, but then we have
to introduce special procedures to account for the complex shape of the boundary
which does generally not conform with the underlying lattice structure. In the end,
this leads to interpolation and extrapolation boundary schemes.

Since most LB algorithms take advantage of the cartesian grid, the second route
is usually preferred. First, it is easier to correct only the behaviour of the boundary
nodes than touching all bulk nodes. Secondly, remeshing of the bulk involves inter-
polations in the entire numerical domain, which can lead to detrimental numerical
viscosities (hyperviscosities) and a loss of exact mass/momentum conservation.
More details about LB for non-cartesian geometries (i.e. curvilinear structured
meshes or unstructured meshes) are provided in, e.g., [2–7]. It is therefore less
harmful to use interpolations only in the vicinity of the boundaries. In this chapter
we will exclusively address boundary treatments of the second kind, where the
underlying lattice structure is not changed.

There are different types of problems which are typically encountered in
connection with off-lattice boundaries. We can identify three main categories:

• stationary rigid obstacles (e.g. porous media, microfluidic devices, flow over
stationary cylinders)

• moving rigid obstacles (e.g. suspensions of non-deformable particles, oscillating
cylinder, rotating turbine blades)
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Fig. 11.2 Overview of boundary conditions for complex geometries in LB simulations as
presented in this chapter. We can roughly distinguish between bounce-back, ghost and immersed-
boundary (IB) methods. Each of them has several flavours. A large selection of those is covered in
the following sections

• moving deformable obstacles (e.g. flexible wings, red blood cells, compliant
channels)

No single numerical boundary treatment works best for all of them. It is therefore
worth to properly categorise the problem first, identify the main challenge and then
“shop around” and look for the most suitable boundary treatment for the problem
at hand. This chapter helps the reader to understand what the differences of the
available methods are, when they are applicable and what their advantages and
disadvantages are.

There exists a zoo of curved boundary conditions for LB simulations. We can
only cover the most popular ones in any depth, but we will provide references to
a wider range of boundary conditions in passing. Figure 11.2 shows an overview
of the boundary conditions discussed here. For the sake of compactness, we only
consider single-phase fluids. Note that everything said in this chapter does equally
apply to 2D and 3D systems.

11.2 Bounce-Back Methods

The most famous and certainly easiest boundary condition for LB simulations is
bounce-back (Sect. 5.3.3). Many researchers believe that its locality, simplicity
and efficiency should be retained even in the presence of complex boundary
shapes. Therefore, the obvious way is to approximate a curved boundary by a
staircase (Sect. 11.2.1). This can lead to some problems, in particular a reduction
of the numerical accuracy. For that reason, improved and interpolated bounce-back
schemes have been proposed (Sect. 11.2.2). Another variant to account for complex
geometries is the partially saturated method (Sect. 11.2.3). A problem related to
staircase and interpolated bounce-back BCs is the destruction and creation of fluid
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sites if the boundaries move. We will discuss the creation of so-called fresh nodes in
Sect. 11.2.4. Finally we will elaborate on the calculation of the wall shear stress in
the presence of complex boundaries (Sect. 11.2.5). We recommend reading [8–15]
to understand bounce-back methods in greater detail.

11.2.1 Simple Bounce-Back and Staircase Approximation

One of the motivations to simulate complex geometries is to study flows in
porous media. The simplest way to introduce curved or inclined boundaries in LB
simulations is through a staircase approximation of the boundary and the bounce-
back scheme, often called simple bounce-back (SBB, Sect. 5.3.3). This is illustrated
in Fig. 11.3. The advantages are obvious: everything lives on the lattice, and SBB
is fast and easy to implement. The problem becomes more complex when the
boundaries can move, which requires the destruction and creation of fluid sites
(Sect. 11.2.4).

Fig. 11.3 Staircase approximation of a circle. A circle (here with an unrealistically small radius
r D 1:8�x) can be discretised on the lattice by identifying exterior fluid nodes (white circles),
external boundary nodes (grey circles) and interior solid nodes (black circles) first. Any lattice link
ci connecting a boundary and a solid node is a cut link (lines) with a wall node (solid squares)
in the middle. The resulting staircase shape is shown as a grey-shaded area. Populations moving
along cut links ci (defined as pointing inside the solid) from xb to xs are bounced back at xw
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11.2.1.1 Revision of the Halfway Bounce-Back Method

In the following we will only consider the halfway bounce-back scheme: an
incoming (post-collision) population f ?

i .xb; t/ which would propagate through a wall
from a boundary node1 xb to a solid node xs D xb C ci�t is instead reflected half-
way to the solid node at the wall location xw D xb C 1

2
ci�t at time t C 1

2
�t and

returns to xb as

fNi.xb; t C �t/ D f ?
i .xb; t/ � 2wi�

uw � ci
c2

s
(11.1)

where uw D u.xw; t C 1
2
�t/ is the velocity of the wall, � is the fluid density at xw

and Ni is defined by cNi D �ci. In practical implementations, � is often taken as the
fluid density at xb or the average fluid density instead (cf. Sect. 5.3.3).

The halfway bounce-back scheme requires detection of all lattice links ci
intersecting the boundary. If the boundary is stationary, this has to be done only
once.

We can compute the momentum exchange at the wall based on the incoming
and bounced back populations alone by using the momentum exchange algorithm
(MEA, Sect. 5.4.3). Here we will briefly revise the MEA for the simple bounce-back
method. The first step is to evaluate the incoming and bounced back populations f ?

i
and fNi at each boundary link. The total momentum exchange between the fluid and
the solid during one time step is given by (5.79):

�P D �x3
X

xw ;i

�
f ?
i .xw � 1

2
ci�t; t/ C fNi.xw � 1

2
ci�t; t C �t/

�
ci

D �x3
X

xw ;i

 
2f ?

i .xw � 1
2
ci�t; t/ � 2wi�

uw � ci
c2

s

!
ci

(11.2)

where the sum runs over all incoming links ci (pointing from the fluid into the solid)
intersecting the wall at xw. Accordingly, the total angular momentum exchange
during one time step is

�L D �x3
X

xw;i

 
2f ?

i .xw � 1
2
ci�t; t/ � 2wi�

uw � ci
c2

s

!
.xw � R/ � ci: (11.3)

R is a reference point. If the torque acting on a particle is computed, the reference
point is the particle’s centre of mass.

1We use the same notation as in Chap. 5: solid nodes are inside the obstacle, boundary nodes are
outside the obstacle but have at least one solid neighbour, and fluid nodes are those without a solid
neighbour (see Fig. 11.3).
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The MEA works for any geometry approximated by the simple bounce-back
scheme, including the staircase shown in Fig. 11.3. The tedious part is the identi-
fication of all cut links pointing from a boundary to a solid node and obtaining the
wall velocity uw at each of the wall locations xw.

11.2.1.2 Stationary Boundaries

There is a large number of applications where the flow in a complex stationary
geometry has to be simulated. Examples are flows in porous media or blood flow in
the vascular system (Fig. 11.4). Those geometries can by obtained by, for example,
CT or MRI scans. Due to the large surface and complex shape of those geometries,
it is preferable to use a simple and fast boundary condition algorithm, such as SBB.

Back in the 90s, Ginzburg and Adler [9] presented a very careful analysis of
halfway SBB with several important conclusions. A more updated discussion of
this work can be found in [15]. Apart from developing general theoretical tools to
study boundary conditions, one contribution was the understanding of the numerical
mechanism leading to the velocity slip at the wall. The exact location where the no-
slip condition is satisfied is not a pre-determined feature; it rather depends on the
specific choice of the relaxation rate(s). Furthermore, the above-mentioned defect
is anisotropic with respect to the underlying lattice structure, i.e. the slip velocity
depends on the way the boundary is inclined. This is confirmed for a Poiseuille
flow in an horizontal channel where the wall can only be exactly located midway
between lattice nodes if �=�t D 1=2Cp

3=16 � 0:933 (cf. Sect. 5.3.3). Contrarily,
for a diagonal channel, �=�t D 1=2 C p

3=8 � 1:11 has to be chosen. With

Fig. 11.4 Visualisation of a segment of the blood vessel network in a murine retina which has been
used for LB simulations. This example shows the complexity of the involved boundaries. Original
confocal microscope images courtesy of Claudio A. Franco and Holger Gerhardt. Luminal surface
reconstruction courtesy of Miguel O. Bernabeu and Martin L. Jones. For more details see [16]
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the LBGK method this �-dependence leads to a viscosity-dependent slip velocity
artefact, which is highly undesired from the physical viewpoint.

While in complex geometries the wall intersects the lattice at different positions,
the SBB enforces the no-slip condition to be fixed at all lattice links. This leads to
the staircase representation of the boundary, where the exact location of the no-slip
surface will further depend on the choice of the relaxation time � . In other words, the
effective shape and location of the “numerical” wall will not agree with the expected
boundary.

The aforementioned problems are particularly harmful in narrow domains where
the distance between walls can be of the order of a few lattice units, for example
in porous media flows or solid particles in suspensions. Hereby, using TRT/MRT
collision operators with a properly tuned set of relaxation rates [12, 15, 17, 18],
rather than BGK, helps controlling this situation. When � is chosen close to 1 and
the fluid domain is sufficiently resolved, SBB with BGK leads to acceptable results,
though [19].

We also have to note that biological geometries obtained from CT or MRI scans
are usually not very accurate in the first place. The resolution of those imaging
techniques can be of the same order as the pore or channel size so that it may be
nonsensical trying to increase the resolution of the numerical domain or choose
more accurate boundary conditions. This means that SBB, although generally not
the most recommendable solution, is still a good choice given the large geometrical
modelling error in many applications. Furthermore, it is worth mentioning that SBB
is exactly mass-conserving when used for stationary geometries of any shape; an
advantage only a few higher-order accurate boundary conditions can claim (the
reasons are explained in [20]). Therefore, before setting up a simulation, one should
always ask whether the boundary condition is really the limiting factor in terms of
accuracy.

Using simple bounce-back (SBB) for complex geometries generally leads to
two sources of error:

1. geometrical discretisation error (modelling error) by approximating a
complex shape by a staircase,

2. artificial and anisotropic slip caused by the choice of the relaxation rate(s),
leading to a viscosity-dependent effect when is BGK used.

The advantages of SBB (mass conservation, ease of implementation, locality)
explain why it is still a popular method.
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11.2.1.3 Rigid Moving Particles

So far we have only addressed stationary boundaries with SBB. In the 90s
researchers became interested in the simulation of suspensions via LBM. This
requires the treatment of multiple rigid particles with translational and rotational
degrees of freedom. One of the problems of earlier computational suspension
models was the numerical cost which scaled with the square or cube of the particle
number [10]. Ladd [10, 21, 22] introduced an LB-based model for suspensions of
rigid particles with hydrodynamic interactions whose numerical cost scales linearly
with the particle number.

Particle suspensions give rise to a plethora of physical effects and phenomena.
In this section we will only focus on the algorithmic details. For physical results
we refer to review articles about LB-based suspension simulations [23, 24] and the
references therein.

For the sake of brevity we will not discuss lubrication forces which become
necessary at high particle volume fractions. There exist several articles dealing
with lubrication corrections in LB simulations [24–26]. The review by Ladd and
Verberg [23], which we generally recommend to read, also descibes the use of
thermal fluctuations for the simulation of Brownian motion in suspensions. Aidun
and Clausen [24] have published a review about LBM for complex flows, which is
an excellent starting point to learn about more recent developments.

In the following we will outline Ladd’s [10, 22] idea of how to use SBB for
suspensions. See also [25] for a compact and [23] for an extensive review of Ladd’s
method. Note that the particles in Ladd’s algorithm are filled with fluid in order
to avoid destruction and recreation of fluid nodes when the particles move on the
lattice. The dynamics of the interior fluid is therefore fully captured. One can
imagine this like a can filled with liquid concrete in an exterior fluid rather than
the same can with set (and therefore solid) concrete. This is different compared to
Aidun’s model [27] which we will briefly describe at the end of this section.

The first step is to start with a distribution of suspended spherical particles on
the lattice. For each particle, it is straightforward to work out which lattice nodes
are located inside and outside of a particle (cf. Fig. 11.3). There is no conceptual
difficulty in extending the model to non-spherical particles; but it will generally be
more demanding to identify interior and exterior lattice nodes.

The next step is to identify all lattice links between boundary and solid nodes,
i.e. those links cut by any particle surface. For moving boundaries, the list of those
links has to be updated whenever the boundary configuration on the lattice changes.
Generally one has to update the list every time step before propagation is performed.
In the following, let xb be the location of a boundary node and xs D xb C ci�t the
location of a solid node just inside the particle. The boundary link is then located at
xw D xb C 1

2
ci�t (cf. Fig. 11.3).
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Now we have to compute the wall velocity uw at each link xw. From the known
linear velocity U and angular velocity ˝ of the particle we can obtain

uw D U C ˝ � .xw � R/ (11.4)

where R is the particle’s centre of mass.
With the known wall velocity at each link, we can compute the momentum

exchange and therefore the value of all bounced-back populations. We have to take
into account that a particle in Ladd’s method is filled with fluid, as explained earlier,
and all interior nodes participate in collision and propagation as well. This means
that there are also populations streaming from the interior nodes at xs to exterior
nodes at xb. These populations have to be bounced back at xw, too. While the
populations streaming from the outside to the particle’s interior are described by
(11.1), we now also have to consider those populations streaming from the inside
towards the exterior:

fi.xs; t C �t/ D f ?Ni .xs; t/ � 2wNi�
uw � cNi
c2

s
D f ?Ni .xs; t/ C 2wi�

uw � ci
c2

s
: (11.5)

Equation (11.1) and (11.5) express that the two populations hitting a boundary link
from both sides exchange a certain amount of momentum, 2wi�uw � ci=c2

s . This
operation is obviously mass-conserving since fi gains exactly the loss of fNi (or the
other way around) so that the sum of both populations moving along the same link
in different directions is not changed by the interaction with the boundary, at least
as long the same density � is used in both equations. Ladd uses the average fluid
density, and not the local density, for �.

Effectively, we can view the momentum transferred from the exterior to the
interior fluid as the momentum transferred from the exterior fluid to the particle.
In order to obey the global momentum and angular momentum conservation,
we therefore have to update the particle momentum and angular momentum by
summing up all transferred contributions. Equation (11.2) and (11.3) provide the
total momentum �P and angular momentum �L transferred during one time step,
but we have to take into account that each link has to be counted twice: once for
all populations coming from the outside and once for all populations coming from
the inside. This is necessary because the interior fluid participates in collision and
propagation and therefore the momentum exchange.

The simplest way to update the particle properties is the forward Euler method,
but more accurate and more stable methods are available, e.g. implicit time
integration [23]. At each time step, the velocity and angular velocity are updated
according to

U.t C �t/ D U.t/ C �P
M

; ˝.t C �t/ D ˝.t/ C I�1 � �L (11.6)
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where M and I are the particle’s mass and tensor of inertia. The centre of mass
is then moved according to the old or new velocity.2 If the particles are spherical,
their orientation does not have to be updated. For non-spherical particles, however,
the situation is different, and several authors have suggested algorithms for this
case. Aidun et al. [27], for example, use a fourth-order Runge-Kutta integration to
update the particle orientation. Qi [28] employed quaternions to capture the particle
orientation and a leap-frog time integration. It is noteworthy that Ladd [10] does not
follow the simple scheme in (11.6). He instead averages the momentum and angular
momentum transfer over two time steps before updating the particle properties. The
reason for this is to reduce the undesired effect of so-called staggered momenta
which are an artefact of lattice-based methods. We refer to [10] for a more thorough
discussion of this issue (see also Sect. 5.3.3).

Ladd’s algorithm [10] can be summarised in the following way:

1. Find the particle discretisation on the lattice (Fig. 11.3).
2. Identify all boundary links and compute uw by applying (11.4).
3. Perform collision on all nodes since particles are filled with fluid.
4. Propagate the populations. If a population moves along a boundary link, bounce-

back this population via (11.1) or (11.5).
5. Compute the total momentum and angular momentum exchange according to

(11.2) and (11.3).
6. Update the particle configuration, for example via (11.6).
7. Go back to step 1 for the next time step. There is no need to treat nodes crossing

a boundary in a special way.

It is interesting to note why Ladd has chosen a link-based (halfway) rather
than a node-based (fullway) bounce-back method. The simple explanation is that
the link-based bounce-back leads to a “somewhat higher resolution” [10] for the
same discretisation since there are more cut links than solid nodes near the particle
surface. This can be easily seen in Fig. 11.3.

Ladd [10] pointed out that his method has a few disadvantages. First, the
dynamics of the fluid inside the particles can affect the particle dynamics at higher
Reynolds numbers where the interior fluid cannot any more be approximated by
an effectively rigid medium. Furthermore, Ladd’s method is limited to situations
where the particle density is larger than the fluid density. Aidun et al. [27] proposed
an alternative method with one major distinctive feature: the absence of fluid inside
the particles. Therefore, in Aidun’s approach, only the exterior fluid contributes to
the momentum and angular momentum exchange in (11.2) and (11.3). Removing
the fluid from the interior solves both disadvantages of Ladd’s method, but it also
introduces a new complexity: what happens when lattice nodes change their identity
(fluid nodes become solid nodes and the other way around) when the particles move?
We will come back to this point in Sect. 11.2.4. In contrast to Ladd’s approach,

2The velocities are usually small so that the exact form of the position update is not very important.
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Aidun’s method does not obey global mass conservation [27]. Yin et al. [29] provide
a detailed comparative study on the performance of both models.

We emphasise that several researchers have further improved the methods
presented above. For example, Lorenz et al. [30], Clausen and Aidun [31] and
Wen et al. [32] proposed modified versions of the momentum exchange to improve
Galilean invariance.

We have only discussed link-based BB schemes in this section. It is possible to
implement node-based BB schemes for complex geometries where the boundary
velocity is enforced directly on lattice nodes, though. Behrend [33] and Gallivan
et al. [34] provide discussions of the node-based BB approach. In Sect. 11.2.3 we
will present partially saturated methods which are also built on the node-based BB
scheme.

As pointed out by Han and Cundall [35], the simple bounce-back (SBB)
applied to moving boundaries has its limitations compared to higher-order
schemes, such as the partially saturated method (Sect. 11.2.3). This becomes
most obvious when the particles are rather small (a few �x in diameter) and
move on the lattice. Eventually, the user has to decide whether the focus lies
on the ease of implementation or level of accuracy. In the former case, SBB
can be recommended. In the latter, a smoother boundary condition should be
implemented.

11.2.2 Interpolated Bounce-Back

We will now cover interpolated bounce-back (IBB) methods which are suitable
to describe curved and inclined boundaries with a higher accuracy than SBB. We
emphasise the conceptual difference between IBB schemes and extrapolation-based
methods (Sect. 11.3). While the idea of the former is to interpolate populations in
the fluid region to perform bounce-back at a curved wall, the motivation for the latter
is to create a virtual (ghost) fluid node inside the solid to compute the populations
streaming out of the wall. We generally recommend reading [12, 17, 18, 36] for
thorough reviews of IBB methods.

11.2.2.1 Basic Algorithm

In 2001, Bouzidi et al. [11] proposed the IBB approach for curved boundaries. The
IBB is second-order accurate for arbitrary boundary shapes and therefore reduces
the modelling error of the staircase bounce-back method which is only first-order
accurate for non-planar boundaries.
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Fig. 11.5 Interpolated bounce-back cases. For q < 1
2

(left), the distance d between the wall
(vertical line) and the boundary node at xb is smaller than half a lattice spacing. Interpolations
are required to construct the post-collision population (small black circle). For q � 1

2
(right), d is

larger than half a lattice spacing and the endpoint of the streaming population (small black circle)
lies between the wall and xb. xs denotes a solid node behind the wall, and xf is a fluid node required
for the interpolation

The basic idea of IBB is to include additional information about the wall location
during the bounce-back process. A boundary link ci generally intersects the wall at
a distance d between 0 and jcij�t measured from the boundary node (Fig. 11.5). We
define q D d=.jcij�t/ 2 Œ0; 1/ as the reduced wall location and note that q D 1

2

holds for simple bounce-back. In the following, we introduce three lattice nodes
with locations xb, xs D xb C ci�t and xf D xb � ci�t as shown in Fig. 11.5. xb and
xs are neighbouring boundary and solid nodes which are located on either side of
the wall, and xf is the nearest fluid node beyond xb.

The starting point of IBB is to assume that any population fi moves a distance
jcij�t during propagation. If the population hits a wall which is modelled by the
halfway bounce-back, fi first travels a distance jcij�t=2 from the original boundary
node to the wall and then another distance jcij�t=2 back to the boundary node after
bounce-back. If the wall is not located halfway between lattice nodes, q 6D 1

2
, fi

cannot reach another lattice node. Therefore, the origin of the population is chosen
such that fi exactly reaches a lattice node. This requires interpolation to find the
post-collision value of fi as illustrated in Fig. 11.5.

Bouzidi et al. [11] proposed a linear interpolation to construct the a priori
unknown bounced back population fNi.xb; t C �t/ from the post-collision values of
the known populations at xb and xf. The algorithm for any cut link at a resting wall
reads

fNi.xb; t C �t/ D
8
<

:
2q f ?

i .xb; t/ C .1 � 2q/f ?
i .xf; t/ q � 1

2
1
2q f

?
i .xb; t/ C 2q�1

2q f ?Ni .xb; t/ q � 1
2

: (11.7)

Exercise 11.1 Show that both cases in (11.7) reduce to simple bounce-back for
q D 1

2
.

There are several remarks:

• The reason for having different expressions for q < 1
2

and q � 1
2

is to ensure that
fNi.xb; t C �t/ is always non-negative (given that the post-collision populations
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on the right-hand-side of (11.7) are positive), which improves the stability of the
algorithm.

• Bouzidi et al. [11] have also proposed a quadratic interpolation which improves
results, but the method remains second-order accurate. This extension requires a
second fluid node xff D xb � 2ci�t.

• The boundary slip for linear and quadratic interpolations still depends on the
collision relaxation rate(s). However, unlike with the SBB, the adoption of
TRT/MRT collision operators does not allow absolute control of this error; the
IBB thereby always presents some degree of viscosity dependence. For strategies
to render IBB exactly viscosity-independent we refer to [15, 37, 38].

• The IBB algorithm, like simple bounce-back, is completely decoupled from the
collision step and can therefore be combined with any collision operator.

• Due to its non-local implementation, the IBB may lead to problems in very
narrow gaps (e.g. in porous media simulations) where there are not enough
fluid nodes between neighbouring walls to apply (11.7) (two nodes required)
or the quadratic interpolation (three nodes required). The number of required
nodes may be reduced by one with a judicious choice of pre- and post-collision
populations within the IBB algorithm, cf. [15, 17]. For example, the IBB with
linear interpolations can be written in local form. Chun and Ladd [18] have
addressed this issue and proposed an alternative local boundary scheme which
works in general situations and corrects some defects of the IBB, e.g. its viscosity
dependence.

• Due to its interpolations, IBB is generally not mass-conserving. There exist
approaches to (partially) remedy this shortcoming, e.g. [36].

The interpolated bounce-back algorithm can be summarised as follows:

1. Identify all links penetrating a wall and compute their reduced distance q. If the
boundary configuration does not change in time, this has to be done only once.

2. Collide on all fluid and boundary nodes. This will provide f ?
i .xb; t/, f ?

Ni .xb; t/ and
f ?
i .xf; t/.

3. Compute all fNi.xb; t C �t/ from (11.7).
4. Propagate all remaining populations.
5. Go back to step 1.

The extension of the momentum exchange algorithm to the IBB is straight-
forward. According to Bouzidi et al. [11], the momentum exchange for a resting
boundary link in Fig. 11.5 is

�pi D �x3
�
f ?
i .xb; t/ � fNi.xb; t C �t/

�
ci; (11.8)

no matter the value q of the link. An alternative to (11.5), which improves its
accuracy, can be found in [17].
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11.2.2.2 Moving Boundaries

Most IBB applications in the literature deal with rigid boundaries (which can either
be stationary or move on the lattice). There is only a small number of works
featuring the IBB for deformable boundaries, e.g. [39]. The immersed boundary
method (Sect. 11.4) is a more common approach in those situations. We will
therefore not discuss deformable boundaries here.

Lallemand and Luo [40] extended the IBB to moving boundaries. The first
ingredient is Ladd’s algorithm: the term �2wi�uw � ci=c2

s has to be added to the
right-hand-side of (11.7), where uw is the wall velocity at the intersection point.
Also, since there is generally no fluid inside the solid in the IBB framework, a refill
mechanism has to be implemented when boundaries move and uncover new (fresh)
fluid nodes. We will get back to this in Sect. 11.2.4. Lallemand and Luo’s important
finding is that the motion of a cylinder on the lattice and the subsequent destruction
and creation of fresh nodes leads to some fluctuations of the drag coefficient. This
is one of the largest disadvantages of the IBB for moving boundaries; a problem
which can be reduced by using an advanced fresh node treatment (Sect. 11.2.4) or
the immersed boundary method (Sect. 11.4).

11.2.2.3 Extended and Alternative Methods

Several other second-order accurate bounce-back-based boundary conditions for
arbitrary geometries have been proposed. The following list shows a selection of
those methods and their most notable properties.

• Yu et al. [41] presented a unified scheme of Bouzidi’s algorithm which does not
require separate treatment of the regions q < 1

2
and q � 1

2
. Otherwise Yu’s

and Bouzidi’s approaches lead to similar results, including viscosity-dependent
slip (not easily solved by TRT/MRT collision models) and violation of mass
conservation.

• Ginzburg and d’Humières [17] proposed the so-called multireflection boundary
condition as an enhanced IBB. The key feature of this method is that it determines
the coefficients of the interpolation, rather than heuristically, using the second-
order Chapman-Enksog expansion on the interpolated populations. This way, it
guarantees the closure condition reproduced by the mesoscopic populations are
in exact agreement with the intended hydrodynamic condition. For the reasons
explained in Chap. 5, the multireflection method is generally constructed to be
formally third-order accurate, and that can be achieved in different ways: the
original multireflection scheme [17] adopts a (non-local) interpolation process
over five populations, while the more recent MLI scheme [15, 37, 38] only
operates over three populations (belonging to the same node) and supplements
this information with a (non-local) link-wise second-order finite difference
approximation of the hydrodynamic quantity of interest. Both these variants
can be implemented in two nodes only [15, 37, 38] and, also in both cases,
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the algorithm shall consider a post-collision correction term, which guarantees
the method’s higher-order accuracy and consistency (i.e. viscosity independence
with TRT/MRT collision models). A drawback of the multireflection technique,
common to the generality of interpolation-based schemes, is the possible viola-
tion of mass conservation.

• Chun and Ladd [18] proposed a method based on the interpolation of the
equilibrium distribution. It has the advantage that it requires only one node—in
contrast to two or three nodes in the standard linear and quadratic IBB scheme.
Similar to the SBB and multireflection schemes, this method guarantees the exact
wall location is viscosity-independent with TRT/MRT collision models. This
approach is particularly suitable for the time-dependent simulation of geometries
with narrow gaps between solids, e.g. for porous media. Mass conservation is
generally violated, just as in the majority of interpolation schemes.

• Kao and Yang [36] suggested an interpolation-free method based on the idea of
local grid refinement in order to improve the mass conservation of the boundary
condition.

• Yin and Zhang [42] presented another improved bounce-back scheme. Their idea
was to use Ladd’s momentum correction term and linearly interpolate the fluid
velocity between a nearby boundary node and the wall location (which can be
anywhere between two lattice nodes) to obtain the fluid velocity midway between
boundary and solid nodes. This promising method shares common disadvantages
with other interpolated bounce-back schemes: violation of mass conservation and
viscosity-dependent wall location.

The interpolated bounce-back (IBB) method is a common extension of
the simple bounce-back scheme for rigid resting or moving obstacles with
complex shapes. IBB is second-order accurate but introduces an important
weakness: the viscosity-dependent boundary slip is not easily corrected with
TRT/MRT collision operators. Furthermore, due to the involved interpola-
tions, IBB is not mass-conserving. Even so, due to its intuitive working
principle and relatively simple implementation, the IBB is often the method
of choice for improving the SBB accuracy in describing stationary complex
geometries.

11.2.3 Partially Saturated Bounce-Back

Now we present the so-called partially saturated method (PSM), also known as
grey LB model or continuous bounce-back, where a lattice node can be a pure fluid,
a pure solid or a mixed (partially saturated) node as shown in Fig. 11.6. Interestingly,
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Fig. 11.6 Partially saturated
bounce-back. A spherical
particle (circle) covers a
certain amount of each lattice
cell. White corresponds to no
coverage, black to full
coverage. The solid fraction
0 � � � 1 for each cell is
shown up to the first digit.
Lattice nodes (not shown
here) are located at the centre
of lattice cells

there exist two research communities which do not seem to interact strongly. The
first applies the PSM to simulations of flows in porous media with heterogeneous
permeability [43–45]. The other community is interested in suspension flows; they
employ the PSM to map the sharp surface of an immersed structure onto the lattice
[13, 35, 46, 47]. For the sake of brevity and since both approaches are technically
similar, we only elaborate on the latter application. We emphasise that the PSM
must not be confused with immersed boundary schemes (Sect. 11.4) which are,
according to our definition, fundamentally different in nature. As demonstrated in
a series of studies, e.g. [44, 45, 48, 49], the way PSM works can be considered
equivalent to the standard LBE with an added friction force. The magnitude of this
force varies locally, depending on the nodal fluid/solid fraction. This results in a
continuous accommodation of the solution from open (fluid) to very impermeable
(solid) regions. Hence, in PSM the nature of the wall can be understood as an
interface condition, separating nodes of contrasting properties [48–50].

11.2.3.1 Basic Algorithm

In 1998, Noble and Torczynski [46] presented a bounce-back-based approach, later
investigated more thoroughly by Strack and Cook [13], to approximate complex
boundaries on lattice nodes. The central part of the PSM algorithm is a modified
LBGK equation:

fi.x C ci�t; t C �t/ D fi.x; t/ C .1 � B/˝ f
i C B˝s

i (11.9)

where

˝ f
i D � fi.x; t/ � f eq

i .x; t/

�
(11.10)
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is the standard BGK collision operator for fluid (f) nodes and

˝s
i D

�
fNi.x; t/ � f eq

Ni .�;u/
�

� �
fi.x; t/ � f eq

i .�;us/
�

(11.11)

is the collision operator for solid (s) nodes. u is the local fluid velocity and us is the
velocity of the boundary at point x. B is a weighting parameter defined by [46]

B.�; �/ D
�
�
� � 1

2

�

.1 � �/ C
�
� � 1

2

� (11.12)

where 0 � � � 1 is the solid fraction of the node. It can be shown that B.�/ increases
monotonically between 0 for � D 0 (pure fluid node) and 1 for � D 1 (pure solid
node) for any fixed value of � > 1

2
. The essential idea is to surrender any shape

details of the off-lattice boundary and use an on-lattice volume fraction � instead.

Exercise 11.2 Show that the collision operator in (11.9) is mass-conserving by
computing

P
i ˝

f
i and

P
i ˝

s
i .

Note that the PSM assumes the standard BGK form for B D 0 and describes a
bounce-back of the non-equilibrium for B D 1. A mixed collision and bounce-back
scheme is performed for partially saturated nodes (0 < � < 1), which are only found
in direct boundary neighbourhood (Fig. 11.6).

Force and torque acting on the boundary can be computed from

f D �x3

�t

X

xn

B.xn/
X

i

˝s
i .xn/ci;

T D �x3

�t

X

xn

B.xn/.xn � R/ �
X

i

˝s
i .xn/ci;

(11.13)

respectively, where the xn are all lattice nodes in contact with the solid (including
all interior nodes), i.e. those nodes with � > 0, i runs over all lattice directions at a
given position xn andR is the location of the centre of mass of the solid. Updating the
solid’s momentum and angular momentum according to (11.13) guarantees overall
momentum conservation.

It is worth mentioning that Zhou et al. [51] have combined the node-based
method with Lees-Edwards BCs, which is relevant for the simulation of large bulk
systems. Furthermore, Chen et al. [47] have recently proposed a combination of
the PSM and a ghost method (Sect. 11.3) to improve the no-slip condition at the
boundary surface. Yu et al. [52] proposed another variant taking into account a mass-
conserving population migration process in the vicinity of moving walls.
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11.2.3.2 Advantages and Limitations

The implementation of this algorithm is relatively straightforward. If the boundary
is stationary, as for example encountered for a porous medium, � can be computed
once at each lattice site. For moving boundaries, � has to be updated, which is the
most challenging aspect of the PSM. Also, the correspondence between � and the
actual boundary shape is not trivial and requires some calibration [44, 45, 49]. For
example, Han and Cundall [35] use a sub-cell method to estimate � for a given
lattice site while Chen et al. [47] employ a cut-cell approach. Apart from updating
�, no additional measures have to be taken when objects are moving on the lattice. In
particular, fresh nodes appearing on the rear of a moving obstacle do not have to be
treated in a special way. Neither are fluid nodes destroyed when they are covered
by the advancing boundary. Since the interior fluid is never destroyed and still
participates in the collisions described by ˝s

i , mass and momentum are conserved.
In reality, curved boundaries in the PSM are nothing more than a sophisticated

staircase (cf. Fig. 11.6). In the PSM, there is no information about the distance
between lattice nodes and boundaries; instead, the local fluid filling fraction is
considered. It is easy to imagine that many different boundary configurations can
lead to the same filling fraction. Therefore, the PSM fails to capture the correct
shape of the boundary.

Strack and Cook [13] performed careful 3D benchmark tests of the PSM. The
authors report a significantly smoother motion when the weight B.�; �/ is used,
rather than just falling back to a staircase approximation of the boundary. This is
mostly due to the smooth uncovering of fluid nodes which have previously been
solid nodes and vice versa. However, the smoothness of the observables (velocity,
force and torque) depends on the accurate computation of the solid ratio �.

Later, Han and Cundall [35] investigated the resolution sensitivity of the PSM
and Ladd’s BB scheme (Sect. 11.2.1) in 2D. They found that both methods are
comparably accurate in terms of the drag coefficient of relatively large circles
(diameter � 10�x). However, for diameters as small as 4 � 5�x, the PSM is
superior, in particular when the objects are moving on the lattice.

The PSM has a number of advantages. The first is that one does not face the
fresh node problem (Sect. 11.2.4) which causes some trouble in most of the other
BB variants. Moreover, the PSM, unlike IBB, is exactly mass conserving. Another
advantage is the absence of interpolations to enforce the boundary condition. This
makes the PSM a promising candidate for dense suspensions and porous media with
small pore sizes.

However, when used for suspension flow, the PSM has so far mostly been applied
to very simple geometries like circles in 2D or spheres in 3D. Although it is possible
to construct more complex geometries by assembling several circles or spheres [35],
additional work is necessary to make the PSM more attractive for moving, arbitrarily
shaped boundaries. (Chen et al. [47] provide a short discussion of algorithms which
can be used for more complex shapes.) Also, by sacrificing the treatment of the exact
boundary shape, one cannot expect that the no-slip condition is accurately satisfied
at the boundary [48, 49]. More investigations of the accuracy of the PSM for simple
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and complex boundary shapes would certainly be beneficial. Furthermore, the PSM
in its present form is not suitable for the simulation of deformable boundaries or
thin shells with fluid on both sides (unlike interpolated bounce-back, for example).

The partially saturated method (PSM) is a node-based method. PSM is
exactly mass-conserving and does not require the treatment of fresh fluid
nodes. The disadvantage is the difficulty of finding correct values for the solid
fraction near solid boundaries, which is effectively limiting this method to
stationary geometries (where the solid fraction has to be computed only once)
or to spherical particles.

11.2.4 Destruction and Creation of Fluid Nodes

When boundaries move, it happens from time to time that lattice nodes cross the
boundary, either from the fluid to the inside of the boundary or vice versa. If the
interior of the boundary is not filled with a fluid, the former event requires the
destruction, the latter the creation of a fluid site as shown in Fig. 11.7. Newly
created nodes are also called fresh nodes. This applies to most methods described in
Sect. 11.2 and also Sect. 11.3, but not to Ladd’s method (Sect. 11.2.1) or the partially
saturated method (Sect. 11.2.3) where nodes are neither created nor destroyed.
Generally the number of fluid and solid nodes is not conserved when boundaries
move on the lattice.

Fig. 11.7 Creation and destruction of fluid nodes. A particle is moving from its previous position
(dotted circle) to its new position (solid circle). As a consequence, one fresh fluid node (open
square) appears behind the particle and a fluid node is destroyed (solid square) at the front of the
particle. Fluid and solid nodes are shown as open and solid symbols, respectively



452 11 Boundary Conditions for Fluid-Structure Interaction

Destruction is straightforward [27]: the state of the site is switched from “fluid”
to “solid”, and its momentum and angular momentum are transferred to the solid.
For a destroyed fluid node at xd with density � and velocity u, the particles receives
a momentum contribution �u�x3 and an angular momentum contribution .xd �R/�
.�u/�x3 where R is the particle’s centre of mass. Finally, the fluid information of
the site at xd is omitted.

The inverse process, creation of a fluid site, is more difficult because the density,
velocity and even all populations are unknown at first. The simplest approach to
initialise a fresh node at point xf and time t is to estimate the density as the average
of the neighbouring fluid sites [27],

�f D �.xf; t/ D 1

Nf

X

i

�.xf C ci�t; t/; (11.14)

where the sum runs only over those Nf neighbouring sites which are fluid. The
velocity uf of the fresh node is computed from the known boundary velocity of
the obstacle at the same point via (11.4). The populations fi are then initialised with
their equilibrium values f eq

i .�f;uf/. As additional step, the momentum and angular
momentum of the fresh node have to be subtracted from the solid.

Although this approach is easy to implement, two disadvantages are obvious:
the total mass in the system is generally not conserved, and the non-equilibrium
contribution of the fresh node is missing, which can lead to distortions of the flow
field.

Chen et al. [14] compared the above-mentioned approach and three other algo-
rithms to initialise fresh nodes. One of those relies on extrapolation of populations
from neighbouring fluid sites [40]. The other two approaches, both first described
in [14], are based on the consistent initialisation [53] (see also Sect. 5.5). From
benchmark tests involving moving cylinders, the authors come to the conclusion that
the consistent initialisation methods are usually more accurate than interpolation
[27] or extrapolation [40].

The destruction and creation of fluid nodes is necessary when the standard
or interpolated bounce-back method (or certain other boundary conditions)
are used for moving boundaries. Boundary treatments without the need for
this consideration are Ladd’s method for suspended particles and the partially
saturated method. It has been observed that the treatment of fresh nodes is
crucial to reduce oscillations of the particle drag and creation of detrimental
sound waves.
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11.2.5 Wall Shear Stress

We conclude this section with a more general discussion of the wall shear stress that
is useful for most LB boundary conditions.

Several diseases of the circulatory system are assumed to be linked to patho-
logical levels or changes of the shear stress at the arterial wall (see, e.g., [54]
and references therein). Two prominent examples are atherosclerosis or aneursym
formation. In recent years, a growing number of scientists became interested in the
LB modelling of blood flow in realistic blood vessel geometries. Apart from finding
and implementing reasonable boundary conditions, a key question is how the wall
shear stress (WSS) can be computed and how accurate the obtained values are.

We will provide a brief review of the comparatively small number of publications
in this field, but before that a few words about the WSS are necessary. The WSS is
tightly connected to the momentum exchange at the boundary. Evaluating (11.2) is
not sufficient to find the WSS, though. The reason is that WSS is a local quantity
and not an integrated property of the entire surface of the boundary.

In order to find the WSS, the boundary location and orientation have to be known
at each point of interest. Assuming that xw is a point on the wall, we denote On the
wall normal vector at xw pointing inside the fluid domain. For a given fluid stress
tensor � at xw, we first define the traction vector as T D � � On. It is the force acting
on an infinitesimal, oriented wall area element dA D dA On. The WSS vector � is
the tangential component of the traction vector, i.e. we have to subtract the normal
component of the traction:

� D T � .T � On/ On; �˛ D �˛ˇ Onˇ � .�ˇ� Onˇ On� /On˛: (11.15)

The subtracted normal component .T � On/ On contributes to the wall pressure. It is
common to report only the magnitude of the WSS vector, simply called the WSS
� D j�j (not to be confused with the BGK relaxation time).

We distinguish three typical situations:

1. The normal vector On is known everywhere on the boundary, but the geometry is
approximated by a staircase boundary (simple bounce-back).

2. The geometry is only known as a staircase, and no additional information about
the normal vector On is available.

3. A higher-order boundary conditions is used for the boundaries (e.g. IBB). We
will not consider this case here.

An example for the first case is the discretisation of a known boundary geometry
where a surface tessellation is converted to a staircase surface. Here we still have
access to the original normal vectors, but the LB simulation is only aware of the
staircase. The second case is important when voxel data is directly converted into
a staircase geometry, without a priori knowledge of the boundary normals. This
means that we first need to estimate On from the known data before we can compute
the WSS.
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Stahl et al. [55] were the first authors to provide a careful investigation of the
behaviour of the WSS in LB simulations with staircase geometries. They presented
a scheme to obtain the unknown normal vectors On from the flow field. This is
straightforward in 2D where the no-penetration condition requires u � On D 0

for the fluid velocity u at the wall. From the known velocity u we can easily
compute the unknown On up to its sign. This is more complicated but possible in
3D, where additional information is required (see [55] for details). The authors then
investigated the accuracy of the stress computation near the boundary in an inclined
Poiseuille flow. They found strongly anisotropic behaviour: the error is minimum
for walls aligned with one of the major lattice directions (i.e. when the wall is flat),
but larger errors for arbitrarily inclined walls. This error, however, decreases when
the stress is evaluated farther away from the wall. Therefore the authors suggested to
measure the fluid stress a few lattice sites away from the wall. All in all, it requires
relatively high resolutions (several 10�x) to estimate the WSS reasonably well in a
staircase geometry, which makes this method unfeasible when the average channel
diameter is small.

Later, Matyka et al. [56] proposed a different scheme to obtain a better estimate
of the unknown normal vectors On. Their idea was to compute a weighted average of
the staircase information of the neighbouring lattice nodes. The advantage of their
approach is that it is based on the geometry alone; it is independent of the flow field.
Furthermore, the authors showed that the WSS error is dominated by the flow field
error and not by an inaccurate approximation of the normal vector. The flow field
error in turn is caused by the staircase approximation (modelling error), which can
only be decreased by using a more accurate boundary condition for the LBM.

Pontrelli et al. [54] used a finite-volume LBM to compute the WSS in a small
artery with a realistic endothelial wall profile. Unfortunately the authors did not
provide a benchmark test of the WSS accuracy in their setup. It would be interesting
to investigate whether the finite-volume LBM is able to mitigate the shortcomings
of the regular lattice with staircase approximation.

Very recently, Kang and Dun [57] studied the accuracy of the WSS in inclined
2D Poiseuille and Womersley flows for BGK and MRT collision operators and for
SBB and IBB at the walls. One of the basic results is that, in channels aligned with
a major lattice axis, the WSS converges with a first-order rate upon grid refinement
when it is evaluated at the fluid layer closest to the wall and with a second-order
rate when the result is extrapolated to the wall location. This is no surprise since the
distance of the last fluid layer and the wall itself converges to zero with first-order
rate. The authors report similar results for BGK and MRT for their chosen parameter
range. When the flow in an inclined channel is simulated, the choice of the boundary
condition plays a significant role. IBB leads to errors which are about one order of
magnitude smaller than for SBB. Moreover, MRT leads to slightly better results than
BGK.
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The choice of wall boundary condition critically affects the quality of wall
shear stress estimates. The best results are obtained when a curved boundary
condition is used as this increases the accuracy of the flow field and the fluid
stress tensor in direct vicinity of the wall. Further research is necessary to
develop improved boundary conditions for more accurate WSS computations
in complex geometries.

11.3 Ghost Methods

We will now present LB boundary methods which require extrapolations. A typical
scenario is the extrapolation of fluid properties at virtual nodes within a solid
body. These so-called ghost nodes then participate in collision and propagation
like normal fluid nodes. This process produces those populations which stream out
of the solid and would otherwise be unknown. After providing some definitions
in Sect. 11.3.1, we discuss three distinct classes of extrapolation-based boundary
conditions: the Filippova-Hänel and Mei-Luo-Shyy methods (Sect. 11.3.2), the
Guo-Zheng-Shi method (Sect. 11.3.3) and comparably novel image-based ghost
methods (Sect. 11.3.4). Some recommended articles are [58–62].

11.3.1 Definitions

In order to understand the motivation for the boundary conditions presented in this
section, we first have to define certain terms and understand their implications.

• Extrapolation in the present context means that the known information of a
quantity (e.g. velocity) within a geometrical region is used to approximate the
quantity outside this region. The known region is typically the fluid region
whereas the interior of a solid is unknown. For example, if we know the velocity
u at points x and x0 D x C �x (which may be inside the fluid) but not at
x00 D x0 C �x0 (which may be inside the solid), we can still approximate it by
assuming a linear behaviour and write

u.x00/ D u.x0/ C u.x0/ � u.x/

�x
�x0: (11.16)

Higher-order extrapolations require more known data points (usually nC1 points
for extrapolation of order n). Extrapolations can often lead to instability (in
particular when �x in (11.16) is small) and loss of accuracy.
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• Fictitious domain methods are based on the idea that the solution of a problem in
a given (usually complex) domain ˝ can be simpler when instead a substitute
problem in a larger (and simpler) domain ˝ 0 with ˝ � ˝ 0 is solved. This
obviously means that information in the complement region ˝ 0 n ˝ has to be
constructed. This usually involves extrapolations.

• Ghost methods are a special case of fictitious domain methods where virtual fluid
nodes (ghost nodes) are created inside the solid region close to the boundary.
Extrapolations of fluid and boundary properties are used to reconstruct the ghost
nodes. These nodes then participate in collision and propagation in the normal
way in order to supply the boundary nodes with otherwise missing popula-
tions. Unfortunately these methods are sometimes denoted as sharp-interface
immersed-boundary methods, although they hardly share any similarities with
the immersed boundary method originally introduced by Peskin (Sect. 11.4).

Revisiting the bounce-back boundary conditions presented in Sect. 11.2, we can
make the following comments:

• Standard and interpolated bounce-back do not involve any extrapolation or ghost
nodes. Although one can implement both methods with the help of nodes which
are on the solid side of the boundary, these nodes are only used for memory
storage purposes and do not qualify these methods as ghost methods.

• The partially saturated method uses nodes which are inside the solid, but no
extrapolations are required to create them. The reason is that the fluid is simply
kept in the interior without the need to reconstruct it at every time step.

Therefore, neither of the bounce-back-based boundary conditions in Sect. 11.2 is an
extrapolation or ghost method.

We present three extrapolation-based methods in more detail: the Filippova-
Hänel and Mei-Luo-Shyy methods, the Guo-Zheng-Shi method and image-based
ghost methods. Apart from this, the method by Verschaeve and Müller [63] as
an extension of [64] to curved boundaries is yet another alternative which we
will, however, not discuss in detail. In short, the underlying idea of [63] is
to have boundary nodes in both the fluid and solid regions and to interpolate
and extrapolate fluid properties, respectively. The equilibrium distributions are
reconstructed from the density and velocity, the non-equilibrium distributions from
the velocity gradient.

11.3.2 Filippova-Hänel (FH) and Mei-Luo-Shyy (MLS)
Methods

In 1998, Filippova and Hänel [65] proposed the first LB boundary condition for
curved geometries (FH method) using extrapolations. They assume the following
situation: a population f ?

i .xb; t/ propagates towards a wall located between a
boundary node at xb and a solid node at xs D xb C ci�t. The wall is located at
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Fig. 11.8 Filippova and Hänel boundary condition. A link ci is cut by a curved boundary at
xw (solid square). Fluid, boundary and solid nodes are shown as white, grey and black circles,
respectively. Information about the velocity at the solid node xs is required to find the post-
streaming population f

Ni.xb/. The original method [65] requires the velocity at xb only, while the
improved method [58] uses the velocity at xf as well

xw D xb C qci�t as illustrated in Fig. 11.8. The question is how to find the missing
population fNi.xb; t C �t/.

11.3.2.1 Original Method by Filippova and Hänel (FH)

Filippova and Hänel [65] suggested the equation

fNi.xb; t C �t/ D .1 � 	/f ?
i .xb; t/ C 	 f eq

i .xs; t/ � 2wi
uw � ci
c2

s

(11.17)

for each direction ci crossing a wall. Here, uw is the wall velocity (i.e. the velocity
of the wall at the intersection point xw, cf. Fig. 11.8) and 	 a weighting factor (with
the dimensionless BGK relaxation time �):

	 D
8
<

:

1
�

2q�1

1� 1
�

q < 1
2

1
�
.2q � 1/ q � 1

2

: (11.18)

Exercise 11.3 Show that (11.17) reduces to simple bounce-back for q D 1
2
.

Equation (11.17) is essentially an interpolation of populations at xb and xs, but
we still have to investigate the shape of the required equilibrium term f eq

i .xs; t/.
Filippova and Hänel [65] construct the “equilibrium distribution in the rigid nodes”
from

f eq
i .xs; t/ D wi

 
p.xb; t/

c2
s

C ci � us

c2
s

C .ci � ub/2

2c4
s

� ub � ub

2c2
s

!
: (11.19)

where we have used the abbreviations ub D u.xb; t/ and us D u.xs; t/. This is nearly
the standard incompressible equilibrium evaluated at xb, with the only exception that
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the fluid velocity ub is replaced by the solid node velocity us in the linear term. The
authors suggested

us D
8
<

:
ub q < 1

2
q�1

q ub C 1
quw q � 1

2

(11.20)

to find the missing velocity at xs.
This deserves a few comments:

• For q � 1
2
, the solid node velocity is obtained by extrapolating the velocity at xs

from xb and xw.
• Since the extrapolation would lead to unstable results for q ! 0, the authors fall

back to us D ub for q < 1
2
.

• The choice of the incompressible equilibrium also explains why the fluid density
does not appear in the momentum exchange term on the right-hand-side of
(11.17): in the incompressible method the density is constant and typically set
to unity.

Although the FH method reduces to simple bounce-back for q D 1
2
, it is

conceptually different from interpolated bounce-back (IBB, Sect. 11.2.2) which also
reduces to simple bounce-back for q D 1

2
. For any q-value, only one fluid node is

required in (11.17), which makes the FH method more local than IBB. The FH
method requires an extrapolation for q � 1

2
, IBB does not.

11.3.2.2 Improvements by Mei, Luo and Shyy (MLS)

The FH method has the major disadvantage that the weight 	 diverges for � ! 1

and q < 1
2
, which leads to instability. Mei et al. [58] therefore analysed the FH

method and its stability properties in detail and proposed an improved version (MLS
method). The starting point for the improvement is to realise that there are different
ways to construct the term f eq

i .xs; t/. The authors proposed new expressions for
q < 1

2
:

us D uf; 	 D 2q � 1

� � 2
; (11.21)

where uf D u.xf; t/ and xf D xb � ci�t is the location of the fluid node beyond the
boundary node (cf. Fig. 11.8). The expressions for q � 1

2
remain untouched.

Mei et al. [58] showed that this modification indeed improves the stability of
the original FH method, but they are also sacrificing its locality as a boundary and
a fluid node are required. The authors further mention that the above expressions
are only strictly valid for stationary flows. They therefore suggested a higher-order
extrapolation at us for transient flows.
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It is important to note that most follow-up works in the literature employ the
improved [58] rather than the original [65] implementation. In the following we
summarise some notable progress:

• Mei et al. [66] were the first to perform a thorough comparative evaluation of
the momentum exchange algorithm (MEA) and stress integration in the context
of the MLS method to obtain drag and lift coefficients at stationary curved
boundaries. They found that the stress integration is much more demanding
in terms of implementation effort and computing time while the MEA is still
relatively accurate. Mei et al. therefore recommend to use the MEA.

• Like other interpolation- and extrapolation-based approaches, the FH and MLS
methods suffer from a violation of mass conservation. Therefore, Bao et al. [67]
analysed the mechanism responsible for the mass leakage in those boundary
treatments and presented an improved mass-conserving method.

• Wen et al. [59] extended the MEA [66] to moving boundaries.

11.3.3 Guo-Zheng-Shi (GZS) Method

Guo et al. [60] proposed yet another extrapolation-based LB boundary condition for
curved boundaries (GZS). The problem is the same as in Sect. 11.3.2 and Fig. 11.8.
In particular, the cut link ci points into the solid.3

The question is how to find fNi.xb; tC �t/. The GZS method uses a fictitious fluid
node at xs which is assigned an equilibrium value

f eq
Ni .xs; t/ D f eq

Ni .�s;us/ (11.22)

where f eq
i .�;u/ is the standard incompressible equilibrium. Note that the only

ficticious nodes are those solid nodes which are directly connected to a boundary
node by a lattice vector ci.

The authors approximate the density at the solid site by its neighbour value:
�s D �.xs; t/ D �.xb; t/. For the velocity, they suggested

us D
8
<

:
qu.1/ C .1 � q/u.2/ q < 3

4

u.1/ q � 3
4

(11.23)

3Guo et al. [60] defined ci exactly the other way around.
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where u.1/ and u.2/ are extrapolations using the nodes at xb and xf, respectively:

u.1/ D .q � 1/ub C uw

q
;

u.2/ D .q � 1/uf C 2uw

1 C q
:

(11.24)

This means that us can be different for each considered link ci crossing a boundary;
it is therefore not a property of the position xs alone. When q is large enough, an
extrapolation from the closest fluid node at xb is sufficiently stable, but for smaller
q-values an extrapolation from the fluid node at xf becomes necessary.

Now, apart from the equilibrium, the GZS method also involves the non-
equilibrium populations at the solid node. The authors proposed the extrapolation

f neq
Ni .xs; t/ D

8
<

:
q f neq

Ni .xb; t/ C .1 � q/f neq
Ni .xf; t/ q < 3

4

f neq
Ni .xb; t/ q � 3

4

: (11.25)

The GZS algorithm includes the following steps:

1. Find q for a cut link connecting a boundary node xb and a solid node xs.
2. Reconstruct the populations of the fictitious nodes by

fNi.xs; t/ D f eq
Ni .xs; t/ C f neq

Ni .xs; t/; (11.26)

where the equilibrium and non-equilibrium parts are computed from (11.22) and
(11.25).

3. Collide on all fluid/boundary nodes and fictitious nodes.4

4. Stream populations from all fluid/boundary nodes and fictitious nodes to their
fluid neighbours. In particular, f ?

Ni streams from the fictitious to the boundary
node and provides the missing value for fNi.xb; t C �t/.

5. Go back to step 1.

According to Guo et al. [60], the present method has advantages over the methods
in Sect. 11.3.2. First, while the FH and MLS methods assume a slowly varying
flow field, the GZS method only requires a low Mach number flow which can be
unsteady. Secondly, the GZS scheme is more stable than the MLS approach.

We would also like to mention that Guo et al. [60] view FH and MLS as
improved bounce-back methods. Although that statement is certainly not wrong (the
functional form for the missing population fNi.xb; tC�t/ is similar to the standard and
interpolated bounce-back expressions), the FH, MLS and GZS methods all require

4In the original paper [60], the fictitious populations are already constructed in their post-collision
state f ?

Ni
.xs; t/ D f eq

Ni
.xs; t/C .1� 1

�
/f neq
Ni

.xs; t/. In this case, collision on fictitious nodes is of course
not additionally performed.
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extrapolations and are ghost-like methods. They are therefore conceptually different
from the bounce-back methods presented in Sect. 11.2 which are all extrapolation-
free.

11.3.4 Image-Based Ghost Methods

Only in 2012, Tiwari and Vanka [61] developed a ghost-fluid boundary condition for
the LBM which is based on the so-called image method. The idea of their boundary
condition is illustrated in Fig. 11.9.

The algorithm consists of the following steps:

1. Identify all required ghost nodes xs. Those are all solid nodes which are
connected to at least one boundary node along a lattice vector ci.

2. For each ghost node xs find the closest point xw on the wall. We define n D xw�xs

as the outward-pointing normal vector at the wall. Note that jnj is the distance of
the ghost node from the wall and n is generally not aligned with any of the lattice
vectors ci.

3. The next step is to find the image point xi in the fluid:

xi D xs C 2n D xw C n: (11.27)

For a stationary boundary, steps 1–3 have to be performed only once.
4. Interpolate the required fluid properties (velocity and density) at the image point

xi to obtain ui and �i. The interpolation process is somewhat tedious as it depends
on whether interpolation support points are located in the fluid or on the wall. We
refer to [61] for a detailed discussion.

Fig. 11.9 Image-based ghost method. For each ghost node xs, the closest wall point xw is
computed. The corresponding image point xi in the fluid (open circles) is constructed along the
normal vector n. Fluid properties at the image point are obtained from an interpolation in the grey
region (fluid nodes A, B, C, D). A different interpolation is required if not all interpolation support
points are located within the fluid
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5. Extrapolate velocity and density along the normal n to the ghost node. Tiwari
and Vanka [61] used

us D 2uw � ui; �s D �i: (11.28)

The first equation refers to a linear extrapolation of the velocity, the second to a
zero density gradient at the wall.

6. Compute the equilibrium distributions at the ghost nodes from f eq
i .xs; t/ D

f eq
i .�s;us/.

7. The non-equilibrium distributions f neq
i .xs; t/ are obtained like the fluid density:

interpolate them at xi first, then apply f neq
i .xs; t/ D f neq

i .xi; t/.
8. Combine the equilibrium and non-equilibrium distributions at the ghost nodes

and perform the propagation step, followed by the collision step.
9. Go back to step 1.

This algorithm deserves a few remarks:

• In contrast to the previous methods in this section, us does not depend on the
considered link ci; it is rather a unique property of each ghost node.

• According to [61], the extrapolated values of density, velocity and non-
equilibrium distributions are post-collision rather than pre-collision. This is
unusual since the moments (density, velocity, stress) are normally computed
after the previous streaming and before the next collision step.

• The boundary condition is based on the hydrodynamic fields rather than the
populations. This allows implementing Neumann boundary conditions. The
authors for example demonstrated the applicability of their method for inlet and
outlet boundary conditions [61].

• Extrapolation along normal vectors as in step 5 avoids typical stability issues
encountered with other extrapolation methods.

• Although being trivial for circular or spherical boundary segments, finding the
image point can be tedious for complex boundary shapes. Also the interpolation
at the image points is complicated if not all interpolation support points are
within the fluid domain. The application of this boundary condition to moving
boundaries of complex shape, in particular in 3D, is therefore difficult and
expensive. Tiwari and Vanka [61] simulated only circular boundaries in 2D.

• The assumption of a zero density gradient across the boundary is a gross over-
simplification. For example, it fails when a force density along the extrapolation
direction exists which is balanced by a pressure gradient [62]. Since errors
in the pressure gradient are of higher order, the velocity profile may still be
second-order accurate, though. A similar objection can be made for the non-
equilibrium distributions. At least a linear extrapolation for the density and the
non-equilibrium distributions are required to accurately capture second-order
flows like the Poiseuille flow.
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Several extensions and improvements of the algorithm have been proposed in the
meantime:

• Khazaeli et al. [68] followed a similar route as Tiwari and Vanka [61] to impose
higher-order boundary conditions for coupled fluid-heat problems in the two-
population LBM.

• Mohammadipoor et al. [62] followed the same line as [61] and extended the
approach of Zou and He [69] to curved boundaries.

• Pellerin et al. [70] proposed an image-based method that relies only on equilib-
rium distributions.

There exist several extrapolation-based boundary conditions for the LBM.
These methods are conceptually more difficult than bounce-back-based meth-
ods. A common algorithmic complication all these methods share with the
interpolated bounce-back method is the detection of boundary points (either
on cut links or closest points to ghost nodes). In practice, these methods are
quite unhandy for moving boundaries of complicated shape although they are
promising candidates for highly accurate boundary conditions when properly
applied. More research is required to make extrapolation-based method more
attractive for moving objects with non-trivial shape.

11.4 Immersed Boundary Methods

The immersed boundary method (IBM) [71–73] is older than LBM, but the
combination of both was not suggested before 2004 [74] (Sect. 11.4.1). The basic
idea of the IBM is to approximate a boundary by a set of off-lattice marker points
that affect the fluid only via a force field. An interpolation stencil is introduced
to couple the lattice and the marker points (Sect. 11.4.2). This allows a relatively
simple implementation of complex boundaries. There are several IBM variants, for
example explicit (Sect. 11.4.3) or direct-forcing (Sect. 11.4.4) for rigid boundaries
and explicit IBM for deformable boundaries (Sect. 11.4.5). We also mention a series
of other related boundary conditions which are less commonly used (Sect. 11.4.6).
We recommend reading [75, 76] for introductions and investigations of the IBM in
conjunction with the LBM.
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11.4.1 Introduction

Boundary conditions in the LBM are usually treated on the population level, i.e. the
populations fi are manipulated or constructed in such a way that the desired values
for pressure and velocity (or their derivatives) are obtained at the boundary. This
applies to all boundary conditions discussed in Chap. 5 and in the present chapter
up to this point.

There is, however, a completely different way to enforce boundary conditions
which was available long before anybody knew of the LBM. In 1972, Peskin
proposed the immersed boundary method (IBM) in his dissertation [71], followed
by an article in 1977 [72]. Peskin’s idea was to use the force density F.x; t/ in
the Navier-Stokes equation to mimic a boundary condition. To this end, F.x; t/
has to be computed such that the fluid behaves as if there was a boundary with
desired properties (e.g. no-slip). When correctly applied, this approach can be used
to recover immersed rigid or deformable objects with nearly arbitrary shape. Since
the boundary condition exists only on the Navier-Stokes level (via the force density
F.x; t/), IBM is not aware of the populations fi.

The IBM provides a number of advantages. The main advantage is its front-
tracking character, i.e. the shape of the boundary is directly known and does
not have to be reconstructed (as in phase-field or level-set approaches). Neither
do intersection points have to be computed (as required for nearly all boundary
conditions presented in this chapter so far). The IBM can be combined with any
Navier-Stokes solver which supports external forcing, such as the LBM. The IBM
is relatively simple to implement and, if done so properly, its numerical overhead is
small. Moving and deformable boundaries can be realised without remeshing. It has
to be noted that fluid exists on both sides of an IBM surface. In particular, closed
surfaces are filled with fluid.

The original IBM does not take any consideration of the kinetic origin of the
LBM as it only operates on the Navier-Stokes level. Still, the combination of
the IBM and the LBM, also called immersed-boundary-lattice-Boltzmann method
(IB-LBM), first proposed by Feng and Michaelides [74], has become a popular
application. It therefore deserves a somewhat thorough introduction in this book,
together with some recent developments and related approaches. We cannot provide
an exhaustive coverage of the IBM in general, though. Readers who are interested
in the IBM independently of the LBM should read the seminal paper by Peskin [73]
and the review by Mittal and Iaccarino [77].

There is some dissent in the literature what “immersed boundary method”
actually means and how it is defined. Some people use it for nearly all methods
where a boundary is immersed in a fluid, including, for example, fictitious domain
methods (Sect. 11.3). Here, we define those methods as immersed boundary
methods which involve, on the one hand, an Eulerian grid and Lagrangian markers
and, on the other hand, some kind of velocity interpolation and force spreading as
devised by Peskin [73], but there is no clear distinction between the IBM and related
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methods. Another way of putting this is the following.5 In IBM we have marker
points without mass that move exactly with the fluid. Through some mechanical
model (e.g. a constitutive model for a deformable membrane or a penalty force for
a rigid body), we can compute forces at these points which we apply to the fluid
directly, rather than to the mechanical model itself.

In the remainder of this section we will focus on the IBM combined with LBM
using the BGK collision operator. However, several authors recently pointed out that
the MRT or TRT collision operators can bring additional advantages by reducing
undesired velocity slip at the immersed boundaries [78, 79]. We will not discuss
those extensions further.

11.4.2 Mathematical Basis

We will now review the original IBM, discuss its mathematical properties and show
its basic numerical algorithm.

11.4.2.1 Eulerian and Lagrangian Systems

Mathematically, the basis of the IBM is an Eulerian and a Lagrangian system. The
former is represented by a fixed regular grid on which the fluid lives and the Navier-
Stokes equations are solved. The latter is an ensemble of marker points frjg. They
can be (nearly) arbitrarily distributed in space, as long as they are sufficiently dense
(see below). These markers represent discrete surface points of the boundary and
are generally allowed to move: rj D rj.t/. We therefore have to distinguish between
two node systems (Fig. 11.10) with the following properties:

1. The Eulerian grid defined by the LBM lattice nodes (coordinates designated by
x) is regular and stationary.

2. The immersed boundary marker points rj.t/ are Lagrangian nodes. They are not
bound to the Eulerian grid and can move in space.

If the boundary is rigid, one would ideally fix relative distances such that
jrjk.t/j D jrj.t/ � rk.t/j D const. This is often not achievable, and a somewhat
softened condition jrjk.t/j � const is used instead. For deformable boundaries, a
relative marker motion is actually desired.

It may or may not be necessary to connect neighbouring markers. Most imple-
mentations of rigid boundary conditions do not require connected markers, while
all deformable algorithms require some kind of surface tessellation which involves
defining the markers and their connectivity (surface mesh). This mesh is called
nonconforming as it does not have to be aligned with the lattice of the LBM. The

5Thanks to Eric Lorenz for suggesting this description.
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Fig. 11.10 Cylinder with
boundary markers arbitrarily
positioned in the regular fluid
domain. The Eulerian mesh
(fluid nodes, open circles)
and the Lagrangian mesh
(boundary, solid nodes) are
independent. No intersections
of lattice links with the
boundary have to be
computed

main advantage of the IBM is that the complex shape of the boundary is not related
to the lattice structure and no intersection points have to be computed. This makes
the IBM particularly useful for deformable boundaries (Sect. 11.4.5).

The decomposition of the geometry into two coordinate systems brings up the
important question how to couple the dynamics of the boundary and the fluid. We
need a bi-directional coupling where the fluid has to know about the presence of the
boundary and vice versa. It is therefore required to communicate some information
between both node systems through velocity interpolation and force spreading.

11.4.2.2 Continuous Governing Equations

We start with a fully continuous description and later turn our attention to the
discretised version. In the following we assume the validity of the no-slip boundary
condition, which is the first key idea of the IBM. It implies that each point of the
surface r.t/ and the ambient fluid at position r have to move with the same velocity:

Pr.t/ D u.r.t/; t/: (11.29)

The time dependence on the right-hand side of (11.29) is, on the one hand, caused
by the variation of u itself and, on the other hand, by the boundary moving and
therefore seeing different parts of the flow field. We can rewrite (11.29) as

Pr.t/ D
Z

d3x u.x; t/ı.x � r.t// (11.30)

where ı.x � r.t// is Dirac’s delta distribution. Equation (11.30) is the first of
two governing equations of the as yet continuous IBM. We will later see that the
discretised version of (11.30) requires velocity interpolation. Note that we write all
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equations for 3D applications, but everything said (unless otherwise stated) can be
directly applied in 2D as well.

The second governing equation describes the momentum exchange between the
boundary and the fluid. In the IBM picture, we are interested in the force the
boundary surface exerts on the nearby fluid, rather than the other way around. Let us
assume we know the force density (per area) FA.r.t/; t/ everywhere on the boundary
surface. Therefore, FA d2r is the force acting on a small area element d2r.6 The
force density (per volume) that the fluid feels due to the presence of the immersed
boundary can then be written as

F.x; t/ D
Z

d2rFA.r.t/; t/ı.x � r.t//: (11.31)

The delta distribution is the same as in (11.30). Equation (11.31) essentially means
that the Lagrangian boundary force is spread to the Eulerian fluid. Therefore this
equation is called force spreading.

Note that F.x; t/ is singular. Since the delta distribution ı.x � r.t// is 3D, but
the integration is only 2D along the boundary, F.x; t/ is singular when crossing the
boundary in normal direction. This marks the defining difference between velocity
interpolation (which is non-singular) and force spreading.

Equation (11.30) and (11.31) are the basic IBM equations in their continuous
form. We will now show their discretised versions which can be used in computer
simulations.

11.4.2.3 Discretised Governing Equations

Since the velocity field is only known at discrete lattice sites, the integral in
equation (11.30) cannot be exactly computed in a lattice-based simulation. The same
holds for (11.31). Instead, both integrals have to be replaced by sums with a suitably
chosen discretisation of the delta distribution.

Peskin [73] provided a full derivation of a general set of equations for the
IBM. We will restrict ourselves, for the sake of brevity and clarity, to the final
set of equations based on the assumption that the fluid in the entire volume is
homogeneous, in particular its density and viscosity. We further assume that the
markers are massless, which means that the boundary has the same density as the
surrounding fluid.

6Remember that the boundary in 3D is a 2D surface.
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The discretised IBM equations read

Prj.t/ D
X

x

�x3u.x; t/�.rj.t/; x/ (11.32)

and

F.x; t/ D
X

j

f j.t/�.rj.t/; x/: (11.33)

The fluid is discretised as an Eulerian lattice with coordinates x, the boundary
is approximated by an ensemble of markers at rj.t/. Here, u and F are velocity
and force density (per volume) on the lattice, Prj and f j are the velocity of and
the total force acting on the markers. Velocity interpolation in (11.32) and
force spreading in (11.33) are the central IBM equations. Both require an
appropriate kernel function (or stencil) �, as discussed below.

It is important to realise that f j.t/ is the total force (not force density) acting on
node j at position xj.t/. Apart from the no-slip condition discussed above, it is one
of the key ideas of the IBM that the force f j.t/ is first computed in the Lagrangian
system and then spread to the lattice. This brings up the central question how f j.t/
can be found in the first place. In fact, this depends strongly on the chosen kind of
the IBM. We will discuss this problem in the upcoming sections. Let us for now
simply assume that all forces f j.t/ are known at each time step.

We further emphasise that F.x; t/ is the only mechanism through which the fluid
is aware of the presence of the boundary; there is otherwise no direct boundary
condition for the fluid. Once we knowF.x; t/, we can use one of the forcing schemes
described in Chap. 6 to update the fluid. To the LBM, the IBM force density is not at
all different from gravity (although gravity is usually homogeneous and constant).

11.4.2.4 Kernel Functions

The function �.rj; x/ is a suitably discretised version of the Dirac delta distribution
and another key ingredient of any IBM. It is in most cases simplified by assuming
�.rj; x/ D �.rj � x/, i.e. it is only a function of the distance vector rj � x rather than
a more general function of rj and x (see [80] for a kernel without this simplification).
It is not directly obvious which functions �.rj � x/ qualify as valid interpolation
and spreading kernels. While Peskin [73] explains the procedure to find suitable
discretisations in detail and an overview of interpolation function can be found in
[76, 81], we will only provide the basic ideas and final results.
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Fig. 11.11 IBM interpolation stencils 
2, 
3, and 
4. The total kernel range is two, three and four
lattice sites, respectively

The fundamental claims and restrictions are:

• Interpolation and spreading should be short-ranged. This is required to reduce
computational overhead by making the number of summands in (11.32) and
(11.33) as small as possible.

• Momentum and angular momentum have to be identical when evaluated either in
the Eulerian or the Lagrangian system (same speed and rotation in both systems).

• Lattice artefacts (“bumpiness” of the interpolation when boundaries move)
should be suppressed as much as possible.

• The kernel has to be normalised:
P

x �x3�.x/ D 1.

It is convenient to factorise the kernel function as �.x/ D 
.x/
.y/=�x2 in 2D
and �.x/ D 
.x/
.y/
.z/=�x3 in 3D, i.e. each major coordinate axis contributes
independently. This is not essential but simplifies the procedure. Peskin [73] derived
a series of stencils which are also shown in Fig. 11.11. Those kernels read


2.x/ D
8
<

:
1 � jxj .0 � jxj � �x/

0 .�x � jxj/ ; (11.34)


3.x/ D

8
ˆ̂̂
<

ˆ̂̂
:

1
3

�
1 C p

1 � 3x2

�
0 � jxj � 1

2
�x

1
6

�
5 � 3jxj �p�2 C 6jxj � 3x2

�
1
2
�x � jxj � 3

2
�x

0 3
2
�x � jxj

; (11.35)


4.x/ D

8
ˆ̂̂
<

ˆ̂̂
:

1
8

�
3 � 2jxj Cp

1 C 4jxj � 4x2
�

0 � jxj � �x

1
8

�
5 � 2jxj �p�7 C 12jxj � 4x2

�
�x � jxj � 2�x

0 2�x � jxj
: (11.36)

The integer index denotes the number of lattice nodes required for interpolation and
spreading along each coordinate axis (Fig. 11.11). Therefore, the stencils require 2d,
3d and 4d lattice sites in d dimensions, respectively.
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4 fulfills all of Peskin’s requirements, but it also leads to a diffuse boundary
since the interpolation range is rather large. 
3 also fulfills all requirements, but it is
less smooth. 
2 is most efficient in terms of computing time and leads to the sharpest
boundaries, but the lattice structure is not well hidden, i.e. the resulting flow field is
generally more bumpy. Sometimes, 
4.x/ is replaced by another stencil which has
nearly the same shape but does not exactly satisfy all of the requirements mentioned
above:


0
4.x/ D

8
<

:

1
4

�
1 C cos. �x

2
/
�

0 � jxj � 2�x

0 2�x � jxj
: (11.37)

We also note that additional, smoothed representations of the delta distribution have
been proposed [82].

11.4.2.5 General IB-LBM Algorithm

Without specifying yet how the forces f j acting on the boundary nodes are obtained,
we can still jot down a simple IB-LBM algorithm. It consists of the following sub-
steps:

1. Compute the Lagrangian forces f j.t/ from the current boundary configuration
frj.t/g. This is a model-dependent step which still remains to be discussed.

2. Spread the Lagrangian forces f j.t/ to the lattice via (11.33) to obtain the Eulerian
force density F.x; t/. See also Fig. 11.12.

3. Compute the uncorrected (pre-collision) velocity u.x; t/ from u D P
i fici=�.

4. Perform the LB algorithm (computing equilibrium distributions, collision and
propagation) with forcing (Chap. 6), using u.x; t/ and F.x; t/ as input. If other
forces, such as gravity, are present, the total force is the sum of all these
contributions. Note that the choice of an accurate forcing scheme (e.g. Guo
et al. [83]) is important. This is often ignored in the literature.

Fig. 11.12 Interpolation and spreading. The lattice velocity is interpolated at rj.t/. For this
operation, all lattice nodes within the grey region are required (here 
2 is used). The force density
at a given lattice node x is the sum of all contributions from those nodes rj.t/ whose interpolation
box covers x
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5. As we know from Chap. 6, the physical fluid velocity during the time step is
given by the first moment of the populations and a force correction:

uf.x; t/ D u.x; t/ C F.x; t/�t

2�.x; t/
: (11.38)

Leaving the force correction out can lead to significant stability (and accuracy)
problems.

6. Interpolate the fluid velocity uf.x; t/ at the Lagrangian node positions via (11.32)
to obtain Prj.t/. See also Fig. 11.12.

7. Advect the boundary nodes (usually by the explicit forward Euler method) to find
the new boundary configuration:

rj.t C �t/ D rj.t/ C Prj.t/�t: (11.39)

There exist different explicit time integration schemes [84, 85], though.
8. Go back to step 1 for the next time step.

Note that the time steps for the LBM and the marker position update are identical,
i.e. in the standard IB-LBM there can only be one marker update per LB time step.

Not all IBM flavours follow this algorithm. There are several approaches (and
algorithms) to deal with rigid boundaries. We will get back to those later.

Once the discretised kernel functions �.x/ have been implemented, the rules for
computing the forces f j have been defined and the initial boundary node locations
rj.t D 0/ are known, the simulation can be executed. The real challenge is normally
hidden behind the models providing the required forces f j. We will get back to this
point in the following sections.

For the sake of efficiency, note that is it very easy to implement a naive
IBM which is, despite being mathematically correct, horribly inefficient.
Equation (11.32) clearly shows that the sum should run over the lattice
neighbours of a given boundary node. For a boundary node rj, it is easy to
identify the neighbouring lattice sites. However, (11.33) suggests to go the
other way around and to identify all boundary markers in the vicinity of a
given lattice site. This can be extremely expensive, in particular when the
Eulerian lattice is large. A small trick can make the computational effort for
interpolation and spreading identical though. In order to do so, we run over
all known boundary markers rj and compute the fraction of the force density
a neighbouring lattice site x would receive:

ıjF.x/ D f j.t/�.rj.t/; x/: (11.40)

(continued)
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Here, ıjF.x/ is the contribution to F.x/ due to the presence of rj alone.
All these contributions are simply summed and the correct total force
density F.x/ D P

j ıjF.x/ is automatically obtained in the end. This also
highlights the conceptual difference between interpolation and spreading. In
fact, Tryggvason et al. [86] give the helpful advice (where “front” means
“boundary” in our case):

When information is transferred between the front and the fixed grid, it is always
easier to go from the front to the grid and not the other way around. Since the fixed
grid is structured and regular, it is very simple to determine the point on the fixed
grid that is closest to a given front position.

11.4.2.6 Implications of the Combination of IBM and LBM

Although the IBM is just another way to impose boundary conditions on the Navier-
Stokes level, the populations fi are completely unimpressed by the presence of
the Lagrangian marker points. In particular, the fi simply penetrate any closed IB
surface. This is not problematic as long as one is only interested in the no-slip
condition of the velocity u and one does not care what the populations are doing.
But we can already see that the IBM is not an ideal approach when one wants to
keep, for example, two fluids separate on two sides of a membrane.

Another observation is that the fluid usually fills the entire space, including the
regions inside any boundary. This significantly simplifies things but can also lead
to additional difficulties. For example, it has been shown that the dynamics of the
interior fluid can have an effect on the dynamics of the exterior fluid if the immersed
boundaries are rotating [87]. There are ways around this, for example by adding
interior marker points. In the following, we will not discuss methods with interior
markers, such as direct-forcing/fictitious-domain methods [88].

11.4.2.7 Distribution of Markers in Space

One open question is how to distribute the markers rj in space initially. For 2D
problems this answer is easy to answer: define a 1D chain of markers with a given
mutual distance d on the boundary. Each marker knows which one is its left and
right neighbour.

The choice of d is a more delicate issue. On the one hand, intuitively, d cannot
be too large because otherwise there are “holes” in the boundary and fluid can flow
between markers. On the other hand, too small a value for d can lead to problems
as well [89]. This is due to the peculiarities of the IBM algorithm: the marker
position update relies on the interpolated fluid velocity. If two markers are very
close, d 	 �x, they essentially see the same fluid environment and move with the
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same velocity. Markers which are too close can therefore not be separated again (or
only with a lot of effort) and they can stick together. It is usually recommended to
choose d somewhere between 0:5 and one lattice constant, but some authors even
choose d � 2�x. We will get back to this point in Sect. 11.4.3.

The situation is much more complicated in 3D where boundaries are generally
curved 2D surfaces. One has to distribute the markers such that the mutual distance
of any pair of neighbours is approximately the same. This can be a tedious task for
general surface shapes and is one of the biggest challenges when applying the IBM
in 3D. Furthermore, the node connectivity (i.e. an unstructured mesh) is required for
deformable boundaries and additional constraints may apply in those situations (e.g.
the resulting triangular face elements should be as equilateral as possible). Here, we
can only give some starting points for further literature studies:

• For simple geometries of high symmetry (spheres, red blood cells), one can
start from an icosahedron and subdivide each triangular surface element into n2

(n > 1 being an integer) triangular elements [85, 90]. The markers are radially or
tangentially shifted to approximate the desired boundary shape.

• In the minimum potential approach [91] a fixed number of markers is initially
randomly distributed on the surface. Markers interact via repulsive forces and
move along the surface until the system has found an energetic minimum. The
resulting marker configuration can then be used in simulations as initial boundary
discretisation.

• Feng and Michaelides [91] presented another approach to distribute markers on
a sphere by defining parallel segments containing equidistant nodes.

• There exist free meshing tools which can cope with more complicated boundary
shapes, for example [92, 93].

11.4.2.8 Accuracy and Convergence

One shortcoming of the IBM is that the velocity interpolation does not generally
maintain the solenoidal properties of the fluid. Even if the fluid solver is perfectly
divergence-free (which LBM usually cannot claim), the interpolated velocity may
not be divergence-free. The consequence is that the volume of an enclosed region
can change in time.

Furthermore, the IBM is formally a first-order accurate boundary condition [73].
There seems to be some dispute in the literature about the actual convergence rate,
though. While Peng and Luo [94] report second-order convergence, other authors
observed only first-order convergence for the velocity field [95, 96].

Related to the question of accuracy and convergence is the apparent size of
particles and/or apparent location of walls modelled with the IBM. Several authors,
e.g. [85, 91, 97], have reported that particles appear to be larger than they actually
are. Instead of the input radius r, a larger radius r C ır is observed where ır is
somewhere between 0:2�x and 0:5�x, depending on the chosen stencil (a kernel
with wider support usually leads to a larger ır). In order to model a sphere of actual
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radius r, Feng and Michaelides [91] suggested to distribute markers on a sphere with
radius

rb D 3

r
r3 C .r � �x/3

2
(11.41)

instead. This finding is important for the modelling of particle suspensions or porous
media where the rheology strongly depends on the volume fraction and porosity. We
will get back to the convergence and apparent wall location in Sect. 11.4.3.

Once again, we see that there is no free lunch. The advantages of the standard
IBM (ease of implementation, no need to find boundary intersections, no treatment
of fresh fluid nodes required), which explain the IBM’s popularity, are challenged
by inferior accuracy and convergence compared to other boundary conditions. Note,
however, that there have been efforts to make the IB-LBM more accurate [78, 79,
97].

11.4.3 Explicit Feedback IBM for Rigid Boundaries

We show a simple way to compute the nodal forces f j for (nearly) rigid boundaries.
This explicit IBM is easy to implement but shows weak stability properties. After
discussing the algorithm we use the explicit IBM to model Poiseuille flow and
demonstrate the convergence and boundary location issues within the IBM. Note
that the explicit IBM does not work very well for unsteady flows as it takes some
time for the marker points to respond to the flow.

11.4.3.1 Algorithm

A rigid body is defined by jrj.t/ � rk.t/j D const for any two points rj and rk of
the body. The simplest way to approximate rigid objects with the IBM is to model
the boundary as a collection of marker points rj.t/ which are individually connected

by an elastic spring to their reference locations r.0/
j .t/. Feng and Michaelides [74]

first proposed this idea within the framework of IB-LBM in 2004. While the virtual
reference locations obey the rigidity condition exactly, jr.0/

j .t/� r.0/
k .t/j D const, the

real markers are allowed to deviate slightly from this condition.
The magnitude of the undesired body deformation can be controlled by springs

with strength �. We can then explicitly compute the marker “penalty” force f j from
a function like

f j.t/ D ��ırj.t/; ırj.t/ D rj.t/ � r.0/
j .t/ (11.42)
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at each time step so that the required nodal forces f j are known. Contrarily, Feng
and Michaelides [74] proposed a form similar to

f j.t/ D
8
<

:
0 jırj.t/j D 0

��
ırj.t/

jırj.t/j jırj.t/j > 0
: (11.43)

In the example shown below, we use another penalty force:

f j.t/ D ��
d

�x
ırj.t/: (11.44)

The difference to (11.42) is that the force per node is weighted by the average
distance d between the nodes. This guarantees that increasing the number of markers
(and therefore decreasing d) does not increase the total force at the boundary. In any
case, the IBM algorithm in Sect. 11.4.1 is employed: in step 1, the forces f j.t/ are
obtained via one of the approaches shown above.

Using the explicit penalty IBM, each marker point is allowed to be slightly
carried away from its reference position. Each point applies a penalty force as
discussed above. This force then tends to pull the marker back towards its reference
position. After a few time steps (given a steady flow), a marker point will reach
an “equilibrium position” where the force it exerts on the fluid is just enough to
keep the fluid, and therefore itself, in place. It has then achieved a no-slip condition
locally.

Ideally, the exact form of the penalty force should not be important, but it depends
on the chosen parameter values whether this is actually the case. For example, if �

is too small, the undesired deformation becomes too large, and if � is too large,
the simulation can become unstable. A clear disadvantage of this method is that
the optimum range for � has to be obtained and that a small time step may be
necessary. It is not possible to achieve perfectly rigid boundaries with an explicit
IBM algorithm.

Finally, we distinguish between three fundamental cases:

1. The rigid body is fixed in space. All reference points r.0/
j are stationary, and their

positions do not have to be updated. The Poiseuille flow in the example below
belongs to this category.

2. The body is rigid, and its motion is externally prescribed. This is similar to the
first case, but the marker point positions r.0/

j are updated according to the a priori
known velocity.

3. The body is rigid but can move freely in space. This means that the reference
points r.0/

j have to be updated according to the equations of motion of a rigid
body. In contrast to the second case, this requires the momentum and angular
momentum exchange to be integrated on the surface of the body to find the total
force and torque acting on the body. Updating the marker positions of rigid bodies
can be complicated. We will not discuss details here and instead refer to the
literature [74, 87, 91, 98].
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11.4.3.2 Stationary Boundary: Poiseuille Flow

We simulate a force-driven Poiseuille flow along the x-axis in 2D with (nearly) rigid
boundaries as shown in Fig. 11.13. The gravitational force density driving the flow
is F D 10�5, and the fluid domain consists of Nx � Ny D 19 � 20 nodes on a D2Q9
lattice. The BGK collision operator with � D �t is used. We approximate both
walls by lines of markers with mutual distance d as free parameter and employ the
penalty force in (11.44). The distance between the IBM walls is D D 15:3�x. The
spring constant � is the second free parameter. Simulations are run until the velocity
profile is stationary.

We have chosen a prime number for Nx and a non-integer for D to reduce the
symmetry of the problem and therefore avoid situations which may accidentally
have small numerical errors. Note, however, that the chosen benchmark problem is
still highly idealised. Typical IBM applications involve moving curved boundaries
with complex shapes. The purpose of this exercise is to get an initial feeling for the
IBM simulation parameters.

The first task is to investigate the effect of the Lagrangian mesh spacing d=�x.
We keep � D �t fixed and vary d for two interpolations stencils, 
2 and 
4. As
error measure we take the largest value of uy in the simulation, normalised by the
Poiseuille peak velocity Oux. Note that ideally we expect uy D 0 everywhere. The
results are shown in Fig. 11.14a. The 
2-errors are larger than the 
4-errors for
d > �x, but they are smaller for d < �x. A resonance effect with vanishing
uy can be seen for d D �x and d D 0:5�x. In those situations the problem is
highly symmetric as the system is x-periodic after a single lattice unit. Generally we
conclude that d should not be larger than 1:5�x. Cheng et al. [76] reported a similar

Fig. 11.13 Setup of the
Poiseuille flow problem. The
lattice size is
Nx � Ny D 19�x � 20�x,
and the distance between the
IBM walls is D D 15:3�x. In
this particular example,
d D 0:95�x is chosen
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Fig. 11.14 Benchmark results showing the effect of mesh spacing d and penalty parameter � on
the accuracy of the explicit IBM for Poiseuille flow. (a) Sensitivity to mesh spacing. (b) Sensitivity
to penalty parameter

observation. For this simple example, 
2 provides significantly better results than

4, but this observation should certainly not be generalised to arbitrary situations.
The resonance effect is expected to disappear for more complex geometries with
curved boundaries.

In the second test, we set d D �x and vary the penalty parameter �. Due to
the explicitness of the algorithm, the Lagrangian nodes are slightly dragged by the
fluid along the x-axis until the penalty force balances the drag force. We show
the displacement of the Lagrangian nodes as function of penalty parameter � in
Fig. 11.14b. As expected, the displacement is inversely proportional to the penalty
parameter. For � D 1, the displacement is less than 0:1% of a lattice spacing �x,
which should be sufficient for most applications. We found that � > 3 leads to
instability. Concluding, d D �x and � D 1 are reasonable choices for the current
problem; we will keep these values for the final tests. Note, however, that different
flow configurations may require different parameter values for optimum results.

We now investigate the apparent boundary location and the convergence rate
of the IBM. For that purpose, we perform a grid refinement study. We only vary
the system size, but keep d D �x, � D 1 and � D �t fixed (diffusive scaling).
As a consequence, the gravitational force density F scales with .D=�x/�3 and the
expected peak velocity Oux with .D=�x/�1 (cf. Chap. 7). For each simulation, we
fit a parabola to the flow field in the central region between ˙D=2 and compute the
appararent channel diameter Dapp. Figure 11.15a shows the mismatch of the channel
diameter, Dapp � D, as function of resolution. Obviously the channel appears to be
smaller than expected, which also leads to a reduced peak velocity compared to
its expected values (not shown here). The mismatch is larger for 
4 than for 
2.
Futhermore, the diameter mismatch does not significantly depend on the resolution.
This means that the mismatch cannot be removed by increasing the resolution,
which leads only to a first-order convergence rate of the velocity error.
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Fig. 11.15 Channel diameter mismatch as function of spatial resolution and LBM relaxation
time � . (a) Sensitivity to resolution. (b) Sensitivity to relaxation time

In the final test we investigate how the wall location mismatch depends on the
relaxation time � . We now vary � at fixed resolution. Figure 11.15b reveals that
Dapp is a function of � . Depending on the value of � , the channel can appear
smaller or larger than expected. While the exact values depend on the choice of the
interpolation stencil, we can conclude that the appararent channel diameter increases
roughly linearly with � for � > �t. This is a highly undesirable effect that has
been discussed by several authors [76, 79, 99]. It has recently been suggested to use
the MRT [78] or TRT [79] collision operators to resolve this problem. We will not
discuss these approaches here.

As already concluded at the end of Sect. 11.4.2, the IBM accuracy is typically
inferior to other available boundary conditions. Care has to be taken when the exact
channel diameter or particle size (for suspension simulations) is important. In the
end, it can take a significant amount of work to make sure that an IBM code is
working reliably.

11.4.4 Direct-Forcing IB-LBM for Rigid Boundaries

The explicit penalty IBM for rigid boundaries has a major disadvantage: it involves
a free parameter whose choice affects the stability and accuracy. We seek an
alternative implementation without a free parameter. This means that the IB force
has to be computed directly from the flow field. Therefore, we call this class of
methods direct-forcing IB-LBM.

Feng and Michaelides [91, 100] originally combined the direct forcing IBM with
the LBM. A number of alternative direct-forcing IB-LBMs have been proposed
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since then. We can distinguish between three different approaches, each with
different levels of accuracy and numerical cost:

1. implicit IBM
2. multi-direct-forcing IBM (iterative)
3. direct-forcing IBM (explicit)

We cannot present and compare all available approaches in depth. Instead, we
will start from the underlying hydrodynamic problem and show which steps are
necessary to construct a reliable parameter-free IB-LBM.

11.4.4.1 Background

We assume a rigid boundary described by a number of marker points at positions rj.
The markers have known velocities Prj D ub.rj/, the desired boundary velocity. In
most situations, the boundary is resting, but there is no fundamental difficulty with
moving (translating and rotating) boundaries.

Before collision, the fluid velocity on a lattice node x is

u.x/ D 1

�.x/

X

i

fi.x/ci: (11.45)

In the absence of a force, collision leaves the momentum and velocity invariant.
The only mechanism that can change the fluid velocity during collision is a body
force F:

u?.x/ D 1

�.x/

X

i

f ?
i .x/ci D 1

�.x/

X

i

fi.x/ci C F.x/�t

�.x/
: (11.46)

As usual, a star denotes post-collision quantities. Furthermore, we drop the time t
because everything which follows is happening within a single time step.

We know that the physical fluid velocity during a time step is the average of the
pre- and post-collision velocities [83]:

uf.x/ D u.x/ C u?.x/

2
D u.x/ C F.x/�t

2�.x/
: (11.47)

The central idea of any direct-forcing IB-LBM is to construct the force F.x/ in
such a way that uf.x/ matches the known boundary velocity ub.rj/ at the marker
positions to satisfy the no-slip condition. As we will now see, this is a non-trivial
task and explains why there is a number of direct-forcing variants in the literature.

Since we are working in the framework of the IBM, the boundary velocity is
known at the positions of the boundary markers: ub.rj/ D Prj. This means that we
have to interpolate uf.x/ at the boundary markers rj to obtain uf.rj/ first, then find
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the required boundary force f j and finally spread the force back to the lattice to
obtain F.x/.

The difficulty is caused be the non-local velocity interpolation and force spread-
ing. In order to compute f j, we require the velocity on all lattice nodes x close to rj.
In return, we have to spread f j back to those lattice nodes. However, many lattice
nodes x participate in interpolation and spreading of more than one marker rj at the
same time. This means that (11.47) has to be solved simultaneously on all lattice
nodes to guarantee a consistent solution.

11.4.4.2 Implicit IB-LBM

In 2009, Wu and Shu [101] proposed the implicit velocity correction-based IB-
LBM which is probably the most accurate and consistent way to enforce the no-slip
condition at a rigid boundary with the IB-LBM. We will only provide the derivation
of the algorithm. Benchmark tests can be found in [101–103].

The basic idea of the implicit IB-LBM is to consider the required force density
F.x/ as the unknowns for which the problem has to be solved in such a way that the
no-slip condition is satisfied. Since the unknowns F.x/ depend on the current and
the desired flow field, the problem is implicit.

The first step is to write the physical fluid velocity in (11.47) as

uf.x/ D u.x/ C ıu.x/ (11.48)

where u.x/, given by (11.45), is the known uncorrected velocity and ıu.x/ D
.F.x/�t/=.2�.x// is the unknown velocity correction required to achieve the desired
no-slip condition.

Now, we use the IBM relations in (11.32) and (11.33) to link Eulerian and
Lagrangian quantities. We can express the Eulerian correction terms ıu.x/ by their
Lagrangian counterparts ıu.rj/:

ıu.x/ D
X

j

ıu.rj/�.rj; x/: (11.49)

Note that ıu.rj/ is proportional to the unknown Lagrangian force f j.
Let ub.rj/ be the desired boundary velocity imposed on the Lagrangian nodes.

The aim is construct an Eulerian flow field uf.x/ which, interpolated at the boundary
nodes, equals the boundary velocity ub.rj/:

ub.rj/ D
X

x

uf.x/�.rj; x/: (11.50)
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To achieve this, we combine (11.48), (11.49) and (11.50):

ub.rj/ D
X

x

2

4u.x/ C
X

k

ıu.rk/�.rk; x/

3

5�.rj; x/: (11.51)

The only unknowns in this equation are the desired correction terms ıu.rk/. We can
rewrite this equation in the following way:

X

k

2

4
X

x

�.rk; x/�.rj; x/

3

5

„ ƒ‚ …
Ajk

ıu.rk/„ƒ‚…
Xk

D ub.rj/ �
X

x

u.x/�.rj; x/

„ ƒ‚ …
Bj

(11.52)

or, in simple matrix-vector notation, as AX D B.
The vectors X and B have N elements, and A is an N � N-matrix where N is

the number of marker points, i.e. j and k run from 1 to N. The elements of A are
functions of the node positions rj only, depending on the choice of the IBM stencil
�. Finding the unknowns X via X D A�1B requires inversion of A. Obviously the
matrix A can be large, with N typically ranging from several 102 to several 104

or 105.
Concluding, the implicit IB-LBM algorithm works as follows:

1. Compute the matrix A and its inverse A�1 from the known node positions rj. See
[101] for details.

2. Stream the populations to obtain fi.x/ and compute the density and uncorrected
velocity from �u D P

i fici.
3. Using the known boundary velocity ub.rj/ and the uncorrected fluid velocity

u.x/, solve the matrix equation, (11.52), for the unknown corrections ıu.rj/.
4. Spread ıu.rj/ to the Eulerian grid via (11.49).
5. Compute the desired force density from ıu.x/ D .F.x/�t/=.2�.x//.
6. Perform collision with forcing.
7. If the boundary is stationary, i.e. all boundary velocities obey ub.rj/ D 0, go back

to step 2 for the next time step.
8. If the boundary is not stationary, update the positions rj and velocities Prj D ub.rj/.

The position update may be enforced (e.g. oscillating cylinder) or a consequence
of fluid stresses (e.g. freely moving cylinder). In the latter case, a suitable time
integrator has to be chosen [74, 87, 91, 98].

9. Go back to step 1 for the next time step.

Note that the re-computation of the matrix A and its inverse at each time step for
non-stationary boundaries can be expensive when N is large. Therfore, alternative
approaches, such as multi-direct forcing, which are computationally more efficient
and conceptually simpler, have been suggested.



482 11 Boundary Conditions for Fluid-Structure Interaction

11.4.4.3 Multi Direct-Forcing IB-LBM

The aim of multi direct-forcing IB-LBM is to avoid the construction and inversion
of the matrix A of the implicit IB-LBM, while keeping its consistency. Kang and
Hassan [75] provided an exhaustive overview of the multi direct-forcing IB-LBM.
Since the underlying idea is similar to that of the implicit IB-LBM, we only provide
the algorithm and a few comments.

Instead of constructing and inverting a large matrix A, the multi direct-forcing
method relies on an iterative approach to satisfy the no-slip condition at all markers
rj simultaneously. Again, the underlying idea is to take advantage of the velocity
correction in (11.47). The algorithm of the multi direct-forcing approach can be
summarised as follows:

1. Set iteration counter m to 0.
2. Stream the populations to obtain fi.x/ and compute the density and uncorrected

velocity from �u.m/ D P
i fici.

3. Interpolate u.m/.x/ at the boundary marker locations rj to obtain u.m/.rj/.
4. Increment iteration counter m by 1.
5. Compute the Lagrangian correction force from [75]

f .m/
j D 2�

ub.rj/ � u.m�1/.rj/
�t

: (11.53)

6. Spread f .m/
j to the Eulerian lattice to obtain F.m/.x/.

7. Correct previous Eulerian velocity according to

u.m/.x/ D u.m�1/.x/ C F.m/.x/�t

2�.x/
: (11.54)

8. Repeat steps 3–7 until m reaches a pre-defined limit mmax or until u.m/.rj/
converges to ub.rj/.

9. Use the total correction force

F.x/ D
mmaxX

mD1

F.m/.x/ (11.55)

in the collision step.
10. Go back to step 1 for the next time step.
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Kang and Hassan [75] compared results of benchmark tests for different iteration
numbers up to mmax D 20. They found that mmax D 5 is a reasonable compromise
of accuracy and efficiency. Since the iteration involves only those lattice nodes close
to the boundary, the additional computational cost is relatively low.

11.4.4.4 Explicit, Non-iterative Direct-Forcing IB-LBM

As pointed out by Kang and Hassan [75], a non-iterative direct-forcing scheme
can be obtained as special case of the multi direct-forcing method in the previous
section. Setting mmax D 1 leads to a simple explicit scheme that does not require
expensive matrix inversions or iterations. This special case is commonly denoted
“direct-forcing” IB-LBM, although the implicit and iterative methods are, strictly
speaking, also direct-forcing methods.7

There exist different flavours of non-iterative direct-forcing IB-LBM (see for
example [79]). However, it is obvious that this method will generally not give results
of a comparable accuracy and consistency compared to implicit or iterative schemes.

11.4.5 Explicit IBM for Deformable Boundaries

The first works utilising the deformable IB-LBM for flowing deformable red blood
cells were published in 2007 by several groups [104–106]. The overall algorithm
follows the layout described in Sect. 11.4.2. The step from the IBM algorithm
for rigid boundaries as presented in Sect. 11.4.3 to deformable boundaries is
straightforward. Instead of finding suitable penalty forces to keep the boundary
deformation as small as possible, one has to use forces which arise from elastic
surface stresses due to the (desired) deformation of the boundary. This requires two
additional ingredients: (i) a constitutive model for the boundary deformation and
(ii) a surface mesh (i.e. markers and their connectivity) to evaluate the boundary
deformation.

Sui et al. [107] were the first to present a 3D model for elastic particles (capsules,
red blood cells) in an LB simulation with well-defined constitutive behaviour and a
finite-element method to find the elastic membrane forces. Krüger et al. [85] later
investigated the effect of the choice of interpolation stencil and distance between
neighbouring Lagrangian nodes on the deformation of a capsule in shear flow.
The IB-LBM for elastic problems has been applied to, for example, viscous flow
over a flexible sheet [96] and dense suspensions of red blood cells [108] (see also
Fig. 11.16).

7Remember that “direct forcing” means that there are no free parameters, such as the elasticity �

of the explicit method in Sect. 11.4.3.
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Fig. 11.16 Flow of a single (left) and multiple (right) red blood cells in a straight tube (indicated
by solid horizontal lines) with circular cross-section. The tube diameter is slightly larger than that
of an undeformed red blood cell. The Lagrangian mesh consists of 998 nodes and 2000 triangular
elements. The simulations are based on the model presented in [108]

The IBM provides a major advantage over other boundary conditions for
the LBM when it comes to deformable objects. Since IBM boundaries in
the original implementation are intrinsically deformable, it is relatively simple
to turn this presumed disadvantage into an advantage for problems where the
deformability is actually desired. Allowing Lagrangian markers to move with
the fluid and distributing forces to the fluid is the natural algorithm of the
IBM and lends itself to problems where the fluid causes structure deformation
and the structure “reacts” elastically. Applying any of the other boundary
conditions presented in this chapter to deformable boundaries is significantly
more difficult.

11.4.5.1 Constitutive Models

The constitutive model contains all the physics of the boundary deformation. Its
choice is independent of the IBM algorithm itself and has to be defined by the user.
In the end, the IBM expects the marker forces f j, but the IBM itself is unable to
provide them. Boundaries are mostly considered hyperelastic (i.e. the dynamics can
be fully described in terms of an energy density) or viscoelastic. In the former case,
the marker forces depend only on the current deformation state, in the latter case the
forces depend both on the deformation state and its rate of change.

There exists a large variety of hyperelastic and viscoelastic models for
deformable boundaries. The problem of finding and implementing an appropriate
constitutive model is highly problem-specific. We cannot delve into details here;
this could easily fill a book on its own. The most commonly used hyperelastic
models for red blood cells are briefly discussed in [107].
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For simplicity, we will assume that hyperelastic models can be written in the
form

f j.t/ D f j.frk.t/g/ (11.56)

and viscoelastic models as

f j.t/ D f j.frk.t/g; fPrk.t/g/: (11.57)

This means that the instantaneous marker forces are (arbitrarily complicated)
functions of all current boundary marker positions and, if viscoelastic, of all current
boundary marker velocities. Once these laws have been specified, they can be coded
and used to find the forces f j for a given deformation state at every time step.

Example 11.1 A simple hyperelastic constitutive model which can be used in 2D
and 3D is (dropping the time dependence for simplicity)

f j.frkg/ D ��
X

k 6Dj

djk � d.0/
jk

d.0/
jk

djk
djk

; djk D rk � rj; djk D jdjkj (11.58)

where � is an elastic modulus, the sum runs over all next neighbours of marker j and
d.0/
jk is the equilibrium distance between markers j and k. This example shows that

not only the markers, but also their connectivity is an important part of the problem
description. In many situations, additional constraints are necessary, for instance
conservation of the total volume or surface of a boundary.

In most cases of hyperelastic boundaries one first defines an elastic energy
density �.frj.t/g/. The force acting on node j can then be recovered by applying
the principle of virtual work,

f j D @�.frkg/
@rj

Aj; (11.59)

where Aj is the area related to marker j, e.g. its Voronoi area. More details are
provided in [85, 107].

11.4.6 Additional Variants and Similar Boundary
Treatments

The previous sections cover the most prominent flavours of the IB-LBM. This is,
however, not the end of the rope. There are more variations on the market, some of
which we want to mention in the following.
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There are a number of fluid-structure interaction approaches which share some
features with the IBM (in particular the existence of off-lattice markers or a
Lagrangian mesh and kernel functions for velocity interpolation and/or force
spreading), but their algorithms reveal distinct differences. Schiller [109] recently
revisited those algorithms and pointed out their mathematical similarity.

1. Ahlrichs and Dünweg [110] introduced a dissipative coupling method for LBM
and molecular dynamics (MD), which has been further analysed by Caiazzo
and Maddu [95] and recently reviewed by Dünweg and Ladd [111] and is used
in the open-source package ESPResSo [112], mostly for polymer simulations.
Lagrangian markers are allowed to move with a different velocity than the veloc-
ity of the fluid at the location of the marker (obtained by velocity interpolation). A
finite slip velocity results in a drag force acting on the marker whose magnitude is
controlled via a numerical drag coefficient. An equal but opposite force is exerted
on the fluid by spreading it to the Eulerian lattice. Additionally, the markers
may experience external or interaction forces. The marker update is treated by
higher-order MD, which requires the introduction of another model parameter,
a finite marker mass. An advantage of this approach is that the time step for
the update of the markers is decoupled from the LB time step, which can be
exploited to implement more stable time-integration schemes; a freedom which
is not available for the conventional IB-LBM algorithm. Disadvantages are that
the no-slip condition is not strictly satisfied and that two model parameters are
required (drag coefficient and marker mass).

2. The momentum-exchange-based IB-LBM, as proposed for rigid boundaries
[113, 114] and recently extended to flexible boundaries [115], uses a different
approach to obtain the force density acting on the fluid. The basic idea is to
interpolate the LB populations (rather than the velocity) to find their value at the
location of the Lagrangian markers. The bounce-back scheme is then applied on
the Lagrangian mesh to find the momentum exchange and therefore the marker
force f j which is then distributed to the lattice via the standard force spreading
operation. As a consequence, there is no need for user-defined penalty parameters
(for rigid boundaries) and the markers can move independently of the fluid
motion. However, this may lead to a violation of the no-slip condition.8

3. Wu and Aidun [116] proposed the so-called external-boundary force (EBF)
which can be used both as alternative to the direct-forcing IBM for rigid
boundaries and for deformable objects. Similar to the other two examples above,
the most notable difference to the IBM is that the markers are not directly
advected by the fluid. Instead, a relative slip velocity is permitted which is
counteracted by a fluid-solid interaction force, which is essentially a penalty
force. Note that this force does not require a free parameter like the dissipative

8While the authors of [113] use bounce-back to obtain the momentum exchange at the boundary
markers, the populations on the lattice are not directly affected by this bounce-back procedure.
Although the momentum exchange is correctly obtained, there is no strong mechanism enforcing
the local no-slip condition. Therefore, streamlines may penetrate the boundary.
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coupling does. Also here, the allowance of a relative slip velocity may lead to
problems with the no-slip condition.

Concluding, we can say that, although it is desirable to decouple the motion of
the marker points from the fluid motion (as this allows higher-order and therefore
potentially more stable time integration schemes), the no-slip condition at the
boundary cannot be strictly enforced at the same time. The reason is that all the
methods discussed above [110, 113, 115, 116] are explicit with respect to the fluid
velocity computation. Still, if the precise realisation of the no-slip condition is not
the primary goal, the above methods are attractive alternatives and overcome some
of the disadvantages of the more conventional IB schemes.

It is also worth mentioning that the IBM can be used to model thermal boundary
conditions. In 2010, Jeong et al. [117] combined the IBM with a thermal LBM to
simulate flows around bluff bodies with heat transfer. Seta [118] later improved the
thermal IB-LBM by analysing the governing equations through a Chapman-Enskog
analysis. Another IBM variant that has apparently not yet been combined with the
LBM is the so-called penalty IBM (p-IBM) [119–121] for flexible boundaries. It
involves two set of Lagrangian markers: one interacting with the fluid, the other
used for the calculation of the Lagrangian forces. Both marker sets are coupled by
springs generating penalty forces.

11.5 Concluding Remarks

The number of available boundary conditions for the LBM is overwhelming, and
it can be a daunting task to grasp the implications of those schemes. In the
following we list a series of publications which provide comparative studies of
boundary conditions for curved geometries. This should help to understand the
relative performance of certain boundary methods for a given flow geometry.

• Ginzburg and d’Humières [17] compared simple (Sect. 11.2.1) and interpolated
bounce-back (Sect. 11.2.2) with the multireflection method [17] in a number
of stationary situations (inclined Couette and Poiseuille flows, flow over single
cylinder and array of cylinders, impulsively started cylinder and moving sphere
in a cylinder). They conclude that the multireflection method is more accurate
than the linear interpolated bounce-back method.

• Pan et al. [12] compared the performance of simple bounce-back, interpo-
lated bounce-back (both linear and quadratic interpolations) and multireflection
boundary conditions for porous media simulations. They also included an
analysis of the effect of collision operator (BGK vs. MRT) on the permeability of
idealised porous media. Their main finding is that the permeability is generally
viscosity-dependent through an unphysical dependence on the relaxation rate(s).
Especially the combination of BGK and simple bounce-back leads to a strongly
increasing permeability with viscosity, an effect caused by the increasing slip
velocity at the boundary. They conclude that the combination of simple bounce-
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back with MRT is consistently better than with BGK. The reason is that the
no-slip condition can be much better controlled in the MRT framework when
the viscosity is large. Using interpolated rather than simple bounce-back can also
improve the accuracy of the simulations.

• Peng and Luo [94] investigated the relative performance of interpolated bounce-
back and a direct-forcing immersed boundary method (IBM, Sect. 11.4.4). They
considered steady and unsteady flows about a stationary rigid cylinder in 2D.
Their major findings are that both methods require roughly the same computing
time, the interpolated bounce-back is more accurate, but that the IBM is easier to
implement.

• Chen et al. [47] have combined the ghost method (Sect. 11.3.4) with the
partially saturated method (PSM, Sect. 11.2.3) in order to remove spurious
pressure oscillations. The immediate consequence is that the algorithm becomes
significantly more complicated than Noble’s and Torczynski’s [46] original
one: interpolations become necessary to find the ghost node properties and a
treatment of fresh nodes is required. This is a clear disadvantage compared to
the original method [46] where the fresh node problem is naturally avoided. The
conclusion is that the combined method yields better results than the original
PSM or the interpolated bounce-back method, especially for moving obstacles
at smaller resolutions. According to Chen et al., PSM is recommended when
code simplicity and efficiency are desired, while the combined method should be
favoured for high-accuracy applications.

• Chen et al. [14] recently conducted a thorough comparison of three bounce-back
schemes (standard, interpolated and unified interpolation), two IBM variants
(explicit and implicit direct forcing) and three additional methods. The authors
were primarily interested in acoustic problems involving sound wave generation
from moving bodies due to the fresh node treatment. The authors found that the
IBM is more suitable for moving boundaries than the interpolated bounce-back
when fresh nodes are involved.

• Nash et al. [122] compared the accuracy of simple and interpolated bounce-back,
the Guo-Zheng-Shi extrapolation method (GZS, Sect. 11.3.3) and the Junk-Yang
method in non-grid-aligned Poiseuille, Womersley and Dean flows at moderate
Reynolds numbers (up to 300). The authors found that the Junk-Yang method
shows poor stability in the selected parameter range. The linear interpolated
bounce-back and the GZS methods have comparable accuracy (with a second-
order convergence) although the latter becomes unstable for the highest Reynolds
numbers tested. For the situation of interest (flow in inclined channels with
moderate Reynolds number), the authors conclude that interpolated bounce-back
is the best all-around option, although simple bounce-back (despite its first-order
convergence) may be the method of choice when code development time is at a
premium.

Everything said up to this point applies to rigid boundaries. It seems that the
IBM and its related methods is still the most convenient approach for deformable
boundaries (cf. Sects. 11.4.5 and 11.4.6). The reason is that all other boundary
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conditions presented in this chapter require an accurate local momentum exchange
algorithm to compute the local stresses in the deformable material.9 This is normally
a very challenging and expensive problem that is elegantly circumvented by the
IBM.

We can generally conclude that all existing boundary conditions claim their
own compromise of accuracy, stability and efficiency/ease of implementation.
Furthermore, some boundary conditions perform better in stationary situations,
others when the boundaries are moving. It is up to the user to identify the
requirements before choosing one of the many available boundary conditions. There
is no best boundary treatment for all possible scenarios. We hope that this chapter
sheds some light on the plethora of boundary conditions and helps the reader to find
a suitable scheme for a given problem.
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